The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
Risk factors for Deep Vein Thrombosis in a South African public hospital

By

ALSHEHRI, MOHAMMED FAIEZ

Student number: ALSMOH002

SUBMITTED TO THE UNIVERSITY OF CAPE TOWN

In partial fulfilment of the requirements for the degree: Master of Medicine Emergency Medicine

Faculty of Health Sciences
UNIVERSITY OF CAPE TOWN

FEBRUARY 2013

SUPERVISORS

Dr A Kropman FCEM
Dr H Geduld FCEM
Division of Emergency Medicine, University of Cape Town
Declaration

I, ALSHEHRI MOHAMMED FAIEZ, hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university.

I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever.

Signature:

Date: 27 May 2013
Acknowledgements

I would like to express my sincere gratitude to Prof. Lee Wallis for the continuous support of my study and research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis.

I wish to extend special recognition and thanks to Dr Annemarie Kropman and Dr Heike Geduld, my very patient supervisors.

My thanks to my family go without saying.
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature review</td>
<td>1</td>
</tr>
<tr>
<td>Motivation, Aim</td>
<td>9</td>
</tr>
<tr>
<td>Article for publication</td>
<td>10</td>
</tr>
<tr>
<td>Instructions for authors: African Journal of Emergency Medicine</td>
<td>22</td>
</tr>
<tr>
<td>HREC approved protocol</td>
<td>32</td>
</tr>
<tr>
<td>Appendices</td>
<td>39</td>
</tr>
</tbody>
</table>
LITERATURE REVIEW

Deep vein thrombosis (DVT) represents the formation of blood clots within the deep venous system. It is a common and dangerous disease in the most serious since clots can propagate from the deep veins leading to a fatal pulmonary embolus. DVT can be difficult to detect and may be confused with many other conditions. It is not an easy diagnosis to make because lots of other conditions mimic DVTs, for example lower limb oedema, cellulitis and Baker’s cyst. Over 200,000 South Africans suffer from DVT each year, because most DVT is occult, the true incidence is unknown. The patients will suffer from acute and/or chronic complications such as stasis dermatitis and venous ulcers. While the degree of morbidity is significant, mortality rates are equally problematic. Thromboembolic disease is annually responsible for 20,000 deaths in South Africa.

1. Pathophysiology of Thrombosis

There are different theories trying to explain the pathophysiology behind thrombosis. Rudolf Virchow, (a German pathologist in the 1800s) defined the types of conditions that could predispose patients to abnormal thrombus formation. These categories of risk factors, called “Virchow’s triad,” are:

- Hypercoagulability
- Venous stasis
- Endothelial damage.

i. Hypercoagulable states

The most common causes of hypercoagulability include mutations in factor V and deficiencies in protein C or protein S. Protein C and its cofactor protein S, are Vitamin K-dependent and work by inhibiting factors V and VIII. When a deficiency of one of them develops or procoagulation factors are not properly inhibited, a tendency for the development of thrombus results. Deficiencies of antithrombin III and hyperhomocysteinemia are less common genetic causes of hypercoagulability. Pregnancy and the post-partum period are associated with an increased risk of DVT due to hypercoagulability. Other causes of hypercoagulability include: Autoimmune diseases such as Systemic lupus erythematosus (SLE); Malignancy especially Adenocarcinoma of the visceral organs and lung cancer; and medications such as chemotherapy agents and Oestrogens. Polycythemia increases the risk for DVT due to an increased haematocrit. Obesity has been thought in the past to be a unique risk factor for DVT. Smoking has been associated with an increased risk of thrombosis.
ii. Venous stasis
Any decrease in venous flow, results in stasis of the blood, which predisposes to venous thromboembolism for example: immobility, local pressure, congestive heart failure, shock and venous obstruction. Immobility implies long trip for more than 6 hours by airplanes, cars or trains associated with assuming one position without moving the lower limbs. There is a clear association between the incidence of DVT and the systemic venous pooling seen in Congestive heart failure.

iii. Endothelial damage
Local damage to the intimal wall of a vein can occur because of inflammation, infection, local trauma, or indwelling catheters. However, vessel wall damage is less important in venous thrombosis formation than in arterial thrombosis formation. Examples of low-grade chronic vessel injury that increase the baseline propensity for thrombosis may include endothelial injury due to chemotherapy, hyperhomocysteinemia, vasculitis, or antiphospholipid syndrome. The greatest risk factor for venous thrombosis is previous thromboembolic disease. Major surgery and multisystem trauma often require 2 or more classic risk factors for DVT (e.g. activation of clotting factors, immobility and local damage) and together they are responsible for up to 40% of all thromboembolic disease. The rate of postoperative DVT in non-anticoagulated patients is 70% after non-elective hip surgery, 48% after elective orthopaedic surgery and 12% after elective general surgery. Upper extremity DVT is far less common than lower extremity DVT and is most often associated with the presence of a central venous line. The subclavian vein is the most common place to develop upper extremity DVT followed by the axillary and brachial veins. Effort thrombosis is a syndrome of DVT unique to the upper extremity, typically occurring in young males after strenuous or unusual exercises.

2. Risk factors for DVT
There are numerous recognised risk factors for DVT. The most widely accepted are not discussed in detail, but are listed under the clinical decision rule section below.

i. Clinical Decision Rules
Here we have defined a clinical decision rule as a clinical tool that quantifies the contributions that various components of the patient’s history and physical examination make toward the diagnosis. In 2006, Scarvelis and Wells conducted a comprehensive review of the DVT literature by searching MEDLINE from 1966 to April 1997. They concluded that the diagnostic properties of the clinical
examination are poor. The sensitivity of the clinical examination ranges from 60% to 96%, and the specificity ranges from 20% to 72%. Additionally, they concluded the use of a clinical prediction guide that includes specific factors from both the history and physical examination in combination with non-invasive tests will simplify diagnosis of patients with suspected DVT. The scoring system they developed has become widely known as the Wells score, which enable physicians to reliably stratify their patients into high-, moderate-, or low-risk categories. Combining this with the results of objective testing greatly simplifies the clinical workup of patients with suspected DVT. Wells score is shown in the table. A total score of two or higher indicates that the probability of deep-vein thrombosis is likely; a total score of less than two indicates that the probability of deep-vein thrombosis is unlikely. In patients with symptoms in both legs, use the more symptomatic leg. Wells score is one of the most commonly used criteria to guide further investigations for DVT in emergency centres (EC). However, it is not the only one - Landefeld and colleagues developed another clinical decision rule, but it was based upon a very small sample and its uptake has been very poor. It will not be discussed further. The Wells score has never been validated in South Africa.

<table>
<thead>
<tr>
<th>Clinical Characteristic</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active cancer (patient receiving treatment for cancer within previous the 6 months or currently receiving palliative treatment)</td>
<td>1</td>
</tr>
<tr>
<td>Paralysis, paresis, or recent plaster immobilization of the lower extremities</td>
<td>1</td>
</tr>
<tr>
<td>Recent bedridden for greater than 3 days or major surgery within the previous 12 weeks requiring general or regional anaesthesia</td>
<td>1</td>
</tr>
<tr>
<td>Localized tenderness along the distribution of the deep venous system</td>
<td>1</td>
</tr>
<tr>
<td>Entire leg swollen</td>
<td>1</td>
</tr>
<tr>
<td>Calf swelling at least 3 cm larger than that on the asymptomatic leg (measured 10 cm below tibial tuberosity)</td>
<td>1</td>
</tr>
<tr>
<td>Pitting oedema confined to the symptomatic leg</td>
<td>1</td>
</tr>
<tr>
<td>Collateral superficial veins (no varicose)</td>
<td>1</td>
</tr>
<tr>
<td>Previously documented deep-vein thrombosis</td>
<td>1</td>
</tr>
<tr>
<td>Alternative diagnosis at least as likely as deep-vein thrombosis</td>
<td>-2</td>
</tr>
</tbody>
</table>

Table: Wells score for DVT risk stratification [18]

ii. Other risk factors
According to The Global TB Control Report 2009, the African Region which accounted for an estimated 12% of the world population contributed 22% of notified TB cases. Case notification rates have increased from 82:100,000 in 1990 to 158:100,000 in 2007. Pulmonary tuberculosis (PTB) is one of the most prevalent chronic infectious diseases in South Africa and worldwide. The mortality rate in pulmonary tuberculosis is high in those with advanced disease and in the presence of complications. Deep vein thrombosis is reported as a systemic haematological complication in patients with PTB. Reactive thrombocytosis, elevations in plasma fibrinogen degradation products (FDP), tissue plasminogen inhibitors with depressed antithrombin III levels appear to favour the development of DVT in PTB. Many studies have also demonstrated that these haematological parameters worsen during the first 2 weeks of anti-TB therapy in many cases, but they normalize after a month of anti-tuberculosis therapy. Thrombosis have been reported in patients with intra-abdominal lymphadenopathy of tubercular aetiology. The high frequency of anti-phospholipid antibodies and Protein-S deficiency in patients with tuberculosis is also mentioned in the literature. Studies have also demonstrated a possible association between DVT and use of Rifampicin containing regimens. This does not contraindicate the use of this drug in patients at risk, but such patients should be monitored.

Pulmonary tuberculosis is characterized by an acute phase response and leads to a series of cellular and molecular interactions that profoundly alter haemostasis. One series of patients with active pulmonary tuberculosis has shown anaemia, leucocytosis, thrombocytosis, elevation in plasma fibrinogen, factor VIII, plasminogen activator inhibitor-1 with depressed antithrombin III and protein C levels. Fibrinogen and factor VIII levels had decreased to normal levels, protein C and antithrombin III levels had increased to normal levels, and there was no difference in plasminogen activator inhibitor-1 levels. None of the patients, however, developed DVT. The hypercoagulable state in tuberculosis has been described variously as an increased number of platelets, an increase in platelet adhesiveness, hyperfibrinogenemia and a decrease in fibrinolysis. Tuberculosis patients have lower levels of anticoagulation factors (protein C, protein S, antithrombin III), with elevation in plasma fibrinogen, factor VIII, plasminogen activator inhibitor-1 and D-dimers. White found a 4.7-fold increased incidence of DVT in the rifampicin arm of a study as compared with another anti-TB regime but could not elucidate the mechanism. In most patients, diagnosis of TB was made in the first 2 weeks after admission and start of therapy. Through enzyme induction, rifampicin could theoretically alter the balance of procoagulant and anticoagulant proteins produced by the liver. Decreased production and increased clearance of anticoagulant proteins may favour
hypercoagulability.\(^{31}\)

HIV

Infection with the Human Immunodeficiency Virus (HIV) is still a major health problem worldwide. According to the latest statistics about HIV/AIDS an estimated 5.6 million people were living with HIV and AIDS in South Africa in 2009, more than in any other country. It is believed that in 2009 an estimated 310,000 South Africans died of AIDS.\(^{32}\) Haematological and vascular complications of HIV/AIDS are frequently reported. The incidence was increased two to ten fold in comparison with a healthy population of the same age.\(^{33}\) A two- to 10-fold increased incidence of VTE is described in HIV-infected patients.\(^{34}\) An increased risk of venous thrombotic disease in HIV-infected patients could be explained by the presence of a hypercoagulable state characterized by an increase in procoagulant factors.\(^{35}\) HIV-infected patients are at increased risk of venous and arterial thrombosis. In this Study\(^{35}\), 109 consecutive HIV-infected patients in the study and tested them twice for currently known thrombophilic abnormalities at an interval of at least 3 months (median, 3 months; range, 3-12 months). After HIV infection was diagnosed, 16% of the patients experienced symptomatic thrombosis (venous, 10%; arterial, 6%). Multiple acquired and persistent thrombophilic abnormalities are more frequently observed in HIV-infected patients than in the healthy population. The frequencies of these thrombophilic abnormalities increase with the progression to AIDS. These findings may contribute to the high prevalence of venous and arterial thrombosis in HIV-infected patients.\(^{35}\) In a case series that described the thrombotic complications of patients infected with HIV, it was noted that the patients were characterized by a relatively young age at the time of thrombosis, a predominance of elevated levels of lipids, a history of malignancy, and an advanced CDC HIV classification, but not by a low CD4 cell count or an elevated HIV load.\(^{35}\)

3. Diagnosis of DVT

In addition to the history and physical examination findings as detailed in the Wells score, diagnosis of DVT is then dependent upon further testing. Testing is guided by the pre-test probability of DVT, but the details of that stratification are not discussed further here. The 2 main testing modalities are
expanded upon below.

i. D-Dimer

A simple blood test measures the degradation product of factor XIII cross linked fibrin. It reflects on-going activation of the haemostatic system. It can be used as rule out test when the pre-test probability of DVT is low\(^{36}\), but has little diagnostic yield with an intermediate or high pre test probability.

ii. Duplex Ultrasound

All other diagnostic measures are imaging based: venography, duplex Ultrasound, CT scan and MRI. Venography is traditionally held as the gold standard for evaluating DVT, but it has largely been supplanted by duplex venous ultrasonography\(^{37}\) due to its several disadvantages: it is an invasive procedure, requires the intravenous injection of contrast, and some patients may develop an allergic reaction to the contrast or it may cause nephrotoxicity. Additionally, 2-3% of patients develop DVT secondary to venography\(^ {38}\). CT and MRI have reasonable accuracy – although no higher than well done ultrasound - but are not affordable in our setting and so are not explored further.

Duplex Ultrasound consists of evaluating for vein collapsibility under ultrasound transducer compression and evaluating blood flow with both colour and spectral Doppler. It is performed on the entire proximal deep venous system where accessible. It is an inexpensive, quick and non-invasive test. Ultrasound can be limited in its utility by the operator’s skills and the patient size: in obese patients or those with severe lower limb oedema it may be virtually impossible to visualize the clot on ultrasound. It has a sensitivity of 95% for proximal DVT, 65% sensitivity for distal DVT, and combined specificity of 94%\(^ {38}\); the diagnosis of distal or calf DVT is frequently difficult and time-consuming, with sensitivity for isolated calf vein thrombosis in the range of 40-90% \(^ {39}\). Ultrasound may however identify a substantial alternative diagnosis, such as a ruptured Baker's cyst, cellulitis and presence of hematoma\(^ {40}\).

In South Africa duplex ultrasound is the most commonly utilized test to evaluate for the presence of DVT.
REFERENCES

13. EBM Online. The recurrence rate of venous thromboembolism after a first or second episode of deep venous thrombosis was high. *EBM 2000;5:188*

37. http://www.sheffield.ac.uk/content/1/c6/02/41/31/US_faem04.pdf last accessed 04-02-13

MOTIVATION FOR THE STUDY

The evidence suggests an association between HIV, TB and DVT. There are no studies of this link in the Southern African setting, where the incidence of both of these conditions (HIV and TB) is high. We therefore undertook a study to define the incidence of HIV and TB in patients with confirmed DVT in this setting.

AIM

The aim of this study is to describe the incidence of HIV, TB and the more commonly accepted risk factors in patients with confirmed DVT in a South African public hospital.
Risk factors for Deep Vein Thrombosis in a South African public hospital

Dr Mohammed Faiez Alsherhi FCEM
Dr A Kropman FCEM
Dr H Geduld FCEM
Prof. Lee Wallis FCEM
Division of Emergency Medicine, University of Cape Town

Corresponding author: Dr M Alsherhi dr.mo7mad@gmail.com

African Relevance:

• HIV and TB are affecting many patients in this continent.
• The reality of high rate of patients with DVT diagnosed with HIV, TB, or both.

Keywords:
DVT, Risk factors, HIV, TB
Abstract

1. Objective
To identify the presence of risk factors for DVT in a population of South African public healthcare system patients with confirmed DVT.

2. Methods:
A retrospective review of patients with ultrasound confirmed DVT at GF Jooste, a Cape Town public hospital. Medical notes were reviewed for the presence of established risk factors, TB and HIV.

3. Results
Eight hundred and sixty five (865) patients with suspected DVT were identified; 685 had confirmed DVT. 610 had complete records; 62.6% were female. The location of DVT was in lower limbs in 97 % of patients and in upper limbs in 3%. HIV status was positive in 393 (64.4%), negative in 53 (8.6%) and unknown in 164 (26.8%). TB status was positive in 339 (55.5%) and negative in the rest. In addition, 264 patients were positive for both HIV and TB; 135 patients were unknown to have HIV or TB.

4. Conclusion
It appears that the risk of developing DVT is high in patients with HIV or TB. More research is required to optimally define the risk factors in our population in order to develop a DVT scoring system.

African Relevance:
- HIV and TB are affecting many patients in this continent.
- The reality of high rate of patients with DVT diagnosed with HIV, TB, or both.
INTRODUCTION

Deep vein thrombosis is caused by clot formation in the deep veins of the body. Virchow’s Triad encapsulates the main pathophysiologic issues in DVT development: hypercoagulable states, venous stasis and local damage to the intimal wall of the vein. Traditionally described risk factors for DVT include: immobility, thrombophilia, surgery, pregnancy, recent injury, cancer, congestive heart failure, oral contraceptives, previous history of DVT or pulmonary embolism (PE), smoking, advanced age and obesity. However, there is no literature describing the prevalence of these risk factors in patients with DVT in the South African context. Recent reports note an increase in the incidence of DVT’s in HIV positive individuals; one study showed that thrombotic events are four times more common in HIV-infected than the general population, and these occur at a younger age. Lijfering showed that the reasons for this increased rate of thrombosis include protein C and protein F deficiency, increased factor VIII and high fibrinogen concentrations. There is good literature to suggest that the occurrence of DVT is much higher in patients with Tuberculosis (TB) infection than in the general population. This is thought to be due to the molecular interactions of the acute phase response which alter haemostasis, combined with the immobility superimposed with the illness. TB patients appear to develop a reactive thrombocytosis, elevated plasma fibrinogen levels, impaired fibrinolysis and a decrease in antithrombin III, all of which contribute to thrombogenicity.

Diagnosis of DVT

Well’s criteria are internationally accepted as a reliable clinical prediction rule to calculate an individual’s risk of having a DVT (Table 1). A score of two or higher indicates that the probability of a DVT is likely and that further testing is required. However, they have never been validated within South Africa; they also exclude two very common and important risk factors: HIV and TB.

Table 1 near here

In addition to the role of d-dimer, which is not considered further here, numerous imaging modalities can be used to diagnose DVT, including contrast venography, compression and colour flow duplex ultrasound, magnetic resonance venography and computed tomographic venography. Contrast venography is the gold standard, but is time consuming, requires a high degree of technical expertise and is invasive. For these reasons, even though ultrasound is less sensitive and specific, it has replaced venography as the initial imaging of choice. Duplex Ultrasound consists of evaluating for vein collapsibility under ultrasound transducer compression and evaluating blood flow with both colour and spectral Doppler. It is performed on the entire proximal deep venous system where
Ultrasound has a reported sensitivity of 95% for proximal and 65% for distal DVT, and a specificity of 94% (although some studies claim a sensitivity for diagnosis of isolated calf vein thrombosis between 40-90%). It is a relatively inexpensive, quick and non-invasive test, but is limited by the operator’s skills and the patient size (in obese patients or those with severe lower limb oedema it may be virtually impossible to visualize the clot on ultrasound). The diagnosis of distal or calf DVT is frequently difficult and time-consuming with ultrasound but a significant alternative diagnosis, such as a ruptured Baker’s cyst, cellulitis or haematoma may easily be diagnosed using ultrasound. In South Africa, duplex ultrasound is the most commonly utilized test to evaluate for the presence of DVT: confirmation of DVT is determined by a positive compression and/or colour flow duplex ultrasound.

Given the lack of locally relevant information on the relationship between DVT and HIV and TB, we undertook a study to describe the incidence of these 2 risk factors in patients with DVTs in a South African population.

METHODS

GF Jooste is a busy urban 224 bed district hospital situated in one of the city’s most violent township areas. It has a high rate of HIV and TB in its patient catchment area. It runs an emergency centre which sees around 40,000 patients per year.

We retrospectively reviewed medical records of all patients with a confirmed DVT presenting to the ultrasound department of GF Jooste hospital, Cape Town from 1 April 2008 to 30 April 2011. The ultrasound registers were reviewed by the primary researcher, to identify patients undergoing ultrasound for suspected DVT. All such patients were reviewed and those with positive findings were identified and formed the study population.

Medical records were retrieved on all patients with positive scans; patients with missing or incomplete records were excluded from the analysis. A standardized data capture form was used to collect age, sex, site of DVT (upper or lower limbs), risk factors for DVT, HIV status (positive, negative or unknown) and TB status (positive, negative). Data were entered into a Microsoft Excel 2010 (© Microsoft, Richmond VA) spread sheet and data analysed using Stata 10 (©Statacorp, College Station, Tx).

This study was granted ethics approval by the Research Ethics Committee, University of Cape Town (REF: 020/2012)
Eight hundred and sixty-five patients with suspected DVT were identified from the ultrasound register during the study period: 685 had confirmed DVT. Of these, 610 had available medical records of DVT; 48 records were missing and 27 records were conflicting and therefore unusable. Therefore the total study sample was 610 patients.

The median age for the group was 37 years (interquartile range 15 - 88 years). Of the patients who had DVT, 62.6% were female. The location of DVT was in lower limbs in 97% (male 95%, female 99%); all others occurred in the upper limbs.

HIV stats was recorded as positive in 393 (64.4%), negative in 53 (8.6%) and unknown in 164 (26.8%); TB status was positive in 339 (55.5%). A total of 264 patients were both HIV and TB positive; 137 patients were not known to have HIV or TB. Table 2 contains details of other commonly identified risk factors in this population.

Table 2 near here

DISCUSSION

We conducted this descriptive study trying to find the commonest risk factors of DVT among the South African population and to show the possible association between HIV and TB, as independent risk factors of DVT. South Africa ranks fourth in the world in terms of absolute TB cases after India, China and Indonesia. TB is the most common opportunistic infection in HIV infected people.\(^\text{17}\) Approximately 5.6 million South Africans were living with HIV in 2009 of which roughly 1 million people are currently accessing antiretroviral treatment.\(^\text{18}\) The prevalence of HIV in South Africa is currently between 11% and 19%.\(^\text{19}\) The HIV epidemic in South Africa has a significant impact on the burden of tuberculosis. TB notification rates have increased to 1500 / 100 000 populations more commonly in poverty stricken areas.\(^\text{20}\)

GF Jooste Hospital currently provides district and regional services to more than 1 million people. This population presents a good sample of the South African population with different races and age groups. A 2003 survey of medical admissions to GF Jooste hospital showed that approximately 32.3% of surveyed patients were HIV positive and most of them (85.2%) had WHO Stage III disease or AIDS.\(^\text{21}\) With regards to the tuberculosis-related burden of disease, 20.6% of surveyed patients had undiagnosed active TB and 33.4% were on TB treatment at the time of discharge, transfer or death.\(^\text{21}\)
Our findings clearly show that in most cases of DVT the patient is HIV positive or has TB or both. More than 64% had HIV and more than 55% had TB: 43.2% were positive for both HIV and TB. This suggests a clear association between both of these conditions and the development of DVT. Nearly two thirds of patients were female: this is not representative of the EC population, which is closer to half female. Only 14 of these patients were pregnant, but insufficient other clinical information were captured to allow deductions to be made as to why this female predominance is seen. Upper limb DVT was found in 3%: all of them were secondary to previous central line insertion. The commonest “traditional” risk factors for DVT were immobility and history of previous DVT / PE (8.7%, 4.3% respectively). History of cancer, CCF and obesity were found in 3-4% of patients.

LIMITATIONS
As this is a retrospective records review including only patients identified from the ultrasound. This study is limited by the documented patient information and work-up done by the managing medical staff. As such it is expected that there may be occasions when risk factors and/or comorbidities have not been accurately recorded. Therefore our reported incidence rates may be at the lower end of the real rates. Some records were not available at the time of review. This could have affected the incidence rate in either direction. However, there is no reason to suppose that the 11% missing records were different in any way to the records retrieved. The use of ultrasound as diagnostic measure also has its limitations, as it is not the gold standard for the diagnosis of DVT. However, it is standard practice in most countries today, and has performance characteristics suitable to allow reasonable interpretation of its results. The study was conducted at one centre (GF Jooste hospital) in the Western Cape and may not reflect the results in different centres.

CONCLUSION
This is the first study reporting the incidence of HIV and TB in patients with DVT in a South African setting. We have demonstrated a very high rate of infection with either of both pathogens in this population. More research is required to determine whether this association is repeated in other parts of the region.

1. Funding
The study was funded by the researcher.

2. **Conflict of interest**

The authors declare that there is no conflict of interest.
REFERENCES

Figure: patient identification

- Total Number of patients: 865
 - Positive DVT: 685
 - Missing Records: 48
 - Conflicting Records: 27
 - Available Records: 610
 - UL DVT: 18
 - LL DVT: 592
 - Negative DVT: 180
Table 1: Wells Clinical Model for Predicting Pre-test Probability for DVT

<table>
<thead>
<tr>
<th>CLINICAL CHARACTERISTIC</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active cancer (patient receiving treatment for cancer within previous 6 months or currently receiving palliative treatment)</td>
<td>1</td>
</tr>
<tr>
<td>Paralysis, paresis, or recent plaster immobilization of the lower extremities</td>
<td>1</td>
</tr>
<tr>
<td>Recent bedridden for greater than 3 days or major surgery within the previous 12 weeks requiring general or regional anaesthesia</td>
<td>1</td>
</tr>
<tr>
<td>Localized tenderness along the distribution of the deep venous system</td>
<td>1</td>
</tr>
<tr>
<td>Entire leg swollen</td>
<td>1</td>
</tr>
<tr>
<td>Calf swelling at least 3 cm larger than that on the asymptomatic leg (measured 10 cm below tibia tuberosity)</td>
<td>1</td>
</tr>
<tr>
<td>Pitting oedema confined to the symptomatic leg</td>
<td>1</td>
</tr>
<tr>
<td>Collateral superficial veins (no varicose)</td>
<td>1</td>
</tr>
<tr>
<td>Previously documented deep-vein thrombosis</td>
<td>1</td>
</tr>
<tr>
<td>Alternative diagnosis at least as likely as deep-vein thrombosis</td>
<td>-2</td>
</tr>
<tr>
<td>RISK FACTORS</td>
<td>n (%)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>HIV</td>
<td>393 (64.43)</td>
</tr>
<tr>
<td>TB</td>
<td>339 (55.57)</td>
</tr>
<tr>
<td>IMMOBILITY</td>
<td>53 (8.69)</td>
</tr>
<tr>
<td>PREVIOUS DVT/PE</td>
<td>26 (4.26)</td>
</tr>
<tr>
<td>CANCER</td>
<td>25 (4.10)</td>
</tr>
<tr>
<td>CCF</td>
<td>22 (3.61)</td>
</tr>
<tr>
<td>OBESITY</td>
<td>19 (3.11)</td>
</tr>
<tr>
<td>RECENT SURGERY</td>
<td>3 (0.49)</td>
</tr>
<tr>
<td>PREGNANCY</td>
<td>14 (2.30)</td>
</tr>
<tr>
<td>TRAUMA</td>
<td>10 (1.64)</td>
</tr>
<tr>
<td>SMOKING</td>
<td>11 (1.80)</td>
</tr>
<tr>
<td>NO RISK FACTORS</td>
<td>17 (2.79)</td>
</tr>
</tbody>
</table>
AFRICAN JOURNAL OF EMERGENCY MEDICINE: INSTRUCTIONS FOR AUTHORS

TYPES OF ARTICLES

Original Research: Original studies of basic or clinical investigations in areas relevant to emergency medicine. Reference to the relevance of the research in a resource poor setting is essential and should be alluded to in the discussion section. References and a structured abstract (see Preparation below) are required. Maximum length: 3,000 words, 5 tables and/or figures, plus the abstract (300 words) and references (max 50). The checklists found on the following websites should be used to structure your manuscript (a completed checklist should be submitted with your manuscript):

- For randomised control trials: http://www.consort-statement.org
- For cohort, case-control, and cross-sectional studies: http://www.strobe-statement.org/
- All other studies: http://www.equator-network.org/resource-centre/library-of-health-research-reporting/

Review Articles (commissioned): Extensive reviews of the literature on a narrow clinical topic. References must include, but need not be limited to, the past 3 years of the literature. A narrative abstract is required (see Preparation below). Review articles should focus on best evidence in an ideal as well as a resource poor setting. Maximum length: 3,000 words, plus the narrative abstract (max 300 words) and references (max 50). For Systematic reviews and meta-analyses a Prisma checklist (http://www.prisma-statement.org) should be used to structure your manuscript (a completed checklist should be submitted with your manuscript).

Case Reports: Brief descriptions of a previously undocumented disease process, a unique unreported manifestation or treatment of a known disease process, or unique unreported complications of treatment regimens. Case reports should be structured as follow: Introduction, Case report and Discussion. They should not contain an exhaustive review of the literature. A structured abstract (see Preparation below) is required. Maximum length: 1,000 words, plus abstract (max 150 words) and references (max 10), and 1 table or figure.

Abstracts for Africa: Research abstracts can be submitted for publication, providing a concise summary of original work not published elsewhere. Case reports and narrative abstracts are not accepted for publication in Abstracts for Africa. An abstract is not required. Please enter: Not applicable, Abstracts for Africa when prompted to enter an abstract. Upload your manuscript containing title and abstract when prompted. Maximum length: 300 words plus maximum of one table/figure and three references are allowed. The Strobe checklist for conference abstracts (http://www.strobe-statement.org/) should be used to structure your manuscript (a completed checklist should be submitted with your manuscript).

Practical Pearl: Descriptions of novel approaches to provision of emergency care; and practical "tricks of the trade" describing aspects of emergency medicine management. An abstract is not required (enter: Not required, practical pearl when prompted). Maximum length: 800 words, 5 tables and/or figures and references (max 5). A manuscript template is
available at http://www.afjem.com/ and can be used for submission. Note that author details should be included in the manuscript.

Brief Research Reports: Reports of preliminary data and findings or studies with small numbers demonstrating the need for further investigation. References and a structured abstract (see Preparation below) are required. Maximum length: 1,500 words, plus the abstract (max 300 words) and references (max 10) and 3 tables and/or figures. Checklists described for original research above should be used to structure your manuscript (a completed checklist should be submitted with your manuscript).

Concepts: Descriptions of clinical and nonclinical problems and solutions; descriptions of novel approaches to planning, management, or provision of emergency services; and practical "how-to" articles describing aspects of emergency medicine management (includes African country acute care profiles). A narrative abstract (see Preparation below) is required. Maximum length: 3,000 words, plus the abstract (max 300 words) and references (max 50).

Editorials (commissioned): Authoritative comments or opinions on major current problems of emergency physicians or on controversial matters with significant implications for emergency medicine; or, qualified, thorough analysis and criticism of articles appearing in AfJEM. Maximum length: 1,500 words plus references (max 5). An abstract is not required.

Brief Commentaries (commissioned): Brief discussion focusing on 1 or 2 key points about a single study-strengths, weaknesses, where it fits in the context of other studies, controversies, how it should or should not change our clinical practice, or how it illustrates some important principle of science or methodology. Maximum length: 750 words plus references (max 5).

Case Conferences (commissioned): Presentation and discussion of a case by an expert, focused on the problem-solving approach toward a particular clinical problem and discussion of differential diagnoses and subsequent management at various stages of the patient's evaluation. Maximum length: 3,000 words plus the abstract (max 300 words) and references (max 50).

Correspondence: Discussion, observations, opinions, corrections, and comments on topics appearing in AfJEM; very brief reports or other items of interest. Maximum length: 500 words, plus references (max 5). An abstract is not required. Please enter: Not applicable, Correspondence when prompted to enter an abstract. Letters discussing an AfJEM article should be received within 6 weeks of the article's publication. The article must be included in the references. Authors of articles about which letters are received will be given the opportunity to reply, which will not be shared with the letter writer prior to publication. Letters of political or other topics unrelated to the science of medicine, as well as those containing personal criticisms, will not be published.

Erratum: Corrections on topics appearing in AfJEM. Maximum length: 300 words, plus references (max 5). An abstract is not required. Please enter: Not applicable, Erratum when prompted to enter an abstract. Letters discussing an AfJEM article should be received within 6 weeks of the article's publication. The article must be included in the references. Authors of articles about which letters are received will be given the opportunity to reply, which will not be shared with the letter writer prior to publication. Letters of political or other topics unrelated to the science of medicine, as well as those containing personal criticisms, will not be published.
PREPARATION

Submission checklist
The following list will be useful during the final checking of an article prior to sending it to the journal for review. Please consult the rest of the preparation guide for further details of any item. Any manuscript which did not adhere to this guidance will be returned to the authors for correction before being processed further.

Ensure that the following items are present:

Cover letter
☐ Details of related papers published or submitted for publication
☐ Details of previous reviews of the submitted article
☐ Indication as to whether any of your manuscript (for example, appendices, large tables) could be published as Web only files rather than in the print version of the article. Please label any files for online publication with this designation.
☐ What permission has been obtained if copyrighted material from other sources (including the Web) are included in the manuscript

Title page
☐ Title
☐ Author names, affiliations and contribution
☐ Word count
☐ Number of figures and tables
☐ Conflict of interest statement
☐ Corresponding author

Manuscript
☐ Title
☐ Ensure that any author identifiers are removed
☐ Abstract
☐ Content as per article type (tables included in text)
☐ Correct reference structure
☐ List of figure captions as per guidance below

Further considerations
☐ Author affiliations and contribution to manuscript are clearly described
☐ Conflict of interest statement included both in title page and when prompted by submission system
☐ Manuscript has been "spellchecked" and "grammar-checked" using English UK
☐ Tables are in the correct format
☐ References are in the correct format for this journal (see below)
☐ All references mentioned in the Reference list are cited in the text, and vice versa
☐ Permission has been obtained for use of copyrighted material from other sources (including the Web)
☐ Figures: all figures separately uploaded from manuscript and labelled correctly (see below)
☐ Checklists: completed checklist (see article type above) uploaded as a supplementary file
Detailed preparation guidance

Authors are encouraged to access the Uniform Requirements for Manuscripts Submitted to Biomedical Journals: Manuscript Preparation and Submission: Preparing a Manuscript for Submission to a Biomedical Journal as published by the International Committee of Medical Journal Editors (ICMJE) when writing their manuscripts which can be accessed at http://www.icmje.org/manuscript_prepare.html. In additions to the information given by the ICMJE the following guidance applies specifically to AfJEM.

Use of word-processing software

It is important that the file be saved in the native format of the word processor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the word processor's options to justify text or to hyphenate words. However, do use bold face, italics, subscripts, superscripts etc. When preparing tables, if you are using a table grid, use only one grid for each individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier: http://www.elsevier.com!guidepublication). Note that source files of figures, tables and text graphics will be required whether or not you embed your figures in the text. See also the section on Electronic illustrations. To avoid unnecessary errors you are strongly advised to use the "spell-check" and "grammar-check" set to English UK of your word-processor.

Preferred terminology, units of measure and drug names

Please use the term Emergency Centre (EC) throughout to describe Emergency Departments. Do not use Casualty, Emergency Room or Accident and Emergency. Acute care is preferred to emergency care. Acronyms should be used sparingly and fully explained when first used. Abbreviations and symbols must be standard and SI units used throughout except for blood pressure values which are reported in mmHg. Whenever possible, drugs should be given their approved generic name. Where a proprietary (brand) name is used, it should begin with a capital letter.

Essential title page information

- **Title.** Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae.

- **Author names, affiliations and contribution.** Where the family name may be ambiguous (e.g. a double name), please indicate this clearly. Present the authors' affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lowercase superscript letter immediately after the author's name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name, and, if available, the e-mail address of each author. The contribution of each author must also be described briefly. This should be done in a paragraph below the names and affiliations and must reference the names of all authors. This is discussed under the heading authorship above.

- **Word count.** Include the word count of your manuscript excluding any tables and references

- **Number of figures and tables

- **Conflict of interest statement.** Conflict of interest exists when a participant in the publication process has a competing interest that could unduly influence (or be reasonably seen to do so) his or her involvement in the publication process. Authors are expected to make a clear statement of any competing interests. Examples are discussed under the
heading Conflict of interest above.

- **Corresponding author.** Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. Ensure that telephone and fax numbers (with country and area code) are provided in addition to the e-mail address and the complete postal address. Contact details must be kept up to date by the corresponding author.

- **Present/permanent address.** If an author has moved since the work described in the article was done, or was visiting at the time, a "Present address" (or "Permanent address") may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.

Abstract
A concise and factual abstract of no more than 300 words is required. The abstract should state briefly the purpose of the research, the principal results and major conclusions. An abstract is often presented separately from the article, so it must be able to stand alone. Non-standard or uncommon abbreviations should be avoided, but if essential, it must be defined at the first mention. With the exception of a submission for Editorials, Abstracts for Africa, Practical pearl, Correspondence and Erratum, abstracts are required for all article types.

Types of abstracts include:
- Research abstracts should adhere to the following format: Introduction, Methods, Results and Conclusion
- Case reports should adhere to the following format: Introduction, Case report and Discussion
- Other narrative abstracts are acceptable for non-research abstracts (reviews, opinions, concepts and commentary)
- Abstracts for Africa: see guidance in Types of Articles above

Keywords
The submission system will prompt authors to provide a maximum of 6 keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, "and", "of"). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

Article structure
Ensure that author identifiers are not included in the main manuscript file submitted. Inclusion of an abstract in the manuscript is not required. Consult the guidance and checklists described in Types of Articles above to structure your manuscript correctly. Original articles, brief research reports and systematic reviews require the checklist to be submitted as a supplementary file. Where this has not been supplied, the manuscript will be returned to the author.

Subdivision - numbered sections
Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1 (then 1.1.1, 1.1.2 ...), 1.2, etc. (the abstract is not included in section numbering). Use this numbering also for internal cross-referencing: do not just refer to "the text". Any subsection may be given a brief heading. Each heading should appear on its own
Abbreviations
Define all abbreviations and acronyms at their first mention in the text. Such abbreviations that are unavoidable in the abstract must be defined at their first mention there. Ensure consistency of abbreviations throughout the article.

Acknowledgements
Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing language help, writing assistance or proof reading the article, etc.).

Statistics
Describe statistical methods with enough detail to enable a knowledgeable reader with access to the original data to verify the reported results. References for the design of the study and complex or unusual statistical methods should be to standard works when possible (with pages stated). Commonly used methods such as the chi-square test, t-test, ANOVA, linear and logistic regression need not be referenced. Define statistical terms, abbreviations, and most symbols. Technical statistical terms should ideally be replaced by simpler terms where possible and referenced if not. Specify the computer software used. The results section must be written so the average reader can understand the findings. The methods section is allowed to be more complex if unavoidable. When possible, quantify findings and present them with appropriate indicators of measurement error or uncertainty (such as confidence intervals). For normally distributed data give means and confidence intervals and for data that is not normally distributed give the median and interquartile range. Avoid relying solely on statistical hypothesis testing, such as p-values. If p-values are used, include 2 digits of precision (i.e. p=0.65) for values greater than 0.01. Give 3 digits for values between 0.01 and 0.001 and report values smaller than 0.001 as p < 0.001. Describing non-significant p-values as NS is not acceptable and a numerical value should be given. When using tables consider including counts and percentages. In general, including the chi-square statistic, t statistic, F statistic and degrees of freedom is not useful. Regression output should be limited to the most important findings. Estimates of variance explained (R², correlation coefficients, and standardized regression coefficients or effect size) should not be presented as the main result of the analysis.

Math formulae
Present simple formulae in the line of normal text where possible and use the solidus (/) instead of a horizontal line for small fractional terms, e.g., X/Y. In principle, variables are to be presented in italics. Powers of e are often more conveniently denoted by exp. Number consecutively any equations that have to be displayed separately from the text (if referred to explicitly in the text). Bear in mind that complex formula, such as log likelihood expressions or symbolic expressions for regression models are often beyond the grasp of the average reader. Consider making this available as an online only appendix.

Appendices
If there is more than one appendix, it should be identified starting with Appendix B, C, etc. Do not use Appendix A. Formulae and equations in appendices should be given separate numbering: Eq. (A.1), Eq. (A.2), etc.; in a subsequent appendix, Eq. (B.1) and so on. Similarly for tables and figures: Table A.1; Fig. A.1, etc. All appendices should be
considered online material only.

Footnotes
Footnotes are discouraged and when used should be used sparingly. Number them consecutively throughout the article, using superscript Arabic numbers. Many word processors build footnotes into the text, and this feature may be used. Should this not be the case, indicate the position of footnotes in the text and present the footnotes themselves separately at the end of the article. Do not include footnotes in the Reference list.

Tables
Number tables consecutively in accordance with their appearance in the text. Place footnotes to tables below the table body and indicate them with superscript lowercase letters. Avoid vertical rules. Be sparing in the use of tables and ensure that the data presented in tables do not duplicate results described elsewhere in the article. Tables should be placed within the text where it is referenced. The preferred format for tables is as follow. Include tables in the main text of the manuscript. Each table should be labelled at the top with footnotes at the bottom.

Table 1 Title of table

<table>
<thead>
<tr>
<th>Align heading left</th>
<th>Align heading middle</th>
<th>Align heading middle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Align content left</td>
<td>Align content middle</td>
<td>Align content middle</td>
</tr>
<tr>
<td>Align content left(^a)</td>
<td>Align content middle(^b)</td>
<td>Align content middle</td>
</tr>
<tr>
<td>Align content left</td>
<td>Align content middle</td>
<td>Align content middle</td>
</tr>
</tbody>
</table>

\(^a\) Footnote 1, \(^b\) Footnote 2

Artwork/figures

Electronic artwork/figures
- Make sure you use uniform lettering and sizing of your original artwork.
- Save text in illustrations as "graphics" or enclose the font.
- Only use the following fonts in your illustrations: Arial, Courier, Times, Symbol.
- Number the illustrations according to their sequence in the text.
- Use a logical naming convention for your artwork/figure files (i.e. Figure 1, Figure 2).
- Produce images near to the desired size of the printed version.
- Submit each artwork/figure separate from the manuscript, except if your electronic artwork is created in a Microsoft Office application (Word, PowerPoint, Excel) then please include at the end of your manuscript after the references.
A detailed guide on electronic artwork is available on our website:
http://www.elsevier.com/artworkinstructions

You are urged to visit this site; some excerpts from the detailed information are given here.

Formats
Regardless of the application used, when your electronic artwork is finalized, please "save as" or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):
EPS: Vector drawings. Embed the font or save the text as "graphics".
TIFF: colour or grayscale photographs (halftones): always use a minimum of 300 dpi.
TIFF: Bitmapped line drawings: use a minimum of 1000 dpi.
TIFF: Combinations bitmapped line/half-tone (colour or grayscale): a minimum of 500 dpi is required.

Note that if your electronic artwork/figure is created in a Microsoft Office application (Word, PowerPoint, and Excel) then it should be supplied "as is". Artworks/figures created in a Microsoft Office application does not need to be uploaded as a file separate from the manuscript, but should be included at the end of the manuscript after the references.

Please do not:
• Supply files that are optimized for screen use (like GIF, BMP, PICT, and WPG); the resolution is too low;
• Supply files that are too low in resolution;
• Submit graphics that are disproportionately large for the content.

Colour artwork
Please make sure that artwork files are in an acceptable format (TIFF, EPS or MS Office files) and with the correct resolution. If together with your accepted article, you submit usable colour figures then Elsevier will ensure, at no additional charge that these figures will appear in colour on the Web (e.g., Science Direct and other sites) in addition to colour reproduction in print. For further information on the preparation of electronic artwork, please see http://www.elsevier.com/artworkinstructions.

Artwork/ Figure captions
Ensure that each illustration has a caption. Supply captions separately, listed at the end of your manuscript after the references, and not included in the separately uploaded artworks/figures. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

References

Citation in text
Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either "Unpublished results" or "Personal communication" Citation of a reference as "in press" implies that the item has been accepted for publication.
Web references
As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list.

References in a special issue
Please ensure that the words 'this issue' are added to any references in the list (and any citations in the text) to other articles in the same Special Issue.

Reference style
Text: Indicate references by superscript numbers in the text. The actual authors can be referred to, but the reference number(s) must always be given.
List: Number the references in the list in the order in which they appear in the text.
Examples:
Reference to a journal publication:
Reference to a book:
Reference to a chapter in an edited book:

Note shortened form for last page number. e.g., 51–9, and that for more than 6 authors the first 6 should be listed followed by "et al." For further details you are referred to "Uniform Requirements for Manuscripts submitted to Biomedical Journals" (J Am Med Assoc 1997;277:927–934) (see also http://www.nlm.nih.gov/bsd/uniform_requirements.html).

Journal abbreviations source
Journal names should be abbreviated according to
List of title word abbreviations: http://www.issn.org/2-22661-LTWA-online.php;

Video data
Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labelled so that they directly relate to the video file's content. In order to ensure that your video or animation material is directly usable, please provide the files in one of our recommended file formats with a preferred maximum size of 50 MB. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including Science Direct: http://www.sciencedirect.com. Please supply 'stills' with your files: you can choose any frame from the video or animation or make a separate image. These will be used instead of standard icons and will personalize the link to your
video data. For more detailed instructions please visit our video instruction pages at http://www.elsevier.com/artworkinstructions. Note: since video and animation cannot be embedded in the print version of the journal, please provide text for both the electronic and the print version for the portions of the article that refer to this content.

Supplementary data
Elsevier accepts electronic supplementary material to support and enhance your scientific research. Supplementary files offer the author additional possibilities to publish supporting applications, high-resolution images, background datasets, sound clips and more. Supplementary files supplied will be published online alongside the electronic version of your article in Elsevier Web products, including Science Direct: http://www.sciencedirect.com

In order to ensure that your submitted material is directly usable, please provide the data in one of our recommended file formats. Authors should submit the material in electronic format together with the article and supply a concise and descriptive caption for each file.

For more detailed instructions please visit our artwork instruction pages at http://www.elsevier.com/artworkinstructions.

For any further information please visit our customer support site at http://support.elsevier.com.
Risk factors for Deep Vein Thrombosis in the South African Population

Research Proposal
February 2012

STUDENT: Alshehri Mohammed F., MD
ALSMOH002
Emergency Medicine Division, Department of Surgery
University of Cape Town

SUPERVISOR(s): Dr A Kropman (MBChB FCEM)
Emergency Medicine Division, Department of Surgery
University of Cape Town

Dr H Geduld (MBChB MMed FCEM)
Emergency Medicine Division, Department of Surgery
University of Cape Town

In partial completion of the degree MMed in Emergency Medicine

33
TABLE OF CONTENTS

1. Introduction
 1.1. Literature review
 1.2. Aim
 1.3. Objectives

2. Methods
 2.1. Study design
 2.2. Study population
 2.3. Sampling
 2.3.1. Inclusion criteria
 2.3.2. Exclusion criteria
 2.4. Data collection and management
 2.5. Timeline

3. Statistical analysis

4. Ethical and legal considerations

5. Limitations

6. Resources
 6.1. Available resource
 6.2. Budget and budget motivation

7. Reporting and implementation of results

References

Appendices
 Appendix 1 – Data Capture Sheet

1. Introduction

 1.1. Literature Review
It is estimated that over 200,000 South Africans suffer from deep vein thrombosis (DVT) each year, but because DVT is occult the true incidence is unknown. Deep vein thrombosis is caused by thrombus formation in the deep veins of the body. Virchow’s Triad describes the risk factors for DVT to include hypercoagulable states, venous stasis and local damage to the intimal wall of the vein.

Traditional risk factors for DVT include: immobility, thrombophilia, surgery, pregnancy, recent injury, cancer, congestive heart failure, oral contraceptives, previous history of DVT or PE (pulmonary embolism), smoking, age and obesity. No literature describes the prevalence of the aforementioned risk factors for DVT in the South African population.

More recently an increase in the incidence of DVT’s in patients with HIV (Human immunodeficiency virus) has been described with one study showing that thrombotic events are four times more common in HIV-infected individuals than the general population and occur among these HIV infected patients despite their younger age. Lijfering et al showed that reasons for this increased incidence of thrombosis included protein C and protein F deficiency, increased factor VIII concentrations and high fibrinogen concentrations.

There is also literature supporting the occurrence of DVT in patients with Tuberculosis (TB) infection. This is thought to be due to the molecular interactions of the acute phase response that alters haemostasis combined with the immobility superimposed with the illness. These changes that occur in patients with TB appear to include a reactive thrombocytosis, elevated plasma fibrinogen with impaired fibrinolysis and a decrease in antithrombin III.

Well’s criteria for DVT is an internationally accepted clinical prediction tool to calculate an individual’s risk of having a DVT. A score of two or higher indicates that the probability of a DVT is likely and that further testing is required.

Wells et al Clinical Model For Predicting Pre-test Probability For DVT

<table>
<thead>
<tr>
<th>Clinical Characteristic</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active cancer (patient receiving treatment for cancer within previous the 6 months or1 currently receiving palliative treatment)</td>
<td></td>
</tr>
<tr>
<td>Paralysis, paresis, or recent plaster immobilization of the lower extremities</td>
<td>1</td>
</tr>
<tr>
<td>Recent bedridden for greater than 3 days or major surgery within the previous 12 weeks1 requiring general or regional anesthesia</td>
<td></td>
</tr>
<tr>
<td>Localized tenderness along the distribution of the deep venous system</td>
<td>1</td>
</tr>
<tr>
<td>Entire leg swollen</td>
<td>1</td>
</tr>
<tr>
<td>Calf swelling at least 3 cm larger than that on the asymptomatic leg (measured 10 cm below1 tibia tuberosity)</td>
<td></td>
</tr>
<tr>
<td>Pitting edema confined to the symptomatic leg</td>
<td>1</td>
</tr>
<tr>
<td>Collateral superficial veins (no varicose)</td>
<td>1</td>
</tr>
<tr>
<td>Previously documented deep-vein thrombosis</td>
<td>1</td>
</tr>
<tr>
<td>Alternative diagnosis at least as likely as deep-vein thrombosis</td>
<td>-2</td>
</tr>
</tbody>
</table>
Well's criteria has never been validated within South Africa and also excludes the 2 independent risk factors which affects the South African population and which this study is looking at, namely HIV and TB.

There are numerous modalities available that can be used to diagnose DVT. These modalities include: contrast venography, compression and colourflow duplex ultrasound, magnetic resonance venography and computed tomographic venography. Contrast venography is the gold-standard, but is time consuming, requires a high degree of technical expertise and is invasive. For these reasons, even though ultrasound is less sensitive and specific, it has replaced venography as the initial imaging of choice. For this study, confirmation of the presence of DVT shall be determined by a positive compression and/or colour flow duplex ultrasound.

1.2. Aim

The aim of this study is to describe the risk factors present in patients with deep vein thrombosis in a Western Cape Hospital population

1.3. Objectives

1.3.1. To evaluate what traditional risk factors for DVT are present in Western Cape patients with ultrasound confirmed Deep Vein Thrombosis.

1.3.2. To evaluate the presence of HIV and/or TB in Western Cape patients with ultrasound confirmed DVT.

2. Methods

2.1. Study design

This will be a retrospective descriptive study. A review of the ultrasound registers over a 36 month period at GF Jooste will be done. All patients who have undergone ultrasound by sonographers and/or radiologists for suspected DVT will be reviewed and those with positive findings will be identified. Folders will then be requested for those patients with ultrasound confirmed DVTs. The data capture sheet will then be filled in using the information gained from the patients' folders. The names of the patients will not be kept, only the information from the files will be stored with study numbers (not folder numbers).

2.2. Study population

The ultrasound registers over a 36 month period at GF Jooste Hospital will be reviewed for patients undergoing ultrasound for suspected DVT. Those patients with positive findings will form the study population. It is estimated that the study population will be approximately 550 patients.

2.3. Sampling

2.3.1. Inclusion criteria
All patients with deep vein thrombosis as identified by ultrasounds done by sonographers and/or radiologists over a 36 month period at the above hospital will form the study population.

2.3.2. Exclusion criteria

Patients under the age of 18 will be excluded from the study. Patients whose folders are missing will be excluded from the study population.

2.4. Data collection and management

The primary investigator shall request the folders of those patients with positive DVTs. The primary investigator shall then complete the data capture sheet using only study numbers and not folder numbers or any other identifying characteristics. The data capture sheets shall then be entered into a password protected computer and stored by the primary investigator.

2.5. Timeline

Ethics Mar 2012, Data Capturing April 2012, Write up May 2012

3. Statistical analysis

Data will be collated in a Microsoft Excel database. Statistical analysis will be done with the help of UCT statisticians. Simple descriptive statistics (means and medians and standard deviations) will be used to describe the demographic data. The assistance of a statistician will be sought to determine potential statistical associations between key variables.

4. Ethical and legal considerations

This will be a retrospective folder review. The data collected will be anonymous. The folder numbers will initially be used to track data information, but thereafter no patient identifying characteristics will be recorded. Only the primary researcher will have access to patients' folders and data sheets while recording the information. All patients will only be identified by study numbers. These study numbers will not be cross referenced with patient's names or folder numbers. Patient consent will not be required as the study does not involve any intervention or recording of patient details.

This study will seek approval from the University of Cape Town Ethics Committee. Furthermore, permission for access to ultrasound records and patient medical records will be obtained from the above listed hospital administrator and the Provincial Department of Health.

5. Limitations

As this is a folder review, this study will be limited by the patient information recorded and workup done by the medical staff that managed the patient. As such it is expected that there may be many occasions when all risk factors and/or comorbidities have not been included and/or excluded.

6. Resources

6.1. Budget

37
The study will be funded by the researcher.

7. Reporting and implementation of results

The results of this study will be written up and submitted to a peer reviewed journal for publication for dissemination of information of risk factors for DVT in the South African population.

References

APPENDICES:
Appendix A: Ethics Approval Letter

University of Cape Town

15 March 2012

HREC REF: 118/2012

Dr A Mohammed
Emergency Medicine
Department of Surgery

Dear Dr Mohammed

Project Title: Risk Factors for Deep Vein Thrombosis in the South African Population.

Thank you for submitting your study to the Faculty of Health Sciences Human Research Ethics Committee for review.

It is a pleasure to inform you that the HREC has formally approved the above mentioned study.

Approval is granted for one year till the 30th March 2013.

Please submit a progress form, using the standardized Annual Report Form (FHS016), if the study continues beyond the approval period. Please submit a Standard Closure form (FHS010) if the study is completed within the approval period.

Please note that the ongoing ethical conduct of the study remains the responsibility of the principal investigator.

Please quote the HREC REF in all your correspondence.

Yours sincerely,

[Signature]

Professor M Blockman
Chairperson, HSF Human Ethics

Federal Wide Assurance Number: FWA00001037.
Institutional Review Board (IRB) number: IRB0001938

This serves to confirm that the University of Cape Town Human Research Ethics Committee complies with the Ethics Standards for Clinical Research with a new drug in patients, based on the Medical Research Council (MRC-SA), Food and Drug Administration (FDA-USA), International Convention on Harmonisation Good Clinical Practice (ICH GCP) and Declaration of Helsinki guidelines.

The Human Research Ethics Committee granting this approval is in compliance with the ICH Harmonised Tripartite Guidelines E6: Note for Guidance on Good Clinical Practice (CPMP/ICH/135/95) and FDA Code Federal Regulation Part 30, 31 and 312.

[Signature]
<table>
<thead>
<tr>
<th>Study No</th>
<th>Demographics</th>
<th>Site of DVT</th>
<th>Risk factors for DVT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>R = Right</td>
<td>C = Cancer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L = Left</td>
<td>P = Pregnancy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F = Femoral</td>
<td>R = Pre-eclampsia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P = Popliteal</td>
<td>I = Iliac</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I = Iliac</td>
<td>T = Trauma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S = Subclavian</td>
<td>T = Trombic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ag = Age</td>
<td>S = Sepsis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sex = Sex</td>
<td>H = Hypertension</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O = Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other
CODE USED FOR RISK FACTORS WHILE DATA CAPTURING:
Y = Yes (Recorded in notes as being present or diagnosed at the time of DVT diagnosis)
N = No (Recorded in notes as not being present – as a negative finding)
U = Unknown (Not recorded as being present or absent – so unknown)
S = Suspected (When the condition was suspected by the treating clinicians, but not confirmed. This may occur for example in HIV infection when the patient refused testing)