
Univ
ers

ity
 of

 C
ap

e T
ow

n

UNIVERSITY OF CAPE TOWN

DOCTORAL THESIS

Neuro-Evolution Behavior Transfer for
Collective Behavior Tasks

Author:
SABRE Z. DIDI

Supervisor:
Dr. GEOFF S. NITSCHKE

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

on

January 22, 2018

http://www.uct.ac.za
http://www.uct.ac.za
http://www.jamessmith.com

Univ
ers

ity
 of

 C
ap

e T
ow

n
The copyright of this thesis vests in the author. No
quotation from it or information derived from it is to be
published without full acknowledgement of the source.
The thesis is to be used for private study or non-
commercial research purposes only.

Published by the University of Cape Town (UCT) in terms
of the non-exclusive license granted to UCT by the author.

i

Declaration of Authorship

I, SABRE Z. DIDI, declare that this thesis titled, “Neuro-Evolution Behavior Transfer for
Collective Behavior Tasks ” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at
this University.

• Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

Sabre
Typewritten text

Sabre
Typewritten text
22/01/2018

ii

Abstract

The design of effective, robust and autonomous controllers for multi-agent and
multi-robot systems is a long-standing problem in the fields of computational
intelligence and robotics. Whilst nature-inspired problem-solving techniques such as
reinforcement learning (RL) and evolutionary algorithms (EA) are often used to adapt
controllers for solving such tasks, the complexity of such tasks increases with the
addition of more agents (or robots) in difficult environments. This is due to specific
issues related to task complexity, such as the curse of dimensionality and bootstrapping
problems.

Despite an increasing attempt over the last decade to incorporate behavior (knowledge)
transfer in machine learning so that relevant behavior acquired in previous learning
experiences can be used to boost task performance in complex tasks, using evolutionary
algorithms to facilitate behavior transfer (especially multi-agent behavior transfer) has
received little attention. It remains unclear how behavior transfer addresses issues such
as the bootstrapping problem in complex multi-agent tasks (for example, RoboCup
soccer).

This thesis seeks to investigate and establish the essential features constituting effective
and efficient evolutionary search to augment behavior transfer for boosting the quality
of evolved behaviors across increasingly complex tasks. Experimental results indicate
a hybrid of objective-based search and behavioral diversity maintenance in evolutionary
controller design coupled with behavior transfer yields evolved behaviors of significantly
high quality across increasingly complex multi-agent tasks. The evolutionary controller
design method thus addresses the bootstrapping task for the given range of multi-agent
tasks, whilst comparative controller design methods yield scant performance results.

iii

Acknowledgements
My advisor, Dr. Geoff S. Nitschke, is an excellent role model, and has been a choice guide
to the success of this thesis. I extend him my sincere gratitude and thanks for countless
hours of discussion, draft reviews and insightful comments that shaped the outcome of
this thesis. None of the research outputs nor this thesis would have existed without his
kind efforts to help shape the ideas and several drafts.

I am also eternally grateful to my wife, Nothabo, for her incredible patience, love and
support during the trying times of study and thesis write-up.

Many thanks to the anonymous reviewers that provided invaluable insights and through
review feedback and comments. I am also most grateful for the financial support jointly
provided by the Center for Artificial Intelligence Research (CAIR) and the Faculty of
Science at the University of Cape Town.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

Contents iv

List of Figures vii

List of Tables xii

1 Introduction 1
1.1 Motivation . 3
1.2 Research Question . 4
1.3 Contributions and Impact . 5
1.4 Overview of the Dissertation . 5

2 Background and Related Work 7
2.1 Learning in Collective behavior tasks . 7

2.1.1 Reinforcement Learning . 8
2.1.2 Neuro-Evolution (NE) . 12

Conventional Neuro-Evolution and Coevolution 12
Topology and Weight Evolving Artificial Neural Networks 17
Generative Encoding in Neuro-Evolution 18

2.2 Collective Behavior Transfer . 23
2.2.1 Reinforcement Learning Behavior Transfer 23
2.2.2 Neuro-Evolution for Behavior Transfer 27

2.3 Diversity Maintenance Methods . 28
2.4 Discussion and Summary . 32

3 Methodology 33
3.1 Neuro-Evolution of Augmenting Topology (NEAT) 33

3.1.1 NEAT Behavior Transfer . 37
3.2 HyperNEAT: Hypercube-based NEAT . 38

3.2.1 HyperNEAT Behavior Transfer . 40
3.3 Reinforcement Learning . 40

v

3.3.1 SARSA . 41
3.3.2 Q-Learning . 43
3.3.3 Function Approximation . 43
3.3.4 TD Behavior Transfer . 45

3.4 Behavior Adaptation Methods . 46
3.4.1 Objective Based Search (OS) . 46
3.4.2 Behavioral Diversity and Objective-based Search 47

Novelty Search (NS) . 47
Hybrid Objective-Novelty Search (ONS) 48

3.4.3 Genotype Diversity and Objective Based 48
Genotype Novel Search (GNS) . 48
Hybrid Objective-GNS (OGN) . 49

3.5 Discussion and Summary . 49

4 Behavior Transfer and Neuro-Evolution Experiments 51
4.1 Collective behavior Task and Performance Specification 52

4.1.1 Complexity in keep-away task . 53
4.2 NEAT for Collective Behavior Evolution . 55
4.3 HyperNEAT for Collective Behavior Evolution 57
4.4 NEAT and HyperNEAT Experiments Setup 58

4.4.1 Behavior Transfer Experiments . 59
4.5 Results and Discussion . 60

4.5.1 Task Performance Comparisons . 67
4.5.2 Objective-based Search (OS variant) 67
4.5.3 Genotype Diversity Maintenance (GNS, OGN variants) 70
4.5.4 Behavioral Diversity Maintenance (NS, ONS variants) 72
4.5.5 Efficiency Comparison . 73
4.5.6 Solution Complexity . 75
4.5.7 Behavior Search Space Analysis . 81
4.5.8 Behavior Transfer Results . 83

4.6 Summary and Conclusion . 87

5 Reinforcement Learning Experiments 90
5.1 Collective Behavior adaptation in Reinforcement Learning 90
5.2 Mapping Keep-Away soccer to Reinforcement learning 91

5.2.1 Keep-away Task Complexity . 92
5.2.2 Function Approximation and Keep-Away 93

5.3 Experimental Setup . 94
5.4 Reinforcement learning and Collective behavior Transfer 95
5.5 Results Discussion . 96

5.5.1 Effectiveness . 97
5.5.2 Efficiency of TD methods . 99
5.5.3 Reinforcement Learning Behavior Transfer 100

vi

5.5.4 Neuro-Evolution versus Reinforcement Learning 102
5.6 Summary and Conclusion . 106

6 Discussion 108
6.1 Benefits of Neuro-evolution and Behavior transfer 109
6.2 Benefits of Objective versus Non-Objective-based Search 110
6.3 Reinforcement Learning versus Neuro-evolution 111
6.4 Behavior Transfer versus No Behavior Transfer 112
6.5 Summary . 113

7 Conclusion 114
7.1 Contributions . 114
7.2 Future Possibilities . 115
7.3 Summary . 116

A Task Performance 117

B Effectiveness vs Efficiency - Statistical Tests 118
B.1 Efficiency - Statistical Test Comparison (Behavior Transfer) 118
B.2 Efficiency - Behavior Transfer vs No Behavior Transfer 120
B.3 Effectiveness - Statistical Test Comparison 122
B.4 Effectiveness - Behavior Transfer vs No Behavior Transfer 123

C Solution Complexity -Statistical Tests 127
C.1 Pair-wise Statistical Test Comparisons . 127

D Cohen’s Effect Size - Practical Tests 129
D.1 Pairwise Practical Tests Comparisons . 129

E Task Performance Comparison 134
E.1 Task Performance Comparisons . 134

Bibliography 138

vii

List of Figures

2.1 The Symbiotic Adaptive Neuro-Evolution (SANE) encoding. Left side
shows a population of neurons that are drawn to construct the hidden
layer of a neural network. The network is then applied to a task for fitness
evaluation. Figure adapted from Moriarty (1997). 13

2.2 Enforced Sub-Population method (ESP). The method maintains a
sub-population of neurons, each contributing a neuron for the
construction of the network hidden layer. The constructed network is
then applied to a task for fitness evaluation. Figure adapted from Gomez
(1997). 14

2.3 Multi-Agent ESP architecture. It shows the configuration of a
predator-prey task of three predator agents capturing a single prey. Each
agent is controlled by its own network constructed from a set of its
subpopulations. All three controllers are evolved simultaneously and
rewards shared equally among neurons that participated in the network
evaluation. Figure adapted from Yong and Miikkulainen (2007). 15

2.4 Multi-Component ESP architecture. It shows the configuration of a
predator-prey task of three predator agents capturing four prey agents.
Each predator agent is controlled by its own set of five networks. Four of
which corresponds the number of prey and each collects sensory inputs
of each prey agent. The fifth controller integrates sensory outputs from
those four controller networks and determines the next predator agent.
Figure adapted from Rawal (2010). 16

2.5 NEAT Representation. Shown on the left is a genotype representation,
that directly encodes to the phenotype on the right. In the genotype
description, each connection gene specifies the "in" and "out" node,
weight scalar value, connection expression indicator and innovation
number respectively. In the given example, the second gene connection
expression indicator has a disabled value, which means the connection
between node two and four is not expressed. Figure adapted from Stanley
(2002). 18

viii

2.6 DSE representation. Top-left : shows the Developmental Symbolic
Encoding (DSE) genotype encoding, a tree of routines that comprising of
a list instructions (in this example three instructions for the body and
three instructions for the tail) that defines how to develop the network.
The instructions are applied to an initial network, and through cell
division the network is progressively developed to a final network
(bottom-right). Figure adapted from Suchorzewski (2011). 20

2.7 HyperNEAT representation. The encoding has two networks: Substrate
(left-side) and a CPPN (right-side). Substrate encodes the geometry of a
given task. CPPN inputs are coordinates of each queried connection, for
example, P1(x1, x2) and P2(x2, y2) and compute the weight of each
queried connection. 21

3.1 Collective behavior transfer framework. The figure shows behavior
adaptation in a collective behavior task and behavior (policy) transfer to
tasks of increasing complexity. Neuro-evolution is used for behavior
adaptation in both the source and target tasks. 34

3.2 Cross-over based on historical innovation numbers (Stanley and
Miikkulainen, 2002). The figure shows matching genes between Parent 1
and 2, as well as disjoint and excess genes. The matching genes are
inherited arbitrarily, whereas excess and disjoint genes are inherited only
from the more fit parent. If the parents have the same fitness value, then
disjoint and excess genes are inherited arbitrarily from parents as well. . . 35

3.3 HyperNEAT configuration for a collective behavior task. Shown in (a) is a
substrate network that is applied to a task and measures fitness. Shown in
(b) is the CPPN that is evolved using NEAT operators to generate
candidate solutions. The CPPN takes coordinates of sampled substrate
network connection as inputs and outputs the weight of the connection
and LEO expression value. 39

4.1 Example of network evolved with NEAT for a 3vs2 keep-away task. The
network has thirteen sensory inputs and three outputs and a bias node.
NEAT evolves the hidden layer topology and connectivity. The network
configuration parameters are described in table 4.2. 56

4.2 Example of network evolved with HyperNEAT. Left: Substrate encoding
the virtual field (20 x 20 grid of inputs and outputs). Right: CPPN takes
as inputs coordinates of two-endpoints of a connection on a substrate
network and gives weight of that connection and a connection expression
value as output. 57

ix

4.3 Task performance progression graph. The graph shows progression of
mean of normalized maximum task performance for all variants of NEAT
with and without behavior transfer. Averages are calculated over 20 runs
and for each target keep-away task. Shown are 6vs4 and 6vs5 keep-away
task performance. 61

4.4 Task performance progression graph. The graph shows progression of
mean of normalized maximum task performance for all variants of
HyperNEAT with and without behavior transfer. Averages are calculated
over 20 runs and for each target keep-away task. Shown are 6vs4 and
6vs5 keep-away task performance. 62

4.5 Average task performance distribution of genotypes. The box plot reflects
the quartile distribution of actual task performance for 20 independent
runs for all keep-away tasks, comparing performance with behavior
transfer (right) and without behavior transfer (left) for NEAT. 65

4.6 Average task performance distribution. The box plot reflects the quartile
distribution of actual task performance for all keep-away tasks, comparing
performance with behavior transfer (right) and without behavior transfer
(left) for HyperNEAT. 66

4.7 Heat-maps presenting the portion of genotypes, in the final generation of
evolution. Heat-map for all keep-away tasks, with genotypes that falls
within each 20 percentile of normalized task performance [0.0, 1.0] for five
HyperNEAT variants evolved with and without behavior transfer. 68

4.8 Heat-maps presenting the portion of genotypes, in the final generation of
evolution in a given target task. Heat-map shows genotypes that falls
within each 20 percentile of normalized task performance [0.0, 1.0] for
five NEAT variants evolved with and without behavior transfer. 69

4.9 Topological complexity distribution of best-of-generation genotypes. The
box plot reflects the quartile distribution of topological (solution)
complexity from the 20 independent runs for all keep-away tasks (NEAT
and HyperNEAT). 77

4.10 Kohonen Self-Organizing Maps (SOMs) representing the explored
behavior search space in Keep-away 4vs3 for given HyperNEAT variants
with behavior transfer. In each NE variant, left: shows codebook weight
vector for data visualization and right: shows u-matrix representing
boundaries between clusters. Each cirle in the codebook weight vector
represents a behavior type (four slices). Each slice represents one
component of the behavior characterization vector. The differing u-matrix
Y-axis values indicates normalized behavior distances. 84

x

4.11 Kohonen Self-Organizing Maps (SOMs) representing the explored
behavior search space in Keep-away 5vs3 for given HyperNEAT variants
with behavior transfer. In each NE variant, left: shows codebook weight
vector for data visualization and right: shows u-matrix representing
boundaries between clusters. Each cirle in the codebook weight vector
represents a behavior type (four slices). Each slice represents one
component of the behavior characterization vector. The differing u-matrix
Y-axis values indicates normalized behavior distances. 85

4.12 Kohonen Self-Organizing Maps (SOMs) representing the explored
behavior search space in Keep-away 5vs4 for given HyperNEAT variants
with behavior transfer. In each NE variant, left: shows codebook weight
vector for data visualization and right: shows u-matrix representing
boundaries between clusters. Each cirle in the codebook weight vector
represents a behavior type (four slices). Each slice represents one
component of the behavior characterization vector. The differing u-matrix
Y-axis values indicates normalized behavior distances. 86

4.13 Kohonen Self-Organizing Maps (SOMs) representing the explored
behavior search space in Keep-away 6vs4 for given HyperNEAT variants
with behavior transfer. In each NE variant, left: shows codebook weight
vector for data visualization and right: shows u-matrix representing
boundaries between clusters. Each cirle in the codebook weight vector
represents a behavior type (four slices). Each slice represents one
component of the behavior characterization vector. The differing u-matrix
Y-axis values indicates normalized behavior distances. 88

4.14 Kohonen Self-Organizing Maps (SOMs) representing the explored
behavior search space in Keep-away 6vs5 for given HyperNEAT variants
with behavior transfer. In each NE variant, left: shows codebook weight
vector for data visualization and right: shows u-matrix representing
boundaries between clusters. Each cirle in the codebook weight vector
represents a behavior type (four slices). Each slice represents one
component of the behavior characterization vector. The differing u-matrix
Y-axis values indicates normalized behavior distances. 89

5.1 Task performance progression graphs and boxplots. Left: Average (over 20
runs) task performance progression for each target keep-away task. Right:
Boxplot showing the average task performance for comparative methods
at the final episode of each of the keep-away task. 98

5.2 RL versus NE method average task performance comparison for all
keep-away tasks. Left: SARSA and Q-Learning (TD methods), Right:
NEAT (NE method). 103

xi

5.3 RL versus NE method average task performance comparison for all
keep-away tasks. Left: SARSA and Q-Learning (TD methods), Right:
HyperNEAT (NE method). 104

E.1 Task performance progression graph. The graph shows progression of
mean of normalized maximum task performance for all variants of NEAT
vs HyperNEAT. Averages are calculated over 20 runs and for each target
keep-away task. 135

E.2 RL versus NE method average task performance comparison for all
keep-away tasks. Left: SARSA and Q-Learning (TD methods), Right:
NEAT and HyperNEAT (NE methods). 136

E.3 Kohonen Self-Organizing Maps (SOMs) representing the explored
behavior search space in Keep-away 4vs3 for given HyperNEAT variants
(GNS and OGN) with behavior transfer. In each NE variant, left: shows
codebook weight vector for data visualization and right: shows u-matrix
representing boundaries between clusters. 137

xii

List of Tables

2.1 Comparative analysis of major research work done on evolutionary
algorithms and reinforcement learning to do with application of diversity
maintenance mechanism and policy transfer in multi-agent tasks. 8

4.1 The five variants (NEAT and HyperNEAT) evaluated for collective
behavior adaptation and transfer across keep-away tasks of increasing
complexity . 52

4.2 Sensory inputs (13 input nodes) and motor outputs (three outputs) for a
team’s ANN controller in the 3vs2 keep-away task. Keeper 1 is the agent
with the ball. 56

4.3 The number of sensory inputs and motor outputs for ANN keeper team
controllers applied each keep-away task. For this work a topology of
thirteen inputs and three outputs, is always used to facilitate policy
transfer. A heuristic method is used to select players that will participate
in the configuration for each task. 57

4.4 Left: Neuro-Evolution (NE), Novelty Search (NS) parameters (final three
rows). Right: CPPN (HyperNEAT) activation Functions and simulation
parameters. 59

4.5 Behavior transfer performance gain. Average percentage gain for five NE
variants (NEAT and HyperNEAT) obtained using equation 4.2. 64

4.6 Efficiency comparison of NEAT (N) versus HyperNEAT (HN) variants
with Behavior Transfer (BT) and No Behavior Transfer (No BT). Search
Efficiency: Average number of generations to reach the task performance
threshold for the given variant. 74

4.7 Average normalized CPPN complexity (neurons and connections, over 20
runs) for fittest behaviors evolved by each HyperNEAT variant for each
keep-away task. The Task Performance column indicates which 5
percentile group these fittest behaviors are in and the Generations column
indicates the average number of generations taken to evolve the
corresponding best performing behaviors and network complexity (given
behavior transfer). 78

4.8 Solution complexity comparison for HyperNEAT variants with Behavior
Transfer (BT) at the final generation of evolution. 79

xiii

4.9 Average minimum and maximum network complexity for all HyperNEAT
variants with behavior transfer at the final generation of evolution. 79

5.1 Keep-away state description and the finite set of actions, where nt and nk

are the number of taker and keeper players, respectively. 92
5.2 All features and actions available for players to process during training. . 93
5.3 The number of tiles per Tiling for a 3vs2 keep-away task. 95
5.4 The values of the experiment and simulation parameters 96
5.5 Efficiency comparison of SARSA versus Q-Learning variants with

Behavior Transfer (BT) and No Behavior Transfer (No BT). Search
Efficiency: Average number of episodes to reach the task performance
threshold for a given a keep-away task. 100

5.6 Reinforcement Learning behavior transfer performance gain. 101

A.1 Normalized Task Performance. Average normalized maximum task
performance for the five variants (NEAT and HyperNEAT): OS, NS, ONS,
GNS and OGN. Task performance results of evolving in each task with
No Behavior Transfer (NBT) are included as a benchmark comparison. . . 117

B.1 Efficiency Statistical Tests for 4vs3 Keep-Away. Statistical significance test
with 95% confidence interval (p <0.05, Mann-Whitney u test), for NE
method variants efficiency comparisons. Where, N and HN represents
NEAT and HyperNEAT, respectively and a symbol ∅, indicates not
significantly different . 118

B.2 Efficiency Statistical Tests for 5vs3 Keep-Away. Statistical significance test
with 95% confidence interval (p <0.05, Mann-Whitney u test), for NE
method variants efficiency comparisons. Where, N and HN represents
NEAT and HyperNEAT methods, respectively and a symbol ∅, indicates
not significantly different . 119

B.3 Efficiency Statistical Tests for 5vs4 Keep-Away. Statistical significance test
with 95% confidence interval (p <0.05, Mann-Whitney u test), for NE
method variants efficiency comparisons. Where, N and HN represents
NEAT and HyperNEAT methods, respectively and a symbol ∅, indicates
not significantly different . 119

B.4 Efficiency Statistical Tests for 6vs4 Keep-Away. Statistical significance test
with 95% confidence interval (p <0.05, Mann-Whitney u test), for NE
method variants efficiency comparisons. Where, N and HN represents
NEAT and HyperNEAT methods, respectively and a symbol ∅, indicates
not significantly different . 120

xiv

B.5 Efficiency Statistical Tests for 6vs5 Keep-Away. Statistical significance test
with 95% confidence interval (p <0.05, Mann-Whitney u test), for NE
method variants efficiency comparisons. Where, N and HN represents
NEAT and HyperNEAT methods, respectively and a symbol ∅, indicates
not significantly different . 120

B.6 Efficiency Statistical Tests for 4vs3 Keep-Away. Statistical significance test
comparisons of NE method variant evolved with behavior transfer versus
the same without behavior transfer. Shown across y-axis are the NE
variants with behavior transfer and x-axis are the NE variants without
behavior transfer . 121

B.7 Efficiency Statistical Tests for 5vs3 Keep-Away. Statistical significance test
comparisons of NE method variant evolved with behavior transfer versus
the same without behavior transfer. Shown across y-axis are the NE
variants with behavior transfer and x-axis are the NE variants without
behavior transfer. 121

B.8 Efficiency Statistical Tests for 5vs4 Keep-Away. Statistical significance test
comparisons of NE method variant evolved with behavior transfer versus
the same without behavior transfer. Shown across y-axis are the NE
variants with behavior transfer and x-axis are the NE variants without
behavior transfer. 121

B.9 Efficiency Statistical Tests for 6vs4 Keep-Away. Statistical significance test
comparisons of NE method variant evolved with behavior transfer versus
the same without behavior transfer. Shown across y-axis are the NE
variants with behavior transfer and x-axis are the NE variants without
behavior transfer. 122

B.10 Efficiency Statistical Tests for 6vs5 Keep-Away. Statistical significance test
comparisons of NE method variant evolved with behavior transfer versus
the same without behavior transfer. Shown across y-axis are the NE
variants with behavior transfer and x-axis are the NE variants without
behavior transfer. 122

B.11 Task performance Statistical Tests for 4vs3 Keep-Away. Statistical
significance test with 95% confidence interval (p <0.05, Mann-Whitney u
test), for NE method variants method effectiveness comparisons. Where,
N and HN represents NEAT and HyperNEAT methods, respectively and
a symbol ∅, indicates not significantly different 123

B.12 Task performance Statistical Tests for 5vs3 Keep-Away. Statistical
significance test with 95% confidence interval (p <0.05, Mann-Whitney u
test), for NE method variants method effectiveness comparisons. Where,
N and HN represents NEAT and HyperNEAT methods, respectively and
a symbol ∅, indicates not significantly different 123

xv

B.13 Task performance Statistical Tests for 5vs4 Keep-Away. Statistical
significance test with 95% confidence interval (p <0.05, Mann-Whitney u
test), for NE method variants method effectiveness comparisons. Where,
N and HN represents NEAT and HyperNEAT methods, respectively and
a symbol ∅, indicates not significantly different 124

B.14 Task performance Statistical Tests for 6vs4 Keep-Away. Statistical
significance test with 95% confidence interval (p <0.05, Mann-Whitney u
test), for NE method variants method effectiveness comparisons. Where,
N and HN represents NEAT and HyperNEAT methods, respectively and
a symbol ∅, indicates not significantly different 124

B.15 Task performance Statistical Tests for 6vs5 Keep-Away. Statistical
significance test with 95% confidence interval (p <0.05, Mann-Whitney u
test), for NE method variants method effectiveness comparisons. Where,
N and HN represents NEAT and HyperNEAT methods, respectively and
a symbol ∅, indicates not significantly different 124

B.16 Task performance Statistical Tests for 4vs3 Keep-Away. Statistical
significance test comparisons of NE method variant evolved with
behavior transfer versus the same without behavior transfer. Shown
across y-axis are the NE variants with behavior transfer and x-axis are the
NE variants without behavior transfer. 125

B.17 Task performance Statistical Tests for 5vs3 Keep-Away. Statistical
significance test comparisons of NE method variant evolved with
behavior transfer versus the same without behavior transfer. Shown
across y-axis are the NE variants with behavior transfer and x-axis are the
NE variants without behavior transfer. 125

B.18 Task performance Statistical Tests for 5vs4 Keep-Away. Statistical
significance test comparisons of NE method variant evolved with
behavior transfer versus the same without behavior transfer. Shown
across y-axis are the NE variants with behavior transfer and x-axis are the
NE variants without behavior transfer. 125

B.19 Task performance Statistical Tests for 6vs4 Keep-Away. Statistical
significance test comparisons of NE method variant evolved with
behavior transfer versus the same without behavior transfer. Shown
across y-axis are the NE variants with behavior transfer and x-axis are the
NE variants without behavior transfer. 126

B.20 Task performance Statistical Tests for 6vs5 Keep-Away. Statistical
significance test comparisons of NE method variant evolved with
behavior transfer versus the same without behavior transfer. Shown
across y-axis are the NE variants with behavior transfer and x-axis are the
NE variants without behavior transfer. 126

xvi

C.1 Solution Complexity for 4vs3 Keep-Away. Statistical significance test with
95% confidence interval (p <0.05, Mann-Whitney u test), for NE method
variants solution (topological) complexity comparisons. Where, N and HN
represents NEAT and HyperNEAT methods, respectively and a symbol ∅,
indicates not significantly different . 127

C.2 Solution Complexity for 5vs3 Keep-Away. Statistical significance test with
95% confidence interval (p <0.05, Mann-Whitney u test), for NE method
variants solution (topological) complexity comparisons. Where, N and HN
represents NEAT and HyperNEAT methods, respectively and a symbol ∅,
indicates not significantly different . 128

C.3 Solution Complexity for 5vs4 Keep-Away. Statistical significance test with
95% confidence interval (p <0.05, Mann-Whitney u test), for NE method
variants solution (topological) complexity comparisons. Where, N and HN
represents NEAT and HyperNEAT methods, respectively and a symbol ∅,
indicates not significantly different . 128

C.4 Solution Complexity for 6vs4 Keep-Away. Statistical significance test with
95% confidence interval (p <0.05, Mann-Whitney u test), for NE method
variants solution (topological) complexity comparisons. Where, N and HN
represents NEAT and HyperNEAT methods, respectively and a symbol ∅,
indicates not significantly different . 128

C.5 Solution Complexity for 6vs5 Keep-Away. Statistical significance test with
95% confidence interval (p <0.05, Mann-Whitney u test), for NE method
variants solution (topological) complexity comparisons. Where, N and HN
represents NEAT and HyperNEAT methods, respectively and a symbol ∅,
indicates not significantly different . 128

D.1 NEAT and HyperNEAT variants task performance pair-wise practical
significance comparisons based on Cohen’s effect size (d values). 129

D.2 HyperNEAT variants task performance pair-wise practical significance
comparisons based on Cohen’s effect size (d values), behavior transfer vs
no behavior transfer in 4vs3 keep-away. 130

D.3 NEAT and HyperNEAT variants task performance pair-wise practical
significance comparisons based on Cohen’s effect size (d values),
behavior transfer vs no behavior transfer in 5vs3 keep-away. 130

D.4 HyperNEAT variants task performance pair-wise practical significance
comparisons based on Cohen’s effect size (d values), behavior transfer vs
no behavior transfer in 5vs4 keep-away. 131

D.5 HyperNEAT variants task performance pair-wise practical significance
comparisons based on Cohen’s effect size (d values), behavior transfer vs
no behavior transfer in 6vs4 keep-away. 131

xvii

D.6 HyperNEAT variants task performance pair-wise practical significance
comparisons based on Cohen’s effect size (d values), behavior transfer vs
no behavior transfer in 6vs5 keep-away. 131

D.7 HyperNEAT variants efficiency pair-wise practical significance
comparisons based on Cohen’s effect size (d values), behavior transfer vs
no behavior transfer in 4vs3 keep-away. 132

D.8 HyperNEAT variants efficiency pair-wise practical significance
comparisons based on Cohen’s effect size (d values), behavior transfer vs
no behavior transfer in 5vs3 keep-away. 132

D.9 HyperNEAT variants efficiency pair-wise practical significance
comparisons based on Cohen’s effect size (d values), behavior transfer vs
no behavior transfer in 5vs4 keep-away. 132

D.10 HyperNEAT variants efficiency pair-wise practical significance
comparisons based on Cohen’s effect size (d values), behavior transfer vs
no behavior transfer in 6vs4 keep-away. 132

D.11 HyperNEAT variants efficiency pair-wise practical significance
comparisons based on Cohen’s effect size (d values), behavior transfer vs
no behavior transfer in 6vs5 keep-away. 133

D.12 HyperNEAT variants efficiency pair-wise practical significance
comparisons based on Cohen’s effect size (d values). 133

1

Chapter 1

Introduction

Multi-agent1 systems (MAS) are inspired by social systems in nature, where collective
behavior of the system is a result of behavioral interactions among different species or
organizations within an environment (Weiss, 1999). MAS is an example of a social
system where by multiple autonomous agents interact in a dynamic environment
resulting in the emergence of complex group properties. Due to its concurrent and
distributed nature, group behaviors produced by a MAS can be highly effective, more
robust, and adaptable than that produced by a single agent (Yong and Miikkulainen,
2007). These properties of MAS promote its usefulness in real-world problem solving
and in the study of behavioral properties of a range of diverse systems such as, biology
(Amigoni and Schiaffonati, 2007), economics (Antona et al., 1998; Nishizaki et al., 2009)
and artificial life (Klein, 2003; Klein and Spector, 2009).

Evolutionary Algorithms (EAs) are inspired by evolution and developmental biology
and have emerged as a powerful tool to synthesize controllers for multi-agent tasks
(Moriarty and Miikkulainen, 1995; Bryant and Miikkulainen, 2003; Miikkulainen, 2010;
Miikkulainen et al., 2012). A focus of this thesis is on Neuro-Evolution (NE), a technique
that combines EAs and artificial neural networks (ANNs) (Yao, 1999; Floreano et al.,
2008). NE is inspired by the evolution of biological nervous systems and applies
abstractions of natural evolution (EAs) to adapt ANNs to solve computational
problems. Recently, there has been an increasing interest in multi-agent learning (Weiss,
1999) and evolutionary robotics (Nolfi and Floreano, 2000), scaling up evolutionary
solutions for increasingly complex problems (Doncieux et al., 2011; Verbancsics, 2011;
Didi and Nitschke, 2016b). That is, complex problems for which it is difficult to directly
evolve solutions. This is because randomly initialized populations of solutions are
generally not able to solve non-trivial tasks and certain level of adaptation is required to
solve increasingly complex tasks (Silva et al., 2016). This is known as the bootstrap
problem (Kawai et al., 2001) that has become of wider concern and is aggravated by
growing complexity in multi-agent problems and agent interaction dynamics (Doncieux
et al., 2011).

1The terms multi-agent and collective behavior (David, 2002) are used interchangeably throughout the thesis

Chapter 1. Introduction 2

Natural learning has an intrinsic ability to solve complex tasks as humans (and other
animals) have the ability to recognize and apply relevant knowledge from past learning
experiences. The transfer of experiences from learning one task into learning another
task, is termed Transfer Learning2 (TL) (Klahr and Carver, 1988). TL is inspired by how
humans apply prior conceived knowledge to solve complex tasks. Most traditional
machine learning algorithms address multi-agent problems in isolation (Torrey and
Shavlik, 2009). This hinders the progress of machine learning approaches to attain the
level of complexity that is observed in human counterparts. TL has been a key approach
to counter the bootstrap problem, where trained controllers are transferred from one
source task to a desired target task where further adaptation takes place (Didi and
Nitschke, 2016b; Taylor et al., 2006b; Torrey and Shavlik, 2009; Degrave et al., 2015;
Knudson and Tumer, 2012; Moshaiov and Tal, 2014). This TL approach reuses
knowledge learned from controllers trained in one or more tasks to bootstrap learning
in more complex task. Transfer learning research has demonstrated that transferring
knowledge learned on a source task accelerates learning and increases solution quality
in target tasks by exploiting relevant prior knowledge (Verbancsics, 2011; Didi and
Nitschke, 2016b). This transfer of controllers can happen between different tasks (that is,
different fitness or reward functions) or between different domains (that is, environment
or robot feature).

TL has been widely studied in the context of reinforcement learning for single-agent
tasks such as robot navigation (Lutz, 2007; Taylor and Stone, 2009; Fernando and
Manuela, 2006) and some multi-agent tasks (Taylor et al., 2013; Taylor et al., 2006b;
Taylor et al., 2007a), where behavior transfer is between the same task with varying
complexity. A popular, well established and complex multi-agent test-bed RoboCup
Keep-away Soccer (2002), has received a lot of research attention (Taylor and Stone, 2007;
Taylor et al., 2006b; Taylor et al., 2007a; Verbancsics, 2011; Didi and Nitschke, 2016b) and
is thus used as the experimental case study in this thesis. Much of the work done on TL
has been for single-agent tasks using Reinforcement Learning (RL), and there are
relatively few examples of work done using EAs and complex multi-agent (collective
behavior) tasks, such as RoboCup. In such cases it is usually RL that is used for TL
(Taylor et al., 2006b; Taylor et al., 2007a), and most of the TL work with EAs has been
done with single agent tasks (Bahceci and Miikkulainen, 2008; Knudson and Tumer,
2012). There is not much that applies EAs for TL in complex multi-agent tasks. Thus, an
unexplored research area is how to best evolve behavioral solutions that facilitate
behavior transfer between source and target tasks.

There is increasing empirical evidence that in order to boost the efficacy of evolutionary
search, maintaining genotypic and phenotypic diversity in automated controller design
improves the quality of evolved behaviors (Mouret and Doncieux, 2012; Cully and

2The terms Transfer Learning, Policy Transfer and Behavior Transfer are used interchangeably throughout
the thesis.

Chapter 1. Introduction 3

Mouret, 2016; Gomes et al., 2016b; Cully et al., 2015a). Many methods of maintaining
diversity have been suggested and two main competing methods are: behavioral
diversity maintenance (Lehman and Stanley, 2011a; Mouret and Doncieux, 2012; Gomes
et al., 2016b; Cully et al., 2015a; Cully and Mouret, 2016) and genotypic diversity
maintenance (Crepinsek et al., 2013; Mouret and Doncieux, 2012; Nitschke et al., 2012;
Gomes et al., 2016b; Gomes and Christensen, 2013b). However, current empirical data
indicates that for controller evolution to solve complex collective behavior tasks, neither
objective or non-objective based search performs well. Rather, recent research results
indicate that hybridizing objective and non-objective based search facilitates the
evolution of the high quality behaviors (Gomes and Christensen, 2013b; Gomes et al.,
2016b).

Whilst the benefits of non-objective (behavioral and genotypic diversity maintenance)
and hybrid evolutionary search (Gomes and Christensen, 2013b; Mouret and Doncieux,
2012) and policy transfer (Taylor and Stone, 2009) methods have been separately
demonstrated for increasing behavior quality in various tasks, the impact of using
non-objective and hybrid evolutionary search in the context of policy transfer remains
unknown. Given this research gap, it is the focus of this thesis to elucidate the essential
features constituting effective and efficient evolutionary search to augment policy
transfer for boosting the quality of evolved behaviors in collective behavior tasks.

1.1 Motivation

The fundamental motivation for this research is the necessity of deriving solutions that
integrate knowledge from prior learning to speed up adaptation in increasingly
complex tasks. Uncovering effective ways to reuse knowledge is imperative to lifelong
learning and capability to scale up adaptation to complex tasks.

Most of the real world problem domains involve complex distributed dynamics and
high degree of uncertainty. In general, multi-agent systems are applicable to solve such
complex problems, where such systems have many autonomous components with
adaptive capabilities and exhibit emergent phenomena that cannot be derived by
individual system components. Systems of this nature include autonomous vehicle
control (Hoffmann and Pfister, 1996; Hoffmann, 2001), distributed traffic light control
(Kuyer et al., 2008; Mckenney and White, 2013), robot soccer (Stone and Veloso, 1998),
coordination of large swarm of robots (Bonabeau et al., 1994; Floreano et al., 2007), and
models of natural and social interaction (for example, animals herding and birds
flocking) (Reynolds, 1987; Spector et al., 2005). These systems feature agents with
incomplete information about the environment, distributed control units and
information, and complex interaction dynamics. Problem solving techniques mimicking
social behaviors observed in nature (for example, ant colonies), that exhibit inherent
distributed and concurrent processes, provide the flexibility to solve such problems with

Chapter 1. Introduction 4

distributed units. In nature (for example, in animal societies), multiple agents work
together to collectively solve complex tasks (that is, tasks that are difficult or impossible
for a single agent to solve). In the same way, problem solving strategies that lead to
collective behaviors have emerged and shown to be successful in solving problems with
complex dynamics and high degree of uncertainty (Ward et al., 2001; Baldassarre et al.,
2003; Nitschke et al., 2007).

The motivation of this research thus stems from the fact that there is little research on
evolutionary transfer learning methods for bootstrapping collective behavior
adaptation. Specifically, there is little research that has focused on collective behavior
adaptation for the purpose of investigating how transfer learning can be best used to
increase the effectiveness of different evolutionary search methods (Taylor et al., 2006b;
Verbancsics, 2011; Didi and Nitschke, 2016b). Given this relatively unexplored area of
research, the core motivation of this thesis is to investigate various evolution
(neuro-evolution) methods to ascertain the most appropriate method for facilitating
behavior transfer across a range of increasingly complex collective behavior tasks.

1.2 Research Question

The main research question is how to derive the most appropriate controller evolution
method that couples with transfer learning for improving adaptation in complex
collective behavior tasks. Various controller evolution methods will be comparatively
tested against RL methods usually used for TL in collective behavior tasks. This thesis
thus seeks to ascertain the impact of using evolutionary adaptation to derive collective
behaviors (in multi-agent tasks) and then transfer evolved solutions to collective
behavior tasks of increasing complexity. Specifically, the key research question that this
thesis seeks to answer is:

• What is the most appropriate artificial evolution method to evolve collective
behaviors that are transferable, and with further evolution, effective in collective
behavior tasks of increasing complexity?

Addressing this research question requires investigating a number of related issues, as
given below:

1. Investigate the efficacy of neuro-evolution methods for collective behavior
adaptation and transfer across collective behavior tasks compared to traditional
well-established RL methods.

2. Investigate the impact of phenotypic and genotypic diversity maintenance for
directing the neuro-evolution search process compared to traditional
objective-based approaches.

Chapter 1. Introduction 5

1.3 Contributions and Impact

The main contribution of this thesis is a novel method for facilitating collective behavior
transfer in complex collective behavior tasks with supporting theoretical and empirical
analysis to address the bootstrap problem. Specifically, this thesis contributes the
following:

• A novel method for adapting and transferring collective behaviors in increasingly
complex multi-agent tasks, where such behavior adaptation and transfer boosts the
quality of collective behavior solutions.

• A comprehensive empirical study and analysis of the effectiveness and efficiency
of each evolutionary search method, and comparative traditional RL methods, with
and without policy transfer across increasingly complex collective behavior tasks.

1.4 Overview of the Dissertation

The following work is divided into 6 chapters: Background (Chapter 2), Methodology
(Chapter 3), Evolutionary Algorithms (Chapter 4), Reinforcement Learning (Chapter 5),
Comparative Analysis (Chapter 6) and Discussion and Conclusion (Chapter 7).

Chapter 2 provides the review of prior work in transfer leaning, focusing on three aspects
of the study: search methods directing evolution, diversity maintenance in evolutionary
algorithms and in reinforcement learning and methods to implement transfer learning.

Chapter 3 presents the approach that has been taken to carry out the evaluation of our
methods. Methods discussed include evolutionary algorithms used for evaluation,
evolutionary search methods, reinforcement learning methods, diversity maintenance
methods and method for performing transfer learning.

Chapter 4 focuses on collective behavior transfer learning based on evolutionary
algorithms. The algorithms considered are Neuro-Evolution of Augmenting Topology
(NEAT), a direct encoding neuro-evolution method and a variant of NEAT called
HyperCube-Based Neuro-evolution of Augmenting Topology (HyperNEAT), an indirect
encoded method. This chapter’s main goal is to make behavior performance
comparisons of different methods and search methods to establish the most appropriate
methods for behavior transfer. A series of experiments conducted are discussed to
establish the best search method in terms of performance and quality of solutions.

Chapter 5 focuses on collective behavior transfer learning in reinforcement learning.
Several methods of transfer learning are explored and comparative results presented.
This is to establish the most appropriate method of implementing collective behavior
transfer in reinforcement learning.

Chapter 1. Introduction 6

Chapter 6 presents a comparative analysis that looks at the difference between the
performance of reinforcement learning and evolutionary algorithms in collective
behavior transfer. This is to establish how the performance results of reinforcement
learning compares to evolutionary algorithms.

Chapter 7 is the conclusion chapter and as such draws conclusions from the discussion
and analysis of the previous chapter. It reviews the major contributions of this study and
suggests the future direction of this work.

7

Chapter 2

Background and Related Work

This chapter reviews the research in collective behavior transfer, behavior diversity,
evolutionary algorithms and reinforcement learning in collective behavior tasks. The
goal is to understand the foundational research that this work is based on and how it
differs from the previous research.

2.1 Learning in Collective behavior tasks

Multi-agent systems (MAS) (Weiss, 1999) are systems composed of multiple
autonomous interacting agents, sharing a common environment, which they perceive
with sensors and control with actuators (Sycara, 1998; Vlassis, 2007; Shoham and
Leyton-Brown, 2008). MAS can either be competitive (Weiss, 1999; Aditya Rawal, 2010)
or cooperative with stigmergetic control or direct communication (Stone and Veloso,
2002; Panait and Luke, 2005a; Panait and Luke, 2005b; Haynes and Sen, 1995; Matsubara
et al., 1996; Aditya Rawal, 2010).

Learning in a multi-agent system is challenging because of several issues to do with the
nature of multi-agent tasks or learning dynamics. First, learning involves multiple
agents concurrently learning in a non-stationary environment (Boutsioukis et al., 2012;
D’Ambrosio and Stanley, 2013). Therefore, the outcome of the agents actions varies with
the changing policies of other agents in the environment resulting in non-guaranteed
convergence.

In MAS, the global states are derived from a combination of local states from the
perception of each agent in the environment. This leads to an exponential increase in the
state space as the number of agents in the system increases (Guestrin et al., 2002) and
consequently the complexity in the interaction dynamics increases with the number of
agents. Also, agents do not usually have a full view of the environment, either due to
noisy sensors and actuators, concurrent changes in internal states of other agents or
locality and proximity issues and that results in partial environment observability
(Chang et al., 2004). The curse of dimensionality of the state space, non-stationary

Chapter 2. Background and Related Work 8

Multi-Agent Search Genotype Behavior Behavior
Task Related Work method Diversity Diversity Transfer

Prey-Capture (Boutsioukis et al., 2012) MARL No No Yes
(Nolfi and Floreano, 1999) CCEA No No No
(Panait and Luke, 2005b) CCEA No No No

(Nitschke, 2005) CCEA No No No
(Miikkulainen et al., 2012) CCEA No No No

(Yong and Miikkulainen, 2007) CCEA No No No
(Yong and Miikkulainen, 2010) CCEA No No No

(Gomes et al., 2014a) CCEA Yes Yes No
(D’Ambroisio et al., 2010) GDS No No No

(D’Ambrosio and Stanley, 2013) GDS No No No
Room Cleaning (D’Ambroisio et al., 2010) GDS Yes No No

Keep-away (Fachantidis et al., 2011) MARL No No Yes
(Taylor and Stone, 2007) MARL No No Yes

(Taylor et al., 2013) MARL No No Yes
(Gomes et al., 2014a) CCEA Yes Yes No
(Taylor et al., 2006b) TWEANN No No Yes

(Whiteson et al., 2010) TWEANN No No No
(Verbancsics and Stanley, 2010) TWEANN No No Yes

(Didi and Nitschke, 2016b) GDS Yes Yes Yes

TABLE 2.1: Comparative analysis of major research work done on evolutionary algorithms and
reinforcement learning to do with application of diversity maintenance mechanism and policy
transfer in multi-agent tasks.

environment, partial environment observability and complex collective behavior
interaction dynamics makes the task of finding global optimum solutions intractable
(Taylor et al., 2013; Verbancsics, 2011; D’Ambrosio and Stanley, 2013).

There are four major approaches to multi-agent learning as shown in table 2.1, namely:
Multi-Agent Reinforcement Learning (MARL) (Panait and Luke, 2005b), Cooperative
Co-evolution algorithm (CCEA) (Drez̃ewski, 2003; Yong and Miikkulainen, 2010; Yong
and Miikkulainen, 2007), Topology and weight evolving artificial neural network
(TWEANN) (Stanley and Miikkulainen, 2002; Stanley, 2004) and Generative and
Developmental system (GDS) (D’Ambrosio and Stanley, 2008; Stanley et al., 2009). The
first two approaches are similar in that they decompose a learning problem into roles
that are then learned independently, and they both suffer from the curse of
dimensionality (Yong and Miikkulainen, 2007). GDS is an indirect encoding
neuro-evolution method that enables effective evolution of complex tasks (Stanley,
2016). The following sections provide a detailed discussion of these approaches,
challenges associated with them, and how they have been used in multi-agent learning.

2.1.1 Reinforcement Learning

Reinforcement learning (RL) is one type of machine learning that learns by trial and
error interaction with its environment (Kaelbling et al., 1996; Sutton and Barto, 1998;
Stone et al., 2005). In this learning framework the agents perceive the state of the
environment and execute an action that causes a change in the state and receives a

Chapter 2. Background and Related Work 9

reward representing the quality of the transition. An agent learns to perform well for a
given state-action pair by repeating this process several times as defined in the
algorithm. The goal of the agent is to maximize the total reward it receives over time.
This is inspired by how children or animals develop motor skills, without any direct
communication. Various movements are tried in the process, successful trials are
rewarded for moving closer to the goal and conversely penalized for stumbling and
falling.

In single-agent reinforcement learning, the problem space and environment is modeled
as a Markov Decision Process (MDP) (Howard, 1960), a technique for modeling sequential
decision-making tasks where a learning agent interacts with a system in a sequential
pattern.

Definition 1: A Markov Decision Process (MDP) is a tuple 〈S,A, T, ρ〉 where S is the
finite set of environment states, A is the finite set of agents actions, f : S ×A× S → [0, 1]

is the state transition probability function, and ρ : S ×A× S → < is the reward function.
The state signal st ∈ S represents the state of an environment at discrete time-step t,
at ∈ A represents an action taken in time-step t that cause a transition to time-step t + 1

and < denotes a set of real numbers. The agents then receive a scalar reward rt+1 for
taking action at leading to state st+1. The behavior of the agent is defined by its policy π,
which specifies how the agent select an action at given a state st . The policy may be
either stochastic, π : S × A → [0, 1], or deterministic, π : S → A. The agent’s goal is to
maximize the expected return, E{Rt}, for each time-step t. For each episodic task the
expected return is given by equation 2.1:

Rt =

T∑
t=0

rt (2.1)

where T is the final time-step corresponding to the terminal state.

However if the task has a continuous state, the expected return is given by equation 2.2:

Rt =
∞∑
k=0

γrt+k+1 (2.2)

where γ → [0, 1] is the discount rate. The majority of reinforcement learning algorithms
are based on estimating the value functions, which gives an estimate of how good it is
to be in a given state or execute a given action in a given state under a certain policy.
The value of executing a certain action in a given state under policy π is given by an
action-value function (Q-value function), Qπ : S ×A→ <, in equation 2.3:

Qπ(s, a) = Eπ{Rt|st = s, at = a} = Eπ{
∞∑
k=0

γtkt+k+1|st = s, at = a} (2.3)

Chapter 2. Background and Related Work 10

The optimal action-value (Q-value) function is defined by Bellman’s optimality equation
2.4:

Q∗(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γmax
π
Q∗(s′, a′),∀s ∈ S, ∀a ∈ A, (2.4)

where next state s′ = s + 1, and the next action a′ = a + 1. The greedy policy is
deterministic, and selects at all times the action with the highest Q-value, given by
equation 2.5:

π(s) = argmax
π
Qπ(s, a) (2.5)

Conversely the ε-greedy policy is stochastic and it selects an action based on equation
2.6:

π(s) =

argmaxπ Qπ(s, a), P (1− ε)

random action, P (ε)
(2.6)

There are several RL approaches, namely: direct policy 1 search (Peters and Schaal,
2008), value-function based (Sutton, 1998) and model based (Bertsekas, 2001). Most
MARL algorithms are derived from value-function based approaches, mainly Temporal
Difference (TD) methods such as Q-Learning (Watkins, 1989) and SARSA (Sutton, 1998).
SARSA uses a stochastic policy, utilizing equation 2.6 for selecting the next action to
execute whilst Q-Learning is deterministic and utilizes equation 2.5 for choosing the
next action to execute.

The simplicity and generality of RL algorithms has made it an attractive method for
multi-agent control tasks. Multi-agent reinforcement learning (MARL) is an extension of
RL to multi-agent environments, where a number of players simultaneously choose
actions from a given set of actions. Usually in MARL, the multi-agent problem is
modeled by a stochastic game (SG), which is an extension of MDP and game theory. A RL
framework of SG is given by the following formal definition (Littman, 1994; Hu and
Wellman, 1998).

Definition 2: A stochastic game is a tuple 〈N ,S,Ai...N , T ,R1...N 〉, whereN is the number
of players, S is the set of states,A is the set of joint actions (Ai is the set of actions available
to the ith player), T is the transition function S × A × S → [0, 1] and R is the reward
function (Ri is the reward for the ith player, S × A → <). In this SG model, all players
select their actions simultaneously, and the reward each player receives and the next state
depends on the joint actions of all players according to Markov property.

The stochastic games are classified into three main groups, namely: fully cooperative
(that is, where all agents have the same reward function), fully competitive (where one
player’s reward is always the negative of the others) and mixed games (Busoniu et al.,
2008). The MARL algorithms are organized based on this classification of tasks (that is,
fully cooperative, fully competitive and mixed task). Under competitive SG, Littman

1The terms policy and behavior are equivalent and will be used interchangeably throughout the thesis

Chapter 2. Background and Related Work 11

(1994) proposed a Minimax-Q learning algorithm for zero-sum games in which a player
maximizes its reward in the worst situation. This algorithm was applied to a two-player
zero-sum multi-agent SG environment and it was found to be very slow to learn an
optimal behavior, as it requires a linear programming in each episode and in each state
(thus increasing computational cost) (Littman, 2001a). Hu and Wellman (1998),
extended the zero-sum game framework to general-sum and proposed a Nash-Q
learning algorithm. However, this Nash-Q learning algorithm comes with strict
conditions and additional assumptions (to guarantee convergence to Nash Equilibrium)
that are difficult to satisfy in multi-agent setting. To address this difficulty, Littman
(2001) proposed Friend-or-Foe Q-learning (FFQ) algorithm. The FFQ-learning classifies
equilibrium as either coordinated or adversarial. Compared to Nash-Q, FFQ-learning
provided a strong convergence guarantee, but the FFQ-learning still require a very
strong condition for application. Therefore, like Nash-Q, the FFQ-learning was found to
be inappropriate for a system where neither coordination nor adversarial equilibrium
exist (Suematsu and Hayashi, 2002).

Considering the drawbacks of Nash-Q and FFQ learning algorithms, Suematsu and
Hayashia (2002) introduced a SARSA based multi-agent algorithm called Extended
Optimal Response Learning (EXORL). The idea of EXORL algorithm was to derive a policy
which is an optimal response to that of the opponent and reach a Nash equilibrium
when the opponent is adaptable. As in Nash-Q algorithm, EXORL encountered
difficulties when there exists multiple equilibria. The other drawback of EXORL is that
one player is assumed to be able to observe opponent’s actions and rewards. In a
multi-agent setting where agents learn simultaneously, this may be very difficult. There
are many other MARL algorithms that were proposed to address some of these
challenges, such as WoLF (Suematsu and Hayashi, 2002) and JAL (Cao et al., 1997).

The MARL algorithms discussed above have been designed for static stochastic games
(Busoniu et al., 2008) and are not suitable for a special case of multi-agent sequential
control tasks with continuous state and action spaces, where actions can last more than
one time step (for example, keep-away soccer (Stone et al., 2005)). In the keep-away
soccer simulation, decisions are made only when the actions terminate and to handle
such situation, it is convenient to model the problem as semi-Markov decision process
(SMDP) (Bradtke and Duff, 1994; Stone and Veloso, 2002; Stone and Sutton, 2002;
Whiteson et al., 2003; Taylor and Stone, 2005; Taylor and Stone, 2009). With multiple
agents and concurrent updates, the state of the environment may change continually
between decisions, unlike in MDP model where state changes occur only due to an
agent’s actions. In the SMDP model, time between transitions can be split into several
units and this can vary from one transition to another. A multi-agent SMDP is described
by a tuple 〈N,S,A, T,R, F 〉 where N is finite set of n agents, with each agent i ∈ N ,
having a finite set Ai of individual actions. The joint action space A =

∏n
i=1Ai

represents the parallel execution of actions ai by each agent i, i = 1, ..., n.

Chapter 2. Background and Related Work 12

However, several challenges have emerged for multi-agent reinforcement learning
(MARL). First, joint control paradigm (Busoniu et al., 2008), the difficult in defining the
learning goal for multiple RL agents. Second, non-stationary environment
(Ghavamzadeh et al., 2006), learning in a dynamic environment makes convergence
unpredictable. Third, non or partial observability (Chang et al., 2004; Busoniu et al.,
2008), states and actions of other agents required to make decisions are not fully visible.
Fourth, curse of dimensionality (Bellman, 1961; Kaelbling et al., 1996; Ghavamzadeh
et al., 2006), the exponential growth in the number of state-action space with respect to
an increase in the number of agents. Fifth, scalability issues (Busoniu et al., 2008), failure
to scale up algorithms to realistic problem sizes. Several methods have been devised to
address these problems such as transfer learning in reinforcement learning (discussed in
section 2.2.1) and neuro-evolution methods discussed in the following subsection.

2.1.2 Neuro-Evolution (NE)

Evolutionary algorithms (EA) are optimization methods that use abstractions of
biological evolution to adapt encoded representations of solutions in a survival of the
fittest process (Goldberg and Richardson, 1987). EAs are inspired by evolution and
developmental biology (Goldberg and Holland, 1988), and are stochastic, population
based methods that have gained a lot of attention recently seeking to develop robust
solutions for multi-agent learning (Hornby et al., 2003).

There are many variants of EAs, this study reviews variants of Neuro-Evolution (NE)
methods as a type of EA. Basically in most of NE methods the researcher defines an
objective function, f(s)|s ∈ P, f : P → <, maps P the set of all candidate solutions, s to a
real-value, v a measure of fitness. The objective is to rank each element of P based on
the evaluation results. All candidate solutions are evaluated and a subset of that
population is selected for reproduction. The evolutionary process continues for a
number of generations until an optimum solution is found or a predefined number of
generations are evaluated.

A driving issue behind EAs has always been to scale up complexity in phenotypes to a
level of complexity observed in natural organism to generate solutions for complex
tasks. There are many categories of NEs and in this study there are three classifications,
namely: Conventional Neuro-Evolution (CNE), Topology and weight evolving artificial
neural networks (TWEANNs) and Generative encoding.

Conventional Neuro-Evolution and Coevolution

Conventional Neuro-evolution (CNE) is a class of NE methods that includes all methods
that evolves weights of a topologically fixed neural network. A technique called

Chapter 2. Background and Related Work 13

FIGURE 2.1: The Symbiotic Adaptive Neuro-Evolution (SANE) encoding. Left side shows a
population of neurons that are drawn to construct the hidden layer of a neural network. The
network is then applied to a task for fitness evaluation. Figure adapted from Moriarty (1997).

Symbiotic, Adaptive Neuro-Evolution (SANE) (Moriarty, 1997) was proposed. Figure
2.1 shows the architecture where representation is on neuronal level. This approach was
inspired by cooperative social systems in nature, such as antibodies in the immune
system. The body maintains a pool of antibodies, each specializing on defence against a
particular antigen, to survive any infection. Therefore a task in this approach is
decomposed into components and each individual represents a partial solution and a
complete solution is formed by combining all individuals in the population (Moriarty
and Miikkulainen, 1996). The fitness is shared among individuals that participated in
the network. The standard SANE was then extended to Hierarchical SANE that includes
hierarchical modularity (Moriarty and Miikkulainen, 1998), where two populations are
created and evolved simultaneously, where one population is of neurons and another of
ANNs blueprints (templates to specify how the neurons are combined to generate
networks). On each fitness evaluation, the fitness assigned to each neuron is computed
as average performance from all the networks it participated in. This method was tested
on various benchmark tasks such as robot control and pole balancing, and it
outperformed standard SANE (neuron-level EA without blueprints) and
temporal-difference methods (that is, SARSA and Q-Learning) (Moriarty and
Miikkulainen, 1998).

An extension to SANE resulted in a new approach called Enforced Sub-Population (ESP)
(Gomez and Miikkulainen, 1997). Figure 2.2 shows a design of this architecture that
decomposes a population into subpopulations where each subpopulation contributes a
neuron to construct a network hidden layer. Unlike SANE, there are no blueprints and
each network hidden layer is constructed by neurons from different subpopulations.
The number of subpopulations are predefined and are equivalent to the number of
network hidden neurons. At random a member of each population is picked to
construct a network for each fitness evaluation. This method encourages specialization

Chapter 2. Background and Related Work 14

FIGURE 2.2: Enforced Sub-Population method (ESP). The method maintains a sub-population
of neurons, each contributing a neuron for the construction of the network hidden layer. The
constructed network is then applied to a task for fitness evaluation. Figure adapted from Gomez
(1997).

at neuron level and was tested on a reinforcement learning single agent benchmark task
called double pole-balancing (Geva and Sitte, 1993; Gomez and Miikkulainen, 1997).
The pole-balancing (especially the version where only partial sensor information is
given) is a surrogate for complex robot control tasks (Geva and Sitte, 1993).

This method was further extended to Multi-Agent ESP - as exhibited in Figure 2.3
which was then tested on prey-capture (or pursuit and evasion) task (Yong and
Miikkulainen, 2007; Yong and Miikkulainen, 2010). This task is inspired by the hunting
behaviors of predator animals, and seeks to mimic as well as to reproduce their
behaviors so as to study multi-agent emergent behaviors such as cooperation,
competition, communication and controller design. In this task, a team of autonomous
agents must cooperate to capture a fast moving prey. Multi-agent ESP was first applied
on this prey-capture domain (Miller and Cliff, 1996) to demonstrate how different
problem representations, evolving, and coordinating a team of autonomous agents
affect performance (Yong and Miikkulainen, 2007). The configuration shown in Figure
2.3, three predator agents chasing one prey, is based on stigmergic control of agents
rather than direct communication between agents. The results of Yong and
Miikkulainen indicated that a homogeneous network that controls the whole team
performs worse than a set of heterogeneous controllers, evolved cooperatively to control
a single agent. These results were assumed to be caused by niching in co-evolution,
which is a distinct part of ESP. The set of simpler subtasks are identified and each agent
evolved separately and in parallel for one such subtask, instead of searching the entire
solution space. In the same study it was also found that cooperation is most efficient
through stigmergic interaction instead of direct communication between agents. There
are several follow-up results that show different results, depending on the context, type
of domains and the investigation being carried out (Haynes and Sen, 1996b; Haynes and

Chapter 2. Background and Related Work 15

FIGURE 2.3: Multi-Agent ESP architecture. It shows the configuration of a predator-prey task
of three predator agents capturing a single prey. Each agent is controlled by its own network
constructed from a set of its subpopulations. All three controllers are evolved simultaneously
and rewards shared equally among neurons that participated in the network evaluation. Figure
adapted from Yong and Miikkulainen (2007).

Sen, 1996a).

Cooperation and competition in agent teams have been studied in Multi-Agent ESP, but
the Multi-Agent ESP architecture was found to be unable to sustain arms-race of
multiple competing and cooperating agents (Aditya Rawal, 2010). This limitation led to
further ESP extension, Multi-Component-ESP (Aditya Rawal, 2010) with architecture
presented in Figure 2.4. Each predator agent has a set of np + 1 networks that controls its
movement, where np is the number of prey agents perceived. For nd number of predator
agents, the architecture will have a total of (np + 1) ∗ nd networks. Figure 2.4(a) shows
four networks, each constructed from its own pool of enforced sub-populations, where a
single network represents a single prey sensor. The fifth is an integrator network that
combines output of all four networks and specifies the next move of the predator. This
method was developed to test the possibility of sustaining both competitive and
cooperative co-evolution in multi-agent tasks (Aditya Rawal, 2010). It was also tested on
the same predator-prey domain to study how reward structure and coordination
mechanisms affect multi-agent evolution (Rajagopalan et al., 2011; Miikkulainen et al.,
2012). The results highlighted that predator agents learned effectively through
stigmergic interaction to switch roles dynamically and to head off the prey agents before
capturing them. Simultaneously the prey agents developed complex high-level
behaviors to evade the opponents such as baiting, scattering, direction reversal and

Chapter 2. Background and Related Work 16

FIGURE 2.4: Multi-Component ESP architecture. It shows the configuration of a predator-prey
task of three predator agents capturing four prey agents. Each predator agent is controlled by
its own set of five networks. Four of which corresponds the number of prey and each collects
sensory inputs of each prey agent. The fifth controller integrates sensory outputs from those four
controller networks and determines the next predator agent. Figure adapted from Rawal (2010).

sidestepping. It is interesting to note that co-evolution does not search the entire
solution space instead a set of simpler subtasks are identified and optimized separately
and in parallel by each agent for each subtask. In this way each agent adapts to the
behavior of other agents, and explicit communication is not necessary.

Co-evolution in EAs refers to maintaining and evolving individuals for different roles in
the same task, either in a single population or in multiple populations. This is in
contrast to a monolithic technique which evolves a population where each individual
specifies a controller for every agent on the team. This rapidly becomes intractable, as
the search space exponentially grows with the increase in the number of agents. In
Cooperative Co-evolution in EAs (CCEA) the agents share the fitness values and the
best setup that can fully utilize CCEA is that which is decomposable into modules that
can interact and cooperate to solve a task. Each module can be evolved in its population
and each population contributes its fittest candidate to the solution. Several experiments
were conducted with ESP to test if co-evolution is necessary in evolution, it was
observed individuals trained separately that do not cooperate are weaker than those
that use co-evolution to evolve cooperative behavior (Yong and Miikkulainen, 2010;
Gomes et al., 2014a).

One of the problems associated with neuro-evolution methods discussed in this
subsection is Competing Conventions, a term introduced by Schaffer et al. (1992), for a

Chapter 2. Background and Related Work 17

problem previously identified by RadCliffe (1993) as Structural Mapping Problem and by
Whitley et al. (1990) as the Permutation Problem. This problem refers to a situation
whereby there is many-to-one mapping between genotype and phenotype, resulting in
a single solution being expressed by two genotypes with different encodings. The
presence of competing conventions problem on evolution results in crossover producing
damaged off-springs. This problem is also described as a form of deception that renders
crossover to be ineffective (Goldberg, 1989). A method discussed in the following
subsection was developed to address Competing Conventions problem and this method
evolves both the weights and topology of the artificial neural network (Stanley and
Miikkulainen, 2002).

Topology and Weight Evolving Artificial Neural Networks

The CNE methods discussed (including ESP multi-agent variants) all use a fixed
topology, meaning that a complete network topology is specified prior to evolution and
fixed during evolution. However Neuro-Evolution of Augmenting Topologies (NEAT)
(Stanley and Miikkulainen, 2002) evolves both the topology and weights of the network,
starting off with a topology of only input and output nodes. Over generations of
evolution, new nodes and connections are added and removed, eliminating a burden of
applying human knowledge on network design. Past empirical evidence has
demonstrated the superiority of NEAT over most fixed-topology methods such as ESP
(and its variants) and temporary-difference methods such as SARSA and Q-Learning on
challenging benchmark reinforcement learning tasks such as pole balancing (Stanley
and Miikkulainen, 2002), robot control (Stanley and Miikkulainen, 2004a), Server Job
Scheduling (Whiteson and Stone, 2006) and the well-known complex multi-agent
benchmark task, keep-away soccer (Taylor et al., 2006b; Verbancsics and Stanley, 2010).
The success of NEAT has often been attributed to three inherent properties discussed
below, namely Complexification, Historical marking and Speciation. NEAT is a general
purpose NE search method that can be applied to a wide variety of problems including
multi-agent problems (Taylor et al., 2006b; Miikkulainen et al., 2012; Zhao and Peng,
2012).

The mutation in standard NEAT is carried out in two ways: add connection which
creates a new connection between existing nodes or add node which split the existing
connection and add a new node in-between the two new connections. This has an effect
of disabling the old connection and adds the two new connections to the genotype.
NEAT is based on three key ideas: complexification, gene matching using historical
markings and speciation. Firstly, in complexification, the approach begins with a simple
network with no hidden nodes, differing only in their weights and gradually increases
in complexity over evolution. Secondly, it is necessary to provide a way of identifying
matching genes for crossover; the approach assigns a unique historical marking to every
new piece of network structure expressed by the innovation number as shown in figure

Chapter 2. Background and Related Work 18

Genome (Genotype)
Nodes Node 1 Node 2 Node 3 Node 4 Node 5
Genes Sensor Sensor Sensor Sensor Sensor

Connect Genes In 1 In 2 In 3 In 2 In 5 In 1 In 4
Out 4 Out 4 Out 4 Out 5 Out 4 Out 5 Out 5

Weight 0.7 Weight 0.5 Weight 0.5 Weight 0.2 Weight 0.4 Weight 0.5 Weight 0.7
Enabled Disabled Enabled Enabled Enabled Enabled Enabled
Innov 1 Innov 2 Innov 3 Innov 4 Innov 5 Innov 6 Innov 11

321

5

4

Network (Phenotype)

FIGURE 2.5: NEAT Representation. Shown on the left is a genotype representation, that directly
encodes to the phenotype on the right. In the genotype description, each connection gene
specifies the "in" and "out" node, weight scalar value, connection expression indicator and
innovation number respectively. In the given example, the second gene connection expression
indicator has a disabled value, which means the connection between node two and four is not
expressed. Figure adapted from Stanley (2002).

2.5. Thirdly, the approach provides speciation with intention of preserving diversity and
to allow competition to take place within their niches instead of within the population at
large. This gives the topology the chance of being optimized without the need of
competing with all the other networks, and fitness evaluation is explicitly shared among
the networks in the same niche. This has an advantage of minimizing dimensionality of
the search space and emergent properties can be obtained early in evolution, elaborated
and refined as new genes are added (Altenberg, 1994). This algorithm through
speciation employs categorical modularity (Darwen and Yao, 1996) in the genotype
space. Standard NEAT does not exploit or use regularity at either the genotype or
phenotype level for the benefits of improving problem solving behavior. NEAT has been
used to evolve solutions to a number of multi-agent task such as Keep-away soccer
(Taylor et al., 2006b; Taylor et al., 2007a; Taylor and Stone, 2009; Verbancsics and Stanley,
2010) and also as a function approximator in reinforcement learning (Whiteson and
Stone, 2006).

All of the EA methods considered this far rely on direct encodings to represent policies
(mapping between genotype and phenotype is one-to-one). Evolving policies, especially
in multi-agent learning requires searching a high dimensional space. Hence these
methods suffer from the curse of dimensionality. The main limitation of such encoding
is that even if the different parts of the phenotype are similar they must be distinctly
encoded and hence discovered separately which makes the search process less efficient,
especially for complex tasks.

Generative Encoding in Neuro-Evolution

Generative encoding is motivated by generative development in biology, in which the
genotype maps to the phenotype indirectly through the process of growth. A gene in the
genotype can be used multiple times during the process of phenotype development,
resulting in a compressed genotype for complex phenotypes (D’Ambrosio and Stanley,
2013). Since most of the elements in nature have regular or symmetric patterns, the

Chapter 2. Background and Related Work 19

generative encoding provides an opportunity to explore patterns and regularities by
encoding the genotype as a description that maps indirectly to the target structure
(Stanley et al., 2009).
There are generally two forms of gene reuse: First, code reuse through repeated patterns
with or without variations in size. If a pattern has to be repeated at a certain point of the
phenotypic structure the same gene group expresses its specification. Second,
occurrence of reuse is when a single unique group of genes in the genotype is capable of
initiating alternative developmental pathways (Hornby, 2005; Lipson, 2004). This has
been a research focus for the past three decades, where Lewis (1978) discovered that
there are Hox genes responsible for regulating body morphology and specifies
development of different segments in the anterior-posterior axis of the fly. Later on,
Cohn et al. (1997) found that a fibroblast growth factors (FGFs) of a chick embryo
induces development of a limb such as a wing or leg depending on the locality of
expression.

There are a number of approaches to indirect encoding as demonstrated by some
original work by Kitano (1990) and Gruau (1996). Kitano introduced an indirect
encoding that utilizes genotype rewriting rules called grammar-based encoding (Kitano,
1990). Gruau introduced a cellular encoding approach that extensively contributed to
the introduction of developmental or generative encoding approaches (Gruau and
Quatramaran, 1996). Stanley (2007) then developed a Compositional Pattern Producing
Network (CPPN) encoding that encodes functions within nodes and exploits regularities
of the problem. This encoding led to an extension of NEAT called Hypercube-based NEAT
(HyperNEAT) (Stanley et al., 2009) which uses NEAT to evolve the CPPN network.

As an extension of HyperNEAT method a new approach was developed called
Developmental Symbolic Encoding (DSE) (Suchorzewski, 2011). This approach, as
shown in figure 2.6, utilises concepts of both Cellular encoding and CPPN (hybridizing
cellular encoded method with HyperNEAT method). Similar to cellular encoding, the
network is developed through cell division, and compared to CPPN, it forms
connectivity patterns between groups of nodes and it is claimed to exploit geometric
patterns in the domain space. This approach was tested for the bit mirroring problem
(Suchorzewski, 2011) and on visual discrimination tasks (Suchorzewski and Clune,
2011). The results of both experiments demonstrated that the approach is able to
produce regular patterns and scalable networks. To the authors knowledge, this
approach has not been tested in any multi-agent setting.

HyperNEAT, a method of interest to this study, combines two networks in the encoding,
namely: CPPN and the Substrate (Stanley, 2007). CPPN is a network of functions of
geometry that generate connectivity patterns with nodes situated in multiple
dimensions of the Cartesian space, where each node is itself a mathematical function.
Each function (for example: Sine, Gaussian, Sigmoid and Linear) expresses a certain

Chapter 2. Background and Related Work 20

FIGURE 2.6: DSE representation. Top-left : shows the Developmental Symbolic Encoding (DSE)
genotype encoding, a tree of routines that comprising of a list instructions (in this example three
instructions for the body and three instructions for the tail) that defines how to develop the
network. The instructions are applied to an initial network, and through cell division the network
is progressively developed to a final network (bottom-right). Figure adapted from Suchorzewski
(2011).

desirable property of the task domain. For example, the Gaussian function (G(x))

represents bilateral symmetry and the Sine function (Sine(x)) represents repeating
motifs in the task. The CPPN encoding is then represented as a directed graph that
determines which functions are connected. Generally, the CPPN is a variation of ANN,
in that instead of using a single activation function (for example, Sigmoid function),
CPPN use several sets of activation functions. The output of each node is computed as a
sum of weighted inputs, which is applied to the activation function. Each node i of a
hidden layer, has activation level, yi that is computed based on the input signals xj and
corresponding connection weights wij as given in equation 2.7:

yi = σ
N∑
j

wijxj (2.7)

where σ is the activation function (for example, Sigmoid function). Each node of a
CPPN hidden layer can have its own different activation function, representing a certain
property of the task domain.

The aim of HyperNEAT is to extend CPPNs, which encode spatial patterns, to also
represent connectivity patterns (D’Ambrosio and Stanley, 2013; Stanley et al., 2009;
Altenberg, 1994). NEAT can then evolve CPPNs to exploit the regularity in the geometry

Chapter 2. Background and Related Work 21

FIGURE 2.7: HyperNEAT representation. The encoding has two networks: Substrate (left-side)
and a CPPN (right-side). Substrate encodes the geometry of a given task. CPPN inputs are
coordinates of each queried connection, for example, P1(x1, x2) and P2(x2, y2) and compute
the weight of each queried connection.

of the problem space and produce regular patterns in the solution space. This produces
compressed genotype representations that aids easy scalability of the solution. The
nodes are situated in the substrate to reflect the geometry of the task (Stanley et al., 2009;
Clune et al., 2009; Gauci and Stanley, 2008; Risi and Stanley, 2012). As a result, the
connectivity of the substrate is a function of the task geometry. For example, consider
nodes in a two dimensional grid space with values ranging from −1 to 1 in both axes.
CPPN inputs are obtained from querying each connection in the substrate (that is,
taking values of two end points of a connection), for example P1(x1, y1) and P2(x2, y2).
Those inputs labeled x1, y1, x2, y2 represent a point in four-dimensional space, and the
output represents the weight of the connection as shown in figure 2.7 .

Regular HyperNEAT was found to face a great challenge in accounting for irregularities
in various problem domains (Clune et al., 2008). In an attempt to extend HyperNEAT to
domains that are highly irregular, Clune et al. (2009), proposed the Hybridizing Indirect
and Direct encoding (HybriID). The HybriID method integrates the ability of direct
encoding to optimize the parameters and indirect encoding ability to discover and
exploit regularities in the problem domain. It runs HyperNEAT for a fixed number of
generations and then switches to NEAT for weight optimization without topological
mutation for the remaining evolutionary runs.

The other drawback with regular HyperNEAT is that the experimenter has to decide on
the topology of the substrate (that is, the number of hidden nodes and their distribution
in the geometry). Risi and Stanley (2012) provided a solution that extended this work to

Chapter 2. Background and Related Work 22

evolvable substrates within HyperNEAT. Instead of prior placement, this method of
evolvable substrate discovers the best topology of the substrate and, as a result, that
expands the scope of neural structures that can be evolved. HyperNEAT was used to
successfully discover a controller for food-gathering (Stanley et al., 2009), line-following
robots (Drchal et al., 2009), evolved walking behavior of a quadruped robot (Clune et al.,
2009), and controllers for robot keep-away (Verbancsics and Stanley, 2010), and
produced an evaluation function for checkers (Abul et al., 2000).

HyperNEAT has successfully generated regularities in the solution space through
exploiting regularities in the problem space. However Clune et al. (2010) discovered
that HyperNEAT has difficulties in generating modular solutions (that is, phenotype
modularity). Regular HyperNEAT exploits emergent regularity and emergent
modularity in the genotype (this is because some regularities are repeated motifs which
are encoded in the genotype), but does not discover emergent modularity in the
phenotype (that is, does not produce modular solutions). As a result, Verbancsics and
Stanley (2011) extended this approach to enable phenotype modularity through setting
a bias towards local connectivity, an approach called HyperNEAT with Link Expression
Output (HyperNEAT-LEO). Clune et al. (2013), demonstrated that phenotypic
modularity is a by-product of selection to minimize connection costs. That is, evolving
controllers with selection pressures to optimize network performance and minimize
costs yields networks that are significantly more modular and adaptable than those that
only select for performance. However, this approach has not been tested on complex
collective behavior tasks and it remains unknown how such an approach can be
effectively utilized in evolution of such tasks.

The HyperNEAT-LEO approach allows standard HyperNEAT to evolve the pattern of
weights independently from the pattern of connection expression. Link Expression
Output (LEO) is represented as independent output to the CPPN that specifies if a
connection can be expressed or not (Verbancsics and Stanley, 2011). The locality is
expressed through a Gaussian function which gets as input the difference between
coordinates (that is ∆x, ∆y and ∆z in a 3D space). The Gaussian function has a peak
value when the ∆x fed as input is zero. The connection is expressed only if the link
expression output magnitude is greater than a LEO threshold (by default it is zero). LEO
attains a value greater than zero when ∆x, ∆y and ∆z approaches zero. The Gaussian
function provides the principle of locality since as the difference between coordinates
approaches zero, the greater is the output of the Gaussian function. The output of
Gaussian function is combined with bias towards locality in a step function to generate
the LEO output which specifies if the connection could be expressed or not.

The concept of seeding LEO with principles of locality enables HyperNEAT-LEO to
exploit emergent regularity and discover emergent modularity in the phenotype. The

Chapter 2. Background and Related Work 23

HyperNEAT-LEO outperformed standard HyperNEAT on a Retina Problem
(Verbancsics and Stanley, 2011). The Retina problem is a problem domain where
modularity is known to be helpful and has been used to test if a particular NE method
can produce modular ANNs solutions. The ANN was evolved to recognize and classify
objects on the left and right side of an artificial retina (Verbancsics and Stanley, 2011).
The artificial retina has eight pixels, half on the left and the half on the right, and all
representing an input layer of the network (each pixel containing a binary value, to give
a maximum of 16 patterns, thus 0000 to 1111). The goal was to have an output indicating
either [L AND R] or [L OR R] (that is, true if there is either an object on both sides or
true if there is either an object on the left or right side of an artificial retina respectively).
In another variant of the retina problem, the test on the left was independent from the
test of validity of a pattern on the right. In such a case for a modular ANN solution the
input-output connections on the left side are detached from those on the right side of an
artificial retina. HyperNEAT-LEO performed well in finding a solution to a modular
retina problem and as a result it captures the key features of natural organisms:
phenotypic modularity and regularity (Verbancsics and Stanley, 2011).

2.2 Collective Behavior Transfer

This section discusses various types of behavior transfer methods available in literature
that have been used in machine learning to leverage learning in target task by transferring
behaviors from the source task.

2.2.1 Reinforcement Learning Behavior Transfer

For RL and EA to be useful in real world and simulated multi-agent systems, the
learning process needs to be accelerated so that optimal solutions can be obtained with
minimal and reasonable computational effort. There have been many attempts to
accelerate the learning process both in RL and EA using Transfer learning (Taylor et al.,
2006b). Transfer Learning (TL) was first introduced in RL to leverage learning of one
task by utilizing policies acquired from prior learning of a related but simple task. This
concept was borrowed from psychology (Klahr and Carver, 1988), where learning how
to perform a task is supported by the experience gained from performing a related but
relatively simple task. TL is similar to a broad concept of incremental evolution
(Christensen and Dorigo, 2006), where evolution starts on a simple task and then
transfer evolved controllers to a complex task. However, unlike incremental evolution,
where a goal-task has to be organized into a number of subtasks of increasing
complexity and evolution parameters are progressively altered during evolution and in
phases (gradually) (Gomez and Miikkulainen, 1997), TL transfers controllers between
two different tasks across domains or within the same domain (Taylor and Stone, 2009).
TL is often viewed as a radical version of incremental evolution and the goal of TL is to

Chapter 2. Background and Related Work 24

accelerate evolution of behaviors in the target task by utilizing evolved controllers from
a source task.

There are two main requirements for TL to be effective: First, if there is a suitable
mapping technique between the source state-action space Ss × As and the target
state-action space St × At and, Second, if there is a common state-action representation
or shared features between the tasks (Taylor and Stone, 2009). The current research of
TL in RL to meet this requirement has focused on shared representation and mapping
from source to the target task, which provides a common understanding between the
two tasks and avoids negative transfer (Woltz et al., 2000; Taylor and Stone, 2009). Woltz
et al. (2000) defines negative transfer as a behavioral psychology term that refers to the
interference of the prior acquired knowledge with the learning process on a new task.
This relates to experience with one task that could cripple performance on a different
but related task. Taylor and Stone (2009), suggested that negative transfer can be
avoided by selecting a source task closely related to the target task. Carroll and Seppi
(2005) motivated the need for general similarity metrics that could enable robust
transfer.

This study tested four similarity metrics: policy overlap, transfer time, Q-Values and
reward structure. The policy overlaps distance measure search for the number of states
with identical policy between source and the target task. Transfer time is the measure of
similarity that seeks to quantify task performance advantage gained from transfer. Using
TD methods in RL, the similarity measure can be a root mean squared error between the
Q-Values, Q(s, a) or immediate expected reward R(s, a) for choosing an action, a in state
s of source and target task. Carroll and Seppi demonstrated that there is no best similarity
measure for mapping between all source and target tasks, in all situations and all tested
metrics were beneficial in different situations.

Furthermore, determining how best to translate policies between the source task and
target task in TL is an open problem (Pan and Yang, 2010). A mapping function is
required, formally represented as a pair of functions (ρs, ρa) where
ρs(S) : Ssource → Starget and ρa(A) : Asource → Atarget (Taylor et al., 2007b). In the
previous work, Taylor et al. (2007) proposed a transfer mapping function, Transfer via
Inter-Task Mapping (TVITM), which was further adapted for policy search methods to
Transfer via inter-task Mapping for policy search methods (TVITM-PS) (Taylor et al.,
2007a).

This transfer mapping function is a static heuristic method that alters a policy learned
from the source task to suit the new task before training takes place (Taylor et al., 2007b)
(this transfer approach was adopted in this thesis, section 3.3.4). This method uses human
knowledge on how the source task is related to the target task, and then the mapping
function is formulated on the analogy of the relationship between the two tasks. Hence, it
is not an adaptable and scalable solution and if TL is to be applied to real-life autonomous
systems there has to be a way to determine how to translate representation between tasks

Chapter 2. Background and Related Work 25

independently (Taylor et al., 2013). An attempt to address this problem was made by
Ammar et al. (2012) using a shared subspace. The subspace will be populated by shared
features between the source and the target task. The projection of each state from source
and target to the subspace enables the mapping of representations from the source task
to target task.

Taylor et al. (2009) proposed a classification of transfer learning approaches into five
categories: lifelong learning, imitation learning, human advice, shaping and
representation transfer. Lifelong learning as suggested by Thrun (1998), is sequential
learning where an agent learns domains of tasks consecutively over an extensive period
and with knowledge sharing across multiple tasks. This concept was further extended
to RL by Sutton (2007), who suggested that continuous agent learning in an
environment is necessary, since the environment may change overtime, resulting in
knowledge acquired from prior learning becoming insufficient. In Sutton (2007), an
agent was made to learn several local environments over a period, subsequently
tracking changes in parts of each environment. The empirical results suggested an
improvement in performance compared to a method that depends on a once off transfer
from prior learning. Several other authors have explored this technique, with some
measure of success (Ruvolo and Eaton, 2013; Ammar et al., 2014), and challenges were
addressed such as the need to measure the relevance and accuracy in retained
knowledge alongside that of training models for a new task (Silver et al., 2013) were
addressed. The lifelong learning approach is suitable for complex multi-agent problems
where knowledge transfer happens online and multiple tasks are learned
simultaneously during the adaptation of agent behavior.

Imitation learning is a transfer learning technique, in which the learning agent adapts its
behavior by observing the behavior of an expert mentor. A number of authors have
used this method to transfer knowledge from an expert to a learner, such as an implicit
imitation model (Price and Boutilier, 1999; Price and Boutilier, 2003), a method whereby
an agent observes the state transitions generated by mentors actions and uses this
information to update estimated values of its own states and actions.

Human advice is a technique where human knowledge is used to guide the learning
through passing some suggestions to the learning agents (Maclin et al., 2005; Torrey
et al., 2010) or providing on-line feedback. These techniques require human
intervention, and as such, human participation through on-line feedback becomes an
integral part of learning. Torrey et al. (2010) suggested a human advice approach
applied in RL multi-agent contests, thus, transfer between keep-away (Stone and Sutton,
2002) and Break-away (Torrey et al., 2005). A Break-away task is a subtask of RoboCup
soccer. Unlike keep-away, the objective of break-away learners (that is, a team of
attackers) is to score a goal against an opponent team. The opponent team consists of
defenders and a goalie controlled by a hand-coded policy. The action choices available to a
learner are to keep the ball, pass to a teammate, or score a goal. The simulation ends

Chapter 2. Background and Related Work 26

when an opponent gains ball possession, ball goes out of bounds, or threshold time is
exceeded.

In the case of behavior transfer between keep-away and break-away task, the human
advice was encoded in logical rules from prior learning and applied to a new task. In
this way, the advice provides a mapping function between tasks and identifies the
differences between tasks. The other example of human advice method, was suggested
by Yong et al. (2006), where human knowledge is incorporated into neuro-evolution in
real-time. In this work, by Yong et al. (2006), the advice is expressed in a formal
language and converted into nodes and connections of a network, using Knowledge Based
Artificial Neural Network (KBANN) algorithm (Maclin and Shavlik, 1996). In our study,
we are interested in methods where agents learn to adapt behavior autonomously
without human intervention.

Reward Shaping is one of the popular approaches used with policy-based techniques to
transfer policies across tasks. Reward shaping provides an additional reward acquired
from prior learning to reduce the number of suboptimal actions made and the learning
time (Randlov and Alstrom, 1998; Ng et al., 1999). This approach modifies the basic
reward with that additional reward to bias the agent’s exploration as shown by equation
2.8 (the formula for the off-policy TD method):

Q(s, a)← Q(s, a) + α[r + F (s, s′) + γmax
π
Q(s′, a′)−Q(s, a)] (2.8)

where F (s, s′) is the shaping reward. It was then demonstrated that if reward shaping is
used improperly, it can alter the agent’s goal and problem (Randlov and Alstrom, 1998).
An attempt to solve this problem led to a proposal of potential-based reward shaping
(Ng et al., 1999) given by equation 2.9:

F (s, s′) = γΦ(s′)− Φ(s) (2.9)

where Φ is the potential function defined over a source and target state s, and γ is the
discount factor. Reward shaping on multi-agent learning has received relatively little
research attention. The challenge with this approach as with human advice is that human
knowledge has to be injected into the task definition to improve learning performance.
The interest we have in this study is on those methods that enable transfer of knowledge
without human modifications.

Representation transfer is the approach where basis functions are learned in one task
and applied in another without modification. This approach was first used on task
sequences where reward functions differ but the state space remains the same (Ferguson
and Mahadevan, 2006). If the state spaces differ significantly some mapping functions
are required to transform basis functions from one state space to another (Ferguson and
Mahadevan, 2008). However such mapping requires prior knowledge of both
representations of the state spaces to be successful. Taylor and Stone proposed another

Chapter 2. Background and Related Work 27

method with a name "Elaboration" where the function approximator (FA) is modified to
allow for a change in representation to account for a change that occurs from one task to
another (Taylor and Stone, 2007).

The above classification captures many transfer learning methods. However, it is no
longer a sufficient classification, since there are overlaps and gaps that exclude new
approaches such as shared features (Konidaris et al., 2012). Konidaris et al. (2012)
presents a method that uses shared features, and its definition is similar to a method
introduced by Taylor et al. (2007) which uses a hand-coded mapping function that maps
weights of the function approximators of each task to another. Konidaris suggests that
their work has two advantages, first being that the mapping constructed between each
task and the agent space grows linearly instead of quadratic or exponentially. The
second advantage being that, since the method utilizes a shaping function, the
mappings can be constructed between state descriptors, rather than between function
approximation terms. This allows a blackbox transfer in terms of function
approximations and transfer can be done to very different function approximators
where a direct mapping would be difficult to obtain (Konidaris et al., 2012). There are
other methods of transfer that are not easily classified, such as policy re-use (Fernando
and Manuela, 2006), policy fragments learned in a symbolic form using inductive logic
programming (Torrey et al., 2006) and sample transfer (Lazaric et al., 2008). By contrast,
few methods have been proposed for multi-agent transfer learning in NE, using either
direct or indirect encoding (as shown in table 2.1).

2.2.2 Neuro-Evolution for Behavior Transfer

Transfer learning for multi-agent task remains a relatively unexplored research area,
with notable exceptions including, Didi and Nitschke (2016), Taylor et al. (2007) and
Verbancsics (2011). No other work has used neuro-evolution methods for transferring
policies between multi-agent tasks (as shown in table 2.1). Taylor et al. (2007)
introduced a method called "Transfer via Inter-Task Mapping for Policy Search methods
(TVITM-PS) an extension of a method named: Transfer via inter-task mapping,
discussed in section 2.1.1. TVITM-PS transfers policies between tasks with different
state-action spaces (that is, multiple representations). The method defines a mapping
function ρ(πsource) → πtarget to successfully transfer policies between a pair of tasks.
This method relies on human knowledge of the two tasks to be able to design how the
two tasks are related. It is the only method used with NEAT that transfers between
multi-agent tasks. If there are topological differences in task representation (that is,
number of neurons on the input-output layers differ), TVITM-PS provides incomplete
mapping that needs further training to optimize the policies for the new task. This
enables transfer to happen in multiple representations. However in this method the
state-action variables will always increase with the number of agents, which causes this
approach to suffer from the curse of dimensionality. This approach was selected in this

Chapter 2. Background and Related Work 28

thesis for transferring controllers (evolved with NEAT) between collective behavior
tasks of increasing complexity (section 3.1.1).

A new approach termed "Bird’s eye view" (BEV) was then introduced by Verbancsics
and Stanley (2011), to address this particular problem. This approach demonstrated that
generative encoding (that is, indirect encoding) can allow transfer between two tasks
with different state-action spaces without a change in representation. This approach was
selected in this thesis for transferring controllers (evolved with HyperNEAT) between
collective behavior tasks (section 3.2.1). The work by Verbancsics and Stanley
successfully tested and presented empirical results for different keep-away task
configurations and dimensionality. However, different evolutionary search methods for
neuro-evolution have not been tested with transfer learning. Verbancsiscs and Stanley
(2011) compared direct to indirect encoding search methods - however, the test was
restricted to objective-based search methods only. The interest of this research is to
extend this work to other neuro-evolution search methods such as non-objective search
(diversity maintenance) methods.

2.3 Diversity Maintenance Methods

Traditional EAs with elitist selection are suitable for locating an optimal solution in a
unimodal problem domain, which converges to a single optimal solution (Sareni and
Krahenbuhl, 1998). Problems in which NE methods are applied are typically
multimodal domains, in which multiple peaks (global or local) exist. For optimal global
solutions to be identified, a method that sustains population diversity has to be used,
otherwise the search can easily become trapped in local optima before discovering
global optimum. This problem is referred to as premature convergence and is caused by
genetic drift in evolutionary search (Eiben and Smith, 2003). Niching schemes are the
primary technique for sustaining population diversity in EAs and have been extensively
studied as a potential solution to premature convergence (Sareni and Krahenbuhl, 1998;
Stanley and Miikkulainen, 2002; Mouret and Doncleux, 2009; Moriguchi and Honiden,
2010a). Niching techniques have introduced a mechanism for evolutionary algorithms
to explore multiple fitness landscapes and avoiding getting trapped in the local optima
before reaching a global optimum.

Many niching mechanism have been studied that seek to maintain population diversity
in the genotype and phenotype search spaces. Examples are: speciation (Goldberg and
Richardson, 1987), fitness sharing (Sareni and Krahenbuhl, 1998), crowding (Sareni and
Krahenbuhl, 1998), and implicit fitness sharing (Smith et al., 1993). Each of these
methods is applied at the genotype level. Lehman and Stanley (2008) introduced a
technique called novelty search, which measures diversity at the behavioral space or

Chapter 2. Background and Related Work 29

based on the phenotypes. This method differentiates individuals in the population
based on behavioral properties and aims to abandon objective based search for novelty
search.

Novelty search is a special case of behavior diversity maintenance (Mouret and
Doncleux, 2009) that has become a popular method for directing evolutionary search
and boosting quality of evolved solutions in a range of applications (Lehman and
Stanley, 2008; Doncieux and Mouret, 2010; Doncieux et al., 2011; Lehman and Stanley,
2011a). Whilst, general behavioral diversity maintenance selects diverse behaviors with
respect to the current population, novelty search takes into account an archive of
previously evolved behaviors and behaviors in the current population. That is, the
novelty is the average distance in behavior space of one individual to its closest
neighbors in the current population and in an archive of the behaviors recorded before.
In this way, a search for novel phenotypes (behaviors) replaces the fitness function
traditionally used to direct evolutionary search (Eiben and Smith, 2003).

Previous work has demonstrated the efficacy of novelty for evolving controllers in a
range of tasks of varying complexity (Velez and Clune, 2014) and such controllers
out-performed controllers evolved with objective-based search in a range of
evolutionary robotics tasks (Doncieux and Mouret, 2010; Gomes et al., 2016a; Gomes
et al., 2016b). Novelty search has been exploited in neuro-evolution, especially methods
that are more susceptible to premature convergence (such as CCEA shown in table 2.1)
and domains that are more prone to deception (such as maze-nagivation tasks) (Mouret
and Doncleux, 2009; Silva et al., 2016). The novelty metric measures how different an
individual is from the rest of the population (that is, current population and an archive
of past novel individuals) with respect to behavior. This evolutionary process creates
selection pressure towards behavioral innovation. Developing a novelty search strategy
involves identifying a task-specific behavior function that maps each genotype to a
behavior (Kistemaker and Whiteson, 2011). Therefore, novelty search is performed in
the phenotype instead of genotype space.

However, related work suggests that complex tasks such as collective behavior tasks
associated with swarm robotics (Gomes and Christensen, 2013b) that are characterized
by high dimensional and deceptive fitness landscapes (Cuccu and Gomez., 2011),
novelty alone does not offer advantage over objective based evolutionary search.
Hybridizing objective and novelty search tend to direct evolution towards effective
exploration and exploitation of the search space and evolve effective high-quality
solutions overall (Cuccu and Gomez., 2011; Gomes et al., 2014a; Gomes et al., 2015; Silva
et al., 2016). Different approaches have been introduced for hybridizing objective
(fitness function) and novelty search so as to evolve high-quality solutions. One
common approach is linear combination of novelty score and fitness score using a
weighted sum (section 3.4.2).

Chapter 2. Background and Related Work 30

An alternative approach is the minimal criteria novelty search (MCNS) introduced by
Lehman and Stanley (2010). MCNS defines a fitness criteria in which individuals must
meet to be selected for reproduction and effectively reduces the dimensionality of the
behavior space. The downside to using MCNS is that a proper care has to be taken when
selecting the minimal criteria due to the restrictions that are imposed by each criteria on
the search space, and if there are no individuals in the population that meets the selected
criteria, there is no selection pressure and evolution enters a random drift (Lehman and
Stanley, 2010; Silva et al., 2016). A third approach is to use Pareto-based multi-objective
EAs (MOEAs) that simultaneously optimizes novelty and objective during evolution
(Mouret and Doncleux, 2009; Mouret et al., 2012). Linear combination of objective and
novelty search approach has been adopted in this thesis because of the simplicity of
implementation and that previous research demonstrated efficacy of this approach in
collective behavior evolution (Gomes et al., 2014a; Didi and Nitschke, 2016b).

The behavior characterization is a critical stage in the application of novelty search
strategy and requires prior knowledge about which behavior features affect
performance. The behavior of an individual x, having a set of N behavioral vectors, is
determined by a behavior function, F : x → <N . Typically, the novelty of each
individual, is the mean distance to the k-nearest neighbors of that point, where k is a
constant that is experimentally determined. The novelty metric is given by equation
2.10:

novx =
1

k

k∑
i=1

δ(x, yi) (2.10)

where yi is the ith-nearest neighbor of x with respect to the behavior space and δ is the
distance metric.

Gomez (2009) compared several distance metrics based on both genotype and
phenotype space, namely: Euclidean distance, Hamming distance, relative entropy and
normalized compression distance (NCD). In the work of Gomez (2009), the agents
behaviors were defined as their action sequences and the results demonstrated that
similarity between individuals measured by NCD outperformed the rest. Trujillo et al.
(2008), used a NCD method to substitute a topology-based distance metric with a
behavior-based one. The empirical results show that NCD method outperforms the
original NEAT that utilizes topological-based diversity. Despite all the work in this
research area, there is no common agreement on the best way to compute behavior
similarity. Apart from the work of Gomez (2009) and Trujillo et al. (2008), there is no
other work that has used NCD as a distance metric for novelty search in
neuro-evolution. However, recent work in neuro-evolution (Lehman and Stanley, 2010;
Kistemaker and Whiteson, 2011; Gomes et al., 2014a; Didi and Nitschke, 2016b; Silva
et al., 2016), has seen an increase in the use of Euclidean distance metric to compute
behavior similarity.

Chapter 2. Background and Related Work 31

Furthermore, previous work by Wineberg and Oppacher (2003), suggested that
Hamming distance is effective where similarity measures use binary or symbolic
genotypes and that Euclidean distance is effective for genotypes with real value genes.
The behavioral vectors in this work are real values and considering previous work by
Gomes (2014), that used a Euclidean distance metric for novelty search in collective
behavior tasks, this work adopts a Euclidean distance metric for computing behavior
similarity.

Novelty search has been found to be unreliable when the size of the behavior space is
unlimited (Lehman and Stanley, 2010). Lehman and Stanley (2010), addressed this
problem by proposing a minimal criteria novelty search in which a minimal performance
criteria is set - where, if an individual does not meet that particular value, its novelty is
set to zero. Applying a reconfigurable behavioral space that limits the space of viable
behaviors, Lehman and Stanley demonstrated the superiority of this strategy over
searching for novelty only. Kistemaker and Whiteson extended this work by
investigating the critical factors that affect the performance of novelty search and they
suggested that the design of a good behavior function is essential to the success of
novelty search (Kistemaker and Whiteson, 2011). However, finding a good behavior
function (characterization) is not an easy task (Kistemaker and Whiteson, 2011), hence
further research is necessary in this aspect of novelty search.

Doncieux and Mouret (2014) demonstrated that selective pressure have a critical role in
evolutionary robotics (ER). That is, exploration of the behavior space is as equally
important as exploiting the highly performing behaviors in increasing search efficiency
and effectiveness. Furthermore, exploiting prior knowledge in form of evolved
controllers is beneficial to evolution of behaviors, but proper care is needed in selecting
the type of knowledge to transfer and balancing a trade-off between behavior space
exploration and exploitation of behaviors.

Previous work by Kelly and Heywood (2014) on comparing genotype to behavior
diversity for keepaway teams using genetic programming (GP) and further work by
Gomes et al. (2014), inspired the use of behavioral diversity maintenance in this thesis.
Gomes et al.(2014) made an empirical study comparing behavioral diversity
performance at the team versus individual level using CCEA. The study was applied on
collective behavior tasks (Keep-away soccer (Stone and Sutton, 2002) and predator-prey
domain (Haynes and Sen, 1996b)), and is the only study that applies behavior diversity
and explicit genotypic diversity on collective behavior tasks (as shown in the table 2.1).
However, this CCEA study does not test the impact of maintaining population diversity
on collective behavior tasks to be transferred to tasks with increasing complexity. It is
against this background that our research seeks to investigate the impact of
incorporating diversity maintenance mechanisms in adapting neuro-evolution methods
to derive collective behavior that will be transfered to boost learning in collective
behavior tasks with increasing complexity. In this thesis, we compare our NE methods
for transfer learning with RL, as RL is a well established method for transfer learning

Chapter 2. Background and Related Work 32

and thus forms a task performance benchmark with which to compare our various NE
approaches to collective behavior transfer learning.

2.4 Discussion and Summary

This chapter reviews the important existing work related to this thesis. It also provides a
background on significant techniques previously used by others and that have been
employed in this thesis. The review has focused on the current state of the art in
collective behavior transfer, with interest on neuro-evolution and reinforcement
learning as adaptation methods. It has been indicated in the review, that there are
several successful approaches to collective behavior transfer (with limited complexity)
based on reinforcement learning. However, there is very limited research work on
collective behavior transfer based on neuro-evolution as adaptation method, where
neuro-evolution is applied to collective behavior tasks to derive a collective behavior
that will be transfered to improve learning in tasks with increasing complexity. The
work in this thesis differs from the other work in many aspects. First, while other
researchers have demonstrated the importance of transfer learning in behavior
adaptation, no work has focused on the impact of different evolutionary search methods
on collective behavior transfer in neuro-evolution. Secondly, this literature review
shows, that to the best of the authors knowledge, no previous work has tested the
impact of maintaining behavior diversity during collective behavior adaptation, where
collective behaviors are transferred between tasks increasing complexity. Finally, we are
also interested in investigating the impact of using non-objective versus objective based
search methods to adapt collective behavior, before being transferred for further
adaptation to collective behavior tasks with increasing complexity. The following
chapter will address this current gap in the state of the art and describe the
neuro-evolution and collective behavior transfer learning methods used in the
experiments of this thesis.

33

Chapter 3

Methodology

In the experiments1 described in this thesis, behaviors are evolved for collective
behavior tasks that are controlled by ANNs, and neuro-evolution is required for
evolving these controllers. The behavior transfer framework which our work is based
on, is given in figure 3.1, where behavior adaptation begins in the source task, to derive
behaviors that will be transferred to bootstrap learning in collective behavior tasks with
increasing complexity (section 4.4.1).

NEAT has been selected to represent direct encoding and HyperNEAT to represent
indirect encoding neuro-evolution methods. NEAT is appropriate for this study because
firstly, it has been widely applied to collective behavior tasks (Taylor et al., 2006b; Torrey
and Shavlik, 2009; Degrave et al., 2015; Knudson and Tumer, 2012; Moshaiov and Tal,
2014), and secondly, it outperformed many direct encoding methods for evolving
controllers to solve control and sequential tasks (Stanley and Miikkulainen, 2002;
Stanley and Miikkulainen, 2004c; Stanley and Miikkulainen, 2004b). HyperNEAT is a
generative encoding that extends NEAT and has been successfully used in previous
studies for evolving controllers for collective behavior tasks (Verbancsics and Stanley,
2010; D’Ambrosio and Stanley, 2013). These neuro-evolution methods are compared
with reinforcement learning (a traditional policy search method for control and
sequential tasks).

3.1 Neuro-Evolution of Augmenting Topology (NEAT)

The NEAT method, introduced by Stanley and Miikkulainen (2002) evolves artificial
neural networks to solve difficult control and sequential tasks. Empirically, NEAT has
shown success in a wide variety of tasks, that includes a broad range of collective
behavior tasks and robotics (Stanley, 2004; Stanley et al., 2005; Taylor et al., 2006b; Torrey
and Shavlik, 2009; Degrave et al., 2015; Knudson and Tumer, 2012; Moshaiov and Tal,
2014). However, there has been relatively little research as to the efficacy of NEAT as a

1Source code and executables found here: https://github.com/sdidi/KeepawaySim

Chapter 3. Methodology 34

FIGURE 3.1: Collective behavior transfer framework. The figure shows behavior adaptation in a
collective behavior task and behavior (policy) transfer to tasks of increasing complexity.
Neuro-evolution is used for behavior adaptation in both the source and target tasks.

policy search method for collective behavior tasks, where behaviors derived are
transferred to tasks of increasing complexity for further adaptation.

NEAT, unlike many previous neuro-evolution methods, evolves both connection
weights and ANN topologies, and applies three key techniques to maintain a balance
between performance and diversity of solutions. These are: gene tracking through
historical markings, protecting innovation through speciation, and complexification
(that is, starting small and gradually increasing ANN topological complexity).

NEAT assigns a unique historical marking to every new gene so that crossover can only
be performed between pairs of matching genes. Using historical markings, it is possible
to trace the origin of all genes through the ancestral lines and if two genes share an
ancestral gene, they must represent the same structure. As new genes emerge through
mutation, a global innovation number is assigned to a new gene and is incremented
chronologically each time a new gene is created. When mating occurs, the resultant
offspring inherit the same innovation numbers on each gene, which are maintained
throughout evolution. In this way, there is a possibility of explosion of innovation
numbers from a situation where the same structure appears twice or more in the same
generation and receiving different innovation numbers. To avoid that problem, a list of

Chapter 3. Methodology 35

FIGURE 3.2: Cross-over based on historical innovation numbers (Stanley and Miikkulainen,
2002). The figure shows matching genes between Parent 1 and 2, as well as disjoint and excess
genes. The matching genes are inherited arbitrarily, whereas excess and disjoint genes are
inherited only from the more fit parent. If the parents have the same fitness value, then disjoint
and excess genes are inherited arbitrarily from parents as well.

the innovation numbers is kept and any identified identical structures are assigned the
same number. Using this approach, crossover only happens between pairs of genes with
the same innovation numbers (that is, matching genes). Genes that do not match are
either disjoint or excess and represent a structure that is not present in the other genotype.
The disjoint genes are those that appear in the range of other parent innovation numbers
and excess gene are those beyond other parent innovation numbers (figure 3.2).

NEAT speciates the population so that ANNs (genotypes) compete primarily within
their own niches (identified by historical markings) instead of competing with the
population at large. This approach protects topological innovation and creates
groupings in the population such that similar topological structures are in the same
species. The genotype similarity is measured using compatibility distance metric which
depends on the number of excess and disjoint genes between a pair of genotypes. The
more disjoint or excess genes are between a pair of genotypes the less compatible they
are. A linear combination of excess E and disjoint D genes with the average weight
differences of matching genes W (including disabled genes), gives a compatibility
distance δ presented in equation 3.1:

δ =
c1E

N
+
c2D

N
+ c3W (3.1)

where c1, c2 and c3 are constants used to adjust the weight of each factor. N , is the
number of genes of the genotype with largest number of genes, used for normalization.

Chapter 3. Methodology 36

The compatibility measure δ is evaluated with a compatibility threshold δth to
determine if genotypes are of the same species or not. If δ < δth genotypes are
considered similar. New species are gradually identified as evolution progress, if a
genotype is not compatible with a list of existing species, a new species is produced with
that genotype as its representative. Prior to artificial evolution, a species size limit is set
and if that limit is exceeded, instead of creating a new species, the compatibility
threshold is adjusted. In the experiments of this thesis, the compatibility threshold is
made to be dynamic δth. If the maximum number of species is exceeded, the δth is
adjusted upwards if there are too many species or downwards if there are too few
species. This requires re-ordering existing genotypes and helps to limit the number of
species in a population. While speciation protects topological innovation, a population
is generally not safe from dominance of a single species (especially one with many
individuals that perform well). This has adverse effects on the population diversity.
NEAT uses explicit fitness sharing to prevent overly large species from dominating the
whole population. Explicit fitness sharing imposes a penalty on overly large species by
dividing the fitness by the size of the species (Goldberg and Richardson, 1987).
Therefore, the size of species has an adverse effect on individual fitness. The adjusted
fitness f1i of an individual i is computed using equation 3.2:

f1i =
fi∑n

j=1 sh(δ(i, j)
(3.2)

where δ(i, j) is the compatibility distance of individual i from j and sh is a sharing
function computed by an equation 3.3:

sh(δ(i, j)) =

0, δ(i, j) > δT

1, Otherwise
(3.3)

where δT is the compatibility threshold. This approach provides a natural way of
managing the size of species. Species then reproduce by first eliminating under
performing individuals from the population, and after mating the remaining
individuals in the population, all parents are replaced by their offspring.

The original NEAT approach, starts off evolution with a population of simple ANNs,
where only input and output nodes are specified for the ANNs. The appropriate
topology (that is, hidden nodes and their connections) and weights are discovered
through evolution. This process, that gradually builds topological structures using two
special mutation operators: add hidden node and add connection, is called
complexification. The network complexity (measured by the total number of nodes and
connections) is gradually adjusted over generations through evolution to match the
level of complexity in the problem domain.

Chapter 3. Methodology 37

In this thesis, experiments were conducted using a C# implementation of NEAT called
SharpNEAT 2.02, developed by Green (2004). Unlike original NEAT, that utilizes
complexification as a primary topology search method, SharpNEAT adds another
process that is called pruning (Green, 2004; Lockett et al., 2007). Pruning simplifies
network topologies, a process required when the task performance stagnates for a given
period (that is, no improvement in the fitness of individuals). This process removes the
excess structures by using additional mutation operators: delete connection and delete
node. A connection for deletion is selected randomly, there by simplifying the
implementation of this process and a node with only one incoming and outgoing
connection is the best candidate for deletion (Green, 2004; Jorgensen et al., 2008).

3.1.1 NEAT Behavior Transfer

There are many ways of transferring behaviors from the source to target task. In this
thesis, three methods were tested to ascertain which method best facilitates transfer of
behaviors from a source task to initialize evolutionary adaptation in a target task.

• First, the entire evolved population was transferred from the source task (at the final
generation of neuro-evolution) and set as the initial population for neuro-evolution
in the target task.

• Second, the target population was seeded with the fittest genotype in the source
task and used as a bias for initializing the remainder of the target population.

• Third, the fittest 50% of the population evolved for the source task was selected to
seed and bias initialization of the rest of the starting population in the target task.

The first approach was found to be the most effective for all methods and tasks tested in
this thesis. This approach is presented in algorithm 1 and was thus used in company
with the selected mapping function for policy transfer (algorithm 2). Algorithm 2 is
applied to ensure that evolved networks are fully connected before behavior transfer
occurs.

Algorithm 1 Behavior Transfer
1: Initialize s, a
2: foreach genotype gi (i = 1 , ...,N) in P ′ do
3: Generate a network with number of inputs and outputs corresponding to a Πtarget configuration
4: Add the same number of hidden nodes to Πtarget as in Πsource

5: foreach pair of nodes(ni ,nj) in Πtarget do
6: if ∃ link Li,j ∈ Πsource then
7: add link Li,j toΠtarget with w

t
i,j = wsi,j inΠsource

2http://sharpneat.sourceforge.net/

Chapter 3. Methodology 38

Algorithm 2 is a transfer mapping function that is an extension of that proposed by Taylor
et al. (2007). This transfer mapping function, identifies input and output nodes that are
not connected to the network. The nodes identified are then connected directly to the
end points (that is, input nodes to connects to the output nodes) with random weights
assigned to their respective connections.

Algorithm 2 Transfer Mapping Function
1: Generate a network Πtargetwith nodes(ni ,nj) as in specified configuration
2: add the same number of hidden nodes to Πtarget as in Πsource

3: Initialize s, a
4: foreach pair of nodes(ni ,nj) in Πtarget do
5: if ∃ link Li,j ∈ Πsource then
6: add link Li,j toΠtarget with w

t
i,j = wsi,j inΠsource

7: else
8: if 6 ∃ nodes(ni, nj) ∈ Πsource then
9: add link Li,j toΠtarget with w

t
i,j = random weights

3.2 HyperNEAT: Hypercube-based NEAT

Hypercube-based NEAT (HyperNEAT) (Stanley et al., 2009) is a generative encoding
neuro-evolution method that extends NEAT and uses two networks, a Composite Pattern
Producing Network (CPPN) (Stanley, 2007) and a substrate (ANN). This encoding enables
evolution to explore patterns and regularities by encoding the genotype as a description
that maps indirectly to the phenotype. The main benefit of HyperNEAT is that it
exploits task geometry regularity and thus effectively represents complex solutions with
minimal genotype structure (Stanley et al., 2009). Through CPPN, encoding patterns are
described at a higher level as composition of functions where each function represents
certain motif in a pattern. Examples of such motifs are symmetry (for example, with a
Gaussian function), imperfect symmetry (by summing up symmetric functions and non
symmetric functions), and repetition (with periodic functions such as sine), repetition
with variation (by summing up periodic and non-periodic functions).

HyperNEAT uses the evolutionary process of NEAT to evolve the CPPN, in the same way
that standard NEAT evolves ANNs. The regularities encoded on CPPN are computed
directly from the geometry of the task inputs. The input to the CPPN is derived from
the coordinates of the two endpoints in the n dimensional substrate network. Each end
point of the sampled connection is represented by the n parameters (that is, equivalent to
n dimensions of the substrate hyperplane).

To apply HyperNEAT to a collective behavior task (section 4.4.1), the substrate input and
output layer are arranged in two-dimensions to match a two dimensional geometry of the
visual field. The input layer is directly connected to the output layer (that is, there are no
hidden layers). Each connection between input and output nodes is iteratively queried
in the substrate network and the coordinates of the two endpoints (that is, x1, y1, x2 and

Chapter 3. Methodology 39

FIGURE 3.3: HyperNEAT configuration for a collective behavior task. Shown in (a) is a substrate
network that is applied to a task and measures fitness. Shown in (b) is the CPPN that is evolved
using NEAT operators to generate candidate solutions. The CPPN takes coordinates of sampled
substrate network connection as inputs and outputs the weight of the connection and LEO
expression value.

y2) are collected and used as input parameters in the CPPN network. This way, CPPN
encoding indirectly maps genotypes to ANNs and encodes pattern regularities (such as
symmetries, repetitions) of the geometry of a task in the form of the substrate. The output
of the CPPN network is the synaptic weight of that connection and the Link Expression
Out (LEO) that determines if the connection should be expressed or not. This process is
repeated for all connections in the substrate network. An example of this configuration,
as used in this thesis is given in figure 3.3.

HyperNEAT was selected as the indirect encoding neuro-evolution method for this
thesis, since previous work indicated that transferring the connectivity patterns (Gauci
and Stanley, 2008) of evolved behaviors is an effective way of facilitating transfer
learning in collective behavior tasks (Bahceci and Miikkulainen, 2008; Verbancsics and
Stanley, 2010). Further work demonstrated the efficacy of this method in synthesizing
controllers to solve collective behavior tasks (D’Ambrosio and Stanley, 2013; Didi and
Nitschke, 2016b). HyperNEAT’s capability to evolve controllers that account for task
geometry makes it an appropriate evolutionary method for deriving controllers that
elicit behaviors robust to variations in state and action spaces (Risi and Stanley, 2013) as
well as noisy, partially observable environments of multi-agent tasks. Also, it has been
demonstrated that HyperNEAT evolved multi-agent policies can be effectively
transferred to increasingly complex versions of keep-away soccer (Stone et al., 2006)
without further adaptation (Verbancsics and Stanley, 2010) and that transferred
behaviors often yield comparable task performance to specially designed learning
algorithms (Stone et al., 2005).

Chapter 3. Methodology 40

3.2.1 HyperNEAT Behavior Transfer

For all HyperNEAT variants the entire evolved population was transferred from the
source task (at the final generation) and set as the initial population for evolution in the
target task. A discussion provided in section 3.1.1 supports the choice of this approach.
It is based on previous work (Didi and Nitschke, 2016b) that indicates this method is
most effective for HyperNEAT and various keep-away tasks. The behavior transfer
approach applied for transferring the behaviors between the source and target tasks for
HyperNEAT is the same as used for NEAT (presented in algorithm 1). Using Bird Eye
View (Verbancsics and Stanley, 2010) representation, the substrate network encodes the
collective behavior task environment state to directly reflect the task geometry. This way
the CPPN evolves the solution as a direct function of the task geometry, exploiting the
regularities in the task geometry.

The source task and a target task can be represented with the same substrate network on
a two dimensional space, where changes in task configuration are depicted by the
values assigned to each coordinate of the substrate network. The substrate geometric
representation does not necessarily need to change with addition of new agents onto a
simulation. Instead, to reflect a change in the world state (visual space), new agents are
drawn onto the existing representation (substrate input layer) by adjusting the input
values for the coordinates corresponding to locations of new agents in the visual space
(for example, an input value changes from a 0 to either +1 or −1 to indicate the presence
of a teammate or an opponent, respectively). Thus, the substrate network size or
resolution (input and output layer configuration) remains the same across different tasks
but each change in task configuration is accounted for on the existing representation
through input values. Using this approach, the behavior transfer from a source to a
target task can be performed without the need of a transfer mapping function.

3.3 Reinforcement Learning

Our method is compared to reinforcement learning (RL), a well established traditional
method for adapting controllers for sequential and control tasks. Temporal difference
(TD) methods (Sutton, 1998) are popular for learning behaviors in reinforcement learning
tasks (Stone and Sutton, 2002; Stone et al., 2005). The TD methods have been chosen in
the previous work for RL due to their ability to handle delayed reward, by constructing
an internal reward signal that is less delayed than the original reward (Singh and Sutton,
1996).

The previous research has shown that collective behavior tasks, such as keep-away
(section 4.4.1), are affected by the delay (in terms of efficiency) between an action and its
effective reward using TD methods (Stone et al., 2005). For effective learning there has
to be another mechanism used with TD methods to eliminate the effect of the delay.

Chapter 3. Methodology 41

Eligibility trace, introduced by Klopf (1972), has been widely used to support TD
methods for handling delayed reward (Stone and Sutton, 2002; Stone et al., 2005). The
eligibility trace keeps a temporary record of visited states and actions taken. Each time a
state is visited, a short-term memory process, a trace (that marks a state as eligible for
learning) is initiated which then decays gradually over time, controlled by a parameter
λ. This way, only the eligible states or actions receives credit or penalty when a TD error
occurs and thereby improving efficiency. SARSA(λ) and Q-Learning(λ), representing
SARSA with eligibility trace and Q-Learning with eligibility trace, respectively are used
in this thesis.

3.3.1 SARSA

SARSA is an acronym for State Action Reward State Action and is defined by a 5-tuple
〈st, at, r, st+1, at+1〉, where (st, at) represents a current state-action pair and (st+1, at+1) a
subsequent state-action pair. The value r is the immediate reward from taking action at
at state st. SARSA learns to estimate the action-value function, Q(s, a), which computes
the long term reward of performing action a in a state s. It is called an on-policy method
because it estimates the action-value function that guides learning and simultaneously
updates the policy with respect to the changing action-value function as shown in
equation 3.4:

Q(st, at) = Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)] (3.4)

where, α is the learning rate, γ is a discount factor that is used to scale the immediate
reward with respect to future rewards.

SARSA(λ) a TD method combined with eligibility traces is used in this thesis (algorithm
3). The value of eligibility trace e(s, a) is increased or replaced each time a state is visited,
based on a type of eligibility configuration set. There are two configurations of eligibility
traces. First, the accumulative eligibility trace that decreases for every step the agent takes
after visiting that state. The value of λ, in the range [0, 1] shown in algorithm 3, dictates
the pace of declining towards zero. This is depicted with equation 3.5:

e(s) =

γλet−1(s), ifs 6= st

γλet−1(s) + 1, Otherwise
(3.5)

Second, replacing eligibility traces that decay the eligibility trace value each time step when
the state is not visited and replace the trace value with a value one otherwise. This is

Chapter 3. Methodology 42

depicted with equation 3.6:

e(s) =

γλet−1(s), ifs 6= st

1, Otherwise
(3.6)

The experiments in reinforcement learning adopted replacing eligibility trace as previous
research indicated success of the later compared to the former (Sutton, 1998).

Algorithm 3 SARSA(λ) based on tile coding
1: Construct tiles based on the number of states and actions of the task
2: θ, ẽ ← 0;∀ s, a
3: repeat . for each episode
4: if first step then . first time step
5: foreach a ∈ Aa do
6: Fa ← {set of tiles for a, s}
7: Qa ←

∑
i∈Fa

θ(i)

8: LastAction ←

{
argmax

a
Q(a), P (1− ε)

random action, P (ε)
9: LastActionT ime← CurrentT ime

10: foreach i ∈ Fa do
11: e(i)← 1

12: else step 6= first step
13: r ← CurrentTime − LastActionTime
14: δ ← r −Q(LastAction)
15: foreach a ∈ As do
16: Fa ← {set of tiles for a, s}
17: Qa ←

∑
i∈Fa

θ(i)

18: LastAction ←

{
argmax

a
Q(a), P (1− ε)

random action, P (ε)
19: LastActionT ime← CurrentT ime
20: δ ← δ +Q(LastAction)
21: ~θ ← ~θ + αδ~e
22: Q(LastAction)←

∑
i∈Fa

θ(i)

23: ~e← γλ~e . Decay the eligibility trace
24: foreach a ∈ As a 6= LastAction do
25: foreach i ∈ Fa do
26: e(i)← 0

27: foreach i ∈ FLastAction do
28: e(i)← 1 . replacing eligibility trace
29: until episode, e is terminal

Chapter 3. Methodology 43

3.3.2 Q-Learning

Q-Learning is a policy search method where the learned Q function directly approximates
the optimal action-value function, independent of the policy that directs learning as in
equation 3.7:

Q(st, at) = Q(st, at) + α[rt+1 + γmax
π
Q(st+1, a)−Q(st, at)] (3.7)

where max
π

represents the optimal value, and a greedy policy is used that always select
the action corresponding to the optimal value.

Q(λ) a second TD method used in the RL experiments of this thesis. This version of
Q-learning replaces eligibility traces and together with SARSA(λ) provides comparative
benchmark algorithms to contrast with the neuro-evolution methods (section 3.1 and 3.2).
The design of Q(λ) method is given in algorithm 4:

These two TD methods are applied to collective behavior tasks with very large and
continuous state spaces, which this work explores. It is not possible for the agents to
have a direct experience of all possible points in the state space (thus some states never
recur). Rather, agents need to be exposed to a limited state space and then generalize the
learning experience to other points in the wider state space, not yet visited. To be able to
generalize that way, a table of Q-values must be approximated using some
representation that limits the state space. This technique is called function approximation
and there are many examples of function approximation that have been used in
reinforcement learning (Watkins, 1989; Stone et al., 2005). The following subsection
discusses, the function approximator applied for this work.

3.3.3 Function Approximation

Tile coding (1998) was adopted as a function approximation technique, where piecewise
functions are used to approximate a value function. These functions are a discretization
of the state space, creating partitions that maps to tilings. In this way the tiles and width
of the tilings are specified prior to learning and this provides the mapping between state
values and tiles. In line with previous work (Stone et al. 2005), given 13 state variables
in a source task, 32 tilings per variable were selected, so for each step 416 integers would
be stored in order to execute an update. The tiles encoding the current state in each
tiling makes up a feature set, Fa, with each action, a indexing the tilings. The number of
possible tiles is large and relatively few are visited in practice.

A current state is represented by a single tile in each tiling, hence only one tile is active
per tiling. Therefore, in each tiling there is only one tile for each variable. Given 13 state
variables, there are 13 ∗ 32 = 416 tiles, and giving 416 tiles in each Fa. The approximate
value function, Q(a), conventionally represented as a table, is then presented in
parameterized form with parameter vector θt. Qa(s) is computed by summing the

Chapter 3. Methodology 44

Algorithm 4 Q(λ) based on tile coding
1: Construct tiles based on the number of states and actions of the task
2: θ, ẽ ← 0;∀ s, a
3: repeat . for each episode
4: if first step then . first time step
5: foreach a ∈ Aa do
6: Fa ← {set of tiles for a, s}
7: Qa ←

∑
i∈Fa

θ(i)

8: LastAction ← argmax
a
Q(a)

9: LastActionT ime← CurrentT ime
10: foreach i ∈ Fa do
11: e(i)← 1

12: else step 6= first step
13: r ← CurrentTime − LastActionTime
14: δ ← r −Q(LastAction)
15: foreach a ∈ As do
16: Fa ← {set of tiles for a, s}
17: Qa ←

∑
i∈Fa

θ(i)

18: LastAction ← argmax
a
Q(a)

19: LastActionT ime← CurrentT ime
20: δ ← δ +Q(LastAction)
21: ~θ ← ~θ + αδ~e
22: Q(LastAction)←

∑
i∈Fa

θ(i)

23: ~e← γλ~e . Decay the eligibility trace
24: foreach a ∈ As a 6= LastAction do
25: foreach i ∈ Fa do
26: e(i)← 0

27: foreach i ∈ FLastAction do
28: e(i)← 1 . replacing eligibility trace
29: until episode, e is terminal

Chapter 3. Methodology 45

weights of all the tiles in Fa, as in equation 3.8:

Qa(s) = θTφ =
n∑
i=0

θ(i)φ(i) (3.8)

Where, θ is a weight associated with each tile, i is the index of tiles in the feature set Fa
and φ is the value indicating if the corresponding tile in Fa is active (for example, a value
one shows its active and zero otherwise) and n the total number of tiles.

The algorithms 3 and 4 illustrates the application of the function of tile coding in
approximating the value function and how it is applied in TD methods. The main
difference between the two methods is how to select an action to execute from the set of
available macro-actions. SARSA(λ) uses an ε−greedy policy whereas Q(λ) takes the
greedy policy, and follows the action corresponding to the highest Qa(s). The goal of
selecting both of these methods is to enhance our study so that we could easily
generalize the findings when we have carried out extensive tests. The following section
presents the behavior transfer method implemented to transfer controllers between
collective behavior tasks.

3.3.4 TD Behavior Transfer

To implement behavior transfer from a source to target collective behavior task for a TD
method, there is need for mapping between states and actions in the two tasks. The
choice of mapping function used in this thesis, is supported by empirical evidence from
previous work by Taylor et al. (2005), which demonstrated specific domains and
mappings functions, used successfully to increase the efficacy of RL learning. Using tile
coding, the weights for activated tiles in target tasks can be initialized by assigning
weights from the final episodes of the source task. In this work, we copy the weights
learned in the source task into weights in the target task using the algorithm 5, derived
from TVITM (Taylor et al., 2007b) discussed in section 2.2.1.

Algorithm 5 TD-BehaviorTransfer
1: Construct tiles based on the number of states and actions of the target task
2: foreach non − zero weights θsi in the source tiles do
3: Ssource ← {value of state variable corresponding to tiles}
4: Asource ← {action corresponding to i}
5: foreach value of Starget corresponding to value in Ssource do
6: foreach value of Atarget corresponding to Asource do
7: θti ← θsi
8: compute type relationships between Ssource and Starget states variables
9: foreach state value j in Starget not present in Ssource do

10: θtj ← mapped values of Ssource

Chapter 3. Methodology 46

In step 8, of algorithm 5 we test two configurations. First, initializing the rest of the
remaining weights in the target pool to zero and secondly, weights from source are
copied to the remaining target weights based on relationships. For example, weights for
the tiles that correspond to distance to teammate 2 state variable in the source are copied
to initialize the weights of tiles corresponding to distance to teammate 3 in the target state
representation. Notably, HyperNEAT behavior transfer approach (section 3.2.1) has
relatively less complex implementation compared to that of NEAT (section 3.1.1) and
TD methods which are of similar complexity. As evolved controllers (behaviors) are
transferred using HyperNEAT without alteration compared to a hand coded approach
using NEAT and TD methods.

The subsection that follows provides the discussion of five variants of the behavior
adaption techniques used with NEAT and HyperNEAT methods. These techniques will
be investigated in this thesis to ascertain the method that best adapts behaviors between
the source and target collective behavior task (that is, significantly improved task
performance).

3.4 Behavior Adaptation Methods

This section presents a description of five different types of evolutionary search
methods used in this thesis. Each of these approaches were used to direct the search
process in neuro-evolution methods (both NEAT and HyperNEAT). These approaches
are objective-based search, behavior diversity (novelty) search, genotypic diversity
search, hybrid behavior diversity and objective-based search and hybrid genotypic
diversity and objective-based search.

3.4.1 Objective Based Search (OS)

OS is a conventional method for behavior adaptation in neuro-evolution guided by an
objective function which evaluates the performance of each individual against a fitness
metric. In this thesis, experiments are conducted on simulated keep-away soccer domain,
and the objective function computes mean episodic length using equation 3.9:

fitx =
1

N

N∑
j=1

Tj (3.9)

Where, the length of an episode j is Tj , N is the number of task trials (simulation length),
and Tj is the length of trial j. In this method the objective is to maximize the mean
episodic length and the search process is directly guided by this performance metric. OS
is the first of the search variants used together with NEAT and HyperNEAT evolutionary
adaptation.

Chapter 3. Methodology 47

3.4.2 Behavioral Diversity and Objective-based Search

Many NE methods have incorporated behavioral diversity maintenance into their search
processes as a means of discovering novel and higher quality solutions, compared to the
same methods using objective based search (Mouret and Doncieux, 2012).

Novelty Search (NS)

Novelty search (Lehman and Stanley, 2011a) is a search process that rewards evolved
behaviors based on their novelty. Thus, a genotype is more likely to be selected for
reproduction if its encoded behavior is sufficiently different from all other behaviors
produced thus far in artificial evolution. NS has been demonstrated as yielding
solutions that out-perform objective based search in various multi-agent tasks (Gomes
et al., 2013; Gomes et al., 2016b). Given this, NS was selected as the behavioral diversity
mechanism for controller evolution in this thesis.

The function of NS is to consistently generate novel team (keep-away) behaviors. Hence,
we define team behavior in terms that potentially influence team behavior but are not
directly used for task performance evaluation. That is, we use the behavioral properties:
average number of passes, dispersion of team members, and distance of the ball to the center
of the field. To measure novelty we normalize each of these properties as task specific
behavioral vectors, where the addition of these vectors is always in the range: [0, 1]. This
team level behavioral characterization has been used previously (Gomes et al., 2014a) and
out-performs individual behavioral characterizations. Behavioral distance is computed
using equation 3.10:

δi(x, y) = ‖xi − yij‖ (3.10)

Where, xiand yij are normalized behavioral characterization vectors of two genotypes.
Novelty is then quantified by equation 3.11, which replaces the fitness function of NEAT
and HyperNEAT.

novx =
1

3k

k∑
i=1

3∑
j=1

δ(xj , yij) (3.11)

Where, xj is the jth behavioral property of genotype x, yij is the jth behavioral property
of the ith nearest neighbor of genotype x and δ is the behavioral distance between two
genotypes x and y computed in equation 3.10. The novx then is derived from the mean
behavioral distance of an individual with k nearest neighbors. The parameter k (number
of nearest neighbors) is user specified. Related work used k = 20 (Liapis et al., 2015) and
k = [3, 10] (Gomes et al., 2015) with varying results. Gomes et al. (2015) found k values

Chapter 3. Methodology 48

are highly dependent on the type of novelty archive, where k = 15 yielded relatively
good performance across all tested archives. Hence this study uses k = 15.

As in related work (Lehman and Stanley, 2011a), the novelty of newly generated
genotypes is calculated with respect to previously novel behaviors stored in the novelty
archive, where archived behaviors are ranked by diversity. The maximum archive size is
1000 and the number of behaviors added to the archive after each generation is limited
to 10 (given results of related work (Gomes et al., 2015; Meyerson et al., 2016)).

Hybrid Objective-Novelty Search (ONS)

In line with previous hybrid NS research (Gomes et al., 2014a), we use a metric that
linearly combines NS with the objective-based search of NEAT and HyperNEAT
(equation 3.12):

scorei = ρ · fiti + (1− ρ) · novi (3.12)

Where, fiti and novi are normalized fitness and novelty of ith genotype respectively,
ρ ∈ [0, 1] is user selected to control the relative contribution of each metric to selection
pressure. Previous work demonstrated that a medium to high novelty weight 50-80%
yields the best results (Gomes and Christensen, 2013b). We found that a novelty weight
of 40% yielded the best results in this case study. All other novelty search parameters are
the same as used for the NS variant (subsection 3.4.2).

3.4.3 Genotype Diversity and Objective Based

Genotype Novel Search (GNS)

Similar to novelty search (section 3.4.2), GNS is the genotype diversity search for novel
genotypes (controller encodings). The genotypic distance between two genotypes is
measured using linear combination of Excess (E) and Disjoint (D) genes (Stanley and
Miikkulainen, 2002), and a mean weight difference of matching genes W (Risi et al.,
2010) (equation 3.13). Genes that do not match are either disjoint or excess depending on
whether they occur within or outside the range of parent innovation numbers (Stanley
and Miikkulainen, 2002).

δg(a, b) =
c1E

N
+
c2D

N
+ c3W (3.13)

Where, N is the number of genes in the longest genotype of the population, and
coefficients c1, c2 and c3 are parameters used to adjust the weighting of the three factors

Chapter 3. Methodology 49

E,D and W respectively. The sparseness (Sg) of genotype x in population evolution is
computed by equation 3.14.

Sg(x) =
1

k

k∑
i=1

δg(x, yi) (3.14)

Where, yi is the ith nearest neighbor of x, k is the number of nearest neighbors of x and
δg is the compatibility distance measure (equation 3.13). The generation n exploration
metric is then the population’s mean sparseness (equation 3.15):

Eg(n) =
1

N

N∑
x=1

Sg(x) (3.15)

Where, N is the population size parameter and Sg(x) is the sparseness of individual x in
generation n computed in equation 3.14. If exploration measure Eg(n) is high it means
the population has genetically diverse genotypes. The GNS variant thus uses equation
3.14 in place of NEAT or HyperNEAT’s fitness function, as genetically diverse genotypes
are selected. The same nearest neighbor and archive parameters are used for GNS as used
for the behavior novelty search (NS) variant (subsection 3.4.2).

Hybrid Objective-GNS (OGN)

OGN uses equation 3.12, except that novi now represents the genotype diversity metric
(equation 3.14). That is, equation 3.14 specifying the genotype sparseness in the
population (normalized into the range [0, 1]) replaces the normalized novelty function
value novi in equation 3.12. Similarly, ρ ∈ [0, 1] controls the relative contribution of
fitness versus genotypic diversity directed search. Previous work by Didi and Nitschke
(2016), indicated that a genotypic diversity weight of 40% was appropriate for the
experiments in this thesis (discussed in chapter 4). The rest of other parameters are the
same as used for the GNS variant (subsection 3.4.3).

3.5 Discussion and Summary

This chapter discussed novel methods that combined existing NE methods (NEAT and
HyperNEAT) with various search approaches, integrating them with methods for
collective behavior transfer between tasks of increasing complexity. The behavior
transfer method for each technique was discussed and adopted to transfer behaviors
between tasks. This thesis utilizes two neuro-evolution (that is, NEAT and HyperNEAT)
methods with five variants of each (that is, five adaptation techniques applicable to each
method). These methods were both direct and indirect encoding NE methods and

Chapter 3. Methodology 50

essential for ascertaining the best behavior adaptation method that yields best
performance benefits when transferred to tasks with increasing complexity.

This chapter also discussed RL methods that will be used as a task-performance
benchmark against which the neuro-evolution transfer learning methods will be
compared. These RL methods included SARSA and Q-Learning (TD methods). For TD
methods tile coding was adopted as a function approximation technique to discretize
the state representation, as the behavioral search space of keep-away increases
exponentially with task complexity.

51

Chapter 4

Behavior Transfer and
Neuro-Evolution Experiments

This chapter evaluates the performance and appropriateness of the neuro-evolution
methods for collective behavior evolution and transfer of behaviors between collective
behavior tasks of increasing complexity. This chapter discusses experiments that
compares five variants of NEAT and HyperNEAT (table 4.1) in a keep-away soccer
domain (Taylor et al., 2007b). In particular, to address the thesis research question
(discussed in section 1.2), the experiments investigate what is the best NE method for
collective behavior evolution to use in company with policy transfer and thus boost task
performance and efficiency. Specifically, there are three main features of the methods
being tested in this case study, to ascertain which combination yields the best results (in
terms of task performance and efficiency). These methodological features are:

1. Direct (NEAT) versus indirect (HyperNEAT) encoding

2. Evolutionary search variant to direct NE (behavioral versus genotypic diversity as
well as a hybrid approach)

3. Use of policy transfer versus no policy transfer

First, we test and evaluate the efficacy of NEAT and HyperNEAT (that is, direct and
indirect encoding NE methods, respectively) as appropriate methods for yielding task
performance and efficiency boosts after policy transfer. Second, we test and evaluate
the impact of using a non-objective (that is, behavior diversity and genotype diversity)
versus objective (fitness) based search approach for two given policy search methods
(NEAT and HyperNEAT). Third, we compare results of evolution of controllers with and
without behavior transfer across a range of keep-away tasks.

In this thesis the appropriateness of the methods is measured in terms of effectiveness,
solution complexity and efficiency of collective behavior across task of increasing
complexity. Effectiveness is improved average task performance between tasks with and
without behavior transfer. This measure indicates performance gained through the use
of behavior transfer. Efficiency refers to average number of generations to reach a task
performance threshold, a comparison of collective behavior adaptation before and after

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 52

Variant Name Variant Description
OS Objective-based Search
NS Novelty Search

ONS Hybrid Novelty-Objective based Search
GNS Genotypic Novelty Search
ONS Hybrid Genotypic Novelty-Objective based Search

TABLE 4.1: The five variants (NEAT and HyperNEAT) evaluated for collective behavior
adaptation and transfer across keep-away tasks of increasing complexity

behavior transfer. The average maximum task performance attained by each method, in
each task, without behavior transfer is the performance threshold that will be used as a
benchmark. Then the average number of generations to attain this threshold is used as
an indicator of efficiency. The third quality variable measured in these experiments is
topological complexity (that is, sum of nodes and connections in the topological
structure) of the solution. A method that evolves simple (minimal topological
complexity) solutions that efficient and effective compared to a method that evolves
complex solutions that are relatively ineffective and inefficient would be preferable.

Effectiveness and efficiency is also used to measure the efficacy of five variants of NEAT
and HyperNEAT for collective behavior adaptation and transfer across keep-away tasks
of increasing complexity. Table 4.1 shows the five variants which differ in the way they
guide evolutionary search.

4.1 Collective behavior Task and Performance Specification

Keep-away1 is a domain introduced by Stone and Sutton (2002) and is a subtask of
RoboCup soccer2 (Noda et al., 1998), that was developed as a benchmark task for complex
multi-agent learning. In keep-away, one team, the keepers, attempts through learning to
maintain possession of the ball as long as possible in a fixed bounded region (20 × 20

square grid), while an opponent team, the takers attempts to gain control of the ball. In
the keep-away simulator, an episode is started by setting the position of the ball, keeper
and taker agents in a visual space. Three keeper agents are selected at random, and
placed close to the three corners of the field and other agents are placed at random
positions close to the center of the field. The taker agents are spaced and located close to
the fourth left bottom corner of the field. The ball is placed in possession of the keeper
located at the top left corner of the field. The episode runs for the duration equivalent to
the number of cycles the keeper team is able to maintain possession of the ball and
episode ends either when the ball goes out of bounds or the taker agent gains control of
the ball. When the episode ends the players positions are reset for another episode and
ball position is given to the keeper’s team.

1All experiments were run in RoboCup keep-away version 0.6
2https://sourceforge.net/projects/sserver/

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 53

The keeper agents learn to make high-level decisions such as to pass the ball or hold the
ball. The low-level actions are handled by the simulation framework, that allows
players to execute low level instructions such as dash to the ball, kick the ball or turn.
Some high-level decisions such as getOpen (Stone et al., 2005), to move to a space free of
opponent players so as to receive a pass, are handled by a heuristic method provided by
the keep-away framework. Actions are selected for execution every single simulation
cycle that is equivalent to 100 ms. In each simulation cycle, a learning agent receives
sensory inputs and acts asynchronously. Keep-away simulator introduces some random
noise to the sensors and actions to make the environment realistic. Each agent learns
independently (that is, there is distributed control of agent behavior) and there is no
communication between agents. The takers follow a heuristic approach exhibited by
algorithm 6, that selects two agents arbitrarily so as to estimate the next location of the
ball and dash to that position, while the rest of the agents, estimate open positions
between the opponents and block passes.

Algorithm 6 Taker agent Behavior
1: Initialize position of agents, assigns id ′s
2: read taker agent ′s Id
3: repeat
4: foreach time_step ∈ episode_duration do
5: if agent_Id <= 2 then
6: next_position← predict(next_ball_position)
7: policy ← moveTo(next_ball_position)
8: else agent_Id > 2
9: next_position← predict(most_Open_Space)

10: policy ← moveTo(most_Open_Space) + Intercept(Ball)

11: until Terminal_State

The objective of the keeper team in the keep-away task is to maximize the expected
length of the episode (that is, episodic hold time). Episodic hold time is then used as a
performance measure of the keep-away task. Since a keep-away can be played
effectively with homogeneous teams (Whiteson et al., 2003), in this thesis
neuro-evolution evolves teams of homogeneous controllers, with shared fitness between
players. The fitness function that measures the task performance is given in equation 3.9
in section 3.4.1. Task performance is measured over 30 trials and averaged over 20
simulation runs for five variants of NEAT and HyperNEAT (see table 4.1). The role of
NEAT and HyperNEAT methods in this task, is to synthesis controllers for the keepers
team so as to maximize the episodic hold time.

4.1.1 Complexity in keep-away task

Empirical evidence from previous research by Stone et al. (2005) and Taylor et al. (2005)
indicated that increasing number of agents in the keep-away task, leads to an increase

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 54

in the task complexity, regardless of which agent is added (that is, keeper or a taker
agent) to the simulation. Increasing the number of takers increases the likelihood of the
ball interception because of two major reasons: first, as more players will be available to
block passes, second, the angle of passes will be small. On the other hand, an increase in
keeper agents in a fixed bounded region, results in a crowded field and that potentially
increases the complexity of the task. More keeper agents in the field, means more passing
options but leads to reduction in the average pass distance. This leads to more potential
errors and interference between the players. Therefore, task complexity equates to the
ratio of taker to keeper agent plus the total number of agents.

The keep-away players sensors and actuators are noisy, players have a partial view of
the environment and the simulation environment is highly stochastic. The keep-away
soccer adds evenly distributed probabilistic noise to all objects movements, where noise
is a random number whose distribution is uniform that is added to the parameters of a
moving object such as velocity and turning angle of a moving player. Noise is mainly
added in activation parameters, objects motion and visual perceptions (Stone, 2000).
Due to noisy sensors and actuators and as well as the hidden state enforced, the agents
only have a partial world view at any given time. These listed properties adds to the
complexity of the keep-away task. Also leads to noisy fitness functions and for that
reason this task is considered to be deceptive (Gomes et al., 2013), though not perversely
deceptive as in deceptive maze navigation (Lehman et al., 2013).

Objective-based search (OS), a popular evolutionary search method, selects behaviors
that produce highest average hold time (that is, time in possession of the ball). This
method does not consider and exploit the behavioral properties that influence that
behavioral outcome. Hence, even though the action of moving with the ball (that is,
hold the ball) maintains ball possession, the field position of this keeper can be a
disadvantage if the keeper is surrounded by opponent team players. Thus, such
behaviors that satisfy the fitness objective are deceptive in that evolutionary stepping
stones (such as, evaluating the position of players before taking an action) are not
rewarded and not selected. Behaviors that could likely benefit the team such as
maximizing the number of passes, and limiting the passing distance, ideally need to be
identified and exploited as they contribute to task performance.

Having more players in the task, such as 6vs5 keep-away task is considered to be the
most complex of the five tasks, with many opponent players blocking the passing lane
and advancing towards the ball from many directions increases the likelihood of making
errors. Therefore, this particular task is classified as the most appropriate to train with
behavior transfer to jump-start the evolutionary process.

Furthermore, previous research has indicated that as the task complexity increases, it
becomes more difficult to design an appropriate fitness function and objective-based
evolution becomes more vulnerable to deception (Zaera et al., 1996; Gomes et al., 2013).
In support of that argument, Whitley et al. (1991) suggested that high level of

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 55

complexity has tendency to generate deceptive fitness landscapes. The deception then
becomes a limiting factor for success. Comparing the performance of novelty search and
objective-based search on deceptive domains, Lehman and Miikkulainen (2013)
demonstrated that novelty search is capable to produce better solutions than
objective-based search (that is, in specific domains deemed to be highly deceptive).
However, it is difficult to quantify and establish deception in keep-away tasks, thus we
consider keep-away soccer to be non-deceptive domain.

In summary, introducing more agents to the field and noise in sensors and actuators,
relates to an increase in task complexity. This slows down evolutionary progress in
keep-away tasks of increasing complexity and leads to poor overall task performance.
In this thesis, five NE variants are evaluated on keep-away tasks with increasing
complexity to ascertain the appropriate method for adapting collective behavior
controllers.

4.2 NEAT for Collective Behavior Evolution

NEAT (Stanley and Miikkulainen, 2002) is a direct encoding NE method, used in this
case for behavior evolution, evolves ANN to control the collective behaviors of the
keep-away task. Figure 4.1 shows an example of an ANN evolved by NEAT for a 3vs2

keep-away task configuration, that has 13 sensory inputs, a bias node and three motor
controllers. The description of each input and the output node is given in table 4.2.
Mapping between the genotype and the phenotype representation for NEAT is
one-to-one. Generally, the encoding of sensory-motor of a keep-away team controller
needs to change as task complexity increases. The input-output configurations for each
keep-away task is illustrated in table 4.3, for example a 3vs2 keep-away task has 13
input and 3 output nodes.

As task complexity increases, from 3vs2 to 4vs3 keep-away, an ANN topology with 19

input nodes and 4 output nodes is required. The additional output node represents the
decision of keeper 1 to pass to keeper 4. The extra six input nodes represent:

1. distance of keeper 4 from the field’s center,
2. distance of taker 3 from the field’s center,
3. distance of keeper 1 from taker 3,
4. distance between keeper 4 and the closest taker,
5. angle formed between keeper 1 and the closest keeper and taker,
6. distance of keeper 1 to keeper 4.

Similarly, for the 5vs3 task an ANN with 23 inputs and five outputs is needed.

However, for all keep-away tasks tested in this chapter (3vs2, 4vs3, 5vs3, 5vs4, 6vs4 and
6vs5) the ANN sensory-motor layer topology was kept static (13 sensory inputs and

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 56

FIGURE 4.1: Example of network evolved with NEAT for a 3vs2 keep-away task. The network
has thirteen sensory inputs and three outputs and a bias node. NEAT evolves the hidden layer
topology and connectivity. The network configuration parameters are described in table 4.2.

Sensory Inputs Description
dist(Kb, C), dist(Kt1, C), dist(Kt2, C) Distance of each keeper to field center

dist(T1, C), dist(T2, C) Distance of each taker to field center
dist(Kb,Kt1), dist(Kb,Kt2) Distance of each teammate to keeper 1
dist(Kb, T1), dist(Kb, T2) Distance of each taker to keeper 1

minj∈1,2dist(Kt1, Tj), minj∈1,2dist(Kt2, Tj) Distance of closest taker to keeper 1
minj∈1,2angle(Kt1, Tj), minj∈1,2angle(Kt1, Tj) Angle of closest keeper, taker, keeper 1

Motor Outputs
Hold Do not pass ball

Pass to Kt1, Pass to Kt2 Pass to keeper 2, keeper 3

TABLE 4.2: Sensory inputs (13 input nodes) and motor outputs (three outputs) for a team’s ANN
controller in the 3vs2 keep-away task. Keeper 1 is the agent with the ball.

three motor outputs) in order to facilitate behavior transfer across tasks of increasing
complexity. In the RoboCup soccer simulator, due to noisy sensors each player can see
objects within 90◦ field of view and sensory vision precision deteriorates with distance.
In the simplified keep-away versions, players are given 360◦ field view and location
precision fades with distance (Stone and Sutton, 2002). In our method, players are
prioritized by sensory stimulations based on distance and strength of sensory vision.
Thus, as the number of agents increased with task complexity, a heuristic selected which
agents in the environment would be processed by the ANN’s 13 sensory input nodes.
At each sensory-motor cycle (task trial iteration), the heuristic selected the closest two
keeper and taker agents to be processed by the ANN, but had the potential to process
any agent as sensory input.

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 57

Task Configuration ANN Inputs/Outputs
3vs2 13/3

4vs3 19/4

5vs3 23/5

5vs4 25/5

6vs4 29/6

6vs5 31/6

TABLE 4.3: The number of sensory inputs and motor outputs for ANN keeper team controllers
applied each keep-away task. For this work a topology of thirteen inputs and three outputs, is
always used to facilitate policy transfer. A heuristic method is used to select players that will
participate in the configuration for each task.

FIGURE 4.2: Example of network evolved with HyperNEAT. Left: Substrate encoding the
virtual field (20 x 20 grid of inputs and outputs). Right: CPPN takes as inputs coordinates of
two-endpoints of a connection on a substrate network and gives weight of that connection and a
connection expression value as output.

4.3 HyperNEAT for Collective Behavior Evolution

HyperNEAT (Stanley et al., 2009) uses indirect encoding and can thus represent changes
in task complexity without changing genotype representation (Verbancsics and Stanley,
2010). Verbansics and Stanley (2010) introduced Bird’s Eye View (BEV) representation,
which is used in this thesis to encode keep-away’s visual state (layout of the field and
locality of agents) and actions onto a substrate network. The virtual space for a
keep-away soccer simulation field is represented by a 20 x 20 grid space, where each
agent is modeled to occupy a single grid cell per simulation. HyperNEAT encoding has
two networks, one that encodes the field properties (that is, substrate) and the other one
that encodes the regularity of the field properties as composition of functions (that is,
CPPN).

The substrate network is multi-layered comprising of input and output layers with each
layer being a two-dimensional space, with coordinates in the x, y plane in the range of
[−1.0, 1.0]. Each grid cell in the keep-away soccer simulation virtual field is represented
by a node in each substrate network layer. Then a 20 x 20 grid input space (and output
space) is represented by 400 nodes in the substrate network layer. A 400 × 400

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 58

input-output space yields 160, 000 possible connections (direct connections in our
method) in the substrate network. Therefore, the substrate network geometry (that is,
the layout of nodes in the substrate network) directly maps to the tasks geometry and
this enables HyperNEAT to exploit the task’s geometric regularities and relationships
(Stanley et al., 2009). The position of each agent is marked on the substrate input layer,
where each position of the keeper and taker are marked with 1.0, −1.0, respectively. The
cells following in direct paths between agents are also marked, each cell in the path from
a keeper with the ball to a teammate, is marked with a value 0.3. A cell in the path to an
opponent agent (that is, taker) is marked with a value −0.3 and other paths (without
agents) are marked with a value 0. On the substrate output layer, the position to pass
the ball to, is indicated by activating the node with the highest output. If the hold
position action has been selected, the position where the ball is will be activated and the
ball remains in that position.

The synaptic weights of the connections between the input and output layer of the
substrate network are computed by the CPPN. Each potential connection in the
substrate network is queried and the coordinates of the two end points ((x1, y1) and
(x2, y2)) applied as input to the CPPN. NEAT evolves the CPPN network and the two
outputs represents the weight of the queried connection and a link-expression output
(LEO) value. The LEO value indicates if the connection should be expressed or
discounted from the network. In this way, the connection weights are then produced as
a function of their endpoints. The functions used in this thesis work are listed in table
4.4 (right), where each function represents a particular type of regularity in the domain
space. For example, a Sine function represents repetition (that is, repeating motifs) and
Gaussian function reflects symmetric motifs. Since inputs into the CPPN are locations in
the substrate network (that in keep-away, reflect the field), functions compute elements
of locality on the substrate plane.

4.4 NEAT and HyperNEAT Experiments Setup

Experiments are run in a source keep-away task, where NEAT evolves a population of
150 genotypes (from scratch) for 30 generations. The evolved population, in its entirety,
is then transferred to a target task, and further evolved for 100 generations (table 4.4).
The choice of parameters is based on the previous successful empirical evidence
(Verbancsics and Stanley, 2010) and preliminary empirical tests conducted (Didi and
Nitschke, 2016b; Didi and Nitschke, 2016a). Since keep-away task has noisy sensors, a
way of managing noisy fitness evaluations in neuro-evolution is desired. Beyer (2000)
suggested three techniques for coping with noisy fitness evaluations in evolutionary
algorithms, which are: increasing the candidate solution population size, increasing
evaluation sample size and taking average fitness to direct evolution. Following that
suggestion and previous successful work by others (Verbancsics and Stanley, 2010; Didi
and Nitschke, 2016b), in this thesis all candidates solutions are re-evaluated and fitness

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 59

NE Parameters Setting
Population Size 150

Generations (Source task) 30
Generations (Target task) 100

Maximum number of species 10
Maximum species population 30

Mutation type Gaussian
Weight value range [-5.0, 5.0]

Mutation rate 0.05
Survival threshold 0.2

NS / GNS Parameters Setting
NS nearest neighbor k 15
Maximum archive size 1000

Compatibility threshold 3
Behavioral threshold 0.03

HyperNEAT CPPN Functions
Identity x

Gaussian e−2.5x
2

Bipolar Sigmoid 2
1+e−4.9x − 1

Absolute value |x|
Sine sine(x)

Simulation Parameters Setting
Number of Runs 20

Iterations per task trial 4500
Trials per generation 30

Agent positions Random
Environment size 20x20 grid

Agent speed (per iteration) 1 grid cell
Ball speed (per iteration) 2 grid cells

TABLE 4.4: Left: Neuro-Evolution (NE), Novelty Search (NS) parameters (final three rows). Right:
CPPN (HyperNEAT) activation Functions and simulation parameters.

is sampled 30 times. An average fitness is computed to constitute a task performance
metric. The performance of each variant of neuro-evolution method is computed from
20 independent simulation runs. This is to ensure the robustness of the results and to
eliminate the elements of chance in performance gains or deficiency. The obtained
results are compared to those where no policy transfer takes place, that is where NEAT
is used to evolve keep-away behaviors from scratch in the target tasks. A population
evolved from scratch starts off with a population of randomly initialized weights and a
bias.

Evolution runs for 100 generations in instances where the population was evolved from
scratch and after behavior transfer to a target task. This is to ascertain the performance
gain realized through transfer of evolved behaviors. For both NEAT and HyperNEAT
experiments, each genotype is evaluated over 30 task trials per generation, where each
task trial tests different randomly determined agent positions. Consequently, this
eliminates the possibility of erratic performance due to arbitrary selection of starting
positions. Table 4.4 specifies the neuro-evolution and simulation parameters for these
experiments.

4.4.1 Behavior Transfer Experiments

Collective behavior transfer was applied between the keep-away task configuration 3vs2
(source task) and one of five more complex target tasks (that is, task configurations 4vs3,
5vs3, 5vs4, 6vs4, 6vs5). The keeper team behavior is evolved in the source task for 30
generations. These evolved controllers are then transferred to each target task and
further evolved for 100 generations (table 4.4). This number of generations was selected

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 60

because of the previous study in Keep-away task, where 57 generations corresponded to
between 800 and 1000 hours of training time in standard keep-away simulation (Taylor
et al., 2006a). The behaviors in both source and target tasks are evolved with one of the
five NE variants shown in table 4.1. The entire evolved population at the end of
evolution in the source task, is transferred to be the initial population of the target task.

The efficacy of behavior transfer is evaluated in terms of evolution time (genotype
evaluations) taken to attain a policy transfer threshold, with and without policy transfer.
The threshold was the average maximum fitness attained after applying NEAT and
HyperNEAT to evolve behaviors from scratch in each target task. The performance
evaluation between different NE variants is measured in terms of task performance
(solution fitness) and efficiency (time to reach task performance threshold).

4.5 Results and Discussion

Mann-Whitney u statistical tests (p<0.05) (Flannery et al., 1986) were applied in pair-wise
comparisons between average task performance, efficiency and complexity yielded by
NE variants to ascertain if there was statistical significance between different results
(Appendix B and C). Furthermore, we applied pair-wise practical significance t-test,
with effect size (Cohen, 1988) treatment, between task performance and efficiency results
(Appendix D).

Behavior transfer is applied between the source 3vs2 keep-away task and one of the five
more complex target tasks (that is, 4vs3, 5vs3, 5vs4, 6vs4 and 6vs5) for each of the five NE
variants. Keep-away behavior is evolved in the source task for 30 generations and then
transferred to a target task where behavior is further evolved for 100 generations (see
table 4.4). Entire evolved populations are transferred from the source task and used as
the initial population for evolution in the target task.

Figure 4.3 and 4.4 presents a plotting of normalized average task performance for NEAT
and HyperNEAT side-by-side showing results for the five NE variants (OS, NS, ONS,
GNS, OGN). The results are obtained from evolution with and without transfer of
evolved behaviors from the source task, averaged over 30 trials and taking an average of
maximum task performance from 20 independent runs. The fitness values are
normalized to [0, 1] using equation 4.1:

fitx =
fitx − fitmin
fitmax − fitmin

(4.1)

where a value of fitmax is the highest fitness score and fitmin is the lowest fitness score
and must be set by the experimenter.

HyperNEAT outperforms NEAT in almost all task configurations as shown on table A.1
(appendix A). This is statistically significant (p < 0.05, Mann-Whitney test) and indicates
the appropriateness of HyperNEAT for searching for optimal behaviors in collective

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 61

FIGURE 4.3: Task performance progression graph. The graph shows progression of mean of
normalized maximum task performance for all variants of NEAT with and without behavior
transfer. Averages are calculated over 20 runs and for each target keep-away task. Shown are
6vs4 and 6vs5 keep-away task performance.

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 62

FIGURE 4.4: Task performance progression graph. The graph shows progression of mean
of normalized maximum task performance for all variants of HyperNEAT with and without
behavior transfer. Averages are calculated over 20 runs and for each target keep-away task.
Shown are 6vs4 and 6vs5 keep-away task performance.

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 63

behavior tasks. The highest value recorded with a particular case of HyperNEAT is
0.748 with a standard deviation of 0.038, which is obtained with behavior transfer on
ONS variant. This value equates to episodic hold time of 0.748 × 18 = 13.5 seconds
compared to 0.705× 18 = 12.6 seconds obtained without behavior transfer.

A relatively poor performance was recorded for GNS variant of NEAT (0.381 ± 0.040),
which had the lowest task performance of all NE variants (with statistical significance).
The task performance decreases with the number of agents in the task, with the exception
of 5vs3 where the task performance is comparable to that yielded for 4vs3 or slightly high
in most of NE variants. Comparing between NE variants in each task, it is important to
note that ONS, has the highest task performance, followed by OS, NS, OGN and GNS
in that order. ONS consistently obtained the highest task performance in all keep-away
tasks, with a mean normalized task performance of 0.72 across all tasks which when
equated to the actual time yields hold time of 0.72×18 = 13 seconds. This is compared to
other HyperNEAT variants, OS variant with 12.3, NS with 11, OGN with 9.5 and lastly,
GNS with 9 seconds.

The performance gain by each method and variant from behavior transfer is computed
using equation 4.2:

PerformanceGain =
PerfBT − PerfNoBT

PerfBT
(4.2)

where PerfBT and PerfNoBT are the normalized mean task performance for a method
evolved with behavior transfer and that without behavior transfer, respectively.

The task performance gain metric, evaluates the effectiveness of behavior transfer on
collective behavior tasks. The results are shown in table 4.5, where the average task
performance gain is above 7% and the highest recorded is for the OS variant at 10.86%.
Considering task performance across all tasks and all NE variants (for both NEAT and
HyperNEAT), the highest task performance gain is obtained by NS and ONS variants
with an average of 7.87% and 7.28%, respectively. The lowest task performance gain
across all tasks is observed in GNS for both NEAT and HyperNEAT with an average of
4.59% and 5.56%, respectively. These results demonstrate that transfer of evolved
behaviors from a source task to a relatively complex target task for further evolution,
significantly improves task performance. This attests to the effectiveness of behavior
transfer in bootstrapping evolution for collective behavior tasks of increasing
complexity.

To further analyze the efficacy of behavior transfer for collective behavior tasks of
increasing complexity, figure 4.3 and figure 4.3 provides a comparison of task
performance results for all NE variants with and without behavior transfer. Keep-away
behaviors were evolved in the source task for 30 generations, in order to evolve
behaviors for bootstrapping evolution in the target task. Then the derived behaviors are
transferred and used as the initial population for one of the five target keep-away tasks.

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 64

NE Variant Keep-Away Task (Percentage Performance Gain)
4vs3 5vs3 5vs4 6vs4 6vs5

OS
NEAT 6.59% 9.48% 10.48% 7.51% 10.86%

HyperNEAT 7.01% 7.63% 7.84% 5.92% 6.25%
NS

NEAT 8.53% 6.69% 9.67% 7.93% 6.72%
HyperNEAT 6.53% 9.10% 7.74% 7.76% 8.00%

ONS
NEAT 7.17% 7.06% 7.79% 6.81% 6.49%

HyperNEAT 8.70% 8.20% 8.30% 6.76% 7.72%
GNS
NEAT 4.60% 4.56% 3.69% 4.68% 5.41%

HyperNEAT 6.73% 5.03% 5.21% 5.00% 5.85%
OGN
NEAT 5.36% 4.34% 5.91% 5.88% 4.13%

HyperNEAT 8.20% 8.35% 8.86% 8.48% 8.82%

TABLE 4.5: Behavior transfer performance gain. Average percentage gain for five NE variants
(NEAT and HyperNEAT) obtained using equation 4.2.

Figure 4.4 exhibits a jump-start on target task behavior evolution, derived from evolved
behaviors from a source task which boost tasks performance in collective behavior task
of increasing complexity. Task performance for a method that is initialized with
behaviors evolved from a source task, starts off with high task performance values and
records high fitness gradients for some generations. This indicated improved quality of
solutions in populations initialized with transferred behaviors compared to those
evolved from scratch. That is, population initialized with random weights. This is
evident in both methods (NEAT and HyperNEAT) but more pronounced with
HyperNEAT where representation of source and target tasks is static.

Figures 4.5 and 4.6 present the average maximum task performance of each NEAT and
HyperNEAT variant at the final generation of evolution, in each target task. To highlight
the benefits of using NEAT and HyperNEAT to facilitate behavior transfer, average task
performance results of behaviors evolved without behavior transfer from previous
evolution are included. These task performance values are obtained from 20

independent runs for each of the five NE variants and in each of the five tasks of
increasing complexity (that is, 4vs3, 5vs3, 5vs4, 6vs4 and 6vs5 keep-away). The results
indicate that the task performance distributions in runs with behavior transfer is
relatively higher than that of its counterparts, were evolution always started from
scratch. All methods that use behavior transfer to bootstrap evolution in collective
behavior tasks, have relatively high fitness values compared to those evolved without
behavior transfer. The highest task performance is observed in ONS, where normalized
fitness values are distributed above 0.6 for HyperNEAT and 0.5 for NEAT. HyperNEAT
outperforms NEAT in all tasks which shows the appropriateness of HyperNEAT for
evolving behaviors for collective behavior tasks.

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 65

FIGURE 4.5: Average task performance distribution of genotypes. The box plot reflects the
quartile distribution of actual task performance for 20 independent runs for all keep-away tasks,
comparing performance with behavior transfer (right) and without behavior transfer (left) for
NEAT.

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 66

FIGURE 4.6: Average task performance distribution. The box plot reflects the quartile distribution
of actual task performance for all keep-away tasks, comparing performance with behavior
transfer (right) and without behavior transfer (left) for HyperNEAT.

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 67

The effectiveness of each NE variant is further investigated using the heat-maps (figure
4.8) produced from the stored population of candidate solutions at the final generation
of evolution. Figure 4.7 and 4.8 shows heat-maps that presents portions of genotypes
evolved by each variant of HyperNEAT and NEAT, that falls within each 20 percentile of
normalized task performance. The mapping highlights the explorative capabilities of the
comparative methods by showing the fitness diversity of the fittest evolved populations.
Each NE variant has 150 × 20 = 3000 points on the heat-map, the darker the region,
the higher the concentration of genotypes in that region. Hence, if darker regions fall in
high performance regions, suggests that evolution was able to discover regions with high
quality of solutions.

4.5.1 Task Performance Comparisons

The task performance comparison is conducted based on the statistical analysis results
obtained from comparing all variants evolved with and without behavior transfer
(p < 0.05, Mann-Whitney test). In the given experiments 4vs3 and 5vs3 keep-away tasks
attained high performance values compared to other tasks. The task performance
degrades as the complexity of the task increases for most of the tasks (with exception of
5vs3 that is more comparable to 4vs3 keep-away task performance) and the lowest
performance of the five tasks is 6vs5. GNS task performance is the lowest for all tasks
among all the NE variants. The following sections will discuss task performance with
respect to each NE variant (that is, OS, NS, ONS, GNS and OGN).

4.5.2 Objective-based Search (OS variant)

Experimental results demonstrate the appropriateness of objective-based search for
behavior evolution in keep-away, for all keep-away tasks tested with NEAT and
HyperNEAT. The OS variant comes is the second highest in task performance and in
some instances as noted in 5vs4 is comparable to ONS. The results of behaviors evolved
with behavior transfer for OS variant performed well compared to those evolved from
scratch. In the case of 4vs3 keep-away, 5% of OS evolved genotypes were in the
performance range of [0.6, 0.8] compared to the same task with 6% where evolution
starts with evolved behaviors transferred from a source task. However, the performance
gain is not that much compared to 25% of ONS evolved (with behavior transfer)
genotypes that were in the performance range of [0.6, 0.8] and 8% of genotypes in the
same performance range evolved without behavior transfer. This particular case (given
behavior transfer and behavior evolution with the ONS variant of HyperNEAT) exhibits
a huge gain in average task performance.

Task performance results also indicate relative increase in task performance when
keep-away team behaviors are evolved by NEAT and HyperNEAT OS variant with
behavior transfer. Figures 4.3 and 4.6 attests to the effectiveness of behavior transfer in

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 68

FIGURE 4.7: Heat-maps presenting the portion of genotypes, in the final generation of evolution.
Heat-map for all keep-away tasks, with genotypes that falls within each 20 percentile of
normalized task performance [0.0, 1.0] for five HyperNEAT variants evolved with and without
behavior transfer.

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 69

FIGURE 4.8: Heat-maps presenting the portion of genotypes, in the final generation of evolution
in a given target task. Heat-map shows genotypes that falls within each 20 percentile of
normalized task performance [0.0, 1.0] for five NEAT variants evolved with and without behavior
transfer.

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 70

boosting evolution, especially at early generations of evolution. Apart from the task
performance levels, figure 4.4 also shows the fitness progression that reflect quality of
adaptation in each NE variant.

Task performance yielded by the OS variant increases at a slower rate with the number
of generations compared to the task performance of the ONS variant. For example,
consider 4vs3 keep-away, where OS with behavior transfer performs relatively well
from generation 1 to generation 60, and there is then a gradual fall in the gradient of the
task performance increase. Conversely, ONS maintains a constantly increasing fitness
gradient which indicates the potential of the ONS variant for evolving effective
behaviors in complex behavior tasks. In the case of 6vs5 keep-away, the OS variant of
NEAT with behavior transfer has comparable performance to ONS and due to relatively
high task complexity, we observe a low fitness gradient of task performance increase
that flatness just after 60 generations of evolution (figure 4.3). However, the OS variant
of HyperNEAT with behavior transfer (figure 4.4), shows a much higher gradient of task
performance increase compared to the same variant without behavior transfer. Though
this remains lower than the average task performance yielded by the ONS variant. The
results demonstrates that the OS is better suited compared to GNS and OGN for
evolving effective behaviors in increasingly complex collective behavior tasks, but not as
appropriate as the ONS variant for evolving effective behaviors in such tasks.

4.5.3 Genotype Diversity Maintenance (GNS, OGN variants)

In terms of the effectiveness of genotypic diversity maintenance variants (GNS and
OGN), in complex and deceptive tasks, results indicate that genotypic diversity
maintenance approaches perform relatively poorly compared to objective based and
behavioral diversity variants. Average task performance progression for keep-away
tasks (given behavior transfer and no behavior transfer) is shown in figure 4.4. These
results indicate the average of highest normalized task performance for five tasks tested
in this thesis with both OGN and GNS does not exceed the 0.5 average performance
level. This is very low compared to that of ONS which exceeds the 0.6 performance level
for most tasks.

That is, figures 4.3 and 4.6 indicates that for all tasks, average tasks performance
progressions of the GNS and OGN variants (NEAT and HyperNEAT) are consistently
the lowest. For example, in 6vs5 keep-away, the GNS and OGN variants of both NEAT
and HyperNEAT attain their maximum average task performance after approximately
50 generations, where as the average task performances of all other NE variants
continue to increase beyond 50 generations.

These results demonstrate that the genotype diversity maintenance search approach, fails
to build a selection gradient towards behaviors that lead to a high task performance that
is comparable to the behavioral diversity and objective based approaches.

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 71

The topological diversity mechanism, does not incorporate or exploit behavioral
properties that could directly search in the behavioral space. As topology refers to the
structure of the controller and genotype encode controllers, hence the GNS and OGN
variants explicitly select for genotypes (team controllers) that are dissimilar from each
other. This way, selection pressure is towards genotypes with topological diversity
instead of optimizing task performance. Figure 4.7 indicates that for all tasks, the largest
portions of populations at final generation of evolution, GNS and OGN normalized task
performance were in the range of [0.3 − 0.4] which is lowest performing part of the
behavioral space. For the HyperNEAT variants applied to 4vs3 keep-away, there are 0%

of GNS and OGN genotypes in the task performance range of [0.6 − 0.8], compared to
6% of OS, 25% of ONS and 22% of NS genotypes. Where as, there are 83% of OS, 72% of
ONS, 76% of NS, 46% of OGN and only 33% of GNS evolved genotypes in the range of
[0.4 − 0.6]. The rest of evolved genotypes are below the 0.4 task performance level. For
6vs5 keep-away, there are 0% of GNS and OGN genotypes in the task performance
range of [0.6− 0.8, compared to 3% of OS, 14% of ONS and 31% of NS genotypes. Where
as, there are 78% of OS, 72% of ONS, 46% of NS, 39% of OGN and only 21% of GNS
evolved genotypes in the range of [0.4 − 0.6]. Compared to OS, ONS and NS, these
results indicate that the GNS and OGN variants of NEAT and HyperNEAT are not
appropriate for evolving collective behaviors with relatively high task performance.

The effort to explicitly guide evolutionary search to high task performing behavioral
space using OGN variant (a hybrid of OS and GNS), produced relatively poor task
performance results compared to the other three variants (OS, ONS and NS). This is due
to the fact that GNS selects for genetic diversity, but not necessarily the best controllers
(that is, novel genotypes do not always translate into good behaviors). This is mitigated
in the OGN approach, evidenced by the task performance and fitness diversity graphs
(figure 4.3, 4.4, 4.8 and 4.7). The OGN includes objective-based search (fitness function)
that selects for fitter solutions though this selection for genotypes with increased fitness
is compromised by the selection only occurring within relatively poor regions of the
genotype space.

The genotypic diversity mechanisms used in this thesis are methodologically most
similar to that used by Kelly and Heywood (2014), who tested both genotypic and
behavioral diversity maintenance in 4vs3 keep-away behavior evolution with genetic
programming methods. Kelly and Heywood found behavior diversity maintenance
yielded the greatest task performance benefits and genotype diversity was relatively
ineffective but still preferable to no diversity maintenance (Kelly and Heywood, 2014).
The results obtained in this thesis support the previous work, that confirms that
behavioral diversity performs relatively well compared to genotypic diversity in
directing neuro-evolution to finding the fittest genotypes (controllers) in the population
(Mouret and Doncieux, 2009; Moriguchi and Honiden, 2010b; Gomez, 2009; Doncieux
and Mouret, 2010).

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 72

To the author’s knowledge, apart from Kelly and Heywood (2014), genotypic diversity
maintenance mechanism such as GNS and OGN have not been evaluated in previous
work investigating the task performance (in terms of effectiveness and efficiency) of
genotypic versus behavioral diversity maintenance to direct evolutionary search and
boost evolved collective behavior evolution. Overall, these results highlight that,
compared to behavior diversity maintenance mechanism (ONS and NS) and
objective-based search (OS), the genotypic diversity maintenance mechanisms (GNS
and OGN) were relatively ineffective in collective behavior evolution.

4.5.4 Behavioral Diversity Maintenance (NS, ONS variants)

Novelty search (NS) is one type of behavioral diversity maintenance method that can be
applied to direct any evolutionary search process (Mouret and Doncleux, 2009). NS
effectively explores the behavioral space to discover solutions with varying behaviors
and performance. However, because it ignores an objective function, there is no bias
towards building a fitness gradient. A method that exploits the strength of both
approaches is desirable, since as regions of highly fit genotypes are discovered, fitness
optimization directs evolution to improve task performance within such high fitness
regions.

The HyperNEAT ONS variant demonstrated its superiority in terms of task
performance for all five tasks and behavior effectiveness for all five tasks (figure 4.4).
For all keep-away tasks, the ONS variant evolved effective behaviors in terms of search
space exploitation and discovered widely distributed behaviors with higher task
performance (p < 0.05, Mann-Whitney test and Cohen’s effect size > 0.6). The efficacy of
the ONS variant for boosting evolved collective behavior task performance is supported
by previous work that highlighted the benefits of hybrid objective-novelty search
approaches for balancing exploration and exploitation of the behavior space for
evolution of high quality solutions to single (Cuccu and Gomez., 2011) and multi-agent
tasks (Gomes et al., 2014b). Exploration of the behavior space is necessary to discover a
wide range of behaviors with varying qualities. Once such a high task performance
region of the behavior space is discovered, then objective based search exploits the
region via selecting the highest performing behaviors.

Comparative to other approaches, relatively few genotypes of the fittest ONS (NEAT
and HyperNEAT) evolved populations were in the lowest task performance range
(figure 4.8 and 4.7). However, statistical values indicate the effectiveness of NS variant
of HyperNEAT in terms of evolving genotypes with relatively high fitness than other
variants, in some collective behavior tasks. For example, for 6vs5 keep-away, NS variant
of HyperNEAT has 31% of evolved genotypes in the task performance range of [0.6, 0.8],
compared to 14% of ONS, 3% of OS and 0% of GNS and OGN. Where as, there are 22%

of NS variant of NEAT evolved genotypes in the task performance range of [0.4, 0.6],

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 73

40% of ONS, 23% of OS, 7% of OGN and 5% of GNS (a comparable average performance
of NS to OS variants of NEAT).

The efficacy of the ONS variant, resulting from its ability to balance behavior space
exploration and search space exploitation, is demonstrated in figures 4.8 and 4.7 for
NEAT and HyperNEAT behavior distribution, respectively. ONS evolved a greater
portion of effective behaviors (in terms of task performance and fitness diversity in
fittest evolved population), compared to all other variants in all the tasks. Figures 4.8
and 4.7 presents portions of genotypes with behaviors yielding task performance in the
given regions. Apart from 6vs5 keep-away, the ONS variant of HyperNEAT records the
highest percentage of genotypes in the fittest region of the search space. For example, in
5vs4 keep-away, 22% of genotypes are in the range of [0.6, 0.8] for ONS compared to 6%

and 10% for OS and NS variants, respectively. The NS variant of NEAT has consistently
lower task performance than the OS and ONS variants in terms of the percentage of
genotypes in the fittest region of the search space. For example, in 5vs3 keep-away, 31%

of the NS NEAT variant evolved genotypes in the task performance range of [0.4, 0.6],
compared to 43% for ONS, 45% for OS, 18% for OGN and 10% for GNS.

The task performance progression graph in figure 4.4 and 4.3 demonstrates the capacity
of the ONS variant to balance exploration versus exploitation for all keep-away tasks.
That is, for all tasks, the task performance gradient of ONS evolved behaviors keeps
going up, compared to other NE variants for both NEAT and HyperNEAT. This is
especially the case of the ONS variant of HyperNEAT, where there was a statistically
significant difference compared to other variants (p < 0.05, Mann-Whitney test).
Comparing the task performance of NS and ONS variants, the results obtained suggest
that behavioral diversity encourages the discovery of quality solutions, however for
sustaining the task performance a hybrid method that combines objective-based search
and behavioral diversity is an appropriate method for evolving behaviors in collective
behavior tasks. Similarly, related research work showed hybrid behavioral diversity and
objective based search methods worked well in evolving behaviors in swarm robotics
task (Cuccu and Gomez., 2011; Gomes et al., 2013).

4.5.5 Efficiency Comparison

In ascertaining the quality of solutions produced by each evolutionary search variant and
NE method for each task, we measure efficiency. Efficiency in this thesis is defined as the
number of generations required to attain a task performance threshold, averaged over
30 trials and 20 evolutionary runs. The task performance threshold value is obtained
experimentally, and is a steady maximum task performance for each method without
behavior transfer. Efficiency is considered high, if the number of generations required
for each method to reach a threshold is relatively low.

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 74

Task OS Threshold
NEAT (N) HyperNEAT (HN)

Search Efficiency Search Efficiency
No BT BT No BT BT

4 vs 3 N: 0.467 / HN : 0.662 89 43 61 30
5 vs 3 N: 0.469 / HN : 0.687 88 23 65 25
5 vs 4 N: 0.454 / HN : 0.650 83 26 61 34
6 vs 4 N: 0.457 / HN : 0.645 76 36 62 41
6 vs 5 N: 0.438 / HN : 0.614 84 19 90 29

Task ONS Threshold
NEAT (N) HyperNEAT (HN)

Search Efficiency Search Efficiency
No BT BT No BT BT

4 vs 3 N: 0.486 / HN : 0.689 76 50 80 44
5 vs 3 N: 0.492 / HN : 0.721 61 35 71 43
5 vs 4 N: 0.482 / HN : 0.654 62 47 66 22
6 vs 4 N: 0.474 / HN : 0.648 85 39 88 44
6 vs 5 N: 0.465 / HN : 0.632 63 28 63 36

Task NS Threshold
NEAT (N) HyperNEAT (HN)

Search Efficiency Search Efficiency
No BT BT No BT BT

4 vs 3 N: 0.451 / HN : 0.580 90 32 77 19
5 vs 3 N: 0.462 / HN : 0.591 69 54 82 21
5 vs 4 N: 0.440 / HN : 0.574 87 17 89 16
6 vs 4 N: 0.441 / HN : 0.560 55 15 77 15
6 vs 5 N: 0.442 / HN : 0.559 83 30 85 30

Task GNS Threshold
NEAT (N) HyperNEAT (HN)

Search Efficiency Search Efficiency
No BT BT No BT BT

4 vs 3 N: 0.402 / HN : 0.487 71 22 63 29
5 vs 3 N: 0.405 / HN : 0.491 94 37 86 35
5 vs 4 N: 0.392 / HN : 0.474 70 42 81 15
6 vs 4 N: 0.392 / HN : 0.481 85 13 80 25
6 vs 5 N: 0.389 / HN : 0.473 65 15 54 21

Task OGN Threshold
NEAT (N) HyperNEAT (HN)

Search Efficiency Search Efficiency
No BT BT No BT BT

4 vs 3 N: 0.430 / HN : 0.500 73 65 68 21
5 vs 3 N: 0.417 / HN : 0.521 97 23 62 23
5 vs 4 N: 0.402 / HN : 0.494 70 13 70 16
6 vs 4 N: 0.404 / HN : 0.481 50 34 82 19
6 vs 5 N: 0.404 / HN : 0.480 77 38 52 21

TABLE 4.6: Efficiency comparison of NEAT (N) versus HyperNEAT (HN) variants with Behavior
Transfer (BT) and No Behavior Transfer (No BT). Search Efficiency: Average number of
generations to reach the task performance threshold for the given variant.

The statistical tests were applied in pair-wise comparisons between average efficiency
results of all NE variants with and without behavior transfer in each task (BT and No BT
in table 4.6). That is, for each task, average NEAT and HyperNEAT efficiency for each
NE variant with behavior transfer was compared to each NE variant without behavior

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 75

transfer. The results were statistically significant (p < 0.05, Mann-Whitney test), a higher
efficiency was observed for all NE variants evolved with behavior transfer compared to
the same NE variants without behavior transfer. This demonstrates the efficacy of using
behavior transfer for bootstrapping evolution in collective behavior tasks of increasing
complexity. This was especially the case for HyperNEAT variants in 6vs5 keep-away,
where results indicates a relatively large efficiency gains versus other NE variants. That
is, when behavior transfer is used to boost evolution in a complex collective behavior
task. For example, OS variant results show that 29 generations are required to reach a
threshold of 0.614 with behavior transfer compared to 90 generations of evolution
without behavior transfer. However, the ONS variant applied to the same task, requires
36 generations to reach a threshold value of 0.632 with behavior transfer, compared to 63

generations without behavior transfer. The HyperNEAT NS variant, requires 30

generations of evolution to reach a threshold value of 0.559 with behavior transfer,
compared to 85 generations without behavior transfer. The HyperNEAT GNS variant,
requires 21 generations to reach a threshold value of 0.473 with behavior transfer,
compared to 54 generations without behavior transfer. Lastly, the OGN variant, requires
21 generations of evolution to reach a threshold value of 0.480 with behavior transfer,
compared to 52 generations without behavior transfer. Similar results are observed in all
other NE variants, that shows a significant efficiency gains where behaviors were
evolved with behavior transfer, compared to evolving genotypes without behavior
transfer.

4.5.6 Solution Complexity

To understand why hybrid objective-based and novelty search evolved behaviors with
higher task task performance than objective-based search for all keep-away tasks in this
case study. We compared solution (topological) complexity of evolved networks by all
NEAT and HyperNEAT search variants. Solution complexity is obtained from the ANN
topological complexity for each method. Previous work demonstrated that NEAT
novelty search explores comparatively simple solutions before it explores complex
solutions and hence, evolves behaviors with lower topological complexity compared to
NEAT objective-based search (Lehman and Stanley, 2011a; Gomes et al., 2013).
However, there has been little work investigating topological complexity of
HyperNEAT evolved behaviors given novelty search and objective-based search (Morse
et al., 2013). To ascertain if that advantage holds in behaviors evolved with HyperNEAT
in keep-away task, we compare complexity of solutions evolved with all five NE
variants. Similar to the previous research (Lehman and Stanley, 2011a; Gomes et al.,
2013), topological complexity is given by the number of connections and neurons of the
fittest solutions averaged over 20 runs (equation 4.3).

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 76

Ex =
1

N

N∑
i=1

(nc + nn) (4.3)

whereN is the number of runs, nc and nn, is the number of ANN connections and hidden
nodes, respectively. For clarity, network x complexity (E) is normalized to the range:
[0.0,1.0]. A 1.0 value indicates maximum network complexity as observed for behaviors
evolved with each NE method (NEAT or HyperNEAT).

Figure 4.9 presents a comparison between complexity of solutions evolved with each
variant of NEAT and HyperNEAT. These results indicate that GNS evolve solutions with
highest average topological complexity than the rest, since the approach optimizes for
variations in genotypic space (p < 0.05, Mann-Whitney u test) (Appendix C). A method
that attains a good solution with relatively low topological complexity is preferred as it
allows evolution to run faster and much efficient. Figure 4.9 indicates that NS and ONS
variants for all tasks (both NEAT and HyperNEAT) have lower topological complexity
at the maximum generation of evolution. The NS and ONS variants have significantly
lower network complexity compared to OS, OGN and GNS. For example, in keep-away
4vs3, NS variant has the lowest normalized network complexity of 0.477, compared to
ONS with 0.499, OS with 0.516, OGN with 0.544 and GNS with normalized network
complexity of 0.795. Comparable results are observed across all other keep-away tasks,
where networks evolved with NS variant had the lowest average network complexity
and networks evolved with GNS variants had the highest average network complexity.
These network complexity results confirm that novelty search can find solutions with
relatively lower topological complexity than either objective-based search or genotypic
diversity maintenance (Lehman and Stanley, 2011a; Gomes et al., 2013).

Topology complexity results show an increase in network complexity with an increase
in task complexity for most of keep-away tasks in this case study. For example, in
keep-away 4vs3 OS the mean normalized network complexity was 0.516, compared to
0.539 for keep-away 6vs5, 0.499 for ONS evolved keep-away 4vs3 compared to 0.504 for
6vs5. NS variant had 0.477 compared to 0.506, OGN with 0.544 compared to 0.560 and
the GNS with 0.795 of normalized network complexity for keep-away 4vs3 compared to
6vs5 with complexity of 0.861.

Table 4.9 shows the average minimum and maximum topological complexity of each
HyperNEAT variant at the final generation of evolution. The minimum and maximum
complexity values are computed by taking the average minimum and maximum
network complexity at generation 100 across 20 runs, respectively. These results show
that NS variant consistently, had the lowest minimum network complexity across all
keep-away tasks. For example, keep-away 4vs3, NS variant had mean normalized
complexity of 0.446, compared with 0.460 of ONS, 0.472 of OS, 0.474 of OGN and 0.611
of GNS. Conversely, GNS variant had the highest minimum network complexity than
all HyperNEAT variants. In this case study, the highest mean network complexity was

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 77

FIGURE 4.9: Topological complexity distribution of best-of-generation genotypes. The box plot
reflects the quartile distribution of topological (solution) complexity from the 20 independent
runs for all keep-away tasks (NEAT and HyperNEAT).

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 78

Keep-Away 4vs3
Task Generations Complexity

Performance OS ONS NS OGN GNS OS ONS NS OGN GNS
0.45 - - - 1 5 - - - 0.404 0.439
0.50 - - 1 21 72 - - 0.380 0.436 0.726
0.55 1 1 6 - - 0.386 0.379 0.386 - -
0.60 4 5 34 - - 0.411 0.408 0.414 - -
0.65 25 21 - - - 0.446 0.424 - - -
0.70 88 53 - - - 0.476 0.450 - - -

Keep-Away 5vs3
Task Generations Complexity

Performance OS ONS NS OGN GNS OS ONS NS OGN GNS
0.45 - - - 1 11 - - - 0.414 0.466
0.50 - - 1 10 72 - - 0.397 0.433 0.740
0.55 2 1 3 48 - 0.403 0.399 0.402 0.455 -
0.60 4 4 32 - - 0.419 0.406 0.424 - -
0.65 9 14 - - - 0.421 0.409 - - -
0.70 48 27 - - - 0.424 0.414 - - -

Keep-Away 5vs4
Task Generations Complexity

Performance OS ONS NS OGN GNS OS ONS NS OGN GNS
0.45 - - - 1 5 - - - 0.425 0.484
0.50 - - 1 23 90 - - 0.399 0.440 0.799
0.55 1 1 2 - - 0.417 0.402 0.401 - -
0.60 7 5 37 - - 0.419 0.407 0.424 - -
0.65 34 18 - - - 0.433 0.418 - - -
0.70 - 78 - - - 0.457 0.443 - - -

Keep-Away 6vs4
Task Generations Complexity

Performance OS ONS NS OGN GNS OS ONS NS OGN GNS
0.45 - - - 1 1 - - - 0.447 0.457
0.50 - - 1 35 75 - - 0.408 0.485 0.755
0.55 1 1 10 - - 0.405 0.401 0.413 - -
0.60 16 8 70 - - 0.423 0.421 0.435 - -
0.65 46 42 - - - 0.441 0.435 - - -
0.70 - - - - - - - - - -

Keep-Away 6vs5
Task Generations Complexity

Performance OS ONS NS OGN GNS OS ONS NS OGN GNS
0.45 - - - 1 1 - - - 0.457 0.464
0.50 - - 1 45 91 - - 0.402 0.498 0.814
0.55 1 1 17 - - 0.413 0.410 0.416 - -
0.60 17 10 83 - - 0.432 0.419 0.430 - -
0.65 86 61 - - - 0.480 0.449 - - -
0.70 - - - - - - - - - -

TABLE 4.7: Average normalized CPPN complexity (neurons and connections, over 20 runs)
for fittest behaviors evolved by each HyperNEAT variant for each keep-away task. The
Task Performance column indicates which 5 percentile group these fittest behaviors are in
and the Generations column indicates the average number of generations taken to evolve the
corresponding best performing behaviors and network complexity (given behavior transfer).

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 79

Task Average Evolved Network Complexity
Performance OS ONS NS OGN GNS

4vs3 0.516± 0.051 0.499± 0.055 0.477± 0.037 0.544± 0.041 0.795± 0.039

5vs3 0.521± 0.042 0.501± 0.035 0.493± 0.030 0.556± 0.041 0.771± 0.42

5vs4 0.531± 0.046 0.501± 0.030 0.495± 0.026 0.559± 0.053 0.829± 0.053

6vs4 0.538± 0.042 0.502± 0.041 0.497± 0.041 0.556± 0.049 0.832± 0.066

6vs5 0.539± 0.046 0.504± 0.051 0.506± 0.051 0.560± 0.051 0.861± 0.048

TABLE 4.8: Solution complexity comparison for HyperNEAT variants with Behavior Transfer (BT)
at the final generation of evolution.

Task Min and Max Network Complexity
Performance OS ONS NS OGN GNS

[Min,Max] [Min,Max] [Min,Max] [Min,Max] [Min,Max]
4vs3 [0.472,0.526] [0.460,0.519] [0.446,0.519] [0.474,0.587] [0.611,0.874]
5vs3 [0.483,0.556] [0.466,0.548] [0.447,0.539] [0.476,0.659] [0.626,0.853]
5vs4 [0.482,0.564] [0.463,0.551] [0.457,0.527] [0.486,0.628] [0.663,0.907]
6vs4 [0.488,0.577] [0.468,0.556] [0.452,0.539] [0.489,0.614] [0.622,0.928]
6vs5 [0.494,0.580] [0.462,0.549] [0.460,0.540] [0.496,0.659] [0.674,0.942]

Mean Network Complexity
[0.484,0.561] [0.464,0.545] [0.452,0.533] [0.484,0.629] [0.639,0.901]

TABLE 4.9: Average minimum and maximum network complexity for all HyperNEAT variants
with behavior transfer at the final generation of evolution.

attained by the GNS with value of 0.874, compared to OGN with 0.587, OS with 0.526,
NS and ONS with lowest mean normalized maximum network complexity of 0.519.

Similar observations were noted with other keep-away tasks. For example, keep-away
5vs3 network complexity analysis results show NS variant with the lowest mean
normalized network complexity range of [0.447, 0.538], ONS with [0.466, 0.538], OS with
[0.483, 0.556], OGN with [0.476, 0.659] and, lastly, GNS with network complexity range
of [0.626, 0.853]. Keep-away 5vs4, shows the NS variant with lowest mean complexity
range of [0.457, 0.527] and GNS variant with the highest mean network complexity
range of [0.457, 0.527]. Similarly, keep-away 6vs4 and 6vs5 tasks shows NS variant with
the lowest complexity values, subsequently followed by ONS, OS, OGN and GNS has
the highest values, with network complexity of 0.928 and 0.942, respectively.

The difference in solution complexity levels between OS and NS is ascribed to the
convergent nature of objective-based evolution. However, novelty search explores
simple solutions before exploiting higher levels of topological complexity, there-by
delaying convergence. NS and ONS as a result, are capable of finding solutions with
lower topological complexity compared to OS. GNS and OGN on the other hand evolve
solutions that search for solution directly in the topological space and as a result, finds
solutions that have higher topological complexity than OS, ONS and NS variants of
NEAT and HyperNEAT.

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 80

Further analysis of behaviors evolved by each NE variant, table 4.7 presents network
complexity and efficiency values corresponding to the fittest behaviors evolved by each
variant in each keep-away task. To show how topological complexity relates to the
effectiveness (task performance) of evolved behaviors, the left column of table 4.7 shows
task performance level attained by each NE variant. To show how complexity relates to
efficiency (speed of adaptation) of each NE variant evolved behaviors, the generations
column represent the average number of generations each variant takes to reach the
given task performance level.

Table 4.7 supports the previous work and shows that behavior diversity maintenance
methods evolve simple and high quality controllers, for all keep-away tasks (Gomes
et al., 2013; Nitschke and Didi, 2017). ONS evolved minimal average network
complexity and the highest average task performance, compared to other NE variants.
In some tasks a significantly lower network complexity was evolved by the NS variant,
but in these tasks NS yielded a lower average task performance. For example, 6vs5
keep-away (the most complex task), the fittest ONS evolved behaviors corresponded to
average network complexity: 0.449 and task performance range of [0.65, 0.7] in 61

generations (on average), where the fittest NS corresponded to average network
complexity: 0.430 and task performance range: [0.60, 0.65]. Where as the fittest OS
corresponded to average network complexity: 0.480 and task performance range of
[0.65, 0.70] in 80 generations (on average). Similar results were observed with all other
keep-away tasks (4vs3, 5vs3, 5vs4 and 6vs4).

GNS variant has the evolved networks with the highest solution complexity but lowest
tasks performance. For example, for 6vs5 keep-away, GNS variant has solution
complexity of 0.814, compared to 0.498 of OGN and 0.402 at task performace 0.50

(generation 91, 45 and 1, respectively). The significantly higher average network
complexity of the fittest GNS evolved behaviors is attributed to the genotypic diversity
maintenance mechanism of GNS (section 3.4.3).

OS and OGN evolved behaviors with relatively high complexity compared to ONS and
NS (but lower than GNS) but with lower quality than ONS. OS had higher complexity
due to exploitative nature of objective-based search. ONS overall, yielded the most
benefits, in terms of evolving highest quality behaviors encoded by significantly simple
networks than all the other variants across all keep-away tasks (table 4.9, 4.7, 4.8). These
results demonstrate that the ONS variant is the most appropriate NE evolutionary
search method that addresses the bootstrapping problem for increasingly complex
keep-away tasks, given behavior transfer. Furthermore, these results lend support to the
previous research that demonstrated superiority of hybrid objective-behavior diversity
search for complex multi-robotic tasks (Gomes et al., 2013).

The following section presents behavior search space analysis, showing the behavior
space exploration and visualization.

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 81

4.5.7 Behavior Search Space Analysis

To elucidate each NE search variant’s capacity to explore behavior spaces, we applied
Kohonen self-organizing maps (SOMs) (Kohonen, 1997) to the final generation of
behaviors evolved by each variant to visualize the contribution of various behavioral
components to the fittest behaviors types. SOMs are artificial neural networks trained
using unsupervised learning to create a mapping that transforms multiple dimensional
space into a low dimensional input space, while preserving topological relations of the
original input pattern. These SOMs were selected as previous work (Gomes et al., 2013)
indicated their suitability for evolved behavior analysis.

For all keep-away tasks, the final generation behavior population evolved by each NE
variant was used as input data for training SOMs. The behavior characterization vectors
characterizing keep-away behavior include three variables: average number of passes,
dispersion of team members, and distance of the ball to the center of the field (section 3.4.2). The
objective of this behavior analysis was to visualize different behavioral patterns created
through collective behavior adaptation based on NEAT and HyperNEAT variants.
Hence, draw some synergies between each pattern produced and task performance
(indicated by episodic length).

For clarity and thorough analysis, we selected to only visualize behavior types for
HyperNEAT variants. Figures 4.10, 4.11, 4.12, 4.13 and 4.14 shows two types of behavior
visualization, Left: code-book vector representation and right: unified distance matrix
indicating behavior exploration in each HyperNEAT variant across the given keep-away
tasks of increasing complexity. In this way, code-book vector behavior visualization on
the left complements the unified distance matrix on the right to show keep-away
behavior vector distribution on the lattice. Furthermore, we do not discuss behavior
maps for OGN and GNS variants in this chapter, since these variants yielded
significantly lower average task performances compared to ONS, NS and OS, for all
tasks (section 4.5). For reference, appendix E presents behavior type visualizations of
GNS and OGN search variants.

Code-book vector representation of the given input pattern is a visualization of behavior
exploration based on weight vectors, where each segment represents the magnitude of
each behavior variable in each node. That is, the size of the each variable segment
represents the weight of genotypes with such as a behavior in that region. For example,
for 4vs3 keep-away, ONS variant the episodic length is spread out throughout the lattice
but highly concentrated on the left side of the lattice (figure 4.10). Furthermore, this map
shows relationships between behavioral vectors, for example episodic length correlates
to number of passes. The the top left corner of each map (left side), represents the highly
fit genotypes, ONS has a higher number of genotypes in that region than the rest of
other HyperNEAT variants (figure 4.10).

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 82

Unified distance matrix (u-matrix) exhibited in figures 4.10, 4.11, 4.12, 4.13 and 4.14 on
the right, is one method of visualizing clusters with a 10 × 10 SOM map. This metric is
obtained by computing the Euclidean distance in the input space of units that are
neighbors within the SOM map. Each u-matrix illustrates a representation of how the
final generation of behaviors evolved by each variant are topologically related to each
other in the behavior space. This provides an indication of the diversity of evolved
behavior types and thus provide a tool for analyzing behavior exploration. U-matrices
are presented on a gray scale map, where a light color represents a large distance and
that indicate sparse regions of the input space. On the other hand, a dark color indicate
a cluster of similar data in that region of the input space. For example, there is a cluster
for ONS in the top left corner region which represents highly fit genotypes that
suggesting a significantly higher concentration of genotypes in that area that close to
each other in a cluster formation (figure 4.10). Such a cluster is also observed in NS
variant on the left-middle side of figure 4.10 (right), a region with fairly distributed
behavioral vectors when related to the code-book vector representation (left). The
differing u-matrix y-axis values indicates normalized behavior distances.

Observing the ONS behavior visualization map in figures 4.10, 4.11, 4.12, 4.13 and 4.14
(left), the fittest behavior types are characterized by the following components. First, high
number of passes with little team dispersion and distance to the field’s center. Second,
maximizing keeper distance from the field’s center and team dispersion with relatively
few passes. Comparatively, the fittest OS evolved behavior types similarly had a large
episodic length with low team dispersion and average distance from the center of the
field. ONS compared to OS shows widely spaced clusters in the lattice (figure 4.10 right)
and dark patches on the highly fit regions of the behavioral search space (4.10 right). This
equates to the ONS variant’s capability to adequately explore the behavioral search space
and discover regions of highly fit behaviors. This support the superiority of ONS over OS
variants in evolved high quality behaviors in keep-away tasks of increasing complexity
(section 4.5.4).

Observing OS u-matrix (figure 4.14 right) by comparison to ONS, the overall behavior
distribution in the lattice is dark with few light patches, meaning that OS evolved
behavior types were relatively close together in the behavior space and OS variant was
operating in a comparatively small and less fit region of the behavior space. The relative
lack of diversity between these behavior types is indicated by the similarity in dark
regions of most OS u-matrix cells, with few exceptions such as the left side of the bottom
row of the OS u-matrix (figure 4.14 right). The behavior explored by OS at the final
generation of evolution can thus be viewed as one large cluster of behavior types that
were in close proximity in the behavior space but did not share biases for specific
behavior components. However, compared to other variants, for example NS and OS
has a relatively darker region towards the fittest regions of the behavioral space
(u-matrix top-left corner) (figure 4.14 right). This indicate that OS evolves behaviors
with higher task performance that the other three variants (NS, OGN and GNS).

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 83

Observing NS u-matrix (figure 4.14 right), overall light color in the SOM map lattice
indicates slightly more pronounced behavior type diversity at the final generation of
evolution. The significantly lower average task performance of NS versus ONS and OS
evolved behaviors indicates that while wide behavior search space exploration is
necessary for discovering highly fit behaviors, the lack of an exploitative objective-based
search causes NS to be ineffective across keep-away tasks of increasing complexity.

GNS and OGN variants have significant low task performance due to the fact that the
genotypic diversity maintenance mechanism has no bias towards behavior exploration in
the behavior space and also fails to build a selection gradient towards behaviors that lead
to a high task performance that is comparable to the behavioral diversity and objective
based approaches (section 4.5.3).

The following section elucidate the impact of behavior transfer on effectiveness and
efficiency of evolved behaviors in keep-away task of increasing complexity.

4.5.8 Behavior Transfer Results

The Mann-Whitney test (Flannery et al., 1986) was applied in a series of pair-wise
comparisons to gauge if there is a statistically significant difference between
corresponding result sets of the five method variants of NEAT and HyperNEAT.
Pair-wise comparisons were conducted between average results data for NEAT or
HyperNEAT (for a given experiment). The null hypothesis stated that two comparative
data sets were not significantly different, and p = 0.05 was selected as the significance
threshold.

The performance of each NE variant for both NEAT and HyperNEAT with behavior
transfer is contrasted with the same variant evolved from scratch. Figure 4.4 shows
average task performance progression, highlighting the performance difference between
further evolution after behavior transfer and evolution from scratch (for each method
variant). Statistical tests indicated that for all keep-away tasks, HyperNEAT variants
with behavior transfer yielded significantly higher average performance based on
effectiveness and efficiency of solutions (p < 0.05, Mann-Whitney test). Specifically, the
highest average task performance was observed when behaviors were evolved with
ONS variants of HyperNEAT with behavior transfer for all keep-away tasks.

Figures 4.5 and 4.6 further demonstrate that there is a clear difference between NEAT
and HyperNEAT results with and without behavior transfer. The results are further
presented in table 4.5 showing task performance gain, given behavior transfer. The
results for all keep-away tasks and NE method (NEAT and HyperNEAT) variants shows
a significant percentage gain in task performance when behaviors are further evolved
after policy transfer compared to behavior evolution from scratch (p < 0.05). That is,
average task performance comparisons indicated that, for all keep-away tasks, the
majority of methods that evolved keep-away behaviors with behavior transfer (477 out

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 84

FIGURE 4.10: Kohonen Self-Organizing Maps (SOMs) representing the explored behavior search
space in Keep-away 4vs3 for given HyperNEAT variants with behavior transfer. In each NE
variant, left: shows codebook weight vector for data visualization and right: shows u-matrix
representing boundaries between clusters. Each cirle in the codebook weight vector represents a
behavior type (four slices). Each slice represents one component of the behavior characterization
vector. The differing u-matrix Y-axis values indicates normalized behavior distances.

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 85

FIGURE 4.11: Kohonen Self-Organizing Maps (SOMs) representing the explored behavior search
space in Keep-away 5vs3 for given HyperNEAT variants with behavior transfer. In each NE
variant, left: shows codebook weight vector for data visualization and right: shows u-matrix
representing boundaries between clusters. Each cirle in the codebook weight vector represents a
behavior type (four slices). Each slice represents one component of the behavior characterization
vector. The differing u-matrix Y-axis values indicates normalized behavior distances.

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 86

FIGURE 4.12: Kohonen Self-Organizing Maps (SOMs) representing the explored behavior search
space in Keep-away 5vs4 for given HyperNEAT variants with behavior transfer. In each NE
variant, left: shows codebook weight vector for data visualization and right: shows u-matrix
representing boundaries between clusters. Each cirle in the codebook weight vector represents a
behavior type (four slices). Each slice represents one component of the behavior characterization
vector. The differing u-matrix Y-axis values indicates normalized behavior distances.

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 87

of 500 statistical comparisons) yielded a significantly higher task performance over the
same methods with behavior transfer. Average efficiency comparisons yielded similar
results with 488 out of 500 statistical comparisons indicating that methods that evolved
collective behaviors with behavior transfer yielded a significantly higher efficiency
compared to the same methods without behavior transfer. However, for all method
variant comparisons, HyperNEAT overall evolved significantly higher quality collective
behaviors. That is, 242 out of 250 method comparisons indicated that HyperNEAT
yielded a significant higher average maximum task performance. Similarly, 248 out of
250 method comparisons indicated HyperNEAT yielded significantly higher average
efficiency in evolved behaviors.

HyperNEAT superiority over NEAT is ascribed to the fact that a policy (encoded by
CPPN) evolved in the source task is not altered when transferred to the target task for
further evolution (Verbancsics and Stanley, 2010). Given the source task is similar to the
target task, and that transfer is between task of increasing complexity, based on
HyperNEAT-BEV is able to represent tasks in the same substrate network with
additional agent positions drawn on the substrate geometry (section 3.2.1). The policy
encoded by CPPN, expressed as a function of the task geometry does not change when
transferred to another task. However, for NEAT the policy is altered to reflect the new
task information (section 3.1.1). Some of the information useful for evolution is lost in
the process, as shown in the previous work by Verbancsics and Stanley (2010) which
attributes the poor performance of NEAT compared to HyperNEAT for a keep-away
task.

This is the first time that collective behaviors evolved with other search variants besides
objective-based search (for example, ONS, NS, GNS and OGN) have been used in
company with policy (behavior) transfer. The key result is that most task performance
and efficiency benefits are gained by using ONS together with policy transfer.

4.6 Summary and Conclusion

In this chapter, we demonstrated behavioral diversity maintenance (given behavior
transfer) is an effective means to evolve collective (keep-away) behaviors that perform
well given increasing task complexity. The key result was that the HyperNEAT ONS
variant consistently outperformed traditional objective-based search (OS) and genotypic
diversity (GNS and OGN) variants across task of increasing complexity (that is, 4vs3,
5vs3, 5vs4, 6vs4 and 6vs5). These comparisons also highlighted the overall effectiveness
and efficiency of behavior transfer, where evolution starts with a source task to derive
behaviors that are transferred to tasks of increasing complexity for further evolution.

In the following chapter, these NE approaches are compared with reinforcement learning,
a traditional method used for evolving controllers for collective behavior tasks.

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 88

FIGURE 4.13: Kohonen Self-Organizing Maps (SOMs) representing the explored behavior search
space in Keep-away 6vs4 for given HyperNEAT variants with behavior transfer. In each NE
variant, left: shows codebook weight vector for data visualization and right: shows u-matrix
representing boundaries between clusters. Each cirle in the codebook weight vector represents a
behavior type (four slices). Each slice represents one component of the behavior characterization
vector. The differing u-matrix Y-axis values indicates normalized behavior distances.

Chapter 4. Behavior Transfer and Neuro-Evolution Experiments 89

FIGURE 4.14: Kohonen Self-Organizing Maps (SOMs) representing the explored behavior search
space in Keep-away 6vs5 for given HyperNEAT variants with behavior transfer. In each NE
variant, left: shows codebook weight vector for data visualization and right: shows u-matrix
representing boundaries between clusters. Each cirle in the codebook weight vector represents a
behavior type (four slices). Each slice represents one component of the behavior characterization
vector. The differing u-matrix Y-axis values indicates normalized behavior distances.

90

Chapter 5

Reinforcement Learning Experiments

This chapter evaluates the performance of reinforcement learning methods compared to
neuro-evolution methods for policy (collective behavior adaptation) and transfer
learning in collective behavior tasks. In particular, the chapter investigates the task
performance of TD methods, that is SARSA (Sutton, 1998) and Q-Learning (Watkins,
1989), for collective behavior adaptation and policy transfer. The performance of TD
methods (section 2.1.1) are compared with NEAT and HyperNEAT variants for five
keep-away tasks (that is, 4vs3, 5vs3, 5vs4, 6vs4 and 6vs5). This is to address this thesis
research question (section 1.2):

• Investigate the efficacy of neuro-evolution methods for policy (collective behavior
adaptation) and transfer learning in collective behavior systems compared to
traditional well established Reinforcement Learning (RL) methods

The experiments in this chapter will first look at the performance (effectiveness and
efficiency) comparison of SARSA (section 3.3.1) and Q-Learning (section 3.3.2) with and
without behavior transfer for keep-away tasks of increasing complexity. Effectiveness is
improved average task performance between tasks with and without behavior transfer.
This measure indicates performance gained through the use of behavior transfer.
Efficiency refers to average number of episodes to reach a task performance threshold, a
comparison of collective behavior adaptation before and after behavior transfer.
Secondly, the comparison of both TD methods to the neuro-evolution methods (section
3.1 and 3.2) collective behavior adaptation, given behavior transfer across tasks of
increasing complexity.

5.1 Collective Behavior adaptation in Reinforcement Learning

Keep-away a subtask of RoboCup Soccer1 (discussed in section 4.1), is used as a
benchmark task in this chapter, to evaluate the performance of RL methods compared to
NE methods discussed in section 3.1 and 3.2. The RoboCup soccer simulator operates in
discrete time steps (t = 0, 1, 2, ..., n), each time step representing 100ms of simulation

1https://sourceforge.net/projects/sserver/

Chapter 5. Reinforcement Learning Experiments 91

time. Each player receives a signal every 150ms of simulation time that contains visual
sensory information about the relative distances and angles of other objects in the
environment. The players must sense and act asynchronously, and thus the action
executed by each player is not a direct response to the visual perception. Every player is
controlled by a separate process, keep-away provides heuristic method for controlling
the taker players (algorithm 6 in section 4.1) and a RL method controls the keeper
players, specifically, what action to take when the player is with the ball (section 4.1). If
the keeper player is without the ball, a heuristic method is executed to move to an open
position or dash for the ball (section 4.1) (Stone et al., 2005). This RL case study uses
Keep-away soccer version 0.62.

5.2 Mapping Keep-Away soccer to Reinforcement learning

In this case study, the keep-away task is modeled as a Semi-Markov Decision Process
(SMDP) (section 2.1.1). Since actions in the keep-away task can last more than one
simulation time step and decisions are made only when the pending action terminates,
it is convenient to model the problem as SMDP. The keeper agents make decisions at
discrete SMDP time steps, and this model maps well to RL problem as it deals with
partially observable environments (Yang and Francesca, 2014). In the SMDP model, the
episode consists of a sequence of states, actions, and rewards as:
s0, a0, r1, s1,, an, rn, sn, where si is the state at time ti, ai is the action executed by a
player at time ti, si+1 is the resultant state after execution of action ai (selected from a
finite set of actions). Every such state transition yields an immediate reward
ri+1 = R(st+1|st, at). The state, sn is the terminal state of each episode, attained when a
player has lost ball possession to an opponent team or when the ball has gone out of
region bounds.

Previous work (Whiteson and Stone, 2006) has indicated that there are various ways of
calculating an immediate reward, ri. The three most popular approaches used with
keep-away are as follows. First, the immediate reward value of 1 was assigned for each
time step ti (that is, where keeper players have ball possession) and a value 0 for a time
step, tn where players lost possession. Whiteson and Stone (2006) suggested that the
immediate reward obtained this way leads to the increase in exploitation. Second, a
reward value of 0 for time step, ti and −1 otherwise (Stone et al., 2001; Whiteson and
Stone, 2006). Third, a reward, ri is calculated as the difference between the current time
step, ti and the previous time step ti−1 (simulation time when last action was carried
out) as depicted by equation 5.1 (Stone et al., 2005). Since keep-away is episodic, there is
no discounting required to express the objective, the immediate reward is required to
ensure that accumulatively the episode length could be maximized.

2https://github.com/sdidi/KeepawaySim

Chapter 5. Reinforcement Learning Experiments 92

State Variables Description
dist(Ki, C), i ∈ [1, nk] Distance of each keeper and the center of the field
dist(Ti, C), i ∈ [1, nt] Distance of each taker and the center of the field
dist(Kb,Ki), i ∈ [2, nk] Distance of Keeper 1 to other keepers
dist(Kb, Ti), i ∈ [1, nt] Distance of each taker to keeper 1

minj∈[1,nt]dist(Ki, Tj), i ∈ [2, nk] Distance of closest taker to keeper 1
minj∈[1,nt]angle(Kt1, Tj), i ∈ [2, nk] Smallest angle between a each keeper and

the takers with vertex at keeper 1.
Actions Description

Hold Do not pass ball
Pass to Ki, i ∈ [2, nk] Pass to a teammate (Ki, i ∈ [2, nk])

TABLE 5.1: Keep-away state description and the finite set of actions, where nt and nk are the
number of taker and keeper players, respectively.

ri =

ti − ti−1, si 6= sn

ti−1 − ti, si = sn
(5.1)

where si and sn are the current state and the final state of an episode, respectively. This
translates to a value of 1 and a value of −1 if the difference between subsequent time
steps is equals 1. The second and third approach was shown to increase exploration,
hence the third approach was chosen as it is supported by previous work on keep-away
soccer (Stone et al., 2005; Whiteson and Stone, 2006).

The ultimate goal of the team (keepers) is to select a sequence of actions that could
maximize the total long term reward, thus maximizing the episodic length. Keeper
players can learn different policies or the same policy during training. Previous work
(Whiteson et al., 2003) has demonstrated that keep-away can be played effectively with
homogeneous teams (section 4.1), hence we chose to learn same policy for all keeper
players. As in the previous case study, here we also consider five keep-away tasks (4vs3,
5vs3, 5vs4, 6vs4 and 6vs5) of increasing complexity. The purpose of the experiments in
this chapter is to compare the performance of TD methods and NE methods (already
discussed in chapter 4) with and without behavior transfer. Table 5.1 provides the
description of state information used by the agents, for example, relative distances and
angles to visible objects in the environment. The state space dimensionality of each
keep-away task is shown in table 5.2, where features represents the number of
continuous state variables.

5.2.1 Keep-away Task Complexity

The state space size of a keep-away task increases with the number of keeper and taker
agents (table 5.2). Previous work indicated that the task complexity of the keep-away
increases with the size of the state space (Stone et al., 2005; Taylor et al., 2005; Didi and

Chapter 5. Reinforcement Learning Experiments 93

Task Configuration State Features/Actions
3vs2 13/3
4vs3 19/4
5vs3 23/5
5vs4 25/5
6vs4 29/6
6vs5 31/6

TABLE 5.2: All features and actions available for players to process during training.

Nitschke, 2016a). This increase in task complexity is due to the following complex
interaction dynamics. First, an increase in taker agents correlates to the difficulty of
making successful passes. Second, an increase in keeper agents, given a fixed field size
results in a crowded field and high probability for interference between keeper agents.
Third, an increase in state space dimensionality necessitates increased computational
complexity as more sensory inputs are processed.

Consider, KvsT keep-away task (K ≥ 3, T ≥ 2, where K and T denotes the number of
keepers and takers, respectively), the complexity of a given keep-away task, x is given
by equation 5.2.

Complexity(x) =
T

K
∗OBJ (5.2)

where, OBJ is the total number of dynamic objects in the field, K and T are the total
numbers of keeper and taker agents, respectively. Given the collective behavior tasks
in this thesis (table 5.2, 6vs5 keep-away, with complexity of 9.16 was considered to be
more complex than the rest of the keep-away tasks. Thus, the keep-away tasks in order
of complexity were: 4vs3, 5vs3, 5vs4, 6vs4 and 6vs5.

However, as discussed in section 4.1.1, complexity of a keep-away task, was not only
attributed to the number of agents in the field (equation 5.2) but was also due to other
properties. These include noisy sensors and actuators, players with a partial view and a
highly stochastic environment (Ghavamzadeh et al., 2006). Previous work has suggested
that these properties lead to an increase in task complexity (Ghavamzadeh et al., 2006;
Busoniu et al., 2008) and deceptive fitness landscape (Gomes and Christensen, 2013a).

The following sections of this chapter will test the TD methods on tasks of increasing
complexity (that is, 4vs3, 5vs3, 5vs4, 6vs4 and 6vs5) and compare the performance of TD
methods to NEAT and HyperNEAT variants with and without behavior transfer.

5.2.2 Function Approximation and Keep-Away

The Keep-away domain is defined by a large continuous state space, that is represented
by a Cartesian product of n state variables (that is, S = S1 × S2 × ... × Sn, S ⊆ Rn). A

Chapter 5. Reinforcement Learning Experiments 94

value function approximation is used with RL to address learning in continuous state
space and to manage the high state dimensionality as discussed in section 3.3.3. In the
RL experiments in this thesis, we use TD methods with replacing eligibility traces (Stone
et al., 2005) for learning and a single dimensional tile coding (Sutton, 1998) as a function
approximator (section 3.3.3).

Linear tile coding with a single dimensional tiling is used to discretize the continuous
state space. Supported by previous work (Stone et al., 2005), each state variable was
covered by 32 tilings and each of the tilings with a tile width of 1/32. Each tiling has
a specified number of tiles (table 5.3), and a single tile represents a single feature of the
state space. Therefore, only a single tile per tiling will be activated, that corresponds to a
feature containing the current state in each tiling. A feature set, Fa, consists of 32 active
tiles per state variable and hence, a total of 13× 32 = 416 active tiles for 13 state variables
describing a 3vs2 keep-away task. The width of each tile was specified based on the
level of state generalization required and supported by previous work (Stone et al., 2005;
Fachantidis et al., 2011). The interval of state variables for a 3vs2 keep-away task for a
20×20 region is given in table 5.3. For example, state variables measuring distances were
given a width of three meters and a width of 10 degrees for state variables measuring
angles. In the case of 3vs2 keep-away, the state variable x1 corresponded to the distance
of a keeper (with a ball) to the center of the field, which was five tiles per tiling, and the
distance of one player to another which had 10 tiles per tiling and angles between players
had 18 tiles per tiling. Since each state variable has 32 tilings, the total number of tiles for
each keep-away task (available to each action) are given by equation 5.3:

Sumtiles =
n∑
i=1

N(xi)× 32 (5.3)

where N(xi) is the number of tiles per tiling for the ith state variable xi and n is the total
number of state variables. For example, for a 3vs2 keep-away, that has 13 state variables,
there are 3872 tiles available for each action.

The current state value is computed from a feature set, Fa, that consist of a list of active
tiles, indicating which features are currently active in the state space. Each element of
Fa, is associated with a weight value, θ. An action value for action a, Qa, in the current
state is computed as the sum of weight vectors, θT , associated with active tiles, φT , in Fa
(section 3.3.3 and equation 3.8).

5.3 Experimental Setup

The keep-away simulation runs on a 20× 20 region. Each experiment3 run was repeated
20 times and the task performance results of each method was averaged over 20

3Source code and executables found here: https://github.com/sdidi/KeepawaySim

Chapter 5. Reinforcement Learning Experiments 95

Features Interval Tile width Tiles per Tiling
dist(Kb, C) [0,14.14] 3 5
dist(Kt1, C) [0,14.14] 3 5
dist(Kt2, C) [0,14.14] 3 5
dist(T1, C) [0,14.14] 3 5
dist(T2, C) [0,14.14] 3 5

dist(Kb,Kt1) [0,28.28] 3 10
dist(Kb,Kt2) [0,28.28] 3 10
dist(Kb, T1) [0,28.28] 3 10
dist(Kb, T2) [0,28.28] 3 10

minj∈1,2dist(Kt1, Tj) [0,28.28] 3 10
minj∈1,2dist(Kt2, Tj) [0,28.28] 3 10
minj∈1,2angle(Kt1, Tj) [0,180] 10 18
minj∈1,2angle(Kt1, Tj) [0,180] 10 18

TABLE 5.3: The number of tiles per Tiling for a 3vs2 keep-away task.

independent runs. Each run ends after 15000 of episodes that lasted for about 15 − 20

hours of simulation time. To be able to compare RL to NE methods, we had to compute
the maximum episodes as: the number of maximum generations (that is, 100) multiplied
by the size of the population (that is, 150), thus equivalent to 15000. The task
performance plotted shows the mean episodic length averaged over 150 episodes (figure
5.1).

The RL experiments described in this chapter are using the scalar parameters shown in
table 5.4, α = 0.125, ε = 0.01, γ = 0.85 and λ = 0 (exception of SMDP episode step that
has λ = 1). Previous work (Stone et al., 2005) indicated that the fastest learning rate is
obtained at α = 0.125 and that ε = 0.01 provides sufficient exploration without
significantly affecting task performance. Previous work also demonstrated that the
keep-away task performance results are not sensitive to varying λ and hence, the
adoption of λ = 0 (Stone et al., 2005; Fachantidis et al., 2011).

5.4 Reinforcement learning and Collective behavior Transfer

To facilitate transfer of behavior from the source task to target task, a vector of weights
θTi , associated with each feature set is periodically stored in memory at the interval of
150 episodes (a number equivalent to a single neuro-evolution run). Then the weights
obtained at the final episode of the source task are extracted to be transferred to boost
learning in the target task. The approximate value function, Qa(s) is computed based on
the sum of weights of all tiles in Fa, as shown in equation 3.8 in section 3.3.3.

The transfer of behaviors from the source task (3vs2) to a target task (that is, 4vs3, 5vs3,
5vs4, 6vs4 and 6vs5), is handled by a policy that transforms behaviors (set of weights, θi)
from one task to map to another task (section 3.3.4 and algorithm 5). This method
transforms the final weights obtained from collective behavior adaptation in a source

Chapter 5. Reinforcement Learning Experiments 96

Parameter Symbol Value Simulation Parameters Setting
Discount factor γ 0.85 Number of Runs 20
Epsilon ε 0.01 Maximum episodes per run 15 000
Learning rate α 0.125 Maximum episodic length 18
Eligibility Trace λ 0 Agent positions Random

Environment size 20 x 20 grid
Agent speed (per iteration) 1 grid cell
Ball speed (per iteration) 2 grid cells

TABLE 5.4: The values of the experiment and simulation parameters

task, so that the adapted behavior can be used to initialize learning in the target task.
Previous research has applied two approaches for behavior transfer. The first approach,
initializes learning in the target task by copying weight vector of state features that
correspond to those the source task. Zero weight values are then given to additional
features that are not present in the source task.

The second approach copies the weights that corresponds to the source task to initialize
learning in the target task with no modification. Based on functional relationship
between additional state features and state features in the source task, weights are
copied to the additional state features that are functionally related to those in the source
task. For example, weights from the source task for dist(K3,K1) and action ai, can be
copied to a new state feature that corresponds to dist(K4,K1) and action ai, in the target
task. Similarly, weights for a state feature that corresponds to an angle
minj∈[1,2]angle(K3, Tj) in the source task, was copied to that of an angle
minj∈[1,3]angle(K4, Tj) in the target task. Supported by previous work (Stone et al.,
2005) that indicated a relatively high task performance was obtained when policy
transfer was based on the second method compared the first method. Hence, adoption
of the second method of behavior transfer mapping for the experiments in this case
study.

The source task was trained for 4500 episodes, a value equivalent to the 30 generations
of evolution of the source task for NE methods (NEAT and HyperNEAT). That is, 30 ×
150 = 4500, a product of a number of generations and population size, respectively. The
policy obtained (that is, a vector of weights) after training in the source task initializes the
behavior adaptation (reinforcement learning) in the target task. The transfer mapping is
based on a policy that is provided in section 3.3.4, so that the transferred behaviors can
be beneficial to the new task with a different state representation.

5.5 Results Discussion

To detect significant differences in task performance of RL methods with and without
behavior transfer, we used Mann-Whitney test with 95% confidence. We performed a
pairwise test between SARSA and Q-Learning at the early stages of training and at the

Chapter 5. Reinforcement Learning Experiments 97

terminal point (that is, episode number 15000). Overall results show that the task
performance is significantly better when trained with behavior transfer (p < 0.05) than
training from scratch. However, this benefit gradually decreases at the later stages of
training were the behavior of each method with and without behavior transfer is not
significantly different due to early convergence.

The efficacy of each method is measured according to effectiveness and efficiency. The
effectiveness of each TD method is measured as the average task performance of
evolved behaviors, evaluated progressively throughout behavior adaptation and at the
final episode. Efficiency is the average number of episodes taken by evolved behaviors
to reach minimum threshold. The equivalent definitions of effectiveness and efficiency
were used in the NE case study. The following section discusses the performance of
each method based on Effectiveness.

5.5.1 Effectiveness

To evaluate the effectiveness of each TD method we compared the task performance of
each method in collective behavior task of increasing complexity with and without
behavior transfer. In this thesis, task performance is a measure of keep-away team’s
capability to maintain the possession of the ball away from the taker agents. That is, task
performance was calculated as the total time where the keeper managed to maintain
possession of the ball, normalized into a range: [0,1] and averaged over all 20
independent runs. Normalization was done with respect to the average maximum
episodic length (table 5.4), that is applied to each task.

Figure 5.1 shows the mean normalized task performance progression averaged over 20
independent runs for SARSA(λ) versus Q-Learning(λ) with and without behavior
transfer for all keep-away tasks. The y-axis represents the normalized average time that
the keepers are able to maintain control of the ball (that is, episodic length). The x-axis is
the number of episodes with a scale of 1 : 150 (that is, each unit represents 150 episodes
and with maximum episode number of 15000).

The task performance progression results demonstrate the superiority of SARSA over
the Q-Learning reinforcement method for all keep-away tasks. For example, for 5vs4
keep-away, SARSA(λ) teams yielded a task performance that increased steadily over the
first 4500 episodes and attained the highest task overall performance. Whereas, on a
comparative rate of task performance increases was observed for Q-Learning between
episodes 6000 and 7500. Similar results are observed across all tested keep-away tasks
where SARSA shows high task performance than Q-Learning. This confirms the
previous work (Stone et al., 2005) that indicated that SARSA converges faster than
Q-Learning and that SARSA attains higher task performance compared to Q-Learning
given the same training duration. For example, in 4vs3 keep-away, for SARSA(λ)
without behavior transfer there is a steep gradient of task performance increase in the

Chapter 5. Reinforcement Learning Experiments 98

FIGURE 5.1: Task performance progression graphs and boxplots. Left: Average (over 20 runs) task
performance progression for each target keep-away task. Right: Boxplot showing the average task
performance for comparative methods at the final episode of each of the keep-away task.

Chapter 5. Reinforcement Learning Experiments 99

first 3000 episodes, followed by a gentle gradient of task performance increase from
there on until 6000 episodes where task performance plateaus until the last episode.
This was compared to that of Q-Learning(λ) where relatively low gradient of task
performance increase was observed, with exception of the first 1500 episodes that
recorded a fairly high gradient. Interestingly, for 5vs4 keep-away as with other
keep-away tasks, Q-Learning(λ) without behavior transfer takes more time (based on
number of RL episodes) to converge compared to SARSA(λ). These observations
support the previous results that indicated that while Q-Learning converges to optimal
policy under restrictive conditions (Watkins, 1989), it can be unstable with linear
function approximation (Stone et al., 2005).

Figure 5.1 also shows a graph for each method with behavior transfer starting at a
higher task performance value with behavior transfer compared to that yielded for each
TD method without behavior transfer. This confirms that each TD method benefits from
behavior transfer between the source task (Keep-away 3 vs 2) and each of the five target
tasks (4vs3, 5vs3, 5vs4, 6vs4 and 6vs5). However, the task performance benefit is
observed in the early stages of adaptation, task performance difference between
adaptation with and without behavior transfer is observed to gradually decrease after
about 7500 episodes of learning, whereby the task performance with behavior transfer is
comparable to that without behavior transfer.

5.5.2 Efficiency of TD methods

To evaluate efficiency of the two TD methods we compared the time (based on number
of episodes) to reach threshold task performance. The comparison of search efficiency of
SARSA(λ) and Q-Learning(λ) with and without behavior transfer is exhibited in figure
5.5, given a task performance threshold value. For example, 4vs3 keep-away, SARSA(λ)
reaches a task performance threshold value of 0.418 at 900 and 1500 episodes of
evaluation with and without behavior transfer, compared to 2850 and 5250 episodes for
Q-Learning(λ) with and without behavior transfer, respectively. Whereas, 6vs5
keep-away, SARSA(λ) reaches a task performance threshold value of 0.405 at 1200 and
1800 episodes of evaluation with and without behavior transfer, compared to 2100 and
6300 episodes for Q-Learning(λ) with and without behavior transfer, respectively. These
results show that SARSA(λ) behavior adaptation method is more efficient for adapting
behaviors for keep-away tasks compared to Q-Learning(λ) method. These results
support the previous work by Taylor et al. (Taylor et al., 2007b), that demonstrated
relative superiority of SARSA(λ) for non-deterministic keep-away task compared to
Q-Learning(λ).

Figure 5.1 shows that task performance for each TD method degrades with an increase
in the keep-away task complexity. For example, 4vs3 keep-away has relatively higher
task performance for both TD methods compared to that of 6vs5 keep-away (where,
6vs5 is considered to be more complex than 4vs3). Previous work (Zaera et al., 1996),

Chapter 5. Reinforcement Learning Experiments 100

Task Performance Threshold
Q-Learning SARSA

Search Efficiency Search Efficiency
Episodes x 150 Episodes x 150

No BT BT No BT BT
4 vs 3 0.418 35 19 10 6
5 vs 3 0.415 38 16 12 6
5 vs 4 0.412 43 16 11 7
6 vs 4 0.409 42 15 12 8
6 vs 5 0.405 42 14 12 8

TABLE 5.5: Efficiency comparison of SARSA versus Q-Learning variants with Behavior Transfer
(BT) and No Behavior Transfer (No BT). Search Efficiency: Average number of episodes to reach
the task performance threshold for a given a keep-away task.

indicated that task complexity correlates with deception in task domain. Some RL
methods have mechanism for balancing a trade-off between exploration and
exploitation which is necessary to overcome the search difficulty induced by task
complexity.

Two commonly used strategies that provide a balance between exploration of action
space and exploitation of known actions are ε-greedy (Whitehead and Ballard, 1991) and
Boltzmann policy (Watkins, 1989). A ε-greedy method has been used with SARSA in
this thesis (section 2.1.1 and equation 2.6). That is, based on ε-greedy method, the best
action is selected with some probability of ε and with probability of 1 − ε a random
action is selected. Supported by previous work (Stone et al., 2005), a low value of ε value
0.01 was set to encourage exploration (table 5.4). Q-Learning always select an optimal
action with the highest Q-value and hence does not explicitly support action space
exploration in the action space. Taylor et al. (2007), suggested that the relatively poor
task performance of Q-Learning compared to SARSA for non-deterministic tasks was
partly due to the fact that it does not explicitly encourage action space exploration.

In summary, the results obtained from this case study and supported by previous work,
suggests that task complexity does affect the performance (in terms efficiency and
effectiveness) of TD methods, as much as it had an impact on NE objective-based search
methods (Stone et al., 2005; Taylor et al., 2007b; Gomes and Christensen, 2013a; Didi and
Nitschke, 2016a). Hence, this indicates that TD methods are not appropriate as task
complexity increases in keep-away task.

5.5.3 Reinforcement Learning Behavior Transfer

To analyze the benefits of behavior transfer based on the results shown in figure 5.1 and
table 5.5 we adopt some of the behavior transfer measuring metrics from previous work
(Taylor et al., 2007b; Torrey and Shavlik, 2009). Taylor et al. (2007) suggested five possible
ways of measuring the benefits of behavior transfer:

• The asymptotic performance - the difference in performance at the final episode.

Chapter 5. Reinforcement Learning Experiments 101

• The total reward - the area under a learning curve.

• The reward area ratio - the ratio of the area under a curve with behavior transfer to
the area under a curve without behavior transfer.

• The time to threshold - the average time to reach the performance threshold.

• The jump-start - the initial task performance.

Related to this, Torrey and Shavlik (2009) suggested: higher slope (the gradient of the task
performance curve), higher asymptote (similar to asymptotic performance) and higher start
(similar to jump-start). Since these behavior transfer measuring metrics are similar we
adopt both sets of metrics for our results analysis.

Figure 5.1 shows the behavior transfer significantly improves performance in terms of
the jump-start metric, that is, time to the task performance threshold given a higher
gradient of task performance increase for SARSA(λ) and Q-Learning(λ) across all tasks.
However, there is less of total reward and asymptotic performance. This is partly due to
convergence and that at the later stages of learning in complex environments learning
slows down. This is evidenced by the fall in the gradient of the learning curve that is
observed in SARSA(λ) and Q-Learning(λ) task performance progression graphs (figure
5.1).

RL Methods
Keep-Away Task (Percentage Performance Gain)

4vs3 5vs3 5vs4 6vs4 6vs5
SARSA(λ) 9.17% 8.85% 7.71% 7.21% 7.07%

Q-Learning(λ) 10.68% 8.67% 9.21% 7.35% 7.69%

TABLE 5.6: Reinforcement Learning behavior transfer performance gain.

The jump-start is the average initial task performance observed on the target task
progression graphs, when behavior transferred is used to initialize collective behavior
adaptation (left side of figure 5.1). For example keep-away 4vs3, shows SARSA(λ) with
behavior transfer starting at a normalized task performance of 0.351 and Q-Learning(λ)
at 0.338, compared to 0.322 and 0.306 of SARSA(λ) and Q-Learning(λ) without behavior
transfer, respectively. The average percentage of this task performance benefit (equation
5.4) is 9.2% and 10.7% for SARSA(λ) and Q-Learning(λ), respectively. For 6vs5
keep-away, the average percentage benefit of behavior transfer in terms of jump-start is
7.1% and 7.7% for SARSA(λ) and Q-Learning(λ), respectively. Similar results were
observed for all other keep-away tasks (table 5.6). This benefit is due to the effective
transfer of adapted behaviors (that is, the set of weights θT) from previous training. It is
interesting to observe that even though SARSA(λ) has a higher task performance value
compared to Q-Learning(λ), both methods attained comparable benefit from behavior
transfer, based on the jump-start metric.

Benefitjumpstart =
TPBT − TPNoBT

TPNoBT
(5.4)

Chapter 5. Reinforcement Learning Experiments 102

where TPBT and TPNoBT are the normalized task performance of each method with and
without behavior transfer, respectively.

The time to threshold metric (termed efficiency in section 5.5.3 and table 5.5) is the average
number of episodes to reach a minimum performance threshold. This threshold value is
the maximum task performance (that is, the peak value of the task performance curve)
obtained by Q-Learning(λ) without behavior transfer. There is a significant improvement
in the efficiency based on this metric (table 5.5), for example for keep-away 4vs3, for
Q-Learning(λ) without behavior transfer it takes 5250 episodes to reach the performance
threshold of 0.418, compared to 2850 episodes with behavior transfer, 1500 and 900 for
SARSA(λ) with and without behavior transfer, respectively.

5.5.4 Neuro-Evolution versus Reinforcement Learning

Figures 5.2 and 5.3 shows the comparison of TD methods to NE methods (NEAT and
HyperNEAT) for all variants and for all keep-away tasks. The keep-away tasks tested
are of high dimensionality where the number of dimensions increases with the
keep-away tasks (table 5.2). HyperNEAT indirect encoding with built in capability to
handle high dimensional state space gives it ability to learn large networks. Overall
HyperNEAT variants yield the highest task performance, followed by NEAT, SARSA(λ)
and then Q-Learning(λ) (figure 5.2 and 5.3). Neuro-evolution methods, specifically
HyperNEAT obtained the highest task performance for all keep-away tasks. ONS
variant of HyperNEAT recorded the highest task performance with and without
behavior transfer. Most interestingly, in the comparison between the NEAT,
HyperNEAT and RL methods (after 100 generations) the ONS variant of HyperNEAT in
all the tasks (4vs3, 5vs3, 5vs4, 6vs4 and 6vs5) has relatively steep gradient of task
performance increase than the rest of the other methods. We postulate that the good task
performance is due to the ability of ONS to balance the trade off between exploration of
the behavioral space and exploitation of behaviors that leads to high average fitness
(section 4.5.4). As an example of this average task performance, the ONS variant of
HyperNEAT produced average normalized task performance of 0.736 with behavior
transfer compared to 0.516 for NEAT and 0.5 with SARSA(λ), given behavior transfer.

In addition to the discussion in section 4.5.4, previous work demonstrated that
keep-away is an example of a fractured task domain as it possess a fractured decision
space (Kohl and Miikkulainen, 2008; Grabkovsky et al., 2011). A fractured task domain
is described as a domain whereby the optimal action for the agent to perform differs
abruptly, rather than slowly and gradually between neighboring states in the state
space. The same research demonstrated that it is difficult for most neuro-evolutionary
methods to deal with rapid discontinuity in the decision space (Kohl and Miikkulainen,
2008). This suggests the relatively poor task performance of NEAT as a method for
keep-away task adaptation compared to HyperNEAT, is due to the fact that NEAT uses
a direct encoding representation that makes it difficult to represent abrupt decision

Chapter 5. Reinforcement Learning Experiments 103

FIGURE 5.2: RL versus NE method average task performance comparison for all keep-away tasks.
Left: SARSA and Q-Learning (TD methods), Right: NEAT (NE method).

Chapter 5. Reinforcement Learning Experiments 104

FIGURE 5.3: RL versus NE method average task performance comparison for all keep-away tasks.
Left: SARSA and Q-Learning (TD methods), Right: HyperNEAT (NE method).

Chapter 5. Reinforcement Learning Experiments 105

boundaries. However, HyperNEAT that evolves connectivity related to task geometry
has the ability to directly exploit the task geometry. Grabkovsky et al. (2011), suggested
that fractured problems are better solved by a method that can map the genotype
representation directly to the domain space, so that the geometry of the task domain can
be exploited. This suggests that HyperNEAT has the capacity to capture and exploit
geometric information and thus improve the task performance for fractured domains
(such as keep-away task).

Another explanation of relatively poor performance of NEAT compared to HyperNEAT
(section 5.2) for all its variants across all tasks, is that NEAT needs more evaluations for
evolving optimal behaviors for keep-away tasks of increasing complexity (Taylor et al.,
2006a). Thus, NEAT requires more generations to reach an optimal solution and is
unable to exploit regularities in the domain space. HyperNEAT adapts agent behavior
especially well in large domains where there is regularity in the domain space, however
its performance decreases on irregular problems due to its bias towards producing
regularities (Clune et al., 2011). Therefore relatively good solutions are found with fewer
generations than NEAT for high-dimensional problems with high degree of regularity,
such as the keep-away (Verbancsics and Stanley, 2010).

The type of keep-away task we adopted for these experiments is the standard
benchmark task, that is partially observable (section 4.1). The ONS and OS variants of
NEAT have a comparable performance to SARSA(λ) at the early stages of evaluation
and outperforms SARSA(λ) at the later stages of evolution. SARSA(λ) converges faster
than NEAT but with relatively low average task performance across all task (figure 5.2).
For example, for 4vs3 keep-away, SARSA(λ) reaches a maximum steady performance
after an average of 6000 evaluations (equivalent to 40 generations of the ONS variant of
NEAT) and it takes ONS variant of NEAT 60 generations to attain the same level of task
performance. However, the ONS and OS variant of NEAT shows a steady growth in
performance across the generations compared to SARSA(λ) that reaches a task
performance plateau rapidly, across all the keep-away tasks. These results indicate that
even though SARSA(λ) converges to a solution in fewer episodes, NEAT finds better
(higher average task performance) with more genotype evaluations.

Thus, the comparison of NE methods to TD methods (given behavior transfer), show
that both TD and NE methods (all variants) have a relatively good jump-start and time to
threshold. TD methods have a relatively higher slope of task performance increase at the
early stages of behavior adaptation compared to all NE method variants. However, TD
methods have less total reward and asymptotic performance compared to NE methods
(specifically, ONS, OS and NS variants). The highest benefits (in terms of average task
performance) yielded by the ONS variant of HyperNEAT method. The relatively poor
average task performance of RL methods compared to HyperNEAT (given the behavior
transfer), is attributed to the the fact that TD methods learns well when the domain is
fully observable and have difficulty learning in domains that are partially observable
such as the keep-away (Taylor and Stone, 2009).

Chapter 5. Reinforcement Learning Experiments 106

5.6 Summary and Conclusion

In this chapter we have compared the task performance of neuro-evolution methods
with the TD methods for adapting controllers for keep-away tasks of increasing
complexity. First, the TD methods (SARSA(λ) and Q-Learning(λ)), were compared
based on effectiveness and efficiency of adapted behaviors with and without behavior
transfer. The statistical analysis results indicated that SARSA(λ) outperforms
Q-Learning(λ) with and without behavior transfer (p < 0.05, Mann-Whitney test) based
on both efficiency and effectiveness. These results supported previous work, and
indicated that Q-Learning(λ) is unstable with linear functional approximation (Stone
et al., 2005) and that SARSA(λ) learns more effective (higher task performance) policies
than Q-Learning(λ) in non-deterministic tasks (Taylor et al., 2007a).

Second, the task performance for each TD method was compared across keep-away task
of increasing complexity. The results show that as complexity increases, task performance
for both SARSA(λ) and Q-Learning(λ) degrades. This indicates that TD methods are not
appropriate as task complexity increases.

The TD methods, were further compared to variants of NEAT and HyperNEAT (that is,
OS, ONS, NS, OGN and GNS) with and without behavior transfer. The results
demonstrated that the ONS variant of HyperNEAT performs much better (with respect
to effectiveness and efficiency) than both TD methods and all variants of NEAT. Specific
evolutionary search methods to direct NE such as behavior diversity maintenance and
the hybrid approach, work most effectively at balancing exploration versus exploitation
in the search space, more so than TD methods.

Comparing the best performing evolutionary search variant of NEAT and SARSA(λ)
with behavior transfer it has been noted SARSA(λ) has relative higher task performance
at early training stages than NEAT, and that NEAT outperforms SARSA(λ) at the later
stages of evolution. This indicates that even though SARSA(λ) learns faster, given more
evaluations NEAT is able to discover much better (higher task performance) solutions
than SARSA.

Overall comparisons of each method with and without behavior transfer indicated that
behavior transfer boosted collective behavior task performance for both NE and TD
methods in task of increasing complexity. Evaluating the benefits of behavior transfer in
both TD methods and NE variants, it shows there is task performance gain realized by
each method through the transfer of learned and evolved behaviors, respectively.
However, results showed that the behavior transfer benefit (task performance gain) in
TD methods is high at the early stages of training but gradually decreases as the
learning progresses and adaptation benefits of NE methods is realized for longer during
artificial evolution. Specifically, the highest task performance solutions (for all tasks)
was achieved by indirect encoding NE methods directed by behavior diversity
maintenance.

Chapter 5. Reinforcement Learning Experiments 107

To the best of our knowledge this thesis was the first work to test RL versus NE methods
in tasks of increasing complexity. The following chapter presents the overall results
discussion and possible future extensions to this thesis work.

108

Chapter 6

Discussion

The thesis research objective was to elucidate the essential features constituting effective
and efficient evolutionary search that when coupled with behavior transfer are most
suited to solving increasingly complex collective behavior (keep-away) tasks (section
1.2). We investigated five evolutionary search methods to ascertain the appropriate
approach to evolve controllers for collective behavior (keep-away) tasks of increasing
complexity. Experimental comparisons included behavior evolution with and without
behavior transfer, where behavior transfer involved the transfer of behaviors evolved in
a source task for further evolution in relatively complex target tasks.

Evolutionary search approaches investigated were objective-based search (OS), novelty
search (NS), genotypic diversity search (GNS), hybrid of objective and novelty search
and hybrid of objective based and genotypic diversity maintenance search (ONS and
OGN, respectively). In this thesis, three methodological features were explored to
ascertain an appropriate combination that enables the evolution of high quality
solutions based on effectiveness (task performance) and efficiency (speed of adaptation)
of evolved behaviors. These features are as follows: First, direct versus indirect
encoding neuro-evolution methods for collective behavior evolution (that is, NEAT and
HyperNEAT, respectively). Second, non-objective evolutionary search versus objective
based search approach for guiding collective behavior evolution. Third, neuro-evolution
with collective behavior transfer. Evolutionary methods derived from various
combinations of these methodological features were compared to reinforcement
learning methods. RL methods were selected since they are well-established and
traditionally used for behavior transfer, and thus constitute a task performance
benchmark. Each of these methodological features and RL methods were evaluated on
collective behavior (keep-away) tasks of increasing complexity.

The main goal of this thesis was to establish the most appropriate neuro-evolution
search method to evolve effective and efficient behaviors coupled with behavior transfer
to mitigate the bootstrap problem (Kawai et al., 2001) for collective behavior tasks of
increasing complexity. Collective behavior case study in this thesis was RoboCup
keep-away. Results analysis indicated that a hybrid approach that directs evolutionary

Chapter 6. Discussion 109

search with respect to an objective based search and novelty search coupled with
behavior transfer evolved relatively high-quality solutions.

The following sections discuss the impact of each methodological feature in defining
evolutionary methods, where the effectiveness and efficiency of such evolutionary
methods are compared to benchmark RL methods.

6.1 Benefits of Neuro-evolution and Behavior transfer

As an attempt to evaluate the efficacy of a proposed approach, five variants of NEAT
and HyperNEAT (with and without behavior transfer) were applied to keep-away tasks
of varying complexity. The results indicated relatively high task performance was
obtained with HyperNEAT, especially when this method was used in company with
behavior transfer. The results also support related work that demonstrated the efficacy
of HyperNEAT when used with behavior transfer compared to NEAT in predator-prey
domain and less complex keep-away task (Verbancsics and Stanley, 2010; D’Ambrosio
et al., 2011). As in related work by Verbancsics and Stanley (2010), this thesis used
HyperNEAT-BEV and similar benefits are highlighted for evolved behaviors transferred
across tasks. The key advantage of HyperNEAT-BEV was that the geometric
relationships encoded in evolved CPPNs are extrapolated for varying task complexity.
Thus, evolved behaviors from the source task in the form of connectivity patterns
encoded in evolved CPPNs are readily transferable across task without modifications.

In the case of NEAT, such behavioral extrapolations are not possible due to a need of
scaling up sensory inputs to account for an increase in the number of agents. That is, to
effectively transfer evolved behaviors, a hand-coded mapping function was required to
transform the evolved behaviors to enable transfer between a source and a target task.
Furthermore, previous work by Grabkovsky et al. (2011) suggested that the relatively low
task performance of NEAT compared to HyperNEAT for a keep-away task was due to its
inability to deal with fractured domains (Kohl and Miikkulainen, 2008). In this thesis, we
used a heuristic method together with a transfer function to keep the number of sensory
inputs low and to simplify the transfer of controllers between tasks (section 4.2).

Keep-away soccer has been shown to possess a fractured decision space, whereby the
optimal action an agent selects changes abruptly as the agent moves from one state to a
neighboring state. Some direct encoding neuro-evolution methods (such as NEAT using
objective-based search), have difficulty representing such abrupt decision boundaries
and dealing with rapid discontinuity in the decision space. Kohl and Miikkulainen
(2009) suggested that, in order to perform well in a task with a fractured decision space,
an evolutionary search method must be able to generate representations that capture
local features of a task. Grabkovsky et al. (2011) indicated that a method that can map
the genotype representation directly to the task geometry (such as observed in
HyperNEAT) improves evolution in fractured domains.

Chapter 6. Discussion 110

It is also important to note that due to the nature of its algorithm, NEAT needs more
evaluations for evolving optimal behaviors for keep-away tasks of increasing
complexity (Taylor et al., 2006a). In comparison, it has been shown that HyperNEAT
was able to generate optimal behaviors given relatively few generations (section 5.5.4).
However, fracture and dimensionality are just two types of complexity inherent to
complex multi-agent tasks (such as keep-away soccer). The following section discusses
issues leading to significantly different evolved behavior performance given various
versions of NEAT and HyperNEAT applied in keep-away soccer.

6.2 Benefits of Objective versus Non-Objective-based Search

There are two main properties of evolutionary search approaches that drives the search
process (Eiben and Schippers, 1998). That is, exploration of the search space and
exploitation of highly fit regions. Exploration of the search space was provided by either
genotype diversity or behavior diversity, or a combination of both of these approaches.
Based on task performance for all variants of NEAT and HyperNEAT, it was observed
that the task performance of behaviors evolved with the objective-based search was
relatively low compared to the task performance of behaviors evolved with the hybrid
of objective-based search and behavioral diversity maintenance search. Task
performance results indicated that there were significant differences between the
performance of behaviors evolved with a hybrid of behavioral diversity maintenance
and objective-based search, compared with other evolutionary search methods (section
4.5).

Overall, the task performance results (section 4.5) indicated that genotypic diversity
maintenance technique for NEAT and HyperNEAT was not adequate to address the
bootstrap problem in collective behavior tasks such as keep-away. Abandoning fitness
based search for novelty only has been shown to be not effective for evolving effective
behaviors for keep-away tasks of increasing complexity. As demonstrated in section 4.5,
maintaining a good balance between behavior diversity maintenance in evolved
solutions and providing a bias towards highly fit solutions (through objective based
search) was beneficial to the task performance for each evolutionary search method,
given collective behavior tasks with increasing complexity. Objective-based search fails
to evolve high quality solutions as the task complexity increases as shown by each
version of the keep-away task and statistical tests.

Previous work has demonstrated that novelty search has the ability to leverage artificial
evolution via broader exploration of the search space when the domain has deceptive
fitness landscapes (Lehman and Stanley, 2008). While behavior diversity maintenance
methods have been tested on deceptive tasks (Lehman and Stanley, 2008). There has
been little research that comprehensively evaluates novelty search on increasingly
complex (but not deceptive) multi-agent tasks such as keep-away (Gomes and

Chapter 6. Discussion 111

Christensen, 2013a). Unlike, the previous novelty search work deception is not the focus
of this thesis. An idea behind using the hybrid approach for this thesis was to
compliment the effort of objective based search by integrating a mechanism that
promote solution diversity based on domain specific behavioral properties. However,
since novelty search is not directed by a fitness objective, there is no bias towards fitness
optimization, which may result in poor task performance (section 4.5). Thus, there is
more to discovering high-quality solutions than just exploration, some previous
research (Cuccu and Gomez., 2011; Gomes et al., 2015), has shown that NS performs
poorly on very high dimensional and fractured search spaces (section 4.5). Hence, it is
necessary to provide a balance between solution space exploration induced by novelty
search and exploitation directed by fitness based search. This hybrid method (behavior
diversity maintenance and objective based search, ONS) evolves collective behavior that
yields relatively high performance (in terms of behavior effectiveness and efficiency)
across all keep-away tasks tested in this thesis (section 4.5). Comparative results from
collective behavior evolution experiments (section 4.5) demonstrated that for some
keep-away tasks, ONS yields a significantly higher task performance compared to NS,
indicating that NS is not appropriate for complex multi-agent tasks such as RoboCup
keep-away. Thus, results indicate that a combination of objective and novelty based
search is needed as multi-agent task complexity increases. The following section looks
at the impact of reinforcement learning versus neuro-evolution on collective behavior
evolution.

6.3 Reinforcement Learning versus Neuro-evolution

Most work on behavior transfer for multi-agent control tasks in machine learning has
used reinforcement learning (RL), with few exceptions (Verbancsics and Stanley, 2010).
The evolutionary search method variants of NEAT and HyperNEAT proposed in this
thesis, were compared to temporal difference (TD) methods. The statistical analysis
results given in section 5.5, demonstrated that the hybrid novelty search and objective
based search (ONS) variant of HyperNEAT performs much better than both TD
methods and all other variants of NEAT and HyperNEAT. SARSA(λ) significantly
outperformed Q-Learning(λ) across all tasks. These results support previous work
indicating that Q-Learning(λ) is unstable with linear function approximation (such as
used for keep-away) (Stone et al., 2005) and that SARSA(λ) learns better than
Q-Learning(λ) in non-deterministic tasks (Taylor et al., 2007a).

At the final generation of evolution, some variants of NEAT were observed to have
comparable performance to SARSA(λ) across all keep-away tasks (for example, NS).
However, OS and ONS variants of NEAT had higher task performance than SARSA(λ)
with behavior transfer (section 5.5). Figure 5.2 indicated a relatively higher task
performance at early behavior adaptation stages for SARSA(λ) compared to NEAT, and
that NEAT outperforms SARSA(λ) at the later stages of evolution. These task

Chapter 6. Discussion 112

performance results suggested that even though SARSA(λ) converges relatively faster,
given more evaluations NEAT evolves relatively effective behaviors compared to
SARSA(λ). However, across all tasks, HyperNEAT ONS variant significantly
outperforms, NEAT, SARSA(λ) and Q-Learning(λ).

Evaluating the benefits of behavior transfer in both TD methods and NE variants, the
results shown in figure 5.2 and discussed in section 5.5.4 indicated that there was a task
performance gain realized by each method through the transfer of learned and evolved
behaviors, respectively. However, comparative task performance results (that is,
between NE and RL with behavior transfer) indicated the benefit of behavior transfer
task performance in TD methods was relatively high at the early stages of behavior
adaptation but gradually decreased as the adaptation progressed. Conversely, NE
continues to show more benefits even after the bootstrapping of increased task
performance elicited by behavior transfer. Specifically, relatively high task performance
with behavior transfer was obtained when evolving behaviors with a method that uses a
hybrid of objective-based search and novelty search approaches. This thesis postulates
that the relatively poor average task performance of RL methods compared to NE, is
attributed to the fact that TD methods learn well when the domain is fully observable,
and have difficulty learning in domains that are partially observable such as the
keep-away (Taylor et al., 2006a; Taylor and Stone, 2009).

6.4 Behavior Transfer versus No Behavior Transfer

We tested the relative efficacy of behaviors evolved with and without behavior transfer
of RL and NE across a range of keep-away tasks of increasing complexity. Results
analysis highlighted the benefits of behavior transfer versus evolving behaviors from
scratch with respect to effectiveness (task performance) and efficiency (speed of
adaptation) of evolved behaviors. This outcome elucidates the benefits of behavior
transfer for dealing with the bootstrap problem in complex tasks such as keep-away.

Most importantly, the comparative task performance results indicate that behavior
transfer coupled with evolutionary search is a consistently suitable method for boosting
the effectiveness and efficiency of evolved solution quality across increasingly complex
tasks. Behavior transfer allows for the derivation of behaviors that could not otherwise
be produced by RL or NE, given that either method is run from scratch. Furthermore,
the experiment results highlighted that behavior transfer with NE yields significantly
higher quality solutions than behavior transfer with RL, in terms of effectiveness and
efficiency of evolved behaviors in keep-away tasks of increasing complexity (section
5.5.4). We postulate that the difference in task performance between RL and NE is due
to the fact that RL methods, in particular TD methods, have difficulty learning in
partially observable tasks (Taylor et al., 2006a). The defining feature of RoboCup
keep-away was partial observability (section 2.1).

Chapter 6. Discussion 113

In terms of NE comparisons in these experiments, HyperNEAT consistently
outperformed NEAT, and one reason for this is as follows: unlike NEAT and RL that use
incomplete mapping for transfer in between tasks (section 3.1.1 and 3.3.4, respectively),
HyperNEAT does not change representation between tasks during behavior transfer
and has relatively higher task performance gain, given behavior transfer (Verbancsics
and Stanley, 2010; Didi and Nitschke, 2016b).

6.5 Summary

This chapter discussed the comparative results of RL and NE methods applied in
company with behavior transfer in increasingly complex keep-away tasks. The key
methodological features that led to the highest quality solutions (behaviors) across all
tasks are ONS and behavior transfer used by HyperNEAT. That is, evolutionary search
in solution space for some tasks such as in keep-away based on objective-based alone
leads to poor performance due to inadequate behavior exploration. On the other hand,
evolutionary search based on behavior diversity maintenance mechanism alone was not
adequate as it lacked pressure towards exploitation. Therefore, a method that provides
adequate behavior space exploration (induced by behavioral diversity maintenance
mechanism) and exploitation (induced by objective based search) yielded better results
for collective behavior evolution, given behavior transfer in keep-away tasks.

The following chapter provides the thesis conclusion, highlighting the contributions of
this work and future work.

114

Chapter 7

Conclusion

In this thesis, we have addressed two research objectives (that relates to the research
questions in section 1.2). The first research objective was to ascertain the
appropriateness of neuro-evolution methods for evolving effective behaviors and
behavior transfer in collective behavior tasks of increasing complexity. These NE results
(with behavior transfer) were compared to reinforcement learning methods, where RL
was selected because it is a well-established method for behavior transfer in multi-agent
systems (and thus constitutes an acceptable task performance benchmark). The second
research objective was to investigate the impact of non-objective based search
(genotypic and novelty search) for directing the neuro-evolution search process
compared to traditional objective based techniques.

A comprehensive set of experiments allowed us to deduce the features necessary for
producing a method that yields efficient and effective solutions for increasingly complex
collective behavior (keep-away) tasks. That is, HyperNEAT ONS with behavior transfer
was significantly more efficient than all other tested NE variants and RL methods with
behavior transfer. The following sections give a summary of the contributions of this
work and future direction.

7.1 Contributions

The major contributions of this thesis are as follows:

First, this thesis proposed an indirect encoded hybrid objective-behavior diversity
search approach for evolving increasingly effective and complex collective behaviors.
This approach integrates two methodological features: the type of neuro-evolution
encoding (direct vs indirect) and the evolutionary search approach (a hybrid of
objective-based and novelty search vs objective-based, novelty search and genotypic
diversity).

Second, the proposed search approach was coupled with behavior transfer to boost
evolution of effective collective behaviors across a range of increasingly complex
keep-away tasks. The results indicated this approach evolved behaviors with

Chapter 7. Conclusion 115

significantly higher task performance with behavior transfer than without behavior
transfer. Also, this hybrid search approach out-performed all other evolutionary search
approaches (with and without behavior transfer).

Third, comprehensive empirical evidence highlighting the efficacy of hybrid method
that combines novelty and objective-based search, given behavior transfer, for evolving
effective and efficient behaviors in keep-away task of increasing complexity. This hybrid
method consistently yielded the highest task performance compared to other
evolutionary search approaches such as objective-based search, pure novelty search,
genotype diversity maintenance search and a hybrid of genotype diversity and
objective-based search. In the context of behavior transfer, the hybrid novelty and
objective-based search method yielded the most task performance benefits in
comparison to traditional behavior transfer methods (SARSA and Q-Learning). The
performance benefits included the effectiveness, efficiency and behavior transfer metrics
(such as, jump-start, overall asymptotic performance, total reward, the reward area ratio
and time to threshold).

Thus, this thesis highlighted that integrating particular methodological features into an
evolutionary search method coupled with behavior transfer, resulted in an effective
balance of search space exploration and exploitation across collective behavior tasks of
increasing complexity. Specifically, a hybrid behavioral diversity maintenance and
objective-based search approach is best suited for directing evolutionary search of an
indirect encoding neuro-evolution method (HyperNEAT), given behavior transfer.
Results indicated the efficacy of the NE approach was further boosted by behavior
transfer where such behavior transfer was necessary for bootstrapping of solutions
needed to solve complex collective behavior tasks. The success of this method in
RoboCup keep-away soccer, is supported by related work that similarly demonstrated
the benefits of combining behavioral diversity maintenance and objective-based search
for evolving solutions for various tasks (Gomes and Christensen, 2013a). The success of
the hybrid method is supported by separate lines of research: first, by related work in
RL multi-agent behavior transfer (Taylor et al., 2007b), and second, by related NE work
that combines behavior diversity maintenance and objective-based search (Gomes and
Christensen, 2013a).

7.2 Future Possibilities

The development of a hybrid method that combines objective based and novelty search
technique was inspired by the goal of widening exploration of the search space during
the process of discovering regions of highly performing solutions. However, this
approach used a user defined parameter ρ, that controls the level of contribution
between novelty search and objective-based search (section 3.4.2). We propose
investigation of dynamic adaptation of ρ parameter, where ρ parameter is adjusted

Chapter 7. Conclusion 116

based on fitness landscape in a hybrid method. To further investigate this idea we
propose an extension of this evolutionary search method to explore search spaces
demonstrated in other domains, where such a method produces large archives of
diverse and highly performing solutions (Pugh et al., 2015). Thus, such an approach
provide both quality and diverse solutions. Similar work has already been done
(Lehman and Stanley, 2011b; Mouret and Clune, 2015; Cully et al., 2015b). In particular,
Novelty Search with Local Competition (NSLC) (Lehman and Stanley, 2011b) and
Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) (Mouret and Clune, 2015;
Cully et al., 2015b). For example, the MAP-Elites technique divides the behavior space
based on a domain specific behavior characterization (BC) into discrete bins. Each bin
stores the latest elite genotype in a multi-dimensional archive and a single genotype
occupying any given bin at any time. Thus, the elite genotype within a bin captures
quality and the whole set of bins in the archive captures diversity. Specifically, such
techniques eliminate the issue of integrating behavioral diversity and objective search as
both quality and diversity are addressed by an evolutionary search. However, the
notable drawback of this current approach is the assumption that a user has knowledge
of the behavior (feature) space bounds. Thus, behavior space exploration is limited by
the user assumed knowledge of behavior space.

The goal of the future research is to extend these methods to explore high dimensional
and deceptive search spaces associated with complex collective behavior tasks.
Specifically, exploring dynamic adaptation of exploration versus exploitation in a hybrid
method, that adjusts the ρ parameter automatically.

7.3 Summary

This thesis proposed a hybrid approach that couples three methodological features
(HyperNEAT with evolutionary search directed by hybrid objective-behavioral
diversity search coupled with behavior transfer) to bootstrap evolution of collective
behaviors in keep-away tasks of increasing complexity. This method effectively
addressed the bootstrapping issue for evolving high quality behaviors for increasingly
complex collective behavior tasks.

117

Appendix A

Task Performance

Method 4vs3 5vs3 5vs4 6vs4 6vs5

Keep-Away Keep-Away Keep-Away Keep-Away Keep-Away

OS

NEAT 0.501 ± 0.019 0.517 ± 0.028 0.496± 0.023 0.493 ± 0.017 0.488± 0.018

HyperNEAT 0.699 ± 0.051 0.721 ± 0.045 0.689 ± 0.054 0.676 ± 0.050 0.656 ± 0.060

NEAT (NBT) 0.475 ± 0.027 0.467 ± 0.029 0.464± 0.021 0.460 ± 0.020 0.453± 0.027

HyperNEAT (NBT) 0.650 ± 0.046 0.666 ± 0.056 0.635 ± 0.034 0.636 ± 0.044 0.615 ± 0.041

NS

NEAT 0.492 ± 0.050 0.493 ± 0.030 0.486± 0.041 0.479 ± 0.032 0.469± 0.029

HyperNEAT 0.613 ± 0.114 0.648 ± 0.128 0.607± 0.125 0.606 ± 0.151 0.594± 0.083

NEAT (NBT) 0.461 ± 0.037 0.460 ± 0.039 0.459± 0.028 0.454 ± 0.027 0.448± 0.032

HyperNEAT (NBT) 0.573 ± 0.138 0.589 ± 0.094 0.560 ± 0.082 0.559 ± 0.140 0.546 ± 0.114

ONS

NEAT 0.516 ± 0.028 0.524 ± 0.024 0.513± 0.020 0.499 ± 0.026 0.491± 0.025

HyperNEAT 0.736 ± 0.070 0.748 ± 0.038 0.709 ± 0.052 0.695 ± 0.042 0.686 ± 0.050

NEAT (NBT) 0.479 ± 0.025 0.487 ± 0.023 0.473± 0.019 0.470 ± 0.022 0.464± 0.023

HyperNEAT (NBT) 0.672 ± 0.036 0.705 ± 0.069 0.650 ± 0.031 0.648 ± 0.031 0.633 ± 0.027

GNS

NEAT 0.413 ± 0.045 0.417 ± 0.028 0.406± 0.047 0.406 ± 0.043 0.403± 0.040

HyperNEAT 0.505 ± 0.046 0.517 ± 0.063 0.499 ± 0.073 0.500 ± 0.021 0.496 ± 0.050

NEAT (NBT) 0.394 ± 0.040 0.398 ± 0.028 0.391± 0.043 0.387 ± 0.048 0.381± 0.046

HyperNEAT (NBT) 0.471 ± 0.048 0.491 ± 0.056 0.473 ± 0.071 0.475 ± 0.061 0.467 ± 0.087

OGN

NEAT 0.429 ± 0.022 0.438 ± 0.044 0.423± 0.049 0.425 ± 0.027 0.412± 0.024

HyperNEAT 0.537 ± 0.050 0.563 ± 0.061 0.519 ± 0.058 0.519 ± 0.056 0.510 ± 0.024

NEAT (NBT) 0.406 ± 0.043 0.419 ± 0.052 0.396± 0.042 0.400 ± 0.049 0.395± 0.005

HyperNEAT (NBT) 0.493 ± 0.043 0.516 ± 0.075 0.473 ± 0.075 0.475 ± 0.084 0.465 ± 0.063

TABLE A.1: Normalized Task Performance. Average normalized maximum task performance
for the five variants (NEAT and HyperNEAT): OS, NS, ONS, GNS and OGN. Task performance
results of evolving in each task with No Behavior Transfer (NBT) are included as a benchmark
comparison.

118

Appendix B

Effectiveness vs Efficiency -
Statistical Tests

B.1 Efficiency - Statistical Test Comparison (Behavior Transfer)

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(NS) −− 1.5× 10−3 8.39× 10−3 1.06× 10−7 1.40× 10−2 9.50× 10−8 2.91× 10−5 3.78× 10−2

HN(NS) 1.5× 10−3 −− 1.10× 10−5 5.60× 10−3 3.47× 10−6 1.80× 10−3 1.23× 10−7 2.30× 10−3

N(OS) 8.39× 10−3 1.10× 10−5 −− 6.76× 10−8 3.14× 10−2 6.77× 10−8 1.19× 10−6 4.40× 10−2

HN(OS) 1.06× 10−7 5.60× 10−3 6.76× 10−8 −− 6.73× 10−8 5.99× 10−2∅ 6.67× 10−8 1.86× 10−7

N(ONS) 1.40× 10−2 3.47× 10−6 3.14× 10−2 6.73× 10−8 −− 6.74× 10−8 1.29× 10−4 9.70× 10−3

HN(ONS) 9.14× 10−8 1.80× 10−3 6.67× 10−8 5.99× 10−2∅ 6.74× 10−8 −− 6.78× 10−8 3.32× 10−7

N(GNS) 2.91× 10−5 1.23× 10−7 1.19× 10−6 6.77× 10−8 1.29× 10−4 6.78× 10−8 −− 7.72× 10−7

HN(GNS) 3.79× 10−2 2.30× 10−3 4.40× 10−2 1.86× 10−7 9.70× 10−3 3.32× 10−7 7.72× 10−7 −−
N(OGN) 3.04× 10−4 2.20× 10−7 5.88× 10−5 6.78× 10−8 5.50× 10−3 6.79× 10−8 −− 2.25× 10−5

HN(OGN) 5.29× 10−2 8.50× 10−3 2.50× 10−3 5.11× 10−7 1.02× 10−4 2.17× 10−7 2.17× 10−7 1.98× 10−1∅

TABLE B.1: Efficiency Statistical Tests for 4vs3 Keep-Away. Statistical significance test with
95% confidence interval (p <0.05, Mann-Whitney u test), for NE method variants efficiency
comparisons. Where, N and HN represents NEAT and HyperNEAT, respectively and a symbol
∅, indicates not significantly different

This section presents a set of statistical tests results of method efficiency comparison
between behaviors evolved with NEAT and HyperNEAT for all given search variants
(NS, OS, ONS, OGN and GNS) and for keep-away tasks of increasing complexity (that
is, 4vs3, 5vs3, 5vs4, 6vs4 and 6vs5). To ascertain if there was a statistically significant
difference between efficiency results from the given NE variants (given behavior
transfer), a pair-wise Mann-Whitney u test with 95% confidence interval (p-values <
0.05) was performed between the method efficiency data sets. The null hypothesis states
that efficiency results do not significantly differ and p-values of less than a threshold of
0.05 (Mann-Whitney u test), rejects this hypothesis. The values indicated with symbol ∅
having p-value more than 0.05 accepted this null hypothesis, suggesting that there is no
statistical significance between the given method efficiency results.

Table B.1 shows 43 different statistical test results comparing efficiency for NEAT and
HyperNEAT variants evolved with behavior transfer for 4vs3 keep-away task. The null
hypothesis states that there is no significant difference between efficiency values for

Appendix B. Effectiveness vs Efficiency - Statistical Tests 119

behaviors evolved with NEAT vs HyperNEAT for different search variants. The
statistical test results shows that 41 out of 43 tests rejected this null hypothesis and 2
tests (HyperNEAT OS vs ONS variant and HyperNEAT GNS vs OGN) accepted this
hypothesis. Further investigation revealed that HyperNEAT OS vs ONS and GNS vs
OGN variants are statistical different based on effectiveness results and Cohen’s d effect
size is 0.64 and 1.05 respectively, suggesting that there is practical significant difference
between their results (table B.11 and D.1).

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(NS) −− 3.60× 10−2 2.29× 10−2 6.76× 10−8 7.97× 10−2∅ 6.79× 10−8 1.1× 10−5 1.9× 10−2

HN(NS) 3.60× 10−3 −− 3.14× 10−2 5.60× 10−3 3.60× 10−2 5.07× 10−2∅ 8.52× 10−6 6.77× 10−3

N(OS) 2.29× 10−2 3.14× 10−2 −− 6.65× 10−8 6.37× 10−3 6.68× 10−8 6.80× 10−7 1.54× 10−3

HN(OS) 6.76× 10−8 5.60× 10−3 6.65× 10−8 −− 6.73× 10−8 9.67× 10−1∅ 6.72× 10−8 9.06× 10−8

N(ONS) 7.97× 10−2∅ 3.60× 10−2 6.37× 10−3 6.73× 10−8 −− 6.76× 10−8 3.05× 10−6 7.63× 10−3

HN(ONS) 6.78× 10−8 5.70× 10−2 6.68× 10−8 9.67× 10−2∅ 6.76× 10−8 −− 6.76× 10−8 1.42× 10−7

N(GNS) 1.10× 10−5 8.52× 10−6 6.80× 10−7 6.73× 10−8 3.04× 10−6 6.76× 10−8 −− 7.52× 10−6

HN(GNS) 1.89× 10−2 6.77× 10−3 1.54× 10−3 9.06× 10−8 7.63× 10−3 1.42× 10−7 7.52× 10−6 −−
N(OGN) 2.30× 10−3 1.03× 10−4 3.60× 10−3 6.76× 10−8 2.00× 10−3 6.79× 10−8 7.56× 10−2∅ 2.21× 10−4

HN(OGN) 1.14× 10−2 1.80× 10−2 1.77× 10−6 6.69× 10−8 3.36× 10−4 9.07× 10−8 7.79× 10−8 2.39× 10−1∅

TABLE B.2: Efficiency Statistical Tests for 5vs3 Keep-Away. Statistical significance test with
95% confidence interval (p <0.05, Mann-Whitney u test), for NE method variants efficiency
comparisons. Where, N and HN represents NEAT and HyperNEAT methods, respectively and a
symbol ∅, indicates not significantly different

Table B.2 shows statistical tests comparing the efficiency results for behaviors evolved
with NEAT and HyperNEAT variants for keep-away 5vs3. Statistical difference results
indicates 40 out of 43 tests rejected the hypothesis, that stated there is no significant
difference between compared efficiency results. In addition to the observations
presented in table B.1, NEAT NS vs ONS variants accepted the null hypothesis,
suggesting that efficiency results for behaviors evolved with NS and ONS variants do
not differ significantly (p <0.05, Mann-Whitney u test for 5vs3 keep-away).

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(NS) −− 2.43× 10−4 3.22× 10−5 6.56× 10−8 1.80× 10−3 6.56× 10−8 2.31× 10−7 5.40× 10−2∅
HN(NS) 2.43× 10−4 −− 3.27× 10−5 4.11× 10−2 5.22× 10−5 4.57× 10−2 3.75× 10−6 2.50× 10−3

N(OS) 3.22× 10−4 3.27× 10−5 −− 6.72× 10−8 2.08× 10−2 6.72× 10−8 6.72× 10−8 6.29× 10−5

HN(OS) 6.56× 10−8 4.11× 10−2 6.72× 10−8 −− 6.71× 10−8 7.10× 10−3 6.24× 10−8 1.77× 10−6

N(ONS) 1.80× 10−3 5.22× 10−5 2.08× 10−2 6.71× 10−8 −− 6.71× 10−8 1.04× 10−5 2.97× 10−2

HN(ONS) 6.56× 10−8 4.57× 10−2 6.72× 10−8 7.10× 10−3 6.71× 10−8 −− 6.74× 10−8 3.43× 10−7

N(GNS) 2.31× 10−7 3.75× 10−6 6.29× 10−5 6.24× 10−8 1.04× 10−5 6.24× 10−8 −− 3.24× 10−6

HN(GNS) 5.42× 10−2∅ 2.50× 10−3 8.07× 10−3 1.77× 10−6 2.97× 10−2 3.43× 10−6 3.24× 10−6 −−
N(OGN) 1.96× 10−5 9.51× 10−6 1.50× 10−3 6.54× 10−8 6.75× 10−4 6.54× 10−8 4.89× 10−1∅ 3.30× 10−4

HN(OGN) 1.53× 10−2 1.80× 10−3 8.88× 10−7 1.20× 10−7 1.56× 10−5 8.91× 10−8 6.11× 10−8 4.08× 10−2

TABLE B.3: Efficiency Statistical Tests for 5vs4 Keep-Away. Statistical significance test with
95% confidence interval (p <0.05, Mann-Whitney u test), for NE method variants efficiency
comparisons. Where, N and HN represents NEAT and HyperNEAT methods, respectively and a
symbol ∅, indicates not significantly different

Table B.3, B.4 and B.5 shows the statistical test comparing efficiency results for behaviors
evolved with HyperNEAT and NEAT across all variants in 5vs4, 6vs4 and 6vs5

Appendix B. Effectiveness vs Efficiency - Statistical Tests 120

keep-away tasks, respectively. Statistical results indicate that there was statistical
difference between behavior pairs under comparison (with few observed exceptions).

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(NS) −− 2.45× 10−4 1.70× 10−2 5.36× 10−8 3.4× 10−3 5.38× 10−8 3.31× 10−6 2.12× 10−2

HN(NS) 2.45× 10−4 −− 1.29× 10−4 8.30× 10−3 1.27× 10−4 1.14× 10−2 1.78× 10−5 5.10× 10−3

N(OS) 1.70× 10−2 1.29× 10−4 −− 6.77× 10−8 6.75× 10−2∅ 6.73× 10−8 2.22× 10−2 4.00× 10−3

HN(OS) 5.36× 10−8 8.30× 10−3 6.77× 10−8 −− 6.59× 10−8 4.73× 10−2 6.68× 10−8 6.77× 10−8

N(ONS) 3.40× 10−3 1.27× 10−4 6.75× 10−2∅ 6.59× 10−8 −− 6.55× 10−8 8.90× 10−3 1.50× 10−3

HN(ONS) 5.33× 10−8 1.14× 10−2 6.73× 10−8 4.73× 10−2 6.55× 10−8 −− 6.64× 10−8 6.72× 10−8

N(GNS) 3.31× 10−6 1.79× 10−5 2.22× 10−2 6.68× 10−8 8.90× 10−3 6.64× 10−8 −− 6.54× 10−5

HN(GNS) 2.12× 10−2 5.10× 10−3 4.00× 10−3 6.77× 10−8 1.50× 10−3 6.73× 10−8 6.54× 10−5 −−
N(OGN) 1.09× 10−7 1.37× 10−5 5.55× 10−3 6.46× 10−8 1.55× 10−4 6.42× 10−8 5.42× 10−2∅ 3.23× 10−5

HN(OGN) 7.87× 10−3 3.30× 10−3 9.19× 10−4 7.88× 10−8 2.19× 10−4 6.74× 10−8 4.84× 10−6 5.79× 10−1∅

TABLE B.4: Efficiency Statistical Tests for 6vs4 Keep-Away. Statistical significance test with
95% confidence interval (p <0.05, Mann-Whitney u test), for NE method variants efficiency
comparisons. Where, N and HN represents NEAT and HyperNEAT methods, respectively and a
symbol ∅, indicates not significantly different

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(NS) −− 1.10× 10−3 4.59× 10−4 1.23× 10−7 2.30× 10−3 1.22× 10−7 1.59× 10−5 5.79× 10−2∅
HN(NS) 1.10× 10−3 −− 1.10× 10−5 1.30× 10−2 3.29× 10−5 2.98× 10−2 2.05× 10−6 7.70× 10−3

N(OS) 4.59× 10−4 1.10× 10−5 −− 7.85× 10−8 6.55× 10−1∅ 9.08× 10−8 8.32× 10−4 3.84× 10−2

HN(OS) 1.23× 10−7 1.33× 10−2 7.85× 10−8 −− 1.06× 10−7 4.41× 10−2 6.73× 10−8 1.15× 10−4

N(ONS) 2.30× 10−3 2.29× 10−5 6.55× 10−1∅ 1.06× 10−7 −− 1.22× 10−7 7.55× 10−4 7.63× 10−3

HN(ONS) 1.22× 10−7 2.98× 10−2 9.08× 10−8 4.41× 10−2 1.22× 10−7 −− 6.70× 10−8 2.20× 10−4

N(GNS) 1.59× 10−5 2.05× 10−6 8.32× 10−4 6.73× 10−8 7.55× 10−4 6.70× 10−8 −− 7.10× 10−3

HN(GNS) 5.79× 10−2∅ 7.70× 10−3 3.84× 10−2 1.15× 10−4 7.63× 10−3 2.20× 10−4 7.10× 10−3 −−
N(OGN) 2.58× 10−5 3.97× 10−6 2.39× 10−2 6.75× 10−8 2.58× 10−5 3.97× 10−6 6.00× 10−2∅ 2.22× 10−2

HN(OGN) 8.56× 10−3 4.30× 10−3 4.12× 10−5 1.21× 10−7 2.45× 10−4 1.21× 10−7 2.03× 10−6 1.80× 10−1∅

TABLE B.5: Efficiency Statistical Tests for 6vs5 Keep-Away. Statistical significance test with
95% confidence interval (p <0.05, Mann-Whitney u test), for NE method variants efficiency
comparisons. Where, N and HN represents NEAT and HyperNEAT methods, respectively and a
symbol ∅, indicates not significantly different

B.2 Efficiency - Behavior Transfer vs No Behavior Transfer

This section presents the statistical tests results that assess the statistical difference
between NE variants efficiency results (behavior transfer versus no behavior transfer)
based on Mann-Whitney u test with 95% confidence interval (p-values < 0.05). The null
hypothesis states that there was no significant difference between the efficiency results
of each method evolved with behavior transfer versus that evolved without behavior
transfer. Statistical test p-values of less than a threshold of 0.05 (Mann-Whitney u test),
rejects this hypothesis. The values indicated with symbol ∅ having p-value more than
0.05 accepted this null hypothesis, suggesting that there was no statistical significance
between the given method efficiency results.

Table B.6, B.7, B.8, B.9 and B.10, shows statistical test p-values comparing efficiency
results of behaviors evolved with NEAT and HyperNEAT with vs without behavior

Appendix B. Effectiveness vs Efficiency - Statistical Tests 121

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(NS) 1.93× 10−2 1.25× 10−5 5.60× 10−3 1.06× 10−7 6.38× 10−3 1.60× 10−7 3.65× 10−2 1.61× 10−3

HN(NS) 9.09× 10−3 9.89× 10−3 1.07× 10−2 2.75× 10−2 7.20× 10−3 1.23× 10−2 1.79× 10−2 1.81× 10−2

N(OS) 2.98× 10−2 1.41× 10−5 2.29× 10−2 6.77× 10−8 4.09× 10−2 6.78× 10−8 9.72× 10−6 6.78× 10−3

HN(OS) 7.83× 10−8 3.37× 10−2 6.73× 10−8 1.14× 10−2 6.70× 10−8 1.55× 10−2 6.74× 10−8 1.38× 10−7

N(ONS) 4.41× 10−2 5.88× 10−5 9.46× 10−2∅ 6.79× 10−8 2.29× 10−2 6.80× 10−8 2.21× 10−3 3.28× 10−2

HN(ONS) 6.75× 10−8 1.00× 10−3 6.74× 10−8 2.62× 10−2 6.71× 10−8 8.18× 10−3 6.75× 10−8 8.85× 10−8

N(GNS) 5.88× 10−5 1.23× 10−7 2.34× 10−6 6.78× 10−8 1.78× 10−4 6.79× 10−8 4.73× 10−1∅ 2.01× 10−6

HN(GNS) 2.30× 10−2 1.03× 10−4 2.98× 10−2 6.77× 10−8 6.55× 10−3 6.78× 10−8 1.50× 10−3 7.17× 10−3

N(OGN) 3.04× 10−4 2.21× 10−7 5.88× 10−5 6.78× 10−8 5.50× 10−3 6.79× 10−8 2.10× 10−3 7.35× 10−3

HN(OGN) 9.89× 10−3 1.20× 10−3 6.95× 10−3 9.13× 10−8 9.61× 10−3 6.78× 10−8 1.59× 10−5 4.89× 10−2

TABLE B.6: Efficiency Statistical Tests for 4vs3 Keep-Away. Statistical significance test
comparisons of NE method variant evolved with behavior transfer versus the same without
behavior transfer. Shown across y-axis are the NE variants with behavior transfer and x-axis
are the NE variants without behavior transfer

transfer. The statistical test results indicates an average of 78 out 80 statistical tests
rejects the null hypothesis.

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(NS) 6.39× 10−3 1.8× 10−3 4.73× 10−2 6.74× 10−8 9.08× 10−3 6.77× 10−8 4.14× 10−4 1.56× 10−2

HN(NS) 3.60× 10−3 2.29× 10−2 3.56× 10−3 8.27× 10−5 9.80× 10−3 9.27× 10−5 2.05× 10−6 8.42× 10−3

N(OS) 3.37× 10−2 1.32× 10−2 9.24× 10−2∅ 6.65× 10−8 3.94× 10−2 6.65× 10−8 7.82× 10−7 2.97× 10−2

HN(OS) 9.13× 10−8 9.68× 10−3 6.66× 10−8 1.72× 10−2 6.74× 10−8 1.89× 10−2 6.74× 10−8 2.55× 10−7

N(ONS) 2.98× 10−2 1.43× 10−2 1.55× 10−2 6.75× 10−8 7.35× 10−3 6.71× 10−8 1.59× 10−5 3.79× 10−2

HN(ONS) 6.79× 10−8 1.10× 10−2 6.68× 10−8 9.00× 10−3 6.76× 10−8 2.07× 10−2 6.76× 10−8 1.65× 10−7

N(GNS) 9.09× 10−7 9.03× 10−7 1.04× 10−7 6.73× 10−8 2.94× 10−7 6.76× 10−8 2.74× 10−2 7.87× 10−7

HN(GNS) 7.15× 10−3 1.14× 10−2 3.50× 10−2 6.75× 10−8 5.61× 10−3 9.15× 10−8 1.90× 10−3 4.98× 10−2

N(OGN) 9.73× 10−6 3.95× 10−6 5.92× 10−7 6.74× 10−8 2.05× 10−6 6.77× 10−8 6.75× 10−2∅ 5.83× 10−6

HN(OGN) 7.97× 10−3 1.33× 10−2 1.55× 10−2 6.75× 10−8 4.57× 10−2 1.06× 10−7 7.1× 10−3 3.94× 10−2

TABLE B.7: Efficiency Statistical Tests for 5vs3 Keep-Away. Statistical significance test
comparisons of NE method variant evolved with behavior transfer versus the same without
behavior transfer. Shown across y-axis are the NE variants with behavior transfer and x-axis
are the NE variants without behavior transfer.

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(NS) 2.23× 10−3 9.19× 10−5 9.00× 10−3 2.18× 10−7 7.70× 10−3 6.67× 10−8 7.12× 10−3 3.90× 10−3

HN(NS) 7.48× 10−4 4.68× 10−2 4.65× 10−5 1.37× 10−6 7.36× 10−5 2.03× 10−5 3.29× 10−6 1.32× 10−2

N(OS) 1.37× 10−5 2.90× 10−5 4.09× 10−2 6.68× 10−8 5.42× 10−3 6.68× 10−8 2.45× 10−5 1.01× 10−2

HN(OS) 1.38× 10−7 5.79× 10−3 9.05× 10−8 3.36× 10−4 9.03× 10−8 5.50× 10−3 6.22× 10−8 2.55× 10−5

N(ONS) 9.40× 10−3 1.36× 10−4 2.13× 10−6 5.60× 10−8 1.29× 10−2 5.60× 10−8 5.55× 10−8 3.21× 10−2

HN(ONS) 4.36× 10−7 5.49× 10−3 1.62× 10−7 1.28× 10−4 1.40× 10−7 4.38× 10−2 6.18× 10−8 5.15× 10−5

N(GNS) 1.85× 10−7 5.13× 10−6 6.61× 10−6 6.72× 10−8 3.94× 10−6 6.71× 10−8 8.38× 10−2 4.44× 10−6

HN(GNS) 5.79× 10−3 5.07× 10−4 1.79× 10−2 9.08× 10−8 1.20× 10−2 1.22× 10−7 7.06× 10−5 9.46× 10−2∅
N(OGN) 1.17× 10−6 9.69× 10−6 1.98× 10−4 6.72× 10−8 3.67× 10−5 6.72× 10−8 4.23× 10−2 1.08× 10−7

HN(OGN) 9.46× 10−3 1.30× 10−3 9.08× 10−3 1.57× 10−6 2.39× 10−2 2.05× 10−6 1.60× 10−3 4.79× 10−2

TABLE B.8: Efficiency Statistical Tests for 5vs4 Keep-Away. Statistical significance test
comparisons of NE method variant evolved with behavior transfer versus the same without
behavior transfer. Shown across y-axis are the NE variants with behavior transfer and x-axis
are the NE variants without behavior transfer.

Appendix B. Effectiveness vs Efficiency - Statistical Tests 122

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(NS) 4.13× 10−4 1.28× 10−4 4.15× 10−2 6.71× 10−8 2.28× 10−2 6.67× 10−8 1.33× 10−2 1.60× 10−3

HN(NS) 1.47× 10−2 2.18× 10−2 9.19× 10−4 6.21× 10−4 6.78× 10−4 2.60× 10−3 5.83× 10−5 4.25× 10−2

N(OS) 2.36× 10−2 1.60× 10−4 1.99× 10−2 6.74× 10−8 1.80× 10−2 6.70× 10−8 3.35× 10−4 4.70× 10−3

HN(OS) 5.36× 10−8 8.58× 10−3 6.77× 10−8 2.07× 10−2 6.59× 10−8 3.85× 10−2 6.68× 10−8 1.43× 10−7

N(ONS) 2.14× 10−2 1.58× 10−4 3.13× 10−2 6.57× 10−8 2.70× 10−3 6.53× 10−8 2.27× 10−6 4.30× 10−3

HN(ONS) 5.32× 10−8 1.02× 10−2 6.72× 10−8 7.10× 10−3 6.54× 10−8 1.92× 10−2 6.63× 10−8 2.93× 10−7

N(GNS) 7.49× 10−7 3.97× 10−6 5.08× 10−4 6.78× 10−8 1.27× 10−4 6.74× 10−8 1.02× 10−2 8.57× 10−6

HN(GNS) 9.24× 10−3 1.50× 10−3 5.25× 10−3 6.00× 10−7 4.24× 10−2 6.87× 10−7 6.00× 10−3 1.71× 10−2

N(OGN) 9.85× 10−7 4.56× 10−6 1.50× 10−3 6.74× 10−8 4.53× 10−4 6.70× 10−8 1.48× 10−2 1.10× 10−5

HN(OGN) 2.36× 10−2 7.56× 10−4 4.09× 10−2 1.06× 10−7 3.94× 10−2 7.82× 10−8 9.00× 10−3 6.00× 10−3

TABLE B.9: Efficiency Statistical Tests for 6vs4 Keep-Away. Statistical significance test
comparisons of NE method variant evolved with behavior transfer versus the same without
behavior transfer. Shown across y-axis are the NE variants with behavior transfer and x-axis
are the NE variants without behavior transfer.

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(NS) 5.84× 10−6 3.48× 10−6 1.26× 10−2 6.75× 10−8 5.65× 10−3 6.77× 10−8 7.19× 10−3 1.05× 10−2

HN(NS) 1.93× 10−2 3.65× 10−2 7.70× 10−3 1.44× 10−2 7.70× 10−3 4.38× 10−2 1.29× 10−4 1.33× 10−2

N(OS) 4.14× 10−4 1.59× 10−5 1.56× 10−2 6.77× 10−8 5.08× 10−2∅ 6.74× 10−8 2.46× 10−4 1.20× 10−2

HN(OS) 2.20× 10−7 9.03× 10−3 9.12× 10−8 3.60× 10−3 9.13× 10−8 6.50× 10−3 6.73× 10−8 5.10× 10−3

N(ONS) 9.00× 10−3 6.59× 10−5 9.18× 10−4 6.75× 10−8 1.93× 10−2 6.72× 10−8 1.29× 10−4 5.61× 10−3

HN(ONS) 2.93× 10−7 8.82× 10−2∅ 9.07× 10−8 3.30× 10−3 1.42× 10−7 1.43× 10−2 7.78× 10−8 1.50× 10−3

N(GNS) 1.04× 10−6 6.90× 10−7 5.60× 10−3 6.77× 10−8 3.30× 10−3 6.74× 10−8 6.17× 10−2∅ 2.10× 10−3

HN(GNS) 2.18× 10−2 5.08× 10−4 4.91× 10−2 3.92× 10−7 6.75× 10−3 6.86× 10−7 2.56× 10−2 5.61× 10−2∅
N(OGN) 3.97× 10−6 9.11× 10−7 1.44× 10−2 6.77× 10−8 8.30× 10−3 6.74× 10−8 4.90× 10−2 9.00× 10−3

HN(OGN) 2.85× 10−2 4.15× 10−4 4.41× 10−2 2.95× 10−7 4.55× 10−2 3.91× 10−7 2.56× 10−2 8.39× 10−3

TABLE B.10: Efficiency Statistical Tests for 6vs5 Keep-Away. Statistical significance test
comparisons of NE method variant evolved with behavior transfer versus the same without
behavior transfer. Shown across y-axis are the NE variants with behavior transfer and x-axis
are the NE variants without behavior transfer.

B.3 Effectiveness - Statistical Test Comparison

This section presents a set of statistical tests results of task performance comparison (in
terms of method effectiveness) between NE variants of NEAT and HyperNEAT (NS, OS,
ONS, OGN and GNS) for keep-away tasks of increasing complexity (that is, 4vs3, 5vs3,
5vs4, 6vs4 and 6vs5). To ascertain if there was a statistically significant difference
between NE variants task performance results, a pair-wise Mann-Whitney u test with
95% confidence interval (p-values < 0.05) was performed between task performance
data sets. As in section B.1, the null hypothesis states that task performance results do
not significantly differ in terms of effectiveness and p-values less than a threshold of
0.05 (Mann-Whitney u test), rejects this hypothesis. The values indicated with symbol ∅
having p-value more than 0.05 accepted this null hypothesis, suggesting that there is no
statistical significance between the given task performance values results (given
effectiveness).

Figures B.11, B.12, B.13, B.14 and B.15 shows the task performance statistical test
comparison for five given NEAT and HyperNEAT variants in keep-away tasks of
increasing complexity (4vs3, 5vs3, 5vs4, 6vs4 and 6vs5). The null hypothesis was that

Appendix B. Effectiveness vs Efficiency - Statistical Tests 123

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(NS) − 6.80× 10−8 8.20× 10−3 5.55× 10−10 7.25× 10−4 5.55× 10−10 1.53× 10−6 4.97× 10−2

HN(NS) 5.55× 10−10 − 5.55× 10−10 8.42× 10−6 4.74× 10−9 8.42× 10−6 5.55× 10−10 2.49× 10−7

N(OS) 8.20× 10−3 5.55× 10−10 − 5.55× 10−10 2.32× 10−2 5.55× 10−10 3.63× 10−8 1.36× 10−2

HN(OS) 5.55× 10−10 8.20× 10−6 5.55× 10−10 − 5.55× 10−10 7.20× 10−2∅ 5.55× 10−10 5.55× 10−10

N(ONS) 7.25× 10−4 4.74× 10−9 2.32× 10−2 5.55× 10−10 − 5.55× 10−10 4.74× 10−9 8.20× 10−3

HN(ONS) 5.55× 10−10 8.41× 10−6 5.55× 10−10 7.20× 10−2∅ 5.55× 10−10 − 5.55× 10−10 5.55× 10−10

N(GNS) 1.53× 10−6 5.55× 10−10 3.63× 10−8 5.55× 10−10 4.74× 10−9 5.55× 10−10 − 2.49× 10−7

HN(GNS) 4.97× 10−2 2.49× 10−7 1.35× 10−2 5.55× 10−10 8.20× 10−3 5.55× 10−10 2.49× 10−7 −
N(OGN) 4.74× 10−9 5.55× 10−10 5.55× 10−10 5.55× 10−10 5.55× 10−10 5.55× 10−10 2.32× 10−2 4.74× 10−9

HN(OGN) 1.83× 10−4 7.25× 10−4 4.15× 10−5 5.55× 10−10 2.32× 10−2 5.55× 10−10 3.63× 10−8 2.32× 10−2

TABLE B.11: Task performance Statistical Tests for 4vs3 Keep-Away. Statistical significance test
with 95% confidence interval (p <0.05, Mann-Whitney u test), for NE method variants method
effectiveness comparisons. Where, N and HN represents NEAT and HyperNEAT methods,
respectively and a symbol ∅, indicates not significantly different

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(NS) − 8.42× 10−6 1.53× 10−6 5.55× 10−10 4.15× 10−5 5.55× 10−10 3.63× 10−8 8.20× 10−3

HN(NS) 8.42× 10−6 − 4.15× 10−5 8.20× 10−3 4.15× 10−5 2.6× 10−3 1.53× 10−6 1.83× 10−4

N(OS) 1.53× 10−6 4.15× 10−5 − 5.55× 10−10 4.91× 10−2 5.55× 10−10 4.74× 10−9 2.32× 10−2

HN(OS) 5.55× 10−10 8.20× 10−3 5.55× 10−10 − 5.55× 10−10 7.25× 10−4 5.55× 10−10 5.55× 10−10

N(ONS) 4.15× 10−5 4.15× 10−5 4.91× 10−2 5.55× 10−10 − 5.55× 10−10 5.55× 10−10 4.91× 10−2

HN(ONS) 5.55× 10−10 2.60× 10−3 5.55× 10−10 7.25× 10−4 5.55× 10−10 − 5.55× 10−10 5.55× 10−10

N(GNS) 3.63× 10−8 1.53× 10−6 4.74× 10−9 5.55× 10−10 5.55× 10−10 5.55× 10−10 −
HN(GNS) 8.20× 10−3 1.83× 10−4 2.32× 10−2 5.55× 10−10 4.91× 10−2 5.55× 10−10 8.42× 10−6 −
N(OGN) 1.53× 10−6 8.14× 10−6 3.63× 10−8 5.55× 10−10 5.55× 10−10 5.55× 10−10 2.73× 10−1∅ 4.15× 10−5

HN(OGN) 8.42× 10−6 2.6× 10−3 4.15× 10−5 3.63× 10−8 7.25× 10−4 5.55× 10−10 2.49× 10−7 1.35× 10−1∅

TABLE B.12: Task performance Statistical Tests for 5vs3 Keep-Away. Statistical significance test
with 95% confidence interval (p <0.05, Mann-Whitney u test), for NE method variants method
effectiveness comparisons. Where, N and HN represents NEAT and HyperNEAT methods,
respectively and a symbol ∅, indicates not significantly different

task performance results obtained from keep-away behaviors evolved with NEAT and
HyperNEAT do not differ between different given variants. The statistical test results
shows an average of 41 out of 44 tests, rejects this null hypothesis. Then 3 out of 44
marginally accepts the hypothesis, indicating that task performance results significantly
differ between NEAT and HyperNEAT variants. Further analysis, indicated that 45 out
of 50 statistical tests had Cohen’s d effect size greater than 0.6, suggesting that the task
performance results are practically different (table D.1.

B.4 Effectiveness - Behavior Transfer vs No Behavior Transfer

Similar to the statistical test results presented in appendix B.3, this section presents the
statistical tests results that assess the statistical difference between NE variants task
performance results (behavior transfer versus no behavior transfer) based on
Mann-Whitney u test with 95% confidence interval (p-values < 0.05). The null
hypothesis states that there is no significant difference between the task performance
results of each method evolved with behavior transfer versus the same evolved without
behavior transfer. Statistical test p-values of less than a threshold of 0.05

Appendix B. Effectiveness vs Efficiency - Statistical Tests 124

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(NS) − 4.15× 10−5 1.35× 10−1∅ 5.55× 10−10 2.32× 10−2 5.55× 10−10 3.63× 10−8 8.20× 10−3

HN(NS) 4.15× 10−5 − 4.15× 10−5 7.20× 10−2∅ 4.15× 10−5 4.91× 10−2 1.53× 10−6 7.25× 10−4

N(OS) 1.35× 10−1∅ 4.15× 10−5 − 5.55× 10−10 8.2× 10−3 5.54× 10−10 5.55× 10−10 8.20× 10−3

HN(OS) 5.55× 10−10 7.20× 10−2∅ 5.55× 10−10 − 5.55× 10−10 4.91× 10−2 5.55× 10−10 4.74× 10−9

N(ONS) 2.32× 10−2 4.15× 10−5 8.20× 10−3 5.55× 10−10 − 5.55× 10−10 5.55× 10−10 8.20× 10−3

HN(ONS) 5.55× 10−10 4.91× 10−2 5.55× 10−10 4.97× 10−2 5.55× 10−10 − 5.55× 10−10 5.55× 10−10

N(GNS) 3.63× 10−8 1.53× 10−6 5.55× 10−10 5.55× 10−10 5.55× 10−10 5.55× 10−10 − 1.83× 10−4

HN(GNS) 8.20× 10−3 7.25× 10−4 8.20× 10−3 4.74× 10−9 8.20× 10−3 5.55× 10−10 1.83× 10−4 −
N(OGN) 4.15× 10−5 4.15× 10−5 2.49× 10−7 5.55× 10−10 4.74× 10−9 5.55× 10−10 1.34× 10−1 1.83× 10−4

HN(OGN) 8.20× 10−3 7.25× 10−4 8.20× 10−3 3.63× 10−8 2.32× 10−2 3.63× 10−8 2.49× 10−7 2.75× 10−1∅

TABLE B.13: Task performance Statistical Tests for 5vs4 Keep-Away. Statistical significance test
with 95% confidence interval (p <0.05, Mann-Whitney u test), for NE method variants method
effectiveness comparisons. Where, N and HN represents NEAT and HyperNEAT methods,
respectively and a symbol ∅, indicates not significantly different

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(NS) − 7.25× 10−4 1.35× 10−1∅ 5.55× 10−10 7.19× 10−2 5.55× 10−10 4.15× 10−5 1.33× 10−2

HN(NS) 7.25× 10−4 − 7.25× 10−4 2.32× 10−2 7.25× 10−4 2.32× 10−2 1.83× 10−4 7.25× 10−4

N(OS) 1.35× 10−1∅ 7.25× 10−4 − 5.55× 10−10 4.97× 10−1∅ 5.54× 10−10 3.63× 10−8 4.91× 10−2

HN(OS) 5.55× 10−10 2.32× 10−2 5.55× 10−10 − 5.55× 10−10 2.32× 10−2 5.55× 10−10 5.55× 10−10

N(ONS) 7.19× 10−2∅ 7.25× 10−4 4.97× 10−1∅ 5.55× 10−10 − 5.55× 10−10 3.63× 10−8 7.71× 10−2

HN(ONS) 5.55× 10−10 2.32× 10−2 5.55× 10−10 2.32× 10−2 5.55× 10−10 − 5.55× 10−10 5.55× 10−10

N(GNS) 4.15× 10−5 1.83× 10−4 3.63× 10−8 5.55× 10−10 3.63× 10−8 5.55× 10−10 − 2.49× 10−7

HN(GNS) 1.33× 10−2 7.25× 10−4 4.91× 10−2 5.55× 10−10 7.71× 10−2∅ 5.55× 10−10 2.49× 10−7 −
N(OGN) 1.53× 10−6 1.83× 10−4 3.63× 10−8 5.55× 10−10 3.63× 10−8 5.55× 10−10 2.60× 10−3 2.49× 10−7

HN(OGN) 2.32× 10−2 8.20× 10−3 1.71× 10−1∅ 3.63× 10−8 4.97× 10−1∅ 4.74× 10−9 8.42× 10−6 7.71× 10−2∅

TABLE B.14: Task performance Statistical Tests for 6vs4 Keep-Away. Statistical significance test
with 95% confidence interval (p <0.05, Mann-Whitney u test), for NE method variants method
effectiveness comparisons. Where, N and HN represents NEAT and HyperNEAT methods,
respectively and a symbol ∅, indicates not significantly different

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(NS) − 2.49× 10−7 1.83× 10−4 5.55× 10−10 2.60× 10−3 5.55× 10−10 3.63× 10−8 5.92× 10−2∅
HN(NS) 2.49× 10−7 − 2.49× 10−7 2.07× 10−2 2.49× 10−7 2.60× 10−3 4.74× 10−9 7.25× 10−4

N(OS) 1.83× 10−4 2.49× 10−7 − 5.55× 10−10 4.97× 10−1∅ 5.54× 10−10 5.55× 10−10 8.20× 10−3

HN(OS) 5.55× 10−10 2.07× 10−2 5.55× 10−10 − 5.55× 10−10 4.91× 10−2 5.55× 10−10 3.63× 10−8

N(ONS) 2.60× 10−3 2.49× 10−7 4.97× 10−1∅ 5.55× 10−10 − 5.55× 10−10 5.55× 10−10 4.91× 10−2

HN(ONS) 5.55× 10−10 2.60× 10−3 5.55× 10−10 5.91× 10−2∅ 5.55× 10−10 − 5.55× 10−10 5.55× 10−10

N(GNS) 3.63× 10−8 4.74× 10−9 5.55× 10−10 5.55× 10−10 5.55× 10−10 5.55× 10−10 − 1.53× 10−6

HN(GNS) 5.92× 10−2 7.25× 10−4 8.20× 10−3 3.63× 10−8 4.91× 10−2 5.55× 10−10 1.53× 10−6 −
N(OGN) 3.63× 10−8 4.74× 10−9 5.55× 10−10 5.55× 10−10 5.55× 10−10 5.55× 10−10 2.32× 10−3 1.53× 10−6

HN(OGN) 4.15× 10−5 1.53× 10−6 8.14× 10−6 4.74× 10−9 2.60× 10−3 5.55× 10−10 5.55× 10−10 4.56× 10−1∅

TABLE B.15: Task performance Statistical Tests for 6vs5 Keep-Away. Statistical significance test
with 95% confidence interval (p <0.05, Mann-Whitney u test), for NE method variants method
effectiveness comparisons. Where, N and HN represents NEAT and HyperNEAT methods,
respectively and a symbol ∅, indicates not significantly different

(Mann-Whitney u test), rejects this hypothesis. The values indicated with symbol ∅
having p-value more than 0.05 accepted this null hypothesis, suggesting that there was
no statistical significance between the given method effectiveness results.

Appendix B. Effectiveness vs Efficiency - Statistical Tests 125

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(NS) 3.85× 10−2 6.79× 10−8 2.10× 10−3 6.77× 10−8 3.28× 10−5 6.78× 10−8 7.20× 10−3 7.10× 10−3

HN(NS) 5.79× 10−3 2.39× 10−2 3.37× 10−2 7.56× 10−6 5.64× 10−3 3.56× 10−6 5.26× 10−5 4.11× 10−2

N(OS) 6.78× 10−5 6.75× 10−8 6.58× 10−5 6.73× 10−8 3.95× 10−6 6.74× 10−8 3.34× 10−4 6.19× 10−4

HN(OS) 6.80× 10−8 3.85× 10−2 6.77× 10−8 2.80× 10−3 6.74× 10−8 1.04× 10−4 6.80× 10−8 6.76× 10−8

N(ONS) 1.60× 10−2 6.78× 10−3 2.56× 10−2 6.76× 10−8 5.61× 10−4 6.78× 10−8 5.89× 10−5 1.23× 10−2

HN(ONS) 6.79× 10−8 2.00× 10−3 6.77× 10−8 1.93× 10−2 6.74× 10−8 8.35× 10−4 6.80× 10−8 6.76× 10−8

N(GNS) 1.42× 10−7 6.74× 10−8 6.72× 10−8 6.72× 10−8 6.68× 10−8 6.73× 10−8 2.18× 10−1∅ 1.05× 10−7

HN(GNS) 5.97× 10−1 6.36× 10−8 1.54× 10−2 6.33× 10−8 3.00× 10−3 6.35× 10−8 1.60× 10−3 1.89× 10−1∅
N(OGN) 6.79× 10−8 6.79× 10−8 6.77× 10−8 6.77× 10−8 6.72× 10−8 6.78× 10−8 7.77× 10−1∅ 6.75× 10−8

HN(OGN) 4.67× 10−2 3.40× 10−7 4.9× 10−2 6.75× 10−8 2.22× 10−2 6.76× 10−8 1.41× 10−5 4.41× 10−1∅

TABLE B.16: Task performance Statistical Tests for 4vs3 Keep-Away. Statistical significance test
comparisons of NE method variant evolved with behavior transfer versus the same without
behavior transfer. Shown across y-axis are the NE variants with behavior transfer and x-axis
are the NE variants without behavior transfer.

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(NS) 5.30× 10−3 1.61× 10−4 5.25× 10−5 6.78× 10−8 9.72× 10−6 6.74× 10−8 2.94× 10−2 1.54× 10−2

HN(NS) 1.79× 10−4 1.08× 10−2 1.67× 10−2 5.24× 10−5 2.07× 10−2 1.22× 10−7 7.93× 10−7 2.38× 10−2

N(OS) 1.55× 10−2 7.39× 10−5 9.71× 10−6 6.76× 10−8 5.14× 10−6 6.72× 10−8 1.79× 10−4 6.00× 10−3

HN(OS) 6.78× 10−8 4.73× 10−2 6.77× 10−8 6.78× 10−3 6.78× 10−8 2.03× 10−5 6.78× 10−8 1.89× 10−7

N(ONS) 4.74× 10−2 4.60× 10−4 2.56× 10−2 6.78× 10−8 1.30× 10−3 6.74× 10−8 1.10× 10−5 4.80× 10−2

HN(ONS) 6.77× 10−8 1.20× 10−2 6.77× 10−8 8.20× 10−2∅ 6.76× 10−8 3.30× 10−3 6.78× 10−8 6.68× 10−8

N(GNS) 6.74× 10−8 6.75× 10−8 6.73× 10−8 6.73× 10−8 6.72× 10−8 6.69× 10−8 1.79× 10−2 7.80× 10−7

HN(GNS) 4.70× 10−2 2.47× 10−4 6.78× 10−3 6.77× 10−8 8.30× 10−3 6.73× 10−8 1.16× 10−4 3.84× 10−2

N(OGN) 1.80× 10−5 1.20× 10−6 5.20× 10−7 6.76× 10−8 2.94× 10−7 6.72× 10−8 6.80× 10−2∅ 4.63× 10−5

HN(OGN) 2.08× 10−2 2.10× 10−3 4.90× 10−2 6.78× 10−8 4.60× 10−2 6.74× 10−8 2.69× 10−6 8.60× 10−1∅

TABLE B.17: Task performance Statistical Tests for 5vs3 Keep-Away. Statistical significance test
comparisons of NE method variant evolved with behavior transfer versus the same without
behavior transfer. Shown across y-axis are the NE variants with behavior transfer and x-axis
are the NE variants without behavior transfer.

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(NS) 1.15× 10−4 2.74× 10−4 3.48× 10−6 6.77× 10−8 1.43× 10−7 6.78× 10−8 3.08× 10−2 7.10× 10−3

HN(NS) 1.06× 10−2 4.96× 10−2 4.38× 10−2 2.92× 10−5 4.1× 10−2 4.16× 10−5 1.25× 10−6 4.37× 10−2

N(OS) 1.97× 10−5 9.03× 10−4 7.48× 10−8 6.45× 10−8 6.45× 10−8 6.45× 10−8 1.01× 10−2 2.50× 10−3

HN(OS) 6.69× 10−8 4.97× 10−2 6.7× 10−8 9.17× 10−4 6.72× 10−8 6.84× 10−4 5.97× 10−8 1.60× 10−7

N(ONS) 1.13× 10−1∅ 7.10× 10−3 9.00× 10−3 6.78× 10−8 1.80× 10−5 6.79× 10−8 4.73× 10−6 4.80× 10−2

HN(ONS) 6.75× 10−8 4.86× 10−2 6.76× 10−8 1.93× 10−2 6.78× 10−8 2.23× 10−2 6.02× 10−8 1.62× 10−7

N(GNS) 7.80× 10−8 2.05× 10−6 6.72× 10−8 6.74× 10−8 6.74× 10−8 6.75× 10−8 2.40× 10−1∅ 1.22× 10−2

HN(GNS) 1.43× 10−2 2.10× 10−3 4.59× 10−4 6.77× 10−8 2.68× 10−6 6.78× 10−8 1.10× 10−3 5.39× 10−2∅
N(OGN) 7.54× 10−7 5.64× 10−6 7.44× 10−8 6.41× 10−8 6.44× 10−8 6.42× 10−8 3.76× 10−1∅ 6.31× 10−5

HN(OGN) 4.90× 10−2 5.60× 10−3 3.15× 10−2 6.78× 10−8 6.21× 10−4 6.78× 10−8 1.48× 10−5 1.89× 10−1∅

TABLE B.18: Task performance Statistical Tests for 5vs4 Keep-Away. Statistical significance test
comparisons of NE method variant evolved with behavior transfer versus the same without
behavior transfer. Shown across y-axis are the NE variants with behavior transfer and x-axis
are the NE variants without behavior transfer.

Appendix B. Effectiveness vs Efficiency - Statistical Tests 126

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(NS) 6.18× 10−4 4.30× 10−3 3.45× 10−6 6.77× 10−8 2.06× 10−6 6.77× 10−8 1.54× 10−2 7.92× 10−7

HN(NS) 3.90× 10−3 3.23× 10−1∅ 1.54× 10−2 6.59× 10−5 1.93× 10−2 7.55× 10−6 7.75× 10−7 4.68× 10−2

N(OS) 9.00× 10−3 5.3× 10−3 3.41× 10−6 6.66× 10−8 2.32× 10−6 6.67× 10−8 9.97× 10−4 2.03× 10−6

HN(OS) 6.69× 10−8 7.80× 10−1 6.66× 10−8 4.11× 10−2 6.77× 10−8 2.10× 10−3 6.60× 10−8 6.76× 10−8

N(ONS) 1.55× 10−2 1.08× 10−2 1.30× 10−3 6.77× 10−8 4.59× 10−4 6.78× 10−8 3.24× 10−5 8.27× 10−5

HN(ONS) 6.70× 10−8 8.60× 10−1∅ 6.67× 10−8 1.02× 10−2 6.77× 10−8 1.80× 10−3 6.61× 10−8 6.77× 10−8

N(GNS) 3.37× 10−7 3.98× 10−6 6.67× 10−8 6.77× 10−8 6.78× 10−8 6.78× 10−8 4.73× 10−2 6.77× 10−8

HN(GNS) 4.45× 10−2 1.93× 10−2 1.40× 10−2 9.12× 10−8 4.60× 10−2 7.87× 10−8 3.30× 10−3 2.94× 10−2

N(OGN) 8.76× 10−7 6.47× 10−5 6.44× 10−8 6.53× 10−8 6.54× 10−8 6.54× 10−8 9.24× 10−2∅ 7.59× 10−8

HN(OGN) 3.6× 10−2 2.23× 10−2 4.56× 10−2 9.12× 10−8 4.74× 10−2 6.77× 10−8 1.32× 10−2 7.46× 10−2∅

TABLE B.19: Task performance Statistical Tests for 6vs4 Keep-Away. Statistical significance test
comparisons of NE method variant evolved with behavior transfer versus the same without
behavior transfer. Shown across y-axis are the NE variants with behavior transfer and x-axis
are the NE variants without behavior transfer.

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(NS) 1.10× 10−3 2.35× 10−6 6.78× 10−8 6.78× 10−8 9.15× 10−8 6.77× 10−8 2.80× 10−3 5.61× 10−4

HN(NS) 6.21× 10−4 2.08× 10−2 1.06× 10−2 1.30× 10−3 1.67× 10−2 2.91× 10−5 1.89× 10−7 2.74× 10−2

N(OS) 5.62× 10−4 1.37× 10−6 2.05× 10−6 6.75× 10−8 1.80× 10−6 6.75× 10−8 3.02× 10−4 1.78× 10−4

HN(OS) 6.78× 10−8 6.78× 10−3 6.78× 10−8 6.36× 10−3 6.77× 10−8 1.55× 10−2 6.69× 10−8 1.05× 10−7

N(ONS) 5.98× 10−2∅ 2.04× 10−5 2.39× 10−2 6.77× 10−8 4.70× 10−3 6.77× 10−8 6.83× 10−7 5.30× 10−3

HN(ONS) 6.79× 10−8 5.31× 10−3 6.77× 10−8 5.97× 10−1∅ 6.78× 10−8 3.15× 10−2 6.70× 10−8 6.73× 10−8

N(GNS) 6.78× 10−8 6.78× 10−8 6.77× 10−8 6.76× 10−8 6.77× 10−8 6.76× 10−8 8.57× 10−3 6.72× 10−8

HN(GNS) 4.86× 10−2 5.88× 10−5 2.62× 10−2 2.21× 10−7 1.64× 10−2 9.12× 10−8 1.10× 10−3 1.07× 10−2

N(OGN) 6.79× 10−8 6.79× 10−8 6.78× 10−8 6.77× 10−8 6.78× 10−8 6.77× 10−8 2.85× 10−1∅ 9.08× 10−8

HN(OGN) 2.50× 10−2 2.47× 10−4 3.90× 10−2 4.52× 10−7 4.51× 10−2 9.12× 10−8 8.30× 10−3 8.60× 10−1∅

TABLE B.20: Task performance Statistical Tests for 6vs5 Keep-Away. Statistical significance test
comparisons of NE method variant evolved with behavior transfer versus the same without
behavior transfer. Shown across y-axis are the NE variants with behavior transfer and x-axis
are the NE variants without behavior transfer.

127

Appendix C

Solution Complexity -Statistical Tests

C.1 Pair-wise Statistical Test Comparisons

This section presents a set of statistical tests results of solution complexity comparison
between behaviors evolved with NEAT and HyperNEAT for all given search variants
(NS, OS, ONS, OGN and GNS) and for keep-away tasks of increasing complexity (that
is, 4vs3, 5vs3, 5vs4, 6vs4 and 6vs5). This tests if there was a statistically significant
difference between solution complexity results from the given NE variants (given
behavior transfer). A pair-wise Mann-Whitney u test with 95% confidence interval
(p-values < 0.05) was performed between the solution complexity results. The null
hypothesis states that topological complexity do not significantly differ between the
given method variants. Thus, p-values of less than a threshold of 0.05 (Mann-Whitney u
test), rejects this hypothesis. The values indicated with symbol ∅ having p-value more
than 0.05 accepted this null hypothesis, suggesting that there is no statistical significance
between the given topological complexity results.

Table C.1, C.2, C.3, C.4 and C.5 shows 43 different statistical test results comparing
topological complexity for given method variants evolved with behavior transfer for a
range of given keep-away tasks. The null hypothesis states that there is no significant
difference between topological complexity results for behaviors evolved each of the
compared variants.

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(OS) 2.6× 10−3 9.20× 10−1∅ – 5.56× 10−2∅ 2.51× 10−2 3.67× 10−2 6.30× 10−3 6.24× 10−8

HN(OS) 1.16× 10−4 1.56× 10−2 5.56× 10−2∅ −− 1.16× 10−4 1.56× 10−2 1.23× 10−8 6.19× 10−8

N(ONS) 1.16× 10−1∅ 1.61× 10−2 2.51× 10−2 1.31× 10−4 −− 2.50× 10−3 1.19× 10−5 6.30× 10−8

HN(ONS) 4.68× 10−4 2.60× 10−1∅ 3.70× 10−2 3.60× 10−1∅ 2.50× 10−3 −− 3.64× 10−2 6.10× 10−8

N(GNS) 2.93× 10−5 6.68× 10−4 6.30× 10−3 1.20× 10−2 1.19× 10−5 3.64× 10−2 −− 9.69× 10−8

HN(GNS) 6.21× 10−8 6.08× 10−4 6.24× 10−8 6.19× 10−8 6.32× 10−8 6.10× 10−8 9.69× 10−8 −−
N(OGN) 3.22× 10−4 9.70× 10−3 5.71× 10−3 7.54× 10−2∅ 9.94× 10−5 1.62× 10−1∅ 2.76× 10−1∅ 6.18× 10−8

HN(OGN) 1.58× 10−5 4.79× 10−5 2.10× 10−3 9.13× 10−3 1.29× 10−6 1.02× 10−2 8.92× 10−1∅ 6.12× 10−8

TABLE C.1: Solution Complexity for 4vs3 Keep-Away. Statistical significance test with 95%
confidence interval (p <0.05, Mann-Whitney u test), for NE method variants solution (topological)
complexity comparisons. Where, N and HN represents NEAT and HyperNEAT methods,
respectively and a symbol ∅, indicates not significantly different

Appendix C. Solution Complexity -Statistical Tests 128

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(OS) 1.50× 10−3 5.20× 10−2∅ – 4.21× 10−1∅ 3.68× 10−2 7.33× 10−2∅ 2.26× 10−2 5.65× 10−8

HN(OS) 2.72× 10−5 3.11× 10−2 4.21× 10−1∅ −− 4.00× 10−3 1.99× 10−1∅ 5.81× 10−3 6.25× 10−8

N(ONS) 1.63× 10−1∅ 1.54× 10−1∅ 3.68× 10−2 4.00× 10−3 −− 3.51× 10−2 1.10× 10−4 6.36× 10−8

HN(ONS) 2.21× 10−4 3.33× 10−1∅ 7.33× 10−2∅ 1.99× 10−1∅ 3.51× 10−2 −− 3.70× 10−3 6.19× 10−8

N(GNS) 2.15× 10−6 3.35× 10−4 2.26× 10−2 5.81× 10−3 1.10× 10−4 3.70× 10−3 −− 6.21× 10−8

HN(GNS) 6.33× 10−8 6.10× 10−8 5.65× 10−8 6.25× 10−8 6.35× 10−8 6.19× 10−8 9.21× 10−8 −−
N(OGN) 1.53× 10−5 2.38× 10−2 1.49× 10−1∅ 7.24× 10−1∅ 1.80× 10−3 1.08× 10−1∅ 1.18× 10−1∅ 6.22× 10−8

HN(OGN) 3.84× 10−7 2.42× 10−5 8.07× 10−4 1.04× 10−2 8.27× 10−6 1.24× 10−4 7.66× 10−1∅ 6.33× 10−8

TABLE C.2: Solution Complexity for 5vs3 Keep-Away. Statistical significance test with 95%
confidence interval (p <0.05, Mann-Whitney u test), for NE method variants solution (topological)
complexity comparisons. Where, N and HN represents NEAT and HyperNEAT methods,
respectively and a symbol ∅, indicates not significantly different

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(OS) 3.79× 10−2 7.75× 10−1∅ – 3.10× 10−1∅ 4.06× 10−2 8.60× 10−1∅ 9.20× 10−3 6.35× 10−8

HN(OS) 5.56× 10−5 1.80× 10−3 3.10× 10−1∅ −− 5.76× 10−6 1.00× 10−2 2.50× 10−3 6.21× 10−8

N(ONS) 6.15× 10−1∅ 1.20× 10−3 4.06× 10−2 5.67× 10−6 −− 9.93× 10−4 2.61× 10−7 6.35× 10−8

HN(ONS) 7.19× 10−4 7.42× 10−1∅ 8.64× 10−1∅ 1.00× 10−2 9.93× 10−4 −− 2.43× 10−5 6.14× 10−8

N(GNS) 1.48× 10−6 1.74× 10−6 9.20× 10−3 2.50× 10−3 2.61× 10−7 2.43× 10−5 −− 6.36× 10−8

HN(GNS) 6.23× 10−8 6.08× 10−8 6.35× 10−8 6.21× 10−8 6.35× 10−8 6.14× 10−8 6.36× 10−8 −−
N(OGN) 1.35× 10−4 6.55× 10−3 3.84× 10−1∅ 4.21× 10−1∅ 4.54× 10−5 1.09× 10−1∅ 6.10× 10−3 6.07× 10−8

HN(OGN) 3.21× 10−6 7.66× 10−8 6.07× 10−3 4.65× 10−2 9.59× 10−7 3.52× 10−4 4.29× 10−1∅ 6.09× 10−8

TABLE C.3: Solution Complexity for 5vs4 Keep-Away. Statistical significance test with 95%
confidence interval (p <0.05, Mann-Whitney u test), for NE method variants solution (topological)
complexity comparisons. Where, N and HN represents NEAT and HyperNEAT methods,
respectively and a symbol ∅, indicates not significantly different

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(OS) 7.87× 10−5 7.75× 10−1∅ – 2.02× 10−2 4.06× 10−2 8.70× 10−3 8.49× 10−3 6.58× 10−8

HN(OS) 5.70× 10−7 1.43× 10−1∅ 2.02× 10−2 −− 1.89× 10−5 2.74× 10−2 3.16× 10−2 6.49× 10−8

N(ONS) 4.21× 10−1∅ 6.30× 10−3 8.70× 10−3 1.89× 10−5 −− 5.60× 10−3 8.68× 10−7 6.32× 10−8

HN(ONS) 5.54× 10−5 7.44× 10−1∅ 8.64× 10−3 2.74× 10−2 5.60× 10−3 −− 2.39× 10−4 6.39× 10−8

N(GNS) 1.77× 10−7 1.44× 10−4 2.87× 10−4 3.16× 10−2 8.68× 10−7 2.39× 10−4 −− 6.35× 10−8

HN(GNS) 6.57× 10−8 6.48× 10−8 6.58× 10−8 6.49× 10−8 6.32× 10−8 6.39× 10−8 6.36× 10−8 −−
N(OGN) 2.56× 10−7 4.29× 10−2 7.94× 10−3 7.14× 10−1∅ 2.09× 10−4 6.24× 10−3 3.52× 10−2 6.41× 10−8

HN(OGN) 1.28× 10−7 2.59× 10−4 7.29× 10−4 2.37× 10−2 1.37× 10−6 7.58× 10−4 3.15× 10−2 6.55× 10−8

TABLE C.4: Solution Complexity for 6vs4 Keep-Away. Statistical significance test with 95%
confidence interval (p <0.05, Mann-Whitney u test), for NE method variants solution (topological)
complexity comparisons. Where, N and HN represents NEAT and HyperNEAT methods,
respectively and a symbol ∅, indicates not significantly different

Method N(NS) HN(NS) N(OS) HN(OS) N(ONS) HN(ONS) N(GNS) HN(GNS)

N(OS) 1.56× 10−2 9.78× 10−1∅ – 3.19× 10−2 7.20× 10−3 6.30× 10−3 4.56× 10−5 6.34× 10−8

HN(OS) 2.70× 10−4 1.23× 10−2 3.19× 10−2 −− 2.43× 10−5 1.34× 10−1∅ 3.90× 10−3 6.33× 10−8

N(ONS) 7.86× 10−1∅ 5.30× 10−3 7.20× 10−3 2.43× 10−5 −− 5.20× 10−3 7.49× 10−7 6.49× 10−8

HN(ONS) 3.90× 10−3 6.14× 10−1∅ 6.35× 10−1∅ 1.34× 10−1∅ 5.20× 10−3 −− 8.49× 10−5 6.42× 10−8

N(GNS) 6.65× 10−7 6.81× 10−6 4.56× 10−5 3.90× 10−3 7.49× 10−7 8.49× 10−5 −− 6.35× 10−8

HN(GNS) 6.42× 10−8 6.26× 10−8 6.34× 10−8 6.34× 10−8 6.49× 10−8 6.42× 10−8 6.36× 10−8 −−
N(OGN) 7.70× 10−5 1.15× 10−2 2.34× 10−2 8.49× 10−1∅ 3.51× 10−5 7.67× 10−3 7.40× 10−3 6.42× 10−8

HN(OGN) 1.79× 10−5 3.68× 10−4 2.60× 10−3 2.05× 10−1∅ 4.90× 10−6 8.4× 10−3 9.42× 10−3 6.44× 10−8

TABLE C.5: Solution Complexity for 6vs5 Keep-Away. Statistical significance test with 95%
confidence interval (p <0.05, Mann-Whitney u test), for NE method variants solution (topological)
complexity comparisons. Where, N and HN represents NEAT and HyperNEAT methods,
respectively and a symbol ∅, indicates not significantly different

129

Appendix D

Cohen’s Effect Size - Practical Tests

D.1 Pairwise Practical Tests Comparisons

Cohen (1988) suggested a measure for practical significance between a pair of samples,
called the Cohen’s d effect size. The probability of null hypothesis testing positive by
chance (that is, evaluating p-values alone) decreases with increase in effect size.
According to Cohen (1988), a Cohen’s d effect score of 0.2 represented small effect size,
0.5 represented medium effect size and 0.8 represented large effect size. This means if
the pair-wise Cohen’s d effect size was 0.2, the difference was considered trivial despite
the p-value score less than the set threshold (Cohen, 1988). Cohen’s d effect size of 0.8
indicates a nonoverlap of 47% in the two distributions and that more than 1.7 indicates a
nonoverlap of more than 75% in the two distributions. Cohen’s d effect size score of 0
indicates a complete overlap (0% nonoverlap) of scores between the two distributions,
suggesting the two distributions are practically not different.

Pair HyperNEAT NEAT
Comparison 4vs3 5vs3 5vs4 6vs4 6vs5 4vs3 5vs3 5vs4 6vs4 6vs5

NS-OS 1.64 0.71 0.83 0.67 0.88 0.50 1.37 0.39 0.54 0.99
NS-ONS 1.94 1.25 0.88 0.85 1.31 1.17 1.74 1.11 0.72 1.09
NS-GNS 2.16 1.26 1.03 0.71 1.40 2.08 2.54 2.21 1.90 2.95
NS-OGN 1.52 0.83 0.88 0.86 1.35 2.66 2.11 2.01 1.76 2.64
OS-ONS 0.64 1.33 0.1 0.40 0.48 1.09 0.52 1.15 0.30 0.34
OS-GNS 5.74 2.96 2.89 2.93 2.88 2.54 3.49 2.80 2.65 5.52
OS-OGN 4.76 3.78 2.97 4.38 3.18 2.07 2.77 2.29 2.06 4.81

ONS-GNS 4.98 4.71 2.99 3.49 3.71 2.87 3.69 3.28 2.72 4.98
ONS-OGN 4.26 3.94 3.09 5.55 4.39 4.32 3.42 3.31 2.94 4.90
GNS-OGN 1.05 0.71 0.29 0.29 0.33 0.43 0.59 0.42 0.53 0.57

TABLE D.1: NEAT and HyperNEAT variants task performance pair-wise practical significance
comparisons based on Cohen’s effect size (d values).

Table D.1 shows a comparative analysis of pair-wise Cohen’s d effect size scores for
different HyperNEAT variants task performance in a given range of keep-away tasks.
Indicated on the left column are the methods compared, for example, NS-ONS compute
a pair-wise comparison of the practical statistical difference between NS and ONS

Appendix D. Cohen’s Effect Size - Practical Tests 130

variants (NEAT and HyperNEAT). The pair-wise comparison of OS and ONS variants
shows an average Cohen’s d effect size of 0.59, suggesting a moderate practical
significance with 33% standard nonoverlap (Cohen, 1988). A significantly high average
effect size (Cohen’s d > 4.25) observed between ONS and OGN variants, indicating a
significantly high task performance difference. An relative low average Cohen’s d effect
score (Cohen’s d < 0.33) was observed between GNS and OGN variants of HyperNEAT,
indicating that the task performance difference is less significant.

HyperNEAT NEAT

Method NS OS ONS GNS OGN NS OS ONS GNS OGN

NS 0.43 1.50 1.76 0.83 0.44 0.99 1.25 1.56 0.60 0.36

OS 0.66 1.16 1.54 3.68 2.86 0.99 1.25 1.56 0.60 0.36

ONS 1.01 0.64 1.11 4.06 3.27 0.91 1.57 2.08 1.40 1.52

GNS 2.40 6.12 4.73 0.76 1.50 2.64 10.63 3.49 0.40 0.95

OGN 2.27 5.51 4.94 0.32 1.26 2.65 3.38 3.70 0.16 0.69

TABLE D.2: HyperNEAT variants task performance pair-wise practical significance comparisons
based on Cohen’s effect size (d values), behavior transfer vs no behavior transfer in 4vs3
keep-away.

Table D.2, D.3, D.4, D.5 and D.6 shows pairwise Cohen’s d effect size results for NEAT
and HyperNEAT variants, based on task performance results. Results analysis indicate
significantly higher values comparing the task performance yielded by NE methods
evolved with and without behavior transfer, for example, NEAT and HyperNEAT ONS
variants in 6vs5 keep-away task shows significantly high effect size (Cohen’s d=0.83 and
d=1.15, respectively).

HyperNEAT NEAT

Method NS OS ONS GNS OGN NS OS ONS GNS OGN

NS 0.51 1.74 2.45 0.88 0.32 0.84 1.38 1.55 0.77 0.38

OS 0.37 0.64 1.69 2.76 2.04 0.91 1.88 2.13 1.46 0.96

ONS 0.76 0.14 0.96 3.48 2.76 0.26 1.09 1.33 1.81 1.37

GNS 1.68 6.01 6.57 0.63 1.45 4.22 9.09 5.72 0.82 1.58

OGN 1.32 4.23 5.32 0.15 0.82 1.85 2.49 2.65 0.13 0.43

TABLE D.3: NEAT and HyperNEAT variants task performance pair-wise practical significance
comparisons based on Cohen’s effect size (d values), behavior transfer vs no behavior transfer in
5vs3 keep-away.

Table D.7, D.7, D.7, D.7 and D.7 shows pairwise Cohen’s d effect size results for NEAT
and HyperNEAT variants, based on efficiency values. Results analysis indicate
significantly higher values comparing method efficiency yielded by NE methods
evolved with and without behavior transfer, for example, NEAT and HyperNEAT ONS
variants in 6vs5 keep-away task shows significantly high effect size (Cohen’s d=0.87 and
d=0.40, respectively).

Appendix D. Cohen’s Effect Size - Practical Tests 131

HyperNEAT NEAT

Method NS OS ONS GNS OGN NS OS ONS GNS OGN

NS 0.43 1.73 1.80 0.72 0.52 1.41 1.93 2.44 0.75 0.40

OS 0.30 1.17 1.29 2.32 2.38 1.90 3.15 3.95 0.97 0.57

ONS 0.45 0.80 0.91 2.47 2.52 0.52 1.09 1.84 1.87 1.62

GNS 1.58 4.20 4.98 0.70 1.21 3.28 7.74 5.09 0.40 0.96

OGN 1.41 4.56 4.75 0.42 0.90 2.50 3.15 3.63 0.22 0.66

TABLE D.4: HyperNEAT variants task performance pair-wise practical significance comparisons
based on Cohen’s effect size (d values), behavior transfer vs no behavior transfer in 5vs4
keep-away.

HyperNEAT NEAT

Method NS OS ONS GNS OGN NS OS ONS GNS OGN

NS 0.34 1.72 2.07 0.86 0.56 1.27 2.12 2.21 0.81 0.38

OS 0.41 0.62 1.11 4.04 2.51 0.85 1.99 2.06 1.48 1.26

ONS 0.44 0.61 1.14 4.65 2.70 0.33 1.24 1.40 1.90 1.84

GNS 1.09 4.06 3.94 0.69 0.75 3.23 6.07 4.98 0.54 1.49

OGN 0.97 2.65 3.00 0.42 0.53 2.44 3.61 3.61 0.17 0.85

TABLE D.5: HyperNEAT variants task performance pair-wise practical significance comparisons
based on Cohen’s effect size (d values), behavior transfer vs no behavior transfer in 6vs4
keep-away.

HyperNEAT NEAT

Method NS OS ONS GNS OGN NS OS ONS GNS OGN

NS 0.44 1.35 1.86 0.87 0.76 1.22 2.26 2.27 1.16 0.80

OS 0.77 0.19 0.83 3.13 3.78 1.27 2.57 2.52 1.39 1.00

ONS 0.83 0.15 0.83 3.39 4.33 0.19 1.07 1.15 2.39 2.08

GNS 1.62 3.03 3.59 0.46 0.79 3.34 14.22 4.98 0.81 1.34

OGN 1.33 2.27 2.78 0.28 0.50 3.06 5.36 4.93 0.27 0.83

TABLE D.6: HyperNEAT variants task performance pair-wise practical significance comparisons
based on Cohen’s effect size (d values), behavior transfer vs no behavior transfer in 6vs5
keep-away.

Table D.12 shows pair-wise Cohen’s d effect size comparing method efficiency yielded
by NE variants evolved with behavior transfer. Results indicate that most of method
efficiency between NE variants are significantly different, with exception of a few, such
as GNS vs OGN in keep-away 6vs4 and 6vs5 (NEAT) with limited effect size (Cohen’s
d=0.13 and d=0.12, respectively), and ONS vs OS in keep-away 5vs3 (NEAT) and ONS
vs OS in 6vs4 keep-away (HyperNEAT) with (Cohen’s d=0.12 and d=0.14, respectively).

Appendix D. Cohen’s Effect Size - Practical Tests 132

HyperNEAT NEAT

Method NS OS ONS GNS OGN NS OS ONS GNS OGN

NS 0.13 0.81 0.95 0.47 0.32 0.71 0.70 0.32 0.53 0.49

OS 0.84 0.54 0.85 3.21 2.94 0.41 0.37 0.25 1.83 1.36

ONS 1.32 0.37 0.33 3.23 3.01 0.42 0.32 0.15 1.01 0.90

GNS 1.46 3.28 3.64 0.70 1.11 1.56 4.07 1.40 0.24 0.27

OGN 1.25 3.43 3.45 0.36 0.78 1.79 2.42 1.69 0.67 0.53

TABLE D.7: HyperNEAT variants efficiency pair-wise practical significance comparisons based
on Cohen’s effect size (d values), behavior transfer vs no behavior transfer in 4vs3 keep-away.

HyperNEAT NEAT

Method NS OS ONS GNS OGN NS OS ONS GNS OGN

NS 0.36 1.50 1.46 0.78 0.57 0.59 0.38 0.56 0.88 0.50

OS 0.40 0.63 0.58 2.91 2.93 0.37 0.10 0.30 1.73 0.95

ONS 0.40 0.18 0.34 1.46 0.84

GNS 1.11 4.59 3.06 0.27 0.60 2.16 6.57 2.51 0.74 0.77

OGN 1.08 2.71 2.65 0.29 0.57 1.82 2.49 2.20 0.11 0.33

TABLE D.8: HyperNEAT variants efficiency pair-wise practical significance comparisons based
on Cohen’s effect size (d values), behavior transfer vs no behavior transfer in 5vs3 keep-away.

HyperNEAT NEAT

Method NS OS ONS GNS OGN NS OS ONS GNS OGN

NS 0.81 2.19 1.62 0.61 0.47 1.02 0.27 0.44 0.69 0.32

OS 0.15 1.11 0.47 1.38 1.48 1.62 0.16 0.42 1.89 0.89

ONS 0.19 1.46 0.72 1.54 1.92 0.55 1.38 0.82 3.57 1.86

GNS 1.47 3.34 2.63 0.22 0.68 2.97 1.90 1.94 0.17 0.48

OGN 1.29 2.45 1.99 0.17 0.49 2.44 1.32 1.54 0.27 0.29

TABLE D.9: HyperNEAT variants efficiency pair-wise practical significance comparisons based
on Cohen’s effect size (d values), behavior transfer vs no behavior transfer in 5vs4 keep-away.

HyperNEAT NEAT

Method NS OS ONS GNS OGN NS OS ONS GNS OGN

NS 0.34 1.35 1.27 0.41 0.45 1.03 0.24 0.18 0.63 0.92

OS 0.57 0.85 0.73 2.35 2.87 0.61 0.32 0.43 1.36 1.79

ONS 0.51 0.99 0.92 2.26 2.78 0.41 0.67 0.93 1.96 2.60

GNS 1.09 4.02 2.27 0.49 0.49 2.55 1.32 1.49 0.52 0.26

OGN 1.28 3.25 3.42 0.59 0.63 2.30 1.24 1.33 0.43 0.18

TABLE D.10: HyperNEAT variants efficiency pair-wise practical significance comparisons based
on Cohen’s effect size (d values), behavior transfer vs no behavior transfer in 6vs4 keep-away.

Appendix D. Cohen’s Effect Size - Practical Tests 133

HyperNEAT NEAT

Method NS OS ONS GNS OGN NS OS ONS GNS OGN

NS 0.42 0.90 0.82 0.40 0.41 1.86 0.55 0.66 0.46 0.15

OS 0.10 1.10 0.96 1.21 2.94 1.22 0.15 0.13 1.19 0.74

ONS 0.17 1.01 0.87 1.23 2.84 0.90 0.67 0.40 1.80 1.42

GNS 1.32 2.99 2.49 0.31 0.65 2.23 1.14 1.17 0.29 0.69

OGN 1.37 2.41 2.36 0.41 0.74 2.01 0.83 0.92 0.20 0.40

TABLE D.11: HyperNEAT variants efficiency pair-wise practical significance comparisons based
on Cohen’s effect size (d values), behavior transfer vs no behavior transfer in 6vs5 keep-away.

Efficiency HyperNEAT NEAT
Comparison 4vs3 5vs3 5vs4 6vs4 6vs5 4vs3 5vs3 5vs4 6vs4 6vs5

NS-OS 1.05 0.67 0.76 0.97 0.46 0.25 0.44 1.41 0.83 1.13
NS-ONS 1.24 0.65 0.22 0.87 0.36 0.57 0.24 1.01 1.06 0.88
NS-GNS 0.98 1.00 1.26 0.85 0.92 1.51 1.76 3.07 1.97 2.01
NS-OGN 0.75 0.84 1.23 0.92 1.11 1.34 1.13 1.91 2.49 1.69
OS-ONS 0.30 0.12 0.90 0.41 0.39 0.62 0.42 0.33 0.14 0.25
OS-GNS 2.86 3.53 2.68 2.68 1.70 2.59 2.46 1.77 0.86 0.89
OS-OGN 2.53 3.15 2.39 2.71 1.59 2.64 1.94 1.14 1.13 0.43

ONS-GNS 2.93 3.37 2.19 2.80 1.62 1.40 2.14 1.99 0.94 0.98
ONS-OGN 2.71 3.44 3.15 3.41 3.05 1.09 1.19 1.10 1.32 0.59
GNS-OGN 0.36 0.38 0.35 0.13 0.12 0.15 0.30 0.47 0.29 0.48

TABLE D.12: HyperNEAT variants efficiency pair-wise practical significance comparisons based
on Cohen’s effect size (d values).

134

Appendix E

Task Performance Comparison

E.1 Task Performance Comparisons

Average normalized maximum task performance progression for HyperNEAT vs NEAT
(given policy transfer), over 20 runs in each task. Evolution starts with a source task
for 30 generations and then evolved behaviors are transfered to initiate evolution at the
target task and evolution runs for 70 generations in the target task.

Comparison of TD methods (SARSA and QL-Learning) with NE methods (NEAT and
HyperNEAT) for all keep-away tasks.

Appendix E. Task Performance Comparison 135

FIGURE E.1: Task performance progression graph. The graph shows progression of mean of
normalized maximum task performance for all variants of NEAT vs HyperNEAT. Averages are
calculated over 20 runs and for each target keep-away task.

Appendix E. Task Performance Comparison 136

FIGURE E.2: RL versus NE method average task performance comparison for all keep-away tasks.
Left: SARSA and Q-Learning (TD methods), Right: NEAT and HyperNEAT (NE methods).

Appendix E. Task Performance Comparison 137

FIGURE E.3: Kohonen Self-Organizing Maps (SOMs) representing the explored behavior search
space in Keep-away 4vs3 for given HyperNEAT variants (GNS and OGN) with behavior transfer.
In each NE variant, left: shows codebook weight vector for data visualization and right: shows
u-matrix representing boundaries between clusters.

138

Bibliography

1. Abul O, Polat F, and Alhajj RS. Multiagent reinforcement learning using function
approximation. IEEE Transactions on Systems, Man, and Cybernetics.Part C:
Applications and Reviews 2000;30:485–497.

2. Aditya Rawal Padmini Rajagopalan RM. Constructing Competitive and
Cooperative Agent Behavior Using Coevolution. In: IEEE conference on
computational Intelligence and Games. IEEE Press, 2010:107–114.

3. Altenberg L. The evolution of evolvability. In: Advances in Genetic Programming.
Ed. by Kinnear K. Cambridge, USA: MIT Press, 1994:47–74.

4. Amigoni F and Schiaffonati V. Multiagent-Based Simulation in Biology. In:
Model-Based Reasoning in Science, Technology, and Medicine. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007:179–191.

5. Ammar H, Tuyls K, Taylor M, Driessens K, and Weiss G. Reinforcement Learning
Transfer via Sparse Coding. In: Proceedings of the eleventh international conference on
autonomous agents and multiagent systems. Valencia, Spain: AAAI, 2012:4–8.

6. Ammar H, Eaton E, Ruvolo P, and Taylor M. Online Multi-Task Learning for
Policy Gradient Methods. In: Proceedings of the 31st International Conference on
Machine Learning (ICML-14). Beijing, China: JMLR Workshop and Conference
Proceedings, 2014:1206–1214.

7. Antona M, Bousquet F, LePage C, Weber J, Karsenty A, and Guizol P. Economic
Theory of Renewable Resource Management: A Multi-agent System Approach.
In: Multi-Agent Systems and Agent-Based Simulation: First International Workshop,
MABS ’98, Paris, France, July 4-6, 1998. Proceedings. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1998:61–78.

8. Bahceci E and Miikkulainen R. Transfer of Evolved Pattern-Based Heuristics in
Games. In: Proceedings of the IEEE Symposium On Computational Intelligence and
Games. Perth, Australia: Morgan Kaufmann, 2008:220–227.

9. Baldassarre G, Nolfi S, and Parisi D. Evolving mobile robots able to display
collective behavior. Artificial Life 2003;9:255–267.

10. Bellman R. Adaptive Control Processes. New Jersey, USA: Princeton University
Press, 1961.

11. Bertsekas D. Dynamic Programming and Optimal Control. MA:Athena Scientific:
Belmont, 2001.

BIBLIOGRAPHY 139

12. Beyer HG. Evolutionary algorithms in noisy environments: theoretical issues and
guidelines for practice. Computer Methods in Applied Mechanics and Engineering
2000;186:239–267.

13. Bonabeau E, Theraulaz G, Arpin E, and Sardet E. The building behavior of lattice
swarms. In: Artificial Life IV: Proceedings of the Fourth International Workshop on the
Synthesis and Simulation of Living Systems. Cambridge, USA: MIT Press,
1994:307–312.

14. Boutsioukis G, Partalas I, and Vlahavas I. Transfer Learning in Multi-Agent
Reinforcement Learning Domains. In: Recent Advances in Reinforcement Learning.
Springer, 2012:249–260.

15. Bradtke SJ and Duff MO. Reinforcement Learning Methods for Continuous-Time
Markov Decision Problems. In: Advances in Neural Information Processing Systems 7
Conference. Denver, Colorado, USA, 1994:393–400.

16. Bryant B and Miikkulainen R. Neuro-evolution for Adaptive Teams. In:
Proceedings of the Congress on Evolutionary Computation. Canberra, Australia: IEEE
Press, 2003:2194–2201.

17. Busoniu L, Babuska R, and DeSchutter B. A Comprehensive Survey of Multiagent
Reinforcement Learning. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews 2008;38:156–172.

18. Cao YU, Fukunaga AS, and Kahng AB. Cooperative mobile robotics: antecedents
and directions. Autonomous Robotics 1997;4:1–23.

19. Carroll J and Seppi K. Task similarity measures for transfer in reinforcement
learning task libraries. In: Proceedings of 2005 IEEE International Joint Conference on
Neural Networks. QC, Canada: IEEE Press, 2005:803–808.

20. Chang Y han, Ho T, and Kaelbling LP. All learning is Local: Multi-agent Learning
in Global Reward Games. In: Advances in Neural Information Processing Systems 16.
MIT Press, 2004:807–814.

21. Christensen A and Dorigo M. Incremental Evolution of Robot Controllers for a
Highly Integrated Task. In: From Animals to Animats 9. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006:473–484.

22. Clune J, Ofria C, and Pennock R. How a generative encoding fares as
problem-regularity decreases. Parallel Problem Solving from Nature
2008;5199:358–367.

23. Clune J, Beckmann B, Ofria C, and Pennock R. Evolving coordinated quadruped
gaits with the hyperneat generative encoding. In: Proceedings of the Eleventh
conference on Congress on Evolutionary Computation. Trondheim, Norway: IEEE,
2009:2764–2771.

24. Clune J, Beckmann B, McKinley P, and Ofria C. Investigating whether Hyperneat
produces modular neural networks. In: Proceedings of the 12th annual conference on
Genetic and evolutionary computation. Portland, USA: ACM Press, 2010:635–642.

25. Clune J, Mouret JB, and Lipson H. The evolutionary origins of modularity.
Proceedings of Royal Society B 2013;280.

BIBLIOGRAPHY 140

26. Clune J, Stanley K, Pennock RT, and Ofria C. On the performance of indirect
encoding across the continuum of regularity. IEEE Transactions on Evolutionary
Computation 2011;15:346–367.

27. Cohen J. Statistical power analysis for the behavioral sciences (2nd ed.) Hillsdale,
N.J: Lawrence Earlbaum Associates, 1988.

28. Cohn MJ, Patel K, Krumlauf R, Wilkinsont DG, Clarke JD, and Tickle C. HOX9
genes and vertebrate limb specification. Nature 1997;387:97–101.

29. Crepinsek M, Liu S, and Mernik M. Exploration and Exploitation in Evolutionary
Algorithms. ACM Computing Surveys 2013;45(3):1–33.

30. Cuccu G and Gomez. F. When novelty is not enough. In: Proceedings of the
European Conference on the Applications of Evolutionary Computation
(EvoApplications). Springer, 2011:234–243.

31. Cully A and Mouret JB. Evolving a Behavioral Repertoire for a Walking Robot.
Evolutionary Computation 2016;24(1):59–88.

32. Cully A, Clune J, Tarapore D, and Mouret JB. Robots that can adapt like animals.
Nature 2015;527:503–507.

33. Cully A, Clune J, Tarapore D, and Mouret JB. Robots that can adapt like animals.
Nature 2015;521(1):503–507.

34. D’Ambroisio D, Lehman J, Risi S, and Stanley K. Evolving Policy Geometry for
Scalable multi-agent learning. In: Proceeding of 9th International Conference on
Autonomous Agents and Multiagents Systems. Richland, USA: International
Foundation for Autonomous Agents Systems, 2010:731–738.

35. D’Ambrosio D and Stanley K. Generative Encoding for Multiagent Learning. In:
Proceedings of the Genetic and Evolutionary Computation Conference. Atlanta, USA:
ACM Press, 2008:819–826.

36. D’Ambrosio D and Stanley K. Scalable Multiagent Learning through Indirect
Encoding of Policy Geometry. Evolutionary Intelligence Journal 2013;6:1–26.

37. D’Ambrosio D, Lehman J, Risi S, and Stanley K. Task switching in Multirobot
Learning through Indirect Encoding. In: Proceedings of the International Conference
on intelligent Robots and Systems. San Francisco, USA: IEEE, 2011:2802–2809.

38. Darwen P and Yao X. Automatic modularization by speciation. In: Proceedings of the
1996 IEEE International Conference on Evolutionary Computation. Piscataway, USA:
IEEE Computer Society Press, 1996:88––93.

39. David L. Collective Behavior. Upper Saddle River, NJ: Prentice Hall, 2002.
40. Degrave J, Burm M, Kindermans P, Dambre J, and Wyffels F. Transfer learning of

gaits on a quadrupedal robot. Adaptive Behavior 2015;23:9–19.
41. Didi S and Nitschke G. Hybridizing Novelty Search for Transfer Learning. In:

Proceedings of the IEEE Conference on Computational Intelligence and Robotics. Greece:
IEEE Press, 2016:1–8.

42. Didi S and Nitschke G. Multi-Agent Behavior-Based Policy Transfer. In: Proceedings
of the European Conference on the Applications of Evolutionary Computation. Springer,
2016:181–197.

BIBLIOGRAPHY 141

43. Didi S and Nitschke G. Neuro-Evolution for Multi-Agent Policy Transfer in
RoboCup Keep-Away. In: Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems. Singapore: ACM, 2016:1281–1282.

44. Doncieux S and Mouret JB. Behavioral diversity measures for Evolutionary
robotics. In: In IEEE Congress on Evolutionary Computation (CEC). Barcelona, Spain:
IEEE, 2010:1303–1310.

45. Doncieux S and Mouret JB. Beyond black-box optimization: a review of selective
pressures for evolutionary robotics. Evolutionary Intelligence 2014;7(2):71–93.

46. Doncieux S, Mouret JB, Bredeche N, and Padois V. Evolutionary Robotics:
Exploring New Horizons. In: New Horizons in Evolutionary Robotics. Berlin,
Germany: Springer, 2011:3–25.

47. Drchal J, Koutnik J, and Snorek M. HyperNEAT controlled robots learn how to
drive on roads in simulated environment. In: Proceedings of the Eleventh conference
on Congress on Evolutionary Computation. IEEE, 2009:1087–1092.

48. Drez̃ewski R. A model of co-evolution in multi-agent system. In: Multi-Agent
Systems and Applications III. Berlin, Germany: Springer-Verlag, 2003:314–323.

49. Eiben A and Schippers C. On Evolutionary Exploration and Exploitation.
Fundamental Informaticae 1998;35:35–50.

50. Eiben A and Smith J. Introduction to Evolutionary Computing. Berlin, Germany:
Springer, 2003.

51. Fachantidis A, Partalas I, Taylor M, and Vlahavas I. Transfer Learning via Multiple
Inter-Task Mappings. In: Recent Advances in Reinforcement Learning. Ed. by Sanner S
and Hutter M. Berlin, Germany: Springer, 2011:225–236.

52. Ferguson K and Mahadevan S. Proto-transfer learning in markov decision
processes using spectral methods. In: International Conference on machine learning
(ICML), Workshop on Transfer Learning. Pittsburgh, 2006.

53. Ferguson K and Mahadevan S. Proto-transfer learning in markov decision
processes using spectral methods. Tech. rep. Technical Report TR-08-23.
University of Massachusetts-Amherst, 2008.

54. Fernando F and Manuela V. Probabilistic Policy Reuse in a Reinforcement Learning
Agent. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents
and Multiagent Systems. Hakodate, Japan: ACM, 2006:720–727.

55. Flannery B, Teukolsky S, and Vetterling W. Numerical Recipes. Cambridge, UK:
Cambridge University Press, 1986.

56. Floreano D, Hauert S, Leven S, and Zufferey J. Evolutionary Swarms of Flying
Robots. In: International Symposium on Flying Insects and Robots. Cambridge, USA:
MIT Press, 2007:35–36.

57. Floreano D, Dürr P, and Mattiussi C. Neuroevolution: from architectures to
learning. Evolutionary Intelligence 2008;1:47–62.

58. Gauci J and Stanley K. A case study on the critical role of geometric regularity
in machine learning. In: Proceedings of the AAAI Conference on Artificial Intelligence.
AAAI Press, 2008:628–633.

BIBLIOGRAPHY 142

59. Geva S and Sitte J. A cart-pole experiment benchmarking for trainable controllers.
IEEE Control Systems Magazine. 1993;13:40–51.

60. Ghavamzadeh M, Mahadevan S, and Makar R. Hierarchical multi-agent
reinforcement learning. Autonomous Agents and Multi-Agent Systems
2006;13(2):197–229.

61. Goldberg D and Richardson J. Genetic algorithms with sharing for multimodal
function optimization. In: Proceedings of the Second International Conference on Genetic
Algorithms. San Francisco, USA: Morgan Kaufmann, 1987:148––154.

62. Goldberg DE. Genetic algorithms and Walsh functions: Part 2, deception and its
analysis. Complex Systems 1989;3:153–171.

63. Goldberg D and Holland J. Genetic Algorithms and Machine Learning. Machine
Learning 1988;3:95–99.

64. Gomes J and Christensen A. Generic behavior similarity measures for
evolutionary swarm robotics. In: Proceedings of the Genetic and Evolutionary
Computation Conference. Amsterdam, the Netherlands: ACM Press, 2013:199–206.

65. Gomes J and Christensen A. Generic Behaviour Similarity Measures for
Evolutionary Swarm Robotics. In: Proceedings of the Genetic and Evolutionary
Computation Conference. ACM, 2013:199–206.

66. Gomes J, Urbano P, and Christensen A. Evolution of swarm robotics systems with
novelty search. Swarm Intelligence 2013;7:115–144.

67. Gomes J, Mariano P, and Christensen A. Avoiding convergence in cooperative
coevolution with novelty search. In: Proceedings of the International conference on
Autonomous Agents and Multi-Agent Systems. Paris, France: ACM, 2014:1149–1156.

68. Gomes J, Mariano P, and Christensen A. Novelty Search in Competitive
Coevolution. In: Proceedings of the International Conference on Parallel Problem
Solving from Nature. Ljubljana, Slovenia: Springer, 2014:233–242.

69. Gomes J, Mariano P, and Christensen A. Devising Effective Novelty Search
Algorithms: A Comprehensive Empirical Study. In: Proceedings of the Genetic
Evolutionary Computation Conference. 2015:943–950.

70. Gomes J, Duarte M, Mariano P, and Christensen A. Cooperative Coevolution of
Control for a Real Multirobot System. In: Proceedings of the 14th International
Conference on Parallel Problem Solving from Nature (PPSN XIV). Edinburgh, UK:
Springer, 2016:In press.

71. Gomes J, Mariano P, and Christensen A. Novelty-driven Cooperative Coevolution.
Evolutionary Computation 2016;In Press.

72. Gomez F and Miikkulainen R. Incremental evolution of complex general behavior.
Adaptive Behavior 1997;5:317–342.

73. Gomez F. Sustaining diversity using behavioral information distance. In:
Proceedings of the Genetic Evolutionary Computation Conference. ACM, 2009:113–120.

74. Grabkovsky S, Birger K, and Lowell J. Comparison of NEAT and HyperNEAT
Performance on a Strategic Decision-Making Problem. Genetic and Evolutionary
Computing, International Conference on 2011:102–105.

BIBLIOGRAPHY 143

75. Green C. Phased Searching with NEAT: Alternating Between Complexification and
Simplification. Unpublished Manuscript. 2004.

76. Gruau F and Quatramaran K. Cellular encoding for interactive evolutionary
robotics. In: Proceeding of Fourth European conference on artificial life. Cambridge:
MIT Press, 1996:368–377.

77. Guestrin C, Lagoudakis M, and Parr R. Coordinated Reinforcement Learning. In:
Proceedings of the Nineteenth International Conference on Machine Learning. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2002:227–234.

78. Haynes T and Sen S. Evolving Cooperation Strategies. In: Proceedings of the First
International Conference on Multi-Agent Systems. Cambridge, USA: MIT Press,
1995:450–459.

79. Haynes T and Sen S. Co-adaptation in a team. International Journal of
Computational Intelligence and Organizations 1996;1:1–20.

80. Haynes T and Sen S. Evolving behavioral strategies in predators and prey. In:
Adaptation and Learning in Multi-Agent Systems: Lecture Notes in Computer Science.
Berlin, Germany: Springer-Verlag, 1996:113–126.

81. Hoffmann F. Fuzzy Logic Techniques for Autonomous Vehicle Navigation. In:
Studies in Fuzziness and Soft Computing Volume: The Role of Fuzzy Logic Control in
Evolutionary Robotics. Ed. by Driankov D and Saffiotti A. Heidelberg, Germany:
Physica-Verlag HD, 2001:119–147.

82. Hoffmann F and Pfister G. Evolutionary learning of a fuzzy control rule base for
an autonomous vehicle. In: Proceedings of the Fifth International Conference on
Information Processing and Management of Uncertainty in Knowledge-Based Systems.
Granada, Spain: MIT Press, 1996:659–664.

83. Hornby G. Measuring, enabling and comparing modularity, regularity and
hierarchy in evolutionary design. In: Proceedings of the Conference on Genetic and
Evolutionary Computation. Washington DC, USA: ACM Press, 2005:1729–1736.

84. Hornby G, Lipson H, and Pollack J. Generative Representations for the
Automated Design of Modular Physical Robots. IEEE Transactions on Robotics
and Automation 2003;19(4):703–719.

85. Howard RA. Dynamic Programming and Markov Processes. Cambridge, MA: MIT
Press, 1960.

86. Hu J and Wellman MP. Multiagent reinforcement learning:theoretical framework
and an algorithm. In: In Proceedings of the Fifteenth International Conference on
Machine Learning. San Francisco, California: ACM Press, 1998:242–250.

87. Jorgensen TG, Haynes BP, and Norlund C. Pruning Artificial Neural Networks
Using Neural Complexity Measures. International Journal of Neural Systems
2008;18:389–403.

88. Kaelbling L, Littman M, and Moore A. Reinforcement learning: A survey. Journal
of Artificial Intelligence 1996;4:237–285.

89. Kawai K, Ishiguro A, and Eggenberger P. Incremental Evolution of
Neurocontrollers with a Diffusion-Reaction Mechanism of Neuromodulators. In:

BIBLIOGRAPHY 144

Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and
Systems. Maui, Hawaii, USA: IEEE, 2001:2384–2391.

90. Kelly S and Heywood M. Genotype versus Behavioural Diversity for Teams of
Programs under the 4-v-3 Keepaway Soccer Task. In: Proceedings of Association for
the Advancement of Artificial Intelligence. n: AAAI, 2014:3110–3111.

91. Kistemaker S and Whiteson S. Critical factors in the performance of novelty
search. In: Proceedings of the Genetic and Evolutionary Computation Conference. ACM,
2011:965–972.

92. Kitano H. Designing neural networks using genetic algorithms with graph
generation systems. Complex Systems Journal 1990;4:461–476.

93. Klahr D and Carver S. Cognitive objectives in a LOGO debugging curriculum:
Instruction, learning and transfer. Cognitive Psychology 1988;20:362–404.

94. Klein J. Breve: A 3D Environment for the Simulation of Decentralized Systems and
Artificial Life. In: Proceedings of the Eighth International Conference on Artificial Life.
Cambridge, MA, USA: MIT Press, 2003:329–334.

95. Klein J and Spector L. 3D Multi-Agent Simulations in the breve Simulation
Environment. In: Artificial Life Models in Software. London: Springer London,
2009:79–106.

96. Klopf AH. Brain function and adaptive systems. A Heterostatic theory. Tech. rep.
Air Force Cambridge Research Laboratories, Bedford USA, 1972.

97. Knudson M and Tumer K. Policy Transfer in Mobile Robots using
Neuro-Evolutionary Navigation. In: Proceedings of the Genetic and Evolutionary
Computation Conference. Philadelphia, USA: ACM Press, 2012:1411–1412.

98. Kohl N and Miikkulainen R. Evolving Neural Networks for Fractured Domains.
In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation.
New York, NY, USA: ACM, 2008:1405–1412.

99. Kohl N and Miikkulainen R. Evolving Neural Networks for Strategic
Decision-making Problems. Neural Networks 2009;22:326–337.

100. Kohonen T. Self-organizing Maps. Secaucus, NJ, USA: Springer-Verlag New York,
Inc, 1997.

101. Konidaris G, Scheidwasser I, and Barto A. Transfer in Reinforcement Learning via
Shared Features. Journal of Machine Learning Research 2012;13:1333–1371.

102. Kuyer L, Whiteson S, Bakker B, and Vlassis N. Multiagent Reinforcement
Learning for Urban Traffic Control Using Coordination Graphs. Machine
Learning and knowledge Discovery in Databases 2008;5211:656–671.

103. Lazaric A, Restelli M, and Bonarini A. Transfer of samples in batch reinforcement
learning via clusterring. In: Proceedings of the Twenty-Fifth International Conference on
machine Learning. Helsinki, Finland: ACM, 2008:544–551.

104. Lehman J and Stanley K. Exploiting open-endedness to solve problems through
the search for novelty. In: Proceedings of the International Conference on Artificial Life.
Winchester, UK: MIT Press, 2008:329–336.

BIBLIOGRAPHY 145

105. Lehman J and Stanley K. Revising the evolutionary computation abstraction:
minimal criteria novelty search. In: Proceedings of the Genetic and Evolutionary
Computation Conference. 2010:103–110.

106. Lehman J and Stanley K. Abandoning objectives: Evolution through the search for
novelty alone. Evolutionary computation 2011;19(2):189–223.

107. Lehman J and Stanley K. Novelty search and the problem with objectives. In:
Genetic Programming in Theory and Practice IX. Berlin, Germany: Springer,
2011:37–56.

108. Lehman J, Stanley K, and Miikkulainen R. Effective Diversity Maintenance in
Deceptive Domains. In: Proceedings of the Genetic and Evolutionary Computation
Conference. ACM, 2013:215–222.

109. Lewis EB. A gene complex controlling segmentation in Drosophila. Nature
1978;276:565–570.

110. Liapis A, Yannakakis G, and Togelius J. Constrained novelty search: A study on
game content generation. Evolutionary Computation 2015;23(1):101–129.

111. Lipson H. Principles of modularity, regularity, and hierarchy for scalable systems.
In: Proceedings of Genetic and Evolutionary Computation Conference Workshop on
Modularity, Regularity, and Hierarchy in Evolutionary Computation. Washington DC,
USA, 2004:125–128.

112. Littman ML. Markov games as a framework for multi-agent learning. In: In
Proceedings of the Eleventh International Conference on Machine Learning. San
Francisco, California: ACM Press, 1994:157–163.

113. Littman ML. Value-function reinforcement learning in Markov games. Journal of
Cognitive Systems Research 2001;2:55–66.

114. Littman M. Friend-or-foe Q-learning in general-sum games. In: Proceeding of the
18th International Conference in Machine Learning. San Francisco, USA: Morgan
Kaufmann, 2001:322–328.

115. Lockett AJ, Chen CL, and Miikkulainen R. Evolving explicit opponent models in
game playing. In: Genetic and Evolutionary Computation Conference, GECCO 2007.
London,UK: ACM, 2007:2106–2113.

116. Lutz F. Generalization and Transfer Learning in Noise-affected Robot Navigation
Tasks. In: Proceedings of the Aritficial Intelligence 13th Portuguese Conference on
Progress in Artificial Intelligence. Berlin, Heidelberg: Springer-Verlag, 2007:508–519.

117. Maclin R and Shavlik JW. Creating advice-taking reinforcement learners. Journal
of Machine Learning 1996;22:251–281.

118. Maclin R, Shavlik J, Torrey L, Walker T, and Wild E. Giving advice about
preferred actions to reinforcement learners via knowledge-based kernel
regression. In: Proceedings of the 20th National Conference on Artificial Intelligence.
Pennysylvania, USA: The MIT Press, 2005:819–824.

119. Matsubara H, Noda I, and Hiraki K. Learning of cooperative actions in
multi-agent systems: a case study of pass and play in soccer. In: Adaptation,

BIBLIOGRAPHY 146

Co-evolution, and Learning in Multi-agent Systems: Papers from the 1996 AAAI Spring
Symposium. Boston, USA: AAAI Press, 1996:63–67.

120. Mckenney D and White T. Distributed and adaptive traffic signal control within a
realistic traffic simulation. Journal of Engineering Applications of Artificial
Intelligence 2013;26:574–583.

121. Meyerson E, Lehman J, and Miikkulainen R. Learning Behavior Characterization
for Novelty Search. In: Proceedings of the Genetic Evolutionary Computation
Conference. New York, NY, USA: ACM, 2016:149–156.

122. Miikkulainen R. Neuroevolution. Encyclopedia of Machine Learning 2010:716–720.
123. Miikkulainen R, Feasley E, Johnson L, et al. Multiagent Learning through

Neuroevolution. In: Advances in Computational Intelligence. Ed. by Liu J, Alippi C,
Bouchon-Meunier B, Greenwood G, and Abbass H. Berlin, Germany: Springer,
2012:24–46.

124. Miller G and Cliff D. Co-Evolution of Pursuit and Evasion I: Biological and
Game-Theoretic Foundations (Tech. Rep. CSRP311). Brighton, England:
University of Sussex: School of Cognitive and Computing Sciences, 1996.

125. Moriarty D. Symbiotic Evolution of Neural Networks in Sequential Decision Tasks.
PhD thesis. Austin, Texas: Department of Computer Sciences, The University of
Texas, 1997.

126. Moriarty D and Miikkulainen R. Learning Sequential Decision Tasks. In: Advances
in the Evolutionary Synthesis of Intelligent Agents. Cambridge, USA: MIT Press,
1995:367–382.

127. Moriarty D and Miikkulainen R. Efficient Reinforcement Learning Through
Symbiotic Evolution. Machine Learning 1996;22:11–33.

128. Moriarty D and Miikkulainen R. Hierarchical evolution of neural networks. In:
Proceedings of the 1998 IEEE Conference on Evolutionary Computation. NJ, USA: IEEE
Press Piscataway, 1998:428–433.

129. Moriguchi H and Honiden S. Sustaining Behavioral Diversity in NEAT. In:
Proceedings of the Genetic and Evolutionary Computation Conference. New York, USA:
ACM, 2010:611–618.

130. Moriguchi H and Honiden S. Sustaining Behavioral Diversity in NEAT. In:
Proceedings of the 12th annual conference on Genetic and Evolutionary Computation.
Portland, USA: ACM, 2010:611–618.

131. Morse G, Risi S, Snyder C, and Stanley K. Single-unit Pattern Generators for
Quadruped Locomotion. In: Proceedings of the 15th Annual Conference on Genetic
and Evolutionary Computation. New York, NY, USA: ACM, 2013:719–726.

132. Moshaiov A and Tal A. Family Bootstrapping: A Genetic Transfer Learning
Approach for Onsetting the evolution for a Set of Realated Robotic Tasks. In:
Proceedings of the Congress on Evolutionary Computation. IEEE Press,
2014:2801–2808.

133. Mouret JB and Clune J. Illuminating search spaces by mapping elites. arXiv
preprint 2015.

BIBLIOGRAPHY 147

134. Mouret JB and Doncieux S. Evolving modular neural-networks through
exaptation. In: Proceedings of IEEE Congress on Evolutionary Computation. IEEE,
2009:1570–1577.

135. Mouret JB and Doncieux S. Encouraging Behavioral Diversity in Evolutionary
Robotics: An Empirical Study. Evolutionary Computation 2012;20(1):91–133.

136. Mouret JB and Doncleux S. Using Behavioral Exploration Objectives to Solve
Deceptive Problems in Neuro-evolution. In: Proceedings of the Genetic and
Evolutionary Computation Conference. Montreal, Canada: ACM Press, 2009:627–634.

137. Mouret JB, Koos S, and Doncieux S. Crossing the Reality Gap: A Short Introduction
to the Transferability Approach. In: Proceedings of the International Conference on the
Simulation and Synthesis of Living Systems (Artificial Life XIII). East Lansing, USA:
MIT Press, 2012.

138. Ng A, Harada D, and Russell S. Policy invariance under reward transformations:
Theory and application to reawrd shaping. In: Proceedings of the 16th International
Conference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann,
1999:278–287.

139. Nishizaki I, Katagiri H, and Toshihisa T. Simulation Analysis Using Multi-Agent
Systems for Social Norms. Computational Economics 2009;34(1):37–65.

140. Nitschke G. Designing emergent cooperation: A pursuit-evasion game case study.
Artificial Life and Robotics 2005;9(4):222–233.

141. Nitschke G and Didi S. Evolutionary Policy Transfer and Search Methods for
Boosting Behavior Quality: RoboCup Keep-Away Case Study. Frontiers in
Robotics and AI 2017;4(62):1–25.

142. Nitschke G, Schut M, and Eiben A. Emergent Specialization in Biologically Inspired
Collective Behavior Systems. In: Intelligent Complex Adaptive Systems. New York,
USA: IGI, 2007:100–140.

143. Nitschke G, Eiben A, and Schut M. Evolving Team Behaviors with Specialization.
Genetic Programming and Evolvable Machines 2012;13(4):493–536.

144. Noda I, Matsubara H, Hiraki K, and Frank I. Soccer server: A tool for research on
multiagent systems. Applied Artificial Intelligence 1998;12:233–250.

145. Nolfi S and Floreano D. Co-evolving predator and prey robots: Do arm races arise
in artificial evolution. Artificial Life 1999;4:311–335.

146. Nolfi S and Floreano D. Evolutionary Robotics: The Biology, Intelligence, and
Technology of Self-Organizing Machines. MIT Press, 2000.

147. Pan S and Yang Q. A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering 2010;22(10):1345–1359.

148. Panait L and Luke S. Cooperative Multi-Agent Learning: The State of the Art.
Autonomous Agents and Multi-Agent Systems 2005;3:387–434.

149. Panait L and Luke S. Cooperative multi-agent Learning: The state of the art.
Autonomous Agents and Multi-Agent Systems 2005;11:387–434.

150. Peters J and Schaal S. Reinforcement learning of motor skills with policy gradients.
Neural Networks 2008;21:682–697.

BIBLIOGRAPHY 148

151. Price B and Boutilier C. Impicit Imitation in Multiagent reinforcement learning.
In: Proceeding of the sixteeenth Conference on machine Learning. San Francisco, USA:
Morgan Kaufmann, 1999:325–334.

152. Price B and Boutilier C. Accelerating reinforcement learning through implicit
imitation. Journal of Artificial intelligence Research 2003;19:569–629.

153. Pugh J, Soros L, Szerlip P, Paul A, and Stanley K. Confronting the Challenge of
Quality Diversity. In: Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation. New York, NY, USA: ACM, 2015:967–974.

154. R. Sutton A. Koop DS. On the role of tracking in stationary environments. In:
Proceedings of the 24th International Conference on Machine Learning. New York,
USA: ACM, 2007:871–878.

155. Radcliffe NJ. Genetic set recombination and its application to neural network
topology optimisation. Neural Computing & Applications 1993;1:67–90.

156. Rajagopalan P, Rawal A, Miikkulainen R, Wiseman M, and Holekamp K. The Role
of Reward Structure, Coordination Mechanism and Net Return in the Evolution of
Cooperation. In: Proceedings of the IEEE Conference on Computational Intelligence and
Games. 258-265: IEEE Press, 2011.

157. Randlov J and Alstrom P. Learning to drive a bicycle using reinforcement learning
and shaping. In: Proceedings of the 15th International Conference on Machine Learning.
San Francisco, CA, USA: Morgan Kaufmann, 1998:463–471.

158. Reynolds CW. Flocks, herds, and schools: a distributed behavioral model.
Computer Graphics 1987;21:25–34.

159. Risi S and Stanley K. An enhanced hypercube-based encoding for evolving the
placement, density, and connectivity of neurons. Artificial Life 2012;18(4):331–363.

160. Risi S and Stanley K. Confronting the challenge of learning a flexible neural
controller for a diversity of morphologies. In: Proceedings of the Genetic and
Evolutionary Computation Conference. 2013:255–261.

161. Risi S, Hughes C, and Stanley K. Evolving Plastic Neural Networks with Novelty
Search. Adaptive Behavior 2010;18:470–491.

162. Ruvolo P and Eaton E. An efficient lifelong learning algorithm. In: Proceedings of
the 30th International Conference on Machine Learning (ICML). Atlanta, USA: JMLR
Workshop and Conference Proceedings, 2013:507–515.

163. Sareni B and Krahenbuhl L. Fitness Sharing and Niching Methods Revisited. IEEE
Transactions on Evolutionary Computation 1998;2(3):97–106.

164. Schaffer J, Whitley D, and Eshelman L. Combinations of genetic algorithms and
neural networks: a survey of the state of the art. Combinations of Genetic
Algorithms and Neural Networks 1992;2:1–37.

165. Shoham Y and Leyton-Brown K. Multiagent Systems: Algorithmic,
Game-Theoretic, and Logical Foundations. New York, USA: Cambridge
University Press, 2008.

166. Silva F, Duarte M, Correia L, Oliveira S, and Christensen A. Open Issues in
Evolutionary Robotics. Evolutionary Computation 2016;In press.

BIBLIOGRAPHY 149

167. Silver D, Yang Q, and Li L. Lifelong machine learning systems: beyond learning
algorithms. Lifelong Machine Learning, Papers from the 2013 AAAI Spring
Symposium 2013:25–27.

168. Singh SP and Sutton RS. Reinforcement learning with replacing eligibility traces.
Machine Learning 1996;22:123–158.

169. Smith R, Forrest S, and Perelson A. Searching for diverse, cooperative populations
with genetic algorithms. Evolutionary Computation 1993;1:127––149.

170. Spector L, Klein J, Perry C, and Feinstein M. Emergence of collective behavior in
evolving populations of flying agents. Genetic Programming and Evolvable
Machines 2005;6:111–125.

171. Stanley K. Efficient Evolution of Neural Networks Through Complexification. Ph.
D. Dissertation. Austin, USA: Department of Computer Sciences, The University
of Texas, 2004.

172. Stanley K. Compositional pattern producing networks: A novel abstraction of
development. Genetic Programming and Evolvable Machines 2007;8:131–162.

173. Stanley K and Miikkulainen R. Evolving neural networks through augmenting
topologies. Evolutionary Computation 2002;10:99––127.

174. Stanley K and Miikkulainen R. Competitive Coevolution Through Evolutionary
Complexification. Journal of Artificial Intelligence Research 2004;21:63–100.

175. Stanley K, Bryant B, and Miikkulainen R. Evolving Neural Network Agents in the
NERO Video Game. In: Proceedings of the IEEE 2005 Symposium on Computational
Intelligence and Games. Piscataway, USA: IEEE Press, 2005:182–189.

176. Stanley K, D’Ambrosio D, and Gauci J. A Hypercube-Based Indirect Encoding for
evolving large-scale neural networks. Artificial Life 2009;15:185–212.

177. Stanley KO and Miikkulainen R. Competitive Coevolution Through Evolutionary
Complexification. Journal of Artificial Intelligence Research 2004;21(1):63–100.

178. Stanley KO and Miikkulainen R. Evolving a Roving Eye for Go. In: Genetic and
Evolutionary Computation Conference. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004:1226–1238.

179. Stanley K. Generative and Developmental Systems Tutorial. In: Proceedings of the
2016 on Genetic and Evolutionary Computation Conference Companion. New York, NY,
USA: ACM, 2016:609–638.

180. Stone P. Layered Learning in Multiagent Systems: A Winning Approach to Robotic
Soccer. Cambridge, MA, USA: MIT Press, 2000.

181. Stone P and Sutton R. Keepaway Soccer: A Machine Learning Testbed. In:
RoboCup-2001: Robot Soccer World Cup V. Berlin, Germany: Springer-Verlag,
2002:214–223.

182. Stone P and Veloso M. The CMUNITED-97 Simulator Team. In: RoboCup-97: Robot
Soccer World Cup. Berlin, Germany: Springer Verlag, 1998:389–397.

183. Stone P and Veloso M. Towards Collaborative and Adversarial Learning: A Case
Study in Robotic Soccer. Evolution and learning in multi-agent systems
2002;48:83–104.

BIBLIOGRAPHY 150

184. Stone P, Sutton RS, and Singh S. Reinforcement Learning for 3 vs. 2 Keepaway.
In: RoboCup 2000: Robot Soccer World Cup IV. London, UK, UK: Springer-Verlag,
2001:249–258.

185. Stone P, Sutton R, and Kuhlmann G. Reinforcement learning for RoboCup-soccer
keepaway. Adaptive Behavior 2005;13(3):165–188.

186. Stone P, Kuhlmann G, Taylor M, and Liu Y. Keepaway Soccer: From machine
learning testbed to benchmark. In: Proceedings of RoboCup-2005: Robot Soccer World
Cup IX. Springer, 2006:93–105.

187. Suchorzewski M. Evolving Scalable and Modular Adaptive Networks with
Developmental Symbolic Encoding. Evolutionary intelligence 2011;4:145–163.

188. Suchorzewski M and Clune J. A novel generative encoding for evolving modular,
regular and scalable networks. In: Proceedings of the Congress on Evolutionary
Computation. New Orleans, USA: IEEE Press, 2011:1523–1530.

189. Suematsu N and Hayashi A. A multiagent reinforcement learning algorithm using
extended optimal response. In: Proceeding of the 1st International Joint Conference in
Autonomous Agents and Multiagent Systems. Bologna, Italy, 2002:370–377.

190. Sutton R. Learning to predict by the methods of temporal difference. Machine
Learning 1998;3:9–44.

191. Sutton R and Barto A. An Introduction to Reinforcement Learning. Cambridge,
USA: John Wiley and Sons, 1998.

192. Sycara K. Multiagent systems. AI Magazine. 1998;19:79–92.
193. Taylor A, Dusparic I, Galvan-Lopez E, Clarke S, and Cahill V. Transfer Learning

in Multi-Agent Systems through Parallel Transfer. In: Proceedings of the 30th
International Conference on Machine Learning. Omnipress, 2013:28–37.

194. Taylor M and Stone P. Behavior Transfer for Value-Function-Based Reinforcement
Learning. In: Proceedings of the Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems. New York, USA: ACM Press, 2005:53–59.

195. Taylor M and Stone P. Towards reinforcement learning representation transfer. In:
Proceedings of the 6th International Joint Conference on autonomous agents and
multi-agent systems. New York, USA: ACM, 2007:101–103.

196. Taylor M and Stone P. Transfer Learning for Reinforcement Learning Domains: A
survey. Journal of Machine Learning Research 2009;10(1):1633–1685.

197. Taylor M, Stone P, and Liu Y. Value Functions for RL-based Behavior Transfer:
A Comparative Study. In: Proceedings of the 20th National Conference on Artificial
Intelligence - Volume 2. Pittsburgh, Pennsylvania: AAAI Press, 2005:880–885.

198. Taylor M, Whiteson S, and Stone P. Comparing Evolutionary and Temporal
Difference Methods in a Reinforcement Learning Domain. In: Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation. New York, NY, USA:
ACM, 2006:1321–1328.

199. Taylor M, Whiteson S, and Stone P. Transfer Learning for Policy Search Methods.
In: ICML 2006: Proceedings of the Twenty-Third International Conference on Machine
Learning Transfer Learning Workshop. Pittsburgh, USA: ACM, 2006:1–4.

BIBLIOGRAPHY 151

200. Taylor M, Whiteson S, and Stone P. Temporal Difference and Policy Search
Methods for Reinforcement Learning: An Empirical Comparison. In: Proceedings of
the 22Nd National Conference on Artificial Intelligence - Volume 2. AAAI Press,
2007:1675–1678.

201. Taylor M, Stone P, and Liu Y. Transfer learning via inter-task mappings for
temporal difference learning. Journal of Machine Learning 2007;8(1):2125–2167.

202. Thrun S. Lifelong Learning Algorithms. Boston, MA: Springer, 1998.
203. Torrey L and Shavlik J. Transfer Learning. In: Handbook of Research on Machine

Learning Applications. Hershey, USA: IGI Global, 2009:17–23.
204. Torrey L, Walker T, Shavlik JW, and Maclin R. Using Advice to Transfer Knowledge

Acquired in One Reinforcement Learning Task to Another. In: In Proceeding of the
16th European Conference on Machine Learning. Springer, 2005:412–424.

205. Torrey L, Shavlik J, Walker T, and Maclin R. Skill acquisition via transfer learning
and advise taking. In: Proceeding of the 17th European Conference on Machine Learning.
Berlin, Germany: Springer-Verlag, 2006:425–436.

206. Torrey L, Maclin R, Shavlik J, Walker T, and Wild E. Transfer Learning via Advice
Taking. In: Advances in Machine Learning. Berlin, Germany: Springer, 2010:147–170.

207. Trujillo L, Olague G, Lutton E, and de Vega F. Discovering Several Robot
Behaviors through Speciation. In: Applications of Evolutionary Computing. Berlin,
Germany: Springer, 2008:164–174.

208. Velez R and Clune J. Novelty Search Creates Robots with General Skills for
Exploration. In: Proceedings of the Genetic and Evolutionary Computation Conference.
Vancouver, Canada: ACM, 2014:737–744.

209. Verbancsics P. Effective Task Transfer through Indirect Encoding. PhD Thesis.
Orlando, USA: Department of Electrical Engineering and Computer Science,
University of Central Florida, 2011.

210. Verbancsics P and Stanley K. Evolving static representations for task transfer.
Journal of Machine Learning Research 2010;11:1737–1763.

211. Verbancsics P and Stanley K. Constraining connectivity to encourage modularity in
HyperNEAT. In: Proceedings of the Genetic and Evolutionary Computation Conference.
ACM, 2011:1483–1490.

212. Vlassis N. A Concise Introduction to Multiagent Systems and Distributed Artificial
Intelligence. Morgan and Claypool Publishers, 2007.

213. Ward C, Gobet F, and Kendall G. Evolving Collective Behavior in an Artificial
Ecology. Artificial Life: Special issue on Evolution of Sensors in Nature, Hardware
and Simulation 2001;7:191–209.

214. Watkins C. Learning from delayed rewards. England: PhD Thesis, University of
Cambridge, 1989.

215. Weiss G. Multiagent Systems. Cambridge, USA: MIT Press, 1999.
216. Whitehead S and Ballard D. Learning to percieve and act by trial and error.

Machine Learning 1991;7(1):45–83.

BIBLIOGRAPHY 152

217. Whiteson S and Stone P. Evolutionary function approximation for reinforcement
learning. Journal of Machine Learning Research 2006;7(1):877–917.

218. Whiteson S, Kohl N, Miikkulainen R, and Stone P. Evolving Keep-away Soccer
Players through Task Decomposition. In: Proceeding of the Genetic and Evolutionary
Computation Conference. Chicago: AAAI Press, 2003:356–368.

219. Whiteson S, Taylor M, and Stone P. Critical factors in the empirical performance
of temporal difference and evolutionary methods for reinforcement learning.
Autonomous Agent Multi-Agent Systems 2010;21(1):1–25.

220. Whitley D, Starkweather T, and Bogart C. Genetic algorithms and neural networks:
optimizing connections and connectivity. Parallel Computing 1990;14:347–361.

221. Whitley D, Mathias K, and Fitzhorn P. Delta-Coding: An iterative search strategy
for genetic algorithms. In: Proceedings of the Fourth International Conference on Genetic
Algorithms. Montreal, Canada: Morgan Kaufmann, 1991:77–84.

222. Wineberg M and Oppacher F. The Underlying Similarity of Diversity Measures
Used in Evolutionary Computation. In: Proceedings of the Genetic and Evolutionary
Computation Conference. Springer, 2003:1493–1504.

223. Woltz D, Gardner M, and Bell B. Negative transfer errors in sequential skills:
Strong-but-wrong sequence application. Journal of Experimental Psychology:
Learning, Memory and Cognition 2000;26(3):601–635.

224. Yang G and Francesca T. Argumentation Accelerated Reinforcement Learning for
RoboCup Keepaway-Takeaway. In: Theory and Applications of Formal Argumentation:
Second International Workshop, TAFA 2013, Beijing, China, August 3-5, 2013, Revised
Selected papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014:79–94.

225. Yao X. Evolutionary Artificial Neural Networks. Journal of Neural Systems
1999;4:203–222.

226. Yong C and Miikkulainen R. Cooperation Coevolution of Multi-Agent Systems.
Technical Report AI01-287. Austin, USA: Department of Computer Sciences, The
University of Texas, 2007.

227. Yong C and Miikkulainen R. Co-evolution of role-based cooperation in
Multi-Agent systems. IEEE Transactions on Autonomous Mental Development
2010;1:170–186.

228. Yong C, Stanley KO, Miikkulainen R, and Karpov I. Incorporating advice into
neuroevolution of adaptive agents. In: Proceedings of the Second AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment. ACM, 2006:98–104.

229. Zaera N, Cliff D, and Bruten J. (Not) Evolving Collective Behaviors in Synthetic
Fish (Tech. Rep.) Bristol, England: Hewlett-Packard Laboratories, 1996.

230. Zhao J and Peng G. NEAT versus PSO for Evolving Autonomous Multi-agents
Coordination on Pursuit-Evasion Problem. In: Informatics in Control, Automation and
Robotics: Volume 2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012:711–717.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Question
	Contributions and Impact
	Overview of the Dissertation

	Background and Related Work
	Learning in Collective behavior tasks
	Reinforcement Learning
	Neuro-Evolution (NE)
	Conventional Neuro-Evolution and Coevolution
	Topology and Weight Evolving Artificial Neural Networks
	Generative Encoding in Neuro-Evolution

	Collective Behavior Transfer
	Reinforcement Learning Behavior Transfer
	Neuro-Evolution for Behavior Transfer

	Diversity Maintenance Methods
	Discussion and Summary

	Methodology
	Neuro-Evolution of Augmenting Topology (NEAT)
	NEAT Behavior Transfer

	HyperNEAT: Hypercube-based NEAT
	HyperNEAT Behavior Transfer

	Reinforcement Learning
	SARSA
	Q-Learning
	Function Approximation
	TD Behavior Transfer

	Behavior Adaptation Methods
	Objective Based Search (OS)
	Behavioral Diversity and Objective-based Search
	Novelty Search (NS)
	Hybrid Objective-Novelty Search (ONS)

	Genotype Diversity and Objective Based
	Genotype Novel Search (GNS)
	Hybrid Objective-GNS (OGN)

	Discussion and Summary

	Behavior Transfer and Neuro-Evolution Experiments
	Collective behavior Task and Performance Specification
	Complexity in keep-away task

	NEAT for Collective Behavior Evolution
	HyperNEAT for Collective Behavior Evolution
	 NEAT and HyperNEAT Experiments Setup
	Behavior Transfer Experiments

	Results and Discussion
	Task Performance Comparisons
	Objective-based Search (OS variant)
	Genotype Diversity Maintenance (GNS, OGN variants)
	Behavioral Diversity Maintenance (NS, ONS variants)
	Efficiency Comparison
	Solution Complexity
	Behavior Search Space Analysis
	Behavior Transfer Results

	Summary and Conclusion

	Reinforcement Learning Experiments
	Collective Behavior adaptation in Reinforcement Learning
	Mapping Keep-Away soccer to Reinforcement learning
	Keep-away Task Complexity
	Function Approximation and Keep-Away

	Experimental Setup
	Reinforcement learning and Collective behavior Transfer
	Results Discussion
	Effectiveness
	Efficiency of TD methods
	Reinforcement Learning Behavior Transfer
	Neuro-Evolution versus Reinforcement Learning

	Summary and Conclusion

	Discussion
	Benefits of Neuro-evolution and Behavior transfer
	Benefits of Objective versus Non-Objective-based Search
	Reinforcement Learning versus Neuro-evolution
	Behavior Transfer versus No Behavior Transfer
	Summary

	Conclusion
	Contributions
	Future Possibilities
	Summary

	Task Performance
	Effectiveness vs Efficiency - Statistical Tests
	Efficiency - Statistical Test Comparison (Behavior Transfer)
	Efficiency - Behavior Transfer vs No Behavior Transfer
	Effectiveness - Statistical Test Comparison
	Effectiveness - Behavior Transfer vs No Behavior Transfer

	Solution Complexity -Statistical Tests
	Pair-wise Statistical Test Comparisons

	Cohen's Effect Size - Practical Tests
	Pairwise Practical Tests Comparisons

	Task Performance Comparison
	Task Performance Comparisons

	Bibliography

