UNIVERSITY OF CAPE TOWN

Determinants of vaccine hesitancy in Africa: a systematic review

Alexander Paone
PNXALE002

Dissertation submitted in partial fulfillment of the requirements of the degree

MASTER OF PUBLIC HEALTH
General Track

School of Public Health & Family Medicine

Supervisor: Dr Benjamin Kagina
Co-Supervisors: Tali Cassidy, Prof. Gregory Hussey, and Dr Rudzani Muloiw

March 2017
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
PREAMBLE

Declaration

I, Alexander Paone (PNXALE002), hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university.

I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever.

Signature: [signature]

Alexander Paone
March 2017
Abstract

This MPH dissertation is a systematic review of the factors contributing to vaccine hesitancy in Africa. The dissertation comprises of the following three parts:

The research protocol (Part A) outlines the background and proposed methods of the research. The protocol outlines the search strategy used to identify research eligible for this review according to defined criteria. The objective of this research was to identify determinants of vaccine hesitancy in Africa. The protocol describes data collection methods and the analysis plan of this research in order to address the objective.

The literature review (Part B) provides a summary and interpretation of the current literature on barriers to vaccination, specifically vaccine hesitancy and its impacts on immunisation programs. The literature review identifies discord among literature in defining vaccine hesitancy and evaluating its presence and impact on varying populations, and reviews the attempts for standardisation by the Strategic Advisory Group of Experts Working Group on Vaccine Hesitancy. Lastly, the literature review identifies gaps in the literature, and suggests filling them ideally with a standardised metric.

The manuscript (Part C) is presented in a format suitable for Vaccine journal submission. The manuscript includes a background, a description of the methods used, and a presentation and discussion of the results of the systematic review.
Acknowledgements

Many thanks go to my supervisor, Dr. Benjamin Kagina, for his guidance and dedication to this project. Your knowledge on the topic, patience, and attention to detail were essential to every step of the process, and I am very grateful for the support.

I would also like to express thanks to my co-supervisor Tali Cassidy for her collaboration on this project. Your experience and guidance provided balance and quality, and your dedication is appreciated.

Thanks also to Prof. Gregory Hussey for allowing me to conduct this research on behalf of the Vaccines for Africa Initiative, and to Dr. Rudzani Muloiwa, who both offered guidance as co-supervisors.

I would also like to thank the staff of the UCT Health Sciences Library, including Tamzyn Suliaman for her guidance on the search strategy process, as well as Wendy Smith and Chezlen Levendal for their assistance locating articles. Thanks also to Liza Smith at the School of Public Health for her administrative assistance and personalised guidance, and to the staff of the UCT Health Sciences Postgraduate administration for their assistance.

The following individuals are acknowledged as co-authors on this paper:

Tali Cassidy
School of Public Health and Family Medicine, University of Cape Town
Medicins Sans Frontieres, Cape Town, South Africa
Department of Epidemiology, Boston University, United States

Prof. Gregory D. Hussey
Vaccines for Africa Initiative, Division of Medical Microbiology & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa

Dr. Rudzani Muloiwa
Department of Paediatrics & Child Health, Groote Schuur Hospital, University of Cape Town, South Africa

Dr. Benjamin M. Kagina
Vaccines for Africa Initiative, Division of Medical Microbiology & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
TABLE OF CONTENTS

Preamble ... 2

Declaration ... 2
Abstract ... 3
Acknowledgements ... 4
Table of contents .. 5

Part A: Protocol .. 8

Title .. 8
Abstract ... 9
Background ... 9
Study objectives .. 10
 1. Primary objective .. 10
Study eligibility criteria .. 10
 1. Participants .. 10
 2. Study settings ... 10
 3. Intervention ... 10
 4. Comparator .. 10
 5. Outcome ... 10
 6. Study designs ... 10
Methods ... 11
 1. Search strategy .. 11
 2. Study selection ... 11
 3. Data extraction ... 11
 4. Dealing with missing data 11
 5. Assessment of the risk of bias 12
Data Analysis .. 12
 1. Quantitative data analysis and synthesis 12
 2. Qualitative data analysis and synthesis 12
Discussion .. 12
Study strengths and limitations 12
References ... 12

Part B: Literature Review .. 14

Introduction .. 14
Search strategy ... 14
Summary and interpretation of the literature 14
Conclusion ... 18
References .. 18
Title 20
Abstract 21
Introduction 22
Methods 23
1. Types of studies selected 23
2. Study participants 23
3. Study outcomes 23
4. Study settings 23
5. Search strategy 23
6. Study selection 24
7. Data extraction 24
8. Assessment of the risk of bias 24
9. Quantitative and qualitative data analysis 24
 9.1. Quantitative data analysis 24
 9.2. Qualitative data analysis 24
Results 26
Characteristics of the included studies 26
1. Search of relevant records 26
2. Study designs and methods 26
 2.1 Risk of bias and quality assessment 26
3. Study settings 26
4. Study vaccines, participants, and delivery methods and sites 26
 4.1 Vaccines 26
 4.2 Participants decision-making position 27
 4.3 Delivery methods and sites 27
Reported determinants of vaccine hesitancy 27
5. Reported determinants overall 27
 5.1 Individual and group influences 27
 5.2 Vaccine specific issues 27
 5.3 Contextual influences 28
 5.4 Other reported determinants of vaccine hesitancy 28
6. Vaccine hesitancy, stratified by study vaccines 28
 6.1 Routine childhood immunisations (RC) 28
 6.2 Oral polio vaccine (OPV) 28
 6.3 Oral cholera vaccine (OCV) 28
 6.4 Measles-rubella vaccine (MR) 29
 6.5 Human papillomavirus vaccine (HPV) 29
 6.6 Hepatitis B vaccine (HepB) 29
7. Vaccine hesitancy by study settings 29
 7.1 Rural settings 29
 7.2 Urban settings 29
8. Vaccine hesitancy by delivery method and site 30
 8.1 Vaccination campaigns 30
 8.2 Routine immunisation activities 30
 8.3 Vaccination delivery sites 30
9. Vaccine hesitancy by participants' decision-making position

9.1 Independent decision-makers

9.2 Caregivers

9.3 Both independent decision-makers and caregivers

Discussion
Study strengths and limitations
Conclusion
References

Part D: Appendices and Figures

Table 1: Summary of included studies
Table 2: CASP Scores Table
Figure 1: PRISMA diagram
Figure 2: Map of included studies and vaccines
Figure 3: Reported determinants of vaccine hesitancy
Figure 4: Reported sub-determinants of vaccine hesitancy, by vaccine
Figure 5: Reported sub-determinants of vaccine hesitancy, by participant and setting
Figure 6: Reported sub-determinants of vaccine hesitancy, by delivery method and site
Appendix 1: Inclusion/exclusion criteria
Appendix 2: Search terms and strategy
Appendix 3: Quantitative code frame
Appendix 4: Qualitative code frame (SAGE Matrix)
Appendix 5: SAGE Determinants of Vaccine Hesitancy (definitions)
Appendix 6: Vaccine Journal instructions for authors
PROTOCOL

Determinants of vaccine hesitancy in Africa: a systematic review

Alexander Paone1,2, Tali Cassidy1,3,4, Gregory D. Hussey2,5, Rudzani Muloiwa2,6, and Benjamin M. Kagina1,2

1School of Public Health and Family Medicine, University of Cape Town
2Vaccines for Africa Initiative (VACFA)
3Medicins Sans Frontieres, Cape Town, South Africa
4Department of Epidemiology, Boston University, United States
5Division of Medical Microbiology & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
6Department of Paediatrics & Child Health, Groote Schuur Hospital, University of Cape Town, South Africa

Email addresses:
pnxale002@myuct.ac.za
talicassidy@gmail.com
gregory.hussey@uct.ac.za
rudzani.muloiwa@uct.ac.za
bengamin.kagina@uct.ac.za

Corresponding Author: Alexander Paone
Address: Room N2.09A, Werner & Beit North, Health Sciences Campus, Anzio Road, Observatory, 7925
Email: pnxale002@myuct.ac.za
Phone: +27 (79) 405 4774
Abstract

BACKGROUND: Vaccine hesitancy is defined by the World Health Organization (WHO) as a complex and context specific delay in acceptance or refusal of vaccines despite availability of vaccination services. The reasons why individuals hesitate or choose not to vaccinate are variable and not well described, and the factors contributing to vaccine hesitancy are unclear. Vaccine hesitancy influences vaccine coverage. In order to achieve high vaccination coverage and develop strategies to target vaccine hesitancy and to improve vaccination uptake, factors contributing to vaccine hesitancy must be better understood. The factors associated with vaccine hesitancy in low and middle-income countries (LMICs), specifically on the African continent, should be examined within their own context in order to develop context-specific strategies to address hesitancy. AIM: The aim of this review is to describe the determinants contributing to vaccine hesitancy in Africa. METHODS: A systematic review protocol for the study was developed and registered in the PROSPERO International Prospective Register of systematic reviews (registration number CRD42016051699). The systematic review study will search seven online databases for peer-reviewed papers that have conducted studies in any African country. Studies investigating the reasons why participants hesitate to vaccinate, or choose to delay or refuse vaccination of themselves or their dependents will be included. Studies to be included in the review will be on vaccine hesitancy against any WHO licensed vaccines as of 2016. Risk of bias for the included studies will be assessed using the CASP tool. Findings will be reported according to the WHO’s Strategic Advisory Group of Experts (SAGE) on Vaccine Hesitancy which categorises three broad groups of factors contributing to vaccine hesitancy. The findings can be used as a foundation to characterise vaccine hesitancy as well as to develop Africa-specific strategies to mitigate the impact of vaccine hesitancy on vaccine coverage.

Keywords: vaccine hesitancy, determinants, immunisation, vaccine, SAGE, Africa, immunization

Background

In the last four decades, African countries have achieved steady progress in reducing vaccine preventable diseases (VPDs) (1). The success is built on the expanded programme on immunisation (EPI), a platform used to administer vaccines mainly to children since its establishment in 1974 (1).

Recently, there are reports suggesting that vaccination coverage in many African countries has plateaued at suboptimal levels (2, 3). Many factors are thought to contribute to the observed plateau, among them: limited access to vaccination services, inadequate resources as well as vaccine hesitancy (1, 4). Vaccine hesitancy is a complex and context specific delay in acceptance or refusal of vaccines despite the availability of vaccine services (5). Not only does vaccine hesitancy impact those making the decision for themselves, but also those dependent on others to make the decision for them, such as children. Therefore, vaccine hesitancy has been associated with low compliance with vaccination schedules in some settings (4). Reports from developed countries show that vaccine hesitancy is increasing and could reverse some gains achieved through (6). Vaccine hesitancy is an under studied field, particularly so among African countries. It is possible that vaccine hesitancy contributes to suboptimal vaccination coverage observed among many African countries.

There have been many factors and reasons (broadly herein referred to as determinants) described to be associated with vaccine hesitancy (7). However, vaccine hesitancy is poorly understood in Africa. Our systematic review study describes the determinants associated with vaccine hesitancy in Africa.

The WHO, through the Strategic Advisory Group of Experts (SAGE) on Vaccine Hesitancy has categorised determinants associated with vaccine hesitancy into three groups of influences: contextual influences, individual and group influences, and vaccine/vaccination specific issues (7). Each of these categories has a number of subcategories that point to more specific, individual- and community-level influences of
vaccine hesitancy. We will use the SAGE categories of hesitancy to describe the determinants associated with vaccine hesitancy in Africa.

The aim of this review is to describe the determinants of vaccine hesitancy in Africa.

While few existing strategies have been designed to address vaccine hesitancy, even fewer have been evaluated for impact (8). Understanding the determinants of vaccine hesitancy is an important step towards the development of comprehensive strategies needed to improve vaccination uptake in African countries (9).

Study objectives

1. **Primary objective**
 To identify and describe the determinants of vaccine hesitancy in Africa.

Study eligibility criteria

We will use participants, intervention, comparator, and outcome (PICO) to structure our study eligibility criteria.

1. **Participants**
 Persons living in Africa and choosing not to be vaccinated with WHO-licensed vaccines as at December 2016. Persons may include patients, parents, guardians, caretakers, children, and adolescents. The SAGE Working Group on Vaccine Hesitancy defines a vaccine-hesitant individuals as "a heterogeneous group in the middle of a continuum ranging from total acceptance to complete refusal; these individuals may refuse some vaccines, but agree to others; delay vaccines or accept vaccines but are unsure of doing so" (7).

2. **Study settings**
 Studies conducted in any country on the African continent, with no date restriction.

3. **Intervention**
 Provision of any WHO-licensed vaccines/immunisation services as of December 2016, excluding seasonal or outbreak vaccines (10). Specific vaccines and vaccine preventable diseases (VPDs) to be included in this study will be all WHO-licensed vaccines. See Appendix 1 for a complete list.

4. **Comparator**
 Not applicable.

5. **Outcome**
 Determinants of vaccine hesitancy among study participants as defined by the SAGE Working Group on Vaccine Hesitancy Model of Determinants.

6. **Study designs**
 Quantitative studies (randomised controlled trials, controlled before-and-after studies, interrupted time series designs, cohort studies, case-control studies, cross-sectional studies) and qualitative studies (focus group discussions, in-depth interviews, direct observation, case studies, ethnography, and action research) will be included in the searches. Only randomised control studies that specifically aim to address vaccine hesitancy will be included. Interventional studies such as clinical trials or studies testing vaccine efficacy or effectiveness and not designed to measure the determinants of vaccine hesitancy for
example will be excluded. Non peer-reviewed papers including grey literature will be excluded. Systematic reviews and narrative reviews will be excluded.

Methods
This is a systematic review study. A systematic review protocol for the study has been developed and published in the PROSPERO International Prospective Register of systematic reviews (http://www.crd.york.ac.uk/PROSPERO), registration number CRD42016051699.

1. Search strategy
The PICO elements will be used to build a search strategy. Databases to be searched include: PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), Scopus, Web of Science, World Health Organization Library Information System (WHOLIS), Africa Wide, and CINAHL. Papers of any publication date will be included. See Appendix 2 for full search strategy.

2. Study selection
Prior study selection, search strategy will be optimised in PubMed database. PubMed has the most extensive and comprehensive search engine with the ability to also search for medical subject headings (MeSH). Search strategy optimisation will include the first author applying the search query to get outputs, and screening titles and abstracts to identify ten relevant studies. From the relevant studies, the first author will read full articles to identify any key terminologies that may not have been included in the first search and these new terms will be added. Additional optimisation will include testing sensitivity and specificity by systematically adding or omitting synonymous search terms, followed by the assessment of the outputs.

Following optimisation of the search query, the first author will search all identified databases and import the results into EndNote citation manager. Duplicates will be removed and recorded for a PRISMA diagram. The PRISMA flow chart will be used to summarise each step of the selection of studies for the review, including the reasons for exclusion of studies.

The results will then be imported into a MS Excel file where titles and abstracts will be screened by the first author. Results will be excluded based on the inclusion and exclusion criteria, recorded for the PRISMA diagram, and the process will also be completed and verified by the second author. Full text articles of the remaining papers will be identified by the first author and shared with the second author to begin the data extraction process. Reference lists from the included studies will be screened for possible relevant studies.

3. Data extraction
Once eligible studies have been selected, the data will be extracted using a data extraction form. The data extraction form will be piloted, and revised if necessary, prior to extracting data from the full text of all selected studies. The final data extraction form will be completed in Excel and use a standardised code-frame. The first author and two supervisors will compare their data extraction forms after reading full text articles in order to compare and discuss any discrepancies.

4. Dealing with missing data
If a selected study is found to have missing data, the study correspondent author will be contacted and requested for the missing data. Any missing data will be described for each included study and discussed to identify the extent to which the results of this review may be altered.
5. Assessment of the risk of bias
Risk of bias for the selected studies will be assessed using a critical appraisal tool (CASP). CASP appraisal tools are the optimal tool for appraising the variety of study designs that will make up this review situated within the field of public health. Critically appraising the studies used in this review will ensure high quality, trustworthy and relevant research (11).

Data analysis
1. Quantitative data analysis and synthesis
Quantitative data will include the number of participants per study, the number of studies per country and region (as determined by MeSH geographical terms), among other variables which will be piloted during the data extraction process.

2. Qualitative data analysis and synthesis
The qualitative data will be extracted using qualitative thematic coding within the data extraction form by the first author and a study team with experience in qualitative data analysis. The outcomes of the studies will be coded and distributed into three groups of determinants based on the SAGE Determinants model (contextual factors, individual/group factors, and vaccine-related factors) (9). Distributing factors using the SAGE Determinants model will compliment research on interventions targeting vaccine hesitancy.

Discussion
This review will identify determinants of vaccine hesitancy in various countries and study settings within Africa. The identified determinants will be discussed with reference to broader challenges for vaccine uptake, such as misinformation, cultural values, inequality, economic development, political stability, and literacy levels. Here, synthesis of qualitative research is valuable as it will bring to the forefront the critical issues affecting the reasons why individuals choose not to vaccinate, which can help to target future research on interventions into vaccine hesitancy and increase vaccine uptake within an African context.

Study strengths and limitations
This review will use unbiased study methods to describe vaccine hesitancy in Africa. A research limitation and potential source of bias may be the decision to exclude non-peer reviewed studies. However, due to the evolving nature of the vaccine hesitancy field, it was determined that unpublished studies are likely to show higher levels of non-standardisation in defining vaccine hesitancy, hence their exclusion. A potential limitation of this study will be its generalisability, due to the unlikelihood that every African country will be represented.

References

LITERATURE REVIEW

Introduction
Vaccine hesitancy is complex and varies by context. Until recently, vaccine hesitancy did not have a standardised definition that could be used by a range of stakeholders. While there is abundant literature describing factors or predictors of low uptake, there is limited research specifically aimed at identifying factors of vaccine hesitancy, even less so in African countries. The Strategic Advisory Group of Experts (SAGE) Working Group (WG) on Vaccine Hesitancy has attempted to define vaccine hesitancy and develop a metric to guide future research, which can be targeted to fill some of the gaps in the current research. The aim of this literature review is to describe vaccine hesitancy, the impact of vaccine hesitancy on vaccination, the current literature including gaps that exist to date, and the progress of and potential for standardisation within the topic of vaccine hesitancy.

Search strategy
The search strategy for this literature review was adapted from the search strategy utilised for the accompanying systematic review on factors associated with vaccine hesitancy in Africa (Appendix 2). The search strategy conducted for this literature review did not exclude review articles, and was not limited to countries within Africa.

Summary and interpretation of literature
Success of vaccination
Immunisation is one of the most successful and cost-effective public health interventions (4). Administration of vaccines is a preventative measure against vaccine preventable diseases (VPDs), and immunisation is effective at both individual and community levels. There is overwhelming evidence demonstrating the benefits of immunisation, the best example of which is the eradication of smallpox following a global immunisation campaign led by the World Health Organization (WHO) (1). There have also been significant achievements in the decline of diseases such as tetanus, diphtheria, and polio (4). Maximum benefits from immunisation are achievable when individuals are receptive of vaccines. To reach such targets, many obstacles, including vaccine hesitancy must be overcome.

The significant reduction of VPDs can be attributed to efforts of a number of global health organisations (2). The WHO launched the Expanded Programme on Immunisation (EPI) in 1974, which aims to make safe and effective vaccines accessible to all children globally (3). There have been successful efforts by a number of initiatives to increase EPI coverage, such as: Universal Childhood Immunisation, the Global Alliance for Vaccines and Immunisation (GAVI), the Millennium Development Goals, and most recently, the Global Vaccine Action Plan (GVAP) (4) which has set a target to utilise national vaccination programmes to reach 90% national vaccination coverage by 2020 (5).

Barriers to vaccination
Despite these international efforts, coverage estimates have plateaued in recent years (6). In sub-Saharan Africa, despite WHO Africa Region's EPI strategic plans of action during the 2000's, only 77% DTP3 (an indicator of EPI performance) coverage was achieved (4). Overall vaccination coverage in sub-Saharan Africa has remained constantly below that of other regions, and countries within Africa show large disparities in coverage (7).

To prevent and optimise control of VPDs, uptake rates must be improved in Africa. There have been significant reductions in VPDs where high vaccine coverage has been achieved (2). High uptake is crucial because, unlike medicines, vaccines work at both the individual and community level (8). In order to
achieve community-level immunity, there must be high uptake among individuals. Vaccine hesitancy contributes to low rates of uptake, and is an important challenge to overcome, as there are a number of determinants which can vary among diverse populations.

While the impact of vaccine hesitancy on vaccine coverage is observed in both developed and developing countries alike, the factors vary according to context. In developed countries there has been a paradigm shift from increasing access to increasing acceptance (9). Given the long history of vaccines in developed countries such as the United States, there has been significant increase in availability and the number of mandated vaccines, which has led to the absence of VPDs in the environment and in the memories of various stakeholders (10). Saad Omer reports on this in the United States, where a major reason for vaccine refusal is a low level of concern about the risk of many VPDs (24). Developed countries, such as the United Kingdom, also have the funding available to monitor vaccine acceptance and thus anticipate how to address hesitancy (25). Where uptake is low in developed countries, factors in play are understood to involve education, advocacy and acceptance (11). Developed countries are also challenged by a loss of public trust in vaccines (12). Misinformation and anti-vaccine movements, as well as the communication and media environment which have promulgated and dramatised such movements, are also prominent factors of low vaccine uptake that are found to a much lesser degree in developing countries (10, 13, 14).

Considering the differences between developing and developed countries, context-specific strategies must be developed to improve vaccine uptake rates in Africa. Developing countries, such as those in Africa, experience different factors contributing to the observed low vaccination coverage. Challenges such as competing health demands, poverty, inadequate knowledge on vaccination, religion, culture, weak health systems and underfunding, political will and competition for scarce resources (11) are prevalent in sub-Saharan African. Education of stakeholders, effective communication, and training of health workers have been identified as strategies that can have a positive impact on vaccine uptake in sub-Saharan Africa (11). An increase in uptake would reduce the risk of morbidity and mortality caused by VPDs and their complications among individuals as well as their communities by improving herd immunity. The increase in human capital that could be achieved improving vaccine coverage is also a cost-effective strategy to strengthening the long-term economic prospects of these developing countries (15). While most factors contributing to vaccine hesitancy differ between developed and developing countries, some countries in Africa, such as South Africa, are beginning to see an increase in factors more often reported in developed countries thanks to advancements in communication which have led to anti-vaccine movements (3).

Addressing vaccine hesitancy

Vaccine hesitancy has been an under researched topic without standardised terminologies or themes. There is much variation in the way vaccine hesitancy is defined, as well as the aims and objectives of literature which describes factors of vaccine hesitancy.

The literature search has identified numerous, sometimes competing, definitions of vaccine hesitancy. Peretti-Watel et al note the different attitudes within the field, such as those who consider vaccine hesitancy a long-standing phenomenon and attribute it to anti-vaccination attitudes, ignorance, misinformation or irrationality, versus those who describe it as a more recent attitude, distinct from anti-vaccination trends but correlated with knowledge and information (16). There was also some disjunction in defining vaccine-hesitancy as an empirical concept, as a general mental representation derived from the perception of objects or interventions, versus the current definition which covers a wide range of heterogeneous elements (16).
There is a gap in the literature that explicitly aims to describe factors contributing to vaccine hesitancy. Among literature which has reported factors of vaccine hesitancy, doing so is not often the primary research objective, and there is variation in the ways the factors are reported. The literature yields a variety of synonymous terms that may or may not be considered vaccine hesitancy, including terminology such as "factors", "reasons", "determinants" or "motivations" for "rejection", "non-acceptance", "refusal" or "hesitancy" of vaccinations. There is also much research aiming to determine predictors of vaccine uptake, refusal or hesitancy based on socio-economic determinants, rather than reasons as described by participants. While there may be overlap between studies in some of the reported factors, there is a lack of a standardised method to identify similar factors that could be targeted by interventions to address vaccine hesitancy.

Among research which has explicitly aimed to describe factors of vaccine hesitancy, there is a lack of standardisation in the way these factors are explained. A popular model utilised by some research focused on vaccine hesitancy is the Health Belief Model. The Health Belief Model "predicts that an individual's health behavior will depend on the value placed on achieving a goal and the belief that a certain behavior will achieve that goal" (17). The Health Belief Model takes into consideration the individual's perceived susceptibility and severity of a disease, as well as the perceived effectiveness and benefits of the intervention. While the Health Belief Model may be used to explain some factors of vaccine hesitancy at the individual level, it does not accurately take into account the influence of broader contextual factors (8). While other models, have been used in previous literature to explain vaccine hesitancy do share the common ground of viewing factors on a continuum, they do not adequately explain vaccine hesitancy at the population level, and cannot account for individuals who may accept a vaccine but remain doubtful and hesitant (18). To successfully mitigate vaccine hesitancy and ultimately increase acceptance and uptake, there is a need for a further development and standardisation within the field of vaccine hesitancy.

Standardising “vaccine hesitancy”

The SAGE Working Group on Vaccine hesitancy was conceived in 2012 with the aim to standardise the field of vaccine hesitancy, and to develop themes and tools to guide research and interventions. The SAGE has developed a definition for vaccine hesitancy, based upon experience in various settings and the use of the term in literature. The standardisation is expected to minimise subjectivity and ensure that clinicians, policy makers, researchers and other stakeholders would consistently use a standard term to cover the range of factors associated with vaccine hesitancy (19). According to SAGE, vaccine hesitancy refers to a "delay in acceptance or refusal of vaccines despite availability of vaccination services. Vaccine hesitancy is complex and context specific, varying across time, place and vaccines. It is influenced by factors such as complacency, convenience and confidence" (8). While vaccine uptake is sometimes affected by vaccine hesitancy, hesitancy does not always result in vaccine refusal, as individuals who accept some vaccines can still be considered hesitant if they reject other vaccines or have some doubts.

In addition to defining vaccine hesitancy, SAGE has developed the Vaccine Hesitancy Determinants Matrix, which SAGE describes as "useful for guidance on development of vaccine hesitancy indicators, survey questions, diagnostic tools, and strategies for intervention, and research" (8), and which was used as a foundation for this systematic review on vaccine hesitancy in Africa (Appendix 4). The SAGE Determinants matrix includes determinants identified from research studies and experiences of WG members and other experts. The SAGE Determinants Matrix is comprised of three main groups of influences of vaccine hesitancy: contextual influences, individual and group influences, and vaccine
specific issues. Each of these groups includes a range of determinants of vaccine hesitancy. Some of these determinants are comparably broad, "costs" for example, or another determinant covering "religion/culture/gender/socioeconomic" factors of vaccine hesitancy.

An important point of the SAGE WG's definition, which accounts for some of this uncertainty within the topic, is that vaccine hesitancy is "present when vaccine acceptance in a specific setting is lower than would be expected, given the availability of vaccination services" (8), thus a behavioral phenomenon that is not only vaccine and context specific, but also measured within the context of services made available and specific vaccination goals (16). Furthermore, SAGE defines vaccine hesitancy as set on a continuum from total acceptance, to complete refusal, with vaccine hesitant individuals the heterogeneous group in the middle (8, 19).

While SAGE has the potential to be the driving force behind standardisation within the field of vaccine hesitancy, there is still a lack of clarity in some of SAGE materials developed to date. There is noted difficulty determining vaccine hesitancy at the population level for numerous reasons identified in the literature. One reason is that hesitancy is not directly related to uptake, as the definition includes those who have accepted vaccines despite having significant doubts about them (18). Furthermore, there can be variation in hesitancy according to the specific vaccine (18), such as concerns regarding the HPV vaccine as a new vaccine or as a vaccine associated with female reproduction (20, 21). An important feature of vaccine hesitancy at the individual level is the perceived risks versus benefits of vaccinations, which occurs at the individual level (22). For these reasons, Dubé et al caution drawing a general picture of vaccine-hesitant characteristics of individuals at the population level (18).

While there is difficulty determining characteristics of a vaccine hesitant population, some literature has emphasised the societal impact that vaccine hesitant attitudes of individuals can have on their communities. Aside from population-level health impacts of trends in non-vaccination, such as loss of herd immunity, Abeysinghe refers to growing literature within the social sciences that suggests the perception and management of risk occurs at both societal and individual levels (22). This work supports the argument that wider social representations of vaccination such as public discourse, not just individuals, make up an important factor underpinning vaccine hesitancy (22). This does not permit the generalisation of a populations' apparent hesitancy when uptake may be low across specific settings, vaccines or other contexts, but rather points to the potential impact that individuals' may have on their communities when others are presented with the choice to vaccinate.

There is emphasis within SAGE's definition of vaccine hesitancy regarding the issue of access. While vaccine hesitancy may be present in low-uptake situations, situations in which there are system failures such as stock-outs or limited availability of services, vaccine hesitancy cannot be explained as the main cause of low uptake (19). According to the SAGE WG, these situations of access or system failures fall outside of the scope of SAGE's definition of vaccine hesitancy when the individuals lack the opportunity to accept or refuse vaccines (8). This explains why estimates of coverage or uptake cannot be used as an indicator of vaccine hesitancy. Vaccine hesitancy is indicated by the choice to vaccinate or not, based on individuals' assessment of risks and benefits of vaccination, rather than a problem of lack of access to vaccination services or the greater health system (22).

Despite clarification on these issues of access and system failures by emphasising individual's choice in order to determine if vaccine hesitancy is the main factor of non-vaccination, SAGE has still incorporated all of the above (poor availability, far travel distances, poor communication, etc.) into their Determinants Matrix. The determinants within the Matrix related to access are, by SAGE's definition, not
determinants of vaccine hesitancy because in most cases they preempt the opportunity to hesitate. However, there is also need for further clarification on where issues of access fall within the vaccine hesitancy continuum, as participants who decide the vaccination is not worth the time or effort of traveling a far distance could be categorised as vaccine-hesitant, whereas participants who accept vaccines but cannot possibly access them would not be.

Gaps in the literature
In addition to the need to continue to develop and refine a standardised metric, there are several gaps in research specifically on vaccine hesitancy that may suggest strategies to move forward. In terms of research methods, there is a disconnection between quantitative and qualitative research, missing the opportunity to quantify the overall impact of vaccine hesitancy across different population strata in various settings (7). Especially in Africa where vaccine hesitancy is less associated with vaccine confidence, there is a need to determine the weight of other determinants and structural barriers as factors of hesitancy and overall uptake (23). Future research focusing on these gaps using a standardised toolset will help to mitigate vaccine hesitancy and increase overall uptake of vaccines, but there remains a need for research assessing interventions already in place to address concerns (7).

Conclusion
Vaccine hesitancy is a complex and context specific issue not adequately addressed by the majority of literature to date. Vaccine hesitancy has a negative impact on vaccination coverage globally, which is crucial to the success of vaccination owing to the nature of vaccines working at a community level to improve health. In order to increase vaccination coverage globally, there is the need for more context-specific research explicitly aiming to identify factors of vaccine hesitancy. This research is especially vital in African countries, where vaccination coverage rates have plateaued in recent years, and where factors of vaccine hesitancy differ from those experienced in other, more developed regions. Future research should utilise a standardised metric, and avoid some of the previously used terminology that may be considered synonymous with vaccine hesitancy. Increasing the amount of standardised research in the field will illuminate context-specific needs and support future interventions targeting vaccine hesitancy to ultimately improve vaccination coverage.

References
Determinants of vaccine hesitancy in Africa: a systematic review

Alexander Paone1,2, Tali Cassidy1,3,4, Gregory D. Hussey2,5, Rudzani Muloiwa2,6, and Benjamin M. Kagina1,2

1School of Public Health and Family Medicine, University of Cape Town
2Vaccines for Africa Initiative (VACFA)
3Medicins Sans Frontieres, Cape Town, South Africa
4Department of Epidemiology, Boston University, United States
5Division of Medical Microbiology & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
6Department of Paediatrics & Child Health, Groote Schuur Hospital, University of Cape Town, South Africa

Email addresses:
pnxale002@myuct.ac.za
talicassidy@gmail.com
gregory.hussey@uct.ac.za
rudzani.muloiwa@uct.ac.za
bengamin.kagina@uct.ac.za

Corresponding Author: Alexander Paone
Address: Room N2.09A, Werner & Beit North, Health Sciences Campus, Anzio Road, Observatory, 7925
Email: pnxale002@myuct.ac.za
Phone: +27 (79) 405 4774
Abstract

BACKGROUND: Vaccine hesitancy is defined as a complex and context specific delay in acceptance or refusal of vaccines despite availability of vaccination services. The reasons why individuals hesitate or choose not to vaccinate are variable and not well described, and the factors contributing to vaccine hesitancy are unclear. AIM: The aim of this review is to identify and describe determinants of vaccine hesitancy in Africa. METHODS: A systematic review protocol for the study was registered in the PROSPERO International Prospective Register of systematic reviews (registration number CRD42016051699). A search was conducted in seven online databases for studies set in African countries in which participants described factors of vaccine hesitancy against any World Health Organization licensed vaccines as of December 2016. Study and participant characteristics were extracted from the studies, and were extracted using the SAGE Determinants of Vaccine Hesitancy Matrix. The data was analysed to determine factors of vaccine hesitancy overall, and stratified by study and participant characteristics. RESULTS: This systematic review study included 28 peer-reviewed papers set in 13 African countries, which were assessed for risk of bias using the CASP tool. Most factors of hesitancy were individual and group influences, namely health system trust and personal experience. Costs and a variety of contextual factors were also prominent factors of vaccine hesitancy among participants. The results were also stratified by subgroups, showing differences between urban and rural settings, programme designs, and vaccines. CONCLUSION: Vaccine hesitancy is one factor that impacts vaccine coverage. In order to achieve high vaccination coverage and develop strategies to target vaccine hesitancy and to improve vaccination uptake, factors contributing to vaccine hesitancy must be better understood. The results suggest that determinants of vaccine hesitancy in African countries are primarily associated with access, and availability of resources and information. The results underscore the need to develop context-specific strategies to reduce vaccine hesitancy. Keywords: vaccine hesitancy, determinants, immunisation, vaccine, SAGE, Africa, immunization
Introduction

Immunisation is one of the most successful and cost-effective interventions that improve public health. Vaccines are preventative measures effective at both individual and community levels to protect from infectious diseases. The best example of the vaccine success may be the eradication of smallpox following a global immunisation campaign led by the World Health Organization (WHO) (1). In the last four decades, African countries have achieved steady progress in reducing vaccine preventable diseases (VPDs). The success is built on expanded programme on immunisation (EPI), a platform used to administer vaccines mainly to children since its establishment in 1974 (2).

Overall vaccination coverage in sub-Saharan Africa has remained constantly below that of other regions, and countries within Africa show large disparities in coverage (3). Recently, there are reports suggesting that vaccination coverage in many African countries has plateaued at suboptimal levels (4, 5). Many factors are thought to contribute to the observed plateau, among them: limited access to vaccination services, inadequate resources, and vaccine hesitancy (2, 3).

Vaccine hesitancy is a complex and context specific delay in acceptance or refusal of vaccines despite the availability of vaccination services (6). Not only does vaccine hesitancy impact those making the decision for themselves, but also those who are dependent on others to make the decision for them, such as children, a group for which low compliance with vaccination schedules has been associated with vaccine hesitancy (3). Reports from developed countries show that vaccine hesitancy is increasing and could reverse some gains achieved through vaccination (7), but factors of vaccine hesitancy vary from those observed in developing countries, especially those in Africa. While there has been a paradigm shift away from increasing access and towards increasing acceptance in developing countries (8), developing countries face additional factors of hesitancy not limited to acceptance or access, such as competing health demands, poverty, and political, religious and cultural factors (9). In order to target vaccine hesitancy, more research must be undertaken to increase understanding what it is and how it manifests, particularly so among African countries. This systematic review study describes the factors associated with vaccine hesitancy in Africa.

In an effort to standardise the field, the *Strategic Advisory Group of Experts* (SAGE) Working Group (WG) on Vaccine Hesitancy has categorised a number of factors associated with vaccine hesitancy (identified via literature, experiences and experts) into a Determinants of Vaccine Hesitancy Matrix (10, 11). This systematic review defines vaccine hesitancy in concordance with SAGE, and uses the SAGE Determinants of Vaccine Hesitancy Matrix to report the factors associated with vaccine hesitancy in Africa.

Research on vaccine hesitancy using a standardised metric, such as that defined by SAGE, has the potential to advance the field and design more effective interventions. While few existing strategies have been designed to address vaccine hesitancy, even fewer have been evaluated for impact (12). Understanding the factors contributing to vaccine hesitancy is an important step towards the development of comprehensive strategies needed to improve vaccination uptake in African countries (13).
Methods

A systematic review protocol for the study was registered in the PROSPERO International Prospective Register of systematic reviews (http://www.crd.york.ac.uk/PROSPERO), registration number CRD42016051699. The PICO format (participants, intervention, comparator, and outcome) was used to structure this review.

1. Types of studies selected

Both quantitative studies (randomised controlled trials, controlled before-and-after studies, interrupted time series designs, cohort studies, case-control studies, cross-sectional studies) and qualitative studies (focus group discussions, in-depth interviews, direct observation, case studies, ethnography, and action research) were eligible for inclusion. Interventional studies such as clinical trials or studies testing vaccine efficacy or effectiveness and not designed to measure the outcomes associated with vaccine hesitancy were excluded. Reviews (including systematic and narrative) editorials, and non-peer-reviewed papers, including grey literature, were excluded.

Studies needed to have investigated any WHO-licensed vaccines as of December 2016, excluding seasonal or outbreak vaccines (14) (see Appendix 1 for inclusion/exclusion criteria) were eligible for inclusion. The vaccine was required to be available at the time of study, and participants must have been presented with the vaccine for the study to have met inclusion criteria.

2. Study Participants

Persons living in Africa who were vaccine hesitant, choosing not to be vaccinated with any WHO-licensed vaccines as of December 2016. Participants included patients, parents, guardians, caretakers, children, and adolescents. The SAGE Working Group on Vaccine Hesitancy defines vaccine-hesitant individuals as "a heterogeneous group in the middle of a continuum ranging from total acceptance to complete refusal; these individuals may refuse some vaccines, but agree to others; delay vaccines or accept vaccines but are unsure of doing so" (10).

3. Study outcomes

3.1 Primary outcomes

The primary study outcomes were determinants of vaccine hesitancy. The determinants were obtained from the reported participants' reasons for hesitating to vaccinate themselves or their children/dependents were identified as the primary outcome of this study.

4. Study settings

Studies conducted in any country on the African continent, with no date restriction, were eligible for inclusion in this review.

5. Search strategy

Databases searched were: PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), Scopus, Web of Science, World Health Organization Library Information System (WHOLIS), Africa Wide, and CINAHL. Papers of any publication date were included. The search strategy was optimised in PubMed database, which has the most extensive and comprehensive search engine with the ability to also search for medical subject headings (MeSH). Search strategy optimisation involved the first author applying the search query for outputs, and screening titles and abstracts to identify ten relevant studies. From the relevant studies, the first author read full articles to identify any key terminologies that may not have been included in the first search and these new terms will be added. Additional optimisation included testing sensitivity and specificity by systematically adding or omitting synonyms from search terms, followed by the assessment of the outputs. Once the search strategy was optimised, the first author
searched all identified databases and imported the results into EndNote. The final search strategy is presented in Appendix 2.

6. Study selection
All search results were imported into EndNote and duplicates were removed. The results were then imported into an MS Excel file where titles and abstracts were screened by the first author to determine whether they met the study inclusion criteria. This step was duplicated by the last author (supervisor), and any disagreements were resolved by discussion. A search for full-texts of the included studies based on the screening of titles and abstracts was conducted by the first author. Studies that could not be found were requested from the UCT Health Sciences Library, and any studies that could not be found by the library or that required additional payment were flagged as studies for which the full text could not be found. Full texts were read by both the first and last authors to finalise eligibility and inclusion, and any disagreements were resolved by discussion or further clarification by contacting the study authors. The reference lists from the included studies were screened for potentially eligible studies by the first author, first by titles and abstracts, then by full texts if they could be found. The PRISMA flow chart (Figure 1) summarises each step of the selection of studies for the review.

7. Data extraction
Full texts of the eligible studies were read by the first author, and data was extracted using a data extraction form. The data extraction form was developed in MS Excel, and was piloted by the first author with the first ten studies and any necessary adjustments were made. The data extraction form was consistent with outcomes in order to extract all relevant data from the full texts (the specific variables are discussed below in the analysis section). Codeframes were developed by the first author to extract both quantitative and qualitative data from the texts into the extraction form.

8. Assessment of the risk of bias
Risk of bias of the selected studies was assessed using a critical appraisal tool (CASP) during the data extraction step. CASP appraisal tools are robust for a variety of study designs, and was used to score the quality of the studies included in this review (15). The results of the CASP scoring are presented in Table 2 in the appendix.

9. Quantitative and qualitative data analysis
9.1 Quantitative data analysis
The quantitative data extracted from each of the studies included the journal, year of publication, primary objective or aim of the study, the sample size, the study design and data collection methods, the country and study setting, the vaccine of focus, whether the vaccine was delivered routinely or via a campaign or other activity, where the vaccine was administered, the participants' genders and ages, and the decision-maker status of the participants (i.e. whether they were making the decision for themselves or for a dependent). Codeframes were developed for each of these outcomes (Appendix 3).
Analysis of the quantitative data was conducted by the first author, and results were presented with a map illustrating the number of studies per country and the corresponding vaccines per each study.

9.2 Qualitative
Qualitative data was consistent with the primary outcome of this review, which were the determinants contributing to participants’ vaccine hesitancy. The data included reasons that were explicitly identified by the studies, or that were mentioned in the results as factors of non-vaccination. Reasons for vaccine hesitancy were extracted verbatim as short quotes into an MS Excel data extraction form, and coded
using thematic coding. A single study could be assigned multiple codes. If more than one reason was stated in one line, the line was duplicated so that one code could be assigned to each reason.

The SAGE Determinants of Vaccine Hesitancy Matrix was the guideline for the codeframe developed and used to extract, analyse and report the findings. The codeframe was further adapted from code frames used in review articles by SAGE (13) and Larson et al (16) to create sub-codes (or sub-determinants) where the qualitative data was too specific to fit into some broader determinants of the SAGE Matrix. The utilised codeframe is included in Appendix 4.

Analysis of the qualitative data was conducted by the first author, and involved quantifying the number of responses corresponding to each sub-code (i.e. sub-determinant). The frequency of reported sub-determinants was then analysed within the hierarchy of the SAGE Determinants Matrix, including their corresponding SAGE Determinants, as well as SAGE’s three groups of determinants, to determine the most frequently reported factors of vaccine hesitancy among the selected studies. The qualitative sub-determinants were then linked to the quantitative data of their corresponding studies, allowing for analysis across subgroups.
Results

Characteristics of included studies

1. Search of relevant records
The search yielded 2497 records from the seven identified databases. After removing duplicates, the titles and abstracts of 2007 records were screened; 1773 were excluded based on eligibility criteria. After retrieving the full text of 234 potentially eligible records (21 of which could not be found), 23 studies met the inclusion criteria. After screening the reference lists of the 23 included studies, 5 studies from the references list met the inclusion criteria, resulting in the 28 total studies included in this review. The search of relevant records is represented as a PRISMA diagram in Figure 1. Table 1 provides a summary of the included studies.

2. Study designs and methods
The majority (19/28 i.e. 67.9%) of studies were of cross-sectional design (17-35). Seven (25%) of the studies described themselves as having qualitative study designs (36-40), two of which were ethnographies (41, 42). The remaining two (7.1%) studies were case-control studies (43, 44). All included studies used a combination of surveys, interviews, and focus groups. The majority (22/28 i.e. 78.6%) of studies were published between 2005 and 2015. Combined, a total of 32646 participants (median 385.5, range 40-1255) were represented in the included records. Table 1 provides a summary of included studies.

2.1 Assessment of the risk of bias
CASP (critical appraisal skills programme) critical appraisal tools were utilised to score the risk of bias for each of the studies included in this review. CASP appraisal tools are robust for diverse types of study designs (15). CASP tools designed to assess cross-sectional study designs, case-control studies, and qualitative studies were utilised. Using the CASP tool, none of the studies indicated a significant methodological flaw as the average percentage score was 72%, with the lowest percentage score 55% (Table 2).

3. Study settings
Out of 54 African countries in the continent, the included studies were from 13 countries (Figure 2). The majority (12/28 i.e. 42.9%) of studies were conducted in Nigeria. Uganda contributed three studies, Ethiopia and Tanzania each contributed two studies, and the remaining countries (Benin, Burkina Faso, Egypt, Gabon, Guinea, Mozambique, South Africa, Sudan and Togo) had one study each.

Whether the studies were conducted in urban or rural settings was also assessed, as this could influence the reasons for vaccine refusal. Three (10.7%) studies were conducted in urban settings, two (7.1%) in semi-urban/rural settings, and eight (28.6%) in rural settings. Eight (28.6%) studies were conducted in both urban and rural settings within their countries, and the remaining seven (25%) did not specify the study setting (Table 1).

4. Study vaccines, participants, and delivery

4.1 Vaccines
The vaccines of the included studies, as well as the study participants' roles in vaccine decision-making were assessed. The included studies covered six vaccines: routine childhood (RC) vaccines (that varied by study based on the country-specific EPI), oral polio vaccine (OPV), human papilloma virus (HPV) vaccine, oral cholera vaccine (OCV), Hepatitis-B vaccine (HepB), and Measles-Rubella (MR) (Table 1). The
majority (17/28, 60.7%) of studies focused on routine childhood immunisation (RC). HPV and OCV each contributed two studies (7.1%), and there was one study each (3.6%) focusing on HepB and on MR.

4.2 Participants decision-making position
Caregivers providing data on the hesitancy to vaccinate their children were the most represented participants (21/28, 75%). Among OPV studies, three sampled caregivers, and two sampled both caregivers and independent decision-makers. One study focused on HPV vaccination sampled caregivers, while the other sampled both caregivers and independent decision-makers. One study focused on OCV sampled independent decision-makers, while the other sampled both caregivers and independent decision-makers. The two studies on HepB and on MR both sampled independent decision-makers as participants providing data on their vaccine-hesitancy.

4.3 Delivery methods and sites
Vaccine delivery methods, as well as the location where vaccines are administered, may influence the reasons for vaccine refusal (13). Therefore, the vaccine delivery strategies covered in the included studies were assessed. Vaccine delivery methods of the included studies were recorded either as part of a vaccination campaign, or as part of routine immunisation activities. Campaigns included SIAs (supplemental immunisation activities), IPDs (immunisation plus days), and demonstration projects. 12 studies (42.9%) reported hesitancy towards vaccines delivered routinely (as opposed to via campaigns or SIAs), half of which indicated that the vaccines were delivered at health centres. Among the ten studies on vaccine campaigns (35.7%), four reported vaccine delivery at home, three reported delivery of vaccines in a school or university setting, and two reported on campaigns that set up vaccination posts to deliver vaccines. The remaining six studies (21.4) did not specify the delivery sites and/or delivery methods.

Reported determinants of vaccine hesitancy

5. Reported determinants overall
The reported reasons for non-vaccination are reported in this review in congruence with the SAGE Determinants Matrix (13). The codeframe used for analysis was adapted from the matrix and includes additional, more specific "sub-determinants" of those in the SAGE model (16). See Appendix 5 for definitions of SAGE determinants, and Appendix 4 for the adapted SAGE determinants matrix with the added “sub-determinants”. Figure 3 illustrates the frequencies of each reported SAGE determinant of vaccine hesitancy. Figure 4 depicts the frequencies of all (305) reported sub-determinants of non-vaccination that were extracted from all the included studies, as well as the vaccine types.

5.1 Individual and group influences
Overall, individual and group influences made up the majority (169/305, 55.4%) of reasons for vaccine hesitancy. A more detailed analysis of the individual and group influences showed the most frequently reported determinants were "health system and providers-trust and personal experience" (61/169, 36.1%) (Figure 3). Within this determinant, fear of side effects, and dissatisfaction with health system (most commonly including long lines and difficult personal interactions, but also a lack of resources in some instances) each contributed 26.2%. Other significant determinants within individual and group influences were knowledge and awareness (43/169, 25.4%), and beliefs/attitudes about health prevention (24/169, 14.2%) (Figure 4).

5.2 Vaccine specific issues
Vaccine specific issues made up 23.6% (72/305) of factors for vaccine hesitancy overall. Within vaccine specific issues, the most frequently reported determinants were costs (35/72, 48.6%), the design of
vaccination programme or mode of delivery (17/72, 23.6%), and unavailable vaccines due to supply (12/72, 16.7%) (Figure 3). Within costs, the interruption of time normally spent on other activities (17/35, 48.6%) and the inability to access the vaccine site due to the handicap or illness of recipient or caregiver (10/35, 28.6%) were the most prominent sub-determinants. Within the design of the vaccination programme or mode of delivery, procedural issues (including issues with vaccination cards or difficult multi-stage processes) were most frequently reported (7/17, 41.1%) (Figure 4).

5.3 Contextual influences
Contextual influences made up 12.8% (39/305) of all reported reasons for vaccine hesitancy, of which religion/culture/gender/socioeconomic (15/39, 38.5%), geographic barriers (14/39, 35.9%), and political issues (10/39, 25.6%) were the most frequently reported determinants (Figure 3). Husband or head-of-household refusal (8/15, 53.3%) and religion (5/15, 33.3%) made up the majority of the religion/culture/gender/socioeconomic determinant (Figure 4).

5.4 Other reported determinants of vaccine hesitancy
The remaining 8.2% (25/305) of reasons reported in the studies were categorised as "other" (Figure 3). The determinants in this category included reasons that did not fit the SAGE determinants model, participants who reported already having the vaccine, non-specified issues of access or lack of opportunity, and reasons categorised by the studies as "other".

6 Vaccine hesitancy, stratified by vaccines
6.1 Routine childhood immunisations (RC)
The majority (17/28 i.e. 60.7%) of studies focused on routine childhood immunisation (RC), all of which sampled caregivers as participants providing data on their hesitancy to vaccinate their children. A closer investigation of participants' hesitancy towards routine immunisations found that the most frequently reported determinants fell within individual and group influences (116/211, 55%) (Figure 3), of which dissatisfaction with the health system (13/116, 11.2%), motivation (forgetfulness, disinterest, laziness) (12/116, 10.3%), and knowledge/awareness (32/116, 27.5%) made up the majority of responses. Costs were a major factor within vaccine specific issues (57/211, 27.0%), especially the interruption of time normally spent on other activities (14/57, 24.5%), and the vaccine being unavailable at the delivery site (11/57, 19.2%) (Figure 3). Geographic barriers made up 57.1% (12/21) of contextual influences inhibiting RI uptake among participants.

6.2 Oral polio vaccine (OPV)
Among studies looking at OPV, vaccine safety (4/22, 18.2%), and the belief that the vaccine was not necessary (4/22, 18.2%) were the most frequent sub-determinants of individual and group influences (Figure 4). General disapproval of vaccines was reported more among OPV than any other vaccine included in this review. Prominent contextual influences (12/35, 34.3%) of OPV refusal included politics/policies/mandates (6/12, 50%) and religion/culture/gender/socioeconomic (5/12, 41.7%) (Figure 3). Head of household refusal, a sub-determinant of religion/culture/gender/socioeconomic, was reported more among OPV refusal than refusal of other vaccines included in this review.

6.3 Oral cholera vaccine (OCV)
The most frequently reported determinants of vaccine hesitancy among OCV study participants were dissatisfaction with health system (7/29, 24.1%) (Figure 3), of which, the belief or fear that the child was too young to receive the vaccine (2/7, 28.5%) was reported more among OCV than any other vaccine. Lack of information on the time or place of the vaccine made up 60.0% of the knowledge/awareness
determinant, and was reported more among OCV than any other vaccine. The interruption of time normally spent on other activities was the most frequent vaccine-specific issue, making up 50% of the costs determinant (Figure 4).

6.4 Measles-rubella vaccine (MR)
The most frequently reported factor of vaccine hesitancy of the MR vaccine was the fear of side effects or infection (2/10, 20%), a sub-determinant of SAGE's "health system and provider’s trust and personal experience" determinant, within individual/group influences (Figure 4).

6.5 Human papillomavirus vaccine (HPV)
Among participants who refused the HPV vaccine, the fear of side effects and the distrust or fear of the vaccine’s effect on fertility (3/13, 23.0%) were the most prominent reasons for their decision (Figure 4). The latter determinant was reported more with HPV than with any other vaccine, along with concerns with the vaccine being newly introduced (1/13, 7.7%).

6.6 Hepatitis B vaccine (HepB)
For HepB, reasons categorised as "other" aside, all reported factors fell within individual and group influences. Lack of knowledge of eligibility or when to receive (1/7, 14.3%), the belief that the vaccine was not necessary (1/7, 14.3%), and fear of side effects (1/7, 14.3%) were each mentioned as determinants of HepB vaccine hesitancy (Figure 4).

7. Vaccine hesitancy by study settings
A closer investigation into the settings in which the included studies were conducted revealed some differences between urban and rural settings. Factors of vaccine hesitancy stratified by study settings are presented in Figure 5.

7.1 Rural settings
Within individual and group influences in rural areas (44/90, 48.9%), "health system and provider’s trust and personal experience" (16/44, 36.4%), knowledge/awareness (14/44, 31.8%) were the most frequently reported determinants, with a range of sub-determinants reported within each respectively. Beliefs/attitudes about health and prevention (6/44, 13.6%) also had a significant impact on the participant’s vaccine hesitancy. Vaccine-specific issues (29/90, 32.2%) that were reported more in rural settings than in other settings were the reliability and/or source of vaccine supply (6/29, 20.7%), and the inability to access the vaccine site due to the handicap or illness of recipient or caregiver (7/29, 24.1%). Within contextual influences (10/90, 11.1%), geographic barriers (6/10, 60%) was more frequently reported in rural areas than in any other setting.

7.2 Urban settings
Not unlike rural settings, "health system and provider’s trust and personal experience" was the most prominent determinant among urban settings, making up the approximately one quarter (5/21 23.8%) of reported reasons for vaccine hesitancy. Within this determinant, fear of side effects (2/5, 40%) and the belief that too many vaccines are harmful (1/5, 20%), were reported more in urban areas than in any other setting. Other determinants that were reported more within urban settings than other settings included the belief that vaccines could not be received when recipient sick (2/21, 9.5%), mode of delivery (2/21, 9.5%) (specifically procedural issues and limited opening times of vaccination sites, general disapproval of vaccines (1/21, 4.8%) and head of household refusal (1/21, 4.8%).
8. Vaccine Hesitancy by delivery method and site
Factors of vaccine hesitancy stratified by delivery methods and delivery sites are presented in Figure 6.

8.1 Vaccination campaigns
Factors of vaccine hesitancy varied depending on whether the delivery method was a campaign or routine immunisation activities. Among studies which reported on vaccination campaigns, the most frequently reported determinants fell within individual and group influences, including "health system and provider's trust and personal experience" (24/94, 25.5%). Within this determinant, fear of side effects (7/24, 29.2%) was reported more among campaigns than among any other delivery method. Vaccine specific issues (20/94, 21.3%) were costs (8/20, 40%) and the design of the programme or delivery (7/20, 35%), including limited open hours and being absent from the delivery site during the campaign. Contextual issues among campaigns (16/94, 17%) were religious/cultural/gender/socioeconomic (6/16, 37.5%) and political (8/16, 50%). Political determinants were reported more among vaccination campaigns than the other delivery methods.

8.2 Routine immunisation activities
A closer investigation of studies reporting on routine immunisation activities found that individual and group influences made up most of the reasons for participants' vaccine hesitancy (64/113, 56.6%). Within this group, dissatisfaction with the health system (9/113, 8%), and motivation (8/113, 7.1%) were most frequently reported. Among vaccine specific issues (27/113, 24%), costs (15/113, 13.3%) (specifically inability to access the vaccine site due to the handicap or illness of recipient or caregiver (7/113, 6.2%)), and the vaccine not being available (7/113, 6.2%) were the most frequently reported factors of vaccine hesitancy. Geographic barriers also made up 7.1% (8/113) of vaccine hesitancy factors among studies on routine vaccinations, more than any other vaccination delivery method.

8.3 Vaccination delivery sites
Determinants of vaccine hesitancy also varied by vaccination site. When vaccinations were offered at health facilities, the greatest determinant was "health system and provider’s trust and personal experience" (19/91, 20.9%), notably dissatisfaction with the public health system (10/91, 11%). Vaccine specific issues were greater when vaccines were delivered at health centers (26/91, 28.6%). Costs (14/91, 15.4%) (specifically interruption of time (6/91, 6.6%)), the design of the vaccination programme (6/91, 6.6%) (notably procedural issues (5/91, 5.5%)), and reliability (6/91, 6.6%) were most frequently reported. Contextual influences were more frequently reported (10/27, 37%) when vaccinations were delivered at homes compared to other vaccination sites. Political concerns (5/27, 18.5%), religion (2/27, 7.4%) and head of household refusal (2/27, 7.4%) were most frequently reported with home-delivery, while costs were of least concern (except when the recipient was not at home during delivery (1/27, 3.7%)).

When vaccinations were delivered at vaccination posts, in or close to villages or markets for example, insufficient information on the time and place of the vaccine delivery (3/29, 10.3%) and the belief or fear that the child was too young to receive the vaccine (2/29, 7%) were more frequently reported than at other delivery sites. Costs (4/29, 13.8%) were also frequently reported as determinants of vaccine hesitancy among vaccine delivery at vaccination posts.

When vaccinations were delivered at schools or universities, fear of side effects (4/23, 17.4%) was more frequently reported than at other vaccination sites. The mode of administration, frequently reported as
fear of injections (2/23, 8.7%) was a concern that was unique to vaccines delivered at school compared to other vaccination sites.

9. Vaccine hesitancy by participants' decision-making position
The role of the participant in decision making, whether they were independently making the decision to vaccination themselves, or making the decision as a caregiver for their child or a dependent, was expected to yield different factors of vaccine hesitancy. Factors of vaccine hesitancy stratified by participants decision-making roles are presented in Figure 5.

9.1 Independent decision-makers
Among participants who were making the independent decision to vaccinate themselves, the most frequently reported reasons for vaccine refusal were fear of side effects (4/31, 12.9%), the interruption of time normally spent on other activities (2/31, 6.5%), limited open hours (2/31, 6.5%), and distrust in something offered for free (2/31, 6.5%).

9.2 Caregivers
Among participants who were caregivers making the decision to vaccinate their child or dependents, the most frequently reported reasons for vaccine hesitancy were "health system and provider’s trust and personal experience" (45/238, 18.9%) (specifically dissatisfaction with the public health system (14/238, 5.9%)), knowledge and awareness (35/238, 14.7%), costs (30/238, 12.6%) (specifically interruption of time (14/238, 5.9%), and inability to access due to illness or injury (9/238, 3.8%)), beliefs and attitudes about health and prevention (predominantly (12/238, 5%)) and geographic barriers (13/238, 5.5%).

9.3 Both independent decision-makers and caregivers
Among studies in which both caregivers and the recipient were vaccine hesitant, factors were largely associated with "health system and provider’s trust and personal experience" (10/36, 27.8%), specifically fear of side effects (3/36, 8.3%) and fear the vaccine would affect fertility (3/36, 8.3%). Other concerns were of vaccine efficacy and safety (4/36, 11.1%), and knowledge and awareness (4/36, 11.1%).
Discussion
While this review could not include studies representing each African country due to non-availability of the published relevant literature, it is significant that all of the African regions (as defined by MeSH) have been represented by at least one country. Nearly half of all studies (12/28, 43%) were conducted in Nigeria. A closer investigation into the frequency of determinants reported by the participants included in this review revealed no mentions of historical factors overall. Political determinants were not more frequently mentioned in Nigeria than in any other country, aside from two mentions of the belief that the government should allocate resources to other funds rather than to vaccination services. This may be explained by Nigeria continuing to demonstrate one of the lowest rates of childhood immunisation in the world, as well as the history of vaccination in Nigeria, including the 2003 boycott of polio vaccination, and the subsequent extensive research in the country (19).

Over half of all reasons for non-vaccination reported in the included studies fell into the individual and group influences group defined by SAGE. This reflects the number of determinants and sub-determinants being greater within this group than in the other two groups. The same can be said for the most frequently reported determinant within this group, "health system and providers-trust and personal experience", which included a number of sub-determinants that fit best within this determinant. One of the more frequently reported sub-determinants of "health system and providers-trust and personal experience" was dissatisfaction with the health system, which included difficult personal interactions and a lack of resources or necessities at health centres. The wide range of sub-determinants identified within the determinants of the individual and group influences group sheds light on the need to further define determinants in order to cover the diverse factors of vaccine hesitancy that were found by this review.

Despite considerable support by GAVI to make vaccines more accessible within LMICs, costs were a major factor across all studies. As expected, geographic barriers and the inability to access vaccine sites were determinants of vaccine hesitancy that were reported more frequently in rural than in urban settings. Not all costs were explicitly financial in terms of the actual cost of the vaccine, or even the cost of accessing the vaccine. Costs such as the inability to access due to inability or illness (of the recipient or caregiver), or the interruption of time normally spent on other activities or responsibilities, might be explained by what McKnight describes as the notion that vaccines are a low-involvement good, especially in subsistence-household economies, where vaccination requires a concerted effort and interruption of daily demands (42).

Interventions to reduce vaccine hesitancy and increase uptake of vaccines must be context specific. Within the contextual influences group, SAGE has included the communication and media environment, religion, culture, gender, politics, and geography. While contextual factors will always be of great importance when addressing vaccine hesitancy, this group of determinants did not contribute a significant number of determinants of vaccine hesitancy among the reviewed studies. A few conclusions can be drawn from the findings on contextual factors. First, whether or not contextual influences are a major factor of vaccine hesitancy, the results seem to indicate that the current interventions are appropriately context specific. Alternatively, it is possible that participants may not recognise these contextual barriers as the primary reason for their hesitancy. Second, it is clear that more emphasis must be placed on individual and group influences, such as beliefs and attitudes about health and prevention, and trust in the health system, as well as on vaccine-specific issues such as the design of the programme or mode of delivery and costs.
The results suggest that addressing vaccine hesitancy in Africa should be prioritised among caregivers. This is likely due to the fact that nearly all populations are presented with the option to receive routine childhood immunisations at some point during the early years of their, or their children’s, lives. This is in contrast to the other vaccines included in the study, which are not routinely administered to the general public, either because they are often presented as part of RC immunisations (such as OPV and MR), or are only presented to or considered necessary for certain populations, such as OCV in certain settings, HepB for health workers, and HPV, which is not only considered an adolescent vaccine but is also relatively new compared to the others.

Nearly one-fifth of included studies focused on oral polio vaccine (OPV), all of which were conducted in Nigeria, which can be attributed to the extensiveness of research, as well as a consequence of the historical issues in the country being specific to polio vaccinations. That the main determinants of vaccine hesitancy were vaccine safety, general disapproval of vaccines, and politics, may also point to the history of polio vaccination in the country. Despite these results being significant within this review, further interpretation is not merited considering global plan to switch from OPV to IPV.

While only two of the included studies focused on oral cholera vaccine (OCV), it is significant that both were conducted on campaigns where the vaccine was delivered at vaccination posts. This may explain why the determinants of vaccine hesitancy among OCV included a lack of information on the time or place of the vaccine (reported more among OCV than any other vaccine), and the interruption of time spent on other activities. Schaetti’s studies of perceptions of cholera (45, 46), which sampled the same population as his study included in this review, may explain why the belief that the child was too young to receive the vaccine was such a prominent determinant of vaccine hesitancy in the presence of other, perhaps more familiar and less invasive, curative and preventative methods for children affected by or at risk of cholera.

HPV is a unique vaccine not only because it is a newly introduced vaccine, but also because of some stigma surrounding it due to its relevance to adolescent sexual health and reproduction (47). The determinants of hesitancy surrounding HPV reflected these unique characteristics of the vaccine, as fear of the vaccine’s effect on fertility and concerns with the vaccine being newly introduced were reported more among HPV studies than any other vaccine. These results are especially valid in the African context, in which only girls are currently being targeted for HPV vaccination.

Determinants of vaccine hesitancy varied between vaccination campaigns and routine immunisation activities, as well as between different delivery sites. While issues of communication and access were reported at health facilities, contextual issues were more apparent when vaccines were delivered at home. The results suggest that advocacy and communication of vaccination campaigns should be optimised to reduce some of the factors associated with vaccine hesitancy reported among the campaigns included in this review. For routine immunisation activities, cost reduction and interventions to build trust between health care workers and vaccine recipients should be considered.

Study strengths and limitations

A strength of this review was the use of the SAGE Determinants of Vaccine Hesitancy Matrix, to characterise the reported reasons for vaccine hesitancy among the participants in the included studies (Appendix 5). The codeframe (Appendix 4) was adapted from other studies (16) in order to expand on some of the broader determinants in the SAGE matrix.
The outcomes of the included studies were broad, ranging from identifying reasons for non-vaccination, to assessing coverage, to evaluating immunisation programmes. This range among the outcomes of the included studies can be attributed to the lack of a standard research approach to identify factors contributing to vaccine hesitancy. Therefore, most studies became eligible for inclusion when investigators identified reasons participants chose not to vaccinate (or complete vaccination), which was not always explicitly stated as a study objective despite presenting the data. Another research limitation and potential source of bias may be the decision to exclude non-peer reviewed studies. However, due to the evolving nature of the vaccine hesitancy field, it was determined that unpublished studies are likely to show higher levels of non-standardisation on defining vaccine hesitancy, hence the exclusion.

A potential limitation of this study is the coding and analysis of secondary data. Because it is not known what surveys, questionnaires or interview guides were used to collect data within the original studies, there is the potential of reduced accuracy when coding and reanalysing the reported results. SAGE has suggested that the Determinants Matrix be used as a guide for data collection in future studies on vaccine-hesitancy, which would likely minimise this limitation within this, and future, reviews.

Another limitation of this study is related to the SAGE Determinants Matrix due to contradictions with the definition of vaccine hesitancy. Despite SAGE's clarification that issues of access fall outside of the scope of vaccine hesitancy when participants have not been presented with the choice to vaccinate or not, these access issues are included in SAGE's Determinants Matrix, and were therefore included in the codeframe used by this review. The decision to include issues of access in this review, despite the contradiction in the SAGE materials, was made due to the context of vaccine delivery in Africa and to emphasise the necessary improvement of access to vaccines. There is a need for further clarification on where issues of access fall within the vaccine hesitancy continuum, as participants who decide the vaccination is not worth the time or effort of traveling a far distance could be categorised as vaccine-hesitant, whereas participants who accept vaccines but cannot possibly access them would not.

There is also a need for further clarification of other determinants that may not meet the definition of vaccine hesitancy, such as the availability or supply of vaccines at delivery sites. For example, if a person accepts a vaccine, they may still be considered vaccine-hesitant if they do not have confidence in the health system's ability to reliably keep stock, but they should not be considered hesitant if that was actually the reason for their non-vaccination.

Conclusion

Vaccine hesitancy in Africa is broad and has a range of determinants. Materials produced by SAGE, including their definition of vaccine hesitancy and their matrix of determinants, were used to analyse the quality studies which were included in this review. Despite strict inclusion criteria, the results are likely to be different if there were more studies that were primarily aimed at investigating vaccine hesitancy, especially if they also used the SAGE model. Well conducted future studies on vaccine hesitancy in Africa are likely to shed more light on the topic, and if a model such as SAGE’s becomes the standardised tool for such studies, future reviews on vaccine hesitancy will be more accurate.
References
<table>
<thead>
<tr>
<th>First Author</th>
<th>Year</th>
<th>Title</th>
<th>Vaccine</th>
<th>Delivery Strategy</th>
<th>Delivery Site</th>
<th>Decision-maker</th>
<th>Country</th>
<th>Setting</th>
<th>Income</th>
<th>Study Design</th>
<th>Methods</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abd Elaziz</td>
<td>2010</td>
<td>A measles and rubella (MR) catch-up vaccination campaign in an Egyptian</td>
<td>MR</td>
<td>campaign</td>
<td>school (university)</td>
<td>independent</td>
<td>Egypt</td>
<td>urban</td>
<td>LMC</td>
<td>cross-sectional</td>
<td>survey</td>
<td>240</td>
</tr>
<tr>
<td>Abdurahem</td>
<td>2011</td>
<td>Reasons for incomplete vaccination and factors for missed opportunities</td>
<td>OPV</td>
<td>campaign</td>
<td>home</td>
<td>caregiver</td>
<td>Nigeria</td>
<td>rural</td>
<td>LMC</td>
<td>cross-sectional</td>
<td>survey, interview</td>
<td>685</td>
</tr>
<tr>
<td>Babalola</td>
<td>2011</td>
<td>Maternal reasons for non-immunisation and partial immunisation in northern</td>
<td>OPV</td>
<td>campaign</td>
<td>health facility</td>
<td>caregiver</td>
<td>Nigeria</td>
<td>rural and urban</td>
<td>LMC</td>
<td>cross-sectional</td>
<td>survey, interview</td>
<td>4442</td>
</tr>
<tr>
<td>Dugas</td>
<td>2009</td>
<td>Portrait of a lengthy vaccination trajectory in Burkina Faso: from cultural</td>
<td>OPV</td>
<td>campaign</td>
<td>health facility</td>
<td>caregiver</td>
<td>Burkina Faso</td>
<td>rural</td>
<td>UC</td>
<td>ethnography</td>
<td>interview, focus group</td>
<td>64</td>
</tr>
<tr>
<td>Ekunwe</td>
<td>1994</td>
<td>How disease prevention fails without good communication</td>
<td>OPV</td>
<td>campaign</td>
<td>health facility</td>
<td>caregiver</td>
<td>Nigeria</td>
<td>not specified</td>
<td>LMC</td>
<td>qualitative focus group</td>
<td>interview</td>
<td>225</td>
</tr>
<tr>
<td>Eng</td>
<td>1991</td>
<td>The acceptability of childhood immunization to Togolese mothers: a</td>
<td>OPV</td>
<td>campaign</td>
<td>health facility</td>
<td>caregiver</td>
<td>Togo</td>
<td>not specified</td>
<td>UC</td>
<td>qualitative focus group</td>
<td>interview</td>
<td>110</td>
</tr>
<tr>
<td>Fatigun</td>
<td>2011</td>
<td>Assessing full immunisation coverage using lot quality assurance</td>
<td>OPV</td>
<td>campaign</td>
<td>health facility</td>
<td>caregiver</td>
<td>Nigeria</td>
<td>rural and urban</td>
<td>LMC</td>
<td>cross-sectional</td>
<td>survey, interview</td>
<td>1178</td>
</tr>
<tr>
<td>Gammino</td>
<td>2014</td>
<td>An Evaluation of Polio Supplemental Immunization Activities in Kano, Katsina</td>
<td>OPV</td>
<td>campaign</td>
<td>health facility</td>
<td>caregiver</td>
<td>Nigeria</td>
<td>rural and urban</td>
<td>LMC</td>
<td>cross-sectional</td>
<td>survey, interview</td>
<td>884</td>
</tr>
<tr>
<td>Heiman</td>
<td>2004</td>
<td>Perceptions of childhood immunisations in rural Transkei - a qualitative</td>
<td>OPV</td>
<td>campaign</td>
<td>health facility</td>
<td>caregiver</td>
<td>South Africa</td>
<td>rural</td>
<td>LMIC</td>
<td>qualitative focus group</td>
<td>survey, interview</td>
<td>60</td>
</tr>
<tr>
<td>Ikewu</td>
<td>2006</td>
<td>Hepatitis B vaccination status among health workers in Enugu, Nigeria</td>
<td>HepB</td>
<td>routine</td>
<td>not specified</td>
<td>independent</td>
<td>Nigeria</td>
<td>semi</td>
<td>LMC</td>
<td>cross-sectional</td>
<td>survey</td>
<td>246</td>
</tr>
<tr>
<td>Ilimi</td>
<td>2012</td>
<td>Community participation and childhood immunization coverage: a</td>
<td>OPV</td>
<td>routine</td>
<td>not specified</td>
<td>caregiver</td>
<td>Nigeria</td>
<td>rural and urban</td>
<td>LMC</td>
<td>cross-sectional</td>
<td>survey</td>
<td>558</td>
</tr>
<tr>
<td>Jani</td>
<td>2008</td>
<td>Risk factors for incomplete vaccination and missed opportunity for</td>
<td>OPV</td>
<td>routine</td>
<td>not specified</td>
<td>caregiver</td>
<td>Nigeria</td>
<td>rural and urban</td>
<td>LMC</td>
<td>cross-sectional</td>
<td>survey, interview</td>
<td>668</td>
</tr>
<tr>
<td>LaMontagne</td>
<td>2011</td>
<td>Human papillomavirus vaccine delivery strategies that achieved high</td>
<td>HPV</td>
<td>campaign</td>
<td>school</td>
<td>caregiver</td>
<td>Uganda</td>
<td>not specified</td>
<td>UC</td>
<td>cross-sectional</td>
<td>interview, focus group</td>
<td>1489</td>
</tr>
<tr>
<td>Larson</td>
<td>2015</td>
<td>Measuring Vaccine Confidence: Introducing a Global Vaccine Confidence</td>
<td>OPV</td>
<td>campaign</td>
<td>health facility</td>
<td>caregiver</td>
<td>Mozambique</td>
<td>rural</td>
<td>UC</td>
<td>cross-sectional</td>
<td>interview, focus group</td>
<td>12554</td>
</tr>
<tr>
<td>Loevshohn</td>
<td>1989</td>
<td>Missed Opportunities for Immunization During Visits for Curative Care:</td>
<td>OPV</td>
<td>campaign</td>
<td>health facility</td>
<td>caregiver</td>
<td>Sudan</td>
<td>urban</td>
<td>LMC</td>
<td>cross-sectional</td>
<td>interview</td>
<td>236</td>
</tr>
<tr>
<td>Luquero</td>
<td>2013</td>
<td>First Outbreak Response Using an Oral Cholera Vaccine in Africa: Vaccine</td>
<td>OCV</td>
<td>vaccination post</td>
<td>both</td>
<td>Guinean</td>
<td>rural</td>
<td>UC</td>
<td>LMIC</td>
<td>cross-sectional</td>
<td>survey, interview</td>
<td>5248</td>
</tr>
<tr>
<td>Makoutode</td>
<td>2009</td>
<td>Impact of paternal attitudes on infant vaccine coverage in Benin</td>
<td>OPV</td>
<td>routine</td>
<td>not specified</td>
<td>caregiver</td>
<td>Benin</td>
<td>rural</td>
<td>UC</td>
<td>cross-sectional</td>
<td>survey</td>
<td>438</td>
</tr>
<tr>
<td>McIntyre</td>
<td>2014</td>
<td>Designing the Expanded Programme on Immunisation (EPI) as a service:</td>
<td>OPV</td>
<td>routine</td>
<td>not specified</td>
<td>caregiver</td>
<td>Ethiopia</td>
<td>rural and urban</td>
<td>UC</td>
<td>ethnography</td>
<td>interview</td>
<td>83</td>
</tr>
<tr>
<td>Michael</td>
<td>2014</td>
<td>An Evaluation of Community Perspectives and Contributing Factors to Missed</td>
<td>OPV</td>
<td>campaign</td>
<td>home</td>
<td>caregiver</td>
<td>Nigeria</td>
<td>rural and urban</td>
<td>LMC</td>
<td>cross-sectional</td>
<td>survey, focus group</td>
<td>96</td>
</tr>
<tr>
<td>Michael</td>
<td>2014</td>
<td>An Assessment of the Reasons for Oral Polio Vaccine Refusals in Northern</td>
<td>OPV</td>
<td>campaign</td>
<td>health facility</td>
<td>caregiver</td>
<td>Nigeria</td>
<td>not specified</td>
<td>LMC</td>
<td>cross-sectional</td>
<td>survey</td>
<td>148</td>
</tr>
<tr>
<td>Mohammed</td>
<td>2014</td>
<td>Characteristics of persons refusing oral polio vaccine during the</td>
<td>OPV</td>
<td>campaign</td>
<td>home</td>
<td>caregiver</td>
<td>Nigeria</td>
<td>urban</td>
<td>LMC</td>
<td>case-control</td>
<td>survey</td>
<td>121</td>
</tr>
<tr>
<td>Mohamed</td>
<td>2014</td>
<td>Immunization coverage of 12–23-month-old children and associated factors</td>
<td>OPV</td>
<td>routine</td>
<td>not specified</td>
<td>caregiver</td>
<td>Ethiopia</td>
<td>rural and urban</td>
<td>UC</td>
<td>cross-sectional</td>
<td>survey, interview</td>
<td>582</td>
</tr>
<tr>
<td>Murele</td>
<td>2014</td>
<td>Vaccine perception among acceptors and non-acceptors in Sokoto State,</td>
<td>OPV</td>
<td>routine</td>
<td>not specified</td>
<td>both</td>
<td>Nigeria</td>
<td>rural</td>
<td>LMIC</td>
<td>qualitative focus group</td>
<td>interview</td>
<td>72</td>
</tr>
<tr>
<td>Schaettli</td>
<td>2012</td>
<td>Improving Community Coverage of Oral Cholera Mass Vaccination Campaigns:</td>
<td>OCV</td>
<td>vaccination post</td>
<td>independent</td>
<td>Tanzania</td>
<td>semi</td>
<td>UC</td>
<td>LMIC</td>
<td>cross-sectional</td>
<td>interview</td>
<td>367</td>
</tr>
<tr>
<td>Schwartz</td>
<td>2009</td>
<td>Reasons for non-adherence to vaccination at mother and child care clinics</td>
<td>OPV</td>
<td>campaign</td>
<td>health facility</td>
<td>caregiver</td>
<td>Gabon</td>
<td>not specified</td>
<td>LMIC</td>
<td>qualitative focus group</td>
<td>interview</td>
<td>40</td>
</tr>
<tr>
<td>Tugusire</td>
<td>2002</td>
<td>Missed opportunities and caregiver constraints to childhood vaccination in</td>
<td>OPV</td>
<td>routine</td>
<td>health facility</td>
<td>caregiver</td>
<td>Uganda</td>
<td>rural</td>
<td>UC</td>
<td>cross-sectional</td>
<td>survey, interview</td>
<td>408</td>
</tr>
<tr>
<td>Vonasek</td>
<td>2016</td>
<td>Do Maternal Knowledge and Attitudes towards Childhood Immunizations in</td>
<td>OPV</td>
<td>routine</td>
<td>not specified</td>
<td>caregiver</td>
<td>Uganda</td>
<td>rural</td>
<td>UC</td>
<td>cross-sectional</td>
<td>survey, interview</td>
<td>1000</td>
</tr>
<tr>
<td>Watson-Jones</td>
<td>2012</td>
<td>Reasons for Receiving or Not Receiving HPV Vaccination in Primary Schoolgirls</td>
<td>OPV</td>
<td>campaign</td>
<td>school</td>
<td>both</td>
<td>Tanzania</td>
<td>rural and urban</td>
<td>UC</td>
<td>case-control</td>
<td>interview</td>
<td>404</td>
</tr>
</tbody>
</table>
Table 2: CASP Scores

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Title</th>
<th>Study design</th>
<th>Study Details</th>
<th>CASP Results</th>
<th>Score (% Yes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abd Elaziz, K. M.</td>
<td>2010</td>
<td>A measles and rubella (MR) catch-up vaccination campaign in an Egyptian University: Vaccine uptake and knowledge and attitudes of students</td>
<td>cross-sectional</td>
<td>case-control</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Abduralheem</td>
<td>2011</td>
<td>Reasons for incomplete vaccination and factors for missed opportunities among rural Nigerian children</td>
<td>cross-sectional</td>
<td>case-control</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Babalola</td>
<td>2011</td>
<td>Maternal reasons for non-immunisation and partial immunisation in northern Nigeria</td>
<td>cross-sectional</td>
<td>case-control</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Dugas</td>
<td>2009</td>
<td>Portrait of a lengthy vaccination trajectory in Burkina Faso: from cultural acceptance of vaccines to actual immunization</td>
<td>qualitative</td>
<td>cross-sectional</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Ekonwe</td>
<td>1994</td>
<td>How disease prevention fails without good communication</td>
<td>qualitative</td>
<td>cross-sectional</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Eng</td>
<td>1991</td>
<td>The acceptability of childhood immunization to Togolese mothers: a sociobehavioral perspective</td>
<td>qualitative</td>
<td>cross-sectional</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Fatiregun</td>
<td>2013</td>
<td>Assessing full immunisation coverage using lot quality assurance sampling in urban and rural districts of southwest Nigeria</td>
<td>cross-sectional</td>
<td>case-control</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Gammino</td>
<td>2014</td>
<td>An Evaluation of Polio Supplemental Immunization Activities in Kano, Katsina, and Zamfara States, Nigeria: Lessons in Progress</td>
<td>cross-sectional</td>
<td>case-control</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Helman</td>
<td>2004</td>
<td>Perceptions of childhood immunisations in rural Transkei - a qualitative study: original article</td>
<td>qualitative</td>
<td>cross-sectional</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Ibekewe</td>
<td>2006</td>
<td>Hepatitis B vaccination status among health workers in Enugu, Nigeria</td>
<td>cross-sectional</td>
<td>case-control</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Itimi</td>
<td>2012</td>
<td>Community participation and childhood immunization coverage: a comparative study of rural and urban communities of Bayelsa State, south-south Nigeria</td>
<td>cross-sectional</td>
<td>case-control</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Jani</td>
<td>2008</td>
<td>Risk factors for incomplete vaccination and missed opportunity for immunization in rural Mozambique</td>
<td>cross-sectional</td>
<td>case-control</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>LaMontagne</td>
<td>2011</td>
<td>Human papillomavirus vaccine delivery strategies that achieved high coverage in low- and middle-income countries</td>
<td>cross-sectional</td>
<td>case-control</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Larson</td>
<td>2015</td>
<td>Measuring Vaccine Confidence: Introducing a Global Vaccine Confidence Index</td>
<td>cross-sectional</td>
<td>cross-sectional</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Loevinsohn</td>
<td>1989</td>
<td>Missed opportunities for immunization during visits for curative care: practical reasons for their occurrence</td>
<td>cross-sectional</td>
<td>case-control</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Luquero</td>
<td>2013</td>
<td>First Outbreak Response Using an Oral Cholera Vaccine in Africa: Vaccine Coverage, Acceptability and Surveillance of Adverse Events, Guinea, 2012</td>
<td>cross-sectional</td>
<td>case-control</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Makoutode</td>
<td>2009</td>
<td>Impact of parental attitudes on infant vaccine coverage in Benin</td>
<td>cross-sectional</td>
<td>case-control</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>McKnight</td>
<td>2014</td>
<td>Designing the Expanded Programme on Immunisation (EPI) as a service: Prioritising patients over administrative logic</td>
<td>qualitative</td>
<td>cross-sectional</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Michael</td>
<td>2014</td>
<td>An Assessment of the Reasons for Oral Poliovirus Vaccine Refusals in Northern Nigeria</td>
<td>cross-sectional</td>
<td>case-control</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Mohammed</td>
<td>2014</td>
<td>Characteristics of persons refusing oral polio vaccine during the immunization plus days – Sokoto, Nigeria 2011</td>
<td>case-control</td>
<td>case-control</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Mohamud</td>
<td>2014</td>
<td>Immunization coverage of 12–23 months old children and associated factors in Jigiga District, Somali National Regional State, Ethiopia</td>
<td>cross-sectional</td>
<td>cross-sectional</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Murele</td>
<td>2014</td>
<td>Vaccine perception among acceptors and non-acceptors in Sokoto State, Nigeria</td>
<td>qualitative</td>
<td>cross-sectional</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Schaetti</td>
<td>2012</td>
<td>Improving Community Coverage of Oral Cholera Mass Vaccination Campaigns: Lessons Learned in Zanzibar</td>
<td>cross-sectional</td>
<td>case-control</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Schwarz</td>
<td>2009</td>
<td>Reasons for non-adherence to vaccination at mother and child care clinics (MCCs) in Lambaréné, Gabon</td>
<td>qualitative</td>
<td>qualitative</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Tugumisirize</td>
<td>2002</td>
<td>Missed opportunities and caretaker constraints to childhood vaccination in a rural area in Uganda</td>
<td>cross-sectional</td>
<td>case-control</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Vonasek</td>
<td>2016</td>
<td>Do Maternal Knowledge and Attitudes towards Childhood Immunizations in Rural Uganda Correlate with Complete Childhood Vaccination?</td>
<td>cross-sectional</td>
<td>case-control</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Watson-Jones</td>
<td>2012</td>
<td>Reasons for Receiving or Not Receiving HPV Vaccination in Primary Schoolgirls in Tanzania: A Case Control Study</td>
<td>case-control</td>
<td>case-control</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

Average Score: 72%
Figure 1: PRISMA Diagram

PICO search

2497 records identified

-490 duplicates

2007 titles/abstracts screened

-1773 ineligible

234 full texts identified

-211 ineligible

23 eligible studies included

28 eligible studies included

included from reference lists (n=5)

PubMed (n=1058)
Cochrane (n=30)
Web of Science (n=296)
Scopus (n=517)
CINAHL (n=62)
Africa Wide (n=240)
WHOLIS (n=294)
Figure 2: Map of included studies and vaccines
Figure 3: Reported determinants of vaccine hesitancy
Figure 4: Reported sub-determinants of vaccine hesitancy, by vaccine

<table>
<thead>
<tr>
<th>Group</th>
<th>Determinant</th>
<th>sub-code</th>
</tr>
</thead>
<tbody>
<tr>
<td>contextual influences</td>
<td>religion/culture/gender/socioeconomic</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>politics/policies/mandates</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>geographic barriers</td>
<td>7</td>
</tr>
<tr>
<td>individual/group influences</td>
<td>experience with past vaccination</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>beliefs/attitudes about health prevention</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.6</td>
</tr>
<tr>
<td>knowledge/awareness</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.5</td>
</tr>
<tr>
<td>health system and providers-trust and personal experience</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.8</td>
</tr>
<tr>
<td>risk/benefit (perceived/hueristic)</td>
<td>14.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.5</td>
</tr>
<tr>
<td>immunization as a social norm</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>vaccine specific issues</td>
<td>introduction of a new vaccine</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>mode of administration</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>design of vaccination programme, mode of delivery</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.3</td>
</tr>
<tr>
<td></td>
<td>reliability and/or source of vaccine</td>
<td>21.1</td>
</tr>
<tr>
<td></td>
<td>vaccination schedule</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>costs</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23.5</td>
</tr>
<tr>
<td>other</td>
<td>already had vaccine or VPD</td>
<td>995</td>
</tr>
<tr>
<td></td>
<td>general, nonspecified access is not available</td>
<td>996</td>
</tr>
<tr>
<td></td>
<td>reason not specified</td>
<td>998</td>
</tr>
<tr>
<td></td>
<td>other reason</td>
<td>999</td>
</tr>
</tbody>
</table>

Sum of Number of Records for each sub-code broken down by Group and Determinant. Color shows details about Intervention (Vaccine). Please refer to the Codeframe (Appendix 2) for the corresponding sub-determinants of the depicted sub-codes.
Determinants by Participant and Setting

The table below summarizes the reported sub-determinants of vaccine hesitancy, categorized by participant (independent or caregiver) and setting (contextual influences, individual/group influences, vaccine specific issues, other).

Figure 5: Reported sub-determinants of vaccine hesitancy, by participant and setting

<table>
<thead>
<tr>
<th>Participant</th>
<th>Group</th>
<th>Determinant</th>
<th>sub-code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent</td>
<td>contextual influences</td>
<td>politics/policies/mandates</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>individual/group influences</td>
<td>beliefs/attitudes about health prevention</td>
<td>11.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>knowledge/awareness</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>health system and providers-trust and personal experience</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mode of administration</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>design of vaccination program</td>
<td>20.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>costs</td>
<td>23.2</td>
</tr>
<tr>
<td></td>
<td>other</td>
<td>already had vaccine or VPD</td>
<td>995</td>
</tr>
<tr>
<td>Caregiver</td>
<td>contextual influences</td>
<td>politics/policies/mandates</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>religion/culture/gender/sociocultural</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>geographic barriers</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>individual/group influences</td>
<td>experience with past vaccination schedule</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>immunization as a social norm</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>beliefs/attitudes about health prevention</td>
<td>11.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>risk/benefit (perceived/hierarchical)</td>
<td>14.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>knowledge/awareness</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>health system and providers-trust and personal experience</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.8</td>
</tr>
<tr>
<td></td>
<td>vaccine specific issues</td>
<td>vaccination schedule</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reliability and/or source of information</td>
<td>21.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>design of vaccination program</td>
<td>20.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>costs</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23.5</td>
</tr>
<tr>
<td></td>
<td>other</td>
<td>general, nonspecified access to vaccination</td>
<td>996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>other reason</td>
<td>999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reason not specified (not documented)</td>
<td>998</td>
</tr>
</tbody>
</table>

Both Contextual Influences
- religion/culture/gender/sociocultural: 5.2
- geographic barriers: 7

Both Individual/Group Influences
- experience with past vaccination program: 10
- risk/benefit (perceived/hierarchical): 14.3
- knowledge/awareness: 12.1, 12.5

Number of Records
- 0
- 2
- 4
- 6

**Color shows details about Setting. The view is filtered on Setting, which keeps rural, semi, and urban.*
Determinants by Participant and Setting

<table>
<thead>
<tr>
<th>Participant</th>
<th>Group</th>
<th>Determinant</th>
<th>sub-code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both</td>
<td>individual/group influences</td>
<td>health system and providers' trust and personal experience</td>
<td>13.2, 13.6, 13.8</td>
</tr>
<tr>
<td></td>
<td>vaccine specific issues</td>
<td>reliability and/or source of..</td>
<td>21.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>design of vaccination progr..</td>
<td>20.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>costs</td>
<td>23.2, 23.5</td>
</tr>
</tbody>
</table>

The view is filtered on Setting, which keeps rural, semi and urban.
Figure 6: Reported sub-determinants of vaccine hesitancy, by delivery method and site

![Diagram showing reported sub-determinants of vaccine hesitancy, by delivery method and site.](image-url)
Determinants by Delivery Method and Site

<table>
<thead>
<tr>
<th>Delivery Method</th>
<th>Group</th>
<th>Determinant</th>
<th>Number of Records</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routine</td>
<td>individual/group influences</td>
<td>health system and providers-trust and personal experience</td>
<td>13.2, 13.7, 13.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reliability and/or source of..</td>
<td>21.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>design of vaccination progr..</td>
<td>20.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>costs</td>
<td>23, 23.2, 23.4, 23.5</td>
</tr>
<tr>
<td></td>
<td>other</td>
<td>general, nonspecified acce..</td>
<td>996</td>
</tr>
<tr>
<td></td>
<td>other reason</td>
<td></td>
<td>999</td>
</tr>
</tbody>
</table>

The view is filtered on Delivery Method and Delivery Site. The Delivery Method filter keeps Campaign and Routine. The Delivery Site filter excludes Not Specified.
Appendix 1: Inclusion/exclusion criteria

<table>
<thead>
<tr>
<th>Participants</th>
<th>Interventions</th>
<th>Included WHO-qualified Vaccines and VPDs (WHO, 2017)</th>
</tr>
</thead>
<tbody>
<tr>
<td>patients, parents, guardians, teachers/educators, elders, or adolescents, living in an African country, who are presented with the opportunity to make a decision to receive a WHO-qualified vaccine (either as an independent decision-maker for themselves or as a caregiver or their child or dependent)</td>
<td>vaccines, immunisations, or inoculations, including maternal vaccines/immunisations, vaccine/immunisation programmes or campaigns</td>
<td>BCG, Polio Vaccine - Oral (OPV) Bivalent Types 1 and 3, HPV, Japanese Encephalitis Vaccine (Inactivated), Polio Vaccine - Oral (OPV) Monovalent Type 1, Diphtheria-Tetanus, Japanese Encephalitis Vaccine (live, attenuated), Polio Vaccine - Oral (OPV) Monovalent Type 2, Diphtheria-Tetanus (reduced antigen content), Measles, Polio Vaccine - Oral (OPV) Monovalent Type 3, Diphtheria-Tetanus-Pertussis (acellular), Measles and Rubella, Polio Vaccine - Oral (OPV) Trivalent, Diphtheria-Tetanus-Pertussis (acellular)-Hepatitis B - Haemophilus influenzae type b-Polio (Inactivated), Measles, Mumps and Rubella, Rabies, Diphtheria-Tetanus-Pertussis (whole cell), Meningococcal A Conjugate, Rotavirus, Diphtheria-Tetanus-Pertussis (whole cell)-Haemophilus influenzae type b, Meningococcal A Conjugate (paediatric), Rubella, Diphtheria-Tetanus-Pertussis (whole cell)-Hepatitis B, Meningococcal A+C, Tetanus Toxoid, Diphtheria-Tetanus-Pertussis (whole cell)-Hepatitis B - Haemophilus influenzae type b, Meningococcal ACYW-135 (conjugate vaccine), Typhoid (Polysaccharide), Haemophilus influenzae type b, Meningococcal ACYW-135 (polysaccharide), Yellow Fever, Hepatitis A (inactivated), Pneumococcal (conjugate), Hepatitis B, Polio Vaccine - Inactivated (IPV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reasons or factors of: acceptance, refusal, hesitancy, or anti-vaccination (as defined by participant who refused)</td>
</tr>
</tbody>
</table>

Comparison / Outcome
Appendix 2: Search terms and strategy

<table>
<thead>
<tr>
<th>"PICO"</th>
<th>Terms</th>
<th>MeSH Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>patient* OR parent* OR guardian* OR teacher OR educator OR adolescen* OR elder*</td>
<td></td>
</tr>
<tr>
<td>Intervention</td>
<td>General</td>
<td>"Vaccination"[Mesh] OR "Immunization"[Mesh] OR "Vaccines"[Mesh] OR "Immunization Programs"[Mesh] OR "Organization and Administration"[Mesh]</td>
</tr>
<tr>
<td></td>
<td>vaccin* OR immuni* OR innoculat* OR "maternal vaccin***"</td>
<td></td>
</tr>
<tr>
<td>Comparison</td>
<td>Outcome</td>
<td>"Vaccination Refusal"[Mesh] OR "Anti-Vaccination Movement"[Mesh]</td>
</tr>
<tr>
<td></td>
<td>accept* OR hesit* OR uptake OR refus*</td>
<td></td>
</tr>
<tr>
<td>Filters</td>
<td>Clinical Trial, Clinical Trial, Phase I, Clinical Trial, Phase II, Clinical Trial, Phase III, Comparative Study, Clinical Trial, Phase IV, Controlled Clinical Trial, Interview, Journal Article, Multicenter Study, Observational Study, Randomized Controlled Trial, Humans</td>
<td></td>
</tr>
</tbody>
</table>
Search Strategy:
Search #1 = [Participants: Terms]
Search #2 = [Participants: MeSH Terms]
Search #3 = #1 OR #2
Search #4 = [Setting: Terms]
Search #5 = [Setting: MeSH Terms]
Search #6 = #4 OR #5
Search #7 = [Intervention: Terms]
Search #8 = [Intervention: MeSH Terms]
Search #9 = #7 OR #8
Search #10 = [C/O: Terms]
Search #11 = [C/O: MeSH Terms]
Search #12 = #10 OR #11
Final Search (#13) = #3 AND #6 AND #9 AND #12, apply filters

Databases:
PubMed - Searched 19 Jan 2017
Cochrane (CENTRAL) - Searched 19 Jan 2017
Scopus - Searched 20 Jan 2017
Web of Science - Searched 20 Jan 2017
CINAHL - Searched 20 Jan 2017
Africa Wide - Searched 20 Jan 2017
WHOLIS - Searched 26 Jan 2017
Appendix 3: Quantitative codeframe

<table>
<thead>
<tr>
<th>Intervention (Vaccine)</th>
<th>Delivery Site</th>
<th>Delivery Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Description</td>
<td>Code</td>
</tr>
<tr>
<td>1</td>
<td>routine childhood</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>measles rubella (MR)</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>HPV</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>polio (OPV)</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>cholera (OCV)</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Hepatitis B</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Urban/Rural</th>
<th>Gender</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Description</td>
<td>Code</td>
</tr>
<tr>
<td>1</td>
<td>not specified</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Rural</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Semi</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Urban</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>both rural and urban</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study Design/Methods</th>
<th>Literacy / Education</th>
<th>Participant's decision role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Description</td>
<td>Code</td>
</tr>
<tr>
<td>1</td>
<td>randomised controlled trials</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>controlled before and after</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>cohort</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>case-control</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>cross-sectional</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>focus group</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>interview (in-depth)</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>case study</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>ethnography</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>qualitative</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 4: Qualitative codeframe

<table>
<thead>
<tr>
<th>Code</th>
<th>Sub-determinant</th>
<th>SAGE Determinant</th>
<th>SAGE Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>contextual influences (general/other)</td>
<td>contextual influences (general/other)</td>
<td>contextual influences</td>
</tr>
<tr>
<td>2</td>
<td>communication & media environment</td>
<td>communication & media environment</td>
<td>contextual influences</td>
</tr>
<tr>
<td>2.1</td>
<td>access to information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>mass media (use and influence)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>influential leaders, gatekeepers and anti-/pro-vaccination lobbies</td>
<td>influential leaders, gatekeepers and anti-/pro-vaccination lobbies</td>
<td>contextual influences</td>
</tr>
<tr>
<td>4</td>
<td>historical influences</td>
<td>historical influences</td>
<td>contextual influences</td>
</tr>
<tr>
<td>5</td>
<td>religion/culture/gender/socioeconomic</td>
<td>religion/culture/gender/socioeconomic</td>
<td>contextual influences</td>
</tr>
<tr>
<td>5.1</td>
<td>Religion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Culture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Gender (of dependent)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Gender (of independent)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Husband or head-of-household refusal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>politics/policies/mandates</td>
<td>policies/policies/mandates</td>
<td>contextual influences</td>
</tr>
<tr>
<td>6.1</td>
<td>government involvement, interference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>distrust in something offered for free</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>belief govt should allocate resources to other areas (not vax)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>geographic barriers</td>
<td>geographic barriers</td>
<td>contextual influences</td>
</tr>
<tr>
<td>8</td>
<td>pharmaceutical industry</td>
<td>pharmaceutical industry</td>
<td>contextual influences</td>
</tr>
<tr>
<td>9</td>
<td>individual/group influences (general/other)</td>
<td>individual/group influences (general/other)</td>
<td>contextual influences</td>
</tr>
<tr>
<td>10</td>
<td>experience with past vaccination</td>
<td>experience with past vaccination</td>
<td>contextual influences</td>
</tr>
<tr>
<td>11</td>
<td>beliefs/attitudes about health and prevention</td>
<td>beliefs/attitudes about health and prevention</td>
<td>contextual influences</td>
</tr>
<tr>
<td>11.1</td>
<td>attitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.2</td>
<td>beliefs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.3</td>
<td>motivation (forgetfulness, disinterest, laziness)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.4</td>
<td>practice (general non-use of health services)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.5</td>
<td>practice (use of traditional/alternative practices)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.6</td>
<td>practice (general disapproval of vaccines, no detailed reasons)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>knowledge/awareness</td>
<td>knowledge/awareness</td>
<td>contextual influences</td>
</tr>
<tr>
<td>12.1</td>
<td>vaccination knowledge (whether additional doses are required, eligibility/age/when to receive)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.2</td>
<td>general health knowledge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.3</td>
<td>myth/fears</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.4</td>
<td>belief that vac cannot be received when recipient is sick</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5</td>
<td>insufficient information on time/place of vac/campaign</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>health system and providers-trust and personal experience</td>
<td>health system and providers-trust and personal experience</td>
<td>contextual influences</td>
</tr>
<tr>
<td>13.1</td>
<td>satisfaction with public health system, difficult personal interactions, symbolic violence, lack of resources/necessities (i.e. water) at facilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.2</td>
<td>distrust/fear vaccine due to: side effects (fear)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.3</td>
<td>distrust/fear vaccine due to: infertility (fear)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.4</td>
<td>distrust/fear vaccine due to: belief it will encourage promiscuity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.5</td>
<td>distrust/fear vaccine due to: belief too many injections are harmful</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.6</td>
<td>distrust/fear vaccine due to: belief child too young to receive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.7</td>
<td>vaccinators absent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.8</td>
<td>long wait, delays, crowds at delivery site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>risk/benefit (perceived, heuristic)</td>
<td>risk/benefit (perceived, heuristic)</td>
<td>contextual influences</td>
</tr>
<tr>
<td>14.1</td>
<td>susceptibility to disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.2</td>
<td>disease severity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.3</td>
<td>vaccine safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.4</td>
<td>vaccine efficacy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.5</td>
<td>vaccine efficacy of something that is free</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>immunization as a social norm vs. not needed / harmful (need for vaccine, necessary)</td>
<td>immunization as a social norm vs. not needed / harmful (need for vaccine, necessary)</td>
<td>contextual influences</td>
</tr>
<tr>
<td>15.1</td>
<td>identification of the new vaccine or new formulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.2</td>
<td>introduction of the new vaccine or new formulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>vaccine specific issues (general/other)</td>
<td>vaccine specific issues (general/other)</td>
<td>contextual influences</td>
</tr>
<tr>
<td>17</td>
<td>risk/benefit (scientific evidence)</td>
<td>risk/benefit (scientific evidence)</td>
<td>contextual influences</td>
</tr>
<tr>
<td>17.1</td>
<td>use of evidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.2</td>
<td>trust in evidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>mode of administration</td>
<td>mode of administration</td>
<td>contextual influences</td>
</tr>
<tr>
<td>18.1</td>
<td>design of vaccination program, mode of delivery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>design of vaccination program, mode of delivery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.1</td>
<td>absent from vac site (absent from school, not at home during delivery)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.2</td>
<td>procedural issues (multi-stage, problems with vac booklet/card</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3</td>
<td>limited open hours/days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>reliability and/or source of vaccine supply</td>
<td>reliability and/or source of vaccine supply</td>
<td>contextual influences</td>
</tr>
<tr>
<td>21.1</td>
<td>vaccination schedule</td>
<td>vaccination schedule</td>
<td>contextual influences</td>
</tr>
<tr>
<td>22</td>
<td>costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.1</td>
<td>financial (cost of vaccine itself)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.2</td>
<td>time (interruption of time normally spent on other activities/responsibilities)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3</td>
<td>administrative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4</td>
<td>access (cost of transportation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.5</td>
<td>inability to access to due to ability, or illness (of recipient or caregiver)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>role of healthcare professionals</td>
<td>role of healthcare professionals</td>
<td>contextual influences</td>
</tr>
<tr>
<td>24.1</td>
<td>patient communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.2</td>
<td>vaccination expectations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.3</td>
<td>organizational culture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.4</td>
<td>place of work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>995</td>
<td>already had the vaccine/vpd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>996</td>
<td>general, nonspecified access issues, no opportunity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>997</td>
<td>unclear relevance</td>
<td>other</td>
<td></td>
</tr>
<tr>
<td>998</td>
<td>reason not specified (not data?)</td>
<td>other</td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>other reason</td>
<td>other</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 5: SAGE WG Determinants of Vaccine Hesitancy (definitions)

<table>
<thead>
<tr>
<th>SAGE Determinant</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>contextual influences</td>
<td>Influences arising due to historic, socio-cultural, environmental, health system/institutional, economic or political factors</td>
</tr>
<tr>
<td>communication & media environment</td>
<td>Media and social media can create a negative or positive vaccine sentiment and can provide a platform for lobbies and key opinion leaders to influence others; social media allows users to freely voice opinions and experiences and it can facilitate the organization of social networks for or against vaccines.</td>
</tr>
<tr>
<td>influential leaders, gatekeepers and anti-/pro- vaccination lobbies</td>
<td>Community leaders and influencers, including religious leaders in some settings, celebrities in others, can all have a significant influence on vaccine acceptance or hesitancy.</td>
</tr>
<tr>
<td>historical influences</td>
<td>Historic influences (such as the negative experience of the Trovan trial in Nigeria) can undermine public trust and influence vaccine acceptance, as it did for polio, especially when combined with pressures of influential leaders and media. A community’s experience isn’t necessarily limited to vaccination but may affect it.</td>
</tr>
<tr>
<td>religion/culture/gender/socioeconomic</td>
<td>A few examples of the interplay of religious/cultural influences include: Some religious leaders prohibit vaccines; Some cultures do not want men vaccinating children; Some cultures value boys over girls and fathers don’t allow children to be vaccinated.</td>
</tr>
<tr>
<td>politics/policies/mandates</td>
<td>Vaccine mandates can provoke vaccine hesitancy not necessarily because of safety or other concerns, but due to resistance to the notion of forced vaccination.</td>
</tr>
<tr>
<td>geographic barriers</td>
<td>A population can have general confidence in a vaccine and health service, and be motivated to receive a vaccine but hesitate as the health center is too far away or access is difficult.</td>
</tr>
<tr>
<td>pharmaceutical industry</td>
<td>Industry may be distrusted and influence vaccine hesitancy when perceived as driven only by financial motives and not in public health interest; This can extend to distrust in government when perceived that they are also being pushed by industry and not transparent.</td>
</tr>
<tr>
<td>individual/group influences</td>
<td>Influences arising from personal perception of the vaccine or influences of the social/peer environment.</td>
</tr>
<tr>
<td>experience with past vaccination</td>
<td>Past negative or positive experience with a particular vaccination can influence hesitancy or willingness to vaccinate. Knowledge of someone who suffered from a VPD due to non-vaccination may enhance vaccine acceptance. Personal experience or knowledge of someone who experienced an AEFI can also influence hesitancy.</td>
</tr>
<tr>
<td>beliefs/attitudes about health and prevention</td>
<td>Vaccine hesitancy can result from 1) beliefs that vaccine preventable diseases (VPD) are needed to build immunity (and that vaccines destroy important natural immunity) or 2) beliefs that other behaviors (breastfeeding, traditional/alternative medicine or naturopathy) are as or more important than vaccination to maintain health and prevent VPDs.</td>
</tr>
<tr>
<td>knowledge/awareness</td>
<td>Decisions to vaccinate or not are influenced by a number of the factors addressed here, including level of knowledge and awareness. Vaccine acceptance or hesitancy can be affected by whether an individual or group has accurate knowledge, a lack of awareness due to no information, or misperceptions due to misinformation. Accurate knowledge alone is not enough to ensure vaccine acceptance, and misperceptions may cause hesitancy, but still result in vaccine acceptance.</td>
</tr>
<tr>
<td>health system and providers-trust and personal experience</td>
<td>Trust or distrust in government or authorities in general, can affect trust in vaccines and vaccination programmes delivered or mandated by the government. Past experiences that influence hesitancy can includes system procedures that were too long or complex, or personal interactions were difficult.</td>
</tr>
<tr>
<td>risk/benefit (perceived, heuristic)</td>
<td>Perceptions of risk as well as perceptions of lack of risk can affect vaccine acceptance. Complacency sets in when the perception of disease risk is low and little felt need for vaccination. E.g. Patient’s or caregiver’s perceptions of their own or their children’s risk of the natural disease or caregivers’ perceptions of how serious or life threatening the VPD is.</td>
</tr>
<tr>
<td>immunization as a social norm vs. not needed / harmful</td>
<td>Vaccine acceptance or hesitancy is influenced by peer group and social norms.</td>
</tr>
<tr>
<td>vaccine specific issues</td>
<td>Directly related to vaccine or vaccination.</td>
</tr>
<tr>
<td>risk/benefit (scientific evidence)</td>
<td>Scientific evidence of risk/benefit and history of safety issues can prompt individuals to hesitate, even when safety issues have been clarified and/or addressed. E.g. suspension of rotavirus vaccine due to intussusception; Guillain-Barre syndrome following swine flu vaccine (1976) or narcolepsy (2011) following (A)H1N1 vaccination; milder, local adverse events can also provoke hesitancy.</td>
</tr>
<tr>
<td>introduction of a new vaccine or new formulation</td>
<td>Individuals may hesitate to accept a new vaccine when they feel it has not been used/tested for long enough or feel that the new vaccine is not needed, or do not see the direct impact of the vaccine (e.g. HPV vaccine preventing cervical cancer). Individuals may be more willing (i.e. not complacent) to accept a new vaccine if perception of the VPD risk is high.</td>
</tr>
<tr>
<td>Category</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>mode of administration</td>
<td>Mode of administration can influence vaccine hesitancy for different reasons. E.g. oral or nasal administration are more convenient and may be accepted by those who find injections fearful or they do not have confidence in the health workers skills or devices used.</td>
</tr>
<tr>
<td>design of vaccination program, mode of delivery</td>
<td>Delivery mode can affect vaccine hesitancy in multiple ways. Some parents may not have confidence in a vaccinator coming house-to-house; or a campaign approach driven by the government. Alternatively if a health centre is too far or the hours are inconvenient.</td>
</tr>
<tr>
<td>reliability and/or source of vaccine supply</td>
<td>Individuals may hesitate if they do not have confidence in the system’s ability to provide vaccine(s) or might not have confidence in the source of the supply (e.g. if produced in a country/culture the individual is suspicious of); health workers may also be hesitant to administer a vaccine (especially a new one) if they do not have confidence that the supply will continue as it affects their clients trust in them. Caregivers may not have confidence that a needed vaccine and or health staff will be at the health facility if they go there.</td>
</tr>
<tr>
<td>vaccination schedule</td>
<td>Although there may be an appreciation for the importance of preventing individual vaccine preventable diseases, there may be reluctance to comply with the recommended schedule (e.g. multiple vaccines or age of vaccination). Vaccination schedules have some flexibility that may allow for slight adjustment to meet individual needs and preferences. While this may alleviate hesitancy issues, accommodating individual demands are not feasible at a population level.</td>
</tr>
<tr>
<td>costs</td>
<td>An individual may have confidence in a vaccine’s safety and the system that delivers it, be motivated to vaccinate, but not be able to afford the vaccine or the costs associated with getting themselves and their child(ren) to the immunization point. Alternatively, the value of the vaccine might be diminished if provided for free.</td>
</tr>
<tr>
<td>role of healthcare professionals</td>
<td>Health care professionals (HCP) are important role models for their patients; if HCPs hesitate for any reason (e.g. due to lack of confidence in a vaccine’s safety or need) it can influence their clients’ willingness to vaccinate.</td>
</tr>
</tbody>
</table>
VACCINE

TABLE OF CONTENTS

- Description p.1
- Audience p.1
- Impact Factor p.1
- Abstracting and Indexing p.2
- Editorial Board p.2
- Guide for Authors p.5

DESCRIPTION

Vaccine is the pre-eminent journal for those interested in vaccines and vaccination. Submissions to the following categories are welcomed: Human Vaccines - infectious diseases, Human Vaccines - non-infectious diseases, Veterinary Vaccines, Immunology and Animal Models, Vectors, Adjuvants and Delivery Systems, Production, manufacturing, Vaccine Safety, Regulatory, Societal and Legislation Aspects, History of Vaccinology. For more specifics please go to Article Type - Guidelines.

Benefits to authors

We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services.

Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center.

AUDIENCE

Research workers, product developers, clinicians and practitioners with interests in virology, bacteriology, parasitology, mycology, immunology, genetics, biotechnology and biochemistry in the medical and veterinary fields.

IMPACT FACTOR

2015: 3.413 © Thomson Reuters Journal Citation Reports 2016
ABSTRACTING AND INDEXING

ADONIS
AIDS
AIDS Information
Abstracts on Hygiene and Communicable Diseases
BIOSIS
Biotechnology Abstracts
Elsevier BIOBASE
Chemical Abstracts
Current AIDS Literature
Current Contents
Current Opinion in Immunology
Current Opinion in Infectious Diseases
MEDLINE®
Index Veterinarius
EMBASE
Focus on: Veterinary Science and Medicine
Tropical Diseases Bulletin
Veterinary Bulletin
Virus Information Exchange Newsletter
SIIC Data Bases
Scopus

EDITORIAL BOARD

Editor-in-Chief:
Gregory A. Poland, Rochester, Minnesota, USA

Managing Editor
Elena Kostova, Amsterdam, Netherlands

Reviews Editor:
Kathleen M. Neuzil, Baltimore, Maryland, USA

Associate Editors:
Danny Altmann, London, UK
Andrew Artenstein, Springfield, Massachusetts, USA
Biodefense, emerging threat pathogens, vaccine clinical trials Section editor for history of vaccinology and visual vaccinology
Lorne Babiuk, Edmonton, Alberta, Canada
Adjuvants; vaccine delivery; formulation Immunology; mainly focused on animal models but also human immunology and veterinary vaccines
Ray Borrow, Manchester, UK
Bacterial vaccines and clinical trials
Robert T. Chen, Atlanta, Georgia, USA
Vaccine Safety & Policy
Anthony R. Fooks, Addlestone, Surrey, UK
Zoonosis and neglected tropical diseases
Steven Jacobsen, Los Angeles, California, USA
Epidemiology and clinical trials
Hiroshi Kiyono, Tokyo, Japan
Mucosal immunology
Bruce Y. Lee, Baltimore, Maryland, USA
Economics, operations research, logistics, modelling, and policy
Anton Middelberg, Brisbane, Queensland, Australia
Vaccine engineering and manufacture; nanoparticle vaccines; nanoemulsions
Tim Mosmann, Rochester, New York, USA
T-cell immunology
Ann Oberg, Rochester, Minnesota, USA
Bio statistician
Albert Osterhaus, Hannover, Germany
Wildlife virology and virus discovery
Richard Titball, Exeter, UK
vaccines against bacterial pathogens

Council of 100
Carl Alving, Silver Spring, Maryland, USA
Jon K. Andrus, Washington, District of Columbia, USA
Bernard Arulanandam, San Antonio, TX, USA
Subhash Chandra Arya, Delhi, India
Robert L. Atmar, Houston, Texas, USA
Ian Barr, Melbourne, VIC, Australia
Noel Barrett, Orth/Donau, Austria
Kenneth Beagley, Kelvin Grove, Queensland, Australia
Martin Beer, Greifswald-Insel Riems, Germany
Igor Belyakov, Ann Arbor, MI, USA
Steve Black, Cincinnati, OH, USA
Paolo Bonanni, Florence, Italy
Xavier Bosch, Barcelona, Spain
Prosper Boyaka, Columbus, Ohio, USA
David Briles, Birmingham, Alabama, USA
Alexander Bukreyev, Galveston, Texas, USA
Antonella Caputo, Padua, Italy
Antonio Cassone, Perugia, Italy
Yung-Fu Chang, Ithaca, NY, USA
Allan Cripps, Southport, Queensland, Australia
Roy Curtiss III, Gainesville, Florida, USA
Ron Dagan, Beersheba, Israel
Jose de la Fuente, Stillwater, OK, USA
Rik de Swart, Rotterdam, Netherlands
Amanda Dempsey, Aurora, Colorado, USA
Betty Dodet, Lyon, France
Philippe Duclos, Genève 27, Switzerland
Kathryn Edwards, Nashville, TN, USA
Barbara Ensoli, Rome, Italy
Ian Frazer, Woolloongabba, Queensland, Australia
Tong-Ming Fu, West Point, Pennsylvania, USA
Kohtaro Fujihashi, Birmingham, Alabama, USA
James Galen, Baltimore, MD, USA
Adolfo Garcia-Sastre, New York, New York, USA
John W. Glasser, Atlanta, Georgia, USA
Dan Granoff, Oakland, CA, USA
Marie Griffin, Nashville, Tennessee, USA
Carlos Guzman, Braunschweig, Germany
Robert H. Hall, Rockville, MD, USA
Scott Halperin, Halifax, Nova Scotia, Canada
Ali Harandi, Göteborg, Sweden
Jorma Hinkula, Linköping, Sweden
Ken Ishii, Osaka, Japan
Kiyoko Iwatsuki-Horimoto, Minato-Ku, Japan
Lisa Jackson, Seattle, Washington, USA
Rodrigo Jiménez-Garcia, Madrid, Spain
Mark Jit, London, UK
Yoshihiro Kawakita, Madison, Wisconsin, USA
Heath Kelly, Carlton South, Victoria, Australia
Stephen Kent, Melbourne, Victoria, Australia
Ki Hong Kim, Pusan, South Korea
Dennis Klinman, Frederick, Maryland, USA
Keith Klugman, Seattle, Washington, USA
Eiji Konishi, Osaka, Japan
Thomas Lehner, London, UK
Margaret Liu, Stockholm, Sweden
Pier Luigi Lopalco, Stockholm, Sweden
Raina MacIntyre, Sydney, New South Wales, Australia
Helena Maltezou, Athens, Greece
Tetsuro Matano, Tokyo, Japan
Janet McElhaney, Farmington, Connecticut, USA
Peter McIntyre, Westmead, New South Wales, Australia
Dennis Metzger, Albany, New York, USA
Mark Miller, Bethesda, Maryland, USA
Anthony Newall, Sydney, New South Wales, Australia
Peter Newman, Toronto, Ontario, Canada
Saad Omer, Atlanta, Georgia, USA
Walter Orenstein, Atlanta, Georgia, USA
Slobodan Paessler, Galveston, Texas, USA
Marcela Pasetti, Baltimore, Maryland, USA
Stephen Pelton, Boston, Massachusetts, USA
Michael Pichichero, Rochester, NY, USA
Stanley Plotkin
Maarten Postma, Groningen, Netherlands
Nicola Principi, Milan, Italy
Roman Prymula, Hradec Kralove, Czech Republic
Conrad Quinn, Atlanta, Georgia, USA
Rino Rappuoli
Steven Reed, Seattle, Washington, USA
Guus Rimmelzwaan, Rotterdam, Zuid-Holland, Netherlands
Lance Rodewald, Atlanta, Georgia, USA
Ted Ross, Port Saint Lucie, Florida, USA
Mark Rozenbaum, Groningen, The Netherlands
Xavier Saelens, Gent, Belgium
William Schaffner, Nashville, Tennessee, USA
David Scheifele, Vancouver, British Columbia, Canada
Claire-Anne Siegrist, Genève 4, Switzerland
Mark Siifka, Beaverton, Oregon, USA
Kanta Subbarao, Bethesda, Maryland, USA
Andreas Suhrbier, Brisbane, Queensland, Australia
Keipp Talbot, Nashville, Tennessee, USA
Geraldine Taylor, Newbury, UK
Ralph Tripp, Athens, Georgia, USA
Takafumi Tsuboi, Ehime, Japan
Pierre van Damme, Antwerpen, Belgium
Sylvia van den Hurk, Saskatoon, Saskatchewan, Canada
Bruce G. Weniger
Cynthia Whitney, Atlanta, Georgia, USA
Sabine Wicker, Frankfurt, Germany
Fred Zepp, Mainz, Germany
Qinjian Zhao, Xiamen, Fujian, China
Gregory Zimet, Indianapolis, Indiana, USA
GUIDE FOR AUTHORS

INTRODUCTION

Vaccine is the most comprehensive and pre-eminent journal for those interested in vaccines and vaccination, serving as an interface between academics, those in research and development, regulatory and governmental agencies, charities, and health and industry professionals.

Types of paper

Vaccine publishes primary research papers, review articles, short communications and letters on the following topics:
- Human Vaccines - infectious diseases
- Human Vaccines - non-infectious diseases
- Veterinary Vaccines
- Immunology and Animal Models
- Vectors, Adjuvants and Drug Delivery
- Production, manufacturing and Safety
- Regulatory, Societal and Legislation Aspects

For more specifics please go to ARTICLE TYPE - GUIDELINES

Vaccine also welcomes thoughtful opinion pieces and similar commentary on topics of interest to the readership of the journal. Authors proposing such work should contact Elena Kostova, Managing Editor (e.kostova@elsevier.com), in advance of its preparation to describe the general subject of the article in order for a formal solicitation to be made. Authors who wish to submit a review article should also seek approval of topic before submission. Please send enquiry to the Managing Editor. However, the resulting submission is still subject to standard peer review, and the solicitation does not guarantee acceptance for publication.

Contact details for submission

Papers should be submitted using the Vaccine online submission system, http://ees.elsevier.com/jvac

10 essentials to ensure fast handling

Manuscript is in accordance with ARTICLE TYPE - GUIDELINES
Manuscript-text is saved as a Word-file, line-numbers are added and text is double spaced
Clinical trial registry is mentioned at the end of the abstract if applicable
Conflict of interest statement is included at the end of the manuscript
Figures and tables are prepared as separate files and are clearly labeled
Cover letter is prepared, introducing your article and explaining the novelty of the research
Keywords are prepared
Contact details of 4-6 suggested reviewers (Name, affiliation and email address) are prepared
Highlights are prepared (a birds' eye view of your article in 3-5 points, 85 characters each)
The work presented in the article has been carried out in an ethical way

For any further information please consult this Guide For Authors or visit our customer support site at http://support.elsevier.com

Submission checklist

You can use this list to carry out a final check of your submission before you send it to the journal for review. Please check the relevant section in this Guide for Authors for more details.

Ensure that the following items are present:

One author has been designated as the corresponding author with contact details:
- E-mail address
- Full postal address

All necessary files have been uploaded:
Manuscript:
- Include keywords
- All figures (include relevant captions)
- All tables (including titles, description, footnotes)
- Ensure all figure and table citations in the text match the files provided
- Indicate clearly if color should be used for any figures in print
Graphical Abstracts / Highlights files (where applicable)
Supplemental files (where applicable)

Further considerations
- Manuscript has been 'spell checked' and 'grammar checked'
• All references mentioned in the Reference List are cited in the text, and vice versa
• Permission has been obtained for use of copyrighted material from other sources (including the Internet)
• Relevant declarations of interest have been made
• Journal policies detailed in this guide have been reviewed
• Referee suggestions and contact details provided, based on journal requirements

For further information, visit our Support Center.

BEFORE YOU BEGIN

Ethics in publishing
Please see our information pages on Ethics in publishing and Ethical guidelines for journal publication.

Human and animal rights
If the work involves the use of human subjects, the author should ensure that the work described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans; Uniform Requirements for manuscripts submitted to Biomedical journals. Authors should include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.

All animal experiments should comply with the ARRIVE guidelines and should be carried out in accordance with the U.K. Animals (Scientific Procedures) Act, 1986 and associated guidelines, EU Directive 2010/63/EU for animal experiments, or the National Institutes of Health guide for the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978) and the authors should clearly indicate in the manuscript that such guidelines have been followed.

Policy and ethics (additional information)

Informed consent
Investigations on human subjects must include a statement indicating that informed consent was obtained after the nature and possible consequences of the studies had been fully explained.

Animal welfare
Authors using experimental animals must state that their care was in accordance with institutional guidelines. For animals subjected to invasive procedures, the anesthetic, analgesic and tranquilizing agents used, as well as the amounts and frequency of administration, must be stated.

Availability of Materials
Publication of an article in Vaccine is taken to imply that the authors are prepared to freely distribute materials used in the published experiments (e.g. antibodies, cell lines) to academic researchers for their own use.

Declaration of interest
All authors must disclose any financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work. Examples of potential conflicts of interest include employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and grants or other funding. If there are no conflicts of interest then please state this: 'Conflicts of interest: none'. More information.

Submission declaration and verification
Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see 'Multiple, redundant or concurrent publication' section of our ethics policy for more information), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. To verify originality, your article may be checked by the originality detection service CrossCheck.
Contributors
Each author is required to declare his or her individual contribution to the article: all authors must have materially participated in the research and/or article preparation, so roles for all authors should be described. The statement that all authors have approved the final article should be true and included in the disclosure.

Authorship
All authors should have made substantial contributions to all of the following: (1) the conception and design of the study, or acquisition of data, or analysis and interpretation of data, (2) drafting the article or revising it critically for important intellectual content, (3) final approval of the version to be submitted.

Changes to authorship
Authors are expected to consider carefully the list and order of authors before submitting their manuscript and provide the definitive list of authors at the time of the original submission. Any addition, deletion or rearrangement of author names in the authorship list should be made only before the manuscript has been accepted and only if approved by the journal Editor. To request such a change, the Editor must receive the following from the corresponding author: (a) the reason for the change in author list and (b) written confirmation (e-mail, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed.

Only in exceptional circumstances will the Editor consider the addition, deletion or rearrangement of authors after the manuscript has been accepted. While the Editor considers the request, publication of the manuscript will be suspended. If the manuscript has already been published in an online issue, any requests approved by the Editor will result in a corrigendum.

Reporting clinical trials
Randomized controlled trials should be presented according to the CONSORT guidelines. At manuscript submission, authors must provide the CONSORT checklist accompanied by a flow diagram that illustrates the progress of patients through the trial, including recruitment, enrollment, randomization, withdrawal and completion, and a detailed description of the randomization procedure. The CONSORT checklist and template flow diagram are available online.

All scientific communications describing immunogenicity, effectiveness, or efficacy of a human or veterinary vaccine must include the following details: Vaccine characteristics: Vaccine lot number, manufacturer, dosing interval and number of doses, vaccine route of administration, if an injection - the anatomic site of injection, technique for vaccine administration (if by injection, specify needle length), concomitant vaccines administered, cold chain or storage effects if relevant, and a specification of what vaccine antigens and adjuvants were administered. Subject characteristics: Age, race, ethnicity, body mass index or body weight, smoking status, gender, medical/immunologic status, and concomitant drug use.

Statistical and analytical reporting
Author guidelines for statistical and analytical reporting:

AUTHOR GUIDELINES

Statistical and analytical guidelines checklist:

STATISTICAL AND ANALYTICAL GUIDELINES CHECKLIST

Registration of clinical trials
Registration in a public trials registry is a condition for publication of clinical trials in this journal in accordance with International Committee of Medical Journal Editors recommendations. Trials must register at or before the onset of patient enrolment. The clinical trial registration number should be included at the end of the abstract of the article. A clinical trial is defined as any research study that prospectively assigns human participants or groups of humans to one or more health-related interventions to evaluate the effects of health outcomes. Health-related interventions include any intervention used to modify a biomedical or health-related outcome (for example drugs, surgical procedures, devices, behavioural treatments, dietary interventions, and process-of-care changes). Health outcomes include any biomedical or health-related measures obtained in patients or
participants, including pharmacokinetic measures and adverse events. Purely observational studies (those in which the assignment of the medical intervention is not at the discretion of the investigator) will not require registration.

Article transfer service
This journal is part of our Article Transfer Service. This means that if the Editor feels your article is more suitable in one of our other participating journals, then you may be asked to consider transferring the article to one of those. If you agree, your article will be transferred automatically on your behalf with no need to reformat. Please note that your article will be reviewed again by the new journal. More information.

Copyright
Upon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement' (see more information on this). An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Journal Publishing Agreement' form or a link to the online version of this agreement.

Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution and for all other derivative works, including compilations and translations. If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases.

For open access articles: Upon acceptance of an article, authors will be asked to complete an 'Exclusive License Agreement' (more information). Permitted third party reuse of open access articles is determined by the author’s choice of user license.

Author rights
As an author you (or your employer or institution) have certain rights to reuse your work. More information.

Elsevier supports responsible sharing
Find out how you can share your research published in Elsevier journals.

Role of the funding source
You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated.

Funding body agreements and policies
Elsevier has established a number of agreements with funding bodies which allow authors to comply with their funder’s open access policies. Some funding bodies will reimburse the author for the Open Access Publication Fee. Details of existing agreements are available online.

Open access
This journal offers authors a choice in publishing their research:

Open access
• Articles are freely available to both subscribers and the wider public with permitted reuse.
• An open access publication fee is payable by authors or on their behalf, e.g. by their research funder or institution.

Subscription
• Articles are made available to subscribers as well as developing countries and patient groups through our universal access programs.
• No open access publication fee payable by authors.

Regardless of how you choose to publish your article, the journal will apply the same peer review criteria and acceptance standards.
For open access articles, permitted third party (re)use is defined by the following Creative Commons user licenses:

Creative Commons Attribution (CC BY)

Lets others distribute and copy the article, create extracts, abstracts, and other revised versions, adaptations or derivative works of or from an article (such as a translation), include in a collective work (such as an anthology), text or data mine the article, even for commercial purposes, as long as they credit the author(s), do not represent the author as endorsing their adaptation of the article, and do not modify the article in such a way as to damage the author’s honor or reputation.

Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

For non-commercial purposes, lets others distribute and copy the article, and to include in a collective work (such as an anthology), as long as they credit the author(s) and provided they do not alter or modify the article.

The open access publication fee for this journal is **USD 2300**, excluding taxes. Learn more about Elsevier's pricing policy: https://www.elsevier.com/openaccesspricing.

Green open access

Authors can share their research in a variety of different ways and Elsevier has a number of green open access options available. We recommend authors see our [green open access page](https://www.elsevier.com/openaccess) for further information. Authors can also self-archive their manuscripts immediately and enable public access from their institution's repository after an embargo period. This is the version that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and in editor-author communications. Embargo period: For subscription articles, an appropriate amount of time is needed for journals to deliver value to subscribing customers before an article becomes freely available to the public. This is the embargo period and it begins from the date the article is formally published online in its final and fully citable form. [Find out more.](https://www.elsevier.com/openaccess)

This journal has an embargo period of 12 months.

Language (usage and editing services)

Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the [English Language Editing service](https://www.elsevier.com/ed services) available from Elsevier's WebShop.

Informed consent and patient details

Studies on patients or volunteers require ethics committee approval and informed consent, which should be documented in the paper. Appropriate consents, permissions and releases must be obtained where an author wishes to include case details or other personal information or images of patients and any other individuals in an Elsevier publication. Written consents must be retained by the author and copies of the consents or evidence that such consents have been obtained must be provided to Elsevier on request. For more information, please review the [Elsevier Policy on the Use of Images or Personal Information of Patients or other Individuals](https://www.elsevier.com/policies). Unless you have written permission from the patient (or, where applicable, the next of kin), the personal details of any patient included in any part of the article and in any supplementary materials (including all illustrations and videos) must be removed before submission.

Submission

Our online submission system guides you stepwise through the process of entering your article details and uploading your files. The system converts your article files to a single PDF file used in the peer-review process. Editable files (e.g., Word, LaTeX) are required to typeset your article for final publication. All correspondence, including notification of the Editor's decision and requests for revision, is sent by e-mail.

Submit your article

Please submit your article via http://ees.elsevier.com/jvac

Referees

Suggestions for potential reviewers

Authors are invited to provide the names, and e-mail addresses of up to five potential reviewers. It would not be appropriate to nominate individuals that have had any input into the manuscripts submitted or any recent collaboration with the authors. The Editors may or may not take these suggestions into account during the reviewing process.
Review process
All contributions are read by two or more referees to ensure both accuracy and relevance, and revisions to the script may thus be required. On acceptance, contributions are subject to editorial amendment to suit house style. When a manuscript is returned for revision prior to final acceptance, the revised version must be submitted as soon as possible after the author's receipt of the referee's reports. Revised manuscripts returned after four months will be considered as new submissions subject to full re-review.

PREPARATION

Use of wordprocessing software
It is important that the file be saved in the native format of the wordprocessor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the wordprocessor's options to justify text or to hyphenate words. However, do use bold face, italics, subscripts, superscripts etc. When preparing tables, if you are using a table grid, use only one grid for each individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier: http://www.elsevier.com/guidepublication). Note that source files of figures, tables and text graphics will be required whether or not you embed your figures in the text. Source files must have "consecutive" line numbering added by authors (this must include tables, captions, references). See also the section on Electronic artwork.

To avoid unnecessary errors you are strongly advised to use the 'spell-check' and 'grammar-check' functions of your wordprocessor.

Introduction
State the objectives of the work and provide an adequate background, avoiding a detailed literature survey or a summary of the results.

Material and methods
Provide sufficient detail to allow the work to be reproduced, with details of supplier and catalogue number when appropriate. Methods already published should be indicated by a reference: only relevant modifications should be described.

Results
Results should be clear and concise.

Discussion
This should explore the significance of the results of the work, not repeat them. A combined Results and Discussion section is often appropriate. Avoid extensive citations and discussion of published literature.

Conclusions
The main conclusions of the study may be presented in a short Conclusions section, which may stand alone or form a subsection of a Discussion or Results and Discussion section.

Essential title page information
- **Title.** Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.
- **Author names and affiliations.** Please clearly indicate the given name(s) and family name(s) of each author and check that all names are accurately spelled. Present the authors’ affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author's name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name and, if available, the e-mail address of each author.
- **Corresponding author.** Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. Ensure that the e-mail address is given and that contact details are kept up to date by the corresponding author.
- **Present/permanent address.** If an author has moved since the work described in the article was done, or was visiting at the time, a 'Present address' (or 'Permanent address') may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.
Abstract
A concise and factual abstract is required. The abstract should state briefly the purpose of the research, the principal results and major conclusions. An abstract is often presented separately from the article, so it must be able to stand alone. For this reason, References should be avoided, but if essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself.

Graphical abstract
Although a graphical abstract is optional, its use is encouraged as it draws more attention to the online article. The graphical abstract should summarize the contents of the article in a concise, pictorial form designed to capture the attention of a wide readership. Graphical abstracts should be submitted as a separate file in the online submission system. Image size: Please provide an image with a minimum of 531 × 1328 pixels (h × w) or proportionally more. The image should be readable at a size of 5 × 13 cm using a regular screen resolution of 96 dpi. Preferred file types: TIFF, EPS, PDF or MS Office files. You can view Example Graphical Abstracts on our information site.

Authors can make use of Elsevier's Illustration and Enhancement service to ensure the best presentation of their images and in accordance with all technical requirements: Illustration Service.

Highlights
Highlights are a short collection of bullet points that convey the core findings of the article. Highlights are optional and should be submitted in a separate editable file in the online submission system. Please use 'Highlights' in the file name and include 3 to 5 bullet points (maximum 85 characters, including spaces, per bullet point). You can view example Highlights on our information site.

Stereochemistry abstract
For each important chiral compound you are requested to supply a stereochemistry abstract detailing structure, name, formula and all available stereochemical information for eventual incorporation into a database. An abstract for only one enantiomer per compound is required.

Keywords
Immediately after the abstract, provide a maximum of 6 keywords, using British spelling and avoiding general and plural terms and multiple concepts (avoid, for example, 'and', 'of'). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

Abbreviations
Define abbreviations that are not standard in this field in a footnote to be placed on the first page of the article. Such abbreviations that are unavoidable in the abstract must be defined at their first mention there, as well as in the footnote. Ensure consistency of abbreviations throughout the article.

Acknowledgements
Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing language help, writing assistance or proof reading the article, etc.).

Formatting of funding sources
List funding sources in this standard way to facilitate compliance to funder's requirements:

Funding: This work was supported by the National Institutes of Health [grant numbers xxxx, yyyy]; the Bill & Melinda Gates Foundation, Seattle, WA [grant number zzzz]; and the United States Institutes of Peace [grant number aaaa].

It is not necessary to include detailed descriptions on the program or type of grants and awards. When funding is from a block grant or other resources available to a university, college, or other research institution, submit the name of the institute or organization that provided the funding.

If no funding has been provided for the research, please include the following sentence:

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Units
Follow internationally accepted rules and conventions: use the international system of units (SI). If other units are mentioned, please give their equivalent in SI.

Math formulae
Please submit math equations as editable text and not as images. Present simple formulae in line with normal text where possible and use the solidus (/) instead of a horizontal line for small fractional terms, e.g., X/Y. In principle, variables are to be presented in italics. Powers of e are often more conveniently denoted by exp. Number consecutively any equations that have to be displayed separately from the text (if referred to explicitly in the text).

Footnotes
Footnotes should be used sparingly. Number them consecutively throughout the article. Many word processors can build footnotes into the text, and this feature may be used. Otherwise, please indicate the position of footnotes in the text and list the footnotes themselves separately at the end of the article. Do not include footnotes in the Reference list.

Artwork
Electronic artwork
General points
• Make sure you use uniform lettering and sizing of your original artwork.
• Embed the used fonts if the application provides that option.
• Aim to use the following fonts in your illustrations: Arial, Courier, Times New Roman, Symbol, or use fonts that look similar.
• Number the illustrations according to their sequence in the text.
• Use a logical naming convention for your artwork files.
• Provide captions to illustrations separately.
• Size the illustrations close to the desired dimensions of the published version.
• Submit each illustration as a separate file.
A detailed guide on electronic artwork is available.
You are urged to visit this site; some excerpts from the detailed information are given here.

Formats
If your electronic artwork is created in a Microsoft Office application (Word, PowerPoint, Excel) then please supply 'as is' in the native document format.
Regardless of the application used other than Microsoft Office, when your electronic artwork is finalized, please 'Save as' or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):
EPS (or PDF): Vector drawings, embed all used fonts.
TIFF (or JPEG): Color or grayscale photographs (halftones), keep to a minimum of 300 dpi.
TIFF (or JPEG): Bitmapped (pure black & white pixels) line drawings, keep to a minimum of 1000 dpi.
TIFF (or JPEG): Combinations bitmapped line/halftone (color or grayscale), keep to a minimum of 500 dpi.
Please do not:
• Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); these typically have a low number of pixels and limited set of colors;
• Supply files that are too low in resolution;
• Submit graphics that are disproportionately large for the content.

Color artwork
Please make sure that artwork files are in an acceptable format (TIFF (or JPEG), EPS (or PDF), or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color online (e.g., ScienceDirect and other sites) regardless of whether or not these illustrations are reproduced in color in the printed version. For color reproduction in print, you will receive information regarding the costs from Elsevier after receipt of your accepted article. Please indicate your preference for color: in print or online only. Further information on the preparation of electronic artwork.

Figure captions
Ensure that each illustration has a caption. Supply captions separately, not attached to the figure. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.
Tables
Please submit tables as editable text and not as images. Tables can be placed either next to the relevant text in the article, or on separate page(s) at the end. Number tables consecutively in accordance with their appearance in the text and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article. Please avoid using vertical rules and shading in table cells.

References
Citation in text
Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either 'Unpublished results' or 'Personal communication'. Citation of a reference as 'in press' implies that the item has been accepted for publication.

Reference links
Increased discoverability of research and high quality peer review are ensured by online links to the sources cited. In order to allow us to create links to abstracting and indexing services, such as Scopus, CrossRef and PubMed, please ensure that data provided in the references are correct. Please note that incorrect surnames, journal/book titles, publication year and pagination may prevent link creation. When copying references, please be careful as they may already contain errors. Use of the DOI is encouraged.

A DOI can be used to cite and link to electronic articles where an article is in-press and full citation details are not yet known, but the article is available online. A DOI is guaranteed never to change, so you can use it as a permanent link to any electronic article. An example of a citation using DOI for an article not yet in an issue is: VanDecar J.C., Russo R.M., James D.E., Ambeh W.B., Franke M. (2003). Aseismic continuation of the Lesser Antilles slab beneath northeastern Venezuela. Journal of Geophysical Research, http://dx.doi.org/10.1029/2001JB000884i. Please note the format of such citations should be in the same style as all other references in the paper.

Web references
As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list.

Data references
This journal encourages you to cite underlying or relevant datasets in your manuscript by citing them in your text and including a data reference in your Reference List. Data references should include the following elements: author name(s), dataset title, data repository, version (where available), year, and global persistent identifier. Add [dataset] immediately before the reference so we can properly identify it as a data reference. The [dataset] identifier will not appear in your published article.

Reference management software
Most Elsevier journals have their reference template available in many of the most popular reference management software products. These include all products that support Citation Style Language styles, such as Mendeley and Zotero, as well as EndNote. Using the word processor plug-ins from these products, authors only need to select the appropriate journal template when preparing their article, after which citations and bibliographies will be automatically formatted in the journal’s style. If no template is yet available for this journal, please follow the format of the sample references and citations as shown in this Guide.

Users of Mendeley Desktop can easily install the reference style for this journal by clicking the following link:
http://open.mendeley.com/use-citation-style/vaccine
When preparing your manuscript, you will then be able to select this style using the Mendeley plug-ins for Microsoft Word or LibreOffice.
Reference formatting

There are no strict requirements on reference formatting at submission. References can be in any style or format as long as the style is consistent. Where applicable, author(s) name(s), journal title/book title, chapter title/article title, year of publication, volume number/book chapter and the pagination must be present. Use of DOI is highly encouraged. The reference style used by the journal will be applied to the accepted article by Elsevier at the proof stage. Note that missing data will be highlighted at proof stage for the author to correct. If you do wish to format the references yourself they should be arranged according to the following examples:

Reference style

Text: Indicate references by number(s) in square brackets in line with the text. The actual authors can be referred to, but the reference number(s) must always be given.

List: Number the references (numbers in square brackets) in the list in the order in which they appear in the text.

Examples:

Reference to a journal publication:

Reference to a book:

Reference to a chapter in an edited book:

Reference to a website:

Reference to a dataset:

Note shortened form for last page number. e.g., 51–9, and that for more than 6 authors the first 6 should be listed followed by 'et al.' For further details you are referred to 'Uniform Requirements for Manuscripts submitted to Biomedical Journals' (J Am Med Assoc 1997;277:927–34) (see also Samples of Formatted References).

Journal abbreviations source

Journal names should be abbreviated according to the List of Title Word Abbreviations.

Supplementary material

Supplementary material such as applications, images and sound clips, can be published with your article to enhance it. Submitted supplementary items are published exactly as they are received (Excel or PowerPoint files will appear as such online). Please submit your material together with the article and supply a concise, descriptive caption for each supplementary file. If you wish to make changes to supplementary material during any stage of the process, please make sure to provide an updated file. Do not annotate any corrections on a previous version. Please switch off the 'Track Changes' option in Microsoft Office files as these will appear in the published version.

Supplementary material captions

Each supplementary material file should have a short caption which will be placed at the bottom of the article, where it can assist the reader and also be used by search engines.

Data linking

If you have made your research data available in a data repository, you can link your article directly to the dataset. Elsevier collaborates with a number of repositories to link articles on ScienceDirect with relevant repositories, giving readers access to underlying data that give them a better understanding of the research described.

There are different ways to link your datasets to your article. When available, you can directly link your dataset to your article by providing the relevant information in the submission system. For more information, visit the database linking page.

For supported data repositories a repository banner will automatically appear next to your published article on ScienceDirect.
In addition, you can link to relevant data or entities through identifiers within the text of your manuscript, using the following format: Database: xxxx (e.g., TAIR: AT1G01020; CCDC: 734053; PDB: 1XFN).

ARTICLE ENRICHMENTS

AudioSlides
The journal encourages authors to create an AudioSlides presentation with their published article. AudioSlides are brief, webinar-style presentations that are shown next to the online article on ScienceDirect. This gives authors the opportunity to summarize their research in their own words and to help readers understand what the paper is about. More information and examples are available. Authors of this journal will automatically receive an invitation e-mail to create an AudioSlides presentation after acceptance of their paper.

Google Maps and KML files
KML (Keyhole Markup Language) files (optional): You can enrich your online articles by providing KML or KMZ files which will be visualized using Google maps. The KML or KMZ files can be uploaded in our online submission system. KML is an XML schema for expressing geographic annotation and visualization within Internet-based Earth browsers. Elsevier will generate Google Maps from the submitted KML files and include these in the article when published online. Submitted KML files will also be available for downloading from your online article on ScienceDirect. More information.

Interactive plots
This journal enables you to show an Interactive Plot with your article by simply submitting a data file. Full instructions.

AFTER ACCEPTANCE

News and embargoes
If you think your article would be interesting for a wider audience, we would be happy to hear from you. Please contact the Journal Manager, John Bailey (jd.bailey@elsevier.com) and we'll send you an information form to complete. You must inform the Journal Manager if you are planning publicity for your article through your institution or funding body. Any publicity materials must be approved by Elsevier before release, and must not be distributed before the article has been published.

Uncorrected proofs of articles are published online on ScienceDirect as soon as they are available. As such, information about embargoes is not available. Authors can track the status of their article via the **Track Your Accepted Article service**. Uncorrected articles are normally available online within two working days of you receiving the email to download the proofs.

Online proof correction
Corresponding authors will receive an e-mail with a link to our online proofing system, allowing annotation and correction of proofs online. The environment is similar to MS Word: in addition to editing text, you can also comment on figures/tables and answer questions from the Copy Editor. Web-based proofing provides a faster and less error-prone process by allowing you to directly type your corrections, eliminating the potential introduction of errors.
If preferred, you can still choose to annotate and upload your edits on the PDF version. All instructions for proofing will be given in the e-mail we send to authors, including alternative methods to the online version and PDF.
We will do everything possible to get your article published quickly and accurately. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. It is important to ensure that all corrections are sent back to us in one communication. Please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility.

Offprints
The corresponding author will, at no cost, receive a customized Share Link providing 50 days free access to the final published version of the article on ScienceDirect. The Share Link can be used for sharing the article via any communication channel, including email and social media. For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. Both corresponding and co-authors may order offprints at any
time via Elsevier's Webshop. Corresponding authors who have published their article open access do not receive a Share Link as their final published version of the article is available open access on ScienceDirect and can be shared through the article DOI link.

AUTHOR INQUIRIES

Visit the Elsevier Support Center to find the answers you need. Here you will find everything from Frequently Asked Questions to ways to get in touch.

You can also check the status of your submitted article or find out when your accepted article will be published.

© Copyright 2014 Elsevier | http://www.elsevier.com
When the number of authors is exceeding the allowed number (e.g. for multi-center studies, conference proceedings, study groups), please include in the main author list "XYZ Study Group" and list full names and affiliations in a footnote on the first page of the manuscript. For any other exception, please contact the Journal Manager before submission (vaccine@elsevier.com).

Pre-submission enquiry: Authors should seek approval of topic before submission. Please send enquiry to the managing editor (e.kostova@elsevier.com).

<table>
<thead>
<tr>
<th>Article Type</th>
<th>Content</th>
<th>Abstract (words)</th>
<th>Figures and tables</th>
<th>Number of authors</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Article</td>
<td>Original Research Review</td>
<td>4000</td>
<td>300</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>Basic/clinical Research Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conference Report**</td>
<td>Meeting or Workshop Report</td>
<td>4000</td>
<td>300</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>Commentary**</td>
<td>Position piece for insight or discussion on specific topic</td>
<td>1200</td>
<td>None</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Letter to the Editor</td>
<td>Opinion piece on articles</td>
<td>500</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Conference Report**</td>
<td>Meeting or Workshop Report</td>
<td>4000</td>
<td>300</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>Review**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Original Research Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Article</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of Vaccinology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual Vaccinology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>