HIV infection and penetrating abdominal trauma:

Does HIV influence the outcome?

Dr Deidré Estelle Kathleen McPherson

MB, ChB(Stell), FCS(SA)

Student number: MCPDEI 001

A dissertation submitted in fulfillment of the requirements for the degree
Master of Medicine (Surgery)

University of Cape Town
Faculty of Health Sciences
Groote Schuur Hospital
Department of General Surgery

Supervisor: Professor Pradeep Harkison Navsaria, MBChB, FCS(SA), FACS

Department of General Surgery

Trauma Unit, Groote Schuur Hospital
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
CONTENTS

1. Declaration .. 3
2. Acknowledgements .. 4
3. List of figures ... 5
4. List of tables .. 6
5. Abbreviations .. 7
6. Abstract ... 9
7. Chapter One: Literature review including references ... 11
 1.1. History of Human Immunodeficiency Virus (HIV)
 1.2. Global burden of HIV and the current status of HIV in South Africa
 1.3. Global burden of trauma and the current status of trauma in South Africa
 1.4. Influence of HIV on surgical outcome
 1.4.1. Influence of CD4-count
 1.4.2. Influence of anti-retroviral therapy
 1.4.3. Influence of viral load
 1.5. Trauma and HIV
 1.6. References for the literature review
8. Chapter Two: Publication ready manuscript .. 37
9. Appendices
 a. Ethics approval ... 66
 b. Consent form for study ... 68
 c. Consent form for HIV testing .. 71
 d. Pre-test counselling form ... 73
 e. Post-test counselling form ... 75
 f. Author information JACS ... 78
DECLARATION

I, Deidré Estelle Kathleen McPherson, hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university.
I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever.

Signed by candidate

Date: 14th August 2017
ACKNOWLEDGEMENTS

I would like to thank the following people:

• Professor PH Nawsaria for your tremendous wisdom, support, professional guidance and contributions throughout this research.

• Associate Professor V Neuhaus for his assistance with statistical analysis as well as contributions with this research.

• My husband, Cheslyn, for patiently and lovingly supporting my commitment towards my surgical ambitions.

• My family and friends for their support and encouragement.
LIST OF FIGURES

a) Figure 1: Adult HIV prevalence (15 – 49 years), 2015

b) Figure 2: Homicide and suicide rates, 2000
LIST OF TABLES

Chapter One:

a) Table 1: Clinical staging of HIV infection
b) Table 2: Overview of studies comparing surgical HIV negative and HIV positive patients

Chapter Two:

c) Table 1: Overview of Results
d) Table 2: Complications according to Clavien-Dindo Classification
e) Table 3: Overview of studies comparing surgical HIV negative and HIV positive patients
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAST</td>
<td>American Association for the Surgery of Trauma</td>
</tr>
<tr>
<td>AIS</td>
<td>Abbreviated Injury Scale</td>
</tr>
<tr>
<td>ANC</td>
<td>Antenatal clinics</td>
</tr>
<tr>
<td>ART</td>
<td>Antiretroviral treatment</td>
</tr>
<tr>
<td>CCI</td>
<td>Charlson Comorbidity Index</td>
</tr>
<tr>
<td>CDC</td>
<td>Centres for Disease Control</td>
</tr>
<tr>
<td>GCS</td>
<td>Glasgow Coma Scale</td>
</tr>
<tr>
<td>HAART</td>
<td>Highly active antiretroviral therapy</td>
</tr>
<tr>
<td>HBsAg</td>
<td>Hepatitis B antigen</td>
</tr>
<tr>
<td>HCV</td>
<td>Hepatitis C Virus</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>HREC</td>
<td>Human research ethics committee</td>
</tr>
<tr>
<td>ICU</td>
<td>Intensive care unit</td>
</tr>
<tr>
<td>ISS</td>
<td>Injury Severity Score</td>
</tr>
<tr>
<td>NTDB</td>
<td>National Trauma Data Bank</td>
</tr>
<tr>
<td>PATI</td>
<td>Penetrating Abdominal Trauma Index</td>
</tr>
<tr>
<td>RTS</td>
<td>Revised Trauma Score</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Sciences</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>TB</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>UNAIDS</td>
<td>Joint United Nations program on HIV/AIDS</td>
</tr>
<tr>
<td>VCT</td>
<td>Voluntary counselling and testing</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
ABSTRACT

HIV and penetrating abdominal trauma: does HIV influence the outcome?

Dr Deidré Estelle Kathleen McPherson

Background: Human immunodeficiency virus (HIV) infection and trauma are significant contributors to the burden of disease in South Africa. There is an increase in prevalence of HIV sero-positivity in trauma patients. However, there are conflicting reports about the influence of HIV in outcomes after trauma or surgery. Although HIV and the acquired immunodeficiency syndrome (AIDS) can potentially affect outcomes, there have been few studies comparing trauma outcomes in HIV positive versus HIV negative patients. To the best of our knowledge, there have been no studies to date that have compared HIV-positive and HIV negative patients with penetrating (gunshot or stab) abdominal wounds requiring an exploratory laparotomy. The purpose of this study was to determine whether the outcome of hemodynamically stable patients undergoing exploratory laparotomy for penetrating abdominal trauma differed in HIV positive patients versus HIV negative patients.

Methods: This was an observational prospective study over a 16-month period from February 2016 to May 2017. All hemodynamically stable patients with penetrating abdominal trauma requiring a laparotomy were included in the study. To evaluate the impact of HIV on outcome, the mechanism of injury, the HIV-status, age, the penetrating abdominal trauma index (PATI), and the revised trauma score (RTS) were entered into a binary logistic regression model. Outcome parameters were in-hospital death, morbidity (defined as one or more distinct complications during hospitalization) was graded as per Clavien-Dindo classification of
complications, admission to intensive care unit (ICU), relaparotomy within 30 days, and length of stay longer than 30 days. Variables were sought in bivariate analysis.

Results: A total of 209 patients, 94% male, with a mean age of 29 ± 10 years were analysed. Twenty-eight patients (13%) were HIV positive. The mean CD4 count in the HIV positive group was 401 +/- 254. The two groups were comparable except for race; 79% were black in the HIV positive group vs. 41% in the HIV negative group. All patients underwent exploratory laparotomy of which 10 (4.8%) laparotomies were negative. There were two (0.96%) deaths, both in HIV negative group. The complication rate was 34% (n=72). There was no association between CD4 count and complications (p=0.234). Twenty-nine patients (14%) were admitted to the ICU. A higher PATI, advancing age, and a lower RTS were significant risk factors for worsened outcome. After 30 days, 12 patients (5.7%) were still in hospital. PATI was the single independent predictor in multivariate analysis. Twenty-four patients (11%) underwent a second laparotomy and the PATI was again the only significant predictor of outcome.

Conclusion: The incidence of HIV in our cohort is 13%; which is similar to the reported incidence of HIV in the Western Cape of 15%. There were no significant baseline differences between the HIV positive and negative groups. Our results further showed that HIV status was not an independent predictor for morbidity, admission to ICU, relaparotomy, prolonged hospital stay or mortality. The patient’s HIV status does not influence their outcomes in penetrating abdominal trauma.

Total word count: 500
Chapter One

Literature Review

1.1 History of Human Immunodeficiency Virus (HIV)

Since the emergence of the Human Immunodeficiency Virus (HIV) epidemic in young gay men in 1981 in the United States of America, more than 70 million people have been infected with it. About 35 million people have died worldwide. At that stage doctors believed that the disease affected gay men only, but in December of that same year, it became clear that the disease affected other population groups, including injecting drug users (AVERT, 2017). Currently, HIV infection is increasingly being viewed as a chronic illness, as the survival of HIV-infected patients has improved dramatically since the introduction of highly active antiretroviral therapy (HAART) (Chichom-Mefire et al., 2015). Current therapies for this infection and associated complications are prolonging the survival of patients with HIV infection, thereby increasing the likelihood of future surgeries being performed (Howard, 1990, Harris and Schecter, 1997, Pietrabissa et al., 1997). Approximately 20% - 25% of patients are likely to require either an elective or emergency surgical procedure sometime during their illness for a HIV-related condition, or incidental trauma unrelated to the HIV infection, respectively (Owotade et al., 2003).

HIV is a member of the lentivirus family, a subgroup of retroviruses. The retrovirus principally infects helper T-lymphocytes, also known as CD4 or T4 helper-cells, which normally function, via cytokines and other cellular signals, to regulate immune function. The virus gains entry into the cell via binding of the HIV envelope protein to the CD4-receptor on the cell surface. The retrovirus encodes its genetic information in RNA and uses viral enzyme known as reverse transcriptase to copy its genome into a double-stranded DNA-intermediate. This is then incorporated into host DNA as a provirus. Once internalized, the resulting HIV double-
stranded DNA is incorporated into the cellular DNA; the virus thereafter remains quiescent for some time. Activation later by some factor or factors, including other infectious agents, drugs, or cytokines, results in new viruses infecting CD4 cells. There is a direct relation between the HIV burden, expressed as viral load, and loss of circulating CD4 cells. In addition to HIV-induced CD4 cell loss, HIV infection results in significant impairment of immune function. Thus, HIV-infected individuals exhibit multiple immunologic abnormalities; neutrophil function, however, remains intact. Most patients experience an acute viral syndrome several weeks following infection. If measured, these patients have lower numbers of both CD4 and CD8 T-cells and very high levels of circulating virus. Antiviral antibodies appear 6–8 weeks following infection. Concomitant with this appearance of antibodies is an increase in the absolute numbers of CD4 and CD8 cells, viral clearance, and resolution of the acute syndrome. Acquired Immunodeficiency Syndrome (AIDS) is defined by a loss of CD4 T lymphocytes or the occurrence of opportunistic infections or cancers in patients who are HIV positive (Bender and Bender, 1993, Madiba et al., 2009).

Clinical Staging of HIV Infection (WHO Criteria) (WHO, 2017b)

The World Health Organization (WHO) has developed criteria for clinical staging of adolescents and adults >15 years of age with established HIV infection, but without additional laboratory testing for CD4 lymphocyte counts, HIV-1 RNA levels, or other laboratory measures of ongoing immunologic status. At least one clinical condition must be present for assignment to one of four clinical stages (Table 1). Once assigned to a particular stage, persons remain in that stage even if recovery occurs from the condition that led to assignment. The clinical stage determines antiretroviral treatment (ART) strategies (Fauci, 1993).

The World Health Organization staging system differs from the US Centres for Disease Control (CDC) system as it is predominantly based on the presence of clinical features of opportunistic infections and malignancies.
Primary HIV Infection
Asymptomatic or acute retroviral syndrome

Clinical Stage 1 (ART if CD4-count ≤350/µl):
Asymptomatic or persistent generalized lymphadenopathy (lymphadenopathy of at least two sites, not including inguinal, for longer than 6 months)

Clinical Stage 2 (ART if CD4-count ≤350/µl):
Moderate unexplained weight loss (<10% of presumed or measured body weight)
Recurrent respiratory tract infections (sinusitis, bronchitis, otitis media, pharyngitis)
Herpes zoster
Angular cheilitis
Recurrent oral ulcerations
Papular pruritic eruptions
Seborrheic dermatitis
Fungal nail infections of fingers (onychomycosis)

Clinical Stage 3 (offer ART):
Severe weight loss (>10% of presumed or measured body weight)
Unexplained chronic diarrhea for longer than one month
Unexplained persistent fever (intermittent or constant for longer than one month)
Oral candidiasis
Oral hairy leukoplaikia
Pulmonary tuberculosis (TB) diagnosed in last two years
Severe presumed bacterial infections (e.g. pneumonia, empyema, pyomyositis, bone or joint infection, meningitis, bacteremia)
Acute necrotizing ulcerative stomatitis, gingivitis or periodontitis
Unexplained anemia (<8 g/dl), and or neutropenia (<500/µL) and or thrombocytopenia (<50,000/µL) for more than one month

Clinical Stage 4 (all AIDS-defining illnesses, offer ART):
HIV wasting syndrome
Pneumocystis jiroveci pneumonia
Recurrent severe bacterial pneumonia
Chronic herpes simplex infection (orolabial, genital or anorectal of >1 month’s duration or visceral at any site)
Esophageal candidiasis (or candidiasis of trachea, bronchi or lungs)
Extrapulmonary tuberculosis
Kaposi sarcoma
Cytomegalovirus disease (retinitis or infection of other organs, excluding liver, spleen and lymph nodes)
Central nervous system toxoplasmosis
HIV encephalopathy
Extrapulmonary cryptococcosis including meningitis
Disseminated nontuberculous mycobacterial infection
Progressive multifocal leukoencephalopathy
Chronic cryptosporidiosis
Chronic cytisporidiosis
Disseminated mycosis (histoplasmosis, coccidioidomycosis)
Recurrent septicemia (including nontyphoidal Salmonella)
Lymphoma (cerebral or B cell non-Hodgkin)
Invasive cervical carcinoma
Atypical disseminated leishmaniasis
Symptomatic HIV-associated nephropathy or HIV-associated cardiomyopathy

Table 1: Clinical staging of HIV infection
In April 2014, the CDC published the Revised Surveillance Case Definition for HIV Infection. According to the CDC staging system, a patient who is confirmed to be HIV positive is grouped into one of five infection stages (0, 1, 2, 3 or unknown). Classification is usually based on CD4 count: adults with <200 cells/µl are deemed to have stage 3 HIV, those with 200–499 cells/µl are deemed to be stage 2 and those with ≥500 cells/µl are deemed to be stage 1. If an individual has tested negative for HIV at some point in the preceding six months and is now testing positive, he or she is classed as stage 0. This stage persists for six months following diagnosis. In addition, the stage is not based on CD4 count if the criteria for stage 0 are not met and the patient has an opportunistic infection; in this case, the individual is deemed to have stage 3 disease, regardless of the CD4 results (Centres for Disease and Prevention, 2014).

1.2 Global burden of HIV and the current status of HIV in South Africa

According to World Health Organisation (WHO), globally, 36.7 million [34.0–39.8 million] people were living with HIV at the end of 2015 (WHO, 2017a). Presently, an estimated 0.8% [0.7-0.9%] of adults aged 15–49 years worldwide are living with HIV, although the burden of the epidemic continues to vary considerably between countries and regions (Figure 1).

Sub-Saharan Africa remains the most severely affected, with nearly 1 in every 25 adults (4.4%) living with HIV and accounting for approximately 70% of the total global population living with HIV. According to UNAIDS 2016 (Joint Unite Nations program on HIV/AIDS), the current African countries most affected with a prevalence of more than 6.4 %, are South Africa, Botswana, Zimbabwe, Zambia, Tanzania, Uganda, Ethiopia, Chad, Mali, Niger, Nigeria, Cameroon, Burkina Faso, Guinea and Senegal. This is in stark contrast to the rest of the world, where the prevalence of HIV is seemingly decreasing (UNAIDS, 2017b).
According to UNAIDS 2017, South Africa has the highest prevalence in Africa, including globally, with 4.1 million people currently infected with HIV. In Africa, this is followed by Mozambique (890,000), and Kenya (880,000). The only other countries outside of Africa with a similar prevalence is Brazil (300,000), Colombia (40,000), and Venezuela (38,000) in South America (UNAIDS, 2017a).

In 2016, Statistics South Africa (Stats SA) reports an overall estimated HIV prevalence rate of approximately 12.7% (7 million) in a total population count of 55.91 million people (SA, 2017). For adults aged 15–49 years, an estimated 18.9% of the population is HIV positive.

The rate at which the population in South Africa is being infected is declining marginally yearly from 1.77% in 2002 to 1.27% in 2016. The Western Cape Province of South Africa, where the study is being conducted, has approximately 6.29 million people, representing 11.3% of the country’s total population (SA, 2017). In this province, the prevalence of HIV was 16.9% in

Figure 1: Adult HIV prevalence (15 – 49 years), 2015 (WHO, 2017a)
2011 (SAHO, 2017). Kwazulu -Natal (39.5%) and Mpumalanga (34.7%) accounted for the highest and second highest prevalence in South Africa, respectively.

To date, estimations for the HIV epidemic in South Africa are based primarily on the prevalence data, which is collected annually from pregnant women attending public antenatal clinics (ANC) since 1990. However, it has been reported that the antenatal surveillance data produce biased prevalence estimates for the general population because only a select group of people, (viz; pregnant women attending public health services), are included in the sample (SA, 2017). To correct this bias, the ANC prevalence estimates were adjusted by considering relative attendance rates at antenatal clinics and for the difference in prevalence between pregnant women and the general adult population(SA, 2017). Furthermore, adult HIV incidence is disaggregated into female and male incidence by specifying the ratio of new female infections to new male infections. The statistical report by stats SA assumes a ratio of female to male prevalence for those aged 15–49 of 1.5:1 in 2016 statistics (SA, 2017, Shisana et al., 2014).

The total number of deaths in South Africa in 2006 was 681,434. The number of AIDS-related deaths has constantly declined since 2006 from 325,241 (47.7%) to 150,759 (27.9%) in 2016. However, it is still the leading cause of premature mortality across all districts of the Western Cape (Horberg et al., 2006). Anti-retroviral therapy (ART) have extended the lifespan of many individuals living with HIV/AIDS in South Africa, who would have otherwise died at an earlier age, evident in the decline of AIDS deaths post-2005 (SA, 2017) .This could be attributed to the increase in the roll-out of ART over time. National rollout of ART began in 2005 with a target of one service point in each of the 53 districts of South Africa (SA, 2017).

In 2010, it was noted that HIV/AIDS (13.0%) accounted for the leading cause of death in Cape Town, followed by interpersonal violence (9.7%) and tuberculosis (7.7%). This is slightly different from the Western Cape Province’s overall mortality ranking for HIV/AIDS (12.4%), tuberculosis (8.6%) and interpersonal violence (8.3%) (Groenewald P et al., 2017).
1.3 Global burden of trauma and the current status of trauma in South Africa

Globally, trauma continues to be an escalating problem. More than 5 million people die each year as a result of injuries. This accounts globally for 9% of all deaths, nearly 1.7 times the number of fatalities that result from HIV/AIDS, tuberculosis and malaria combined. Approximately a quarter of the 5 million deaths from injuries are the result of suicide and homicide, while road traffic injuries account for nearly another quarter. Other main causes of death from injuries are falls, drowning, burns, poisoning and war. Injuries and violence are a significant cause of death and ill health in all countries, but they are not evenly distributed around the world or within countries – some people are more vulnerable than others (Davis PA et al,1999).

Injuries affect all age groups but have a particular impact on young people and people in their prime working years (PA et al,1999). For people between the ages of 15 and 29 years, three injury-related causes are among the top five causes of death. Road traffic injuries are the leading cause of death in this age group, with suicide and homicide the second and fourth leading causes of death, respectively, together accounting for more than one quarter of all deaths in this age group (PA et al,1999).

Trauma is one of the four pandemics in South Africa, the others being infectious diseases (HIV/AIDS and TB) and non-communicable diseases such as cardiovascular conditions, cancer and mental health (Norman et al., 2007). South Africa has high death rates from unnatural causes and the second highest homicide rate in the world, second to Colombia (Dorrington et al., 2006). An estimated 70 000 South Africans are killed due to trauma every year, while over 1.5 million patients seek medical attention and are admitted to hospital for trauma related injuries (Matzopoulos et al., 2006, Foschi et al., 2006).

Trauma care in South Africa has a number of unique challenges (Brysiewicz, 2001). South Africa is a large country with an uneven distribution of services; a restrictive infrastructure; severe financial restraints on the entire health system; and an overwhelming incidence of
patients with HIV/AIDS and TB (Brysiewicz, 2001). Substance abuse and interpersonal violence are common triggers for trauma. Most trauma patients sustain penetrating injuries as a result of interpersonal violence (Figure 2). The incidence of infectious disease is very high and contributes to the morbidity and mortality of injured patients (Brysiewicz, 2001). In South Africa, injury-related mortality rates is seven times higher compared to what is found internationally (Norman et al., 2007). Trauma-related mortality, particularly due to interpersonal violence and road traffic injuries, remains extremely high and specifically amongst young adult males: 170 per 100 000 in age group 20 - 24 years (Horberg et al., 2006).

![Figure 2: Homicide and suicide rates, 2000 (WHO, 2017c)](image)

At the Groote Schuur Hospital trauma unit in Cape Town, we saw 9236 patients in 2011, and of these interpersonal violence accounted for 72% of patient visits (Nicol et al., 2014). This reflects some of the highest numbers currently seen in the world.
1.4 Influence of HIV on surgical outcome

The association between HIV and the outcomes of surgery has been studied. Initially, when HIV was first recognized, an increase in surgical patient mortality and morbidity was observed (Vipond et al., 1991). This increase was a direct result of these patients being HIV positive, and dying from an AIDS-related illness. The early reports regarding emergency surgery in AIDS patients revealed complication rates of up to 40% and mortality rates of 55-70%. These findings prompted some authors to advise against major surgery in the setting of AIDS (Bender and Bender, 1993). In 1995, however, two reports have provided data that strongly contradict the poor early experience with surgery (Bizer et al., 1995, Yii et al., 1995). The problem with earlier studies was that they did not differentiate between HIV infection and AIDS. A careful analysis of the literature by Harris and Schecter (1997) showed that the presence of AIDS-related pathology as a cause of emergency abdominal surgery confers a three- to fourfold operative morbidity risk over other causes, and increases the associated average mortality from 15% to 44%. However, patients with AIDS comprise only up to 37% of patients undergoing surgery compared to HIV-infected non-AIDS patients (Harris and Schecter, 1997). Furthermore, these studies provided incomplete information about the pathologic findings encountered at surgery and the cause of death, making it difficult to determine outcome and the surgical morbidity and mortality rates in these patients.

More recent morbidity and mortality rates were significantly lower, and most authors now agreed that surgical therapy should not be withheld from patients with HIV. In 2005, it was found that during the previous two decades, the operative mortality in HIV-infected patients had dropped drastically from 85% to less than 15% (Saltzman et al., 2005), especially in those requiring an urgent laparotomy for sepsis (Wilson et al., 1989, Deneve et al., 2010). This could be accounted for by the introduction of ART, and earlier diagnosis of the disease (Vipond et al., 1991).
The risk of surgery in patients with HIV infection is unknown and difficult to estimate especially as no prospective trials have examined this question, and many of the retrospective studies have yielded conflicting results (Bender and Bender, 1993). There is still debate and concern regarding the evaluation and surgical management of HIV-infected patients, with some health care providers having a nihilistic attitude toward them. Furthermore, there is a common perception that patients with AIDS are poor surgical risks with a high postoperative complication rate, increased need for intensive care treatment, and a high mortality rate (Bender and Bender, 1993, Madiba et al., 2009).

Madiba et al. (2009) in a review article, compared surgery in HIV negative, HIV positive, and AIDS patients and evaluated the outcomes. The combined results indicated that the outcomes of surgery for patients, who are HIV negative, HIV positive and those with AIDS, are variable in terms of morbidity, mortality, and duration of hospital stay. HIV infection should therefore not be considered as a significant independent factor for major surgical complications. The study concluded that appropriate surgery should be offered as per normal surgical patients without the concern of an unfavourable outcome. HIV positive patients without AIDS-defining criteria have a surgical course similar to that of HIV negative patients. The outcome following surgery, including postprocedural complications, is similar in HIV positive and HIV negative patients regardless of the site of surgery, with the exception of anorectal surgery.

Since 2008, a further 12 reports have compared HIV positive and negative surgical patients. Of all these, only six investigated the trauma population which included predominantly blunt mechanism of trauma (more than 80%). Table 2 is an extended summary of the conclusions of these papers and those previously reviewed by Madiba et al.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Country</th>
<th>Year</th>
<th>N</th>
<th>Discipline</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non trauma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wakeman et al (27)</td>
<td>UK</td>
<td>1999</td>
<td>112</td>
<td>General surgery, elective and emergency, including sepsis</td>
<td>HIV positive patients have a slower wound healing</td>
</tr>
<tr>
<td>Salminen et al (29)</td>
<td>USA</td>
<td>1991</td>
<td>62</td>
<td>Anorectal diseases, including septic and non-septic</td>
<td>AIDS patients have a poor healing</td>
</tr>
<tr>
<td>Ayers et al (29)</td>
<td>USA</td>
<td>1993</td>
<td>343</td>
<td>All surgical disciplines</td>
<td>No relevant differences in outcomes</td>
</tr>
<tr>
<td>Binderow et al (30)</td>
<td>USA</td>
<td>1993</td>
<td>25</td>
<td>General surgical patients</td>
<td>AIDS patients have a higher mortality</td>
</tr>
<tr>
<td>DeVito and Robinson (31)</td>
<td>USA</td>
<td>1995</td>
<td>62</td>
<td>Gynaecological surgery</td>
<td>No relevant differences in outcomes except a higher blood loss in HIV positive patients</td>
</tr>
<tr>
<td>Costen et al (32)</td>
<td>The Netherlands</td>
<td>1995</td>
<td>83</td>
<td>Anorectal diseases, including septic and non-septic</td>
<td>AIDS patients with a lower CD4 cells count have a disturbed wound healing</td>
</tr>
<tr>
<td>Yu et al (33)</td>
<td>Australia</td>
<td>1996</td>
<td>45</td>
<td>General surgery including emergencies</td>
<td>AIDS patients have a higher morbidity</td>
</tr>
<tr>
<td>Hewitt et al (33)</td>
<td>USA</td>
<td>1996</td>
<td>57</td>
<td>Hemorrhoidal disease</td>
<td>No relevant differences in outcomes</td>
</tr>
<tr>
<td>Bhagwanjee et al(34)</td>
<td>South Africa</td>
<td>1997</td>
<td>402</td>
<td>Surgical critical care including trauma (54% mostly penetrating)</td>
<td>HIV positive patients have more organ failure and septic shock with no mortality difference at discharge</td>
</tr>
<tr>
<td>Lord,(35)</td>
<td>Australia</td>
<td>1997</td>
<td>101</td>
<td>Anorectal diseases, including septic and non-septic</td>
<td>HIV positive patients with less than 50 CD4 cells/ml have a poor wound healing</td>
</tr>
<tr>
<td>Guri et al (36)</td>
<td>USA</td>
<td>1999</td>
<td>104</td>
<td>Vascular</td>
<td>HIV positive patients have a higher morbidity</td>
</tr>
<tr>
<td>Davis et al(37)</td>
<td>UK</td>
<td>1999</td>
<td>64</td>
<td>General surgery laparotomy only including 5% trauma</td>
<td>HIV positive patients have more wound dehiscence</td>
</tr>
<tr>
<td>Moro et al(38)</td>
<td>Italy</td>
<td>1999</td>
<td>48</td>
<td>Hemorrhoidal disease</td>
<td>HIV positive and AIDS patients have a slower wound healing, AIDS patient have a higher morbidity</td>
</tr>
<tr>
<td>Nasadi et al(39)</td>
<td>Brazil</td>
<td>1999</td>
<td>1680</td>
<td>Anorectal diseases, including septic and non-septic</td>
<td>AIDS patients have a slower wound healing</td>
</tr>
<tr>
<td>Yan et al(40)</td>
<td>USA</td>
<td>2000</td>
<td>55</td>
<td>All surgical disciplines</td>
<td>No relevant differences in outcomes</td>
</tr>
<tr>
<td>Nickas and Wachter,(41)</td>
<td>USA</td>
<td>2000</td>
<td>443</td>
<td>Critical care</td>
<td>AIDS patients have a higher long-term mortality</td>
</tr>
<tr>
<td>Usako and Moodley, (42)</td>
<td>South Africa</td>
<td>2002</td>
<td>270</td>
<td>Gynaecological surgery</td>
<td>HIV positive patients have a higher wound sepsis rate</td>
</tr>
<tr>
<td>Lewis et al., (43)</td>
<td>Malawi</td>
<td>2003</td>
<td>445</td>
<td>All medical and surgical admissions with <14 trauma</td>
<td>HIV positive patients have a higher mortality</td>
</tr>
<tr>
<td>Marcus et al, (44)</td>
<td>Tanzania</td>
<td>2004</td>
<td></td>
<td>General surgical patients</td>
<td>HIV positive patients have a higher mortality</td>
</tr>
<tr>
<td>Narasirman et al(45)</td>
<td>USA</td>
<td>2004</td>
<td>441</td>
<td>Critical care</td>
<td>No relevant differences in outcomes</td>
</tr>
<tr>
<td>Fiore et al(46)</td>
<td>Europe</td>
<td>2004</td>
<td>408</td>
<td>Maternal mortality and complications in obstetrics</td>
<td>HIV positive patients have a higher morbidity</td>
</tr>
<tr>
<td>Osacala et al (47)</td>
<td>South Africa</td>
<td>2006</td>
<td>500</td>
<td>General surgical patients</td>
<td>No relevant differences in outcomes</td>
</tr>
<tr>
<td>Hordberg et al (17)</td>
<td>USA</td>
<td>2006</td>
<td>704</td>
<td>General surgical patients</td>
<td>No relevant differences in outcomes except a higher pneumonia rate in HIV positive patients</td>
</tr>
<tr>
<td>Dourbi et al(48)</td>
<td>Cental African Republic</td>
<td>2006</td>
<td>207</td>
<td>General surgery, elective and emergency cases</td>
<td>HIV positive patients have a higher wound sepsis rate</td>
</tr>
<tr>
<td>Martinson et al (49)</td>
<td>South Africa</td>
<td>2007</td>
<td>537</td>
<td>General surgery including 31% trauma</td>
<td>No relevant differences in outcomes</td>
</tr>
<tr>
<td>Dua et al(50)</td>
<td>UK</td>
<td>2007</td>
<td>477</td>
<td>General surgery including septic and non-septic cases</td>
<td>AIDS patients have a higher morbidity</td>
</tr>
<tr>
<td>Ramgole et al (51)</td>
<td>South Africa</td>
<td>2007</td>
<td>378</td>
<td>Maternal mortality in obstetrics</td>
<td>HIV positive patients have a higher mortality</td>
</tr>
<tr>
<td>Masoomi et al (52)</td>
<td>USA</td>
<td>2011</td>
<td>800</td>
<td>Appendicitis</td>
<td>AIDS patients have a higher morbidity</td>
</tr>
<tr>
<td>Cunin et al (53)</td>
<td>UK</td>
<td>2014</td>
<td>44</td>
<td>Anal cancer</td>
<td>HIV positive patients have a higher morbidity</td>
</tr>
<tr>
<td>Fong et al(54)</td>
<td>China</td>
<td>2015</td>
<td>803</td>
<td>General surgery including 7.5% trauma</td>
<td>Low CD4 count is a risk factor for sepsis</td>
</tr>
<tr>
<td>Jeddmez et al (55)</td>
<td>USA</td>
<td>2016</td>
<td>10</td>
<td>General Surgery</td>
<td>HIV positive patients have a higher morbidity</td>
</tr>
<tr>
<td>Leads et al(56)</td>
<td>USA</td>
<td>2016</td>
<td>308</td>
<td>Anal cancer</td>
<td>No relevant differences in outcomes</td>
</tr>
<tr>
<td>Phakathi et al(57)</td>
<td>South Africa</td>
<td>2016</td>
<td>31</td>
<td>Breast cancer</td>
<td>No relevant differences in outcomes</td>
</tr>
<tr>
<td>Trauma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guth et al(58)</td>
<td>USA</td>
<td>1996</td>
<td>53</td>
<td>Trauma, blunt and penetrating (97%)</td>
<td>No relevant differences in outcomes</td>
</tr>
<tr>
<td>Stawicki et al(59)</td>
<td>USA</td>
<td>2005</td>
<td>1173</td>
<td>Trauma, predominantly blunt, penetrating (19%)</td>
<td>Significant pulmonary and infective complications in HIV positive patients, no difference in mortality</td>
</tr>
<tr>
<td>Duane et al(60)</td>
<td>USA</td>
<td>2008</td>
<td>254</td>
<td>Trauma, predominantly blunt, penetrating (18%)</td>
<td>Significant pulmonary and renal complications in HIV positive patients, no difference in mortality</td>
</tr>
<tr>
<td>Mayasi et al(59)</td>
<td>Tanzania</td>
<td>2010</td>
<td>250</td>
<td>Trauma, blunt and penetrating</td>
<td>HIV positive patients have a higher mortality and a longer length of stay</td>
</tr>
<tr>
<td>Morrison et al (61)</td>
<td>USA</td>
<td>2010</td>
<td>1461280</td>
<td>Trauma, predominantly blunt, penetrating (11%)</td>
<td>Significant pulmonary complications in HIV positive patients, no difference in mortality</td>
</tr>
<tr>
<td>Patel et al(62)</td>
<td>USA</td>
<td>2011</td>
<td>356448</td>
<td>Trauma, predominantly blunt, penetrating (less than 17%)</td>
<td>HIV was a significant risk factor for complications, but not for mortality</td>
</tr>
<tr>
<td>Salehi et al(60)</td>
<td>Iran</td>
<td>2017</td>
<td>969</td>
<td>Burns only</td>
<td>HIV positive patients stayed longer in the hospital</td>
</tr>
</tbody>
</table>

Table 2: Overview of studies comparing surgical HIV negative and HIV positive patients
1.4.1. Influence of CD4-count

The CD4 count can be used as a marker for the progressive immunological deterioration that eventually leads to the development of AIDS in HIV positive patients (Centres for Disease and Prevention, 2014). Earlier studies showed that there was no correlation between HIV and CD4 count and the eventual outcome post-surgery. Madiba et al. (2009) suggested that CD4 counts in HIV-infected patients should not be used as an isolated parameter to decide on surgical management. Those with very low CD4 counts are likely to be chronically ill, nutritionally depleted, often infected with pulmonary or systemic tuberculosis, and fulfil AIDS-defining criteria. Patients should be treated on their own merit and not on their CD4 counts or viral load (Madiba et al., 2009). An additional study performed by Cacala et al. showed that in HIV seropositive surgical patients, CD4 counts had no relation to in-hospital outcomes in a heterogeneous group of surgical patients. This is in contrast to Deneve et al. (2010), who found that patients presenting with lower CD4 counts, and AIDS, are more likely to require an urgent operation and experience a complication with increased mortality. Chichom-Mefire et al. (2015) prospectively compared the outcome of major abdominal surgery in 63 patients (one group were HIV-negative patients and two groups were HIV-infected patients on ART with different CD4 counts). The overall and the septic complication rates were both higher in the group with a low CD4 count. However, the mortality rates were similar. The duration of ART and the World Health Organisation stage of the disease did not significantly influence surgical outcomes. The authors concluded that HIV-infected patients on ART can safely undergo major abdominal surgery with good results though still relatively poorer than those of HIV-negative subjects.

Supporting these results is a study by Green et al. (2017), that specifically looked at the effect of the HIV stage, determined by CD4-count, on clinical outcome of surgical sepsis in South Africa. Their conclusion was that the CD4 count is important and must be considered when stratifying patients’ risk for surgery as a significant difference in outcome was noted between HIV positive patients with a CD4 count of <200 cells/µl and those with counts of ≥200 cells/µl.
HIV infected individuals with surgical sepsis who have a CD4 count of <200 cells/µl were 36 times more likely to die than those who had a CD4 count of ≥200 cells/µl. The clinical presentation and spectrum of surgical sepsis disease in patients with stage 1 and stage 2 HIV was not markedly different (Green et al., 2017).

1.4.2. Influence of anti-retroviral therapy

The data available with regards to HIV, HAART and surgery are conflicting, and no definite consensus with regards to actual effect has been established. As recently as 2015, Chichom-Mefere et al. showed that HIV-infected patients on ART can safely undergo major abdominal surgery with encouraging results though still relatively poorer than those of HIV negative subject. Foschi et al. (2006) found that HAART is known to reduce the complication rate of abdominal surgery performed for a range of indications, whereas a study by Deneve et al. (2010) found that patients on HAART did not show any significant improvement in operative outcome, number of postoperative complications or overall mortality.

1.4.3. Influence of viral load

Viral load has also been described as a marker for immune status and opportunistic infection risk in patients with advanced HIV and AIDS (Deneve et al., 2010). However, results comparing the impact of viral load on overall outcomes are less clearly defined than data related to CD4 count. Some authors have identified a correlation between higher viral load counts and infectious risk (Tran et al., 2000, Foschi et al., 2006), whereas others have shown a relationship with increased mortality.
1.5 Trauma and HIV

Patients depend on their physiological and immunological reserves for an uncomplicated recovery after trauma. Host factors such as the presence of comorbidities, lessen this reserve and are thought to contribute to adverse outcomes. Specifically patients with pre-existing medical conditions, have been found to have significantly longer hospital lengths of stay and increased morbidity and mortality after sustaining traumatic injury (Wardle, 1999).

Studies of patients with penetrating trauma in the USA have shown a higher prevalence of HIV and hepatitis C virus infection compared to the general population (Chambers and Lord, 2001). In an Australian-based study, Chambers et al. (2001), showed a high prevalence of risk factors for HIV and HCV in patients with major penetrating wounds. The prevalence of documented HIV and HCV infection was subsequently greater than expected for the general population, highlighting the risks to health-care workers managing these patients. Several studies have shown that there is an increased incidence or higher rates of infection when compared to the general population. With regards to trauma and HIV, an increased prevalence of HIV infection in trauma patients is something several institutions have demonstrated (Tardiff et al., 1998). Seamon et al. (2011) from Philadelphia, USA, showed that more than 9% of their penetrating trauma patients tested positive for anti-HIV, HBsAg (Hepatitis B antigen) or anti-HCV, although less than 75% were aware of their diagnosis prior to their injury. Tardiff et al. (1998) found a 7.2% HIV seropositive rate among trauma victims over three years in New York City, New York in the USA.

Although HIV and AIDS can potentially affect outcomes, there are few studies comparing HIV positive to HIV negative patients with trauma to determine any differences in outcomes (Carrillo et al., 1995, Guth et al., 1996, Stawicki et al., 2005, Duane et al., 2008, Morrison et al., 2010, Mayala et al., 2010) . (Table 2).

Carrillo et al. (1995) reviewed the records of 21 HIV positive patients who underwent emergency surgical procedures, including exploratory laparotomy (62%), exploratory
thoracotomy (20%), and vascular repair or neck exploration (18%) after penetrating trauma. There was a 95% survival rate and a 19% wound infection rate. All of the wound infections occurred in patients with a CD4 count less than 100/μl. While this study documented the rate of complications and death in the HIV positive trauma patients with penetrating trauma, there was no comparison with HIV negative trauma patients.

Guth et al. (1996) retrospectively reviewed 56 consecutive HIV positive patients treated at their level I trauma centre ranging from penetrating chest trauma resulting in uncomplicated pneumothoraces to lethal multiple blunt trauma. They examined the relationship between CD4 counts, Injury Severity Score (ISS) and bacterial infectious complications. Nine patients developed complications secondary to bacterial infections in the posttraumatic period. They concluded that only a higher ISS was associated with infectious complications. This study demonstrated that HIV positive trauma patients do not appear to have an increased complication rate as CD4 counts decrease.

Stawicki et al. (2005) retrospectively reviewed the Pennsylvania Trauma Outcome Study database (mainly blunt) to compare HIV positive patients to HIV negative age-matched controls. They had 559 HIV positive patients and 614 HIV negative patients. Pulmonary complications were significantly greater in the HIV positive patients, which were further associated with a greater mortality. Infection/sepsis and renal complications were also more common in HIV positive patients. Although there was no difference in mortality between the two groups, hospital and ICU (intensive care units) lengths of stay were both longer for the HIV positive patients. In addition, HIV negative patients were more likely to be discharged to home shortly after surgery. While this study does compare HIV positive to HIV negative patients, it considered trauma patients as a whole and no sub-group analysis of penetrating injuries.

Duane et al. (2008) performed a retrospective review of trauma patients over a five year period and compared 54 HIV positive patients with 200 HIV negative matched controlled patients. The HIV positive group had a 22% overall complication rate compared to 9% in the HIV
negative group. No differences were found between the two groups with regards to outcome, including ventilator duration, intensive care unit (ICU), hospital lengths of stay and mortality. They further stratified the HIV positive patients into two groups, one with a CD4 count less than, and, a second with a CD4 count greater than 200 cells/µl. They found no statistical difference in complications between the two groups. As in previous reports, this study did not include specific analysis of patients with penetrating injuries.

Morrison et al. (2010) utilized the National Trauma Data Bank (NTDB) to retrospectively compare HIV positive and HIV negative patients. The overall mortality rates were not significantly different, however, the HIV positive patients had longer lengths of hospital stay. They were also more likely to develop septic complications, such as pneumonia, bacteraemia or surgical site infections. This represents an additional study where all trauma patients were considered as a combined group and no separate analysis of patients with penetrating injuries was performed.

Mayala et al (2010), investigated the prevalence of HIV infection among trauma patients admitted to Bugando Medical Centre, Mwanza, Tanzania and its influence on outcome. A total of 250 trauma patients were recruited and studied. ISS, RTS, HIV, and CD4-count were found to be significantly associated with mortality and increased length of stay. They concluded that HIV positive patients with a CD4-count more than 200 cells/µl have a similar prognosis as HIV negative patients and therefore should be treated the same.

Patel et al. (2011) analysed the influence of chronic hepatic failure, end-stage renal disease, immunodeficiency, and acquired coagulopathy on outcome in trauma patients, and found that HIV / AIDS was a risk factor for complications only, whereas the former were risk factors for both complications and mortality.

To date, to the best of our knowledge, no studies have been conducted, both internationally or in South Africa, on penetrating abdominal trauma and HIV by comparing HIV negative to
HIV positive patients and considering mortality and morbidity outcomes. Furthermore, there have been no studies documenting the relationship between CD4 count, and outcome of the stable patient who undergoes a laparotomy for penetrating abdominal trauma.

It is our aim to determine whether there is any correlation between the HIV status and outcomes of patients undergoing laparotomy for penetrating abdominal trauma. The effect of CD4 count, viral load, and ART administration will also be investigated. The endpoint of this study is to provide general and trauma surgeons performing trauma laparotomy with some insight on the expected outcomes of procedures for HIV positive patients with major penetrating abdominal trauma. This could further contribute to establishing a guideline for future management of HIV positive patients that require a major abdominal surgical procedure.

Word count without references: 5478

Word count with references: 7743
1.6 References for the literature review

Chapter Two

Publication ready manuscript
Title
HIV and penetrating abdominal trauma - Does HIV influence the outcome?

Authors
1. Deidre McPherson, MD ¹
2. Pradeep H. Navsaria, MD ¹

Affiliation
1. Trauma Unit, Department of Surgery, Groote Schuur Hospital, University of Cape Town, Observatory, 7925, South Africa

Correspondence address
Dr DEK McPherson
MBChB (Stell), FCS (SA)
Department of General Surgery
Division Trauma Surgery
Groote Schuur Hospital and University of Cape Town
Observatory
7925 Cape Town
South Africa
Tel.: +27 (21) 4049111
E-mail: drdeidremcpherson@gmail.com
Brief title

HIV and penetrating abdominal trauma
Abstract

Background

The purpose of this study was to determine whether the outcome of hemodynamically stable patients undergoing laparotomy for penetrating abdominal trauma differed as a result of HIV-status.

Study Design

This was an observational prospective study from February 2016 to May 2017. All hemodynamically stable patients with penetrating abdominal trauma requiring a laparotomy were included. The mechanism of injury, the HIV-status, age, the penetrating abdominal trauma index (PATI), and the revised trauma score (RTS) were entered into a binary logistic regression model. Outcome parameters were in-hospital death, morbidity, admission to intensive care unit (ICU), relaparotomy within 30 days, and length of stay longer than 30 days.

Results

A total of 209 patients, 94% male, with a mean age of 29 ± 10 years were analysed. Twenty-eight patients (13%) were HIV positive. The mean CD4 count in the HIV positive group was 401 (range 82 – 1142). The two groups were comparable. Ten (4.8%) laparotomies were negative. There were two (0.96%) deaths, both in the HIV negative group. The complication rate was 34% (n=72). There was no association between CD4 count and complications (p=0.234). HIV status was not an independent predictor for morbidity, admission to ICU, relaparotomy, prolonged hospital stay or mortality. PATI score was the single independent predictor for complications in multivariate analysis.
Conclusions

The incidence of HIV in our cohort is 13%; which is similar to the reported incidence of HIV in the Western Cape of 12%. The patient’s HIV status does not influence their outcomes in penetrating abdominal trauma.

Keywords

HIV; laparotomy; outcome; penetrating abdominal trauma

Word count: 250
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAST</td>
<td>American Association for the Surgery of Trauma</td>
</tr>
<tr>
<td>AIS</td>
<td>Abbreviated Injury Scale</td>
</tr>
<tr>
<td>ART</td>
<td>Antiretroviral treatment</td>
</tr>
<tr>
<td>CCI</td>
<td>Charlson Comorbidity Index</td>
</tr>
<tr>
<td>CDC</td>
<td>Centres for Disease Control</td>
</tr>
<tr>
<td>GCS</td>
<td>Glasgow Coma Scale</td>
</tr>
<tr>
<td>HAART</td>
<td>Highly active antiretroviral therapy</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>HREC</td>
<td>Human research ethics committee</td>
</tr>
<tr>
<td>ICU</td>
<td>Intensive care unit</td>
</tr>
<tr>
<td>ISS</td>
<td>Injury Severity Score</td>
</tr>
<tr>
<td>NTDB</td>
<td>National Trauma Data Bank</td>
</tr>
<tr>
<td>PATI</td>
<td>Penetrating Abdominal Trauma Index</td>
</tr>
<tr>
<td>RTS</td>
<td>Revised Trauma Score</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Sciences</td>
</tr>
</tbody>
</table>
Introduction

More than 70 million people worldwide have been infected with the Human Immunodeficiency Virus (HIV) since 1981. Half of them have since died (1). At the end of 2015, 37 million people worldwide were living with HIV (2). HIV infection and trauma are significant contributors to the burden of disease in South Africa. Seven million people (13%) with HIV were living in South Africa in 2016 (3). In 2010, HIV/AIDS accounted for the leading cause of death in Cape Town (13%), followed by interpersonal violence (9.7% - mainly penetrating injuries) and tuberculosis (7.7%) (4). There is an increase in prevalence of HIV sero-positivity in trauma patients. Although HIV and the acquired immunodeficiency syndrome (AIDS) can potentially affect outcomes, there have been few studies comparing trauma outcomes in HIV positive versus HIV negative patients. The association between HIV and the outcome of surgery remains unanswered with many studies yielding conflicting results. HIV treatment has also made paramount improvements in the past decades and as a result of this, HIV positive patients can now live a normal life. Despite this, in some previous studies there seems to be a tendency towards a higher morbidity and mortality in HIV positive patients undergoing trauma surgery (5-8). While some of these studies did compare HIV positive to HIV negative patients, they considered all mechanisms of trauma and did not differentiate between blunt and penetrating injuries. To date, no studies have been conducted on penetrating abdominal trauma and the influence of HIV on outcomes. The primary purpose of this study was to determine whether the HIV status of hemodynamically stable patients undergoing exploratory laparotomy for penetrating abdominal trauma had any influence on outcomes. The secondary objectives of the study were to determine whether CD4 count in the HIV positive patients plays a role, if any, in the outcome of these patients.

The endpoint of this study is to provide general and trauma surgeons performing trauma laparotomy with some insight on the expected outcomes of procedures for HIV positive patients with major penetrating abdominal trauma. This could further contribute to establishing
a guideline for future management of HIV positive patients that require a major abdominal surgical procedure.
Methods

In a prospective observational study from February 2016 to May 2017 (16 months), all patients admitted with a penetrating abdominal injury (stab and gunshot wounds) requiring a laparotomy at a Level I trauma centre in Cape Town, South Africa, were considered for inclusion in this study. This study was approved by the human research ethics committee (HREC: 819/2015) of the University of Cape Town and Groote Schuur hospital.

The inclusion criteria were hemodynamic stability, penetrating abdominal trauma with an inherent need for laparotomy as result of a peritonitic abdomen, no severe head trauma (Glasgow Coma Scale (GCS) <9), a signed informed consent, and a HIV test with a positive or negative result. Patients who had more than one area of penetrating trauma, as well as patients with blunt trauma elsewhere were included in the study, as long as the other inclusion criteria were met. Patients undergoing a damage control procedure at the index operation were excluded. However, the attending surgeon may have opted for a damage control procedure in the patient who was initially hemodynamically stable, and these patients were also included in the study. All patients were treated as per our institutional protocol and received the same presumptive preoperative antibiotic coverage and postoperative analgesia and antibiotic regimen.

Once the patient was found to clinically require a laparotomy, informed consent for surgery was taken. As it was a concern that these individuals would be vulnerable at the time of going for surgery, participants for the study were recruited post-operatively, while admitted to the trauma ward, after they had undergone their surgery. Pre- and post-test counselling for HIV testing was done by trained medical practitioners. A standardized counselling form was used. Those individuals with known HIV positive status before inclusion in the study were retested.
It is standard for patients who are newly diagnosed HIV positive on admission not to routinely start antiretroviral therapy. Once patients were discharged they were referred to a local clinic for further HIV counselling and treatment. Patients with a CD4 count of less than 500 cells/µl are usually put on antiretroviral therapy.

Basic demographics, mechanisms of injury, laparotomy findings, estimated intra-operative blood loss, length of hospital stay, admission to ICU, morbidity and mortality were recorded. The Charlson Comorbidity Index (CCI) was used to calculate the severity of comorbidities (9). Injury severity was categorized calculating the physiological scores {Revised Trauma Score (RTS) and Kampala score (10, 11)}, and the anatomical scores (American Association for the Surgery of Trauma (AAST), Abbreviated Injury Scale (AIS) (12), Injury Severity Score (ISS), Penetrating Abdominal Trauma Index (PATI) (13). Complications were stratified according to the Clavien-Dindo classification (14). Hemodynamically stable patients had a systolic BP greater than 90 mmHg. Responders were patients with an initial BP lower than 90 mmHg, however stabilized after 1-2 litres of fluid. A peritonitic abdomen was based on the physician’s clinical judgement.

The primary outcome was morbidity defined as presence of one or more complications. Secondary outcomes were in-hospital death, admission to intensive care unit (ICU), relaparotomy within 30 days, and length of stay. The patients were stratified into two groups, HIV negative and HIV positive, for the analysis. The association between the CD4 counts in the HIV positive group, CDC stage, and morbidity were further analysed.

A sample size of 205 patients was needed to achieve a power of 80% and type I error rate of 5%, if the complication rate of the HIV negative group is 7% (5, 8), the sampling ratio of HIV negative: HIV positive is 9, and we assume a clinically relevant difference of 7% compared to
the HIV negative group, that is 14% (5-8). Continuous data was presented in mean and standard deviation numbers, and categorical data in absolute and relative numbers. Chi-square, T-, and Fisher-Test, where applicable, were used to do bivariate analysis. HIV status and the bare minimum (patient age, PATI score for anatomic severity, RTS score for physiologic severity, and mechanism of injury) were entered in multivariate binary logistic regression analysis to evaluate HIV as an independent predictor for a negative outcome (morbidity, in-hospital death, admission to ICU, relaparotomy within 30 days, and length of stay longer than 30 days). Since female gender had a low prevalence, this co-factor could not be entered into a regression analysis. Five patients had missing respiratory rates at admission, these patients with missing variables were not included in multivariate analysis. P <0.05 was considered statistically significant. The Statistical Package for Social Sciences (SPSS, Version 23, IBM Corp., Armonk, NY, USA) was used for statistical analysis.
Results

The cohort consisted of 209 patients, 196 (94%) men and 13 women, with a mean age of 29 (SD +/-10) years. Twenty-eight patients (13%) were HIV positive. We diagnosed 21 new cases of HIV, and seven patients were aware of their HIV status prior to this admission, none of them being on ART. The HIV positive and negative groups were comparable except for race (Table 1). All patients underwent an exploratory laparotomy, of these 10 were negative or non-therapeutic (4.8%). Six patients (2.9%) had missed intraabdominal injuries, four with small intestine perforations, one diaphragm laceration, and one bile duct injury.

Morbidity

Seventy-two patients (34%) had one or more complications (Table 2). The three most common complications were: surgical site infections (12%), post-operative ileus (8.6%), and sepsis (6.2%; including intra-abdominal collections, septic shock, urinary tract infections, pneumonia, bullet tract sepsis). In bivariate analysis, the PATI score (p=0.001), liver packing (p=0.004), splenectomy (p=0.009), colonic resection with primary anastomosis (p=0.036), distal pancreatectomy (p=0.007), wide drainage of the pancreas (p=0.019), nephrectomy (p=0.049), longer duration of the first operation (p<0.001), use of intraoperative vasopressors (p=0.045), need for blood products (p=0.001), and higher estimated blood loss (p=0.001) were associated with morbidity. In multivariate analysis, the PATI score was the only single independent predictor (p=0.001, OR 1.057, 95%CI 1.023 – 1.091) for morbidity. **HIV was not an independent predictor for morbidity.**
Mortality

Two patients (0.96%), both HIV negative, died during the hospitalization, one from hypovolemic shock secondary to rebleeding from a liver injury, and the other one from septic shock from overwhelming sepsis secondary to intraabdominal contamination following a destructive colonic injury. **There was no mortality in the HIV positive group.**

Admission to ICU

Twenty-nine patients (14%) were admitted to the ICU. The mean duration of stay was 5.0 (SD +/- 7.3) days, and 3.6 (SD +/- 6.5) days of ventilation. Age (p=0.007), RTS (p=0.014), the Kampala score (p=0.006), the PATI score (p=0.023), thoracoabdominal injuries (p=0.012), insertion of an intercostal drain (p=0.002), liver packing (p=0.029), duodenal repair (p=0.003), wide drainage of the pancreas (p=0.004), longer duration of the first operation (p=0.024), use of vasopressors intraoperatively (p<0.001), need for blood products (p<0.001), and higher estimated blood loss (p=0.004) were associated with admission to ICU. Higher age (p=0.07, OR 1.056, 95CI% 1.015-1.098), a higher PATI score (p=0.018, OR 1.043, 95%CI 1.007-1.080), and a lower RTS (p=0.002, OR 0.089, 95%CI 0.020-0.399), **but not HIV status,** were independent predictors for admission to an ICU.

Hospitalization more than 30 days

After 30 days, 12 patients (5.7%) were still in hospital. An acute spinal cord injured patient (p=0.024), drainage of the pancreas (p=0.040), the PATI score (p=0.043), duration of the first operation (p<0.001) and the estimated blood loss (p=0.030) were associated with more than 30 days of hospitalization. PATI score was the single independent predictor in multivariate analysis (p=0.001, OR 1.082, 95%CI 1.031 – 1.135).
Relaparotomy within 30 days

Twenty-four patients (11%) underwent a relaparotomy. The reasons were planned (damage control, n=7), new or ongoing bleeding (n=3), intestinal obstruction (n=2), omental evisceration (n=1), multiple intraabdominal abscesses (n=1), peritonitic / septic (n=3), or other reasons (n=7). The PATI score (p=0.046), liver packing (p=0.006), stomach repair (p=0.041), longer duration of the first operation (p=0.047), use of vasopressors intraoperative (p=0.005), need for blood products (p=0.001), and higher estimated blood loss (p=0.023) were associated with relaparotomy. The PATI score (p=0.003, OR 1.052, 95%CI 1.017-1.088) was again the only significant predictor of relaparotomy.

Other findings

Any damage control procedure or open abdomen was associated with morbidity, admission to ICU, hospitalization longer than 30 days and relaparotomy. Perioperative antibiotics were only recorded in 86%, which is a major violation in the protocol. However, it was not significantly associated with a negative outcome in this cohort.

Twenty-two patients had CD4-counts: 31.8% were stage 1 (CD4 count > 500 cells/µl), 36.4% were stage 2 (CD4 count 200-499 cells/µl), and 31.8% were stage 3 (CD4 count <200 cells/µl). The CDC stage in the HIV positive group was not associated with morbidity (p=0.380). The average CD4 count in the HIV positive group was 401 +/- 254. It was also not associated with morbidity (p=0.234).
Discussion

Globally, 36.7 million people were living with HIV at the end of 2015 (2). South Africa has the highest prevalence in Africa with 4.1 million people currently infected with HIV. The Western Cape Province of South Africa, where the study was conducted, has approximately 6.29 million people, representing 11.3% of the country’s population (3). In this province, the prevalence of HIV was 16.9% in 2011 (15). In South Africa, injury-related mortality rates are seven times higher compared to what is found internationally (16). Trauma-related mortality, particularly due to interpersonal violence and road traffic injuries, remains extremely high and specifically amongst young adult males: 170 per 100 000 in age group 20 - 24 years (17). It is therefore, not uncommon for young adult patients, who are HIV positive, who have sustained some sort of trauma, to be managed in our busy level I urban trauma centre.

The association between HIV and the outcomes of surgery has been previously studied. When HIV was initially first recognized, an increase in surgical patient mortality and morbidity was observed (18). This increase was a direct result of these patients being HIV positive, and dying from an AIDS-related illness. The early reports regarding emergency surgery in AIDS patients revealed complication rates of up to 40% and mortality rates of 55-70%. These findings prompted some authors to advise against major surgery in the setting of AIDS (19). In 1995, however, two reports emerged providing data that strongly contradict the poor early experience with surgery (20, 21). The problem with earlier studies was that they did not differentiate between HIV infection and AIDS. A careful analysis of the literature by Harris and Schecter (1997) showed that the presence of AIDS-related pathology as a cause of emergency abdominal surgery confers a three- to fourfold operative morbidity risk over other causes, and increases the associated average mortality from 15% to 44%. However, patients with AIDS comprise only up to 37% of patients undergoing surgery compared to HIV-infected
non-AIDS patients (22). Furthermore, these studies provided incomplete information about the pathologic findings encountered at surgery and the cause of death, making it difficult to determine outcome, the surgical morbidity and mortality rates in these patients.

More recent morbidity and mortality rates were significantly lower, and most authors now agree that surgical therapy should not be withheld from patients with HIV. In 2005, it was found that during the previous two decades, the operative mortality in HIV-infected patients had dropped drastically from 85% to less than 15% (23), especially in those requiring an urgent laparotomy for sepsis (24, 25). This could be accounted for by the introduction of ART, and earlier diagnosis of the disease (18).

The risk of surgery in patients with HIV infection is unknown and difficult to estimate especially as no prospective trials have examined this question, and many of the retrospective studies have yielded conflicting results (19). There is still debate and concern regarding the evaluation and surgical management of HIV-infected patients, with some health care providers having a nihilistic attitude toward them. Furthermore, there is a common perception that patients with AIDS are poor surgical risks with a high postoperative complication rate, increased need for intensive care treatment, and a high mortality rate (19, 26).

Madiba et al. (2009) compared surgery in HIV negative, HIV positive, and AIDS patients and evaluated the outcomes (26). The results indicated that the outcomes of surgery for patients, who are HIV negative, HIV positive and those with AIDS, are variable in terms of morbidity, mortality, and duration of hospital stay. HIV infection should therefore not be considered as a significant independent factor for major surgical complications (26). The study concluded that appropriate surgery should be offered as per normal surgical patients without the concern of an unfavourable outcome. HIV positive patients without AIDS-defining criteria have a surgical course similar to that of HIV negative patients. The outcome following surgery, including post procedural complications, is similar in HIV positive and HIV negative patients regardless of the site of surgery, with the exception of anorectal surgery (26).
Since 2008, a further 12 reports have compared HIV positive and negative surgical patients. Of all these, only six investigated the trauma population which included predominantly blunt mechanism of trauma (more than 80%). Table 3 is an extended summary of the conclusions of the current available literature on HIV status and surgical outcomes (4).

In this study, the HIV incidence is similar to that in the Western Cape Province. In hemodynamic stable patients requiring laparotomy for penetrating abdominal trauma HIV was not an independent predictor for morbidity, ICU admission, length of hospital stay, and relaparotomy. A CD4 count greater than 200 cells/µl has been shown to be a good marker of immune function in patients who are HIV positive. Most of our patients were CDC stage 2 (CD4 count between 200 and 500 cells/µl) with an average of 400. The CD4 count did not influence outcome of our patients and since none of our patients were on ART during the time of the study, as such did not make a difference in outcome. The CDC staging does not have any impact on the progress and outcome of the patient undergoing an exploratory laparotomy in this study. This is in contrast to previous studies which suggested that the CDC staging has a direct impact on the outcome of the HIV positive patient. In multivariate analysis, the PATI score was the only single independent predictor for morbidity, ICU admission, length of stay and relaparotomy. There were only two deaths, both HIV negative patients, suggesting that HIV was probably not an independent predictor of mortality.

Despite the prospective design, the study has several limitations. The viral load was not available due to cost constraints. This could have helped to further stratify the HIV positive patients and allow us to investigate the influence of viral load, if any, on outcomes.

There were 41 patients who refused HIV testing and as such could not be included in our study.

Despite adequate counselling about HIV testing, and numerous public health programs underway in the country, including the VCT program (voluntary testing and counselling), there appears to be still a reluctance amongst young adult males to be tested. Though,
quite controversial and possibly unethical, there is a proposal to routinely test the HIV status without counselling in the trauma population (61).

Although the mortality rate was very low, we are not able to make any definitive conclusion about HIV status in the current study. To achieve statistical significance in difference in mortality between the two groups, a population of 702 patients is required. The study is still ongoing and recruiting patients for this specific purpose.
Conclusions

Trauma patients with HIV are frequently seen in busy trauma centers in South Africa. There are conflicting reports about the influence of HIV on surgical outcomes. The purpose of the study was to evaluate the impact of HIV on outcome after an exploratory laparotomy. We found that the incidence of HIV in our cohort was 13%; which is similar to the reported incidence of HIV in the Western Cape of 12%. There were no significant baseline differences between the HIV positive and HIV negative groups. The patient’s HIV status as well as the CD4 count did not influence their outcomes in penetrating abdominal trauma and we recommend that these patients be treated as HIV negative patients. The PATI score was found to be a significant predictor of morbidity and was validated in our cohort of patients, as higher PATI scores were associated with poorer outcomes.

Word count: 3023
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Total (n=209)</th>
<th>HIV negative (n=181)</th>
<th>HIV positive (n=28)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Age (years +/- SD)</td>
<td>29</td>
<td>10%</td>
<td>29</td>
<td>10%</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>196</td>
<td>93.8%</td>
<td>172</td>
<td>95.0%</td>
</tr>
<tr>
<td>Female</td>
<td>13</td>
<td>6.2%</td>
<td>9</td>
<td>5.0%</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coloured</td>
<td>103</td>
<td>49.3%</td>
<td>98</td>
<td>54.1%</td>
</tr>
<tr>
<td>Other</td>
<td>9</td>
<td>4.3%</td>
<td>8</td>
<td>4.4%</td>
</tr>
<tr>
<td>Charlson Comorbidity index (score +/- SD)</td>
<td>0.10</td>
<td>0.34%</td>
<td>0.08</td>
<td>0.31%</td>
</tr>
<tr>
<td>Mechanism of injury</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gunshot wound</td>
<td>158</td>
<td>75.6%</td>
<td>138</td>
<td>76.2%</td>
</tr>
<tr>
<td>Sab</td>
<td>50</td>
<td>23.9%</td>
<td>42</td>
<td>23.2%</td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
<td>0.5%</td>
<td>1</td>
<td>0.6%</td>
</tr>
<tr>
<td>Admission delay (hours +/- SD)</td>
<td>4.5</td>
<td>7.8%</td>
<td>4.4</td>
<td>8.1%</td>
</tr>
<tr>
<td>Thoracoabdominal injury</td>
<td>54</td>
<td>25.8%</td>
<td>44</td>
<td>24.3%</td>
</tr>
<tr>
<td>Spinal cord injury</td>
<td>12</td>
<td>5.7%</td>
<td>10</td>
<td>5.5%</td>
</tr>
<tr>
<td>Haemodynamic stability</td>
<td>Stable</td>
<td>178</td>
<td>85.2%</td>
<td>155</td>
</tr>
<tr>
<td>Responder</td>
<td>31</td>
<td>14.8%</td>
<td>26</td>
<td>14.4%</td>
</tr>
<tr>
<td>Presenting hemoglobin</td>
<td>12.4</td>
<td>2.1%</td>
<td>12.5</td>
<td>2.1%</td>
</tr>
<tr>
<td>Presenting white cell count</td>
<td>16.16</td>
<td>6.8%</td>
<td>16.38</td>
<td>7.0%</td>
</tr>
<tr>
<td>Revised trauma score (score +/- SD)</td>
<td>7.743</td>
<td>0.260%</td>
<td>7.739</td>
<td>0.269%</td>
</tr>
<tr>
<td>Kampala trauma score (score +/- SD)</td>
<td>14</td>
<td>0%</td>
<td>14</td>
<td>1%</td>
</tr>
<tr>
<td>PATI score (score +/- SD)</td>
<td>14</td>
<td>11%</td>
<td>14</td>
<td>11%</td>
</tr>
<tr>
<td>ISS score (score +/- SD)</td>
<td>19</td>
<td>9%</td>
<td>18</td>
<td>9%</td>
</tr>
<tr>
<td>Duration first operation (hours +/- SD)</td>
<td>2.21</td>
<td>1.14%</td>
<td>2.21</td>
<td>1.16%</td>
</tr>
<tr>
<td>Estimated blood loss (ml +/- SD)</td>
<td>824</td>
<td>947%</td>
<td>845</td>
<td>980%</td>
</tr>
<tr>
<td>Prophylactic antibiotics given?</td>
<td>180</td>
<td>86.1%</td>
<td>154</td>
<td>85.1%</td>
</tr>
<tr>
<td>Perforation of abdominal organ found at operation?</td>
<td>178</td>
<td>85.2%</td>
<td>153</td>
<td>84.5%</td>
</tr>
<tr>
<td>Bowel resection performed</td>
<td>79</td>
<td>37.8%</td>
<td>66</td>
<td>36.5%</td>
</tr>
<tr>
<td>Stoma formed?</td>
<td>27</td>
<td>12.9%</td>
<td>20</td>
<td>11.0%</td>
</tr>
<tr>
<td>Morbidity</td>
<td>72</td>
<td>34.4%</td>
<td>61</td>
<td>33.7%</td>
</tr>
<tr>
<td>Death</td>
<td>2</td>
<td>1.0%</td>
<td>2</td>
<td>1.1%</td>
</tr>
<tr>
<td>Admission to intensive care unit</td>
<td>29</td>
<td>13.9%</td>
<td>27</td>
<td>14.9%</td>
</tr>
<tr>
<td>Still in hospital > 30 days</td>
<td>12</td>
<td>5.7%</td>
<td>12</td>
<td>6.6%</td>
</tr>
<tr>
<td>Relaparotomy within 30 days of principle procedure</td>
<td>24</td>
<td>11.5%</td>
<td>23</td>
<td>12.7%</td>
</tr>
</tbody>
</table>

Table 1: Overview of Results
<table>
<thead>
<tr>
<th>Complications</th>
<th>Total</th>
<th>HIV</th>
<th>HIV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>No</td>
<td>137</td>
<td>65.6%</td>
<td>120</td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>12</td>
<td>5.7%</td>
<td>11</td>
</tr>
<tr>
<td>II</td>
<td>23</td>
<td>11.0%</td>
<td>17</td>
</tr>
<tr>
<td>IIIa</td>
<td>11</td>
<td>5.3%</td>
<td>9</td>
</tr>
<tr>
<td>IIIb</td>
<td>13</td>
<td>6.2%</td>
<td>12</td>
</tr>
<tr>
<td>IVa</td>
<td>3</td>
<td>1.4%</td>
<td>3</td>
</tr>
<tr>
<td>IVb</td>
<td>8</td>
<td>3.8%</td>
<td>7</td>
</tr>
<tr>
<td>V</td>
<td>2</td>
<td>1.0%</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 2: Complications according to Clavien-Dindo Classification
<table>
<thead>
<tr>
<th>Authors</th>
<th>Country</th>
<th>Year</th>
<th>N</th>
<th>Discipline</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non trauma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wakeham et al.(27)</td>
<td>UK</td>
<td>1990</td>
<td>112</td>
<td>General surgery, elective and emergency, including sepsis</td>
<td>HIV positive patients have a slower wound healing</td>
</tr>
<tr>
<td>Safavi et al.(28)</td>
<td>USA</td>
<td>1991</td>
<td>62</td>
<td>Anorectal diseases, including septic and non-septic</td>
<td>AIDS patients have a poor healing</td>
</tr>
<tr>
<td>Ayers et al.(29)</td>
<td>USA</td>
<td>1993</td>
<td>343</td>
<td>All surgical disciplines</td>
<td>No relevant differences in outcomes</td>
</tr>
<tr>
<td>Binderow et al.(30)</td>
<td>USA</td>
<td>1993</td>
<td>25</td>
<td>General surgical patients</td>
<td>AIDS patients have a higher mortality</td>
</tr>
<tr>
<td>Devito and Robinson(31)</td>
<td>USA</td>
<td>1995</td>
<td>62</td>
<td>Gynecological surgery</td>
<td>No relevant differences in outcomes except a higher blood loss in HIV positive patients</td>
</tr>
<tr>
<td>Constien et al.(32)</td>
<td>The Netherlands</td>
<td>1995</td>
<td>83</td>
<td>Anorectal diseases, including septic and non-septic</td>
<td>AIDS patients with a lower CD4 cell count have a disturbed wound healing</td>
</tr>
<tr>
<td>Yli et al.(33)</td>
<td>Australia</td>
<td>1995</td>
<td>45</td>
<td>General surgery including emergencies</td>
<td>AIDS patients have a higher morbidity</td>
</tr>
<tr>
<td>Hewitt et al.(34)</td>
<td>USA</td>
<td>1996</td>
<td>87</td>
<td>Hemorrhoidal disease</td>
<td>No relevant differences in outcomes</td>
</tr>
<tr>
<td>Bhagwandin et al.(34)</td>
<td>South Africa</td>
<td>1997</td>
<td>402</td>
<td>Surgical critical care, including trauma (54%-mostly penetrating)</td>
<td>HIV positive patients have more organ failure and septic shock, no mortality difference at discharge</td>
</tr>
<tr>
<td>Lord et al.(35)</td>
<td>Australia</td>
<td>1997</td>
<td>101</td>
<td>Anorectal diseases, including septic and non-septic</td>
<td>HIV positive patients with less than 50 CD4 cells/ml have a poor wound healing</td>
</tr>
<tr>
<td>Guri et al.(36)</td>
<td>USA</td>
<td>1999</td>
<td>104</td>
<td>Vascular</td>
<td>HIV positive patients have a higher morbidity</td>
</tr>
<tr>
<td>Davis et al.(37)</td>
<td>UK</td>
<td>1999</td>
<td>64</td>
<td>General surgery laparotomy only including 5% trauma</td>
<td>HIV positive patients have more wound dehiscence</td>
</tr>
<tr>
<td>Morandi et al.(38)</td>
<td>Italy</td>
<td>1999</td>
<td>48</td>
<td>Hemorrhoidal disease</td>
<td>AIDS patients have a lower wound healing</td>
</tr>
<tr>
<td>Nadia et al.(39)</td>
<td>Brazil</td>
<td>1999</td>
<td>1600</td>
<td>Anorectal diseases, including septic and non-septic</td>
<td>AIDS patients have a higher morbidity</td>
</tr>
<tr>
<td>Tran et al.(40)</td>
<td>USA</td>
<td>2000</td>
<td>55</td>
<td>All surgical disciplines</td>
<td>No relevant differences in outcomes</td>
</tr>
<tr>
<td>Nickas et al.(41)</td>
<td>USA</td>
<td>2000</td>
<td>443</td>
<td>Critical care</td>
<td>AIDS patients have a higher long-term mortality</td>
</tr>
<tr>
<td>Juuko and Moody(42)</td>
<td>South Africa</td>
<td>2002</td>
<td>270</td>
<td>Gynecological surgery</td>
<td>HIV positive patients have a higher wound sepsis rate</td>
</tr>
<tr>
<td>Lewis et al.(43)</td>
<td>Malawi</td>
<td>2004</td>
<td>446</td>
<td>All medical and surgical admissions with <14% trauma</td>
<td>HIV positive patients have a higher mortality</td>
</tr>
<tr>
<td>Mkony et al.(44)</td>
<td>Tanzania</td>
<td>2003</td>
<td>55</td>
<td>General surgical patients</td>
<td>HIV positive patients have a higher mortality</td>
</tr>
<tr>
<td>Narasimhan et al.(45)</td>
<td>USA</td>
<td>2004</td>
<td>441</td>
<td>Critical care</td>
<td>No relevant differences in outcomes</td>
</tr>
<tr>
<td>Friere et al.(46)</td>
<td>Europe</td>
<td>2004</td>
<td>408</td>
<td>Maternal mortality and complications in obstetrics</td>
<td>HIV positive patients have a higher morbidity</td>
</tr>
<tr>
<td>Cacaia et al.(47)</td>
<td>South Africa</td>
<td>2006</td>
<td>550</td>
<td>General surgical patients</td>
<td>No relevant differences in outcomes</td>
</tr>
<tr>
<td>Horberg et al.(47)</td>
<td>USA</td>
<td>2006</td>
<td>704</td>
<td>General surgical patients</td>
<td>No relevant differences in outcomes except a higher pneumonia rate in HIV positive patients</td>
</tr>
<tr>
<td>Doumgbga et al.(48)</td>
<td>Benin</td>
<td>2006</td>
<td>207</td>
<td>General surgery, elective and emergency cases</td>
<td>HIV positive patients have a higher wound sepsis rate</td>
</tr>
<tr>
<td>Martinson et al.(49)</td>
<td>South Africa</td>
<td>2007</td>
<td>527</td>
<td>General surgery including 31% trauma</td>
<td>No relevant differences in outcomes</td>
</tr>
<tr>
<td>Das et al.(50)</td>
<td>UK</td>
<td>2007</td>
<td>477</td>
<td>General surgery including septic and non-septic cases</td>
<td>AIDS patients have a higher morbidity</td>
</tr>
<tr>
<td>Ramogale et al.(51)</td>
<td>South Africa</td>
<td>2007</td>
<td>376</td>
<td>Maternal mortality in obstetrics</td>
<td>HIV positive patients have a higher mortality</td>
</tr>
<tr>
<td>Masoeti et al.(52)</td>
<td>USA</td>
<td>2011</td>
<td>800</td>
<td>Appendicitis</td>
<td>AIDS patients have a higher morbidity</td>
</tr>
<tr>
<td>Gurn et al.(53)</td>
<td>UK</td>
<td>2014</td>
<td>44</td>
<td>Anal cancer</td>
<td>HIV positive patients have a higher morbidity</td>
</tr>
<tr>
<td>Feng et al.(54)</td>
<td>China</td>
<td>2015</td>
<td>803</td>
<td>General surgery including 7.5% trauma</td>
<td>Low CD4 count is a risk factor for sepsis</td>
</tr>
<tr>
<td>Izadmir et al.(55)</td>
<td>USA</td>
<td>2016</td>
<td>13</td>
<td>Prostate cancer</td>
<td>No relevant differences in outcomes</td>
</tr>
<tr>
<td>Leads et al.(56)</td>
<td>USA</td>
<td>2016</td>
<td>308</td>
<td>Anal cancer</td>
<td>No relevant differences in outcomes</td>
</tr>
<tr>
<td>Phakathi et al.(57)</td>
<td>South Africa</td>
<td>2016</td>
<td>31</td>
<td>Breast cancer</td>
<td>No relevant differences in outcomes</td>
</tr>
<tr>
<td>Trauma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guth et al.(58)</td>
<td>USA</td>
<td>1996</td>
<td>58</td>
<td>Trauma, blunt and penetrating (87%)</td>
<td>No relevant differences in outcomes</td>
</tr>
<tr>
<td>Stawicki et al.(5)</td>
<td>USA</td>
<td>2005</td>
<td>1173</td>
<td>Trauma, predominantly blunt, penetrating (19%)</td>
<td>Significant pulmonary and infective complications in HIV positive patients, no difference in mortality</td>
</tr>
<tr>
<td>Duane et al.(6)</td>
<td>USA</td>
<td>2008</td>
<td>254</td>
<td>Trauma, predominantly blunt, penetrating (18%)</td>
<td>Significant pulmonary and renal complications in HIV positive patients, no difference in mortality</td>
</tr>
<tr>
<td>Mayala et al.(59)</td>
<td>Tanzania</td>
<td>2010</td>
<td>250</td>
<td>Trauma, blunt and penetrating</td>
<td>HIV positive patients have a higher mortality and a longer length of stay</td>
</tr>
<tr>
<td>Morrison et al.(7)</td>
<td>USA</td>
<td>2010</td>
<td>1461580</td>
<td>Trauma, predominantly blunt, penetrating (11%)</td>
<td>Significant pulmonary complications in HIV positive patients, no difference in mortality</td>
</tr>
<tr>
<td>Salehi et al.(60)</td>
<td>Iran</td>
<td>2017</td>
<td>969</td>
<td>Bums only</td>
<td>HIV positive patients stayed longer in the hospital</td>
</tr>
</tbody>
</table>

58
Table 3: Overview of studies comparing surgical HIV negative and HIV positive patients
Summary

HIV had no influence on morbidity, in-hospital death, admission to ICU, relaparotomy, or length of stay in hemodynamic stable patients requiring a laparotomy after a penetrating abdominal trauma.

Sources of Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
References

APPENDICES

Ethics approval

31 March 2016

HREC REF: 819/2015

Prof P Navsaria
Division of General Surgery
J-Floor
Old Main Building

Dear Prof Navsaria

Thank you for your response letter to the Faculty of Health Sciences Human Research Ethics Committee received on the 30 March 2016.

It is a pleasure to inform you that the HREC has formally approved the above-mentioned study.

Approval is granted for one year until 30 March 2017.

Please submit a progress form, using the standardised Annual Report Form if the study continues beyond the approval period. Please submit a Standard Closure form if the study is completed within the approval period.

(Forms can be found on our website: www.health.uct.ac.za/fhs/research/humanethics/forms)

Please quote the HREC REF in all your correspondence.

We acknowledge that the student Dr D McPherson will also be involved in this study.

Please note that the ongoing ethical conduct of the study remains the responsibility of the principal investigator.

Please note that for all studies approved by the HREC, the principal investigator must obtain appropriate institutional approval before the research may occur.

Yours sincerely

Signed

PROFESSOR M BLOCKMAN
CHAIRPERSON, FHS HUMAN RESEARCH ETHICS COMMITTEE
Federal Wide Assurance Number: FWA00001637.
Institutional Review Board (IRB) number: IRB00001938

HREC 819/2015
Principal Investigator to complete the following:

1. Protocol Information

<table>
<thead>
<tr>
<th>Date (when submitting this form)</th>
<th>27/03/07</th>
</tr>
</thead>
<tbody>
<tr>
<td>HREC REF Number</td>
<td>819/2015</td>
</tr>
<tr>
<td>Current Ethics Approval granted until</td>
<td>20/08/2018</td>
</tr>
<tr>
<td>Protocol title</td>
<td>HIV and Penetrating abdominal trauma; Does HIV influence the outcome?</td>
</tr>
<tr>
<td>Protocol number (if applicable)</td>
<td></td>
</tr>
</tbody>
</table>

Are there any sub-studies linked to this study? □ Yes □ No

If yes, could you please provide the HREC Refs for all sub-studies? Note: A separate FHS016 must be submitted for each sub-study.

Principal Investigator: Professor P Navsaria
Department / Office Internal Mail Address: General Surgery/Division Trauma Surgery/Pradeep.navsaria@uct.ac.za

1.1 Does this protocol receive US Federal funding? □ Yes □ No
1.2 If the study receives US Federal Funding, does the annual report require full committee approval? □ Yes □ No
1.3 Has sponsorship of this study changed? If yes, please attach a revised summary of the budget. □ Yes □ No

Signed: 07/04/2015

Comments to PI from the HREC

23 July 2014
Page 1 of 5

(Note: Please complete the Closure form if the study is completed within the approval period)
HIV AND TRAUMA STUDY CONSENT FORM

WHY IS THIS STUDY BEING DONE?
This study is being done to compare HIV positive and negative patients who present to the trauma unit after a penetrating (stab or gunshot) injury to the abdomen. It will see if there are any differences in the outcomes of these patients after they have surgery.

WHAT DOES IT MEAN?
It means that the study will allow us to see if HIV has any effect on the outcome of trauma to the abdomen. This may help us take care of future patients better if there is a difference.

HOW LONG WILL THE STUDY LAST?
The study will last until all the data is collected.

HOW MANY PEOPLE WILL TAKE PART IN THE STUDY?
Approximately 200 people- 100 of which will be HIV positive, 100 who will be HIV negative. This is the number of patients needed to make any findings we might have significant to make a change.

WHO CAN PARTICIPATE IN THE STUDY?
Any patient who understands what the study is about and who has had a penetrating (stab or gunshot) injury to the abdomen. In addition, you must also consent to have the HIV blood test. (See HIV Test Consent Form)

WHAT ARE THE ADVANTAGES FOR YOU?
Participation in this study will let you know whether you are HIV positive or negative. This is important to know, as you may need further treatment if you are HIV positive and we will help arrange that.

ARE THERE ANY DISADVANTAGES OR HARMFUL EFFECTS TO YOU?
This study has no disadvantages to you. If you participate, you will have a small blood sample (less than a teaspoon) taken to test for HIV. Regardless of your HIV test results you will be managed in the same way as all other patients with similar injuries, according to the Groote Schuur hospital trauma unit guidelines.
The UCT’s Faculty of Health Sciences Human Research Ethics Committee can be contacted on 021 406 6338 in case you have any ethical concerns or questions about your rights or welfare as a participant on this research study

WHAT WILL HAPPEN IF YOU TEST HIV POSITIVE DURING THIS STUDY?
If the test shows that you are HIV positive, we will provide posttest counselling for you. We will also refer you to the appropriate outpatient facility so that you can be followed up regularly for monitoring of your disease and to start treatment, if needed.

WHAT WILL HAPPEN IF YOU TEST NEGATIVE FOR HIV?
If the test shows that you are HIV negative, we will provide you with posttest counselling so that you are able to make informed decisions about your future health.

WHY ARE YOU BEING ASKED TO TAKE PART?
You have been stabbed or shot in the abdomen, and you have had surgery to repair anything that may have been injured.

WHAT WILL HAPPEN IF YOU DECIDE TO TAKE PART IN THE STUDY?
A sample of blood, less than a teaspoon, will be taken from a vein in your arm and it will be tested to see if you have HIV or not. Information regarding your injuries and your hospital course will be recorded. We will look at this information to see if there are any differences between patients who have HIV and those who do not. If you agree to the study but later decide not to participate, your information and results will be removed from the study, and there will be no change in your medical care.

WHAT OTHER CHOICES DO YOU HAVE?
You may refuse to be part of the study and you will be treated the same way as any patient.

WHAT WILL HAPPEN WHEN THE STUDY IS OVER?
The results of the study will be published in a medical journal, and from this we will know how and if HIV influences the outcome of trauma patients with injuries such as yours.

WILL THE TEST RESULTS BE SHARED WITH YOU?
The results of the HIV test will be shared with you. All information regarding your test results will be kept confidential and will only be seen by the medical staff treating you and the doctors doing the study.

If you have any further questions, the person in charge of the study is:
Dr DEK McPherson
0720620196
(Co Principal Investigator)

I , the undersigned, do agree and give consent to use my data in this research project. My data will be used but my personal information will be kept confidential. I have had the opportunity to ask questions. Any questions that I have asked have been answered to my satisfaction. I consent voluntarily to participate in this research. It has been explained to me that I do not have to agree to this research project and this will no way affect my treatment.

PRINT NAME AND FOLDER NUMBER OF PARTICIPANT:
SIGNATURE OF PARTICIPANT:
DATE:

WITNESS (For those unable to read):

I witnessed the accurate reading of the consent form to the potential participant and the individual has had the opportunity to ask questions. I confirm that the individual has given consent freely.

PRINT NAME OF WITNESS:
SIGNATURE OF WITNESS:
DATE:

RESEARCHER/PERSON TAKING CONSENT:

I have accurately read out the consent form and to the best of my ability made sure that the participant understands the purpose of participation.

I confirm that the participant was given an opportunity to ask questions about the study, and all the questions asked by the participant have been answered correctly and to the best of my ability. I confirm that the individual has not been coerced into giving consent, and the consent has been given freely and voluntarily.

PRINT NAME OF RESEARCHER/PERSON TAKING THE CONSENT:
SIGNATURE OF RESEARCHER /PERSON TAKING THE CONSENT:
DATE:
CONSENT FORM FOR HIV ANTIBODY TEST

WHAT IS HIV?
The Human Immunodeficiency Virus (HIV) is a virus which causes AIDS (Acquired Immune Deficiency Syndrome).

HOW DO PEOPLE GET HIV?
There are several ways people may be infected with HIV. Most common are:
- By having sex with someone who is infected with HIV and not using a condom
- Sharing the same needle while using drugs with someone who is infected
- Being born to a mother who is infected

HOW IS THE HIV TEST DONE?
A small amount of blood (less than a teaspoon) is taken from a vein in your arm. It is tested for HIV.

WHAT HAPPENS IF YOU HAVE A POSITIVE TEST?
A positive test means that you have HIV. We will provide counseling, and you will be referred to an outpatient facility so you can be followed up regularly for monitoring of your disease and to start treatment, if needed.

WHAT HAPPENS IF YOU HAVE A NEGATIVE TEST?
A negative test means that there was no HIV found in your blood at this point. There is still a chance that you have HIV if you have had sex without condoms or shared needles within the past six months. We will provide counseling so that you can make informed decisions about your future health.

WHO WILL KNOW MY TEST RESULTS?
All of your information will be kept confidential and only you and the medical team caring for you will be aware of your test results.

I, the undersigned, do agree and give consent to an HIV test. I understand that the test is voluntary. I have had the opportunity to ask questions. Any questions that I have asked have been answered to my satisfaction.
PRINT NAME AND FOLDER NUMBER OF PARTICIPANT:

SIGNATURE OF PARTICIPANT:

DATE:

PERSON TAKING CONSENT:
I have accurately read out the consent form and to the best of my ability made sure that the participant understands the purpose of his/her HIV test.
I confirm that the participant was given an opportunity to ask questions about the test, and all the questions asked by the participant have been answered correctly and to the best of my ability. I confirm that the individual has not been coerced into giving consent, and the consent has been given freely and voluntarily.

PRINT NAME OF PERSON TAKING THE CONSENT:

SIGNATURE OF PERSON TAKING THE CONSENT:

DATE:
PRE TEST COUNSELLING CHECK LIST GUIDELINE FOR HEALTH CARE PRACTIONER

1) Greet and welcome the client, introduce yourself and explain your role
2) Explain confidentiality and its limits
3) Mention the reason for pre-test counselling: that it is a legal and ethical requirement and that it is a test with possibly vast implications and that they need to feel sure about having the test.
4) It is their decision to make.
5) Review what issues will be covered in pre-test counselling
6) Invite the client to provide any appropriate background information (age, relationship status, living arrangement, occupation, previous test history), remembering that people are concerned about confidentiality.
7) Inform the client about the reason for HIV testing and assess through the reply:
 - the urgency to have the test,
 - their knowledge of HIV, and
 - their emotional state.
8) As we are suggesting the test, it is important explain:
 a) why the test is being requested,
 b) that it is in their best interests to start treatment as soon as possible, if necessary,
 c) that testing is voluntary and that you have the right to refuse a HIV test, or 'Opt-out' by stating that you do not want to be tested.
9) The HIV pre-counselling and testing process may be anxiety-provoking for some, it is useful to remember to:
 a) validate feelings, allowing space for personal expression,
 b) holds on to any negative reactions, and has empathy and understanding,
 c) reduce anxiety through a calm and relaxed manner and appropriate reassurance,
 d) encourages the client to talk about insecurities and feelings that may accompany a crisis.
10) Ask the client respectfully what he or she knows about HIV and AIDS - listen and then offer to fill in any gaps in knowledge. This must cover definitions of HIV and AIDS, transmission, symptoms, progression from HIV to AIDS at a level the client can understand. The amount of information given will depend on the client’s pre-existing knowledge, comprehension level and need. The information must be shared verbally, must be accurate, and clear.
11) Discuss the HIV test method and what it will measure, reveal, and not reveal.
12) Invite the client to participate in a risk assessment. On the basis of confidential information shared, how she or he sees their risk. Give your feedback and come to a shared understanding of the risk. The client needs to recognize the risks, request the test, and have ownership of the results – he or she must “buy in” to the process.
13) Explain that you are now going to explore the implications of the test, first the negative result and then the positive result. Ask the client how he or she might feel about a negative result and explore reactions and responses.
 It is important to cover:
 - the window period for that test, and its implications
 - staying HIV negative through safer sex, and not sharing needles
 - if appropriate, a demonstration of male and female condoms
14) Now explore the positive result: “If your test result comes back positive, what will you do, and how will you feel?” Be prepared if the client becomes anxious, and assist the client by focusing on solutions.
15) Explore psychosocial reactions:
 - the client's coping mechanisms (inner resources)
 - friend, family or community support and concerns
 - partner, or spouse support and concerns
 - other possible support (outer resources)
16) Explore disclosure to a partner and whether the partner knows the client has come for a HIV test. Discuss any relationship implications
17) Explore other disclosures to family, friends and previous sexual partners and the risks attached to this. Emphasize that support is important and that there are support groups and organizations that can help.
18) Be prepared that the client may not know their partners names due to being involved in 'survivor sex' in order to provide money for food, shelter, or drugs, and now how to provide resources for a client in this situation
19) Explore issues around employment and explain that:
 • termination of employment on the grounds of HIV status is not legal
 • pre-employment testing is not legal
 • there is no legal requirement to inform the employer
 • they might be forced to disclose if they become too ill to work
20) Discuss other implications: family planning, pregnancy, children, finances, insurances, treatment options, medical costs, stigma, confidentiality, legal, physical, mental emotional, spiritual, sexual, lifestyle and healthy living.
21) Help the client to weigh these implications up into advantages and disadvantages to assist with the decision to test.
22) Assess the client’s suicide risk using an approved guide for risk assessment/suicide prevention training tools. Ask, are you suicidal? If you find out you are HIV positive would you contemplate suicide? Be prepared to refer to a trained and qualified counsellor immediately if the answer is yes.

23) Discuss the test procedures and repeat information on what the test will and will not For example, it will only reveal the presence or absence of antibodies (if the antibody test is being done) within the limitations of the window period.

24) Ask the client if there are any further questions or concerns

25) Ask the client if she or he is now ready to be tested, and start the process if the answer is ‘yes’. If the answer is ‘no’, accept that some clients may wish to think further about the matter. It is important that safer sex and/or reducing harm practices have been discussed. This can be a difficult time. Offer appropriate support. If applicable, discuss coping mechanisms during the waiting period. 26) Complete any informed consent requirements and make an appointment for follow-up counselling after the test results have been shared.

Checklist for Pre-test Counselling and Informed Consent

Inform your patient about confidentiality and your legal responsibilities. Patient consent is always required.

- Discuss possible transmission routes of HIV, what HIV is, and treatment options.
- Explain that there is a 3 month window period, what an antibody test is, and what the test involves
- Ensure your patient is aware of the possibility of a positive result
- Explain that positive results will be documented for the study
- Be aware of cultural understandings of illness, wellbeing, and any barriers to comprehending the Medical information
- Check that the patient knows when the test results will become available
- Access to post-counselling must be present, and an additional follow-up appointment for post-counselling should be made for questions that may come up after
Post-Test Counselling

The counselling provided when an individual receives his or her HIV test result is called post-test counselling, and includes one or more sessions. A second post-test counselling session would be valuable for clients who may need more time to ask questions, or who may be in shock due to a positive result. The counselling session should include feedback and understanding of results, and discussions on:

If the result is negative:
- Strategies for risk reduction
- Possibility of infection in the 'window period', dependent on when a person may have been at risk and the type of test used

If the result is positive:
- Immediate emotional reaction and concerns
- Personal, family and social implications
- Difficulties a patient may foresee and possible coping strategies
- Who the client wants to share the results with, including responsibilities to sexual partners
- Immediate needs and social support identification
- Follow up with supportive counselling
- Follow-up with medical care

Post-Test Counselling for a Client with a Negative Result

- Prepare yourself for the result-giving by:
 a) checking you have the right result and it is matched to the right client
 b) making sure you understand what the results mean
 c) making sure you have enough time
- Greet and welcome the client and check their readiness to receive the result.
- Give the result calmly and professionally.
- Wait for the client's response. Accept any response and feelings that have been evoked and ensure not to personalize by reacting.
- You may wish to explore with the client by asking:
 a) what the test result means to them?
 b) how the waiting period was?
 c) who they may wish to tell about the result?
- It is extremely important to help the client stay HIV negative and stress that the client is our partner in this epidemic and that we wish to assist them to stay HIV negative. It is therefore important to discuss:
 - abstinence, or safer sex and condom practices
 - relationship issues around safer sex
 - negotiating skills with people who may be at risk and may be trying to influence them
 - assertiveness in saying 'no' to risky behaviour and following through with healthy choices
 - safer drug use practices, and where to access needle exchange
 - information about drug rehabilitation treatment programs
 - self-responsibility

Remember that some clients:
- may be repeat testers and may be “worried well”, someone who is at very low or no risk for infection fearing that they may have the disease anyway
- feel immune or reckless
- are fatalistic
- are depressed
- may feel “survivor guilt”, that is a guilt from someone who has survived from risky behaviour and someone they know has not
- are left feeling angry after being put through test trauma
- may have anxiety attacks
- Encourage the client to ask any questions and empower them feel to feel resolved or “worked through” about the result.
- Make any follow-up appointment if necessary
Post-Test Counselling: Positive Result

Prepare yourself for the result-giving by:

- Checking you have the correct result and it is matched to the right client
- Making sure you understand what the results mean before sharing
- Making sure you have the time to spend with the client
- Be sure you are emotionally ready, by being there to empower the client, and if you are not, if available, find another qualified health professional to support the client or receive coaching before you meet with the client by a trained counsellor

Greet and welcome the client and assess if the client is ready for the result. Allow the client to lead the session and provide a safe and caring environment. Do not overwhelm the client and if necessary, allow the following issues to be discussed at the client’s pace.

- Give the result calmly, professionally and empathically.
- Wait for the client’s response. Accept and normalize any of your responses and feelings that have been evoked.
- Common feelings are shock, disbelief, numbness, anger, guilt, blame, loss, sadness, hopelessness, helplessness, fear, anxiety, agitation or even a seeming indifference and denial.
- Some clients may shut down, want silence with time to reflect, or want to leave immediately be prepared for a variety of reactions. If a client leaves ensure that the client has someone they trust with them or phone to pick them up, and ensure they are not suicidal before they leave.
- At this time the client needs to feel the presence of the counsellor and that she or he is able to disclose feelings. The client may forget or block out this period however will remember you were there for them.
- The client is facing multiple losses: health, future, normality, fitting in, sexuality (such as abstinence), etc. and it may be useful to think of the client as having to grieve and mourn for these losses.
- If the client is symptomatic (showing signs of the disease or injury), there will be a sense of urgency.
- Be mindful of the possible mode of infection and the implications of this for coping and strategies: being infected through rape, a needle stick, an infidelity or a loving relationship will create unique dynamics.
- You may feel helpless and there is often a need to over-reassure.
- Allow all feelings to occur naturally – there is usually time to make decisions.
- Work with feelings first. Answer any questions compassionately and appropriately however be careful not to collude with over-intellectualization or by handing out too many brochures, pamphlets and resource guides on HIV. Give them clear written information that is appropriate for the level of understanding.
- Discuss disclosing to a supportive person such as an Elder, spiritual healer, or family member that they can trust.
- Ask whether there is a partner involved and how this person will be told.
- If the client cannot tell their partner that they have HIV, discuss how they can negotiate safer sex, or safer practices such as, the dangers of sharing needles or other drug equipment until they have disclosed.
- Help the client to know that experiencing pain and working through feelings is a part of healing. Validate all feelings. Answer all questions and give information and resources.
- Discuss legal concerns and rights of HIV positive people. Stress that rights go with responsibilities. • Explore the client’s current relationship, and if there is a relationship then discuss disclosure of HIV status.
- Be prepared to give thorough assistance to the client with the “telling”, and being there when it happens for anyone they may want to disclose to. Be prepared to provide culturally appropriate educational and awareness material.
- Explore other disclosures and contact tracing to:
 - past or future sexual partners
 - drug partner(s)
- Explore other disclosures to:
• Explore disclosure to Elders or spiritual leaders that the client is practices traditional ceremonies with, and how to share education and awareness regarding HIV if needed in a respectful and culturally sensitive way.

• Explore concerns around children to include:
 - pregnancy and its risks
 - prevention of vertical transmission
 - termination
 - family planning

• Explore medical options that include:
 - follow-up tests and what they mean
 - developing a health plan with family physician, and specialist
 - alternative health options (including traditional healers and naturopathic doctors).

• Discuss welfare options including disability grants and how these are accessed.
• Explore lifestyle changes that includes:
 - cutting down or abstaining from alcohol or harmful substances
 - getting sufficient rest and sleep
 - appropriate daily physical activity
 - managing stress and anxiety
 - eating nutritious food and a balanced healthy diet
 - use of supplements and immune boosters
 - safer sexual behaviour and re-infection
 - safer blood practices and infection control
 - ways to practice traditional wellness.

• Work appropriately with hope and empowerment by:
 - supporting the client’s realistic hopefulness and being encouraging without discounting the client’s concerns or avoiding talking about death and dying
 - focusing on promising research and new programs
 - focusing on quality of life issues
 - encouraging the client to take control of his/her health
 - encouraging the use of resources
 - stressing that people with HIV are living productive lives

• Plan in a clear and concrete manner how the client will manage the next 24 hours.
• Give appropriate contact numbers and arrange a follow-up appointment, for the next day if needed. Assess the need for future support and contract for appropriate number of sessions with yourself or another health professional.
• Before the client has left, assess their suicide risk and respond accordingly.
• Assess the client’s suicide risk and respond appropriately and immediately.
• If necessary, access your own support systems and debrief when needed.
• In sum, focus on the whole person as social, emotional, sexual beings with medical, legal and financial needs.
Author information JACS

JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS

TABLE OF CONTENTS

- Description p.1
- Audience p.1
- Impact Factor p.1
- Abstracting and Indexing p.1
- Editorial Board p.2
- Guide for Authors p.5

DESCRIPTION

The Journal of the American College of Surgeons (JACS) is a monthly journal publishing peer-reviewed original contributions on all aspects of surgery. These contributions include, but are not limited to, original clinical studies, review articles, and experimental investigations with clear clinical relevance. In general, case reports are not considered for publication. As the official scientific journal of the American College of Surgeons, JACS has the goal of providing its readership the highest quality rapid retrieval of information relevant to surgeons.

Benefits to authors

We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services.

Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center

AUDIENCE

General Surgeons, Surgical Specialists, and other Practitioners involved in the field of surgery.

IMPACT FACTOR

2016: 4.307 © Thomson Reuters Journal Citation Reports 2017

ABSTRACTING AND INDEXING

Elsevier BIBBASE
Current Contents/Clinical Medicine
Current Contents/JCR
MEDLINE®
EMBASE
Excerpta Medica
Current Awareness in Biological Sciences
Scopus

AUTHOR INFORMATION PACK 31 Jul 2017 www.elsevier.com/locate/jamcollsurg 1
INTRODUCTION
JACS, founded more than 100 years ago, is a monthly scientific publication that considers original articles in all surgical disciplines. Manuscripts are reviewed with the understanding that the work has not been published by, and is not under consideration at, any other journal. All manuscripts are peer-reviewed and a statistician reviews manuscripts as required.

Types of articles published
JACS does not publish case reports. JACS publishes Original Scientific Articles, Collective Reviews, Education, Ethics, and History Articles, Letters, and, periodically, other specialty articles. Unsolicited editorials are not accepted. Surgeon at Work articles are published online only. Most JACS articles are published online in advance of the monthly print issue.

Original Scientific Article
A full-length report of original basic or clinical investigation, divided into five sections: Introduction, Methods, Results, Discussion, and Conclusions. Authors must provide a brief 1- to 3-sentence precis, not to exceed 50 words, summarizing the findings of their manuscript. If the article is accepted, the precis will appear in the table of contents.

Collective Review
A comprehensive, scholarly, balanced, systematic review of evidence-based literature mentioning all findings; these are not opinion submissions. Submissions should be state-of-the-art science confined mostly to Level I reporting (randomized trials with low false-positive and low false-negative errors, meta-analysis of multiple, well designed controlled studies) or Level II reporting (randomized trials with high false-positive or high false-negative errors or both, at least one well designed experimental study). Submissions must relate to important clinical subjects and be accompanied by author analysis leading to conclusions. The review must be no more than 25 double-spaced pages (including double-spaced references but not including tables and figures), rarely longer, with Editor approval. Include a one-paragraph summary for reviewers; a structured abstract is not required.

Education, Ethics, and History
Must be no longer than 15 double-spaced pages (including double-spaced references). The maximum number of figures we will accept for a history article is four. JACS reserves the right to designate any figures as online-only, for space reasons. Include a one-paragraph summary for reviewers; a structured abstract is not required.

Letters
Should focus on an article published in JACS within the last six months. Only highly selected and timely submissions will be accepted; less than 500 words with no more than six references. Letters should include a title and author name, degree, and location (city, state, country).

Surgeon at Work
Unique information about an operation or a procedure that has an impact on clinical practice of surgeons, presented in a "how to do it" fashion. Surgeon at Work articles are published online only. They are referenced in the table of contents with an "e-page" number. We encourage multimedia submissions (see Figures and Video Submission for technical specifications).

Submission checklist
You can use this list to carry out a final check of your submission before you send it to the journal for review. Please check the relevant section in this Guide for Authors for more details.

Ensure that the following items are present:

One author has been designated as the corresponding author with contact details:
• E-mail address
• Full postal address

All necessary files have been uploaded:
Manuscript:
• Include keywords
• All figures (include relevant captions)
• All tables (including titles, description, footnotes)
• Ensure all figure and table citations in the text match the files provided
• Indicate clearly if color should be used for any figures in print
Graphical Abstracts / Highlights files (where applicable)
Supplemental files (where applicable)

Further considerations
• Manuscript has been 'spell checked' and 'grammar checked'
• All references mentioned in the Reference List are cited in the text, and vice versa
• Permission has been obtained for use of copyrighted material from other sources (including the Internet)
• A competing interests statement is provided, even if the authors have no competing interests to declare
• Journal policies detailed in this guide have been reviewed
• Referee suggestions and contact details provided, based on journal requirements

For further information, visit our Support Center.
You can also contact the JACS Editorial Office at jacsedit@facs.org.

BEFORE YOU BEGIN

Ethics in publishing
Please see our information pages on Ethics in publishing and Ethical guidelines for journal publication.

As the last step when you are ready to approve your submission and “Submit to Journal Office” you must read and agree to the Ethics in Publishing Statement by checking off the box on the far right of the submission approval page.

Uniform Requirements
JACS is among the many medical journals endorsing the Uniform Requirements for Manuscripts Submitted to Biomedical Journals as set forth by the International Committee of Medical Journal Editors (ICMJE).

For more information on the Uniform Requirements, please visit: http://www.icmje.org.

Human and animal rights
If the work involves the use of human subjects, the author should ensure that the work described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans; Uniform Requirements for manuscripts submitted to Biomedical journals. Authors should include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.

All animal experiments should comply with the ARRIVE guidelines and should be carried out in accordance with the U.K. Animals (Scientific Procedures) Act, 1986 and associated guidelines, EU Directive 2010/63/EU for animal experiments, or the National Institutes of Health guide for the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978) and the authors should clearly indicate in the manuscript that such guidelines have been followed.

Disclosure information
All authors must disclose any financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work using the JACS Disclosure Form. You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated. Examples of potential conflicts of interest include employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and grants or other funding. See also https://www.elsevier.com/conflictsofinterest.

If none of the authors has any financial relationships to disclose, one disclosure form may be submitted for all authors. If any author has financial relationships to disclose, then a separate disclosure form must be submitted for each author.
Statement on duplicate publication

Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see https://www.elsevier.com/sharingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere including electronically in the same form, in English or in any other language, without the written consent of the copyright-holder.

Additionally, JACS endorses the policy of the Uniform Requirements for Manuscripts Submitted to Biomedical Journals on Overlapping Publications. Specifically:

When submitting a paper, the author must always make a complete statement to the editor about all submissions and previous reports (including meeting presentations and posting of results in registries) that might be regarded as redundant or duplicate publication. The author must alert the editor if the manuscript includes subjects about which the authors have published a previous report or have submitted a related report to another publication. Any such report must be referred to and referenced in the new paper. Copies of such material should be included with the submitted manuscript to help the editor decide how to handle the matter.

If redundant or duplicate publication is attempted or occurs without such notification, authors should expect editorial action to be taken. At the least, prompt rejection of the submitted manuscript should be expected. If the editor was not aware of the violations and the article has already been published, then a notice of redundant or duplicate publication will probably be published with or without the author’s explanation or approval.

Contributors

Each author is required to declare his or her individual contribution to the article: all authors must have materially participated in the research and/or article preparation, so roles for all authors should be described. The statement that all authors have approved the final article should be true and included in the disclosure.

Roles for all authors should be detailed on the Author Contributions Form.

JACS limits the number of authors to 10. If you believe there are reasons that more than 10 authors should be listed in the author byline (for example, in a multi-institutional study), then state why this is so in your cover letter and this will be considered by the Editor.

Authorship

In accordance with the Consensus Statement on Surgery Journals Authorship-2006, all authors should have made substantial contributions to all three of the following: (1) the conception and design of the study, or acquisition of data, or analysis and interpretation of data, (2) drafting the article or revising it critically for important intellectual content, (3) final approval of the version to be submitted.

Each author should have participated sufficiently in the work to take public responsibility for appropriate portions of the content. Allowing one’s name to appear as an author without having contributed significantly to the study or adding the name of an individual who has not contributed or who has not agreed to the work in its current form is considered a breach of appropriate authorship. The JACS Author Contributions Form must be uploaded with the submission. For more information see ICMJE statement on Sponsorship, Authorship, and Accountability.

Ghost-writing is NOT acceptable, and the name of their employer and the funding source should be disclosed for anyone acknowledged for writing assistance. No one, other than the authors, should have contributed substantially to the writing and revising of the manuscript. Contributors who do not meet the criteria for authorship should be listed in the acknowledgment. Examples include: individuals who allowed their clinical experience to be included, a person who provided purely technical help, copyediting, proofreading or translation assistance (NO ghostwriters allowed), or a department chair who provided only general support.
Groups of persons who have contributed materially to the paper, but whose contributions do not justify authorship may be listed in the Acknowledgment. See the Acknowledgment section below for more information. If you have any question about this, contact the Editorial Office at jacsedit@facs.org before submitting your manuscript.

A footnote indicating that the two first authors made equal contributions is permissible by JACS, as long as the authors certify that each had a "first author" role equally.

Each author's contribution to the intellectual content of the paper must be included on the Author Contributions form, available online, when submitting a new manuscript.

Changes to authorship
Authors are expected to consider carefully the list and order of authors before submitting their manuscript and provide the definitive list of authors at the time of the original submission. Any addition, deletion or rearrangement of author names in the authorship list should be made only before the manuscript has been accepted and only if approved by the journal Editor. To request such a change, the Editor must receive the following from the corresponding author: (a) the reason for the change in author list and (b) written confirmation (e-mail, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed.

Only in exceptional circumstances will the Editor consider the addition, deletion or rearrangement of authors after the manuscript has been accepted. While the Editor considers the request, publication of the manuscript will be suspended. If the manuscript has already been published in an online issue, any requests approved by the Editor will result in a corrigendum.

Clinical trial results
In line with the position of the International Committee of Medical Journal Editors, the journal will not consider results posted in the same clinical trials registry in which primary registration resides to be prior publication if the results posted are presented in the form of a brief structured (less than 500 words) abstract or table. However, divulging results in other circumstances (e.g., investors' meetings) is discouraged and may jeopardise consideration of the manuscript. Authors should fully disclose all posting in registries of results of the same or closely related work.

Reporting clinical trials
Randomized controlled trials should be presented according to the CONSORT guidelines. At manuscript submission, authors must provide the CONSORT checklist accompanied by a flow diagram that illustrates the progress of patients through the trial, including recruitment, enrollment, randomization, withdrawal and completion, and a detailed description of the randomization procedure. The CONSORT checklist and template flow diagram are available online.

Registration of clinical trials
Registration in a public trials registry is a condition for publication of clinical trials in this journal in accordance with International Committee of Medical Journal Editors recommendations. Trials must register at or before the onset of patient enrolment. The clinical trial registration number should be included at the end of the abstract of the article. A clinical trial is defined as any research study that prospectively assigns human participants or groups of humans to one or more health-related interventions to evaluate the effects of health outcomes. Health-related interventions include any intervention used to modify a biomedical or health-related outcome (for example drugs, surgical procedures, devices, behavioural treatments, dietary interventions, and process-of-care changes). Health outcomes include any biomedical or health-related measures obtained in patients or participants, including pharmacokinetic measures and adverse events. Purely observational studies (those in which the assignment of the medical intervention is not at the discretion of the investigator) will not require registration.

For more information on trial registration, see J Am Coll Surg 2006;202:A30-A32.

Copyright
Upon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement' (see more information on this). An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Journal Publishing Agreement' form or a link to the online version of this agreement.
Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution and for all other derivative works, including compilations and translations. If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases.

Author rights
As an author you (or your employer or institution) have certain rights to reuse your work. [More information](#).

Elsevier supports responsible sharing
Find out how you can [share your research](#) published in Elsevier journals.

Role of the funding source
You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated.

Funding body agreements and policies
Elsevier has established a number of agreements with funding bodies which allow authors to comply with their funder’s open access policies. Some funding bodies will reimburse the author for the Open Access Publication Fee. Details of [existing agreements](#) are available online.

Open access
This journal offers authors a choice in publishing their research:

- **Open access**
 - Articles are freely available to both subscribers and the wider public with permitted reuse.
 - An open access publication fee is payable by authors or on their behalf, e.g. by their research funder or institution.

- **Subscription**
 - Articles are made available to subscribers as well as developing countries and patient groups through our [universal access programs](#).
 - No open access publication fee payable by authors.

Regardless of how you choose to publish your article, the journal will apply the same peer review criteria and acceptance standards.

For open access articles, permitted third party (re)use is defined by the following [Creative Commons user licenses](#):

- **Creative Commons Attribution (CC BY)**
 Let others distribute and copy the article, create extracts, abstracts, and other revised versions, adaptations or derivative works of or from an article (such as a translation), include in a collective work (such as an anthology), text or data mine the article, even for commercial purposes, as long as they credit the author(s), do not represent the author as endorsing their adaptation of the article, and do not modify the article in such a way as to damage the author’s honor or reputation.

- **Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)**
 For non-commercial purposes, lets others distribute and copy the article, and to include in a collective work (such as an anthology), as long as they credit the author(s) and provided they do not alter or modify the article.

The open access fee for this journal is **$3,000**, excluding taxes. Learn more about Elsevier’s pricing policy: https://www.elsevier.com/openaccesspricing.

Language (usage and editing services)
Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the [English Language Editing service](#) available from Elsevier’s WebShop.
Informed consent and patient details

Studies on patients or volunteers require ethics committee approval and informed consent, which should be documented in the paper. Appropriate consents, permissions and releases must be obtained where an author wishes to include case details or other personal information or images of patients and any other individuals in an Elsevier publication. Written consents must be retained by the author and copies of the consents or evidence that such consents have been obtained must be provided to Elsevier on request. For more information, please review the Elsevier Policy on the Use of Images or Personal Information of Patients or other Individuals. Unless you have written permission from the patient (or, where applicable, the next of kin), the personal details of any patient included in any part of the article and in any supplementary materials (including all illustrations and videos) must be removed before submission.

Submission

Our online submission system guides you stepwise through the process of entering your article details and uploading your files. The system converts your article files to a single PDF file used in the peer-review process. Editable files (e.g., Word, LaTeX) are required to typeset your article for final publication. All correspondence, including notification of the Editor’s decision and requests for revision, is sent by e-mail.

Submit your article

To submit a manuscript go to the Editorial Manager website and log in as an author. Register if this is your first time using Editorial Manager. Guidance is provided for creating and uploading all files and data. The system automatically generates an electronic (PDF) proof, which is then sent to the Editor-in-Chief and to designated reviewers. All manuscript communications are done by email, only to the corresponding author. It is the corresponding author’s responsibility to keep all information (address, institution, phone number, and email address) current.

Before actually submitting online, have the following files on your computer ready for uploading: manuscript file including tables; structured abstract or short summary; separate file for each figure submitted; and permission letters for tables and figures, if applicable. You must also complete the Author Contributions Form and Disclosure Form. If none of the authors has any financial relationships to disclose, one disclosure form may be submitted for all authors. If any author has financial relationships to disclose, then a separate disclosure form must be submitted for each author. You may also include an optional cover letter for the “author comments” field.

Suggested reviewers: Please submit, with the manuscript, the names, affiliation, and e-mail addresses of three potential reviewers who do not have a conflict of interest with the authors or the subject of the manuscript. Note that the editor retains the sole right to decide whether or not the suggested reviewers are assigned.

After you have uploaded all the necessary files, the system will prompt you to go to "Submission Waiting for Author’s Approval" on your author main menu. You can leave the system and come back and complete the submission at a later time (after logging in again, you will find the work done previously under “incomplete submissions” on your main author menu).

You must view your submission and either approve it or make corrections and repeat the process until you approve it. If changes are required to the content of your uploaded files, you must make changes to the files on your computer and upload them again, and remove the incorrect file.

At the last step when you are ready to approve your submission and “Submit to Journal Office” you must read and agree to the Ethics in Publishing Statement. You agree to it by checking off the box on the far right of the submission approval page.

After you “Submit to Journal Office” you will get an acknowledgment email from the Editorial Office. A second email will advise you of the manuscript number for your submission. This manuscript number should be included in all correspondence about your article, preferably in the subject line of your email.

PREPARATION
Use of word processing software
The manuscript text should be in double-spaced, single-column format, with 1-inch margins all around. All pages in the manuscript file should be numbered at the top right corner. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the wordprocessor’s options to justify text or to hyphenate words. However, you can use bold face, italics, subscripts, superscripts, etc. When preparing tables, use the table editor in your wordprocessor. Tables go at the end of the manuscript file, before the figure legends and précis (if any). Do not embed figures in the text. See also the section on Electronic artwork.

Title page
Title. The title page must be the first page of the manuscript; all pages should be numbered. The title of manuscript should include the key concepts so that search engines will locate the manuscript. No abbreviations are allowed in titles, unless they are standard acronyms (eg, NSQIP). Author names and affiliations. List the name(s) of all authors, including first name and middle initial, graduate degrees of authors, and FACS if author(s) are Fellows of the ACS. No more than 10 names will appear under the title. Where the family name may be ambiguous (eg, a double name), please indicate this clearly. Present the authors’ affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author’s name and in front of the appropriate affiliation. Provide the full affiliation for each author, including department and institution, city and state. Correspondence address. Clearly indicate who will handle correspondence at all stages of review, revision, publication, and post-publication. Only one corresponding author is allowed. Ensure that phone number (with country and area code) is provided in addition to the e-mail address and the complete postal address. Contact details must be kept up to date by the corresponding author. Present/permanent address. If an author has moved since the work described in the article was done, or was visiting at the time, a ‘Present address’ (or ‘Permanent address’) may be indicated as a footnote to that author’s name. The address at which the author actually did the work must be retained as the main, affiliation address. Meeting presentation. Include meeting presentation information: the name (spelled out) of the sponsoring organization, city and state, and month and year of the meeting. Brief title. List a brief title of <45 characters and spaces (with no abbreviations except for standard ones such as NSQIP).

Abstract
Structured abstracts are required for original scientific articles only. Unstructured abstracts or short summaries should be submitted for other articles, for use in the review process. The abstract should contain about 250 words. Format is: Background (one paragraph) Study Design (about one paragraph) Results (one to two paragraphs) Conclusion Describe the problem addressed in the manuscript, how the study was performed, the salient results, and the conclusions of the authors. Do not cite references in the abstract.

Keywords
Immediately after the abstract, provide a maximum of 6 keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, ‘and’, ‘of’). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

Abbreviations
Abbreviations/acronyms should be in parentheses immediately after the words for which they stand, and must be spelled out completely at first use in the abstract and again at first use in the text. Abbreviations/acronyms used in figures must be spelled out in the figure legend. Up to 10 abbreviations of common terms (eg, DCIS, HBV, TIA) or acronyms (eg, SPECT, TRISS, SEER) may be used throughout the manuscript. On a separate page after the abstract, list the selected abbreviations and their definitions (eg, DCIS, ductal carcinoma in situ). The editors will determine which lesser-known terms should not be abbreviated.

Text
Subdivision - unnumbered sections: Original scientific articles should be divided into five sections: Introduction, Methods, Results, Discussion, and Conclusions. Other articles should be divided into clearly defined sections. Give each subsection a brief heading. Each heading should appear on a separate line. Subsections should be used as much as possible when cross-referencing text: refer to the subsection by heading as opposed to simply ‘the text’.

AUTHOR INFORMATION PACK 31 Jul 2017 www.elsevier.com/locate/jamcollsurg
Introduction
State the objectives of the work and provide an adequate background, avoiding a detailed literature survey or a summary of the results.

Methods
Provide sufficient detail to allow the work to be reproduced. Methods already published should be indicated by a reference: only relevant modifications should be described.

Describe statistical methods with enough detail that a knowledgeable reader with access to the original data could verify the reported results. Avoid overuse of p value, which fails to convey important quantitative information. Provide details about randomization, describe methods for blinding of observations, give numbers of observations, and report complications. Include a general description of statistical methods and design of the study and specify general-use computer programs used. Define all statistical terms, abbreviations, and symbols.

Results
Results should be clear and concise. Summarize data, specifying the statistical methods used to analyze them. Results should be presented in a logical sequence. Do not repeat material from tables in the text.

Discussion
Provide new aspects of the report and do not repeat data given in the Results section. Include implications of findings and limitations, relate these observations to other relevant studies, and include implications for additional studies. Link the conclusions with the stated goals of the study; do not form conclusions that are unsupported by the data presented. When appropriate, recommendations can be included.

Conclusions
Use a heading, not “In conclusion....”

Acknowledgment
All contributors who do not meet the criteria for authorship should be listed in the acknowledgment. Examples include: individuals who allowed their clinical experience to be included, a person who provided purely technical help, writing assistance, or a department chair who provided only general support. Groups of persons who have contributed materially to the paper, but whose contributions do not justify authorship may be acknowledged under a heading such as "clinical investigators" or "participating investigators," and their function or contribution should be described; for example, "served as scientific advisors," "critically reviewed the study proposal." Because readers may infer their endorsement of the data and conclusions, all persons listed as contributors must give written permission to be acknowledged.

Appendices
Appendices should be uploaded in separate file(s). Identify each file as Appendix 1, Appendix 2, etc. Figures in appendices should be uploaded in separate file(s), labeled Figure A1, A2, etc.

Units and drug names
Follow internationally accepted rules and conventions: use the international system of units (SI). If other units are mentioned, please give their equivalent in SI.

Generic names should be used for drugs, with trade name and company in parentheses. Do not use patient names, initials, or hospital numbers.

Math formulae
Present simple formulae in the line of normal text and use the solidus (/) instead of a horizontal line for small fractional terms, eg, X/Y. Generally, variables are to be presented in italics. Powers of e are often more conveniently denoted by exp.

References
If you use automated reference numbering software (such as EndNotes) or bibliography software, turn it off before submitting the manuscript.
Newspapers and magazines

Journal abbreviations source
Journal names should be abbreviated according to the List of Title Word Abbreviations: http://www.issn.org/services/online-services/access-to-the-ita/.

Précis
For original scientific articles only, authors must provide a brief 1- to 3-sentence précis, not to exceed 50 words, summarizing the findings of their manuscript. If the article is accepted, the précis will appear in the table of contents. Upload the précis to the online field, during the submission process.

Formatting of funding sources
List funding sources in this standard way to facilitate compliance to funder's requirements:

Funding: This work was supported by the National Institutes of Health [grant numbers xxxx, yyyy]; the Bill & Melinda Gates Foundation, Seattle, WA [grant number zzzz]; and the United States Institutes of Peace [grant number aaaa].

It is not necessary to include detailed descriptions on the program or type of grants and awards. When funding is from a block grant or other resources available to a university, college, or other research institution, submit the name of the institute or organization that provided the funding.

If no funding has been provided for the research, please include the following sentence:

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Artwork
Electronic artwork
General points
• Make sure you use uniform lettering and sizing of your original artwork.
• Embed the used fonts if the application provides that option.
• Aim to use the following fonts in your illustrations: Arial, Courier, Times New Roman, Symbol, or use fonts that look similar.
• Number the illustrations according to their sequence in the text.
• Use a logical naming convention for your artwork files.
• Provide captions to illustrations separately.
• Size the illustrations close to the desired dimensions of the published version.
• Submit each illustration as a separate file.

A detailed guide on electronic artwork is available.

You are urged to visit this site; some excerpts from the detailed information are given here.

Formats
If your electronic artwork is created in a Microsoft Office application (Word, PowerPoint, Excel) then please supply 'as is' in the native document format.

Regardless of the application used other than Microsoft Office, when your electronic artwork is finalized, please 'Save as' or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):

EPS (or PDF): Vector drawings, embed all used fonts.
TIFF (or JPEG): Color or grayscale photographs (halftones), keep to a minimum of 300 dpi.
TIFF (or JPEG): Bitmapped (pure black & white pixels) line drawings, keep to a minimum of 1000 dpi.
TIFF (or JPEG): Combinations bitmapped line/half-tone (color or grayscale), keep to a minimum of 500 dpi.

Please do not:
• Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); these typically have a low number of pixels and limited set of colors;
• Supply files that are too low in resolution;
• Submit graphics that are disproportionately large for the content.

Artwork can be black and white or color, at no charge.
Videos
JACS encourages video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include links to these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labeled so that they directly relate to the video file's content. In order to ensure that your video or animation material is directly usable, please provide the files in one of our recommended file formats with a preferred maximum size of 150 MB.

Formats for video: MPEG (*.mpg): Preferred movie format. MPEG-1 or MPEG-2 format required; highest possible quality required. Apple QuickTime (*.mov): Acceptable movie format. Highest possible quality required. Microsoft Audio/Video Interlaced format (*.avi): Acceptable movie format. Highest possible quality required. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including ScienceDirect: http://www.sciencedirect.com. Please supply 'stills' with your files: you can choose any frame from the video or animation or make a separate image. These will be used instead of standard icons and will personalize the link to your video data. For more detailed instructions please visit our video instruction pages at https://www.elsevier.com/artworkinstructions. NOTE: Since video and animation cannot be embedded in the print version of the journal, please provide text for both the electronic and the print version for the portions of the article that refer to this content.

Illustration services
Elsevier’s WebShop offers Illustration Services to authors preparing to submit a manuscript but concerned about the quality of the images accompanying their article. Elsevier’s expert illustrators can produce scientific, technical and medical-style images, as well as a full range of charts, tables and graphs. Image ‘polishing’ is also available, where our illustrators take your image(s) and improve them to a professional standard. Please visit the website to find out more.

Data references
This journal encourages you to cite underlying or relevant datasets in your manuscript by citing them in your text and including a data reference in your Reference List. Data references should include the following elements: author name(s), dataset title, data repository, version (where available), year, and global persistent identifier. Add [dataset] immediately before the reference so we can properly identify it as a data reference. The [dataset] identifier will not appear in your published article.

Tables
Submit tables as part of the manuscript document, at the end after the reference list. Tables should be submitted in "table editor" format within the word processed document (not in PDF or graphics format), and they should not use tabs or spaces to separate columns. If a table is large or exceedingly complex, the author should consider separating the data into 2 or more simpler tables. Submit no more than five tables, on separate pages, and number tables in Arabic numbers consecutively in order of text citation. Provide a brief title. Each column must have a heading. Put all explanatory matter in footnotes, including an explanation for all nonstandard abbreviations used in table. For every key symbol used in the table (*, †, ‡, §, ¶, ‖, #, ‡‡, ‡†, §§, etc.) make sure a corresponding footnote is included.

If a table contains data from previously published material, published by you or by others, obtain permission and acknowledge fully in the table footnote. Upload the permission letter with the manuscript submission.

Figure legends
Supply legends separately at the end of the manuscript file, not attached to the figure. The figure itself should not include a title. A legend should begin with a brief title and a description of the illustration. Keep text in the illustrations to a minimum.

Number the figures consecutively with Arabic numbers. Label figure parts "A" and "B", etc., in Arial bold font. When symbols, arrowheads, or letters identify parts of an illustration, explain each clearly in the legend and spell out all abbreviations. Explain, if necessary, the internal scale, and identify the method of staining in photomicrographs.
If a figure has been previously published, by you or by others, obtain permission and state the permission fully in the figure legend. Upload the permission letter with the manuscript submission.

Supplementary material

Supplementary material such as applications, images and sound clips, can be published with your article to enhance it. Submitted supplementary items are published exactly as they are received (Excel or PowerPoint files will appear as such online). Please submit your material together with the article and supply a concise, descriptive caption for each supplementary file. If you wish to make changes to supplementary material during any stage of the process, please make sure to provide an updated file. Do not annotate any corrections on a previous version. Please switch off the 'Track Changes' option in Microsoft Office files as these will appear in the published version.

AudioSlides

The journal encourages authors to create an AudioSlides presentation with their published article. AudioSlides are brief, webinar-style presentations that are shown next to the online article on ScienceDirect. This gives authors the opportunity to summarize their research in their own words and to help readers understand what the paper is about. More information and examples are available. Authors of this journal will automatically receive an invitation e-mail to create an AudioSlides presentation after acceptance of their paper.

AFTER ACCEPTANCE

Proofs

One set of page proofs (as PDF files) will be sent by e-mail to the corresponding author (a link will be provided in the e-mail so that authors can download the files themselves). JACS now provides authors with PDF proofs which can be annotated; for this you will need to download Adobe Reader version 9 (or higher) available free from http://get.adobe.com/reader. Instructions on how to annotate PDF files will accompany the proofs (also given online). The exact system requirements are given at the Adobe site: http://www.adobe.com/products/reader/tech-specs.html.

If you do not wish to use the PDF annotations function, you may list the corrections (including replies to the Query Form) and return them to Elsevier in an e-mail. Please list your corrections quoting line number. If, for any reason, this is not possible, then mark the corrections and any other comments (including replies to the Query Form) on a printout of your proof and return by fax, or scan the pages and e-mail, or by post. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the text as accepted for publication will only be considered at this stage with permission from the Editor. We will do everything possible to get your article published quickly and accurately. It is important to ensure that all corrections are sent back to us in one communication: please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility.

Offprints

The corresponding author, at no cost, will be provided with a PDF file of the article via e-mail (the PDF file is a watermarked version of the published article and includes a cover sheet with the journal cover image and a disclaimer outlining the terms and conditions of use). For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. Both corresponding and co-authors may order offprints at any time via [Elsevier's WebShop](http://www.elsevier.com/locate/jamcollsurg). Authors requiring printed copies of multiple articles may use Elsevier WebShop's ‘Create Your Own Book’ service to collate multiple articles within a single cover.

Endorsements

AUTHOR INQUIRIES
Visit the Elsevier Support Center to find the answers you need. Here you will find everything from Frequently Asked Questions to ways to get in touch.
You can also find out when your accepted article will be published.
To track your submitted article not yet accepted for publication, please visit http://www.editorialmanager.com/jacs/. You are also welcome to contact the Editorial Office at jacsedit@facs.org.

© Copyright 2014 Elsevier | http://www.elsevier.com