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Probability distributions in statistical ensembles with conserved charges
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The probability distributions for charged particle numbers and their densities are derived in statistical ensembles
with conservation laws. It is shown that if this limit is properly taken, then the canonical and grand canonical
ensembles are equivalent. This equivalence is proven on the most general probability distribution level.
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Macroscopic data of an equilibrium state are described
by means of statistical distributions of microscopic variables
specific for a given ensemble. In the application to the
description of particle production in high energy particle
collisions, we are generally dealing with the grand canonical
ensemble with respect to the particle number [1–3]. In the
ultrarelativistic situation, energy conservation and particle
number are usually controlled by the temperature of the system
[4].

Applications of statistical physics concepts to multiparticle
production processes require, however, the implementation of
internal symmetries [5,6] that result in associated conservation
of quantum numbers. In the grand canonical formulation (GC),
conservation of quantum numbers is applied to the average and
is determined by the corresponding chemical potential. On the
other hand, in the canonical ensemble (C) quantum number
conservation is specifically treated.

In general, the thermodynamic quantities calculated in the
GC and C ensembles differ. This is particularly true when
dealing with small systems [1–4,7,8]. Since relativistic heavy
ion collisions correspond to a finite volume and to a given
charge value, the canonical ensemble should be used whenever
the GC and C formalisms give different answers [2,8–11]. It
is, however, to be expected that in the thermodynamic limit,
the C and GC descriptions will provide the same answer for
physical observables [2,9,10]. The thermodynamic limit is
reached in large volume for a fixed density in C, and for
a fixed average density in the GC ensemble. Only in this
limit can one indiscriminately use the GC or C descriptions.
The results presented here do not rely on the system under
consideration being of a relativistic nature and apply equally
well to relativistic and nonrelativistic systems.

There is an essential difference in the volume dependence
of observables in the GC and C formulations [1–3,7,9].
Consequently, in the limit when V → ∞, some ratios of
extensive quantities could in general converge to different
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values in the GC and C ensembles [12]. It is thus clear
that the equivalence of the two descriptions in the thermo-
dynamic limit can be strictly established only for intensive
observables [2].

In applications of statistical models to particle production
in high energy collisions of elementary particles [13] and in
heavy ion collisions [1,14], we are always dealing with small
systems. Thus, the model description of particle yields is in
principle canonical with respect to the conservation laws. This
is particularly evident in elementary particle and peripheral
heavy ion collisions where, e.g., strangeness production is
strongly suppressed due to canonical effects [11]. However,
a detailed analysis of different particle yields [1,9–11,14] has
shown that in central heavy ion collisions the relative error
between the C and GC descriptions is so small that the GC
approximation can be used with confidence.

Recently, an interesting observation has been made [12]
that in finite systems even very small relative errors between C
and GC results seen on the level of first particle moments, i.e.,
thermal particle multiplicities, do not necessarily guarantee
that this is also the case for higher moments or particle
fluctuations. On the contrary, for a set of thermal parameters
relevant in high energy heavy ion collisions, the second
moment differs substantially in the GC and C ensembles at
finite V even though the first moments agree to high accuracy.
The above observation has been generalized [12] to the large
volume limit with the conclusion that GC and C ensemble
equivalence is violated in the thermodynamic limit on the level
of particle number fluctuations.

However, a direct comparison of GC and C results for the
average charged particle number or higher moments is only
adequate for a finite system. In the thermodynamic limit, such
a comparison can be only done at the level of densities. This is
simply because in the large volume limit, only particle densi-
ties are finite in GC and C ensembles, whereas corresponding
multiplicities are infinite in both cases. In the thermodynamic
limit, the equivalence problem of GC and C formulation of the
conservation laws requires intensive observables.

We show that different statistical ensembles with respect to
conservation laws are exactly equivalent in the thermodynamic
limit. Consequently, there is equivalence of all possible
moments, relative fluctuations, scaled variance, etc. The exact
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calculations are performed in the GC and C ensembles with
arbitrary values of the conserved charge.

The equivalence of canonical and grand canonical ensem-
bles of statistical systems with conservation laws is discussed
for a noninteracting relativistic gas of charged particles and
antiparticles in a volume V at temperature T. Particles and
antiparticles have charges ±1, respectively.

Let us consider a system with total overall charge Q,
with N = N− antiparticles and N+ = N + Q particles. The
requirement of the exact charge conservation in the canonical
ensemble leads to the partition function [1–3]

ZC
Q(V, T ) = TrQ e−βĤ =

∞∑
N=max(−Q, 0)

z2N+Q

N !(N + Q)!
= IQ(2z),

(1)
where z is the one-particle partition function

z(T ) = V

(2π )3

∫
d3p e−β

√
p2+m2

= V

2π2
T m2K2

(m

T

)
≡ V z0(T ). (2)

IQ and K2 are the modified Bessel functions [15].
To obtain the average particle multiplicity moments, one

introduces, in, e.g., (1), fugacity parameters λ+ and λ−, which
are set to one in the final formulas

ZC
Q(V, T , λ−, λ+) =

∞∑
N=max(−Q, 0)

z2N+Q

N !(N + Q)!
λ

N+Q
+ λN

−

=
(

λ+
λ−

)Q/2

IQ(2z
√

λ+λ−), (3)

such that

〈
Nk

±
〉C
Q

= 1

ZC
Q

(
λ±

∂

∂λ±

)k

ZC
Q(V, T , λ−, λ+)

∣∣∣∣∣
λ±=1

. (4)

From Eqs. (3–4), it is clear that

PC
Q(N,N + Q,V ) = z2N+Q

N !(N + Q)!

1

IQ(2z)
(5)

is the probability distribution to find N negatively and N +
Q positively charged particles in a system of volume V,
temperature T, and total charge Q [16,17].

In the grand canonical ensemble, the charge is conserved
on the average; thus the partition function

ZGC(V, T ) = Tr e−βĤ+γ Q̂, (6)

where γ is chosen so as to reproduce the average charge 〈Q〉
in the system. For a noninteracting gas, the trace in the above
equation can be calculated explicitly, yielding

ZGC(V, T , γ, λ−, λ+) =
∞∑

N+=0

∞∑
N−=0

eγ (N+−N−)λ
N+
+ λ

N−
−

N+!N−!
zN−+N+

= exp[(λ+eγ + λ−e−γ )z], (7)

where, as in Eq. (3), we have introduced auxiliary fugacities λ±
for particles and antiparticles. Following Eq. (4), the average
number of particles and the average charge in the GC ensemble
are obtained as

〈N±〉 = z exp (±γ ), 〈Q〉 = 〈N+〉 − 〈N−〉 = 2z cosh γ.

(8)
In terms of the total charge Q = N+ − N−, the GC partition
function (7) can be written as

ZGC(V, T , γ, λ−, λ+) =
∞∑

N=0

∞∑
Q=−N

eγQ
λ

Q+N
+ λN

−
N !(Q + N )!

zQ+2N,

(9)

with N = N− being the number of negatively charged parti-
cles. Thus, the function

PGC
〈Q〉 (N,N + Q,V ) = 1

ZGC

zQ+2N

N !(Q + N )!
eγQ (10)

defines the probability distribution in a GC ensemble, with
average charge 〈Q〉, to find a charge Q with N negatively
charged particles. Expressing the chemical potential appearing
in (10) through the corresponding average charge from (8), one
finds

PGC
〈Q〉 (N,N + Q,V ) = z2N+Q

N !(N + Q)!

[
〈Q〉 +

√
〈Q〉2 + 4z2

2z

]Q

× e−
√

〈Q〉2+4z2
. (11)

All other less restricted probabilities can now be obtained
directly from Eq. (11). The probability distributions
PGC

〈Q〉 (N,V ) to find N particles, and PGC
〈Q〉 (Q,V ) to find charge

Q, in the volume V at a given average charge 〈Q〉 are obtained
from

PGC
〈Q〉 (N,V ) =

∞∑
Q=−N

PGC
〈Q〉 (N,N + Q,V ), (12a)

PGC
〈Q〉 (Q,V ) =

∞∑
N=max(−Q, 0)

PGC
〈Q〉 (N,N + Q,V ). (12b)

The summations in Eqs. (12a) and (12b) can be done explicitly,
yielding

PGC
〈Q〉 (N±, V ) = 1

N±!

[√
〈Q〉2 + 4z2 ± 〈Q〉

2

]N±

× exp

[
−
√

〈Q〉2 + 4z2 ± 〈Q〉
2

]
. (13a)

For the charge distribution, one finds

PGC
〈Q〉 (Q,V ) = IQ(2z)

[
〈Q〉 +

√
〈Q〉2 + 4z2

2z

]Q

e−
√

〈Q〉2+4z2
.

(13b)
The particle number probability distribution (13a) is, as
expected [16,17], a Poisson distribution. The charge distribu-
tion, on the other hand, is not Poissonian due to the constraints
imposed by the requirement of the exact charge conservation
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in a given sector of the GC ensemble with a fixed average
charge 〈Q〉.

Earlier, we introduced a set of probability distributions
in the GC and C ensembles related to the charged particle
number. All these distributions are also valid for any value
of the conserved charge as well as the volume of the
system. Thus, they can be used to analyze the thermodynamic
limit.

From (5) and (11), one finds

PGC
〈Q〉 (N,N + Q,V ) = PC

Q(N,N + Q,V )PGC
〈Q〉 (Q,V ).

(14)

It is straightforward that in the sector of fixed charge Q, the
corresponding particle number is distributed as in the canonical
ensemble. That is why in Eq. (14) the GC probability function
PGC

〈Q〉 is just the product of the canonical particle number and
the grand canonical charge distribution.

To take the thermodynamic limit in (14), one first expresses
the variables (N,Q, 〈Q〉) by means of the corresponding
densities (n, q, 〈q〉), and then one takes the limit V → ∞ for
fixed densities. This also requires the replacement of a discrete
sum (1/V )

∑
N → ∫

dn.
The essential difference between GC and C distributions in

Eq. (14) appears through the probability function PGC
〈Q〉 (Q,V ).

Thus, to study the equivalence of GC and C ensembles on the
probability level in the thermodynamic limit, it is sufficient to
find PGC∞

〈q〉 (q) from

PGC∞
〈q〉 (q) = lim

V →∞
VPGC

〈q〉 (q, V ), (15)

where PGC
〈q〉 is obtained from Eq. (13b) by replacing 〈Q〉 and

Q by V 〈q〉 and V q, respectively. The large volume limit in
(15) is taken at fixed densities. An extra volume factor in
Eq. (15) appears from the replacement of discrete by contin-
uum variables.

The limit in Eq. (15) is obtained from the α → ∞ behavior
of the Bessel function [15]

Iα(αx) � eα
√

1+x2

√
2πα(1 + x2)1/4

[
x

1 + √
1 + x2

]α

. (16)

Consequently, the charge density probability distribution

PGC∞
〈q〉 (q) = lim

V →∞


V 1/2 e

−V
(√

〈q〉2 + 4z2
0 −

√
q2 + 4z2

0

)
√

2π
(
q2 + 4z2

0

)1/4

×

 〈q〉 +

√
〈q〉2 + 4z2

0

q +
√

q2 + 4z2
0




V q

 . (17)

It is rather straightforward to see from Eq. (17) that the limit
V → ∞ does not exist as a regular function. This limit is
zero for any q 	= 〈q〉 and infinity for q = 〈q〉. Let us consider,
however, the thermodynamic limit in Eqs. (15) and (17) as a
generalized function

F = lim
V →∞

V

∫
dqP GC

〈q〉 (q, V )f (q). (18)

The density integration in (18) is obtained through the saddle-
point method

F = lim
V →∞

V 1/2
∫

dq eV S(q)f (q), (19)

where the function

S(q) =
√

q2 + 4z2
0 −
√

〈q〉2 + 4z2
0 + q log

×
(

〈q〉 +
√

〈q〉2 + 4z2
0

)
− q log

(
q +

√
q2 + 4z2

0

)
.

(20)

In the large volume limit, the dominant contribution to the
integral (19) is obtained as

F = lim
V →∞

V 1/2

{√
− 2π

V S ′′(q0)
g(q0)eV S(q0) + O(V −3/2)

}
,

(21)

where q0 = 〈q〉 is just a saddle-point such that S ′(q0) = 0.
From Eq. (21), one finds

F = f (〈q〉),
which means that the charge density probability distribution
(15) converges to a delta function

PGC∞
〈q〉 (q) = δ(q − 〈q〉). (22)

The above result, together with Eq. (14), taken in the
thermodynamic limit completes the proof of equivalence of the
GC and C ensembles on the probability level. The probability
of finding a given density of particles and antiparticles in the
GC ensemble with a fixed average charge density 〈q〉 is exactly
equal to the corresponding probability in the C ensemble if
one identifies charge density q in the C ensemble with 〈q〉.
The same replacement q → 〈q〉 is required for all intensive
thermodynamic observables.

The equivalence of the grand canonical and canonical
descriptions of the conservation laws has been considered in
the thermodynamic limit. The problem has been studied in a
relativistic gas composed only of one type of noninteracting
particles and antiparticles with the constraints imposed by
charge conservation. Detailed studies of the equivalence
problem of canonical and grand canonical ensembles were
presented on the level of probability distributions. In the ther-
modynamic limit, the probability distributions for particle and
antiparticle densities coincide in canonical and grand canoni-
cal ensembles. Consequently, for charged particle densities,
there is full equivalence of all possible scaled moments,
relative fluctuations, and scaled variance in the thermodynamic
limit.
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