A PRELIMINARY STUDY OF THE VEGETATION OF

PIKETBERG MOUNTAIN, CAPE PROVINCE.

by

Hans Peter Linder.

Being a thesis submitted for the partial fulfilment of the requirements for the degree of B.Sc. Honours, University of Cape Town.

November 1976.
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
CONTENTS

<table>
<thead>
<tr>
<th>Abstract</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Human influence</td>
<td>8</td>
</tr>
<tr>
<td>Geology and Pedology</td>
<td>11</td>
</tr>
<tr>
<td>Climatic Conditions</td>
<td>30</td>
</tr>
<tr>
<td>Methods</td>
<td>35</td>
</tr>
<tr>
<td>Classification of the Vegetation</td>
<td>36</td>
</tr>
<tr>
<td>Forest Vegetation</td>
<td>39</td>
</tr>
<tr>
<td>Riverine Vegetation</td>
<td>40</td>
</tr>
<tr>
<td>Protea laurifolia Scrub</td>
<td>45</td>
</tr>
<tr>
<td>Leucadendron saligna Scrub</td>
<td>48</td>
</tr>
<tr>
<td>Rehania squarrosa Dry Fynbos</td>
<td>49</td>
</tr>
<tr>
<td>Rhenosterveld</td>
<td>52</td>
</tr>
<tr>
<td>Discussion</td>
<td>61</td>
</tr>
<tr>
<td>Analysis of the Flora</td>
<td>68</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>69</td>
</tr>
<tr>
<td>References</td>
<td>74</td>
</tr>
<tr>
<td>Appendix: Checklist of the Flora</td>
<td></td>
</tr>
</tbody>
</table>
ABSTRACT

A vegetation survey of the Piketberg has been undertaken, with the aim of laying the basis for a more detailed survey. The mountain ranges from 300 m to 1500 m and lies near the north-western edge of the Cape Fynbos.

The vegetation was classified using the phytosociological methods of the Zürich - Montpellier school. Vegetation forms were described with particular attention to the vegetation continua within the groups.

Extensive data were collected on climatic and edaphic factors, and these were correlated to the vegetation forms and continua. This, it is hoped, will create the framework for the study of the ecological and evolutionary dynamics of the system.

A check-list was compiled, and the flora analysed and compared to other known floras.
INTRODUCTION

The Piketberg forms an isolated mountain complex, which lies between the main fold mountain range (the Porterville-Cold Bokkeveld mountains), and the sea. It is separated from the main ranges by the Piketberg flats, which are some 25 km wide. At the northern end it is separated from the Olifants River Mountains by the Kruismans River.

The mountain lies 32° 45' south, and 18° 45' east, and covers an area of roughly 225 sq. km (Map 1). In altitude the mountain ranges from 300 m to 1458 m (Zebrakop). The major part of the mountain forms a plateau which ranges from 500 m to 800 m, most of which is cultivated.

Climatically, the area falls in the winter rainfall region of the Cape. Foristically, it is part of the Cape floral Kingdom (Good, 1964; Takhtajan, 1969). Vegetatively, it falls into veldtype 69 (Macchia) (Acocks, 1953).

Botanically, the mountain has not been studied in any detail. Probably the first collections on the Piketberg were made by Drège (1830 - 1840). Towards the end of the last century Harry Bolus (1895) and Rudolf Schlechter (1894) botanized on the mountain. They probably ascended the mountain at Sandleegte. During this century, several botanists have visited the Piketberg, including T.P. Stokoe, E. Esterhuysen and J.P. Rourke. The most important collector,
Map 1. Location of the study area.
Map 3. Topography of the Piketberg mountain.
however, was N. S. Pillans, who made an exhaustive collection in 1936. He was apparently based at Moutonsvlei, and visited Zebrakop, Gruyskop and Stawelklip. From his collections he compiled a checklist of 373 species. This unpublished list is in the Bolus Herbarium.

The present survey is of the reconnaissance type (Westhoff, 1973), and was initiated to prepare the ground for a more comprehensive study. Work was started on a checklist in 1973, as the availability of a reasonably complete checklist is a necessity for any survey based on floristic composition.

As a more detailed survey should pay particular attention to ecological dynamics and plant-environment interactions (for management planning) and to evolutionary dynamics (for conservation planning), an attempt was made in this study to isolate the main areas of interaction between the vegetation and the environment. The vegetation has to be classified to provide a consistent terminology with which to work. But continua within these vegetation units, which can be correlated to environmental gradients, provide the key by which plant-environment interactions can be analysed. An attempt is, therefore, made to accommodate both a classification and a description of continua in one format.

This survey has no claim to being comprehensive. Only those aspects which appeared to be significant as controlling
factors in the vegetation were studied. Because of their complexity, biological interactions were not studied at all. The vegetation survey was mostly restricted to the main plateau, between Zebrakop, Stalkrans and the top of the Versfeld Pass. The entire area south of the Versveld Pass was devastated by a wild fire in January, 1976, and could, therefore, not be included in the survey.

It is hoped to continue the survey, and to extend it into those areas which have not been studied to date.

HUMAN INFLUENCE

The earliest human occupation of the mountain was probably by the Bushman. Evidence of their presence is found in Bushmans Hollow, where some Bushman paintings still exist.

Initially, the white settlers, who reached the area in the early 19th century, (Burger, 1975), grazed their horses on the mountain. Access up the mountain was mainly up Burgerskloof from Goedverwacht, and from Moutonshoek to Moutonsvlei.

The earliest settlement was probably at Langeberg. Towards the end of the 19th century, J. Versveld started farming on the mountain, and in 1889 he constructed the first pass
for ox-wagons from Voëlvlei to Sandleegte. Fruit farming and settlement expanded rapidly, and now nearly all arable land is being utilized. In 1943 the new pass was finished from Deezehoek up the mountain.

The following effects have probably resulted from the settlement of the mountain:

(a) The frequency of fires has probably greatly increased. Veld is burned to provide grazing (this is still being practised). For this purpose, the veld is usually fired in the early winter, a couple of hours before the rain starts. This results in small burnt patches. Much more damaging was burning for buchu (Agathosma betulina). As the growth of buchu is stimulated by fire, the buchu producing areas (mainly between Levant and Zebrakop) were fired in late summer. A single fire would then sweep through the whole area. This practice is now illegal, and hopefully the low price of buchu will prevent these fires in the future.

(b) Grazing by horses, sheep and goats used to be widespread, but it is now infrequent. Cattle are still grazed on the plateau east of Levant, and sheep on the plateau south of Zebrakop. The effects of this grazing are difficult to estimate. The most damaging effect is probably the nitrate enrichment resulting from the dung, which could allow the invasion of alien species,
which cannot survive the present low nutrient status of the soil.

(c) Dam-building has accelerated greatly in the last decade as the rainfall decreased rapidly, and all streams are now dammed, some by several dams. Beside the obvious effect of wiping out the vegetation on the rich alluvial floodplains, they affect the flow patterns of the streams. The riverine vegetation is sensitive to these patterns, and species like *Osmunda regalis*, *Disa acaulis* and *Erica caffra* might well be affected. The effects of changing the silt and sand contents of the streams are not known, but it is likely to affect the stream fauna.

(d) Spraying for pests could have disastrous affects if insect pollinators are affected, and this could also affect the predator-prey balance. It is not known to what extent this would affect the fynbos.

(e) The introduction of alien vegetation has not yet had any disastrous effects. However, *Pinus* planted as windbreaker, is starting to spread into the virgin bush, and could well prove to be a problem in the future. The Australian acacias do not seem to be particularly virulent in the dry sandstone conditions, and no species of *Hakea* have as yet appeared.
The effects of the settlement of the mountain still need careful evaluation. To date, the effects on the natural vegetation do not appear to be disastrous.

GEOLOGY AND PEDOLOGY

The Piketberg has not yet been studied geologically in any detail. It forms part of the Cape System. Typically, this consists of a thick layer of sandstone resting on Malmesbury shale. The sandstone layer is divided into upper and basal sandstones by a narrow shaleband (100 - 15 m thick) (Du Toit, 1954; Haughton, 1969). The system is generally poor in minerals, but manganese extrusions occur occasionally.

The Western Cape mountains were formed by extensive folding of this system. Consequently the flatlands are usually of Malmesbury shales, and the mountains of Table Mountain Sandstone. As the sandstone does not weather easily, the mountains tend to be precipitous.

The Piketberg consists of Table Mountain Sandstone. The complex arrangement of the fold lines (Map 2) resulted in the triangular shape of the mountain, with the main drainage lines being along the folds. Towards the east, the flats consist of Malmesbury shales, and towards the west, of Recent Sand, which forms the Sandveld. Generally, the
Map 2. Geology of the Piketberg Area.
transition occurs at about 300 m. Along the eastern escarpment, the shale - sandstone margin runs obliquely from Deezehoek (300 m) to the top of the old pass at Sand-leegte (600 m). There is no trace of the upper shale band.

The soils on the mountain have never been studied. Preliminary investigations revealed that the Glenrosa form is widespread on s'opes. This form consists of a coarse sand with 5 - 10% silt and clay, and a pH which varies from 4,5 to 6,0. The organic content of the A-horizon varies from 2 - 6%. The A-horizon is 10 - 30 cm deep. The B-horizon consists of unconsolidated weathering stone, with soil in between the stones. Generally, the stones make up 50 - 90% of the weight of the solum in the B-horizon.

In flat areas the Fernwood form commonly occurs. This consists of deep undifferentiated sand. pH and organics are basically the same as for the Glenrosa form. These soils are widely used for orchards and other cultivation. Occasionally, a 10 - 50 cm deep layer of clay is found suspended in the solum, or resting on the bedrock. This clay is also found on slopes, and is much sought after for the construction of dams.

In swamps a very organic soil is found (Champagne form), but it is rare. It also occurs in permanent seepages, and is noted for its coarse sand and high organic level (more than 30%).
The rich black alluvial soils in the larger river valleys (Moutonsvlei, Stawelklip, Bushmans Hollow and Agterwèi) have not been investigated, as they are mostly under cultivation.

All these soils are derived from Table Mountain Sandstone, and the parent material is therefore a coarse sand. These soils do not retain water, and are very poor in nutrients. They are usually very well leached (Cole, 1949).

This discussion is still tentative, as insufficient samples were analysed to give a good impression of the soils on the mountain.

Climatic Conditions

1. Introduction

A Mediterranean climate is broadly defined as: "a climate with the concentration of rainfall in winter and with a period of drought lasting from a minimum of one month (in summer) to a maximum of 12 months" (Di Castri, 1973). This description applies to the climate of the Piketberg. One would then expect to find long hot summers, and cold wet winters. A closer analysis of the climate on the Piketberg reveals that this picture is a gross simplification.
Unless otherwise indicated, the data presented were collected at the farm Heldervue.

2. Rainfall

The average rainfall at 800 m, over a thirty year period (1940 - 1970), is approximately 750 mm per annum, with 69% of the rain falling between May and September (Fig. 1). The village of Piketberg (altitude 300 m) receives an average of approximately 400 mm, with a strikingly similar distribution to the mountain (Figures 2, 3). By extrapolation, it could be expected that the higher parts of the mountain (above 1000 m) would receive on average up to 1000 mm of rain per annum. The slope of the average rainfall curve indicates that most of the rain falls at the beginning and the end of winter, with July being somewhat drier.

An analysis of the monthly distribution of rain shows a striking irregularity. Most of the rain is received in one or two months (varying from May to August); these months usually have precipitations of 250 to 350 mm, as opposed to the maximum average monthly precipitation of 140 mm. (Fig. 4). These large totals are the result of heavy rains, which usually result in large runoffs. The concept of the winter rains being in the form of gentle drizzles is manifestly false. The magnitude of these runoffs is illustrated by the speed
Fig. 1 Climatic diagram for Heldervue, based on the averages of figures available.

Rainfall. ★★★★★★★★★★★★★★★★★★★
Temperature. C——O
Humidity. □——□
Fig. 2 Comparison of the average rainfall at Piketberg and Heldervue.

Piketberg. □—□ Heldervue. ○—○
Fig. 3 Comparison of rainfall for 1967 at Piketberg and at Heldervue.

[] — [] Piketberg.
[] — [] Heldervue.
Fig. 4 Monthly rainfall figures for 1973 to 1975 at Heldervue.
with which storage dams fill up. The monthly distribution of rainfall varies strongly from year to year. This indicates that the distribution of average rainfall is a gross oversimplification.

Annual comparisons of rainfall show a difference of up to 50% (Fig. 5). Occasionally, consecutive years receive a similar amount of precipitation, but fluctuations can range from 1100 mm (1957) to 600 mm (1958). This again indicates that averages are misleading, as an expectation of 750 mm could be grossly misleading.

Since 1940, rainfall has declined significantly (Fig. 5). Interannual fluctuations tend to conceal this tendency. This raises two possibilities: the area is undergoing secular desiccation, or there are long-term cycles in the precipitation pattern. Ladurie (1971) showed that Europe underwent such cycles, which operated on timespans of a century or more. However, it is also known that the Cape used to have a wetter climate (Van Zinderen Bakker 1969), which supports the thesis that the desiccation is part of a long-term process. However, the rate of the desiccation is so high that a long-term cycle hypothesis is preferred. This would indicate that average rainfall data are false, as they are influenced by past climatic conditions. Only a power curve fit could give a valid average.
Fig. 5 Fluctuations in the total annual rainfall at Heldervue between 1940 and 1975.
Rainfall figures collected from farms at various localities on the mountain show significant differences. Farms on the northern escarpment (New Caledonia, 700 m, and Moutonsvlei, 500 m) have the highest rainfall. Farms on the central plateau have an intermediate rainfall (Koggelkop, 800 m, and Heldervue, 800 m), while farms on the eastern escarpment (Sandleegte, 800 m) have the lowest rainfall (Fig. 6). It must be noted that only the data from Heldervue are fully reliable, as the others were collected in a casual way. However, this could only result in an underestimation of the rainfall. There is, therefore, on the mountain a strong variation in rainfall, independent of altitude. This has also been noted for Cape Town (Knox, 1911).

It is likely that the area between Levant and Zebrikop receives a higher rainfall than the rest of the mountain. From the data in Table 1 it appears as though the plateau to the east of Levant receives 1.24 times more rain than Moutonsvlei. This data is likely to be an underestimation, as the gauge was at the lowest point of the plateau at the eastern base of Levant.

The topography of the area (it forms the highest ridge of the mountain, and is an extension of the N.W. escarpment) would also indicate a relatively high rainfall.
Fig. 6. Comparison of rainfall from various parts of the mountain.

- O Moutonsvlei
- Koggelkop
- Sandleegte
- Heldervue
- New Caledonia
Table 1: RAINFALL FOR MOUTONSVLEI AND AVONDTUUR FOR 1973.

<table>
<thead>
<tr>
<th>Month</th>
<th>Moutonsvlei</th>
<th>Avondtuur</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>February</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>March</td>
<td>98</td>
<td>-</td>
</tr>
<tr>
<td>April</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>May</td>
<td>83</td>
<td>-</td>
</tr>
<tr>
<td>June</td>
<td>19</td>
<td>-</td>
</tr>
<tr>
<td>July</td>
<td>240</td>
<td>-</td>
</tr>
<tr>
<td>August</td>
<td>129</td>
<td>155</td>
</tr>
<tr>
<td>September</td>
<td>67</td>
<td>82</td>
</tr>
<tr>
<td>October</td>
<td>37</td>
<td>48</td>
</tr>
<tr>
<td>November</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>December</td>
<td>44</td>
<td>60</td>
</tr>
</tbody>
</table>
3. **Temperature**

Temperature data are only available for Heldervue, and that not for a sufficiently long period to detect long-term cycles.

The highest maximum temperature recorded was 38°C, with the hottest months being January and February. The lowest temperatures are recorded between June and August, when minima occasionally reach -6°C. Usually, the lowest temperatures are around zero (Fig. 7). Noteworthy is that the four summer months have a very similar temperature, and temperatures then drop very rapidly to the winter levels, where they stabilize for a few months before they rise just as rapidly to the summer levels. Periods of intermediate temperature are therefore rare.

Generally, snow occurs annually above 900 m, and can persist in patches for up to a week on Zebrakop (1500 m). This indicates that winter temperatures are substantially lower at higher altitudes. Performance of fruit trees requiring freezing temperatures varies at the same altitude over the mountain indicating that topography also plays a role in the determination of temperature. However, no recorded data are available to substantiate these observations.
Fig. 7. Maximum and minimum temperatures between 1957 and 1960 at Heldervue.

- O——O Maximum temperature.
- X——X Minimum temperature.
Unfortunately, there are no data available for temperatures at the base of the mountain. Thunder and hail occur occasionally, but not on a regular annual basis.

4. **Humidity:**

Average monthly humidity figures have been calculated from readings taken at 1400 hours (Fig. 1). These range from 40% relative humidity in January to 70% in May. These averages have only been based on three years observations and might show abnormal irregularities.

Fog occurs throughout the year at Heldervue, with a very high rate of occurrence during winter (10 - 20 days per month). The plateau is generally above the base of the winter rainclouds. In summer, fog occurs on between two and ten days per month (Fig. 8). These figures are expected to be substantially higher at higher altitudes. Data has not been analysed for a sufficiently long enough period to calculate averages, but for the three years for which data is available, fog occurred on 27.5% of the days. It is not known how often the fog is associated with rain.

It has been demonstrated that fog can contribute significantly of the total precipitation (Marloth, 1903, 1905; Kerfoot, 1968), and this appears to be dependant on the
Fig. 8. Days of fog at Heldervue.
droplet size of the fog. However, no data is available on this.

5. Wind

The two dominant winds are the northwest winds in winter, and the south winds in summer (Fig. 9). The wind data for one year are given in Table 2.

The northwest winds bring in the rain. The southerly winds occur throughout the year. In summer the south wind is the dominant wind, and in winter it is generally a bitter cold wind that induces snow-falls at higher altitudes. Easterly winds in summer are usually "bergwinds" (Knox, 1911) which are hot and dry.

Even though no data are available for the windspeeds, these can be considerable, and have forced the planting of windbreaks to protect the orchards. Boucher (1972) recorded similar conditions from the Kogelberg.

6. Biological Significance

The biological significance of a particular climatic régime is usually assessed by placing the precipitation and the temperature on one graph (Di Castri, 1973). However, we have seen that precipitation averages for
Fig. 9 Windroses based on average wind directions for January and June.
Table 2: WIND DIRECTIONS AT HELDERVUE IN 1959.

<table>
<thead>
<tr>
<th>Month</th>
<th>N</th>
<th>NE</th>
<th>E</th>
<th>SE</th>
<th>S</th>
<th>SW</th>
<th>W</th>
<th>NW</th>
<th>Calm</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>24</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>February</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>28</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>March</td>
<td>11</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>19</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>April</td>
<td>12</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>15</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>May</td>
<td>11</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>June</td>
<td>22</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>July</td>
<td>14</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>0</td>
<td>2</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>August</td>
<td>16</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>12</td>
<td>3</td>
<td>2</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>September</td>
<td>11</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>14</td>
<td>5</td>
<td>2</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>October</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>16</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>November</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>12</td>
<td>26</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>December</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>10</td>
<td>25</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>
the Piketberg are very misleading. A similar state may exist for temperature averages. Such a climato- graph could, therefore, be misleading.

To survive, plants have to be able to survive the harshest conditions which occur, even if these occur only rarely. Consequently, extremes are of more significance than averages. Di Castri (1973) noted that interannual variability of precipitation is probably the most crit- ical factor in Mediterranean areas.

Rainfall on Piketberg is erratic, and the biologically significant figure is, therefore, the 500 mm rainfall which occurs occasionally. The erratic distribution of rainfall within the year further diminishes the value of the actual rainfall. Most of the rain falls in a short time, and is lost as runoff. However, this situation is ameliorated to an unknown extent by the frequent occurrence of fog, even in the summer months. Marloth (1903, 1905) postulated that this is a significant factor in determining the vegetation on the Cape mountains.

These two factors greatly complicate the precipitation parameter. Spatial distribution of precipitation régimes is further complicated by influence of the topography on the rainfall. A generalization could be made, and it could be said that the area between 500 and 1000 m has one régime, the area above 1000 m another, and the slopes
below 600 m a third. Within each area a myriad of micropatterns probably exist, which affect the vegetation to a greater or a lesser extent.

METHODS

1. **Sampling**

 Sampling the vegetation presented severe problems:

 (a) The study area is very large, and includes rugged and inaccessible terrain.

 (b) Three main vegetation types are involved: forest, montane fynbos and rhenosterveld.

 (c) The fynbos especially shows a high B-diversity, and on the steeper rocky slopes no homogeneous communities exist.

 (d) The vegetation on the whole is in various stages of a fire succession, so that the successional time factor plays a very important role. Determination of the age of the vegetation after the last burn was not always possible.
Under these circumstances, random sampling would have necessitated the collection of an impractical number of relevés (Whittaker, 1973). As each vegetation form had to be typified by a minimum number of samples, sample sites were selected subjectively after an exhaustive investigation of the area.

For types without clear margins (the majority of types), the vegetation was sampled using 10 x 5 m plots. This size was found to be optimal, as larger sizes frequently included much heterogeneous vegetation, and smaller sizes did not accurately reflect the vegetation at a broad scale. In clearly defined communities (such as scree forests of riverine vegetation) the largest homogeneous area was taken as a sample. Effectively, the whole community was thus treated as a plot. It was assumed that this compensated for the small number of samples which could be taken.

The vegetation was sampled using plots, as advocated by the Zürich - Montpellier School. This method was selected in preference to plotless sampling or line transects, (Shimwell, 1971; Kershaw, 1973) as it is much more versatile, and the most rapid method (Mueller-Dombois, 1974).

All vascular plants within the plots were recorded. In some cases, species had to be ignored because it was impossible to identify them. The importance and numbers
of species within the plot was assessed on a scale modified from Braun-Blanquet (1932):

(+) Present outside the plot.
+ 0 - 1% of the area, plants few.
1 1 - 5% of the area, or more if there are a few large plants
2 5 - 12% of the area.
3 12 - 25% of the area.
4 25 - 50% of the area.
5 50 - 75% of the area.
6 75 - 100% of the area.

This scale was found to be more satisfactory, as the majority of the higher density species have cover of between 5% and 25%.

2. Classification of the Vegetation

The vegetation samples were grouped by tabular comparison methods (Mueller-Dombois, 1974; Shimwell, 1971). Werger et al (1972) showed that such methods are feasible in the Cape fynbos, despite the high floristic diversity. From the raw table, a partial table was produced. This was finally developed as a differential table. As so few relevés were available from each vegetation type, and the full variation of the type was not recorded, a Roman or constancy table was not produced.
From this data, plant communities were described, and were typified by the floristic composition. Particular attention was paid to the structural and taxonomic characteristics of the communities.

A very wide concept of the plant community was employed, so that continua due to environmental gradients within a vegetation form could be accommodated. The classification was based on the presumed mature stage, and various successional stages were all included within the community.

As it is premature to suggest a formal classification, the major groups were named after the characteristic or a faithful species, followed by a physiognomic epithet. Where these groups were subdivided, the sub-groups were named after a characteristic species, followed by the epithet "form".

3. **Soil Samples**

Soil samples were taken from most of the more representative plots. The samples were taken from the most typical part of the plot.

A hole was dug, either to the bedrock, or to 1 m deep. The depth of the horizons visible was measured, and described. Two 500 g samples were taken: one from
the upper horizon (excluding litter and the aerial parts of plants), and one from the lower horizon. An attempt was made to include a proportionally representative collection of all size fractions.

In the laboratory, the samples were airdried. The fraction of organic material was analysed according to the method outlined by Etherington (1975). Samples were crushed to break up any aggregates and passed through a 2 mm sieve to exclude all litter and roots. Two 10 g samples were then fired at 650°C for 5 or more hours, and reweighed. This method is preferred for its simplicity.

A mechanical analysis was performed by sieving the soil. Ideally, soils should first be fired to remove the organic material (Etherington, 1975), and treated chemically to break up the aggregates (Russel, 1973). However, the facilities and time were not available for these procedures. The samples were merely passed through a series of sieves ranging from a mesh diameter of 50.8 mm through 25.4; 9.52; 2.0; 0.42; 0.25 to 0.074 mm. Russel (1973) remarks that below 0.2 mm sieves become ineffective, and segregation is best carried out by the suspension of the samples in water, and by their differential sedimentation by gravity or centrifuging. The validity of this criticism was noticed with the fine clays, which tended to coagulate and block the pores of the finer sieves.
The segregate which passes through the 2 mm sieve is regarded as "fine soil" (Lyon, 1943), and was treated separately in the calculation of the percentage weight composition. The 2 – 9 mm segregate was treated as a separate group, as this contained most of the soil aggregates. The larger segregates contained the stones.

The determination of the soil reaction was basically as outlined by Etherington (1975): soil was passed through a 2 mm sieve to eliminate stones and litter. 4 g of soil was mixed with 10 ml of distilled water, shaken up, and the pH taken with a Beckman Chemate II pH meter. Two readings were taken from each sample.

Because of the small number of samples available from each vegetation type, no statistical analysis was undertaken. To achieve statistical validity in this study, many more samples will have to be taken into account for the full variability associated with each vegetation form.

CLASSIFICATION OF THE VEGETATION

The vegetation on the Pikesberg ranges in structure from forests to heathlands. Floristically, the vegetation can be roughly classified into six groups. Some of these
groups are well defined and homogeneous, others contain a wide range of variation, which can in some cases be described as sub-types. Due to insufficient data, no formal classification is proposed.

The vegetation other than the riverine and the forest forms generally has a three-layered structure in its mature form (Adamson, 1938). The main floristic groups in the vegetation can be correlated to the degree to which these various strata were developed.

1. Forest Vegetation

Forest vegetation ranges from 3 m tall scrub-forest on screes to 7 m tall cliff forests. Characteristic species are Kiggelaria africana, Maytenus oleoides, M. acuminata (a constant species), and Olea africana. The first three species are faithful to the forest forms. Elements of the Proteaceae, Ericaceae and Restionaceae are typically absent.

1.1 Scree Forest Form:

These scrub forests are found on nearly all scree slopes and on rocky outcrops. They are always associated with huge boulders, and also occur in Jonkershoek (Weger et al, 1972), and at Cape Hangklip (Boucher, 1972). The species composition changes from area to area, but the
habitat and structure remain the same. Campbell and Moll (1976) noted that the scree forests of Table Mountain were dominated by *Maurocenia frangularia* and *Olea africana*. They suggested that *Heeria argentea* was eliminated by the higher moisture levels. This appears to be substantiated by the absence of *Heeria argentea* from scree slopes on the S.E. slopes of Zebrakop (Relevé 14).

Characteristic species are *Heeria argentea* (the dominant species), *Aloe glauca* and *Adiantum nigrum*. The fern flora of this form is very rich, and the moss cover on the boulders high. *Othonna lingua* and *Lampranthus piquetbergensis* are frequently associated with these forests.

The soil was sampled at relevé 10. The A-horizon had 24% organics, and a pH of 5.9. The B-horizon, with 12.6% organics, had a pH of 4.5. Boucher (1972) noted that the scree forests showed strong coppicing after a fierce fire. Even though the scree forests are not associated with surface water, the boulders probably assist in keeping the substrate moist.

1.2 Cliff Forest Form:

The cliff forests usually form 5 - 7 m tall stands, with the lower branches clear of the ground. As in
the scree forests, the herbaceous layer is virtually absent. Only two patches of cliff forests are known: at Stalkrans and on the S.W. slopes of Zebrakop.

Characteristic species are Podocarpus elongatus (dominant), Halleria lucida, Hartogia capensis and Ilex mitis (rare but faithful). The margins of the forests are formed by Olea africana, Podocarpus elongatus, and if there is surface water, Empleuron semilatum.

The soils were studied at the Stalkrans locality: the A-horizon had 9% organic material, pH 5.1; the B-horizon had 7% organics, was paler, and had a pH of 5.0. There was a 2 cm litter layer. The soil was deeper than 1.5 m. Both patches are moist, and are on the S.E. side of cliffs. The margins are closed.

1.3 Podocarpus Scree Forest Form:

Three patches of Podocarpus elongatus occur at 1000 m on the hill south of Zebrakop. These patches cannot be related either to typical scree forests, or to cliff forests, and they do not have any faithful species.

Characteristic of this vegetation is the dominance of Podocarpus elongatus, with the absence of Neeria argentea, Hartogia capensis and Halleria lucida. There is also an absence of young P. elongatus plants.
A soil sample was studied from relevé 34. The high clay content and the high pH make this soil unique comparative to the rest of the forest forms (Fig. 10). The habitat is characterised by huge boulders. Isolated *P. elongatus* trees also occur at similar altitudes (1000 - 1200 m) in deep gullies or among boulders.

2. **Riverine Vegetation**

The riverine vegetation occurs in narrow strips along the permanent and semi-permanent streams. It is very distinctive, and clearly separated from the other vegetation forms. In structure it ranges from a low forest to a low dense bush.

Characteristic species are *Cunonia capensis*, *Brachylaena neriifolia*, *Metrosideros angustifolia* and *Leptocarpus paniculatus*. The last three species are faithful. There are no constant species. Werger et al (1972) and Boucher (1972) noted the association of the last three species with riverine or swamp conditions.

The species composition of the vegetation appears to be determined by the size and periodicity of the stream. *Empleuron semilatum*, *Cunonia capensis*, *Blechnum capense*, *Brabeium stellatifolium*, *Erica caffra* and *Osmunda regalis* are associated with permanent water. *Elegia capensis*,
Leptocarpus paniculatus, Rubus fruticosus and Rhus angustifolia can survive some desiccation, and are more often found in swampy conditions.

The structure of the vegetation appears to be governed by the topography. If the flanks of the stream are protected by steep slopes or cliffs, Cunonia capensis, M. angustifolia and B. stellatifolium can develop into small trees, forming a low forest. Werger et al (1972) also noted this dependency on the topography in Jonkershoek.

As no clear boundaries between the various structural and floristic forms can be laid down, no attempt is made to subdivide the riverine vegetation into subtypes. It is best regarded as a continuum along a moisture gradient.

3. Protea Laurifolia Scrub

This is the most common type of fynbos, and contains a complex of forms and successional stages. In the mature stage, the three layers described by Adamson (1938) are fully developed. At present, this vegetation type is a complex of various successional stages.

Characteristic species are Protea laurifolia and Restio
Table 3. Differential Table for the Forest and Diverse Vegetation zones.

<table>
<thead>
<tr>
<th>Belowe number</th>
<th>8</th>
<th>10</th>
<th>14</th>
<th>16</th>
<th>16b</th>
<th>11</th>
<th>12</th>
<th>16</th>
<th>1</th>
<th>2</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil pH, horizon A</td>
<td>6,7</td>
<td>6,9</td>
<td>9,5</td>
<td></td>
<td>9,5</td>
<td></td>
<td>9,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stone content</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay content</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organics</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altitude</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table continued.

<table>
<thead>
<tr>
<th>Belowe number</th>
<th>8</th>
<th>10</th>
<th>14</th>
<th>16</th>
<th>16b</th>
<th>11</th>
<th>12</th>
<th>16</th>
<th>1</th>
<th>2</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toda barbara</td>
<td>1</td>
</tr>
<tr>
<td>Molleura seminatum</td>
<td>1</td>
</tr>
<tr>
<td>Eleothea capensis</td>
<td>1</td>
</tr>
<tr>
<td>Asparagus thysiopis</td>
<td>1</td>
</tr>
<tr>
<td>Pierdium australis</td>
<td>1</td>
</tr>
<tr>
<td>Retziodonas seguifolius</td>
<td>1</td>
</tr>
<tr>
<td>Leucotricago pusillus</td>
<td>1</td>
</tr>
<tr>
<td>Blechnum pennastrum</td>
<td>1</td>
</tr>
<tr>
<td>Calandia raggala</td>
<td>1</td>
</tr>
<tr>
<td>Pellaea hastata</td>
<td>1</td>
</tr>
<tr>
<td>Anemonea aethiopica</td>
<td>1</td>
</tr>
<tr>
<td>Dicka paffra</td>
<td>1</td>
</tr>
<tr>
<td>Trichsmus maittefolium</td>
<td>1</td>
</tr>
<tr>
<td>Junnis leonophyllus</td>
<td>1</td>
</tr>
<tr>
<td>Eleothea capensis</td>
<td>1</td>
</tr>
<tr>
<td>Blechnum pennastrum</td>
<td>1</td>
</tr>
<tr>
<td>Persea pinnata</td>
<td>1</td>
</tr>
<tr>
<td>Meloba pinnata</td>
<td>1</td>
</tr>
<tr>
<td>Rupertia heisteri</td>
<td>1</td>
</tr>
<tr>
<td>Antidesma aethiopica</td>
<td>1</td>
</tr>
<tr>
<td>Indigera fractures</td>
<td>1</td>
</tr>
<tr>
<td>Erica saubra</td>
<td>1</td>
</tr>
<tr>
<td>Eucalyptus rostrata</td>
<td>1</td>
</tr>
<tr>
<td>Eucalyptus macrantha</td>
<td>1</td>
</tr>
<tr>
<td>Eucalyptus tenuifolia</td>
<td>1</td>
</tr>
<tr>
<td>Acacia monspessa</td>
<td>1</td>
</tr>
<tr>
<td>Acacia aurita</td>
<td>1</td>
</tr>
<tr>
<td>Acacia mellifera</td>
<td>1</td>
</tr>
<tr>
<td>Acacia scabrosa</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: The table continues with more entries, but they are not fully visible in the provided image.
gaudichaudianus. The former is probably constant in all mature forms. Willdenowia arescens, though uncommon, might be shown by a more detailed survey to be nearly constant.

A attempt was made to subdivide this form, but the groups should be regarded as noda, rather than as discrete communities. This type is to some degree comparable to the two Protea neriifolia communities in Jonkershoek (Werger et al, 1972).

3.1 Protea laurifolia - Stoebe plumosa Form:

Protea laurifolia forms the upper layer in this form (1.5 - 3 m tall). Characteristically, the middle layer is formed by woody shrubs, mainly composites and Cliffortia. The lower layer usually consists of Restionaceae and Cyperaceae.

Characteristic species are Metalasia muricata, Helipterum canescens, Stoebe plumosa and Cliffortia ruscifolia (the last two are constant species). Species such as Willdenowia arescens, Protea repens, Phylica villosa, P. cylindrica, P. stipularis, and numerous geophytes often occur. It is possible that this type could be subdivided into numerous facies. For example, Leucospernum calligerum would separate off that facies
found on Langberg and in Kafferskloof, and Chondropetalum macrocarpum the facies from the south end of the moun-
tain to Kleinbegin and Môreson.

This form is typically found on gentle to medium sloping slopes, irrespective of aspect. Soil pH varies from 5 - 6, organics from 3 - 6%. The soils are generally shallow (A-horizon 0,1 - 0,3 m). The B-
horizon is usually 70% or more stone. This form is found on altitudes between 500 and 700 m.

The Leucadendron rubrum form appears to be a precursor to the Stoebe plumosa form. This form lacks the upper stratum, and the middle stratum is strongly dominated by L. rubrum (0,5 - 2 m tall). The lower stratum is variable. Only L. rubrum is characteristic of this form, and is constant but not faithful. Juvenile plants of P. laurifolia usually occur. Species like Metalasia muricata and Helipterum canescens are typically absent. Stoebe plumosa and Clifortia ruscifolia occur in some relevés, but are absent in others. Habitat conditions are basically similar to that of the mature form: pH ranging from 5,5 to 6,6; soil organic con-
tent from 3 - 7%, and clay fraction from 6 to 13% of the soil. This form is found on all aspects. It is not known whether succession can be arrested at this stage. Certainly no community has been found that is older than six years, and all communities have some P. laurifolia juveniles.
Senescent Protea laurifolia scrub is represented by relevés 44 and 43. In this form the middle stratum has become lank and senescent, although P. laurifolia plants (15 – 20 years old by bud counts) still appear viable. This form differs from the mature P. laurifolia scrub by the absence of Metalasia muricata and Helipterum canescens. The soil and habitat conditions appear to be similar to that of mature bush, although organic content and pH are somewhat lower. The variation in this group is not known, due to the relative scarcity of senescent bush.

3.2 Protea laurifolia – Restio sieberi Form:

The upper and basal strata of this type are the same as for 3.1, but the middle stratum is composed mainly of Restionaceae, such as Willdenowia arecens and Chondropetalum macrocarpum. Characteristic species of this form are Willdenowia arecens, Restio sieberi and Chondropetalum macrocarpum. The first two are constant species, but none are faithful. Characteristic is also the absence of a shrubby middle stratum. Phyllica villosa and Protea repens are often associated with this form. This form appears to centre itself in deeper sand than the shrubby form. The pH varies from 5.5 to 6.0, and the organic content of the soil from 2.5 to 3%. The A-horizon is usually of pure
sand, without any stones. These conditions occur in hollows, as opposed to the shallow soiled slopes (Fig. 11).

![Diagram of P. laurifolia and Restio sieberi forms]

Fig. 11: Schematic Profile Diagram of the edaphic differences between the two forms of *P. laurifolia* scrub.

4. **Leucadendron salignum – Erica parilis Scrub**

This vegetation lacks an upper stratum, and the lower stratum is very well developed. It is found in a variety of habitats – high altitudes, deep sand or on slipses with mispah soils. Characteristic species are *Leucadendron salignum* (constant), *Elytropappus scaber* (constant) and *Erica parilis* (faithful). Characteristic is the absence of *Protea laurifolia*, *Phylica villusa* and *Leucadendron rubrum*. The vegetation type is probably comparable to the high altitude restioid, short
shrub communities in Jonkershoek (Werger et al. 1972). This broad form can be subdivided into three subtypes: apparently separated by edaphic factors (Fig. 10).

4.1 Protea tenuifolia - Serruria aitonii Form:

This short (up to 0.5 m) and shrubby form which has a fairly high total cover (75 - 85%) and no distinct lower and middle layers is clearly defined. It was found on Langberg and to the east of the top of the Versveld Pass. Characteristic species are Protea tenuifolia (constant and faithful), and Serruria aitonii and Tetraria ustulata (constant). This form apparently occurs on shallow rocky soils (Glenrosa or Mispah forms). The pH for both horizons is high. The organic content is also high. The A-horizon contains about 50% stone, and the B-horizon 80 - 90% stone. The clay fraction of the soils is somewhat higher than usual. Edaphically, therefore, this form is thus distinct (Fig. 10).

4.2 Staberoha distachya Form:

In this form, both the basal stratum and the middle stratum are well developed. The vegetation is 0.5 m tall, and presents a smooth cover. Total cover is between 60 and 80%. This form occurs at an altitude of 100 m. Characteristic species are Staberoha distachya
Fig. 10. Scatter diagram of soil conditions. Figures in brackets are the percentage stone in the A-horizon, figures outside brackets are the relevé numbers.

Podocarpus 15
screes forest 34

Pelhania (40)
form 15
squarrosa

L. rubrum (43)
form 28

P. laurifolia senescent (49)
form 59

Protea (59)
tenuifolia form 39

L. rubrum (40)
form 15

P. laurifolia (both types) 28

(10) Riverine 16

Staeroaba (43) (52)
distachya form

Cliff forests 83

Suurvlande (8)
form

Rhenosterveld (20)
53

(20) 52

(50) 51
(constant and faithful) and Restio

The high density of Restionaceae make this form distinct. The pH of the soils is lower than usual (5.3). The soils are stony, the B-horizon being 90% rock. The soils could be described as being Glenrosa. This form occurs on both south and north aspects, on gentle to medium slopes.

4.3 Suurvlakte Form:

This form is variable in its species composition, and is best defined by the absence of shrubby composites. It has a strong ericoid-restioid nature. The strata are very indistinct, and the vegetation is about 0.5 m tall. There are no differential species which could define this form. It is characterised by the absence of Staberoha distachya and Erica parilis. This form, which could probably be subdivided if more data were available, is found on deep sand that often has a clay layer in the B-horizon. Under these conditions the soil is waterlogged in winter and dry in summer.

5. Relhania squarrosa Dry Fynbos

This vegetation form is found on the slopes of the mountain, between 300 and 600 m. Although all three strata are represented, the middle stratum is higher
than usual (1 - 2 m), and is well developed. The upper stratum has a low total cover. Compositae form the bulk of the species, with the Restionaceae, Proteaceae and Ericaceae being rare or absent. This form could also be described as "dry fynbos".

Characteristic species are *Euryops speciosissimus*, *Passerina glomerata* (constant), *Relhania squarrosa* (faithful and constant), *Elytropappus rhinocerotis* and *Protea laurifolia*.

Edaphic factors vary only slightly (Fig. 10), and all the relevés were taken down a spur with the same eastern aspect, and the same drainage patterns. The relevés can, therefore, be regarded as a simple altitudinal gradient.

This form albeit distinct, is best understood as a continuum, which has a nodum (relevés 48 and 47). Some species invade from the *Protea laurifolia* scrub (Table 4, group 1), other from the rhenosterveld on Malmesbury shale at the base of the mountain. (Table 4, group 3).

6. **Rhenoster Veld**

This vegetation has only two strata, of which the middle stratum is the best developed. Alpha diversity in this
| Table 4. Analysis of the *Helichrysum squarrosum* dry fynbos. |
|---|---|---|---|---|---|
| **Relevé number** | 45 | 46 | 47 | 46 | 49 |
| **pH Horizon A** | 6.1 | 6.3 | 5.8 | 6.2 | 6.0 |
| **B** | 6.0 | 5.9 | 5.3 | 5.7 | 5.3 |
| **Clay & silt A** | 9.9 | 13.5 | 11.9 | 12.3% | 12.3% |
| **B** | 10.3 | 14.2 | 7.6 | 16.2% | 16.2% |
| **Stone A** | 14 | 50 | 50 | 80% | 80% |
| **B** | 0 | 70 | 80 | 60% | 60% |
| **Altitude** | 600 | 500 | 450 | 450 | 300m |
| **Slope** | Med. | Steep | Steep | Steep | Med. |
| **Protea laurifolia** | 4 | 2 | + | (+) | |
| **Willdenowia creacens** | (+) | 1 | + | | |
| **Restio gaudichaudianus** | 2 | 3 | + | | |
| **Cliffortia ruscifolia** | 1 | | + | | |
| **Serruria aitonii** | (+) | (+) | | | |
| **Metalasia muricata** | 1 | (+) | | | |
| **Protea repens** | 2 | | | | |
| **Leucadendron rubrum** | 1 | | | | |
| **Athanasia trifurca** | 1 | | | | |
| **Chondropetalum macrocarp.** | 3 | | | | |
| **Phylica villosa** | 1 | | | | |
| **Rhus rosarinifolia** | 1 | | | | |
| **Agathosma latipetala** | 1 | | | | |
| **Agathosma bisulca** | (+) | | | | |
| **Phylica cylindrica** | + | | | | |
| **Cliffortia tuberculata** | (+) | | | | |
| **Euryops speciesissimum** | + | 2 | 3 | 2 | + |
| **Passerina glomerata** | + | 3 | 5 | (+) | 1 |
| **Helichrysum squarrosum** | 1 | 1 | 2 | 1 | | |
| **Elytropappus rhinoceroticus** | 1 | 2 | 4 | 1 | | |
| **Eriocephalus capitatus** | 1 | 1 | 2 | 2 | | |
| **Rhus incisa** | | | | 2 | | |
| **Asparagus thumbergianus** | (+) | + | 1 | 1 | | |
| **Felicia hystoptifolia** | (+) | 1 | (+) | + | | |
| **Protea arborea** | (+) | + | | | |
| **Dodonaea thumbergiana** | (+) | + | | | |
| **Phylica oleofolium** | 1 | | 2 | | |
stratum is very low, although it is high for annuals and geophytes. This vegetation is noted for its near absence of Proteaceae, Restionaceae and Ericaceae. It is very uniform over large areas, and can be described as primary rhenosterveld.

Characteristic species are *Euryops thunbergianus* (constant and faithful) and *Merxmuellera* sp. *Elytropappus rhinocerotis, Asparagus thunbergianus* and *Euryops speciosissimus* are characteristic, but widespread.

This vegetation form is restricted to Malmsbury shales, and changes immediately to dry fynbos if the soil changes to Table Mountain Sandstone. These shale-derived soils are noted for their high pH and clay contents (Fig. 10). Rhenosterveld occurs on shale-soils up to an altitude of 600 m (the upper limit of the shale-soils - fynbos is never found on shales on the Piketberg).

Generally, *E. rhinocerotis* has 80 - 90% cover in the rhenosterveld. But patches occur where the species is entirely absent, and *E. thunbergianus* and *Merxmuellera* share dominance.
DISCUSSION

1. Nature of Vegetation Units

The vegetation found at any particular spot is determined by three factors:

(a) Evolutionary past, which determines what species are available in the area.

(b) Environmental conditions, which determine which of the available species can survive in that particular habitat, and

(c) Ecological time, which is the successional stage in which the vegetation is at that particular time.

This implies that species are distributed individually, and do not form closed communities. As the first factor can be assumed not to play a part within the Piketberg area, patterning of the vegetation should be explainable by the environmental conditions (spatial patterns) and the ecological time (temporal patterns). Mapping of mature vegetation should give the same results as mapping the environmental conditions. Therefore, plant "communities" would result from fairly uniform conditions, and vegetation "continua" should be related to environmental gradients.
This has been borne out by the Piketberg vegetation. Within the broad climatic régime on the plateau, on certain soils, the broad *Protea laurifolia* vegetation form can be distinguished. Within this community, complex temporal and spatial micro-patterning can be discerned. The complexity of the micropatternning is probably due to the fact that several environmental parameters of equal importance fluctuate independently of one another.

In areas where one parameter changes so dramatically that it overrides fluctuations in the other parameters, continua exist in the vegetation (for example, the riverine vegetation and the mountain slope vegetation). Ashton (1976) found a similar situation on the slopes of Mount Piper in Australia. Species have been shown to be distributed individually down such a simple gradient (Whittaker, 1973, 1970, 1965).

Where one parameter is very different from the normal, and does not grade into another state, clearly defined vegetation units result. Examples of this type of vegetation unit would be the scree scrub forests and the cliff forests.

From this it is then clear that the individualistic species concept of Gleason (1926) is logically valid. However, in practice vegetation units can be discerned (Greig-Smith, 1964; McIntosh, 1967). On the Piketberg
although vegetation units are described, continua and gradients within these units have been recognised.

2. Environmental Parameters

(a) EDAPHIC FACTORS:

Edaphic conditions have been found to be important in determining the vegetation in the Cape (Taylor, 1969; Boucher, 1972). Except for the rhenosterveld, which occurs on Malmesbury shale, all the vegetation types on Piketberg are found on soils derived from Table Mountain Sandstone.

A scatter diagram of the most important edaphic parameters (pH, stone and clay content) revealed that there is a relationship between the edaphic factors and the vegetation forms (Fig. 10).

The rhenosterveld is very distinct from the rest of the vegetation forms. Edaphically, it separates out mainly by its high pH and clay content. Levyns (1956) noted that E. rhinocerotis prefers fine-grained soils. Thoday (1925) noted that in the Bokkeveld series, fynbos occurred on the Table Mountain Sandstone ledges, and that Passerina glomerata and Elytropappus rhinocerotis were complementary.
This hypothesis is clearly supported on the Piketberg - the two vegetation forms are separated only by the change from Malmesbury shale to Table Mountain Sandstone. There is no support for the theory that the dry fynbos to rhenosterveld change is related to a moisture gradient as postulated by Levyns (1950). Pure rhenosterveld on shale occurs at 500 m, while fynbos on sandstone occurs at 300 m, on slopes with the same aspect.

The different forest types are clearly separated on edaphic factors. Cliff forests have a very low pH, and the *Podocarpus* scree forest has a high pH. Scree forests and riparian forests are intermediate.

The bulk of the soil samples do not show much variation, and the various forms of *Protea laurifolia* shrub, the *Relhania squarrosa* dry fynbos and the *Protea tenuifolia* - *Serruria aitoni* form grow on soils with similar A-horizons. The restioid short vegetation (*Staberoha distachya* and suurvlakte forms) are separated by harsher conditions (low pH and a clay B-horizon).

The correlation between soil and vegetation is, therefore, strong. However, many more samples would be needed to verify this correlation. Parameters like soil depth and drainage might also reveal
correlations. From the data it cannot be postulated what edaphic factor acts as the critical factor, as not all have been investigated.

(b) CLIMATIC FACTORS

As suggested above, the climate of the mountain can be separated into three broad regimes. The vegetation shows some correlation of these régimes:

300 - 600 m Relhania squarrosa dry fynbos, Rhenosterveld.

600 - 1000 m Protea laurifolia scrub. Forest form.
 Protea tenuifolia form.
 Suurvlakte form.

1000 m + Staberoha distachya form.

The Relhania squarrosa dry fynbos, which occurs in similar edaphic conditions as the Protea laurifolia shrub, is thus found under different climatic conditions. That climatic conditions can be critical is shown by the continuum in the shrub down an altitudinal gradient. The vegetation above 1000 m has not been extensively sampled, but the local occurrence
of many species (Protea recondita, Ixia splendida, Erica phillipsii, et al.), and the absence of common species like Protea laurifolia in the mountains between Levant and Zebrakop indicate different climatic régimes.

(c) WATER AVAILABILITY:

Where water is available (streams, drips and seepages) very distinctive vegetation forms develop. These have all been classed as riverine vegetation. Within the group there is a continuum along the water availability gradient. At the dry end the continuum grades into dry bush.

(d) TOPOGRAPHY:

Aspect is known to play a role in determining the vegetation (Tansley, 1926). This was not revealed in the collected relevés. However, forest forms are always associated with protecting cliffs and boulder scree. Riverine vegetation shows the importance of protection, as the same floristic composition will result in scrubby vegetation when unprotected, and in forest when protected. Topography can protect against fire or against desiccating winds. The former is probably the case for scree forests and
riverine forests, while the latter is more likely in the cliff forests.

It therefore appears as though there are different critical factors in the various vegetation forms, and that some types have several critical factors, resulting in complex gradients. An attempt is made to show the inter-relationships between environment and vegetation graphically (Fig. 12).

3. Evolutionary relationships

Margalef (1968) defined mature vegetation as the state when there is a balance between the environment and the available species. The species which are available are the result of the accessibility of the area to propagules, both in the present and the past, and on past environmental conditions and ecological relationships.

The Piketberg is isolated from the nearest montane fynbos by 15 - 30 km. That this barrier is reasonably effective, and has been for some time, is indicated by the endemic species of the area. Although the total number of endemic species has not been calculated, some forty are known to date. The case of Leucospermum profugum Rourke, which is endemic, and has a vicarious partner on the Porterville mountains, L. spathulatum R.Br. (Rourke,
Fig. 12. Tentative vegetation - environment correlation.

Piketberg mountain.

Dry slopes or flats.

Riverine conditions.

Shale

Table Mountain Sandstone

No topographic protection

Topographic protection

Dry regime
(300 - 600m)

Plateau, med. regime
(500 - 1000m)

Wet regime
(+ 900m)

Fenosterveld

Pelhania squarrosa
dry fynbos

Glenrosa soil

Mispah

Deep sand,
suspended clay horizon.

Protea laurifolia
form

P. lanulifolia
form

Suurvlakte form

Stablesba form

Forests ← Riverine vegetation
1972), is indicative that isolation has been long enough to allow speciation to occur. However, on the Piketberg itself, no sections can be considered to be isolated from any other sections.

Comparison of vegetation units on the Piketberg with structurally and environmentally similar units in Jonkershoek show that although some species are common to both, the majority are not. Werger et al (1972) observed that the small distributions typical of the Cape flora would make such comparisons difficult.

There is some evidence that the climate was considerably wetter in the past (Van Zinderen Bakker, 1969). Rainfall data from Heldervue on Piketberg show a consistent decrease over the last 30 years. Fossil trees on the Cape Flats (Adamson & Curry, 1951) indicate the existence of a yellowwood forest some 30 000 years ago. On the Piketberg, two old individuals of Ilex mitis still stand: dumb witnesses to a past wetter era, when they were more numerous? Relevé 34 is of a Podocarpus scree forest, which occurs at 1000 m, in very different soil conditions from the other forests. The stand has no juvenile trees. Could this patch be a relic from a once much more extensive montane Podocarpus forest?

All this indicates that there have been climatic changes in the last few centuries, and these must have caused some
changes in the vegetation. Such changes will effect the vegetation by leaving relic patches, and by the present flora not being very well adapted to the present conditions.

ANALYSIS OF THE FLORA:

Introduction

A check-list has been compiled for the Piketberg mountain, and its slopes to the start of the cultivated land (at approximately 300 m). The check-list is based on my own collections, on material in the Bolus Herbarium and on distribution records in recent revisions. Due to the large area (225 sq. km), the short period of collecting (1973 - 1976), and the distance from Cape Town, the list is not complete. It is hoped that it will indicate which areas and taxa are as yet under-collected. Some families like the Graminae, Aizoaceae and Crassulaceae are not well represented, because they were poorly collected.

The Pteridophyta are arranged according to Schelpe (1969). The Gymnosperms and Angiosperms are arranged according to Phillips (1926). The species are arranged alphabetically within each genus.
The genera are numbered according to the de Dalla Torre system as modified by Phillips. The only departures are in the Tubiflorae, where the arrangement of Adamson and Salter (1950) is followed. For each species a voucher specimen is quoted, either from my own collection, or from the Bolus Herbarium. Where the voucher specimen is in another herbarium, this is indicated. Where available, information on the locality and habitat of the species is given.

Analysis of the flora

The composition of the flora is shown in Table 6.

Table 6: COMPOSITION OF THE FLORA

<table>
<thead>
<tr>
<th></th>
<th>Families</th>
<th>Genera</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>Percentage</td>
<td>No.</td>
</tr>
<tr>
<td>Pteridophyta</td>
<td>7</td>
<td>10,30</td>
<td>11</td>
</tr>
<tr>
<td>Gymnospermia</td>
<td>1</td>
<td>1,47</td>
<td>1</td>
</tr>
<tr>
<td>Monocotyledon</td>
<td>9</td>
<td>13,22</td>
<td>76</td>
</tr>
<tr>
<td>Dicotyledoneae</td>
<td>51</td>
<td>75,00</td>
<td>163</td>
</tr>
</tbody>
</table>

By composition, the Piketberg flora tends to be intermediate between the flora of Cape Hangklip (Boucher, 1976) and the
flora of Natal (Ross, 1973). It is more similar to the Cape Hangklip flora. The main difference between the floras is the importance of the monocots.

The ten most important families on the Piketberg are given in Table 7.

Table 7: THE TEN MOST IMPORTANT FAMILIES ON PIKETBERG

<table>
<thead>
<tr>
<th>Family</th>
<th>% of the total species</th>
<th>% of the genera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compositae</td>
<td>16.6</td>
<td>16.73</td>
</tr>
<tr>
<td>Iridaceae</td>
<td>10.6</td>
<td>8.36</td>
</tr>
<tr>
<td>Leguminosae</td>
<td>7.7</td>
<td>5.18</td>
</tr>
<tr>
<td>Orchidaceae</td>
<td>6.3</td>
<td>5.18</td>
</tr>
<tr>
<td>Ericaceae</td>
<td>5.2</td>
<td>1.59</td>
</tr>
<tr>
<td>Liliaceae</td>
<td>4.4</td>
<td>5.98</td>
</tr>
<tr>
<td>Proteaceae</td>
<td>4.2</td>
<td>2.79</td>
</tr>
<tr>
<td>Restionaceae</td>
<td>3.1</td>
<td>3.19</td>
</tr>
<tr>
<td>Scrophulariaceae</td>
<td>2.9</td>
<td>3.98</td>
</tr>
<tr>
<td>Cyperaceae</td>
<td>2.4</td>
<td>2.00</td>
</tr>
</tbody>
</table>

The most important families from Cape Hangklip (Boucher, 1976), the Cape Peninsula (Bolus & MacOwan, 1904) and Natal
(Ross, 1973), are shown in Table 8.

Table 8: IMPORTANT FAMILIES FROM CAPE HANGKLIP, CAPE PENINSULA AND NATAL

<table>
<thead>
<tr>
<th>Cape Hangklip %</th>
<th>Cape Peninsula %</th>
<th>Natal %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compositae</td>
<td>10.8</td>
<td>Compositae</td>
</tr>
<tr>
<td>Ericaceae</td>
<td>8.5</td>
<td>Leguminosae</td>
</tr>
<tr>
<td>Leguminosae</td>
<td>7.3</td>
<td>Iridaceae</td>
</tr>
<tr>
<td>Iridaceae</td>
<td>7.0</td>
<td>Orchidaceae</td>
</tr>
<tr>
<td>Restionaceae</td>
<td>7.0</td>
<td>Cyperaceae</td>
</tr>
<tr>
<td>Cyperaceae</td>
<td>5.0</td>
<td>Ericaceae</td>
</tr>
<tr>
<td>Gramineae</td>
<td>4.5</td>
<td>Gramineae</td>
</tr>
<tr>
<td>Proteaceae</td>
<td>4.4</td>
<td>Aizoaceae</td>
</tr>
<tr>
<td>Orchidaceae</td>
<td>3.9</td>
<td>Restionaceae</td>
</tr>
<tr>
<td>Campanulaceae</td>
<td>3.1</td>
<td>Liliaceae</td>
</tr>
<tr>
<td>Liliaceae</td>
<td>3.1</td>
<td>Geraniaceae</td>
</tr>
<tr>
<td>Scrophulariaceae</td>
<td>1.8</td>
<td>Scrophulariaceae</td>
</tr>
</tbody>
</table>

The Cape floras are clearly related. Features in common are the importance of the Ericaceae, Iridaceae, Restionaceae and Proteaceae, and the low importance of the Gramineae. These are the features by which the Cape flora is defined (Good, 1964).
The Cape Hangklip flora is rather unique in the importance of the Ericaceae on the Restionaceae, and the relatively low importance of the Orchidaceae. The importance of the Compositae, Iridaceae and the Liliaceae increases from Cape Hangklip, to the Peninsula, to Piketberg. This is also a gradient of decreasing rainfall, which supports the hypothesis that these taxa are relatively more important in the drier parts of the Cape Flora.

Table 9 shows the ratio of genera to species, and the number of species per square kilometer.

<table>
<thead>
<tr>
<th>Area</th>
<th>Area (sq. km)</th>
<th>No. of spp. per sq. km</th>
<th>Ratio of gen. to spp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piketberg</td>
<td>225</td>
<td>2.79</td>
<td>2.46</td>
</tr>
<tr>
<td>Hangklip</td>
<td>240</td>
<td>5.9</td>
<td>3.24</td>
</tr>
<tr>
<td>Peninsula</td>
<td>471</td>
<td>5.6</td>
<td>3.73</td>
</tr>
<tr>
<td>Natal</td>
<td>91 385</td>
<td>0.1</td>
<td>3.89</td>
</tr>
</tbody>
</table>

The number of species per genus appear to increase with an increase in area. This is to be expected, as genera are more likely to be ubiquitous within the area of a floral
kingdom, and species to be endemic to a section of that area. Comparison of this ratio is, therefore, only valid if it is computed for the whole area of the floral kingdom. The figure for the Piketberg is very low, indicating that most genera are very small.

The number of species per square kilometer shows the high diversity characteristic of the Cape flora. But it is lower than the Cape Peninsula or Cape Hangklip. However, the Piketberg flora is relatively under-collected, and the figure is likely to increase significantly.

It is clear that check-lists of biogeographic areas are information rich, and would provide the most valid criteria for the definition and description of the areas.

CONCLUSIONS

The check-list, though still incomplete, shows that the Piketberg vegetation does belong to the Cape Floristic Kingdom. Families like the Compositae, Iridaceae and Liliaceae appear to be more important in the drier parts of the Kingdom. The absence or low presence of the typical Cape families in the forest and rhenosterveld vegetation indicates that these forms are probably not part of the Cape Floral Kingdom.
The more common vegetation forms are described, showing that the method of the Zürich-Montpellier School can be applied to show continua in vegetation forms. *Protea laurifolia* shrub is the most common vegetation form on the mountain.

Vegetation forms can be correlated to edaphic, climatic, topographical, and moisture availability gradients. When these parameters form a gradient the vegetation is best described as a simple continuum. When they vary independently, and no single parameter can be isolated as the critical factor, a complex multidimensional continuum results. As there are distinct environmental régimes, in which a certain set of environmental conditions occur, vegetation "communities" can be described.

Fire succession introduces an important disruptive factor, and more research will be needed to show all the successional phases of each vegetation form.

There is some indication of a secular desiccation on the mountain, and possibly of longterm climatic cycles. This raises the possibility of dramatic changes in the vegetation.

The effects of the settlement of the mountain cannot be termed disastrous, although the long-term effects of some practices (e.g. introduction of alien vegetation and spraying of insecticides) cannot be gauged.

The Piketberg, being an isolated mountain, provides ideal conditions for the study of an evolutionary and ecologically dynamic
ACKNOWLEDGEMENTS

I should like to thank my supervisor, Dr. E. Moll, for guidance and advice with the planning of the research and the preparation of the report. Also, I should like to thank the curator of the Bolus Herbarium for allowing me the use of the Herbarium for identifying my collections. My thanks to the farmers on the Piketberg for allowing free access to their land, and in some cases the use of their rainfall figures. My thanks to my parents for having put up with a "mad botanist" for three years. Financial assistance given by the Council for scientific and Industrial Research is gratefully acknowledged.
REFERENCES

MARLOTH, R. (1903) Results of experiments on Table Mountain for ascertaining the amount of moisture deposited from the South-east cloud. Trans. S.Afr. Phil. Soc. 16: 403-409.

(1905) Results of further experiments on Table Mountain for ascertaining the amount of moisture deposited from the South-east cloud. Trans. S. Afr. Phil. Soc. 16: 97-105.

vegetation ecology. Wiley.

103-106.

ROURKE, J.P. (1972) Taxonomic studies on Leucaspermum R.B.

SCHELPE, E.A. (1969) A revised check-list of the Pteridophyta of

Sidgwick & Jackson.

Oliver & Boyd.

TANSLEY, A.G. & CHIPP, T.P. (1926) Aims and methods in the study

Appendix. Preliminary checklist of the flowering plants and ferns of Piketberg mountain.

PTERIDOPHYTA

OSMUNDACEAE.

Osmunda regalis L. Linder 594
Single plant in the Bushmans River.

Todea barbara (L.) Moore Linder 592
Common along streams and at springs, semipermanent water.

SCHIZAEACEAE.

Mohria caffrorum (L.) Desv. Linder 521
Common on the drier exposed slopes.

GLEICHENIACEAE.

Gleichenia polypodioides (L.) Sm. Linder 613
Common on rock ledges and in shallow caves on Zebrakop.

DENNSTAEDTIACEAE.

Pteridium aquilinum (L.) Kuhn
Common in moist places, especially after disturbance.

Histiopteris incisa (Thunb.) Sm. Linder 614
Rare on the S.E. slopes of the hill S. of Zebrakop.

ADIANTACEAE.

Cheilanthes hirta Sw. Linder 606
On cliff ledges on Levant.

C. multifida Sw. Linder 604
On cliffs on Levant.

Pellaea hastata (Thunb.) Prantl Linder 596
Along Bushmans River, shaded.

P. pteroides (L.) Prantl Linder 548
Common, especially on ledges and in scree forests.
ASPLENIACEAE.

Asplenium aesthiopicum Bech. Linder 593
Common in scree forests.

Ceterach cordatum (Thunb.) Desv. Linder 605
In scree forests and on open slopes.

BLECHNACEAE.

Blechnum attenuatum (Sw.) Mett. Linder 599
Along streams, in moist and shaded conditions.

B. capense (L.) Schl. Linder 618
S.E. slopes of hill S. of Zebrakop, wet, rare.

B. punctulatum Su. Linder 520
Common along streams and in scree forests.

GYMNOSPERMEA.

PODOCARPACEAE.

13 Podocarpus elongatus L’Her ex Pers. Linder 209
Widespread from Kafferskloof to Zebrakop, needs moisture.

MONOCOTYLEDONAE.

GRAMINAE.

134g Cymbopogon sp. Linder 550
Platberg, next to cultivated land. Weedy?

201 Ehrhartia longiflora Sm. Pillans 7288
Hills south of Moutonsvlei.

280 Marxmuelleria sp. Linder 689
Shale rhenosterveld, Old Pass.

280b Pontaschistia airoides Stepf Pillans 7292
Hills south of Moutonsvlei.

P. thunbergii Stepf Pillans 7109
Bottom of the old Pass.

371 Lasiochloa longifolia Kunth Pillans 7113
CYPERACEAE.

459 **Cyperus longus** L. Linder 509

Weed in orchard at Stawelklip.

465 **Ficinia bracteata** Böeck Linder 566

Common, widespread between Avondtuur and Zebaskop.

F. capitella Nees Linder 450

Plateau east of Levant.

F. filiformis Schrad. Linder 419

F. indica (Lam.) Pfeiffer Linder 570

Common south of Zebaskop.

F. radiata Kunth Pillans 7572

On plateau east of Levant, in seepages.

F. scariosa Nees Linder 333

Common and widespread in *P. laurifolia* bush.

468 **Scirpus chlorostachyus** Levyns Linder 387

S. diabolicus Steud. Linder 335

Suurvlakte east of Levant.

477a **Epischoenus gracilis** Levyns Linder 621

Widespread.

494 **Tetraria cuspidata** C.B.Cl. Linder 332

Dry proteoid slopes on Platberg.

T. involucrata (Rottb.) C.B.Cl. Linder 571

Frequent in hills south of Zebakop.

T. picta C.B.Cl. Linder 330

Suurvlakte east of Levant.

T. ustulata C.B.Cl. Linder 533

Widespread on dry slopes.

RESTIONACEAE.

804 **Restio cuspidatus** Thunb. Linder 452

Suurvlakte.

R. caudichaudianus Kunth Pillans 7319
Widespread on dry proteoid slopes.

R. gossypinus Mast.
Linder 552

Platberg.

R. macer Kunth
Pillans 7604

Hills south of Zebrakop.

R. ocreatus Kunth
Linder 542

Platberg.

R. pedicellatus Mast.
Pillans 7547

Hills N.W. of Moutonsvlei.

R. sieberi Kunth
Pillans 4575

Widespread on dry proteoid slopes.

R. virgatus Mast.
Linder 354

Grootberg.

805 *Chondropetalum macrocarpum* Pillans Linder 608

Widespread in drier areas, not on steep slopes.

807 *Elegia asperiflora* Kunth
Pillans 7548

Pomona and plateau east of Levant.

E. capensis (Burm.f.) Schelpe
Linder 620

Tierkloof and Bushmans River, local in wet areas, rare.

E. perviflora Kunth
Linder 622

Suurvlakte east of Levant.

808 *Leptocarpus paniculatus* Mast.
Linder 528

Platberg, in permanent seepages.

L. vimineus Pillans
Pillans 7523

Hills N.W. of Moutonsvlei.

813 *Thamnochortus fruticosus* Berg.
Linder 410

Suurvlakte east of Levant.

814 *Staberoha distachya* Kunth
Pillans 7573

Suurvlakte east of Levant.

816 *Hypodiscus aristatus* (Thunb.) Nees
Linder 558

Common south of the Versfeld Pass.
H. binatus Mast. Linder 334
Suurvlakte east of Levant.

818 Willdenowiaarescens Kunth Pillans 7429
Common on dry proteoid slopes.

JUNCACEAE.

936 Juncus lomatophyllus Sprg. Linder 176
Widespread in permanent streams.

LILIACEAE.

969 Androcymbium sp. Linder 644
Dry proteoid slopes, Langberg, after a fire.

972 Wurmbea spicata (Burm.) Dur. & Schinz Linder 3
Clay at the E. base of mountains, Deenhoek.

973 Ornithoglossum viride (L.f.) Ait. Linder 56
E. slopes below Aasvoelkop, after fire.

984 Bulbinella gracilis Kunth Linder 329
South of Versfeld Pass.

B. peronata Kunth Linder 8
Central plateau around Pomona.

971 Dipidax punctata (L.) Hutch. Linder 22
Suurvlakte east of Levant.

985a Trachyandra hirautilora Adamson Linder 33
Sandleegte, on sand. Uncommon.

T. muricata L.f. Linder 146
Suurvlakte, on sand, uncommon.

T. patens Mauve Linder 11
Rare south of Versfeld Pass.

985b Bulbine asphodelioides Roem & sch. Linder 42
B. filifolia Baker Linder 150

990 Chlorophytum undulatum Oberm. Linder 49
Drier parts of mountain, on rock ledges.

1024 Kniphofia uvaria (L.) Hook f. Linder 163
Eastern upper slopes in seepages.

1026 **Aloe glauca** Mill var. **muricata** Pillans 17743
(Schult) Bak. On rocks, widespread.

1047 **Tulbaghia alliaceae** L.f.
Widespread, especially on the lower slopes.

1080 **Urginea filifolia** (Jacq.) Steinh. Linder 70
Hills south of Zebrakop in valleys.

1089 **Ornithogalum dictans** L. Bol. Linder 119
South of Versfeld Pass.

1098 **Lachenalia hirta** Thunb. Linder s.n.
L. pusilla Jacq. Linder 619
Platberg, on rock ledge in organic soil, rare.

L. tricolor Thunb. Matthews 1153
Southern part of mountain, among stones.

L. unicolor Jacq. Linder s.n.
L. vanzyliae Barker m.s. Linder s.n.
Widespread in shaded places.

1113 **Asparagus aethiopicus** L. Grootberg.
A. compactus Salter Linder 173
Widespread at higher altitudes.

A. muricata (L.f.) Kunth Linder 146
East of Levant in sand.

A. remossissimus Baker Linder 338
Versfeld Pass, rare.

A. scandens Thunb. Linder 597
Along streams and in scree forests.

A. thunbergianus Sch. Linder 172
Common on dry proteoid slopes.
HAEMODORACEAE.

1160 Dilatris ixiodes Lam. Linder 144
Suurvlakte east of Levant, common after fire.

1162 Wachendorffia paniculata Burm. Linder 126
Widespread, from Aasvoelkop to Zebrakop.

AMARYLLIDACEAE.

1167 Haemanthus rotundifolius Caul. Linder s.n.
Common on loose organic soil: scree forests and boulders.

1175 Nerine humilis Herb. Linder 589
Widespread on S. facing rock ledges.

N. serniensis (L.) Herb. Linder 630
Zebrakop and Grootberg areas, on dry stony soil.

1233 Cyanella capensis L. Linder 149
South of Varsfeld Pass, in shale at base of mountain.

1230a Spioxene ovata (L.f.) Garside Linder 585
Moist sandy places.

S. schlechteri Bol. Linder 379
Plateau east of Levant.

Periphnes cinnamomea (L’Her) Leighton Linder 579
Sandy places on plateau, flower only after fire.

IRIDACEAE.

1261 Romulea cruciata (Jacq.) Bak. Linder 21
var. intermedia (Berg.) De Vos
R. flava (Lam.) De Vos var. flava Linder 13
Platberg, sandy soil.

R. hirsuta (Eckl. ex Klatt) Boek Linder 14
R. triflora (Burm.f.)N.E.Br. Linder 51
Zebrakop, common.

1262 Galaxia sp. Linder 370
Plateau east of Levant.

1265 Moreea ciliosa Kor. Linder 564
Top of Versfeld Pass.

M. fugax (De la Roche) Jacq. Linder 638

M. papilionacea (L.f.) Ker Linder 637

M. tripetala (L.f.) Ker Linder 414

Widespread, usually on sandy soil.

M. unguiculata Ker Linder 636

Zebrakop, moist semiseepage areas.

M. villosa Ker Linder 634

Common between Levant and Zebrakop on stony soil.

1272 *Ferraria undulata* L. Linder 15

Mountain south of Versfeld Pass.

1284 *Bobartie rufa* Strid. Pillans 7150

1295 *Aristea capitata* Ker Linder 155

Suurvlekke east of Levant.

A. coerula (Thunb.) Wahl. Linder 92

Plateau east of Levant.

A. cuspidata Schinz Linder 164

Plateau east of Levant.

A. zeyherii Baker Linder 134

Plateau east of Levant.

1300a *Engysiphon brevitubus* Lewis Linder 401

Widespread on dry proteoid slopes.

1300b *Ceioseorhiza aspera* (Berg.) Ker Linder 40

Widespread, common in sandy areas.

G. bolusii Baker Pillans 7400

Rock ledges on S. facing slopes, common.

G. imbricata (De la Roche) Ker Linder 71

Grootberg area.

G. juncea (Link) A. Distr. Linder 46

Along the eastern ridge of the mountain,
1301 *Hesperantha falcata* Ker
Widespread below 500m.
H. radiata Ker
Common on Zebrakop and Aasvoelkop.
sp. nov.
Rare in the Zebrakop area.

1302 *Ixia capillaris* L.f.
Widespread on dry slopes, especially around Pomona.
I. conferta Foster var. *ochroleuca*
Ker Lewis. Shale at E. base on mountain,
I. dubia Vent.
Sandleegte, common on dry stony slopes.
I. odorata Ker
Zebrakop.
I. paniculata De la Roche
vTierkloof and Suurvlakte in swampy ground.

1305 *Melaaphaerula remosa* (L.) N.E.Br. Linder 425
Widespread, usually in shaded conditions under trees.

1306 *Tritonia cooperii* Klatt Linder 63
Aasvoelkop, S. facing ledges.
T. cooperii var. *pectinata* X *T. crispa*
Aasvoelkop and Levant, S. facing slopes.

1306a *Tritoniopsis barl flora (Jacq.) Lewis* Linder 186
1309 **Synnotia villosa** (Burm.) N.E.Br. Linder 49
Common south of the Versfeld Pass, in sand.

1310 **Babiana disticha** Eckl. Linder 453
Widespread.

1311a **Homoepoa auxiliaris** N.E.Br. Linder 44
Shales at the base of the mountain at Uaboom.

H. watsonianum N.E.Br. Linder 35
Widespread on the mountain, rarely common.

1311b **Gladiolus alatus** L. Linder 69
Widespread in sandy soils.

G. angustus L. Linder 161
S.E. slopes of Zebrakop.

G. brevifolius Jacq. Linder 216
Widespread on stony dry soil north of the Versfeld Pass.

G. carneus Ait. ssp. carneus Linder 50
Widespread, growing in sandy soil.

G. caryophyllaceus (Burm.f.) Poir Schlechter 5791
Sandleegte, now extinct in area due to cultivation.

G. hyalinus Jacq. Linder 52
Widespread on dry sandy or stony soils.

G. liliaceus Houtt. Linder 137
Zebrakop and Levant in moist sand, not seepages.

G. stokoei Lewis Linder 190
Zebrakop and Levant on moist slopes, common after fire.

G. tenella Jacq. Linder 45
Stony and dry soils.

G. triste L. var. *tristis* Linder 174
Upper part of the Bushmans River, Zebrakop. Moist seepages.

G. undulatus L. Linder 90
Sandy soil between Levant and Zebrakop.
1312b *Anapalina longituba* Fourc. Linder 211
Suurvlakte in cracks of boulders.
A. nervosa (Thunb.) Lewis Linder 129
Widespread on dry stony soils.
A. triticea N.E.Br. Linder 632
Common on dry stony slopes between Levant and Zebrakop.

1313a *Thereianthus bracteolatus* (Lam.) Lewis
Common on plateau E. of Levant after fire. Linder 187

1313b *Micranthus juncceus* (Bak.) N.E.Br. Linder 193
Widespread and common.
M. plantagineus Eckl. Linder 128
Rare. Seepage near Avondtuur.

1314 *Lapeirousia anceps* (L.f.) Ker Pillans 7275
Hills W. of Moutonsvlei.
L. fabricii 'De la Roche) Ker Pillans 7718
Shale around base of mountain.
L. jacquinii N.E.Br. Linder 32
Widespread on sand.
L. micrantha (Mey. ex Klatt) Bak. Linder 93
Sandleegte.

1315 *Watsonia marginata* Ker Linder 157
Plateau east of Levant.
W. splendida Schinz Linder 2
Perdekop and Langberg on dry stony soil.
W. stokoei L.Bol. Linder 192
Between Levant and Zebrakop, common along streams.
W. vanderspuyae L.Bol. Pillans 7275
Hills south of Zebrakop.
W. verfsfeldii Matth. & Bol. Linder 156
Zebrakop, among boulders on slopes.
W. vittata Matth. & L.Bol. Linder 191
1408 *Holothrix lithophila* Schlechter Linder 208
Plateau east of Levant.

H. squamulosa Lindl. Linder 84
Plateau east of Levant, common on sand after fire.

H. villosa Lindl. Linder 99
Widespread in cracks on boulders and cliffs.

1416 *Bartholina burmanniana* (L.) Ker Linder 12
Widespread on dry soil.

1430 *Satyrium bicallulosum* Thunb. Linder 87
Sandy areas between Levant and Zebrakop.

S. bicorne (L.) Thunb. Linder 1

S. candidum Lindl. Linder 135
Zebrakop and Avondtuur, moist to wet areas.

S. erectum Schwartz Linder 77
Widespread in shaded conditions, even under *Pinus* sp.

S. lupulinum Lindl. Linder 76
Rare. At Sandleegte and Perdekop.

S. ratusum Lindl. Linder 86
S. facing cliffs on Zebrakop, shaded conditions.

S. striatum Thunb. Linder 75
Along stream east of Levant, rars.

1430b *Aviceps pumilum* Lindl. Linder 464
Platberg, and mountains between Levant and Zebrakop.

1432 *Schizodium bifidum* (Thunb.) Pillans 7303
Reichb.f. var. *bifidum* Zebrakop.

Var. *rigidum* (Lindl.) Linder Pillans 7835
Kapteinskloof mountain.

S. longipetalum Lindl. Schlechter 5248
Very rare, seen once. Dry stony soils near Dassieklip.
1434 *Disa caulescens* Lindl. Linder 136
Along upper part of the Bushmans River, common.

D. draconis (L.f.) Schwartz Linder 142
Widespread between Dassiklip and Zebrakop in sand.

D. longifolia Lindl.
Zebrakop, S.W. slopes, very rare, at permanent water.

D. maculata L.f. (white form) Pillans 7347
In cliff crevasses, S. facing, on Platberg and Zebrakop.

D. uncinata Bolus Linder 85
Common in semi-permanent drips on Zebrakop.

D. uniflora Berg. Linder 195
Rare in permanent water on Zebrakop.

D. vaginata Harv. Linder 118
Very rare - one plant found in hills S. of Zebrakop.

1435 *Herschelia charpentieri* Kraenzl. Linder 148
Plateau east of Levant.

H. spathulata Sw. Linder s.n.
Plateau E. of Levant, only one plant found.

1436 *Monadenia micrantha* Lindl. Linder 132
Widespread and common on the plateau east of Levant.

M. physodes (Sch.) Reichb.f. Linder 74
Rare in a seepage on plateau east of Levant.

1437 *Disperis bolusiana* Schlechter Linder 26
On shale on the old Pass.

D. cepensis (L.f.) Schwartz Linder 28
Both green and red forms widespread and common, the green form oftener on the moister E. slopes.

D. circumflexa (L.) Dur. & Schl. Linder 73
Widespread.

D. cucullata Schwartz Linder 27
Widespread but rare on mountain.
Widespread and common on sand.

1438 *Pterigodium acutifolium* Lindl. Linder 116
In moist sand between Levant and Zebrokop.

P. alatum (Thunb.) Swtch. Linder 64
South of Versfeld Pass on shaded S. slopes with sand.

P. caffrum (Thunb.) Schwartz Linder 72
Kafferskloof, sand.

P. catholicum (L.) Schartz Linder 5
Widespread and common.

P. platypetalum Lindl. Linder 25
Widespread, not common, usually in moist places, sand.

P. valucris (L.f.) Sw. Linder 19
South of Versfeld Pass, also on shale at Voelvlei.

1439 *Ceratandra atrata* (L.) Dur. & Schltr. Linder 117
Along streams between Levant and Zebrokop.

1440 *Corycium orobanchioides* (L.f.) Schutz. Linder 39
Common in drier areas, south of Versfeld Pass.

DICOTYLEDONAE.

MORACEAE.

1961 *Ficus cordata* Thunb. Pillans 7217
Bushmanskop, among boulders.

URTIACEAE.

2014 *Australina procumbens* N.E.Br. Linder 427
In scree forests in shade.

PROTEACEAE.

2024 *Brabeium stellatifolium* L. Linder 515
Along permanent streams.

2028 *Sorocephalus capitatus* Rourke Pillans 7341
Between Levant and Zebrokop.

S. imbricatus (Thunb.) R.Br. Bolus 13639
Suurvlekte south of Zebrakop.

S. aitonii R. Br. Linder 685

Common below 800m, often in dry proteoid vegetation.

2035 *Protea acaulis* Thunb. Pillans 7480

Widespread on stony and shallow soil.

P. arborea Houtt.

Widespread, usually on steep slopes.

P. cynaroides L.

Common on peaks among boulders.

P. laurifolia Thunb.

Widespread and common on dry mountain slopes.

P. recondita Buck

On the peak of Zebrakop, above 1200m.

P. repens Thunb.

Widespread, seldom dominant, usually on deeper soils.

P. tenuifolia R. Br. Linder 204

Widespread in drier conditions, never common.

2036 *Leucospermum calligerum* (Salisb. Linder 666 ex Knight) Rourke Langberg to Kafferskloof.

L. catherinae Compton Pillans 7431

Voorstevlei and Platberg. Not found.

L. profugum Rourke Edwards s.n.

S. of Versfeld Pass, endemic.

L. rodolentum (Salisb. ex Knight) Rourke

Dry sandy conditions at W. base of mountain. Williams 1361

L. vestitum (Lam.) Rourke Linder 687

Langberg, Perdekop, Môreson. Dry slopes.

2037 *Leucadendron discolor* Phillips & Hutch.

South of Versfeld Pass, endemic. Pillans 8055

L. glaberrimum (Schlt.) Compton Lind 568

ssp. erubescens Williams. Widespread.
Deazehoek, on shale soils.

L. rubrum Burm.f. Linder 573

Widespread and common between 400 and 800m.

L. salignum Berg. Linder 544

Widespread and common, especially on deep sand.

L. spissifolium (Salisb. ex Knight) Williams

ssp. spissifolium Levant Hill.

2038 *Aulax cancellata* L. Linder 198

Common between Levant and Zebrakop.

LORANTHACEAE.

2093 *Viscum* sp. Linder 554

Parasites on *Rhus* on Aasvoelkop.

SANTALACEAE.

2108 *Colpoon compressum* Berg. Linder 475

Widespread, never very common.

2118 *Thesium aggregatum* Hill

Hills N.W. of Moutonsvlei.

T. ericaefolium D.C. Linder s.n.

Shale, old Pass.

T. macrostachyum D.C. Pillans 7428

Hills N.W. of Moutonsvlei.

T. stricta Berg. Pillans 7140

Plateau east of Levant.

T. subnudum Sond. Pillans 7234

Zebrakop.

T. virgatum Lam. Linder 643

Langberg.

CHENOPODIACEAE.

2223 *Chenopodium album* L. Linder 513

Weed in orchards.
AIZOACEAE.

2401 Aizoon paniculatum L. Linder 444
Common south of the Versfeld Pass.

2403 Tetraconia spicata L.f. Linder s.n.
2405 Erepia ramosa L.Bol. Esterhuysen 14470
Widespread.

Ruschia filiformis Linder 569
Pomona.

R. microphylla (Harv.) Schwalis Linder s.n.
Deezehoek, dry fynbos.

Lampranthus stipulaceus
Deezehoek.

L. rubrolineus Pillans
Kapteinskloof.

L. acrosepalus Pillans
Between Moutonsvlei and Zebrakop.

L. gracilipes L.Bol. Bolus 13552
L. piquetbergensis Pillans
Endemic and widespread on rock outcrops.

L. aurantiacus Du Plessis 142
Kapteinskloof.

CARYOPHYLLACEAE.

2490 Silene undulata Ait. Pillans 7459
Hills N.W. of Moutonsvlei.

RANUNCULACEAE.

2541 Anemone capensis L. Linder s.n.
S.W. slopes of Zebrakop, next to old Pass.

2541a Knowltonia capensis (L.) Hutch. Linder s.n.
Rare in scree forests.
PAPAVERACEAE.

2858a *Phacocapnos cracca* (Cham. & Schl.) Berm. Linder 429
Koggelkop.

CRUCIFERAE.

2875 *Heliophila scoparia* Burch. ex D.C. Stokoe 4797
2877 *Brachycarpaea juncea* (Berg.) Marais Linder 492
South of Zebrockop.

2946 *Diplotaxis muralis* (L.) D.C. Linder 445
Koggelkop, disturbed sand.

DROCERAEEAE.

3136 *Drosera pauciflora* Benke Linder 404
Widespread, common on seepages.

CRASSULACEAE.

3168 *Crassula fascicularis* Lam. Pillans 8040
Near Gruyskop.

- *C. muscosa* L. Linder 327
Aasvoelkop, dry fynbos.

- *C. scabra* L. Linder 168
Dry shallow soiled hill north of Sandleagte.

- *C. stringosa* L. Linder 422
Koggelkop, cracks in boulders.

SAXIFRAGACEAE.

3238 *Montinia caryophyllaceae* Thunb. Linder 402
Widespread over mountain.

CUNONIACEAE.

3275 *Cunonia capensis* L. Linder 485
Common along permanent water.
BRUNIACEAE.

3285 Tittmannia lexa Presl Boulus 13549
Probably very rare, only collected once in 1895.

3295 Brunia nodiflora L. Pillans 7343
Widespread in moister places on slopes.

3294 Berzelia lanuginosa Brogn. Linder 403
Plateau east of Levant, moist places.

ROSACEAE.

3353 Rubus fruticosus L. Linder 336
Top end of Bushmans River, along stream.

3388 Clifforia dodecandra Weim. Esterhuysen 14475
C. polygonifolia L. Linder 559
South of Versfeld Pass.
C. propinqua E. & Z. Linder 615
Hills south of Zebrakop.
C. strobilifera L. Linder 508
Along permanent streams.
C. tuberculata (Harv.) Weim. Linder 642
Top of Versfeld Pass, dry proteoid slope.

LEGUMINOSAE.

3446 Acacia longifolia Willd. Linder 672
Alien. Rare, only at Stelkrans.
A. saligna (Labill) Wendl.
Alien, widespread, especially around Bushmans Hollow.

3621 Podalyria biflora Lam. Linder 395
Widespread, especially at lower altitudes in drier areas.

3643 Priestleya sericea (L.) E.May. Linder 647
Langberg, on dry proteoid slopes.
P. umbellifera D.C. Pillans 7189
Margins of streams of hills south of Zebrakop.
3654 Rafnia triflora Thunb. Linder 466
Zebrakop.

3660 Lebeckia simsiana E.Z. Pillans 7462
Hills N.W. of Moutonsvlei.

3662 Aspalathus acidota Garab. Pillans 7442
Hills N.W. of Moutonsvlei.
A. altissima Dahlg.
A. acuminata Lam. ssp pungens (Thunb.) Dahlg.
Common over whole mountain. Linder 640
A. acuminatus ssp. acuminatus Van Niekerk 627
Common pioneer shrub.
A. arida E.Mey. ssp. procumbens (E.Mey.) Dahlg.
Near top of Versfeld Pass Dahlgren 990 (LD)
A. aristifolia Dahlg.
Near top of Versfeld Pass.
A. brecteata Thunb. Pillans 7513
Widespread.
A. chrysantha Dahlg. Schlechter 5252
Top of old pass, Sandleegte.
A. complicata (Benth.) Dahlg. Pillans 7142
Bottom of old pass, Voelvlei.
A. cordata (L.) Dahlg. Bolus 13534
A. cymbiformis D.C. Guthrie
A. divaricata Thunb. ssp. divaricata Pillans 7232
A. flexuosa Thunb. Pillans 7116
Versveld Pass and Moutonsvlei.
A. glossooides Dahlg. Johnson 288 (NBG)
Between Stawelklip and Kafferskloof.
A. heterophylla L.f. ssp. heterophylla
Widespread. Pillans 7552
A. hispida Thunb. ssp. hispida Pillans 7226
A. lanata E.Mey. Dahlgren 984 (LD)

Near Staweelkliq.

A. latifolius Bol. Linder 656

Zebrakop, dry slopes near a seepage, endemic, rare.

A. juniperina Thunb. ssp. juniperina

Near top of Versfeld Pass. Dahler 3870 (LD)

A. muraltioides E. & Z. Bolus 7520

A. pendula Dahlgren.

Widespread from Versfeld Pass to Moutonsvlei.

A. perfoliata (Lam.) Dahlgren. Pillans 7394

ssp. phillipsii.

A. pincuis Thunb. ssp. longissima Dahler.

Slopes of mountain. Bolus 8436

A. quinquefolia L. ssp virgata Schlechter 5198

Hills south of Zebrakop.

A. retroflora L. Linder 228

Langberg.

A. epicata Thunb. ssp. epicata Pillans 7460

A. tridentata L. ssp. tridentata Pillans 7170

Moutonsvlei.

A. tridentata L. ssp staurantha

A. uniflora L. ssp. uniflora Pillans 7117

Botton of old pass, Voelvlei.

A. varians E. & Z. ssp. varians Dahlgren 905 (LD)

E. base of Zebrakop.

3673 Argyrolobium lanceolata E. & Z. Pillans 7463

Hills W. of Moutonsvlei.

3702 Indigofera frutescens L. F. Linder 607

Common along streams.

I. incana Thunb. Linder 674

Shale, old pass.

I. procumbens L. Linder 438
Widespread and Common.

3703 *Psoralea aphylla* L.
Zebrikop.
 P. obliqua E.Mey.
Pillans 7244

Gruyskop.
 P. pinnata L.
 P. stachydia L.f.
Pillans 7810

Around base of Piketberg.
3754 *Sutherlandia frutescens* (L.) R.Br. Linder 358

Widespread but uncommon.
3756 *Lessertia pappeana* Harv.
S.E. slopes of Zebrikop.
 L. rigida E.Mey.
Pillans 7294

Sand on Langberg.
3852 *Vicia sativa* L.
South of Versfeld Pass.
3910 *Dolichos gibbosus* Thunb.
Pillans 7370

S.E. ledges of Zebrikop, moist and shaded.

GERANIACEAE.

3925 *Monsonia lobata* Montin
Dry slopes, well drained. Widespread, uncommon.
3928 *Pelargonium barbatum* Jacq.
Widespread and common.
 P. longifolium Jacq.
Pillans 7294

Plateau east of Levant.
 P. multiradiatus Vent.
Pillans 7294

Plateau east of Levant.
 P. myrtifolium (L.) Ait.
Pillans 7294

Plateau east of Levant.
 P. revolutum (Andre) Pers.
Pillans 7294

Plateau east of Levant.
P. saniculæfolium Willd.
Plateau east of Levant.

P. scæbrum Ait.

Widespread and common as an indicator of disturbance.

P. tabularis (L.) L'Her
P. trista (L.) Ait.

Hills south of Zebrakop.

OXALIDACEAE.

3936 **Oxalis lateriflora** Jacq.
Top of Versfeld Pass, sand, after fire.

O. commutata Sond.
Platberg.

O. ebracteata Savign.
Rocky lower slopes of mountain.

O. glabra Thunb.
Between Levant and Zebrakop.

O. heterophylla D.C.
Zebrakop and Platberg.

O. hirta L.
Plateau east of Levant.

O. luteola Jacq.
Moutonsvlei.

O. pes caprae L.
Weedy, widespread and common.

O. purpurea L.
Plateau east of Levant.

O. obtusa Jacq.

Between Moutonsvlei and Gruyskop.

O. versicolor L.
Top of Versfeld Pass, sandy, after fire.

O. sp.
Linder 582
LINACEAE.

3945 Linum thesiodes Bartl. Pillans 7357
Pomona.

ZYGOPHYLLACEAE.

3965 Zygophyllum fulvum L. Linder 670
Old versfeld pass, rare, on shale.

7. spinosum L. Linder 407
Common and Widespread.

RUTACEAE.

4037 Agathosma betulina Pillans Linder 360
Widespread, mostly on south aspect slopes.

A. bifida (Jacq.) Bartl. & Vent. Linder 122
South of Versfeld Pass.

A. bisulca B.&H. Pillans
Gruyskop and top of Versfeld Pass.

A. capensis Duemmer Pillans 7328
Widespread.

A. cedrimontana Duemmer Linder 681
North end of Burgerskloof.

A. latifolia Sond. Linder 665
Dry proteoid slopes, Langberg and top of Versfeld Pass.

A. latipetala Sond. Linder 373
Widespread, especially south of the Versfeld Pass.

A. marifolia E. & Z. Edwards 195
Moutonsvlei.

A. serpyllaceae (Roem. & Schl.) Licht. Linder 372
South of Versfeld Pass.

4038 Adenandra marginata (L.f.) Roem. ssp. marginata
South of Versfeld Pass, usually among boulders. Linder 380

4041 Diosma hirsuta L. Linder 164
Widespread on deep sand.
South of Versfeld Pass.

4044 *Macrostylis decipiens* E.Mey. Linder 498

Widespread in drier areas: Platberg and S. of Versfeld Pass.

4046 *Empleuron serrulatum* Ait. Linder 610

At permanent water: forest margin or precursor.

POLYGALACEAE.

4273 *Polygala affinis* D.C. Linder 675

Deezahoek, dry fynbos.

P. bracteolata L. Linder 655

Hill south of Zebrikop, western slopes.

P. ludwigiana E.&Z. Van Nieuw 623

Plateau east of Levant.

P. pappeana E.&Z. Linder 648

Widespread, straggling in bushes in dry conditions.

4270 *Muraltia alopeuroides* (L.) D.C. Linder 220

Common in proteoid bush.

M. heisteriana D.C. Pillans 7154

Widespread pioneer species.

EUPHORBIACEAE.

4448 *Clutia alaternoides* L. Linder 678

Widespread in proteoid bush.

C. pubescens Thunb. Linder 555

Aasvoelkop.

C. sp. nov. Linder 679

Shale, old pass at Voelvlei.

4498 *Euphorbia mauritanica* L. Linder 418

South of Versfeld Pass.

E. silenifolia Sweet Linder 584

Top of Versfeld Pass in sand.

E. tuberosa L. Linder 669*

Shale, old Pass.
ANACARDIACEAE.

4589 **Heeria argenteum** E. Mey. Linder 258
Widespread on rock outcrops at all altitudes.

4594 **Rhus angustifolia** L. Linder 519
Widespread, usually associated with moisture.

 R. dissecta Thunb. Linder 557
Common on the drier lower slopes.

 R. glauca Desf. Pillans 7342
Widespread, but not common.

 R. incana Mill Linder 518
Platberg.

 R. incisa L.f. Linder 606
On shale soils at E. base of mountain.

 R. mucronata Thunb. Linder 502
Widespread.

 R. rosmarinifolium Vahl. Pillans 7231
Widespread, common on dry stony slopes, often in proteoid.

 R. scytophylla E.&Z. Linder 494
Often among stones in proteoid bush.

 R. tomentosa L. Linder 337
Along permanent water or in moist places.

AQUIFOLIACEAE.

4614 **Ilex mitis** (Jacq.) Redlk. Linder 616
Very rare, relic. With permanent water.

CELASTRACEAE.

4627 **Maytenus acuminatus** (L.f.) Loess Pillans 7400
Widespread in scree and riverine forests, but uncommon.

 M. cymosae (Soland.) Exell. Pillans 7179

 M. oleoides (Lam.) Loess Linder 342
Widespread on rock outcrops.

4645 **Hartogchia capensis** Thunb. Linder 507
SAPINDACEAE.

4831 Dodonaea thunbergiana E.&Z. Linder 503
Lower slopes, rare on upper slopes, always on sand.

RHAMNACEAE.

4886 Phyllica cryptandroides Sond. Linder
Zebrokop area.

P. cuspidata E.&Z. Linder 351
Langberg and Grootberg among boulders.

P. cylindrica E.&Z. Pillans 7312
Common on dry proteoid slopes.

P. imberbis Berg. Linder 319
South of Versfeld Pass.

P. piquetbergensis Pillans Pillans 7160
Widespread but uncommon on mountain, endemic.

P. oleanalium Vent. Linder 493
Common on dry lower slopes, usually with boulders.

P. spicata L.f. Linder 474
Aasvoelpkop.

P. stipularis L. Stokoe 4579
Common, mostly in higher rainfall areas.

P. strigosa Berg. Linder 325
Plateau east of Levant.

P. strigulosa Sond. Linder 683
South of Versfeld Pass.

P. villosa Thunb. Pillans 7325
Widespread on dry proteoid slopes.

MALVACEAE.

Anisodontia bryoniifolia (L.) Bates Pillans 7993
Kaptainskloof mountain.
STERCULIACEAE.
5056 Hermannia sp. Linder 646
Widespread.
H. sp. Linder 645
Langberg, dry stony slopes.

FLACOURTIACEAE.
5296 Kigelia africana L. Linder 611
Uncommon in scree forests.

THYMELACEAE.
5435 Gnidae geminiflora E.Mey. Linder 353
Widespread on dry well-drained soils.
G. linoides Wikstr. Pillans 7256
Platberg.
G. oppositifolia L. Linder 214
Along permanent streams.
G. parviflora Meisn. Linder 301
Between Levent and Zebrakop.
G. sericea L. Linder 349
Stalkrans, under pine trees.
5436 Struthiola ciliata (L.) Lam. Peterson 988
Plateau east of Levant.
S. ovata Thunb. Pillans 7374
Between Levent and Zebrakop.
5461 Passerina glomerata Thunb. Pillans 7298
Common in dry fynbos on the slopes below 500m.

MYRTACEAE.
5588 Metrosideros angustifolia Smith Linder 179
Along semi-permanent and permanent streams.
UMBELLIFERAE.

5971 *Hermes intermedia* C. Norm. Pillans 7373
In crevaces in cliff S. of Zebrokop.

5926 *Arctopus monacanthus* Carm. Linder 415
At higher altitudes, common north of Levant.

5990 *Lichtensteinia interrupta* E. Mey. Pillans 7139
Base of old pass, shale soils, Voelvlei.

6020 *Chamarea capensis* (Thunb.) E. & Z. Linder
South of Vestfeld Pass.

ERICACEAE.

6237 *Erica albescens* Kt. var *erecta* G. Br. Pillans 7556
Between Levant and Zebrokop.

F. *articulare* L.
Common in moist places on the plateau east of Levant.

F. *caffra* L. Linder 467
Along the Bushmans River, permanent water.

F. *calycina* Andre Linder 500
Widespread and common north of the Versfeld Pass.

F. *cerinthoides* L. Linder 169
Common between Levant and Zebrokop, especially on sand.

F. *coccinea* L. Pillans 7200
Gruyskop.

F. *cristiflora* Salisb. Pillans 7777
Kapteinskloof mountain.

F. *curviflora* L. Linder 200
Widespread, moist places or cliffs.

F. *curvirostris* Salisb. Linder 170
Common on Zebrokop.

F. *cyathiformia* Salisb. Pillans 7209
W. slopes of the back of Gruyskop.
F. glauca Andr. var. elegans Bol. Pillans 7558
Suurvlakte.

F. Guthriei Bolus Pillans 7559
Suurvlakte.

F. imbricata L. Pillans 7202
Widespread on dry soils, in proteoid shrub.

F. inflata Thunb. Esterhuysen 14490
Common along streams between Levant and Zebrakop.

F. parilis Salisb. Linder 197
Widespread in sands at lower altitudes on dry slopes at higher.

F. phillipsii L. Bol. Linder 257
Ledges on S. slopes of Zebrakop.

F. plukenetii L. Linder 565
Central part of mountain, uncommon.

F. leptopus Benth. var. piquestbergensis Bol. Linder 652
Cool slopes south of Zebrakop.

F. lucida Salisb. Pillans 8099
Kapteinskloof mountain.

F. mammosa L. Linder 178
Common between Levant and Zebrakop.

F. nobilis Guthrie Linder 182
Zebrakop.

F. nudiflora L. Linder
Between Levant and Zebrakop, rare.

F. quadrangularis Salisb. Linder 447
Suurvlakte.

F. strigosa Soland. Linder 184
Suurvlakte.

F. tenuis Salisb. Linder 572
Zebrakop, rare.
E. thimifolia Wendl.

Zebrokop, rare.

E. triflora L.

Pillans 4777

Summit of Zebrokop.

E. verucunda Salisb.

Pillans 7204

Gruyskop.

6243 **Fremia totta** Don.

Linder 455

Levant Hill.

6244 **Simocheilus klotzschianus** Benth. Stokoe 4782

Very common on the drier lower and southern slopes.

S. piguetbergensis N.F. Br.

Pillans 7729

Endemic to the lower slopes of the range.

6245a **Anserica gracilis** N.F. Br.

Pillans 7563

S.W. slopes of Zebrokop.

Ebenaceae.

6404 **Euclea acutifolia** E.Mey.

Pillans 7908

Widespread in proteoid bush.

E. tomentosa E.Mey.

Pillans 7176

Hills N.W. of Moutonsvlei.

6406 **Diospyros glabra** (L.) De Winter Linder 534

Widespread, often in sand.

Oleaceae.

6434 **Olea africana** Mill.

Linder 433

Widespread, common at lower altitudes in moist places.

Gentianaceae.

6418 **Sebása aurea** (L.f.) Roem. & Schl. Pillans 7229

Hills N.W. of Moutonsvlei.

S. axacoides Schinz

Linder 413

Widespread, especially in open vegetation.

S. micrantha Schinz

Pillans 7127

N.W. of Moutonsvlei, bottom of old pass.
6503 **Chironia baccifera** L.
Linder 120
UWidespread, often growing in half-shade.

C. liniodes L.
Linder 166
Suurvlaakter east of Levant.

ASCLEPIADACEAE.

6752 **Microlobus tenuifolium** (L.) Schuss
Linder 420
Around Dassieklip.

6758 **Astephanus triflorus** R. Br.
Linder 671
Shale, old vassfeld pass.

6791 **Asclepias crispa** Berg.
Pillans 7353
Pomona area.

A. fruticosus L.
Linder
UWidespread, but not common, in disturbed areas.

6860 **Secamone alpini** Schultes.
Pillans 7545
N.W. of Moutonsvelei.

6884 **Caralluma incarnata** N.E.Br.
Hall 26077
U. slopes of Piketberg, 6m N. of Sauer.

6885 **Stapelia immelmaniae** Pillans
Pillans 7781
U. entrance to Kapseinskloof.

BORAGINACEAE.

7117 **Lobostemon argenteus** Buek.
Pillans 7112
Shale, old pass above Voelvlei.

L. glaucocephyllus Buck.
Pillans 7457
UWidespread and common on the mountain.

LARIATAEA.

7281 **Stachys aethiopica** L.
Pillans 7123
Bottom of the old pass in shale.

7290 **Salvia africana** L.
Schlechter 5221 (K)
Base of Piketberg.

S. albicaulis Benth.
Pillans 7465
Hills N.U. of Moutonsvelei.
S. aurea L.
Hills N.W. of Moutonsvlei.

S. chameleaeagnea Berg.
SOLANACEAE

7407 Solanum nigrum L.
Zabrackop.

7415 Datura stamonium L.
Along the Bushmans River.

SCROPHULARIACEAE.

7471 Diasca diffusa Benth.
Widespread.

D. elongata Benth.
South of Versfeld Pass.

7476 Nemesia barbata (Thunb.) Bens.
Widespread at lower altitudes in drier areas.

N. latifrons Grant m.s.
Zabrackop, often under boulders in sand.

N. versicolor E.Mey. ex Benth.
South of Versfeld Pass in dry sand.

7493 Helleeria lucida L.
In scree and riverine forests.

7494 Taedia lucida Rudolphi
Sandlagoon.

7517 Manulea leiostachys Benth.
Hills N.W. of Moutonsvlei.

M. rubra L.f. var. turritis Hiern.
Hills N.W. of Moutonsvlei.

7519 Sutera aethiopica L.
Widespread on dry stony soils at all altitudes.
S. annua Hiern. Pillans 7286
Kafferkloof.

S. antirrhinoides Hiern. Linder 660
Langberg, dry stony slopes.

S. foetida Roth. Pillans 7289
Slopes N. from Pomona.

7522 Polycarena qiliodes Benth. Linder 406
Suurvlekta E. of Levant.

P. rariflora Benth. Linder 661
Sandy soil, often on burns.

7523 Zaluzianskya dentata Walp. Linder 465
Often on ledges or open spaces at higher altitudes.

7597 Melasma sessiliflorum Hiern. Linder 536
Platberg.

7627 Harveya capensis Hook. Linder 196
Zebenkop.

SELAGINELLACEAE.

7567 Dischisma ciliatum (Berg.) choisy Linder 405
Common on the plateau east of Levant.

7568 Selago adpressa Choisy Linder 449
Common.

S. fruticosa Rolfe Linder 676
Shale at Deezahoek.

S. quadrangularis Choisy Linder 226
Plateau east of Levant.

S. scabrida Thunb. Pillans 7174
Hills N.W. of Moutonsvlei.

S. spuria L. Pillans 7553
Hills N.W. of Moutonsvlei.

S. tephrodes E.Mey. Pillans 7135
Bottom of old pass in shale.
7569 Microdon cylindricus E.Mey. Pillans 7173
Hills N.W. of Moutonsvlei.

M. lucidus Choisy Pillans 7406
Common.

MYOPORACEAE.

8114 Oftia africana (L.) Bocq. Pillans 7322
Widespread and common, tends to be weedy.

PLANTAGINACEAE.

8116 Plantago lanceolata L. Linder 480
Roadside at top of Versfeld Pass, weedy,

RUBIACEAE.

8438 Anthospermum ciliare L. Pillans 7326
Hills N.W. of Moutonsvlei.

A. ecklonis Sond. Pillans 7317
Widespread.

A. tricostratum Sond. Linder 388
Plateau east of Levant.

A. aesthiopicum L. Linder
Very common, especially in proteoid shrub.

8443 Carpaccoce vaginellata Salter Linder 451
Plateau east of Levant.

CAMPANULACEAE.

8663 Prismatocarpus fruticosus L’Her Linder 202
Widespread, especially in deep sand.

8668 Wahlenbergia ecklonii Buxk. Pillans 7146
Top of old pass, Sandleegte.

W. axilis D.C. Pillans 7525
Hills N.W. of Moutonsvlei.
8681 Cyphia bulbosa (L.) Berg. Linder 386
Common on suurvlakte, especially east of Levant.
C. phyteuma (L.) W. var. phyteuma Linder 468
Zebrakop.
C. volubilis (Thunb.) Willd. Linder 400
Widespread, scrambles in bushes, usually dry stony slopes.
8694 Lobelia coronopifolia L. Linder 559
Widespread on sand in open places in bush.
L. sparticidae D.C. Pillans 7421
Dassieklip.
8699 Laurentia arabidea D.C. Pillans 7546
Hills N.W. of Moutonsvlei.
L. pygmaea Sond. Pillans 7395
E. slopes of Levant.

COMPOSITAE.
8764 Corymbium anervum Mast. Linder 205
Plateau east of Levant.
C. scabridum Berg. Pillans 7529
Hills N.W. of Moutonsvlei.
C. villosum Less. Pillans 7306
S.W. slopes of Zebrakop.
8862 Pteronia camphorata L. Pillans 7419
Widespread and common.
P. divaricata Less. Bolus 13565
Coedverwacht.
P. hirsuta L.f. Jansen s.n.
Tierkloof
8883 Mairia perezioides Nees Linder 561
Frequent in dry fynbos, south of Langberg.
8919 Felicia amoena (Sch. Bip.) Levyns ssp. amoena Pillans 7607
Between Levant and Zebrakop.
F. bergerana (Sprangl) Hoffm. Guthrie 2619
F. cymbalariae (Ait.) Bol. ssp. *cymbalariae*

F. dubia Cass.
E. base of the Piketberg mountain.

F. filifolia (Vent.) Burtt Davy

F. hyssopifolia (Berg.) Nees
Widespread in dry areas.

F. tenelle (L.) Nees ssp. *pusilla* (Harv.) Grau

Hills N.W. of Moutonsvlei.

8926

Conysa ambigua D.C.
Grootsberg.

8930

Chrysocoma coma-aurea L.
Grootsberg.

8936

Brachylaena neriifolia R.Br.
Common along permanent and semi-permanent streams.

8992

Gnaphalium candidissimum Less.
Between Levant and Zebrakop.

G. undulatum L.
Tierkloof, common, weedy.

9000

Helipterum canescens D.C.
Widespread on dry stony slopes.

9006

Helichrysum capitellatum Less.
Hills N.W. of Moutonsvlei.

H. cylindricum Less.
Bottom of old pass on shale.

H. ericasifolium Less.
South of Versfeld Pass, dry conditions.

H. ericoideae Less.
Plateau east of Levant.

H. indicum (L.) Griesem

Moutonsvlei.

H. odoratissimum Less.

Hills N.W. of Moutonsvlei.

9008 **Leontonyx glomeratus** D.C.

S.W. slopes of Zebrakop.

L. glomeratus var. stramineus Herv. Linder 457

S.W. slopes of Zebrakop.

9037 **Stoebe fusca** Thunb.

Common on Zebrakop.

S. plumosa (L.) Thunb.

Linder 328

Widespread and common, especially in moist areas.

9039 **Disparago lesiocarpa** Cass.

Linder 505

South of Versfeld Pass.

9041 **Elytropappus glandulosus** Less. Linder

Zebrakop, dry sheltered W. facing gullies.

E. rhinocerotis (L.f.) Less.

Pillans 7134

Very common at lower altitudes, dom. on shale.

E. scaber Lövyns

Linder 523

Very common in dry areas on mountain.

9043 **Metalasia muricata** (L.) Don. Esterhuysen 20135

Very common, especially in dry proteoid bush.

9050 **Relhania genistaefolia** L’Her

Pillans 8031

At base of Kapteinskloof mountain.

R. squarrosa L’Her

Linder 424

Widespread on the lower dry fynbos slopes.

9052 **Leyssera gnaphaloides** L.

Pillans 857

Slopes above De Hoek, Karoo species.

L. incana Thunb.

Linder 546

Kafferskloof.
9059 *Printzia* sp. Linder 691
Old pass, shale, rhenosterveld.

9061 *Inula graveolens* (L.) Desf. Linder 326
Stavelklip, weed.

9320 *Ericacephalus capitellatus* D.C. Linder
Common in dry fynbos at lower altitudes.

9322 *Erodia hirta* (Thunb.) Levyns Pillans 7824
Kepeinskloof mountain.

9326 *Athanasia crithmifolia* L. Linder 628
Occasional in dry proteoid veld.

A. *parviflora* L. Pillans 7433

Hills N.W. of Moutonsvlei.

A. *pubescens* L. Linder 256
Common.

A. *trifurcata* L. Pillans 7407
Widespread.

9351a *Cenia turbinata* (L.) Pers. Pillans 7536
Hand on the Plateau east of Levent.

9357 *Hippia frutescens* L. Pillans 7591
Between Levent and Zebrokop.

H. *pilosai* Hutch. Linder 657

Zebrokop, moist places, seepages.

9366 *Pentzia suffruticosae* Hutch. Pillans 7165
Sandlaagte.

9406 *Cineraria canescens* Wendl. Pillans 7597
S.W. slopes of Zebrokop.

9411a *Kleinia crassulaefolium* D.C. Pillans 7223
9411 *Senecio arenarius* Thunb. Pillans 7528
Hills N.W. of Moutonsvlei.

S. *cymbalsarifolius* Less. Pillans 7453
Hills N.W. of Moutonsvlei.
S. diversifolius Harv. Pillans 7138
Bottom of old Pass, shale, rhenosterveld.

S. erosus L.f. Pillans 4700
S.W. slopes of Zebrokop.

S. incartus D.C. Pillans 7374
Between Levant and Zebrokop.

S. leucoglossum Sond. Linder 321
Plateau east of Levant.

S. panduratus Less. Linder 692
Mooreon, weedy.

S. paniculatus Berg. Pillans 7381
Between Levant and Zebrokop, mountains.

S. pinifolius (L.) Lam. Linder 586
On deep sand, particularly after fire.

S. pinnatifidus Less. Linder 331
East of Levant.

S. pubigerus L. Linder 525
Common on deep sand.

S. repandus Thunb. Pillans 7144
Sandleagte, edge of escarpment.

S. rigidus Compton Linder 227
Moist places on Zebrokop.

S. rosmarinifolius L.f. Pillans 7359
Hills above Stawelklip.

S. vestitus Berg; Pillans 7454
Moist places, Zebrokop.

9417 Fuyrops speciosissimus D.C. Pillans 7704
Common on the dry fynbos lower slopes.

E. thunbergii Nord. Linder 573
Common on shale at the base of the mountain.
9418 Gymnodiscus capillaris Less. Linder 651
Langberg, in sand after a fire.

9420 Othonna auriculaciformis Licht. Linder 603
Levant, shallow sand.
 O. ciliata L.f. Linder 340
South of the Versfeld Pass.
 O. digitata Less. Linder 363
Plateau east of Levant.
 O. heterophylla L.f. Linder 654
Suurvlakte east of Levant.
 O. lingua Less. Linder 357
East of Levant.
 O. multicaulis Harv. Esterhuysen 14494
 O. pinnata L.f. Linder 649
Langberg, on sand.
 O. quercifolium D.C. Linder 633
 O. rigida (L.) Levyns Linder 356
East of Levant.

9425a Castalis nudicaulis (L.) Norl. Schlechter 5242
9425 Dimorphotheca montana Norl. Linder 391
Plateau east of Levant.

9427 Osteospermum clandestinum Less. Linder 682
Voelvlei, shaded, on shale. Weedy.
 O. pulchrum Norl. Guthrie 2645
 O. rigidum Ait. Linder 658
S.W. base of Zebra Kop.

9427b Chrysanthemoides monilifera (L.) Norl. Pillans 8023
Common in the moister areas.
Ursinia anthemoides (L.) Poir ssp. anthemoides
Widespread in the drier areas. Linder 378
U. pinnata (Thunb.) Pressl. Linder 547
Widespread over whole area.
U. punctata (Thunb.) N.E. Br. Linder 527
Platberg.
U. rigidula (D.C.) N.E. Br. Linder 641
Langberg and Avondtuur, dry stony soils.
Arctotis aspera L. Pillans 4700
S.W. slopes of Zebrakop.
A. bellidifolia Berg. Pillans 7447
Zebrakop.
A. candida Thunb. Linder 390
Plateau east of Levant.
A. glandulosus Thunb. Esterhuysen 14464
Plateau east of Levant.
A. samipapposum (D.C.) Lewins Linder 612
Hills south of Zebrakop, sprawling in seepages.
A. undularis Jacq. var. acaulis Linder 662
Langberg, sandy areas.
Arctotheca prostrata (Salisbr.) Britt. Linder 324
Moutonsuise.
Cortaria personata L. Linder 668
Old pass, in shale, rhenosterveld.
Cazania krebsiana Less. Linder 393
Suurvlakte east of Levant.
Barkhaya barbata (L.f.) Pillans 7531
Common among boulders above 900m.
B. viscosa (D.C.) Hutch.
Pillans 7262

Between Moutonsvlei and Gruyskop.

9528 Gerbera crocea Ktze.
Pillans 7254

Between Moutonsvlei and Gruyskop.