The use of phenylephrine to obtund oxytocin induced hypotension and tachycardia during caesarean section

by

Dr Charles Knight Rumboll
Student no: RMBCHA004

SUBMITTED TO THE UNIVERSITY OF CAPE TOWN

In fulfilment of the requirements for the degree:

Master of Medicine in Anaesthesiology

Faculty of Health Sciences
UNIVERSITY OF CAPE TOWN

Date of Submission: 13 February 2015

Supervisor: Prof Robert A. Dyer, Department of Anaesthesia,
 University of Cape Town
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
DECLARATION

I, Dr Charles Knight Rumboll, hereby declare that the work on which this dissertation is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university.

I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever.

Signed

Signature:

Date: 25 January 2016
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of abbreviations</td>
<td>4</td>
</tr>
<tr>
<td>Part A: Study Protocol</td>
<td>5</td>
</tr>
<tr>
<td>Part B: Literature Review</td>
<td>13</td>
</tr>
<tr>
<td>Part C: Manuscript</td>
<td></td>
</tr>
<tr>
<td>1. Title page</td>
<td>28</td>
</tr>
<tr>
<td>2. Structured abstract</td>
<td>30</td>
</tr>
<tr>
<td>3. Main text</td>
<td>31</td>
</tr>
<tr>
<td>4. Figures and tables</td>
<td>42</td>
</tr>
<tr>
<td>Part D: Supporting documents</td>
<td></td>
</tr>
<tr>
<td>1. Patient’s information leaflet and consent form</td>
<td>63</td>
</tr>
<tr>
<td>2. Ethics approval letter (Human Research Ethics Committee)</td>
<td>66</td>
</tr>
</tbody>
</table>
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP</td>
<td>Blood Pressure</td>
</tr>
<tr>
<td>c-GMP</td>
<td>Cyclic guanosine monophosphate</td>
</tr>
<tr>
<td>CNAP</td>
<td>Continuous non-invasive blood pressure</td>
</tr>
<tr>
<td>CO</td>
<td>Cardiac output</td>
</tr>
<tr>
<td>COX-1</td>
<td>Cyclooxygenase-1</td>
</tr>
<tr>
<td>COX-2</td>
<td>Cyclooxygenase-2</td>
</tr>
<tr>
<td>cPLA2</td>
<td>Cytosolic phospholipase A2</td>
</tr>
<tr>
<td>CS</td>
<td>Caesarean section</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal fluid</td>
</tr>
<tr>
<td>DAG</td>
<td>Diacylglycerol</td>
</tr>
<tr>
<td>DBP</td>
<td>Diastolic blood pressure</td>
</tr>
<tr>
<td>eNOS</td>
<td>Nitric oxide synthase</td>
</tr>
<tr>
<td>Hb</td>
<td>Haemoglobin</td>
</tr>
<tr>
<td>HR</td>
<td>Heart rate</td>
</tr>
<tr>
<td>IM</td>
<td>Intra-muscular</td>
</tr>
<tr>
<td>IP3</td>
<td>Inositol tri-phosphate</td>
</tr>
<tr>
<td>IU</td>
<td>International units</td>
</tr>
<tr>
<td>IV</td>
<td>Intravenous</td>
</tr>
<tr>
<td>MAP</td>
<td>Mean arterial pressure</td>
</tr>
<tr>
<td>MLCK</td>
<td>Myosin light chain kinase</td>
</tr>
<tr>
<td>NIBP</td>
<td>Non-invasive blood pressure</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>PGE2</td>
<td>Prostaglandin</td>
</tr>
<tr>
<td>PIP2</td>
<td>Phosphatidyl-inositol bisphosphate</td>
</tr>
<tr>
<td>PLC</td>
<td>Phospholipase C</td>
</tr>
<tr>
<td>PPH</td>
<td>Post-partum haemorrhage</td>
</tr>
<tr>
<td>SA</td>
<td>Spinal anaesthesia</td>
</tr>
<tr>
<td>SBP</td>
<td>Systolic blood pressure</td>
</tr>
<tr>
<td>SVR</td>
<td>Systemic vascular resistance</td>
</tr>
</tbody>
</table>
Part A: Study protocol

As approved by the Departmental Research Committee and Human Research Ethics Committee, University of Cape Town.
1. Introduction

Obstetric haemorrhage remains a major peripartum complication, and has been shown to be on the increase around the world, particularly in South Africa\(^1\) as well as in the United States.\(^2,3\)

Oxytocin is accepted as the first line uterotonic in the prevention and treatment of post-partum haemorrhage (PPH). However, oxytocin causes transient relaxation of vascular smooth muscle cells, probably via calcium-dependent stimulation of the nitric oxide pathway, which results in peripheral vasodilatation, hypotension and increased cardiac output (mediated by an increase in heart rate and stroke volume). Oxytocin also causes atrial and brain natriuretic peptide release, and may have a mild negative inotropic effect on atrial myocytes.\(^4\) There may be associated dizziness and nausea and vomiting, tachycardia, myocardial ischaemia and arrhythmias, particularly when given in bolus doses of \(>5\) IU. In addition, if a parturient is haemodynamically unstable due to haemorrhage, inappropriate use of oxytocin may cause cardiovascular collapse. A maternal death was reported by the Confidential Enquiry into Maternal Deaths of the UK when \(10\) IU oxytocin was given to a hypovolaemic patient during resuscitation. Hence recent recommendations are to administer an initial dose of \(3\) IU after delivery during elective caesarean section.\(^5\) Ultra-low oxytocin doses (dose range=\(0.05-0.5\) IU) repeated as needed, have been recommended in pregnant patients with cardiac disease.\(^6\) Extreme care is also recommended in pre-eclampsia, where impaired left ventricular function may reduce compensatory mechanisms.

It would be of clinical value to know whether an alpha agonist is effective in reducing oxytocin-induced hypotension. This could have implications for the reduction of hypotension and maternal symptoms during the administration of oxytocin infusions for prophylaxis of PPH, or as therapy during active bleeding. Co-administration of phenylephrine has been shown
to obtund, but not eliminate hypotension, followed by some overshoot of alpha agonist effects and an increase in blood pressure. These authors suggested that a bolus of phenylephrine given immediately before oxytocin, may be more effective to maintain haemodynamic stability. Therefore it was decided to examine the effects of prior administration of 50 µg phenylephrine on the hypotensive effect of a slow bolus of 3 IU oxytocin.

2. Objectives

To determine whether hypotension and tachycardia caused by oxytocin administered post-delivery during elective caesarean section, can be obtunded by the prior administration of phenylephrine. The Null Hypothesis was that administration of phenylephrine prior to oxytocin inadequately obtunds the hypotensive effect of oxytocin.

3. Study Design

Prospective, randomized, controlled, double blind study.

4. Study Location

Single-Centre Study at Mowbray Maternity Hospital, Mowbray, Cape Town, South Africa.

5. Study Outcomes

Primary Outcome: Between-group comparison of mean peak percentage SBP changes due to oxytocin, preceded by phenylephrine or placebo.

Secondary Outcome: Between-group comparison of mean peak percentage changes in values of all other haemodynamic indices (DBP, MAP and HR), and a comparison of mean percentage changes in these indices.
6. Patients and Methods

Approval will be sought for the study from the University of Cape Town Human Research Ethics Committee. Forty patients will be recruited into the study. They will be American Society of Anesthesiologists (ASA) class 1 or 2 patients, aged >18 and <40 years, who are scheduled for elective caesarean delivery under spinal anaesthesia at Mowbray Maternity Hospital. Exclusion criteria will be emergency C/S, pre-eclampsia or any cardiac, respiratory, renal or neurological disease, allergy to any study drug, Hb < 7 g/dL, body mass index (BMI) > 40 kg/m². Patients will be randomized, using a table of random numbers, into 2 groups of 20. One group will receive a 50 µg bolus of phenylephrine (1 mL) as vasopressor and the other group placebo (1 mL saline), followed by intravenous oxytocin (3 IU in 5 mL saline over 15 seconds). Recruitment and randomisation will be done at least 12 hours before caesarean section. The anaesthesiologist and patient will be blinded as to the group allocation. The procedure will be explained to the patient either by the recruiting investigator or by a skilled translator, and the patient will receive a detailed consent form the day before caesarean delivery. Written informed consent will be obtained. Block randomisation will be used, using nQuery Advisor Version 6, Statistical Solutions, Cork, Ireland), and sealed envelopes will be prepared by the statistician.

7. Study Procedure

Every participant will be weighed, height measured and body mass index calculated. Immediately pre-operatively 30 mL of sodium citrate will be given orally to every participant. In theatre, intravenous access will be established via a 18-gauge cannula. 1 g Cefazolin will then be administered intravenously slowly. During this time standard non-invasive monitoring will be applied to the patient. This includes electrocardiography and pulse oximetry as well as the CNAP (Continuous Non-Invasive Arterial Pressure) device. Recorded data will consist of heart rate (HR), systolic (SBP),
diastolic (DBP), and mean arterial pressure (MAP). The CNAP 500 Monitor System (CN Systems Medizintechnik AG, Graz, Austria) consists of a sensor placed on the second and third digits of one hand; a NIBP cuff on the same arm will be used for calibration and the CNAP monitor. The measurement is done continuously on one finger at a time and then changes to the other finger after a defined period. This allows long-term measurement of up to 24 hours on one hand. The sensor, placed around the finger, detects infrared light which is transmitted through the finger. Part of the transmitted light is absorbed by the blood pulsating through the finger. The light that is detected by the sensor is then calculated to be a measure of the pulsatile blood volume. The finger cuff is inflated so that the blood volume is kept constant and therefore also the transmission of light. The inflation pressure of the finger cuff achieves this constant blood volume, and is the primary signal used for blood pressure measurement. The NIBP on the same arm is used to calibrate this signal.

The CNAP device will be calibrated prior to baseline measurements and again on commencement of surgery. Immediately before administration of the spinal anaesthesia (SA), a baseline blood pressure (BP) will be taken by the CNAP device. Baseline systolic blood pressure (SBP) will be defined as the average of 3 measurements in a 5 minute period, not differing by more than 10%, with the patient in the left lateral position. Spinal anaesthesia (SA) will be conducted in the following manner. A bolus crystalloid co-load of Modified Ringer’s Lactate solution (20 mL/kg) will be rapidly administered using a pressure bag, after cerebrospinal fluid appears in the hub of the spinal needle. Further crystalloid solution will not be given unless blood loss is > 1L. This will be determined by suction bottle measurement and swab inspection. Spinal anaesthesia will consist of 2.0 mL of 0.5% hyperbaric bupivacaine (10 mg) plus 10 µg of fentanyl administered over 20 seconds at the L3/4 interspace. After 20 s in the sitting position, patients will be positioned supine, with at least 15 degrees of left lateral tilt, to minimise aorto-caval compression. The effectiveness of the block will be assessed by the patient’s sensitivity to cold via ethyl chloride spray. A block level will then
be determined. Supplemental oxygen will only be administered if arterial oxygen saturations decrease to below 92%. As soon as a sensory level is achieved to T4, surgery will commence. Bolus phenylephrine (50-100 µg) will be administered to maintain SBP within 20% of baseline.

Thirty seconds after delivery, a 3 mL bolus of either saline or 50 µg phenylephrine will be administered immediately prior to 3 IU of oxytocin in 10 mL of water given intravenously over a period of 15 seconds. The anaesthesiologist will be blinded to whether phenylephrine or placebo is given. No vasopressor will be given for 3 min after the oxytocin. The HR and the SBP will be recorded from the start of SA by the CNAP device. The CNAP device allows recording of all the information onto a portable storage device, which can later be analysed using Microsoft Excel. An event marker will be recorded on the machine, at the time of administration of oxytocin, for later identification of the study intervention.

8. Statistical Methods

The response to oxytocin will be analysed as follows: Haemodynamic data, i.e. HR, SBP, DBP, MAP, will be averaged for 20 seconds before the administration of oxytocin (baseline pre-oxytocin value). In the 40 patients randomised to receive either oxytocin and placebo or oxytocin and phenylephrine, the change in haemodynamic variables (blood pressure and heart rate) will be compared during the 150 seconds after administration. A sample size of five patients in each group would have 90% power to detect a difference in mean peak SBP change of 25%, assuming that the common SD is 10%, using a two group t-test with a two-sided alpha value of 0.05 as the significance level. Twenty patients will be included in each group, in order to account for inter-patient variability. The primary outcome will be a between-group comparison of mean peak percentage SBP changes. Secondary outcomes will be changes in mean peak percentage values of all other haemodynamic indices, and a comparison of mean percentage changes in these indices during the 150 seconds after oxytocin administration. To depict
the summary profile of the response to oxytocin administration in the two groups, a Lowess median smooth will be used. This approach will give an estimate that is robust to extreme values and sensitive to acute changes in haemodynamic variables. These will be presented as graphic ensembles. Statistical significance is defined as $P < 0.05$.

9. Confidentiality

The name of the patient will be on the consent form. This form will be kept safe in a locked location. Further identification of the patients is in the form of a unique number when used in graphs.

10. Conflicts of interest

There are no conflicts of interest to declare.
References

Part B: Literature Review
1. Objectives

This review aims to discuss the importance of the need for the use of oxytocin despite its clear potentially dangerous haemodynamic side-effect profile in the context of a caesarean section (CS) operation. To make this clear, a thorough discussion of the pharmacodynamics of oxytocin is presented, emphasis on the cardiovascular effects. Current methods to prevent these effects are discussed. A brief review of the literature on the equipment used in the current study is presented, with respect to validation and applicability.

2. Literature Search Strategy

The full text of relevant publications was obtained online, from the University of Cape Town Health Science Library search facility, which accesses 17 medical digital archive databases worldwide. Literature published between the years 1908 and 2014 was included. In total 33 relevant papers were identified. Literature not published in the English language was excluded.

3. Quality criteria

The keywords used for the search, included each of the following, in various combinations: oxytocin, phenylephrine, side-effects, spinal anaesthesia, caesarean section, hypotension, tachycardia, continuous non-invasive arterial blood pressure, and validation. Using reference lists, further appropriate papers were identified.

4. Summary of the literature

4.1. Introduction

Obstetric haemorrhage remains a major complication peripartum, both during and after normal delivery or CS. The latest interim report into maternal
deaths in South Africa indicated an increasing trend of deaths due to bleeding during or after CS. Deaths rose from 27.5% in 2011 to 35.3% in 2012.1 A recent systematic analysis performed by the World Health Organisation estimates that 287 000 maternal deaths occurred worldwide in 2010. Of these deaths, Sub-Saharan Africa and Southern Asia were responsible for 83.8%. They concluded that haemorrhage was the leading cause, followed by hypertensive disorders and sepsis.2 The main reason for these alarming trends has been identified to be a lack of access to good quality maternity care in health facilities as a result of delayed referral due to a lack of adequately trained staff in dealing with these complications.3 This included the incorrect use of uterotonic drugs such as oxytocin4 and the vasopressors phenylephrine and ephedrine.

During the past 60 years, oxytocin has become an essential first-line medical intervention in the prevention and treatment of postpartum haemorrhage (PPH), of which a major cause is uterine atony. A recent Cochrane review reiterated the importance of oxytocin in reducing blood loss when given at any dose prophylactically after delivery.5 Oxytocin is a powerful uterotonic agent, and thus prevents uterine atony and reduces postpartum haemorrhage if administered immediately after delivery of the fetus, intramuscularly (IM) in the case of a normal vaginal delivery or intravenously (IV) as in the case of CS. Unfortunately oxytocin is not without its own complications, which include hypotension, tachycardia, myocardial ischaemia and arrhythmias. Inappropriate oxytocin administration was implicated in five maternal deaths reported on in the Fifth Report on the Confidential Enquiry into Maternal Deaths of South Africa (2008-2010). In these cases bolus doses of 10 IU and more of oxytocin were administered to hypovolaemic patients during resuscitation.4 This prompted the necessity for further investigations into the dose and method of administration of oxytocin. Current guidelines recommend a bolus IV dose of 2.5 IU oxytocin given over 30 seconds.4
Although the cardiovascular side-effects have been known for some time, there is limited research on their prevention. Obtunding hypotension may also benefit the patient directly by preventing headache and/or nausea and vomiting. The results of this study may also form the basis for further investigations into the effect of oxytocin in the context of patients with comorbidities undergoing CS, for example severe pre-eclampsia. This study aimed to examine the efficacy of IV phenylephrine administered immediately before IV oxytocin, in obtunding the hypotension and tachycardia during CS. For this purpose, new technology employing beat by beat blood pressure (BP) measurement was used.

4.2. History of Oxytocin

The credit for associating oxytocin with uterine contractions belongs to Sir Henry Dale. In 1906 he discovered that domestic animals undergo uterine contractions after receiving injections of extracts from the posterior pituitary gland of oxen.威廉布莱尔贝尔在三年后，1909年，认识到不仅oxytocin能引起子宫收缩，还能预防产后出血。在接下来的50年里，由于技术上的困难和对激素合成和运输缺乏信息，几乎没有什么关于oxytocin的临床使用工作。是文森特·杜·维奈乌德在1954年，首次成功地合成oxytocin多肽激素，完全实现了其临床潜力。Oxytocin现在可以用于药理学，这为对其激素和心血管效应的进一步研究打开了道路。

4.3. Pharmacodynamics

Oxytocin acts on the oxytocin receptor which belongs to the G-Protein coupled receptor family, which are expressed in many organs including the uterus, mammary gland, ovary, kidney, heart, bone, endothelial cells, as well as widely throughout the central nervous system. With respect to the
uterus, the oxytocin peptide binds to the G-Protein of the trans-membrane oxytocin receptor complex, causing activation. This triggers various intracellular signal pathways, including the activation of phospholipase C (PLC), which is responsible for hydrolysing phosphatidyl-inositol bisphosphate (PIP2) to inositol tri-phosphate (IP3) and diacylglycerol (DAG).8 DAG is responsible for activating protein kinase type C, which further phosphorylates prostaglandins. IP3 causes calcium ions to be released from the intracellular sarcoplasmic reticulum.9 Calcium ions bind to calmodulin, forming a complex activating myosin light chain kinase (MLCK). MLCK then assists in the cross-bridging cycle of myosin and actin causing contraction.10 Calcium also enters the myocyte via voltage-gated L-type Calcium channels after depolarisation therefore increasing intra-cellular calcium.8 Oxytocin also indirectly stimulates uterine contraction by increasing cytosolic phospholipase A2 (cPLA2) activity.8 This increase in cPLA2 activity increases prostaglandin (PGE2) production via cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) activity.8,11 Prostaglandins also increase intra-myometrial calcium concentrations via G-Proteins and activation of calcium channels.9

4.4. Haemodynamic effects of oxytocin at delivery

A bolus administration of oxytocin causes hypotension and tachycardia, which together with nausea, vomiting, headache and arrhythmias are its most common side-effects.9 Chest pain, pulmonary oedema and amniotic fluid embolism are less common complications.

Oxytocin causes an increase in cardiac output (CO) due predominantly to arteriolar vasodilatation,12 resulting in a decrease in systemic vascular resistance (SVR). As mean arterial pressure (MAP) is the product of CO and SVR, a drop in MAP is observed clinically. The mechanism of vascular smooth muscle relaxation is probably due to the activation of the nitric-oxide (NO) pathway.13 NO is a gas that occurs naturally in the body. It has a very short half-life and is synthesised by, among other synthases, endothelial
derived nitric oxide synthase (eNOS). NO stimulates guanylate cyclase to produce cyclic guanosine monophosphate (c-GMP), which causes a reduction in Ca^{2+} release from the endoplasmic reticulum, decreasing vessel tone.14

Oxytocin causes release of atrial and brain natriuretic peptide from the atria and ventricles respectively. Both produce a decrease in SVR as well as increasing natriuresis, resulting in a decrease in BP. A baroreceptor-mediated increase in heart rate (HR) results. Another contributor to an increase in CO is relief of aorto-caval compression at delivery and autotransfusion of blood following uterine contraction. However a recent study suggests that these effects may be minor when compared with the effects of oxytocin.15 In addition, oxytocin may cause ST-segment depression in healthy women when given as a bolus of 10 IU, which could have serious consequences for the cardiovascularly unstable patient.16

Healthy patients tolerate this period of cardiovascular instability, brought on by delivery and oxytocin. However in a patient with hypovolaemia secondary to excessive intrapartum bleeding, or a stenotic valvular heart lesion, compensation for hypotension is limited, putting the patient at risk of cardiovascular collapse.17 Pre-eclamptic patients have left ventricular diastolic dysfunction, and hence may also have reduced compensatory mechanisms.13

4.5. Current methods to obtund the cardiovascular effects of oxytocin

Recent work has shown that the ED90 for oxytocin at elective CS is 0.35 IU, and after labour arrest, 3 IU.18–20 Therefore, the recommendation is that the oxytocin dose for routine prophylaxis of uterine atony and postpartum haemorrhage at CS, should be considerably reduced.21 This decrease was supported by numerous studies including Sartain et al, who showed less HR and BP changes after a bolus of 2 than 5 IU,22 suggesting a dose-dependent response. However, obstetricians worldwide still often request 10 IU oxytocin.18,20,23 In pregnant women with severe cardiac disease, the
recommendation is that ultra-low oxytocin doses (0.05-0.5 IU) be used. In one such case-series of cardiac patients there was adequate uterine contraction, after being administered titrated doses of oxytocin. This was effective in preventing the haemodynamic effects of oxytocin. Caution is also recommended in pre-eclamptic patients, in whom diastolic dysfunction may reduce compensatory mechanisms.

Another technique shown to be effective is to administer oxytocin slowly, as opposed to as a rapid bolus. Thomas et al showed that when a dose of 5 IU is given as a slow infusion, the HR and BP changes were limited to within 10% of baseline values.

Phenylephrine is a potent direct-acting alpha-1 adrenergic receptor agonist, which causes vasoconstriction and reflex bradycardia. It has a rapid onset and is short acting. Phenylephrine has become the drug of choice for reversing the spinal anaesthesia (SA) induced hypotension, which is due to arterial vasodilatation, which causes a decrease in SVR.

Recent work from our institution showed an early peak BP effect at 45 seconds and a second peak at 70 seconds following bolus phenylephrine during SA, compared to 90 seconds in the case of ephedrine. Ephedrine was also associated with a significant initial increase in HR. The maximum effects of oxytocin on BP occurred on average 44 seconds after administration. Taking these pharmacodynamic effects of phenylephrine and oxytocin into account, as well as their times of onset, it would therefore appear to be appropriate to use phenylephrine to counter the decrease in SVR and tachycardia caused by oxytocin.

One study examined the effect of coadministration of phenylephrine and oxytocin at elective caesarean delivery in healthy women. This was a secondary outcome of a study on the haemodynamics of vasopressors administered for spinal hypotension. The authors used a LiDCOPlus monitor, which is a minimally invasive device employing pulse waveform analysis, calibrated with lithium dilution. A monitor of transthoracic
bioimpedance changes was also used in each patient. Two groups were randomised to receive either a phenylephrine dose of 80 µg co-administered with 2.5 IU oxytocin, or saline placebo with oxytocin. The haemodynamic effects of oxytocin were obtund but not eliminated. The data also showed an increase in SVR, due to the phenylephrine, as well as an increase in MAP above baseline, indicating an overshoot of the effects of phenylephrine. Prior administration of a smaller dose could be more effective in obtunding the cardiovascular effects of oxytocin.

4.6. Validation of monitoring equipment

Assessment of the effects of rapid-acting vasopressors such as phenylephrine, optimally requires a non-invasive monitor with the capacity to measure BP on a beat by beat basis. The first tool to measure continuous BP in a non-invasive manner using a finger cuff, was introduced in 1986 and was marketed as the Finapres™. This was based on the principle of arterial wall unloading developed by Jan Peñáz in 1973.28 Continuing improvements on the principle resulted in the development of the CNAP™ (Continuous Non-Invasive Arterial Pressure) monitor, which was initially released in 2007 and has undergone numerous software upgrades. The current CNAP™ 500 Monitor System consists of a double finger sensory cuff, a pressure transducer on the forearm, an oscillometric non-invasive blood pressure (NIBP) cuff, preferably placed on the same arm, together with the CNAP monitor. The measurement is performed continuously on one finger at a time, and then changes to the other finger after a defined period. The sensor in the cuff placed around the finger, detects infrared light transmitted through the finger. The pulsatile blood volume absorbs part of the transmitted light. The light that is detected by the sensor is then calculated to be a measure of the pulsatile blood volume. An electronic system controlling the pressure inside the cuff around the finger, then inflates the cuff to a pressure needed to keep the transmission of light, and hence the blood volume, constant during arterial pulsation. This pressure corresponds to the arterial pressure. The results are a non-invasive, beat-to-beat estimate of BP, HR and MAP.
Since CNAP is a relatively new BP measuring tool, several validation studies have been performed in various anaesthesia environments, including general and SA, as well as in the intensive care unit.29 One validating study that examined CNAP monitoring during SA for healthy women undergoing elective CS, showed that the device detected more hypotensive events than a standard oscillometric NIBP device.30 This suggested that hypotensive events would go undetected by the oscillometric NIBP device with its longer measurement interval. A continuous BP measurement would therefore be more effective in the detecting of rapidly occurring hypotension in the period following oxytocin administration.

Ilies et al compared the agreement between CNAP readings and intra-arterial BP readings in patients undergoing general anaesthesia (GA). They found that there was poor agreement between SBP and DBP when comparing the two devices, but good agreement between MAP.31 This discrepancy could be due to the differing sites of pressure monitored using the two monitors. A NIBP device measuring at the brachial artery calibrates the CNAP monitor, whereas invasive pressure is measured at the radial artery. This could result...
in differing systolic and diastolic measurements, but the mean pressures would agree. Calibration times during this study were at 30 minute intervals. Disagreements were found between intra-arterial measurements and CNAP during the induction period. This implies that re-calibration should occur at shorter intervals than 30 minutes, after changes in vascular tone due to the use of induction agents. This would be important during SA, as vascular tone is decreased considerably after induction of anaesthesia. Further validation studies32,33 showed similar results regarding disagreement between SBP and DBP, but good agreement in MAP.

4.7. Conclusion

It would be of clinical value to know whether an alpha-1 agonist is effective in reducing oxytocin induced hypotension and tachycardia. This could have implications for the reduction of hypotension and maternal symptoms during the administration of oxytocin infusions for prophylaxis of PPH, or as therapy during active bleeding. Co-administration of phenylephrine has been shown to obtund, but not eliminate hypotension, followed by some overshoot of alpha-1 agonist effects and an increase in BP. These authors suggested that a bolus of phenylephrine given immediately before oxytocin might be more effective to maintain haemodynamic stability.27 Therefore it was decided to examine the effects of prior administration of 50 µg phenylephrine on the hypotensive effect of a slow bolus of 3 IU oxytocin.
References:

27. Dyer RA, Reed AR, Dyk D Van, James MF. Hemodynamic Effects of Ephedrine, Phenylephrine and the Coadministration of Phenylephrine

Part C: Manuscript
The use of phenylephrine to obtund oxytocin-induced hypotension and tachycardia during caesarean section

Dr C. K. Rumbolla, MBChB, DA (SA)
Prof R. A. Dyera, MBChB, FCA (SA), PhD
Dr C. J. Lombardb PhD

aDepartment of Anaesthesia, University of Cape Town, Cape Town, South Africa
bBiostatistics Unit, South African Medical Research Council, Cape Town, South Africa

Corresponding author: Dr Charles Rumboll: D23 Department of Anaesthesia, University of Cape Town and New Groote Schuur Hospital, Anzio Road, Observatory 7925, Cape Town, South Africa

\textbf{crumboll@gmail.com} +27 21 404 5001
Acknowledgements

The theatre staff at Mowbray Maternity Hospital
Mr JHM Nieuwoudt and Mrs Suzanne Jubilius at Spectra-Medic for the lending of the CNAP machine for the purposes of the study
There are no conflicts of interest to declare
Abstract

Background: Oxytocin causes clinically significant hypotension and tachycardia. This study examined whether the prior administration of phenylephrine obtunds these unwanted haemodynamic effects.

Methods: Forty pregnant women undergoing elective caesarean section under spinal anaesthesia were randomised to receive either a 50 µg bolus of phenylephrine (Group P) or saline (Group S) immediately prior to oxytocin (3 IU over 15 seconds). Systolic blood pressure [SBP], diastolic blood pressure [DBP], mean arterial pressure [MAP] and heart rate [HR]) were recorded using a continuous non-invasive arterial pressure device. Baseline values were averaged for 20 seconds post-delivery. Between-group comparisons were made of the mean peak changes in BP and HR, and the mean percentage changes from baseline, during the 150 seconds after oxytocin administration.

Results: The mean peak percentage change (SD) in SBP was -16.9% (2%) in Group P, and -19.0% (1.9%) in Group S and the estimated mean difference was 2.1% (95% CI: -3.5 to 7.8 %) and \(P =0.44 \); corresponding changes in HR were 13.5% (2.3%) and 14.0% (1.5%) and the mean estimated difference was 0.5% (95% CI -6.0 to 5%) and \(P=0.87 \). The mean percentage change from the baseline measurements during the 150 s period of measurement was greater for Group S than Group P: SBP -5.9% vs -3.4%; \(P =0.149 \); DBP -7.2% vs -1.5%, \(P =0.014 \); MAP -6.8% vs -1.5%, \(P =0.007 \); HR 2.1% vs -2.4%, \(P =0.033 \).

Conclusion: Intravenous phenylephrine 50 µg immediately before 3 U oxytocin during elective caesarean section does not prevent maternal hypotension and tachycardia.

Keywords: Oxytocin, phenylephrine, caesarean section, CNAP

Main text
Introduction

Obstetric haemorrhage remains a major peripartum complication, and has been shown to be on the increase around the world, particularly in South Africa\(^1\) as well as in the United States.\(^2\) Oxytocin is accepted as the first line uterotonic in the prevention and treatment of post-partum haemorrhage (PPH). However, oxytocin causes hypotension and tachycardia, and may be associated with nausea and vomiting, tachycardia, myocardial ischaemia and arrhythmias, particularly when given in bolus doses of >5 IU. In addition, if a parturient is haemodynamically unstable due to haemorrhage, inappropriate use of oxytocin may cause cardiovascular collapse. Hence recent recommendations are to administer an initial dose of 3 IU for adequate uterine contraction and prophylaxis for postpartum haemorrhage, after delivery during elective caesarean section (CS).\(^3\) It would be of clinical value to know whether an alpha agonist is effective in reducing oxytocin - induced hypotension. This could have implications for the reduction of hypotension and maternal symptoms during the administration of oxytocin infusions for prophylaxis of PPH, or as therapy during active bleeding. Co-administration of phenylephrine has been shown to obtund, but not eliminate hypotension, followed by some overshoot of alpha agonist effects and an increase in blood pressure (BP).\(^4\) These authors suggested that a bolus of phenylephrine given immediately before oxytocin, may be more effective to maintain haemodynamic stability. Therefore it was decided to examine whether the prior administration of 50 µg phenylephrine IV obtunds hypotension and tachycardia caused by a slow bolus of 3 IU oxytocin.

Methods

This was a single-centre, prospective, randomised, double blind, placebo-controlled study that was done during August and September 2013 at Mowbray Maternity Hospital, Cape Town, South Africa. The study was registered with the South African National Clinical Trials Register,
www.sanctr.gov.za: DOH27-0114-4619, and the protocol was approved by the Human Ethics Research Committee of the University of Cape Town. Participants gave informed written consent. All patients recruited were aged between 18 and 40 years, American Society of Anesthesiologists class 1 or 2, and scheduled for elective caesarean delivery under spinal anaesthesia (SA). Exclusions were emergency CS, pre-eclampsia or any cardiac, respiratory, renal or neurological disease, allergy to any study drug, Hb < 7 g/dL, or body mass index > 40 kg/m².

Patients were randomised, using a table of random numbers, into 2 treatment groups of 20. One group received a 50 µg bolus of phenylephrine (3 mL) and the other group placebo (3 mL saline), followed by intravenous oxytocin (3 IU in 5 mL saline over 15 seconds). The anaesthesiologist and patient were blinded as to the group allocation. The procedure was explained to the patient either by the recruiting investigator or by a skilled translator, and detailed informed written consent was obtained in the ward prior to transfer to the operating theatre. Block randomisation was used, using nQuery Advisor Version 6, Statistical Solutions (Cork, Ireland), and the statistician prepared sealed envelopes.

Immediately pre-operatively, 30 mL of sodium citrate was given orally to every participant. In theatre, intravenous access was established via an 18-gauge cannula. Cefazolin 1 g was then administered intravenously slowly. During this time standard non-invasive monitoring was applied to the patient. This included electrocardiography and pulse oximetry as well as the CNAP (Continuous Non-Invasive Arterial Pressure) device. The data recorded consisted of the heart rate (HR), systolic (SBP), diastolic (DBP), and mean arterial pressure (MAP). The CNAP 500 Monitor System (CN Systems Medizintechnik AG, Graz, Austria) consists of a sensor placed on the second and third digits of one hand. A non-invasive blood pressure cuff (a component of the CNAP system) on the same arm was used for calibration with the CNAP monitor. The measurement was done continuously on one finger at a time, and then changed to the other finger after a defined period.
The sensor, placed around the finger, detects infrared light transmitted through the finger. The blood pulsating through the finger absorbs a part of the transmitted light. The light that is detected by the sensor is then calculated to be a measure of the pulsatile blood volume. The finger cuff is inflated so that the blood volume is kept constant and therefore also the transmission of light. The inflation pressure of the finger cuff achieves this constant blood volume, and is the primary signal used for BP measurement.

The CNAP device was calibrated prior to baseline measurements and again on commencement of surgery. A baseline BP was taken by the CNAP device immediately before administration of SA. Baseline SBP were defined as the average of 3 measurements in a 5 minute period, not differing by more than 10%, with the patient in the left lateral position. The SA was then conducted in the following manner. A bolus crystalloid co-load of Modified Ringer’s Lactate solution (20 mL/kg) was rapidly administered using a pressure bag, after the appearance of cerebrospinal fluid in the hub of the spinal needle. Further crystalloid solution was not given unless blood loss was > 1L, as determined by suction bottle measurement and swab inspection. SA consisted of 2.0 mL of 0.5% hyperbaric bupivacaine (10 mg) plus 10 µg of fentanyl, administered over 20 seconds at the L3/4 interspace. After a further 20 seconds in the sitting position, patients were positioned supine, with at least 15 degrees of left lateral tilt, to minimise aorto-caval compression. The effectiveness of the block was assessed by the patient’s sensitivity to cold via ethyl chloride spray. A block level was then determined. Supplemental oxygen was only administered if arterial oxygen saturation decreased below 92%. Surgery was allowed to commence when the sensory level achieved T4. Bolus phenylephrine (50-100 µg) was administered to maintain SBP within 20% of baseline.

Thirty seconds after delivery, a 3 mL bolus of either saline or 50 µg phenylephrine, prepared by a specialist anaesthesiologist not involved in the study, was given intravenously immediately prior to the administration of 3 IU of oxytocin in 5 mL of water over a period of 15 seconds. The
anaesthesiologist administering the study drug was blinded as to the contents of the syringe. No vasopressor was given for 3 min after the oxytocin. The HR and the SBP were recorded from the start of SA by the CNAP device. All this information was recorded electronically onto a portable storage device, to be later analysed using Microsoft Excel. An event marker was recorded on the machine, at the time of administration of oxytocin, for later identification of the study intervention.

In no case was the uterus exteriorised. Placental separation was spontaneous, and uterine massage was employed if uterine contraction was inadequate, in conjunction with further uterotonic stimulation. Further bolus oxytocin was only required in two cases in this study.

Statistical analysis

The response to oxytocin was analysed as follows: Haemodynamic data, i.e. HR, SBP, DBP, MAP, were averaged for 20 seconds before the administration of oxytocin (baseline pre-oxytocin value). A sample size of five patients in each group would have 90% power to detect a difference in mean peak SBP change of 25%, assuming that the common SD is 10%, using a two group t-test with a two-sided alpha value of 0.05 as the significance level. Twenty patients were included in each group, in order to allow for more than the predicted variability. The primary outcome was a between-group comparison of mean peak percentage SBP changes. Secondary outcomes were changes in mean peak percentage values of all other haemodynamic indices, and a comparison of mean percentage changes in these indices during the 150 seconds after oxytocin administration. A two sample t-test was used to assess primary and secondary outcomes. To depict the summary profile of the response to oxytocin administration in the two groups, a Lowess median smooth was used. This approach gives an estimate that is robust to extreme values and sensitive to acute changes in haemodynamic variables. These were presented as graphic ensembles. Statistical significance was defined as $P < 0.05$.
Results

Forty patients were enrolled and randomised to receive phenylephrine and oxytocin or placebo and oxytocin. No patients were excluded from analysis. Patients were enrolled from August to September 2013. Demographic data and baseline haemodynamic values were similar in the groups (Table 1). The mean peak percentage change (SD) in SBP was -16.9% (2%) in Group P, and -19.0% (1.9%) in Group S and the estimated mean difference was 2.1% (95% CI: -3.5 to 7.8 %) and $P = 0.44$; corresponding changes in HR were 13.5% (2.3%) and 14.0% (1.5%) and the mean estimated difference was 0.5% (95% CI -6.0 to 5%) and $P = 0.87$. The mean percentage change from the baseline measurements during the 150 s period of measurement was greater for Group S than Group P: SBP -5.9% vs -3.4%; $P = 0.149$; DBP -7.2% vs -1.5%, $P = 0.014$; MAP -6.8% vs -1.5%, $P = 0.007$; HR 2.1% vs -2.4%, $P = 0.033$. The data is also depicted as median smooth plots for the 150 seconds following oxytocin administration (Figures 1-5, 6). No patient experienced any side-effects attributable to the interventions.

Discussion

This randomised, controlled study demonstrated that 50 µg phenylephrine does not obtund hypotension and tachycardia induced by a slow bolus of 3 IU oxytocin in healthy women undergoing elective CS. The main findings indicated no significant difference between the two groups regarding the peak percentage change in SBP, DBP, MAP and HR from baseline values. The initial brief rise in blood pressure and decrease in HR in Group P, was rapidly reversed by the vasodilatation induced by oxytocin (Figures 1-5). In view of the poor response to the dose of phenylephrine used, our subsequent clinical practice has included the administration of a dose of 75 µg phenylephrine prior to 3 IU oxytocin. Figure 6 shows data from 9 such patients. The increased dose appeared to be ineffective, although no statistical analysis was performed in these cases.
Delivery of the fetus causes an increase in venous return due to relief of aorto-caval compression and uterine auto-transfusion. This translates into an increase in cardiac output (CO). However, a recent study suggests that these effects may be minor when compared with the effects of oxytocin.\(^5\) Bolus administration of oxytocin causes hypotension and tachycardia, which together with nausea, vomiting, headache and arrhythmias are its most common side-effects.\(^6\) Chest pain and pulmonary oedema are less common complications. Thus, the prevention of these side-effects is clinically important. Oxytocin causes an increase in CO, predominantly due to arteriolar vasodilatation, resulting in a decrease in systemic vascular resistance (SVR).\(^7\) As MAP is the product of CO and SVR, a decrease in MAP is observed clinically, with an accompanying baroreceptor-mediated increase in HR.

The mechanisms of hypotension due to oxytocin are complex. Vascular smooth muscle relaxation is probably the consequence of activation of the nitric-oxide (NO) pathway.\(^8\) NO has a very short half-life and is synthesised by endothelial derived nitric oxide synthase (eNOS). NO stimulates guanylate cyclase to produce cyclic guanosine monophosphate (c-GMP), which causes a reduction in Ca\(^{2+}\) release from the endoplasmic reticulum, decreasing vessel tone. Oxytocin also causes release of atrial and brain natriuretic peptide from the atria and ventricles respectively. Both produce a decrease in SVR as well as increasing natriuresis, resulting in a decrease in blood pressure (BP). In addition, oxytocin may cause ST-segment depression in healthy women when given as a bolus of 10 IU.\(^9\) Healthy patients tolerate this period of cardiovascular instability induced by delivery and oxytocin. However, in a patient with hypovolaemia secondary to excessive intrapartum bleeding, or a stenotic valvular heart lesion and/or severe pulmonary hypertension, compensation for hypotension is limited, putting the patient at risk of cardiovascular collapse. Pre-eclamptic patients have left ventricular diastolic dysfunction, and hence may also have reduced compensatory mechanisms.\(^10\)
Recent work has shown that the ED90 for oxytocin at elective CS is 0.35 IU, and after labour arrest 3 IU.11-13 Therefore, the recommendation is that the oxytocin dose for routine prophylaxis of uterine atony and postpartum haemorrhage at CS, should be considerably reduced.3,14 This decrease was supported by numerous studies including Sartain et al, who showed less HR and BP changes after a bolus of 2 than 5 IU, suggesting a dose-dependent response.15 A recent randomised trial showed that 3 IU oxytocin administered over 15 seconds, repeated twice if necessary in response to inadequate uterine contraction, was associated with a lower total oxytocin dose compared with continuous infusion of oxytocin during elective caesarean delivery.14 However, obstetricians worldwide still often request 10 IU oxytocin.11,13,16 In pregnant women with severe cardiac disease, the recommendation is that ultra-low oxytocin doses (0.05-0.5 IU) be used. In one such case-series of cardiac patients there was adequate uterine contraction, after being administered titrated doses of oxytocin.17 This was effective in preventing the haemodynamic effects of oxytocin. Another technique shown to be effective is to administer oxytocin slowly, as opposed to as a rapid bolus. Thomas et al showed that when a dose of 5 IU is given as a slow infusion, the HR and BP changes were limited to within 10% of baseline values.18

Phenylephrine is a potent direct-acting alpha-1 adrenergic receptor agonist, which causes vasoconstriction and reflex bradycardia. Its actions on the human circulation, and more specifically on maternal haemodynamics, have been well reviewed recently.19,20 Phenylephrine is a rapid onset and short-acting agent, and has become the drug of choice for reversing the SA-induced hypotension, which is due to arterial vasodilatation resulting in a decrease in systemic vascular resistance.21 Recent work from our institution showed an early peak blood pressure effect at 45 seconds and a second peak at 70 seconds following bolus phenylephrine during SA, compared to 90 seconds in the case of ephedrine. Ephedrine was also associated with a significant initial increase in HR. The maximum effects of oxytocin on blood
pressure occurred on average 44 seconds after administration. Taking these pharmacodynamic effects of phenylephrine and oxytocin into account, as well as their times of onset, it would therefore appear to be appropriate to use phenylephrine to counter the decrease in SVR and tachycardia caused by oxytocin. One study employed minimally invasive CO monitoring to study the effects of coadministration of phenylephrine and oxytocin at elective caesarean delivery in healthy women. Two groups of patients were randomised to receive either a phenylephrine dose of 80 µg co-administered with 2.5 IU oxytocin, or saline placebo with oxytocin. The haemodynamic effects of oxytocin were obtunded but not eliminated. The data also showed an increase in SVR, due to the phenylephrine, as well as an increase in MAP above baseline, indicating an overshoot of the effects of phenylephrine when administered in this manner. Therefore the current study examined whether prior administration of a smaller dose could be more effective in obtunding the cardiovascular effects of oxytocin.

Assessment of the effects of rapid-acting vasopressors such as phenylephrine, optimally requires a non-invasive monitor with the capacity to measure blood pressure on a beat by beat basis. The CNAP™ 500 Monitor System consists of a double finger sensory cuff, which provides non-invasive beat to beat estimates of BP. Several validation studies have been performed in anaesthesia environments, including general and SA, as well as in the intensive care unit. One validating study that examined CNAP monitoring during SA for healthy women undergoing elective CS, showed that the device detected more hypotensive events than a standard oscillometric NIBP device. This suggested that hypotensive events would go undetected by the oscillometric NIBP device with its longer measurement interval. A continuous BP measurement would therefore be more effective in the detecting of rapidly occurring hypotension in the period following oxytocin administration. One recent study found that there was poor agreement between SBP and DBP when comparing CNAP and intra-arterial monitoring, but good agreement between MAP values. The current study involved short term percentage changes in SBP and the monitor was thus regarded...
as adequate for this purpose. A disadvantage of the monitor is that frequent re-calibration is required. However, this was not required in the present study, since calibration was performed immediately before the intervention, and the data was collected over only 150 seconds.

A recent animal study showed that the haemodynamic effects of phenylephrine are dependent upon the position on the Frank-Starling curve. In fluid replete animals phenylephrine depressed CO due to an increase in SVR, while in acutely fluid-depleted animals, the effects of phenylephrine appeared to include splanchnic venuconstriction and improved venous return. This may have relevance when phenylephrine is used in conjunction with oxytocin in a patient with ongoing postpartum haemorrhage. Further studies are needed to examine this interaction. The clinical implications of our results are that bolus phenylephrine in the usual clinical dose range, may not be effective in preventing arteriolar dilatation and hypotension following a slow bolus of oxytocin in healthy normovolaemic parturients during SA for CS.

References

Table 1: Patient characteristics. Data are mean (range) or number. No statistically significant difference between the two groups.

<table>
<thead>
<tr>
<th></th>
<th>Group P (n=20)</th>
<th>Group S (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>29.7 (22-40)</td>
<td>28.95 (24-36)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>72.6 (47-93)</td>
<td>75.2 (51-102)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>159.8 (143-177)</td>
<td>160.25 (150-173)</td>
</tr>
<tr>
<td>Baseline systolic BP (mmHg)</td>
<td>126.5 (109-157)</td>
<td>125.25 (105-145)</td>
</tr>
<tr>
<td>Baseline diastolic BP (mmHg)</td>
<td>80.1 (70-93)</td>
<td>77.5 (63-100)</td>
</tr>
<tr>
<td>Baseline mean arterial pressure (mmHg)</td>
<td>95.4 (85-114)</td>
<td>93.3 (79-115)</td>
</tr>
<tr>
<td>Baseline heart rate</td>
<td>86.6 (61-131)</td>
<td>84.5 (61-102)</td>
</tr>
</tbody>
</table>
Figure 1a: Median smooth plot of percentage change of SBP in the two groups receiving either 50 µg phenylephrine (P) or saline (S) prior to oxytocin.
Figure 1b: Median smooth plot of percentage change of DBP in the two groups receiving either 50 µg phenylephrine (P) or saline (S) prior to oxytocin.
Figure 1c: Median smooth plot of percentage change of MAP in the two groups receiving either 50 µg phenylephrine (P) or saline (S) prior to oxytocin.
Figure 1d: Median smooth plot of percentage change of HR in the two groups receiving either 50 µg phenylephrine (P) or saline (S) prior to oxytocin.
Figure 1e: Median spline plot of percentage changes in MAP and HR in the two groups receiving either 50 µg phenylephrine (P) or saline (S) prior to oxytocin.
Figure 2a: Percentage SBP changes of individual cases randomised to either P=Phenylephrine or S=Saline.
Figure 2b: Percentage DBP changes of individual cases randomised to either P=Phenylephrine or S=Saline.
Figure 2c: Percentage MAP changes of individual cases randomised to either P=Phenylephrine or S=Saline.
Figure 2d: Percentage HR changes of individual cases randomised to either P=Phenylephrine or S=Saline.
Figure 3a: Percentage change in SBP of individual patients who received 75 µg phenylephrine.
Figure 3b: Percentage change in DBP of individual patients who received 75 μg phenylephrine.
Figure 3c: Percentage change in MAP of individual patients who received 75 µg phenylephrine.
Figure 3d: Percentage change in HR of individual patients who received 75 µg phenylephrine.
Figure 3e: Ensemble: Percentage change of SBP after 75 µg phenylephrine.
Figure 3f: Ensemble: Percentage change of DBP after 75 µg phenylephrine.
Figure 3g: Ensemble: Percentage change of MAP after 75 µg phenylephrine.
Figure 3h: Ensemble: Percentage change of HR after 75 µg phenylephrine.
Figure 3i: Median spline plot of HR and MAP responses after 75 µg phenylephrine.
Figure 3j: Spline: Individual joint plots of 75 µg phenylephrine.
Part D: Supporting Documents
Information and consent form
THE USE OF PHENYLEPHRINE TO OBTUND OXYTOCIN INDUCED HYPOTENSION AND TACHYCARDIA DURING CAESAREAN SECTION

Invitation
You are being invited to take part in a research study. Before you decide whether or not to take part, it is important for you to understand why the research is being done and what it will involve. This information sheet should provide you with this information and it is important that you read it carefully.
If there is something that you do not understand, please ask me to explain further.

What is the purpose of this study?
A caesarean section operation, is an operation where your baby is removed from the womb, there is always blood loss with this procedure. This is because the baby has a rich blood supply while it is growing inside you. The doctors will give you Oxytocin after delivery of the baby, this is to shrink the womb and stop the bleeding. As medical doctors we know that this medication causes a drop in blood pressure - which is the pressure inside your blood system to move the blood around the body. The reason for this study is to record how low the blood pressure drops while the medication is given, and to test whether giving a second medication, phenylephrine, will reverse the blood pressure drop. Therefore all of the delivering mommies will be given oxytocin, to stop the bleeding; as is always done with all deliveries. The moms will then be divided up into two groups; the one group will be watched after the oxytocin is given to see how the blood pressure drops and how long it stays low for. If at any point any mom in the group has a blood pressure that is low enough to put her in danger, treatment will be given. The second group will get phenylephrine (a medicine to bring the blood pressure up) in order to see how quickly it raised the blood pressure and how long the effects last for.
The reason that we are looking into this is to try make the birthing process as safe as possible for mommy and baby.

How will the study happen?
Tomorrow you will be taken to theatre when it is your turn for your operation. You will be given a small bottle with very salty tasting fluid to drink. You will then be asked to sit on the theatre bed in a particular position, which we will explain to you there. The anaesthesia doctor will then give you an injection into the back which will numb everything from the belly-button downwards. This is so you do not feel any pain during the operation. After the injection we will make you lie on the theatre bed and get you ready for the operation by putting on stickers and blood pressure monitoring equipment which we do to all patients.
After we made sure you cannot feel anything the surgeon will proceed with the operation. When baby is born the anaesthesia doctor will inject either the phenylephrine medicine or water into your vein, depending on which group you have been assigned to, followed by the oxytocin medicine to make your uterus shrink. While the operation is going on we will be measuring your heart rate and your blood pressure. If your blood pressure were to drop too far we will treat it as we would for any patient.

Will my identity or personal information be known to others?
All the information we collect from this research project will be kept confidential. Only the researchers will be able to see it. The information about you will have a number on it instead of your name. Only the researchers will know what your number is and we will lock that information up.
The results of the research may also be made public in a medical journal, but no confidential information that may identify you will be published.

Will you get paid?
No. No person participating in this study will receive compensation.

Do you HAVE to take part?
No. It is your choice whether to take part or not. Your decision will not influence at all the way we treat you in the hospital. If you agree to participate but change your mind, you may do so.

What if Something Goes Wrong?
The University of Cape Town (UCT) undertakes that in the event of you suffering any significant deterioration in health or well-being, or from any unexpected sensitivity or toxicity, that is caused by your participation in the study, it will provide immediate medical care. UCT has appropriate insurance cover to provide prompt payment of compensation for any trial-related injury according to the guidelines outlined by the Association of the British Pharmaceutical Industry, ABPI 1991. Broadly-speaking, the ABPI guidelines recommend that the insured company (UCT), without legal commitment, should compensate you without you having to prove that UCT is at fault. An injury is considered trial-related if, and to the extent that, it is caused by study activities. You must notify the study doctor immediately of any side effects and/or injuries during the trial, whether they are research-related or other related complications.
UCT reserves the right not to provide compensation if, and to the extent that, your injury came about because you chose not to follow the instructions that you were given while you were taking part in the study. Your right in law to claim compensation for injury where you prove negligence is not affected. Copies of these guidelines are available on request.
I, ..., hereby consent to randomised treatment with one of two medicines, as explained to me by doctor
Signed: ..
Witnessed: (1).............................
At: Date ..

Should you wish to contact the HREC in connection with questions regarding your rights and welfare as a research subject, the contact details are: Professor Marc Blockman, 0214066492
Ethics approval letter

UNIVERSITY OF CAPE TOWN

Faculty of Health Sciences
Human Research Ethics Committee
Room E52-24 Groote Schuur Hospital Old Main Building
Observatory 7925
Telephone [021] 406 6338 • Facsimile [021] 406 6411
e-mail: shureta.thomas@uct.ac.za
Website: www.health.uct.ac.za/research/humanethics/forms

08 August 2013

HREC REF: 479/2013

Dr C Rumboll
C/o Prof R Dyer
Anaesthesia
D23
NGSH

Dear Dr Rumboll

PROJECT TITLE: THE USE OF PHENYLEPHRINE TO OBTUND OXYTOCIN INDUCED HYPOTENSION AND TACHYCARDIA DURING CAESAREAN SECTION

Thank you for responding to the issues raised by the Faculty of Health Sciences Human Research Ethics Committee.

It is a pleasure to inform you that the HREC has formally approved the above-mentioned study.

Approval is granted for one year till the 15th August 2014

Please submit a progress form, using the standardised Annual Report Form if the study continues beyond the approval period. Please submit a Standard Closure form if the study is completed within the approval period.
(Forms can be found on our website: www.health.uct.ac.za/research/humanethics/forms)

Please note that the ongoing ethical conduct of the study remains the responsibility of the principal investigator.

Please quote the HREC. REF in all your correspondence.

Yours sincerely

[Signature]

PROFESSOR M BLOCKMAN
CHAIRPERSON, FHS HUMAN ETHICS
Federal Wide Assurance Number: FWA00001637.
Institutional Review Board (IRB) number: IRB00001938
This serves to confirm that the University of Cape Town Human Research Ethics Committee complies to the Ethics Standards for Clinical Research with a new drug in patients, based on the Medical Research Council (MRC-SA), Food and Drug Administration (FDA-USA), International Convention on Harmonisation Good Clinical Practice (ICH GCP) and Declaration of Helsinki guidelines.
The Human Research Ethics Committee granting this approval is in compliance with the ICH Harmonised Tripartite Guidelines E6: Note for Guidance on Good Clinical Practice (CPMP/ICH/135/95) and FDA Code Federal Regulation Part 50, 56 and 312.
Guide to Authors – International Journal of Obstetric Anaesthesia

Introduction

Types of article Original research (both clinical and laboratory), case series, reports and correspondence will be considered. To be accepted for publication, individual case reports need to have important and novel learning points; a simple narrative of a complex or challenging patient(s) is insufficient. Case series dealing with important areas of practice with a thorough review of relevant literature will be considered. The journal also publishes invited review articles and debates on topical and controversial subjects in the area of obstetric anaesthesia. Reviews are usually commissioned, although authors may contact the Editor-in-Chief if they wish to discuss potential topics.

Contact details for submission Authors may send queries concerning the submission process, manuscript status, or journal procedures to the Editorial Office at: IJOA, Editorial Office, ELSEVIER. E-mail: ijoa@elsevier.com

Before you Begin

Ethics in publishing For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics. A paper that contains the results of human and/or animal studies will only be accepted for publication if it is made clear that a high standard of ethics was applied in carrying out the investigation. All clinical investigators must follow the Ethical Principles for Medical Research Involving Human Subjects outlined in the Declaration of Helsinki. In the case of invasive studies of humans, the text should include a statement that the research protocol was approved by a local institutional review board or ethics committee and that written consent was obtained from all subjects. For case reports, subjects must not be identifiable; however, the
Please note that the patient's written consent to publication of the case MUST be given and included with the submission. Failure to provide written consent will result in the manuscript being rejected. Where there are difficulties obtaining written consent, the Editor-in-Chief should be contacted but publication will only be considered in exceptional circumstances.

Conflict of interest All authors are requested to disclose any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations within three years of beginning the submitted work that could inappropriately influence, or be perceived to influence, their work. See also http://www.elsevier.com/conflictsofinterest. Further information and an example of a Conflict of Interest form can be found at: http://help.elsevier.com/app/answers/detail/a_id/286/p/7923.

Submission declaration and verification Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. To verify originality, your article may be checked by the originality detection service CrossCheck http://www.elsevier.com/editors/plagdetect.

Changes to authorship This policy concerns the addition, deletion, or rearrangement of author names in the authorship of accepted manuscripts: *Before the accepted manuscript is published in an online issue*: Requests to add or remove an author, or to rearrange the author names, must be sent to the Journal Manager from the corresponding author of the accepted manuscript and must include: (a) the reason the name should be added or removed, or the author names rearranged and (b) written confirmation (e-mail, fax, letter) from all authors that they agree with the
addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed. Requests that are not sent by the corresponding author will be forwarded by the Journal Manager to the corresponding author, who must follow the procedure as described above. Note that: (1) Journal Managers will inform the Journal Editors of any such requests and (2) publication of the accepted manuscript in an online issue is suspended until authorship has been agreed. After the accepted manuscript is published in an online issue: Any requests to add, delete, or rearrange author names in an article published in an online issue will follow the same policies as noted above and result in a corrigendum.

Reporting clinical trials Researchers are requested from 1st July 2014 to pre-register their trials on a public registry at or before the time of first recruitment. Several web-based public registries are now available including http://www.clinicaltrials.gov.

Copyright Upon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement' (for more information on this and copyright see http://www.elsevier.com/copyright). Acceptance of the agreement will ensure the widest possible dissemination of information. An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Journal Publishing Agreement' form or a link to the online version of this agreement. Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution and for all other derivative works, including compilations and translations (please consult http://www.elsevier.com/permissions). If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases: please consult http://www.elsevier.com/permissions.

Retained author rights As an author you (or your employer or institution) retain certain rights; for details you are referred to:
Role of the funding source You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated.

Funding body agreements and policies Elsevier has established agreements and developed policies to allow authors whose articles appear in journals published by Elsevier, to comply with potential manuscript archiving requirements as specified as conditions of their grant awards. To learn more about existing agreements and policies please visit http://www.elsevier.com/fundingbodies.

Open access This journal offers authors a choice in publishing their research:

Open access • Articles are freely available to both subscribers and the wider public with permitted reuse • An open access publication fee is payable by authors or their research funder Subscription • Articles are made available to subscribers as well as developing countries and patient groups through our access programs (http://www.elsevier.com/access) • No open access publication fee

All articles published open access will be immediately and permanently free for everyone to read and download. Permitted reuse is defined by your choice of one of the following Creative Commons user licenses: Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA): for non-commercial purposes, lets others distribute and copy the article, to create extracts, abstracts and other revised versions, adaptations or derivative works of or from an article (such as a translation), to include in a collective work (such as an anthology), to text and data mine the article, as long as they credit the author(s), do not represent the author as endorsing their adaptation of the article, do not modify the article in such a way as to damage the author's honor or reputation, and license their new adaptations or creations under identical terms (CC BY-NC-SA).
Attribution-NonCommercial-NoDerivs (CC BY-NC-ND): for non-commercial purposes, lets others distribute and copy the article, and to include in a collective work (such as an anthology), as long as they credit the author(s) and provided they do not alter or modify the article.

Elsevier has established agreements with funding bodies, http://www.elsevier.com/fundingbodies. This ensures authors can comply with funding body open access requirements, including specific user licenses, such as CC BY. Some authors may also be reimbursed for associated publication fees. If you need to comply with your funding body policy, you can apply for the CC BY license after your manuscript is accepted for publication.

To provide open access, this journal has a publication fee which needs to be met by the authors or their research funders for each article published open access. Your publication choice will have no effect on the peer review process or acceptance of submitted articles. The open access publication fee for this journal is $2,500.00, excluding taxes. Learn more about Elsevier’s pricing policy: http://www.elsevier.com/openaccesspricing

Language (usage and editing services) Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the English Language Editing service available from Elsevier’s WebShop (http://webshop.elsevier.com/languageediting/) or visit our customer support site (http://support.elsevier.com) for more information.

Informed consent and patient details Studies on patients or volunteers require ethics committee approval and informed consent, which should be documented in the paper. Appropriate consents, permissions and releases must be obtained where an author wishes to include case details or other personal information or images of patients and any other individuals in an Elsevier publication. Written consents must be retained by the author and copies of the consents or evidence that such consents have been obtained must be provided to Elsevier on request. For more information, please review
the Elsevier Policy on the Use of Images or Personal Information of Patients or other Individuals, http://www.elsevier.com/patient-consent-policy. Unless you have written permission from the patient (or, where applicable, the next of kin), the personal details of any patient included in any part of the article and in any supplementary materials (including all illustrations and videos) must be removed before submission. You can find an example of a generic patient consent form here which you may use if you do not have one available from your own research/clinic.

Submission Our online submission system guides you stepwise through the process of entering your article details and uploading your files. The system converts your article files to a single PDF file used in the peer-review process. Editable files (e.g., Word, LaTeX) are required to typeset your article for final publication. All correspondence, including notification of the Editor's decision and requests for revision, is sent by e-mail. Submission of an article implies that the work described has not been published previously (except as an abstract or part of a published lecture or academic thesis), that it is not under consideration (in whole or in part) for publication elsewhere, that its publication is approved by all Authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, without the written consent from the International Journal of Obstetric Anesthesia, the copyright-holder. Please submit your article via http://ees.elsevier.com/ijoa.

Preparation

Use of word processing software It is important that the file be saved in the native format of the word processor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the word processor's options to justify text or to hyphenate words. However, do use bold face, italics, subscripts, superscripts etc. When preparing tables, if you are using a table grid, use only one grid for
each individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier: http://www.elsevier.com/guidepublication). Note that source files of figures, tables and text graphics will be required whether or not you embed your figures in the text. See also the section on Electronic artwork. To avoid unnecessary errors you are strongly advised to use the 'spell-check' and 'grammar-check' functions of your word processor. Manuscripts should have 1.5 line spacing, including tables and references and lines should be numbered. Pages should be numbered consecutively. Authors are advised to study recent issues of the International Journal of Obstetric Anesthesia to assess the level of detail required for publication. For guidance, original research articles should not exceed 3000 words, case reports 1500 words, reviews 5000 words, editorials 1500 words and correspondence 750 words (excluding references)

Article structure
Abstract. This should consist of not more than 250 words summarising the contents of the article and should contain no references or abbreviations. Where appropriate use a structured abstract with the headings: Background, Methods, Results, Conclusions - followed by Key Words.

Headings should be appropriate to the nature of the paper. In general those for experimental papers should follow the usual conventions. Introduction, Methods, Results, Discussion etc. do not need to be on separate sheets. Other papers can be subdivided as the author desires; the use of headings enhances readability. Do not insert compulsory line breaks within the text. When reporting randomised trials, authors are advised to refer to http://www.consort-statement.org. For observational studies authors should refer to http://www.strobe-statement.org.

Essential title page information
• **Title.** Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible. • **Author names and affiliations.** Where the family name may be ambiguous (e.g., a double name), please indicate this clearly. Present the authors’ affiliation addresses (where the actual work was
done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author's name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name and, if available, the e-mail address of each author. • **Corresponding author.** Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. **Ensure that phone numbers (with country and area code) are provided in addition to the e-mail address and the complete postal address. Contact details must be kept up to date by the corresponding author.** • **Present/permanent address.** If an author has moved since the work described in the article was done, or was visiting at the time, a 'Present address' (or 'Permanent address') may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.

Graphical abstract Although a graphical abstract is optional, its use is encouraged as it draws more attention to the online article. The graphical abstract should summarize the contents of the article in a concise, pictorial form designed to capture the attention of a wide readership. Graphical abstracts should be submitted as a separate file in the online submission system. Image size: Please provide an image with a minimum of 531 × 1328 pixels (h × w) or proportionally more. The image should be readable at a size of 5 × 13 cm using a regular screen resolution of 96 dpi. Preferred file types: TIFF, EPS, PDF or MS Office files. See http://www.elsevier.com/graphicalabstracts for examples. Authors can make use of Elsevier's Illustration and Enhancement service to ensure the best presentation of their images and in accordance with all technical requirements: Illustration Service.

Highlights Highlights are mandatory for this journal. They consist of a short collection of bullet points that convey the core findings of the article and should be submitted in a separate editable file in the online submission system. Please use 'Highlights' in the file name and include 3 to 5 bullet points (maximum 85 characters, including spaces, per bullet point). See
http://www.elsevier.com/highlights for examples.

Abbreviations Avoid abbreviations in the title and abstract. All unusual abbreviations should be fully explained at their first occurrence in the text. Avoid numerous invented abbreviations. All measurements should be expressed in metric units, SI units being preferred except in the case of fluid pressures. For more detailed recommendations, authors may consult the Royal Society of Medicine publication: *Units, Symbols and Abbreviations: A Guide for Biological and Medical Editors and Authors*. Propriety names and drugs, instruments etc. if essential, should start with initial capital letters.

Electronic artwork General points • Make sure you use uniform lettering and sizing of your original artwork. • Embed the used fonts if the application provides that option. • Aim to use the following fonts in your illustrations: Arial, Courier, Times New Roman, Symbol, or use fonts that look similar. • Number the illustrations according to their sequence in the text. • Use a logical naming convention for your artwork files. • Provide captions to illustrations separately. • Size the illustrations close to the desired dimensions of the printed version. • Submit each illustration as a separate file. A detailed guide on electronic artwork is available on our website: http://www.elsevier.com/artworkinstructions You are urged to visit this site; some excerpts from the detailed information are given here. **Formats** If your electronic artwork is created in a Microsoft Office application (Word, PowerPoint, Excel) then please supply 'as is' in the native document format. Regardless of the application used other than Microsoft Office, when your electronic artwork is finalized, please 'Save as' or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):

EPS (or PDF): Vector drawings, embed all used fonts. TIFF (or JPEG): Color or grayscale photographs (halftones), keep to a minimum of 300 dpi.

TIFF (or JPEG): Bitmapped (pure black & white pixels) line drawings, keep to a minimum of 1000 dpi. TIFF (or JPEG): Combinations bitmapped line/half-tone (color or grayscale), keep to a minimum of 500 dpi. **Please do not:** • Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); these typically have a low number of pixels and limited set of colors;
• Supply files that are too low in resolution; • Submit graphics that are disproportionately large for the content.

Color artwork Please make sure that artwork files are in an acceptable format (TIFF (or JPEG), EPS (or PDF), or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color on the Web (e.g., ScienceDirect and other sites) regardless of whether or not these illustrations are reproduced in color in the printed version. **For color reproduction in print, you will receive information regarding the costs from Elsevier after receipt of your accepted article.** Please indicate your preference for color: in print or on the Web only. For further information on the preparation of electronic artwork, please see http://www.elsevier.com/artworkinstructions. Please note: Because of technical complications that can arise by converting color figures to 'gray scale' (for the printed version should you not opt for color in print) please submit in addition usable black and white versions of all the color illustrations.

Figure captions Ensure that each illustration has a caption. Supply captions separately, not attached to the figure. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Tables Number tables in the order in which they are cited in the text. Place footnotes to tables below the table body and indicate them with superscript lowercase letters. Avoid vertical rules. Ensure that the data presented in tables are not duplicated in the text.

Citation in text Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either 'Unpublished results'
or 'Personal communication'. Citation of a reference as 'in press' implies that the item has been accepted for publication.

Reference style The accuracy of references is the responsibility of the author. References should be entered consecutively by superscript Arabic numbers in the text after punctuation and not preceded by spaces. The references should be listed in numerical order. References to journals should include the author's name and initials (list all authors when six or fewer; when seven or more, list only the first three and add et al.), full title of the paper, journal title abbreviated using *Index Medicus* abbreviations, year of publication, volume number, first and last page numbers. If not in *Index Medicus* journal titles should be given in full.

Citing and listing of Web references. As a minimum, the title of the website or document, the full uniform resource locator (URL) and the accessed date should be given. Any further information, if known (DOI, author names, reference to a source publication, etc.), should also be given. Web references should be included in order of citation, in the reference list. Electronic material from a web site should be set out as follows: National Institutes of Health. NIH guidelines on the inclusion of women as subjects in clinical research. Available at: http://grants.nih.gov/grants/guide/not94-100.html. Accessed September 30, 2009.

Journal abbreviations source Journal names should be abbreviated according to the List of Title Word Abbreviations: http://www.issn.org/services/online-services/access-to-the-ltwa/.

AudioSlides The journal encourages authors to create an AudioSlides presentation with their published article. AudioSlides are brief, webinar-style presentations that are shown next to the online article on ScienceDirect. This gives authors the opportunity to summarize their research in their own words.
and to help readers understand what the paper is about. More information and examples are available at http://www.elsevier.com/audioslides. Authors of this journal will automatically receive an invitation e-mail to create an AudioSlides presentation after acceptance of their paper.

Supplementary data Elsevier accepts electronic supplementary material to support and enhance your scientific research. Supplementary files offer the author additional possibilities to publish supporting applications, high-resolution images, background datasets, sound clips and more. Supplementary files supplied will be published online alongside the electronic version of your article in Elsevier Web products, including ScienceDirect: http://www.sciencedirect.com. In order to ensure that your submitted material is directly usable, please provide the data in one of our recommended file formats. Authors should submit the material in electronic format together with the article and supply a concise and descriptive caption for each file. For more detailed instructions please visit our artwork instruction pages at http://www.elsevier.com/artworkinstructions.

Submission checklist The following list will be useful during the final checking of an article prior to sending it to the journal for review. Please consult this Guide for Authors for further details of any item. **Ensure that the following items are present:** One author has been designated as the corresponding author with contact details: • E-mail address • Full postal address • Phone numbers All necessary files have been uploaded, and contain: • Keywords • All figure captions • All tables (including title, description, footnotes) Further considerations • Manuscript has been 'spell-checked' and 'grammar-checked' • References are in the correct format for this journal • All references mentioned in the Reference list are cited in the text, and vice versa • Permission has been obtained for use of copyrighted material from other sources (including the Web) • Color figures are clearly marked as being intended for color reproduction on the Web (free of charge) and in print, or to be reproduced in color on the Web (free of charge) and in black-and-white in print • If only color on the Web is required, black-and-white versions of the figures are also supplied for printing purposes For any further information please visit our customer support site.
After Acceptance

Use of the Digital Object Identifier The Digital Object Identifier (DOI) may be used to cite and link to electronic documents. The DOI consists of a unique alpha-numeric character string which is assigned to a document by the publisher upon the initial electronic publication. The assigned DOI never changes. Therefore, it is an ideal medium for citing a document, particularly 'Articles in press' because they have not yet received their full bibliographic information. Example of a correctly given DOI (in URL format; here an article in the journal *Physics Letters B*):

http://dx.doi.org/10.1016/j.physletb.2010.09.059 When you use a DOI to create links to documents on the web, the DOIs are guaranteed never to change.

Proofs One set of page proofs (as PDF files) will be sent by e-mail to the corresponding author (if we do not have an e-mail address then paper proofs will be sent by post) or, a link will be provided in the e-mail so that authors can download the files themselves. Elsevier now provides authors with PDF proofs which can be annotated; for this you will need to download Adobe Reader version 9 (or higher) available free from http://get.adobe.com/reader. Instructions on how to annotate PDF files will accompany the proofs (also given online). The exact system requirements are given at the Adobe site: http://www.adobe.com/products/reader/tech-specs.html. If you do not wish to use the PDF annotations function, you may list the corrections (including replies to the Query Form) and return them to Elsevier in an e-mail. Please list your corrections quoting line number. If, for any reason, this is not possible, then mark the corrections and any other comments (including replies to the Query Form) on a printout of your proof and return by fax, or scan the pages and e-mail, or by post. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the
Editor. We will do everything possible to get your article published quickly and accurately. It is important to ensure that all corrections are sent back to us in one communication: please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility.

Offprints The corresponding author, at no cost, will be provided with a personalized link providing 50 days free access to the final published version of the article on ScienceDirect. This link can also be used for sharing via email and social networks. For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. Both corresponding and co-authors may order offprints at any time via Elsevier's WebShop (http://webshop.elsevier.com/myarticleservices/offprints). Authors requiring printed copies of multiple articles may use Elsevier WebShop's 'Create Your Own Book' service to collate multiple articles within a single cover (http://webshop.elsevier.com/myarticleservices/booklets).

Author Inquiries