EFFECTS OF BIPOLAR DISORDER ON INTRINSIC BRAIN NETWORKS

by

DR JONATHAN ALAN STARKE
STRJON008

For the degree Master of Medicine in Psychiatry
at
The University of Cape Town

Supervisors:
Dr Neil Horn, Department of Psychiatry and Mental Health,
University of Cape Town

Prof. Christian Beckmann, Donders Institute, Radboud University, the Netherlands.
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
DECLARATION

I, JONATHAN STARKE, hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university.

I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever.

Signature:

Date: 14.02.2016
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>4</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>5</td>
</tr>
<tr>
<td>List of Tables</td>
<td>6</td>
</tr>
<tr>
<td>List of Figures</td>
<td>6</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>7</td>
</tr>
<tr>
<td>Chapter 1: Introduction and literature review</td>
<td>8</td>
</tr>
<tr>
<td>1.1. Literature search strategy</td>
<td>8</td>
</tr>
<tr>
<td>1.2. Bipolar disorder and its neurobiological underpinnings</td>
<td>8</td>
</tr>
<tr>
<td>1.3. MRI and intrinsic brain networks in BD</td>
<td>11</td>
</tr>
<tr>
<td>1.4. Aims and Objectives</td>
<td>15</td>
</tr>
<tr>
<td>1.5. References</td>
<td>15</td>
</tr>
<tr>
<td>Chapter 2: Publication-ready manuscript</td>
<td>18</td>
</tr>
<tr>
<td>2.1. Introduction</td>
<td>18</td>
</tr>
<tr>
<td>2.2. Methods</td>
<td>21</td>
</tr>
<tr>
<td>2.3. Results</td>
<td>23</td>
</tr>
<tr>
<td>2.4. Discussion</td>
<td>26</td>
</tr>
<tr>
<td>2.5. References</td>
<td>30</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
</tr>
<tr>
<td>1. Technical Appendix: Explanation of Methodology</td>
<td>33</td>
</tr>
<tr>
<td>2. HREC Approval – Original Study (source of data)</td>
<td>36</td>
</tr>
<tr>
<td>3. HREC Approval – New Study</td>
<td>37</td>
</tr>
<tr>
<td>4. FHS Approval of Study Proposal</td>
<td>39</td>
</tr>
<tr>
<td>5. HREC Annual Renewal Document</td>
<td>40</td>
</tr>
<tr>
<td>6. Supervisor supporting letter for title change</td>
<td>41</td>
</tr>
<tr>
<td>7. HREC Approval of title change</td>
<td>42</td>
</tr>
<tr>
<td>8. FHS Approval of title change</td>
<td>43</td>
</tr>
<tr>
<td>9. Patient information sheet and consent form – original study</td>
<td>44</td>
</tr>
<tr>
<td>10. Hospital Anxiety and Depression Scale (Questionnaire)</td>
<td>48</td>
</tr>
<tr>
<td>11. Young Mania Rating Scale (Questionnaire)</td>
<td>49</td>
</tr>
<tr>
<td>12. Journal of Affective Disorders – Instructions to Authors</td>
<td>51</td>
</tr>
</tbody>
</table>
Abstract - Effects of Bipolar Disorder on Intrinsic Brain Networks

Introduction

Bipolar disorder (BD) is a brain network disorder that affects cognitive and emotional functioning, and is associated with prefrontal and/or limbic dysfunction. Functional Magnetic Resonance Imaging (fMRI) allows identification of intrinsic brain networks (IBN), like the default mode network (DMN) and executive control network (ECN), which are consistent with previously established functional and anatomical relationships within the brain. Analysing the functional connectivity (integrity, extent and inter-relationships) of these networks, allows a deeper understanding of brain function in health and disease. In BD, there are functional connectivity changes in the DMN, ECN and cerebellar network (CERN). We evaluate IBN in BD, to explore changes in the functional connectivity between the cerebellum, fronto-cortical and paralimbic regions.

Methods

Data from 14 BD subjects and 10 control subjects was analysed after fMRI. Changes were evaluated in 3 IBN (DMN, ECN and CERN) using an FMRIB Software Library (FSL) pipeline: MELODIC/ICA-AROMA, dual-regression, randomise and Local False Discovery Rate (FDR) to identify changes in functional connectivity bipolar subjects compared to controls.

Results

Subjects with BD showed decreased connectivity between the CERN and a cluster in the right precuneus; and between the ECN and a cluster in the left OFC. There was also increased connectivity between the ECN and a cluster in the left temporal pole. No connectivity changes involving the DMN were identified. Voxels within the clusters were significant at p < 0.05 with local FDR. Peaks within the clusters remained significant after further Bonferroni correction for multiple comparisons (p < 0.017).

Conclusion

The finding of altered functional connectivity in BD, in networks and regions involved in cognitive/emotional processes, highlights its complex neurobiology, and suggests that abnormal connectivity may help to explain the clinical picture. These findings should be replicated with larger samples, but may represent a further advance in understanding the role of functional connectivity in the pathology of BD, and contribute to laying the foundation for functional neuroimaging as a diagnostic tool in psychiatry.
Acknowledgements

Dr Neil Horn (University of Cape Town) was the primary supervisor and made the raw data (already collected prior to the involvement of the candidate) available for analysis. I completed the work described here after registration for the MMed degree. Dr Horn provided day-to-day support, particularly involving interpretation of results, as well as the university procedures relating to the completion of the dissertation. On any research article published from this research project, Dr Horn would be senior (last) author. Prof. Christian Beckmann (Donders Institute, Radboud University, the Netherlands) acted as a technical co-supervisor, and advised extensively at the outset on the software-based analysis approach used for the project. Prof. Beckmann would be a co-author (likely second author) on any published articles resulting from the project. Dr Victoria Ives-Deliperi (Co-PI on the original study from which the data was derived) would be listed as a co-author (likely third author). In addition, Dr Maarten Mennes (Donders Institute, Radboud University, the Netherlands) gave additional technical advice and some input regarding interpretation of results. Though he was not a co-supervisor, consideration would be given to including Dr Mennes as a co-author (likely fourth author) on any published articles resulting from the project, depending on the nature of his further involvement, and after discussion with the supervisor and co-supervisor. The candidate would be the first author on any research article published as a result of this project. I am thankful to my supervisors and Dr Mennes for their ongoing advice and support. I am also very thankful to my wife, Dr Ana Isabel Montoya Saldarriaga, for her kindness and support during the busy period of completing this project.
List of Tables

| Table 1 | Clusters showing functional connectivity differences in bipolar disorder | 24 |

List of Figures

Figure 1	Decreased functional connectivity between ECN and left OFC in bipolar disorder	24
Figure 2	Increased functional connectivity between ECN and left temporal pole in bipolar disorder	25
Figure 3	Decreased functional connectivity between CERN and right precuneus in bipolar disorder	25
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>Anterior Cingulate Cortex</td>
</tr>
<tr>
<td>BD</td>
<td>Bipolar Disorder</td>
</tr>
<tr>
<td>BET</td>
<td>Brain Extraction Tool</td>
</tr>
<tr>
<td>BOLD</td>
<td>Blood Oxygen Level Dependent</td>
</tr>
<tr>
<td>CERN</td>
<td>Cerebellar Network</td>
</tr>
<tr>
<td>DLPFC</td>
<td>Dorsolateral Prefrontal Cortex</td>
</tr>
<tr>
<td>DMN</td>
<td>Default Mode Network</td>
</tr>
<tr>
<td>DSM-IV</td>
<td>Diagnostic and Statistical Manual (4<sup>th</sup> edition)</td>
</tr>
<tr>
<td>DTI</td>
<td>Diffusion Tensor Imaging</td>
</tr>
<tr>
<td>ECN</td>
<td>Executive Control Network</td>
</tr>
<tr>
<td>FDR</td>
<td>False Discovery Rate</td>
</tr>
<tr>
<td>FHS</td>
<td>Faculty of Health Sciences</td>
</tr>
<tr>
<td>fMRI</td>
<td>Functional Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>FMRIB</td>
<td>(Oxford Centre for) Functional Magnetic Resonance Imaging of the Brain</td>
</tr>
<tr>
<td>FSL</td>
<td>FMRIB Software Library</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full Width Half Maximum</td>
</tr>
<tr>
<td>HADS</td>
<td>Hospital Anxiety and Depression Score</td>
</tr>
<tr>
<td>HREC</td>
<td>Human Research Ethics Committee</td>
</tr>
<tr>
<td>IBN</td>
<td>Intrinsic Brain Network/s</td>
</tr>
<tr>
<td>ICA</td>
<td>Independent Components Analysis</td>
</tr>
<tr>
<td>ICA-AROMA</td>
<td>ICA-based Automatic Removal of Motion Artifacts</td>
</tr>
<tr>
<td>MCFLIRT</td>
<td>Motion Correction using FMRIB’s Linear Image registration Tool</td>
</tr>
<tr>
<td>MELODIC</td>
<td>Multivariate Exploratory Linear Decomposition into Independent Components</td>
</tr>
<tr>
<td>MNI</td>
<td>Montreal Neurological Institute</td>
</tr>
<tr>
<td>mPFC</td>
<td>Medial Prefrontal Cortex</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>NI</td>
<td>Network Integrity</td>
</tr>
<tr>
<td>OFC</td>
<td>Orbitofrontal Cortex</td>
</tr>
<tr>
<td>PET</td>
<td>Positron Emission Tomography</td>
</tr>
<tr>
<td>PFC</td>
<td>Prefrontal Cortex</td>
</tr>
<tr>
<td>SCID</td>
<td>Structured Clinical Interview for DSM Disorders</td>
</tr>
<tr>
<td>SGPFc</td>
<td>Sub-genual Prefrontal cortex</td>
</tr>
<tr>
<td>SPECT</td>
<td>Single Photon Emission Computed Tomography</td>
</tr>
<tr>
<td>TE</td>
<td>Echo Time</td>
</tr>
<tr>
<td>TP</td>
<td>Temporal Pole</td>
</tr>
<tr>
<td>TR</td>
<td>Repetition Time</td>
</tr>
<tr>
<td>VLPFC</td>
<td>Ventrolateral Prefrontal Cortex</td>
</tr>
<tr>
<td>YMRS</td>
<td>Young Mania Rating Scale</td>
</tr>
</tbody>
</table>
Chapter 1: Introduction and Literature review

1.1. Literature search strategy

This was not a systematic review. Nevertheless, a structured approach was used in identifying and appraising the literature, as follows:

- Literature searches were performed on the PubMed, PsychINFO and ScienceDirect databases.
- Searches included combinations of the following terms: “bipolar disorder OR bipolar”, “mood disorder OR affective disorder”, “neurobiology OR neurobiological”, “neuroimaging OR brain imaging”, “functional magnetic resonance imaging OR fMRI”, “functional connectivity networks OR intrinsic connectivity networks OR resting state networks OR intrinsic brain networks”, “Default Mode Network OR DMN”, “Executive Control Network OR ECN”, “Cerebellar Network OR CER OR CERN”.
- Of the literature identified using this strategy, priority in selecting articles for further review was given to those which represented original research using fMRI to assess intrinsic brain networks in bipolar disorder. In addition, several review articles which summarized current knowledge on functional neuroimaging in mood disorders, especially bipolar, we selected, as well as review articles which summarized the clinical picture of bipolar, and/or the neurobiological models thought to explain the disorder. Apart from research identified directly through this search strategy, additional articles were identified from the reference lists of selected articles.

1.2. Bipolar disorder and its neurobiological underpinnings

Bipolar disorder (BD) is a potentially disabling mood disorder occurring in about 2.5% of the adult population, which can involve episodes of both mania and depression, with interspersed periods of euthymia or subthreshold mood symptoms. In addition, BD is associated with neuropsychological abnormalities, including executive dysfunction, affective instability and dysregulation, neurovegetative abnormalities, impulsivity/disinhibition and psychosis (Delaloye et al., 2009; Green et
The clinical features of BD fall on a spectrum (Angst et al., 2003), ranging from severe illness with significant functional impairment, to cases in which there is a good recovery and high inter-episodic functioning (MacQueen et al., 2001) – this is important when considering how to apply research done on groups to the situation of any individual case. A number of clinical rating scales are used to evaluate symptoms in BD, including: the Young Mania Rating Scale (YMRS – Young et al., 1978\(^1\)) – a multiple-choice questionnaire used to measure the presence and severity of manic symptoms; and the Hospital Anxiety and Depression Scale (HADS – Zigmond and Snaith, 1983\(^2\)) – a fourteen-item scale measuring the presence and levels of anxiety and depression.

Importantly, neuropsychological impairments and difficulties with emotional regulation may persist even in the euthymic state, particularly involving ongoing problems with attention, working memory, processing speed and response inhibition/impulse control (Goldberg and Chengappa, 2009; Kurtz and Gerraty, 2010; Robinson et al., 2006; Savitz et al., 2005; Torres et al., 2007). These abnormalities suggest that cognitive and anterior limbic brain networks are dysfunctional even in remitted patients, and structural, functional and spectroscopic imaging research is consistent in identifying abnormalities in prefrontal-striatal-thalamic regions and circuits which control complex socio-emotional behaviours, thus helping to explain the clinical picture (Blumberg et al., 2003; Cerullo et al. 2009; Kaladjian et al., 2009; Strakowski et al., 2005).

Neurobiological models of brain dysfunction in BD propose that either a relative loss of prefrontal modulation of subcortical and medial temporal limbic structures may underlie the symptoms, or limbic dysfunction may disrupt cortical inhibition, allowing affective symptoms to manifest (for example in the extreme clinical picture of mania). In support of this, the structural magnetic resonance imaging (MRI) literature (Drevets et al., 2008; Green et al., 2007; Hibar et al., 2014; Strakowski et al., 2005) has shown the following changes in BD: decreased grey matter volume in subregions of the prefrontal cortex, including the sub-genual prefrontal cortex (SGPFC), and anterior cingulate cortex, which have specific roles in

\(^1\) See appendix 11, page 49
\(^2\) See appendix 10, page 48
linking the prefrontal cortex with anterior limbic system structures, and integrating cognitive and emotional information; enlargement of the striatum, which is significant given that prefrontal-striatal-thalamic loops regulate emotional, cognitive and social behaviour which is often seen to be abnormal in BD; changes in the size of the amygdala (both increases and decreases have been reported), a key structure in the limbic system with links to the prefrontal-striatal-thalamic loops, and has a prominent role in the regulation of emotion; and finally, decreased volume of the midline cerebellum which is now increasingly recognized as contributing towards emotion regulation through its strong connections to the limbic system (Schmahmann, 2004; Strakowski et al., 2005; Strick et al., 2009).

Functional imaging research (both task-based and task-free), including positron emission tomography (PET), single photon emission computed tomography (SPECT) and functional MRI (fMRI) (Chen et al., 2011; Drevets et al., 2008; Foland et al., 2008; Green et al., 2007; Strakowski et al., 2005) have, in summary, highlighted the following changes in BD: abnormal activation of the SGPFC (decreased in bipolar depression and increased in mania suggesting a mood state-dependent effect); decreased activation of the orbito-frontal cortex (OFC), increased activation of the anterior cingulate, and both increased and decreased activation in sub regions of prefrontal cortices in the manic state (when cognitive control of mood may be impaired) compared with control subjects. Abnormalities on functional imaging persist even in the euthymic state, though there is some inconsistency in the literature with evidence for both increased and decreased activation of ‘emotional’ brain regions such as the ventrolateral prefrontal cortex (VLPFC). In addition to these cortical abnormalities, mood state-dependent and state-independent functional changes have been observed in the striatum, thalamus, amygdala and cerebellum, which highlight the possible role of these regions in the neurobiology of the condition, though there are once again some conflicting findings presented in the literature which remain to be clarified. Finally, functional studies have demonstrated a disturbed relationship between the PFC and the amygdala and other limbic structures, with decreased PFC control associated with increased limbic activation – a disinhibition which may lead to affective symptoms.
Overall, it is now recognised that while multiple cortical and subcortical brain areas are implicated (including amygdala, thalamus, anterior cingulate cortex - ACC, orbitofrontal cortex - OFC, medial prefrontal cortex - mPFC, dorsolateral prefrontal cortex - DLPFC, striatum, and cerebellum), BD is a problem of dysfunctional brain networks rather than one distinct brain region (Blumberg et al., 2003; Cerullo et al., 2009; Fountoulakis et al., 2008; Green et al., 2007; Strakowski et al., 2005). In attempting to clarify this, Diffusion Tensor Imaging (DTI) studies show decreased fractional anisotropy (a measure of white matter tract integrity) in multiple white matter tracts in BD, suggesting a possible mechanism for disordered structural connectivity across the brain (Nortje et al., 2013). Research exploring functional connections across the brain has provided further important insights.

1.3. fMRI and intrinsic brain networks in BD

Functional magnetic resonance imaging (fMRI) uses the different magnetic properties of oxy- and deoxyhaemoglobin to record changes in blood flow as a marker of neural activity – the Blood Oxygen Level Dependent or ‘BOLD’ signal – and is a useful tool for inferring neural activity (Malhi and Lagopoulos, 2008).

While the majority of fMRI studies continue to be task/activity based (Gusnard et al., 2001), there is growing interest in what the brain is doing in the absence of a task. This was originally studied with the brain in a “resting” state (awake but task-free), and the activity recorded by fMRI in this way is now recognised as being consistent, and structurally organised (Fox and Raichle, 2007). Subsequently, a consistent set of brain networks have been identified comprising areas that correspond temporally in their background fMRI activity, and mirror previously established functional and anatomical relationships within the brain (Beckmann et al., 2005; Damoiseaux et al., 2006). These networks are referred to as resting-state networks, intrinsic brain networks or functional connectivity networks, depending on the experimental approach used. Analysing the fluctuating integrity

3 PLEASE NOTE: The generic theoretical overview of fMRI and intrinsic brain networks presented here is equivalent to that described in the MSc thesis titled “Modulation of Resting State Networks by Fasting and Ghrelin: An fMRI study” submitted by Dr Jonathan Starke (myself) to Roehampton University in 2011 (unpublished but available in university library).
and spatial extent of these networks and the dynamic inter-relationships between them, allows a deeper understanding of brain function. A number of methods are used for identifying intrinsic brain networks, with Independent Components Analysis (ICA) – a computationally intensive and data-driven technique – now increasingly recognized as a robust, objective approach because it does not rely on a priori assumptions about the anatomical components of or relationships with and between networks, in contrast to alternatives such as seed-based approaches which do require these assumptions (Beckmann et al., 2005; Cole et al., 2010).

Whilst initially identified only at rest, activity within these networks has now been revealed to persist during and be modulated by a task or stimulus (Smith et al., 2009) – hence the terms functional connectivity or intrinsic brain networks (IBN). Taking this one step further, it is recognised that activity within the networks is predictive for activity in those same brain areas in response to tasks or stimuli which are presented subsequently (De Luca et al., 2005; Sadaghiani et al., 2010; Vincent at al., 2006). This suggests that the integrity of the networks in a particular group of participants or under a particular set of conditions (e.g. depressed vs. euthymic vs. manic BD subjects), is likely a key source of information for understanding the neurobiological underpinnings of behaviour (Cole at al., 2010), and the clinical picture of psychiatric illness. As a result, these networks have clarified aspects of brain function and provided diagnostic and prognostic insights into a number of diseases including Alzheimer’s disease, autism, depression and schizophrenia, and are now increasingly used in the study of BD (Fox and Raichle, 2007; Mamah et al., 2013; Meda et al., 2012).

Of particular interest in the context of BD, are the ‘Executive Control network’ (ECN) incorporating anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC) which subserve executive functioning, and the ‘Default Mode Network’ (DMN) incorporating the precuneus, posterior cingulate and medial prefrontal cortex (mPFC) which mediate random episodic silent thought, reflections on self and aspects of consciousness) (Damoiseaux et al., 2006). These networks incorporate several of the anatomical areas already identified as abnormal or dysfunctional in BD, suggesting that studying them using both task-based and task-free approaches may be of value in understanding the disorder. In addition, the
cerebellar network (CERN) is of increasing interest in BD given the role the
cerebellum is now thought to play in cognitive and emotional regulation (Bellebaum
and Daum, 2007; Koziol et al., 2012; Schmahmann, 2004; Strick et al., 2009) and
research identifying abnormalities in the cerebellum in BD (Strakowski et al., 2005;
Phillips et al., 2015).

So far, network connectivity research in BD subjects using an oddball task has
revealed changes within the ECN, with evidence of increased connectivity in the area
of the DLPFC and ACC compared to control subjects (Calhoun et al., 2012). Regarding
the DMN, the same researchers reported decreased connectivity in the precuneus
and posterior cingulate, as well as areas of reduced connectivity between the DMN
and limbic regions in the temporal lobes (Calhoun et al., 2012).

When the DMN was analysed in the resting state, additional differences
emerged between depressed BD subjects and control subjects, specifically increased
regional homogeneity (a measure of connectivity) in the left medial frontal gyrus and
left inferior parietal lobe, which the authors interpreted as representing neuronal
hyperactivity in those regions in BD, which they thought may represent a
neuroimaging biomarker specific to bipolar depression (Liu et al., 2012). In contrast,
in a study which examined changes in the DMN in BD subjects in the manic state,
there was reduced DMN connectivity in the ventral mPFC in BD (Öngür et al., 2010).
Chai et al. (2011) also demonstrated altered functional connectivity in manic BD
subjects, finding a positive correlation in activity between the mPFC and
ventrolateral PFC (VLPFC) as opposed to the normal antecorrelation between these
areas seen in control subjects. Given the crucial role of these prefrontal regions in
cognitive and executive functioning, this abnormal relationship may help to explain
the neuropsychological impairments characteristic of BD.

Apart from these cortical changes, Mamah et al. (2013) also identified
changes in functional connectivity involving the cerebellum in BD, showing
decreased connectivity between the cerebellum and a network incorporating the
cingulate, as well as between the cerebellum and a ‘salience’ network incorporating
the anterior insula and anterior prefrontal cortex. These connectivity changes were
significant in that they predicted the presence of psychotic symptoms within the
bipolar group, highlighting the contribution of this imaging approach to developing
our understanding of the relationship between clinical features and the underlying neurobiological abnormalities in BD. Furthermore, given the evidence of cerebellar contributions to a number of functional connectivity networks, including those involved with executive functioning and salience (Habas et al., 2009), the research by Mamah et al. (2013) emphasizes the importance of including analysis of the cerebellum in neuroimaging studies in BD.

Importantly, given persisting neuropsychological abnormalities even when BD subjects are not depressed or manic (Torres et al., 2007), abnormal functional connectivity has also been documented in the euthymic state, with evidence of resting-state functional hyperconnectivity between the right amygdala and right VLPFC which was partially mediated by activity in the ACC (Torrisi et al., 2013), increased connectivity within the DMN in the right hippocampus and posterior cingulate (Vargas et al., 2014), and increased connectivity between a meso/paralimbic network and the right frontoparietal network (Lois et al., 2014). These findings are valuable in that they may represent trait-related biomarkers of BD and point to the possibility of functional neuroimaging as a diagnostic tool within psychiatry (Phillips and Vieta, 2007; Torrisi et al., 2013). Additional functional connectivity research in a heterogeneous group of BD subjects identified what appears to be a similar pathophysiological feature of BD, specifically increased connectivity between fronto-temporal and paralimbic networks involved in cognitive and emotional processing (Meda et al., 2012). This connectivity pattern was only present in BD subjects, which allowed them to be distinguished from both control subjects and subjects with schizophrenia, again highlighting the potential value of this imaging approach for diagnosis.

Taking into account the clinical abnormalities present in BD, the brain regions implicated and the usefulness of resting state and functional connectivity analysis in exploring the dynamics in networks incorporating these regions, it is valuable to further investigate network change in BD so as to deepen understanding of the underlying neurobiology of the disorder, and help to clarify current gaps and inconsistencies in the existing research. This will contribute towards a solid foundation for new diagnostic and treatment approaches for this common, potentially disabling condition.
1.4. Aims and Objectives

This project seeks to address the questions: what differences exist in the IBN of subjects with BD 1 compared with control subjects? And aims to clarify the following hypotheses: that functional connectivity between IBN incorporating prefrontal cortical regions (such as the ECN and DMN) and paralimbic brain regions will be deceased in BD subjects compared with healthy subjects, and that there will be decreased functional connectivity between the CERN and regions involved in cognitive and emotional processing.

As uncertainty remains surrounding the underlying neurobiology of BD and IBN analysis has proven valuable in understanding other psychiatric disorders, this project has the potential to uncover valuable insights. Particularly, as this is a secondary analysis, a chief benefit will be the use of the results for hypothesis generation to assist with future, larger studies specifically designed to address the issues of interest. In addition, IBN research is a relatively new field in South Africa, so this project has the additional objective of expanding knowledge, experience and interest in this exciting area.

1.5. References

Chapter 2: Publication-ready manuscript

Effects of Bipolar Disorder on Intrinsic Brain Networks
Starke, J.A.1; Beckmann, C.F.2; Ives-Deliperi, V.1; Horn, N.1
1. Department of Psychiatry and Mental Health, University of Cape Town, South Africa
2. Donders Institute, Radboud University, the Netherlands

Corresponding Author:
Dr. Jonathan Starke
+21 21 4049111 / +27 734627297
joestarke@gmail.com

2.1. INTRODUCTION

Bipolar disorder and its neurobiological underpinnings

Bipolar disorder (BD) is a common mood disorder marked by episodes of mania and depression, with interspersed euthymia. It is diagnosed clinically, with the defining psychopathological feature being mania. Apart from disturbances in mood, neuropsychological abnormalities occur, including impaired attention, executive dysfunction, affective dysregulation, and impulsivity/disinhibition which may persist during euthymia (Delaloye et al., 2009; Green et al., 2007; Goldberg and Chengappa, 2009; Kurtz and Gerraty, 2010; Robinson et al., 2006; Savitz et al., 2005; Strakowski et al., 2005; Torres et al., 2007).

Functional Magnetic Resonance Imaging (fMRI), has been particularly valuable for investigating the neurobiology of BD, revealing changes in brain activity in areas responsible for cognitive and emotional regulation, including the prefrontal cortex (PFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), precuneus and cerebellum, including in the euthymic state (Chen et al., 2011; Drevets et al., 2008; Foland et al., 2008; Green et al., 2007; Houenou et al., 2011; Strakowski et al., 2005). In addition, functional imaging has highlighted reduced PFC control over the amygdala and other limbic structures (Chen et al., 2011; Foland et al. 2008). Overall, the literature indicates that while multiple cortical and subcortical areas are involved, BD is a problem of dysfunctional connections and interactions between these areas (Blumberg et al., 2003; Cerullo et al., 2009; Fountoulakis et al., 2008;...
As a means to explain this, Diffusion Tensor Imaging (DTI) studies show reduced fractional anisotropy (a measure of white matter tract integrity) in multiple tracts in BD, suggesting a plausible mechanism for structural dysconnectivity across the brain (Nortje et al., 2013). More relevant in the context of our study, however, are the insights emerging from intrinsic brain network research.

fMRI and intrinsic brain networks

Understanding functional *relationships* in the brain is particularly relevant for psychiatry. Using fMRI, intrinsic brain networks have been identified comprising spatially distributed areas that correspond temporally in their activity, and mirror established functional and anatomical relationships (Beckmann et al., 2005; Biswal et al., 1995; Damoiseaux et al., 2006; Fox and Raichle, 2007). These networks are identified using various methods, with Independent Components Analysis (ICA) recognized as a robust, objective approach (Beckmann et al. 2005; Cole et al., 2010). Though initially identified in the “resting state” (awake but task-free), it is clear that intrinsic network activity persists during tasks or stimuli (Smith et al. 2009). We use the term *intrinsic brain networks* (IBN) to refer to established networks described in the literature, and *functional connectivity* to refer in a general way to functional relationships across the brain, even when not within a known network. We also use *network integrity* (NI) to indicate how cohesive a network is, or to what extent a voxel or cluster coheres to the activity of a network. As such, NI is a variable *measure of* functional connectivity.

The ‘Executive Control network’ (ECN – incorporating ACC and dorsolateral PFC and sub serving executive functioning) and the ‘Default Mode Network’ (DMN – incorporating the precuneus, posterior cingulate and medial PFC and mediating episodic silent thought, self-awareness and aspects of consciousness) (Damoiseaux et al., 2006), are frequently studied, and include anatomical areas that are dysfunctional in BD. A cerebellar network (CERN) is also consistently identified, and

5 PLEASE NOTE: The generic theoretical overview of fMRI and intrinsic brain networks presented here is similar to that described in the MSc thesis titled “Modulation of Resting State Networks by Fasting and Ghrelin: An fMRI study” submitted by Dr Jonathan Starke (myself) to Roehampton University in 2011 (unpublished but available in university library).
is significant given the cerebellum’s role in cognitive and emotional regulation (Bellebaum and Daum, 2007; Koziol et al., 2012; Schmahmann, 2004; Strick et al., 2009), and research identifying cerebellar abnormalities in BD (Strakowski et al., 2005; Phillips et al., 2015). Analysing the fluctuating integrity, spatial extent and activation time-courses of IBN, and their dynamic inter-relationships gives key insights into the neurobiology of behaviour and psychiatric illness, including BD (Cole et al., 2010, Fox and Raichle, 2007; Mamah et al., 2013; Meda et al., 2012).

Functional connectivity in BD

IBN research in BD reveals increased connectivity within the ECN in the dorsolateral PFC (DLPFC) and ACC, and decreased connectivity within the DMN in the precuneus and posterior cingulate (Calhoun et al., 2012). There is also neuronal hyperactivity within the DMN in the left medial frontal gyrus and left inferior parietal lobe in BD depression, which could be a neuroimaging biomarker of bipolar depression (Liu et al., 2012). Conversely, in manic subjects, DMN connectivity is reduced in the ventromedial PFC (Öngür et al., 2010).

There are also functional connectivity changes between different areas and networks, including reduced connectivity between the DMN and temporal limbic structures (Calhoun et al., 2012), reduced connectivity between the CERN and networks incorporating the cingulate, anterior insula and anterior PFC (Mamah et al., 2013), and a positive correlation in activity between the medial PFC (mPFC) and ventrolateral PFC (VLPFC), as opposed to their usual antecorrelation (Chai et al. (2011). These changes appear to have clinical relevance (Mamah et al., 2013), which is understandable given the role of these regions in cognitive-emotional functioning. Further evidence of the value of this imaging approach comes from research in a heterogeneous BD group (including manic, depressed and euthymic subjects) showing increased connectivity between fronto-temporal and paralimbic networks involved in cognitive-emotional processing, a pattern allowing BD subjects to be distinguished from control subjects and those with schizophrenia (Meda et al., 2012).

Importantly, given persisting neuropsychological abnormalities when BD subjects are euthymic (Torres et al., 2007), abnormal functional connectivity remains
evident in euthymia. Vargas et al. (2014) found increased connectivity within the DMN in the right hippocampus and posterior cingulate, while (Lois et al., 2014) report increased connectivity between a meso/paralimbic network and the right frontoparietal network, and Torrisi et al. (2013) found resting-state hyperconnectivity between the right amygdala and right VLPFC, which was mediated by ACC activity. These findings may represent trait-related biomarkers of BD and point to the possibility of functional neuroimaging as a diagnostic tool (Phillips and Vieta, 2007; Torrisi et al., 2013).

Nevertheless, in their systematic review of the resting-state fMRI literature in BD, which summarised research using a variety of methodologies including ICA-based IBN analysis, Vargas et al. (2013) noted that while there was evidence for theories of BD that implicate dysconnectivity between frontal cortical areas (such as the PFC and ACC) and limbic areas (such as the amygdala), there was considerable heterogeneity of findings, making it difficult to come to any final conclusions. We therefore compared euthymic BD 1 subjects with controls to clarify IBN differences, specifically looking for functional connectivity changes between IBN incorporating prefrontal/cortical regions (such as the ECN and DMN) and paralimbic brain regions, and between the CERN and regions involved in cognitive and emotional processing, with the goal of confirming the presence and nature of trait-related functional neuroimaging biomarkers of BD 1.

2.2. METHODS

Study sample: 15 euthymic subjects with Bipolar 1 Disorder (13 females, age range 18 – 49yrs) and 10 control subjects (6 Females, age range 18 – 50yrs) were recruited as part of a larger study (Ives-Deliperi et al., 2013). For BD subjects, the diagnosis of BD 1 was confirmed using the Structured Clinical Interview for DSM-IV Disorders (First et al., 1996), and current euthymia (mild or sub-threshold symptoms only) was determined by Young Mania Rating Scale (YMRS – Young et al., 1978) and Hospital Anxiety and Depression Scale (HADS – Zigmond and Snaith 1983) scores of < 14 at the time of scanning.

6 See appendix 1, page 33 for a more detailed explanation of the theory of this methodology.
Scanning procedure: As part of a larger scan protocol which included structural MRI, task-related fMRI, and diffusion tensor imaging, all 25 subjects underwent a 6-minute ‘task-free’ period of fMRI scanning in which they were instructed to “*open awareness to the breath and present-moment bodily sensations, thoughts and emotions without judging or reacting to these mental and physical events*”. The functional scanning parameters were as follows: using a Siemens 3T Allegra MRI scanner, T2-weighted gradient echo, echo planar imaging sequence (TR = 2000 ms, TE = 30 ms, 34 interleaved slices, 3 mm thick, gap 0.9 mm, matrix size 64 x 64, resolution 3.125 x 3.125 x 3 mm³).

Image pre-processing (FMRIB, 2012; Jenkinson et al., 2012): Initial pre-processing was done within the Multivariate Exploratory Linear Decomposition into Independent Components (MELODIC) platform from the Functional Magnetic Imaging of the Brain Software Library (FSL) (Beckmann and Smith, 2004). Steps comprised: motion correction with MCFLIRT; brain extraction with BET; spatial smoothing at 6mm FWHM; intensity normalisation; and registration from functional space directly to a standard space brain (MNI152_T1_2mm_brain) – as appropriate high resolution individual structural scans were not available for all subjects; resampling resolution 4mm. Further identification and removal of motion related artefacts was performed using an ICA-based Automatic Removal of Motion Artefacts (ICA-AROMA) approach (Pruim et al. 2015), which included high-pass temporal filtering (100s cut-off). At this point, one BD subject was removed due to excessive head motion (mean absolute displacement = 2.06mm), leaving 14 subjects for further analysis.

Image analysis procedure (FMRIB, 2012; Jenkinson et al., 2012): We evaluated differences between BD subjects and controls in 3 IBN (DMN, ECN, and CERN) using an FSL pipeline: Dual-regression (using standard ICA-derived IBN templates from the literature – Beckmann et al., 2009; Smith et al., 2009) to identify subject-specific activation time courses and spatial maps containing network integrity (NI) values for each voxel, for each of the 3 networks; followed by Randomise (Hayasaka and Nichols, 2003; Nichols and Holmes, 2002; Winkler et al., 2014) non-parametric
permutation testing to identify brain areas with different network integrity in BD subjects compared with controls for each of the 3 networks (5000 permutations with de-meaning, MNI152_T1_2mm_brain.nii.gz used as mask, output in the form of tstat images). Post-hoc local False Discovery Rate (FDR – Genovese et al., 2002) correction for multiple comparisons was then performed within MELODIC on the tstat images derived from Randomise (mmthresh=0.05). Significant difference clusters were initially identified as those containing voxels with $p<0.05$ in the probability map output from FDR. Subsequently, further Bonferroni correction was performed to account for comparisons having been done for 3 networks, with $p = 0.017$ regarded as the final threshold for significance. Anatomical areas were evaluated in accordance with the Harvard-Oxford Cortical and Subcortical Structural Atlases in fslview.

 Ethics: All subjects signed informed consent for the original study, and all data was handled confidentially. Approval for the original study was granted by the Human Research Ethics Committee at the University of Cape Town (HREC Ref 078/2009). Additional approval was given for this post-hoc data analysis (HREC Ref 219/2014). No further patient contact or additional data collection was necessary as part of the new study.

2.3. RESULTS

For brain regions within the spatial extent of the 3 IBN analysed, there were no differences in NI. However, for the ECN and CERN, 3 significant clusters, which lay outside the spatial extent of the original networks, did show differences in functional connectivity in BD subjects compared to controls (Figures 1 – 3). For the ECN, there was decreased connectivity between the network as a whole and a cluster in the left OFC (Figure 1), and increased connectivity between the network and a cluster in the left temporal pole (Figure 2). For the CERN, there was decreased connectivity between the network as a whole and a cluster in the right precuneus (Figure 3). See Table 1 for further details of these clusters. There were no significant findings

7 Please appendices 2, 3, and 9 for details of information and consent forms and ethics approval
involving the DMN. The voxels showing significant change survived FDR correction for multiple comparisons across the brain (p < 0.05). After additional Bonferroni correction of the p-value to account for comparisons involving 3 networks, the peaks within each of the clusters remained significant (p < 0.017).

Table 1: Clusters showing functional connectivity differences in BD

<table>
<thead>
<tr>
<th>Details of cluster</th>
<th>Peak Voxel Coordinates X, Y, Z (mm MNI Space)</th>
<th>Mean zstat of voxels within clusters</th>
<th>Size of cluster (No. of 2x2mm voxels)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FDR correction only (p < 0.05)</td>
<td>FDR and Bonferroni correction (p < 0.017)</td>
</tr>
<tr>
<td>Decreased connectivity btw. ECN and left OFC</td>
<td>-10, 14, -24</td>
<td>-5.62</td>
<td>14</td>
</tr>
<tr>
<td>Increased connectivity btw. ECN and left temporal Pole</td>
<td>-26, 4, -32</td>
<td>+4.95</td>
<td>14</td>
</tr>
<tr>
<td>Decreased connectivity btw. CERN and right precuneus</td>
<td>12, -42, 46</td>
<td>-5.13</td>
<td>45</td>
</tr>
</tbody>
</table>

BD = bipolar disorder; CERN = Cerebellar network; ECN = executive control network, FDR = false discovery rate; MNI = Montreal Neurological Institute

Figure 1: Decreased functional connectivity between ECN and left OFC in bipolar disorder

The ECN template (zstat image) shown in greyscale. The area of decreased connectivity between the ECN and left OFC is in blue. The cluster is a zstat image derived from FDR correction of randomise-based comparison. Colour bar shows zstat range. All voxels in the cluster are significant at the p < .05 level using FDR. Images in radiological orientation. Background is MNI152 2mm brain, co-ordinates in mm of MNI space.
Figure 2: Increased functional connectivity between ECN and left temporal pole in bipolar disorder

The ECN template (zstat image) shown in greyscale. The area of **increased connectivity between the ECN and left temporal pole is in orange-yellow**. The cluster is a zstat image derived from FDR correction of randomise-based comparison. Colour bar shows zstat range. All voxels in the cluster are significant at the p < .05 level using FDR. Images in radiological orientation. Background is MNI152 2mm brain, co-ordinates in mm of MNI space.

Figure 3: Decreased functional connectivity between CERN and right precuneus in bipolar disorder

The CERN template (zstat image) is shown in greyscale. The area of **decreased connectivity between the CERN and right precuneus is in blue**. The cluster is a zstat image derived from FDR correction of randomise-based comparison. Colourbar shows zstat range. All voxels in the cluster are significant at the p < .05 level using FDR. Images in radiological orientation. Background is MNI152 2mm brain, co-ordinates in mm of MNI space.
2.4. DISCUSSION

The analysis of functional connectivity has already provided valuable insights into the neurobiology of BD (Mamah et al., 2013; Meda et al., 2012; Vargas et al., 2014). Our exploration of network changes in a group of euthymic BD 1 subjects adds novel findings to this existing research. Using a whole brain analysis, we show significantly decreased connectivity between the ECN and the left OFC, increased connectivity between the ECN and left temporal pole (TP), and decreased connectivity between the CERN and the right precuneus.

The ECN incorporates brain regions responsible for executive functioning (including planning, problem solving and response inhibition – Damoiseaux et al., 2006; Smith et al., 2009), while the OFC – which is often considered part of the ‘extended’ limbic system because of its extensive connections with the amygdala and cingulate – is responsible for integrating and regulating emotional information and responses, as well as salience processing (Altshuler et al., 2008; Torrisi et al., 2013). Given that emotional dysregulation is a frequent clinical feature of BD (Green et al., 2007), our finding of significantly decreased functional connectivity between the ECN and left OFC may help to explain the clinical picture by demonstrating a possible mechanism for impaired executive control of the limbic system. There is existing evidence for decreased OFC activity in BD (Altshuler et al. 2008; Strakowski et al., 2005), as well disruption in connectivity between the OFC and amygdala (Kanske et al., 2015), though as this research was task-based, it is not directly comparable with our own.

Though other reports of dysconnectivity between the ECN and OFC in euthymic BD subjects could not be found, increased functional connectivity between fronto-temporal and other paralimbic regions has been reported (Lois et al. 2014), as well hyperconnectivity between the right amygdala and right VLPFC (Torrisi et al., 2013). The fact that our findings differ from these other researchers is likely the result of differences in methodological approach, with Lois et al. 2014 focusing on inter-network changes as opposed to the whole-brain IBN-based approach that we used. Torrisi et al. (2013) on the other hand, based their analysis on predefined anatomical nodes, rather than ICA-derived IBN. It is also important to note that the
area of the OFC in which we found significant change is recognised as difficult to image accurately with fMRI due to 2 important confounding factors, firstly its proximity to the sphenoid sinus which can result in magnetic field inhomogeneities and signal dropout (Weiskopf et al., 2007), and secondly its proximity to the edge of the brain which increases the likelihood of motion-related artefact. While our established pre-processing approach, in particular our use of ICA-AROMA to address issues related to motion (Pruim et al., 2015), was an attempt to control for these issues, this finding should nevertheless be treated as preliminary, pending more extensive confirmation.

Though its precise functions are still the subject of some debate (Pascual et al., 2013), the temporal pole may have a role in emotional processing, specifically in social-emotional cognition, as a result of its dense connections to structures such as the amygdala, hippocampus, PFC, and fusiform gyrus (Wong and Gallate, 2012). There is also evidence that damage to the TP can manifest with mood dysregulation in a pattern equivalent to rapid cycling bipolar disorder, suggesting it may have a role in the underlying neurobiology of the condition (Murai and Fujimoto, 2003). Functional connectivity changes specifically involving the temporal pole in euthymic BD subjects have not previously been described in the literature, though in their meta-analysis of fMRI changes in BD, Chen et al., (2011) did find increased activation in the superior temporal gyrus. In addition, Mikawa et al., (2015), using a near-infrared spectroscopy approach in a task-based paradigm, reported significantly smaller increases in oxy-haemoglobin in bilateral temporal areas in BD. These studies are not directly comparable with our own due to significant differences in methodology, but they do indicate the likelihood of temporal abnormalities in BD.

Furthermore, in their detailed resting-state functional connectivity analysis of the temporal pole in normal subjects, Pascual et al., (2013) used an anatomical seed closely approximating our own significant cluster in MNI space to show extensive connectivity between the TP and limbic structures including the amygdala, OFC, nucleus accumbens and cingulate cortex. This highlights the potential relevance of our findings, as increased connectivity between the ECN and TP, and thus the wider limbic system, may help to explain altered socioaffective expression in BD, such as the ‘pro-social’ behaviour which may occur, particularly in the manic state.
Due to the relative lack of functional connectivity research in euthymic bipolar 1 subjects, differences in study samples and methodological approaches used, and discrepancies amongst results that have been reported, it is difficult to come to any final conclusions. Nevertheless, our findings of altered connectivity between the ECN, left OFC and left TP appear consistent with models of BD which propose that a disruption in the relationship between executive areas (such as the prefrontal cortex) and limbic areas (including the temporal lobes and OFC) may underlie the clinical picture of BD (Chen et al., 2011; Folland et al., 2008; Green et al., 2007; Strakowski et al., 2005).

Our finding of decreased connectivity between the CERN and the right precuneus was our most robust result in terms of the size of the significant cluster. The cerebellum has a key role in prediction and error detection (Bellebaum and Daum, 2007), and while this has usually been appreciated in the context of motor movement, increasing evidence suggests it plays a similar role in modulating executive functioning and emotional processes (Bellebaum and Daum, 2007; Koziol et al., 2012; Schmahmann, 2004). The precuneus, on the other hand, is densely connected to the rest of the cortex and functions as a hub for cognitive integration (Cavanna, 2006). In their meta-analysis of functional imaging research related to emotional processing in BD, Houenou et al., (2011) identified reduced activation in both the right cerebellum and right precuneus in euthymic BD subjects, while in a similar meta-analysis, Chen et al., (2011) found areas of both increased and decreased cerebellar activation in BD, though this was not specific to euthymic subjects. While these other findings were not based on functional connectivity analysis, they do indicate that the cerebellum and precuneus are likely important in the neurobiology of BD. Using a functional connectivity approach in normal subjects, others have demonstrated the contribution of the cerebellum to widely distributed IBN, including those encompassing the precuneus (Habas et al., 2009). Given the wide connectivity of both the cerebellum and precuneus with the rest of the brain (including multiple areas involved in cognitive and emotional processing), decreased connectivity between the CERN and the precuneus in BD may be important in explaining the diverse clinical picture. However, as this is a novel finding, additional research is needed to confirm and clarify its significance.
The fact that we did not find changes involving the DMN differs from what has been reported by others (Calhoun et al., 2012; Vargas et al., 2014). While Calhoun et al. (2012) used a task-based approach in a group of subjects who were not uniformly euthymic – making direct comparison with our results problematic – Vargas et al. (2014), used a very similar methodological approach to our own, though not the same IBN templates, which may in part explain the discrepancy. More importantly though, differing findings between similar studies may indicate that the true picture is not yet certain, and that further work is needed for clarity.

Our study had limitations. As with similar studies, our sample size was small, which increases the likelihood for false positive findings. Nevertheless, our ICA-based analysis approach is well established for robustly identifying functional connectivity changes (Beckmann and Smith, 2004), and our use of ICA-AROMA to further account for motion artefact, represents an advancement over prior methodologies (Pruim et al., 2015). In addition our significant clusters, while small, survived comprehensive correction for multiple comparisons both across the brain (Genovese et al., 2002), and the 3 networks we explored. Finally, our study sample comprised a clearly defined group of euthymic bipolar 1 subjects, which adds a specificity to our findings that is absent from research on heterogeneous samples.

Taken together, our findings point to altered functional connectivity between networks and regions involved in cognitive/emotional processes, specifically dysconnectivity between cortical control and extended limbic system structures, and between centres responsible for prediction/error-detection and cognitive integration. This is valuable in shedding further light on the neurobiology of BD, as well as helping to explain the clinical picture. Our findings confirm other research, as well as supporting current theoretical models of BD, thus re-enforcing the value of brain network analysis as a tool in psychiatric research. It is important to note that similar functional connectivity changes in cortical and subcortical areas and networks have been reported in other psychiatric disorders, particularly schizophrenia (Mamah et al., 2013; Meda et al., 2012). This is consistent with the more generalised overlap in genetic and neurobiological features of BD and schizophrenia, which is currently the focus of intensive research (Cross-Disorder Group of the Psychiatric Genomics Consortium, 2013; Redpath et al., 2013).
appear to be functional connectivity differences between the 2 disorders (Mamah et al., 2013; Meda et al., 2012), the extent to which our findings represent changes unique to BD remains to be confirmed, as we have not made comparisons with a schizophrenia sample. As such, our findings should be treated as preliminary, but as data accumulates and this approach is refined and standardised, reliable functional neuroimaging biomarkers specific to BD will be increasingly established, and the possibility of functional connectivity analysis as an adjunct to clinical assessment in psychiatric diagnosis will be brought ever closer (Phillips and Vieta, 2007). Future research with larger datasets will clarify the nature and extent of network changes within frontal executive networks, limbic networks, and cerebellar networks, as well as any changes in the dynamic relationships that exist between them, and how these findings relate to clinical measures.

2.5. REFERENCES

Cross-Disorder Group of the Psychiatric Genomics Consortium, 2013. Genetic relationships between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics, 45, 984-994, doi:10.1038/ng.2711

Green, M.J., Cahill, C.M., Malhi, G.S., 2007. The cognitive and neurophysiological basis of emotion dysregulation in bipolar disorder. J. Affect. Disord. 103, 29–42. doi:10.1016/j.jad.2007.01.024

Redpath, H. L., Cooper, D., Lawrie, S. M., 2013. Imaging Symptoms and Syndromes: Similarities and Differences Between Schizophrenia and Bipolar Disorder. Biological Psychiatry, 73, 495-496

Technical appendix: Theoretical aspects of Methodology

1. **Independent Components Analysis (ICA)** (Beckmann and Smith 2004; Beckmann et al. 2009; Cole, Smith and Beckmann 2010; FMRIB: Brainmaps and RSNs; Smith et al. 2009)

ICA is a computational process whereby a signal (data) can be broken up and separated out into the multiple subcomponents which have combined to produce it. ICA identifies maximally independent components of the total signal, so they can then be used for further analysis. In addition, components which represent ‘noise’ within the data can be accounted for to minimize the confounding effect of noise on later analysis – this is of particular value in fMRI which is vulnerable to several sources of noise, especially physiological events (like the breath cycle and pulse beat) and head motion. ICA has proven especially useful in task-free fMRI as a means to identify and characterize the intrinsic brain networks (IBN) which exist amongst the components identified by ICA. The IBN templates we used as the starting point for our analysis were derived using ICA using the following process.

1st: Individual data for each participant - comprising the BOLD signal (activity) measured in each voxel at each point in time - is concatenated (joined into one large data set) = A

2nd: ICA splits the total data for the group into a number of maximally independent sub-components (including IBN), presenting these in two ways for the group as a whole:
- As a list of time courses [B] for each component (i.e. what the group-level activity is within each component at each point in time) - used directly in later analysis.
- As a collection of group-level spatial maps [C] showing the voxels comprising each component. **IBN templates are then identified from amongst** these and fed into **Dual Regression**. (Image from Beckmann et al. 2009)

2. **Dual Regression** (Beckmann et al. 2009; Cole, Smith and Beckmann 2010; FMRIB 2012; Zuo et al 2010)

The group spatial maps for the IBN identified using ICA are then individualized for each subject in a two-stage process call **Dual Regression**. The data derived in this way forms the basis for comparisons between different scanning sessions in the same subject, or between different groups of subjects.

1st regression: each participant’s data [A] is “probed” with the **group-level spatial maps** [B] derived from ICA (in our case standard network templates) to extract **individual time courses** [C] for each component (i.e. what the activity level is at each point in time in each individual **within each of the network templates**)

(Image from Beckmann et al. 2009)
Randomise has a built-in method for controlling for multiple comparisons. As a result, each voxel is assigned a value which reflects the strength of its association with the network as a whole (i.e. how closely the activity in each voxel mirrors the activity within the individualised spatial map as a whole). This value is the Network integrity, which is then used for comparisons between subjects and groups in Randomise. (Image from Beckmann et al. 2009)

3. Randomise (Hayasaka and Nichols 2003; Nichols and Holmes 2001; Smith 2004; Winkler et al. 2014)

The images generated by fMRI, which are used for comparison between different conditions, groups and subjects are prepared for further analysis by converting them into statistical maps of the brain. Each voxel within these maps is assigned a value which quantifies the experimental effect at that location. In task-based fMRI, the timing of repeated task/stimulus ‘blocks’ is precisely controlled. BOLD activity during the periods in-between tasks represents the ‘null’ condition, and this can be compared with the BOLD response during task blocks. The degree of statistical significance of the association between the task/stimulus and the BOLD response in comparison to what is happening during the null condition can then be determined. If there is statistical evidence of a sufficient relationship, it can be concluded that the task is causing this response, and the null hypothesis (that there is no difference or effect as a result of the task) can be rejected.

In task-free/ ‘resting-state’ analysis, this approach cannot be used as there is no task-related timing sequence and no null condition against which the BOLD response can be compared. The ICA and Dual Regression steps already described are the first part of handling this difficulty – by separating valuable signal from noise within the BOLD data, and generating subject-specific data for comparison. Randomise multiple permutation testing is the final step. The basis of testing statistical significance with randomisation is the generation of a hypothetical null distribution for the data (i.e. how the data would look if the null hypothesis was true and there was no effect of the experimental conditions).

Randomise achieves this by first assuming that the null hypothesis is true, and that there is no significant effect. If this were the case, then the arrangement or separation of data points between groups would be arbitrary, as whatever the distribution, the result would be the same, i.e. no significant effect. It then runs multiple permutations of the data along these lines by randomly switching the arrangement of data points, and by repeating this switching multiple times, a null distribution of the data emerges. The actual distribution of the data is then compared with this null distribution using a General Linear Model, which specifies the comparisons of interest, and if there is a significant difference, then the null hypothesis can be rejected and it can be concluded that there is an effect of the experimental conditions. This effect is quantified as a statistical value (tstat) assigned to each voxel in the output images.

In addition, Randomise has a built-in method for controlling for multiple comparisons – an important problem which can result in false positive results in fMRI research given the large number of voxels and hence the large number of comparisons involved in any analysis. The final output of Randomise therefore includes family-wise error (FWE) corrected statistical images containing p-values at each voxel, which can then be used to determine the final significance of the findings.

4. False Discovery Rate (Genovese, Lazar and Nichols 2002)

While the FWE correction performed by Randomise as just described is robust and widely used, it has been argued that this approach may in fact be too stringent, and may result in false negative findings. The False Discovery Rate (FDR) method is increasingly used as an alternative, especially when the
effect size is likely to be small. Instead of controlling for the chance of error in every comparison (whether initially significant or not), FDR only controls the rate of ‘discoveries’ (i.e. sets an adjustable limit on the likelihood of false findings) for the much smaller number of seemingly significant findings (discoveries) from the initial comparison. As a result, **FDR has increased power to identify smaller effects while still controlling for multiple comparisons across the brain.** In this project, FDR was performed within the MELODIC platform (second usage option) as a post-hoc analysis step on the uncorrected tstat images produced by randomize. It outputs zstat images and probability map images, which can then be used to determine the final significance of the results, depending on the pre-determined significance threshold.

5. References

24 March 2009

REC REF: 078/2009

Dr N Horn
Psychiatry

Dear Dr Horn

PROJECT TITLE: NEUROIMAGING THE EFFECTS OF MINDFULNESS TRAINING IN BIPOLAR DISORDER.

Thank you for submitting your study to the Research Ethics Committee for review.

It is a pleasure to inform you that the Ethics Committee has formally approved the above-mentioned study.

Approval is granted for one year till the 30th March 2010.

Please submit an annual progress report if the research continues beyond the expiry date. Please submit a brief summary of findings if you complete the study within the approval period so that we can close our file.

Please note that the ongoing ethical conduct of the study remains the responsibility of the principal investigator.

Please quote the REC, REF in all your correspondence.

Yours sincerely

Signed

PROFESSOR M BLOCKMAN
CHAIRPERSON, HSF HUMAN ETHICS

Federal Wide Assurance Number: FWA0001637,
Institutional Review Board (IRB) number: IRB00001538

Postmark
14 April 2014

HREC REF: 219/2014

Dr N Horn
Psychiatry
Education Centre
Valkenberg Hospital

Dear Dr Horn

PROJECT TITLE: EFFECTS OF MBCT ON INTRINSIC BRAIN NETWORKS IN BIPOLAR DISORDER PATIENTS (MMED - Dr J Starke)

Thank you for submitting your study to the Faculty of Health Sciences Human Research Ethics Committee for review.

It is a pleasure to inform you that the HREC has formally approved the above-mentioned study.

Approval is granted for one year until the 30th April 2015

Please submit a progress form, using the standardised Annual Report Form if the study continues beyond the approval period. Please submit a Standard Closure form if the study is completed within the approval period.
(Forms can be found on our website: www.health.uct.ac.za/research/humanethics/forms)

We acknowledge that the MMED student, Dr Jonathan Starke is also involved in this study.

Please note that the ongoing ethical conduct of the study remains the responsibility of the principal investigator.

Please quote the HREC reference no in all your correspondence.

Yours sincerely

[Signature]

PROFESSOR M BLOCKMAN
CHAIRPERSON, FHS HUMAN ETHICS

Federal Wide Assurance Number: FWA00001637.
Institutional Review Board (IRB) number: IRB00001938

This serves to confirm that the University of Cape Town Human Research Ethics Committee complies to the Ethics Standards for Clinical Research with a new drug in patients, based on the Medical Research Council (MRC-SA), Food and Drug Administration (FDA-USA), International Convention on Harmonisation Good Clinical Practice (ICH GCP) and Declaration of Helsinki guidelines.

HREC 219/2014
The Human Research Ethics Committee granting this approval is in compliance with the ICH
Harmonised Tripartite Guidelines E6: Note for Guidance on Good Clinical Practice (CPMP/ICH/135/95)
and FDA Code Federal Regulation Part 50, 56 and 312.
Dear Dr Starke,

Candidature Approval (STRJON008)

<table>
<thead>
<tr>
<th>Degree</th>
<th>MMed in Psychiatry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Effects of MBCT on intrinsic brain networks in bipolar disorder patients</td>
</tr>
<tr>
<td>Department</td>
<td>Psychiatry & Mental Health</td>
</tr>
<tr>
<td>Supervisor</td>
<td>Dr N Hom</td>
</tr>
<tr>
<td>Ethics Approval</td>
<td>219/2014</td>
</tr>
</tbody>
</table>

I am pleased to advise that the Chair of the Dissertations/Doctoral & Masters Committee has approved your candidature for the above degree on behalf of the Committee. Formal approval was obtained by publication in the Dean’s Circular, PG-Med May 2014.

Yours sincerely,

Jackie Cogill
HREC office use only (FWA00001637; IRB00001335)

This serves as notification of annual approval, including any documentation described below.

☐ Approved
☐ Not approved

Annual progress report: Approved until next renewal date: 30.4.2015
See attached comments

Signature Chairperson of the HREC: [Signed]
Date Signed: 8/7/2015

Comments to PI from the HREC:
See attached letter advising of change of title and scope of study as it related to Dr Starks MMed mini-
thesis

Principal Investigator to complete the following:

1. Protocol Information

Date (when submitting this form): 7.09.2015
HREC REF Number: 219/2014
Current Ethics Approval was granted until: 30.04.2015

Protocol title: Effects of MBCT on intrinsic brain networks in Bipolar Disorder
Protocol number (if applicable):

Are there any sub-studies linked to this study? NO
If yes, could you please provide the HREC Re's for all sub-studies? Note: A separate FHS018 must be submitted for each sub-study

Principal Investigator: Dr Neil Horn
Department / Office: Psychiatry, Education Centre, Valkensberg Hospital
Internal Mail Address: doctor.neil.horn@gmail.com

1.1 Does this protocol receive US Federal funding? NO
1.2 If the study receives US Federal Funding, does the annual report require full committee approval? NA
1.3 Has sponsorship of this study changed? If yes, please attach a revised summary of the budget: NA

(Note: Please complete the Closure form (FHS018) if the study is completed within the approval period)
The Chair, Human Research Ethics Committee
Faculty of Health Sciences
University of Cape Town

Re: Update and Minor Changes (HREC 219/2014)

Thank you for considering the following with regards to our this study which specifically relates to an MMed:

- The project consists of a post-hoc analysis of an existing (MRI database. It does not involve any new data collection and involves no patient contact.

- The original research protocol included two components to data analysis. Firstly, a comparison of differences in intrinsic brain networks between patients with bipolar disorder and control subjects was to be made (baseline comparison). Secondly, the effects of a Mindfulness-Based Cognitive Therapy (MBCT) intervention on intrinsic brain networks in the bipolar patients was going to be performed (pre- vs. post comparison). The scope of this original protocol was significantly greater than that usually required for a minor MMed dissertation, and so a decision has been made to limit the scope to allow Dr Starke to complete the project in the available time, while ensuring that the project is still sufficiently complex to meet the requirements of a minor dissertation, which it still exceeds. As such, the project will now consist only of the first comparison.

- In light of the above, the original title for the project: “Effects of MBCT on intrinsic brain networks in bipolar disorder patients” will be changed to “Effects of bipolar disorder on intrinsic brain networks”.

Please see attached our amended protocol incorporating these changes. Please advise if the proposed changes to our project are acceptable, so that we can continue with our research.
A D9 form will be submitted to the Faculty of Health Sciences.

Sincerely,

Signed

Dr Neil Horn (PI)
Principals Investigator to complete the following:

1. Protocol information

<table>
<thead>
<tr>
<th>Date (when submitting this form)</th>
<th>20.10.2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>HREC REF. Number</td>
<td>219/2014</td>
</tr>
<tr>
<td>Protocol title</td>
<td>ORIGINAL TITLE: "Effects of MBCT on intrinsic brain networks in bipolar disorder patients"</td>
</tr>
<tr>
<td>Protocol number (if applicable)</td>
<td></td>
</tr>
<tr>
<td>Principal Investigator</td>
<td>Dr Neil Hom</td>
</tr>
<tr>
<td>Department / Office, Internal Mail Address</td>
<td>Psychiatry and Mental Health and Veldnolborg Hospital doctor.neil.hom@gmail.com</td>
</tr>
</tbody>
</table>

1.1 Is this a major or a minor amendment? (see FH50002np)
- Major
- Minor X Minor

1.2 Does this protocol receive US Federal funding?
- Yes X No

1.3 If the amendment is a major amendment and receives US Federal Funding, does the amendment require full committee approval?
- Yes
- No
Starke: Confirmation of Approval of Study Proposal

Jakkie Cogill <jakkie.cogill@uct.ac.za>
To: Jonathan starke <joestarke@gmail.com>

16 October 2015 at 14:52

Dear Joe,

Yes, your change of title - Form D9, was approved and it was published in the August 2013 Dean’s Circular.

Kind regards,

Jackie

From: Jonathan starke [mailto:joestarke@gmail.com]
Sent: 15 October 2015 06:08 AM
To: Jackie Cogill

[Disclaimer - University of Cape Town. This e-mail is subject to the UCT ICT policies and e-mail disclaimer published on our website at http://www.uct.ac.za/about/policies/emaildisclaimer/ or obtainable from ITCI 21 650 9111. If this e-mail is not related to the business of UCT it is sent by the sender in the sender’s individual capacity.]
PATIENT CONSENT FORM UCT REC/Ref 078/2009 FUNCTIONAL MRI STUDY ON THE EFFECTS OF MINDFULNESS-BASED COGNITIVE THERAPY IN PEOPLE WITH BIPOLAR

What is this study about?
Bipolar Affective Disorder (or Manic Depression), is a condition which affects about 1% of the population. The Departments of Psychiatry, and Psychology, at the University of Cape Town, are investigating the biology, psychology and best treatments for Bipolar Disorder, and looking for the possible genetic basis of this illness. We would also like to find out whether, as has been suggested in other research, Mindfulness Based Cognitive Therapy assists people with Bipolar Disorder to cope with stress and depression.

Mindfulness can be defined as a state of heightened present-moment awareness. Acquiring mindfulness skills through training has shown to improve mental and physical health, and Mindfulness Based Cognitive Therapy (MBCT) has been shown to improve symptoms of depression and anxiety.

Who can participate?
People aged 18 to 50 affected by Bipolar Disorder are invited to participate. If you have a treating doctor or psychiatrist, they should agree to your participation. As part of this research program we are also recruiting individuals who do not have Bipolar Disorder for comparative studies.

You are invited to take part in this study, which will investigate how emotions are regulated in people with Bipolar Disorder and investigate the effects of Mindfulness Based Cognitive Therapy (MBCT). If you agree to participate you will be interviewed by a psychiatrist about your condition and undergo
neuroimaging/brain scans and complete questionnaires. These will be repeated after MBCT training. You will initially be screened by a radiologist to ensure the MRI scan is safe for you and the total scanning time will be 60 minutes. During the scanning you will take part in four computerized tasks, which will be explained to you on the day of testing.

As a participant, you will be offered an 8-week MBCT intervention (weekly two-hour group sessions) which the Institute for the study of Affective Neuroscience at the University of Haifa, Israel, has kindly agreed to fund. This involves mindfulness training designed to cultivate non-judgmental observation of thoughts, emotions and bodily sensations.

Participation in this study is completely voluntary, and you are free to opt out any part of the study at any stage. If you are not participating in the UCT Bipolar Genetics study you will be invited to do so. Your data and individual identity will be kept strictly confidential. Please read the attached MRI Information Sheet before signing this consent.
MAGNETIC RESONANCE IMAGING INFORMATION SHEET

Before taking part in this study you will be required to have an interview with a radiologist on the day of your scan to make sure that the MRI procedure is safe for you. Please feel free to raise any questions/ concerns you may have at this time, and prior to signing the consent form.

SAFETY AND METAL OBJECTS
The MRI scanner is a powerful magnet. Because metal objects are strongly attracted to the magnet, any metal objects you are carrying or wearing must be removed prior to the MRI scan to avoid potentially severe injury.

UNEXPECTED FINDINGS
In rare cases, researchers discover unexpected findings related to a participant’s MRI scan in which case the scan is referred to a radiologist for further analysis and further tests may be recommended in order to determine the nature and significance of the unexpected finding, in which case the participant will be referred to a General Practitioner of their choosing.

ONGOING DISCLOSURE OF POTENTIAL HARMs
If new findings about the potential harms of the MRI technique become available during the time of the study, the researcher will inform you.

CONTACT DETAILS
Should you have any further queries you may contact:
Victoria Ives-Deliperi: 082 837 4017 vives@mweb.co.za
Neil Horn: neil.horn@uct.ac.za Fleur Howells
The Faculty of Health Sciences Research Ethics Committee: 021 406 6492
Consent Form

As a representative of this study, I have explained to the participant the purpose, the procedures, the possible benefits, and the risks of this research study; and how the participant’s performance and other data will be collected, used and shared by others:

__

Signature of person obtaining consent Date

You have been informed about this study's purpose, procedures, possible benefits, and risks; and how your performance and other data will be collected, used and shared with others. You have received a copy of this the information sheets. You have been given the opportunity to ask questions before you sign, and that you have been told that you can ask questions at any other time. You voluntarily agree to participate in this study. You hereby authorize the collection, use and sharing of your performance and other data. By signing this form, you are not waiving any of your legal rights.

I understand that I may opt out of the Questionnaires
Memory assessment
Brain Scan
EEG
Photography
Mindfulness Based Cognitive Therapy

__

Signature of person consenting Date

Home number: _______________________
Cell Phone: _______________________
E-mail address: ___________________
Mailing Address: ___________________

<table>
<thead>
<tr>
<th></th>
<th>HOSPITAL ANXIETY AND DEPRESSION SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In the last week: Choose option by bolding the text</td>
</tr>
<tr>
<td>1</td>
<td>I feel tense or "wound up"</td>
</tr>
<tr>
<td></td>
<td>Most of the time</td>
</tr>
<tr>
<td>2</td>
<td>I still enjoy the things I used to</td>
</tr>
<tr>
<td></td>
<td>Definitely as much</td>
</tr>
<tr>
<td>3</td>
<td>I get a sort of frightened feeling as if something awful is going to happen</td>
</tr>
<tr>
<td></td>
<td>Very definitely and quite badly</td>
</tr>
<tr>
<td>4</td>
<td>I can laugh and see the funny side of things</td>
</tr>
<tr>
<td></td>
<td>As much as I always could</td>
</tr>
<tr>
<td>5</td>
<td>Worrying thoughts go through my mind</td>
</tr>
<tr>
<td></td>
<td>A great deal of the time</td>
</tr>
<tr>
<td>6</td>
<td>I feel cheerful</td>
</tr>
<tr>
<td></td>
<td>Not at all</td>
</tr>
<tr>
<td>7</td>
<td>I can sit at ease and feel relaxed</td>
</tr>
<tr>
<td></td>
<td>Definitely</td>
</tr>
<tr>
<td>8</td>
<td>I feel as if I am slowed down</td>
</tr>
<tr>
<td></td>
<td>Nearly all the time</td>
</tr>
<tr>
<td>9</td>
<td>I get a sort of frightened feeling like 'butterflies' in the stomach</td>
</tr>
<tr>
<td></td>
<td>Not at all</td>
</tr>
<tr>
<td>10</td>
<td>I have lost interest in my appearance</td>
</tr>
<tr>
<td></td>
<td>Definitely</td>
</tr>
<tr>
<td>11</td>
<td>I feel restless as if I have to be on the move</td>
</tr>
<tr>
<td></td>
<td>Very much indeed</td>
</tr>
<tr>
<td>12</td>
<td>I look forward with enjoyment to things</td>
</tr>
<tr>
<td></td>
<td>As much as I ever did</td>
</tr>
<tr>
<td>13</td>
<td>I get sudden feelings of panic</td>
</tr>
<tr>
<td></td>
<td>Very often indeed</td>
</tr>
<tr>
<td>14</td>
<td>I can enjoy a good book, radio or TV programme</td>
</tr>
<tr>
<td></td>
<td>Often</td>
</tr>
</tbody>
</table>
Young Manic Rating Scale (YMRS)

GUIDE FOR SCORING ITEMS:
The purpose of each item is to rate the severity of that abnormality in the patient. When several keys are given for a particular grade of severity, the presence of only one is required to qualify for that rating.

The keys provided are guides. One can ignore the keys if that is necessary to indicate severity, although this should be the exception rather than the rule.

Scoring between the points given (whole or half points) is possible and encouraged after experience with the scale is acquired. This is particularly useful when severity of a particular item in a patient does not follow the progression indicated by the keys.

1. Elevated Mood
 0 Absent
 1 Mildly or possibly increased on questioning
 2 Definite subjective elevation; optimistic, self-confident, cheerful; appropriate to content
 3 Euphoric; inappropriate to content; humorless
 4 Euphoric; inappropriate laughter; singing

2. Increased Motor Activity-Energy
 0 Absent
 1 Subjectively increased
 2 Animated; gestures increased
 3 Excessive energy, hyperactive at times; restless (can be calmed)
 4 Motor excitement, continuous hyperactivity (cannot be calmed)

3. Sexual Interest
 0 Normal, not increased
 1 Mildly or possibly increased
 2 Definite subjective increase on questioning
 3 Spontaneous sexual content; elaborates on sexual matters; hypersexual by self-report
 4 Overt sexual acts (toward patients, staff, or interviewer)

4. Sleep
 0 Reports no decrease in sleep
 1 Sleeping less than normal amount by up to one hour
 2 Sleeping less than normal by more than one hour
 3 Reports decreased need for sleep
 4 Denies need for sleep

5. Irritability
 0 Absent
 1 Subjectively increased
 2 Irritable at times during interview; recent episodes of anger or annoyance on ward
 3 Frequently irritable during interview; short, curt throughout
 4 Hostile, uncooperative; interview impossible
Young Mania Rating Scale (YMRS)

6. Speech (Rate and Amount)
 0 No increase
 1 Frees talkative
 2 Increased rate or amount at times, verbosely at times
 3 Push; consistently increased rate and amount; difficult to interrupt
 4 Pressured; uninterruptible, continuous speech

7. Language-Thought Disorder
 0 Absent
 1 Circumstantial, mild distractibility; quick thoughts
 2 Distractible, loses goal of thought; changes topics frequently; racing thoughts
 3 Flight of ideas; tangentiality; difficult to follow; rhyming, echolalia
 4 Incoherent; communication impossible

8. Content
 0 Normal
 1 Questionable plans, new interests
 2 Special project(s), hyper-religious
 3 Grandiose or paranoid ideas; ideas of reference
 4 Delusions; hallucinations

9. Disruptive-Aggressive Behavior
 0 Absent, cooperative
 1 Sarcastic; loud at times, guarded
 2 Demanding; threats on ward
 3 Threatens interviewer; shouting; interview difficult
 4 Assaultive; destructive; interview impossible

10. Appearance
 0 Appropriate dress and grooming
 1 Minimally unkempt
 2 Poorly groomed; moderately disheveled; overdressed
 3 Disheveled; poorly clothed; garish make-up
 4 Completely unkempt; decorated; bizarre garb

11. Insight
 0 Present; admits illness; agrees need for treatment
 1 Possibly ill
 2 Admits behavior change, but denies illness
 3 Admits possible change in behavior, but denies illness
 4 Denies any behavior change

Reprinted with permission from The Royal College of Psychiatrists.
TABLE OF CONTENTS

- Description p.1
- Audience p.1
- Impact Factor p.1
- Abstracting and Indexing p.2
- Editorial Board p.2
- Guide for Authors p.5

DESCRIPTION

The Journal of Affective Disorders publishes papers concerned with affective disorders in the widest sense: depression, mania, anxiety and panic. It is interdisciplinary and aims to bring together different approaches for a diverse readership. High quality papers will be accepted dealing with any aspect of affective disorders, including biochemistry, pharmacology, endocrinology, genetics, statistics, epidemiology, psychodynamics, classification, clinical studies and studies of all types of treatment.

Benefits to authors
We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services.

Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our support pages: http://support.elsevier.com

AUDIENCE

Journal of Affective Disorders is interdisciplinary and aims to bring together different approaches and fields including biochemistry, pharmacology, endocrinology, genetics, statistics, epidemiology, psychodynamics, classification, clinical studies and studies of all types of treatment for a diverse readership.

IMPACT FACTOR

2014: 3.383 © Thomson Reuters Journal Citation Reports 2015
ABSTRACTING AND INDEXING

BIGIS
Current Contents/Life Sciences
MEDLINE®
Informedicus
EMBASE
Pascal et Francis (INST-CNRS)
PsycINFO Psychological Abstracts
SIIC Data Bases
Scopus

EDITORIAL BOARD

Editors-in-Chief
P. Brambilla, Dept. of Pathophysiology and Transplantation, University of Milan, via Sforza 35, 20122, Milano, Italy
J.C. Soares, Dept. of Psychiatry & Behavioral Sciences, University of Texas at Houston Health Sciences Center, 1941 East Rd, Houston, TX 77094, Texas, USA

Emeritus Editors
Hagop Akiskal, California, USA
Cornelius Katona, England, UK

Consulting Editors for Statistics:
C. Fagnani, Rome, Italy
L. Finos, Padua, Italy
C. Green, PhD, Houston, Texas, USA
M. Isole, Udine, Italy
G. Perez Algorta, Lancaster, England, UK

Editorial Board
C.B. Adler, Cincinnati, Ohio, USA
A.C. Altamura, Milan, Italy
B. Amann, Barcelona, Spain
C. Arango, Madrid, Spain
C. Bearden, PhD, Los Angeles, California, USA
M. Bellani, Verona, Italy
F. Bellivier, Paris, France
R.M. Belmaker, Beer Sheva, Israel
V. Bergink, Rotterdam, Netherlands
M. Berk, Geelong, Victoria, Australia
B. Birmaher, Pittsburgh, Pennsylvania, USA
D. Blier, Ottawa, Ontario, Canada
H.P. Blumberg, New Haven, Connecticut, USA
S. Rorguardt, Basel, Switzerland
C. Bowden, San Antonio, Texas, USA
D. A. Brent, MD, Pittsburgh, Pennsylvania, USA
M. Brezman, Ph.D, Bethesda, Maryland, USA
R. Brunner, Heidelberg, Germany
K. Burdick, New York, New York, USA
K. Chang, Stanford, California, USA
L. Cohen, Boston, Massachusetts, USA
D. Cousins, Newcastle upon Tyne, England, UK
R. Crespo-Facorro, Santander, Spain
A. Danese, London, UK
R. Dantzer, Houston, Texas, USA
P. Dackzen, London, England, UK
G. Del Vecchio, Bosaso Parini, Italy
M. DelBello, Cincinnati, Ohio, USA
J.R. DePaulo, Baltimore, Maryland, USA
V.A. Diwadkar, Detroit, Michigan, USA
D. Dougherty, Charleston, Massachusetts, USA
U. Ettlinger, Bonn, Germany
A. Fagioli, Siena, Italy
P. Falkai, Munich, Germany
N. Fava, M.D., Boston, Massachusetts, USA
N. Ferrier, Newcastle upon Tyne, Scotland, UK
S. Frangou, New York, New York, USA
H.A. Frye, Rochester, Minnesota, USA
C. Gaser, Jena, Germany
J. Geddes, Oxford, UK
D. Glahn, Hartford, Connecticut, USA
T.I. Goldstein, MD, PhD, Toronto, Ontario, Canada
J. Houenou, Célebi, France
D. Iosifescu, New York, New York, USA
J. Jokinen, Umea, Sweden
F. Kacprzynski, Porto Alegre, Brazil
S. Kasper, Vienna, Austria
T. Kato, Saitama, Japan
S. Kennedy, Toronto, Ontario, Canada
R.C. Kessler, Boston, Massachusetts, USA
N. Koutsouleris, Munich, Germany
A.D. Krystal, MD, Durham, North Carolina, USA
A.K. Kumar, Chicago, Illinois, USA
B. Laffer, Sao Paulo, Brazil
E. Leibenluft, MD, Bethesda, Maryland, USA
E. Lenze, St. Louis, Missouri, USA
N. Maj, Naples, Italy
G. Malli, Sydney, New South Wales, Australia
S.J. Mathew, Houston, Texas, USA
K. Matsuo, Yamaguchi, Japan
C. McDonald, Galway, Ireland
A. M. McIntosh, Edinburgh, Scotland, UK
T.D. Meyer, Houston, Texas, USA
A. Meyer-Lindenber, MD, PhD, Mannheim, Germany
D. Milkowitz, PhD, Los Angeles, California, USA
P. Mitchell, Randwick, New South Wales, Australia
I. Nenadic, Jena, Germany
A. Nierenberg, Charlestown, Massachusetts, USA
N. Nobili, Bosisio Parini, Italy
M. Noethen, Bonn, Germany
W.A. Nelen, Groningen, Netherlands
H. Pavuluri, Chicago, Illinois, USA
P. Perlis, Boston, Massachusetts, USA
G. Perugi, Pao, Italy
K.L. Pfan, Chicago, Illinois, USA
H. Phillips, MD, Pittsburgh, Pennsylvania, USA
A. Picardi, Rome, Italy
D.S. Pine, Bethesda, Maryland, USA
N. Pollock, Boston, Massachusetts, USA
J. Quevedo, Houston, Texas, USA
R. Rasgon, Palo Alto, California, USA
Z. Rihner, Budapest, Hungary
S. Ruhrmann, Kiel, Germany
N.D. Ryan, Pittsburgh, Pennsylvania, USA
J.K. Rybakowski, Poznani, Poland
A. Safieh, Sanul, Izmir, Turkey
G. Sanacore, MD, PhD, New Haven, Connecticut, USA
S. Selvarej, Houston, Texas, USA
E. Sherwood Brown, Dallas, Texas, USA
H. B. Simpson, M.D.,/Ph.D., New York, New York, USA
J. Stanley, Detroit, Michigan, USA
D.J. Stein, Cape Town, South Africa
M.B. Stein, MD, MPH, La Jolla, California, USA
S.M. Strakowski, MD, Cincinnati, Ohio, USA
T. Suppes, Palo Alto, California, USA
A.L. Teixeira, Belo Horizonte - MG, Brazil
N. Tomen, Albuquerque, New Mexico, USA
N.H. Trivedi, Dallas, Texas, USA
F. Verhulst, Rotterdam, Netherlands
E. Vieta, Barcelona, Spain

AUTHOR INFORMATION PACK 25 Nov 2015 www.elsevier.com/locate/jad
C. Walle-Bass, Houston, Texas, USA
N. Wessa, Mainz, Germany
S.J. Wood, Birmingham, England, UK
S. Yamawaki, Hiroshima, Japan
L.N. Yatham, Vancouver, British Columbia, Canada
A. H. Young, London, UK
L.T. Young, Toronto, Ontario, Canada
C. Zarate, MD, Bethesda, Maryland, USA
GUIDE FOR AUTHORS

Description
The Journal of Affective Disorders publishes papers concerned with affective disorders in the widest sense: depression, mania, anxiety and panic. It is interdisciplinary and aims to bring together different approaches for a diverse readership. High quality papers will be accepted dealing with any aspect of affective disorders, including biochemistry, pharmacology, endocrinology, genetics, statistics, epidemiology, psychodynamics, classification, clinical studies and studies of all types of treatment.

BEFORE YOU BEGIN

Ethics in publishing
For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Ethical Considerations
Authors of reports on human studies, especially those involving placebo, symptom provocation, drug discontinuation, or patients with disorders that may impair decision-making capability, should consider the ethical issues related to the work presented and include (in the Methods and Materials section of their manuscript) detailed information on the informed consent process, including the method or methods used to assess the subject's capacity to give informed consent, and safeguards included in the study design for protection of human subjects. Specifically, authors should consider all ethical issues relevant to their research, and briefly address each of these in their reports. When relevant patient follow-up data are available, this should also be reported. Specifically, investigators reporting on research involving human subjects or animals must have prior approval from an institutional review board. This approval should be mentioned in the methods section of the manuscript. In countries where institutional review boards are not available; the authors must include a statement that research was conducted in accordance with the Helsinki Declaration as revised 1989. All studies involving animals must state that the authors followed the guidelines for the use and care of laboratory animals of the author's institution or any national law pertaining to animal research care.

Conflict of interest
All authors must disclose any financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work. Examples of potential conflicts of interest include employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and grants or other funding. If there are no conflicts of interest then please state this: 'Conflicts of interest: none'. See also http://www.elsevier.com/conflictsinterest. Further information and an example of a Conflict of Interest form can be found at: http://service.elsevier.com/app/answers/detail/a_id/286/supporthub/publishing.

Contributors
Each author is required to declare his or her individual contribution to the article: all authors must have materially participated in the research and/or article preparation, so roles for all authors should be described. The statement that all authors have approved the final article should be true and included in the disclosure.

Changes to authorship
Authors are expected to consider carefully the list and order of authors before submitting their manuscript and provide the definitive list of authors at the time of the original submission. Any addition, deletion or rearrangement of author names in the authorship list should be made only before the manuscript has been accepted and only if approved by the Journal Editor. To request such a change, the Editor must receive the following from the corresponding author: (a) the reason for the change in author list and (b) written confirmation (e-mail, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed. Only in exceptional circumstances will the Editor consider the addition, deletion or rearrangement of authors after the manuscript has been accepted. While the Editor considers the request, publication of the manuscript will be suspended. If the manuscript has already been published in an online issue, any requests approved by the Editor will result in a corrigendum.
Copyright

Upon acceptance of an article, authors will be asked to complete a ‘Journal Publishing Agreement’ (for more information on this and copyright, see http://www.elsevier.com/copyright). An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a ‘Journal Publishing Agreement’ form or a link to the online version of this agreement.

Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution and for all other derivative works, including compilations and translations (please consult http://www.elsevier.com/permissions). If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases; please consult http://www.elsevier.com/permissions.

For open access articles: Upon acceptance of an article, authors will be asked to complete an 'Exclusive License Agreement' (for more information see http://www.elsevier.com/OAauthoragreement). Permitted third party reuse of open access articles is determined by the author's choice of user license (see http://www.elsevier.com/openaccesslicenses).

Author rights

As an author you (or your employer or institution) have certain rights to reuse your work. For more information see http://www.elsevier.com/copyright.

Role of the funding source

You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated.

Funding body agreements and policies

Elsevier has established a number of agreements with funding bodies which allow authors to comply with their funder’s open access policies. Some authors may also be reimbursed for associated publication fees. To learn more about existing agreements please visit http://www.elsevier.com/fundingbodies.

After acceptance, open access papers will be published under a noncommercial license. For authors requiring a commercial CC BY license, you can apply after your manuscript is accepted for publication.

Open access

This journal offers authors a choice in publishing their research:

Open access

+ Articles are freely available to both subscribers and the wider public with permitted reuse
+ An open access publication fee is payable by authors or on their behalf e.g. by their research funder or institution

Subscription

+ Articles are made available to subscribers as well as developing countries and patient groups through our universal access programs (http://www.elsevier.com/access).
+ No open access publication fee payable by authors.

Regardless of how you choose to publish your article, the journal will apply the same peer review criteria and acceptance standards.

For open access articles, permitted third party (re)use is defined by the following Creative Commons user licenses:

Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

For non-commercial purposes, lets others distribute and copy the article, and to include in a collective work (such as an anthology), as long as they credit the author(s) and provided they do not alter or modify the article.
The open access publication fee for this journal is **USD 2750**, excluding taxes. Learn more about Elsevier's pricing policy: http://www.elsevier.com/openaccesspricing.

Green open access

Authors can share their research in a variety of different ways and Elsevier has a number of green open access options available. We recommend authors see our green open access page for further information (http://elsevier.com/greenopenaccess). Authors can also self-archive their manuscripts immediately and enable public access from their institution's repository after an embargo period. This is the version that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and in editor-author communications. Embargo period: For subscription articles, an appropriate amount of time is needed for journals to deliver value to subscribing customers before an article becomes freely available to the public. This is the embargo period and it begins from the date the article is formally published online in its final and fully citable form.

This journal has an embargo period of 12 months.

Language (usage and editing services)

Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the English Language Editing service available from Elsevier's WebShop (http://webshop.elsevier.com/languageediting/) or visit our customer support site (http://support.elsevier.com) for more information.

Submission

Our online submission system guides you stepwise through the process of entering your article details and uploading your files. The system converts your article files to a single PDF file used in the peer-review process. Editable files (e.g., Word, LaTeX) are required to typeset your article for final publication. All correspondence, including notification of the Editor's decision and requests for revision, is sent by e-mail.

Manuscript Submission

The *Journal of Affective Disorders* now proceeds totally online via an electronic submission system. Mail submissions will no longer be accepted. By accessing the online submission system, http://www.evise.com/evise/faces/pages/navigaton/NavController.jspx?JRN=ACR=JAD, you will be guided stepwise through the creation and uploading of the various files. When submitting a manuscript online, authors need to provide an electronic version of their manuscript and any accompanying figures and tables.

The author should select from a list of scientific classifications, which will be used to help the editors select reviewers with appropriate expertise, and an article type for their manuscript. Once the uploading is done, the system automatically generates an electronic (PDF) proof, which is then used for reviewing. All correspondence, including the Editor's decision and requests for revisions, will be processed through the system and will reach the corresponding author by e-mail.

Once a manuscript has successfully been submitted via the online submission system authors may track the status of their manuscript using the online submission system (details will be provided by e-mail). If your manuscript is accepted by the journal, subsequent tracking facilities are available on Elsevier's Author Gateway, using the unique reference number provided by Elsevier and corresponding author name (details will be provided by e-mail).

Authors may send queries concerning the submission process or journal procedures to our Editors-in-Chief

Paolo Barmbilla: paolo.brambilla1@unimi.it or **Jair Soares**: Jair.C.Soares@uth.tmc.edu.

For further details on how to submit online, please refer to the online EES Tutorial for authors or contact Elsevier's Author Support Team at authorsupport@elsevier.com. Please submit your article via http://www.evise.com/evise/faces/pages/navigaton/NavController.jspx?JRN=ACR=JAD

Types of Papers

The Journal primarily publishes:
full-length Research Reports describing original work (4000-5000 words, excluding references and up to 6 tables/figures)

Brief Reports (1500-2000 words, excluding references and a maximum of 2 tables/figures)

evidence-based Review Articles (up to 8000 words, excluding references and up to 10 tables/figures). Reviews should be systematic and give details as to search strategy used.

Rapid Communications (1500-2000 words, excluding references and a maximum of 2 tables/figures).

Preliminary Communications (up to 3000 words, excluding references and maximum 3 tables/figures). Books for review should be sent to the appropriate editorial office (see above). At the discretion of the accepting Editor-in-Chief, and/or based on reviewer feedback, authors may be allowed fewer or more than these guidelines.

Retraction Policy
It is a general principle of scholarly communication that the editor of a learned journal is solely and independently responsible for deciding which articles submitted to the journal shall be published. In making this decision the editor is guided by policies of the journal's editorial board and constrained by such legal requirements in force regarding libel, copyright infringement and plagiarism. Although electronic methods are available to detect plagiarism and duplicate publications, editors nonetheless rely in large part on the integrity of authors to fulfil their responsibilities within the requirements of publication ethics and only submit work to which the can rightfully claim authorship and which has not previously been published.

An outcome of this principle is the importance of the scholarly archive as a permanent, historic record of the transactions of scholarship. Articles that have been published shall remain extant, exact and unaltered as far as is possible. However, very occasionally circumstances may arise where an article is published that must later be retracted or even removed. Such actions must not be undertaken lightly and can only occur under exceptional circumstances, such as:

- Article Withdrawal: Only used for Articles in Press which represent early versions of articles and sometimes contain errors, or may have been accidentally submitted twice. Occasionally, but less frequently, the articles may represent infringements of professional ethical codes, such as multiple submission, bogus claims of authorship, plagiarism, fraudulent use of data or the like. • Article Retraction: Infringements of professional ethical codes, such as multiple submission, bogus claims of authorship, plagiarism, fraudulent use of data or the like. Occasionally a retraction will be used to correct errors in submission or publication. • Article Removal: Legal limitations upon the publisher, copyright holder or author(s). • Article Replacement: Identification of false or inaccurate data that, if acted upon, would pose a serious health risk. For the full policy and further details, please refer to http://www.elsevier.com/about/publishing-guidelines/policies/article-withdrawal

References
Please submit the names and institutional e-mail addresses of several potential referees. For more details, visit our Support site. Note that the editor retains the sole right to decide whether or not the suggested reviewers are used.

Preparation of Manuscripts
Articles should be in English. The title page should appear as a separate sheet bearing title (without article type), author names and affiliations, and a footnote with the corresponding author's full contact information, including address, telephone and fax numbers, and e-mail address (failure to include an e-mail address can delay processing of the manuscript).

Papers should be divided into sections headed by a caption (e.g., Introduction, Methods, Results, Discussion). A structured abstract of no more than 250 words should appear on a separate page with the following headings and order: Background, Methods, Results, Limitations, Conclusions (which should contain a statement about the clinical relevance of the research). A list of three to six key words should appear under the abstract. Authors should note that the 'limitations' section both in the discussion of the paper AND IN A STRUCTURED ABSTRACT are essential. Failure to include it may delay in processing the paper, decision making and final publication.

Figures and Photographs
Figures and Photographs of good quality should be submitted online as a separate file. Please use a lettering that remains clearly readable even after reduction to about 66%. For every figure or photograph, a legend should be provided. All authors wishing to use illustrations already published must first obtain the permission of the author and publisher and/or copyright holders and give precise reference to the original work. This permission must include the right to publish in electronic media.

Tables

Tables should be numbered consecutively with Arabic numerals and must be cited in the text in sequence. Each table, with an appropriate brief legend, comprehensible without reference to the text, should be typed on a separate page and uploaded online. Tables should be kept as simple as possible and wherever possible a graphical representation used instead. Table titles should be complete but brief. Information other than that defining the data should be presented as footnotes.

Please refer to the generic Elsevier artwork instructions: http://authors.elsevier.com/artwork/jad.

Preparation of supplementary data

Elsevier accepts electronic supplementary material to support and enhance your scientific research. Supplementary files offer the author additional possibilities to publish supporting applications, movies, animation sequences, high-resolution images, background datasets, sound clips and more.

Supplementary files supplied will be published online alongside the electronic version of your article in Elsevier web products, including ScienceDirect: http://www.sciencedirect.com. In order to ensure that your submitted material is directly usable, please ensure that data is provided in one of our recommended file formats. Authors should submit the material in electronic format together with the article and supply a concise and descriptive caption for each file. For more detailed instructions please visit our Author Gateway at: http://www.elsevier.com/authors.

AudioSlides

The journal encourages authors to create an AudioSlides presentation with their published article. AudioSlides are brief, webinar-style presentations that are shown next to the online article on ScienceDirect. This gives authors the opportunity to summarize their research in their own words and to help readers understand what the paper is about. More information and examples are available at http://www.elsevier.com/audioslides. Authors of this journal will automatically receive an invitation e-mail to create an AudioSlides presentation after acceptance of their paper.

Colour reproduction

The Journal of Affective Disorders is now also included in a new initiative from Elsevier: 'Colourful e-Products'. Through this initiative, figures that appear in black & white in print can appear in colour, online, in ScienceDirect at http://www.sciencedirect.com.

There is no extra charge for authors who participate.

For colour reproduction in print, you will receive information regarding the costs from Elsevier after receipt of your accepted article. Please indicate your preference for colour in print or on the Web only. Because of technical complications which can arise by converting colour figures to "grey scale" (for the printed version should you not opt for colour in print) please submit in addition usable black and white versions of all the colour illustrations. For further information on the preparation of electronic artwork, please see http://authors.elsevier.com/artwork/jad.

Use of word processing software

It is important that the file be saved in the native format of the word processor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the word processor's options to justify text or to hyphenate words. However, do use bold face, italics, subscripts, superscripts etc. When preparing tables, if you are using a table grid, use only one grid for each individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns.
The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier: http://www.elsevier.com/guidepublication). Note that source files of figures, tables and text graphics will be required whether or not you embed your figures in the text. See also the section on Electronic artwork.

To avoid unnecessary errors you are strongly advised to use the ‘spell-check’ and ‘grammar-check’ functions of your word processor.

Abstract

A concise and factual abstract is required. The abstract should state briefly the purpose of the research, the principal results and major conclusions. An abstract is often presented separately from the article, so it must be able to stand alone. For this reason, References should be avoided, but if essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself.

Graphical abstract

Although a graphical abstract is optional, its use is encouraged as it draws more attention to the online article. The graphical abstract should summarize the contents of the article in a concise, pictorial form designed to capture the attention of a wide readership. Graphical abstracts should be submitted as a separate file in the online submission system. Image size: Please provide an image with a minimum of 531 x 1328 pixels (h x w) or proportionally more. The image should be readable at a size of 5 x 13 cm using a regular screen resolution of 96 dpi. Preferred file types: TIFF, EPS, PDF or MS Office files. See http://www.elsevier.com/graphicalabstracts for examples.

Authors can make use of Elsevier’s Illustration and Enhancement service to ensure the best presentation of their images and in accordance with all technical requirements: Illustration Service.

Highlights

Highlights are mandatory for this journal. They consist of a short collection of bullet points that convey the core findings of the article and should be submitted in a separate editable file in the online submission system. Please use ‘Highlights’ in the file name and include 3 to 5 bullet points (maximum 85 characters, including spaces, per bullet point). See http://www.elsevier.com/highlights for examples.

Keywords

Immediately after the abstract, provide a maximum of 6 keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, ‘and’, ‘of’). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

Abbreviations

Define abbreviations that are not standard in this field in a footnote to be placed on the first page of the article. Such abbreviations that are unavoidable in the abstract must be defined at their first mention there, as well as in the footnote. Ensure consistency of abbreviations throughout the article.

Acknowledgements

Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing language help, writing assistance or proof reading the article, etc.).

Nomenclature and units

Follow internationally accepted rules and conventions: use the international system of units (SI). If other quantities are mentioned, give their equivalent in SI. You are urged to consult IUPAC Nomenclature of Organic Chemistry: http://www.iupac.org/ for further information.

Math formulae

Please submit math equations as editable text and not as images. Present simple formulae in line with normal text where possible and use the solidus (/) instead of a horizontal line for small fractional terms, e.g., X/Y. In principle, variables are to be presented in italics. Powers of e are often more conveniently denoted by exp. Number consecutively any equations that have to be displayed separately from the text (if referred to explicitly in the text).
Footnotes

Footnotes should be used sparingly. Number them consecutively throughout the article. Many word processors can build footnotes into the text, and this feature may be used. Otherwise, please indicate the position of footnotes in the text and list the footnotes themselves separately at the end of the article. Do not include footnotes in the reference list.

Artwork

Electronic artwork

General points:
- Make sure you use uniform lettering and sizing of your original artwork.
- Embed the used fonts if the application provides that option.
- Aim to use the following fonts in your illustrations: Arial, Courier, Times New Roman, Symbol, or use fonts that look similar.
- Number the illustrations according to their sequence in the text.
- Use a logical naming convention for your artwork files.
- Provide captions to illustrations separately.
- Size the illustrations close to the desired dimensions of the published version.
- Submit each illustration as a separate file.

A detailed guide on electronic artwork is available on our website: http://www.elsevier.com/artworkinstructions.

You are urged to visit this site; some excerpts from the detailed information are given here.

Formats:

If your electronic artwork is created in a Microsoft Office application (Word, PowerPoint, Excel) then please supply 'as is' in the native document format.

Regardless of the application other than Microsoft Office, when your electronic artwork is finalized, please 'Save as' or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):

- EPS (or PDF): Vector drawings, embed all used fonts.
- TIFF (or JPEG): Color or grayscale photographs (halftones), keep to a minimum of 300 dpi.
- TIFF (or JPEG): Bitmapped (pure black & white pixels) line drawings, keep to a minimum of 1000 dpi.
- TIFF (or JPEG): Combinations bitmapped line/halftone (color or grayscale), keep to a minimum of 500 dpi.

Please do not:
- Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); these typically have a low number of pixels and limited set of colors;
- Supply files that are too low in resolution;
- Submit graphics that are disproportionately large for the content.

Color artwork

Please make sure that artwork files are in an acceptable format (TIFF or JPEG), EPS or PDF, or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color online (e.g., ScienceDirect and other sites) regardless of whether or not those illustrations are reproduced in color in the printed version. For color reproduction in print, you will receive information regarding the costs from Elsevier after receipt of your accepted article. Please indicate your preference for color: in print or online only. For further information on the preparation of electronic artwork, please see http://www.elsevier.com/artworkinstructions.

Illustration services

Elsevier’s WebShop (http://webshop.elsevier.com/illustrationservices) offers Illustration Services to authors preparing to submit a manuscript but concerned about the quality of the images accompanying their article. Elsevier’s expert illustrators can produce scientific, technical and medical-style images, as well as a full range of charts, tables and graphs. Image ‘polishing’ is also available, where our illustrators take your image(s) and improve them to a professional standard. Please visit the website to find out more.

Tables

Please submit tables as editable text and not as images. Tables can be placed either next to the relevant text in the article, or on separate page(s) at the end. Number tables consecutively in accordance with their appearance in the text and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article. Please avoid using vertical rules.
References

Citation in text

Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either 'Unpublished results' or 'Personal communication'. Citation of a reference as 'in press' implies that the item has been accepted for publication.

Reference management software

Most Elsevier journals have their reference template available in many of the most popular reference management software products. These include all products that support Citation Style Language styles (http://citationstyles.org), such as Mendeley (http://www.mendeley.com/features/reference-manager) and Zotero (https://www.zotero.org/), as well as EndNote (http://endnote.com/downloads/styles). Using the word processor plug-ins from these products, authors only need to select the appropriate journal template when preparing their article, after which citations and bibliographies will be automatically formatted in the journal’s style. If no template is yet available for this journal, please follow the format of the sample references and citations as shown in this Guide.

Users of Mendeley Desktop can easily install the reference style for this journal by clicking the following link:

http://open.mendeley.com/use-citation-style/journal-of-affective-disorders

When preparing your manuscript, you will then be able to select this style using the Mendeley plug-ins for Microsoft Word or LibreOffice.

Reference style

Text: All citations in the text should refer to:

1. Single author: the author’s name (without initials, unless there is ambiguity) and the year of publication;
2. Two authors: both authors’ names and the year of publication;
3. Three or more authors: first author’s name followed by ‘et al.’ and the year of publication.

Citations may be made directly (or parenthetically). Groups of references should be listed first alphabetically, then chronologically.

Examples: ‘as demonstrated (Allan, 2000a, 2000b, 1999; Allan and Jones, 1999). Kramer et al. (2010) have recently shown . . . ’

List: References should be arranged first alphabetically and then further sorted chronologically if necessary. More than one reference from the same author(s) in the same year must be identified by the letters ‘a’, ‘b’, ‘c’, etc., placed after the year of publication.

Examples:

Reference to a journal publication:

Reference to a book:

Reference to a chapter in an edited book:

Video data

Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include links to these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labeled so that they directly relate to the video file’s content. In order to ensure that your video or animation material is directly usable, please provide the files in one of our recommended file formats with a preferred maximum size of 150 MB. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including ScienceDirect: http://www.sciencedirect.com. Please supply ‘stills’ with your files: you can choose any frame from the video or animation or make a separate image. These will be used instead of standard icons and will personalize the
link to your video data. For more detailed instructions please visit our video instruction pages at
http://www.elsevier.com/artworkinstructions. Note: since video and animation cannot be embedded
in the print version of the journal, please provide text for both the electronic and the print version
for the portions of the article that refer to this content.

Supplementary material

Supplementary material can support and enhance your scientific research. Supplementary files
offer the author additional possibilities to publish supporting applications, high-resolution images,
background datasets, sound clips and more. Please note that such items are published online exactly
as they are submitted; there is no typesetting involved (supplementary data supplied as an Excel
file or as a PowerPoint slide will appear as such online). Please submit the material together with the
article and supply a concise and descriptive caption for each file. If you wish to make any changes to
supplementary data during any stage of the process, then please make sure to provide an updated
file, and do not annotate any corrections on a previous version. Please also make sure to switch
off the 'Track Changes' option in any Microsoft Office files as these will appear in the published
supplementary file(s). For more detailed instructions please visit our artwork instruction pages at

Submission checklist

The following list will be useful during the final checking of an article prior to sending it to the journal
for review. Please consult this Guide for Authors for further details of any item.

Ensure that the following items are present:

- One author has been designated as the corresponding author with contact details:
 - E-mail address
 - Full postal address
 - All necessary files have been uploaded, and contain:
 - Keywords
 - All figure captions
 - All tables (including title, description, footnotes)

Further considerations:

- Manuscript has been 'spell-checked' and 'grammar-checked'
- References are in the correct format for this journal
- All references mentioned in the Reference list are cited in the text, and vice versa
- Permission has been obtained for use of copyrighted material from other sources (including the
 Internet)
- Printed version of figures (if applicable) in color or black-and-white
- Indicate clearly whether or not color or black-and-white in print is required.

For any further information please visit our customer support site at http://support.elsevier.com.

AFTER ACCEPTANCE

Use of the Digital Object Identifier

The Digital Object Identifier (DOI) may be used to cite and link to electronic documents. The DOI
consists of a unique alpha-numeric character string which is assigned to a document by the publisher
upon the initial electronic publication. The assigned DOI never changes. Therefore, it is an ideal
medium for citing a document, particularly 'Articles in press' because they have not yet received their
full bibliographic information. Example of a correctly given DOI (in URL format; here an article in the
journal Physics Letters B):

http://dx.doi.org/10.1016/j.physletb.2010.09.059

When you use a DOI to create links to documents on the web, the DOIs are guaranteed never to
change.

Author disclosure

Funding body agreements and policies Elsevier has established agreements and developed policies
to allow authors whose articles appear in journals published by Elsevier, to comply with potential
manuscript archiving requirements as specified as conditions of their grant awards. To learn more
about existing agreements and policies please visit http://www.elsevier.com/fundingbodies.

The second aspect of the journal's new policy concerns the Conflict of Interest. All authors are
requested to disclose any actual or potential conflict of interest including any financial, personal or
other relationships with other people or organizations within three (3) years of beginning the work
submitted that could inappropriately influence, or be perceived to influence, their work.

AUTHOR INFORMATION PACK 25 Nov 2015 www.elsevier.com/locate/jad

64
Examples of potential conflicts of interest which should be disclosed include employment, consultancies, stock ownership (except for personal investment purposes equal to the lesser of one percent (1%) of USD 5000), honoraria, paid expert testimony, patent applications, registrations, and grants. If there are no conflicts of interest, authors should state that there are none.

eg, Author Y owns shares in pharma company A. Author X and Z have consulted for pharma company B. All other authors declare that they have no conflicts of interest.

Finally, before the references, the Journal will publish Acknowledgements, in a separate section, and not as a footnote on the title page.

eg, We thank Mr A, who kindly provided the data necessary for our analysis, and Miss B, who assisted with the preparation and proof-reading of the manuscript.

The submitting author is also required to make a brief statement concerning each named author’s contributions to the paper under the heading contributors. This statement is for editorial purposes only and will not be published with the article.

eg, Author X designed the study and wrote the protocol. Author Y managed the literature searches and analyses. Authors X and Z undertook the statistical analysis, and author W wrote the first draft of the manuscript. All authors contributed to and have approved the final manuscript.

NB. During the online submission process the author will be prompted to upload these four mandatory author disclosures as separate items. They will be automatically incorporated in the online submission system. Please do not include in the main manuscripts.

Copyright Transfer
Upon acceptance of an article, you will be asked to transfer copyright (for more information on copyright see http://authors.elsevier.com/journal/jad). This transfer will ensure the widest possible dissemination of information. If excerpts from other copyrighted works are included in the submission, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases: contact Elsevier's Rights Department, Philadelphia, PA, USA: phone (+1) 215 238 7769, fax (+1) 215 238 2239, e-mail: healthpermissions@elsevier.com.

Requests for materials from other Elsevier publications may also be completed online via the Elsevier homepage http://www.elsevier.com/locate/permissions

Proofs
One set of page proofs (as PDF files) will be sent by e-mail to the corresponding author (if we do not have an e-mail address then paper proofs will be sent by post) or, a link will be provided in the e-mail so that authors can download the files themselves. Elsevier now provides authors with PDF proofs which can be annotated; for this you will need to download Adobe Reader version 9 (or higher) available free from http://get.adobe.com/reader. Instructions on how to annotate PDF files will accompany the proofs (also given online). The exact system requirements are given at the Adobe site: http://www.adobe.com/products/reader/tech-specs.html.

If you do not wish to use the PDF annotations function, you may list the corrections (including replies to the Query Form) and return them to Elsevier in an e-mail. Please list your corrections quoting line number. If, for any reason, this is not possible, then mark the corrections and any other comments (including replies to the Query Form) on a printout of your proof and return by fax, or scan the pages and e-mail, or by post. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. We will do everything possible to get your article published quickly and accurately. It is important to ensure that all corrections are sent back to us in one communication: please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility.
Reprints
The corresponding author, at no cost, will be provided with a PDF file of the article via e-mail. The PDF file is a watermarked version of the published article and includes a cover sheet with the journal cover image and a disclaimer outlining the terms and conditions of use. There are no page charges.

Author enquiries: For enquiries relating to the submission of articles please visit Elsevier’s Author Gateway at http://authors.elsevier.com/journal/jad. The Author Gateway also provides the facility to track accepted articles and set up e-mail alerts to inform you of when an article’s status has changed, as well as detailed artwork guidelines, copyright information, frequently asked questions and more. Contact details for questions arising after acceptance of an article, especially those relating to proofs, are provided after registration of an article for publication.

Offprints
The corresponding author, at no cost, will be provided with a personalized link providing 50 days free access to the final published version of the article on ScienceDirect. This link can also be used for sharing via email and social networks. For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. Both corresponding and co-authors may order offprints at any time via Elsevier’s WebShop (http://webshop.elsevier.com/myarticleservices/offprints). Authors requiring printed copies of multiple articles may use Elsevier WebShop’s ‘Create Your Own Book’ service to collate multiple articles within a single cover (http://webshop.elsevier.com/myarticleservices/booklets).

AUTHOR INQUIRIES
You can track your submitted article at http://www.elsevier.com/track-submission. You can track your accepted article at http://www.elsevier.com/trackarticle. You are also welcome to contact Customer Support via http://support.elsevier.com.

© Copyright 2014 Elsevier | http://www.elsevier.com