Author(s): Karim Sadr, Andrew Smith, Ina Plug, Jayson Orton and Belinda Mütti
Published by: South African Archaeological Society
Stable URL: http://www.jstor.org/stable/3889154
Accessed: 24-12-2015 10:14 UTC

REFERENCES
Linked references are available on JSTOR for this article:

You may need to log in to JSTOR to access the linked references.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
HERDERS AND FORAGERS ON KASTEELBERG:
INTERIM REPORT OF EXCAVATIONS 1999–2002

KARIM SADR1, ANDREW SMITH2, INA PLUG3, JAYSON ORTON2& BELINDA MÜTTI3

1School of Geography, Archaeology & Environmental Studies, University of the Witwatersrand, Private Bag 3, Wits, 2050 South Africa. 2Dept of Archaeology, University of Cape Town, Private Bag, Rondebosch, 7700 South Africa. 3PO Box 21022, Valhalla, 0137 South Africa. Email for correspondence: sadrk@geoarc.wits.ac.za

(Received November 2002. Accepted February 2003.)

ABSTRACT
Smith et al. (1991) proposed a model to distinguish the archaeological sites of Khoekhoe pastoralists from those of San. This model was based on information gathered from sites scattered over hundreds of square kilometres and several millennia. Between 1999 and 2002 we re-examined Smith et al.’s (1991) model by excavating six neighbouring contemporary sites on the hill Kasteelberg. In a previous survey, three of these sites had been provisionally identified as pastoralist sites and three as forager sites. Here we present a brief comparison of the materials from these six sites. Although there are clear differences between the two sets of sites, the hypothesis that one set represents Khoekhoe herders and the other Bushman hunter-gatherers is not supported. Rather, one set of sites seems to represent a more mobile, herder-forager adaptation with a preference for inland resources while the other set appears to represent a more sedentary herder-forager adaptation with emphasis on shoreline resources. It remains to be determined how the occupants of the two sets of sites related to each other.

Keywords: Kasteelberg, west coast, Later Stone Age, herders, hunter-gatherers.

Introduction
Since at least the early years of the twentieth century it has been thought that the Khoekhoe (Khoekhoe-speaking people who were previously known as Hottentots) brought the herding way of life to the southern tip of Africa (Stow 1905; Theal 1910; Schapera 1930). Linguists suggested that they came from northern Botswana, where Khoi is still spoken (Bleek 1929; Westphal 1963). According to the historian Richard Elphick (1977, 1985), the Khoekhoe were mixed with indigenous Bushmen (San) hunter-gatherers soon after their arrival. Among the now mixed Khoesan herders, foraging became the fallback option for individuals who lost their domestic animals to disease or theft.

The site of Oudepost provided support for Elphick’s view. At this outpost of the Dutch East India Company overlooking Saldanha Bay history recorded interaction between soldiers and Khoekhoe herders. Excavations by Schrire & Deacon (1989) showed that the indigenous flaked stone artefacts at Oudepost were indistinguishable from the so-called Wilton assemblages that archaeologists normally associate with Bushmen hunter-gatherers. The association of historically recorded Khoekhoe and archaeologically documented Wilton stone tools at Oudepost seemed to confirm that the cultural and economic boundary between Khoekhoe and Bushmen was not as impermeable as previously assumed.

Table 1. Data for hunter and herder sites, after Smith et al. (1991). 1: diameters in mm, 2: percentage of total.

<table>
<thead>
<tr>
<th></th>
<th>Lithics</th>
<th>Pottery</th>
<th>Beads</th>
<th>Fauna</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tools</td>
<td>Lithics</td>
<td>Sheds</td>
<td>Max</td>
</tr>
<tr>
<td>HUNTERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Witklip all units</td>
<td>4.9</td>
<td>1181</td>
<td>10.8</td>
<td>62.5</td>
</tr>
<tr>
<td>Witklip unit 1</td>
<td>6.1</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Witklip unit 2</td>
<td>6.4</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Witklip unit 3</td>
<td>4.7</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Witklip unit 4</td>
<td>4.4</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vlaeberg 3</td>
<td>4.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oudepost 1</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KBC & Paternoster</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HERDERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KBB all</td>
<td>0.2</td>
<td>343</td>
<td>735.8</td>
<td>25.0</td>
</tr>
<tr>
<td>KBA 100-220 bp</td>
<td>7.2</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KBB 200 bp</td>
<td>6.6</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KBB 1300 bp</td>
<td>7.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KBA 1800 bp</td>
<td>7.5</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heuningklip</td>
<td></td>
<td></td>
<td></td>
<td>55.3</td>
</tr>
</tbody>
</table>

Smith et al. (1991) countered with evidence from excavations at several sites around Saldanha Bay and further inland. This body of evidence suggested that pre-colonial hunters and herders could indeed be distinguished in the archaeological record (Table 1). Herder sites had few flaked stone artefacts and formal stone tools while hunter-gatherer sites had relatively many of both. On the other hand, herder sites had many potsherds and hunter sites few, if any. Sheep and seal bones were common on herder sites but rare or absent on hunter sites, while bones of steenbok (Raphicerus campestris) presented the opposite pattern. What seemed particularly significant was that the ostrich eggshell beads were on average larger on herder sites than on hunter sites. This apparently non-functional difference suggested that the pre-colonial hunters and herders were indeed people of different cultures. It made sense to see the hunter-gatherers as Bushmen and the herders as Khoekhoe-speakers.

There was a weak point in this scenario. The Smith et al. (1991) model was based on a wide scatter of sites from the west coast to the Cape Fold Belt mountains and covering the...
last three and a half millennia. It seemed reasonable at the
time to assume a degree of uniformity across this stretch of
space and time. Later the assumption became questionable
when an archaeological survey documented an unexpected
degree of variety in Later Stone Age sites of the Vredenburg
Peninsula, just north of Saldanha Bay (Sadr et al. 1992). In
the earliest phase of occupation, perhaps dating as far back
as the mid-Holocene, sites rich in backed stone tools were
distributed along the shore. In the next phase, which extended
into the first millennium AD, sites were concentrated inland
and characterized by many adzes. The third phase, which we
can now securely date to the late first millennium AD, was
characterized by inland sites with spouted ceramic vessels
and many bones of small stock. The flaked stone technology
and choice of raw material are similar to those from the
second phase but phase three assemblages are not rich in
formal tools. Radiocarbon dates now suggest that the sites
of phases 2 and 3 overlapped in time. In the fourth phase,
dating to the early second millennium AD, most of the sites
were again distributed along the shore and are characterized
by the presence of undecorated ceramic vessels with lugs, an
informal macrolithic flaked stone tool assemblage on coarse
raw materials, and many seal bones in the excavated deposits
from one of the sites. In the final phase, which extends into
the period of contact with Europeans, sites again shifted
inland and were characterized by decorated, lugged ceramic
vessels and microlithic stone tool assemblages, mainly on
quartz. The survey thus indicated that the Later Stone Age
cultural backdrop, at least on the Vredenburg Peninsula, was
not as uniform as the 1991 model required. A re-examination
of the 1991 model seemed to be in order. Would the material
distinction between Khoekhoe herder and Bushman hunter
sites, as seen in the widespread 1991 sample, be visible also
in a spatially and chronologically tighter cluster of sites?

To answer this, since 1999 the Kasteelberg Archaeological
Project (KAP) has excavated six sites on the hill Kasteelberg
(Fig. 1). The detailed site reports will be published in the
near future. Here, only some of the relevant results are
reported. All six excavated sites include deposits dating to
the first millennium AD, with five of them incorporating
material dating to AD 600–1000 (Fig. 2). Based on initial
surface collections of artefacts made at these six sites during
the 1992 survey, three of them were provisionally classified
as phase 2 hunter sites and the other three as phase 3 herder
sites (Sadr et al., 1992). Flaked stones in both phases were
microlithic and predominantly quartz. The assemblages
differed in that phase 2 sites included a relatively high count
of adzes and flaked stone in general, slightly more silcrete
than coarse grained stone raw material and few ceramics. For
phase 3, the principal identifying attributes were generally
low numbers of flaked stone, few formal tool types, slightly
more coarse-grained than silcrete raw material and a high
count of potsherds. Recent, more detailed comparisons of
the excavated materials from these six sites have blurred
our initial distinctions. As reported below, the excavations
partly confirmed our conclusions from 1991 that there
were two clearly definable sets of sites on the Vredenburg
Peninsula during the late first millennium AD but whether
these two sets really represent herders and hunters, or even
Khoe and Bushmen, now seems debatable. Below we argue
instead that they represent two variants of a small-stock
herding and foraging economy. In one variant foraging took
place principally inland and in the other variant mostly on
the seashore. The significance of this distinction and the
relationship between the occupants of the two sets of sites
remain to be clarified.

![Fig. 1. Location of the six sites excavated by the Kasteelberg Archaeological Project (in black). Other known sites are shown in grey. The position of KBB is shown for reference. All sites on Kasteelberg are designated with a letter of the alphabet preceded by KB: thus, A is KBA.](image)

![Fig. 2. Calibrated and corrected radiocarbon dates on marine shell from the six excavated sites.](image)

The Kasteelberg six

Ceramic index

The comparisons of the artefacts from the six excavated
Kasteelberg sites show that the so-called hunter sites
indeed contain more flaked stone and fewer potsherds.
than the so-called herder sites (Fig. 3 and Table 2). This is best represented by the ceramic index which reflects the proportion of potsherds in the total of ceramic and flaked stone artefacts at each site. The herder sites consistently have a ceramic index above 60%. The hunter sites, no matter whether from the early or the late first millennium AD, have a ceramic index consistently below 20%. Typologically, the ceramics on the late first millennium AD hunter and herder sites are identical: they are all spouted incised and impressed vessels (also known as Spinc and Spimp). Early first millennium AD ceramic types cannot yet be defined for lack of diagnostic sherds.

Table 2. Data for artefacts in the six excavated Kasteelberg sites. up: upper layers. lo: lower layers. pc: pre-ceramic layers. Area excavated in three cubic metres.

<table>
<thead>
<tr>
<th></th>
<th>KBA</th>
<th>KBDe</th>
<th>KBE</th>
<th>KBN</th>
<th>KBM</th>
<th>KBG</th>
<th>KBG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>1.312</td>
<td>2.12</td>
<td>0.763</td>
<td>1.36</td>
<td>0.47</td>
<td>0.26</td>
<td>0.22</td>
</tr>
<tr>
<td>Flaked stone /m³</td>
<td>177</td>
<td>150</td>
<td>76</td>
<td>114</td>
<td>168</td>
<td>463</td>
<td>267</td>
</tr>
<tr>
<td>Flaked stone</td>
<td>134.9</td>
<td>70.8</td>
<td>99.6</td>
<td>83.8</td>
<td>357.4</td>
<td>1780.8</td>
<td>1213.6</td>
</tr>
<tr>
<td>No formal tools</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>No formal tool types</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Formal tool index</td>
<td>1.69</td>
<td>1.33</td>
<td>0</td>
<td>0</td>
<td>1.78</td>
<td>1.29</td>
<td>3.37</td>
</tr>
<tr>
<td>Pottery</td>
<td>No sherd s</td>
<td>423</td>
<td>574</td>
<td>153</td>
<td>34</td>
<td>28</td>
<td>21</td>
</tr>
<tr>
<td>Sherd s /m³</td>
<td>322.4</td>
<td>270.8</td>
<td>200.5</td>
<td>25.0</td>
<td>59.6</td>
<td>80.8</td>
<td>68.2</td>
</tr>
<tr>
<td>Ceramic index</td>
<td>70.5</td>
<td>79.3</td>
<td>66.8</td>
<td>23</td>
<td>14.3</td>
<td>4.3</td>
<td>5.3</td>
</tr>
<tr>
<td>Beads</td>
<td>No finished</td>
<td>50</td>
<td>93</td>
<td>25</td>
<td>3</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Unfinished</td>
<td>?</td>
<td>74</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Formal stone tools

As expected from the 1991 model, formal stone tools, in other words, flaked stones that have been trimmed to a particular shape and size, were indeed more common on so-called hunter sites but mainly in the early first millennium AD components (Fig. 3 & Table 2). In the late third millennium AD sites the distinction is blurred. The hunter site KBN, for example, has no formal tools and the late component of the hunter site KBG contains a smaller percentage of formal tools in its flaked stone assemblage than does the so-called herder occupation at KBA. Variety in stone tool types may prove a more useful index. Using this measure, it can be shown that the hunter sites generally contain a greater variety of formal tool types than the herder sites (Table 2). Whether this wider variety reflects cultural differences between the occupants of the two sets of sites or whether it is merely a product of different activities at the different sites remains to be clarified. Supporting the idea of different activities, the hunter sites seem to have a wider variety of backed tools while the herder sites contain a higher proportion of scrapers. However, samples of formal tools are small and perhaps not adequately representative.

Animal bones

Even more divergent from the 1991 model are the results of faunal comparisons (Fig. 4 & Table 3). Instead of showing the presence of domestic stock on herder sites and their absence on hunter sites, faunal analyses have shown that all six excavated Kasteelberg sites contain over 25% of domestic stock bones in their mammalian faunal sample. These counts include bones positively identified as sheep and those that could only be identified generally as Bovid II, which, in the absence of other positively identified species in that size class, are probably sheep. The relatively high proportion of small stock is even found in the early first millennium AD so-called hunter sites: KBM, for example, has the same percentage of small stock as the classic ‘herder’ site KBA. The KBM sample is very small and perhaps inadequate but, given that early KBG also contains significant proportions of small stock, it becomes difficult to continue calling the occupants of one set of sites hunters and of the other set herders. A neutral term is preferable. Provisionally, following the graphic conventions used in the charts, we will now substitute the terms black for the ‘herder’ sites and grey for the ‘hunter’ sites.
Table 3. Numbers of identifiable specimens (NISP) in the six excavated Kasteelberg sites. up: upper layers. lo: lower layers.

<table>
<thead>
<tr>
<th></th>
<th>KBA</th>
<th>KBDc</th>
<th>KBE</th>
<th>KBN</th>
<th>KBM</th>
<th>KBG</th>
<th>up</th>
<th>KBG</th>
<th>lo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheep/goat</td>
<td>122</td>
<td>963</td>
<td>35</td>
<td>18</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cattle</td>
<td>8</td>
<td>57</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steenbok</td>
<td>4</td>
<td>26</td>
<td>11</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bovid I</td>
<td>27</td>
<td>81</td>
<td>36</td>
<td>24</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bovid II</td>
<td>81</td>
<td>160</td>
<td>31</td>
<td>66</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seal</td>
<td>113</td>
<td>76</td>
<td>66</td>
<td>20</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>390</td>
<td>1501</td>
<td>229</td>
<td>210</td>
<td>24</td>
<td>8</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tortoise</td>
<td>528</td>
<td>507</td>
<td>311</td>
<td>746</td>
<td>254</td>
<td>238</td>
<td>185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total bones</td>
<td>4321</td>
<td>14098</td>
<td>1694</td>
<td>1754</td>
<td>383</td>
<td>359</td>
<td>289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine shell</td>
<td>11439</td>
<td>3776</td>
<td>467</td>
<td>798</td>
<td>321</td>
<td>629</td>
<td>670</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone /m³</td>
<td>3298</td>
<td>6650</td>
<td>2220</td>
<td>1290</td>
<td>815</td>
<td>1381</td>
<td>1314</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shell /m³</td>
<td>8719</td>
<td>3433</td>
<td>4629</td>
<td>587</td>
<td>683</td>
<td>2419</td>
<td>3045</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4. Proportions of key animals in the mammalian faunal samples from the six excavated sites. See Fig. 3 for further details.

Although the relative proportions of small stock are consistently high, other aspects of the faunal remains show significant differences, as also noted in the 1991 model. The black sites generally have a higher percentage of seal bones while the grey sites generally have a higher proportion of steenbok bones (and Bovid I, probable steenbok; Fig. 5 & Table 3). In effect, the distinction between the two sets of sites seems to be not so much between herders and hunters, but between one group of small stock herders, who supplemented their protein by hunting steenbok inland, and another group of small stock herders, who supplemented their diet by taking seals on the seashore. The grey sites with many steenbok also have a higher proportion of tortoise while the black sites with many seal generally have a higher proportion of seashell.

Fig. 5. Proportions of tortoise and marine shell, and densities of shell and bone on the six excavated sites. See Fig. 3 for further details.

Settlement patterns
The shoreline-oriented group was apparently more sedentary than the inland-oriented one: the black sites generally contain more food debris per cubic metre (Fig. 5 & Table 3). The lower densities of food debris on the inland-oriented (grey) sites may have resulted from repeated, short term occupations. Given the proximity of these six sites in both space and time, it seems unlikely that natural factors affecting soil deposition rates contributed much to the observed differences in densities of food debris per cubic metre. Indeed, the idea that the occupants of the black sites were more sedentary is further supported at KBA and KBD, where remains of stone, man-made structures have been found (Sadr & Smith 2001). An unfortunate side-effect of greater mobility among the occupants of the grey sites, if that was indeed the case, is much smaller sample sizes.

This content downloaded from 137.158.114.126 on Thu, 24 Dec 2015 10:14:36 UTC
All use subject to JSTOR Terms and Conditions
makes some of the faunal comparisons seem unreliable. Nonetheless, the consistency of the patterns, which repeatedly reveal the distinction between shoreline and inland orientation and their correlation with distinctions in flaked stones and potsherds, suggests that we are not dealing with spurious results. All six sites are open-air settlements, although the black sites are generally higher on the hill and near large boulders, which provide protection from the winds. Of the grey sites, KBG is far from any protective boulders while KBM and KBN are only protected against the northerly winds of winter.

![Comparison of ostrich eggshell bead diameters. Gpc designates the pre-ceramic sample from KBG. See Fig. 3 for further details.](image)

Bead diameters

If a straightforward economic distinction between hunters and herders is not evident in these six sites, what about the cultural distinction between Bushmen and Khoe-speakers? In the 1991 model, the cultural distinction was seen in ostrich eggshell bead diameters, with Bushmen hunters preferring smaller beads (average less than 5 mm in diameter) and Khoe-speakers herders larger ones (average over 6 mm in diameter). A comparison of average ostrich eggshell bead diameters from the six excavated Kasteelberg sites shows no clear distinction between the grey and black sites during the first millennium AD: the average bead sizes are uniformly 6–7 mm (Fig. 6 & Table 2). Both black and grey sites include unfinished beads, which points to *in situ* manufacture. Significantly, average bead sizes of less than 5 mm are encountered only in the pre-ceramic, pre-herding layers of KBG. Bead size differences on Kasteelberg thus seem to reflect change through time rather than representing emblems of different but contemporary cultures.

Summary and conclusion

The Smith *et al.* (1991) model did identify real material differences between two sets of sites in the southwestern Cape but its conclusion that one set represented occupation by Khoe-speaking herders and the other occupation by Bushman hunter-gatherers has not been verified in the sample of six first millennium AD sites on Kasteelberg. Instead, the faunal remains and numbers of potsherds and ostrich eggshell beads from these six sites suggest that one set of sites comprised briefly occupied camps of early first millennium AD small-stock herders and foragers, who concentrated on inland resources. The other set of sites, which only date to the late first millennium AD, represent more sedentary small-stock herders and foragers, who concentrated on shoreline resources. The difference in the densities of flaked stone per cubic metre and the variety in types of formal tools in the two sets of sites may reflect functional differences in their subsistence strategies. There are no clear stylistic differences between the ceramics or ostrich eggshell beads in these two sets of sites to suggest they were occupied by people of different cultural groups. One of the inland-oriented sites, KBG, has not only occupation from the first millennium AD but also pre-ceramic and pre-herding layers of occupation from the last few millennia BC. The continuity in occupation at this site may suggest that the inland-oriented small-stock herding and foraging adaptation had its roots in the indigenous west-coast population of hunter-gatherers (for a possibly similar situation in Namibia see Kinahan 1991). If so, this would contradict the current textbook scenario that herding initially reached the southwest coast with the migration of Khoe-speakers from the north.

We have not yet understood the relationship between the herder-foragers of the inland- and shoreline-oriented sites. We may be looking at two seasonally distinct economic systems practised by the same folk. Alternatively, perhaps the shoreline-oriented herder-foragers were immigrants who arrived in the mid-first millennium AD. The inland-oriented people may even have been their local clients. Or perhaps the shoreline-oriented sites just represent a divergent faction of the local population that focused on exploiting more marine than terrestrial resources. Certainly the archaeological remains in the subsequent phase of occupation on the Vredenburg Peninsula, from about AD 1000–1400, show a much more intensive focus on shoreline resources (Sadr *et al.*, 1992; Sadr 1998). The late first millennium AD shoreline-oriented herder-foragers on Kasteelberg could thus represent a transitional phase between the first millennium AD inland-oriented herder-foragers and the early second millennium AD shoreline-oriented sealers-herders, as typified by the middle layers of KBB (Klein & Cruz-Uribe 1989; see also Sadr 1998). Testing such alternative hypotheses will be the next task for KAP.

Acknowledgments

The Kasteelberg Archaeological Project has been generously sponsored by the Swan Fund, the Kent Bequest, the University of Botswana Research Committee, the University of the Witwatersrand Research Committee and the University of Cologne’s SFB 389-ACACIA project. Many thanks to all who participated in the field and laboratory work, and to Mr and Mrs P.J. Kotze of the farm Rooiheuwel for permitting and facilitating the fieldwork. Simon Hall and Royden Yates made several helpful comments to improve the paper.
References
