Molecular diagnosis of cystic fibrosis in South African populations

To the Editor: Cystic fibrosis (CF) is present in all South African population groups. In a significant proportion of patients a diagnosis of CF can be confirmed by DNA analysis and the detection of two CF transmembrane conductance regulator (CFTR) mutations, using the panels of mutations developed in this study.

The index of suspicion will also be raised in patients with a single CFTR mutation. DNA testing is important, especially in regions without access to reliable sweat tests, and should be considered an aid to diagnosis. In addition to receiving appropriate treatment, patients and their families can receive more accurate genetic counselling, CF carrier testing and prenatal diagnosis.

CF is one of the commonest autosomal recessive disorders among white South Africans, with a prevalence of 1 in 2000; prevalence in the coloured population is 1 in 12 000. CF was initially thought to be extremely rare in African blacks but a recent study showed a carrier frequency of 1 in 34 and a calculated incidence of 1 in 4 624 births. CF is characterised by pancreatic insufficiency, chronic pulmonary disease, elevated sweat chloride levels and a number of other features. It can be difficult to diagnose because of the great variability of clinical presentation and severity. The UK CF Foundation Consensus Panel suggests confirmation of diagnosis only after two positive sweat test results on separate occasions in a patient with suggestive clinical features. However, as a diagnostic test the sweat test is not ideal. It requires extreme technical rigour by experienced staff using standardised methods. In large parts of South Africa such services are not readily available.

An alternative method of diagnosis became possible with the cloning of the CFTR gene. CF is caused by mutations in the CFTR gene — patients have two mutations and carriers have one. Over 1 000 mutations have been identified. Patients may have two identical mutations (homozygotes) or two different mutations (compound heterozygotes), but the identification of two CF mutations in a patient confirms the diagnosis of CF.

Given the number of CF-causing mutations and the impracticality of screening the large CFTR gene, testing for mutations that are common in a particular population makes genetic testing useful as a diagnostic tool. The aim of this study was to improve the sensitivity and efficiency of diagnostic genetic testing for CF in South Africa through the development of customised panels of mutations for different South African population groups. A total of 201 white, 43 coloured and 14 black CF patients with confirmed diagnoses were included in this project for CFTR mutation analysis.

including five different mutations. The most common mutation is 3120+1G→A, which occurs at a frequency of 46% (13/28). Four patients were homozygous for this mutation. Four other mutations (each on a single chromosome) have been identified.

Fig. 1 shows the breakdown of the expected proportion of CFTR genotypes after testing a suspected CF patient using customised panels of mutations developed in this project. In the white population, 83% of CF patients will have two identifiable mutations (M/M) confirming a diagnosis of CF. Similarly, after DNA analysis alone, 55% of coloured but only 21% of black CF patients can be definitively diagnosed as having CF. The remaining CF patients will have either one identified mutation (M/U) or no identified mutations (U/U). In black CF patients, 71% will show at least one 3120+1G→A mutation after DNA analysis, thus assisting the clinician in making a diagnosis. Confirmation of the diagnosis in such patients will only be possible with clear clinical features and/or two positive sweat tests.

We are grateful to the doctors working in CF clinics throughout South Africa, who refer samples from the New Johannesburg General Hospital, Chris Hani-Baragwanath Hospital, Red Cross Children’s Hospital, Tygerberg Hospital and Pretoria Academic Hospital. We gratefully acknowledge funding from the H E Griffin Charitable Trust (University of the Witwatersrand), Solvay Pharmaceuticals, the South African Medical Research Council and the National Health Laboratory Service (formerly The South African Institute for Medical Research).

A Goldman
C Graf
M Ramsay

Department of Human Genetics
School of Pathology
National Health Laboratory Service and
University of the Witwatersrand
Johannesburg

F Leisegang

A T R Westwood

Red Cross War Memorial Children’s Hospital
Cape Town