REALCOMPACT ALEXANDROFF SPACES

AND

REGULAR σ-FRAMES

Christopher R. A. Gilmour

A thesis prepared under the supervision of Associate Professor G.C.L. Brümmer for the degree of Doctor of Philosophy in Mathematics.

Copyright by the University of Cape Town 1981

The University of Cape Town has been given the right to reproduce this thesis in whole or in part. Copyright is held by the author.
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
To
Ingrid
John and Betty

...things which are too wonderful for me...
The way of an eagle in the air...
ACKNOWLEDGEMENTS

I thank my thesis supervisor Associate Professor Guillaume Brügger for his care, generosity and encouragement.

I owe much to Professor K.O. Househam and to each member of the Department of Mathematics, most of whom have been my teachers and all of whom have helped make these thesis years most enjoyable.

I thank Professor K.A. Hardie for the interest he has shown in my work and for the use of facilities of the Topology Research Group, which has been financed by the University of Cape Town and the Council for Scientific and Industrial Research.

I am grateful to Professor B. Banaschewski for his encouragement and for his stimulating Research Seminar on Locales held in this department during 1979 and 1980.

I thank Wanda Fouquet for her excellent typing and William 'Mickey' de Beer for the final reproduction of this thesis.

I thank my family and friends for their constant support and care.
CONTENTS

SYNOPSIS

INDEX OF SELECTED DEFINITIONS

CHAPTER 1 - Alexandroff Spaces
1. Alexandroff bases and the category Alex
2. Some functorial relationships between Tych, Alex and Uniq

CHAPTER 2 - Realcompact Alexandroff Spaces
1. Realcompact Alexandroff spaces and Wallman realcompactifications
2. Realcompact-fine Alexandroff spaces
3. Some applications
4. Topologically realcompact Alexandroff spaces

CHAPTER 3 - Regular σ-Frames
1. Preliminaries
2. Adjoint functors and dualities
3. Compact regular σ-frames - the Stone-Čech compactification in Alex
4. Applications to realcompact and pseudocompact spaces
5. A note on complete objects
6. Generating cozero-sets from open sets

REFERENCES

Page

SYNOPSIS (ii)

INDEX OF SELECTED DEFINITIONS (vii)

CHAPTER 1 - Alexandroff Spaces 1
1. Alexandroff bases and the category Alex 2
2. Some functorial relationships between Tych, Alex and Uniq 8

CHAPTER 2 - Realcompact Alexandroff Spaces 14
1. Realcompact Alexandroff spaces and Wallman realcompactifications 15
2. Realcompact-fine Alexandroff spaces 27
3. Some applications 34
4. Topologically realcompact Alexandroff spaces 40

CHAPTER 3 - Regular σ-Frames 44
1. Preliminaries 45
2. Adjoint functors and dualities 49
3. Compact regular σ-frames - the Stone-Čech compactification in Alex 65
4. Applications to realcompact and pseudocompact spaces 75
5. A note on complete objects 90
6. Generating cozero-sets from open sets 92

REFERENCES 96
SYNOPSIS

In the early 1940's, A.D. Alexandroff [1940], [1941] and [1943] introduced a concept of space, more general than topological space, in order to obtain a simple connection between a space and the system of real-valued functions defined on it. Such a connection aided the investigation of the relationships between the linear functionals on these systems of functions and the additive set functions defined on the space. The Alexandroff spaces of this thesis are what Alexandroff himself called the completely normal spaces and what H. Gordon [1971] called the zero-set spaces.

An Alexandroff space may be viewed as a Tychonoff space with a distinguished base for the closed sets, here called an Alexandroff base, the model being the zero-sets of a subalgebra of the algebra of continuous functions. The Alexandroff bases are, in greater or lesser generality, closely related to the bases investigated by Wallman [1938], Banaschewski [1963], Frink [1964], Steiner and Steiner [1970], Alò and Shapiro [1974], Sultan [1978], Blasco [1979] and others.

A.W. Hager [1974] introduced, in the setting of uniform spaces, the separable \(\mathcal{M} \)-fine spaces and showed that they correspond, via a categorical isomorphism, to
the Alexandroff spaces. Hager's construction led to the more general concepts of $A - c$ uniform spaces, for different classes A and coreflectors c of uniform spaces. The latter spaces have been extensively studied, particularly by the Seminar Uniform Spaces led by Z. Frolík in Prague (SUS [1973-74]).

One of the most useful and interesting facts about the Alexandroff spaces is that they form a category Alex, wider than the category of Tychonoff spaces, in which pseudocompactness is productive and in which the realcompactness reflector distributes over arbitrary products (Gordon [1971]).

We outline our thesis.

Chapter 1 This chapter gives some basic results on Alexandroff spaces that we shall need later on and briefly outlines the connection between the Alexandroff spaces and the structures mentioned above.

Chapter 2 The theory of realcompactifications, in particular Wallman realcompactifications and their relationship to Hewitt's universal realcompactification is unified by means of the Alexandroff bases.

The Tychonoff spaces are located in the category Alex as the fine (or topological) Alexandroff spaces.
The Alexandroff bases that are complete (in the sense of Blasco [1979]) correspond to the realcompact-fine Alexandroff spaces. Our terminology conforms with that of the $A - c$ construction of Hager.

After characterising the realcompact-fine spaces we show how they and their associated coreflector may be applied to the following four problems.

I. When does $\nu(X \times Y) = \nu X \times \nu Y$ (for Tychonoff spaces X and Y)?

II. When is the Alex-product of topological spaces topological?

III. When does a Wallman realcompactification of a Tychonoff space coincide with the Hewitt realcompactification?

IV. Which continuous functions on a Tychonoff space extend to a given Wallman realcompactification?

The first of these problems has been considered by many authors. For references to this question and a discussion of it see Walker ([1974], 8.39). Our contribution to this and the second problem is closely related to that of Blair and Hager [1977].

The last section of this chapter is devoted to those Alexandroff spaces with realcompact topology, the corresponding epireflector ν_t in Alex and its properties.
Chapter 3. The realcompact spaces arise naturally when a description corresponding to 'topology without points' is sought for the Alexandroff spaces. The setting for this description is that of σ-frames (Banaschewski [1980a,b,c]) which are generalizations of frames (i.e. locales or local lattices, in the sense of Bénabou [1957-58], Papert [1964] and Isbell [1972a]).

My thesis advisor conjectured that the Alexandroff spaces which could be described solely by their cozero-sets (i.e. in terms of their cozero-set σ-frames) would be the Alexandroff spaces which are complete in the uniformity induced by the correspondence of Hager [1974]. These latter spaces are precisely the realcompact Alexandroff spaces (ibid.). The conjecture was proved with the generous help of Professor Bernhard Banaschewski and appears as the first half of theorem 3.2.7.

We begin chapter 3 with a short introductory section on regular σ-frames (distilled from Banaschewski [1980a]). We then give the dual adjunction between the Alexandroff spaces and the regular σ-frames. The largest duality contained in this adjunction is that between the realcompact Alexandroff spaces and the Alexandroff σ-frames. There is a corresponding dual adjunction between the Tychonoff spaces and regular σ-frames and the largest duality therein is that between the realcompact
Tychonoff spaces and the topological σ-frames. This last duality extends that of Banaschewski [1980a,b] between the compact Hausdorff spaces and the compact regular σ-frames.

As a consequence of the above we can give alternate descriptions for the analogues of \mathcal{V} and \mathcal{B}, the realcompact epireflector and compact epireflector, in Alex. The unit corresponding to \mathcal{V}, unlike its counterpart for Tychonoff spaces, is an essential embedding.

The Alexandroff spaces provide a natural setting for the theory of z-embedding in topology (e.g. see Blair and Hager [1977]). We illustrate this observation by means of some applications in section 4.

This chapter concludes with two short sections. The first of these is a note on complete objects (in the sense of Brümmer [1979]) in Alex. In the last section we establish, directly from results of Banaschewski [1980a], a way of generating the cozero-sets of the fine coreflection of an Alexandroff space via its open sets.
INDEX OF SELECTED DEFINITIONS

<table>
<thead>
<tr>
<th>Definition</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alex</td>
<td>4</td>
</tr>
<tr>
<td>Zero</td>
<td>5</td>
</tr>
<tr>
<td>SMF</td>
<td>12</td>
</tr>
<tr>
<td>(\sigma\text{Frm})</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F)</td>
<td>(\text{Alex} \rightarrow \text{Tych})</td>
<td>8</td>
</tr>
<tr>
<td>(R)</td>
<td>(\text{Tych} \rightarrow \text{Alex})</td>
<td>8</td>
</tr>
<tr>
<td>(U)</td>
<td>(\text{Alex} \rightarrow \text{Unif})</td>
<td>11</td>
</tr>
<tr>
<td>(H)</td>
<td>(\text{Alex} \rightarrow \text{Unif})</td>
<td>11</td>
</tr>
<tr>
<td>(\Psi)</td>
<td>(\text{Alex} \rightarrow \text{Reg} \sigma\text{Frm})</td>
<td>49</td>
</tr>
<tr>
<td>(\Psi)</td>
<td>(\text{Reg} \sigma\text{Frm} \rightarrow \text{Alex})</td>
<td>49</td>
</tr>
<tr>
<td>(\Sigma = F \Psi)</td>
<td>(\text{Reg} \sigma\text{Frm} \rightarrow \text{Tych})</td>
<td>75</td>
</tr>
<tr>
<td>(T = U R)</td>
<td>(\text{Tych} \rightarrow \text{Reg} \sigma\text{Frm})</td>
<td>75</td>
</tr>
<tr>
<td>(\Omega)</td>
<td>(\text{Top} \rightarrow \text{Frm})</td>
<td>92</td>
</tr>
<tr>
<td>(\Lambda)</td>
<td>(\text{Frm} \rightarrow \text{Top})</td>
<td>92</td>
</tr>
</tbody>
</table>

\(\beta X\) - for Alexandroff space \(X\) | 10, 19

\(\Upsilon_t\) | 10, 40

\(\upsilon X\) - for Alexandroff space \(X\) | 16

\(\rho\) | 22

\(\omega\) | 22

\(\mathfrak{r}\) | 27

\(\mathfrak{r}_t\) | 42

\(K\) | 68
\begin{align*}
\eta_X &: X \rightarrow \psi \psi^! X \\
\varepsilon_L &: L \rightarrow \mathcal{U} \psi^! L \\
\tau_X &: X \rightarrow \Sigma \mathcal{E} X \\
\varphi_L &: L \rightarrow \mathcal{T} \mathcal{E} L
\end{align*}

\begin{align*}
R_z &: 3 \\
R &: 9 \\
R_{su} &: 11 \\
A(X) &: 5 \\
C(X) &: \text{(continuous functions on } X \text{)} 8 \\
\lhd &: 69 \\
\ll &: \text{(rather below)} 46 \\
\llw &: \text{(completely below)} 93
\end{align*}
CHAPTER 1

Alexandroff Spaces
1. Alexandroff bases and the category Alex

Further details and proofs of the material in this and the following section may be found in Alexandroff [1940], Gordon [1971], Hager [1974] and Gilmour [1975].

1.1 Definition An Alexandroff space is a pair \((X, \mathcal{Z})\) where \(X\) is a set and \(\mathcal{Z}\), the Alexandroff structure on \(X\), is a collection of subsets of \(X\) satisfying \(Z1 - Z4\) below. The sets in \(\mathcal{Z}\) are called zero-sets and their complements with respect to \(X\) are cozero-sets.

\(Z1\) \(\mathcal{Z}\) is closed under finite unions and countable intersections; \(\emptyset\) and \(X\) are in \(\mathcal{Z}\).

\(Z2\) If \(A, B \in \mathcal{Z}\) and \(A \cap B = \emptyset\) then there are \(C, D \in \mathcal{Z}\) such that \(A \cap C = \emptyset = B \cap D\) and \(C \cup D = X\).

\(Z3\) If \(A \in \mathcal{Z}\) then there is a sequence \(\{A_n\}\) in \(\mathcal{Z}\) such that \(X \setminus A = \bigcup A_n\).

\(Z4\) For each pair of distinct points in \(X\) there is an \(A \in \mathcal{Z}\) containing just one of them.

Where no confusion will arise, \((X, \mathcal{Z})\) is often abbreviated to simply \(X\).
1.2 Examples

(1) The zero-sets of any topological space satisfy $Z_1 - Z_3$.

(2) Any σ-algebra \mathcal{B} of subsets of a set X is an Alexandroff structure on X.

(3) The set $\mathcal{P}X$ of all subsets of a set X is the discrete Alexandroff structure on X.

(4) The closed sets of the real line \mathbb{R} with its usual topology satisfy $Z_1 - Z_4$. We denote the associated Alexandroff space by \mathbb{R}_z.

1.3 The zero-sets of an Alexandroff space (X, \mathfrak{z}) form a base for the closed sets of a Tychonoff topology on X; such a base will be called an Alexandroff base for the underlying topology. Other authors use the terms: strong delta normal base (Alò and Shapiro [1974]); separating nest generated intersection ring (Steiner and Steiner [1970]); strongly normal complement generated delta lattice (Bachman and Sultan [1976]).

In particular a family \mathfrak{z} of closed sets in X is (i) normal if \mathfrak{z} satisfies Z_2 (ii) complement generated if Z_3 is satisfied (iii) nest generated if for each $A \in \mathfrak{z}$ there exists a sequence $\{A_n, B_n\}$ in \mathfrak{z} such that $X \setminus B_{n+1} \subseteq A_{n+1} \subseteq X \setminus B_n \subseteq A_n$, $n = 1, 2, \ldots$ and $A = \cap A_n$.
Steiner [1966] showed that each family of closed sets \(\mathfrak{I} \) which is nest generated and satisfies \(Z_1 \), is normal (a special case of 3.1.5). It is easy to see that such a \(\mathfrak{I} \) is complement generated. Conversely it is not difficult to verify that an Alexandroff base is nest generated.

A base \(\mathcal{N} \) for the closed sets of a topological space \(X \), is a normal base if it is (i) closed under finite unions and finite intersections (ii) satisfies \(Z_2 \) (iii) such that for each closed set \(F \) of \(X \) and each \(x \in F \), there is an \(N \in \mathcal{N} \) with \(x \in N \) and \(F \cap N = \emptyset \).

Each Alexandroff base is a normal base.

1.4 The axioms \(Z_1 - Z_4 \) for the zero-sets of an Alexandroff space \(X \) translate (via complements) to axioms which characterise the cozero-sets of \(X \). We shall find it appropriate in chapter 3 to refer to the cozero-set structure of \(X \), and we denote it by \(\mathfrak{U}X \).

1.5 Functions between Alexandroff spaces for which preimages of cozero-sets (zero-sets) are cozero-sets (respectively, zero-sets) are called coz-maps. The Alexandroff spaces and coz-maps are the objects and morphisms of the category \(\text{Alex} \). The collection of all
coz-maps between Alexandroff spaces X and Y is denoted by $\text{Alex}(X,Y)$. In particular we abbreviate $\text{Alex}(X,\mathbb{R})$ to $A(X)$. We note that $A(X)$ is an algebra of functions (in the sense of Hager [1969]). An Alexandroff space X is \textit{pseudocompact} if each coz-map of $A(X)$ is bounded.

1.6. \textbf{Theorem} (Gordon [1971]) \textit{If (X,\mathcal{Z}) is an Alexandroff space, then}\n
$$\mathcal{Z} = \{Zf: f \in A(X)\}.$$ \textit{We note that this result is contained in the duality of Steiner and Steiner ([1970], 4.3).}

1.7. Dropping the separation axiom \mathcal{Z}_4 we obtain a larger category \textit{Zero} that is topological over Ens.

Thus for any class of pairs (f_α, Y_α) of functions f_α on a set S to $Y_\alpha \in \text{Zero}$, there is an $X \in \text{Zero}$ with underlying set S satisfying:

(1) Each $f_\alpha: X \to Y_\alpha$ is a coz-map.

(2) Whenever $W \in \text{Zero}$ and coz-maps $g_\alpha: W \to Y_\alpha$ and a function k are given such that $f_\alpha k = g_\alpha$ for each α, then k is a coz-map.

Such an X is called \textit{initial} for the given class of pairs (f_α, Y_α). The zero-sets of X are precisely
those sets which are countable intersections of finite unions of preimages of zero-sets of the Y_a under the f_a.

We call an object (X, \mathcal{Z}) coarser than (X, \mathcal{W}) (or (X, \mathcal{W}) finer than (X, \mathcal{Z})) if $\mathcal{Z} \subseteq \mathcal{W}$. The initial structure on X above is the coarsest for which (1) is satisfied.

The initial zero-object X above will be an Alexandroff space if and only if the class $\{f_a\}$ distinguishes points.

1.8 It is well known that every topological category is cotopological. Thus zero admits coinitial structures.

Theorem Let (Y_a, g_a) be a class of pairs of functions g_a from $Y_a \in \text{zero}$ to a given set S. Let \mathcal{F} be the family of all functions f on S to \mathbb{R} such that $fg_a \in \text{zero}(Y_a, \mathbb{R})$ for each a. The following are equivalent for $X \in \text{zero}$ with underlying set S:

1. X is coinitial for the (Y_a, g_a)
2. X is initial for the (f, \mathbb{R}) with $f \in \mathcal{F}$
3. $\text{zero}(X, \mathbb{R}) = \mathcal{F}$.

zero, being topological over Ens, is complete, and cocomplete. A subspace X of an Alexandroff space
1

Y is a subset of Y with the initial structure for (i,Y) where i is the inclusion function (i.e. restriction of zero-sets). An embedding f is an initial map that distinguishes points.

1.9 Alex is epi-reflective in Zero (being productive and hereditary) and is thus also complete. A coz-map is an epimorphism if and only if it is dense (for the underlying topology). The closed embeddings in Alex coincide with the extreme monomorphisms. Alex is well- and cowell-powered and it follows that an epireflective subcategory of Alex is one which is productive and closed-hereditary.

1.10 Theorem Every Alexandroff space X is initial for the set of all pairs (f,\mathbb{R}_z) with f \in Alex(X,\mathbb{R}_z).

1.11 Corollary Every Alexandroff space X is embedded in a product of copies of \mathbb{R}_z (viz. \mathbb{R}_z^{A(X)}).
2. Some functorial relationships between Tych, Alex and Unif.

The symbols F, R, G, H and U will have a fixed meaning throughout the sequel.

2.1 The underlying topology of an Alexandroff space, taking zero-sets as a base for the closed sets, is delivered by a forgetful functor $F: \text{Alex} \rightarrow \text{Tych}$. When $FX = Y$ we say the Tychonoff space Y admits the Alexandroff space X. The zero-sets of the continuous functions on a Tychonoff space Y satisfy $Z_1 - Z_4$ in 1.1. The associated Alexandroff space is denoted RY and defines a functor $R: \text{Tych} \rightarrow \text{Alex}$ which is the unique section (i.e. right inverse) to F. R delivers the finest admissible structure on Y and is left adjoint to F. RY is initial for the set of all pairs (f, Z) with $f \in \mathcal{C}(X)$ (Gilmour [1974]). Thus Tych is embedded as a full bicoreflective subcategory of Alex. The Alexandroff spaces X for which $X = RFX$ will be called fine.

2.2 A result that we use frequently is:

Theorem (Hager [1974]) A Tychonoff space X admits a unique Alexandroff structure if and only if X is either Lindelöf or almost compact.
In particular \mathbb{R}, the real line with its usual topology, admits only \mathbb{R}_z.

An amusing consequence of the previous theorem is the following:

Corollary Let X be a Tychonoff space. The following are equivalent:

1. X is Lindelöf.
2. $X \times Y$ admits a unique Alexandroff structure for each compact Hausdorff Y.
3. $X \times \beta X$ admits a unique Alexandroff structure.

Proof The implications (1) \Rightarrow (2) \Rightarrow (3) are trivial.

(3) \Rightarrow (1) If $X \times \beta X$ is Lindelöf, so is X.

Otherwise $X \times \beta X$ is almost compact, hence pseudocompact so that

$$\gamma(X \times \beta X) = \beta X \times \beta X$$

and

$$1 \geq \text{card} \left((\beta X \times \beta X) \setminus (X \times \beta X) \right) = \text{card} (\beta X \setminus X), \text{card}(\beta X)$$

so that $\text{card}(\beta X \setminus X) = 0$ and X is compact.

2.3 The functor F preserves initiality and consequently preserves products and closed subspaces (extreme monomorphisms). Thus as a special case of a result of Brümmer ([1971], 1.9.2) we have:
Proposition Let S be an epireflective subcategory of $Tych$. The full subcategory of $Alex$ consisting of those Alexandroff spaces X for which $FX \in S$, is epireflective in $Alex$.

Examples (1) The compact Tychonoff spaces lift to the compact Alexandroff spaces. We denote the associated epireflector in $Alex$ by β. No confusion should arise with the Stone-Čech epireflector β in $Tych$. The following properties are easily verified:

(i) $R \beta \cong \beta R \quad (: Tych \to Alex)$,
(ii) $F \beta X \cong \beta FX$ if and only if X is a fine Alexandroff space,
(iii) R and F restrict to an equivalence between the categories Comp Alex of compact Alexandroff spaces and Comp Tych, of compact Tychonoff spaces.

(2) The Alexandroff spaces with realcompact topology form an epireflective subcategory of $Alex$. The associated epireflector is denoted by υ_t, and is studied in section 4 of chapter 2.

There is another class of Alexandroff spaces, called realcompact and introduced in chapter 2 section 1, that is epireflective in $Alex$. The corresponding epireflector is denoted by υ. The context will ensure that this notation is not confused with that for the Hewitt realcompact epireflector in $Tych$.
2.4 There is a one-to-one correspondence between the cozero-sets of \(X \) and its Tychonoff reflection which will be an isomorphism of the corresponding lattices of cozero-sets (in the sense of chapter 3).

2.5 Let \(\mathbb{R}_{su} \) denote the real line with the standard (metric) uniformity. The functor \(G \) from the category of separated uniform spaces and uniformly continuous maps \(\text{Uni}_6 \) to \(\text{Alex} \), assigns to each uniform space \(Y \) the Alexandroff space with the zero-sets of the uniformly continuous (bounded) functions on \(Y \) to \(\mathbb{R}_{su} \) for zero-sets.

There are two right inverses of \(G \) with which we shall be concerned:

1. \(U: \text{Alex} \rightarrow \text{Uni}_6 \), where \(UX \) is initial for the set of all pairs \((f, \mathbb{R}_{su}) \) with \(f \in \text{Alex}(X, \mathbb{R}_{z}) \).

2. \(H: \text{Alex} \rightarrow \text{Uni}_6 \), where the countable coz-covers (i.e. cozero-set covers) of an Alexandroff space \(X \) are a basis for the uniform covers of \(HX \) (Hager [1974]).

2.6 Let \(\alpha Y \) denote the (topologically) fine coreflection, and \(\gamma Y \) the completion of a uniform space \(Y \). Let \(A \) be a class of uniform spaces.
Definition (Hager [1974]) A uniform space X is A-fine if for every uniform space Y in A, each uniformly continuous map $f: X \to Y$ factors through aY.

A uniform space is separable if it has a basis of countable covers. The category of separable M-fine spaces (where M is the class of metric uniform spaces) is denoted by SMF. For every Alexandroff space X, $HX \in SMF$. Indeed:

Theorem (Hager [1974]) The functors H and G restrict to an isomorphism of the categories $Alex$ and SMF.

2.7 Two technical results:

Theorem (Gordon [1971]) $\mathcal{U} = \gamma \mathcal{U}$.

Lemma (Hager [1974]) If X is a separable uniform space then X has a basis of countable zero-set covers (the zero-sets being zero-sets of functions in $\text{Unif}(X, \mathbb{R}_{su})$).

2.8 Those A-fine spaces which are not necessarily separable have been studied extensively by Frolík [1974a,b], [1976]; Rice [1975], [1976]; Vilimovský [1973] and Hager [1979]. See especially the survey article of Frolík [1977] and the seminar notes SUS [1973-4].
In greater generality than SMF we have the coz-fine spaces: A uniform space X is *coz-fine* if for each uniform space Y, $\text{Uni}^C(X,Y) = \text{Alex}(G_X,G_Y)$.

In Uni^C, each coz-fine space is \mathcal{M}-fine, but not conversely. In separable uniform spaces the concepts are equivalent.

We note that the functor $G: \text{Uni}^C \rightarrow \text{Alex}$ does not have a left adjoint (Hager [1977]). We have the analogue of \mathcal{A}-fine in Alex (see chapter 2), the fine functor being $\text{RF}: \text{Alex} \rightarrow \text{Alex}$. This can of course be expressed in SMF. However the "fine" functor in this situation is HRFG (restricted to SMF) which is not a restriction of the (topologically) fine functor α.
CHAPTER 2

Realcompact Alexandroff Spaces
1. Realcompact Alexandroff Spaces and Wallman Realcompactifications

Realcompactness for an Alexandroff space \((X,\mathcal{Z})\) is defined (firstly by Gordon [1971] in analogy with the concept in topology) in terms of the convergence of certain ultrafilters on \(\mathcal{Z}\) - the real \(\mathcal{Z}\)-ultrafilters (that is those \(\mathcal{Z}\)-ultrafilters which are closed under countable intersection - equivalently, having the countable intersection property).

1.1 Definitions An Alexandroff space \((X,\mathcal{Z})\) is realcompact if each real \(\mathcal{Z}\)-ultrafilter \(F\) is fixed (i.e. \(\cap F \neq \emptyset\)).

If \(Y\) is realcompact and \(X\) is densely embedded in \(Y\), then we call \(Y\) a realcompactification of \(X\).

1.2 Examples (a) \(RX\) is realcompact for each realcompact Tychonoff space \(X\): \(RX\) and \(X\) have the same zero-sets.

(b) (Alô and Shapiro [1969], A.W. Hager) An Alexandroff space may have realcompact topology without being realcompact. Let \(\mathcal{A}\) be the \(\sigma\)-algebra generated by the countable subsets of \(\mathbb{R}\). Then \((\mathbb{R},\mathcal{A})\) is an Alexandroff space which is not realcompact: the real \(\mathcal{A}\)-ultrafilter comprising all the co-countable subsets is not fixed. However \(F(\mathbb{R},\mathcal{A})\) is discrete.
1.3 The full subcategory Realcompact Alex of real-compact Alexandroff spaces is reflective in Alex. (Gilmour [1974]). We shall denote the epireflection of the Alexandroff space \((X,\mathcal{I})\) on Realcompact Alex by \(\nu(X,\mathcal{I})\) and, where no confusion should arise, by \(\nu X\).

In the construction of \(\nu X\) given below, we shall use a notation similar to that of Alô and Shapiro [1974]. The relationship between \(\nu(X,\mathcal{I})\) and the Wallman real-compactification \(p(X,\mathcal{I})\) of a Tychonoff space \(X\) (more precisely \(F(X,\mathcal{I})\)) with Alexandroff base \(\mathcal{I}\), then becomes evident.

1.4 For an Alexandroff space \((X,\mathcal{I})\) let \(\mathcal{Z}^U\) denote the collection of all sets of the form

\[\mathcal{Z}^U = \{F: F \text{ a real } \mathcal{I}\text{-ultrafilter containing } Z\}\]

where \(Z \in \mathcal{I}\). Then \(\mathcal{Z}^U\) satisfies the axioms Z1 - Z4 for the zero-sets of an Alexandroff space (ibid. 5.21 (10)). Denote the set of all real \(\mathcal{I}\)-ultrafilters on \(X\), with the \(\mathcal{Z}^U\) for zero-sets, by \(\nu(X,\mathcal{I})\).

1.5 Lemma Whenever \(\mathcal{G} = \{Z^U_\alpha\}\) is a real \(\mathcal{Z}^U\)-ultrafilter on \(\nu(X,\mathcal{I})\), then \(S = \{Z_\alpha\}\) is a real \(\mathcal{Z}\)-ultrafilter on \(X\).

Proof Let \(Z_1, Z_2 \in S\) then \(S \in Z^U_1, Z^U_2\) and these in turn are both in \(\mathcal{G}\).
Hence $S \in Z_1^u \cap Z_2^u = (Z_1 \cap Z_2)^u \in \mathcal{G}$ and $Z_1 \cap Z_2 \in S$.
Whenever $A \in \mathcal{U}$ with $Z \in S$ and $A \supset Z$ then $Z^u \in A^u$ and $A^u \in \mathcal{G}$. Thus $A \in S$. Since $\emptyset \in \mathcal{G}$, $\emptyset \in S$.
S is thus a filter. S is maximal:

Suppose $H \supset S$ and $A \in H$, $A \in S$. Then A meets each $Z \in S$ and A^u meets each $Z^u (Z \in S)$:
For if $A^u \cap Z^u = \emptyset$ then $(A \cap Z)^u = \emptyset$, that is, no real \mathcal{U}-ultrafilter contains $A \cap Z$. If $A \cap Z \neq \emptyset$,
with $x \in A \cap Z$, then the point \mathcal{U}-ultrafilter F_x
generated by x is in $(A \cap Z)^u$, thus $A \cap Z = \emptyset$.

By maximality of \mathcal{G}, $A^u \in \mathcal{G}$ and $A \in S$ giving the
necessary contradiction. S is real: If $\{Z_{a_n}\}$ is a
countable sequence in S then $(\cap Z_{a_n})^u = \cap (Z_{a_n})^u \neq \emptyset$
since \mathcal{G} is real; thus $\cap Z_{a_n} \neq \emptyset$.

1.6 As a result of the above, we conclude:

Proposition $\nu(X,\mathcal{U})$ is a realcompactification of (X,\mathcal{U}).

Proof Whenever $\mathcal{G} = \{Z_a^u\}$ is any real \mathcal{U}-ultrafilter
on $\nu(X,\mathcal{U})$, then $S = \{Z_a\}$ is a real \mathcal{U}-ultrafilter on
X. Moreover $S \in Z_a^u$, for all a. Thus $S \in \mathcal{G}$
and \mathcal{G} is fixed. It follows that (X,\mathcal{U}) is realcompact.

It is straightforward to show that the mapping
$\theta_X: (X,\mathcal{U}) \to \nu(X,\mathcal{U})$ given by $\theta_X(x) = F_x$ - the point
2

\(i \)-ultrafilter generated by \(x \) - is a dense embedding in \(\text{Alex} \).

1.7 Theorem \textit{The embedding } \(\theta_X: (X, i) \rightarrow v(X, i) \) \textit{defines an epi-reflection of } \text{Alex} \textit{onto the full subcategory of realcompact Alexandroff spaces.}

\textbf{Proof}

\[
\begin{array}{ccc}
(X, i) & \xrightarrow{\theta_X} & v(X, i) \\
\downarrow{f} & & \downarrow{\hat{f}} \\
(Y, W) & & \\
\end{array}
\]

Given \((Y, W) \) realcompact and \(f \in \text{Alex}(X, Y) \).

If \(F \) is a real \(i \)-ultrafilter on \(X \), then

\(f^{\#}(F) = \{ Z \in W : f^{-1}(Z) \in F \} \) is a real \(W \)-ultrafilter on \(Y \). (Note: \(f^{\#} \) does not preserve \(i \)-ultrafilters in general (Gillman and Jerison [1960] 4H(2)), but \(f^{\#} \) does preserve prime \(i \)-filters and every prime \(i \)-filter that is closed under countable intersections is a real \(i \)-ultrafilter (cf. Blair [1976], 2.3).)

Since \((Y, W) \) is realcompact we may define

\(\hat{f}: v(X, i) \rightarrow (Y, W) \) by:

\(\hat{f}(F) = \cap f^{\#}(F) \).
Property 2 ensures that \(\hat{f} \) is well-defined and that
\[
(\hat{f} \circ \theta_X)(x) = \hat{f}(F_x) = \cap f^#(F_x) = f(x).
\]

If \(W \in W \) then
\[
\hat{f}^{-1}(W) = \{ F : F \text{ a real } \mathcal{Z} \text{-ultrafilter on } X \text{ with } W \in f^#(F) \}
= \{ F : F \text{ a real } \mathcal{Z} \text{-ultrafilter on } X \text{ with } \hat{f}^{-1}(W) \in F \}
= (f^{-1}(W))^U \in \mathcal{Z}^U.
\]

Then \(\hat{f} \) is a coz-map and moreover is the unique extension of \(f \), since \(\theta_X \) is epi.

1.8 (1) As a consequence of 1.7, \(u(X, \mathcal{Z}) \) may be identified with the corresponding construct of Gordon [1971]. (See Gilmour [1974]).

(2) An Alexandroff space \((X, \mathcal{I}) \) is compact if every covering by cozero-sets admits a finite subcover. Equivalently the underlying topology is compact. By considering all \(\mathcal{Z} \)-ultrafilters in the above construction and making the necessary changes we obtain the compact epi-reflection \(\beta(X, \mathcal{Z}) \) of \((X, \mathcal{I}) \) in \textit{Alex} (see Alexandroff [1941], Gordon [1971], Gilmour [1974]).

1.9 As in the case for Tychonoff spaces (Gillman and Jerison [1960], 8.4) the points of \(uX \), for an Alexandroff space \(X \), may be identified with those
points x of βX for which $f^*(x)$ is finite for every coz-map $f: X \to \mathbb{R}_z$, where f^* is the Stone extension of f from βX into \mathbb{R}_z^*, the one point compactification of \mathbb{R}. One approach is via the observation that the zero-sets of βX are countable intersections of closures in βX of zero-sets of X (ibid. 6E(3)). For a nice exposition for the topological case see Walker [1974], 1.53.

1.10 Theorem The realcompact Alexandroff spaces comprise the epi-reflective hull of \mathbb{R}_z in Alex.

Proof As Realcompact Alex is an epi-reflective subcategory of Alex, each closed subspace of a product of copies of the realcompact space \mathbb{R}, is realcompact (1.1.9). Conversely, let X be realcompact. The continuous functions $g: \beta \beta X \to \mathbb{R}$ distinguish points and closed sets and hence also distinguish points. Also $\text{Alex}(\beta X, \mathbb{R}_z) = \text{Tych}(\beta \beta X, \mathbb{R})$. Moreover each continuous $f^*: \beta \beta X \to \mathbb{R}_z^*$ is the Stone extension of some bounded coz-map $f: \beta X \to \mathbb{R}_z$. Thus the set of all coz-maps $f^*: \beta X \to \mathbb{R}_z^*$ distinguishes points and closed sets and distinguishes points. Then the evaluation map $e: \beta X \to (\mathbb{R}_z^*)^A(X)$ is an embedding in Tych and, with compactness of domain and codomain, an embedding in Alex. $e(\beta X)$ is closed in $(\mathbb{R}_z^*)^A(X)$. From the description of
in 1.9, \(X \) then is embedded via \(\beta X \) as a closed subspace of \(R^A_2(X) \).

1.11 It is not surprising that the compact Alexandroff spaces comprise the epi-reflective hull in \(Alex \) of the unit interval \([0,1]\) with the subspace structure induced by \(R_z \). This follows immediately from the corresponding and well-known result in \(Tych \).

1.12 The following result has been proved, in equivalent situations, by Isbell [1958], Hager [1969], [1974], Steiner and Steiner [1970] and Alô and Shapiro [1974]. A very simple and direct proof was given by Salbany [1974].

Proposition The underlying topology of each realcompact Alexandroff space is realcompact.

1.13 The above result may also be quickly obtained as a corollary to 1.10 which states that each realcompact Alexandroff space is a closed subspace of a product of copies of \(R_z \). \(F \) preserves products and subspaces and as is well-known the epi-reflective hull of \(R \) in \(Tych \) is the full subcategory of realcompact spaces. Hence Proposition 1.12.
1.14 In their construction of the Wallman realcompactification $\rho(X,\mathcal{Z})$ of a topological space X with a strong delta normal (= Alexandroff) base \mathcal{Z}, Alò and Shapiro [1974] showed that (our notation) \mathcal{Z}'' forms a base for the closed sets of $\rho(X,\mathcal{Z})$. Hence the identity:

$$\mathcal{F}_u = \rho$$

In the case of the Wallman compactification $\omega(X,\mathcal{Z})$, it is well-known that this is a Hausdorff compactification when \mathcal{Z} is a normal base for X (Frink [1964]) - in this circumstance $\omega(X,\mathcal{Z})$ is called the Wallman-Frink compactification of X for the base \mathcal{Z}. Alexandroff [1941] had shown that a Hausdorff compactification is obtained when \mathcal{Z} is an Alexandroff base for X. In this more restrictive setting (see 1.15(2) below) we obtain from 1.8(2) the identity:

$$\mathcal{F}_\beta = \omega$$

We may thus regard ρ and ω as functors:

$\text{Alex} \rightarrow \text{Tych}$.

1.15 (1) If $X = (\mathbb{R},A)$, A the σ-algebra generated by the countable subsets of \mathbb{R} (see 1.2(b)), then the only free real A-ultrafilter is that consisting of all cocountable subsets of \mathbb{R}: We firstly show that no free real A-ultrafilter \mathcal{F} on X can contain a countable set. Suppose A is countable and a member
of F. For each $a \in A$, there exists $B_a \in F$ such that $a \in B_a$ (otherwise F is fixed). Then $B = \bigcap_{a \in A} B_a$ is a zero-set of X and $A \cap B = \emptyset$. But if F is real then $B \in F$ giving the necessary contradiction.

Thus every real free A-ultrafilter has only co-countable sets as members. Every co-countable set meets every other co-countable set so maximality ensures uniqueness.

FX is discrete of Ulam non-measurable cardinality and hence a realcompact Tychonoff space. uX is not discrete and $uX \setminus X$ consists of one point.

This then is an example of a space X whose Wallman-Frink realcompactification $\rho X \cong FuX$ is distinct from its Hewitt realcompactification uFX.

(2) It was a long standing question of Frink [1964], whether every compactification of a Tychonoff space X is a Wallman-Frink compactification (for some normal base on X). This question has been answered in the negative by Ul'janov [1977].

Here we give an example (in the more restricted setting) of a compactification Y of an Alexandroff space X which is not $\beta(X,\mathcal{I})$ for any admissible Alexandroff structure \mathcal{I} on FX, yet $FY = \omega(FX,N)$ for some normal base N of FX.
The one point compactification \(\mathbb{R}^* \) of \(\mathbb{R} \) admits a unique Alexandroff space \(Y \). Then \(Y|_{\mathbb{R}} = \mathbb{R}_\infty \), for \(\mathbb{R} \) admits a unique Alexandroff structure (1.2.2) and \(F \) preserves subspaces (1.2.3). Clearly \(Y \) is not isomorphic to \(\mathbb{S}\mathbb{R}_\infty \) (for \(\mathbb{R}^* \) is not isomorphic to \(\mathbb{S}\mathbb{R} \)). Brooks [1967] has shown that the collection \(\mathcal{N} \) of all zero-sets of continuous functions constant on the complement of some compact subset of \(\mathbb{R} \) forms a normal base on \(\mathbb{R} \), and \(\omega(\mathbb{R}, \mathcal{N}) \) is \(\mathbb{R}^* \).

\(\mathbb{R}^* \) is of course a realcompactification of \(\mathbb{R} \) distinct from \(p(\mathbb{R}_\infty) \equiv \mathbb{R} \). In general (Steiner and Steiner [1970]) a realcompact Tychonoff space \(X \) which admits a unique Alexandroff base will be homeomorphic to its only Wallman realcompactification, \(uX \).

1.16 Proposition \(R_\mathbb{U} \equiv u\mathbb{R} \).

Proof \(R_\mathbb{U}X \) is realcompact for each space \(X \). We show that \(R_\mathbb{U}X \) has the universal property reserved for \(u\mathbb{R}X \).

Let \(Y \) be realcompact and \(f \in \text{Alex}(\mathbb{R}X, Y) \).

\[
\begin{array}{ccc}
\mathbb{R}X & \xrightarrow{R_\mathbb{U}} & \mathbb{R}uX \\
\mathbb{R}g & \downarrow & \\
\mathbb{R}f & \xrightarrow{Rg} & Y
\end{array}
\]
Then \(FY \) is realcompact (1.12) and there exists a unique \(g \) with \(g.\tau_X = Ff \) where \(\tau_X \) is the natural embedding \(X \hookrightarrow uX \). Then \(Rg: RuX \to RFY \) and as \(RFY \) is finer than \(Y \) we have the required extension of \(f \) which is unique as \(R\tau_X \) is epi.

1.17 Corollary \(\rho R \cong u \).

1.18 The following remarkable results of Gordon [1971] will be used repeatedly in the sequel. A proof of (1) for the case of a product with a finite number of factors is given in 3.4.14 and for the unrestricted case in 3.4.23 which follows quickly from (2) which is proved in 3.4.22.

(1) The \emph{Alex-product} of any number of pseudocompact Alexandroff spaces is again pseudocompact.

(2) \(u \) distributes over arbitrary Alex-products.

Since \(F \) preserves products, we may conclude from (2) and 1.14:
Theorem. The functor \(\rho: \text{Alex} \rightarrow \text{Tych} \) preserves arbitrary products.

1.19 An Alexandroff space \((X, \mathcal{I})\) is pseudocompact if and only if \(\omega(X, \mathcal{I}) = \beta(X, \mathcal{I}) \) (Gordon [1971]).

Compact spaces admit unique Alexandroff structure. Thus \((X, \mathcal{I})\) is pseudocompact if and only if \(\rho(X, \mathcal{I}) = \omega(X, \mathcal{I}) \).

Each pseudocompact Tychonoff space \(X \) admits only pseudocompact Alexandroff structures. Hence, if \(X \) is a pseudocompact Tychonoff space then \(\rho(X, \mathcal{I}) = \omega(X, \mathcal{I}) \) for every Alexandroff base \(\mathcal{I} \). The space \(G \) of Gillman and Jerison ([1960], 9.15) is pseudocompact with \(G \times G \) not pseudocompact. Then \(RG \times RG \) is a pseudocompact Alexandroff space (by 1.18(1)) and \(\rho(RG \times RG) = \omega(RG \times RG) \). Note that \(R(G \times G) \) is not pseudocompact so that this example shows that \(R \) does not preserve products.

We shall prove in 3.4.19 the result of Hager [1969] that every compactification of a pseudocompact Tychonoff space \(X \) is a Wallman-Frink compactification (in fact for an Alexandroff base on \(X \)).
2. Realcompact-fine Alexandroff Spaces

Our terminology is motivated by that of Hager [1974].

2.1 Definition An Alexandroff space X is realcompact-fine if for each realcompact Alexandroff space Y, each coz-map $f: X \to Y$ factors through RF_Y.

2.2 It can be easily proved that in the above definition we need only consider those coz-maps which are onto realcompact Y (Heldermann [1980], Hager [1974], Vilímovský [1973]).

2.3 Let $r(X,\mathcal{I})$ (usually abbreviated r_X) denote the restriction of $RFu(X,\mathcal{I})$ to X. From the definition of R and 1.14, the zero-sets of r_X are precisely the zero-sets of ρX restricted to X. Blasco [1979] calls (in our notation) the Alexandroff base \mathcal{I} complete if $(X,\mathcal{I}) = r(X,\mathcal{I})$. As we shall see in 2.6 (X,\mathcal{I}) is realcompact-fine if and only if \mathcal{I} is complete. We also note that $FrX = FX$ for every Alexandroff space X.

2.4 Theorem $u(rX) = RFuX$ for each Alexandroff space X.

Proof $RFuX$ is a realcompactification of rX. It will suffice (Gordon [1971]; see 3.4.21) to show that each non-empty zero-set of $RFuX$ meets rX. This
follows immediately from the result of Alò and Shapiro ([1974], 5.16) which shows that for any X, FX is $G_δ$-dense in $ϕX$.

2.5 Corollary (Blasco [1979]) $ϕ(rX) = ϕX$ for each Alexandroff space X.

2.6 Theorem The following are equivalent for an Alexandroff space X:

(1) X is realcompact-fine
(2) $X ≅ rX$
(3) uX is fine
(4) RFY is a realcompactification of X for each realcompactification Y of X
(5) $βFuX ≅ FBX$ (i.e. $βpX ≅ uX$).

Proof (1) $⇒$ (4) If the realcompact-fine X is embedded in the realcompactification Y, with embedding $q: X \hookrightarrow Y$ say, then $m: X \rightarrow RFY$ is a coz-map, where $im = q$ and $i: RFY \rightarrow Y$ is the identity. Clearly m distinguishes points and m is initial because $im = q$ is.

(4) $⇒$ (3) If (4) holds then $RFuX$ is a realcompactification of X which has the universal property reserved for uX. The implication "(3) $⇒$ (2)" is trivial.

(2) $⇒$ (1) Each coz-map f on X to realcompact Y extends to $\hat{f}: uX \rightarrow Y$. The restriction of $RF\hat{f}$ to rX gives the required factor $X \rightarrow RFY$ of f, since $X ≅ rX$.
The equivalence of (2) and (5) for their particular settings was given first by Hager ([1969], 1.2) and later by Blasco [1979]. A simple proof uses the commutativity of R over B. We delay the proof however until 3.4.6.

2.7 Examples
(1) Each realcompact realcompact-fine Alexandroff space is fine (e.g. use 2.6(3)). Each fine Alexandroff space is realcompact-fine; the converse is false (e.g. see (3) below).

(2) If E denotes the Sorgenfrey line then $RE \times RE$ is realcompact, but not fine: the set $A = \{(x,y) \in E \times E: y \geq x\}$ is a cozero-set of $E \times E$ (i.e. of $R(E \times E)$) but is not a cozero-set of $RE \times RE$. Thus the product of realcompact-fine (even fine) Alexandroff spaces need not be realcompact-fine.

We show below that if a product of Alexandroff spaces is realcompact-fine then the factor spaces are realcompact-fine (2.9).

(3) The members of a σ-algebra B on a set X may be taken as the zero-sets for an Alexandroff space (X,B). If B consists of the Borel sets of R or of the Lebesgue measurable sets of R, then (R,B) is not realcompact-fine (Blasco [1979]). If A is the σ-algebra generated by the countable subsets of R, then (R,A) is realcompact-fine: $F(R,A)$ is Lindelöf.
(\mathbb{R}, A) is neither realcompact nor fine. The underlying topology of each of the above three spaces is the discrete topology on \(\mathbb{R} \).

(4) If \(X \) is a pseudocompact Alexandroff space then \(\omega X = \mathcal{B}X \) and hence \(X \) is realcompact-fine. Indeed every pseudocompact Tychonoff space admits only realcompact-fine Alexandroff structures. The converses to both the above statements are false. Consider \(\mathbb{R} \) with the usual structures in both instances.

(5) Trivially, a discrete Alexandroff space is realcompact-fine. Thus the image of a realcompact-fine space need not be realcompact-fine.

2.8 Proposition If \(X \times Y \) is a fine Alexandroff space then \(X \) and \(Y \) are fine.

Proof Since \(X \times Y \) is fine and \(F \) preserves products, it is clear that \(X \times Y = RFX \times RFY \).
Restriction of cozero-sets then shows that \(X = RFX \) and \(Y = RFY \).

2.9 Corollary If \(X \times Y \) is a realcompact-fine Alexandroff space then \(X \) and \(Y \) are realcompact-fine.
Proof If \(X \times Y \) is realcompact-fine then \(u(X \times Y) \) is fine (2.6). Thus \(uX \times uY \) is fine (1.18). From 2.8, \(uX \) and \(uY \) are fine, and reapplying 2.6, \(X \) and \(Y \) are realcompact-fine.

2.10 Proposition The Alexandroff space \(rX \) is initial for the class of all pairs \((f, RF_Y)\) with \(Y \) realcompact and \(f \in \text{Alex}(X, Y) \).

Proof Immediate from definition 2.3.

2.11 Proposition The following diagram is a pull-back in \(\text{Alex} \).

\[
\begin{array}{ccc}
rX & \longrightarrow & RFuX \\
\downarrow & & \downarrow \\
X & \longrightarrow & uX \\
\end{array}
\]

\((*)\)

The horizontal arrows are the respective embeddings. The vertical arrows are the respective identity functions.

Proof Clearly the diagram (*) commutes.

Suppose \[
\begin{array}{ccc}
B & \xrightarrow{k} & RFuX \\
\downarrow & & \downarrow \\
X & \longrightarrow & uX \\
\end{array}
\]

commutes.
Then, for each \(f: X \to Y \) with \(Y \) realcompact, the diagram

\[
\begin{array}{cccc}
B & \xrightarrow{k} & RFuX & \xrightarrow{RF\hat{f}} & RFY \\
\downarrow & & \downarrow & & \\
X & \xrightarrow{\ell} & RFuX & \xrightarrow{RF\hat{f}} & RFY \\
\end{array}
\]

commutes, where \(\hat{f} \) is the Hewitt extension for \(f \) and the arrow \(RFY \to Y \) is the identity function.

In particular \(RF\hat{f}.k: B \to RFY \) is a coz-map, and coincides as function with the function \(f.\ell \). By the initiality of \(rX \) (see 2.10 above), \(\ell \) and \(k \) factor (uniquely) through \(rX \) as required.

2.12 As is to be expected (Hager [1974], Vilimovsky [1973] and Rice [1973]) we have:

Corollary The correspondence \(X \mapsto rX \) defines a coreflection of \(\text{Alex} \) onto the full subcategory of realcompact-fine Alexandroff spaces.

Proof From 2.4, \(rX \) is realcompact-fine. If \(Y \) is realcompact-fine and \(f: Y \to X \) is a coz-map then the diagram
commutes, where \(u(f) \) (the Hewitt extension of \(f \) from \(uY \) to \(uX \)) factors through \(RFuX \), as \(uY \) is fine. Apply 2.11 to obtain the unique factorization of \(f \) through \(rX \).
3. Some Applications

3.1 Theorem Let X and Y be Tychonoff spaces. Then, $u(X \times Y) = uX \times uY$ if and only if $r(RX \times RY) \equiv R(X \times Y)$.

Proof Necessity. Applying 1.16 and 1.18(2):

$RFu(RX \times RY) = R(FuRX \times FuRY) = R(uX \times uY)$

$= Ru(X \times Y)$ by assumption

$= uR(X \times Y)$.

Restrict to $X \times Y$.

Sufficiency. $u(X \times Y) = FuR(X \times Y)$

$= Fur(RX \times RY)$ by assumption

$= Fu(RX \times RY)$ by 2.4

$= uX \times uY$ applying 1.16 and 1.18(2).

The condition $r(RX \times RY) \equiv R(X \times Y)$ is quickly seen to be equivalent to the condition of Blair that $X \times Y$ be z-embedded in $uX \times uY$.

3.2 We have already noted that $RX \times RY$ and $R(X \times Y)$ may differ (1.19 or 2.7(2)). Another example: If X is uncountably infinite and discrete, then $RX \times RX$ is not discrete. The diagonal $\{(x,x): x \in X\}$ is not a cozero-set.
A sufficient condition for $RX \times RY$ to be fine (and thus equal $R(X \times Y)$) is that $\beta X \times \beta Y$ be C^*-embedded in $\beta (X \times Y)$; informally -

$\beta (X \times Y) = \beta X \times \beta Y$ (Blair and Hager [1977] and independently Gilmour [1978]). The condition is however not necessary: Consider $R \times Y$, for any infinite compact space Y. β does not distribute over $R \times Y$ as neither factor space is finite nor is the product pseudocompact (Glicksberg [1959]). Being Lindelöf $R \times Y$ admits a unique Alexandroff structure.

3.3 Theorem Let X and Y be Tychonoff spaces. Then $R(X \times Y) = RX \times RY$ if and only if $RX \times RY$ is realcompact-fine and $u(X \times Y) \cong uX \times uY$.

Proof Sufficiency follows immediately from 3.1. Necessity. Under the hypothesis $RX \times RY$ is fine and hence realcompact-fine. That the hypothesis implies that $u(X \times Y) \cong uX \times uY$ is known (Blair and Hager [1977], Gilmour [1978]). A simple proof follows:

$$u(X \times Y) = FRu(X \times Y) = FuR(X \times Y)$$

$$= Fu(RX \times RY) \text{ (by hypothesis)}$$

$$= uX \times uY.$$

Blair and Hager [1977] proved:

$R(X \times Y) = RX \times RY$ if and only if $X \times Y$ is z-embedded in $\beta X \times \beta Y$ (cf. the comment after 3.1). This follows
quickly since one always has (i) \(R(\beta X \times \beta Y) = \beta R X \times \beta R Y \)
(ii) \(R \) commutes with \(\beta \).

We remark that the proofs of both 3.1 and 3.3 hold for arbitrary products.

3.4 We draw special attention to the paper of Ohta [1978] from which the following result is taken.

Theorem The following are equivalent for a Tychonoff space \(X \).

(1) \(X \) is locally compact with a countable base
(2) \(X \times Y \) is \(z \)-embedded in \(\beta X \times \beta Y \) for each space \(Y \)
(3) \(R(X \times Y) = RX \times RY \) for each space \(Y \).

3.5 The next result characterises those Alexandroff bases \(I \) for which \(\rho(X,I) = \nu X \).

Theorem Let \(X \) be an Alexandroff space.

\(FuX = \nu FX \) if and only if \(rX \) is fine.

Proof If \(rX \) is fine, then \(rX = RFrX = RFX \) (see 2.3) and thus \(FuX = Fu(rX) \) (applying 2.4)

\(= Fu(RFX) = \nu FX \) (applying 1.16).

Conversely, \(\nu(rX) = RFuX \) (applying 2.4)

\(= RuFX \) by assumption
\(= \nu RFX \) (applying 1.16).

Restrict to \(X \).
3.6 Proposition An Alexandroff space Y is realcompact if and only if FY is realcompact and rY is fine.

Proof Straightforward.

The Alexandroff space $Y = (\mathbb{R}, A)$ of 2.7(3) has FY realcompact. $rY = Y$ is not fine.

Problem Characterise those Tychonoff spaces X for which all admissible Alexandroff structures \mathcal{I} have $r(X, \mathcal{I})$ fine. This class contains all Lindelöf spaces and all almost compact spaces; for Hager [1974] has characterised these as the spaces which admit a unique Alexandroff structure (which is then fine).

3.7 Necessary and sufficient conditions for the extension of continuous functions on a Tychonoff space X to $p(X, \mathcal{I})$, for a given Alexandroff base \mathcal{I}, have been obtained by Bentley and Naîmpally [1974] and Blasco [1979]. Formulated in Alex we have the result, with simple proof:

Proposition Given an Alexandroff base \mathcal{I} on the Tychonoff space X, a real-valued continuous function f on X can be extended to $p(X, \mathcal{I})$ if and only if $f: r(X, \mathcal{I}) \to \mathbb{R}_+^\mathcal{I}$ is a cos-map.
Proof Sufficiency. If \(f: r(X,\mathcal{I}) + \mathbb{R}_{z} \) then there exists a unique extension \(g \) of \(f \) with \(g: ur(X,\mathcal{I}) + \mathbb{R}_{z} \).

Then \(F_g: Fur(X,\mathcal{I}) = FuX + \mathbb{R} \) extends \(Ff \) uniquely.

Necessity. The hypothesis implies that \(f \) extends to a coz-map : \(Rp(X,\mathcal{I}) + \mathbb{R}_{z} \). Restrict to \(X \).

A comparison of the above proposition with the result of Bentley and Naimpally ([1974], Theorem 6) leads to the following characterization of their concept of an \(\omega \)-map (in our setting):

A continuous map \(f: (X,\mathcal{I}) + (Y,\mathcal{W}) \) is an \(\omega \)-map if and only if \(f: r(X,\mathcal{I}) + r(Y,\mathcal{W}) \) is a coz-map.

3.8 Consider the three related problems:

(I) \textit{Find a constructive method for obtaining } \textit{rX from } \textit{X}.

This problem was raised by Blasco [1979].

(II) \textit{Find an internal, set theoretic method for obtaining } \textit{RFX from } \textit{X}.

(III) \textit{Find a constructive method for obtaining the set } \textit{C(FX) of all continuous functions on } \textit{X from the algebra } \textit{\Lambda(X) of all coz-functions on } \textit{X}.

The latter problem was discussed by Hager [1969] (see also other papers cited there).
The solution of (II) will (via 2.11 say) give a solution for (I). In section 6 of chapter 3 we give a solution, in a certain sense, for (II).
4. Topologically realcompact Alexandroff spaces

It was observed in 2.7(3) that an Alexandroff space need not be realcompact in order to have realcompact topology. We introduce:

4.1 Definition An Alexandroff space X is *topologically realcompact* if it has realcompact topology (i.e. FX is realcompact). Trivially, X is topologically realcompact if and only if RFX is realcompact.

The full subcategory of all topologically realcompact Alexandroff spaces is epi-reflective in Alex (1.2.3). Denote the corresponding epi-reflector by ν_t and the unit of the adjunction by λ. We indicate that certain of the nice properties of ν in Alex are held by ν_t.

4.2 Proposition *Every Alexandroff space* X *is embedded as a dense subspace of* ν_tX.

Proof Let $\theta_X: X \rightarrow \nu X$ and $\lambda_X: X \rightarrow \nu_tX$ be the units of the respective reflections. Since νX is topologically realcompact (1.12), θ_X extends (uniquely) to a coz-map $\hat{\theta}_X$ so that $\hat{\theta}_X \cdot \lambda = \theta_X$. Since θ_X is an embedding, this implies that λ_X is an embedding.
Since each realcompact Alexandroff space is topologically realcompact, $u(u_t X)$ has the universal property of uX and $u_t X$ is naturally embedded in uX.

4.3 The following theorem is due to Comfort and Herrlich [1976] who state it and give an elegant proof for it in the setting of Hausdorff topological spaces. Their proof carries over with only the necessary small changes to Alex. Let \mathcal{RD} denote, for a subcategory \mathcal{D} of Alex, all those Alexandroff spaces X for which there exists $Y \in \mathcal{D}$ with X a subspace of Y.

Theorem Let \mathcal{D} and \mathcal{E} be epi-reflective subcategories of Alex with reflectors d and e respectively. If $\mathcal{D} \subseteq \mathcal{E} \subseteq \mathcal{RD}$ and $X, Y \in \mathcal{RD}$ with $d(X \times Y) = dX \times dY$, then $e(X \times Y) = eX \times eY$.

4.4 Corollary For any Alexandroff spaces X and Y $u_t (X \times Y) = u_t X \times u_t Y$.

Proof We need only observe the following facts and apply 4.3.

(i) Every realcompact Alexandroff space is topologically realcompact.

(ii) Every Alexandroff space X is a subspace of realcompact uX.
(iii) v distributes over products.

4.5 With a similar proof to that of 1.16, $R_u \cong u_t R$ and consequently $u_t R \cong u R$, i.e. u_t and v coincide on "topological spaces". Indeed u and u_t coincide on the larger class consisting of the (topologically realcompact)-fine Alexandroff spaces.

We call an Alexandroff space X (topologically realcompact)-fine if for each topologically realcompact Alexandroff space Y, each coz-map $f: X \to Y$ factors through RF_Y.

Clearly, each (topologically realcompact)-fine space is realcompact-fine. The converse is false - take (\mathbb{R}, A) of 2.7(3). Denote by $r_t X$ the restriction of $RF_u X$ to X. We omit the proofs of the following results - they are identical to their analogues in section 2.

Theorem The following are equivalent for an Alexandroff space X.

1. X is (topologically realcompact)-fine
2. $X \cong r_t X$
3. $u_t X$ is fine
4. RF_Y is a (topologically realcompact)-ification of X for each (topologically realcompact)-ification Y of X.
5. $\beta F u_t X \cong F\beta X$.

4.6 Proposition The Alexandroff space r_tX is initial for the class of all pairs (f,Y) with Y topologically realcompact and $f \in \text{Alex}(X,Y)$.

4.7 Proposition The following diagram is a pull-back in Alex

\[
\begin{array}{ccc}
r_tX & \xrightarrow{c} & \text{RF}u_tX \\
\downarrow & & \downarrow \\
X & \xrightarrow{c} & u_tX
\end{array}
\]

The horizontal arrows are the respective embeddings.
The vertical arrows are the respective identity functions.

4.8 Corollary The correspondence $X \mapsto r_tX$ defines a coreflection of Alex onto the full subcategory of (topologically realcompact)-fine Alexandroff spaces.

4.9 If X is (topologically realcompact)-fine then u_tX is fine (4.5) and u_tX is realcompact. Consequently if $X = r_tX$ then $u_tX = uX$. The converse is false: $u_t(\text{RE} \times \text{RE}) = u(\text{RE} \times \text{RE})$ but $\text{RE} \times \text{RE}$ is not (topologically realcompact)-fine (2.7(2)).
1 Preliminaries

1.1 Definition A \(\sigma \)-frame is a lattice \(L \) which has all countable joins and finite meets, possesses a greatest element \(1 \) and a least element \(0 \) and satisfies the distribution law \(x \land \bigvee x_n = \bigvee x \land x_n \) (\(n \in I \), countable). A homomorphism between \(\sigma \)-frames is a map preserving countable joins, finite meets, \(0 \) and \(1 \).

These are the objects and maps of a category, \(\sigma \text{ Frm} \).

1.2 Examples (a) The family \(\mathcal{P} X \) of all subsets of any set \(X \) forms a \(\sigma \)-frame with intersection for meet and union for join. The greatest and least elements are \(X \) and \(\emptyset \).

(b) A sub-\(\sigma \)-frame \(A \) of a \(\sigma \)-frame \(L \) is a subset \(A \) of \(L \) which is a \(\sigma \)-frame with the operations and distinguished elements of \(L \).

The lattice \(\mathcal{W} X \) of cozero-sets of an Alexandroff space \(X \) is a \(\sigma \)-frame (regarded as a sub-\(\sigma \)-frame of \(\mathcal{P} X \)). In particular the cozero-sets of any topological space form a \(\sigma \)-frame.

(c) Each Heyting \(\sigma \)-algebra is a \(\sigma \)-frame:
A Heyting \(\sigma \)-algebra is a lattice \(L \) with \(\land, \lor, 0, 1 \).
and such that for each pair \(a, b\) in \(L\) the set of all \(x \in L\) with \(a \land x \leq b\) contains a greatest element \(b:a\) (cf. Birkhoff's [1979] definition for a Brouwerian lattice).

(d) An uncountable set \(X\) with all its countable subsets is an example of a \(\sigma\)-frame that is not a Heyting \(\sigma\)-algebra.

1.3 The \(\sigma\)-frames that we shall chiefly be concerned with satisfy a further property. For elements \(a\) and \(b\) of a \(\sigma\)-frame \(L\), \(a\) is rather below \(b\), written \(a \ll b\), if there exists an element \(c\) of \(L\) with \(a \land c = 0\), \(c \lor b = 1\).

Definition A \(\sigma\)-frame is regular if each element \(a\) of \(L\) is a countable join of elements rather below it, i.e. for each \(a \in L\) there exist \(x_n \in L\) with \(a = \lor x_n\), \(x_n \ll a\).

The relation \(\ll\) satisfies the following properties:

(1) If \(a \ll x \ll y \ll b\) then \(a \ll b\)

(2) If \(a \ll x\) and \(b \ll y\) then \(a \land b \ll x \land y\) and \(a \lor b \ll x \lor y\).

Moreover it is easily verified that a homomorphism of \(\sigma\)-frames preserves \(\ll\).
1.4 Definition A σ-frame \(L \) is normal if for each pair \(a,b \) of elements of \(L \) with \(a \vee b = 1 \), there exist \(u,v \) in \(L \) with \(a \vee u = 1 = v \vee b \) and \(u \wedge v = 0 \).

Apparently the following result, due to Banaschewski [1980a] is not widely known.

1.5 Proposition Every regular σ-frame is normal.

Proof This follows directly from the following Lemma, taking \(a \vee b = 1 \).

Lemma For any σ-frame \(L \), if \(a = \bigvee a_n \) (\(a_n \ll a \)), \(b = \bigvee b_n \) (\(b_n \ll b \)) then there exist \(u,v \) in \(L \) with \(a \vee u = a \vee b = v \vee b \), \(u \wedge v = 0 \).

Proof By 1.3(2) we may assume that \(a_n \ll a_{n+1} \) and \(b_n \ll b_{n+1} \). Choose \(u_n \) and \(v_n \) with \(a_n \wedge u_n = 0 \), \(a_n \vee u_n = 1 \) and \(b_n \wedge v_n = 0 \), \(b_n \vee v_n = 1 \).

Let \(u = \bigvee u_n \wedge b_n \), \(v = \bigvee a_n \wedge v_n \), then
\[
\begin{align*}
a \vee u &= a \vee \bigvee u_n \wedge b_n = \bigvee (a_n \vee a_n) \wedge (a_n \vee b_n) = \bigvee a_n b_n \\
&= a \vee b_n = a \vee b \\
\end{align*}
\]
Similarly \(v \vee b = a \vee b \).

\[
\begin{align*}
\wedge u \wedge v &= (\bigvee u_n \wedge b_n) \wedge (\bigvee a_n \wedge v_n) \\
&= \bigvee \bigvee u_n \wedge b_n \wedge a_k \wedge v_k \\
&= 0.
\end{align*}
\]
If $k < n$ then $a_k \land u \leq a_n \land u_n = 0$.
If $k \geq n$ then $b_n \land v_k \leq b_k \land v_k = 0$.
Thus $u \land \neg v = 0$.

The regular σ-frames then are precisely the
\textit{Alexandroff algebras} of Reynolds [1979].

1.6 Corollary \textit{In any regular σ-frame L the relation \leq interpolates.}

\textbf{Proof} \textit{If $a \leq b$ then there exists x with $a \land x = 0$, $b \lor x = 1$. By normality of L, there exist u, v with $b \lor u = 1 = v \lor x$ and $u \land v = 0$. Then $a \leq v \leq b$.}

1.7 \textit{Example 1.2(d) is of a non-regular σ-frame (here $A \leq B$ if and only if $A = \emptyset$, $B = X$).}

Cozero-set structures on a set X are the regular σ-frames of subsets of X: If X is an (Alexandroff) space and if $A, B \in \mathcal{W}X$ then $A \leq B$ if and only if there exists $C \in \mathcal{W}X$ with $A \subset X - C \subset B$.

$\mathcal{W}X$ is regular as a σ-frame as it is nest generated (1.1.3).

Any regular σ-frame of subsets of a set X, is normal, and regularity ensures that it is complement generated.
Adjoint functors and dualities

Reg σFrm is the full subcategory of σFrm whose objects are the regular σ-frames. If X and Y are Alexandroff spaces and $f: X \to Y$ is a coz-map, then $\mathcal{U}f = f^{-1}: \mathcal{U}Y \to \mathcal{U}X$ is a homomorphism in Reg σFrm. This defines a contravariant functor $\mathcal{U}: \text{Alex} \to \text{Reg } \sigma$Frm.

2.1 Definition A filter P of a σ-frame L is a subset of L satisfying:

(a) $E \subseteq P$, E finite $\Rightarrow \bigwedge E \in P$

(b) $a \in P$, $b \supseteq a \Rightarrow b \in P$

If P further satisfies

(c) $\forall S \in P$ ($S \subseteq L$ countable) $\Rightarrow S \cap P \neq \emptyset$

then P is a σ-prime filter.

Note that regarding \emptyset as finite, (a) implies $1 \in P$ and (c) implies $0 \notin P$.

The σ-prime filter of $\mathcal{U}X$ whose members are the cozero-sets which contain a given point x, is denoted by $\mathcal{U}(x)$.

2.2 We define a (contravariant) functor $\psi: \text{Reg } \sigma$Frm \to Alex as follows: The points of $\mathcal{V}L$ - the spectrum of $L \in \text{Reg } \sigma$Frm - are the σ-prime filters on L. The cozero-sets of $\mathcal{V}L$ are the sets of form $\psi_a = \{P: a \in P \in \mathcal{V}L\}$, $a \in L$.
Then \(\Psi \Psi L = \{ \psi_a \}_{a \in L} \).

As may be quickly verified

\[
\psi_a \cap \psi_b = \psi_{a \land b} \\
U \psi_a_n = \psi_{\nu_a n} \\
\psi_1 = \Psi L , \quad \psi_0 = \emptyset
\]

and distributivity is immediate.

Thus \(\Psi \Psi L \) is a \(\sigma \)-frame; in fact these identities also verify that the map \(a \mapsto \psi_a \) is a homomorphism which then preserves regularity. We conclude from 1.7 that \(\Psi L \) is an Alexandroff space - \(\Psi L \) being separated:

If \(P \neq Q , P,Q \in \Psi L \) then there exists \(a \in P , a \in Q \) say.

Then \(P \in \Psi a \), \(Q \notin \Psi a \).

If \(f: L \rightarrow M \) is a homomorphism then \(\Psi f: \Psi M \rightarrow \Psi L \) is given by \(\Psi f(P) = f^{-1}(P) \) for each \(P \in \Psi M \). It is easily checked that \(f^{-1}(P) \in \Psi L \).

2.3 Proposition \(\psi_\ast, \Psi \) are adjoint on the right.

Proof Let \(\eta_X: X \rightarrow \Psi \Psi X \) be the map defined by

\[
\eta_X(x) = \Psi(x) - \text{ where } \Psi(x) \text{ is the neighbourhood base of the point } x \text{ comprising all cozero-sets containing } x .
\]

\(\eta_X \) is a coz-map: If \(U \in \Psi X \) then

\[
\eta_X^{-1}(\psi_u) = \{ x: \eta_X(x) \in \psi_u \} \\
= \{ x: \Psi(x) \in \psi_u \} \\
= \{ x: U \in \Psi(x) \} = U .
\]
Naturality of \(\eta \): If \(g: X \rightarrow Y \) is any coz-map and \(x \in X \)

\[
\begin{array}{ccc}
X & \xrightarrow{g} & Y \\
\eta_X \downarrow & & \eta_Y \\
\psi UX & \xrightarrow{\psi U g} & \psi UY
\end{array}
\]

then \(\psi U g(\psi U(x)) = (\psi g)^{-1} \psi U(x) \)

\[
= \{ U \in \psi UY : \psi g(U) \in \psi U(x) \} \\
= \{ U \in \psi UY : g^{-1}(U) \in \psi U(x) \} \\
= \{ U \in \psi UY : x \in g^{-1}(U) \} \\
= \psi U(g(x)) .
\]

We have already observed in the previous paragraph that the map \(\epsilon_L: L \rightarrow \psi U L \) given by \(\epsilon_L(a) = \psi_a \) is a homomorphism. Naturality of \(\epsilon \): If \(f: L \rightarrow M \) is any homomorphism and \(a \in L \)

\[
\begin{array}{ccc}
L & \xrightarrow{f} & M \\
\epsilon_L \downarrow & & \epsilon_M \\
\psi U L & \xrightarrow{\psi U f} & \psi U M
\end{array}
\]

then \(\psi U f(\psi_a) = (\psi f)^{-1} \psi_a \)

\[
= \{ P \in \psi M : \psi f(P) \in \psi_a \} \\
= \{ P \in \psi M : f^{-1}(P) \in \psi_a \} \\
= \{ P \in \psi M : a \in f^{-1}(P) \} \\
= \psi_f(a) .
\]
comprising those objects for which \(\eta \) (respectively \(\varepsilon \)) is pointwise an isomorphism.

In the case of \(\eta \) and \(\varepsilon \) introduced above, the restriction is proper as the following examples illustrate.

(1) Let \(X = (\mathbb{R}, A) \) where \(A \) is the \(\sigma \)-algebra generated by the countable subsets of \(\mathbb{R} \). Then \(X \) is an Alexandroff space. If \(P \) is the collection of all cocountable subsets of \(\mathbb{R} \), then \(P \) is a \(\sigma \)-prime filter on \(A \) which is not of the form \(\forall(x) \) for any \(x \in \mathbb{R} \). Thus \(\eta_X : X \to \mathbb{N}X \) is not onto (see 2.1.2(b)).

(2) (Banaschewski) If \(L \) is the complete Boolean algebra of regular open subsets of the unit interval, then \(L \) is a regular \(\sigma \)-frame without atoms. It follows that \(L \) has no \(\sigma \)-prime filters:

Every \(\sigma \)-prime filter \(P \) on \(L \) is \textit{completely prime} (i.e. \(\forall U_\alpha \in P \Rightarrow U_\beta \in P \) for some \(\beta \), over an arbitrary index set). Now a completely prime filter \(Q \) on any complete Boolean algebra \(B \) gives rise to an atom as follows:

Let \(c = \forall x (x \notin Q) \). Suppose there exists \(a \), \(c < a < 1 \). Then \(c = a \wedge (c \lor \sim a) \) and \(a \in Q \).

If \(c \lor \sim a > c \), then \(c \in Q \), which is not possible. Thus \(c \lor \sim a = c \), and \(\sim a \leq c \) and then \(\sim a \leq a \)
and $1 = a \lor (\sim a) \leq a$. Thus $a = 1$ and $\sim c$ is an atom.

Hence $\forall L = \emptyset$ and certainly $\forall \forall L$ is not isomorphic to L.

2.5 Properties of η and ε For $U \in \Psi X$,

$$\eta^{-1}_X(\Psi_U) = \{x: \Psi(x) \in \Psi_U\} = \{x: U \in \Psi(x)\} = U.$$ Thus η_X is an initial coz-map. Moreover, as cozero-sets of X separate points, η_X is $1-1$ and hence an embedding. In fact η_X is an essential embedding i.e. each f with $f \eta_X$ an embedding is itself an embedding.

If $f \eta_X$ is an embedding then $\Psi \eta_X f$ is onto and thus $\Psi \eta_X$ is onto. We show that $\Psi \eta_X$ is an isomorphism (anticipating a result (2.12) this says simply that $\Psi X \cong \Psi X$). Now $\Psi \eta_X: \Psi \Psi \Psi X \rightarrow \Psi X$ and a typical element of $\Psi \Psi \Psi X$ is Ψ_U for $U \in \Psi X$. Then, as above,

$$\Psi \eta_X(\Psi_U) = \eta^{-1}_X(\Psi_U) = U,$$ so that $\Psi \eta_X$ is clearly $1-1$ and hence an isomorphism. It follows that Ψf is onto and consequently f is initial. All spaces being separated we conclude that f is an embedding.

For $U \neq \emptyset$, $U \in \Psi X$, $\Psi(x) \in \Psi_U$ for any $x \in U$ so that each non-empty cozero set Ψ_U of $\Psi \Psi X$ meets $\eta_X X$, thus η_X is an epi-morphism.

$$\varepsilon_L: L \rightarrow \Psi \Psi L \text{ with } \varepsilon_L(a) = \Psi_a$$ is clearly onto. In the next paragraph we characterise $\text{Fix } \varepsilon$.
2.6 If \(\mathcal{Z} \) denotes the \(\sigma \)-frame with two distinct elements, then we say the \(\sigma \)-frame \(L \) has enough homomorphisms if the homomorphisms : \(L \rightarrow \mathcal{Z} \) separate the elements of \(L \). Similarly, \(L \) has enough \(\sigma \)-prime filters if they separate the elements of \(L \).

Proposition For \(L \) a regular \(\sigma \)-frame the following statements are equivalent:

(1) \(L \cong \mathcal{U}X \), for some Alexandroff space \(X \)

(2) \(\epsilon_L : L \rightarrow \mathcal{U}L \) is an isomorphism

(3) \(L \) has enough \(\sigma \)-prime filters

(4) \(L \) has enough homomorphisms.

Proof (1) \(\Rightarrow \) (3) For \(U, V \in \mathcal{U}X \), with \(U \neq V \), there exists \(x \in U \), \(x \notin V \) say. Then \(U \in \mathcal{U}(x) \), \(V \notin \mathcal{U}(x) \).

(3) \(\Rightarrow \) (2) We've seen that \(\epsilon_L \) is onto.

\(\epsilon_L(a) = \epsilon_L(b) \iff \mathcal{U}_a = \mathcal{U}_b \iff a = b \) by hypothesis.

That (2) \(\Rightarrow \) (1) is trivial.

(3) \(\Rightarrow \) (4) If \(a \) and \(b \) are distinct elements of \(L \) take \(P \in \mathcal{L} \) with \(a \in P \), \(b \notin P \) say. Define \(h : L \rightarrow \mathcal{Z} \) by

\[
h(x) = \begin{cases} 1 & x \in P \\ 0 & x \notin P \end{cases}
\]

It is easily verified that \(h \) is a homomorphism which
then separates \(a \) and \(b \).

\((4) \Rightarrow (3)\) \(a \) and \(b \) distinct elements of \(L \) with
\(h(a) = 1, h(b) = 0 \) for a homomorphism \(h \), then
\(h^{-1}\{1\} \) is a \(\sigma \)-prime filter on \(L \) separating \(a \) and \(b \).

2.7 The following theorem characterises \(\text{Fix} \, n \).

The equivalence \((2) \iff (3)\) is due to Hager [1974] and it is his proof of \((2) \Rightarrow (3)\) that we give here.

Following Bourbaki [1966] we shall identify the points of the completion \(YY \) of a uniform space \(Y \) with the minimal Cauchy filters on \(Y \). Recall also (1.2.6) that the functor \(H: \text{Alex} \to \text{SMF} \) is an isomorphism and that \(HX \) has the countable \(\text{coz-covers} \) as basic uniform covers.

We need the concept of a regular filter on a \(\sigma \)-frame \(L : \mathcal{F} \) is a regular filter on \(L \) if for each \(a \in \mathcal{F} \) there exists \(b \in \mathcal{F} \) with \(b \ll a \).

Theorem The following are equivalent for an Alexandroff space \(X : \)

(1) \(X \cong \text{Fix}_{\text{O}} X \)

(2) \(HX \) is complete

(3) \(X \) is realcompact.
\[\mathcal{J} \text{ is Cauchy } U_m \in \mathcal{J} \text{ for some } m. \]

Finally since \(\mathcal{J} \) is \(\sigma \)-prime, \(P = \{ a \in L : \psi_a \in \mathcal{J} \} \) is \(\sigma \)-prime and \(\mathcal{J} \) is a base for the neighbourhood filter of \(P \).

2.9 Proof of the Theorem

The implication \((1) \Rightarrow (2)\) follows immediately from the above Proposition.

\((2) \Rightarrow (1)\) We show that each point of the spectrum \(\mathcal{U}X \) is a point (of the completion) of \(HX \) (as a minimal Cauchy filter).

If \(\mathcal{J} \in \mathcal{U}X \) then \(\mathcal{J} \) is Cauchy: If \(U \) is a basic entourage of \(HX \), \(U = U_n \times U_n \) where \(X = U_n U_n \), \(U_n \in \mathcal{U}X \). But \(X \in \mathcal{J} \) and \(\mathcal{J} \) is \(\sigma \)-prime, so there exists some \(U_n \in \mathcal{J} \) and \(U_n x U_n \subset U \). \(\mathcal{J} \) is regular.

If \(U \in \mathcal{J} \) then by regularity of \(\mathcal{U}X \), \(U = U V_n \) where \(V_n \leq V_{n+1} \). But \(\mathcal{J} \) is \(\sigma \)-prime thus there exists \(V_n \in \mathcal{J} \) and \(V_n \leq U \).

Finally \(\mathcal{J} \) is minimal Cauchy: If \(U \in \mathcal{J} \) then there exists a \(W \in \mathcal{J} \) with \(W \leq U \) (since \(\mathcal{J} \) regular).

Take \(V \in \mathcal{U}X \), \(V \cap W = \emptyset \), \(V U U = X \). Then \(\{V, U\} \) is a coz-cover of \(X \) and thus \(E = (U \times U) U (V \times V) \) is a basic entourage in \(HX \) with \(E(V) \subset U \).

\((3) \Rightarrow (2)\) If \(X \) is realcompact then \(\mathcal{U}X \) is complete \((1.2.7)\), where \(\mathcal{U}X \) is initial for the set of all pairs \((f, R_u) \) with \(f \in \text{Alex}(X, R_z) \). For each \(f \in \text{Alex}(X, R_z) \) and each
countable coz-cover \(B \) of \(\mathbb{R} \), \(f^{-1}(B) \) is a countable coz-cover of \(X \) and thus \(f \in \text{Unif}(HX, R_{su}) \) (recall, \(R_{su} \) has as basis, the countable open covers of \(\mathbb{R} \)). Hence \(HX \) is finer than \(UX \) and \(HX \) is complete.

(2) \(\Rightarrow \) (3) Let \(\mathcal{F} \) be a real \(z \)-ultrafilter on \(X \). Suppose that \(\mathcal{F} \) does not have the Cauchy property on \(HX \). Now \(HX \) has a basis of countable zero-set covers (1.2.7), thus there exists a countable cover \(\{Z_n\} \) of zero-sets of \(X \) so that no \(Z_n \) is in \(\mathcal{F} \). \(\mathcal{F} \) is an ultrafilter, thus there exists \(F_n \in \mathcal{F} \) with \(F_n \cap Z_n = \emptyset \), for each \(n \). Then \((U Z_n) \cap (\cap F_n) = \emptyset \) and hence \(\cap F_n = \emptyset \) giving the necessary contradiction.

Thus \(\mathcal{F} \) has the Cauchy property on \(HX \) and the filter of subsets of \(X \) generated by \(\mathcal{F} \) converges. Then \(\mathcal{F} \) has a unique cluster point \(p \) which since each member of \(\mathcal{F} \) is closed says that \(\cap \mathcal{F} = \{p\} \).

2.10 Proposition \(\gamma H \simeq H \Psi \).

Proof From the theorem (2.7) \(H \Psi \Psi X \) is complete for each Alexandroff space \(X \). Moreover \(\eta_X: X \to H \Psi \Psi X \) is a dense embedding (2.5). \(H \eta_X: HX \to H \Psi \Psi X \) is initial:

Let \(U = \bigcup U_n \times U_n \), where \(U_n \in UX \) for each \(n \) and \(U U_n = X \), be a basic entourage of \(HX \). Observe that if \(A \in UX \) then \(x \in A \) if and only if \(\eta_X(x) \in \Psi A \).
Thus \((x,y) \in U\) if and only if
\[(n_x(x), n_y(y)) \in U \times U_n \times U_n,\]
where each \(U_n\) is a cozero-set of \(U\) and \(U \times U_n = \mathcal{U}_{X} X\). If \(P \in \mathcal{U}_X\), then \(X \in P\). But \(X = \emptyset \times U_n\) and \(P\) is \(\sigma\)-prime, hence there exists \(U_m \in P\) and then \(P \in U_m\).

It follows that \(U \times U_n \times U_n\) is a basic entourage of \(H \times \mathcal{U}\) and \(n_n\) is initial; being one-one and an epimorphism, \(H_n\) is a uniform embedding of \(H\) into the complete uniform space \(H \times \mathcal{U}\). Then \(\gamma H \mathcal{U} \cong H \times \mathcal{U}\), for every \(X\). Naturality follows by uniqueness of the relevant extensions.

2.11 The first equivalence in the following Proposition is the expected result (Isbell [1972], Lambek and Rattray [1973]) Fix \(\eta = \text{Im } \psi\), where \(\text{Im } \psi\) is the full subcategory of \(\text{Alex}\) whose objects are isomorphic to some \(\psi L\).

Proposition For an Alexandroff space \(X\) the following are equivalent:

1. \(X \cong \psi L\), for some regular \(\sigma\)-frame \(L\)
2. \(n_X: X \to \mathcal{U}_X\) is an isomorphism
3. Every \(\sigma\)-prime filter of \(\mathcal{U}_X\) is of the form \(\mathcal{U}(x)\), for some \(x \in X\)
4. \(X\) is realcompact.
Proof Clearly (2) \(\Rightarrow \) (1). The implication (1) \(\Rightarrow \) (4) and the equivalence (2) \(\iff \) (4) follow directly from the Theorem 2.7, Proposition 2.8 and Proof 2.9.

(2) \(\Rightarrow \) (3) If \(P \) is a \(\sigma \)-prime filter of \(\mathbb{U}X \) then by (2) there exists \(x \in X \) with \(\mathbb{U}(x) = \eta_X(x) = P \).

(3) \(\Rightarrow \) (2) \(\eta_X \) is an embedding (2.5). By (3) it is onto.

2.12 We have here an alternate construction of the Hewitt realcompactification \(uX \) of an Alexandroff space \(X \).

Corollary \[\psi \mathbb{U} \equiv u \]

Proof For each Alexandroff space \(X \) and coz-map \(f: X \rightarrow Y \) with \(Y \) realcompact the diagram

\[
\begin{array}{ccc}
X & \xrightarrow{\eta_X} & \psi \mathbb{U}X \\
\downarrow{f} & & \downarrow{\psi \mathbb{U}f} \\
Y & \xrightarrow{\eta_Y} & \psi \mathbb{U}Y
\end{array}
\]

commutes

with \(\eta_Y \) an isomorphism. Then \(\psi \mathbb{U}f \cdot \eta_Y^{-1} \) extends \(f \), and uniquely so as \(\eta_X \) is an epimorphism.

Thus \(\psi \mathbb{U}X \equiv uX \), for each \(X \). Naturality follows quickly.
2.13 As in the last paragraph it is easy to verify that \(\text{Fix } \varepsilon \) is a reflective sub-category of \(\text{Reg } \sigma \text{ Frm} \) with reflection map \(\varepsilon_L : L \to \text{V}_L \). Motivated by Proposition 2.6 we denote \(\text{Fix } \varepsilon \) by \(\text{Alex } \sigma \text{ Frm} \), the full sub-category of \(\text{Reg } \sigma \text{ Frm} \) whose objects we call the Alexandroff \(\sigma \)-frames. (Not to be confused with the Alexandroff algebras of Reynolds [1979] which are precisely the regular \(\sigma \)-frames.) Prepared by 2.4 we may now observe:

Proposition \(\Upsilon \) and \(\Psi \) induce a dual equivalence

\[
\begin{array}{ccc}
\text{Realcompact Alex} & \longrightarrow & \text{Alex} \\
\Upsilon & \downarrow & \Psi \\
\text{Alex } \sigma \text{ Frm} & \longrightarrow & \text{Reg } \sigma \text{ Frm}
\end{array}
\]

on the category of realcompact Alexandroff spaces and the category of Alexandroff \(\sigma \)-frames.

2.14 The following two Propositions may be compared with the corresponding results, of Broverman [1978b], for topological spaces which we shall recover in section 4 of this chapter.

Proposition The following are equivalent for a realcompact Alexandroff space \(Y \):

(1) \(h: \Upsilon Y \to \Upsilon X \) is a homomorphism

(2) \(h = \Upsilon f \) for a unique coz-map \(f: X \to Y \).
commutes, by naturality of η, for both f and g. As η_Y is an isomorphism, $f = g$.

2.15 It was observed in 2.5 that $\psi \eta_X : \mathcal{U}X \rightarrow \psi \mathcal{U}X$ is an isomorphism. Applying 2.12 we obtain the expected isomorphism (as o-frames): $\mathcal{U}X \cong \psi \mathcal{U}X$. Further:

Proposition If X and Y are Alexandroff spaces, then $\mathcal{U}X \cong \mathcal{U}Y$ if and only if $\mathcal{V}X \cong \mathcal{V}Y$.

Proof If $\mathcal{V}X \cong \mathcal{V}Y$ then $\psi \mathcal{V}X \cong \psi \mathcal{V}Y$ hence as observed above, $\mathcal{U}X \cong \mathcal{U}Y$. Conversely, if $\mathcal{U}X \cong \mathcal{U}Y$ then $\psi \mathcal{U}X \cong \psi \mathcal{U}Y$.
Compact regular σ-frames - the Stone-Čech compactification in Alex

In [1980a] Banaschewski develops the theory of compact regular σ-frames.

The definitions, lemma and its corollary with which we initiate our study are due to him.

3.1 Definitions

A σ-frame L is compact if given $1 = \bigvee x_n$ then there exist a finite number of the $x_n, x_{n_1}, x_{n_2}, \ldots, x_{n_k}$ say, such that $1 = x_{n_1} \lor \ldots \lor x_{n_k}$.

A filter P of a σ-frame is a σ-open filter if given $\bigvee x_n \in P$ then there exist x_{n_1}, \ldots, x_{n_k} with $x_{n_1} \lor \ldots \lor x_{n_k} \in P$.

3.2 Lemma. If F is a σ-open filter on a σ-frame L and $a \in F$ then there exists a σ-prime filter P on L such that $F \subseteq P$ and $a \in P$.

Proof. By Zorn's Lemma there is a maximal σ-open filter P with $a \in P$ and $F \subseteq P$. We show P is prime and thus (immediately) σ-prime.

Suppose $b \lor c \in P$, with neither b nor c in P. Let $Q = \{x : x \lor c \in P\}$. Then Q is a σ-open filter.

Now $P \subseteq Q$, but $b \in Q$ with $b \notin P$, so $a \in Q$ and $a \lor c \in P$. Repeat with a replacing c. Then $a \lor a = a \in P$ giving the required contradiction. Thus either b or c is in P.

3.3 Corollary A compact regular σ-frame has enough σ-prime filters.

Proof Suppose \(a < b \). Now \(b = \vee b_n, b_n \ll b \).
If \(b_n \ll a \) for every \(n \), then \(b \ll a \) - contradicting our hypothesis, so there exists \(c \), with \(c \ll b \) and \(c \ll a \).

Let \(F = \{ x : c \ll x \} \). Applying the properties of \(\ll \) (1.3(1) and (2)), \(F \) is a filter. Furthermore \(F \) is σ-open: If \(\forall x_n \in F \) then there exists \(z \) with \(z \land c = 0 \), \(z \lor \forall x_n = 1 \). By compactness, there exist \(x_{n_1}, \ldots, x_{n_k} \) with \(z \lor x_{n_1} \lor \ldots \lor x_{n_k} = 1 \) and thus \(c \ll x_{n_1} \lor \ldots \lor x_{n_k} \in F \). Moreover \(b \in F \) and \(a \in F \). Apply the above Lemma to \(F \).

3.4 If \(L \) is a compact regular σ-frame the Corollary confirms \(\varepsilon_L : L \to \mathcal{W}L \) is an isomorphism (2.6 Proposition). Consequently each countable coz-cover of \(\mathcal{W}L \) has a finite subcover - a property of Alexandroff spaces that we shall characterise later (4.13). In this situation however more can be said:

Proposition If \(L \) is a compact regular σ-frame then \(\mathcal{W}L \) is a compact Alexandroff space.
Proof Every uniform cover \mathcal{B} of $H \times L$ has a refinement of form $\{\psi_{a_n}\}$ with $\bigcup \psi_{a_n} = \psi_L$. Then $\psi_{a_n} = \psi_1$ and as L has enough σ-prime filters, $\forall a_n = 1$. There exist n_1, \ldots, n_k with $a_{n1} \triangleright \cdots \triangleright a_{nk} = 1$. Thus $\{\psi_{a_{ni}}\}$, $i = 1, \ldots, k$ is a finite uniform cover refining \mathcal{B} and $H \times L$ is totally bounded and hence (2.8) compact.

3.5 From the previous two paragraphs Fix c contains the compact regular σ-frames. Of course Fix n contains the compact Alexandroff spaces and we obtain a sub-duality to that duality presented in 2.13.

Proposition ψ and ψ induce a dual equivalence

$$\begin{array}{ccc}
\text{Comp Alex} & \overset{c}{\longrightarrow} & \text{Realcompact Alex} \\
\downarrow & & \downarrow \\
\text{K Reg } \sigma \text{frm} & \overset{c}{\longrightarrow} & \text{Alex } \sigma \text{frm}
\end{array}$$

on the category of compact Alexandroff spaces and the category of compact regular σ-frames.

3.6 Definitions An ideal I of a σ-frame L is a subset of L satisfying:

(a) $E \subseteq I$, E finite $\Rightarrow \forall E \in I$
(b) $a \in I$, $b \leq a \Rightarrow b \in I$.
An ideal J is *countably generated* if there is an at most countable subset A of J such that if $b \in J$ then there exist a_1, \ldots, a_n in A with $b \leq a_1 \lor \ldots \lor a_n$.

3.7 Let $\mathcal{J}L$ denote the set of all countably generated ideals of the σ-frame L. Then $\mathcal{J}L$ with intersection for meet and with $\lor J_n$ ($J_n \in \mathcal{J}L$) generated by $\bigcup A_n$, where A_n countably generates J_n, is a σ-frame. Moreover $\mathcal{J}L$ is compact: the greatest element of $\mathcal{J}L$ is L and is generated by $\{1\} \subseteq L$. If $L = \lor J_n$, and A_n countably generates J_n, for each n, then $\bigcup A_n$ countably generates L. Thus $1 \leq b_1 \lor \ldots \lor b_m$, where $b_i \in A_{n_i}$. Then $L = \lor J_{n_i}$.

If $L_\alpha \subseteq L$ (arbitrary index set) are regular sub-σ-frames of the σ-frame L, then the sub-σ-frame generated by the L_α (whose elements are countable joins of finite meets of elements of the L_α) is regular.

The largest regular sub-σ-frame of L will be denoted by $\mathfrak{R}L$. The compact regular coreflection of a σ-frame L in σfrm, due to Banaschewski, is simply $KL = \mathfrak{R}L$.

The details below 3.8 - 3.11 are adapted in part from those presented in Banaschewski [1980a] for the analogous construction for frames.
3.8 Lemma If M is a compact σ-frame and $x \ll V m_n$ in M, then $x \ll m_{n_1} \lor \ldots \lor m_{n_k}$.

Proof $x \ll m$ implies there exists p with $x \land p = 0$, $p \lor m = 1$. By compactness there exist m_{n_1}, \ldots, m_{n_k} with $p \lor m_{n_1} \lor \ldots \lor m_{n_k} = 1$. Then $x \land (m_{n_1} \lor \ldots \lor m_{n_k}) = x$.

3.9 Let $\downarrow m = \{x: x \ll m\}$.

Lemma If M is a compact regular σ-frame then $\downarrow: M \rightarrow \mathcal{I} M$ is a homomorphism.

Proof That $\downarrow m$ is an ideal for each $m \in M$ follows immediately from 1.3(1) and (2). Now for $m \in M$,

$m \lor v m_n (m_n \ll m)$ by regularity. Thus $x \in \downarrow m$

implies $x \ll m_{n_1} \lor \ldots \lor m_{n_k}$ (by 3.8), hence $\{m_n\}$ countably generates $\downarrow m$.

Clearly $\downarrow 1 = M$ and $\downarrow 0 = \{0\}$ and applying 1.3(2),

$\downarrow (x \land y) = \downarrow x \land \downarrow y$. To show \downarrow a homomorphism it only remains to verify $\downarrow \lor x_n = \lor \downarrow x_n$.

Clearly $\lor \downarrow x_n \subseteq \lor \downarrow x_n$. For the converse we first consider the finite case. If $z \in \downarrow (a \lor b)$ then

$z \ll V a_n \lor b_m$ where $a = V a_n$, $b = V b_m$. Hence by 3.8, $z \ll a_{n_1} \lor \ldots \lor a_{n_k} \lor b_{m_1} \lor \ldots \lor b_{m_k}$ and hence $z \in \downarrow a \lor \downarrow b$. Thus $\downarrow (a \lor b) = \downarrow a \lor \downarrow b$.
If \(w \in + V x_n \), then there exists \(p \) with \(w \prec p \prec V x_n \) (by 1.6). Then \(p \prec x_{n_1} v \ldots v x_{n_k} \) (by 3.8) and hence \(w \prec x_{n_1} v \ldots v x_{n_k} \), and \(w \in + x_{n_1} v \ldots v x_{n_k} \). Consequently, \(w \in V + x_n \).

3.10 Corollary If \(M \) is a compact regular \(\sigma \)-frame \(+ : M \rightarrow KM \) is an isomorphism.

Proof. Define \(k_L: KL \rightarrow L \) as follows:

If \(J \in KL \) is countably generated by \(A \), then \(k_LJ = V A \). Clearly \(k_L \) is a homomorphism.

In this case we have compact \(M \), \(+ \) is a homomorphism and for each \(m \in M \), \(k_M + m = V + m = m \), thus \(k_M + = id_M \).

It remains to prove that \(+ k_M J = J \) for each \(J \in KM \). Let \(A \) countably generate \(J \).

If \(x \in + k_M J \) then \(x \prec V A \) and hence \(x \prec a_1 v \ldots v a_n \), with each \(a_i \in A \subset J \) (3.8).

Thus \(x \in J \) and \(J \subset + k_M J \).

Now \(J = V K_n \) where \(K_n \subset J \). Take \(x \in J = V K_n \).

Then \(x \prec \xi_1 v \xi_2 v \ldots v \xi_m \) where the \(\xi_i \) are generating elements for the \(K_n \). We show that \(\xi_i \prec V A \) for each \(i \).
If \(k_i \in K_p \) say, then there exists \(H_p \) with \(K_p \cap H_p = \{0\} \), \(H_p \cup J = M \).

Then \(1 = (a_1 \lor \ldots \lor a_q) \lor h \) for some \(h \in H_p \) and \(a_i \in A \). But \(k_i \land h = 0 \), thus

\[
\l_1 \equiv a_1 \lor \ldots \lor a_q \equiv V A.
\]

Thus \(x \equiv k_1 \lor \ldots \lor k_m \equiv V A \) and \(J \subseteq \lor V A \).

3.11 The correspondence induced by \(K \) is functorial:

\(\sigma_{Frm} \to K \text{Reg} \sigma_{Frm} \). If \(h: M \to L \) is a homomorphism and \(J \in KM \) is countably generated by \(A \), then \(Kh(J) \) is the ideal countably generated by \(h(A) \) in \(L \).

The map \(k_L \) discussed below was defined in 3.10 above:

Theorem \(K \text{Reg} \sigma_{Frm} \) is a full coreflective subcategory of \(\sigma_{Frm} \) with coreflection map \(k_L: KL \to L \).

Proof Let \(h: M \to L \), with \(M \) compact regular, be a given homomorphism.

\[
\begin{array}{c}
\text{KL} \\
\downarrow \quad k_L \\
\text{KM} \quad \sim \\
\downarrow \\
M
\end{array}
\]

\[k_L \circ Kh(m) = \lor h(A) = h(\lor A) = h(m). \]

If \(m \in M \), then \(m = \lor m_n \), \(m_n \equiv m \) and \(A = \{m_n\} \) generates \(+m \). Then \(k_L \circ Kh(m) = \lor h(A) = h(\lor A) = h(m) \).
Uniqueness: Let \(f, g : M \to KL \) with \(k_L f = k_L g = h \).

Then \(f(m) = \bigvee f(m_n) \) with \(f(m_n) \preceq f(m) \) for each \(n \) (\(f \) preserves \(\preceq \)).

There exists \(H_n \in KL \) with \(f(m_n) \cap H_n = \emptyset \), \(H_n \lor f(m) = KL \). Then there exists \(h \in H_n \) and \(a_i \in A \), where \(A \) countably generates \(f(m) \) such that \((a_1 \lor \ldots \lor a_n) \lor h = 1 \). Set \(a = a_1 \lor \ldots \lor a_n \).

Then for each \(z \in f(m_n) \), \(z \preceq a \). Thus \(\bigvee f(m_n) \preceq a \in f(m) \) i.e. \(k_L f(m_n) \in f(m) \).

But \(k_L f(m_n) = k_L g(m_n) \), and \(\bigvee g(m_n) \in f(m) \) for each \(n \).

It follows that \(g(m_n) \subseteq f(m) \), for each \(n \), hence \(\bigvee g(m_n) \subseteq f(m) \) i.e. \(g(m) \subseteq f(m) \).

Similarly, \(f(m) \subseteq g(m) \).

3.12 Theorem \(\Psi K \Psi X \cong \beta \).

Proof By 3.4, \(\Psi K \Psi X \) is compact for each Alexandroff space \(X \). We show that it has the required universal property.

Firstly, if \(e : X \to \beta X \) is the Stone-Čech reflection map, then \(\Psi \beta X \) is compact and the diagram

\[
\begin{array}{ccc}
KUX & \xrightarrow{k_{\Psi X}} & UX \\
\Psi e & \downarrow & \Psi e \\
\Psi \beta X & \to & \Psi \beta X
\end{array}
\]

commutes.
Consider the diagram

\[
\begin{array}{ccc}
X & \xrightarrow{\eta_X} & \Psi K X \\
\downarrow{e} & & \downarrow{\Psi K e} \\
\beta X & \xrightarrow{\eta_{\beta X}} & \Psi \beta X
\end{array}
\]

The left-hand rectangle commutes by naturality of \(\eta \) and \(\eta_{\beta X} \) is an isomorphism.

The right-hand triangle commutes - it is obtained by applying \(\Psi \) to the triangle in (1).

If \(Y \) is a compact Alexandroff space and \(f: X \to Y \) is a coz-map then the outer rectangle of

\[
\begin{array}{ccc}
X & \xrightarrow{\Psi K e \cdot \eta_X} & \Psi K \Psi K X \\
\downarrow{f} & & \downarrow{f^\beta \cdot \Psi K \Psi K e} \\
Y & \xrightarrow{f^\beta} & \beta X
\end{array}
\]
commutes, where \(f^\beta e = f \) is the Stone-Čech extension of \(f \).

Then \(\hat{f} = f^\beta \eta_{\beta X}^{-1} \cdot \Psi K \Psi K e \) extends \(f \) to \(\Psi K \Psi K X \).

We show this extension is unique.

Let \(g \cdot \Psi K e \cdot \eta_X = f \) where \(g: \Psi K \Psi K X \to Y \). Then

\(\Psi \eta_X \cdot \Psi K e \cdot \Psi g = \Psi f : \Psi Y \to \Psi X \).
Now

\[\begin{array}{c}
\Psi K_{UX} \\
\uparrow \varepsilon_{KUX} \\
KUX \\
\downarrow \varepsilon_{UX} \\
UX
\end{array} \xrightarrow{\Psi_{UX}}
\begin{array}{c}
\Psi UX \\
\varepsilon_{UX}
\end{array} \]

commutes by naturality of \(\varepsilon \) and \(\Psi_n X \cdot \varepsilon_{UX} = id_{UX} \) (2.3(2)), thus

\[\Psi_n X \cdot \Psi_{KUX} = k_{UX} \cdot \varepsilon_{KUX}^{-1} . \]

It follows then that

\[\Psi f = k_{UX} \cdot (\varepsilon_{KUX}^{-1} \cdot \Psi g) \] and

\[\Psi f = k_{UX} \cdot (\varepsilon_{KUX}^{-1} \cdot \Psi f) \]

But such extensions are unique, thus

\[\varepsilon_{KUX}^{-1} \cdot \Psi g = \varepsilon_{KUX}^{-1} \cdot \Psi f \] and \(\Psi g = \Psi f . \)

Applying 2.14, \(g = \widehat{f} \). Naturality follows easily.
4. Applications to realcompact and pseudocompact spaces.

Recall (1.2.1) $R: Tych \to Alex$ is the unique right inverse and a left adjoint to $F: Alex \to Tych$. Let $\Sigma = F\nu: Reg\sigma Frm \to Tych$ and $T = U\pi: Tych \to Reg\sigma Frm$. We may conclude:

4.1 Proposition Σ and T are adjoint on the right.

4.2 Let $\nu: 1_{Tych} \to FR$ denote the unit for the adjoint pair F, R which is, as observed, the identity natural transformation.

The counit is $\delta: RF \to 1_{Alex}$ where $\delta_X(x) = x$, for all $x \in X \in Alex$.

The adjunctions for Σ and T then are given by:

$\zeta: 1_{Tych} \to ET$ where

$\zeta = (F\eta\pi R).\nu$, and

$\phi: 1_{Reg\sigma Frm} \to T\Sigma$ with

$\phi = (U\delta\psi).\epsilon$.

ζ_X is, for each Tychonoff space X, a dense embedding since ν is an identity, η a dense embedding in $Alex$ and F preserves initiality. Unlike η_X in $Alex$, ζ_X is not an essential embedding for every X, for reasons that will become obvious once we have identified ζ_X (4.6).
In contrast to ϵ_L for a regular σ-frame L, φ_L need not be onto.

$\Phi_L : \Psi L + \Psi RL$ is described by:

$\Phi_L (\psi_a) = \psi_a$ for each $a \in L$. Thus Φ_L is onto if and only if ΨL is fine.

4.3 Mimicking 2.4 and 2.13, Σ and ΣT induce a dual equivalence between $\text{Fix } \tau$ and $\text{Fix } \varphi$. We now characterise these subcategories:

Proposition For a Tychonoff space X the following are equivalent

1. $X \cong L$, for some regular σ-frame L.
2. $\tau_X : X \to \Sigma TX$ is an isomorphism.
3. The σ-prime filters of cozero-sets of X are precisely those whose members contain a given point $x \in X$.
4. X is realcompact.

Proof The implication $(2) \Rightarrow (1)$ is trivial.

$(1) \Rightarrow (4)$ ΨL is realcompact for each L (2.11) hence $\Sigma L = \Psi RL$ is realcompact (2.1.12).

$(4) \Rightarrow (2)$ If X is realcompact then RX is realcompact and by 2.11 $\eta_{RX} : RX \to \Psi RX$ is an isomorphism. Then $\tau_X = \Phi \eta_{RX} \cdot \tau_X$ is an isomorphism as τ_X is always the identity map (4.2).
(3) \iff (4) RX and X have the same cozero-sets hence this equivalence follows directly from the like in 2.11.

We remark that we have not seen the characterization of realcompactness given by (3) \iff (4) in the above Proposition in the literature.

4.4 Blair and Hager [1974] have shown that each cozero-set of a Tychonoff space is z-embedded. With this observation the simple proof of the following result carries over to a proof for the analogue for Tychonoff X (Gillman and Jerison [1960], 8.14).

Proposition Each cozero-set A of a realcompact Alexandroff space X is realcompact as a subspace of X.

Proof Let F be a \(\sigma\)-prime filter of cozero-sets of A. Set \(G = \{ G \in \mathcal{U}X : G \cap A \in F \} \). G is a \(\sigma\)-prime filter on \(\mathcal{U}X\). Thus \(G = \mathcal{U}(x)\) for some \(x \in X\) (2.11). As \(A \in G\), \(x \in A\) and \(x \in F\) for each \(F \in F\).

Finally, each cozero-set of A containing x is the restriction of a cozero-set in G to A.

4.5 The domain for the definition of T: Tych \(\rightarrow\) Reg \(\sigma\) Frm can be extended to Top - the category of all topological spaces - in the obvious way ("take cozero-sets"). It is in this spirit that we have abused notation in (2) below.
Proposition For a regular σ-frame L the following are equivalent:

1. $L \cong TY$ for some Tychonoff space Y.
2. $L \cong TY$ for some topological space Y.
3. $\varphi_L: L \rightarrow \mathcal{T}L$ is an isomorphism.
4. $L \cong \mathcal{U}X$ for some realcompact-fine Alexandroff space X.
5. L has enough σ-prime filters and φ_L is fine.
6. L has enough σ-prime filters and $B\mathcal{E}L \cong \mathcal{E}KL$.

Proof Since the cozero-set lattices of a topological space Y and its Tychonoff reflection are isomorphic as σ-frames (1.2.4), (1) \iff (2).

Clearly (3) \implies (1).

1. \implies 4. $L \cong TY \cong \mathcal{U}uRY = \mathcal{U}ruY$

(2.15) and RuY is of course realcompact-fine.

4. \implies 5. By (2.2.6) if X is realcompact-fine then $\varphi_L \cong \varphi\mathcal{U}X \cong uX$ is fine. If $L \cong \mathcal{U}X$ then L has enough σ-prime filters (2.6).

5. \iff 6. Recall that an Alexandroff space X is fine if and only if $F\beta X \cong \beta FX$ (1.2.3). Thus φ_L is fine if and only if $\beta\mathcal{E}L \cong F\mathcal{E}\mathcal{W}L$. When L has enough σ-prime filters, $\mathcal{U}\varphi L \cong L$ and applying 3.12, $F\mathcal{E}\mathcal{W}L \cong F\mathcal{E}\mathcal{W}\mathcal{W}L = \mathcal{E}KL$.

5. \implies (3) If L has enough σ-prime filters then ε_L is an isomorphism (2.6). Now $\mathcal{U}\delta\varphi L$ is one-one, and (4.2) since φL is fine, onto. Thus $\varphi = \mathcal{U}\delta\varphi L$. ε_L is an isomorphism.
4.6 Corollary The Alexandroff space \(X \) is realcompact-fine if and only if \(\beta \Sigma \Sigma X \cong \Sigma K \Sigma X \).

4.7 \(\text{Fix } \varphi \) and \(\text{Fix } \xi \) are reflective subcategories of \(\text{Reg } \sigma \text{Frm} \) and \(\text{Tych} \) respectively. It is clear from 4.5 that \(\text{Fix } \varphi \subseteq \text{Fix } \xi \) and motivated by 4.5(2) we call the objects of \(\text{Fix } \varphi \) the topological \(\sigma \)-frames and denote the corresponding full subcategory of \(\text{Reg } \sigma \text{Frm} \) by \(\text{Top } \sigma \text{Frm} \).

\(\xi \) is the unit of the Hewitt realcompactification in \(\text{Tych} \) and we have here the alternative construction for \(vX \) given by \(vX \cong \Sigma TX \). Note also that \(FnR \cong \xi \).

The first duality 4.8(1) given below is a consequence of the characterizations of \(\text{Fix } \varphi \) and \(\text{Fix } \xi \) given above. The second 4.8(2), due to Banaschewski [1980a,b], may be deduced from the corresponding duality given in 3.5: the counit \(\delta : RF \xrightarrow{1} \text{Alex} \) restricts on \(\text{Comp Alex} \) to an isomorphism and the category of compact Tychonoff spaces, denoted \(\text{Comp Tych} \), is isomorphic to \(\text{Comp Alex} \).

4.8 Proposition \(T \) and \(\Sigma \) induce dual equivalences.

\[
\begin{array}{ccc}
\text{Comp Tych} & \overset{\cong}{\longrightarrow} & \text{Realcompact Tych} & \overset{\cong}{\longrightarrow} & \text{Tych} \\
\downarrow & & \downarrow & & \downarrow \sigma T \\
K \text{Reg } \sigma \text{Frm} & \overset{\cong}{\longrightarrow} & \text{Top } \sigma \text{Frm} & \overset{\cong}{\longrightarrow} & \text{Reg } \sigma \text{Frm}
\end{array}
\]
(1) on the category of realcompact Tychonoff spaces and the category of topological σ-frames,
(2) on the category of compact Tychonoff spaces and the category of compact regular σ-frames.

4.9 Theorem \(\Sigma KT \cong \beta \)

Proof \(\Sigma KT = F^{\gamma^K} R \cong F\beta R \) (3.12) and \(F\beta R \cong \beta \) (1.2.3).

4.10 Broverman [1978b] obtained the zero-set lattice analogues for the following two results.

Proposition If \(Y \) is a realcompact Tychonoff space then the following are equivalent
(1) \(h: T^Y \to T^X \) is a homomorphism
(2) \(h = T^f \) for a unique continuous map \(f: X \to Y \).

Proof The implication \((2) \Rightarrow (1) \) is trivial
(1) \(\Rightarrow (2) \) \(h = \cup g \) for a unique coz-map \(g: R^X \to R^Y \) (from 2.14). Set \(f = F^g \). Uniqueness follows by faithfulness of \(R \) and uniqueness of \(g \).

4.11 Proposition If \(X \) and \(Y \) are Tychonoff spaces then \(T^X \cong T^Y \) if and only if \(uX \cong uY \).
Proof This result follows immediately on observing firstly that \(TX \cong TuX \) (well-known) and secondly that \(ET \cong u \).

4.12 The following theorem may be contrasted with similar though essentially different results obtained by Broverman [1978a] and Speed [1973].

Theorem The following are equivalent for a regular \(\sigma \)-frame \(L \):

1. \(L \) is compact
2. \(\forall L \) is compact and \(L \) has enough \(\sigma \)-prime filters
3. \(L \cong \mathbb{U}X \) for some compact Alexandroff space \(X \)
4. \(L \cong TY \) for some compact Tychonoff space \(Y \)
5. \(L \cong \mathbb{U}X \) for some pseudocompact Alexandroff space \(X \)
6. \(L \cong TY \) for some pseudocompact Tychonoff space \(Y \).

Proof The implication (1) \(\Rightarrow \) (2) is the substance of 3.3 and 3.4.

(2) \(\Rightarrow \) (3) Take \(X = \forall L \)

(3) \(\Rightarrow \) (4) Take \(Y = FX \)

(4) \(\Rightarrow \) (6) Trivial

(6) \(\Rightarrow \) (5) Take \(X = RY \)

(5) \(\Rightarrow \) (3) If \(L \cong \mathbb{U}X \) with \(X \) pseudocompact, then \(\forall L \cong \mathbb{U}X \cong \mathbb{B}X \) and \(L \cong \mathbb{U}\mathbb{B}X \).

The implication (3) \(\Rightarrow \) (1) is trivial.
4.13 Corollary (1) An Alexandroff space X is pseudocompact if and only if $\mathfrak{U}X$ is compact.

(2) A Tychonoff space X is pseudocompact if and only if TX is compact.

Proof (1) If $\mathfrak{U}X$ is compact, $\mathfrak{U}X = \mathfrak{U}X$ is compact, hence X is pseudocompact. The reverse implication follows directly from 4.12 above.

(2) Similar.

The Alexandroff spaces satisfying the condition in (1) above have been called countably compact (Alexandroff [1940], Hager [1974]) and semicompact (Hager [1979a]).

4.14 The foregoing corollary yields the following simple proof that pseudocompactness is finitely productive in $\mathfrak{A}lex$, which we give although we shall also prove Gordon's [1971] result on arbitrary productiveness in 4.23.

Proposition If X and Y are pseudocompact Alexandroff spaces then $X \times Y$ is pseudocompact.

Proof As each cozero-set of $X \times Y$ is a countable union of sets of the form $A \times B$, with $A \in \mathfrak{U}X$, $B \in \mathfrak{U}Y$ we choose, without loss of generality, any countable coz-cover of $X \times Y$ of form $\{A_n \times B_n\}_{n \in \mathbb{N}}$.
where $A_n \in \mathcal{U}_X$ and $B_n \in \mathcal{U}_Y$ for each n.

For each $x \in X$, there exists $K_x \subseteq \mathbb{N}$ such that
\[
\{B_k\}_{k \in K_x}
\]
covers Y and $x \in A_k$, for each $k \in K_x$.

Since Y is pseudocompact there exists by 4.13
\[
\text{a finite set } J_x \subseteq K_x \text{ such that } B_x = \{B_j\}_{j \in J_x}
\]
already covers Y.

Let $D_x = \bigcap_{j \in J_x} A_j$, then D_x is a cozero-set containing x. Moreover there are only countably many distinct D_x's as x runs through X. As X is pseudocompact the countable cover $\{D_x\}_{x \in X}$ has a finite subcover $\{D_{x_1}, \ldots, D_{x_n}\}$ say.

Then $\{A_{i,j} \times B_{i,j}\}_{j \in J_{x_i}}$, where $i = 1, \ldots, n$, is a
cover of $X \times Y$.

4.15 As for topological spaces, any Alexandroff space X that admits a unique realcompactification is pseudocompact - the realcompactification being $\nu X \cong \beta X$.

We showed in 2.5 that n_X is an essential embedding of each Alexandroff space X into $\psi\mathcal{U}X \cong \nu X$ (by 2.12).

This generalises a theorem of Gordon ([1971], 7.9).

Thus νX is densely embedded in every realcompactification Y of X. In particular, if X is pseudocompact, $\nu X \cong \beta X$ is densely embedded in Y and thus $Y \cong \nu X$.

We have proved:
Proposition An Alexandroff space X is pseudocompact if and only if X admits a unique realcompactification.

4.16 Corollary A Tychonoff space X is pseudocompact if and only if νX is the only realcompactification in which X is \mathbb{Z}-embedded.

Proof X is \mathbb{Z}-embedded in Y if and only if RX is embedded in RY. If X is pseudocompact then RX is pseudocompact and by 4.15 νRX is the unique realcompactification of RX. Conversely, X is \mathbb{Z}-embedded in both νX and βX, always.

4.17 The analogue of Proposition 4.15 for topological spaces fails. A pseudocompact space need not admit a unique realcompactification. This is because it may not be \mathbb{Z}-embedded in some compactification:

Corollary The following are equivalent for a Tychonoff space X

(1) X is pseudocompact and \mathbb{Z}-embedded in every compactification

(2) X admits a unique realcompactification

(3) X admits a unique compactification.
Proof \[(1) \Rightarrow (2)\] Each realcompactification Y of pseudocompact X is compact, thus by assumption X is z-embedded in Y and by 4.16, $Y \cong vX$.

$(2) \Rightarrow (3)$ is trivial

$(3) \Rightarrow (1)$ It is well-known (Gillman and Jerison [1960]) that if X admits a unique compactification then X is pseudocompact. The compactification is βX, in which X is z-embedded.

A further equivalent condition on X is that it be almost compact (Gillman and Jerison [1960]). If X is Lindelöf then every embedding of X is a z-embedding (attributed to Henriksen and Johnson, Alô and Shapiro [1974]). Note however that if X admits a unique compactification it need not be Lindelöf (e.g. the ("deleted") Tychonoff plank).

The corollaries 4.16 and 4.17 may also be quickly deduced using the result of Blair and Hager [1974], that the notions of z-embedding, C^*- and C-embedding are equivalent on pseudocompact subspaces. The latter result is also easily obtained as follows:

If A is z-embedded in X then RA is a subspace of RX. By essentiality of the embedding η_{RA} (2.5) vRA is embedded in vRX. For pseudocompact A, RA is pseudocompact and then $vRA \cong \beta RA$ which is embedded in vRX. Since R commutes with both v and β and F preserves embeddings it follows that βA is embedded.
Each compact subset of a Tychonoff space is C-embedded. \(A \) is C*-embedded in \(\beta A \) which as we have seen is C-embedded in \(\nu X \). Consequently (by restricting), \(A \) is C-embedded in \(X \).

4.18 As a consequence of 4.15 and thus a consequence of the fact that \(\eta_X \) is an essential embedding, we have that a pseudocompact Alexandroff space admits a unique compactification. The converse holds for Tychonoff spaces and may be proved for Alexandroff spaces in like manner (e.g. Gillman and Jerison [1960], Gilmour [1974]). Gordon [1971] first stated and proved this result which may also be recovered in the setting of SMF from the work of Hager [1974]. We state then:

Theorem (Gordon) An Alexandroff space \(X \) is pseudocompact if and only if \(X \) admits a unique compactification.

Other equivalent conditions for an Alexandroff space to be pseudocompact may be deduced as in Gillman and Jerison [1960]15Q,R), (see Gilmour [1974]) and especially Hager [1979a]).

4.19 The Corollary following is a result of Hager [1969]. His proof is different to that given here.
Corollary A Tychonoff space X is pseudocompact if and only if every compactification Y of X is ωA, where A is the restriction of RY to X in Alex.

Proof If X is pseudocompact then A is a pseudocompact Alexandroff space ($FA = X$). Thus (4.18) A admits a unique compactification $\beta A \cong RY$. Then $Y \cong F\beta A$.

If RX is not pseudocompact then RX admits at least two distinct compactifications βRX and W say. Then FW is a compactification of X distinct from $\omega RX \cong F\beta RX \cong \beta X$.

4.20 Corollary A Tychonoff space X is pseudocompact if and only if βX is the only compactification in which X is ω-embedded. (cf. 4.16 Corollary)

Proof If X is pseudocompact then by 4.19 each compactification Y of X is ωA where A is the restriction of RY to X. If $A = RX$ then $Y = \beta X$.

The converse follows by assuming the contrapositive as in 4.19.

4.21 We shall now prove the two results (4.22 and 4.23) quoted and used in Chapter 2. These results are due to Gordon and the proofs we shall give are his. The proofs
rely on the following theorem which may be found in Gordon [1971]. The proof presented here is our own.

Theorem \(uX \) is the only realcompactification of the Alexandroff space \(X \) with the property that each of its non-empty zero-sets meets \(X \).

Proof Firstly, using the construction of \(uX \) given in 2.12, each cozero-set of \(uX \cong \psi uX \) is of the form \(\psi_U \) where \(U \in uX \) and
\[
\psi_U = \{ P \in \psi uX : U \in P \}
\]
Suppose there is an \(\psi_U \) such that \(U(x) \in \psi_U \) for each \(x \in X \). Then \(U = X \) and \(\psi_U = \psi uX \). Thus the only cozero-set of \(uX \) completely containing "\(X \)" is \(uX \) itself and each zero-set of \(uX \) meets \(X \).

Suppose now that \((Y, z) \) is a realcompactification of \((X, W) \), distinct from \(uX \), and such that each zero-set of \(Y \) meets \(X \). As \(\eta_X \) is an essential embedding we may regard \(X \subseteq uX \subseteq Y \). Take \(y \in Y \) so that \(y \notin uX \). Let \(F_y \) be the point \(z \)-ultrafilter on \((Y, z) \).

Then \(G = \{ A \cap X : A \in F_y \} \) is a real \(W \)-ultrafilter on \((X, W) \). From the construction of \(uX \) given in chapter 2, \(G \) converges (as a filter base on \(Y \)) to some point of \(uX \) as well as to \(y \)-contradiction.
4.22 Theorem (Gordon [1971]) \(\nu \) distributes over arbitrary Alex-products.

Proof Let \(\{X_\alpha\} \) be a family of Alexandroff spaces. \(\Pi X_\alpha \) is a realcompactification of \(\Pi X_\alpha \). By 4.21 we need only show that each non-empty zero-set of \(\Pi X_\alpha \) meets \(\Pi X_\alpha \) for the isomorphism of \(\Pi X_\alpha \) and \(\Pi X_\alpha \).

Each zero-set \(A \) of \(\Pi X_\alpha \) is a countable intersection of finite unions of sets of the form \(\pi^{-1}A_\alpha \) with \(A_\alpha \) zero-sets of \(uX_\alpha \). If \(A \) is non-empty we may choose countably many distinct \(A_\alpha \) zero-sets of \(uX_\alpha \) such that \(B = \cap \pi^{-1}A_\alpha \) is non-empty. Then \(B \) is a zero-set and \(B \subseteq A \). Now for each \(n \), there exists \(x_n \in A \cap X_\alpha \) (by 4.21). Take any \(x \in \Pi X_\alpha \) with \(\pi_\alpha (x) = x_n \) for all \(n \). Then \(x \in B \subseteq A \) and hence \(A \) meets \(\Pi X_\alpha \).

4.23 Corollary (Gordon [1971]) The Alex-product of pseudocompact Alexandroff spaces is again pseudocompact.

Proof If \(\{X_\alpha\} \) is a family of pseudocompact Alexandroff spaces then \(\nu(\Pi X_\alpha) = \Pi X_\alpha = \Pi X_\alpha \) is compact. Thus \(\Pi X_\alpha \) is pseudocompact.
5 A note on complete objects

The category of sober spaces is dual to the category of spatial frames (see 6.2). A T_0-topological space has a unique (up to homeomorphism) sobrification. Similarly a separated uniform space has (up to uniform isomorphism) a unique completion. This characteristic of the sober spaces in Top and the complete spaces in Uni6 has been abstracted by Brümmer [1979] in defining the concepts of rigidity and of complete objects for concrete categories. The definitions of Brümmer for the categories with which we are concerned reduce to:

5.1 Definition Let \mathcal{D} be any subcategory of Zero ($\text{Top}, \text{Uni6}$). An epireflective subcategory \mathcal{S} (with epireflector \mathcal{S} and unit π) is a rigid epireflective subcategory of \mathcal{D}_0 (the full subcategory of separated \mathcal{D}-objects) if:

1. For each $X \in \mathcal{D}_0$, $\pi_X: X \to SX$ is a dense embedding,
2. If $A \in \mathcal{S}$ and $f: X \to A$ is a dense embedding, then there exists a unique isomorphism h such that $h.f = \pi_X$.

It turns out (Brümmer - Herrlich: private communication) that \mathcal{D}_0 can have at most one rigid epireflective subcategory \mathcal{S}. If there is such an \mathcal{S}, then its objects are called the complete objects of \mathcal{D}.
5.2 Examples (1) The complete separated uniform spaces are the complete objects of Unif.

(2) The sober spaces are the complete objects of Top.

(3) The compact spaces are the complete objects of Psc Alex (the full subcategory of Alex consisting of all pseudocompact spaces): the epireflector is β - here restricted to Psc Alex. Rigidity follows immediately from 4.18.

5.3 If \mathcal{D} is a subcategory of Alex, \mathcal{D} is said to be closed under compactification if each compactification of an object of \mathcal{D} is again in \mathcal{D}.

Proposition If a subcategory \mathcal{D} of Alex is closed under compactification then: \mathcal{D} admits a rigid epireflective subcategory if and only if each $D \in \mathcal{D}$ is pseudocompact.

Proof If \mathcal{D} has S as a rigid epireflective subcategory, then S contains all compact \mathcal{D}-objects: each compact X is densely embedded in its S reflection.

If $X \in \mathcal{D}$ is not pseudocompact, then X admits at least two distinct compactifications (4.18) which are then both in S - contradicting the rigidity of S.

5.4 Corollary The category Alex has no complete objects.
6. Generating cozero-sets from open sets

In this short section we outline certain results from the theory of frames in order to obtain an internal set-theoretical construction of the topologically fine coreflection RF_X in $Alex$ (6.7) as promised in 2.3.8.

All the material (with the exception of 6.7) is drawn from Banaschewski [1980a]. Related material can be found in Reynolds [1979].

6.1 Definitions A frame L is a complete lattice that satisfies the distribution law $x \land y \land a = y \land x \land a$ ($a \in I$, arbitrary). A homomorphism between frames is a map preserving finite meets, arbitrary joins, \emptyset and 1.

These are the objects and maps of the category of frames, denoted by Frm.

6.2 The functors $\Omega: Top \to Frm$, where ΩX is the lattice of open sets of X, and $\Lambda: Frm \to Top$, with AL the spectrum of L (i.e. all completely prime filters on L) with open sets $A_a = \{P: a \in P \in AL\}$, are adjoint on the right. Λ and Ω restrict to a dual equivalence between the category of sober spaces (a topological space X is sober if and only if each union irreducible closed set is the closure of some
unique point of X) and the category of spatial frames (i.e. those frames L such that $L \cong \Omega X$ for some $X \in \text{Top}$.)

6.3 Definition Let L be a frame. Coz L is the subset of L whose elements a are of the form $a = h(\mathbb{R} \setminus \{0\})$ where $h \in F_{\text{nm}}(\Omega \mathbb{R}, L)$.

Coz L is the largest regular sub-σ-frame of L i.e. $\text{Coz } L = \mathcal{RL}_\sigma$ where \mathcal{R} is described in 3.7 and L_σ is the underlying σ-frame of L.

6.4 Definitions The rather below relation \triangleleft described in 1.3 is defined in precisely the same way for F_{nm}.

An element a of a frame L is completely below b, written $a \triangleleft b$ if there exists $\{c_{nk}\}$ with $n = 0, 1, 2, \ldots$ and $k = 0, \ldots, 2^n$ such that $c_{00} = a$, $c_{01} = b$, $c_{nk} = c_{n+1, 2k}$ and $c_{nk} \triangleleft c_{n, k+1}$

Pictorially:

```
    a
    \:\\---------\\
    C_{00} \:
    \:\:\\---------\\
    C_{10} \:
    \:\:\:\\---------\\
    C_{20} \:
    \:\:\:\:\\---------\\
    C_{30} \:
    \:\:\:\:\:\\---------\\
    C_{40} \\
    \:\\---------\\
    C_{01} \\
    \:\:\\---------\\
    C_{11} \\
    \:\:\:\\---------\\
    C_{21} \\
    \:\:\:\:\\---------\\
    C_{31} \\
    \:\:\:\:\:\\---------\\
    C_{41} \\

\:
\begin{equation*}
\begin{aligned}
C_{00} & \triangleleft C_{01} \\
C_{10} & \triangleleft C_{11} \\
C_{20} & \triangleleft C_{21} \\
C_{30} & \triangleleft C_{31} \\
C_{01} & \triangleleft C_{02} \\
C_{11} & \triangleleft C_{12} \\
C_{21} & \triangleleft C_{22} \\
C_{31} & \triangleleft C_{32} \\
\end{aligned}
\end{equation*}
```

Then \triangleleft satisfies the corresponding properties of 1.3(1) and (2) for \triangleleft. Moreover \triangleleft interpolates.
If L is a *compact regular frame* (defined analogously as for Ω_{Fm}) then \lt interpolates and \lt coincides with \leq.

In ΩX, $U \lt V$ if and only if $\bar{U} \subseteq V$ (\bar{U} is the closure of U).

In ΩX, $U \downarrow V$ if and only if there is a continuous function $f: X \to [0,1]$ with $f(x) = 0$ if $x \in U$ and $f(x) = 1$ if $x \in V$.

6.5 If L is spatial then the paragraph 6.2 tells us that $\text{Fm}(\Omega L, L) \cong \text{Top}(\text{AL}, \mathbb{R})$. If further $T: \text{Top} \to \text{Fm}$ is the functor "take cozero-sets" then (from 6.3)

$\text{Coz L} \cong \text{TA}_L$.

In particular, if X is an Alexandroff space, then

$\text{Coz } \Omega X \cong \text{TA}_\Omega X \cong TFX = \Omega RFX$.

6.6 Proposition (Banaschewski [1980a]) Let L be a frame. Then $a \in \text{Coz L}$ if and only if $a = V_{a_n}$ where $a_0 \downarrow a_1 \downarrow a_2 \downarrow \ldots$, and $a_n \in L$.

6.7 Corollary Let X be an Alexandroff space. U is a cozero-set of ΩX if and only if $U = U_{U_n}$ where $U_0 \downarrow U_1 \downarrow \ldots$ in ΩX and the U_n are open in FX.
6.8 Corollary (Banaschewski [1980a]) Let Y be a compact Tychonoff space. U is a cozero-set of Y if and only if $U = U_n$ where each U_n is open and $\overline{U}_n \subseteq U_{n+1}$ ($n = 0,1,2,\ldots$).
REFERENCES

Normal Topological Spaces. (Cambridge University Press, London; New York.) 1974
BANASCHEWSKI, B. The duality of distributive σ-continuous lattices. Preprint. 1980b

σ-Frames. (in preparation) 1980c

z-embedding in $\Phi X \times \Phi Y$. Set theoretic topology (Academic Press, New York). 1977

COMFORT, W.W. AND HERRLICH, H. On the relations P(X x Y) = PX x PY. General Topology and Appl. 6, 37-43. 1976

GILLMAN, L. AND JERISON, M. Rings of continuous functions. (Van Nostrand, Princeton, New Jersey.) 1960

Uniformities induced by cozero and Baire sets. Proc. Amer. Math. Soc. 63, 153-159. 1977

Metric discrete uniform spaces and their cozero fields. Preprint. 1979

Semicompact cozero-fields and uniform spaces. Rocky Mt. J. Math. 9, 447-452. 1979a
HELDERMANN, N.C. Coreflexions induced by fine functors in topological categories. Preprint. 1980

____________________ Atomless parts of spaces. Math. Scand. 31, 5-32. 1972a

RICE, M.D. Covering and function - theoretic properties of uniform spaces. (Thesis, Wesleyan University.) 1973

