Comparative analysis of cervical disease progression in HIV positive women receiving ART and those not receiving ART in Cape Town, South Africa, from 2002 to 2011

By:

JANIS PAULSEN
PLSI0AN002

SUBMITTED TO THE UNIVERSITY OF CAPE TOWN
In partial fulfilment of the requirements for the degree

Masters in Public Health

Faculty of Health Sciences
UNIVERSITY OF CAPE TOWN

Date of Submission: February 2015
Supervisor(s): Professor Landon Myer
School of Public Health
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
DECLARATION

I, Janis Paulsen, hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university.

I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever.

Signature:

Date:
For my parents who have given me everything.
Abstract

Human papilloma virus (HPV) has been shown to be a necessary cause for the development of cervical cancer. Cervical cancer is a progressive disease, going through pathologically distinct stages ranging from normal cytology to malignancy. Precancerous lesions (low and high grade squamous epithelial lesions (SIL)) are detectable and treatable. In addition, women who are infected with human immunodeficiency virus (HIV) have been shown to be more likely to be infected with HPV than their HIV negative counterparts. Cervical cancer precancerous lesions have also been shown to be more commonly detected in HIV positive than in HIV negative women. Cervical cancer is classified as an acquired immunodeficiency syndrome (AIDS)-defining illness.

The advent of antiretroviral therapy (ART) has seen an increase in the life span of HIV positive women. The use of ART has also seen a decline in the incidence of other AIDS-defining illnesses, such as Kaposi sarcoma and non-Hodgkin’s lymphoma. Thus, a reduction in the incidence of cervical cancer among HIV positive women using ART is expected. However, the research thus far has been controversial, with some studies showing an increase in the incidence of cervical cancer in HIV positive women, others showing a decrease and still others showing no difference in the incidence. The aim of this project was to determine the incidence of precancerous lesions in HIV positive women receiving ART and to compare this to HIV positive women who are not receiving ART.

Four hundred HIV positive women were enrolled into the MACH (Management of abnormal cytology in HIV-positive women) study from two primary health care clinics and one colposcopy clinic, in Cape Town, South Africa. Enrolment into the study was dependent on cervical screening naivety. At the time of enrolment, ART was not available to these women. However, as ART was rolled out in South Africa, women meeting ART eligibility criteria (at the time, CD4 count ≤ 200 cells/ml) were started on ART. Women were followed up at 6 monthly intervals, at which point cervical smears were taken and appropriate referral for colposcopy was done. Composite diagnoses were generated using both the visual colposcopy result and the histology result, where available. Women were dichotomized into ART and non-ART groups. Survival analysis was used to determine the time taken from normal cytology to incident SIL. Entrance into the survival analysis was dependent on a baseline cytological/histological diagnosis of normal. Thus 177 out of the 400 women were included. Follow up was censored at the first of SIL detection and treatment for SIL. A Cox model was built to determine the hazard for SIL development. This hazard was adjusted for ART status, CD4 count and age. CD4 count was treated as a time varying covariate.

Women older than 40 years had a showed a 58% reduction in the progression of cervical disease from normal to SIL compared to women younger than 40 years. Women with baseline CD4 counts > 500 cells/ml had a 67% decrease in SIL development compared to those with a baseline CD4 count ≤ 200 cells/ml. Similarly, those with CD4 counts between 201 and 500 cells/ml showed a 35% reduction in cervical disease progression.
The unadjusted incidence rate of SIL in women not receiving ART was 28.5 per 100 person years and in women who had initiated ART it was 30.82 per 100 person years. There was therefore no difference in the incidence rate of SIL between the 2 groups (RR=1.08; 95% CI 0.64-1.75).

The unadjusted hazard ratio for progression to SIL was 1.3 (0.5-3.2) for those receiving ART compared to those not receiving ART. Adjusting for CD4 count and age, the hazard ratio was 0.9 (0.4-2.5). The adjusted hazard ratio for SIL development with a CD4 count > 200 cells/ml was 0.5 (0.2-0.9) compared to a CD4 count ≤ 200 cells/ml. The adjusted hazard ratios for age 30-39 years and ≥ 40 years were 0.9 (0.6-1.5) and 0.4 (0.2-0.9) respectively, compared to age < 30 years.

ART has been scaled up and since the start of its roll out, the eligibility criteria has changed from CD4 count ≤ 200 cells/ml to CD4 count ≤ 350 cells/ml. The longevity of HIV positive women can approach that of HIV negative women if ART initiation is started early enough. In light of this and of the fact that cervical lesions are more frequently detected in HIV positive women, cervical screening and referral services should be strengthened.
Acknowledgements

I thank my supervisor Professor Landon Myer for entrusting me with this dataset as well as guidance and support during the analysis and drafting of the thesis. I also thank Professor Lynette Denny for her expert advice and review of the section B.

I thank Janine Jones at the colposcopy clinic at Groote Schuur Hospital for orientating me with the dataset as well as providing updated data and supporting documentation.

I thank my fellow MPH students: Roxanne Beauclaire, Monika Kamkuema, Leatitia Kampiire and Hlengani Mathema. Much laughter, thoughts and ideas were shared during our time together in the student office.

I thank my parents, Godfrey and Patricia Paulsen, for always supporting me.
PART A: Protocol
Protocol for proposed project: Comparative analysis of cervical disease progression in HIV positive women receiving ART and those not receiving ART in Cape Town, South Africa, from 2002-2011.

Student: Janis Paulsen
Student number: PLSJAN002
Supervisor: Associate Professor Landon Myer
Date: 19 March 2013
Protocol Summary

Invasive cervical cancer is considered an acquired immune deficiency syndrome (AIDS)-defining illness. The odds of invasive cervical cancer (ICC) in human immunodeficiency virus (HIV)-positive women has been shown to be 6.5 times that in HIV negative women, while the odds of cervical intraepithelial neoplasia (CIN) 2 and 3 in HIV positive women is 10.4 times that seen in HIV negative women. Of women aged 15-49 years old, 18.5 % are HIV positive. This represents a significant number of women at increased risk for development of cervical lesions and ICC. The advent of antiretroviral therapy (ART) has resulted in a decrease in the incidence of other AIDS-defining illnesses; however the impact of ART on the incidence of ICC in HIV positive women remains controversial. In this study 400 HIV positive women have been enrolled and cervical cytology and/or histology diagnoses were obtained at 6 monthly intervals. The rate of cervical disease progression will be determined using survival analysis and the rates between those who initiate ART use and those who do not will be compared and a rate ratio will be calculated. Other explanatory variables to be analysed include age, baseline CD4 count, baseline viral load and baseline human papilloma virus (HPV) status. Women were deemed HPV positive if they tested positive for high risk HPV strains and HPV negative if they tested negative for high risk HPV strains. In addition, Cox proportional hazards ratios will be determined for the risk of SIL. Crude and adjusted hazard ratios will be generated for the effect of ART, CD4 count and age on SIL incidence.

Introduction

Background

South Africa has an estimated human immunodeficiency virus (HIV) prevalence of 10.2%, one of the highest in the world and has the largest HIV epidemic in the world, with an estimated 5.5 million people infected. The prevalence of (HPV) among South African women is high, with an estimated 15.5% of women with normal cervical cytology being positive for HPV. This is higher than the world prevalence of 10%.

Furthermore, it has also been found that women who are HIV positive are more likely to be infected with HPV. A study comparing the prevalence of HPV between HIV positive and HIV negative women found that HIV positive women were more likely to have high, low and intermediate risk HPV infections (1.8, 2.1 and 2.7 times, respectively) than their HIV negative counterparts. Similarly, Ng‘andwe et al reported a 1.8 fold increase in high risk HPV infections in HIV positive women compared to their HIV negative counterparts, in Zambia. There was also a 2.1 and 2.7 fold increase in the likelihood of intermediate and low risk HPV infections in HIV positive women. In a Cameroonian cohort, it was found that HIV positive women were more likely to have multiple and high risk HPV subtypes compared to their HIV negative peers.
In developed countries the incidence of cervical cancer has been reduced due to the establishment of good screening systems. However in the developing world setting up adequate screening and diagnostic systems has proved challenging in the face of weak infrastructure, resulting in an unnecessarily high incidence of cervical cancer. This poor screening and diagnostic system further compounds the phenomenon of a strong association found between HIV positivity and incidence and persistence of HPV infection, as well as the higher incidence and prevalence of squamous intraepithelial lesions (SIL).\(^8\) Furthermore, the increase in access to antiretroviral therapy heralds an age in which there is an increase in the lifespan of these HIV positive women, further emphasising the importance of the need for effective cervical screening and diagnostic systems.

Six et al\(^9\) found that the one-year prevalence in a cohort of HIV negative and positive women was over 4 times higher in the HIV positive women than in the HIV negative women. The incidence of SIL was 5.5 times higher in the HIV positive women than in their HIV negative counterparts and progression from low grade SIL (LSIL) to high grade SIL (HSIL) occurred in 38% of HIV positive women, but not in the HIV negative controls at all over the one year follow-up period. Massad, et al\(^10\) found that over a 5 year follow up period 73% of all HIV positive study participants presented with at least 1 cytological abnormality of the cervix compared to 42.3% of all HIV negative participants. HIV status was found to be a predictor of cytological abnormalities and the risk ratio of LSIL between HIV positive women and HIV negative women was 4.

The advent of the ART era saw a drop in incidence and mortality due to AIDS-defining illnesses, such as Kaposi Sarcoma\(^11\) and non-Hodgkin’s Lymphoma\(^12\) in Europe. However, the same cannot be said for cervical cancer. Various studies have yielded conflicting results regarding the association between ART and cervical disease progression, and as a result it is still unclear whether the use of ART results in a decrease in cervical neoplasias. Some of the evidence points to a decrease in the occurrence of cervical dysplasia, however other evidence indicates that there is no change in prevalence of SIL among HIV positive women on ART.

Heard et al\(^13\) found that the prevalence of SIL among HIV positive women decreased significantly after a median period of 5 months after starting ART in France. A cohort study by Minkoff et al\(^14\) in USA found that women on ART were 32% less likely to have progression of cervical disease over 6 months. In Italy, Soncini et al\(^15\) found that over a 37 month follow up period, women on highly active ART (ART) had a 70% reduction in the risk for developing CIN compared to HIV positive women not on ART, over the same time period.

On the other hand, monitoring of the rate of progression of cervical disease in 163 HIV positive women in Italy over a mean period of 15.4 months\(^16\) showed that there was no difference between women on ART and women not on ART. In addition, Schuman et al\(^17\) reported that ART-use did not result in a decreased risk of incident SIL in US women.
Aim
The aim of this study is to compare the rate of cervical disease progression in HIV positive women who are have initiated ART use to that in HIV positive women who have not initiated ART use.

Objectives
The specific objective is to compare the rate of cervical disease progression between women receiving ART and women not receiving ART. The secondary objectives are to stratify the rates of disease progression by baseline CD4 count, baseline viral load, baseline HPV status and age; and also to determine the hazard for SIL development using more than one of the explanatory variables simultaneously.

Methods

Study design
This is a secondary analysis of data generated in the Management of Abnormal Cytology in HIV-infected women (MACH) cohort study.18 Women were enrolled from primary health care clinics or from a colposcopy clinic in Cape Town, South Africa. Women were enrolled within a 10 month period between March 2002 and January 2003. Women were followed up for a median of 2.5 years, although 39 of the 400 (just under 10%) were followed up for 9 years. Those women who were not followed up to the final visit date (the 18th biannual visit) were either classified as lost to follow up or confirmed as dead.

Study population
Four hundred women were enrolled into the study from two primary health care clinics and one colposcopy clinic, to which they were referred if they had an abnormal Pap smear. Women met the inclusion criteria if they were HIV positive and previously unscreened for cervical disease. This included the women who were recruited from the colposcopy clinic, who also had to be previously unscreened at the clinic that referred them for colposcopy.

Measurement
The outcome of interest in this study is SIL. SIL will include both high grade and low grade SIL. Screening of the cervix uteri was undertaken every 6 months and a cervical cytological diagnosis was obtained. Women were referred for colposcopy if the cytological diagnosis indicated this. If an acetowhite lesion was seen under the colposcope, a punch biopsy of this area was obtained. This sample was used to make a histologic diagnosis.

If both a visual colposcopy and a histological diagnosis are available, a composite diagnosis will be constructed and used in analysis. CIN2 and CIN3 will be classified as HSIL regardless of the visual colposcopy result. CIN1 will be classified as HSIL if
the visual colposcopy is HSIL and LSIL if the visual colposcopy is LSIL or normal. If only a cytological diagnosis is available, this will be used in analysis.

Other variables to be used in the analysis are:

- CD4 count: this will be used as a categorical variable.
- HPV status: this will be used as a categorical variable.
- Age: this will be used as a categorical variable.
- Viral load: the log of viral load will be used as a categorical variable.
- ART status: this will be used a categorical variable.

Data management and analysis

The database is maintained by staff in the colposcopy clinic where the participants receive their consultations. The data is stored using Microsoft Access. The data will be transferred from Access to Stata, which will be used for all data management including data cleaning, manipulation and analysis.

The data will be analysed using survival analysis. The event of interest will be squamous cell intraepithelial lesions and thus I will be evaluating the time from entry into the study until the first time this event is experienced. Follow up will be censored at the first of SIL diagnosis and receiving treatment for cervical disease.

Kaplan Meier survival plots will be generated, and the principle outcome to be evaluated is the effect of ART on the time to SIL. Therefore, survival will be stratified by ART status. The analysis will also be stratified by baseline CD4 count, baseline viral load, baseline HPV status and age.

A Cox proportional hazards model will be built in order to determine the hazard ratios for SIL for each covariate. This type of model is appropriate for dealing with loss to follow up, a phenomenon to which longitudinal cohort studies are more often than not subject to. In addition it also does not make any underlying assumption about the baseline hazard of individual participants and assumes that the hazards remain proportional and constant over time.

Ethics

Human ethics approval for this study was obtained from the University of Cape Town Health Science Human Research Ethics Committee. The data was routinely collected each time a participant visited the clinic. Therefore analysis of this data will not result in any foreseeable harm to the participants. Personal identifiers such as names and South African identity numbers have been removed from the dataset, so therefore confidentiality of participants is ensured.

The results of this study will be disseminated by submission of abstracts to relevant conferences for presentation, as well as submission of abstracts to peer reviewed journals for publication. This should ensure adequate dissemination of the study results at both the national and international level.
Study limitations

The validity of the study is dependent on the accurate entry of data. As far as possible, data entries will be scrutinized and the plausibility considered. For example, dates will be checked for errors such as dates occurring in the future or occurring in the past (in the case of participant consultation dates).

Self-report biases could affect the baseline demographic comparisons between different groups. For example, questions requiring recall on the part of the participant could be incorrectly answered, resulting in inflated or deflated differences between comparison groups.

References

Part B: Literature Review
Table of Contents

Introduction... 1
Natural history of HPV ... 3
HPV prevalence... 4
HPV and HIV Co-infection ... 4
HPV vaccine .. 5
Effect of treatment of high grade lesions.. 6
Effect of ART on cervical disease in HIV positive women... 6
Conclusion.. 7
References... 8
Introduction

Cervical cancer is the second commonest cancer among South African women.\(^1\) Cervical disease is the progressive alteration of the cytology of the cervix from that of normal cytology to cervical cancer. There are many risk factors for cervical cancer, including smoking,\(^2\) \textit{Clamydia trachomatis} infection,\(^3\) long term use of oral contraceptives,\(^4\) and early age at sexual debut, increased number of sexual partners over a lifetime and sexual partners with high risk contacts.\(^5\) However, a necessary cause for cervical disease is infection with human papilloma virus (HPV).\(^6\) The disease takes many years to progress and goes through multiple intermediate stages. Following infection, the cervical cytology will change from normal to low grade squamous intraepithelial lesions (LSIL). It is notable that at this stage the cytology may spontaneously regress to a normal cytological state.\(^7\) However, further progression can occur in which the cervical lesions develop into high grade squamous intraepithelial lesions (HSIL). Further progression from HSIL will result in a malignant cervix, or cervical cancer.

Multiple HPV types exist. Different subtypes are responsible for different types of pathological manifestations in different tissue types. HPV-16 and HPV-18 are most commonly associated with a high risk for cervical cancer.\(^8\) In addition, HPV 16 is also associated with anal intraepithelial neoplasia and anal cancer as well as cancers of the head and neck.\(^9,10\) Others, such as HPV-6 and HPV-11 are more closely associated with genital warts.\(^11,12\) Thus it is only infection in the cervix with high risk types for cervical lesions which is of concern for cervical cancer.

Two different vaccines exist which elicit immune responses to these high-risk HPV types. These are Gardasil\(^13\) and Cervarix\(^14\). Gardasil is quadrivalent and targets HPV 16 and 18 as well as the strains associated with genital warts, while Cervarix is a bivalent vaccine and only targets HPV 16 and 18. Administration of these vaccines is aimed at females who are not yet sexually active or who have only recently become sexually active.\(^15\) It is a form of primary prevention. However, these vaccines are expensive and usually not available through a public health care system. In South Africa, the vaccine is currently being administered to girl learners aged 9 and in grade 4. This is being implemented in the form of a mass vaccination campaign and will take place every year from 2014 to 2016. Thereafter the process will be reviewed and evaluated, in order for consideration for inclusion of the vaccine into the Expanded Programme on Immunisation.\(^16\)

In the absence of primary prevention, secondary prevention in the form of a screening system is the principle way in which precancerous lesions are identified. During screening, a cervical smear, also known as a Papanicoloau smear, is collected. The smear is stained and examined under a microscope for identification of cervical lesions. High grade lesions or worse are eligible for a diagnosis by colposcopy, in which the cervix is examined using a colposcope. If required, a biopsy may be taken and sent for histological analysis, or the diagnosis may be made visually. For HSIL, procedures such as long loop excision of the transformation zone (LLETZ) or cryotherapy will be performed to remove the pathological tissue and thus preventing progression to cervical cancer.\(^17\)
The South African guidelines on cervical smears and colposcopy state that women aged 30 years and older should have a cervical smear done once every 10 years (i.e. 3 per lifetime). The guidelines for follow up of different smear outcomes are as follows:

- **Normal**: return for a cervical smear in 10 years.
- **LSIL**: return for a cervical smear after 1 year. If after a year the result is normal, follow up is per protocol. If the result is another LSIL, the woman is to be referred for colposcopy.
- **HSIL or worse**: the woman is to be referred for colposcopy.

In South Africa, the processes of screening and diagnosis occur at two different levels of health care delivery, namely primary and tertiary levels respectively. Women attend the primary health care facilities for a cervical smear to be taken. The smear is sent to a laboratory for analysis and based on the outcome, the woman may or may not be referred to a colposcopy clinic. Often times, the poor follow up of patients at the primary level results in many women who require colposcopy failing to attend the colposcopy appointment at tertiary level. Regarding cervical and colposcopy services, poor follow up refers to poor recording of patient information such as address and telephone numbers, failure to action the recall of patients who require further treatment, etc. Figure 1 shows the link between primary and tertiary cervical services and cervical smear outcomes and tertiary treatment.

![Figure 1: Figure illustrating different service levels for screening and diagnosis of cervical disease.](image)

The World Health Organisation has guidelines for screening and treatment policies which allow decision makers to choose appropriate policies based on contextual factors. In areas where there is poor follow up of patients, poor training of health care workers and low coverage of women they recommend that a screen-and-treat approach be used. In a randomised controlled trail conducted by Denny et al it...
was found that women who tested positive on either a HPV test (which detects HPV DNA) or visual inspection with acetic acid (VIA) (which allows lesions to be visible to the naked eye at the point of care) and were treated immediately with cryotherapy had a 77% and 37% reduction in the detection of high grade lesions at 12 months follow up, respectively, compared to women who received delayed evaluation of lesions.

Natural history of HPV

Papilloma viruses are double-stranded DNA viruses belonging to the family *Papillomaviridae*. There are 29 genera made up of 180 papillomavirus types, of which 120 are human papilloma viruses. They are species-specific and therefore human papilloma viruses infect only humans. Among the different HPVs, tissue-specific tropism is displayed. Thus there are particular HPV types that infect the different tissues of the cervix, vagina, vulva, etc. Specific HPV types also infect the head and neck. Furthermore, HPV types can be considered to be either low- or high-risk, and it is this which determines whether or not infection in squamous epithelial tissue has the potential to develop into cancer. For example, HPV types 6 and 11 infect the genital tract but are low-risk types and therefore cause benign genital warts, while HPV types 16 and 18 infect the genital tract but are high-risk types and cause cervical cancer, which is a life-threatening illness.

All HPV’s DNA contain 3 regions. These are an upstream regulatory region, which contains genetic sequences involved in control of viral transcription and translation; an early region containing open reading frames which determine the carcinogenic properties of the virus; and a late region which contains open reading frames coding for viral structural proteins. The early genes E6 and E7, which are present in HPV 16 and 18 genomes, have been shown to bind the mammalian proteins p53 and pRb, both tumour suppressing proteins. Binding of these proteins sets the cell on a pathological course which ultimately results in cancer.

HPV employs a number of immune evasion mechanisms. One of these is molecular mimicry. The E7 protein has been found to have homologous sequences to mammalian proteins such that antibodies produced against E7 may also target XP-G complementing protein, which is involved in repair of UV-damaged DNA. It also has regions analogous to RBBP-1, which is involved in cell cycle regulation. Thus, anti-E7 antibodies may also result in a dysregulated cell cycle.

Following infection with HPV, expression of MCP-1 is suppressed. MCP-1 is a chemokine which attracts monocytes and macrophages, so that they are able to perform immune surveillance functions. Thus by supressing MCP-1 expression, cells infected with HPV remain undetected by the immune system.

The oncoproteins E6 and E7 have also been shown to inhibit IL-8 promoter activity and thus IL-8 transcription. IL-8 is a pro-inflammatory cytokine and attracts neutrophils and granulocytes to the site of infection.

Thus, by using these immune evasion mechanisms, HPV may be in a cellular environment that is not reactive to the presence of virus. This is favourable for the
eventual expression of viral proteins. Specifically, once the oncoproteins E6 and E7 are expressed, the cell is set on a pathological pathway. It is unknown why some cervixes will progress to cancer and others do not. Animal models have shed light on the differences in immune responses to HPV infection in lesions that are regressing and lesions that are progressing: regressing lesions have CD4+ and CD8+ cytotoxic lymphocytes present as well as macrophages. The environment is also characterised by the presence of pro-inflammatory cytokines as well as adhesion markers responsible for trafficking of lymphocytes. In contrast, lesions that are progressing have only CD8+ cytotoxic lymphocytes and mononuclear cells.

HPV prevalence

Worldwide, cervical cancer is the fourth commonest cancer among all women and the second commonest among women aged 15-44 years. It is estimated that roughly half of all women who develop cervical cancer will die from it. Of women with normal cervical cytology, 13.5% are positive for HPV. Infection with HPV occurs soon after sexual debut. The majority of these infections are cleared spontaneously and the prevalence of HPV decreases with age, until the age of 40 and older where an increase in the prevalence among this age group is seen. The factors associated with the increase in HPV prevalence seen in this older age group are unclear. Possible causes are reactivation of latent HPV infections or re-infection with HPV with increasing numbers of sexual partners.

More than half of deaths due to cervical cancer occur in the developing world. Amongst African women, the prevalence of HPV is nearly two times that of the global prevalence, at 24.9%. Cervical cancer is also the second commonest cancer among African women and the age-standardised mortality rate is 17.5 per 100 000 women per year.

In South Africa, the prevalence of HPV among women with normal cytology is 21%. This is higher than the global average of 13.5%.

HPV and HIV Co-infection

The risk of HIV acquisition has been shown to be increased by the presence of other STIs. HPV is the commonest sexually transmitted disease, and similarly, infection with HPV has been shown to increase the risk of infection with HIV. A meta-analysis of studies in which HIV infection following HPV infection were analysed showed that the risk of HIV infection while being positive for any type of HPV was 1.96 (CI 1.55; 2.49). For high risk HPV types, the risk of HIV infection was 1.92 (CI 1.49; 2.46).

In addition, cross-sectional studies have shown that HIV positive women are more likely to be infected with HPV, more likely to have persistent HPV infection as well as more likely to be infected with multiple HPV types. HIV positive women are also more likely to have cervical cancer presursors. Thus the guidelines for cervical screening in HIV positive women is slightly different to that of HIV negative
women. In South Africa, it is recommended that HIV positive women be screened for cervical cancer precursors once every three years. The Clinical Guidelines for the Management of HIV and AIDS in Adults and Adolescents released in 2010 advise that HIV positive women should be screened every 3 years. The guidelines for referral follow those for HIV negative women, except that a diagnosis of normal cytology signals a repeat smear in 3 years’ time and not 10 years.

Cervical cancer is classified as an AIDS-defining clinical condition. That is to say that if a HIV positive woman is diagnosed with invasive cervical cancer, she would be eligible for antiretroviral therapy regardless of her CD4 count. It is the only HPV-related cancer that is considered to be AIDS defining, however other HPV-associated cancers have been found to occur with increasing frequency among HIV positive individuals compared to HIV negative individuals. The use of antiretroviral therapy has been shown to decrease the risk of developing many other AIDS-defining conditions, such as Kaposi Sarcoma and non-Hodgkin lymphoma.

However, the literature regarding the effect of ARVs on cervical disease progression in HIV positive women has been controversial thus far. While some studies have shown a decreased risk for cervical disease progression, others have found no difference in the risk between HIV positive and HIV negative women, while others have found an increased risk.

Clearance of high risk HPV subtypes in women with normal cytology has been shown to be achieved in 43% and 65% of women followed up for 6 and 18 months, respectively. HPV negativity in itself is a not a state which can be defined with certainty as HPV may be present at levels below the limits of detection of the test. Nevertheless, clearing an HPV infection requires cell mediated immunity. In HIV positive women, immunity levels are lowered and this may explain why HIV positive women are more likely to be HPV positive than HIV negative women.

HPV vaccine

Two types of vaccines against HPV high risk subtypes have been produced (Cervarix and Gardasil). Cervarix is a bivalent vaccine and has been shown to be highly efficacious against both incident and persistent infection with high risk HPV types 16 and 18, thus providing protection against cervical lesions. Gardasil, a quadrivalent vaccine, induces immunity against infection with HPV types 6, 11, 16 and 18. In addition, Gardasil has been shown to provide cross protection against HPV types not included in the vaccine.

Introduction of either the quadrivalent or the bivalent vaccine into the immunisation programme of a country has been shown to result in a decrease in the prevalence of high risk HPV types as well as precancerous lesions associated with these oncogenic types. Furthermore, a trial in which HIV positive women have received the vaccine have shown that there is a good immunogenic response in this immunocompromised subgroup of women. In addition, an immunogenic response to HPV vaccine has been shown in both HIV positive women on ART and those not on ART.
The safety and immunogenicity of quadrivalent HPV vaccine has also been established in HIV positive girls between the ages of 7 and 12.62 This is a promising finding as HPV vaccine has been found not to have an effect on clearance of existing HPV infections (and HIV positive women are more likely to be infected with HPV).63 Thus HIV positive girls can be vaccinated along with their HIV negative counterparts, thus preventing possible infection with the relevant types once they become sexually active.

Effect of treatment of high grade lesions

Women with high grade lesions who receive treatment, where these lesions are removed, are at low risk for recurrence of these lesions. Factors associated with recurrence of these lesions are high risk HPV-positivity, lesion grade (cervical intraepithelial 2 vs 3), and margin status transformation zone type at removal of the lesion.64 Similarly, a low risk for recurrence of high grade lesions after treatment has been found in HIV positive women.65, 66

Effect of ART on cervical disease in HIV positive women

Progression of the cervical cytology from normal to pathological is a process facilitated by the insertion of the HPV genome into the cellular genome and expression of the HPV genes by the cellular machinery. Oncogenic proteins encoded by the HPV genome cause the normal cellular process to be arrested and instead the cell is set on a pathogenic pathway which results in the development of a cancerous cell.67

This pathway that leads to a cell becoming cancerous is irreversible. Therefore, despite the fact that ARVs reverse the immunosuppressive effects of HIV, the cancerous pathway itself cannot be reversed. This may explain why some research finds that there is no difference between the incidence of cervical lesions in HIV positive women on ARVs and those not on ARVs. In fact, in this age where ARVs are accessible to many HIV positive women, one could argue that the increased longevity afforded by these drugs allows for more time for the development of cancerous cells of the cervix. Thus the importance of robust screening and diagnostic cervical services for HIV positive women is underscored.

Several studies have found that the use of ARVs result in decreased incidence of cervical lesions. Kim et al68 found that HIV positive women on ART had a 58% reduced risk of SIL development. They also found a decreased risk for progression to SIL with increasing CD4 count. Similarly, Adler et al69 found that women on ART with normal cervical cytology at baseline were 38% less likely to have a cervical lesion incident than those not on ART. Furthermore, they also found that women who showed regression of cervical lesions were 2.61 times more likely to be on ART.

A systematic review by Cobucci et al70 found that ARVs increased the risk of invasive cervical cancer by 46%. The review included 5 observational studies ranging in time from 2001 to 2010.
The different outcomes in HPV clearance, SIL incidence and cervical disease progression and regression that are found in different studies are possibly due to the different baseline conditions in study participants or in the different study entrance criteria. Paramsothy et al71 found that for women with a baseline cervical cytology of normal, ART was not associated with clearance of HPV infection. They also found that in women with LSIL or HSIL, ART was associated with HPV clearance. In addition, despite the association of ART with HPV clearance, in women with cervical dysplasia, ART was not associated with regression of these lesions.

In addition, an analysis of trends in AIDS-defining cancers in the era of ARVs found that the risk for incidence of these was still higher than in the HIV-negative population.72 Thus in spite of the increasing accessibility of HIV positive women to therapy, it remains prudent to provide cervical screening services at a greater frequency than that for HIV negative women.

Conclusion

The effect of ARVs on the progression of cervical disease in HIV positive women has been controversial thus far. Further studies are warranted to contribute to the literature available thus far in order to optimise ARV therapy on HIV positive women, who are at higher risk of HPV positivity as well as development of cervical lesions.
References

58. Fleming DT and Wasserheit JN. From epidemiological synergy to public health policy and practice: the contribution of other sexually transmitted diseases to sexual transmission of HIV infection. *Sex Transm Inf* 1999; 75:3-17.

75. Wheeler CM, Kjaer SK, Sigurdsson K et al. Impact of quadrivalent human papillomavirus (HPV; types 6, 11, 16 and 18) L1 virus-like particle vaccine on infection and disease due to oncogenic nonvaccine HPV types in sexually active women aged 16-26 years. *J Infect Dis* 2009; 199:936-44.

Part B: Manuscript
Comparative analysis of cervical disease progression in HIV positive women receiving ART and those not receiving ART in Cape Town, South Africa, from 2002 to 2011.

Authors: Janis Paulsen¹, Landon Myer¹, ², Rosalind Boa³, Bruce Allan⁴, Anna-Lise Williamson⁴,⁵, Lynette Denny³

¹ Centre for Infectious Diseases Research and Epidemiology, School of Public Health & Family Medicine, University of Cape Town, Cape Town, South Africa, ² Department of Epidemiology, Mailman School of Public Health, Columbia University, USA, ³ Department of Obstetrics and Gynaecology, Groote Schuur Hospital, Cape Town, South Africa, ⁴ Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa, ⁵ National Health Laboratory Services, Groote Schuur Hospital, Cape Town, South Africa

Background: Women who are HIV positive have been found to be more likely to be infected with Human papillomavirus (HPV) than HIV negative women. HPV infection of the cervix is necessary for the development of cervical cancer, which is an AIDS-defining illness. The impact of antiretroviral therapy (ART) on the incidence of cervical cancer and its precursors is controversial. We determined the incidence of squamous intraepithelial lesions (SIL) in women receiving ART and compared it to those women not receiving ART.

Methods: 400 HIV positive women from a primary healthcare clinic and a colposcopy clinic were enrolled. Women were followed up at 6-monthly intervals at which Pap tests and colposcopy were performed, and survival analysis was used to determine the time from baseline diagnosis of normal to a diagnosis of SIL.

Results: Out of 400 women, 177 had a diagnosis of normal at the baseline visit. Follow-up was censored at the first of SIL diagnosis and receiving treatment for cervical disease. The incidence rate of SIL in women not on ART was 28.5 per 100 person years and in women who had initiated ART it was 30.82 per 100 person years. There was therefore no difference in the incidence rate of SIL between the 2 groups (RR=1.08; 95% CI 0.64-1.75).

Conclusion: Our results show no difference in the incidence rate of SIL between women on ART and women not on ART. Since ART results in an increased lifespan of HIV positive women and since these women are more likely to be HPV positive, efforts need to be taken to strengthen cervical screening and referral systems for HIV positive women in particular.
Introduction

South Africa has an estimated human immunodeficiency virus (HIV) prevalence of 10.2%, one of the highest in the world and has the largest HIV epidemic in the world, with an estimated 5.5 million people infected.\(^1\) The prevalence of human papillomavirus (HPV) among South African women is high, with an estimated 18.4%\(^2\) of women with normal cervical cytology being positive for HPV. The prevalence of HPV 16 or 18 among women with normal cytology, high grade lesions and cervical cancer is 3.2, 30.3 and 63.9%\(^2\).

Furthermore, it has also been found that women who are HIV positive are more likely to be infected with HPV, to have persistent infection with high-risk types of HPV, and to be infected with multiple types\(^3,4,5\). In addition there are data to suggest that cervical cancer precursors are more frequently diagnosed in HIV positive women and progression to invasive cervical cancer is faster than in HIV negative women\(^6,7\).

Where successful screening programs have been implemented and sustained, as has occurred in a number of developed countries\(^8\), cervical cancer incidence and mortality has been substantially reduced. Few developing countries have had sufficient human, financial and health infrastructure resources to either initiate or sustain cervical cancer screening programs. The HIV/AIDS epidemic has highlighted the need for cervical cancer screening in HIV positive women, particularly women on anti-retroviral therapy (ART), who are likely to live longer and therefore are at greater risk of developing cervical cancer.

The advent of the antiretroviral therapy era saw a drop in incidence and mortality due to AIDS-defining illnesses, such as Kaposi Sarcoma\(^9\) and non-Hodgkin’s Lymphoma\(^10\). However, the same cannot be said for cervical cancer. Various studies have yielded conflicting results regarding the association between antiretroviral therapy and cervical disease progression, and as a result it is still unclear whether the use of antiretroviral therapy results in a decrease in cervical neoplasias. Some of the evidence points to a decrease in the occurrence of cervical dysplasia \(^11,12\), however other evidence indicates that there is no change in prevalence of SIL among HIV positive women on antiretroviral therapy.\(^13\)

This study presents the results of a longitudinal study of cervical disease progression in a cohort of 400 HIV positive women followed up for 9 years in Cape Town, South Africa. Progression of cervical disease was compared in those women who were not on ART and those women who were on ART. We also report the effects of CD4 count on cervical disease as well as the progression of cervical disease following treatment for SIL.
Methods and Materials

The methods and materials have been presented previously14. Briefly, 400 HIV-positive women were recruited from a primary healthcare clinic and a colposcopy clinic between March 2002 and January 2003. Women had to be previously unscreened for cervical cytology and HIV positive to meet inclusion criteria. Ethics approval was obtained from the University of Cape Town’s Research Ethics Committee. Each woman provided written informed consent and underwent the following procedures: conventional cytology sampling of the cervix for detection of high-risk HPV subtypes and colposcopy with histological sampling if appropriate. Cervical smears were analysed by the South African National Health Laboratory Service. For histologic reporting the following nomenclature was used: CIN-1 was referred to as LSIL and CIN-2/3 were grouped together and referred to as HSIL. For statistical analysis, both the colposcopic and histologic diagnosis (where available) were combined. This yielded a composite diagnosis which was used as the end point in survival analysis.

Cervical samples were collected using the Qiagen DNA collection device, (Qiagen, Gaithersburg, Inc., MD, USA), and assayed for high risk HPV using the Hybrid Capture II test (Qiagen, Gaithersburg, Inc., MD, USA). Details of the assay have been described previously14. Blood was taken at each visit to determine CD4 counts and HIV viral load. CD4 counts were determined every 6 months. HIV viral load was determined every 18 months for the first 2 years.

All acetowhite lesions were biopsied. Women were treated with large loop excision of the transformation zone (performed under local anaesthetic in the clinic) if they had a histologically confirmed diagnosis of HSIL.

Women who were eligible for ART initiation (i.e. women with a CD4 count below 200 cells/mm3 or diagnosed with an AIDS-defining illness) were offered ART through primary health care facilities.

The data were analysed using StataMP 11.0 (StataCorp, College Station, TX). All statistical tests were 2-tailed at \textit{a} = 0.05. Survival analysis was used to determine time from a baseline diagnosis of normal to SIL. Thus, entry into the statistical study required that women be SIL-free at baseline. Women were censored at the first of SIL diagnosis and receiving treatment for cervical disease. Kaplan-Meier survival plots were generated and these were stratified by ART status and CD4 count. Risk ratios for the development of SIL are presented, by ART status, baseline CD4 count, baseline HPV status and age. Cox proportional hazards regression was also performed and hazard ratios are presented for SIL development, both crude and adjusted for ART status, CD4 count (as a time-varying covariate) and age.
Results

Study Sample and Baseline Characteristics

The baseline sociodemographic characteristics of this cohort have been described previously14. Table 1 shows the baseline characteristics of women who were on ART at their final visit and those who were not.

Of the 400 women, 114 (28.5\%) had died and 172 (43\%) were lost to follow up by the end of the follow up time. The final visit date was defined as the 18th biannual visit date. Women who had their last visit date more than 1.5 years before this date and who were not confirmed as deceased were considered to be loss to follow up.

The median CD4 count at baseline for women who had initiated ART by their final visit was 217/mm3 compared to 268/mm3 for women who did not start ART. Overall, 74\% of all women tested positive for high risk HPV at baseline compared to 63\% of women who did not start ART. The proportion of women with normal, LSIL and HSIL histological diagnoses at baseline were similar amongst those who were on ART and those not on ART at the final visit (45 vs. 43\%, 40 vs. 40\% and 17 vs. 15\%, respectively).
Table 1: Baseline sociodemographic characteristics of women stratified by whether or not ART was initiated during follow up and further by HPV status at baseline.

<table>
<thead>
<tr>
<th></th>
<th>Overall (n=400)</th>
<th>Initiated ART (n=168)</th>
<th>Did not initiate ART (n=232)</th>
<th>P value</th>
<th>Baseline HPV status</th>
<th>Initiated ART (n=269)</th>
<th>Did not initiate ART (n=128)</th>
<th>P value</th>
<th>Initiated ART (n=44)</th>
<th>Did not initiate ART (n=84)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (range)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28 (18-52)</td>
<td>29 (18-52)</td>
<td>28 (18-51)</td>
<td>0.108</td>
<td></td>
<td>29 (18-49)</td>
<td>28 (18-51)</td>
<td>0.063</td>
<td></td>
<td>28 (19-52)</td>
<td>28 (18-50)</td>
</tr>
<tr>
<td>Median CD4 count</td>
<td>248</td>
<td>217</td>
<td>268</td>
<td>0.009</td>
<td></td>
<td>207</td>
<td>219</td>
<td>0.775</td>
<td></td>
<td>259</td>
<td>374</td>
</tr>
<tr>
<td>CD4 200 or less (%)</td>
<td>158 (40)</td>
<td>76 (45)</td>
<td>82 (35)</td>
<td></td>
<td></td>
<td>59 (48)</td>
<td>67 (46)</td>
<td></td>
<td></td>
<td>16 (36)</td>
<td>14 (17)</td>
</tr>
<tr>
<td>CD4 201-500 (%)</td>
<td>185 (46)</td>
<td>80 (48)</td>
<td>105 (45)</td>
<td></td>
<td></td>
<td>56 (45)</td>
<td>60 (41)</td>
<td></td>
<td></td>
<td>24 (55)</td>
<td>44 (52)</td>
</tr>
<tr>
<td>CD4 more than 500 (%)</td>
<td>57 (14)</td>
<td>12 (7)</td>
<td>45 (19)</td>
<td></td>
<td></td>
<td>8 (7)</td>
<td>19 (13)</td>
<td></td>
<td></td>
<td>4 (9)</td>
<td>26 (31)</td>
</tr>
<tr>
<td>Median log HIV viral load (copies/ml)</td>
<td>4.32</td>
<td>4.43</td>
<td>4.20</td>
<td>0.152</td>
<td></td>
<td>4.53</td>
<td>4.47</td>
<td>0.862</td>
<td></td>
<td>4.26</td>
<td>3.64</td>
</tr>
<tr>
<td>Prevalence of HR-HPV (n=397) (%)</td>
<td>269 (67)</td>
<td>123 (74)</td>
<td>146 (63)</td>
<td>0.032</td>
<td></td>
<td>146 (63)</td>
<td>123 (74)</td>
<td></td>
<td></td>
<td>269 (67)</td>
<td>123 (74)</td>
</tr>
<tr>
<td>Ever smoked (%)</td>
<td>47 (12)</td>
<td>18 (11)</td>
<td>29 (13)</td>
<td>0.574</td>
<td></td>
<td>15 (12)</td>
<td>17 (12)</td>
<td>0.889</td>
<td></td>
<td>3 (7)</td>
<td>12 (14)</td>
</tr>
<tr>
<td>Median age of first intercourse (range)</td>
<td>16.9 (9-26)</td>
<td>17 (12-25)</td>
<td>17 (9-26)</td>
<td>0.112</td>
<td></td>
<td>17 (12-25)</td>
<td>16.5 (9-21)</td>
<td>0.190</td>
<td></td>
<td>17 (14-20)</td>
<td>17 (13-20-)</td>
</tr>
<tr>
<td>Number of sexual partners</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1-5</th>
<th>More than 5</th>
<th>Currently sexually active</th>
<th>Consistent condom use</th>
<th>Baseline diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>198 (50)</td>
<td>130 (77)</td>
<td>168 (72)</td>
<td>0.500</td>
<td>93 (76)</td>
</tr>
<tr>
<td></td>
<td>102 (26)</td>
<td>38 (23)</td>
<td>64 (28)</td>
<td>30 (24)</td>
<td>40 (27)</td>
</tr>
<tr>
<td>Currently sexually</td>
<td>299 (75)</td>
<td>130 (77)</td>
<td>169 (73)</td>
<td>0.303</td>
<td>94 (76)</td>
</tr>
<tr>
<td>active</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consistent condom use</td>
<td>115 (29)</td>
<td>49 (38)</td>
<td>66 (39)</td>
<td>41 (44)</td>
<td>46 (42)</td>
</tr>
<tr>
<td>Baseline diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>177 (44)</td>
<td>72 (43)</td>
<td>105 (45)</td>
<td>0.827</td>
<td>36 (30)</td>
</tr>
<tr>
<td>LSIL</td>
<td>160 (40)</td>
<td>67 (40)</td>
<td>93 (40)</td>
<td>63 (52)</td>
<td>69 (47)</td>
</tr>
<tr>
<td>HSIL</td>
<td>62 (16)</td>
<td>28 (17)</td>
<td>34 (15)</td>
<td>23 (19)</td>
<td>30 (20)</td>
</tr>
</tbody>
</table>
ART Initiation

Over one quarter (26.8%) of the participants were lost to follow up at 6 months into the study (i.e. at the second visit). Following this there is gradual increase in loss until 56.3% were lost to follow up by the 7th visit. The greatest loss between two visits occurs between the 17th and 18th visit dates (i.e. between the penultimate and last visits), where 58.1% of participants were lost. This is followed by the initial loss of 26.8% of the participants by the second visit, and then 19% between visits 6 and 7. By the final visit date, 90.3% of the participants were lost to follow up. By the end of the 9 year follow up period, 42% of the 400 women had accessed ART and 12% had received treatment for cervical lesions.

Table 2: Number of women at each visit, number of women starting ART at each visit and number of women receiving treatment for cervical disease at each visit

<table>
<thead>
<tr>
<th>Month since enrolment into study</th>
<th>Number completing visit</th>
<th>Percentage drop out</th>
<th>Cumulative percentage drop out</th>
<th>Number starting ART at visit</th>
<th>Total number on ART at visit</th>
<th>Cumulative started ART</th>
<th>Number treated at visit</th>
<th>Cumulative treated</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>400</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>293</td>
<td>26.8</td>
<td>26.8</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>12</td>
<td>288</td>
<td>1.7</td>
<td>28.0</td>
<td>17</td>
<td>24</td>
<td>24</td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>18</td>
<td>260</td>
<td>9.7</td>
<td>35.0</td>
<td>17</td>
<td>39</td>
<td>41</td>
<td>9</td>
<td>32</td>
</tr>
<tr>
<td>24</td>
<td>242</td>
<td>6.9</td>
<td>39.5</td>
<td>22</td>
<td>56</td>
<td>63</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>30</td>
<td>224</td>
<td>7.4</td>
<td>44.0</td>
<td>26</td>
<td>79</td>
<td>89</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>36</td>
<td>216</td>
<td>3.6</td>
<td>46.0</td>
<td>27</td>
<td>102</td>
<td>116</td>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td>42</td>
<td>175</td>
<td>19.0</td>
<td>56.3</td>
<td>17</td>
<td>103</td>
<td>133</td>
<td>2</td>
<td>38</td>
</tr>
<tr>
<td>48</td>
<td>165</td>
<td>5.7</td>
<td>58.8</td>
<td>8</td>
<td>105</td>
<td>141</td>
<td>1</td>
<td>39</td>
</tr>
</tbody>
</table>
Fifty per cent of the women had initiated ARV treatment by 1281 days or 3.5 years, which corresponds to the eighth six-monthly visit.

CD4 Counts and SIL Development

![Kaplan Meier plot showing ART initiation over time.](image)

Figure 1: Kaplan Meier plot showing ART initiation over time.

CD4 Counts and SIL Development

![Kaplan Meier survival estimates](image)

Figure 2: Kaplan Meier plot showing SIL development over time, stratified by baseline CD4 count. CD4 counts shown are in cells/mm3.

The Kaplan Meier plot in figure 2 shows that there is an increase in the rate of progression to SIL with decreasing baseline CD4 count. Compared to having a baseline CD4 count of 200 cells/mm3 or less, the rate ratio of progression to SIL in those who had a baseline CD4 count of 201-500 cells/mm3 was 0.65 (95% CI 0.41-1.04). For those with a baseline CD4 count greater than 500 cells/mm3 the rate ratio was 0.33 (95% CI 0.16-0.66) compared to the lowest CD4 category. Thus having a
baseline CD4 count of 201-500 and greater than 500 cells/mm3 was 35 and 67% protective against the development of SIL, respectively.

Among women who initiated ART, the lowest CD4 counts ranged from 5 to 510 cells/mm3, with a median CD4 count of 104 cells/mm3. For women who did not initiate ART, the lowest CD4 counts ranged from 4 to 1037 cells/mm3, with a median CD4 count of 179 cells/mm3. Six months prior to starting ART, 59, 34 and 7% of women had a diagnosis of normal, LSIL and HSIL, respectively.

Those who died or were lost to follow up had similar baseline characteristics to those who were retained, apart from the median CD4 count and whether or not they were on ART at the final visit. In addition, there was a difference in the median viral load between those retained and those who died.

Table 3: Comparison of baseline characteristics of women who died, were lost to follow-up and retained in the cohort.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Retained (n=114)</th>
<th>Died (n=114)</th>
<th>p value*</th>
<th>LTFU (n=172)</th>
<th>p value**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (range)</td>
<td>29.6 (18-49)</td>
<td>29.3 (18-50)</td>
<td>0.745</td>
<td>29.0 (18-52)</td>
<td>0.430</td>
</tr>
<tr>
<td>Median CD4 count</td>
<td>264</td>
<td>130.5</td>
<td><0.0001</td>
<td>305</td>
<td>0.123</td>
</tr>
<tr>
<td>CD4 200 or less (%)</td>
<td>40 (35.1)</td>
<td>75 (65.8)</td>
<td></td>
<td>43 (25.0)</td>
<td></td>
</tr>
<tr>
<td>CD4 201-500 (%)</td>
<td>58 (50.9)</td>
<td>33 (29.0)</td>
<td></td>
<td>94 (54.7)</td>
<td></td>
</tr>
<tr>
<td>CD4 more than 500 (%)</td>
<td>16 (14.0)</td>
<td>6 (5.3)</td>
<td></td>
<td>35 (20.4)</td>
<td></td>
</tr>
<tr>
<td>Median log HIV viral load (copies/ml)</td>
<td>4.26</td>
<td>4.81</td>
<td><0.0001</td>
<td>4.04</td>
<td>0.646</td>
</tr>
<tr>
<td>Prevalence of HR-HPV (%)</td>
<td>76 (66.7)</td>
<td>82 (72.6)</td>
<td>0.334</td>
<td>111 (65.3)</td>
<td>0.811</td>
</tr>
<tr>
<td>Ever smoked (n=399) (%)</td>
<td>12 (10.5)</td>
<td>13 (11.4)</td>
<td>0.832</td>
<td>22 (12.9)</td>
<td>0.551</td>
</tr>
<tr>
<td>Mean age of first intercourse (range)</td>
<td>17 (13-23)</td>
<td>16.8 (11-26)</td>
<td>0.468</td>
<td>16.9 (9-25)</td>
<td>0.753</td>
</tr>
<tr>
<td>Number of sexual partners</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 1-5</td>
<td>87 (76.3)</td>
<td>84 (73.7)</td>
<td>0.646</td>
<td>127 (73.8)</td>
<td>0.636</td>
</tr>
<tr>
<td>• More than 5</td>
<td>27 (23.7)</td>
<td>30 (26.3)</td>
<td></td>
<td>45 (26.2)</td>
<td></td>
</tr>
<tr>
<td>Currently sexually active (%)</td>
<td>85 (74.6)</td>
<td>76 (66.7)</td>
<td>0.191</td>
<td>138 (80.2)</td>
<td>0.257</td>
</tr>
<tr>
<td>Consistent condom use (%)</td>
<td>33 (38.8)</td>
<td>35 (46.1)</td>
<td>0.833</td>
<td>47 (34.3)</td>
<td>0.212</td>
</tr>
</tbody>
</table>
Effect of ART on Incidence of SIL

Figure 3 shows the Kaplan Meier plot for SIL-free survival, stratified by ART status. Women with a baseline diagnosis of normal were included in the analysis. This included 177 out of the 400 women. Women were censored from the analysis upon receiving treatment for cervical disease. The total person time at risk was 352 person years. The incidence rate of SIL in women not on ART was 28.5 per 100 person years and in women who had initiated ART it was 30.82 per 100 person years. The rate ratio was therefore 1.08 (95% CI 0.64-1.75).

For women with a baseline viral load greater than log 5, there was a 25% increase in the incidence of SIL compared to women with a baseline viral load below log 5 (rate ratio 1.25 95% CI 0.78-1.96). Women who had baseline CD4 counts greater than 500 cells/mm3 at baseline had a 67% reduction against the incidence of SIL and those with CD4 counts of 201-500 cells/mm3 had a 37% reduction in the incidence of SIL compared to women with CD4 counts of 200 cells/mm3 and below (rate ratio 0.36 95% CI 0.18-0.68; 0.63 95% CI 0.40-0.99; respectively). Baseline HPV positivity was the strongest predictor of progression to SIL. Women who were positive for high risk HPV at baseline had an incidence rate of SIL 2.46 times higher than women who were HPV negative at baseline (95% CI 1.63-3.74). There was no difference in the incidence of SIL in women aged 30-39 years compared to women...
aged 29 years and younger (rate ratio 1.05 95% CI 0.67-1.64). However women who were aged 40 years and older had a 58% reduction in the incidence of SIL compared to the youngest age group (rate ratio 0.42 95% CI 0.16-0.91).

Table 4 shows the Cox proportional hazards models for incidence of SIL. Overall, the crude hazard ratio for incidence of SIL for those on ART compared to those not on ART was 1.3 (95% CI 0.5-3.2). After adjusting for CD4 count and age, the hazard ratio was 0.9 (95% CI 0.4-2.5), showing no difference in incidence of SIL between those on ART and those not on ART. The crude hazard ratios showed that having a CD4 count above 200 cells/mm3 and being 40 years and older were protective against incidence of SIL (HR 0.5 95% CI 0.3-0.9; HR 0.5 95% CI 0.2-1.1; respectively). Adjusted for ART, CD4 count and age, a higher CD4 count and older age were still protective.

Disease progression to a diagnosis of SIL was also determined from the time of treatment of cervical disease. The incidence rate of SIL following treatment was 28.5 per 100 person years. For those women on ART and not on ART, the incidence rate was 24.7 and 33.6 per 100 person years, respectively. The incidence rate ratio was thus 0.74 (95% CI 0.2-2.75).
Table 4: Cox proportional hazards models showing ART and incidence of SIL, presented as hazard ratios with 95% confidence intervals.

<table>
<thead>
<tr>
<th></th>
<th>Overall</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crude</td>
<td>Adjusted</td>
<td>Crude</td>
<td>Adjusted</td>
<td>Crude</td>
<td>Adjusted</td>
</tr>
<tr>
<td>On ART</td>
<td>HR (CI)</td>
<td>HR (CI)</td>
<td>HR (CI)</td>
<td>HR (CI)</td>
<td>HR (CI)</td>
<td>HR (CI)</td>
</tr>
<tr>
<td>CD4 count</td>
<td>1.3 (0.5-3.2)</td>
<td>0.9 (0.4-2.5)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>≤200*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>>200</td>
<td>0.5 (0.3-0.9)</td>
<td>0.5 (0.2-0.9)</td>
<td>0.5 (0.3-1.0)</td>
<td>0.5 (0.2-0.9)</td>
<td>0.2 (0.02-2.1)</td>
<td>0.3 (0.02-2.9)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤29†</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30-39</td>
<td>1.1 (0.7-1.6)</td>
<td>0.9 (0.6-1.5)</td>
<td>1.2 (0.7-1.9)</td>
<td>1.1 (0.7-1.9)</td>
<td>0.4 (0.1-1.0)</td>
<td>0.4 (0.1-1.1)</td>
</tr>
<tr>
<td>≥40</td>
<td>0.5 (0.2-1.1)</td>
<td>0.4 (0.2-0.9)</td>
<td>0.6 (0.3-1.6)</td>
<td>0.5 (0.2-1.2)</td>
<td>0.1 (0.03-0.7)</td>
<td>0.1 (0.03-0.8)</td>
</tr>
</tbody>
</table>

Crude hazard ratios are not adjusted for any other covariates. Adjusted hazard ratios are adjusted for all covariates listed.

*Reference category for CD4 count.
†Reference category for age.
Discussion

Cervical cancer remains one of the commonest forms of cancer in women in developing countries, including South Africa. The crude incidence and age-standardised mortality rates for cervical cancer are 30.2 and 18 per 100 000, respectively. Cervical disease is progressive and develops over many years, involving the development of squamous intraepithelial lesions which can be detected by Pap smears and for which treatment is available. In HIV positive women, this progression of cervical disease occurs more rapidly. This study examined the incidence of SIL development in HIV positive women and determined the incidence rate ratio between women on ART and women not on ART.

Women were followed up for 9 years. Follow up was censored at the first of either SIL diagnosis or treatment for cervical disease by LLETZ (large loop excision of the transformation zone). Our primary finding was that there was no difference in the risk for SIL development between women receiving ART and women not receiving ART. The incidence rate in women on ART was 28.5 per 100 person years compared to an incidence rate of 30.82 per 100 person years in women not on ART. The rate ratio in our cohort is therefore 1.08 (95% CI 0.64-1.75).

Several studies have found conflicting results with respect to the effect of ART on cervical disease progression. A study conducted in Soweto, South Africa found that ART was protective against SIL development (HR 0.72; 95% CI 0.52-0.99). However, this study reported cervical diagnoses based on cervical smears (i.e. cytological results) whereas we report histologic results. However, one of their findings was that older age was protective against disease progression compared to the lowest age category (18-25 years), and in fact they found that older age was associated with regression of cervical disease. This is in agreement with our finding of a 58% decrease in cervical disease progression in women older than 40 compared to women younger than 40.

Similarly, a cross-sectional study found that there was no statistical relationship between ART use and cervical disease. However, because the study was a cross-sectional study it is only possible to comment on prevalence and not incidence of cervical disease progression.

Heard et al found that the prevalence of SIL among HIV positive women decreased significantly after a median period of 5 months after starting ART. A cohort study by Minkoff et al found that women on ART were 32% less likely to have progression of cervical disease over 6 months. Soncini et al found that over a 37 month follow up period, women on ART had a 70% reduction in the risk for developing CIN compared to HIV positive women not on ART, over the same time period. On the other hand, monitoring of the rate of progression of cervical disease in 163 HIV positive women over a mean period of 15.4 months showed that there was no difference between women on ART and women not on ART. In addition, Schuman et al reported that ART-use did not result in a decreased risk of incident SIL.

Approximately one third of the colposcopy diagnoses also had a histopathology result. From these two, a composite diagnosis was derived and this was used in all
analyses. Where histopathology was not available, the visual colposcopy diagnosis was used. As far as we know this is the only cohort study which uses a composite diagnosis (where it is available) in analysis. This is a much more reliable reading as visual inspection of the cervix by colposcopy is sensitive to the subjectivity of the interpreter.

Sahasrabudde et al used a composite diagnosis in a cross-sectional study23 and found an increase in the odds of HSIL (CIN2 and CIN3) for women who were currently receiving ART compared to those who had never received ART (OR=2.24; 95% CU 1.17-4.26).

We found that immunological status was a predictor of SIL development, specifically that a baseline CD4 count greater than 500 cells/mm3 resulted in a 67% lowered likelihood of progression from a baseline cytological diagnosis of normal to a diagnosis of SIL, compared to a reference group whose baseline CD4 counts were 200 cells/mm3 or less. Similarly those with baseline CD4 counts between 201 and 500 cells/mm3 had a 35% reduction in progression to SIL, compared to the reference group. This is in agreement with findings of 2 other cohort24, 25 studies that used survival analysis to show that baseline CD4 counts greater than 200 cells/mm3 were protective against SIL development.

Thus far the study of the effect of ART on cervical disease progression in HIV positive women has been controversial. Several different studies have yielded results that ranged from a decrease in the development of SIL to no difference in the outcomes between those on ART compared to those not on ART. Our study has shown no difference in the hazard of SIL development between ART use and ART non-use. A possible reason for the different results obtained could be the study inclusion criteria. Soncini et al26 excluded women with a previous history of cervical intraepithelial neoplasia, and they found a 70% reduction in cervical disease in those on ART compared to those not on ART. In our study, history of neoplasia was not an exclusion criterion. This difference could result in an underestimation of the measure of effect in our study as women in the study may already have lesions that are somewhere along the continuum of cervical disease progression. This is consistent with the theory on the genetic alteration of the cells within a lesion. Once the cell has altered genetically, it cannot revert to its previous state of normality. ART is initiated based on immunological status. However, immune reconstitution based on the use of ART cannot cause the cell to go back to its normal state and thus it will continue to progress pathologically27.

In our study the women served as their own controls, in that the time a participant spent in the study before initiating ART was included in the analysis time of ART non-use. This decreases the variance in the measurements taken in the study. A limitation of the study is that we did not have an HIV negative group whose disease progression could have been compared to those participants with CD4 counts above 500 cells/mm3.

The loss to follow up in our study was high. By the end of the 9-year period, 90% of the study participants were lost to follow up. Nearly one third (29.3%) of the women died during the course of the study. At the time, ART eligibility required a CD4 count of 200 cells/ml. Thus, these women were more ill than if they were to be initiated at current ART initiation guidelines. This may have resulted in the high rate of death.
The high numbers lost to follow up and to death could have resulted in an underestimation of the measure of effect, as a greater number of study participants for a longer period of time may be correlated with an increase in the observations of incident SILs.

ART use is being scaled up in South Africa and therefore the lives of HIV positive women will be prolonged. We found no difference in the risk of SIL development in HIV positive women who are on ART and those who have not yet initiated ART. In light of this it is important that cervical screening and referral systems for colposcopy are strengthened to meet an important need.
References

Part D: Appendix
Table of Contents

- Ethics Approval Form ... 1
- Consent Form .. 2
- Registration Forms .. 3
 - Demographic Information .. 3
 - Treatment History .. 4
 - Initial Examination .. 5
- Follow up visits .. 6
 - Demographic Information ... 6
 - Examination details ... 7
- Lancet Oncology Guidelines ... 8
1. **Ethics Approval Form**

2. **UNIVERSITY OF CAPE TOWN**

 Department of Obstetrics and Gynaecology

 Faculty of Health Sciences, Anzio Road, Observatory, South Africa 7925

 HEAD of DEPARTMENT: Professor Lynette Denny MBChB (UCT), MMed(O&G), PGD, FCOG(SA)
 Cell: 063 280 5962
 Telephone: (021) Personal Secretary 406-6112 / 404 4484
 Fax: (021) 448-6921
 Email: lynette.denny@uct.ac.za
 Secretary: Jill Arlett@uct.ac.za

 29 August 2012

 Prof Blockman
 Research Ethics Committee
 Faculty of Health Sciences
 University of Cape Town

 Dear Prof Blockman

 Re: Update for study Management of Abnormal Cytology in HIV-1 Infected Women (Mach-1) and Request for reapproval.

 Rec Ref: 106/2002

 The prospective study of 400 untreated, HIV-1 infected women, undergoing high-risk (HR)-HPV DNA testing (Hybrid Capture II™), cytology, colposcopy, histology and CD4 count testing, 6 monthly for 36 months, for 60 months and extended for a further 5 years is ongoing. Re-appraisal for a further year is requested.

 The study has been conducted to examine the natural history of HR-HPV infection and cervical disease in HIV-1-infected women. In addition, the study aims to determine the HR-HPV type distribution among HIV-positive women to allow an estimation of the potential impact of HPV vaccines in HIV-positive women.

 Information regarding the follow-up of patients is as follows:
 VISIT 108: 91 subjects attended V108
 VISIT 114: 81 subject have attended thus far
 VISIT 120: is ongoing and 36 subjects have attended thus far

 Deceased: 112 subjects
 Relocated permanently: 34 subjects
 Untraceable: 69 Subjects

 Yours sincerely,

 [Signature]

 Lynette Denny
Consent to Participate in study of the Management of Abnormal Cytology in Women infected with HIV-1.

I agree to participate in the study designed to study the management of women who are infected with HIV and who have abnormal Pap smears. I understand that my participation in the study is voluntary and I can withdraw from the study at any point and that withdrawal from the study will not impact on my clinical care.

I understand that all information, including my HIV status will be completely confidential and that this information will be kept in my confidential hospital file. If I agree to undergo HIV testing and I am HIV positive, I agree that the following tests may be performed on me on a six monthly basis:

- A Pap smear
- A colposcopic examination (examination of the cervix after the application of acetic acid (vinegar) to the cervix and histological sampling (removal of 1-2 mm of tissue from the cervix)
- A test for infection with the Human Papillomavirus
- HIV viral load (the amount of virus in the blood)
- CD4 counts (the white blood cells that are affected by the HIV virus)

I understand that any abnormalities detected during the course of the study will be managed and treated according to the routine protocol of the clinic.

I further understand that all results of tests performed on me will be given to me and their meaning fully explained to me. In addition, results of my tests will be entered into a confidential computerized data base, and I will be identified in this data base by my unique study number, not by name.

Signed: __________________________ Printed Name: __________________________

Hospital Folder Number (sticker): __________________________

Study Number: __________________________

Date: __________________________

Witness: __________________________
Demographic Information

Registration Forms

<table>
<thead>
<tr>
<th>Centre</th>
<th>Demographic information</th>
<th>Registration Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Edinburgh</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>London Chelsea</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>London, Kings College</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>London, St. Thomas</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>London, St. Mary's</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Manchester</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Milan</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Paris</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Dublin</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Warsaw</td>
<td></td>
</tr>
<tr>
<td></td>
<td>South Africa</td>
<td></td>
</tr>
</tbody>
</table>

Origin:
- **European/North**
- **Sub-Saharan Africa**
- **Other (Specify):**

Details of Infection

- **Date of 1st positive HIV test:**
- **Route of infection:**
 - [] IDU
 - [] Heterosexual
 - [] Blood
 - [] Unknown

Sexual History

- **Age at 1st intercourse:**

- **Number of sexual partners:**
 - [] 1
 - [] 2-5
 - [] 6-20
 - [] >20

In the last 6 months

- **Heterosexually active:**
 - [] Yes
 - [] No

- **Number of male partners:**
 - [] Declined (✓)

- **Frequency of condom use:**
 - [] <20%
 - [] 20-60%
 - [] 60-90%
 - [] Always

Smoking

- **Ever:**
- **Never:**

- **In the last month:**
 - [] No
 - [] Yes

Laboratory tests

<table>
<thead>
<tr>
<th></th>
<th>Date</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV viral load</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Antiretroviral treatment (check actual treatment)

- **On treatment:**
 - [] Yes
 - [] No
CYTOLOGY

<table>
<thead>
<tr>
<th>Previous abnormal</th>
<th>Yes</th>
<th>No</th>
<th>Never screened</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Earliest abnormal				
1st worst				
Most recent result				

COLPOSCOPY

<table>
<thead>
<tr>
<th>Previous colposcopy</th>
<th>Yes</th>
<th>No</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HISTOLOGY

<table>
<thead>
<tr>
<th>Date</th>
<th>Normal</th>
<th>Low Grade</th>
<th>High Grade</th>
<th>Cancer</th>
<th>Size of lesion</th>
<th>Punch biopsy (y/n)</th>
<th>Koli/CIN1</th>
<th>CIN2</th>
<th>CIN3</th>
<th>Cancer</th>
<th>Normal</th>
</tr>
</thead>
</table>

- "earliest abnormal":
- "1st worst":
- "most recent result":

TREATMENTS

<table>
<thead>
<tr>
<th>Previous treatments</th>
<th>Yes</th>
<th>No</th>
<th>If yes, number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TREATMENT TYPE

<table>
<thead>
<tr>
<th>Date</th>
<th>Loop</th>
<th>Laser</th>
<th>Knife</th>
<th>Margins clear y/n</th>
<th>Koli/CIN1</th>
<th>CIN2</th>
<th>CIN3</th>
<th>Cancer</th>
<th>Normal</th>
</tr>
</thead>
</table>

- Earliest treatment:
- Most radical treatment:
- Most recent treatment:

HPV TESTING

<table>
<thead>
<tr>
<th>Previous HPV testing</th>
<th>Yes</th>
<th>No</th>
<th>(If yes, please give details of 3 most recent tests below)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of test (✓)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIRST EXAMINATION

Enter date if different from registration date

- Condylomata present: Yes [] No []
- Cytology performed: Yes [] No []

Result

<table>
<thead>
<tr>
<th>Date D M Y</th>
<th>ASCUS</th>
<th>LGSIL</th>
<th>HGSIL</th>
<th>INVAS</th>
<th>INAD</th>
<th>NORMAL</th>
</tr>
</thead>
</table>

- Colposcopy performed: Yes [] No [] Satisfactory [] Unsatisfactory []

COLPOSCOPY

<table>
<thead>
<tr>
<th>Date (if different from above) D M Y</th>
<th>Normal</th>
<th>Low Grade</th>
<th>High Grade</th>
<th>Cancer</th>
<th>Size of lesion</th>
<th>Punch biopsy (y/n)</th>
<th>Kolino/CIN1</th>
<th>CIN2</th>
<th>CIN3</th>
<th>Cancer</th>
<th>Normal</th>
</tr>
</thead>
</table>

TREATMENTS

- Yes [] No []

TREATMENT TYPE

<table>
<thead>
<tr>
<th>Date (if different from above) D M Y</th>
<th>Loop</th>
<th>Laser</th>
<th>Knife</th>
<th>Margins clear y/n</th>
<th>Kolino/CIN1</th>
<th>CIN2</th>
<th>CIN3</th>
<th>Cancer</th>
<th>Normal</th>
</tr>
</thead>
</table>

HPV TESTING

- Yes [] No []

<table>
<thead>
<tr>
<th>Date of test (if different from above) D M Y</th>
<th>HC2</th>
<th>PCR</th>
<th>SB</th>
<th>HR (✓)</th>
<th>LR (✓)</th>
<th>Result Types</th>
</tr>
</thead>
</table>
Demographic Information

Visit Number:

Please circle:
- Centre:
 1. Edinburgh
 2. London Chelsea
 3. London, Kings College
 4. London, St. Thomas
 5. London, St. Mary's
 6. Manchester
 7. Milan
 8. Paris
 9. Dublin
 10. Warsaw
- South Africa

Patient number:

Date of birth:

Date of enrolment:

Since last visit
- Heterosexually active
 - Yes
 - No
- Number of male partners
 - Declined (✓)
- Frequency of condom use
 - <20%
 - 20-60%
 - 60-90%
 - Always

Smoking (since last visit)
- No
- Yes
- Number per day

Laboratory tests
- CD4
- HIV viral load

Antiretroviral treatment (check actual treatment)
- On treatment
 - Yes
 - No
The Lancet Oncology Guidelines

Information for Authors

The Lancet Oncology publishes interesting and informative reviews on any topic connected with oncology, and considers any original research contribution that advances change in, or illuminates, oncological clinical practice. Manuscripts must be solely the work of the author(s) stated, must not have been previously published elsewhere, and must not be under consideration by another journal. All papers should be written to be clearly understandable to the journal’s readers in a wide range of specialties and countries.

The journal publishes a range of article types that encompass all aspects of oncological medicine: Comment, Correspondence, News, Cancer and Society, Article, Review, Historical Review, Health-care Development, and Personal View.

All original research judged eligible for consideration by the journal’s editors will be peer-reviewed within 72 h and, if accepted, published within 8 weeks from submission. All accepted Articles will be published online first before appearing in the print journal.

The Lancet is a signatory journal to the Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly Work in Medical Journals, issued by the International Committee of Medical Journal Editors (ICMJE Recommendations), and to the Committee on Publication Ethics (COPE) code of conduct for editors. We follow COPE’s guidelines.

If your question is not addressed on these pages then the journal’s editorial staff will be pleased to help (+44 (0) 207744 4922). Alternatively, email the Editor at david.collingridge@lancet.com.

How to submit your paper

Manuscript submission

Manuscript submission to all Lancet Journals is free. Manuscripts should be submitted online via the The Lancet Oncology’s online submission and peer review website (known as EES) at http://ees.elsevier.com/thelancetoncology

• Simply log on to EES and follow the onscreen instructions for all submissions
• If you have not used EES before, you will need to register first. In EES, the corresponding author is the person who enters the manuscript details and uploads the submission files
• Inclusion of illustrations (photographs, graphs, diagrams, etc) is a prerequisite for publication. Submission of original and editable artwork files is encouraged. Digital photography files should have a resolution of at least 300 dpi and be at least 102 mm wide
• In almost all cases, if you have a finished manuscript, you should submit it, rather than contacting The Lancet Oncology to enquire whether an unseen manuscript is likely to be accepted
• Unless you have been asked by the Editor to submit by email, you should use the online system for all types of submission, including correspondence
• If you have any technical problems or questions, please contact our dedicated customer support (available 24 hours a day, 365 days a year):
 - For the Americas: +1 888 834 7187 (toll-free in USA and Canada)
 - For Asia and Pacific: +852 3661 5920
 - For Europe and rest of the world: +353 1 6170100
• Editorial queries can be sent to the Editor, Dr David Collingridge, at david.collingridge@lancet.com

Covering letter

• You should upload your covering letter at the “Enter Comments” stage of the online submission process
• Use the covering letter to explain why your paper should be published in The Lancet Oncology rather than elsewhere
• It is helpful to indicate what could shorten your paper—the full paper can be reviewed and a shorter version published—a table or figure, details of a DNA sequence, or further references, for example, can be published on our website or made available from the authors

Submissions to The Lancet Oncology should include:

1. Covering letter
2. Manuscript including tables and figures
3. Figures
4. Author statement form (see next section)
5. Declaration of interests and source of funding statements (see next section)
6. In-press papers—one copy of each with acceptance letters
7. Protocols and CONSORT details for randomised controlled trials (see Articles)
8. We encourage disclosure of correspondence from other journals and reviewers. If previously submitted, we might contact relevant editors of such journals

Statements, permissions, and signatures

Authors and contributors

• Designated author must state all four criteria for authorship in the ICMJE Recommendations
• All authors, and all contributors (including medical writers and editors), should specify their individual contributions at the end of the manuscript
• The Lancet Oncology will not publish any paper unless we have the signatures of all authors
• We suggest you use the author statement form and either upload the signed copy with your submission, or fax to +44 (0) 1845 853 012
• Please include written consent of any cited individual(s) noted in acknowledgments or personal communications
• These forms should only be supplied if your paper is selected for peer review. You will receive instructions from the editorial team when to send these documents

Declarations of interests

A conflict of interest exists when professional judgement concerning a primary interest (such as patients’ welfare or validity of research) may be influenced by a secondary interest (such as financial gain). Financial relationships are easily identifiable, but conflicts can also

www.thelancet.com February 2014
information for authors

Role of the funding source (to be included only with Articles)

- All sources of funding should be declared as an acknowledgment at the end of the text.
- At the end of the Methods section, under a subheading "Role of the funding source," authors must describe the role of the study sponsor(s). If any, in study design, in the collection, analysis, and interpretation of data, in writing of the report, and in the decision to submit the paper for publication.

Role of medical writer or editor

- If a medical writer or editor was involved in the creation of your manuscript, we need a signed statement from the corresponding author to include their name and information about funding of this person.
- This information should be added to the Acknowledgments and/or Contributors section.

Patient and other consents

- Appropriate written consents, permissions, and releases must be obtained where necessary to include any case details, personal information, and/or images of patients or other individuals in The Lancet Oncology in order to comply with all applicable laws and regulations concerning privacy and/or security of personal information. Studies on patients or volunteers need approval from an ethics committee and informed consent from participants. These should be documented in your paper.
- Since the consent form needs to comply with the relevant legal requirements of your particular jurisdiction, we do not provide sample forms; this is your responsibility. Your affiliated institution should be able to provide an appropriate form.
- For the purposes of publishing in The Lancet Oncology, a consent, permission, or release should include, without limitation, publication in all formats (including print, electronic, and websites), in sublicensed and reprinted versions (including translations), and in all other works and products.
- To respect patient's and any other individual's privacy, please do not send signed forms to The Lancet Oncology. Please instead complete the patient consent section of the Author Statements while retaining copies of the signed forms in the event they should be needed.
- If consent, permission, or release is made subject to any conditions, The Lancet Oncology must be aware in writing of all such conditions before publication.
- For more information about our policy, please visit http://cdm.ebrary.com/assets/pdf_file/0097732140/pdf/patient-consent-policy.pdf
Use of copyright-protected material—signed permission statements from author and publisher

These statements can be submitted electronically via our online submissions system or faxed to +44 (0) 1865 843 017. To minimize delays, we strongly advise that you prepare signed copies of these statements before you submit your manuscript.

Types of article and manuscript requirements

Please ensure that anything you submit to The Lancet Oncology follows the guidelines provided for each article type. For instructions on how to format the text of your paper, including tables, figures, panels, and references, please see our Formatting guidelines. Please note that The Lancet Oncology does not publish case reports in any format.

Red section (Articles and Meta-analyses)

Articles

The Lancet Oncology prioritizes reports of original research that are likely to change clinical practice or thinking about oncology.

We invite submission of all clinical trials, whether phase I, II, III, or IV (see Lancet 2006; 368: 827-828). For phase I trials, we especially encourage those of a novel substance for a novel indication. If there is a strong or unexpected beneficial or adverse response, or a novel mechanism of action.

We require registration of all interventional trials, whether early or late phase, in a primary registry that participates in WHO's International Clinical Trial Registry Platform (see Lancet 2007; 369: 1509-11). We also encourage full public disclosure of the minimum 20-item trial registration dataset at the time of registration and before recruitment of the first participant (see Lancet 2006; 368: 1631-35). The registry must be independent of for-profit interest.

• Reports of randomized trials must conform to CONSORT 2010 guidelines and should be submitted with their protocols.
• All reports of randomized trials should include a section entitled Randomization and masking, within the Methods section.
• Cluster-randomized trials must be reported according to CONSORT extended guidelines.
• Randomized trials that report harms must be described according to extended CONSORT guidelines.
• Studies of diagnostic accuracy must be reported according to STARD guidelines.
• Observational studies (cohort, case-control, or cross-sectional designs) must be reported according to the STROBE statement and should be submitted with their protocols.
• We encourage the registration of all observational studies on a WHO-compliant registry (see Lancet 2010; 375: 248).
• Genetic association studies must be reported according to STREGA guidelines.
• To find reporting guidelines see http://www.equator-network.org
• Please be aware that The Lancet Oncology’s standard practice to commission an independent Comment to accompany all published Articles and Meta-analyses to add context and insight.

All Articles should, as relevant:

• Be up to 3000 words with 30 references (the word count is for the main body of text only and does not include the abstract, figure or table legends, acknowledgments and conflicts of interest paragraphs, or references).
• Include an abstract (restructured summary), with five paragraphs (Background, Methods, Findings, Interpretation, and Funding), not exceeding 300 words. Our electronic submission system will ask you to copy and paste this section at the “Submit Abstract” stage.
• For randomised trials, the abstract should adhere to CONSORT extensions: abstracts (see Lancet 2008; 371: 855-57).
• For intervention studies, the abstract should include the primary outcome expressed as the difference between groups with a confidence interval on that difference (absolute differences are more useful than relative ones). Important secondary outcomes can be included as long as they are clearly marked as secondary.
• Use the SI system of units and the recommended international nonproprietary name (INN) for drug names. Ensure that the dose, route, and frequency of administration of any drug you mention are correct.
• Use gene names approved by the Human Gene Organisation. Novel gene sequences should be deposited in a public database (GenBank, EMBL, or DDBJ), and the accession number provided. Authors of microarray papers should include in their submission the information recommended by the MIAME guidelines. Authors should also submit their experimental details to one of the publicly available databases: ArrayExpress or GEO.
• Include any additional data as part of your EES submission.
• All accepted Articles should include a link to the full study protocol published on the authors’ institutional website (see Lancet 2005; 365: 952 and Lancet 2010; 375: 148).

Putting research into context

From Aug 1, 2010, authors are invited to submit their research papers with a section in the Discussion that puts the results into context with previous work (see Lancet 2008; 371: 10-11). Authors should provide a panel explaining in brief how they arrived at their bottom line message.
• The Discussion section should contain a full description and discussion of the context. Authors are also invited to either report their own up-to-date systematic review or cite a recent systematic review of other trials, putting their trial into context of the review.
• The Discussion should contain a Research in context panel (see below).

Research in context

Systematic review

This section should include a description of how authors searched for all the evidence. Authors should also say how they assessed the quality of that evidence—i.e., how they selected and how they combined the evidence.

Interpretation

Authors should state here what their study adds to the totality of evidence when their study is added to previous work.

www.thelancet.com February 2014
Information for Authors

Meta-analysis
- In general, these should follow the PRISMA guidelines.
- Manuscripts should be structured around five sections: Summary, Introduction, Methods, Results, and Discussion.
- Aim for a maximum length of about 3000 words and 75 references.
- Meta-analyses should also contain semi-structured summary as described previously for Articles.

Blue section (Comment, Correspondence, etc)
Editorial
- Editorial are the voice of The Lancet Oncology, and are written in-house by the journal's editorial-writing team and signed "The Lancet Oncology".

Comment
- This section contains commentaries that accompany papers published in The Lancet Oncology on issues of wide-reaching concern in oncology. Most commentaries are commissioned, and linked to specific research Articles to add context, but unsolicited commentaries (no more than 650 words, ten references, and one figure, panel, or small table) are also welcome. Unsolicited commentaries may be peer reviewed.
- At the Editor's discretion, commentaries may be shortened in the interests of space.
- The place to respond to something you have published is in our Correspondence section.
- See Conflicts of Interest guidelines for comments.

Cancer and Society
- Reviews of books and other media are often commissioned, but suggestions for contributions are welcome.

Correspondence
- We welcome correspondence on content published in The Lancet Oncology on any other topics of interest to our readers.
- Letters for publication in the print journal must reach us within 8 weeks of publication of the original item and should be no longer than 500 words.
- Letters of general interest, unlinked to items published in the journal, can be up to 400 words long.
- Correspondence letters are not usually peer reviewed, but we might invite replies from the author of the original publication, or pass on letters to these authors.
- Only one table or figure is permitted, and there should be no more than five references and five authors.
- All accepted letters are edited, and proofs will be sent out to authors before publication.

Corrections
- Any substantial error in any article published in The Lancet Oncology should be corrected as soon as possible. Blame is not apportioned; the important thing is to set the record straight.
- The Lancet journals have a policy for types of errors that we do and do not correct. We will always correct any error affecting a non-proprietary drug name; done, or unit, any numerical error in the results, or any factual error in interpretation of results.
- Other corrections are at the Editor's discretion.

Green section (Reviews, Historical Reviews, Personal Views, etc)
Reviews
- Most reviews are commissioned, but unsolicited short outlines (300-400 words) can be directed to the Editor. If you have already written the paper, please submit it for consideration via our online system.
- Reviews should be either a definitive overview of a major topic connected with oncology or an update of knowledge in a somewhat narrower field of current interest.
- Manuscripts will be assessed in-house and those judged suitable will be peer reviewed before an editorial decision is made.
- Reviews should be between 3000 and 5000 words, with a maximum of 75 references.
- References selected for publication should be chosen for their importance, ease of access, and for the “further reading” opportunities they provide; citations to papers published in non-peer-reviewed supplements are discouraged. In addition to references, authors should consider supplying a short list of useful websites where readers can find further information on the subject.
- A 350-word unstructured summary should be included. Use of up to 5-6 illustrations is encouraged to aid the reader.
- Complete transparency about the choice of material included is important to any Review paper. Therefore, all Reviews should include a brief section entitled "Search strategy and selection criteria" stating the sources (including databases, Medline and free text search terms and filters, and reference lists from journals or books) of the material covered, and the criteria used to include or exclude studies. Citations to papers published in non-peer-reviewed supplements are discouraged. Since these papers should be comprehensive, we encourage citation of publications in non-English languages. An example is shown below.

Search strategy and selection criteria
References for this Review were identified through searches of PubMed with the search terms "young onset", "early onset", "personal", and "dementia" from 1990 until April, 2010. Articles were also identified through searches of the authors’ own files. Only papers published in English were reviewed. The final reference list was generated on the basis of originality and relevance to the broad scope of this Review.

Historical Review
- These should follow the same guidelines as for a Review, but should cover the chronological developments in an important or interesting area of oncology.

Personal View
- These should be 2000-4000 words in length, with a maximum of 75 references.
• These opinion pieces may reflect an individual perception, involvement, or contribution to oncology, and should be prepared in a similar way to a Review. Unsolicited contributions are welcome, although please contact the Editor before submission to ensure that the proposed topic is within the remit of the journal.

Policy Review
• Manuscripts considered for this section are narrative reviews (not original research) and should follow the same guidelines as a Review.
• These papers should cover developments in oncology related to policy, treatment guideline development, health systems, or economics. Other related topics will be considered. Please contact the Editor before submitting to ensure the proposed topic is suitable.

Formatting guidelines
Language
• Manuscripts should be submitted in English. Authors writing in Chinese, Portuguese, or Spanish may wish to use the Webshop (http://webshop.odeier.com/languageservices) to provide an English translation of their manuscript for submission.

Title page
• A brief title, author name(s), preferred degree (e.g., only), affiliation(s), and full address(es) of the authors must be included. The name and address of the corresponding author should be separately and clearly indicated along with email and telephone details.

Formatting of text
• Type a single space at the end of each sentence.
• Do not use bold face for emphasis within text.
• Do not worry about type of font or point size.
• We use a comma before the final "and" or "or" in a list of items.
• Type decimal points midway (i.e., 23.4, not 23,4). To create a midline decimal on a PC, hold down ALT key and type 0186 on the number pad, or on a Mac ALT shifted "0".
• Numbers one to ten are written out in words unless they are used as a unit of measurement, except in figures and tables.
• Use single hard returns to separate paragraphs. Do not use tabs or indent to start a paragraph.
• Do not use the automated features of your software, such as hyphenation, endnotes, headers, or footers (especially for references). Please see page numbering.

References
• Cite references in the text sequentially in the Vancouver numbering style, as a superscripted number after any punctuation mark. For example: "...as reported by Sato and colleagues." 3, 9
• Two references are cited separated by a comma, with no space.
• Three or more consecutive references are given as a range within an en rule. To create an en rule on a PC, hold down CTRL and minus sign on the number pad, or on a Mac ALT Hyphen.
• References in tables, figures, and panels should be in numerical order according to where the item is cited in the text.

Example

...as reported by Sato and colleagues. 3, 9

Guidelines for web extra material
All material should be submitted as one PDF (with numbered pages) with the paper and will be peer reviewed. Material will be published at the discretion of The Lancet journals' editors. All material should be provided in English.

Text
• Main heading for the web extra material should be in 12 point Times New Roman font BOLD.
• Text should be in 10 point Times New Roman, single spaced.
• Headings should be in 10 point BOLD.

Tables
• Main table heading should be in 10 point Times New Roman font BOLD.
• Legends should be in 10 point, single spaced.
• Tables should be in 8 point Times New Roman font, single spaced.
• Headings within tables should be in 8 point BOLD.

Data
• SI units are required.
• Numbers in text and tables should always be provided if % is shown.
• Means should be accompanied by SDs, and medians by IQR.
• Exact p values should be provided, unless p<0.0001.

Drug names
• Recommended: international non-proprietary name (INN) is required.

References
• Vancouver style—eg.
Information for Authors

 • Numbered in order of mention in Web Appendix and numbered separately from references in the full paper

Figures
 • All images must have a minimum resolution of 300 dpi, with a 307 mm
 • Main figure heading should be at least 10 point Times New Roman
 • Legends should be in 10 point, single spaced

Audio/video material
 • The paper to which the audio or video clip relates should be mentioned in the recording
 • Audio clip and video files should be accompanied with a brief text explaining the content of the audio names of interviewers/interviewees, date of recording, and place of recording if relevant
 • Written consent from all parties must be supplied at submission

Audio
 • Audio material submitted as an .mp3 file, no larger than 50 Mb
 • Your paper may be selected for a podcast. If so, the Web Editor will contact you to arrange a pre-recorded interview to discuss your paper. For more information, see Audio

Video
 • Video material should preferably be submitted in .mpg or .mov format in size ratio of 16:9, no larger than 50 Mb
 • We welcome your videos and invite you to submit any video material (reports, interviews, scans, etc.) for consideration in the online journal. Please ensure that all those featured in the video have given permission for publication
 • All video files can be submitted alongside your article in EES

Disclosure of results before publication
 • Presentation of data at a scientific meeting, as a poster, abstract, orally, on a CD, or as an abstract is acceptable. However, if the results are presented in a form of a brief structured abstract or table (~500 words; see Lancet 2007; 369: 1909–11). However, presentation of results in other circumstances (e.g., investigators' meetings) is discouraged and could jeopardize consideration of the manuscript

Fast-track publication
 • All Articles judged eligible for fast-track publication by the journal's staff will be peer-reviewed within 72 h and, if accepted, published in 4–8 weeks
 • All accepted Articles will be published online (Online First publication) before appearing in the print journal
 • The online article does not differ from the version subsequently published in print and is citable by the digital object identifier (DOI) assigned at the time of online publication
 • All other manuscripts will be peer-reviewed via our standard process

Online First publication
 • The Lancet Oncology publishes most articles online ahead
 • The online article is identical to the version subsequently

How The Lancet Oncology handles your paper

Acknowledgment
 • Receipt of your paper will be acknowledged by an email containing a reference number, which should be used in all future communications

Checking for plagiarism, duplicate publication, and text recycling
 • All Reviews, Historical Reviews, Personal Views, Health-care Development articles, and other non-research material that we are interested in publishing will be checked by editors using CrossCheck (see Lancet 2013; 381: 285–8). We expect that such papers are written in a way that offers new thinking without recycling previously published text

Peer review
 • Every Article, Review, Historical Review, Personal View, or Health-care Development published in The Lancet Oncology has been peer-reviewed. Other contributions (e.g., commentaries) may be peer-reviewed; decisions are made on a case-by-case basis
 • On submission to The Lancet Oncology, your report will first be read by one or more of the journal's staff of physicians and scientists. This is an important feature of our selection process that many papers are turned away on the basis of in-house assessment alone. That decision will be communicated quickly
 • Research papers and most other types of paper that receive positive in-house reviews are followed by peer review by at least three reviewers. You will receive notification of which editor is handling the peer review of your paper. If reviews are encouraging, and the editorial consensus is also favourable, then we seek statistical advice where appropriate

Open access
 • The Lancet journals are committed to support authors in making their research publicly and freely available. The editors encourage all authors to post a Word version of their peer-reviewed, accepted article on their personal or institutional websites any time after publication in print or online. Your
document should indicate the article’s citation and a link to the published article on The Lancet website.

- For authors of research articles funded by one of the Research Councils UK, Welcome Trust, Cancer Research UK, Arthritis Research Council, British Heart Foundation, UK Department of Health, UK Chief Scientist Office, Austrian Science Fund, or Parkinson’s UK, we offer either a “gold” open access choice with a creative commons licence after payment of an article processing charge of US$5000, or a “green” open access solution—where authors can deposit the final accepted version of their paper in any repository they choose 6 months after publication. In addition, for authors who choose the green open access solution, we will also make the published paper free to access on our websites 6 months after publication. For the gold open access solution we offer a choice of creative commons licenses (CC-BY, CC-BY-NC-SA, or CC-BY-NC-ND). See below for copyright and license information.

Authors funded by NIH

- Authors funded by the National Institutes of Health (NIH) can comply with the NIH’s public-access policy via the Journal Publishing Agreement (copyright transfer form) which is sent to the corresponding author of accepted Articles. All Howard Hughes Medical Institute scientists who are authors of accepted Articles can also have their accepted manuscripts displayed in PubMed Central if they complete the relevant section of the Journal Publishing Agreement.

- Click here for Elsevier’s agreements with funding bodies.

Decision

- Submissions that survive in-house assessment and peer review might be referred back to authors for revision. This is an invitation to present the best possible paper for further scrutiny by the journal. It is not an acceptance.
- Authors should give priority to such revisions; the journal will reciprocate by making a final decision quickly.
- Two copies of the revised version should be sent back, one of which should be highlighted to show where changes have been made. Detailed responses to reviewers’ comments, in a covering letter, are also necessary.

The Lancet Journals and other Elsevier journals

- If your paper is rejected by The Lancet Oncology, we might judge it suitable to pass it on to the editors of The Lancet, The Lancet Diabetes & Endocrinology, The Lancet Global Health, The Lancet Infectious Diseases, The Lancet Neurology, or The Lancet Respiratory Medicine for consideration, or to editors of other relevant journals within Elsevier’s portfolio.

Appeals

- Sometimes editors make mistakes. When we do, we like to hear about them. If an author believes that an editor has made an error in declining a paper, we welcome an appeal. In your appeal letter, which should be sent to the Editor, please state why you think the decision is mistaken and set out your specific responses to any peer reviewers’ comments if those seem to have been the main cause of rejection.
- At least two editors will decide whether to invite a revised manuscript and whether a re-review or another course of action is appropriate (see Lancet 2002; 361:139-140 for more details on our appeals process).

Proofs

- The Lancet journals employ highly skilled Assistant Editors, and it is likely that your paper will be substantially edited after acceptance to ensure that it is accurate, clear, and understandable to a wide readership.
- All figures will be redrawn into the Lancet style by our in-house Illustrators.
- You will receive a proof from an Assistant Editor. The proof should be corrected and returned within 48h.

Editorial research

- We are keen to better understand and improve editorial conduct, decision making, and issues related to peer review. Therefore, we occasionally take part in or conduct editorial research. Your submitted paper might be used in such research. If you do not want your paper entered into such a study, please let us know in your covering letter. Your decision to take part or not will have no effect on the editorial decision on your paper.

What happens after publication?

Press release

- Press releases are issued for some of The Lancet Oncology’s content. You will be advised well in advance if your paper has been selected for press release. The Lancet Oncology’s Press Office will contact you with detailed instructions about embargo attachment to your paper, and will provide a draft press release for your comments ahead of the publication date.

Author interview

- Your paper may be selected for a podcast or video. If so, the Web Editor will contact you to arrange a pre-recorded interview to discuss your paper. For more information, see Audio.

Offprints and Reprints

- 100 offprints of Articles, and 50 offprints of a Review, Historical Review, Personal View, or Health-Care Development will be provided free of charge. All requests for reprints should be addressed to the Reprints Department in the London office: tel. +44 (0)20 7424 4329 fax +44 (0)20 7424 4493 email gr.davies@elsevier.com

Data storage

- Authors may be required to provide the raw data for research papers when they are under review and up to 20 years after publication in The Lancet Oncology.

www.thelancet.com February 2014
Copyright and reuse

Authors will be asked to sign a transfer of copyright agreement, which recognises the common interest that both journal and author(s) have in the protection of copyright. We accept that some authors (eg. government employees in some countries) are unable to transfer copyright. However, such policies do not provide anyone other than the Lancer journals the right to make in any form facsimile copies of the version printed.

Gold open access articles are published under Creative Commons licensing, which enables authors to retain copyright while allowing others to copy, distribute, and make some uses of their work, provided full credit is given to them as originators. Authors will be offered a choice of three licenses (CC BY, CC BY-NC-SA, or CC BY-NC-ND) depending on whether or not they wish to allow commercial reuse of their work and whether or not they wish to allow others to alter their work in the course of its reuse. Authors will be asked to sign an exclusive licence (or non-exclusive licence for government employees) to permit our publishers, Elsevier, to publish the work. For Creative Commons licensing see http://creativecommons.org/licenses/.

All requests to reproduce or make available anything in the journal—in whole or in part, in electronic or in any other form, including translation—should be made through our Rightslink Service. For more information, please visit http://www.elsevier.com/authors/obtaining-permission-to-re-use-elsevier-material.

Authors may wish to visit our Permission-Seeking FAQ available at http://www.elsevier.com/authors/permission-seeking-guidelines-for-elsevier-authors.

For general permissions queries, please contact Elsevier’s Permissions Helpdesk at Tel: +1-800-523-4059 extension 3808 or permissionshelpdesk@elsevier.com.