A description of practices of analgesia administration by Advanced Life Support paramedics in the City of Cape Town

Ryan Matthews
(MTTRYA004)

A Research Dissertation (60 credits)
Submitted to the University of Cape Town
In partial fulfillment of the requirements for the degree
Master of Philosophy in Clinical Emergency Medicine

Department of Emergency Medicine
Faculty of Health Sciences
University of Cape Town

Supervisor: Dr Wayne Smith

I, Ryan Ernest Matthews, hereby declare that the work contained in this submission is my original work and that I have not previously submitted it, in its entirety or in part, at any university for a degree. No part of this work has been published prior to my registration for the abovementioned degree.
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
DECLARATION

Name: Ryan Matthews

A description of practices of analgesia administration by Advanced Life Support paramedics in the City of Cape Town

1. I know that plagiarism is wrong. Plagiarism is to use another's work and pretend that it is one's own.

2. I have used the Vancouver convention for citation and referencing. Each contribution to, and quotation in, this report from the work(s) of other people has been attributed, and has been cited and referenced.

3. This dissertation is my own work.

4. I have not allowed, and will not allow, anyone to copy my work with the intention of passing it off as his or her own work.

Signature: [Signature]

Date: 13/11/2015
DEDICATION

This mini dissertation is dedicated to my wife, Lindie, for putting up with my continuous absence, and who sacrificed more for this degree than I did.
CONTENTS

DECLARATION...2
DEDICATION..3
DEFINITIONS AND TERMS..6
ACKNOWLEDGEMENTS..8

PART A: PROTOCOL..9
 1. INTRODUCTION..9
 2. AIM AND OBJECTIVES..11
 3. METHODS...11
 3.1 Qualifications of interest...12
 3.2 Sample selection and data collection...12
 3.3 Inclusion criteria...13
 3.4 Exclusion criteria...13
 3.5 Statistical Considerations...14

PART B: LITERATURE REVIEW...16
 1. OBJECTIVES..16
 2. SEARCH STRATEGY..16
 3. PREVALENCE OF ACUTE PAIN...17
 4. PAIN ASSESSMENT AND MANAGEMENT PRACTICES.................................19
 4.1 Pain Assessment Tools...19
 4.2 Management of Prehospital Pain...21
 4.3 Influence of Patient Characteristics on Analgesia Administration..........23
 4.4 Variation in Practice and Provider Characteristics.................................25
 4.5 Type of Disorder or injury...26
 5. ANALGESIC DRUGS USED IN EMERGENCY CARE......................................27
 6. SUMMARY AND INTERPRETATION...30
 7. REFERENCES..32

PART C: JOURNAL ARTICLE..38
 COVER PAGE..38
 CONTENTS...39
 ABSTRACT...40
 INTRODUCTION..41
 METHODS..42
 Study Design and Setting...42
 Data Collection...42
 Inclusions...42
 Exclusions...42
 Data Collection and Management...43
 Statistical Considerations..43
 RESULTS...43
 Injuries, patients and ALS provider characteristics....................................43
 Drug Administration...45
 Qualifications and Drug Administration..46
 DISCUSSION..46
 LIMITATIONS...49
 CONCLUSIONS..49
 FUNDING..49
<table>
<thead>
<tr>
<th>Part</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CONFLICT OF INTEREST</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>DISSEMINATION OF RESULTS</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>AUTHOR CONTRIBUTION</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>PART D: SUPPORTING DOCUMENTATION</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>ANNEXURE 1: JOURNAL INSTRUCTIONS</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>ANNEXURE 2: ORIGINAL PROPOSAL</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>ANNEXURE 3: HUMAN RESEARCH ETHICS COMMITTEE APPROVAL</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>ANNEXURE 4: EMERGENCY SERVICE PERMISSION</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>ANNEXURE 5: DATA COLLECTION TABLE</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>ANNEXURE 6: AMMENDED DATA COLLECTION CODES</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>ANNEXURE 7: PRACTITIONER STUDY NUMBER AND EXPERIENCE</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>ANNEXURE 8: SAMPLING FLOW CHART</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>ANNEXURE 9: TABLE OF LITERATURE</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>ANNEXURE 10: FLOW CHART OF SYSTEMATIC LITERATURE SEARCH</td>
<td>113</td>
</tr>
</tbody>
</table>
DEFINITIONS AND TERMS

Advanced Life Support
A person registered on the ‘ANT’, ‘ECT’ or ‘ECP’ register of the Professional Board for Emergency Care Practitioners (PBEC) of the Health Professions Council of South Africa (HPCSA) and rendering care to their relevant scope of practice.

Analgesia
“Absence of pain in response to stimulation which would normally be painful” (1)

Critical Care Assistant (CCA)
A person holding the Critical Care Assistant certificate and eligible to register on the ‘ANT’ register of the Health Professions Council of South Africa (HPCSA) and rendering care to the ‘ANT’ scope of practice.

Emergency Care Practitioner
A person holding a 4 year Bachelor’s degree in Emergency Medical Care and registered on the Emergency Care Practitioner’s (ECP) roll of the Health Professions Council of South Africa and rendering care to the ECP scope of practice.

Emergency Care Technician
A person holding a 2 year certificate in Emergency Medical Care and registered on the Emergency Care Technicians’ (ECT) roll of the Health Professions Council of South Africa and rendering care to the ECT scope of practice.

Emergency Centre
A portion of a healthcare facility designated for the exclusive provision of acute care. (2)

National Diploma Paramedic (NDip)
A person holding a 3 year National Diploma in Emergency Medical Care and eligible to register on the ‘ANT’ register of the Health Professions Council of South Africa (HPCSA) and rendering care to the ‘ANT’ scope of practice.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain</td>
<td>“An unpleasant sensory and emotional experience associated with actual or potential tissue damage or described in terms of such damage” (3)</td>
</tr>
<tr>
<td>Pain Relief</td>
<td>Reduction of pain intensity, determined by patient self-report, as a result of a clinical intervention. (3)</td>
</tr>
<tr>
<td>Paramedic</td>
<td>An emergency services worker registered with the Professional Board of Emergency Care (PBEC) of the Health Professions Council of South Africa (HPCSA) on the ‘ANT’ registration roll. Also known as ‘Advanced Life Support’</td>
</tr>
<tr>
<td>Oligoanalgesia</td>
<td>Insufficient analgesia.</td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENTS

To Mr Michael McCaul of the Centre for Evidence-based Health Care, Stellenbosch University, for your kind assistance with the statistical interpretation and representation of the findings a very big thank you.
1. INTRODUCTION

Pain is a ubiquitous and important symptom in medicine (4) and one of the commonest reasons for seeking healthcare. (5) To quote one text, [it] “stands preeminent among all the sensory experiences by which humans judge the existence of disease within themselves”. (4)

Pain has a distinct emotional component (4), acknowledged in the International Association for the Study of Pain’s (IASP) definition of pain; “An unpleasant sensory and emotional experience associated with actual or potential tissue damage or described in terms of such damage” (3)

Acute pain adds to patient discomfort, is physiologically detrimental (6) and results in stress and suffering. (7) Unrelieved acute pain may precipitate chronic pain disorders (8) and lead to psychological disorders such as post-traumatic stress disorder (PTSD). (9)

Pain management is opined to be one of the few prehospital procedures to consistently show utility and benefit (10) and possibly one of the few tasks where Emergency Medical Services (EMS) can be truly effective (11).

Prehospital Emergency Care (PEC) is typically provided by EMS, which are mostly staffed by Paramedics and Emergency Medical Technicians (EMT). Physicians frequently staff ambulances, notably in Europe as well as in aeromedical services.

In both PEC and the Emergency Centre (EC) a lack of knowledge regarding acute pain management as well as fear of adverse drug events act lead to lack of analgesic use or use of lower than effective doses. Poor interdisciplinary communication acts as a barrier to analgesic use and access to limited pain management options is seen as a barrier especially in the prehospital environment. (12) Practitioners often doubt patient sincerity and honesty when describing pain intensity and practitioners frequently rely on clinical condition and patient demeanour when evaluating pain. (12,13). Pain management is frequently seen as secondary to management of life threatening injuries (12,14). Patient cooperation, cognition and combativeness also elevate the difficulties of acute pain management. (13) The use of a pain protocol acts as a facilitator of effective analgesic use. (12,15)
EMS are frequently characterised by protocol and procedure based practice which exerts influence on the type of and effectiveness of management provided. Protocols as well as training and capabilities of specifically non-physician providers (paramedics and EMTs) vary considerably throughout the world and sometimes also within individual services, making it difficult to generalise findings. The prehospital environment is very austere, dynamic and complex and ‘life over limb’ thinking often prevails. Much of the knowledge applied in PEC stems from hospital based research brought into the prehospital environment in a ‘best fit’ approach. Given the disparities in resources, burden of disease and training, EMS and healthcare systems in general are not necessarily directly comparable. This strongly motivates for region specific descriptive prehospital research.

In South Africa PEC is provided by tiered levels of EMTs and paramedics. The training system is in the process of transition from a vocational system to a Higher Education system. Currently practitioners from both training systems are found in the EMS. All healthcare providers in South Africa are required by law (16) to register with the Health Professions Council of South Africa (HPCSA) and follow national protocols as published by the Professional Board or Emergency Care (PBEC), a board of the HPCSA. In South Africa provision of ambulance services are a provincial competency and emergency services are administered and funded by the respective provincial government (reference needed). The training, scope of practice and capabilities are regulated by the HPCSA as described above, and not by the individual services. In addition an extensive network of private ambulance operators provide emergency services to clients, including extensive primary response and acute care. These operate as private enterprises and not under the auspices of the government. The personnel within all the private services however are still regulated by the HPCSA in exactly the same way as in all government services. Qualifications are completely portable between services and between provinces within the Republic.

The PBEC has not formally published a prehospital pain management protocol or guideline and no point of departure from which to gauge practice or measure compliance exists. As up to seven different qualifications may be active within South African EMS, each with a different scope of practice, potential for significant practice variation exists. Pain management would essentially be left to the training, judgement and possible biases, of the individual provider and actual prehospital acute pain management practices are unknown. A description of prehospital practices in the administration of prehospital analgesia was undertaken to sketch the landscape against which future studies could evaluate effectiveness.
Currently very little data is available to describe the South African PEC landscape and no published data is available regarding prehospital analgesia practices in the Western Cape.

2. AIM AND OBJECTIVES

The aim of this retrospective descriptive survey was to describe and document pre-hospital pharmacological analgesia administration practices by PEC providers in the City of Cape Town.

Specific objectives are:

1. To describe the type, dosage, dosage frequency and route of analgesic drugs administered by Advanced Life Support personnel when managing prehospital acute pain.
2. To determine the patient characteristics of patients receiving prehospital analgesic drugs in terms of gender and age.
3. To describe injury and disorder types for which prehospital analgesic drugs are administered.
4. To describe the qualifications and implied experience levels of paramedic providers of prehospital analgesia.

3. METHODS

Patient Care Records (PCR) containing an entry of analgesic administration were collected from the Medical Emergency Transport and Rescue Organisation (Metro), which is the ambulance and rescue emergency service of the Provincial Government of the Western Cape.

Twelve months’ data was collected to allow for seasonal variation in injuries and disorders. Only data from cases managed within the City of Cape Town was used. A pilot study was conducted, using data from the month of July 2013. Based on these findings changes were made to the data collection template. The main study examines data collected from the months August 2013 to June 2014.
3.1 Qualifications of interest

The EMS education and training system in South Africa is undergoing transition from a vocational, short course, to a National Qualifications Framework (NQF) aligned system. Both systems are training concurrently and practitioners from both systems are active in the EMS. Currently seven different qualifications are present and five of these are viewed by the HPCSA as being advanced level providers though protocols and scopes of practice differ between these qualifications (described in the definitions). The term “Paramedic” is protected under law (17) in South Africa and may only be used by Critical Care Assistants and National Diploma Emergency Medical Care graduates. For the sake of convenience persons of all advanced qualifications will be collectively termed “Advanced Life Support (ALS) providers” in this manuscript.

3.2 Sample selection and data collection

PCRs were obtained from the archive of Metro EMS located at Pinelands Ambulance Base. All PCRs were screened by trained research assistants for entries recording the administration of Nitrates, Morphine, Ketamine or 50% Nitrous Oxide/Oxygen gas (Entonox®). Nitrates were included as they may bring about reduction of chest pain in myocardial ischaemia and preclude administration of further analgesia. Each PCR was read and eligibility for inclusion in the population determined according to the inclusion and exclusion criteria below. The researcher was the only person to read and evaluate the documentation. PCRs were allocated an identifier number and captured in a spreadsheet (Microsoft Excel, Microsoft Corporation, Redmond, WA). 1530 PCRs met the screening inclusion criteria, a further 601 PCRs were excluded with reasons (see Annexure 8) leaving a sampling frame of 933 eligible PCRs. A simple random sample of 530 PCRs was sampled from the sampling frame using a random number generator (Excel) based on the prior sample size calculation. Initially sample size was calculated based on the estimate that 80 drug administrations per month was taking place. The pilot study however revealed that far more administrations of Nitrates were being recorded than initially anticipated and the data collection template was altered to accommodate this. Sample size was calculated to determine the median dose of Morphine. A confidence interval of 3 mg was used, on the assumption that 5mg was the median dosage. The calculated sample size was 498 PCRs and an additional 7% was added to allow for missing data. Statistical significance was considered to be p < 0.05. Once all 11 months had been sampled the data was collated for statistical analysis.
3.3 Inclusion criteria

- All Patient Care Records (PCRs) recording administration of:
 - 50% Nitrous Oxide/Oxygen (Entonox®)
 - Morphine
 - Ketamine
 - Nitrates (Isosorbide Dinitrate 5 mg tablets and Glyceryl Trinitrate 0.4 mg metered dose spray).

- The presence of pain was determined if a pain score was present, the word “pain” or an equivalent such as “tenderness” was present. If these criteria were missing, presence of disorders likely to have resulted in pain, such as a fracture, resulted in inclusion.

3.4 Exclusion criteria

- PCRs of patients younger than 18 years of age. A separate ethics process for research in children is required and for the sake of expediency and simplicity the study was limited to adults.
- PCRs containing analgesia administered by a healthcare provider other than an ALS provider. For example patient report forms recording an inter-facility transfer in which the ALS provider continued with an infusion initiated in hospital.
- When doubt existed as to whether the ALS provider had made the decision to administer the drugs of interest this documentation was excluded. E.g. if the PCR alluded to a physician’s orders around treatment without clear recording of the orders.
- PCRs which may have contained the drugs of interest but did not appear to be in the context of acute pain. An example would be the use of nitrates in the treatment of pulmonary oedema where pain was not explicitly described.
- Patients who were intubated or in whom a Glasgow Coma Scale (GCS) of 3 was recorded.
- PCRs with missing data, which was directly related to the objectives of the study, were also excluded.

Data from selected PCRs was codified according to Part D: Annexure 6: Amended Data Collection codes. Injury and disorder types are classified according to the primary diagnosis.
recorded by the treating ALS provider in the relevant data field on the PCR. Where no specific diagnosis was recorded the researcher categorized the case by reading the clinical notes.

Information on total dosage of drug as well as number of administrations per case was recorded. Other variables captured were gender and age of patients, type of case (primary response or inter-facility transfer) and qualification of ALS provider. Qualifications were codified as categorical variables. Experience levels of prehospital care providers were estimated by cross referencing the ALS provider’s HPCSA registration number present on the PCR with registration information available on the iRegister of the HPCSA, available to the public on the HPCSA website. ALS providers were allocated a study number which was used in the main data table. Identifying data was captured in a separate password protected spreadsheet (Microsoft Excel, Microsoft Corporation, Redmond, WA) and stored securely. An example is contained in Part D: Annexure 6: Practitioner study number and experience.

The PCR did not contain a field for pain intensity score and a pain intensity score are not required. Scores were recorded only as being present or absent. Vital signs as well as treatment times were not recorded. The resource limited and uncontrolled prehospital environment does not always allow documentation to be completed immediately and PCRs are frequently completed after EC handover or on return to the ambulance base. This introduces the risk of recall errors. It was decided to omit this data as accuracy of times and vital signs could not be determined and it was not essential to the objectives.

3.5 Statistical Considerations

Data was analysed using Statistica version 12 (2014) and descriptive statistics were used. Tests for normality were done qualitatively using bar charts and histograms and data that was not normally distributed reported as medians and interquartile ranges. Normally distributed continuous variables (e.g. Age and experience [in years]) were described using means and standard deviations. Population parameters were estimated using 95% confidence intervals. Categorical data (such as type of injury) was analysed using frequency distributions indicating absolute and relative counts and for binary proportions 95% confidence intervals were used to estimate population parameters. Results are summarized in tables. Some comparison of variables was conducted. Spearman rank order correlation was used to compare not normally distributed continuous data and Pearson’s correlation coefficient for normally distributed continuous data. ANOVA was used to compare normally
distributed continuous and categorical variables and Kruskal-Wallis ANOVA for non-normally distributed data. A p-value of <0.05 represents statistical significance.

Ethics approval for this study was granted by the Human Research Ethics Committee of the University of Cape Town (HREC Ref: 318/2014). Permission was granted by the Executive of the Medical Emergency Transport and Rescue Organization (Metro).
PART B: LITERATURE REVIEW

1. OBJECTIVES

The objectives of this literature review are to:

- Identify the background prevalence of acute pain.
- Determine known characteristics and methods of the assessment and management of acute prehospital pain.
- Determine the background level of effectiveness of prehospital analgesia.
- Describe the management practices, perceptions, attitudes and beliefs of emergency care personnel.
- Determine if patterns or recurring themes and issues are prevalent in the literature and identify gaps in the knowledge base.

2. SEARCH STRATEGY

The following databases were searched:

- Medline, using the Pubmed search platform
- Scopus, using the standalone search platform
- African Index Medicus, using the standalone search platform

The following limiters were used in all searches, when available:

- English Language
- Adults (age >19 years)
- Human
- 2005 – 2015 (last 10 years)

Keywords were used for searches using various combinations of the terms below:

- Analgesia
- Emergency medical technician
- Paramedic
- Emergency medical services
- Drug therapy
- Pattern, professional practice
- Prehospital
Initial searches using keywords ‘pain’ and ‘acute pain’ produced too many results to be useful and, after consultation with a university librarian, these were omitted.

The titles produced by each search were scanned and relevant the abstracts were read. Where abstracts met with the quality criteria the full article was obtained. The reference lists of articles were also studied for relevant publications. If the full text article could not be obtained the title was discarded.

The literature search was limited to the last ten years and is correct as of 31 March 2015.

3. PREVALENCE OF ACUTE PAIN

Pain in Prehospital Emergency Care is common. An Australian study found pain to be present in 34.5% of ambulance patients with trauma and medical aetiology making up 40.15% and 39.1% respectively and with 17% of acute pain cases of cardiac aetiology. (18) An earlier Australian study found 53% of patients transported by ambulance reported pain. (19)

Pain in a rural Polish EMS was reported in 43.83%(n=963) of cases, with trauma pain making up 41.32%, non-trauma related pain 47.66% and chest pain 11% of cases. Moderate to severe pain presented in 75% of cases. (20)

The prevalence of pain in a French metropolitan prehospital service was found to be 42% with two thirds of those showing moderate to severe pain. (21) A prospective study in a mixed ground and aeromedical service in Italy found pain prevalence to be 63.75% with trauma to be the most important contributor. Pain intensity was moderate to severe in 41.75% of cases. Caution should be exercised in this study as the collection of data appeared to be on provider discretion, with no defined inclusion or exclusion criteria. (22)

A regional retrospective Patient Care Record (PCR) review of prehospital trauma patients in the Netherlands found 70% (n=980) of patients to have pain though 28% (n=393) of cases had a missing report of pain. Considering only 2% of patients with a pain report explicitly indicated ‘no pain’ it is a possibility that the prevalence is somewhat higher and that pain assessments were either not performed or not recorded. (23)

A study of post-surgical military patients transported by air shows troops were subject to significant post-operative pain during transport. Higher level of anxiety, distress and worry
during transport correlated with higher pain intensity scores. (24) This study may overestimate pain intensity as it relied on recalled pain scores up to 5 days post arrival at the final destination. Recalled pain scores have been shown to be unreliable in as little as 2 days post trauma. (25)

The MEDLINE literature search did not produce prevalence studies of acute pain in adults in the African context. The search of the African Index Medicus, using the keywords related to emergency services produced no relevant articles. The keyword “Pain”, revealed only four research articles examining pain in adults in the out of hospital or acute contexts and none relating to the EC or PEC. This lack of data regarding acute pain in the African prehospital and emergency medicine environments represents a major gap in the literature.

The Global Burden of Disease study might offer insight into acute pain in Africa and South Africa. Conditions associated with pain, such as road traffic accidents, are well represented both globally and in Sub-Saharan Africa and contribute significantly to Disability Adjusted Life Years (DALYs). (26)

South Africa has a high prevalence of HIV positive patients and at least half of patients on highly active antiretroviral therapy (HAART) experience pain on a routine basis, many of whom are outpatients. (27) In Kwa-Zulu Natal pain prevalence amongst HIV out patients has been determined to be 91%, with 83% of these experiencing severe pain levels and only 34% were considered to have adequate pain management. (28). Research places the prevalence of chronic pain in South Africa at 41% (CI 37.2-45.6) with back pain and joint pain being the largest contributors, 30.8% and 23.48% respectively. (29)Though published data is scarce, chronic and malignant pain in South Africa appears significant and South Africans suffer from similar pain pathologies to the developed world with the added burden of high rates of trauma, violence (30), poverty and HIV/Aids. (31)

Pain was the direct cause of 74.6% (95% CI: 63.2-81.4%) visits to two separate rural and peri-urban primary care clinics in the Eastern Cape province of South Africa. Median pain score was 8 out of 10 on the Numerical Rating Scale (NRS) and pain had lasted less than 3 months in 71.1% of cases. (32) This was a non-emergency setting and duplication and generalisability to the EC and PEC may be difficult. While no definitive data is available for the exposure of South African EMS to acute pain the background prevalence of out of hospital pain is relevant; anecdotally EMS, especially rural EMS often act as purely transport services and frequently encounters and transports non-emergency cases to primary care centres, potentially exposing them to these cases.
Casting some doubt on the assumption of high pain prevalence in South Africa is data on pain prevalence from a Cape Town paediatric trauma unit. The incidence of moderate to severe pain was found to be 13.3% (33), much lower than in the adult populations described above and lower than in a French paediatric study which found pain prevalence at 37%, with 67% of those cases showing moderate to severe pain. (34)

4. PAIN ASSESSMENT AND MANAGEMENT PRACTICES

The management of pain is rooted in the assessment of pain. Clinician assessment of pain has been found to differ significantly from patients’ assessments (35); nurses and physicians have both been shown to perceive patient’s pain at a lower intensity level than the patients themselves do. (36) Physiological measurements cannot be used to measure pain. Vital signs have shown poor correlation with pain severity in patients treated by paramedics (37) and changes in heart rate have shown poor correlation with changes in pain intensity in the EC. (38)

The experience of pain is specific to an individual and is influenced by personality and culture, making expression of pain variable between patients. (4) Patient self-report is considered the most effective method of pain assessment, making objective measures of pain important. (10,39)

4.1 Pain Assessment Tools

Unidimensional tools measure only a single aspect of the pain experience. Multidimensional tools measure more than one aspect of pain. Dimensions may include sensory, affective and evaluative aspects such as pain intensity, quality and associated disability as well as evaluating pain as a dimension of overall health status and the impact on patient’s daily lives. Multidimensional pain tools evaluate the pain experience far more thoroughly and completely than the unidimensional scales, but are often time consuming and complex to administer and interpret. (40)

Expert opinion has identified three pain measurement tools as appropriate for use in the prehospital environment (10):

The Visual Analogue Scale (VAS) comprises a 100 millimetre (mm) horizontal line drawn on a piece of paper with a verbal descriptor at each end. The patient makes a mark along the
line between the ends which they feel best represents the intensity of their pain and the
distance in millimetres from the “no pain” mark is measured. Easy to administer, it requires
little or no training however cognitive, visual acuity and motor skill impairment limit
usefulness. (40) In the EC it has been found to be valid (41) and reliable, though it seems to
be more so at the extremes of pain. (42) It is accepted that a change of 13mm on the VAS is
required to denote a clinically significant change in pain intensity (43,44)

A numeric variant of the VAS the Numerical Rating Scale (NRS) is verbally administered.
The patient is asked to rate the intensity of their pain by giving an integer value in between
two extremes, usually “0” being no pain and “10” denoting severest pain. The NRS is
acceptable and suitable for use in the prehospital setting and unlike the VAS does not
require any equipment and can be rapidly administered simultaneously with other actions. It
is also more suitable in difficult conditions, such as in the dark, and does not require motor
skills or visual acuity though language skills and cognition are needed. (10)

The Adjective Rating Scale (ARS) uses word descriptors, which are ranked, such as “no
pain”, “mild”, “moderate”, “severe” and “excruciating” to describe pain intensity. These are
clinically useful descriptions however lack sensitivity as there is only a few levels between no
pain and severe pain. Language and culture act as barriers to the ARS. (10)

Use of the NRS and an ARS has been found to be feasible in EMS operations though
significantly lower rates of pain assessment were conducted in the cognitively impaired. (45)
Cognitive impairment appears to be a risk factor for pain assessment and acute pain
literature frequently excludes cognitively impaired or comatose patients from data sets. Most
of what is known about pain assessment stems from conscious, stable patients. This
represents a gap in the literature in that discomfort and pain in cognitively impaired,
unstable, unconscious and intubated patients in the prehospital environment has not been
studied. A systematic search for pain assessment tools validated for use in cognitively
impaired adults revealed no tools specifically developed for use by paramedics and those in
use for chronic pain were probably inappropriate for prehospital use. While some
behaviourally based tools have been recommended in guidelines they are probably a ‘best
fit’ solution rather than a validated and accurate method. (46) Language barriers frequently
act as exclusion criteria and participants need to speak the language of the researcher to be
included.
4.2 Management of Prehospital Pain

An American retrospective analysis of prehospital management showed only 29% (n=279) of patients with isolated extremity fractures received Morphine. Severe initial pain and time spent under EMS care were significant predictors of analgesic administration with time spent under care a very strong predictor. Times greater than 40 minutes showed an Odds Ratio (OR) of 2.56 (95% CI 1.73-3.79), compared to durations shorter than 20 minutes an OR of 0.19 (95% CI 0.08-0.46) for receiving analgesia. The study doesn’t determine whether the longer time allows for administration of analgesia or if administration of analgesia adds to scene time. High rates of pain assessment and scoring were present in this service, measuring 95%. (47)

A retrospective review of records evaluating the safety and efficacy of Fentanyl in the aeromedical environment in the United States of America (USA) found 112 (87%) of non-intubated patients had a recorded pain assessment. Of these 88 (78.6%) were in pain and 74 were offered analgesia with seven refusing. Of the analgesic administrations 92.5% (62/65) contained a follow up pain assessment and in 5 of the other cases repeat administration was documented. (48)

A comparison of two aeromedical services, also in the USA, found even in the presence of high analgesic treatment rates [80% (95% CI, 75.6%-86.2%)], absence of pain documentation showed a relationship with lower analgesic administration [OR 0.31 (95% CI 0.15-0.60)]. In this study 70.3% (n=147) of patients were administered analgesia and 10.5% (n=22) declined when offered. The low rate of refusal may show patient’s desire for relief of discomfort and the high levels of pain present in transport services. Clear differences in dose and frequency of administration were reported between the two services, pointing perhaps to the effect of procedural or protocol differences in the organisations. (49)

In France physician staffed ambulances achieved a 73% [95%CI 69-76] rate of analgesia administration though only 51% of patients experienced pain relief. Paracetamol was used in 44% of cases and Morphine in only 29%, with Morphine being chiefly administered to trauma patients. Trauma patients experienced the highest chance of receiving treatment OR 9.1(95%CI, 4.2-20.0) but experienced lower rates of pain relief. While the mean total dose of Morphine was 0.12 mg/kg ± 0.07mg/kg the initial Morphine dosages may have been too low, with a mean first dose of 4mg. This study reported a mean EMS contact time of 52 minutes. (21)
In The Netherlands analgesia was administered to 42% of prehospital trauma patients in pain with 87% of these receiving a single drug. Pain intensity was reported in 31% of cases. Fentanyl was most frequently used as a first line agent, contrary to protocol in this service which calls for initial administration of a 50% Nitrous Oxide/Oxygen mixture (Entonox®). This shows paramedics may be basing management decisions on factors other than protocol. (23)

In a metropolitan EMS pain reduction was achieved in 60.4% of patients with a median 2 unit reduction on NRS. Half of patients (51%) received analgesia, with 20.3% receiving opioids. The total EMS contact time was 39.7 minutes. While this Australian study did not show clinically significant pain reduction, a high rate of pain assessment was present. Initial and final pain scores were available in 86% of cases, with a median NRS score of 5, or moderate pain. (18) A second article, resulting from the same study, showed an initial pain score of moderate to severe to be a strong predictor of clinically significant reductions in pain after management. (50)

An analysis of blunt trauma cases in the United States of America (N=6398) showed only 8% (n=516) received Morphine. 23% of patients had a score recorded and these patients were administered Morphine at a rate of 23%, much higher than the population as a whole. Within this group higher pain scores predicted analgesic administration. Total prehospital time also predicted Morphine administration with the proportion increasing from 2% in contacts lasting less than 25 minutes to 17% in contacts longer than 35 minutes. (51)

A case-control study in patients presenting to an urban EC with fractured neck of femur compared both prehospital and EC management of 44 cognitively impaired patients with 65 patients without cognitive impairment. Individual pain scores were recorded on the medical record of 75% of the cognitively intact cohort compared to just 45% of the impaired cohort. Just over half (55%) of patients with impairment were administered pain management in the ambulance compared with 92% of cognitively-intact patients. Impaired patients were administered opiates in 20% of cases compared with 32% of cognitively intact cases, similarly use of Entonox® showed a bias in favour of cognitively intact patients (37% administration rate vs 9%) (It must be noted that as a self-administered drug Entonox® requires a cooperative patient). In the EC cognitively impaired patients waited an hour longer for analgesia and cognitive-intact patients were administered opiates at a higher rate than impaired patients (69% receiving Morphine compared to 37% of impaired patients). (52)
In prehospital patients with falls, 43.33% of patients had a pain assessment. Of these patients 92 (8.18%) were administered an analgesic. Patients who received pain medication had a mean score of 9.11 NRS units (95%CI 8.69-9.53) compared with the average NRS score of 6.29 units for the population. Extremity and hip injuries were associated with better odds of receiving pain medication (OR 11.51 and 9.82 respectively) than head or neck injury. When a pain score was present the OR for pain medication was 4.41 (95% CI, 2.71-7.18; p=0.001). Race was also associated with changed odds of receiving pain medication, with black patients having odds of 0.19 (95% CI, 0.08-0.45; P, 0.001). (53)

A retrospective chart review conducted in a European physician staffed helicopter EMS reported oligoanalgesia to be present in 43% of patients. They were more likely to be male and more seriously injured. Non delivery of analgesics was associated with higher proportions of oligoanalgesia than those receiving analgesics (66% vs 39% p<0.001), though 75% of patients to whom analgesics were administered still did not experience analgesia. Greater pain severity resulted in higher Fentanyl doses, but there was little variation in dosage between achieved and unachieved analgesia. Percentage of oligoanalgesia was larger with greater pain intensity on scene and patients who did not achieve a significant reduction in pain (NRS<3) were more likely to be male. (54)

A Polish retrospective chart review found only half of patients displaying pain symptoms had an objective pain assessment completed. This study was characterised by low rates of analgesic administration. Moderate to severe pain (NRS >4) was present in 38% (n=367) however the analgesic administration rate was 19.2% (n=185). Non-pharmacological pain management was performed in 180 patients and additional medications such as nitroglycerine, which may have influenced pain, were administered in a further 82 patients. Overall 42.3% (n=407) of patients of patients with pain received pain management. Only 6 patients were recorded as having refused analgesia. (20)

4.3 Influence of Patient Characteristics on Analgesia Administration

Female gender has been shown to be a risk factor for oligoanalgesia. In management of extremity fractures a higher proportion of men versus women received Morphine (32.8% vs 26.7%) with men showing an OR of 1.65 for administration of intravenous Morphine. (47)

This finding differs slightly with findings of an Australian study. While no significant gender difference was found in rate of administration of analgesia, type of analgesia varied. These
differences remained when controlled for age, pain severity and pain type (OR 0.61; 95% CI, 0.44-0.84). (55)

While French physician staffed ambulances achieved high rates of analgesia administration overall, gynaecologic/obstetric emergencies were treated at a lower rate (OR 0.2 [95% CI 0.1–0.6]; p = 0.003) and showed lower rates of pain relief OR 0.3 (95%CI, 0.1–0.7). It is unclear whether the lower analgesia rates relate to the conditions themselves or to female gender (21)

The variable interaction between patient characteristics and pain management is illustrated in a large retrospective survey conducted in North Carolina (N=407 763). In the mild and moderate pain categories women were less likely to receive pain treatment, with age showing an inverse relationship with likelihood of receiving analgesia. This relationship reversed when the pain was assessed as ‘severe’, with receipt of analgesia increasing with increasing age. Younger men were more likely to receive analgesics than older men for NRS pain scores of 9 or lower and for those with pain scores of 10, older men were only marginally more likely than younger men to receive analgesics. Once again, patients with a recorded pain score were more likely to have received analgesics than those without recorded scores. (56)

Michael et al found neither income nor ethnicity to have a statistically significant effect on analgesia administration. The study was limited by low numbers of African-American patients as well as the fact that income was estimated based on the location of the patient’s address, rather than actual income. (47)

Elsewhere analgesia administration in blunt trauma was found to be more common in Caucasians, with 10% of this population receiving analgesia and only 4% of African-Americans, 4% of Asians and 5% of Hispanics. Recorded pain scores and more severe pain were predictors of analgesia administration. Even in these subgroups Caucasians were more likely to receive Morphine. It must be noted that patient race was determined by paramedic impression rather than patient self-report. This specific study did not find a significant gender bias in the administration of analgesia. (51)

In older prehospital populations initial and final pain scores were documented in 67% and 51% of cases respectively. 107 (62%) achieved clinically significant pain reduction. The analgesia administration rate was 60%, with hip fracture being treated more often than other
fracture sites (OR 2.7, 95% CI 1.17-6.32; p=0.02) and analgesia administration being more likely when a pain score was recorded. Only 16 patients refused analgesia and 13 denied having pain. Most (80%) were administered opiates (IV Morphine or IN Fentanyl). While rates of pain assessment and effectiveness of management in this study seems much higher than in other studies two things need to be taken note of; paramedics had a broad range of options available (Morphine, Fentanyl, Paracetamol, Paracetamol with Codeine and Methoxyflurane as well as Ibuprofen). Secondly, while they were not aware of the exact aim of the study, they were aware they were being studied and the improved analgesia management may be as a result of the Hawthorne effect. Volunteer bias was a risk as paramedics could choose to participate or not. (57)

In Australia persons in the 45-69 age group were less likely to achieve pain reduction when compared with persons both younger and older than them (OR 0.94, 95%CI 0.89-0.99. p<0.022). Patients younger than 15 years showed the greatest likelihood of experiencing clinically significant pain reduction (OR 1.60, 95%CI 1.43-1.78. p<0.001). (50)

In a separate Australian study (N=97705) increasing age was associated with increasing odds of receiving an opiate for analgesia (p<0.0001) when compared to paediatrics. Odds ratios for the age group 16-39 increased from 1.47 to 2.56 in those older than 60 and paediatric patients were less likely to receive opiate than inhaled Methoxyflurane (RR = 0.65; 95% CI, 0.63– 0.67; p < 0.0001). Females were less likely to receive an opiate than males (RR0.83; 95%CI, 0.82-0.84; p<0.0001). The use of intranasal (IN) Fentanyl showed an association with decreasing age, with patients younger than 15 more likely to receive Fentanyl than Morphine (RR1.69; 95%CI, 1.64-1.74; p<0.0001). When drug combinations were analysed single agent therapy was used 87% of the time. The fact that Methoxyflurane was mostly the analgesic and that IN Fentanyl was mostly used in paediatrics is probably a reflection of the pain management protocol and scope of practice of the participants. The most common combinations were Methoxyflurane and an opiate, with the combined use of Morphine and Fentanyl being uncommon and the combination of all three drugs rarer still. (58)

4.4 Variation in Practice and Provider Characteristics

In a European aeromedical service female physicians were almost twice as likely to be associated with unachieved analgesia and administered smaller Fentanyl doses overall with patients experiencing a smaller pain reduction. Analgesia was better achieved with
increasing levels of postgraduate training and experience. The authors conclude that lower levels of experience resulted in less effective analgesia for physicians of either gender, however a gender breakdown of experience is not provided and experience as a confounder for gender differences is not explicitly ruled out. This study also had a very small number of female physicians and might have been too underpowered to draw the conclusion that females achieve poorer analgesia. (54)

Analysis of provider qualifications in Poland showed interesting differences in pain management behaviour between paramedics and physicians. Paramedics used an objective pain scale over twice as often as physicians (26% versus 11.3%, P<0.001) yet used analgesics half as often (16.5% versus 30.2%, P<0.001) and opiates 10 times less often than physicians (1% versus 12%, P<0.001). The NRS score obtained was similar with a mean of 5.03±2.11 for paramedics versus 6.38 ±2.57 (P<0.001). (20)

4.5 Type of Disorder or Injury

A retrospective cross sectional study examining pain assessment and factors associated with pain management in both fracture and suspected acute myocardial infarction (AMI) found 38.7% of patients (n=1412) to have received analgesics. Single drug therapy was used in 32% (n=1168) and only 6.7% received 2 drugs. 61.4% (n=2242) patients received no analgesia. Only 32% (n=1168) of patients with fracture received Entonox® and 21.6% (n=790) of patients with either condition received opiates, with the 2 drug strategy being more effective. The majority of AMI patients, 79.6% (972), received Glyceryl Trinitrate, which could have alleviated pain and obviated the need for opiates. Alert patients were almost 4 times more likely to have pain assessed (OR 3.55, 95% CI 2.32-5.43) than those with reduced consciousness. Pain assessment was also more frequent in AMI than fracture, 85.1% versus 75%, with 22% of all patients having no pain assessment at all. AMI was twice as likely to have pain assessment as fracture (OR 2.05), and analgesics were more likely to be administered when pain assessment took place (OR 2.20 and 3.72 respectively). (59)

Another comparison of pain management in chest pain and traumatic extremity fracture in a Norway found Morphine administration in 21% of chest pain patients and 31% of trauma patients. NRS scores were present in 64% of chest pain patients and 55% of trauma patients. Chest pain patients had lower NRS scores than trauma cases [median 6 (IQR 4-7) versus 8 (IQR 6-9)] and 46% of trauma and 66% of chest pain patients achieved NRS score reductions to below 3 [median 4(IQR 2-6) versus 2 (IQR 0-4)]. Patients with higher
prehospital times (mean 90 minutes) experienced greater pain reduction overall (mean 3.4 vs. 2.8, P=0.016) than shorter times (mean 35 minutes). Morphine dosing was between 5mg and 9.9 mg and similar for both conditions. Glyceryl Trinitrate might act as a confounder when assessing pain reduction between the two conditions. The rate of analgesic administration in this study was very low. Adherence to protocol was greater in chest pain patients (60) Prehospital personnel in this study had a more liberal protocol, with up to 0.3mg/kg allowed before consultation was required, yet doses seldom reached above 10mg. (60)

5. **ANALGESIC DRUGS USED IN EMERGENCY CARE**

In South Africa 50% Nitrous Oxide/Oxygen (Entonox®) is on scope for all levels of personnel. Morphine is on scope for all ALS providers and Ketamine is available to Emergency Care Practitioners only. (61)

A 2004 systematic review of Entonox® analgesia showed overall occurrence of side effects to be low and none of the reported adverse events could be definitively attributed to Entonox®. Patients showed shorter recovery times after withdrawal of treatment and required fewer additional medications to achieve pain relief. None of the 12 incorporated systematic reviews or RCTs was conducted in the prehospital environment. (62)

A RCT trialling Entonox® analgesia in moderate traumatic pain showed the effectiveness of the drug in moderate intensity traumatic pain. 67% of patients in the trial arm achieved a reduction in pain to an NRS score of <3 at 15 minutes compared with only 27% in the control arm, breathing medical air. They also achieved much lower median pain scores 2 (IQR = 1 to 4) versus 5 (IQR = 3 to 6; p < 0.0001). Worth noting is that 27% of patients breathing Medical Air achieved pain reduction to below 3 on an NRS. (63)

In an effort to determine a single weight based dose for Morphine 119 patients presenting to an EC with a complaint of acute pain each received a 0.1mg/kg dose of Morphine and then pain intensity was measured 30 minutes later. Sixty seven percent (n=80) did not achieve a 50% reduction in pain intensity on this dosage and moderate pain levels remained. (64) It must be noted that the outcome measure of a reduction of 3 NRS units usually represents a clinically significant pain reduction. (65)

A RCT comparing an IV Morphine dose of 0.10mg/kg with a 0.15mg/kg dose found that the higher dose of Morphine was safe and provided statistically significant superior pain relief in
the EC. As the reduction was only 0.8 NRS units the higher dose probably does not provide clinically superior analgesia. Pain was measured at 0 minutes and again at 30 and 60 minutes (Morphine reaches peak effect in 20 minutes). (66) These time periods are probably inappropriate outcome measures in prehospital emergency contexts.

A RCT comparing 0.1mg/kg boluses of Morphine followed by 0.05mg.kg titrations with 0.05 mg/kg boluses followed by 0.025 mg.kg titrations in prehospital severe acute pain produced similar results at 30 minutes (77% of patients in the higher dose group achieved 50% pain intensity reduction compared with 66% in the lower dose group). Important for PEC, at 10 minutes 40% in the higher dose group achieved significant pain intensity reduction compared with only 17% in the lower dose group (OR, 3.4; 95% CI, 1.3-8.8; P < .01). The adverse event rates were low though the higher dose did result in a non-statistically significant increase in emesis. (67) This study should be read with caution; the randomisation process is not well described and there is no description of allocation concealment. The method used to prepare the drugs is vague, and it is unclear whether the syringes were prepared on scene by a team member or pre-filled in another location. This doubt is amplified by the finding that in patients achieving pain relief, in the lower dosing strategy pain relief was obtained at 0.1mg/kg and in the higher dosing strategy at 0.2mg/kg. Possibly these groups of patients were managed differently.

While not available to ALS providers in South Africa Fentanyl is prominent in PEC worldwide and compares well with Morphine. A RCT comparing IV Morphine (0.1mg/kg) with IV Fentanyl (1µg/kg) showed the two drugs to be safe for prehospital use and comparable in performance. While both achieved similar pain reductions at 30 minutes Fentanyl achieved a greater pain reduction at 10 and 20 minutes than Morphine. Patients in the Fentanyl group were also more satisfied with treatment. There were few adverse events in both groups. This RCT was relatively small (n=60) and randomisation procedures were not adequately described. The report does not make it clear exactly how and where the blinded syringes were prepared and bias cannot be ruled out. (68)

A blinded comparison of Morphine and Fentanyl in a physician staffed aeromedical service found that both drugs reduced the median final pain score to 5 NRS units, from a median initial score of 8 with a significant change in 61.5% of patients who received Morphine and 69% of patients who received Fentanyl. Neither group displayed any adverse events. This study produced significant changes in pain scores with lower doses of drug, 0.05mg/kg for Morphine and 0.71mg/kg in Fentanyl. All data was collected by study authors and bias in
management cannot be ruled out. (69) The fact that in this study analgesia was achieved with lower doses of drug than is reported elsewhere (70) should be viewed with caution.

A prospective open label out of hospital study in Scandinavia evaluated the addition of Ketamine to a loading dose of Morphine. Patients with extremity fractures and a pain score greater than 4 were randomly assigned to receive a 0.2mg/kg dose of Ketamine or additional doses of Morphine up to a total dose of 0.2mg/kg. All patients received an initial dose of 0.1mg.kg of Morphine. The Morphine only group received higher doses of Morphine than the Ketamine group (13.5±3.2mg vs 7.0±1.5mg) with the Ketamine group achieving significantly lower NRS scores at hospital admission (3.1 vs 5.4 p<0.05) with a low rate of adverse events. The Ketamine group experienced higher rates of nausea and vomiting. (71) The Morphine only group did not meet Swedish Association of Anaesthesia and Intensive Care (SFAI) targets of NRS<4 and thus by definition showed oligoanalgesia, a finding consistent with an earlier study showing that 0.1 mg/kg dosing of Morphine was inadequate for patient presenting with acute severe pain. (64)

An open label RCT comparing prehospital pain management with Morphine alone and a multi-drug regimen of Morphine and Ketamine showed a mean numerical pain score reduction of 5.6 points (95% CI 6.2 to 5.0) in the multi drug group compared with 3.2 (95% CI 3.7 to 2.7) points in the group that received Morphine only. The combination regimen achieved a quicker reduction in pain score, with 6.5 points per minute (7.2 to 5.4) reduction in for the Ketamine group compared with 3.9 pain points /minute (95% CI 4.4 to 3.1) reduction for Morphine alone. Another notable finding was the reduction in opioid administration with the addition of Ketamine. While both arms of the trial received 5 mg of Morphine initially, the Morphine alone arm went on to receive a mean of 14.4 mg of Morphine, for a smaller pain reduction. Adverse events recorded were slightly higher in the Ketamine group, but they were mild and no patients required withdrawal from the study. All patients received a dose of Methoxyflurane prior to IV access (72) In an interesting long term (6-12 month) follow up of patients enrolled in this trial, identical rates of persistent pain was found in the two groups, showing that there is a high prevalence of long term pain associated with injury, 45% of patients in this case. (73).
6. SUMMARY AND INTERPRETATION

The prevalence of prehospital acute pain is between 34.5% and 70% of patients transported by ambulance. No literature is published regarding the prevalence of prehospital acute pain in Africa, South Africa or the Western Cape.

Objective pain assessment scales are an important tool as the pain experience differs between patients and is influenced by dimensions such as personality, culture, state of mind and context. Three pain assessment tools are generally used in PEC; the Visual Analogue Scale, the Numeric Response Scale and the Adjective Descriptor Scale. These scales require patient participation and cognitively impaired and unconscious patients are a risk factor for no acute pain assessment. Physiological methods of pain assessment are unreliable.

Pain assessment forms a vital part of acute pain management and there might be a positive correlation between frequency of pain assessment and frequency of analgesic administration, though some studies showing high pain assessment rates also show low analgesic administration rates. Rate of prehospital analgesic administration to patients in acute pain is between 8% and 84% however; mostly less than half of patients in pain are administered analgesics. There may be correlation between provider qualification and rates of pain assessment and analgesic administration, with higher qualifications more likely to assess and manage pain. A major gap in literature is pain assessment and management in cognitively impaired, comatose and unstable patients. Most studies exclude these cases from the data. There may be correlations between patient characteristics such as gender, race and age and administration of analgesics, though this is variable in the literature. In general high rates of assessment, analgesic administration or level of provider qualification and experience as well as patient characteristics do not necessarily positively correlate with high rates of pain relief for patients.

Barriers to effective pain management may include provider ignorance around pain assessment and management techniques, as well as fear of adverse events, interdisciplinary communication and restrictions around drug options and protocols. PEC providers seem hesitant to use drugs and despite drugs being shown to be safe and effective administered dosages are frequently lower than required. The prehospital environment may not lend itself to detailed and complex assessments and treatments and the influence of the environment on pain management has not yet been adequately explored.
EMS operations are frequently protocol based and these, along with qualifications, scopes of practice and burdens of disease vary around the world. This might explain some of the variation in the literature. Local research is required to describe local practices.
7. REFERENCES

66. Birnbaum A, Esses D, Bijur PE, Holden L, Gallagher EJ. Randomized Double-Blind Placebo-Controlled Trial of Two Intravenous Morphine Dosages (0.10 mg/kg and 0.15 mg/kg) in Emergency Department Patients With Moderate to Severe Acute Pain. Ann Emerg Med. 2007;49(4).

Cover Page

Title:

A description of practices of analgesia administration by Advanced Life Support paramedics in the City of Cape Town

Authors:

1. Ryan Matthews, BTech EMC.a (Corresponding Author)
 PO Box 5203 Tygervalley 7536 South Africa (ryan.matthews2@gmail.com)
 (+2783 287 7083)

2. Michael McCaul, MSc Clin Epib

3. Wayne Smith, BSc, MBChB, EMDM, FCEM (SA).c
 Private Bag x24 Bellville 7535 South Africa (Wayne.Smith@westerncape.gov.za)

a University of Cape Town, Division of Emergency Medicine and Cape Peninsula University of Technology, Department of Emergency Medical Care.

b Stellenbosch University, Centre for Evidence-based Health Care (CEBHC)

c Provincial Government of the Western Cape and University of Cape Town, Division of Emergency Medicine.

Words: 2988
Tables: 4 Tables
Figures: 1 Figure
CONTENTS

- COVER PAGE... 38
- ABSTRACT.. 40
- INTRODUCTION... 41
- METHODS... 42
 - Study Design and Setting... 42
 - Inclusions.. 42
 - Exclusions.. 42
- Data Collection and Management .. 43
 - Statistical Considerations.. 43
- RESULTS.. 43
 - Injuries, patients and ALS provider characteristics... 43
 - Drug Administration.. 45
 - Qualifications and Drug Administration.. 46
- DISCUSSION.. 46
- LIMITATIONS... 49
- CONCLUSIONS.. 49
- FUNDING... 49
- CONFLICT OF INTEREST.. 50
- DISSEMINATION OF RESULTS.. 50
- AUTHOR CONTRIBUTION.. 50
- REFERENCES... 51
ABSTRACT

Introduction
Emergency Medical Services (EMS) are ideally placed to provide relief of acute pain and discomfort. EMS frequently follow locally prescribed guidelines and have a variety of qualifications each with differing capabilities and scopes of practice. The objectives of this study are to describe prehospital pain management practices by EMS in the Western Cape, South Africa.

Methods
A retrospective descriptive survey was undertaken of analgesic drug administration by advanced life support (ALS) paramedics. Patient care records (PCRs) generated in the City of Cape Town during an 11 month period containing administrations of Morphine, Ketamine, Nitrates and 50% Nitrous Oxide/Oxygen were randomly sampled. Variables studied were drug dose, dose frequency, and route of administration, patient age, gender, disorder and call type as well as qualification and experience level of the provider.

Results
A total of 530 PCRs were included (N=530). Morphine was administered in 70% (95% CI 66-74, n=371) of cases, Nitrates in 37% (95% CI 33-41, n=197) and Ketamine in 1.7% (95% CI 1-3, n=9) of cases. A total of 5mg or less of Morphine was administered in 75% (95% CI 70-79, n=278), with the mean dose being 4mg (IQR 3-6). Single doses were administered in 72.2% (95% CI, 67-77, n=268) of Morphine administrations, 56% (95% CI, 21-86, n=5) of Ketamine administrations and 82% (95% CI, 76-87, n=161) of Nitrate administrations. Chest pain was the reason for pain management in 43% (n=226) of cases. ALS providers have a median experience level of 2 years (IQR2-4).

Conclusion
ALS providers in the Western Cape appear to use low doses of Morphine, with most analgesia administered as a single dose. Chest pain is an important reason for drug administration in acute prehospital pain. Paramedics do not appear to be using a weight based nor a titration based strategy.
INTRODUCTION

Acute pain is frequently encountered by Emergency Medical Services (EMS) (1–5) and the presentation is often early on following the occurrence of a painful injury or disorder. This positions the EMS well for expeditious relief of pain. EMS mostly follows protocol published by statutory regulators or the medical directors of services. Introduction of protocols in acute care has improved acute pain management. (6) Unfortunately prehospital management of acute pain is often ineffective, rates of analgesia administration are frequently low and oligoanalgesia is common. (7–10)

Specific patient and acute care provider factors are associated with oligoanalgesia; female gender (7) or gynaecological conditions (4), low rates of pain scale documentation (11,12), older age (13,14), race (15) and inexperience of acute care providers. (9) Factors associated with better acute pain management include longer scene time (7,10), and higher pain severity (13,16). The prehospital environment is dynamic and complex and may render some interventions difficult, impossible or undesirable. Pain management may be seen as secondary to stabilisation and rescue of patients and management of primary disorders. (17)

The Health Professions Council of South Africa (HPCSA), which prescribes the South African EMS scope of practice and protocols nationally, has not published explicit recommendations or guidelines on the management of acute pain but does infer a titration based strategy for Morphine. Recommendations for chest pain are to administer sublingual Nitrates until pain relief is achieved or three doses have been administered. (18)

South African prehospital practice in respect of acute pain management is unknown. With the lack of a published EMS pain management guideline and as many as seven different EMS qualifications active in South Africa, the potential for practice variation is significant, making local descriptive research important.

The aim of this study is to describe pre-hospital pharmacological analgesia practices in the City of Cape Town. Specific objectives are to describe the age and gender profile of patients, the injury types for which providers are administering analgesics, the qualifications and experience levels of these providers as well as to document the type, dosage, dosage frequency and route of administration of analgesic drugs.
METHODS

Study Design and Setting

The study was a retrospective, descriptive survey of patient care records (PCRs) reporting analgesic drug administration by advanced life support paramedics. The EMS education and training system in South Africa is undergoing transition from a vocational, short course, to a National Qualifications Framework (NQF) aligned system. Both systems are operating concurrently and practitioners from both systems are active in the EMS. Five of seven different qualifications are viewed by the HPCSA as being advanced level providers though protocols and scopes of practice differ between these qualifications (qualifications listed in Table 1). The term “Paramedic” is protected by law in South Africa and may only be used by Critical Care Assistants and National Diploma Emergency Medical Care graduates. For convenience sake persons of all advanced qualifications will be collectively termed “Advanced Life Support (ALS) providers”.

Data was collected from the EMS service of the Provincial Government of the Western Cape in the City of Cape Town. The city has a population of 3,740,026 people in an area of 2,206 square kilometers. Provincial EMS provides services to a substantial number of patients as just during the study period of August 2013 to July 2014, 347,844 primary responses and 174,843 inter-facility transfers were serviced. A pilot study was conducted in the July 2013 and appropriate adjustments made including the data collection tool.

Ethics approval for this study was granted by the Human Research Ethics Committee of the University of Cape Town (HREC Ref: 318/2014). Permission was granted by the Executive of the Medical Emergency Transport and Rescue Organisation (Metro).

Inclusions

PCRs were included if Nitrates, Morphine or Ketamine were administered in the context of acute pain. Patients needed to be older than 18 years and the decision for the drug administration was made by the ALS provider. The presence of pain was determined if a pain score was present, the word “pain” or an equivalent such as “tenderness” appeared on the PCR or if a condition requiring clear pain intervention was present.

Exclusions

PCRs from patients younger than 18 years of age, intubated or unconscious patients or where the ALS provider had not made the decision to administer the drugs, were excluded. If clear information was missing the PCR was excluded.
Data Collection and management

Trained research assistants screened all PCRs generated by ALS providers between August 2013 to July 2014 containing an entry of Nitrates, Morphine, Ketamine or 50% Nitrous Oxide/Oxygen gas (Entonox®). Sample size was calculated to determine the median dosage of Morphine, based on the results of the pilot study. A confidence interval of 3mg was used on the assumption that 5mg was the median dose. Sample size was calculated to be 498 and an additional 7% was added to allow for missing data. Of the 1534 potential eligible PCRs, 601 were excluded with reasons. Of the 933 eligible PCRs, 530 were randomly sampled and included in the analysis. The primary researcher read each PCR and determined eligibility for inclusion in the study. Information on total dosage of drug, number of administrations per case, gender and age of patients, type of case (primary response or inter-facility transfer) and qualification of ALS provider. Qualifications were codified as categorical variables. Experience levels of prehospital care providers were estimated by cross referencing the ALS provider’s HPCSA registration number, present on the PCR, with registration information available on the iRegister of the HPCSA which is available on their website. ALS providers were allocated a study number which was used in the main data table. Identifying data was captured in a separate password protected spreadsheet (Microsoft Excel, Microsoft Corporation, Redmond, WA) and stored securely. Pain intensity scores were recorded only as being present or absent.

Statistical Considerations

Continuous data was described using means and standard deviations and medians and interquartile ranges depending on the distribution of data. Categorical data is described using proportions and 95% Confidence Intervals. Spearman’s ranks correlation, Kruskal Wallis ANOVA and ANOVA was used where appropriate. Data was analysed using Statistica version 12 (2014).

RESULTS

Injuries, patients and ALS provider characteristics

A total of 530 PCRs were included, representing drug administrations by 117 individual providers. Trauma accounted for 49.4% (95% CI 45-54, n=262) of cases and non-traumatic acute pain for the remainder of cases. Figure 1 summarises the injury and disorder types in which pain is being treated. ALS provider qualifications and characteristics as well as patient demographics and are summarised in Table 1. Case characteristics are described in Table 2.
Figure 1: Proportion of injuries by type.

Table 1: Demographics of patients and providers

<table>
<thead>
<tr>
<th>Provider Qualification (n)</th>
<th>Years* in Advanced Qualification Median (IQR)</th>
<th>Years* in EMS Median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Care Assistant (46)</td>
<td>3 (2-5)</td>
<td>10 (6-12)</td>
</tr>
<tr>
<td>Emergency Care Technician (21)</td>
<td>1 (1-2)</td>
<td>7 (6-12)</td>
</tr>
<tr>
<td>National Diploma Emergency Medical Care (34)</td>
<td>3 (2-3.75)</td>
<td>3.5 (2-7)</td>
</tr>
<tr>
<td>Emergency Care Practitioner (16)</td>
<td>2.5 (2-4)</td>
<td>5 (3.75-10.25)</td>
</tr>
<tr>
<td>All (117)</td>
<td>2 (2-4)</td>
<td>7 (4-11)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patients</th>
<th>Proportion % (n)</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (Male)</td>
<td>61.24(324)</td>
<td>-</td>
</tr>
<tr>
<td>Age</td>
<td>-</td>
<td>46.8 (18.2)</td>
</tr>
</tbody>
</table>

* Represents full years, or part thereof. Inferred level of experience by qualification of practitioner (Measured by date of registration with the HPCSA).

encompasses the qualifications Bachelor of Technology (BTech) as well as Bachelor of Emergency Medical Care (B.EMC). Only holders of the BTech were active in the Western Cape at the time of data collection.
Table 2: Case characteristics

<table>
<thead>
<tr>
<th></th>
<th>n (%)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Response</td>
<td>468(88)</td>
<td>(85-91)</td>
</tr>
<tr>
<td>Inter-facility transfer</td>
<td>61 (12)</td>
<td>(9-15)</td>
</tr>
<tr>
<td>Cases with recorded Pain Assessment</td>
<td>111(21)</td>
<td>(18-25)</td>
</tr>
<tr>
<td>Cases with second pain assessment</td>
<td>34(6.4)</td>
<td>(4-9)</td>
</tr>
</tbody>
</table>

Drug Administration

Morphine was administered in 70% (95% CI 66-74, n=371) of cases, Nitrates in 37 % (95% CI 33-41, n=197) and Ketamine in 1.7% (95% CI 1-3, n=9) of cases. No recorded administrations of Entonox® were found. Descriptive statistics for drug administrations are recorded in Table 3. All intravenous (IV) drug administrations were in the form of boluses and no evidence of ALS provider initiated infusions was found. Of the Morphine administrations a total of 5mg or less was administered in 75% (95% CI 70-79, n=278) of all cases. A single dose of Morphine was administered in 72.2% (95% CI, 67-77, n=268), two doses in 23% (95% CI, 19-28, n=86) and three doses in 5% (95% CI 3-8, n=18) of cases. Additional doses raised the total mean Morphine dose to 6 mg for 2 doses and 8 mg for 3 doses (p=<0.01).

Morphine was administered intra-muscularly in 1.4% (95% CI 1-3, n=6) of administrations and the sub-lingual route used for all Nitrate administrations. Morphine was co-administered in 24 % (95% CI 18-30, n=47) of Nitrate administrations and in 33% (95% CI 7-70, n=3) of Ketamine administrations.

Table 3: Characteristics of drug administrations

<table>
<thead>
<tr>
<th></th>
<th>Morphine</th>
<th>Ketamine</th>
<th>Nitrates*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of cases % (n)</td>
<td>70(371)</td>
<td>9(1.7)</td>
<td>37% (197)</td>
</tr>
<tr>
<td>Median Total Dose in mg (IQR)</td>
<td>4mg (3-6)</td>
<td>50 (50-100)</td>
<td>-</td>
</tr>
<tr>
<td>Only drug administered % (n)</td>
<td>87(322)</td>
<td>67 (6)</td>
<td>75(148)</td>
</tr>
<tr>
<td>Intravenous route % (n)</td>
<td>99 (366)</td>
<td>100 (9)</td>
<td>-</td>
</tr>
<tr>
<td>One dose % (n)</td>
<td>72 (268)</td>
<td>56 (5)</td>
<td>81(161)</td>
</tr>
</tbody>
</table>

* describes both Isosorbide Dinitrate tablets (5mg) and Glyceryl Trinitrate spray (0.4mg)
Qualifications and Drug Administration

The mean total dosages of Morphine are described in Table 3. There was no significant difference in mean number of Morphine doses between qualifications (p=0.69) Correlation between drug administrations, years of experience and qualification type are described in Table 4. For the different qualifications the mean total dosages of Morphine were Critical Care Assistants 4.4mg (95% CI, 3.99-4.8), Emergency Care Technicians 4.8mg (95% CI, 4.2-5.3), National Diplomas 5mg(95% CI, 4.6-5.5) and Emergency Care Practitioners 5.4mg (95% CI, 4.7-6.1) and these differing dosages were statistically significant (p=0.03).

Table 4: Comparisons

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Spearman’s rho (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualification and number of Morphine doses</td>
<td>-0.01 (0.86)</td>
</tr>
<tr>
<td>Qualification and Total Morphine dose (mg)</td>
<td>0.21 (<0.001)</td>
</tr>
<tr>
<td>Years of experience in Qualification and number of Morphine Doses</td>
<td>-0.03 (0.51)</td>
</tr>
<tr>
<td>Years of Experience in Qualification and total Morphine (mg)</td>
<td>-0.01 (0.81)</td>
</tr>
<tr>
<td>Years of experience in Qualification and number of Ketamine* Doses</td>
<td>0.31 (0.39)</td>
</tr>
<tr>
<td>Years of Experience in Qualification and total Ketamine* (mg)</td>
<td>0.77 (0.01)</td>
</tr>
</tbody>
</table>

* Only Emergency Care Practitioners are authorised to use Ketamine.

DISCUSSION

This study is the first to describe operational prehospital pain management practices in the Western Cape. Most Morphine administrations occur as a single bolus and as the only administered drug. Morphine was the most commonly administered drug and used in 5mg, or lower, doses. Elsewhere it has been found that while South African ALS providers are familiar with a weight based dosing most would never exceed 5mg as an initial bolus and definitely never exceed 10mg even if the patient’s weight allowed for it (20), a finding supported by our study. This approach was adopted out of a fear for adverse events(20), which are commonly cited as a reason for withholding analgesia or using lower doses(20,21) even though adverse events they do not frequently occur and are mostly mild. (22)

Our study does not shed light on the actual dosing strategy or how ALS providers decide on the dose of Morphine to administer. Whether a single effective dose of Morphine exists is uncertain and descriptions of intra-venous Morphine dosing vary. Some texts advocate small boluses in an individual titration based manner (23) and others an initial weight based dose of 0.1mg/kg. (24) Research evaluating prehospital pain management report total Morphine
doses of between 5 mg (10) and 13.5mg ± 3 mg (4) with varying levels of pain reduction, higher than the mean dose found in our study. An initial weight based dose of 0.1mg/kg did not effectively control pain in the Emergency Centre (EC) 30 minutes after administration (25) while a dose of 0.15mg/kg provided statistically superior pain reductions than doses of 0.1mg/kg though it was not necessarily clinically superior in reducing pain intensity at 30 and 60 minutes. (26) A prehospital Randomised Controlled Trial (RCT) comparing a 0.05mg/kg bolus and subsequent 0.025mg/kg titrations with 0.1mg/kg boluses and 0.05mg/kg titrations found both regimens showing similar pain reduction at 30 minutes however the higher dose provided significantly better pain reduction at 10 minutes (27) which is potentially more desirable in the prehospital context.

We found use of an objective pain score in approximately a fifth of cases. This rate is consistent with some international findings (3), though others show much higher rates of assessment (2,10). The proportion of cases with a second documented objective pain assessment was only 6.4%. When one considers the use of single boluses together with the low rate of pain score recording, a titration based strategy seems unlikely; it is reasonable to expect multiple boluses together with multiple pain assessments in such a strategy. Use of an objective, self-reported pain assessment method, such as a Numerical Rating Scale (NRS), is best practice (28,29) as subjective and clinical pain assessments have been found to be unreliable and underestimate pain intensity. (30–33) Higher rates of objective pain assessment are associated with higher rates of analgesia administration. (11,15)

Our findings do not definitively indicate that pain assessments are not taking place. Scoring systems require cognition, hearing and numeracy on the part of the patient which we could not determine from the PCRs. Pain may have been assessed and not recorded or an adjective type scale may have been used rather than the NRS as "pain", or pain equivalent words were frequently found on PCRs. Whether these constitute assessment or are merely case notes is unknown. Paramedics, both internationally and in South Africa, have indicated that they base pain assessment not just on a pain score but on clinical presentation, disorder type and own clinical experience(20,21,34), which is significant considering the median experience level of ALS providers is 2 years at advanced level.

Differing experience levels have been associated with differences in prescribing patterns in the EC (35) and lower experience levels have been associated with oligoanalgesia. (9) Our study showed very weak positive correlations between years of experience and Morphine administration however increasing experience within the ECP group shows strong correlation with larger doses of Ketamine (Table 4) While experience did not seem to
influence this single variable extensive further research is required to determine if and how experience levels of ALS providers impacts prehospital care, especially in light of the exodus of skilled ALS providers from operational practice in South Africa. (36)

ALS providers in our study did not appear to use multimodal analgesia. The basis for multimodal analgesia is the synergistic effects of the combination therapy, acting on different sites and pain pathways, which provides more effective analgesia and fewer adverse events as lower doses of each drug are used. (37) Prehospital RCTs have found the combination of Morphine and Ketamine to result in a significant reduction in Morphine dose (38) and to produce faster and superior pain intensity reduction than Morphine alone (39) with an improvement in haemodynamic parameters. (40)

In practice South African ALS providers have very limited pharmacological analgesic options available. The drugs available to all advanced qualifications are Entonox®, Morphine and Nitrates with only Emergency Care Practitioners (ECP) authorized to use Ketamine. Anecdotally Entonox® is not physically available on the vast majority of ambulances, leaving Morphine as the only analgesic available to most ALS providers. The high rate of unimodal analgesia in this study might reflect limited drug options rather than decision making.

The majority of ALS providers initiated analgesia took place on primary responses, with only a small percentage of inter-facility transfers documenting ALS provider initiated analgesia. Reasons for this include physician’s orders or assumption that in-hospital analgesia is effective and would not require adjustment in the ambulance. Often drug infusions initiated in hospital will be continued throughout the transfer, and these cases would have been excluded from analysis. There is evidence in the literature that provision of analgesia in the hospital is suboptimal (41–45) and that patients frequently experience high levels of pain during inter-facility transfer. (46,47) Our study was not designed to detect oligoanalgesia and no conclusions are drawn regarding oligoanalgesia in Western Cape Hospitals or during transfer.

Prevalence of cardiac chest pain presenting to ambulance personnel has been reported to be between 17% (2) and 29% (4). ALS providers were likely to administer analgesia in pain of traumatic and medical aetiologies in roughly equal proportions; the finding that chest pain was the reason for drug administration in 42.6% cases was unexpected. While this data cannot be used to indicate prevalence of any disorders it does suggest the types of working diagnoses being made during treatment. In light of this the education and training regarding
cardiac related emergencies assumes significance as does access to and use of equipment such as 12 lead ECG and transmission of ECG tracings to specialists.

Statistically significant differences in Morphine doses were found between the qualifications. The magnitude of these differences is less than one milligram, and the clinical significance of these differences is probably negligible. The different qualifications do not appear to take different approaches to drug dosing in pain management.

LIMITATIONS

This study examines only cases in which drugs were administered and no conclusions regarding incidence or prevalence of acute pain can be drawn. Experience was inferred from date of registration and providers may have been registered for part of this time while not being active in a clinical environment thus actual experience for some may have been overestimated. ECP experience levels will have been underestimated, as each of these practitioners would have held an advanced qualification prior to qualifying as an ECP and experience at ALS level will be higher in this sub-set. Medical chart review has several limitations. While the research question and variables were selected as it was believed the underpinning data to have been the most accurately recorded, allowance must be made for inaccurate recording of variables.

CONCLUSIONS

Morphine doses administered by ALS providers are low and most drugs are administered as single boluses. It is difficult to determine if a clear pain assessment and analgesic strategy is being used and multimodal analgesia is not a feature of South African prehospital care. Experience levels of ALS providers are low and it is uncertain if qualification type influences pain management in any way. Chest pain is the reason for a significant number of drug administrations in the context of acute pain.

FUNDING

Funds were received from the Emergency Care Institute (ECI). The ECI played no role in the conception, design, data collection, analysis or writing of the manuscript.
CONFLICT OF INTEREST

Wayne Smith is employed by the Provincial Government of the Western Cape.

DISSEMINATION OF RESULTS

The results will be disseminated to the executive management of the service concerned and an offer of a formal presentation will be made.

AUTHOR CONTRIBUTION

RM conceived and designed the study, supervised collection and recording of the data and was primarily responsible for analysis, interpretation of data and writing of the manuscript.

MM provided input and assistance with statistical consulting, writing of results and preparation of tables and figures.

WS supervised the original research dissertation on which the manuscript is based and assisted with writing of the manuscript.
REFERENCES

26. Birnbaum A, Esses D, Bijur PE, Holden L, Gallagher EJ. Randomized Double-Blind Placebo-Controlled Trial of Two Intravenous Morphine Dosages (0.10 mg/kg and 0.15 mg/kg) in Emergency Department Patients With Moderate to Severe Acute Pain. Ann Emerg Med. 2007;49(4).

PART D: SUPPORTING DOCUMENTATION

ANNEXURE 1: JOURNAL INSTRUCTIONS

(From Journal website)

AFRICAN JOURNAL OF EMERGENCY MEDICINE

The African Journal of Emergency Medicine (AfJEM, ISSN: 2211-419X) is the official journal of the African Federation for Emergency Medicine. It is an international, peer-reviewed journal aimed in particular at supporting emergency care across Africa. AfJEM publishes original research, reviews, brief reports of scientific investigations, case reports as well as commentary and correspondence related to topics of scientific, ethical, social and economic importance to emergency care in Africa. Articles will be of direct importance to African emergency care, but may have originated from elsewhere in the world.

TYPES OF ARTICLES

Original Research: Original studies of basic or clinical investigations in areas relevant to emergency medicine. Reference to the relevance of the research in a resource poor setting is essential and should be alluded to in the discussion section. References and a structured abstract (see Preparation below) are required. Maximum length: 3,000 words, 5 tables and/or figures, plus the abstract (300 words) and references (max 50). The checklists found on the following websites should be used to structure your manuscript (a completed checklist showing that you adhered to the reporting format should be submitted with your manuscript):
a. For randomised control trials: http://www.consort-statement.org
b. For cohort, case-control, and cross-sectional studies: http://www.strobe-statement.org/
c. All other studies: http://www.equator-network.org/library/

2. Review Articles: Extensive reviews of the literature on a narrow clinical topic. References must include, but need not be limited to, the past 3 years of the literature. A structured abstract is required (see Preparation below). Maximum length: 3,000 words, plus the narrative abstract (max 300 words) and references (max 50). Please contact the editor in chief before you submit a review. The following reporting checklists should be used to structure your manuscript (a completed checklist showing that you adhered to the reporting format should be submitted with your manuscript):
a. A Resourced-tiered review checklist is the standard reporting format for publication in
b. If your topic does not lean itself towards a resourced tiered review consider alternative reporting checklists for systematic reviews and meta-analyses such as Prisma checklist (http://www.prisma-statement.org) or similar. Please check with the editor-in-chief before using a checklist other than the resources-tiered checklist.

3. **Case Reports**: Brief descriptions of a previously undocumented disease process, a unique unreported manifestation or treatment of a known disease process, or unique unreported complications of treatment regimens. Case reports should be structured as follows: Introduction, Case report and Discussion. It should not contain an exhaustive review of the literature. Consider consent for patient identifiable information (download from website). A structured abstract (see Preparation below) is required. Maximum length: 1,000 words, plus abstract (max 150 words) and references (max 10), and 1 table or figure. Case reports listed for publication after 2015 are published online only and compiled within a virtual issue once a year.

4. **Practical Pearl**: Descriptions of novel approaches to provision of emergency care; and practical “tricks of the trade” describing aspects of emergency medicine management. An abstract is not required (enter: Not required, practical pearl when prompted). Maximum length: 800 words, 5 tables and/or figures and references (max 5). A manuscript template is available at http://www.afjem.com/ and can be used for submission. Note that author details should be included in the manuscript.

5. **Brief Research Reports**: Reports of preliminary data and findings or studies with small numbers demonstrating the need for further investigation. References and a structured abstract (see Preparation below) are required. Maximum length: 1,500 words, plus the abstract (max 300 words) and references (max 10) and 3 tables and/or figures. Checklists described for original research above should be used to structure your manuscript (a completed checklist should be submitted with your manuscript).

6. **Concepts**: Descriptions of clinical and nonclinical problems and solutions; descriptions of novel approaches to planning, management, or provision of emergency services; and practical “how-to” articles describing aspects of emergency medicine management (includes African country acute care profiles). A narrative abstract (see Preparation below) is required. Maximum length: 3,000 words, plus the abstract (max 300 words) and references (max 50).
7. Editorials (commissioned and including op-ed): Authoritative comments or opinions on major current problems of emergency physicians or on controversial matters with significant implications for emergency medicine; or, qualified, thorough analysis and criticism of articles appearing in AfJEM. Maximum length: 1,500 words plus references (max 5). An abstract is not required.

8. Correspondence: Discussion, observations, opinions, corrections, and comments on topics appearing in AfJEM; very brief reports or other items of interest. Maximum length: 500 words, plus references (max 5). An abstract is not required. Please enter: Not applicable, Correspondence when prompted to enter an abstract. Letters discussing an AfJEM article should be received within 6 weeks of the article’s publication. The article must be included in the references. Authors of articles about which letters are received will be given the opportunity to reply, which will not be shared with the letter writer prior to publication. Letters of political or other topics unrelated to the science of medicine, as well as those containing personal criticisms, will not be published.

9. Erratum: Corrections on topics appearing in AfJEM. Maximum length: 300 words, plus references (max 5). An abstract is not required. Please enter: Not applicable, Erratum when prompted to enter an abstract. Letters discussing an AfJEM article should be received within 6 weeks of the article’s publication. The article must be included in the references. Authors of articles about which letters are received will be given the opportunity to reply, which will not be shared with the letter writer prior to publication. Letters of political or other topics unrelated to the science of medicine, as well as those containing personal criticisms, will not be published elsewhere including electronically in the same form, in English or in any other language, without the written consent of the copyright-holder.

Contact details for submission

Please submit your article via http://ees.elsevier.com/afjem/

Before You Begin

Ethics in Publishing

For information on Ethics in Publishing and Ethical guidelines for journal publication
The work described in your article must have been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans [http://www.wma.net/en/30publications/10policies/b3/index.html]; EC Directive 86/609/EEC for animal experiments [http://ec.europa.eu/environment/chemicals/lab_animals/legislation_en.htm]; Uniform Requirements for manuscripts submitted to Biomedical journals [http://www.icmje.org]. AfJEM is a member of the Committee on Publication Ethics (COPE) which advises on the management of cases where research or publication misconduct occurred (http://publicationethics.org/). Consent forms for patients (if required) can be downloaded in both English and French.

Plagiarism detection AfJEM is a member of iThenticate. iThenticate is a plagiarism screening service that verifies the originality of content submitted before publication. iThenticate checks submissions against millions of published research papers, and millions of pages of web content. Authors, researchers and freelancers can also use iThenticate to screen their work before submission by visiting [http://www.ithenticate.com/]

Conflict of Interest

All authors are requested to disclose any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations within three years of beginning the submitted work that could inappropriately influence, or be perceived to influence, their work. See also [http://www.elsevier.com/conflictsofinterest]. Further information and an example of a Conflict of Interest form can be found at: [http://service.elsevier.com/app/answers/detail/a_id/286/supporthub/publishing] and [http://www.afjem.com/].

Submission declaration

Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere including electronically in the [http://www.afjem.com] same form, in English or in any other language, without the written consent of the copyright-holder.
Authorship

All authors should have made substantial contributions to all of the following: (1) the conception and design of the study, or acquisition of data, or analysis and interpretation of data, (2) drafting the article or revising it critically for important intellectual content, (3) final approval of the version to be submitted.

Changes to authorship

Authors are expected to consider carefully the list and order of authors before submitting their manuscript and provide the definitive list of authors at the time of the original submission. Any addition, deletion or rearrangement of author names in the authorship list should be made only before the manuscript has been accepted and only if approved by the journal Editor. To request such a change, the Editor must receive the following from the corresponding author: (a) the reason for the change in author list and (b) written confirmation (e-mail, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed. Only in exceptional circumstances will the Editor consider the addition, deletion or rearrangement of authors after the manuscript has been accepted. While the Editor considers the request, publication of the manuscript will be suspended. If the manuscript has already been published in an online issue, any requests approved by the Editor will result in a corrigendum.

Clinical trial results

In line with the position of the International Committee of Medical Journal Editors, the journal will not consider results posted in the same clinical trials registry in which primary registration resides to be prior publication if the results posted are presented in the form of a brief structured (less than 500 words) abstract or table. However, divulging results in other circumstances (e.g., investors’ meetings) is discouraged and may jeopardise consideration of the manuscript. Authors should fully disclose all posting in registries of results of the same or closely related work.

Journal rights
For articles published in AfJEM Elsevier uses an Exclusive License Agreement to define these rights. Under this license the rights granted to AfJEM include:

- An exclusive right to publish and distribute an article.
- The right to provide the article in all forms and media so the article can be used on the latest technology even after publication.
- The right to publish and disseminate the article under Creative Commons Attribution Non-Commercial No Derivatives (CC-BY-NC-ND) for the purposes of Open Access publication.
- Additional rights to enforce the rights in the work, on behalf of an author, against third parties in the case of plagiarism, ethic disputes and fraud.

Author rights: As an author you (or your employer or institution) retain certain rights:

- Copyright of the article
- Patent, trademark and other intellectual property rights in the article
- The right for proper attribution and credit for the published work
- The right to reuse their own work in the same way readers can as defined by CC-BY-NC-ND license.

For further details you are referred to: http://www.elsevier.com/about/company-information/policies/copyright. User rights: The CC-BY-NC-ND licence is used to govern the terms on which an article can be reused. CC-BY-NC-ND allows users to copy and distribute the article, provided this is not done for commercial purposes and the article is not changed or edited in any way. The author must be attributed and must not be represented as endorsing the use made of the work.

Open access (OA)

There is no publication fee for this journal. On publication, articles are made freely available to all (including non-subscribers) via the ScienceDirect platform. Learn more about Elsevier's pricing policy: http://www.elsevier.com/openaccesspricing

Language and language services
Please write your text in UK English by setting your word processor to English (U.K.). Authors who require information about language editing and copyediting services pre- and post-submission please visit http://webshop.elsevier.com/languageediting or our customer support site at http://support.elsevier.com for more information. Also see Author Assist below.

Author Assist It is the aim of the AfJEM to be representative of all parts of the African continent; we standardi within this that some African researchers in emergency care may be disadvantaged in the available range of journals into which they can publish their work. We are aware that this is due to many reasons, including that topics are concerned with www.afjem.com conditions which are largely irrelevant to other audiences. AfJEM is dedicated to supporting all authors who wish to publish on an African emergency care topic. In order to maintain and produce a high quality, international standard Emergency Medicine journal, AfJEM has devised Author Assist. AfJEM enlists the help of a team of experienced volunteers (Author Assistants) to help improve the quality of manuscripts before peer-review submission. Go to http://www.afjem.com/author-assistance.html for more information.

Submission

Our online submission system guides you stepwise through the process of entering your article details and uploading your files. The system converts your article files to a single PDF file used in the peer-review process. Editable files (e.g., Word, LaTeX) are required to typeset your article for final publication. All correspondence, including notification of the Editor’s decision and requests for revision, is sent by e-mail.

Submit your article

Please submit your article via http://ees.elsevier.com/afjem.

Peer review and Referees

Each paper submitted to the journal is firstly checked for completeness and similarity by the technical editor followed by an initial desk review by one of the editors-in-chief. Papers not suitable for publication are either rejected outright (out-of-scope) or rejected-refer Author Assist (within scope, but poor quality). This is usually done within the first three to five days. Papers accepted for peer review are then assigned to an associate editor who takes responsibility for assigning peer reviewers and providing a synthesis of reviews to the editor-
in-chief for a decision. All original content submitted to the AfJEM is peer reviewed by a minimum of two and up to four reviewers. Editorials, op-ed pieces and regular features are reviewed by a single expert reviewer, usually an associate editor of the journal. Peer review is double blinded (authors and reviewers never learn each others identities). The latter is specifically required to compliment the Author Assist process. AfJEM operates a strict peer reviewer code of conduct policy. Details can be found in the Reviewer Area on http://www.afjem.com. Authors are encouraged to submit the names and institutional e-mail addresses of several potential referees. For more details, visit our Support site. Note that an editor retains the sole right to decide whether or not the suggested reviewers are used.

Preparation

Peer review

This journal operates a double blind review process. All contributions will be initially assessed by the editor for suitability for the journal. Papers deemed suitable are then sent to a minimum of two independent expert reviewers to assess the scientific quality of the paper. The Editor is responsible for the final decision regarding acceptance or rejection of articles. The Editor’s decision is final. For more information on the types of peer review, please visit: http://www.elsevier.com/reviewers/peer-review.

Use of word processing software

It is important that the file be saved in the native format of the word processor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the word processor’s options to justify text or to hyphenate words. However, do use bold face, italics, subscripts, superscripts etc. When preparing tables, if you are using a table grid, use only one grid for each individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier: http://www.elsevier.com/guidepublication). Note that source files of figures, tables and text graphics will be required whether or not you embed your figures in the text. See also the section on Electronic artwork.
To avoid unnecessary errors you are strongly advised to use the ‘spell-check’ and ‘grammar-check’ functions of your word processor.

Article Structure

Ensure that author identifiers are not included in the main manuscript file submitted. Inclusion of an abstract in the manuscript is not required. Consult the guidance and checklists described in Types of Articles above to structure your manuscript correctly. Original articles, brief research reports and systematic reviews require the checklist to be submitted as a supplementary file. Where this has not been supplied, the manuscript will be returned to the author.

Subdivision

Divide your article into clearly defined sections as per the guidance given in Types of Articles above. Numbers are not to be used for sections or subsections. Section headings should be in **bold**. Subsection headings should be in italics. Each heading should appear on its own separate line. Subsections in addition to the sections described in Types of Articles above should be used sparingly.

Clinical trial results

In line with the position of the International Committee of Medical Journal Editors, the journal will not consider results posted in the same clinical trials registry in which primary registration resides to be prior publication if the results posted are presented in the form of a brief structured (less than 500 words) abstract or table. However, divulging results in other circumstances (e.g., investors’ meetings) is discouraged and may jeopardise consideration of the manuscript. Authors should fully disclose all posting in registries of results of the same or closely related work.

Discussion

This should explore the significance of the results of the work, not repeat them. A combined Results and Discussion section is often appropriate. Avoid extensive citations and discussion of published literature.
Conclusions

The main conclusions of the study may be presented in a short Conclusions section, which may stand alone or form a subsection of a Discussion or Results and Discussion section.

Appendices

If there is more than one appendix, it should be identified starting with Appendix B, C, etc. Do not use Appendix A. Formulae and equations in appendices should be given separate numbering: Eq. (B.1), Eq. (B.2), etc.; in a subsequent appendix, Eq. (C.1) and so on. Similarly for tables and figures: Table B.1; Fig. B.1, etc. All appendices will be considered online material only.

Essential Title Page Information

- **Title.** Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.
- **Author names and affiliations.** Where the family name may be ambiguous (e.g., a double name), please indicate this clearly. Present the authors’ affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author’s name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name and, if available, the e-mail address of each author.
- **Corresponding author.** Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. Ensure that phone numbers (with country and area code) are provided in addition to the e-mail address and the complete postal address. Contact details must be kept up to date by the corresponding author.
- **Present/permanent address.** If an author has moved since the work described in the article was done, or was visiting at the time, a ‘Present address’ (or ‘Permanent address’) may be indicated as a footnote to that author’s name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.
- **Word count.** Please provide a word count
- **Table/figure count.** Please provide a table/figure count
Abstract

A concise and factual abstract of no more than 300 words is required. The abstract should state briefly the purpose of the research, the principal results and major conclusions. An abstract is often presented separately from the article, so it must be able to stand alone. Non-standard or uncommon abbreviations should be avoided, but if essential, it must be defined at the first mention. With the exception of a submission for Editorials, Practical pearl, Correspondence and Erratum, structured abstracts are required for all article types.

Types of abstracts include:

- **Research abstracts** should adhere to the following format: Introduction, Methods, Results and Conclusion.
- **Case reports** should adhere to the following format: Introduction, Case report and Discussion.
- **Narrative abstracts** are acceptable for non-research abstracts (concepts and commentary).

Keywords

The submission system will prompt authors to provide a maximum of 6 keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, “and”, “of”). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

Abbreviations

Define abbreviations that are not standard in this field in a footnote to be placed on the first page of the article. Such abbreviations that are unavoidable in the abstract must be defined at their first mention there, as well as in the footnote. Ensure consistency of abbreviations throughout the article.

Acknowledgements

Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing
language help, writing assistance or proof reading the article, etc.).

Statistics

Describe statistical methods with enough detail to enable a knowledgeable reader with access to the original data to verify the reported results. References for the design of the study and complex or unusual statistical methods should be to standard works when possible (with pages stated). Commonly used methods such as the chi-square test, t-test, ANOVA, linear and logistic regression need not be referenced. Define statistical terms, www.afjem.com abbreviations, and most symbols. Technical statistical terms should ideally be replaced by simpler terms where possible and referenced if not. Specify the computer software used. The results section must be written so the average reader can understand the findings. The methods section is allowed to be more complex if unavoidable. When possible, quantify findings and present them with appropriate indicators of measurement error or uncertainty (such as confidence intervals). For normally distributed data give means and confidence intervals and for data that is not normally distributed give the median and interquartile range. Avoid relying solely on statistical hypothesis testing, such as p-values. If p-values are used, include 2 digits of precision (i.e. p=0.65) for values greater than 0.01. Give 3 digits for values between 0.01 and 0.001 and report values smaller than 0.001 as p < 0.001. Describing non-significant p-values as NS is not acceptable and a numerical value should be given. When using tables consider including counts and percentages. In general, including the chi-square statistic, t statistic, F statistic and degrees of freedom is not useful. Regression output should be limited to the most important findings. Estimates of variance explained (R2, correlation coefficients, and standardized regression coefficients or effect size) should not be presented as the main result of the analysis.

Math Formulae

Present simple formulae in the line of normal text where possible and use the solidus (/) instead of a horizontal line for small fractional terms, e.g., X/Y. In principle, variables are to be presented in italics. Powers of e are often more conveniently denoted by exp. Number consecutively any equations that have to be displayed separately from the text (if referred to explicitly in the text). Bear in mind that complex formulae, such as log likelihood expressions or symbolic expressions for regression models are often beyond the grasp of the average reader. Consider making this available as an online only appendix.
Footnotes

Footnotes are discouraged and when used should be used sparingly. Number them consecutively throughout the article, using superscript Arabic numbers. Many word processors build footnotes into the text, and this feature may be used. Should this not be the case, indicate the position of footnotes in the text and present the footnotes themselves separately at the end of the article. Do not include footnotes in the Reference list.

Mandatory statements

Mandatory statements are included in the word count and should be placed just before the reference section.

1. Conflict of interest

If no conflict of interest exists please state: The author(s) declare no conflict of interest

Conflicts of interests that require disclosure include, but are not limited to:

- a. Associations with commercial entities that provided support for the work reported in the submitted manuscript (the timeframe for disclosure in this section of the form is the life span of the work being reported).
- b. Associations with commercial entities that could be viewed as having an interest in the general area of the submitted manuscript (in the three years before submission of the manuscript).
- c. Non-financial associations that may be relevant or seen as relevant to the submitted manuscript.

Example: I the author (We, the authors), declare the following interests: AA has received speaker fees from BBB company. CC has received fees as an advisory board member for DDD company. Ee's institution receives funding from FFF company for a trial in which he is co-investigator

2. Dissemination of results

Not required for editorials, review articles, regular features, correspondence or erratum. Provide a brief statement on how findings of this research were disseminated to the community from, or within which it was collected.

Example: Results from this study (research/trial/etc.) was shared with staff members at AAA hospital emergency centre through an informal presentation. The results were also published in the hospitals newsletter.
3. Author contribution Please provide a brief statement to describe the contributions of authors. Please note that according to the ICMJE an author should fulfil all of the following criteria:

- a. Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work
- b. Drafting the work or revising it critically for important intellectual content
- c. Final approval of the version to be published
- d. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Example: AB and BC conceived the original idea. AB and CD designed the experiments. AB carried out analysis of data. AB, CD and BC prepared the manuscript (note that authors names are shortened to initials only)

Artwork

Image manipulation

Whilst it is accepted that authors sometimes need to manipulate images for clarity, manipulation for purposes of deception or fraud will be seen as scientific ethical abuse and will be dealt with accordingly. For graphical images, this journal is applying the following policy: no specific feature within an image may be enhanced, obscured, moved, removed, or introduced. Adjustments of brightness, contrast, or color balance are acceptable if and as long as they do not obscure or eliminate any information present in the original. Nonlinear adjustments (e.g. changes to gamma settings) must be disclosed in the figure legend.

Electronic artwork

General points
- Make sure you use uniform lettering and sizing of your original artwork.
- Embed the used fonts if the application provides that option.
- Aim to use the following fonts in your illustrations: Arial, Courier, Times New Roman, Symbol, or use fonts that look similar.
- Number the illustrations according to their sequence in the text.
- Use a logical naming convention for your artwork files.
• Provide captions to illustrations separately.
• Size the illustrations close to the desired dimensions of the published version.
• Submit each illustration as a separate file.

A detailed guide on electronic artwork is available on our website:

You are urged to visit this site; some excerpts from the detailed information are given here.

Formats
If your electronic artwork is created in a Microsoft Office application (Word, PowerPoint, Excel) then please supply ‘as is’ in the native document format.

Regardless of the application used other than Microsoft Office, when your electronic artwork is finalized, please ‘Save as’ or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):

EPS (or PDF): Vector drawings, embed all used fonts.
TIFF (or JPEG): Color or grayscale photographs (halftones), keep to a minimum of 300 dpi.
TIFF (or JPEG): Bitmapped (pure black & white pixels) line drawings, keep to a minimum of 1000 dpi.
TIFF (or JPEG): Combinations bitmapped line/half-tone (color or grayscale), keep to a minimum of 500 dpi.

Please do not:
• Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); these typically have a low number of pixels and limited set of colors;
• Supply files that are too low in resolution;
• Submit graphics that are disproportionately large for the content.

Colour artwork/ figure

Please make sure that artwork/ figure files are in an acceptable format (TIFF, EPS or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable colour figures then Elsevier will ensure, at no additional charge, that these figures will appear in colour on the Web (e.g., ScienceDirect and other sites) in addition to colour reproduction in print. For further information on the preparation of electronic artwork/ figure, please see http://www.elsevier.com/artworkinstructions.

Artwork Figure captions

Ensure that each illustration/ figure has a caption. Supply captions separately, listed at the
end of your manuscript after the references, and not included in the separately uploaded artworks/figures. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Illustration services

Elsevier’s WebShop (http://webshop.elsevier.com/illustrationservices) offers Illustration Services to authors preparing to submit a manuscript but concerned about the quality of the images accompanying their article. Elsevier’s expert illustrators can produce scientific, technical and medical-style images, as well as a full range of charts, tables and graphs. Image ‘polishing’ is also available, where our illustrators take your image(s) and improve them to a professional standard. Please visit the website to find out more.

Figure captions

Ensure that each illustration has a caption. Supply captions separately, not attached to the figure. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Text graphics

Text graphics may be embedded in the text at the appropriate position. See further under Electronic artwork.

Tables

Number tables consecutively in accordance with their appearance in the text. Place footnotes to tables below the table body and indicate them with superscript lowercase letters. Avoid vertical rules. Be sparing in the use of tables and ensure that the data presented in tables do not duplicate results described elsewhere in the article. Tables should be placed within the text where it is referenced. The preferred format for tables is as follow. Include tables in the main text of the manuscript. Each table should be labelled at the top with footnotes at the bottom.
table 1 Title of table

Align heading left Align heading middle **Align heading middle**

Align content left Align content middle Align content middle
Align content left\(^a\) Align content middle\(^b\) Align content middle
Align content left Align content middle Align content middle

\(^a\) Footnote 1, \(^b\) Footnote 2

References

Citation in text

Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either 'Unpublished results' or 'Personal communication'. Citation of a reference as ‘in press’ implies that the item has been accepted for publication.

Web references

As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list.

References in a special issue

Please ensure that the words ‘this issue’ are added to any references in the list (and any citations in the text) to other articles in the same Special Issue.

Reference style

Text: Indicate references by superscript numbers in the text. The actual authors can be referred to, but the reference number(s) must always be given.
List: Number the references in the list in the order in which they appear in the text.

Examples:
Reference to a journal publication:
Reference to a book:
Reference to a chapter in an edited book:

Note shortened form for last page number. E.g., 51–9, and that for more than 3 authors the first 3 should be listed followed by ‘et al.’ For further details you are referred to ‘Uniform Requirements for Manuscripts submitted to Biomedical Journals’ (J Am Med Assoc 1997;277:927–34) (see also http://www.nlm.nih.gov/bsd/uniform_requirements.html).

Journal Abbreviations Source

Journal names should be abbreviated according to the List of Title Word Abbreviations: http://www.issn.org/services/online-services/access-to-the-Ltwa/. The correct abbreviation for AfJEM is: Afr J Emerg Med

Video data

Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include links to these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labeled so that they directly relate to the video file’s content. In order to ensure that your video or animation material is directly usable, please provide the files in one of our recommended file formats with a preferred maximum size of 150 MB. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including ScienceDirect: http://www.sciencedirect.com. Please supply ‘stills’ with your files: you can choose any frame from the video or animation or make a separate image. These will be used instead of standard icons and will personalize the link to your video data. For more detailed instructions please visit our video instruction pages at
Supplementary material can support and enhance your scientific research. Supplementary files offer the author additional possibilities to publish supporting applications, high-resolution images, background datasets, sound clips and more. Please note that such items are published online exactly as they are submitted; there is no typesetting involved (supplementary data supplied as an Excel file or as a PowerPoint slide will appear as such online). Please submit the material together with the article and supply a concise and descriptive caption for each file. If you wish to make any changes to supplementary data during any stage of the process, then please make sure to provide an updated file, and do not annotate any corrections on a previous version. Please also make sure to switch off the ‘Track Changes’ option in any Microsoft Office files as these will appear in the published supplementary file(s). For more detailed instructions please visit our artwork instruction pages at http://www.elsevier.com/artworkinstructions.

Submission checklist

The following list will be useful during the final checking of an article prior to sending it to the journal for review. Please consult this Guide for Authors for further details of any item.

Ensure that the following items are present:

One author has been designated as the corresponding author with contact details:

- E-mail address
- Full postal address

All necessary files have been uploaded, and contain:

- Keywords
- All figure captions
- All tables (including title, description, footnotes)

Further considerations

- Manuscript has been ‘spell-checked’ and ‘grammar-checked’
- References are in the correct format for this journal
- All references mentioned in the Reference list are cited in the text, and vice versa
- Permission has been obtained for use of copyrighted material from other sources (including the Internet)
Printed version of figures (if applicable) in color or black-and-white
• Indicate clearly whether or not color or black-and-white in print is required.
For any further information please visit our customer support site at http://support.elsevier.com.

Additional information

Manuscripts should not exceed 30 typewritten pages for original articles and 6 typewritten pages for short communications (incl. tables and figure legends). The editors reserve to themselves the right of condensing any paper submitted.

After Acceptance

Use of the Digital Object Identifier

The Digital Object Identifier (DOI) may be used to cite and link to electronic documents. The DOI consists of a unique alpha-numeric character string which is assigned to a document by the publisher upon the initial electronic publication. The assigned DOI never changes. Therefore, it is an ideal medium for citing a document, particularly ‘Articles in press’ because they have not yet received their full bibliographic information. Example of a correctly given DOI (in URL format; here an article in the journal *Physics Letters B*):

http://dx.doi.org/10.1016/j.physletb.2010.09.059

When you use a DOI to create links to documents on the web, the DOIs are guaranteed never to change.

Proofs

One set of page proofs (as PDF files) will be sent by e-mail to the corresponding author (if we do not have an e-mail address then paper proofs will be sent by post) or, a link will be provided in the e-mail so that authors can download the files themselves. Elsevier now provides authors with PDF proofs which can be annotated; for this you will need to download Adobe Reader version 9 (or higher) available free from http://get.adobe.com/reader. Instructions on how to annotate PDF files will accompany the proofs (also given online). The exact system requirements are given at the Adobe site: http://www.adobe.com/products/reader/tech-specs.html.
If you do not wish to use the PDF annotations function, you may list the corrections (including replies to the Query Form) and return them to Elsevier in an e-mail. Please list your corrections quoting line number. If, for any reason, this is not possible, then mark the corrections and any other comments (including replies to the Query Form) on a printout of your proof and return by fax, or scan the pages and e-mail, or by post. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. We will do everything possible to get your article published quickly and accurately. It is important to ensure that all corrections are sent back to us in one communication: please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility.

Offprints

The corresponding author, at no cost, will be provided with a PDF file of the article via e-mail (the PDF file is a watermarked version of the published article and includes a cover sheet with the journal cover image and a disclaimer outlining the terms and conditions of use). For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. Both corresponding and co-authors may order offprints at any time via Elsevier’s WebShop (http://webshop.elsevier.com/myarticleservices/offprints). Authors requiring printed copies of multiple articles may use Elsevier WebShop’s ‘Create Your Own Book’ service to collate multiple articles within a single cover (http://webshop.elsevier.com/myarticleservices/booklets).

Author Inquiries

You can track your submitted article at http://www.elsevier.com/track-submission. You can track your accepted article at http://www.elsevier.com/trackarticle. You are also welcome to contact Customer Support via http://support.elsevier.com.
A description of practices of analgesia administration by Advanced Life Support paramedics in the City of Cape Town

STUDENT: Ryan Matthews
B.Tech Emergency Medical Care
Cape Peninsula University of Technology
MTTRYA004

SUPERVISOR: Dr Wayne Smith
BSc, MBChB, EMDM, FCEM (SA)
Division Emergency Medicine
University of Cape Town

This study is in partial fulfilment of the MPhil Emergency Medicine degree

Declaration:

I, Ryan Ernest Matthews, hereby declare that the work contained in this assignment is my original work and that I have not previously submitted it, in its entirety or in part, at any university for a degree.

Signature: Date: 2014
CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>3</td>
</tr>
<tr>
<td>DEFINITIONS</td>
<td>3</td>
</tr>
<tr>
<td>BACKGROUND (LITERATURE REVIEW) AND RATIONALE</td>
<td>5</td>
</tr>
<tr>
<td>MOTIVATION FOR THE STUDY</td>
<td>13</td>
</tr>
<tr>
<td>RESEARCH QUESTION</td>
<td>13</td>
</tr>
<tr>
<td>AIM</td>
<td>14</td>
</tr>
<tr>
<td>OBJECTIVES</td>
<td>14</td>
</tr>
<tr>
<td>METHODS</td>
<td>14</td>
</tr>
<tr>
<td>STATISTICAL CONSIDERATIONS</td>
<td>17</td>
</tr>
<tr>
<td>ETHICAL CONSIDERATIONS</td>
<td>18</td>
</tr>
<tr>
<td>LIMITATIONS</td>
<td>19</td>
</tr>
<tr>
<td>DATA DISSEMINATION PLAN</td>
<td>19</td>
</tr>
<tr>
<td>PROJECT TIMELINE</td>
<td>19</td>
</tr>
<tr>
<td>RESOURCES AND BUDGET</td>
<td>20</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>21</td>
</tr>
<tr>
<td>LIST OF ANNEXURES</td>
<td>26</td>
</tr>
</tbody>
</table>
A description of practices of analgesia administration by Advanced Life Support paramedics in the City of Cape Town

Summary/Abstract

Acute pain is a significant reason for patients to seek healthcare and has high prevalence in both Emergency Centres and in the pre-hospital environment. Pain relief is an important role of emergency care and is of ethical concern. Despite this oligoanalgesia appears to be common in emergency care. Various emergency care provider practices are described in the literature and there is evidence that pain management practices are associated with specific patient and provider characteristics. There are currently no data on local pain management practices by prehospital personnel. This study aims to describe and document pre-hospital pharmacological analgesia administration practices by Advanced Life Support paramedics in the City of Cape Town. A retrospective descriptive survey will be conducted by examining consecutive patient report forms completed by relevant personnel in the service of the Provincial Government of the Western Cape, Metro EMS.
Definitions

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Life Support</td>
<td>A person registered on the ‘ANT’, ‘ECT’ or ‘ECP’ register of the Professional Board for Emergency Care Practitioners (PBEC) of the Health Professions Council of South Africa (HPCSA) and rendering care to their relevant scope of practice.</td>
</tr>
<tr>
<td>Analgesia</td>
<td>“Insensibility to pain without loss of consciousness”. (1)</td>
</tr>
<tr>
<td>Critical Care Assistant (CCA)</td>
<td>A person holding the Critical Care Assistant certificate and eligible to register on the ‘ANT’ register of the Professional Board for Emergency Care Practitioners (PBEC) of the Health Professions Council of South Africa (HPCSA) and rendering care to the ‘ANT’ scope of practice.</td>
</tr>
<tr>
<td>Emergency Care Practitioner</td>
<td>A person registered on the Emergency Care Practitioner’s (ECP) roll of the Professional Board for Emergency Care Practitioners of the Health Professions Council of South Africa and rendering care to the ECP scope of practice.</td>
</tr>
<tr>
<td>Emergency Care Technician</td>
<td>A person registered on the Emergency Care Technicians’ (ECT) roll of the Professional Board for Emergency Care Practitioners of the Health Professions Council of South Africa and rendering care to the ECT scope of practice.</td>
</tr>
<tr>
<td>Emergency Centre</td>
<td>“The area of a medical facility devoted to providing emergency medical care”. (2)</td>
</tr>
<tr>
<td>National Diploma Paramedic (NDip)</td>
<td>A person holding a National Diploma in Emergency Medical Care and eligible to register on the ‘ANT’ register of the Professional Board for Emergency Care Practitioners (PBEC) of the Health Professions Council</td>
</tr>
</tbody>
</table>
of South Africa (HPCSA) and rendering care to the ‘ANT’ scope of practice.

Pain Relief

“…. the therapeutic relief of clinical pain….pain relief may be said to occur if a patient reports a reduction in a subjectively defined clinical pain state after intervention.” (3)

Paramedic

An emergency services worker registered with the Professional Board of Emergency Care (PBEC) of the Health Professions Council of South Africa (HPCSA) on either the ‘ANT’ or ‘ECP’ registration rolls. Also known as ‘Advanced Life Support’
Background (Literature Review) and Rationale

Pain is described by the International Association for the Study of Pain as “An unpleasant sensory and emotional experience associated with actual or potential tissue damage or described in terms of such damage”(4). An alternate description is “…the physiologic response to a noxious stimulus…” (5) Pain involves both physiological and emotional responses and addresses both the stimulus of pain and the effects the stimulus has on the victim. Pain is a very subjective and multi-factorial entity.(6)

Acute pain is a common symptom in emergency medicine (7,8) and may be the single most frequent reason for seeking any healthcare.(9) The Global Burden of Disease Report shows significant representation by disorders involving pain. (10) Both Ischaemic Heart Disease and Injury are significant contributors to global burden of disease. (11) In South Africa specifically road accidents as well as injury have been significant contributors to the national disease burden for some time now. (12) Many of these disorders involve pain and it can be expected that emergency medicine systems will encounter them. A study (8) of consecutive patients presenting to an urban American Emergency Centre (EC) over a 7 day period found that out of 1665 patient encounters, 1019 involved an aspect of pain, of which 869 presented with a chief complaint of pain. This represented 52% of all patient encounters in the EC (8) and up to 78% of adults report a chief complaint of pain (7) on EC visits. More than half of non-critical patients report pain scores greater than 4/10 and 18% reported scores greater than 8/10. (13)

This high prevalence of pain is mirrored prehospital. In a yearlong Australian observational study (14) of 315 273 patient contacts 34.5% presented with pain (40.1% being due to trauma, 39.1% medical and 17% cardiac in origin). In Teramo, Central Italy, pain was present in 68% of cases, with intensity being moderate to unbearable in 41.75% (n=383) of cases. (15) The prevalence of pain in patients encountered by ambulance personnel has been found to be 80% in patients with extremity fractures.(16) It can be concluded that a significant number of patients transported by ambulance will be in pain.(17)

The effects of acute pain on patients manifest both physiologically and psychologically.(16) Pain is one of the triggers of the ‘injury response’ involving inflammation, hyperglycaemia, hyperalgesia, lipolysis, protein catabolism and changes in water and electrolyte flux. (18) Increased sympathetic activity affects the cardiovascular system as well as respiratory, coagulation and immune systems (18) and thus alters vital signs. (19) Cardiac effects may
include ischaemia and dysrhythmias, and wound healing is also impacted. (16). Acute pain is both common and a contributor to disability long after injury.(20)

Regarding long term disability, large pain stimulus can permanently change spinal cord function, through excitatory effects of amino acids, resulting in chronification of pain.(21) Acute pain can establish the biological foundation necessary to sustain chronic pain within hours of onset.(22)

Pain following traumatic injury has been found to contribute significantly to the development of Acute Stress Disorder (ASD) and Post Traumatic Stress Disorder (PTSD) (23), with rates of PTSD in patients suffering from pain secondary to a motor vehicle accident (MVA) ranging from 30% to 50%. (24) Significant from an Emergency Medical Service (EMS) perspective is that pain contributes to anxiety, making patient treatment even more complex in an already challenging environment.(13) A decrease in pain severity has been linked to lower PTSD symptomology in adult victims of trauma. (24)

Considering Major Depressive Disorder’s ranking within the global burden of disease (11th) (10), and that depression is the fourth leading cause of disability worldwide (25) and the fact that pain and depression frequently exist in the same patient as co-morbidities (26), pain management as a discipline assumes significance in the global burden of disease.

While questions regarding the management of pain in the EC have been asked (7,13,27,28), in the pre-hospital environment the situation appears just as dire. Only 18% of patients transported for hip and lower extremity fracture received analgesia in one study (29) and others found only 25% of patients in severe pain (30) and only half of patients with fractured neck of femur (31) received morphine. (31) In an analysis of 1073 patients with suspected extremity fractures treated and transported by EMS over the period of one year only 1.8% received analgesia (16 received nitrous oxide and 2 received morphine). (32) This research also underscored the importance of prehospital pain management; when analgesia was administered prehospital it occurred on average two hours earlier than if it was left till the EC. (29,31) In the EC whether or not the patient complained of pain to the EC staff made no difference to administration of analgesia nor did the description of the pain, the Glasgow Coma Score (GCS) of the patient nor did patient characteristics. However prehospital administration of analgesia predicted faster and more aggressive EC pain management (31)

The Emergency Medical Services Outcomes Project found alleviation of discomfort, including pain, to be one of the most relevant outcome measures of pre-hospital treatment
and the treatment of pain to have the greatest effect on patients. The relief of suffering should be a goal of EMS management. With acknowledgement to risk and the acuity of the situation, and given the frequency with which pre-hospital personnel encounter acute pain, management of the disorder should be a priority. (16) One author has written that relief of pain may be the most important and one of the few worthwhile interventions the EMS can undertake. (33)

Studies that investigate the efficacy of analgesic drugs available in emergency care show the efficacy of such agents. Morphine is considered to be effective and safe for pre-hospital analgesia (5), and various doses are described in the literature. (5,34,35)

Morphine and ketamine have been studied for prehospital pain management, both individually and in combination and found to be effective and safe. (20,36) Nitrous Oxide has been found to be effective in a randomised controlled trial (RCT) studying acute traumatic pain of moderate intensity. (37)

Since prehospital pain is prevalent, both clinically and operationally significant as well as treatable, one has to ask the question as to why it appears to be systematically poorly managed.

The literature attributes poor pain management to both patient and provider factors: Poor analgesia in the EC may be due to improper training, poor quality management, a lack of proper research, improper attitudes to opioid analgesics and fears around their safety when compared with anti-inflammatories. (38)

Being a subjective phenomenon, patient self-report using objective pain scales are the best method of pain evaluation. (5) Objective pain management tools do exist and have been validated for use in emergency care. The Visual Analogue Scale, in which a patient marks a 100mm line on a piece of paper, has been validated in the EC. (39) Adequate pain assessment has been found to be feasible pre-hospital (40) and both the Numerical Rating Scale (NRS) and the Verbal Rating Scale have also been validated for use in emergency care and are suited to the prehospital environment. (41,42)

Despite the validity of pain assessment scales it has been shown that EMS personnel may significantly underestimate patients’ pain. It has been further suggested that pain management is often based on the provider’s perception and interpretation of the patient’s condition and not on objective pain assessment alone. (43)
Personnel use various inputs for pain assessment (44) including years of experience, gender, age and previous pain experience, ‘gut feel’, patient behaviour and perceived cultural differences in the expression of pain. Also influencing assessment and management are vital signs and clinical condition, injuries and history of the incident. (43,44). It is still unclear whether physiological parameters (vital signs) are reliable in the assessment of pain as (6,45,46), as only a weak correlation between respiratory rate and pain has been proven (47) and factors such as hypoxia and hypovolaemia may blur the picture. (19)

EMS training reinforces ‘worst case scenario’ situations in which ‘life over limb’ thinking predominates. Consequently pain may be viewed as being of secondary importance, a symptom rather than a disease or disorder requiring treatment. (28,48) Personnel may not view it as their task to make diagnosis and thus may want to preserve symptoms for evaluation by a doctor. Frequently deferment of pain relief has been practiced until a definitive diagnosis has been made. This has especially been the case in acute abdominal pain, despite evidence showing that adequate analgesia did not alter diagnostic accuracy and in some cases may be helpful in examination and diagnosis. (49) This belief still appears in EMS decision making with at least one study describing the potential masking of symptoms to be a reason to withhold analgesia. (44) Fear of interfering with neurological assessment as well as venous access and issues surrounding patient consent also influence management. (16)

There is often a shortage of equipment, light and trained assistants out of hospital which may cause management to be less efficient and contribute to pain. Further the painful condition may still be evolving and may change rapidly. (18)

Provider biases may influence pain management. While clinicians deny ethnicity is a factor, race has been found to influence management (28) with minority groups (in the USA) being vulnerable to oligoanalgesia (9) and Caucasian victims of trauma more likely to receive prehospital analgesia (50). While sex did not necessarily influence rate of total analgesic administration it did influence type of analgesic administered, with females less likely to receive morphine (30) while a second EC study (51) showed that females tended to receive higher rates of analgesia as well as stronger analgesics. This was attributed to a greater expression of pain and not necessarily a patient gender bias on the part of providers, though there is evidence that physician gender (52) and race (9) influences pain management.
Further patient factors include reluctance to report pain and refusal of analgesia (28) or patients not requesting analgesia.(16)

Particularly vulnerable to oligoanalgesia are the elderly and children.(9) This is possibly due to the belief that children perceive pain differently, won’t ‘remember’ the incident or due to unfamiliarity with paediatric presentation of pain.(53)

Knowledge deficits, fear of adverse events, provider attitudes to pain, inadequate multidisciplinary communication, lack of consensus on methods and the EMS culture surrounding pain all have been found to contribute to inadequate pain management. (28)

In addition to the use of objective pain management instruments adequate training, knowledge and the presence of a clear guidelines and protocols improve pain management.(16,28) Implementation of a quality control programme improved pain management in a physician based French EMS system (54) and pain protocols improved paediatric pain management in an EC. (53) Low intensity training in pain management has resulted in better pain management for both physicians and prehospital personnel.(16) The lack of continuity between prehospital and EC pain management described by Berben and colleagues (28) strongly argues for integrated pain management protocols and feedback from the EC improves general EMS management. (43)

EMS is mostly protocol driven with little truly independent practice being undertaken by prehospital personnel. Many North American EMS services rely on physician direction when deciding on medication administration and European EMS systems are frequently physician based (5,54). In the United States reluctance to contact medical control, or reluctance on the part of medical control to authorise analgesia impacts pain management as well as under dosing. (16) Leadership and role models, or lack thereof, and inadequate or non-existent protocols influence EMS pain management. (28)

Seeing that the presence of a guideline or protocol has been shown to improve pain management (16,28,54) it is strange that a system rooted in protocol would generate so much evidence of poor pain management practices

Evidence of poor pain management even in the presence of a protocol was not necessarily restricted to paramedics. A ten year retrospective study of a physician driven helicopter service showed that 43% of patients were subjected to oligoanalgesia. This included patients who were not administered analgesia as well as those that received pain management that
was unsuccessful. Further significant practice variation amongst physicians and a physician
gender bias was associated with varied pain outcomes (52).

South African Advanced Life Support paramedics apply a national protocol independent of
medical control. Elements of medical control are being introduced in South Africa through
two relatively new qualifications, The Emergency Care Technician (ECT) and the Emergency
Care Practitioner (ECP). In this model the ECT is required to consult with an ECP, or
Medical Officer (MO), prior to the administration of morphine

In South Africa the drugs used for management of pain are morphine and Entonox™, with
morphine being confined to the Advanced Life Support (ALS) scope of practice (55). Ketamine has recently been introduced for use by the ECP. These drugs have been shown
to be safe and effective for prehospital use.(34,37,56) ALS personnel have access to
Nitrates (Isosorbide Dinitrate in tablet form and Glyceryl Trinitrate as a spray) for chest pain
and this is used according to recognised guidelines(55,57) (It must be noted that nitrates
relieve ischaemic chest pain by improving blood flow, not necessarily by acting as an
analgesic).All personnel have been trained in splinting and immobilisation techniques. The
current ALS protocol alludes to a rate of administration for morphine, 1mg per minute while
titrating to effect, without offering a specific weight based dose or definite targets to be
reached (55). A dosage of 0.1mg/kg followed by 0.05mg/kg doses every 5 minutes has been
found to be effective in the treatment of pre-hospital pain (58) though this is disputed
elsewhere.(59) Minimal adverse events were reported though the time period over which
pain reduction was measured in this study, 30 minutes (58), may not be entirely appropriate
for the pre-hospital environment. Fears around adverse events may contribute to
oligoanalgesia and under dosing. (44)

While ketamine is available the number of practitioners using this drug is very limited.
Nitrous Oxide is within the scope of practice of all personnel; however anecdotal evidence
suggests that it is not physically available on most ambulances preventing management of
pain in many cases where ALS personnel and intravenous analgesics are not available.

Unlike doctors, worldwide EMS has a tiered qualification structure in which not all personnel
may administer analgesia. Many patient contacts may be handled by personnel not having
access to analgesia which consequently skews statistical analysis. Jennings (14) has made
mention of differing qualification levels and scope of practice.
Other contributory factors are a lack of knowledge regarding cultural influences and bias, disbelief around reporting as well as racial and ethnic stereotyping (38) and time since qualification has also been reported to influence provider practice. (52)

Motivation for study

Acute traumatic pain is frequently encountered by EMS and appears to be poorly managed.

Pain is a subjective experience that can vary greatly between patients and the management of both pain and suffering is of ethical and clinical relevance. The literature associates several provider and patient characteristics with differences in the management of pain. The subjective nature of pain complicates assessment and management and results may not be generalizable between patient populations. Given the variability in terms of operation, qualification and scopes of practice between different EMS systems it may be difficult to apply findings in one system to another service, strongly motivating for research of each system individually.

Currently we have no data on pre-hospital analgesia practices in South African EMS. It is necessary to undertake descriptive studies of the South African EMS system to help determine whether patterns described in the literature are present in South African EMS and to describe and document local practice.

Research Question

What are the administration practices of Advanced Life Support Paramedics with regards to prehospital pharmacological analgesia for acute pain in the City of Cape Town?

Aim

To describe and document pre-hospital pharmacological analgesia administration practices by Advanced Life Support paramedics in the City of Cape Town.

Objectives

5. To describe the type, dosage, dosage frequency and route of analgesic drugs administered by Advanced Life Support personnel when managing prehospital acute pain.

6. To determine the patient characteristics of patients receiving prehospital analgesic drugs in terms of gender and age.

7. To describe injury and disorder types for which prehospital analgesic drugs are administered.
8. To describe the qualifications and implied experience levels of paramedic providers of prehospital analgesia.

Methods:

Study design

This study will be a retrospective, descriptive survey of randomly selected patient report forms that contain an entry of analgesic administration, generated by Metro EMS in the City of Cape Town. Stratified Random sampling will be used. Metro EMS is the ambulance service of the Provincial Government of the Western Cape.

Inclusion criteria

- Documentation generated by vehicles staffed by ECT, CCA, National Diploma or ECP qualified personnel will be eligible to form part of the sample
- All eligible patient report forms recording administration of Entonox™, if any, by Advanced Life Support paramedics.
- All eligible PRFs patient report forms recording administration of morphine and/or ketamine.
- All eligible patient report forms recording administration of nitrates

Exclusion criteria

- Patient report forms of patients younger than 18 years of age will be excluded.
 - Approval from the Minister of Health is required for non-therapeutic research on children; however regulations on this are unclear.
 - All patient report forms not recording administration of Entonox™, Morphine or Ketamine
 - Patient report forms containing analgesia administered by a provider other than an ALS paramedic (such as a doctor).
 - Patient report forms where any part of the form is illegible or where any information has been omitted or incompletely recorded in terms of the data subset required for this study.
Sample Selection and Data Collection

- Patient report forms will be investigated and the outcomes of interest recorded on an electronic spreadsheet (Microsoft Excel, Microsoft Corporation, Redmond, WA).
- Patient report forms will be obtained from the archive of the Western Cape Emergency Medical Service whose headquarters is located at Pinelands Ambulance Base.
- All patient report forms are archived by geographical division, date and ambulance roster. Shift rosters are catalogued with patient report forms. From this it can be determined which vehicles were staffed by the personnel of interest.
- Documentation generated on these vehicles will be perused and all patient report forms containing an entry of Entonox ™, morphine, nitrates or ketamine will be separated from those forms that do not contain such an entry.
- As all patient report forms are archived by EMS Division, each Division (Northern, Southern, Western and Eastern Divisions) will form one group or cluster of a stratified random sampling template. The sampling will be done by EMS Division but no analysis of Divisions will take place.
- Documentation will be sampled from a 12 month period, estimated to be from May 2013 till May 2014.
- The patient report form containing entries of analgesic administration in each group will be ordered by vehicle and date and packed out on a table in order. The number of documents in each group will be counted to determine the size of the population (N) in each cluster.
- Numbers from 1 to N will be entered into a spreadsheet and a random number generator (Microsoft Excel, Microsoft Corporation, Redmond, WA) will be used to generate random numbers between 1 and 10,000 for each cluster and then allocated against the number of patient report forms in the cluster. The random numbers, and corresponding patient report form numbers will be sorted smallest to largest and the patient report forms corresponding to the lowest 100 random numbers will be drawn into the sample (n).
- Should a selected patient report form meet exclusion criteria, such as age of patient or incomplete data, it will be discarded. The randomisation will then be repeated until a minimum of n=100 for each cluster are reached. Record will be kept of the number of discarded documents.
- The samples from each cluster will be combined to form the study population. A minimum of four hundred patient report forms will be collected and captured, with a subminimum of one hundred from each stratum.
• Data regarding length of ALS provider qualification, and therefore implied experience, will be obtained from the iRegister of the HPCSA. The provider’s registration number will appear on the patient report form and can be cross checked on the iRegister.

• Data is limited to that present on the patient report form and as such provider race and pain intensity scores might not be recorded as they are not guaranteed to be present on the form.

• To obtain some context, the ambulance control room will be approached to determine the total volume of calls attended to during the study period.

• Some providers may record a description of the pain or a pain score. If a patient report form contains either this will be recorded.

Data management
Data will be extracted manually from the patient report forms and transcribed to an electronic spreadsheet (Microsoft Excel, Microsoft Corporation, Redmond, WA). The electronic spreadsheet will be password protected to ensure the integrity of the data. The spreadsheet will be placed on a USB flash drive and stored in a locked cabinet when not being used for data collection or analysis.

Statistical considerations
Data will be in an Excel (Microsoft Excel, Microsoft Corporation, Redmond, WA) database and analysed using Statistica ver 12 (2014). This is primarily a descriptive study and descriptive analysis techniques will be used. Normally distributed continuous variables (e.g. Age and experience [in years]) will be described using means and standard deviations and medians and interquartile ranges will be used to describe continuous data that are not normally distributed or ordinal variables. Population parameters will be estimated using 95% confidence intervals. Categorical data (such as mechanism of injury) will be analysed using frequency distributions indicating absolute and relative counts. For binary proportions 95% confidence intervals will be used to estimate population parameters. Data will be presented graphically using histograms and bar charts.

Some comparison between variables is envisioned (e.g. total dose compared to years of experience) and the following general analysis guidelines will be followed:

For a comparison of 2 continuous variables Pearson’s correlation coefficient will be used if data are normally distributed and Spearman rank order correlation if data are not normally distributed.
• Comparing 2 categorical variables will be performed by means of a Pearson’s chi-squared test with Fisher’s exact test if small expected frequencies are observed.
• When comparing a continuous variable with a binary variable a T-test will be used if data are normally distributed and a Mann-Whitney U test if data are non-normally distributed.
• When comparing a continuous variable with a categorical variable an ANOVA will be used if data are normally distributed and a Kruskal-Wallis ANOVA if data are non-normally distributed. Post hoc testing with Bonferroni adjusted p-values will be performed when significant results are obtained.

A p-value of <0.05 will represent statistical significance. A sample size of 385 cases has been calculated to provide statistical significance. There is evidence for seasonal variation of traumatic conditions (60-62) which may influence analgesia administration by paramedics. To compensate for this variation, data will be randomly selected from a 12 month period by stratified randomisation.

Ethical considerations

• Data will be collected anonymously. No personal or identifying details will be collected, except for HPCSA registration numbers which will be held separate and confidential as described below.
• Permission from the Western Cape Provincial Government and Metro EMS is required.
• Paramedic HPCSA registration numbers could possibly lead to identification of individuals.
 o To protect individual identities HPCSA registration numbers will be transcribed onto a decoding sheet, in the form of a password protected electronic spreadsheet (Microsoft Excel, Microsoft Corporation, Redmond, WA), in which a study number will be allocated against HPCSA registration numbers. The study number will be used for data analysis and reporting. The decoding sheet will be stored on a USB flash drive and stored separately in a locked cabinet.

Limitations

• The patient report form does not record patient or provider race.
• The patient report form of the METRO EMS does require providers to record pain intensity and no inferences regarding reduction of pain intensity or pain relief will be made.
• This is a retrospective study and limited to data present on the ambulance patient report form.
- This study cannot determine prehospital pain prevalence.

Data dissemination plan

Data will be disseminated as:
A publication in a peer reviewed journal
Continuing medical education (CME) lecture for EMS personnel

Project timeline

<table>
<thead>
<tr>
<th>2014</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM-DRC</td>
<td></td>
</tr>
<tr>
<td>Sx-DRC</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethics</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interviews</td>
<td>X</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Data Collection)</td>
<td></td>
</tr>
<tr>
<td>Transcribing of Data</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Analysis</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compilation of Final Report</td>
<td>x</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submission</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Resources and budget

The project will be self-funded

Budget

February – December 2014

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Unit cost</th>
<th>N° of Units</th>
<th>Total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>materials and supplies</td>
<td>Paper</td>
<td>500</td>
<td>500-00</td>
</tr>
<tr>
<td>2.</td>
<td>materials and supplies</td>
<td>Printing</td>
<td>500</td>
<td>500-00</td>
</tr>
<tr>
<td>3.</td>
<td>specialized services</td>
<td>Printing</td>
<td>300-00</td>
<td>300-00</td>
</tr>
<tr>
<td>4.</td>
<td>office supplies, printing & reproduction for data collection</td>
<td>Printing</td>
<td>500</td>
<td>500-00</td>
</tr>
<tr>
<td>5.</td>
<td>office supplies, printing & reproduction for reports</td>
<td>Printing</td>
<td>300-00</td>
<td>300-00</td>
</tr>
<tr>
<td>Personnel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Research assistant</td>
<td>1000-00</td>
<td>1</td>
<td>1000-00</td>
</tr>
<tr>
<td>Research travel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>travel to sites</td>
<td>Fuel</td>
<td>500-00</td>
<td>500-00</td>
</tr>
<tr>
<td>2.</td>
<td>other, specify</td>
<td>Fuel</td>
<td>500-00</td>
<td>500-00</td>
</tr>
<tr>
<td>Minor research equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td>2800-00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>2800-00</td>
</tr>
</tbody>
</table>
References

(4) Pain terms: a list with definitions and notes on usage. Recommended by the IASP Subcommittee on Taxonomy. Pain 1979 06;6(3):249-249.

(42) Hawker GA, Mian S, Kendzerska T, French M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res (Hoboken) 2011 11;63 Suppl 11:S240-S252.

(59) Bijur PE, Kenny MK, Gallagher EJ. Intravenous morphine at 0.1 mg/kg is not effective for controlling severe acute pain in the majority of patients. Ann Emerg Med 2005 10;46(4):362-367.

14 May 2014

HREC/REF: 318/2014

Dr W Smith
Emergency Medicine
Private Bag X 24
Belville 7535

Dear Dr Smith

Project Title: A DESCRIPTION OF PRACTICES OF ANALGESIA ADMINISTRATION BY ADVANCED LIFE SUPPORT IN THE CITY OF CAPE TOWN—Mphili-R Matthews

Thank you for submitting your study to the Faculty of Health Sciences Human Research Ethics Committee for review.

It is a pleasure to inform you that the HREC has formally approved the above mentioned study.

Approval is granted for one year until the 30 May 2015.

Please submit a progress form, using the standardised Annual Report Form, if the study continues beyond the approval period. Please submit a Standard Closure form if the study is completed within the approval period.

We acknowledge that the following student Ryan Matthews is also involved in this study.

Please note that the on-going ethical conduct of the study remains the responsibility of the principal investigator

Please quote the HREC REF in all your correspondence.

Yours sincerely

Signed

PROFESSOR M BLOCKMAN
CHAIRPERSON, HSF HUMAN ETHICS

Federal Wide Assurance Number: FWA00001637.

Hrec/ref:318/2014
HUMAN RESEARCH ETHICS COMMITTEE

UNIVERSITY OF CAPE TOWN
27 MAR 2015

FACULTY OF HEALTH SCIENCES
Human Research Ethics Committee

HEALTH SCIENCES FACULTY
Annual Progress Report / Renewal

Record Reviews/Audits/Collections of Biological Specimens/Repositories/Databases/Registries

HREC office use only (FWA00001637; IRB00001938)

This serves as notification of annual approval, including any documentation described below.

☑ Approved
☑ Annual progress report
☑ Approved until next renewal date
☑ 30.6.20

☐ Not approved
☐ See attached comments

Signature Chairperson of the HREC

Date Signed

Principal Investigator to complete the following:

1. Protocol information

Date (when submitting this form) 24 March 2015

HREC REF Number 318/2014

Current Ethics Approval was granted until 30 May 2015

Protocol title A description of practices of analgesia administration by Advanced Life Support paramedics in the City of Cape Town.

Principal Investigator R.E. Matthews

Department/Office Division of Emergency Medicine

Internal Mail Address

1.1 Does this protocol receive US Federal funding? ☐ Yes ☑ No

2. Protocol status (tick ✓)

☐ Research-related activities are ongoing

✓ Data collection is complete, data analysis only

Please indicate (in the block below) the titles and HREC reference numbers of any projects currently making use of the Database/registry/repository.

null

3. Protocol summary

Total number of records or specimens collected, reviewed or stored since the original approval 530

Total number of records or specimens collected, reviewed or stored since last progress report

Have any research-related outputs (e.g. publications, abstracts, conference presentations) resulted from this research? If yes, please list and attach with this report. ☐ Yes ☑ No

4. Signature

Signature of PI

Date 24 March 2015

Signed
Attention: Ryan Matthews

RE: REQUEST FOR PERMISSION TO CONDUCT RESEARCH

Dear Mr. Matthews,

Your letter on the above matter refers.

Thank you for the request to conduct research within the Western Cape Government Emergency Medical Services. Your proposal has been evaluated by the Emergency Medicine Division Research Committee and has been recommended for approval by this office.

I am therefore pleased to inform you that such approval is hereby granted.

I wish you well in your endeavor and trust that you will keep this office and its department informed of your findings when these become available.

Yours sincerely

Signed

Dr Shaheem de Vries
Head: Emergency Medical Services
Western Cape Government Health
Date: 3rd July 2014
ANNEXURE 6: AMMENDED DATA COLLECTION CODES

<table>
<thead>
<tr>
<th>Category</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>INJURY</td>
<td></td>
</tr>
<tr>
<td>Soft tissue injuries</td>
<td>1</td>
</tr>
<tr>
<td>Fractures, amputations and dislocations</td>
<td>2</td>
</tr>
<tr>
<td>Non-traumatic pain</td>
<td>3</td>
</tr>
<tr>
<td>Burns</td>
<td>4</td>
</tr>
<tr>
<td>Stab wounds, gunshots and punctures</td>
<td>5</td>
</tr>
<tr>
<td>Chest pain</td>
<td>6</td>
</tr>
<tr>
<td>Back pain</td>
<td>7</td>
</tr>
<tr>
<td>BODY REGION</td>
<td></td>
</tr>
<tr>
<td>Head/Face/Neck</td>
<td>1</td>
</tr>
<tr>
<td>Torso and Genitalia</td>
<td>2</td>
</tr>
<tr>
<td>Upper and lower extremities</td>
<td>3</td>
</tr>
<tr>
<td>Multiple</td>
<td>4</td>
</tr>
<tr>
<td>Cardiac/Visceral</td>
<td>5</td>
</tr>
<tr>
<td>MECHANISM</td>
<td></td>
</tr>
<tr>
<td>Motor vehicle accident/Pedestrian vehicle accident</td>
<td>1</td>
</tr>
<tr>
<td>Fall</td>
<td>2</td>
</tr>
<tr>
<td>Gunshot</td>
<td>3</td>
</tr>
<tr>
<td>Stabbing</td>
<td>4</td>
</tr>
<tr>
<td>Sprain/blunt trauma/assault</td>
<td>5</td>
</tr>
<tr>
<td>Burn</td>
<td>6</td>
</tr>
<tr>
<td>Visceral pain</td>
<td>7</td>
</tr>
<tr>
<td>PARAMEDIC QUALIFICATION</td>
<td></td>
</tr>
<tr>
<td>Critical Care Assistant (CCA)</td>
<td>3</td>
</tr>
<tr>
<td>Emergency Care Technician (ECT)</td>
<td>4</td>
</tr>
<tr>
<td>National Diploma, Emergency Medical Care (ND EMC)</td>
<td>5</td>
</tr>
<tr>
<td>Emergency Care Practitioner (ECP)</td>
<td>6</td>
</tr>
<tr>
<td>ROUTE</td>
<td></td>
</tr>
<tr>
<td>Intravenous (IV)</td>
<td>1</td>
</tr>
<tr>
<td>Intramuscular (IM)</td>
<td>2</td>
</tr>
<tr>
<td>PAIN CATEGORY</td>
<td></td>
</tr>
<tr>
<td>Trauma</td>
<td>1</td>
</tr>
<tr>
<td>Medical</td>
<td>2</td>
</tr>
<tr>
<td>CALL TYPE</td>
<td></td>
</tr>
<tr>
<td>Primary Response</td>
<td>1</td>
</tr>
<tr>
<td>Inter-facility Transfer</td>
<td>2</td>
</tr>
<tr>
<td>GENDER</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1</td>
</tr>
<tr>
<td>Female</td>
<td>2</td>
</tr>
</tbody>
</table>
ANNEXURE 7: PRACTITIONER STUDY NUMBER AND EXPERIENCE

<table>
<thead>
<tr>
<th>Study Number</th>
<th>Name</th>
<th>HPCSA registration number</th>
<th>Qualification Code</th>
<th>Obtained</th>
<th>First Registration</th>
<th>Experience in highest Qualification</th>
<th>Experience In EMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Joe</td>
<td>xxx</td>
<td>4</td>
<td>2012</td>
<td>2008</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Jane</td>
<td>xxx</td>
<td>3</td>
<td>2013</td>
<td>2010</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
ANNEXURE 8: SAMPLING FLOW CHART

All PCRs in archive, all divisions, August 2013 to June 2014

N= 1534
All PCRs containing entries of:
Entonox®
Morphine
Ketamine
Nitrates

Excluded n=601
- Patient younger than 18 years
- Used for intubation
- No description of pain
- Not administered by prehospital personnel
- Age indeterminate

N = 933
Randomisation process: All data eligible for inclusion containing entries of:
Enteronox®
Morphine
Ketamine
Nitrates

Returned to Archive n=403

n = 530
Sample

n = 403
ANNEXURE 9: TABLE OF LITERATURE

<table>
<thead>
<tr>
<th>Reference</th>
<th>Geographical location</th>
<th>Aim</th>
<th>Main Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jennings et al 2010</td>
<td>Australia</td>
<td>Obtain and understanding of the epidemiology prehospital pain.</td>
<td>Pain was prevalent in this population (34.5% of patients) with traumatic and medical pain presenting roughly equally (40.1 & 39.1%) and cardiac pain representing a significant number as well (17%).</td>
</tr>
<tr>
<td>Lord et al 2009</td>
<td>Australia</td>
<td>Identify an association between ambulance dispatch priority and pain severity</td>
<td>Pain severity did not influence ambulance dispatch priority.</td>
</tr>
<tr>
<td>Kosinski et al 2014</td>
<td>Poland</td>
<td>Determine incidence and characteristics of pain experienced by patients</td>
<td>44% of patients experience pain, with non-trauma being the greatest. Moderate to severe pain was common.</td>
</tr>
</tbody>
</table>
| Galinski et al 2010| France | Determine the prevalence of pain in prehospital emergencies (urban) | • Just under half (42%) of patients suffered from acute pain and of those 64% suffered from moderate to severe pain.
• Cardiac aetiologies and trauma were associated with more severe pain. |
<p>| Marinangeli et al 2009| Italy | Evaluate incidence, site, diagnoses of acute pain in prehospital period | Pain present in 63.75% of cases with moderate to severe pain intensity in 41.75% of cases with trauma being the most important contributor (36.8%). |
| Berben et al 2011 | Netherlands | Determine prevalence of prehospital pain in the Netherlands and effect of the National EMS analgesia protocol. | Pain prevalence was 70% (75% NRS > 4 – moderate to severe) |
| Buckenmaier et al 2009| Iraq & Afghanistan | Determine pain severity and effect of pain on emotional status during evacuation of war wounded. | Pain severity was typically greater than 4/10 and poorly relieved during transport. Higher levels of anxiety and stress were recorded. |
| Easton et al 2012 | Australia | Assess the validity of retrospectively collected pain scores in trauma patients | Significant disparity exists between immediate and recalled pain scores following trauma. |</p>
<table>
<thead>
<tr>
<th>Authors</th>
<th>Country</th>
<th>Study Objective</th>
<th>Findings/Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farrant et al 2012</td>
<td>South Africa</td>
<td>Measure prevalence and burden of pain in HIV positive patients attending HAART clinics</td>
<td>Patients experience high pain levels.</td>
</tr>
<tr>
<td>Narisimooloo et al 2011</td>
<td>South Africa</td>
<td>Investigate the prevalence, severity, and management of pain in HIV positive patients in South Africa.</td>
<td>Pain prevalence is high and up to 1/3 have inadequate pain management.</td>
</tr>
<tr>
<td>Rauf et al 2013</td>
<td>South Africa</td>
<td>Investigate prevalence of chronic pain in primary health care clinics in a specific area.</td>
<td>Pain prevalence was high with a high intensity.</td>
</tr>
</tbody>
</table>
| Igumbor et al 2012 | South Africa | Estimate prevalence of pain in rural and peri-urban health facilities and characterize pain in a specific area. | - 594 (74.6%, 95% CI: 63.2-81.4%) used facilities because of pain
 - Majority female ((n = 396, 66.7%) vs (n = 198, 33.3%; P = 0.01)
 - Primary reason for visit in 393 (49.4%, 95% CI: 32.1-61.0%)
 - Secondary reason for visit in 201 (25.3%, 95% CI: 12.8-33.7%). |
<p>| Thiadens et al 2011 | South Africa | Evaluate pain incidence and management in a paediatric trauma unit. | Pain incidence is relatively low. |
| Galinski et al 2011 | France | Determine prehospital pain prevalence in children and identify factors associated with pain relief. | More than 1/3 of children have severe pain with trauma being the only factor associated with severe pain. |
| Luger et al 2003 | Austria | Evaluate quality of pain assessment by EMS. | EMS providers underestimate patients’ pain severity. |
| Guru & Dubinsky 2000 | Canada | Determine how well pain is assessed and treated in the EC. | Pain assessment and management in the EC is inadequate. |
| Lord & Woolard 2011 | Australia | Examine strength of correlation between pain severity score and vital signs in adults. | Opain scores do not correlate with vital signs readings. |
| Bossart, Fosnocht & Swanson 2007 | USA | Evaluate correlation between change in pain intensity and change in heart rate. | There is poor correlation between change in pain intensity and heart rate. |</p>
<table>
<thead>
<tr>
<th>Authors</th>
<th>Country</th>
<th>Study Objective</th>
<th>Findings/Implications</th>
</tr>
</thead>
</table>
| Kelly 1998 | Australia| Determine minimum clinically significant VAS pain scores and check variance according to certain patient characteristics. | • Minimum clinically significant pain scores was 9mm.
• Certain patient characteristics do not change level of clinical significance of VAS pain scores. |
| Bijur, Silver & Gallagher 2001 | USA | Assess the reliability of the VAS to assess pain | The Vas is reliable for assessment of pain. |
| Todd et al 1996 | USA | To determine the change in severity that constitutes minimum clinically significant difference (VAS scale) | Minimum clinically significant difference is 13mm. |
| Gallagher, Liebman & Bijur 2001 | USA | To determine the change in severity that constitutes minimum clinically significant difference (VAS scale) in a heterogenous cohort. | Minimum clinically significant difference is 13mm. |
| McLean et al 2004 | USA | To determine feasibility of pain assessment in the prehospital setting using the Vas and NRS. | Pain assessment is feasible in the prehospital setting. |
| Lord 2009 | Australia| Systematically locate evidence regarding validation of pain assessment tools for use with cognitively impaired adults in prehospital settings. | No tools specifically developed for prehospital use exist. |
| Michael, Sporer & Youngblood 2007 | USA | Examine effect of socio economic factors (ethnicity, income, age, sex) on administration of analgesia for isolated extremity fractures. | • Women less likely than men to receive analgesia.
• Longer time under EMS care was associated with increasing likelihood of receiving analgesia as was increasing severity of pain score. |
| Thomas et al 2005 | USA | Performance of specific service with regards to pain assessment as well as safety and efficacy of fentanyl. | • Prehospital pain management was provided well.
• Fentanyl showed good effect with minimal cardiorespiratory compromise. |
<p>| Frakes et al 2009 | USA | Evaluate analgesic administration to trauma patients during critical care transport | Absence of analgesic administration associated with: initial pain level (self-report NRS <4), pain scale documentation, transport program. No clinical factors. |</p>
<table>
<thead>
<tr>
<th>Authors</th>
<th>Country</th>
<th>Study Description</th>
<th>Findings</th>
</tr>
</thead>
</table>
| Jennings, Cameron & Bernard 2012 | Australia | Identify characteristics associated with clinically important pain intensity reduction during prehospital care. | • Overall a 42% of cases in a 1 year period achieved clinically significant pain reduction.
• 45-69 year old (older) groups less likely to achieve pain reduction.
• Initial pain score strong predictor of pain reduction (moderate –severe pain more likely to achieve reduction). |
| Young et al 2013 | USA | Determine relationship between prehospital analgesia and patient characteristics, characteristics of the encounter and use of a pain scale in blunt trauma | • Caucasians, women and older patients were more likely to receive analgesia (bivariate analysis).
• Only race and time was significant among patients who received analgesia |
| McDermott, Nichols & Lovell 2014 | United Kingdom | Compare acute pain management in cognitively impaired vs cognitively intact persons following fractured neck of femur. | Several inconsistencies exist in the management of pain in cognitively impaired patients. |
| Infinger & Studnek 2014 | USA | Describe prehospital management of pain in patients who suffered a fall | • Younger patients more likely to receive analgesia.
• Pain from extremities/hip more likely to receive pain eds.
• Patients with a pain score were 4.41 times more likely to receive pain meds.
• Patients with pain score assigned more likely to receive meds. |
| Albrecht et al 2013 | Switzerland | Assess how oligoanalgesia was associated with physicians practice variation | • Oligoanalgesia present in 43% of cases.
• Significant physician practice variation.
• Oligoanalgesia associated with lower level of physician experience and female gender. |
<p>| Lord, Cui & Kelly 2009 | Australia | Establish impact of patient sex on analgesia provision by paramedics | Administration of any analgesic showed no sex difference but females were less likely to receive morphine. |
| Platts-Mills et al 2013 | USA | Compare analgesia administration for older vs younger patients by EMS guided by a pain management protocol protocol. | Older patients less likely to receive treatment. |</p>
<table>
<thead>
<tr>
<th>Reference</th>
<th>Country</th>
<th>Description</th>
<th>Findings</th>
</tr>
</thead>
</table>
| Simpson et al 2013 | Australia | Describe rate and effectiveness of prehospital analgesia in older patients with suspected fracture. Identify predictive factors associated with analgesia provision. | - Analgesia rate was 60% (67% for hip fracture)
- Proportion of hip fracture victims receiving analgesia was higher than other sites.
- Use of analgesia higher when pain scores recorded. |
| Bendall, Simpson & Middleton 2013 | Australia | Describe the use of IV Morphine, IN Fentanyl and inhaled methoxyflurane in the out-of-hospital setting. | - Paramedics mostly use single agent analgesia (87%), Methoxyflurane most common.
- Females and paediatrics are less likely to receive opioids and IN Fentanyl more likely in younger ages and opioids in older ages. |
| Siriwardena, Shaw & Bouliotis 2010 | United Kingdom | Investigate rates of and factors associated with assessment and treatment of pain in AMI and fracture. | - Pain scores recorded in 77.4% and two pain scores in 64.2%.
- AMI higher rate of pain assessment (85% vs 75%). Also associated with level of alertness.
- Analgesics only administered to few cases (38%). Most not received analgesia though 75% AMI patients received GTN. |
| Bakkelund et al 2012 | Norway | Evaluate prehospital use of morphine in chest pain and trauma. | - Majority patients were chest pain patients.
- Morphine was only administered in 21% chest pain and 31% trauma patients. however NRS score available for more chest pain (64%) than trauma (31%). |
| Faddy & Garlick 2005 | Australia | Determine safety profile of 50% Nitrous Oxide. | Significant events have a low incidence and 50% Nitrous Oxide is safe for use by lay responders. |
| Ducasse et al 2013 | France | Evaluate efficacy of N2O and O2 compared to medical air for prehospital moderate traumatic acute pain. | N2O and oxygen is efficacious for treating out-of-hospital acute traumatic pain. |
| Bijur et al 2005 | USA | Determine proportion of patients in acute pain with less than 50% reduction in pain intensity 30 mins after IV 0.1mg/kg morphine. | - 67% of patients with 0.01mg/kg morphine reported less than 50% pain reduction.
- 0.1mg/kg Morphine is not effective for pain relief. |
<table>
<thead>
<tr>
<th>Authors</th>
<th>Location</th>
<th>Study Objective</th>
<th>Findings/Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birnbaum et al 2007</td>
<td>USA</td>
<td>Compare relief and safety of Morphine 0.1mg/kg with 0.15mg/kg in the EC</td>
<td>0.15 mg/kg of morphine is safe and statistically superior than 0.1mg/kg but did not provide clinically superior pain relief.</td>
</tr>
<tr>
<td>Bounes et al 2008</td>
<td>France</td>
<td>Determine best IV morphine titration. Comparison of 2 doses</td>
<td>Both dose groups 30 mins after injection comparable NRS scores (NRS<30) 66% lower dose vs 76% higher dose.</td>
</tr>
<tr>
<td>Galinski et al 2005</td>
<td>France</td>
<td>Randomised double blind comparison of Morphine and Fentanyl in a prehospital setting.</td>
<td>Morphine and Fentanyl are comparable in treating severe out of hospital pain.</td>
</tr>
<tr>
<td>Smith et al 2012</td>
<td>USA</td>
<td>Determine whether intermittent IV Fentanyl provides superior pain relief to intermittent IV Morphine.</td>
<td>There is no significant differences in effectiveness between IV Morphine and IV Fentanyl and both are equally safe.</td>
</tr>
</tbody>
</table>
| Frakes et al 2006 | USA | Evaluate need for and outcomes from fentanyl administration by dedicated critical care transport teams | • Fentanyl resulted in mean pain reduction of 3.7 NRS units
• Better pain outcomes with doses above 2 µg/kg. |
ANNEXURE 10: FLOW CHART OF SYSTEMATIC LITERATURE SEARCH

Pubmed & Scopus: Search Strings

FILTERS
- Analgesia AND paramedic or Emergency Medical Technician AND drug therapy
- Emergency Medical Services OR Prehospital AND Analgesia AND drug therapy
- Age > 18
- English
- Last 10 years
- Journal article
- Human
- Theory of planned behaviour AND analgesia
- (((Pain Management OR Pain Measurement) AND emergency medical services) OR prehospital) AND analgesia

117
14
7
7

211
150
132
85

8
10
10

3
3
2
2

165
150
140
44

148 ARTICLES INCLUDED