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Abstract

Korn and Koziol (2006) apply the Markowitz (1952) mean-variance framework to
bond portfolio selection by proposing the use of term structure models to estimate
the time-varying moments of bond returns. Duffee (2002) introduces a distinction
between completely affine and essentially affine term structure models. A com-
pletely affine model uses a market price of risk specification that is proportional
to the volatility of the risk factors. However, this assumption of proportionality
of the market price of risk contradicts the observed behaviour of bond returns. In
response, Duffee (2002) introduces a more flexible essentially affine market price
of risk specification by breaking the strict proportionality of the completely affine
specification. Essentially affine models better represent the empirical features of
bond returns whilst preserving the tractability of completely affine models. How-
ever, Duffee and Stanton (2012) find that the increased flexibility of the essentially
affine model comes at the expense of real-world parameter estimation. Given these
parameter estimation issues, this dissertation investigates whether the difficulty in
estimating an essentially affine specification is outweighed by the empirical prefer-
ability, and whether, all these issues considered, the Markowitz (1952) approach to
bond portfolio optimisation is robust. The results indicate that the superior capabil-
ity of an essentially affine model to forecast expected returns outweighs real-world
parameter estimation issues; and that the estimation and mean-variance optimisa-
tion procedures are worthwhile.



Acknowledgements

I would to thank my supervisors, Alex Backwell and doctor Peter Ouwehand, for
their guidance, patience and keen interest. As always, I am grateful to my family
for their continued support and encouragement.



Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Affine Term Structure Models: Market Price of Risk Specification . . . 4
2.1 Completely Affine Versus Essentially Affine . . . . . . . . . . . . . . . 4
2.2 Vasicek Model Specification . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Market Price of Risk Specification . . . . . . . . . . . . . . . . . . . . . 7
2.4 Moments of Bond Returns . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Issues Related to a More Flexible Price of Risk . . . . . . . . . . . . . 10
3.2 The Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Filtering Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4. Bond Portfolio Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1 Overview of Estimation Procedure . . . . . . . . . . . . . . . . . . . . 17
4.2 Mean-Variance Optimisation . . . . . . . . . . . . . . . . . . . . . . . 18

5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.1 Completely Affine Model Parameter Estimates . . . . . . . . . . . . . 34
A.2 Essentially Affine Model Parameter Estimates . . . . . . . . . . . . . 34

iv



List of Figures

3.1 Filtered state variables for an essentially affine three-factor model . . 16

4.1 Expected versus realised returns for a completely affine model ap-
plied to a portfolio of six bonds . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Expected versus realised returns for an essentially affine model ap-
plied to a portfolio of six bonds . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Expected versus realised returns for a completely affine model ap-
plied to a portfolio of 15 bonds . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Expected versus realised returns for an essentially affine model ap-
plied to a portfolio of 15 bonds . . . . . . . . . . . . . . . . . . . . . . 26

4.5 Completely affine speed of mean reversion parameter estimates . . . 27
4.6 Essentially affine speed of mean reversion parameter estimates . . . 28

v



List of Tables

3.1 Simulation results for completely affine (CA) and essentially affine
(EA) one-factor models . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Simulation results for completely and essentially affine two-factor
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Mean Speed of Mean Reversion Parameter Estimates . . . . . . . . . 18
4.2 Performance of benchmark portfolios . . . . . . . . . . . . . . . . . . 19
4.3 Out-of-sample performance of bond portfolios (completely affine) . . 20
4.4 Out-of-sample performance of bond portfolios (essentially affine) . . 21

A.1 Mean Parameter Estimates for Completely Affine Model Variants . . 34
A.2 Mean Parameter Estimates for Essentially Affine Model Variants . . . 35

vi



Chapter 1

Introduction

The Markowitz (1952) mean-variance approach to portfolio optimisation has been
widely applied to stock selection. However, little attention has been given to se-
lecting bond portfolios using this framework. Korn and Koziol (2006) suggest that
this is largely because, historically, interest rate volatility has been low and, thus,
portfolio optimisation seemed unnecessary. However, over the last few decades,
changes in interest rates have posed significant risks to bond investments, even ig-
noring default risk. There is scope for risk diversification using bonds because of
the availability of a large number of different bonds with different maturities. In
particular, this paper investigates the application of the mean-variance framework
in selecting amongst different bond maturities.

The main issue in applying mean-variance optimisation to bond portfolio selec-
tion is that the moments of bond returns vary over time. Therefore, naive historical
estimation of these moments —namely, the expected return and covariance matrix
of returns —assuming stationarity is inadequate. Korn and Koziol (2006) propose
using term structure models to estimate these moments. Term structure models can
be classified as either equilibrium or no-arbitrage models. The Vasicek (1977) and
CIR 1 models are examples of equilibrium models. The success of term structure
models in pricing interest rate dependent securities is widely documented in the
literature. Term structure models are useful because they capture the variation of
bond returns as the state of the world/the state variables as well as time to maturity
varies. The use of term structure models in bond portfolio optimisation was orig-
inally suggested by Brennan and Schwartz (1980). Wilhelm (1992) specifies a CIR
model for bond returns and derives the requisite means, variances and covariances
of returns over discrete holding periods. Korn and Koziol (2006) are the first to test
such optimised portfolio strategies in an empirical setting. More specifically, they
base their study on the German government bond market over 1974 to 2004. Puhle
(2008) extends the mean-variance bond portfolio optimisation framework of Wil-

1 Proposed by Cox et al. (1985)
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helm (1992) to include the Vasicek (1977) and Hull and White (1994) term structure
models. Caldeira et al. (2012) make use of dynamic heteroskedastic factor models
to better capture the persistence in the volatility of bond returns.

Duffie and Kan (1996) characterise the affine class of term structure models by a
set of conditions on the risk factors, the short rate and the bond price. In the affine
class, bond prices have an exponential-affine form, which implies that the drift,
squared diffusion and short rate are affine functions of the risk factors. Duffee
(2002) notes that despite the existence of a range of non-affine models, the tractabil-
ity and richness of the affine class have made these models the focus of much at-
tention in the literature.

Duffee (2002) highlights that when the market price of risk is proportional to
the volatility of the risk factors, then there is linearity under both the risk-neutral
and real-world measures. In this case, the model is known as a completely affine
term structure model. However, the assumption of proportionality of the market
price of risk contradicts the observed behaviour of bond returns. The empirical lim-
itations of completely affine term structure models include, firstly, poor forecasting
of excess returns on long-dated bonds; and, secondly, the inability to capture the
time-varying volatility of interest rates. In response to these empirical limitations,
Duffee (2002) and Duarte (2004) introduce essentially affine and semi-affine term
structure models, which allow for more flexible price of risk specifications. These
models better represent the empirical features of bond returns whilst preserving
the tractability of completely affine term structure models.

However, the increased flexibility of the essentially affine and semi-affine mod-
els comes at the expense of parameter estimation. Duffee and Stanton (2012) inves-
tigate the finite-sample properties of three estimation techniques through Monte
Carlo simulations, namely, maximum likelihood, efficient method of moments and
the Kalman filter. They find significant biases in the real-world parameter estimates
across all estimation techniques.

Given these issues relating to real-world parameter estimation, this dissertation
will investigate whether the difficulty in estimating an essentially affine specifi-
cation is outweighed by the empirical preferability, and whether, all these issues
considered, the Markowitz approach to bond portfolio optimisation is robust in
terms of performance and estimation of expected returns versus realised returns.
The use of an essentially affine price of risk specification results in affine real-world
dynamics, whereas a semi-affine price of risk specification does not. This is impor-
tant for the calculation of bond moments under the real-world measure, which are
required as inputs to mean-variance optimisation.

Chapter 2 details affine term structure models along with the completely and
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essentially affine price of risk specifications. The Vasicek (1977) model is introduced
and the moments of bond returns under the real-world measure are derived. Chap-
ter 3 outlines the issues related to parameter estimation when a more flexible price
of risk is used and provides a description of the Kalman filter. In addition, the
accuracy of the Kalman filter in parameter identification is investigated through a
Monte Carlo simulation experiment. Chapter 4 details the bond portfolio optimi-
sation procedure and provides results from the testing of the optimised portfolios.
Finally, Chapter 5 concludes.



Chapter 2

Affine Term Structure Models:
Market Price of Risk Specification

2.1 Completely Affine Versus Essentially Affine

This section summarises the affine term structure model framework developed by
Duffie and Kan (1996). Assume there are n factors, X(t) ≡ (X1(t), . . . , Xn(t))′,
and n Brownian motions, W̃ (t) ≡ (W̃1(t), . . . , W̃n(t))′. The dynamics of the factors
under the equivalent martingale measure, Q, are given by

dX(t) = κ(θ −X(t))dt+ ΣS(t)dW̃ (t),

where κ and Σ are n× n matrices and θ is an n× 1 vector. S(t) is a diagonal matrix
with typical element

S(ii)(t) ≡
√
αi + β′iX(t),

where βi is an n × 1 vector and αi a scalar. Parameter restrictions required for
αi +β′iX(t) to be nonnegative for all i and all feasible X(t) can be found in Dai and
Singleton (2000). The instantaneous spot rate (short rate) is an affine function of
these factors:

r(t) = δ0 + δ′X(t),

where δ0 is a scalar and δ is a n× 1 vector.
Let P (X(t), τ) be the time-t price of a zero-coupon bond maturing at time t+ τ .

Duffie and Kan (1996) prove that the bond price has an exponential affine form

P (X(t), τ) = eA(τ)−B(τ)′X(t),

where A(τ) is a scalar and B(τ) is an n× 1 vector. Therefore, the bond’s yield is an
affine function of the factors:

Y (X(t), τ) =
1

τ
[−A(τ) +B(τ)′X(t)].
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The functions A(τ) and B(τ) are the solutions to a system of ordinary differential
equations (ODEs) provided in Dai and Singleton (2000):

dA(τ)

dτ
= −θ′κ′B(τ) +

1

2

n∑
i=1

[Σ′B(τ)]2iαi − δ0, (2.1)

dB(τ)

d(τ)
= −κ′B(τ)− 1

2

n∑
i=1

[Σ′B(τ)]2iβi + δ, (2.2)

with initial conditions A(0) = 0 and B(0) = 0n×1.
In order to move from Q to the real-world measure P, Duffee (2002) specifies

the dynamics of the state price deflator as

dπ(t)

π(t)
= −r(t)dt− Λ(t)′dW (t),

where W (t) is an n× 1 P-Brownian motion and Λ(t) is an n× 1 vector representing
the market price of risk. By Girsanov’s theorem,

W̃ (t) = W (t) +

∫ t

0
Λ(s)ds

is a Q-Brownian motion. The P-dynamics of X(t) are, therefore, given by

dX(t) = κ(θ −X(t))dt+ ΣS(t)Λ(t)dt+ ΣS(t)dW (t).

The instantaneous bond-price dynamics are given by

dP (X(t), τ)

P (X(t), τ)
= (r(t) + eτ (t))dt+ vτ (t)dW (t),

where eτ (t) is the instantaneous expected excess bond return and vτ (t) is the in-
stantaneous bond return volatility. Duffee (2002) provides expressions for eτ (t)

and vτ (t):

eτ (t) = −B(τ)′ΣS(t)Λ(t),

vτ (t) = −B(τ)′ΣS(t).

Therefore, changes in expected excess bond returns over time are caused by changes
in both the volatility matrix S(t) and the market price of risk vector Λ(t). There is
a strong connection between excess bond returns and bond volatility due to their
mutual dependence on factor volatility.

The completely affine price of risk specification of Fisher and Gilles (1996) and
Dai and Singleton (2000) is

Λ(t) = S(t)λ1,
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where λ1 is an n× 1 vector.
Duffee (2002) characterises the essentially affine class of term structure models by

first defining S−(t), a diagonal matrix with elements

S−(ii)(t) =

(αi + β′iX(t))−
1
2 , if inf(αi + β′iX(t)) > 0;

0, otherwise.

This definition of S−(t) ensures that its elements do not tend to infinity as the asso-
ciated elements of S(t) tend to zero.

The form of the essentially affine price of risk is

Λ(t) = S(t)λ1 + S−(t)λ2X(t),

where λ2 is an n× n matrix.
For both the completely affine and essentially affine cases, S(t)Λ(t) is affine in

X(t). Therefore, X(t) has affine dynamics under both Q and P. Affine P-dynamics
are desirable because they allow closed-form solutions for the conditional mean
and variance of discretely sampled bond yields. ”Completely affine” refers to
Λ(t)′Λ(t), the instantaneous variance of the log state price deflator, also being affine
in X(t). In the essentially affine case, Λ(t)′Λ(t) is not affine in X(t) when λ2 6= 0.
This is a less important property since the variance of the state price deflator does
not influence bond prices.

Duarte (2004) highlights the following empirical limitations of completely affine
term structure models: (i) poor forecasting of excess returns on long-dated treasury
bonds; and (ii) the inability to capture the time-varying volatility of interest rates.
Duffee (2002) finds that the essentially affine class addresses these failures, whilst
maintaining tractability, by removing the strict proportionality between the price
of interest rate risk and interest rate volatility. This allows for independent move-
ments of the price of risk and results in improved forecasting of future yields. In
addition, the essentially affine specification allows Λ(t) to change sign over time
with the shape of the term structure.

2.2 Vasicek Model Specification

The Vasicek model falls within the affine class of term structure models. Vasicek
(1977) assumed that the short rate follows an Ornstein-Uhlenbeck process with
constant coefficients. Assume a Vasicek-type multi-factor model where the fac-
tors Xi(t), i = 1, . . . , n, are modelled as mutually independent Ornstein-Uhlenbeck
processes, with risk-neutral or equivalent-martingale (Q) dynamics given by

dXi(t) = κi(θi −Xi(t))dt+ σidW̃i(t).
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The speed of mean reversion of factor i is given by κi, θi is the long-term mean of
factor i, and σi represents the local volatility of the factor i increment. Assume the
short rate equals the sum of the factors:

r(t) =
n∑
i=1

Xi(t).

Brigo and Mercurio (2007) integrate the stochastic differential equation (SDE) to
obtain, for s ≤ t,

Xi(t) = Xi(s)e
−κi(t−s) + θi

(
1− e−κi(t−s)

)
+ σi

∫ t

s
e−κi(t−u)dW̃i(u),

so that Xi(t) conditional on Fs is normally distributed under Q with mean and
variance:

EQ [Xi(t)|Fs] = Xi(s)e
−κi(t−s) + θi

(
1− e−κi(t−s)

)
,

V arQ [Xi(t)|Fs] =
σ2
i

2κi

(
1− e−2κi(t−s)

)
.

Therefore, r(t) is also normally distributed with mean and variance:

EQ [r(t)|Fs] =
n∑
i=1

[
Xi(s)e

−κi(t−s) + θi

(
1− e−κi(t−s)

)]
,

V arQ [r(t)|Fs] =
n∑
i=1

σ2
i

2κi

(
1− e−2κi(t−s)

)
Bond prices in the Vasicek model have an exponential affine form, P (X(t), τ) =

eA(τ)−B(τ)′X(t). One can verify that Equations (2.1) and (2.2) with the appropriate
parameters, αi = 1, βi an n× 1 zero vector, δ0 = 0 and δ an n× 1 vector of ones, are
satisfied by

A(τ) =

n∑
i=1

[
(θi −

σ2
i

2κ2
i

)(Bi(τ)− τ)− σ2
iB

2
i (τ)

4κi

]
,

Bi(τ) =
1

κi
(1− e−κiτ ).

2.3 Market Price of Risk Specification

The completely affine price of risk specification investigated is

Λi(t) =
λi
σi
.
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Therefore, in the completely affine case, the dynamics of the factors under the real-
world measure, P, are given by

dXi(t) = κi

(
θi +

λi
κi
−Xi(t)

)
dt+ σidWi(t).

Under P, Xi(t) conditional on Fs is normally distributed with mean and variance:

EP [Xi(t)|Fs] = Xi(s)e
−κi(t−s) +

(
θi +

λi
κi

)(
1− e−κi(t−s)

)
,

V arP [Xi(t)|Fs] =
σ2
i

2κi

(
1− e−2κi(t−s)

)
.

The essentially affine price of risk specification takes the form investigated by
Duffee and Stanton (2012):

Λi(t) =
λi1 + λi2Xi(t)

σi
.

In this case, the P-dynamics of the factors are given by

dXi(t) = (κiθi + λi1 − (κi − λi2)Xi(t))dt+ σidWi(t).

With this specification, Xi(t) remains conditionally normally distributed under P
with mean and variance:

EP [Xi(t)|Fs] = Xi(s)e
−(κi−λi2)(t−s) +

(
κiθi + λi1
κi − λi2

)(
1− e−(κi−λi2)(t−s)

)
,

V arP [Xi(t)|Fs] =
σ2
i

2(κi − λi2)

(
1− e−2(κi−λi2)(t−s)

)
.

2.4 Moments of Bond Returns

For the investor’s portfolio optimisation problem consisting of M bonds, the ex-
pected returns µk, k = 1, . . . ,M , of every risky bond and covariance of returns
Ω = {s2

k,l}, k, l = 1, . . . ,M , are required under the real-world measure. Let P (t, Tk)
1 be the price of a bond at time t that matures at time Tk. The expected return of
bond k, µk, and covariance of bond k and bond l’s returns, s2

k,l, over the period
t = 0 to T are calculated as

µk =
EP

0 [P (T, Tk)]

P (0, Tk)
− 1,

s2
k,l = CovP0

[
P (T, Tk)

P (0, Tk)
,
P (T, Tl)

P (0, Tl)

]
.

1 Note the change in notation from earlier sections
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Korn and Koziol (2006) allow for real-world bond pricing errors at the planning
horizon:

P (T, Tk) = eA(Tk−T )−
∑n

i=1Xi(T )Bi(Tk−T )+εTk (T ),

where εTk(T ) is the error term associated with maturity Tk. εTk(T ) is assumed to
be normally distributed with zero mean and variance s2(εTk). These pricing er-
rors account for the less than perfect model specification and are handled naturally
by the Kalman filter in the next section. Maximum likelihood estimation can be
used to estimate the pricing error variances along with the other parameters. Er-
ror terms referring to different maturities are assumed to be mutually independent.
Allowance is made for pricing errors in this dissertation as well.

Since bond prices are log-normally distributed in the Vasicek model, closed-
form solutions exist for the expected return µk, variance s2

k,k and covariance s2
k,l,

which are provided in Korn and Koziol (2006):

µk =
eM

(1)(Tk)+ 1
2
S(1)(Tk)2

P (0, Tk)
− 1,

s2
k,k =

e2M(1)(Tk)+S(1)(Tk)2
(
eS

(1)(Tk)2 − 1
)

P (0, Tk)2
,

s2
k,l =

eM
(2)(Tk,Tl)+

1
2
S(2)(Tk,Tl)

2 − eM(1)(Tk)+M(1)(Tl)+
1
2(S(1)(Tk)2+S(1)(Tl)

2)

P (0, Tk)P (0, Tl)
, for k 6= l,

where

M (1)(Tk) = A(Tk − T )−
n∑
i=1

(
EP

0 [Xi(T )]Bi(Tk − T )
)
,

S(1)(Tk) =

√√√√ n∑
i=1

(
V arP0 [Xi(T )]Bi(Tk − T )2

)
+ s2(εTk),

M (2)(Tk, Tl) = A(Tk − T ) +A(Tl − T )−
n∑
i=1

(
EP

0 [Xi(T )] (Bi(Tk − T ) +Bi(Tl − T ))
)
,

S(2)(Tk, Tl) =

√√√√ n∑
i=1

(
V arP0 [Xi(T )] (Bi(Tk − T ) +Bi(Tl − T ))2

)
+ s2(εTk) + s2(εTl).



Chapter 3

Parameter Estimation

3.1 Issues Related to a More Flexible Price of Risk

This chapter focuses on the findings of Duffee and Stanton (2012) regarding the
one-factor model case; they observe similar results in a two-factor setting. Using a
completely affine price of risk specification, the drift of X(t) under the real-world
measure shares common parameters with the drift of X(t) under the risk-neutral
measure, namely the speed of mean reversion κ. The drift is determined precisely
by both cross-sectional and longitudinal information. However, using an essen-
tially affine specification, the real-world and risk-neutral drifts share no common
parameters. Therefore, the parameters (κθ + λ1) and (κ − λ2) are estimated using
only the time-series characteristics of bond yields. Duffee and Stanton (2012) find
significant finite-sample biases and high variability in the estimates of the param-
eters determined only under the real-world measure. In contrast, the estimates of
the parameters determined under the risk-neutral measure show little to no bias
and low variability. After 500 Monte Carlo simulations of maximum likelihood es-
timation by means of the Kalman filter, Duffee and Stanton (2012) find biases of
approximately one standard deviation in the estimate of λ1 and minus one stan-
dard deviation in the estimate of λ2.

Duffee and Stanton (2012) consider the effects of the bias in parameter estima-
tion for the essentially affine model on expected excess bond returns. A bond with
time to maturity τ has a time-t instantaneous expected excess return given by

eτ (t) = −1− e−κτ

κ
(λ1 + λ2r(t)) .

This expression is readily interpreted. The fraction gives the sensitivity of a bond’s
log price to instantaneous interest rates. For values of κ near zero, it provides an
approximation of the time to maturity of the bond. The expression in parentheses
represents the difference between the real-world drift of r(t) and the risk-neutral
drift. The higher the real-world drift compared to the risk-neutral drift, the lower
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the expected excess bond return. This implies that investors are pricing bonds as
though interest rates will increase more steeply (or decrease more quickly) than
what is expected under the real-world measure. The failure of the expectations
hypothesis to explain the behaviour of Treasury yields is widely documented. For
instance, Campbell and Shiller (1991) state that expected excess bond returns are
high when the term structure slope is steep. Duffee and Stanton (2012) note that
the parameter estimation bias they observe works in favour of the expectations
hypothesis. Consider the effect of the negative bias in λ2. For low values of r(t)
(when the slope is steep), the expected excess returns are lower than those implied
by the true parameter values.

3.2 The Kalman Filter

This section is based on the description of the Kalman filter contained in Bolder
(2001). Duan and Simonato (1999), Lund (1997), Geyer and Pichler (1999), De Jong
(1999) and Babbs and Nowman (1999) laid the foundations for the application of the
Kalman filter technique within the affine term-structure framework. The Kalman
filter is useful in the context of parameter estimation where the underlying state
variables or factors are unobservable. The filter uses the information contained in
bond prices to identify the underlying state variables. The Kalman filter requires
the interest rate model to be cast in state-space form, which comprises the mea-
surement system and the transition system. The measurement system specifies
the linear relationship between market zero-coupon rates (obtained from the log
of the bond price) and the underlying state variables. The transition system is an
unobserved system of equations which expresses the dynamics of the state vari-
ables specified under the model. The state-space formulation allows the Kalman
filter to make recursive inferences regarding the unobserved state variable values
(transition system) based on the observed market zero-coupon rates (measurement
system). Finally, the optimal parameter estimates are obtained by maximum likeli-
hood estimation given the recursive inferences.

Assume an n-factor model. Bolder (2001) states that normally only one market
zero-coupon rate is needed for each factor in the estimation procedure. However,
increasing the number of market zero-coupon rates adds to the cross-sectional in-
formation, which improves estimation precision. Assume M zero-coupon rates are
used. These rates together with the measurement equation, specified below, form
the measurement system. The measurement equation expresses the relationship
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between the zero-coupon yield and zero-coupon price:

z(t, Tk) = − lnP (t, Tk)

Tk − t
=
−A(Tk − t) +

∑n
i=1Xi(t)Bi(Tk − t)

Tk − t
,

where z(t, Tk) denotes the zero-coupon yield over the period t to Tk.
Bolder (2001) creates N intervals of equal length over the range [t, Tk]. Let tj =

j (Tk−t)
N for j = 1, . . . , N . ∆t = tj− tj−1 represents the size of the time step. εtj is the

measurement error introduced into the system to account for pricing errors. The
measurement equation is given in vector form as

ztj = D +HXtj + εtj ,

where εtj is the measurement error introduced into the system to account for pric-
ing errors, assumed to be normally distributed with zero mean and covariance ma-
trix R. The vector D and matrices H and R are given by

D =
[
−A(tzi−tj)

tzi−tj

]
i=1,...,M

,

H =


B1(tz1−tj)
tz1−tj

. . .
Bn(tz1−tj)
tz1−tj

...
B1(tzM−tj)

tzM−tj
. . .

Bn(tzM−tj)

tzM−tj

 ,
R = diag

[
r2
i

]
i=1,...,M

.

Note that tzi is the time point corresponding to the ith zero-coupon rate. The
transition equation describes the discrete-time evolution of X(t) under the real-
world measure as a linear function of X(t). The Vasicek SDE can be solved ex-
plicitly for X(t) and this solution discretised. In the completely affine case, the
transition equation is specified as

Xtj = C + FXtj−1 + νtj ,

where νtj is the innovations process assumed to be normally distributed with zero
mean and covariance matrix Q. The vector C and matrices F and Q are given by

C =
[
(θi + λi

κi
)(1− e−κi∆t)

]
i=1,...,n

,

F = diag
[
e−κi∆t

]
i=1,...,n

,

Q = diag
[
σ2
i

2κi
(1− e−2κi∆t)

]
i=1,...,n

.
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In the essentially affine case, the transition equation has vector C and matrices
F and Q given by

C =
[
κiθi+λi1
κi−λi2 (1− e−(κi−λi2)∆t)

]
i=1,...,n

,

F = diag
[
e−(κi−λi2)∆t

]
i=1,...,n

,

Q = diag
[

σ2
i

2(κi−λi2)(1− e−2(κi−λi2)∆t)
]
i=1,...,n

.

3.2.1 Filtering Steps

This section provides an outline of the steps implemented in the filtering procedure
based on the description found in Bolder (2001).

1. State vector initialisation
The unconditional mean and variance of the transition system are used as starting
estimates for the state vector. In the completely affine case, the starting values are

E[X1] = E[X1|F0] =
[
θi + λi

κi

]
i=1,...,n

,

Var[X1] = Var[X1|F0] = diag
[
σ2
i

2κi

]
i=1,...,n

.

In the essentially affine case, the starting values are

E[X1] = E[X1|F0] =
[
κiθi+λi1
κi−λi2

]
i=1,...,n

,

Var[X1] = Var[X1|F0] =
[

σ2
i

2(κi−λi2)

]
i=1,...,n

.

2. Observation forecast
The conditional forecast of the measurement equation and its conditional variance
are

E[ztj |Ftj−1 ] = D +HE[Xtj |Ftj−1 ],

Var[ztj |Ftj−1 ] = HVar[Xtj |Ftj−1 ]H ′ +R.

3. Inference update
Given the realised value of the measurement system, ztj , the prediction error is
given by

ζtj = ztj − E[ztj |Ftj−1 ].
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This prediction error is used to calculate an updated inference about the state vector
and its conditional variance as follows:

E[Xtj |Ftj ] = E[Xtj |Ftj−1 ] +Ktjζtj ,

Var[Xtj |Ftj ] = (I −KtjH)Var[Xtj |Ftj−1 ].

where

Ktj = Var[Xtj |Ftj−1 ]H ′Var[ztj |Ftj−1 ]−1.

Ktj is referred to as the Kalman gain matrix.

4. State vector forecast
This step involves forecasting the state vector for the subsequent time period based
on the previous updated state vector:

E[Xtj+1 |Ftj ] = C + FE[Xtj |Ftj ],

Var[Xtj+1 |Ftj ] = Var[Xtj |Ftj−1 ]− FVar[Xtj |Ftj ]F ′ +Q.

5. Maximum likelihood estimation
The above steps are repeated at each time step in order to generate a time series of
underlying state variables. The log-likelihood function can be constructed based
on the assumption that the prediction errors are Gaussian:

`(ρ) =

N∑
j=1

ln[(2π)−
M
2 det(Var[ztj |Ftj−1 ])−

1
2 e
− 1

2
ζ′tj

Var[ztj |Ftj−1 ]−1ζtj ],

= −MN ln(2π)

2
− 1

2

N∑
j=1

[ln(det(Var[ztj |Ftj−1 ])) + ζ ′tjVar[ztj |Ftj−1 ]−1ζtj ].

The optimal parameter set for the Vasicek model is that which maximises the log-
likelihood. Optimisation involves the use of non-linear numerical techniques.

3.3 Monte Carlo Simulations

The effectiveness of the Kalman filter in parameter identification is tested through
a Monte Carlo simulation experiment. Data are simulated based on a known pa-
rameter set and the Kalman filter is then used to estimate these parameters. After
50 simulations, the mean and standard deviation of the parameter estimates is cal-
culated in order to determine estimation precision. The results of the estimation for
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the one- and two-factor models are displayed in Tables 3.1 and 3.2.

Tab. 3.1: Simulation results for completely affine (CA) and essentially affine (EA)
one-factor models
True Values CA Estimates CA Std Dev EA Estimates EA Std Dev

θ 0.1 0.10001 0.00012795 0.098859 0.00022378
κ 0.7 0.7 0.00043892 0.70088 0.00032141
σ 0.06 0.060026 0.0010812 0.049675 0.0022361
λ1 -0.17 -0.17 0.0048249 -0.28862 0.034017
λ2 -0.1 - - -0.19315 0.12355
σk 0.001 0.0009989 7.887e-06 0.0010014 6.4787e-06

Table 3.1 shows that the parameter estimates for the completely affine one-
factor model are very close to unbiased and have a low variability. In the essentially
affine case, the parameters which are identified under the risk-neutral measure, θ,κ
and σ are estimated with very little bias and σk little bias, despite its error being
an order of magnitude larger than that of the former parameters. However, the
estimates of the risk premia, λ1 and λ2, are strongly negatively biased and show an
increased variability.

Tab. 3.2: Simulation results for completely and essentially affine two-factor models
True Values CA Estimates CA Std Dev EA Estimates EA Std Dev

θ1 0.1 0.085203 0.0043991 0.084452 0.029093
θ2 0.07 0.084944 0.0043865 0.075749 0.029042
κ1 0.7 0.70342 0.010056 0.7124 0.0099588
κ2 0.4 0.40083 0.0024875 0.39922 0.0030625
σ1 0.06 0.059925 0.001919 0.023693 0.001795
σ2 0.05 0.050742 0.0012833 0.018423 0.001344
λ11 -0.17 -0.16823 0.007443 -0.18091 0.022844
λ12 -0.1 - - -0.20018 0.046381
λ21 -0.2 -0.20216 0.0073874 -0.13472 0.18708
λ22 -0.15 - - -0.17057 0.15455
σk 0.001 0.0010001 6.3767e-06 0.00099671 1.2175e-05

The parameter estimates for a two-factor model are less precise than that of a
one-factor model. In particular, there is difficulty in distinguishing between θ1 and
θ2 in both the completely and essentially affine cases. For the completely affine
model, the rest of the parameter estimates are close to unbiased and show little
variability. However, the estimates for the essentially affine volatility and risk pre-
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mia parameters are negatively biased. The estimates for λi2, i = 1, . . . , n, are par-
ticularly variable as documented in Duffee and Stanton (2012). Also documented
in Duffee (2002) is the trade-off between forecasting future yields and estimating
interest rate volatility.

Figure 3.1 shows the effectiveness of the Kalman filter in state identification.
Specifically, it shows filtered versus simulated underlying state variables for an es-
sentially affine three-factor model. Observe that, in some instances, the Kalman
filter has difficulty in distinguishing between the state variables corresponding to
each factor. However, the sum of the filtered state variables corresponding to each
factor results in a path which lies very close to the sum of the simulated state vari-
ables. Therefore, equating to the sum of factors means that the yield curve is being
matched almost exactly.

Fig. 3.1: Filtered state variables for an essentially affine three-factor model



Chapter 4

Bond Portfolio Optimisation

4.1 Overview of Estimation Procedure

The data consists of daily continuously compounded South African yield curves
bootstrapped from swap instruments over the period 2 January 2004 to 26 March
2015. Swap market data is chosen over bond market data because: (i) the number
of maturities/’bonds’ (this dissertation fixes a number of maturities for the analy-
sis, rather than following particular bonds as they approach maturity); and (ii) the
South African government bond market is quite illiquid, while the swap market is
deep and liquid. An investment period of one year is chosen. A four-year period
immediately preceding the investment period is used to estimate model parame-
ters. On each day in the estimation period, 16 different zero-coupon bonds with
maturities 0.5, 1, 1.5, 2, 2.5, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 and 30 years are used.
The one-year bond is essentially a risk-free investment over a one-year investment
period. The corresponding zero rates or yields for these bonds are used as the ob-
served input into the Kalman filter. The estimation procedure is carried out on a
rolling window basis over the period January 2004 to March 2014, with the win-
dow being moved forward by 30 days each time. Six model variants are estimated:
completely and essentially affine versions of the one-, two- and three-factor mod-
els. Once the parameters of a model have been estimated, the expected returns and
covariance matrix of returns for an investment period of one year are calculated
and used as inputs for mean-variance optimisation. This procedure ultimately pro-
duces 52 estimates of parameters, mean vectors and covariance matrices of yearly
zero-coupon bond returns. Table 4.1 provides the mean values of the speed of mean
reversion parameter estimates over all the estimation periods. It can be seen that
at least one of the factors in each model variant possesses noteworthy mean rever-
sion. Korn and Koziol (2006) highlight that mean reversion plays an important role
in the mean-variance framework because it implies that expected returns can be
predicted to an extent due to state dependence of the factors.
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Tab. 4.1: Mean Speed of Mean Reversion Parameter Estimates
Completely Affine Specification

1-Factor Model 2-Factor Model 3-Factor Model
κ1 0.22266 0.08263 0.47020
κ2 - 0.43130 0.33242
κ3 - - 0.08076

Essentially Affine Specification
κ1 0.24305 0.03748 0.00841
κ2 - 0.40840 0.11906
κ3 - - 0.54730

4.2 Mean-Variance Optimisation

The investment set consists of two, three, six or 15 bonds. The two-bond set in-
cludes 1- and 15-year bonds, the three-bond set 1-, 5- and 15-year bonds, the six-
bond set 1, 2, 5, 10, 15 and 25-year bonds, and the 15-bond set 1-, 1.5-, 2-, 2.5-, 4-,
5-, 6-, 7-, 8-, 9-, 10-, 15-, 20-, 25- and 30-year bonds. Once the expected returns and
covariance matrix of returns have been obtained for a given model variant, they
are used to determine portfolios which minimise volatility for an expected return
of 8%. Only long positions are permitted. In the cases where an expected return of
8% cannot be achieved, the holdings which provide the closest possible expected
return to 8% are used.

Tables 4.3 and 4.4 provide summary statistics of the performance of the mean-
variance optimised portfolios determined using completely affine and essentially
affine model variants, respectively. This refers to the performance realised over
the one-year period immediately succeeding the estimation period used to deter-
mine the model parameter values. The statistics summarise the performance of
52 strategies over the one-year investment periods for which they were optimised.
Note that there is an 11-month overlap in each of the strategies which will affect
the quoted statistics. In particular, Tables 4.3 and 4.4 show the mean realised port-
folio return, standard deviation of realised portfolio returns, realised Sharpe Ratio,
mean realised excess return above the expected return, proportion of instances the
realised return exceeds the expected return, and the mean excess return associated
with these instances (indicated by *). Expected return refers to the target return
of 8%, except in cases where this target could not be obtained. In these cases, the
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expected return refers to that given by the relevant optimised portfolio holdings.
Benchmark portfolios for each set of bonds are constructed for comparison pur-

poses in order to ascertain whether the estimation and optimisation procedures
are worthwhile. The observed yields to maturity of the relevant bonds on the
day immediately preceding the one-year investment period in question are used
as proxies for the expected returns over this period. Naive benchmark strategies
are determined using MATLAB’s solver, in conjunction with a long-only holding
constraint, to find portfolio weights which provide an expected return of 8%. This
is done to make the benchmark portfolios comparable to the portfolios which are
mean-variance optimised given a target expected return of 8%. The average perfor-
mance of these benchmark portfolios over the 52 investment periods is summarised
in Table 4.2.

Tab. 4.2: Performance of benchmark portfolios
2 Bonds 3 Bonds 6 Bonds 15 Bonds

Mean Return 0.07755 0.07984 0.10781 0.12533
Std Dev of Returns 0.10956 0.09604 0.18094 0.21087
Sharpe Ratio 0.18126 0.23070 0.27700 0.32078
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Tab. 4.3: Out-of-sample performance of bond portfolios (completely affine)
2 Bonds

1-Factor Model 2-Factor Model 3-Factor Model
Mean Realised Return 0.06961 0.07220 0.06290
Std Dev of Realised Returns 0.06328 0.10306 0.08754
Realised Sharpe Ratio 0.18841 0.14084 0.05954
Mean Excess Return -0.01235 -0.00460 -0.01060
Outperformance Ratio 0.32692 0.46154 0.34615
Mean Excess Return* 0.03512 0.05849 0.04304

3 Bonds
1-Factor Model 2-Factor Model 3-Factor Model

Mean Realised Return 0.07334 0.07995 0.07607
Std Dev of Realised Returns 0.06622 0.10392 0.09327
Realised Sharpe Ratio 0.23636 0.21423 0.19715
Mean Excess Return -0.00713 0.00432 0.00306
Outperformance Ratio 0.36538 0.59615 0.51923
Mean Excess Return* 0.04510 0.06006 0.05477

6 Bonds
1-Factor Model 2-Factor Model 3-Factor Model

Mean Realised Return 0.08225 0.08235 0.10730
Std Dev of Realised Returns 0.05810 0.09503 0.16702
Realised Sharpe Ratio 0.42271 0.25955 0.29703
Mean Excess Return 0.00184 -0.00054 0.03278
Outperformance Ratio 0.40385 0.51923 0.55769
Mean Excess Return* 0.04617 0.05891 0.11454

15 Bonds
1-Factor Model 2-Factor Model 3-Factor Model

Mean Realised Return 0.06012 0.08302 0.11860
Std Dev of Realised Returns 0.08659 0.09904 0.21686
Realised Sharpe Ratio 0.39484 0.25579 0.28091
Mean Excess Return 0.01209 0.00017 0.04412
Outperformance Ratio 0.46154 0.46154 0.51923
Mean Excess Return* 0.06012 0.06513 0.15003
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Tab. 4.4: Out-of-sample performance of bond portfolios (essentially affine)
2 Bonds

1-Factor Model 2-Factor Model 3-Factor Model
Mean Realised Return 0.07802 0.06905 0.07147
Std Dev of Realised Returns 0.06719 0.10400 0.05694
Realised Sharpe Ratio 0.30266 0.10929 0.24210
Mean Excess Return -0.00040 -0.00931 -0.00235
Outperformance Ratio 0.34615 0.46154 0.24210
Mean Excess Return* 0.04910 0.05416 0.02621

3 Bonds
1-Factor Model 2-Factor Model 3-Factor Model

Mean Realised Return 0.08120 0.07805 0.08166
Std Dev of Realised Returns 0.06549 0.11004 0.06077
Realised Sharpe Ratio 0.35901 0.18505 0.39448
Mean Excess Return 0.00325 0.00157 0.00853
Outperformance Ratio 0.44231 0.57692 0.44231
Mean Excess Return* 0.04341 0.06358 0.04697

6 Bonds
1-Factor Model 2-Factor Model 3-Factor Model

Mean Realised Return 0.08411 0.09850 0.09919
Std Dev of Realised Returns 0.07203 0.10229 0.14801
Realised Sharpe Ratio 0.36684 0.39895 0.28041
Mean Excess Return 0.00685 0.01573 0.02659
Outperformance Ratio 0.50000 0.57692 0.48077
Mean Excess Return* 0.04691 0.07098 0.09816

15 Bonds
1-Factor Model 2-Factor Model 3-Factor Model

Mean Realised Return 0.08661 0.09570 0.12074
Std Dev of Realised Returns 0.07097 0.09123 0.20291
Realised Sharpe Ratio 0.40755 0.41671 0.31076
Mean Excess Return 0.00937 0.01228 0.04835
Outperformance Ratio 0.53846 0.55769 0.48077
Mean Excess Return* 0.04695 0.06317 0.14768

A superior mean-variance optimised portfolio is that which provides a higher
realised Sharpe ratio. Outperformance refers to superior performance on a risk-
adjusted basis, unless otherwise stated. Using a completely affine specification,
from Table 4.3, a one-factor model provides significantly superior mean-variance
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portfolios for all sets of bonds, relative to its two- and three-factor counterparts.
Using an essentially affine specification, from Table 4.4, a one-factor model pro-
vides superior mean-variance portfolios consisting of two bonds on average and a
three- factor model provides superior three-bond portfolios. A two-factor model is
superior when optimising over a set of six and 15 bonds. Therefore, no relation-
ship between the number of factors used in the model and the number of bonds
in the portfolio is discernible, unlike the findings of Korn and Koziol (2006). They
observe that favourable risk-return profiles can be obtained if there are at least as
many risky bonds in the portfolio as there are risk factors in the model.

A completely affine one-factor model only outperforms all essentially affine
variants in the case of six bonds. An essentially affine model variant provides
superior strategies on average when optimising over sets of two, three and 15
bonds. Essentially affine models also achieve higher mean realised returns in gen-
eral. The realised returns of the optimised strategies are mostly close to what is
expected during periods of relative economic stability; except when a completely
affine three-factor model is used to optimise over sets of two, three and six bonds.
In these cases, the completely affine three-factor model displays inadequate and
erratic forecasting of expected returns as illustrated in Figure 4.1. Figures 4.1 and
4.2 contain plots showing a comparison of realised returns and expected returns
for a portfolio of six bonds over the 52 investment periods for completely affine
model variants and essentially affine model variants, respectively. Figures 4.3 and
4.4 provide the same for a portfolio of 15 bonds. The instances where there are sig-
nificant deviations for all model variants across all portfolios coincide with periods
of great economic instability. It can be seen that realised returns significantly ex-
ceed expected returns during 2008 for all model variants. This observation can be
explained by the 2008 global financial crisis, where government bonds became sig-
nificantly more attractive to investors and, in particular, those of emerging markets.
During 2013, however, significant underperformance of bond strategies relative to
expectations is observed. The onset of the emerging markets downslide, largely
triggered by uncertainty over US Federal Reserve monetary policy and slowing
growth in China, serves as an explanation for this poor performance. The essen-
tially affine two- and three-factor models show significantly superior forecasting
ability, in comparison to their completely affine equivalents, during these periods
of extreme downside volatility.
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Fig. 4.1: Expected versus realised returns for a completely affine model applied to
a portfolio of six bonds
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Fig. 4.2: Expected versus realised returns for an essentially affine model applied to
a portfolio of six bonds
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Fig. 4.3: Expected versus realised returns for a completely affine model applied to
a portfolio of 15 bonds
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Fig. 4.4: Expected versus realised returns for an essentially affine model applied to
a portfolio of 15 bonds

Figure 4.5 shows that the completely affine speed of mean reversion parameter
estimates fluctuate sharply over time as opposed to the essentially affine parame-
ters, see Figure 4.6. As aforementioned, a considerable degree of mean reversion
makes model estimation worthwhile because this implies some level of predictabil-
ity of expected returns (Korn and Koziol, 2006). This parameter estimation insta-
bility is a possible explanation for the inferior risk-adjusted performance of com-
pletely affine models in general —particularly relating to the prediction of expected
returns.
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Fig. 4.5: Completely affine speed of mean reversion parameter estimates
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Fig. 4.6: Essentially affine speed of mean reversion parameter estimates

Essentially affine models are not without flaws. They consistently underes-
timate portfolio volatility relative to the observed standard deviation of realised
portfolio returns. Duffee (2002) finds that there is a trade-off between capturing
time variation in the conditional variances of yields and time variation in the mar-
ket price of risk. Therefore, any improvement in forecasting future yields comes at
the expense of estimating interest rate volatility. The breaking of the proportion-
ality between the price of risk and interest rate volatility seems to make it more
difficult to disentangle the two under the real-world measure using time-series in-
formation. Despite this downside of essentially affine models, which is supported
in the literature, essentially affine models outperform completely affine models on
a risk-adjusted basis. In addition, advanced knowledge of the underestimation of
volatility mitigates this downside.

Table 4.2 shows that the mean-variance optimised portfolios provide signifi-
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cantly superior risk-adjusted performance than the benchmark portfolios. There-
fore, the application of the mean-variance framework in the optimisation of bond
portfolios has its merits in that it facilitates the attainment of more attractive risk-
return profiles.
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Conclusion

As documented in Duffee and Stanton (2012), the risk premia of the essentially
affine model are estimated with strong negative bias and a high variance. This is
because these parameters are identified only under the real-world measure. The
parameters which are identified under both the risk-neutral and real-world mea-
sures —the speed of mean reversion, the long-term mean level and local volatility
—are estimated with very little bias. There is difficulty in precisely identifying the
level of mean reversion parameters associated with each of the factors in a multifac-
tor setting. In addition, the volatility parameters of an essentially affine multifactor
model are estimated with less precision, usually underestimated. This observation
is supported in the literature —Duffee (2002) finds that there is a trade-off between
forecasting future yields and estimating interest rate volatility.

However, despite these parameter estimation issues, essentially affine models,
when used in a mean-variance optimisation setting, still largely outperform com-
pletely affine models on a risk-adjusted basis. Essentially affine two- and three-
factor models demonstrate superior ability in forecasting expected returns, espe-
cially in times of extreme downside volatility. The predictive capability of a model
is closely tied to the speed of mean reversion —a high degree of mean reversion im-
plies stronger predictive capability. At least one factor in each of the model variants
possesses considerable mean reversion, indicating that the estimation procedure is
worthwhile.

However, the estimates of completely affine speed of mean reversion parame-
ters fluctuate sharply over time, which is a cause for concern for reliable prediction
of expected returns and a possible explanation for inferior risk-adjusted perfor-
mance. There is no discernible relationship between the number of bonds included
in the portfolio and the number of factors used in the model that enhances portfolio
performance. Therefore, the results of this dissertation do not confirm the finding
of Korn and Koziol (2006) that favourable risk-return profiles can be obtained if
there are at least as many risky bonds in the portfolio as there are risk factors used
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in the model.
Finally, the mean-variance optimised portfolios outperform the benchmark port-

folios on a risk-adjusted basis, which justifies the estimation and optimisation pro-
cedures. The more flexible market price of risk specification of essentially affine
models enables superior portfolio performance through improved prediction of ex-
pected returns. The trade-off for this increased flexibility, however, is the consistent
underestimation of the volatility of returns of the optimised portfolio strategies.
That being said, there is potential for mitigation of any detrimental effects of this
volatility underestimation given knowledge of it in advance. Therefore, the param-
eter estimation issues associated with essentially affine models are outweighed by
the benefits of superior returns forecasting.

Potential future research avenues include the application of essentially affine
models within the duration-constrained mean-variance framework of Caldeira et al.
(2016), as well as the link between essentially affine mean-variance optimised port-
folios and the bond portfolio strategies explored by Puhle (2008).
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Appendix A

A.1 Completely Affine Model Parameter Estimates

The completely affine model parameters determined using maximum likelihood
estimation by means of the Kalman filter are displayed in Table A.1.

Tab. A.1: Mean Parameter Estimates for Completely Affine Model Variants
Completely Affine Specification

1-Factor Model 2-Factor Model 3-Factor Model
θ1 0.12521 0.08711 0.45465
θ2 - 0.08737 0.46236
θ3 - - 0.45770
κ1 0.22266 0.08263 0.47020
κ2 - 0.43130 0.33242
κ3 - - 0.08076
σ1 0.06482 0.03466 0.03117
σ2 - 0.02361 0.03388
σ3 - - 0.01219
λ1 -0.01544 -0.00761 -0.00247
λ2 - 0.00501 -0.00575
λ3 - - 0.00934
σk 0.00432 0.00182 0.00120

A.2 Essentially Affine Model Parameter Estimates

The essentially affine model parameters determined using maximum likelihood
estimation by means of the Kalman filter are displayed in Table A.2.



A.2 Essentially Affine Model Parameter Estimates 35

Tab. A.2: Mean Parameter Estimates for Essentially Affine Model Variants
Essentially Affine Specification

1-Factor Model 2-Factor Model 3-Factor Model
θ1 0.09696 0.01058 0.44772
θ2 - 0.00977 0.45571
θ3 - - 0.39300
κ1 0.24305 0.03748 0.00841
κ2 - 0.40840 0.11906
κ3 - - 0.54730
σ1 0.02892 0.00248 0.00111
σ2 - 0.00085 0.04689
σ3 - - 0.00156
λ11 0.02710 0.05547 -0.13548
λ12 -0.31069 -0.65814 -0.24653
λ21 - -0.00513 0.22887
λ22 - 0.39951 -0.51190
λ31 - - -0.14264
λ32 - - 0.32336
σk 0.00473 0.00201 0.00118
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