A Learning-based Scheme to Optimise a Cognitive Handoff

Kurai Luke Gombiro

This thesis is submitted in fulfilment of the academic requirements for the degree of a

Master of Science (in Engineering) in Electrical Engineering

from the Department of Electrical Engineering in the Faculty of Engineering and the Built Environment at the

UNIVERSITY OF CAPE TOWN
2015
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
As the candidate’s supervisor, I have approved this dissertation for submission.

Name: Mr. Neco Ventura

Signed: ______________________

Date: ________________________
Declaration

The presentation of this dissertation for examination is for the degree of a Master of Science (in Engineering) in Electrical Engineering. Acknowledgment of all sources used, quoted, or abstracted from, is in the references section of the document.

This work is not up for submission to any other university for any other degree or examination and the University can reproduce this thesis for the purpose of research.

Signed
Kurai Luke Gombiro

Date
30 March 2016
To both my grandfathers, for all the sacrifice and more.

(R.I.P Isaac Muguza Gombiro)
Synopsis

The evolution of communication standards promotes the development and use of several spectrum-sharing strategies. From the noted results, machine-learning techniques have paved a direction for radio protocols to achieve better levels of performance. With their definition, efficient learning practices and the use of effective spectrum sharing methods necessitate the development of better channel selection schemes. In this work, a radios’ learning capability enables the manipulation of a spectrum-sharing concept. This involves the radio obeying certain rules in a spectrum sharing facility, which defines a decentralised form of coexistence (sharing) between the radios occupying that specific radio space. Amongst other benefits, the sharing promotes the node’s independence in the radio space, between the cohabitating radios for the essence of efficient spectrum sharing.

The learning dimension is realised by the use of a Stochastic Estimator Learning Automata (SELA) algorithm. It allows a radio node to roam independently, while achieving the goal of learning to control spectrum use over time. This is by selecting an effective action that defines the radio’s channel choice, leading to the long-term benefit of learning the radio usage patterns. A key condition for spectrum sharing requires that a ‘borrowed’ channel be handed-over to the owner, in any network for the sake of fair sharing practices. The sharing practices promote the evolution of spectrum use by making use of a device called a Cognitive Radio (CR). The CR, as a device that is set to redefine the sharing landscape, creates a paradigm that will revolutionise the concept of machine learning in the communications world. For the CR to have a good level of functionality, the learning rate and evolution should be dynamic. This is because, the results from its interactions with other users enhances its capability of coexistence and further promotes the progression of the spectrum-sharing concept. The algorithm in use, the SELA, allows the scheme to exercise these four steps for showing its key functionality. For the learning’s relevance, the steps are:

- An observation of the common activity forms in the radio environment, as a case of efficient data mining
- The perception of the data acquired to have the learning take place, while achieving a level of understanding of the radio environment for better decision-making options.
- The use of reasoning during the decision processes, for the scheme to manage the selection of a channel during any service segment.
 - This allows any defined decision space to minimise a possibility of a channel handoff.
- The use of an outcome from the environment to reinforce and evolve the learning cause, for any future sharing purposes the scheme will go through.

From the scheme’s modelling in MATLAB, we have a view of the network activity levels and a variation of the scheme’s channel selection trend. These results reveal the scheme’s performance when evaluated in an emulated environment, to signify the CR capability as a secondary user of any random network within its vicinity. From the performance analysis, we have the management of a ‘created’ decision space leading to the service completion during that selection segment. This nominated decision space is ‘conditioned to’ reduce any constraints found during sensing stage, which can hinder the scheme’s capability to manipulate the network data to its advantage.

Overall, this capability to manipulate network data delivers a network state that will achieve better control of the service process. The scheme executes the service stage with an active goal of managing the process of a Cognitive Handoff when it has to occur, which is to release a requested channel for an active primary user. The service operation comes through the following:

1. The estimation of a selection threshold from a hypothesis (discovered radio) space, which is set out to limit the number of competing users during a service process
2. The development of a predictive state while creating a decision space provides a criterion for a network’s rejection during a handoff, should it not match to desired utilisation levels.
 - This is from the independence found during a previous selection process and when used as a reference, creates a set of avoidable ambiguous cases for the CR during service
3. In turn, the management of the decision process allows the node to define a learning rate and reveals how the found independence promotes spectrum-sharing practices that reduce the high levels of underutilisation.

The state in a network, in the form of activity patterns, allows for the future provisioning of a channel’s selection as a means of preparing for any possible handoff. This is by using a benchmark defined by the previous action choice to define the level of service expectation during that segment. The decision space estimation and the results from the scheme’s deduction during problem formulation, leads to basing its current selection needs from the history outcome and
evolves the selection scheme over time. As the cycle continues, the scheme realises optimality in performance from learning the other users’ activity, leading to the management of a cognitive handoff process.
Acknowledgements

I would like to thank many people for making this journey possible, with the first being the Lord for granting me so many opportunities in life and bringing me this far.

Neco Ventura for all the assistance and guidance throughout the duration of study

My parents; words can never express how grateful I am for the level of sacrifice.

To my siblings and the greater family for the unconditional love and support

All my friends, for being the family I chose to have.

Bernard Muanda, Tinashe Chizema, Keegan Naidoo, Mamello Mongoatu and Colleen Goko, for being there at the right time.

Nicholas Katanekwa, Ronnie Mugisha, Eric Mukiza, and Joyce Mwangama for leading the way

Mary Hilton, for making me feel right at home

Carol Koonin, catch-up sessions will never be the same

Ayodele Periola for taking the time to render some valuable input in this work.

Everyone in the CRG family for the priceless moments in the lab.

The Electrical Engineering dept. particularly Janine, Karin, Marlene, Nicole and Rachmat, for making life so much easier for us.

To everyone else for being there for me regardless, a huge thank you for having my back!
Table of Contents

DE CLA R A T I ON .. III

SY N O P S IS ... V

A C K N O W LE D G E M E N T S .. VIII

T A B L E O F C O N T E N T S ... IX

L I S T O F F I G U R E S ... XIII

L I S T O F T A B L E S .. XIV

G L O S S A R Y .. XV

C H A P T E R 1 R E S E A R C H O V E R V I E W .. 1-1

I N T R O D U C T I O N .. 1-2

1.1 M O T I V A T I O N F O R R E S E A R C H .. 1-7
 1.1.1 R e s e a r c h s t a t e m e n t ... 1-8
 1.1.2 P r o b l e m i d e n t i f i c a t i o n ... 1-9
 1.1.3 R e s e a r c h q u e s t i o n s ... 1-9
 1.2 A C H I E V A B L E O U T C O M E S ... 1-10
 1.3 S C O P E A N D L I M I T A T I O N S .. 1-12
 1.4 T H E S I S O U T L I N E .. 1-13

I N T R O D U C T I O N .. 2-16

2.1 T H E C O G N I T I V E R A D I O .. 2-16
 2.1.1 M o t i v a t i o n f o r t h e c o g n i t i v e r a d i o .. 2-16
 2.2.1 S p e c t r u m s h a r i n g s c h e m e s .. 2-18
 2.3 S E R V I C E P R O V I S I O N I N G I N A N O V E R L A Y ... 2-24
 2.3.1 P r o - a c t i v e n e s s a s a n a t t r i b u t e .. 2-25
 2.3.2 T h e r o l e o f t h e r a d i o e n v i r o n m e n t ... 2-26
 2.3.3 S p e c t r u m f r a g m e n t a t i o n a n d a c t i v e s y n c h r o n i z a t i o n .. 2-26
 2.3.4 L e a r n i n g f o r s e r v i c e r e l a t e d m o m e n t s ... 2-27
 2.3.5 S p e c t r u m M o b i l i t y a n d c h a n n e l s e l e c t i o n ... 2-28
 2.4 T R A F F I C P A T T E R N S I N A N O V E R L A Y ... 2-29
 2.4.1 T h e O N - O F F m o d e l ... 2-29
CHAPTER 3 LEARNING FOR THE MANAGEMENT OF A COGNITIVE HANDOFF ... 3-43

INTRODUCTION .. 3-44

3.1 PROVISION FOR LEARNING .. 3-44
 3.1.1 Forms of learning .. 3-44

3.2 AN OBJECTIVE-BASED VIEW OF THE ENVIRONMENT .. 3-46
 3.2.1 Operational conflict from coexistence ... 3-46
 3.2.2 Node capability .. 3-48
 3.2.3 Computation levels to deal with the realised effects .. 3-49

3.3 KEY DESIGN CONSIDERATIONS ... 3-51
 3.3.1 Adaption to domain differences ... 3-52
 3.3.2 Policies for service (handoff) management ... 3-53
 3.3.3 Robustness to instantaneous conditions .. 3-54
 3.3.4 Pro-activeness for handoff cases ... 3-56

3.4 FUNCTIONING CONTROL TASKS .. 3-57
 3.4.1 Cognition though bias .. 3-58
 3.4.2 Service oriented learning for decision moments .. 3-59
 3.4.3 Management of the learning process .. 3-59

3.5 AUTOMATED LEARNING METHOD: THE LEARNING AUTOMATA ALGORITHM 3-60

3.6 STRUCTURE OF THE PROPOSED ALGORITHM .. 3-63
 3.6.1 The S-model Learning Automata based selection scheme ... 3-63
 3.6.2 Reasoning during a reactive decision ... 3-68
 3.6.3 Key metrics for spectrum decisions .. 3-70

3.7 CHAPTER DISCUSSION .. 3-70

CHAPTER 4 MANAGEMENT OF THE SELECTION PROCESS AND OF A COGNITIVE HANDOFF 4-72

4.1 PRELIMINARIES OF THE PROPOSED SELECTION SCHEME .. 4-73
 4.1.1 The channel composition (Sensing phase) ... 4-73
 4.1.2 Criteria for Context selection .. 4-74
 4.1.3 Conditions for channel selection between users .. 4-76
CHAPTER 5 EFFECTIVENESS OF A LEARNING SCHEME FOR MANAGING HANDOFF 5-98

5.1 FRAMEWORK DEFINITION ... 5-99
 5.1.1 Deliverables from the framework ... 5-99

5.2 IMPLEMENTATION PROCEDURE .. 5-101
 5.2.1 Exploration stage (effective sensing capability for metric definition) 5-101
 5.2.2 The use of bias for training ... 5-103
 5.2.3 The learning stage (exploitation and reasoning capability) 5-105

5.3 EVALUATION OF THE SCHEME ... 5-106
 5.3.1 The relevance of efficient exploring (a case of data mining) 5-106
 5.3.2 The essence of training .. 5-109
 5.3.3 The definition of exploitation (the learning based selection process) 5-113
 5.3.4 The effect of prediction on learning ... 5-122
 5.3.5 Significance of a good decision ... 5-123

5.4 CHAPTER SUMMARY ... 5-125

CHAPTER 6 CONCLUSION .. 6-127

6.1 SUMMARY ... 6-128

6.2 RECOMMENDATIONS .. 6-132

BIBLIOGRAPHY ... 133

ANNEXE A: THE REALISATION OF LEARNING BASED ON CONTROL FROM THE SCHEME 140

ANNEXE B: TABULATED RESULTS OF THE SCHEMES PERFORMANCE 141

APPENDIX A: THE VARIABLE STOCHASTIC LEARNING AUTOMATA (VSLA) ALGORITHM 150
APPENDIX B: THE BAUM-WELCH ALGORITHM ... 153

APPENDIX C: ACCOMPANYING CD-ROM ... 156
List of Figures

Figure 1-1: An analysis of Spectrum usage patterns, as outlined by the FCC on a traffic per site (base station) basis, to evaluate the utilisation levels of spectrum [1] ... 1-4

Figure 1-2: A comparative representation of the spectrum sharing methods ... 1-5

Figure 1-3: A diagrammatic representation of the Underlay model [2] ... 1-5

Figure 1-4: A 2 Dimensional view of the Overlay model for spectrum sharing purposes [3] ... 1-6

Figure 2-1: Environmental stimuli as perceived by the CR [6] ... 2-17

Figure 2-2: The cognition capability projected into a cycle of operation to exhibit cognition [9] .. 2-18

Figure 2-3: The Power Spectral Densities (PSD) differentiating the sharing schemes ... 2-20

Figure 2-4: A relationship of the link maintenance and evaluation phases of handoff [17] ... 2-24

Figure 3-1: The Stochastic Learning Automata concept, showing a relationship with the stimuli 3-62

Figure 4-1: The schemes outlay, defining the main, and sub processes of the schemes progression 4-75

Figure 4-2: HMM modelling of the state patterns in the network [67] ... 4-80

Figure 4-3: The state characterization for the perceived prediction strategy .. 4-88

Figure 4-4: A flowchart showing the execution of handoff in an overlay network ... 4-96

Figure 5-1: Channel values from the use of network A ... 5-107

Figure 5-2: Channel values from the use of network B ... 5-108

Figure 5-3: Channel values from the use network C ... 5-108

Figure 5-4: The comparison of network activity in view of a node’s random channel selections 5-109

Figure 5-5: Channel selections based on the training scheme for network A .. 5-110

Figure 5-6: Channel selection based on the training scheme for network B .. 5-111

Figure 5-7: Channel selection based on the training scheme for network C .. 5-112

Figure 5-8: The comparison of network activity during service provisioning from a HMM 5-113

Figure 5-9: A comparison of the deduced hypothesis values for network A .. 5-114

Figure 5-10: A comparison of the deduced hypothesis values for network B .. 5-115

Figure 5-11: A comparison of the deduced hypothesis values for network C .. 5-115

Figure 5-12: The comparison of network activity when making use of the learning scheme 5-116

Figure 5-13: Channel selection in Network A, during a service phase .. 5-117

Figure 5-14: Channel selection in Network B, during a service phase .. 5-118

Figure 5-15: Channel selection in Network C, during a service phase .. 5-119

Figure 5-16: The blocking probability values for network selection during service .. 5-120

Figure 5-17: The variation of idleness to show context desirability .. 5-120

Figure 5-18: A comparison of handoff control during the training and learning segments 5-122
List of Tables

Table 2-1: A comparative description of the Underlay, Interweave, and Overlay CR techniques [10]2-20
Table B- 1: Activity patterns for the first network ..141
Table B-2: Activity patterns for the second networks ..142
Table B-3: Activity patterns for the third network ..142
Table B-4: Activity in network one during service provisioning from the HMM ..143
Table B-5: Activity in network two during service provisioning from the HMM ..144
Table B-6: Activity in network three during service provisioning from the HMM ..145
Table B-7: Activity in network one during learning ...146
Table B-8: Activity in network two during learning the exploitation stage ..147
Table B-9: Activity in network three during learning the exploitation stage ..148
Table B-10: Assessment of an exaggerated level of bias during the exploitation stage ..149
Glossary

1. The **Automation** process is when a channel in any sub system, (a segment in an environment or a network) is rewarded by the scheme for producing a positive outcome from the decision given as input into the nominated environment.

2. **Belief** is the state that a context, considered a network, is in during that decision segment.
 - This allows the scheme to identify the current form of activity in the partitioned network, for the development of the channel selection policy for that epoch (instance).

3. **Cognition** is a feature that enhances any Radio to make use of the Dynamic Spectrum Access (DSA) concept

4. A **Cognitive Radio** is a communication device that enhances the use of the DSA concept by making use of optimal parameters during a service session

5. **Dynamic Spectrum Access (DSA)** is a unified spectrum usage concept, which allows radios to make use of the spectrum as a pool of radio resources. This is by giving preference to the owners of the spectrum band and having other radio users on a secondary user basis, make use of the relative bands within conditional operating capabilities.

6. **Environment** is a state space that has all the radio related stimuli defining the other radios activity for the CR to make use of the cognitive cycle.

7. **Handoff** is the releasing of a current channel occupied by a SU to a specific PU, which is taking the channel for use in its own network.
 - In certain cases, it can be the releasing a channel and waiting for the resumption of service to continue with service, as a form of non-switching handoff.

8. **Hidden channels/states** are channels that are not visible during a sensing segment. These obstruct the CR operation by reducing the channels in the state (network) space that is desirable to the CR during a specific channel selection segment.

9. **Learning** is a process that any CR scheme utilizes to increase the level of optimality the cognitive node can achieve when roaming in any environment

10. **Management** in this work is taken as the execution of the decision process, leading to how the selection policies will complete any form of mobility that will come with each current service phase

11. **Network Activity Factor (NAF)** is a relation to the NVF and this allows the scheme to
derive the hypothesis space for its problem formulations.

- This defines a context or network space that the CR will find to be active and opt to select it because of the level of activity during that selection segment.

12. **Network Value Function (NVF)** is a value attached to a network for the definition of a reliability level as a hypothesis. This allows the scheme to maximize the belief of the network and prepare for a decision moment, based on the derivation of this value.

13. A **node/s** defines the CR/s as a radio unit during the any stage of the scheme’s execution.

14. **Optimize** defines how the scheme will try to minimize the number of mobility counts during each service session. This is to achieve a service count with as little handover as possible.

15. **Policy** is a defined service objective that will deal with any active effects found within the environment. The definition of a policy assists the learning algorithm to create a decision space that will have the scheme maximize the cognitive features in that environment.

16. **Redundant data** is found when certain parameter values are revealed as content that does not change when a sensing segment occurs. These occur when the network state does not change resulting in the node making use of the same values or space state.

17. The scheme’s level of **Robustness** will have it less susceptible to resulting effects of the instantaneous conditions when the state has a change in its current observation pattern.

18. **Self-reliance** is a mode that has the CR roaming without the assistance of a central controller when making decisions.

 - This enhances its survival chances in a non-cooperative decentralized network.

19. **State** is a term used interchangeably depending on its relevance; it defines a network segment as selected by the scheme or a channel either in an ON or OFF state during the training run.

20. **Step size** is a measure of the number of runs the learning scheme would have gone through.

 - This increases the level of competence expected from the learning scheme as a means to show the level of operational experience the algorithm has in any environment.

21. A **use-case** scenario is an abstraction of the environment state during that segment. This defines a case that the scheme will use from the resulting belief adoption.

22. The **value Iteration Process (VIP)** is the derivation of a context or network’s worth during a channel selection segment. This derives the effective parameters for selection with which
when manipulated; formulates the decision space for the node to begin the objective formulation for that current selection segment.
Chapter 1

Research overview: Spectrum Mobility

& the Dynamic Spectrum Access (DSA) concept
Research overview

Introduction

Traditional radio systems produce traffic patterns that are dynamic, and the variance promotes the evolution of management strategies to formulate better radio usage practices. Because of the systems’ evolution, the number of connected devices keeps rising due to the adoption of the Software as a Service (SaaS) paradigm. This shift in the forms of service delivery engages consumers to access services while on the go, for the sake of convenience. The convenience however comes at a cost for the operators to provision for network resources and more so, fuelling costs of doing so. The modifications to the network infrastructure done after such a turn translate into a high demand for spectrum, for the operator to continue with desired service provisions. The spectrum allocation process as controlled by regulators reveals a level of underutilisation as seen through recent studies of spectrum use, exaggerating the demand of spectrum on a per user basis. The data shown in figure 1-1 gives an outline of the traffic observed per site (as a percentage value). This is on a year on year basis, giving the range of usage patterns exhibited on the network as conducted by the FCC. The second diagram at the bottom shows the underutilisation trend for radio usage traffic and the observed surplus/deficit shows the change in traffic patterns [1].

Research efforts to promote better forms of spectrum usage, are trending toward the use of systems that use radio resources in a more effective manner. This is by developing strategies for the radio systems’ operational capability to share resources while cooperatively accessing service from a network. The realised coordination should not affect the capabilities of the other users within that same band. Such a coordination of networking devices, called the Dynamic Spectrum Access (DSA) is a type of architecture that makes use of a family of technologies called the Cognitive Radio (CR). The CR is capable of modifying their operating parameters into a form that will allow the usage of a particular range of frequencies, in a radio band that the particular cognitive node will be occupying. As the CR’s adoption tries to bridge the divide between the old and new forms of spectrum usage, it outlines the need for effective methods to use the open spectrum bands. The old spectrum-sharing concept, ‘a command and control’ model classifies how the incumbent, (the holder of the license) is going to operate. Essentially in such a case, if a radio is outside its specified band of usage, it cannot get service unless if the service providers have a sharing agreement. This is typically during National Roaming, which
Research overview

allows a smaller operator to use the larger operator’s network for service continuity as shown in figure 1-2.
Figure 1-1: An analysis of Spectrum usage patterns, as outlined by the FCC on a traffic per site (base station) basis, to evaluate the utilisation levels of spectrum [1]
Figure 1-2: A comparative representation of the spectrum sharing methods

The CR’s capability in any network is realised through a coexistence model that it has to adapt to when making decisions. This defines how the radio is to manage the interference levels towards the owners of the licenced bands, called the Primary Users (PU). There are two defined models: the underlay and overlay designs that divide how the number of communicating devices in a network should transmit their signals, while sharing any spectrum bands. Of the two designs, the underlay model has the CR, also known as the Secondary User (SU) sharing spectrum with various PU. It does this by regulating its power to a level lower than that of a PU receiver’s sensitivity, so as not to interfere with the on-going transmission. The DSA paradigm involves a cycle used by the CR to suit the parameters suitable for that particular band. This cycle, dubbed the Cognitive cycle, has the radio making a 4-stage pattern of operational adaptation, between the spectrum sharing, decision and handoff moment, leading to the mobility stage in the PU.

Figure 1-3: A diagrammatic representation of the Underlay model [2]
The overlay model, as shown in the figure 1-4, is when an SU occupies a channel from any spectrum band in a ‘hop fashion.’ This is in-between the spectrum bands called ‘spectrum holes’ or ‘white spaces’. The utilisation of the white spaces is if and only if (iff) they are not being used by a PU in that particular band. When the radio is initialising a communication session, a decision made by the node has the radio occupying a channel if deemed suitable for use at that moment. The channel in use, if requested for by a PU, forces the SU to vacate the channel in question to select another vacant channel, identified through a recent search done by the radio. This moment constitutes as the handoff phase and the continuation of the current transmission by the SU is on another channel. This channel’s selection can be in the same or in a different band found to be acceptable for use, during that stage by the radio.

The CR’s transition from one band to another forms part of the cognitive cycle and characterises the spectrum mobility phase. This type of mobility, called spectrum handoff, is more apparent in the overlay model. This comes from the radio’s ability to control parameters used during operation as defined below, by making use of the following steps:

1. a searching phase (defined by the sensing of idle spectrum bands in the overlaid networks)
2. a spectrum decision segment, where there is the selection of a good channel in a band
3. a spectrum handoff process, which is when the CR is forced to move to another channel having been caused by the (possibly) multiple disturbance from the primary user

Figure 1-4: A 2 Dimensional view of the Overlay model for spectrum sharing purposes [3].
4. a mobility phase, which is the proper execution of spectrum handoff to another spectrum band [4]

1.1 Motivation for research

Research efforts in the CR area show a great deal of detail being required during the design stage of a Cognitive node’s protocols. As each stage of the cognitive cycle has its own demands, the most affected are those that involve change during spectrum use. The effects realised by the node are at times in an ambiguous form as the roaming in different environments progresses and this is due to the CR interaction with various PU and random patterns they exhibit in each environment. As a result, the recognition of a CR performance comes from its successful completion of the characterisation process (recognition of an environment’s actual state), together with the observed effects of the PU within that segment of the radio environment. As the CR development is centred on its ability to develop operating strategies through learning, the level and capability of adaption should as well, evolve with time. These operational patterns define a basis of coexistence and this is in relation to the node’s interpretation of these other users’ activity levels.

For a seamless mobility phase, the management of any ‘possible’ effects observed from PU is for the node to prepare for any forms of unpredictable traffic levels, in any network band that the radio will select. The conditions in each environment tend to vary and at times, an exaggeration can or tends to occur. This comes from how well the cognitive node is receiving the information from the surrounding based on the level of activity in the network. A distinction observed in some related work shows how the CR node subtly neglects some factors ‘considered’ relevant during a channel selection segment for the execution of handoff. This predominantly, makes the node resort to the use of a greedy form of selection as the need to contend for the best channel increases with each selection instance. In certain scenarios, the CR node neglects some of the pertinent factors during the mobility phase, as a means to avoid a lot of channel switching and this usually results in the handoff process failing. From such a standpoint, the maximisation of a handoff opportunity to a new channel is not effective as there is a poor characterisation process of the current activity levels in the occupied spectrum band.

Taking the characterisation process as a basic requirement for the CR’s channel selection
process, this defines how the node will make use of this operation as a basis for learning. To this effect, the channel selection process (particularly when in a handoff scenario) will not only be lacking the long-term capability to progress (the management of handoff), but realises a different level of computational complexity due to the differences found in the spectrum bands.

A channel, if realised as a basic spectrum unit in terms of spectral use, makes it easier for the decision process to be maximised. Channels used in a quantified state such as a threshold value are limited to that condition of use, mostly expressed by the signal strength. In such a case, the node cannot negotiate for a different outcome if needed, especially during an instance when the threshold levels do not tally to the level of expectation. This is a very controlling condition, during the selection of a channel for the node’s execution of service or spectrum handoff; where there is no time to balance the outcome from the sensing phase vs. expectation (understanding) of the environment. From such an experience, the difficulty (found in the CR context) comes in balancing the requirements needed at that point to change to a different channel. This usually, is in contrast to the requirements that the radio can control to reduce further delay, as the need to process the transfer of data is imminent. As a result, the computational complexity increases as the value of data points (in the form of the different channels structures) vary per band. From such a realisation, the selection process is prolonged further invalidating the learning process.

The determination of the level of any network’s activity, together with the random elements in the different environment segments usually causes the CR to reconfigure further than it needs to. Therefore, the creation of an operating metric for the CR to use a state (network) is ideally to make the process more selection process more dynamic. This comes as an added advantage, especially during a spectrum handoff segment when the radio has reduced ‘time privileges’ in which to make a decision, based on the available information. The realisation of any varied effects during channel selection shows a need for the selection scheme to be resilient to any conditions identified i.e. the contention or misidentification of the channel opportunities [5].

1.1.1 Research statement

The CR’s architecture outlines how imperative it is to have a defined spectrum decision-
making strategy and further enhances the required level of performance in the DSA scheme. It is apparent from the non-deterministic behaviour (randomness) of the environment that the CR can adopt ways that lower or reduce the effects of spectrum underutilisation. This is more so during the selection of any bands and it should be in a manner that enhances its own service levels for the realisation of an effective DSA process. With this form of operation, any policy for the CR should have a proactive element to deal with the mobility process, for effective sharing purposes.

1.1.2 Problem identification

A number of schemes identified in literature keep the learning aspect during a CR’s channel selection process. The learning element then becomes a key performance optimiser and often, a limitation during the definition of a learning process can occur. This is in relation to the management of a cognitive handoff and to validate this cause, the flow of the selection process should allow for some independence and raise the need for adaption to these differences. The independence realised by the node through learning can maintain a consideration of any random factors and include them as possible conditions during the selection process. The cognitive radios operation should not be privy to these factors, as the learning and levels of optimality come from the use of the different environments. The subsequent stages after each selection process should evolve the decision-making approach, allowing the progression of learning cause and for effective handoff management. This in turn, defines an updated strategy each time the radio is disturbed and this enhances the execution of handoff in a different environment [5].

1.1.3 Research questions

From the various efforts in related work, a number of issues observed when implementing any form of a learning based selection process, tend to vary. When optimised for, these issues can lead to the definition of better operational levels for the CR. The issues come with differing weight levels and lead to the inquiry of how the selection of a channel should work for the CR. The points below define how we are going to model the selection process:

- What key processes can enhance the verification of a channel's availability e.g.
environment activity, the verification of hidden states etc.?
- How can certain elements lead to the optimisation of channel selection process e.g. the rate of disturbance during transmission, poor input of important data structures etc.?
- What criteria can best define the selection process to allow for better service outcomes?
- How can some of the options available to the radio (possible actions), enable the radio to make its own conditions of operation or something related to thereof?
- How some parameters can be adapted for use during the management of handoff process?
- To define a spectrum usage method that evolves with the scheme’s operating curve.

1.2 Achievable Outcomes

The premise behind this dissertation is the use of a radio’s cognitive attribute, particularly the learning element, to enhance the decision-making capability needed during spectrum sharing. This is by enhancing the management process that the node utilises to make decisions such that, there is an efficient utilisation of spectrum. To achieve this, below are defined objectives and their sub goals from a detailed study of the DSA concept. From the review process, we have the hand over facilitation in the learning scheme for the decision-making to be a better-managed process. The following points summarise the flow of the learning scheme’s development process, in the three stages that separate them:

1. An extensive literature review will outline the elements of the spectrum sharing process.

a. This is going to assist in defining a framework for implementing the case under study, which is of managing the decision processes to avoid a lot of spectrum handoff.

 b. It will provide a criterion for comparison of the current handoff approaches with the learning based schemes, as well as how they deviate from the learning concept.

 c. Overall, the review should reveal a method for the node to reveal a self-management element, which enhances the roaming capability in a decentralised architecture.

2. From the spectrum sharing definition, the next step involves the use of defined traffic structures, generating random forms of traffic. The traffic patterns define an underlying channel state model to bias the forms of state observations as seen by the CR. This is a
minimum requirement for the node to learn any patterns exhibited by PU and how the SU will put them to use when in any PU network with any defined sharing model.

a. The observed patterns will facilitate the recognition of all possible PU identifiers. These come as features that allow the CR to maintain their association with its own spectrum use. This is with the PU and other SU that may be in the network as well.

b. The visible patterns should allow the node to learn the distinctions between any features during the evaluation of any state (network) model. This will allow the node to use the features as cases, when it has to reason for a decision during the selection of a channel, either for service provisioning or during a handoff moment.

c. This stage counts as a form of training, to have the cognitive node initialise the recognition of the choices (actions) that it can use when it wants to make a decision. This will define the selection process as an extract from the learning scheme and then benchmark how any future selection segments, will have an optimised criteria to base on. This method of context (network bands) selections will enable a guaranteed level of performance from the radio, as a proactive approach to deal with any handoff cases.

3. To engage the scheme’s three main attributes fully i.e. the learning, control, and adaption; this stage involves an analysis of the decision management process. This is during the state (network) identification segments, leading to the selection of a channel during a handoff moment. This will represent the (learning and) management process, based on:

a. How the node utilise its network (state) characterisation method to manipulate the network resources based on available environmental data semantics. This is through a load balancing based approach (a cooperative scheme), in a decentralised network to gauge on the capability of the CR to be self-sufficient when making decisions.

b. The use of a learning-based scheme for the selection of a channel and this is for the cognitive node to reduce the need to engage in multiple handoff counts, during the roaming cases in the various environments.

c. Overall, the differences between the designed framework and the random management process will outline if the scheme is performing at an optimal level of
operation. This will allow for the derivation of any concluding remarks for any future work that can be done or corrected thereof.

The use of a learning approach for modelling of a decision process, allows for the redirecting of its current parameter estimations to the next epoch, which is after the CR has been pre-empted from the active channel. This is for service continuity with a better management technique of any effects from that point forward. For the node to base any future decision-making on the history patterns, the multiple forms of disturbances allow for recognition of the usage patterns from the previous choices made during decision-making. The above objectives are some of the scenarios used during the operation of the proposed scheme, as used by a CR in a PU network and for us to show proof of concept. The definition of this work in summary is through the following points:

1. To make use of a management technique that aims to reduce the occurrence of handoff effectively, regardless of the nature of the traffic in the environment

2. To investigate the level of resilience the scheme has in an emulated environment, through a reasoning based-learning approach, as a means to satisfy the channel selection process.

1.3 Scope and limitations

This work focuses on the selection of a channel for a CR and the extension of the state’s (network) activity to a segment where the ‘same parameters’ can manage a cognitive handoff. When extending this operational dimension to any form of learning in the environment, the node uses the current service level as a basis of adaptation from one epoch to another. From this view, the learning element defines how the node at any point will decipher the effective parameters for managing the handoff process. This complements any decision it makes in that environment to account for the benchmarking of the service progression through the different networks i.e. details from the previous selection segment to the next channel in use. From such a basis, the definition of the scope of this work is around the following focal points:

- The node is set to be roaming in an overlay architecture. This is with a decentralised type of approach that will have all the decisions made sorely by the node, for it to access service.

- The decisions made by the node, are sorely to show its capability (independence) without
the facilitation of a central controller and not abiding to the structure of an ad-hoc network.

- The access is in the uplink part of service because the controller of the network that the node has selected to make use of, caters for the downlink part of the transmission.
- The use of a learning method is through a reinforcement learning based approach and this is to enhance the reasoning capability, which is the biggest factor being made use to effect the mobility during the handoff moments.
- The proof of concept is through the emulation of the cognitive capability for the node to derive an effective decision-making scheme and parameter usage capability.

For the node to execute handoff and allow for better mobility management, there are a few assumptions made for the effecting of such a scheme for the cognitive radio. These are:

1. That an appropriate sensing mechanism is used, which will allow for the compensation of the transmission loss, should this occur.
2. That there will be updated channel values, together with an activity profile in the network to have the channel definitions relate to the required Quality of Service (QoS) levels.
 - This is when the node has to make a channel switch and the profiling can then award us with the use of the various triggers. These triggers can be in the form of various parameters, which should allow the cognitive handoff to be an optimised operation at any instance, as there are no device specific parameters.

1.4 Thesis outline

The body of this thesis is in six parts, and the presentation is as follows:

Chapter 2 presents a background on related work in spectrum sharing methods. It outlines the importance of some key variables that affect the node during any operational phase. With this, an analysis to assess how some of the selection methods perform follows subsequently, outlining how they can fit to the criteria of selection that we are trying to propose for spectrum mobility.

Chapter 3 presents the variables considered relevant for the development of the decision making scheme, the CR node will adopt. These are set as the key functional requirements for a cognitive node to share spectrum with other users on a management basis. It also presents the definition of the learning strategy to show the importance of the network characterization for the spectrum
decision process. This will lead to the presentation of the learning scheme for the channel selection process, when a node has to perform handoff and its automation strategy.

Chapter 4 expands on the background that the third chapter gives for the learning method and presents the structure of the evaluation method. This includes a background into the choice of the coexistence framework and further outlines the factors considered, while developing the operational structure of the selection scheme.

Chapter 5 is an analogy of the work regarding the deliverables of the scheme. This is going to define how it should fair out when it has to make decision during a channel selection process. The expected results are required to show the proof of concept, relative to how learning is an effective optimiser of the decision making process.

Chapter 6 presents a set of concluding remarks, expressing the issues that came out from the evaluation of the scheme as presented in the first chapter.
Chapter 2

Overview: The Cognitive Radio

& the Channel Selection Process
Introduction

In the previous chapter, we have an overview of the spectrum-sharing concept while looking into the role of the CR in the DSA scheme. This is predominantly for the management of any factors that govern the channel selection process for a CR node, from a spectrum decision point of view. This chapter presents a definition of the CR standard; discusses the relevance of the cognition element together with how the channel selection process has an effect on the operation of a CR. Subsequently, an analysis of related work follows together with a discussion of the detailed features in their work. This is to say, for the credibility of our work, the analysis of their nominated strategies will include the merits and de-merits of their solutions during the handoff process.

2.1 The Cognitive Radio

The design of a cognitive radio, in comparison with the structure of most communication devices, makes it imperative that the sharing concept offers spectrum resources effectively. The introduction of the CR in this chapter elaborates on the CR related features and defines the forms of coexistence with other users in any PU network. For the purpose of this work, the presentation of the CR framework is in an overlay architecture to show the need for handoff control.

2.1.1 Motivation for the cognitive radio

The spectrum bands in the radio environment consist of various forms of channel activity. If we regard each channel as a basic unit of spectrum, the provisioning of service is because the channel is in use during that epoch irrespective of the user. As such, the CR redefines spectrum usage patterns and allows for a more relaxed use of the underutilised spectrum bands owned by the licensed users. Apart from rules from the licensing scheme, there is need for a CR to show:

- a reliable performance level during communication; this is to say that it should be able to manage and control all forms of service provisioning
- a provision for an efficient and effective method of using of any spectrum bands
- gain various forms of capacity usage mechanisms of the radio environment, such as how to
adapt to an environment when needed due to resource availability
- the need for a unified system of rules allowing the radio to roam in unknown boundaries

Figure 2-1: Environmental stimuli as perceived by the CR [6]

The consideration of spectrum as a lacking resource during the provisioning of a radio service is because of the command and control based regulatory methods. When coupled together with the aforementioned conditions, the Federal Communications Commission (FCC) of the USA gave a definition for the CR standard. This definition presents the CR as ‘A device that is capable of changing its transmitters parameters, based on its interactions with the environment in which it operates in’ [7]. A lot of research into the definition of spectrum use and service provisioning has produced results leaning towards the evolution of the DSA concept. The premise behind most research efforts optimises the application of the CR standard to the usage patterns observed from the sharing method in any PU network. With this in mind, several regulatory bodies have endorsed a unified spectrum sharing policy for the wireless radio systems.

From the research conducted, the learning element brings out effective methods to enhance the performance of the CR. This allows the manipulation of its hardware to attain the highest level of performance, based on the stimuli coming from the radio environment. Figure 2-1 shows a representation of how the environmental effects have an impact on the CR decision-making process, basing them on the provision of actions and decisions for its cognitive behaviour. The occupation of spectrum holes in-between the PU periods of
operation shows the level of access gained by the SU for spectrum use. This is an attribute showing the radios dependency on learning, while adapting to any activity patterns (defined as data sets) such that it can optimise its performance in return. The enhancements on the data sets is a regressive process as the PU patterns change over time, creating a trend of operation for the CR, through adaptation [8].

![Cognitive Cycle Diagram](image)

Figure 2-2: The cognition capability projected into a cycle of operation to exhibit cognition [9].

2.2 The Cognitive cycle (how a cognitive radio works)

The cognitive cycle as a basis for the CR operational behaviour, allows the radio to make use of the Dynamic Spectrum Access (DSA) concept in any environment. This is because the four defined phases of operation within its cycle are put to use to define the node’s level of potential when it needs to provision for service. The phases in the cycle are complementary and bound by the form of sensing employed for detecting suitable bands for the radio to make use of imminently. Figure 2-2 shows the old and new outlines of the cognitive cycle, with its four main phases of operation. These define the key elements that exhibit how it will behave during any associative segment and make use of an action defining the CR’s option.

2.2.1 Spectrum sharing schemes

Sharing in a cognitive network is specific to a model, which defines how the network occupied by the SU is set up. It has a centralised or decentralised approach, which is set on a
cooperative or a non-cooperative scheme. The schemes come with different rules defined according to the model in use for spectrum sharing. The centralised approach has a spectrum broker, which governs how the radios access service on the network and the decentralised model is when the cognitive users can assign routing patterns themselves. The decentralisation approach creates a need for the cooperation of all users involved, where they will assist each other during channel selection or the non-cooperative scheme that has each node acting independently [10].

2.2.1.1 Spectrum sharing models

The models defined in this section explicitly outline how the CR associate themselves with the sharing of any network. These are the Underlay, Interweave, and Overlay schemes, and the SU makes use of them based on an abstraction of the other radios power spectral densities (PSD). This is a factor defining how the radio will behave in each model as shown by figure 2-3.

The Underlay model is when both PU and SU share the same spectrum band and have their power densities within the same noise floor. The SU has to operate within an acceptable level of noise during its own transmission and not towards the PU. This is strictly for coexistence purposes and the level of power that the SU uses should be below the PU sensitivity margin. The management of any interference caused is by keeping a more deterministic mode of operation, mostly utilised in the Ultra-Wide Band spectrum access scheme [10].

The Interweave model is an opportunistic method, where the termination of service that the SU is getting in the PU network can occur randomly. This is from the point when the PU arrives and the SU has to vacate the nominated channel immediately, by having its current transmission either forcefully terminated or relocated to another band. With this model, a very accurate sensing method is imperative as it assists in the definition of the occupancy patterns observed by the SU. This is for the desired spectrum bands at that point as the unpredictable traffic levels tend to force service terminations [10]. Another issue is of the SU having to know the dimensions of the network for it to change to, each time a displacement occurs and this where it differs from the overlay model as shown in table 2-1.
Table 2-1: A comparative description of the Underlay, Interweave, and Overlay CR techniques [10]

<table>
<thead>
<tr>
<th>Underlay</th>
<th>Overlay</th>
<th>Interweave</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU transmitter has knowledge of the PU sensitivity margins. SU can transmit simultaneously with PU user as long as interference caused is below an acceptable limit. SU transmit power is capped below the transmit power used by the PU</td>
<td>SU have a knowledge of the channel state information in the environment and any possible detail relating to the PU channel usage patterns. SU simultaneously transmit with the PU and the control of the interference is by relaying part of the PU messages. SU can define their spectrum choices based on how capable it is to make use of the related spectrum band.</td>
<td>SU have knowledge of the spectrum holes regardless of the owner of the PU. SU can transmit at the same time as the PU but this is limited to cases where there could be a false alarm in detecting spectrum holes. The SU capability is restricted to the sensing or detection power of the PU open spectrum spaces.</td>
</tr>
</tbody>
</table>

The **Overlay model** is utilised when the SU has most of the decision-making processes left to itself, based on the statistics obtained from the PU activity. A suitable sensing mechanism allows the node to define or model its own activity patterns, based on the results obtained from the PU network usage patterns. The SU will then execute any handoff cases in a ‘hop’ fashion while cooperating with the PU to allow for the compensation of any interference it may cause. With this advantage, the SU can make use of this information to define its own predictive spectrum availability models, which in turn assist in the development of parameters that are able to optimise the channel handoff process [10].
2.2.1.2 Spectrum sensing (detection of the spectrum opportunities)

Several methods identified in related work are utilised for the sensing of spectrum opportunities that the SU can make use of, when requesting for service from a PU network in the form of channel choices. In most cases, the SU makes use of a hypothesis to verify the presence of a PU and the results obtained differ per method employed, as each outcome is different due to the sensing parameters used [11]. The four common methods in literature are as follows:

The Energy detection method makes use of the power levels in the detected signals, for the verification of a PU presence on the channel under assessment. The confirmation of a positive result is by using a defined threshold to verify the channel’s availability. It has a poor accuracy level as it is difficult to gauge the level with which the node can consider optimal, while testing the hypothesis for the presence of the PU. It is heavily dependent on variables like bandwidth, the sampling rate, amount of noise in the signal and the power spectral densities, to define what level of energy it can make use of, during the PU detection process [11].

The Matched filter detection method uses the received signal level to define the PU patterns. Some of the PU usage patterns consist of a symbol duration corresponding to the power of the CR’s signal. The next stage of the detection process takes the pilot signal that resembles the strongest primary user and goes through a sampling process against a pre-determined binary hypothesis. The major drawback with this method is of having an assumption in place, to have the SU and PU in a strict synchronisation pattern. This can render some of the results unreliable because the pattern in use enables the CR to make use of the binary hypothesis for validating the presence of a PU [12].

In the Cyclostationary feature detection method, the node observes the received signal levels and makes use of the periodicities found within the signal to its advantage. From this deduction, the node will perform a Fast Fourier Transform (FFT) on the auto correlation function associated with the signal to produce an estimate of the spectral correlation functions. From the FFT, the correlation function together with the central, spectral and the cyclic frequency values of the received signal lead to the deduction of the spectral correlation functions. The utilisation of these functions is for the CR to use the unique frequencies that show the presence of the PU signal, based on the differences in the peaks of the frequency values obtained [13].
This method is robust to the effects of random noise and interference but is more complex to implement and ultimately results in the CR taking up more time to detect the PU signals. Although this method is widely accepted as a suitable sensing method in most cases, it has a huge disadvantage of the degrading cyclostationary signatures and these effects are due to the multipath fading of the detected signal [14].

The Wavelet based detection method takes a wideband spectrum sensing approach, where a PU can be occupying several frequency bands. These bands could be relatively close to each other or can be in a consecutive format. If there is a variation in the corresponding sub bands near the consecutive ones, the power spectral densities of these bands start to show changes used to detect the received signal strength (RSS). With the RSS values obtained, the SU deduces the continuous wavelet transformation of the PSD by making use of an appropriate wavelet smoothing function. From the deduction made, the SU makes use of the waves local maxima by taking their first order derivative and uses the wavelets obtained from the sharp variations as an indication of the PU free bands. There is however, an element of the PU not occupying the sub bands in a contiguous manner, which results in a more complex detection scenario. This eventually forces the radio to try to decipher the PU occupied channels in a more difficult manner [15].

2.2.1.3 Spectrum decision (for a channel in a spectrum band)

When the determination of the unoccupied bands is complete, the next stage is to characterise the channel availabilities and usage levels to those of the SU’s expectation. This is an important stage as the effectiveness of the selection process is from this stage’s outcome such that there is optimal usage of the spectrum hole identified. A common stance by the CR is to have a verification process of the channel’s power level in comparison to that of the desired quality of service (QoS) requirements, which will govern how further the radio has to reconfigure. When the node makes a channel selection, the level of optimisation obtained comes from the parameter estimations during the QoS provisioning of a channel. After the parameter verification, the channel taken for use should have a ‘guarantee’ as set by the QoS level, to let the service completion time be within the channel’s estimate [16]. When service initiation is on a new channel, the node can base any future decisions on the feedback it receives from the network, alerting it if there is need to have updated parameters from using that band.
2.2.1.4 Spectrum mobility (a case of spectrum handoff)

The spectrum handoff phase is primarily the default trigger of the mobility phase in the cognitive cycle. The handoff trigger, being the pre-emption of a SU from a channel engages the node into a channel selection mode for that particular period. This continues until a decision is realised, as an action made by the node to complete the mobility phase. The segment is prone to many channel-switching effects like delay, service drops, and unavailability of channels during the handshaking process for the SU to complete the service. It eventually leads to the failure of the current transmission, further prolonging the handoff and could have the whole service process repeated. Based on the feedback from the environment, the node needs to make constant updates to its data set as the value of the information changes. This promotes a varied use of the RSS levels to make the best spectrum decision as a means of solidifying the channel selection process.
The CR coexistence with other PU and SU in the environment is a case outlining a possibility of the hidden node problem (which is of the CR not being able to detect any other node within its vicinity). This is preventable if the node initiates an evaluation phase of any unexpected variables, leading to a link maintenance segment in which the SU will try to avoid another handoff count of the selected channel [17]. The final stage can be the resumption of the sensing activity and looking for other channels to migrate to, should a channel collision occur again. In alternate cases, the radio will continue sensing during service for the other spectrum holes and provisioning for the occurrence of a channel handoff in the future [18]. Figure 2-4 shows a cycle, outlining the occurrence of a cognitive handoff in the overlay network, in both a proactive and reactive manner.

2.3 Service provisioning in an overlay

During service delivery, there are a set of conditions governing any radios decision-making process. These come in variations based on the node density within the system and the traffic conditions revealing the availability of bands in comparison with ease of sensing, etc. Amongst other conditions, some of these variables induce constraints on the node’s performance, while it is trying to migrate to the next channel after a disturbance. Some factors during certain cases can be realised as an exaggerated case of environment activity because of the node density. This further outlines a difference in operational patterns observed, in comparison to those
expected when the CR is roaming in different environments.

Other issues include but are not limited to, the traffic asymmetry because of the heterogeneity of the networks as well as the diverse service offering in any of the networks. This therefore, creates a need for the selection method to validate the traffic mode for the service in-session and this should not gravely affect the node’s capabilities to deduce the multiple variations that the CR should be accustomed to [19].

2.3.1 Pro-activeness as an attribute

A general occurrence of handoff in a classic sense is usually associated with a degrading channel’s signal. This comes from the desired level of QoS in relation to the received signal strength or a hysteresis margin, as a form of measurement of the channel’s strength. A comparison of the signal strength between the neighbouring base stations as done by the node shows a variance that gives the hysteresis margin, amongst other factors [20]. With this, it differs with that of a cognitive radio because there is a multi-user spectrum domain that has many users, variables, and conditions to deal with during execution. If the spectrum handoff occurs because of the spectrum-pooling concept (which is of viewing the entire radio spectrum as a pool), the node has to take advantage of the coexistence of itself (the CR) with other nodes in a multi-user environment.

When assessing some of the dynamics found in any network, the proactive nature from the cognition element is a good way to validate how the form of learning in use is effective. During the various roaming instances, the node makes use of several conclusive actions, evolved in account of the learning’s progression during CR the various service sessions. These definitive actions come as the CR decisions and are suggestive of a performance level (a benchmark) allowing the CR to take note of the differences in the environment composition. This eventually becomes a comparative advantage over the all the networks’ conditions. As an aid to the proactive approach, the adaption from the observations made from the previous usage patterns, (when used as a form of reference) leads to the transmission behaviour being characterised before it happens. As the operational level of the SU is also defined by how much the PU and other SU characteristics have disruptive effects, there may be some other ‘extremities’ that are caused by the spectrum-pooling concept [21]. These define how resilient the node needs to be as
it is progressing through any network usage and moreover gaining knowledge of how best to avoid some of the extreme conditions, visible in any overlay networks.

2.3.2 The role of the radio environment

The channel characterisation process in a cognitive radio network is subject to the many variables that come from the environment in question. Because of the multiple switching activity that occurs in this domain, the need for a dynamic method is imperative with each selection stage. This in turn promotes the relevance of a management profile or policy, for the selection process to cater for an unexpected differences observed in the environment activity. In addition, there is the definition of a channel satisfaction level to deal with any, if not all possible factors that can (possibly) hinder the use of that channel. This is one limitation observed as many random uncertainties come along with the use of that channel within the confines of the environment. As such, because of these uncertainties, the radio needs to define its own (satisfactory) level of selection. This is while the CR is negotiating for a channel with a central controller [21], while in an active radio space.

2.3.3 Spectrum fragmentation and active synchronisation

Spectrum fragmentation is a factor or a condition that can be realised in the environment. This leads to the derivation of various white space sizes, found at any point during the searching of spectrum bands. Such a variation in band sizes is a good example of how the randomness in the environment causes the erratic conditions the CR endures when making a decision to have a channel selected. The type of sharing approach (centralised or decentralised) adopted by the node, can enhance the use of independent channel bargaining strategies when negotiating for service because of how it can manipulate the ‘spectrum hole’ sizes. The variation in the spectrum size estimations creates a problem with the stability of any selection scheme the node will use. This is when the objectives need to be characterised effectively during each selection based on the identified spectrum patterns. A channel selection process is only complete when an objective defined and characterised for, can manage the fragmentations effects during channel selection [22].

The synchronisation phase for the CR is the guarantee of an active channel selection, after a handoff trigger or service initiation. This condition complements the performance of the
selection process further enhancing the reduction of the handshaking time after it selects a channel. This process defines the stability of the evaluation phase during the resumption of service and ultimately, determines the success of the channel selection. The success level in a network that has a lot of fragmentation as a condition is when there is guarantee of channel identification, despite the circumstances. The affirmation of channel’s utilisation is when the spectrum broker (the central controller in a network) complements the service session. This raises the importance of the synchronisation process in that, if it not executed in a timeous manner, it will not only affect the scheduling but also prolong any handoff process. This can cause or will force disconnections when the process fails, thus requiring the provisioning of new QoS levels as the computations done for the next phase of the transmission cycle, have to cater for the difference observed [23].

2.3.4 Learning for service related moments

The element of a radio learning usage patterns stems from how best to control the capability of the SU coexisting with the PU over time. If the channel selection mechanism is of a rigid or stationary approach of execution, the feedback process as a bargaining method is not enough to enhance the definition of more strategies. This eventually forces the radio to have a substandard form of performance, when it is in a dynamic radio environment. In related work, learning theories in the CR domain have shown to have good results during channel selection and this evolves to the maximisation of the radio’s performance level. The levels attained can allow the radio to maintain the learning concept as well as achieving desired results, based on a set of conditions that define the learning strategy during the nominated service interval.

The strategy put to use can be in a single or multiuser CR domain but some methods in literature do not model with a generic form of traffic, to cater for the usage methods. As learning can constitute for a twenty percent increase in throughput, this comes from the creation of well-objected scenarios. From this, the handoff is dependent on how the node behaves as traffic increases in the network. When there is an increase in traffic, we have the node needing better negotiation levels when in a circumstance like that of handoff, requiring the extension of the learning concept to the prioritisation of traffic [24]. From this view, a number of traffic prioritization enablers like the multi-dimensional channel capacity are useful during the learning
Overview: The Cognitive Radio

stage, making the channel selection process a less computational task from the common identifiers. Taking this basis from traffic engineering, we can enable the optimisation process to allow the channel selection from the future traffic estimations. These estimations predefine the actioning of a reactive handoff moment and reduce any complications that arise due to various forms of adaption needed during handoff [25].

2.3.5 Spectrum Mobility and channel selection

In literature, the presentation of any models that can deal with the CR handoff in an overlay, come in many variations. Each of the developed models forms a mobility scheme for the CRs that assist the node during coexistence. Most of the models defined are from a queuing theory background, using Markov principles, whether discrete or continuous [26], [27], [28], [29], [30]. They all distinguish their modelling techniques by referring to a particular trade-off, which makes most of them fall under the some form of holistic method of dealing with the handoff scenario. The goal from most of the work in this area is to have the handoff performed based on:

1. traffic forms that have a service distribution for the radio to adapt to, with the arrival rate, λ of the traffic having a general distribution and the service time, μ having an exponential distribution (considered to be of a Poisson distribution)
2. multiple operating environments (contexts / domains) found within a radio environment meaning that in each context, there are various operating channels in the system’s model
3. a delay of some sort being experienced when channel handoff is in effect, because of issues like contention, handshaking etc. that can occur as a result of the other users in the network

When we make use of these three conditions, the definition of the channel selection strategy has to be either in a single or multiuser environment. Most of the schemes identified do not provision for the selection of a channel during handoff and limit this process to the general admission of the radio’s traffic in the network of interest. If there is an adoption of a proactive form of a channel selection as an operational basis, the prioritisation of the results from an accuracy perspective leads to a number of advantages. These make the decision-making process a less computational task, especially during handoff. This process is by enhancing the CR attributes that make the handoff a smoother operation, such as the control of the predictions for
the channel selection process [31].

2.4 Traffic patterns in an overlay

During certain handoff cases, the sensing process is often in an abstracted form to have the prediction of the state changes in the overlay network done. This allows the forecasting (predictive) model to deliver during a reactive handoff scenario, based on how dynamic the traffic patterns are in the environment. The node can at times, deduce the channel usage statistics and model its own usage patterns based on received occupancy levels. These models can be as defined in literature, in the form of Markov Chains (MC) or used as Markov Renewal models to maximise of the channel selection opportunities. In this section, we are going to discuss three traffic models evolved from the understanding of a channel’s identity, when the cognitive node is characterising the selection of variables during handoff moments, while in a spectrum mobility phase.

2.4.1 The ON-OFF model

In this model, we have a channel viewed in two forms, the ON state depicting occupation by a CR or PU, and the SU cannot make use of the channel during such an instance. This is also the simplest model in which when the sensing process finds a channel, the node will take it for use in its OFF state. The behaviour of the PU, which is the primary cause for CR to change channels from the current one, shows the predictive provisioning of a handoff occurrence as one technique that can solidify the mechanisms used to facilitate for easier channel utilisation. A common cause during a handoff case is that, when the channel goes back to the PU the node can suffer from high levels of contention from the other users. This is because of a single queue system, within the channel’s structure that reduces the chances of the CR getting a channel easily.

The channel evaluation criteria, during a decision process have to derive the probability of a channel being in an OFF state. This leads to the deduction of how best to manage handoff, based on a threshold that comes from the probability of this prediction. This is to say, if the node is in a proactive state of selection and goes into a reactive handoff scenario; the conditional factor is the immediate availability of the nominated channel. This reduces the need for any
further negotiation for any channel, leading to the selection of the desired channel. The ON and OFF model can be developed using the periodic or the alternative exponential approach, which are outlined in [32].

2.4.2 The Hidden Markov Model (HMM)

The HMM in literature has gained credibility for its capability to model systems based on various environment structures and related systems that can be associated with channel occupancy. To define a HMM; it is a process that allows the occupation of states (in our case, network states) to be viewed as probability-based state machines and the occupation patterns of the PU are represented by a set of states, revealing their true and underlying activity patterns to the CR.

Mathematically, the definition of an HMM is as follows;

There is a set X of N possible states that are available in the set:

$$X = (x_1, x_2, x_3 \cdots x_N),$$

(2.1)

Another set Y that has M emissions produced by the states:

$$Y = (y_1, y_2, y_3 \cdots y_M).$$

(2.2)

The probability of emissions comes from the value of $P(Y|\lambda)$, which is the value that shows the resulting state’s outcome in the form of symbols, during that observation period. For the HMM to be operational, there are a few conditional probabilities in the set P that govern these changes observed in the states and these are defined in a matrix format by;

$$P = (p_{ij})_{nxn}, i,j \in X,$$

(2.3)

The value of p, is obtained as

$$p_{ij} = P(x_a = j|x_{a−1} = i), 2 \leq a \leq \tau,$$

(2.4)

In equation (2.4), τ is the length of an observation period. The matrix that represents the emissions that occur at any given time, is given by E, as a $M \times N$ matrix, showing the output that is received from a state y_w given that the state y_a is a true state. The value of E, given by:

$$E = (e_{ij})_{mxn}, i, j \in Y$$
In addition, the probability of an emission during an instant a, is:

$$e_{ia} = P(y_a = j|x_a = i), 2 \leq a \leq \tau$$

From the equations (2.4) and (2.6), the prediction realised, is to define the occurrence of a channel sequence using the HMM model. The value of λ of the HMM denoted the parameters, which are defined by the tuple (P, E, π), with which, the value of π, is the initial state distribution of the system [33].

2.4.3 The M/G/1 priority queuing model

The concept of pre-emption, allows a channel to have a level system within its operational structure. In this representation, the awarding of a priority level is within the channel’s operating bounds i.e. a two level queue system to cater to different forms of traffic.

In this model, the channel in usual cases has the PU being of a priority that is higher than that of the SU, depending on the number of queues the channel can accommodate. This can have the SU having the option of waiting in a lower priority queue of that respective channel or at the back of another channel’s queue especially in a handoff case. This allows the radio to have more choices, as opposed to the option of always switching from channel to channel when in a handoff situation, as seen in the ON and OFF model. This type of a traffic model is best in the case where the node is prone to multiple transmission failures and if the SU has limited traffic privileges in each instance, or if it is handling highly sensitive traffic [34].

2.4.3.1 Conditions for channel usage

In summary, all three models define forms in which the channel’s adoption can apply to a cognitive node. These forms of channel adoption present cases that the SU can make use of to understand the traffic patterns exhibited when in a PU network. With these, the node can better manage handoff scenarios and cater to all forms of traffic however prioritized, based on the random service interruptions occurring. Analysing the handoff models in literature, the channel state (modelling usage of a CR channel) is of paramount importance but because of its relation to the traffic patterns of the PU, the basis for the derivation of the state model is as follows:

- The cognitive node has to ascertain if the channel is idle before a certain frame length or
period to avoid many channel switchovers or the possibility of pre-emption.

- The channel will remain idle, in the case of prediction until the \(n - 1 \)th frame, during the same epoch to guarantee success of the prediction.

- That there is no inherent interference experienced by the PU at the expense of the SU and that the absorption of a session by a state (channel) is imminent based on these conditions.

For the CR to maximize the result from the characterization process during a channel’s selection, the derivation of the various joint models is from using Markov models together with machine learning techniques. These can yield better results for the prediction of the traffic patterns and state changes, better yet, guaranteeing the goal of learning for better channel selection processes during handoff. A common model is based on the use of the HMM scheme but can be outlined as a Partially Observable Markov Decision Process (POMDP). It presents the evolution of a channel together with the decision processes as higher order Markov channel representations [35].

2.5 Spectrum mobility: a case of spectrum handoff

The use of spectrum handoff in the cognitive radio standard is to enhance the efficient use of spectrum, through the acquisition of knowledge from the desired environment. This promotes for better sharing practices and allows the PU to have ‘uninterrupted’ forms of service provision. This is even when the CR is disturbed by a multiple number of users and conditions, through the process of network data acquisition. Although handoff is the leaving one band to another, the process may have the SU staying on that channel until the PU finishes its service session. This comes as a non-switching handoff, or a pre-emptive resume priority type of handoff.

For the sake of our work, we make use of the cases presented in [36] and [37], to outline some of the requirements needed as parameters to show proof of concept. Both cases present a number of handoff models, which show how the proactive and reactive switching counts can occur [36], as well as the provisioning for the handoff proactively [37]. This is based on a priority type scheme in [36] and an enhancement of a HMM for traffic modelling [37]. The value of the work is immense in that, it defines the value of the choices that the node has to make when making a decision during pre-emption. However, both cases propose the following with
limitations in some of their methods, creating a basis for the development of the selection scheme in this work.

1. There is a well-put analysis of how a choice can be made, for the CR to use a certain type of handoff based on the nominal activity parameters it has (either for a random, non-random (provisioned for) handoff scheme). However, it does not show how the pre-empted node has priority from the evidence an environment gives during the handoff’s execution [36].

2. The CR is allowed to determine what handoff mode to use, while preparing for a handoff moment, whether proactive or reactive, but fails to account for an action needed in the case of redundant network data values [36], [37].

3. The proposed method has a queuing background, which adds the advantage of the non-switching handoff choice for the node during handoff [36].

4. In [36], they do not define the possibility of a predictive approach that can come as an extension of a proactive scheme, as a means to reduce the computational complexity during handoff [36].

5. Both cases make an assumption that the CR will have or make use of the same traffic models in the various environments it will roam in, which is very different in reality [36], [37].

6. In [36], [37], they do not define the CR as an independent decision maker, which leaves the node to be always under the control of a central controller. This is a very prohibitive move when a node gets into an environment with a decentralised sharing scheme.

7. As the CR relies on the element of priority only, it is a limiting condition when there is a segment the handoff fails and the waiting time for a channel is not as expected [36], [37].

The handoff process, in light of the observations from these two cases, presents how the node will change from one channel to another. In both cases, the handoff definition can be how a node is willing to participate in the migration process, for the transfer of a session from the one channel to another. For this work, the addition of learning is for a better decision-making capability, for the execution of a cognitive handoff process especially in a decentralised scheme with other users.

2.5.1 Analytics for learning from the case under study
The handoff processes presented in both cases has the consideration of the following elements during the decision-making stage. This promotes a use of these choices for the completion of the ongoing service, when a node is pre-empted from a channel by another user. The focus in this work is to optimise both the non-random (proactive) and random (reactive) handoff schemes and this is by use of a criteria that is based on how the node will learn the channel patterns. Firstly, we look at the default channel form, to initialise transmission for a service session. From this, the following apply when a node is disturbed:

- The definition of an activity level in the different networks; from the sensing stage, these are used to gauge the node density in the environment that the node is in, when disturbed.
 - How many PU and SU are in the same band for the CR to estimate a handoff delay?
- The type of the switch, is it going to be in the same band or a different band or channel?
- What is the resulting effect from the waiting period, while the PU uses the channel?
- How will the CR define the processing of a decision, during the reactive handoff moment?
 - This includes how the segments involved; contribute to the facilitation of the process.

The definition of handoff, as the transfer of a spectrum opportunity from a user that has low priority to that which has high priority, being the owner of the band, causes a CR’s operational dependency toward the incumbent. As such, from how a handoff session progresses, we deduce the following as parameters for use with the learning cause:

- The arrival rates λ_p and λ_s for the PU and SU (an indication of the increase in node density)
- The service rates per channel, μ_p and μ_s for both the primary and secondary users
- ρ as the network utilization level for the CR to estimate the possibility of more disturbances.

Basing the resulting scheme’s operation on these metrics, the cognitive node has to have a provision for handoff based on certain mechanisms that it is going to derive through learning. The use of learning as a means to enhance the spectrum decision process is for the node to reduce the reliance on the classic methods of facilitating the handoff process, as given in [36]. The use of the classic methods, to define the choice of the reactive handoff process is one of the delimiters, together with the anticipation that the node will have service provisioned after a mean
waiting time. This promotes the need for optimality in the decision-making capability of a CR, so that it can have better negotiation strategies during the channel selection moments. A form of flexibility can be realised in the operation of the CR, in the different environments, through the exploitation of reasoning as a learning based deliverable for the SU.

2.6 Background in literature

Cognition in the communications domain is still receiving a lot of attention and from the reviewed literature, the modelling of a node’s mobility is through several strategies. The decision made by the node is primarily for a reactive stance during a handoff moment. These approaches can be for the traffic admitted in a connection or slot based manner. The slot connection method is more time centric and the connection-based scheme is a tally of each connection made by the node when it had provisioning for service. The SU, when using the connection type of channel admission, goes through a more complex operational process as there is an element of vulnerability in the connection-based scheme. This is due to a lack of flexibility as seen in the slot-based method [38]. For the reactive scheme, the CR obtains a target channel in an on-demand manner, through a complimentary sweep of the spectrum to gauge and can at times, collect information of any prospective backup channels that maybe available. The proactive scheme is characterised by provisioning for a future handoff occurrence, based on a long-term collection of the data when the PU activity is high. The development of a heuristic model is imperative as we are dealing with the various modes of traffic that are not just centric to one type of band. The radio has more freedom to exercise the decision-making processes when it is a connection-based mode but it is vulnerable to the effects of ongoing PU activity at any point in time [39].

2.6.1 Forms of channel selection

Several approaches in literature show a trend of having the identified problems (related to handoff), avoiding a number of issues during the channel selection stage. Their classification can be either in a load or a non-load balancing scheme, which make use of a threshold or probabilistic background to select the required channels. The non-load balancing aspect of selection is heavily dependent on the use of conditions like traffic load, channel idle probabilities, and the waiting time for the node to occupy it, etc. While some of the methods ‘are
optimal,’ the other issues like channel contention arise, making the process a lot more computationally tedious and makes the radio more susceptible to delay and a number of failed transmissions, during service.

In this work, the presentation of the related work in literature is with the following weighing criteria and differentiation; it considers the relevance of the scheme to the objective of the study, as well as how the proposed solution manages the spectrum handoff phase.

1. The first section (2.6.1.1), outlines the probabilistic measurement of a channel’s strength, for the node to gauge how worthy a channel’s use is to the service it has to provision for.

2. The second section (2.6.1.2) provides a hierarchical presentation of the related channel selection strategies that have a relation to the learning aspect. The definition of these methods is based on their level of weakness (in the beginning) and the progression of their presentation, is with an increase in relevance to the learning cause for channel selection. This also includes the level of complexity, the balance of conditions vs. the execution of handoff, with the use of the learning approach and what is lacking thereof.

2.6.1.1 The probability based approach to channel selection

The probability-based selection methods can be categorised into two types; a **learning based** and the **packet wise probability approach**, when representing a channel during the selection process. These methods define how the probabilities define the detected channels and can present a form for the CR strategies to use them when sharing spectrum opportunities [40].

The packet wise probability based approach uses a channel’s busy probability value and capacity when making a selection. There are several approaches of the scheme’s development in literature and the most distinct definition is in [41], where a p-persistent protocol defines a probability scale by making use of the Carrier Sense Multiple Access-Media Access Control (CSMA-MAC), in a decentralised manner. In certain environments, the scheme achieves a Nash equilibrium level when the number of the cognitive users can approach an infinity level. As an extension, the work of [42] incorporates the possibility of having sensing errors mostly due to false alarms and missed detection probabilities in the selection process. In addition, they have the selection scheme maximising the throughput of the SU in a two-channel system but fails at trying to maintain the latency levels as the biggest constraint, based on the PU activity.
The authors in [43], further extend the probability selection method presented in [42] to a multiple user environment, with the difference being the characterisation of the transmission in a slot-by-slot manner. The resulting problem tends to be an exaggerated case of channel switching behaviour, when the nodes assumes that other SU have saturated the network in question. Based on this condition, there is a visible contradiction from the SU traffic model and the PU network definition, which comes as a Bernoulli process with exponential distribution times. This difference in traffic models, has the SU experiencing a lot of contention due to the assumed saturation and not rely on the PU behavioural patterns, as it should during the use of normal operating methods.

2.6.1.2 Learning related channel selection strategies

This section gives highlights of the related work on channel selection; the authors have adopted an automated selection strategy or the use of a games approach, with which, they use a variation of learning based on the interaction of the CR with the environment. To ensure use of the learning feature, the decision-making is over a number of iterations and the node has to deduce the resulting parameters, for the selection of an ideal channel given any sensing outcome.

The soft or hard decision fusion method is an adaptation given in [44] but not in many variations as identified in literature, for channel selection. It is however, linked to the sensing segment; leading to the scheduling of the transmission in progress as the channel selection stage. This method makes use of a set of rules, governed by a fusion centre and all the decisions in relation to the channel selection are limited to what those rules can deliver i.e. a hypothesis system for instance. This creates a level of difficulty for the CR during the roaming sessions in different environments, as the channel selection process in a cognitive radio system is more erratic. Ultimately, when the radio does roam in a different environment, the survival levels are slim to none and this comes from the fusion centre’s failure to facilitate the rules of operation that it is accustomed to, during normal strategy execution for the ongoing channel selection process.

The authors in [45] present a selection scheme’s outline, which makes use of a prediction-based method. It uses of a time-series model that allowing the radio to have a decision made from a regressive point of view. The work fails to point out that if or when relatable forms of data are not
available, the process can very expensive to construct resulting in the node not having a strategy for such a scenario. This ultimately makes the prediction process more complex because of the heavy dependence on past data to create a probability scale that will deal with the current situation for the radio. The other drawback identified is that the prediction scheme is not extendable to a handoff scenario and particularly, a reactive one because of the ever-changing conditions in an environment. This causes limitations, with which an exaggeration occurs during cases where the identified parameters are different to those predicted from the time series model.

Grey modelling is a channel selection technique used in [46] and [47], which relies on a key assumption that all the data used for processing is discrete and of an exponential variation, or can be changed or manipulated into an exponential pattern. It makes use of the positive values from the manipulation and does not allow for any usage of the negative values. Another setback is that the model suffers heavily from short disconnections of the system under study and does not manage to capture the true patterns for use as a long-term channel selection method. The model operates best when a merger is realised between the Grey relational analysis and the Grey prediction theory to define the channel selection criteria. A huge setback from the resulting merger is in the reactive handoff segment, where its dependency on the received signal strength forces it not to consider other factors that can enhance the channel selection process.

The most popular approach is the **Greedy-channel selection model**, which is an optimisation technique modelling the channel selection per user but it causes issues related with channel contention. This is because the radio claims all the resources assigned to it, to keep its operational levels optimal during service. Its use is in a scenario with a number of assumptions that will define the decisions made to counter some of the realised obstacles that the radio might encounter when completing the service session. The algorithm works with a combination of permutations during operation and the one condition for the algorithm in its simplest form, is to have at most three channel selections from the permutation it is to make use. From the three possibilities, the busy periods of the channels used by the PU can increase abruptly, causing the radio to stay on its selected channel because of the risk of not being able to secure another channel for it to complete the current service session [48].

In [49], they make use of a **fuzzy based selection scheme**, which is a great candidate for a reactive handoff process but it fails to satisfy the long-term principle for the CR to gain from
learning. The scheme in [50] has the fuzzy based system making use of a logic processor together with the input and output segments of the radio. The system works by having a set of input data identified by the radio and feeds the data set into a fuzzifier, which then sends the data into an inference engine. The engine will process the received data to produce a set of instructions that are then defuzzified to get an output adopted by the radio. The algorithm performs relatively well but lacks the need to be dependent on certain metrics, while creating an instruction set from the input values used to make a decision, during the selection of a channel for a handoff phase.

In [51], they make use of a **Graph colouring scheme** by tuning identified variables into a set of vertices with edges and weights and the affirmation of selection is by the amount of weight assigned to the vertices. Most work in this area classifies it as a Non-deterministic Polynomial time (NP) hard problem in the assigning of the weights, as it searches for the optimal probabilities that fit to the weights in question. The probabilities assigned to the weights are conditional, which denies the node the possibility of using reinforcement learning as a move to increase optimality. There are several causes in the scheme’s poor performance, resulting from several limitations apart from its rigidity in operation. The CR’s need to operate in a dynamic environment to create utility functions is the biggest case and this causes a number of conditions and difficulties experienced during the manipulation of its operation. This effectively shows how the node will have difficulties in making an instantaneous decision, as the progression of weight assignment will not be able to cater for a reactive handoff phase, as well as the definition of the working probabilities of the edges in the graph definition scheme.

Another technique useful for channel mapping is by using a **Neural network** and these operate by providing a ‘black box’ type approach to define the input and output parameter operation, while the node in question is in translation between environments. Its type of approach is useful during the selection of the optimal parameters needed during the channel selection but requires a lot of them to present an output that models network’s desired performance level, if the data available is sufficient for it to make a decision [52]. This particular point shows how the scheme fails at the characterisation stages, as it needs to have decision variables that can allow the radio to characterise the channels easily, without any limitation. From such an assessment, the creation of several possibilities for a successful reactive handoff reduces with every missing variable.

Another area adapted to channel selection is the use of **Genetic algorithms**. The learning phase
is realised after conducting several simulations to achieve a successful population from the results, until it reaches the stop criteria [53]. They are adapted from the concept of evolution and the modelling defines how the channel selection should occur over time. The algorithm makes its decisions based on a set of probabilistic rules and relies on the chromosomes realised to account for the required differences in the modelling of a channel’s selection. Each chromosome has a decision-making capability encoded into it and if there exists a different variable, the scheme adds it to decision set for the chromosomes to use. The decision can create a mutation or a crossover based on the assumption that it will be able to satisfy the selection process at that point in time. The strategy is similar to that of Learning Automata but the outlined difference is from the effects it can endure during execution because of imperfect feedback from the environment. This results in the imperfect pairing of the chromosomes, leading to a direct impact on the performance of the strategy during channel selection and further prolonging the learning process [54].

When making use of Game theories, the approaches in related work define the process having each player in the secondary user network participating in the definition of the selection. Each player decides on the best strategy to maximise its utility function, being the channel selection probability as it converges to the Nash equilibrium. In [55], Chronopoulos et al. make use of a load balancing approach that makes use of an incentive to make each user wants to unilaterally change its channel selection probability. The algorithm makes use of a best reply system that computes the channel selection probability and the duration of the transmission, basing the process on the load balancing function as the only outcome optimised.

The extension of this concept in [56] uses a utility function that considers the channel’s bandwidth and idle periods as a performance enhancer during the selection process. From this, the authors identified that for the procedure to have more optimal levels during operation, the node has to perform spectrum decision several times to identify the scenario when PU randomly activate or deactivate each segment they are involved with during the channel selection. Although the Nash equilibrium is not an optimal solution from this viewpoint, the need to have the players balance out their utility functions in a load-balancing context is the cause of this limitation. Over time, the scheme has the capability to be a suitable candidate for channel selection but the number of considerations that need to be employed for it to have positive outcomes, outweigh the benefits for a reactive selection strategy. This is especially in a delay sensitive context like that of the work in [55].
The authors in [57] make use of an **Experience-based learning** approach and maximise on the estimation of a history-based account of a channel’s selection. Following the results from the estimation process, the scheme makes use of a weighted scale to deduce the required probability level to base the selection on. This promotes a dynamic form of prediction, leading to the selection and updating of the channel, based on how the ongoing session is progressing (considered an online rewarding system). This achieves better levels of communication and reduces the outage probability of a communication link because of a two-stage update system. The online state before the selection requires a computation of a new weight component that the cognitive node will makes use of, furthering the need to have the probability estimated. If no channel matches the estimated probability value, it takes the result as a blocking state and the node has to wait for a new weighing cycle to make a channel selection. This causes the node to lose the current session, as there is no ‘defined’ form of flexibility in the system.

The **Learning Automata based selection** is presented in [58], [59], and allows the radio to manage the channels selection over time by making use of an automated learning function. The selection comes from the exploring of uncertainties realised in unknown traffic patterns, as they converge to a certain limit while in use as a basis for the channel selection. The scheme then rewards a channel / action, based on the completion of service provisioning during that moment. This type of optimisation is beneficial when the node’s capabilities evolve to make the scheme expedient at a faster rate, at the same time not being statistically optimal. The manipulation of this feature allows for the incorporation of learning more (active) cases for the scheme’s decision-making processes. The major drawback is that the tuning of parameters should balance out before the initiation of the system, so that the reward-penalty system will not limit the radio to a few scenarios. This can cause the learning process to converge when it is not getting optimal results the selection of channels.

In summary, the implementation of the selection process should be within the bounds of a probabilistic type of measure, for the channel identity and allow the use of a reasoning based learning strategy to manage the facilitation of the handoff segment. This is in comparison to the learning methods from the relevant efforts in related work, regarding the structure of their selection schemes. The platform created for the development of an algorithm of a heuristic nature, defines the selection scheme in a position where it can cater for the handoff phase while managing the
selection process effectively. This comes in the subsequent chapters and the presentation is to show proof of concept.

2.7 Chapter discussion

In this chapter, we have the presentation of the schemes in related work for the selection of a channel. This is for both the handoff scenario and the general scheduling segments for a cognitive radio node. The presentation of their work is with emphasis on the strategies employed for the selection segment, especially how it extends to the management of any handoff cases. The efforts realised in related work address a capability of the learning element to show a level of competency or how it lacks thereof. For most of the schemes outlined, the build-up of a successful selection process is from the mechanisms that have a provision for learning. This also includes how the environment effects can prolong the learning process and induce the handoff causes. Some go further to extend the issue of a form of bias in the system, as it comes from the other radio nodes’ activity in each specific network that the radio will be trying to use.

It is evident from the literature used that the schemes identified, portray a dependency on a key condition (whichever it may be), to signify how the selection of a channel works. These conditions usually resort to a greedy type approach due to the lack of some flexibility in their execution methods. As a result, the learning may not achieve the required level of optimality desired by the cognitive node because of the relational modelling of the schemes to be of a holistic nature. The next chapter presents some of the key attributes (for the proposed scheme) that can enhance the learning process during channel selection, in a handoff scenario for a cognitive node, which is the basis of this work.
Chapter 3

Learning for the management of a Cognitive Handoff
Learning for the management of a Cognitive Handoff

Introduction

The previous chapter gives an overview of the various learning-based channel selection strategies. These associate an extension of the channel selection process with how the methods provision for the spectrum mobility process in literature. The highlight of the chapter is a presentation of some key functions considered beneficial during the selection of a channel. This is when a node has to prepare for handoff and the outline of how the decision process is an extract from the cognitive cycle.

With these functions in place, we discuss the value of the CR related phenomena utilised during the decision-making processes. Their nomination in this work is with reference to the environment activity as shown in figure 2.1. These effects facilitate the use of cognition during the decision-making and outline how the node can benefit from the phenomena during a handoff phase. The features are instrumental for the learning purpose, as the node goes from one band to another while developing strategies to control handoff. These strategies stem from the knowledge bases collated from the data acquired while the CR is roaming in any environment during a service.

3.1 Provision for learning

When several CR behavioural elements conform to a certain type of operation, they define the implementation of a learning-based approach of performing various service tasks. As the node has to gain optimal levels of performance, the type of learning method has to be well characterised to ensure positive results. In addition, for the node to have a reduced switching count during handoff, it has to satisfy a selection level based on the criteria in use during the delivery of a service session. The amount of knowledge it can retain for the learning process comes from the use of a well-structured scheme that provisions for an effective feedback process. In this section, we discuss the characteristics of different forms of learning. These define the learning purpose for optimisation of service through the realisation of a joint model, with specific optimisation criteria.

3.1.1 Forms of learning

Any type of learning in its simplest form is in a supervised format. The supervisory element has a set of training data that corresponds to some form of input and when the learning is active, the decisions fall towards a certain amount of known outputs. This is more of a ‘student –
Learning for the management of a Cognitive Handoff

teacher’ approach in which, the outcome produced is as how the radio has been instructed. If the objective were to be different to the node’s expectation, in any case, it has to make a significant amount of computation, based on the instruction set that it follows to realize a decision.

Another form of learning is one that is **unsupervised**, where the inputs are identifiable to the radio, but the resulting output links are unknown. It makes use of a clustering method for grouping certain inputs known to have common characteristics. These inputs together, assist the node in identifying the unknown outputs or to create a new cluster if or when needed. The only drawback with this type of learning is of not having any obvious forms of output, as it has to learn how each new cluster behaves. From this result, the node then matches each new outcome to the mean of a recognised cluster, nearest to the mean of the outcome in question.

Lastly, we have **Reinforcement** learning, where an agent has to take action within that moment to cater for a decision as and when made by the node. The selection of an action is such that the outcome is of a long-term reward to the agent, despite the immediate goal to facilitate the objective. The scheme defines a policy based on a sequence of events and these assist the node in assigning positive outcomes for better rewards in the environment. This is for the node to recognise the capability of the actions during any decision-making moment. The only difference with the other forms of learning is that the reinforcement strategy has no knowledge of the inputs and the outputs that result from the decision process. The radio bases its level of performance on a rewarding strategy to define how it will make the necessary changes to its selection methods.

The reinforcement-learning scheme comes in different forms and some do not have a model to base the learning on, for example Q learning. These schemes are better suited for systems that do not exhibit a lot of change, which occurs during its learning phases in the environment under study. This is however a conflict because this work seeks to extend the concept of learning to the CR handoff phase, which is a highly dynamic event. Another issue is of optimality, in which the convergence process resorts to a selection policy, defining the operating method of the scheme as the final state, before it reaches the stop criteria. As a result, this shows how some of them are undesirable for the purpose of this work, depending on how the learning is applied.

For the learning cause to have considerable weight, the radio has to evolve the results for it to learn how to deal with any new data structures or sample cases. This is because of the
Learning for the management of a Cognitive Handoff

number of unknown disturbances that can happen while it is in translation [60]. Ultimately, the rate of learning determines the cases’ sampling rate and the node’s ability to define better strategies for the learning method in use. The subsequent sections in this chapter outline the variables used by the scheme to make use of a learning-based approach as a means to manage the handoff process.

3.2 An objective-based view of the environment

For the node to have a good objective creation basis (used for the selection of a good channel even during handoff), it needs to have a good view of the environment’s activity patterns. The rendered view of the other users’ activity in the environment is a starting point for the development of any contingencies for a cognitive handoff, which can come as a proactive decision. The following subsections are a definition of how the CR will allow for coexistence within its operational capability. This creates a form of cautiousness when controlling its intentions, through a level of computation it can use. Ultimately, this shows how the CR is maintaining a learning approach based on the level of bias coming from the others users’ activity in the network. This is when the node is trying to manage a cognitive handoff because of the effects observed from the other users.

3.2.1 Operational conflict from coexistence

In any multi-user environment, any outcome from the other users’ behaviour dictates on how the node will exhibit its operational capability. The form of cohabitation adopted is an indicator of the amount of control needed from the node, in such a state. As this work will employ a node-by-node approach, the sharing scheme is oriented towards a decentralized form and more so, dominated by the behaviour of the other nodes. This work takes two behavioural effects and recognises them as the extremes that the node will consider in expressing itself, in a coexistence scheme. The first is an ‘egocentric’ approach to sharing as compared to one that is more of a ‘benevolent’ cohabitation nature. For fairness to come into context, there needs to be a balance outlining how the radio is to operate from its own objective with an outlook from the environment. The objective satisfaction segment should have the CR in a more conscious to altruistic manner. This is to achieve fairness whilst allowing a level of participation that benefits the CR own objective, which is to select a good channel and preventing multiple handoff counts [61].
During operation, the scheme will have a utility vector \(U_{(o)} \) in use for collating the candidate channels after a sensing segment, as evaluated by the radio. The set \(U_i \) has a group of channels with the lowest probability value \(p_i \) as the least good found during the instant \(i \), given by:

\[
U_{(o)} = [U_1, U_2, ..., U_N]
\]

From this set, the belief taken by the node in a decentralised approach (with an uncontrolled form of activity in the band) is as defined from such a segment. This is important as it motivates the modification of the selection process, for the CR to gauge the level of control needed or to be established. However, if an element of ignorance (by the cognitive node) is pronounced, the node needs to revaluate the parameter selection process based on the state of the belief in the environment. This leads to a different form of belief that the channel vector it has, should synergise with the current environmental patterns. The agent’s behaviour during the sharing cases can have operational differences by having the learning moments classified under or towards regretful outcomes. The cause of regretful outcomes is of viewing the environment passively such that the data received from the environment, heavily affects the level of computation needed for the node to satisfy the decision moment.

The use of the behavioural traits below is from the adoption of a load balancing form of sharing, based on the node’s understanding of the environment. This is where the node maximises the decision-making based on the conditions that it is facing, as well as the parameters available (a maximisation of resources available). An egocentric characteristic is visible when the node makes a decision based on this property:

\[
u_{i+1}(p_{i+1}) \geq u_i(p_i)
\]

The value of \(p_i \) is used iff the node believes that the value of \(p_i \) is a value strictly above the threshold that all the other users in the system will use during that epoch. A benevolent approach however, is one that allows for the recognition of the cognitive node’s objective (being of selecting a good channel). In this case, the CR is optimising the nominated parameters to achieve the long-term goal, which is of learning to pick up the good channels with the main operative being a fair user. The ‘benevolent’ approach has the scheme reducing its selection threshold or channel utilisation value to one that is below the utility vector’s probability in that
Learning for the management of a Cognitive Handoff

state as follows:

\[u_{i+1}(p_{i+1}) \leq u_i(p_i) \] \hspace{1cm} (3.3)

This condition is satisfied **iff** the probability of a channel selected, is above a value that avoids the loss of the channel during service provision.

3.2.2 Node capability

For the node to show its capability at a basic level, (for the sake of coexistence) the accurate deduction of the environment’s form is when it has a view of the instantaneous conditions. The instantaneous conditions are any attributes found in the environment that may affect the node during a handoff segment or service operation. Their accurate deduction reveals how well the node has understood the environment that it will be adopting, when making the selection of a spectrum band. This is a definitive stage, where it gets to outline a means of maximising its performance i.e. showing control as an example. The amount of control it can have over its decisions is realised when it can execute the right to own or secure a channel or time slot, based on the current objective function. The form of control projected by a node during such an instance allows the definition of a strategy, where if the radio can control all the effects during the objective it is satisfying; then it can manage to have control of these same objectives over the whole network.

The CR during some instances may have to adjust to a needed level of computation for it to make a decision that will not affect other nodes in the multi-user environment. This is regarded as limiting the amount of control it can make use of, to execute an objective.

To clarify this form of functionality, we define the nodes operation in a network \(A \) and in that network, there are levels of functionality defined as \(A = (a_1, a_2, a_3 ... a_n) \). From network \(A \), the CR is capable of executing a number of \(b \) cognitive features [61]. Partial control is realised when the node’s performance to define functionality in the network falls below the acceptable level, as follows:

\[\frac{b_n}{a_n} < 1 \] \hspace{1cm} (3.4)

Full control is when the capability to define functionality is as follows:
Learning for the management of a Cognitive Handoff

\[
\frac{b_n}{a_n} = 1
\]

(3.5)

3.2.2.1 Maximisation of the node’s capability based on network status

A validation process conducted during or after the mapping of any bands / networks from the perceived data defining the environment, leads to a reasoning segment for the node to make a decision. The following questions lead to an estimation of the quantities involved during the reasoning process for a decision, during a CR’s handoff process:

1. What is the best possible way of extracting the information needed any environment, while the scheme aims to reduce the passiveness done by the node during network mapping?
 - These are elements from the activity in the environment defining how the node can view the desirable features and manipulate them as data found in that network.

2. What effect/s can be expected from the environment to define a global variable/s as the ideal parameter for optimisation, with which when used can be taken as a reference for reviewing a network’s desirability level?

3. Is there some evidence to allow for a case-by-case analysis of the differences in each defined network? What do these cases present as a default method for any feature’s estimation from each environment?

4. How do the characteristics and the levels of complexity in any of the developed sub-systems (the networks) control or affect the scheme’s learning evolution?

5. What size or the level of organisation in the system (number of users occupying the network) can the scheme learn to adapt from, for the sake of coexistence purposes?

6. What deduction comes from the criticality of the managed system (operation of the network) and how does the active number of nodes in the network balance it?

3.2.3 Computation levels to deal with the realised effects

To effect the cognition element, there has to be a form of sacrifice in performance experienced due to the amount of computation needed for the radio to exercise its potential. Apart from the obvious decision, which is to select a channel, the learning aspect has to allow the node’s use of its capability to control parameters. Due to incomplete characterisation at times (because of the passiveness of the node towards the environment), the determined features may
be a huge cost to the node. The cost can be realised through the several ambiguous cases that the radio has to deal with computationally. To define the cost of a feature, we take this as a factor used to evaluate the level of control needed for each context in the environment. This brings out the level of computation that a node has to induce in any system, as the environment’s ambiguity and node densities come as variables used to prepare for any handoff counts. From the deduced elements in an environment, the **pre-partitioning** of the environment is for assessing the contexts. This verifies the reliability of the sensing segment and evaluates how each network will be a good choice to have service on. When evaluating the options, the variables in each of the created contexts will allow the node to consider the following:

- How to create a suitable output state space for the selection of parameter values that will allow for the provisioning of individual actions, considered viable in such an environment?
- Take a reservation approach of channel use (as a proactive strategy) with some flexibility to account for the shortage of resource availability during a selection stage.
- How the scheme will use the information from the environment to account for the hidden terminal problem in each context? This is from the missing channel information and it helps in defining a contingency when the node anticipates a possibility of the problem.
- How to carry out an assessment during the partitioning of the spectrum data, as this is the first stage the CR will go through while trying to perceive the network details?
 - This stage can also provide the parameters deemed suitable for use, as given by the network patterns for learning or the decision needed during channel selection.

The use of the pre-partitioning stage is for the transition of the detected parameters, from the state space created into a **weighing stage**. This allows the node to assess the available parameters and converting them to attributes for use by scheme, based on the consideration of the following points:

1. What type of state space or feature set deduced at this point is extendable to the selection stage of a channel from that desired network as a decision space?
2. Are the current network cases fit for use as reference points for the selection of a channel?
3. How will the estimation of a cost (an error estimate) for the obtained features in the
desired networks account for the exploitation of any resources in the same network?

4. If the objective definition for the selected network defines the performance, capability or competence needed during a handoff segment.

5. How the learning of multiple or related conditions reduces the sampling burden required for a good generalization of the mapped environments. This allows the deduction of:
 - the cost from the number of anticipated handoff moments per service task
 - the binding cost of changing to another network from the partitioned environment
 - the benefit that is realised from the previous use of or the selection of an action

6. To gauge the bias that affects the scheme based on the differences in each network and taking it as evidence to reduce the computation each time the CR has to make a decision.

The amount of computation required from this stage has to yield a decision, with the value of the probability having a level defined by the following property:

\[p_{(i+1|j+1)} \geq p_{(i|j)} \] (3.6)

Where \(p_{(i|j)} \) is the probability used for the selection process at that instance to move from a state (band) at instance \(i \), to a state at instance \(j \), and is taken as the minimum value \(p_{(i+1|j+1)} \) can have, for a state change at a instance \(i+1 \). This is a pre-set variable for a decision when in a handoff scenario due any possible instantaneous conditions and is managed by the learning scheme. As such, the pre-set variable should allow the scheme to make decisions above the initial probability threshold \(p_{(i|j)} \) for that particular network \(n \), should the network conditions allow for a less computationally invasive operation during that selection moment. The value of \(p \) is as derived by the objective function, as a default channel value from its selection by the learning scheme [61].

3.3 Key design considerations

The increasing data sets (varying in size) extracted from the environment make it imperative for the node to have better managed decision-making processes. This is paramount to attain a level of success for each channel to be selected and more so, the accuracy of the predictive usage estimations from the activity patterns. These are essential for the reduction of the handoff counts, while it is roaming in the different environments. The use of learning in this work can enhance the CR’s capability of adaption in the various bands, for it to learn from the effects observed when it is in translation. In addition, the selection of a band i.e. for the channel
used during a service session is bound to the probability value obtained from the environment, as outlined by the sensing process. To facilitate the operation of the scheme, the value of learning is going to be realised by allowing the node to have:

1. An **exploration capability**, to go through the various bands that are visible to it and this is also in relation to realising the differences that come with each band occupied.

2. The **reasoning capability** is for the realisation of the decision process. This is to achieve a balance of the expectation from a desired band vs. the realisation that the metrics deduced from the band may equate to a good or a poor level of service.

3. The use of the outcome from the reasoning stage is for a decision made or realised to allow for the **exploitation** of the realised band in its discovered form. The exploitation is when the node is using the available resources in an effective manner, maximising the goal of effecting the handoff successfully or minimising it, depending on the level of optimality desired.

3.3.1 Adaption to domain differences

The biggest issue found in any radio landscape, is having a lot of varied activity, which creates many identifiers (data metrics) in need of classification for the radio to learn from them. This creates a complex situation with big data, with which, the node will have to observe, perceive, and learn for its own benefit. The large amounts of data necessitates for the CR to:

1. Define an effective method of classifying the activity in the environment (this reduces the reliance on continuous sensing, as there can be many instantaneous conditions, which go undetected during the sensing stage).

2. Extract certain data structures that will create knowledge bases, gained from each adopted band, and how the knowledge obtained will enhance the learning process to achieve the goal of effectively managing handoff.

As the erratic nature of stochastic models shows that it is difficult to have any service predictions done, the node will make use of a defined global variable, to gauge the desirability of a network. This will come from the information gained through the observations, leading to the perception of the network data for the node to use:

1. A suitable band is distinguished by having the most unoccupied channels, m, from the
other bands, which will allow the node to confirm the following:

- The arrival rates λ, service rates, μ, of the other nodes and the network’s utilisation level, ρ, of the network selected.
- The channel variation in quantity of busy to idle levels, allow for the evaluation of the network to show the possibility of the hidden terminal condition.

2. Take a network usage level, to outline how it will proactively provision for a handoff scenario, from the data delivered and extracted from the desired band. From this, it will try to estimate features that it will use for the decision process through:

- The use of the underlying PU activity data, so that the node can gauge the possibility of a disturbance occurring and disrupting it from the ongoing service
- The estimation of the service provision based on the value of the current band’s data semantics, which will lead to the definition of an action for the execution of the channel selection process before or during handoff.

The above process, defines a case-based approach for deducing a network’s level of competency, solidifying the selection of that band. This will show how well the node is adapting to the effects exhibited by the other nodes and create a basis for reasoning when it has to handle a handoff decision. At times, there is an absence of the descriptive variables and this hinders the capability of the proposed selection strategy. As such, the scheme’s implementation should adapt in relation to the rate of change of the data sets, further supporting any nominal service functions for the CR.

3.3.2 Policies for service (handoff) management

A node defining how well it is learning, while in translation, will outline how a strategy it finds optimal in each scenario and how they should vary per band. This is the definition of maximisation of its actions, where a strategy defined, is simply a basis to make the best of what is available in any environment. The **creation of a policy** is thus a mandatory process as it identifies the overall handoff objective and can control issues related to;

- The reliance on a greedy type approach due to lack of parameters at that instance by creating a use-network-case scenario.
- Taking the first state or a visible channel, as a form of belief, which forces it back to use
Learning for the management of a Cognitive Handoff

- Greedy strategies, if the network does not meet the current service level expected.
 - A belief is a network condition that it finds value in abstracting from i.e. taking the state of the network as the optimal state to continue with the selection.
 - Defining a form of operational flexibility by creating an estimate for each network, which acts as a value based factor, used by the node to show its capability of being a fair user.
 - A heavily tailed mean value of the network (biased towards the busy state of a network, derived from the probability value defining the network activity).
 - The network desirability as a means for performance measurement (the network activity value as a factor) is for the satisfaction of a short-term goal, which is to maintain the estimation of a channel identity within reasonable bounds of the policy’s execution.
 - This is such that when a handoff moment is prolonged, it can trace the outcome easily for the management of any future handoff moments.

The policy creation process comes from the interpretation of the parameters that are visible from the environment, which may be unidentifiable at times due to sensing inconsistencies. In such cases, a meta-generalization strategy is an effective method that can reduce the processing time for the node to make a decision. Undoubtedly, a conflict at times arises due to the lack of parameters but if the CR generalizes well, after consuming data sufficiently whilst learning, it obtains a hypothesis with a high probability that it will do well when handling handoff. The hypothesis can perform well on future cases of the same task and with this statement, it shows that the expectation and maximisation concept is a key feature to manipulate and exploit learnt data, during handoff.

3.3.3 Robustness to instantaneous conditions

Essentially, the node is to adapt to the varying effects of service and this has to induce a level of robustness in its strategy formulations. This comes from the instantaneous conditions found within the different bands, necessitating a lot of change to the desired scope of the environment. Due to the level of variation in environment contexts, the scheme will adopt a multi-teacher based system. This basis comes from how the node is teaching itself to understand the environment patterns, and then separate the networks to become individual teachers in their own regard. From such an understanding, we regard the other contexts that are different from
the one occupied, to be of a varied nature.

The knowledge base derived from the perception stage, defines the quantity of data useful in the creation of contingencies, for the management and control of any handoff effects. From such a performance requirement, we take robustness as a form of resilience that can help the node effectively characterise for a policy (objectives) before or during handoff. This allows for flexibility in the learning scheme, for the scheme to adapt to any system changes that come because of the unexpected environment changes. From such a stance, self-reliance as a CR feature is a key requirement as this work is making use of a decentralised approach of spectrum sharing. This should allow the node to have a better position of preventing any service failures, from any effects that come from the instantaneous conditions brought on by the activity in the same network.

To define the moments where robustness is a key requirement, the node will use the following conditions as a means to assess the level of resilience that it can achieve. This is to show how the node will tolerate or profit from the unanticipated changes induced by the instantaneous conditions in the system. The definition of the key elements is going to be through:

1. The level of complexity found in the network; what are some of the characteristics of the sub-systems (the individual networks or multi teachers) that will hinder the performance?
 - These will translate into a tolerance level the scheme considers enough for it to control or manage the selection scheme’s evolution during service provision.

2. From the parameters available, what are the missing global variables during an operational segment, which will not guarantee some persistence of the scheme’s performance?
 - The efficient clustering, in this case is a means of eliminating the weak contexts realised and allow their sizes to define how effective they are, for a decision.

Because of the multi agent attribute and the need to have a multi teacher concept, the design should be able to help the node adapt to the load balancing approach, by making use of the exploitive nature of decision-making. The clustering process will reveal the competency of the available features with which, their persistence under unforeseen perturbations from the other users will show the much needed level of robustness, to continue with its service in the network.
3.3.4 Pro-activeness for handoff cases

The use of flexibility as a means of gaining advantage during certain handoff scenarios, gives a varied level of service acceptance as well as the recommendation for better handoff service levels, based on resilience. The sensing delay experienced during handoff is an indication that the node should have a contingency for the instantaneous conditions as most of the information discovered, accounts for the redundant data values (the same network data). This is primarily a means to allow for some adaption from the trend observed from the history of channel evidence, together with the performance evaluation from its decision-making capability. As such, the pro-activeness of the scheme should cater for the following, when there is limited activity information:

- What network conditions can come about from the variation of the nodes at that moment?
- Does the information acquired guarantee the effective handling of the instantaneous conditions during the selection of a channel in the next epoch or after epoch?
- What actions can provisionally come from the analysis of the redundant data structures, based on the history of activity, to assist in predictive modelling of the handoff segment?

These questions allow for the identification of several possibilities that make the radio relate to the ongoing conditions during execution of the handoff (from the history and clusters developed through learning). The conditions produce effects that overall, affect the reactive handoff because of the longevity of processing or during the decision-making. The amount of time units consumed by the sensing phase when needing to perform a reactive handoff, together with the instantaneous conditions, makes it imperative that there is a provision of the proactive handling of the handoff case. The provisioning for the proactive approach results in the determination of contingencies, leading to the balance of the robustness and adaption to the context that has been realised.

When setting the decision space for the node to base its selection on, it can proactively realise a high chance of a successful service count based on the level of robustness attained by the node. The outcome from the provisioning process primarily has the node, selecting a decision space as the base strategy for the selection of active channels in that environment. This
Learning for the management of a Cognitive Handoff

is a feature that reveals the **mean channel value** from the decision space, as a means to aid in quicker decision-making moments and continues with the handoff facilitation or if the node should make an instantaneous decision. From this, the CR will or can manage the handoff case showing the relevance of pro-activeness in selection of states due to adopting such a strategy.

3.3.4.1 Transition from pro-activeness to a reactive decision

The key principle is to outline how the radio will take the information from the observation stage, translating to the perception of the learnt data patterns for a proactively set reasoning and decision stage for handoff. From the data extracted during sensing, the node will account for the possibility of any disturbances and for their management during the handoff moment from the policy definition in place. If such an approach is utilised in reference to the required level of robustness, the node can look at:

1. How the data semantics will aid in the proactive modelling, further allow for the definition of a use-case profile.
 - This case will go through the reasoning process for the realisation of a decision for the selection during that epoch.
2. How much of the network data fits in the decision space of the defined case and whether the data allows the CR to maintain the pro-activeness realised?
 - The management of a reactive decision is from the action selection process enhanced by the number of actions found in the same range as the decision space.

A balance of the two variables, the service policy vs. the case-based handoff objective uses the definition of a state space for the node to choose parameters for use in each network. This becomes a hypothesis space and is useful for the node to fulfil the learning element during the selection process. Its outcome in the subsequent sections acts as a guide that defines how the selection process will use the suitable global variables in the decision space. The hypothesis space can have the scheme formulate a strategy that will allow the node to have an estimate of the state activity predicted for the next epoch. This is such that there is a relatable level of expectation from the required handoff outcome. The strategies allow for manipulation of the same or different activity patterns used in other contexts, as a network-wide approach from a history-based feature.

3.4 Functioning control tasks
One of the considerations in this work is to assess the impact of the state activity identified and balancing the elements of cognition the scheme will opt to use. These define how the scheme has strength towards to the purpose of effecting handoff effectively or not, based on the account of learning. The following subsections detail the three key variables adopted as part of the scheme’s functions in this work.

3.4.1 Cognition through bias

Cognition has no basic metric of use as function but when used in application, the benefits realised are immensely profound. When directed towards a universally accepted definition, which makes the radio conform to the learning approach as an optimisation technique, the effects show a level of performance management regardless of criteria used. From this realisation, the level of cognition developed becomes the biggest attribute for its performance output. As such, the use of bias in this work is to effect how the handoff should be priority to the node, by having the CR learn to identify the cases that have multiple disturbances. In addition, the scheme will allow other options to be considered when a node is affected each time it is roaming in a PU environment.

Rather than adopting a statistically defined approach (where the scheme converges to probability maxima) during the selection scheme’s evolution, the node can have options. As seen in literature, the greedy approach is the dominant selection method on the decision tree. In account of evolving the learning element, the automation of the decision process will build its own its adaptation strategies.

These use a composition of reusable and adaptive service policies, which are set to address different and possibly conflicting goals during each handoff case. This definition, when extended to certain dynamics (prioritizing the use of bias, how parameter estimation works, the rewarding of a satisfactory service delivery etc.), allows the CR to define its learning through these qualities. This is during any instance it is disturbed to achieve better levels of performance ratings, particularly in a reactive handoff [63]. The decision made by the learning scheme has to maintain a relatively high level of certainty (proof that service completion is within the estimated period). This will guarantee a level of throughput based on the dynamic changes that the environment offers. This certainty is to avoid, for example, errors made during previous
selections that when identified again will not affect the selection criteria of a future action. The learning approach is thus in an asynchronous manner, for the change in each scenario to be adapted to. This is as defined by the events from each operating environment further fulfilling the multi-teacher concept.

3.4.2 Service oriented learning for decision moments

There is no ideal way for a cognitive node to prepare for how conditions change during each service session in a cognitive domain. These force some control on the scheme to outline a suitable response within that epoch to acquire a channel, based on resource availability. When an action-objective balance is established, the next step is to have the learning adapt to a converged form of ‘understanding’ (relate the developed policy with the traffic patterns to the benefit of the selection process). The node can manipulate the policy to adapt to changes as it makes changes to suit the different channel characteristics based on the level of service provisioning. This is by making sure that the policy created for each recognised form of belief (considered a state of operation from the network in use) is not the only one used for handoff optimality.

For a proactive handoff, this means that the radio should be able to handle any modification to the objective while coordinated with any changes that come from the environment. By outlining a scale with different degrees of freedom (based on the handoff expectation), the node can cater for the adaption. The channels selected are therefore, because of the channel vector that is being defined by use a proactive form of characterisation. This form of characterisation will then define how the node can translate the results of this service phase into successful counts. This will benefit the learning cause by defining update parameters that suit the achieved performance level and furthers the learning process for the benefit of handoff.

3.4.3 Management of the learning process

The extension of a learning based selection approach to a handoff scenario is for the radio to have a negotiating level that avoids long segments of synchronisation after selecting a channel. This concept is by using a case-based reasoning approach during the selection process, where management of the observed effects is a result of the derived use-case scenario. The scheme should then weighs the objective from the desired outcome of the entire transmission
Learning for the management of a Cognitive Handoff

process so that the channel selected, will achieve service completion. This explicitly makes this type of a selection process lean towards the idea of an always-changing case, because the dissatisfaction from a current handoff objective (used to select the channel in use) can cause a switch to a different channel. As the learning is asynchronous, the adaption to each scenario caters for the learning segment, as each reward given to a channel is independent. The particular form of variation found in the traffic-induced conditions is a result of the multi-teacher concept defined in 3.3.3.

The multi-teacher concept classifies the notable differences during each selection instance the radio is going through, to help the radio decipher how to best objectify for the possible handoff cases. This is another form of adaption in that the channels in view, will weigh in on the learning or at least allow relevance to a selection criteria based on the effect of reasoning defined for their selection. An optimisation of the CR’s performance with such a stance, allows for a prediction-based decision approach for a reactive handoff segment. This form of management (through the use of reasoning) during the selection process signifies how the node will cater to the variation of objectives during channel selection, effectively outlining better strategies for future handoff cases.

3.5 Automated learning method: the Learning Automata Algorithm

Several forms of learning can have their usage patterns made to be adaptive and with all forms of optimisation, some machine learning methods have resulting enhancements that outweigh the advantages observed in others. Going back to the basis of this work, a form of learning called **Stochastic Estimator Learning Automata (SELA)** has proven to be a suitable candidate for the proposed scheme. This is from the presentation learning and its definition in an environment that is heavily characterised by an occurrence of a multitude of random events. These events give the node its ability, as an added advantage of leaving room for modification to its operational patterns, based on the unknown effects from the occupied environment. The algorithm’s operation is through an estimation of other users’ behavioural effects within the same environment (activities observed) vs. its objectives (selecting good channels or controlling handoff effects) as the resulting optimisation criterion. This form of operation is realised when the radio can improve its performance through its decisions, based on a set of action choices that all have some optimal level of performance during execution.
Initially, the actions used by the learning scheme, are all valued by a threshold level over a learning space as expected by the node. They evolve into different values based on their effectiveness, as the node interacts with the environment per objective. The conditions that trigger the selection of an action at any time are entirely random and the resulting choice is from a probability distribution, kept over the action set, defining a response from the node. At each instance, the choice made by the node as a probability-based parameter, is a basis for the decision that the node is going to make. The environment then responds with a reinforced signal, used to update the action set and this cycle continues to maximise the action set, based on the rewarded (successfully completed choices) actions made by the node in the environment in question [64].

Figure 3-1 below, shows a view of the LA algorithm in operation. It has three different types of modelling, the P, Q, and S models; depending on the degrees of extension to the number of responses, the environment can give. The operating environment is described by a quintuple of elements $E \equiv \{\alpha, \beta, c, X, P\}$, where, $\alpha \equiv \{\alpha_1, \ldots, \alpha_m\}$ is the set of actions; $\beta \equiv \{\beta_1, \ldots, \beta_m\}$ is the value deduced from the environment, $c \equiv \{c_1, c_2, c_3, \ldots, c_m\}$ is the penalty value that is used as a discounting factor for a poorly performing action. The definition of these values is over a set of vectors defining a segment (context) in the environment or an input state space; X and these elements define the operation of the radio. Mathematically, the environment is defined by the tuple E with elements characterised by the probabilities from the following sets: $P = \{(\alpha_i, c_i) \mid \alpha_i \in \alpha; c \in c_i\}$. Based on the responses that are coming from the environment, the values of P are defined over time and expected to reward the action set of α. This is iff there is a successful outcome from the reinforced value, from the environment β, or a penalty to discount the set of c from the probability c_i.

The automation, given as the following state transition quadruple $\langle X, \alpha, \beta, c \rangle$ and this is in the environment context X_m during a segment m. The probabilities defined in P are such that $\theta_m \times \alpha_m \rightarrow \theta_{m+1}$ where θ_{m+1} is a state that is altered by the chosen action α_m to give that output, which falls under the context X_{m+1} in the environment tuple E.
Figure 3-1: The Stochastic Learning Automata concept, showing a relationship with the stimuli.

The selection of an action α_m, is under the ‘pretence’ of a defined objective at that stage for the input space X and β_m being the reinforcement value used to produce the state of automation recorded, depending on it being a reward or a penalty. The use of ‘pretence’ in this sentence is to clarify how there can be constraints that deter the node from completing the objective, as its full definition, is never be pronounced because of the absence of certain parameters.

3.5.1.1 The basis for learning for a handoff phase

To aid in the development of the proposed scheme, this sub section is an introduction of the preliminaries of the learning scheme, such that there is a clear definition of the elements required from it. This form of modelling involves a technique called inductive bias [65], which will make the radio recognise certain instances, as features that it should be aware of as certain emissions and observations. The type of bias involved, is the minimum features bias, which uses the analogy that a node can delete a feature from an active selection set, during the selection process unless there is good evidence allowing for its translation to the next stage of the selection process. An indication of how the node will handle the handoff stage, together with the individual actions selected should be enough to account for the state selected, in relation to the identified features. This is a guide to the estimation of a probability value defining the occurrence of handoff, based on the bias feature.

The speed of learning is controllable by selecting appropriate actions for the channels needed, based on the feedback from the environment. To avoid the greedy selection approach, we have the learning scheme adopting the control of the selection process, based on the available
features found in the state space X, during that instant. These define the probability that can be used in comparison to the actions that are available for selection. The cause of the greedy selection approach would be the use of highly valued actions, to satisfy the current channel selection while ignoring the node’s expectation during each selection scenario. Although the use of automated forms of learning is application dependent, the node will make use of the responses defined by the bias, for the benefit of better parameter definitions / estimations. This allows for the modification of the state space (during parameter estimation), based on the reinforced conditions that are set by the learning algorithm. The ability of SELA to be a modelled learning strategy that maintains its own action set to account for the history-based input is a quality that makes it a good candidate to deal with unknown objectives in an environment for future interactions. This is a performance enhancer in that the node will make an action choice based on the reliability of the action choice.

3.6 Structure of the proposed algorithm

The learning element during channel selection allows for many calculated provisions, presented as estimations for use as decision metrics, for the appropriate value to represent the objective function. The estimation ultimately becomes an indication of the action for that epoch, when selecting a channel. The Learning Automata (LA) concept can accommodate a feature-selection approach, based on its ability to be variable, by using the learning by association element. This is when the node associates or includes the state of the environment when formulating the learning scenario during the channel selection process from that required context. In associative learning, the state parameters are visible in the environment context and in the non-associative mode; the node makes a choice that is optimal for that environment. In this work, we make use of the non-associative learning automata, defined in the next section as a build-up on the band selection strategy. In relation to the use of the S-model LA, is because it derives an ‘estimator,’ which is a defined value using the reasoned data from the environment and leads to the node effecting the learning stage of the selection process, also known as the rewarding process.

3.6.1 The S-model Learning Automata based selection scheme

The adoption of the S-Model algorithm is from the structure of the Variable Stochastic
Learning for the management of a Cognitive Handoff

Learning Automata (VSLA) and mostly put to use in instances where a discrete methodology (which is in the use of a single context in our case) works better, for good results [66].

For this work, the adaption we are to make use of for the rewarding scheme is the Learning In-Action (LA unavoidable). This adaptation of LA to the proposed scheme’s evolution is with the structure of the VSLA scheme and the description of its structure is in appendix A. For the Learning Automata to be operational, it has to have a defined environment, where the problem formulation is for the satisfaction of a current objective and the automation process leading to the rewarding of the successful action.

The steps below provide a descriptive process flow during the learning’s execution for the sake of managing the occurrence of a cognitive handoff. The outline starts with:

1. The channel composition identified during the sensing stage leads to the data extraction phase, where the creation of an input space X_n is a probability distribution defining the activity in the environment.
 a. From the data in X_n, we get a tally of the number of channels available in their OFF state and the node has to cluster them into their respective networks, based on similar channel characteristics.
 i. From the mapping of features available in X, the node will have a view of a number of probability estimates for the determination of:
 - The level of activity per network
 - The reliability estimate for use during the decision process
 - The creation of a possible decision space for the selection of an action
 - The estimate of disturbances that can occur in the network
 - The quantity of the features that differentiate the networks
 b. From the mapping of X_n, there is the verification of the channels viability from the probability estimations that match the level of activity in the environment.
 i. This assesses the weight from the network-based activity, on the node’s parameter estimation process
 ii. To assess if there is a possibility of the hidden node problem from the recognition of any silent states in the input state space.
 - Silent states are channels that have a high probability of having a
different status, while the node is in operation. They lead to a busier network, promoting the chances of the node being pre-emption from the increased activity in the network.

2. The assessment of the network-based features is for the decision process by using the individual vector information identified by the CR. This is during the clustering of the networks activity patterns for the selection of the probable network. For the node to have an optimal service level, it will consider the most satisfactory idle network conditions to continue with the current service. From this, we have the definition of an output space, Y_n, for the desired network to present all the data, from the value of:

i. ρ, the network utilisation value, which defines how busy it is at that epoch

ii. the arrival rates, λ, of other nodes on that same network showing the impact of the silent states on the current service provisioning

iii. the service rate, μ for the nodes on the network reveals the instantaneous conditions per epoch and how the node can allow for a predictive approach

3. The problem formulation stage is where the node manipulates the network data, for it to realise the parameter choices extendable to the selection of an action for service.

a. The parameters should allow the node to derive a handoff policy for the selection of a channel when pre-empted. This is through the following sub processes:

i. The utility vector of the desired network, which is a collation of the idle channels found in an OFF state in the desired network

$$U_{(A, B, C)} \text{, where } U(i) = \{c_1, c_2, \ldots, c_n\}$$ (3.6)

ii. The derivation of a probability value, as a parameter $P(u)$, based on the number of idle channels m in the state partition, where $P(u) = \frac{1}{m}$. This is also an initialisation probability and the node relates this value to λ, the traffic arrival rates, to deal with the hidden node problem and the effects from silent states.

iii. The number of occupied channels gives an impression of how ρ will affect the survival level of the node in the network, based on how busy the network is.

- The busy state of the network, gives a probability value, the hypothesis $h \in \mathcal{H}$, as the hypothesis space. This value gives the node a
selection threshold, as an indication of how the other nodes are affecting the rate of service on the network, as defined in (3.2). As such, the selection of a channel is from the conditions surrounding this hypothesis value and should be within the range defined by the hypothesis space.

- This value h, becomes a metric defining the network value function (NVF) when handoff occurs and the node has to make a reactive channel selection.
 - A hypothesis space \mathcal{H}, is a definition of the extremum points for a state space in which, the node will use the feature mappings from X and take them for decision processes i.e. the channel selection process.

b. It produces the estimation of $l = h - p(u)$, which is a **loss estimate**, used to define the probability of disturbances occurring when the node uses that network.

i. The estimate leads to the derivation of a decision space, considered based on (3.4) that the node is capable of using some cognitive functionality in that network segment. This reveals how the objective creation process takes into account, the possibility of any disturbances and will have its service completed.

4. The **objective realisation and execution**: The randomness of the environment may cause some fluctuations, causing the realisation of more constraints. The constraints may include disturbances that can affect the node and may have it displaced from the active channel.

a. The derivation of a **parameter optimisation vector** \mathbf{Q} is from the distribution of \mathcal{H}, the hypothesis space for a policy definition. The vector defining \mathbf{Q}, consists of the features found in the network at that moment and made use of, based on the CR related phenomena from step 2 and 3, that apply to that selection segment.

i. \mathbf{Q} in its the compact form, can be represented in the following form:

$$\text{Minimise: } \mathbf{Q}(i) = \{Q_1(x), Q_2(x), \ldots , Q_N(x)\}$$

Subject to $x \in Q_l$

- Where $\mathbf{Q}(i)$, is the vector used at an instance i, for the facilitation of a decision based on the features and parameters from the network available.
- Q_l is a region considered feasible in the hypothesis space for the node to
make any good decisions. The derivation of variables in this region is from the basis of the number of adjustable parameters identified for the possible satisfaction of any handoff conditions.

ii. The parameter optimisation is a process done for the provision of a handoff management process, to try to have the node complete the rendered service despite any associated disturbances from the activity in the network.

b. The **objective optimisation** can be represented in the following form:

\[
\text{Maximise } P \{Q_s \leq Q (i)\} \tag{3.8}
\]

\[
\text{Subject to } s \in Q_l
\]

From (3.8) we observe that the value of \(Q \) that the node adopts for a decision should allow for a service experience enough to cater for the handoff possibility and the required channel switch, based on (3.5).

c. The estimated reward used to select an action, is calculated based on the following constants:

i. The number of times the action has been selected, \(w(r) \)

ii. The number of times the selected action has been rewarded, \(z(r) \)

iii. The value of \(d_r (i) = \frac{z(r)}{w(r)} \) which is the deterministic estimate of the reward value for the action \(r \), used during instance \(i \).

- This is for the actions that have a probability value, which qualifies to be in the range of the decision space \(Q_l \).

d. After the estimation process, we have an arrangement of the actions in comparison with the defined extremum points from \(Q_l \). This brings out the selection of an action from the action set, according to its degree of favourableness in the decision space.

e. From the rearranging, we have the action with the highest reward estimate in relation to the degree of favourableness considered by the cognitive node.

i. The reward of the action selected, is based on the resolution parameter \(M \), where \(M = \frac{1}{\sigma} \) and \(\sigma \) is the step size

f. An action selected from the action set \(A \), is based on (3.8) from \(Q (i) \), of all the compared actions and is applied to the environment as the spectrum decision i.e. it is going to represent the desired channel.

g. The network occupied, will respond to the action input and an assessment of the
service output from the decision (channel in this case), is according to a tally of the handoff counts and the service completion in the hypothesis space, H.

h. The randomness in the environment may cause some fluctuations, causing the realisation of some constraints. The constraints include any disturbances that affect the node and may have it displaced from the active channel to select another one. Such a turn of events is the cause of the key condition under study, handing a channel over to the PU. If the conditions permit, the scheme will select another channel.

5. **The automation:** After a successful service session, a reinforcement value β is given by the environment and the rewarding of an action is by use of the resolution parameter (point 4.e.i), as the best compromise or solution that simultaneously satisfies the multi-criteria of the learning process.

 a. As we are using the reward in-action reinforcement method, the value of $p_i(n)$ for the selected action $\alpha_r(i)$, after a successful outcome becomes $p_i(n+1)$, given by:

 $$p_i(n+1) = p_i(n) - \frac{1}{M} \text{ for all } i \neq j$$

 (3.9)

From the entire selection process, steps one and two are important in that they lead to step three, where there is the completion of the value iteration process (VIP). The network’s VIP should manage to complete the desired objective (selecting a good channel in this case) within the same period based on the deduced conditions.

If the node selects an action, its choice is made from the guarantee of the service related bounds being close to those of the mean of the channel activity in a state, as given in section 3.4.2. This can redefine the range of extremum (boundary) points that are usable for any objective function, when the handoff is still ongoing, as a means to deal with the reactive handoff moment from the service provisioned.

3.6.2 Reasoning during a reactive decision

The need for the learning process to have a reasoning-based approach is for the selection process to manage the instantaneous information when displaced from a channel. This enhances the selection of a state, while reducing the element of passiveness towards the comprehension of the environment activity during the estimating of the NVF, the network value function. The
passiveness as an issue is a cause for the increase of some computational complexity, further necessitating the reasoning stance. In relation to the value obtained from the learning basis, this forms a set of cases and tasks, based on the features available. These are set to assist in improving performance of the selection process that the node will go through, by reasoning to estimate how well they fit into a decision-making process for that particular handoff count.

3.6.2.1 Proposed reasoning strategy for a reactive handoff

The amount of steps the scheme will make use of, is ultimately, the efficiency realised from the definition of a reasoning stance within the execution of the handoff policy. As the node has to balance options available during the handoff segment with its expectation of a service completion, this creates a constraint of having a reduced decision space, during the handoff process. From the decision space, a revalued policy becomes an action, during execution of the handoff, based on:

1. A view of the channel composition and node density to get a mean channel value count, and then deduce the extremum points to estimate the handoff window.
2. The node will use a mathematical expectation $E = h$, based on the probability value of the hypothesis h, or the NVF as the node anticipates this value to be a minimum value that can satisfy all its expectations, despite the disturbance that occurred.
3. From this deduction, the node will take the action used previously and scale it as a minimum value for the selection of the current action choice. This is based on the condition of the following attributes:
 a. The network data semantics; these are deduced during that epoch as features that can account for the handoff validation as the data may have been changed or altered.
 b. Instantaneous conditions that can occur based on the value or size of the decision space. From this, the node estimates the elements that come from them (a channel transmission’s capacity, coverage of the action selected for service satisfaction, the near-far condition (hidden terminal condition), level of gravity on ρ, from the pattern variation in the different networks and change in activity frequency).
 c. The obscurity of the actual conditions i.e. the risk mitigation through experience from the missing variables
4. The node will try to maintain this selection criterion, for maximisation of the decision made, (the action selected) from the reasoning based on the current instantaneous
Learning for the management of a Cognitive Handoff

conditions.

a. This comes from the maximisation variable Pr from (3.8), for the selection of an action.

b. If there is a successful outcome, the node will move into a synchronization mode to evaluate the epoch related issues and for the automation based on (3.9). This phase should allow for service absorption if no other disturbance occurs.

The translation of the handoff segment processing into a new objective is through the reasoning process, as a basis for getting an effective result during the same cycle. This is such that if there is need for reconsideration, the node will need to have a mild to vivid contrast of how to achieve a better objective scenario, in the band under scrutiny. This is throughout the process of spectrum mobility for any of the discovered bands and the conversion of the information gained by the node into knowledge bases, for learning purposes using the derived reward values. The estimation of the reward function, allows the scaling of actions not to be limited to the fixed or default values that the node has before handoff.

3.6.3 Key metrics for spectrum decisions

The following metrics are useful for the assessment of the scheme, when in a simulation-based environment for the evaluation purposes. They may be useful in an abstracted form or taken as they are to show proof of concept.

The hypothesis value h is going to give the network value function as a reliability factor.

The probability $p(u)$ is a network’s blocking probability estimate.

The action probability is the value used by the node during that instance for the definition of a selected channel.

The channel arrival rates for service estimation based on the idle channels identified.

3.7 Chapter discussion

This chapter presents various elements that define how the scheme will optimise the decision-making during a channel selection process. The majority of the elements are an abstract of a type of CR phenomena that promote the use of learning-based operational methods. These
include the capability to observe and understand data, the reasoning, and control during computation and the definition of intent when it has to select a channel.

The proposed scheme should manage a balance between the effecting of handoff procedures vs. the SU learning on a long-term basis. Based on the environment’s conditions, the data observed from the PU becomes the input data when the node needs to make a decision during service or when it has to perform deal with a handoff case. This is with emphasis on how the node maintains the knowledge gained from each service scenario in the PU environment with each decision process, to show how it going to optimise the learning of how to effectively manage handoff.

The feedback process is the biggest guarantor of the scheme, as it is going to cater for the management of a reactive handoff segment, particularly based on a proactive approach. To facilitate for this, there is a standard of performance expected when the node progresses through various channel usage patterns. This usage standard comes from how it is going to define the proactive element of the selection process, by assessing how each required value of the action is capable of executing the objective in contrast to any previous level of performance.

When an action completes a service objective successfully, it receives an outcome as a response from the environment and the learning algorithm then prompts for the update of the action used during that session. This segment is to complement the action as a short-term benefit, while maintaining the long-term benefit of learning from the objective function as a means to reduce the effects of handoff.

From the impression projected in annexe A, the decision-making property of the cognitive node should be able to manage all the conditions that can come within any context as the learning evolves. The impartial environment realisations affect the determination of any network’s status should one of these features be not considered or made use of. This is because the sub-processes of the scheme are complementary for the realisation of the full potential of the learning scheme, for a better decision-making process. Adjustments made to the individual elements of the learning scheme concerning the handoff phase, are in the proposed scheme’s background, which is the basis of the next chapter.
Chapter 4

Management of the selection process and of a Cognitive handoff

Introduction

In this chapter, we have a background into the decision process for the spectrum mobility stage, when taken in light of the CR’s point of view. This comes from the learning definition and how to conduct handoff from a control and management perspective, as outlined in the previously. This chapter also elaborates on the integration of the elements outlined in chapter three, during the decision-making process, when a node is in an active service phase. Subsequently, the sections outline the preliminaries defining the node’s exploration phase, for the presentation of a descriptive analysis of the sharing conditions. From the conditions for coexistence, we define the essence of training the node, for the algorithm to understand the features defining the primary user environment and to get a good step size for the best results. The traffic definition and modelling used for evaluation, is for the scheme to provide results for proof of concept purposes. This will come with some assumptions that outline the relevance of certain omissions, during development of the scheme.

4.1 Preliminaries of the proposed Selection scheme

For the proposed scheme’s full functionality, we need to establish how the three elements set as a basis in this work, come together to form a joint model. These elements are the capability of prediction, the learning, and most importantly, the training of the node. When the node is roaming in any PU environment, it does not only observe traffic from the PU but from other SU as well. The channel patterns are not always visible to the node, as they may be hidden, unavailable or in use and thus creating a case where there can be a true form of channel activity vs. that of an underlying one, from the other users. For a success level to be of guarantee, the node needs to be able to distinguish the types of channels awarded to it, as detailed in the following subsections.

4.1.1 The channel composition (Sensing phase)

Initially, the node will employ a sensing operation and an assumption made, is that the node is capable of providing sensing results, which are near-to-perfect in terms of accuracy, to account for the overlooked channels in existence. From this, the channel characterisation is associated with the conditions outlined by the traffic model, in section 2.4.3.1. The information
Management of the selection process and of a Cognitive Handoff

will have the environments data vector made available to the node during the selection instance.

4.1.2 Criteria for Context selection

To prevent a lot of channel switching, the state realisation and selection is going to be through the learning scheme as defined in the previous chapter. When the selection process is ongoing, the node has to assess the visible features as emissions at that point, from the input space X, defining the environment based on the following conditions:

- The node will take each visible network with a fifty percent outlook of utilisation to account for the hidden node condition when looking at the highest number of idle channels.
- The consideration of the utilisation factors is in relation to the average probabilities for the networks (the network activity factors). These should lean towards the distribution patterns as follows:
 - The first choice is a probability that is based on idle channels, P_i
 - The next available choice is based on the activity factors of $P_{b\rightarrow i}$ and $P_{i\rightarrow b}$. Their selection’s condition is in terms of how likely the node is susceptible to more disturbances from the high values of $P_{b\rightarrow i} \rightarrow P_{i\rightarrow b}$. The values of $P_{b\rightarrow i} \rightarrow P_{i\rightarrow b}$ are probability values defining the network as a silent state, with channels that switch and update during service.
- If the state has a value leaning toward a high value of P_b, a busy state, then it can take the observed network’s vector iff there is no other state available.
- There is a high likelihood that the same network with idle channels is a favourite for many nodes; therefore, the need to balance out conditions relied on for channel selection dictates on the ability to control effects from such a context.

The synchronization of parameters with the decision made is the next phase of the selection. From this, the node will try to achieve the end-to-end service delivery within that same epoch. When it attains the desired level of throughput, the node should maintain that level of service, unless if a new state is assumed for utilization. From this, the action selected will be rewarded iff the network absorbs the service on that channel, using the online rewarding system as defined in the previous chapter. Figure 4-1, gives an outline of the scheme’s progression through the
stages of network realisation (during the sensing stages), to the channel selection, as a means of showing the exploitation capability, during handoff. The different sections and their interconnections, outline the relevance of the stages, presenting the necessity of learning through the node’s translation.

Figure 4-1: The schemes outlay, defining the main, and sub processes of the schemes progression

This is a stage where the node identifies the environment under examination. It estimates the variables from the activity of the other users, through prolonged channel realisations and usage.

This is for the node’s training, for the deduction of relevant features as outlined by the bias in the system. This defines a multi-functional dependency for the adoption of a belief in any environment.

This stage is for the exploitation of the available resources in comparison to the level of expectation from the adopted belief by the node during the service provision.
This represents the handoff stage as it occurs while node is already in session, during the delivering of a service. The sub processes eventually lead to the exploitation and decision-making.

This represents an overall decision made per stage the node is involved in, defining the choice as either a channel, the network or the hypothesis space with its boundary values. These stages are important for the verification of the parameters in translation to a variable for the next stage of the selection cycle or of the scheme’s operation, i.e. from the exploration \rightarrow reference from the training features \rightarrow the exploitation of the available resources.

4.1.3 Conditions for channel selection between users

To have the load-balancing approach satisfied when a CR is coexisting with the other users in the network; we are going to have the following rules defining the selection of the channel as the node is roaming in any network. First off, the goal is to keep a reference of a channel’s selection during a reactive handoff case having the highest priority. This adds an advantage in a multi-dimensional network as the node will have multiple disturbances because of the single channel model. The coexistence of both the PU and SU in any network will have both types of radios trying to initiate transmission during certain segments. During such an instance, if any other undetected PU or SU are occupying a channel requested by the node due to sensing inconsistencies, the node will not be disturbing the transmission of both the primary and secondary users but will leave the said channel to go and select another channel. If the desired channel for selection is idle and there is no identified contention with a SU, the node can then start or resume with transmission, whatever the case may be. The guidelines below are for the node to adhere to, as it is going through a channel selection phase:

- If the node selects a channel for transmission, the radio will maintain the same transmission parameters during handoff unless if it has to re-compute parameters for a different band.
- Should there be a conflict between the CR and another SU, the awarding of priority is toward the node experiencing handoff and not the one initiating communication.
- The channel has the following order for service representation, on a priority scale:

 - **handoff** \rightarrow **service initiation** \rightarrow **new arrivals** (when the channel is in the ON state).

 - For the emphasis of fairness in the network adopted, this will apply to the SUs only.

 The primary users are to follow the load-balancing scheme used by the central
Management of the selection process and of a Cognitive Handoff controller of the PU network.

When the selection is ongoing during a handoff phase, the node will make the decision in reference to the identification of the observation and its resulting effect i.e. the impact of the disturbance considering the current state of the occupied network. This can come within the synchronisation stage, from the initial selection and can at times, be a recurring condition (a number of disturbances). In such cases, the node will conduct the channel selection process based on:

- Maintaining an always-changing case during handoff, to avoid the need to have to be predominantly in a queue because of the single channel system. If the network allows for an always-staying case, then the node can try to retain the channel to facilitate for the provision of service through a good utilisation factor.
- While in operation, the node will not allow another SU to interrupt it during service but can still be pre-empted by a PU from a channel in use.
- The CR will make use of the action applicable during that selection moment, as selected by the learning concept.

Should the node be disturbed again from this point onward, it will take the next available context defined to have a better channel composition (the network value function to deduce probability of activity). This new context is utilised when found to be within a usable state (sensed and accumulated state data) and updating the service provision to suit the requirements of the current service provision.

4.2 Training for feature identification

The essence of training the CR is to guarantee an evolution of the scheme, for it to acknowledge the existence of identifiable features from any environment. This is for the reduction of the level of complexity that can accumulate because of the amount of data defined in the input space defining an environment. Most of the time, the PU traffic is in an unpredictable form as viewed by the CR and for this reason, the node needs a model that can account for this condition for the learning to take considerable effect. This analogy defines a case where, if the node ‘knew’ the likely state sequence, we can have a more realistic count of states such that the handoff occurrence is not heavily biased or poorly estimated. From such an
understanding, the scheme ultimately maximizes the short-term goal during that moment of interpreting the unknown state effects causing the disturbances. It will however, maintain the objective of having to fulfil the long-term progression of the learning scheme, which is to pick up the good channels.

The hypothesis space is a part of the pre-processing stage, where the output space defines the evidence for a scheme to make confident decisions. This is key, as some of the variables taken for consideration may be unavailable to the scheme during the selection stage. For the modelling of the traffic patterns, we adopt the use of a Markov model. While the use of a Markov model is a good representation of a stochastic process, it does not assist in the definition of the predictive patterns that define the activity patterns of the other users in any system. From this limitation, the provision for a predictive outcome is therefore, a result from the outline of existing channel activity in the discovered network. The state activity, defines patterns that are an analytical representation of what can happen in an environment, as can be expected by the cognitive node. For this reason, we make use of the HMM, as it allows the node to have a preview of the unpredictable PU patterns, for the node to learn how to manage the stochastic effects of the environment will form the various forms of state activity for coexistence purposes.

A second cause for training is for the verification of parameters that will define better methods for the estimation of the state occupation patterns. This formulates learning rates based on an objective view of the disturbances observed. For the selections to have and maintain a high level of control and accuracy, based on these disturbances, the scheme will comprehend the training from the HMM patterns to align the prediction estimates into a form that it can make use of. To verify the performance of the scheme, the node’s training is as detailed in this section and the verification process is by an emulated random environment, detailed in a subsequent chapter.

4.2.1 Using bias from the HMM

Initially, there are observable states within the environment, as governed by the Markov modelling process that is representing the forms of PU activity. The observable sequences have a probabilistic dependence on the underlying state characterisations as given by the Hidden Markov Model (HMM). Due to the characterisation of the model from inception, (realising context/network awareness), the node will value each state on a probability scale, to cater for a pure chance situation of network states. This is based on the values produced by the Baum-
Welch (BW) Algorithm, that will provide the evolution of the HMM states. From the deduction of the probabilities, we can have the modelling of the HMM produced states and parameters, maximise the probability of observing the next state sequence, O, given by \(P(O|\lambda) \). The training of the node commences when the BW produces a set of parameters to get the re-estimated values for \(\lambda \), which represents the initial distribution, \(\pi \), transition probabilities, P and emission probabilities E, for the next set of states. These re-estimated values for the state distribution patterns will refine the prediction of any future state sequence i.e. the likelihood of a sequence of states occurring for a duration T.

When the BW is operational, we have the state sequence produced by a forward variable, \(\alpha_t \). The forward variable is the probability of observing a partial observation sequence, \(O \), that terminates at time \(t \), as the next probable sequence that is seen by the cognitive node.

The observable states that are in view are as presented in equation (4.1) for a number of steps, \(N \):

\[
\alpha_t(i) = P(o_1, o_2, ..., o_t, q_t = S_t | \lambda), \text{ for } 1 \leq i \leq N \quad (4.1)
\]

Equation (4.1) forms a recursive relationship, given by the Forward algorithm of the BW, seen as:

\[
\alpha_{t+1}(j) = e_j(o_{t+1}) \gamma_t, \quad 1 \leq j \leq N, 1 \leq t \leq T - 1, \quad (4.2)
\]

The value of \(\alpha_t(i) \) is used as a means of lowering the complexity that is associated with the value of \(P(O|\lambda) \) and this is from the estimation of the observation sequence \(O \) as it is progressing toward terminating in a state \(i \), at time \(t \).

The equation (4.3) is the expression of the forward algorithm, defining the value of \(\alpha_{t+1} \) as:

\[
\alpha_{t+1}(j) = e_j(o_{t+1}) \gamma_t, \quad 1 \leq j \leq N, 1 \leq t \leq T - 1, \quad (4.3)
\]

Where the value of \(\gamma_t \) is,

\[
\gamma_t = \sum_{i=1}^{N} \alpha_t(i) p_{ij}, \quad 1 \leq j \leq N, 1 \leq t \leq T - 1. \quad (4.4)
\]

When training is in full swing of the \(\alpha_t(i) \), defined by the initial distribution \(\pi \), can be expressed as follows,

\[
\alpha_t(i) = \pi_i e_i(o_t), \quad 1 \leq i \leq N \quad (4.5)
\]
As we can get to the value of $\alpha_T(i)$, $1 \leq i \leq N$, the probability of getting the emission space Y (given the model parameters in λ) is

$$P(Y|\lambda) = \sum_{i=1}^{N} \alpha_T(i)$$

(4.6)

Each time the model calculates a sequence of states, the node has to estimate the best position it has based on the learning criteria. This will allow the evolution of learning process for the handoff moments as they occur, since the emissions are available instantaneously for the node to gauge how best it can handle the possibility of any possible or future handoff counts.

The crossover of a decision from one stage to another, is with the recognition of the state emissions representing the channels that the other nodes are occupying. To present the concept of the PU activity from the description given by the HMM, the modelling of this section is based on an adaptation given by the authors of [67], where they used the HMM for a sensing based scheme as seen in figure 4-2.

![HMM diagram](image-url)

Figure 4-2: HMM modelling of the state patterns in the network [67].

4.2.1.1 HMM elements for the learning scheme

Following the definition of the HMM in section 2.5.2, we have states X and Y showing the true and hidden state activity. Since the HMM is responsible for the training as well as the introduction of the prediction for the CR’s expectation, we have to nominate the parameters of P, Y and π for the HMM and this is where the bias start to apply, based on how we presume the states to behave. From this, the radio will collect a set of observations of state activity observed
within a period to a maximum of \(N \) observations, based on the observed environment activity. This will allow for the training of the node to predict the most likely sequence of state occupations, from these observed results. The elements defined below for the HMM are:

\[P = \text{an } N \times N \text{ matrix of transition probabilities with the function } p_{ij} = P(x_j|x_i), \text{ to input space } X_{t+1} \]

\[Y = \text{an } M \times N \text{ matrix of observation probabilities where } e_j = P(o_t|x_j), \text{ where } e, \text{ is the observed emitted symbol during instance } t \text{ and } e_t \in Y, \text{ from a channel and this creates the output space, } Y. \]

\[\pi = \text{initial state distribution of the HMM, to express how the HMM will start in state } i. \]

There are choices made by the node to deal with any emitted symbol from any network or state. These are from the set \(A \), which has the possible actions used to define a decision made by the node, based on the Learning Automata algorithm. Subsequently this set calls for the use of \(R \), a rewarding system that defines the selected action’s response to the system. This rewards a channel as conditioned by the learning scheme and the rewarding factor is from the accurate estimation of a decision space that minimises prohibitive conditions for the scheme to complete service. The collection of parameters in the set \((P, Y, A, R, \text{ and } \pi) \) shows the effect of the action system on the HMM, to reveal proof of the existence of a POMDP element of the joint model. The MDP part of the POMDP is the channel selection stage as delivered and developed by the LA algorithm and the Hidden Markov Modelling is thus responsible for the interpretation of the predictive outcome of state selection.

4.2.2 Feature estimation and selection (reasoning based)

For effective results from the training segment, there has to be a good analysis of the environment information available or in use. With the PU occupancy defined as a Markov chain, there are certain rules that apply when a Markov Model is in use, as given below:

1. The **limited horizon assumption**, that the previous state will be the only outcome to effect the observation in the current state.

\[
P(a_t|a_{t-1}, a_{t-2}, a_{t-3} \ldots, a_1) = P(a_t|a_{t-1}) \quad (4.7)
\]

2. The **stationarity process** of a Markov chain, which is of the state not changing before the
CR can deduce how the state emissions being projected by the HMM.

\[P = (a_t|a_{t-1}) = P (a_2|a_1) \]
\[(4.8)\]

Based on these two conditions, the features available at this point are from the series of PU representations and the parameters that are in view are from the following:

- The **transition probability** used by the model for state changes

 - When the values in view give an impression of the network being idle or busy or having silent states, the node can carry the decision to the next epoch; iff the rate of change of activity is still within an idle to busy frame.

- The states will produce a context, with which, the respective emission probabilities and their evaluation is for the **management of the service function**. This leads to a comparison with the variation of the available actions, as a means to initialise their selection as an objective or required channel value.

- The **benchmarking of the ongoing processes** is for the verification of the performance in comparison with the parameters estimated initially or as the training evolves for the learning to evolve based on the rewarded action values.

- The **basic features can be in use as beliefs** from the outcome of the state’s emissions and if the parameters that the node uses are leaning towards the predicted state activity.

- The initial parameters used for the construction of the HMM, are they are sufficient to **introduce the node’s disturbance patterns** to allow for an accurate training and an effective prediction process, for the next selection period.

4.2.3 Observed effects from the Hidden Markov Model

The channel distribution patterns in the network under assessment are analogous to the features defined from the learning of the PU activity. This is because of the need to outline how certain effects come from the variations of node density and states changes over time. To determine a view of the possible effects from the transition of states, a quadrant with four properties, classifying the possible forms of state activity anticipated when a node is in a random environment, is defined. The result is the partitioning of each possibility into various effects that occur as defined below:
Management of the selection process and of a Cognitive Handoff

\[
\begin{bmatrix}
ab & \vdots & q \\
\vdots & \ddots & \vdots \\
i & \vdots & b
\end{bmatrix}
\]

(4.9)

Where the values in the quadrant are representing states with the following effects:

- \(ab\) = a state having channel activity that does not have a huge effect on the ongoing service absorption by the channel in use, meaning they have long idle times.
- \(q\) = a state having a lot of channel activity, which shows a high possibility of disturbance.
- \(i\) = a state that do not change considerably and the CR may wait and resume service on the same channel or another one within the same state.
- \(b\) = a states found in a busy or blocking form, preventing the node to use any other channel.

The definition of these elements, defines the induced features that can been seen as the node is under training. This is with the intuition that some of the state observations, in relation to the emissions, are self-correlated. The self-correlation element means that a trend in a current observation tends to affect the same or a different observation related to the relevant observation or symbol during the same epoch or the next, based on the stationarity condition in section 4.2.2.

4.2.3.1 The transition probabilities

The transition probabilities facilitate the amount of change possible in a state, to outline how the CR can relate to the state conditions for the next channel occupation. This gives a preview of the probabilities that the HMM will use to model changes from any state \(i\) to \(j\).

The value of \(P\) causes a change with the following three attributes \(i, b, u\), as follows:

- \(u\) is any silent channel activity, the ones that are considered to have evolved during service
- \(i\) is when a state is effecting an element of having more idle emissions
- \(b\) is when the state is effecting a predominantly busy outcome

This is how certain emissions are realised, when the node has to satisfy an objective concerning the execution of that handoff phase.
4.2.3.2 The emission probabilities

The varied elements observed in any state are from the emission probability values in the matrix. This shows how the differences found in certain states, will help the node to estimate the level of service a node can accept from these channels. To justify why certain channel symbols are projected, the three questions below help to validate their relevance.

- If a state is fully or partially observable, what is the effect resulting from its availability?
- If a state is busy, what can we deduce from the variation of the channels for future decisions?
- If there is a lot of silent state activity, what can happen when the node is disturbed and wants to assume the occupation of a channel in the same state?

From these questions, the visible symbols should be of a dynamic variance, to determine the cost of the state activity as indicated in chapter three. The node density can make the context accountable for any effects experienced by the node, such that the definition of the objective is around the bounds of the scheme’s operation as an independent decision maker. The translation of the emissions from one state to another reveals the relevance of the utilisation factor, \(\rho \), of the network, showing how the channel states are an additive factor to the number of disturbances. These disturbances are to occur from how the other nodes influence the state of activity patterns and the severity of their occurrence is as gauged from the value of \(\rho \), as seen from the channel states in a multi-state environment.

4.2.3.3 Initial state distribution

The variation of channels in the first state is from the value of this probability. This is distributed as found in the vector \(\pi \), and it defines the state probabilities that the HMM will produce as the first state. In our case, we also assume that the states can be equi-probable, meaning that they each have a likelihood of occurring as the first observed state, as given below:

\[
\pi = (p_{0-u}, p_{0-i}, p_{0-b})
\]

(4.10)

This is going to form the state changes for all three possibilities of network activity and the node should not anticipate that a state activity is available initially, as it can be biased towards being idle \((p_{0-i}) \), busy \((p_{0-b}) \) or having a lot of silent activity \((p_{0-u}) \).

4.2.4 The realisation of the expectation vs maximisation
As we start by generating a set of states to define the occupancy of the PU, the CR has to primarily rely on the initial state values coded for the HMM. This will lead to the initialisation of the actions, for their selection as the learning progresses. Ideally, the best way to learn is through the number of times that a parameter (symbol) is visible in the training set. This will align the learning to distinguish the effectiveness of certain actions as directed by the emissions through a tally of their selection.

To facilitate this from the training, the parameters produced are such that the probability, \(P = (O|\lambda) \), is maximised and can be used to deduce the predicted values of the observation sequence at a state \(t+1 \), after they have been estimated. This is when a node has to reason for a decision, based on the value of the true state vs. the predicted estimate. The derivation of the parameters \(P, Y \) and \(\pi \), is by use of two procedural steps as detailed in section 4.2.1 i.e. the procedure from the BW algorithm. Its full description is in Appendix B, at the end of this document.

4.2.4.1 Prediction for future state emissions

The features identified during the training segment, should allow the node to be able to create better objective functions for the execution of the handoff segment. This is also synonymous with the frequency of alteration in the band’s traffic patterns that are going to be used by the node i.e. the bands or contexts in this case, of interest. This however, is mostly beneficial in an always-staying case, where the node has the freedom to be in that particular band of interest by reverting to the back of another channels queue.

From the training of the CR, the results should give a better visual of the dynamics in each of the contexts. For the node to acquire a sufficient level of evidence, the use of the favourable features is because of the node’s control from the executed cases. For CR to have more control during each objective’s definition, we continue with the assumption that the node takes a state with at least an **outlook of fifty percent of occupancy**, from the other users at any given time. When the prediction is done, we have the observed state presenting an observation sequence with the maximum likelihood of observing of a balance between \(P (O=1|\lambda) \) and \(P (O=0|\lambda) \). The value of \(P (O=1|\lambda) \), is a state emitted with a higher likelihood of states having a busier outcome and \(P (O=0|\lambda) \), being a state emitted with a higher likelihood of idle channels for a set of generated states. To outline the effectiveness of the prediction, an extension is utilised by taking the
Management of the selection process and of a Cognitive Handoff

interpretation of the results in comparison to the realised results. This is to say that if the outcome is:

\[P(O=1|\lambda) \geq P(O=0|\lambda) \], the node adopts \(O_{t+1} \), as a busy state

\[P(O=0|\lambda) \geq P(O=1|\lambda) \], the node adopts \(O_{t+1} \), as a state in idle mode

Basing on the outlook of the fifty percent network activity defined, the outcome is analysed as follows; the balance between the idle and busy states from the sequence predicted, aids in defining the extremum points used for each handoff stage. This promotes a better confidence level upon the realisation of the true activity in a state; iff the objective does not match the required definition of the observed state. The prediction however realised, is conditional to the following rules:

1. \(P \) is the result of an activity estimation and if there is a huge variation of the parameters from those used initially, the node needs to select an action to cater for the deviation.
2. The node will not be calculating a likely state path (how the emissions will differ) as it will use an observation sequence only. This contradicts with the operational capability of the learning scheme to define its own progression and hence, creates an operational imbalance.

The utilisation of the values of \(PP(O|\lambda) \) is in relation to the joint modelling of the scheme. This will have the verification of the prediction of the state activity done by the learning scheme as it is going through the problem formulation stage. The values of probability are in a position to define the impact of both channel emissions as a complete state observation probability i.e. the values of the two key network states (idle and busy) represented. The value of \(P \) becomes an addition to the belief for the current objective created for any of the handoff phases from the instance when the node takes \(P \), for consideration as the predictive status.

4.3 Spectrum decision (evidence of a selected channel)

For a decision to be realised as made by the cognitive node, there is need for some form of evidence that it bases its choice on, for that decision to be valid. The need for the CR to have some guarantee as a form of surety that the disturbances will be minimal means the decision has to show how effective it is. This calls for the deduction of what an ‘effective’ decision is and how it defines the action selection process. A **confidence level** derived from the loss estimation
value, during the policy definition, is the starting point, further creating boundaries that show relativity of evidence to a channel’s strength. For clarity, we are going to call this an estimated objective for a handoff’s action selection. This is from the analogy that if a policy made is not for a particular case, then it has no basis to make a decision within that context, unless the node is sure that there is guaranteed successful service delivery. This analogy is from the use of the inductive bias as noted in the previous chapter and this is to aid in the development of an effective policy during a handoff count.

The channels utilized during the roaming of various environments primarily present the evidence needed to make any form of analysis and henceforth, an informed decision for the current selection. This comes from the outline of the LA algorithm and to solidify the selection of the action during that stage, the prediction probability is utilised as the surety value. From such a derivation, other factors or features available like the rate of service and coexistence effects that can enhance performance, will allow the node to recognize the contexts and have them better managed. This approach (to make a decision) allows for the reduction of the elements that can extend the synchronization process subsequently and affect the handling of the reactive handoff moment. The sections below show how the attributes used in this work are going to quantify the realization of a decision made.

4.3.1 Domain selection and differences observed

Characterization, in the case of a cognitive handoff, is a basic form of presentation (of a network) that will allow for identification of a state’s activity pattern. For the node to manage the differences in the network clusters discovered, it needs to set a benchmark for the level of consistency that should come with the use of each network. To validate this form of benchmarking, there are three parameters considered for the characterisation process:

- What features apart from the global variables (ρ, λ and μ), are available for the node to utilise?
- How is the node maximising each decision moment during a selection segment and is it making use of the realised parameters on account of any future disturbances occurring?
- How many (possible) constants (e.g. the hypothesis), are affected by the decision-making process when selecting a context and will it affect a good outcome for handoff?
- This promotes for their identification, further outlining their relevance during the problem formulation stage in any particular domain by the LA algorithm.

- An estimation of the required service level for the handoff count should lead to a decision made as a means of satisfying the objective in question.

- This reveals how effective the exploration stage (sensing) for any of the networks is for the node to use the channels identified vs. the level of exploitation the node is capable of, as defined by the prediction process.

Given all the considerations above, the level of accuracy realised during the domain estimations should guarantee better reactive handoff processing times, while reducing the need for prolonged sensing as an added advantage to the CR. Figure 4-3 shows the establishment of a predictive outlook on the decision-making, for the future states as the scheme progresses through its operational process. To have a better level of confidence and reduce the reliance of the pre-processed values of a prediction process, the decision is strictly under the management of the learning process. The use of the rewarding system should be able to define and establish a better level of control of each environment-induced effect, within a targeted level of performance.

![Diagram of State Characterization for Perceived Prediction Strategy]

Figure 4-3: The state characterization for the perceived prediction strategy.

4.3.2 Control during domain selection

The element of the environment being volatile, bring various forms of disturbance and puts a lot more pressure on the value iteration process (determination of the network activity function), leading to an incorrectly developed belief of the network or system’s state.
belief of a system is the state of affairs in a context, defined by the output space that the node will use to make decisions, after the exploration stage. In such a system where the state emissions are unpredictable to the cognitive node, the level of control is a significant element defining the nodes capability to make better decisions when needed. To make an affirmation that has considerable weight when negotiating for a channel, the node needs to exercise a balance of its external vs internal factors i.e. resource availability vs. the need for completing the service provision. As a requirement for the protection of the node’s objective during the service provision, the decisions have to work in line with the requirements of the ecosystem (the environment) that it exercises control over. From this outlook, the deduction of the dependent and independent variables available allows the scheme to ascertain how much computation it can induce into the network in question.

- The dependent variables for instance, are those that need further validation for the node to make a decision based on that outcome. An example is during service calls; the availability of more idle channels in the next epoch is determined by the level of utilisation ρ.
 - This outlines how the observations made in relation to the actions appear in an apparent manner to the node. The determination of a network’s worth, from the realised belief, will deduce how the selection scheme is heavily dependent on them.

After the value iteration process, the computation vs. complexity assessment per attribute outlines the needed level of control, based on need (desired channel values). It is from such a stage, during the selection process does the node gauge if the levels of prediction are producing consistent results, as a means to reduce the inconsistencies found in the results. The following relation is a representation of the spectrum decision process for the node to realise an optimal level of control.

\[
\text{OPERATIONAL TREND} \rightarrow \text{BEHAVIOURAL ANALYSIS} \rightarrow \text{BELIEF OF THE SYSTEM} = \text{REALISATION OF CONTROL}
\]
This assessment aids in the realisation of a more accurate belief adoption capability over time, based on the policies deemed suitable at that juncture. This scenario is going to be in effect when there is amongst other conditions, the comparison of the rate of action change to the rate of the policy creation. This leads to how the determination of the belief states has fewer disruptions with the realisation of the best actions per policy.

4.3.3 Learning for domain selection moments

The amount of influence the level of control has on the learning ability to select states is related to the level and rate of adaption to the changes noted i.e. the rewarding scheme. The classification of policies for a better belief, ultimately defines the need to have a slower or faster learning rate and this is dependent on the amount of correct actions chosen per observation. At this stage, during the progression of the node in the different contexts, it is likely that the radio would have managed to formulate the desired levels of prediction needed to select a domain and achieve a successful handoff operation.

As an advantage, the evolution of the loss estimate during the control of the decision-making is a means to plan for the minimisation of the error levels, should incorrect context identification occur. This should be within the bounds of the objective’s manipulation of the data in that context such that, it realistically, minimises the number of context verifications as it selects the next channel during handoff. The minimising of the switching counts between channels is a key condition for satisfying an objective during handoff and the same objective bounds are verified by the outcome of the second disturbance, should it occur. In summary, if there is no notable difference in the rate of change of states when selected, the following lines of equality define the relationship for the learning criterion between the domain mapping and the handoff decision:

\[
\text{Learning + Training} = \text{Expectation vs Maximisation} \\
\text{Training + Performance} = \text{Tracking vs Optimisation}
\]

The analogy that comes with these two statements is from the outlook that; when the node learns initially or as it trains itself to learn, there are varied levels of expectation that will lead to better forms of maximisation of the handoff function. From such a realisation, the node can therefore allow the performance of the selection process to define how best to learn, leading to
optimisation of the long-term goal of controlling handoff.

4.4 The handoff moment (executing handoff)

When disturbed during service, the node is in an active handoff mode to select the variables for use within the related epoch. The scheme’s design is to handle each handoff moment for each particular service instance in three stages and they are as follows:

- The first stage is for the objective formulated to execute the handoff
- The second stage is where, if there is a subsequent disturbance, there is validation of the cause of the prior failure to have a different objective for the second phase formulated.
- The third stage handles any subsequent state effects that produce more disturbances. In such a case then it should have the handoff to a different state if there is an updated utility vector.

These stages together, should manage to effect the service to an absorption phase but if not, the node goes into a validation state and evaluates the model to configure it for effective handling of the future handoff moments.

4.4.1 Variables for handoff execution

The use of learning as a base strategy is a means to reduce the issues with large data sets during service. If we maintain a facilitation of cognitive behaviour (the learning) during each handoff moment, this promotes the management of handoff in many overlay networks. At times, the data definitions becoming sparse, resulting in a greater need for the control of the data acquisition process. This is imperative to reduce the longevity often experienced from the computation process. For the data acquired by the node to have a direct relation to the metrics, the management process needs to be effective when handling the handoff process. The outline below refers to the relevance of the variables listed and these define their use during the management of handoff from the convenience of the learning scheme.

1. The hypothesis definition \mathcal{H}, reduces the stochastic space, to give an estimate as the hypothesis space for the problem formulation. This is obtained from the value of Y, the output vector of the network
2. The hypothesis value h; is the mean derived from the level of utilisation in a network and
Management of the selection process and of a Cognitive Handoff

is a key parameter for the execution of the current handoff policy. This value is going to define a number of distributions, taken as state spaces, for the management of choices made by the node during the reasoning process. The variables come in the form of:

a. The value of P_h is the probability defining an estimated number of disturbances that can or may occur.

b. These disturbances are or should be within the range of l (the lost estimate), for them to have a low error count on the range of H and this is synonymous with how the training stage tries to provide for a more effective feature detection process.

c. The definition of Q provides the range of possible actions based on the values of P_h and l and h, from the procedure outlined in section 3.6.1.
 i. The use of the hypothesis value h, eliminates the need to re-compute estimates for the execution of any subsequent disturbances during the same policy execution.

The consideration of each variable per each stage of assessment is in the following chapter, as a means to outline the relevance of the management capability of the handoff stage. This will reveal how the use of a learning-based approach defines a better performance level for the CR during handoff cases. As the estimates on the data sets promote the definition of the possible reward values, this reveals how the actions are fit for use during the handoff stage. This is because the reduction of active variables and the use of the estimation process benefits the management of the reactive handoff process but may not provide a good range of actions for the completion of the selection process.

4.4.2 The objective satisfaction stage

From the parameter deduction and variable estimations, the node needs to do the following, while in an active handoff mode, for the satisfaction of the ongoing handoff process:

1. Make a comparison of the available channels to the possible action choices, for it to gauge the probability of effective service completion (control management)
2. Look at the remaining transmission probability (estimation of remaining time vs. channel worth)
3. Select an action for service completion, complemented by the reasoning process outlined in section 3.6.2.
4. Moves into a synchronization mode to complete the service process and evaluate the
epoch related issues.

The four parameters used above, will determine the effectiveness of the created objective function (policy) and if the action receives a rewarding response by ensuring the absorption of the service.

4.4.2.1 The channel-action definition

The definition of state observations comes in three categories, a defined in three activity options of either having the network at a **silent**, **idle** or a **busy** level of utilisation. This subsection details the evaluation of the actions available for section, based on the composition of the observed channels and the usable variables during that handoff instance. When validating the occurrence of a disturbance, together with the channel emissions realised during the handoff instance, the node has to identify how much of an impact the disturbance has on the remaining amount of service. If the channel failure is attributed to the hidden node condition, then the scheme would have been poorly estimated the network conditions, further affecting the decisions that can be made by the node. The action selected by the node for the fulfilment of the objective during the handoff execution, should reveal a level of effectiveness towards the execution of bounds that control the possibility of any more disturbance.

The reason of considering a state space (network) that has a variation of more idle channels is due to the evidence from the network activity in comparison with the threshold (that it managed to acquire from the sensing) it needs. If subsequent effects force the node to migrate to a different channel, the node can move to another channel within the same band if the NVF is moderately low. This is when the node is trying to select a channel; the adoption of this consideration is from the definition of the network probability values as follows:

\[
\text{Action subset } A_{(n)} = \begin{cases}
P_{0\rightarrow i} & \text{action reshuffle stage} \\
P_{h(i)} & \text{min prob for action selection}
\end{cases}
\]

The action subset defined within the bounds of \(Q \) is derivative of the action that is available for selection at that instance, \(n \). The mean in use in relation to the hypothesis-based value \(P_h \), is a basis for estimation of the action needed for the related channel value. The value selected has to be within the bounds of the objective and strictly above this mean value delivered by the output space. If the mean is within the bounds of \(P_{0\rightarrow i} \) i.e. lower than the value of \(P_h \), then the actions
Management of the selection process and of a Cognitive Handoff

are, in comparison to the objective’s minimum estimation, reshuffled to have the rated in accordance to the objective. From an active reshuffle, the desired action has to be the highest ranked action to satisfy the handoff segment. This is in the case where:

1. The node is in a subsequent disturbance phase and needs a channel to complete transmission of the ongoing service session.
 - This is a case having the selection process derived from the remaining service probability, after the node has been pre-empted. The value of the channel can be within the range of probability below the defined hypothesis, while the node was selecting the channel used for initialising the transmission segment.

2. The node has a service requirement that does not need a highly ranked action.
 - In this case, we have the node requiring a channel that does not relate to a channel offering longevity in service time. This will have the selection process identifying the action that suits the channel needed during that selection instant.

3. That the action desired should be below the value of the mean but with the range of the loss estimate.
 - In this instance, we have the network having a very low value defining P_{h}, which makes the selection fall within the bounds of $P_{0→i}$.

Upon assessment, the satisfaction of any subsequent stages will allow the node to reward the selection of the action utilised during that handoff stage. If there are subsequent disturbances or effects noted from this stage onward, the derivation of a policy is in accordance with the following:

- The tally of the switching occurrence, how many disturbances has the node gone through.

- The number of actions in the system, are they still within a usable ranges?

- The range of the objective function, if it is within an estimated duration of the channel transfer mechanism needed for service completion.

As the notable emissions vary per every segment of handoff, a huge contributing factor to the weighting of the new context’s selection is the probability of any preceding state’s action. To facilitate for any difficulty that comes with redundant data, there is need for the node to constantly lookout for the variables that are efficient within each state change. This is where, if there is anything prompting change to network activity, the radio should follow an evaluation of
the context selected to keep the operation levels optimal. If not, it would render the session’s outcome with a regret because of the instantaneous conditions adding weight to the service provision. Within such a segment, the training results are imperative as they enhance the feature optimisation and the node needs to use more data semantics for the value iteration. This will gauge the need vs. the relevance of the estimations, to create a better policy for the handoff criterion. Figure 4-4 shows a flowchart giving an outline of the handoff process as it goes through each service process.
Figure 4-4: A flowchart showing the execution of handoff in an overlay network.
4.5 Chapter summary

This chapter defines the structure of the schemes background processes. The definition of these processes is with the emphasis of how the underlying channel state emissions, contribute to the realised network effects. It also puts forward, the measures associated with the evaluation of the handoff segment and its capability to use the two suggested models for the optimization of a cognitive handoff.

The implementation of the procedure is primarily based on how the two structures (the HMM and the SELA), will have control over the schemes performance. Firstly, this is by having the Baum Welch algorithm train the node using an underlying HMM in the POMDP model for the training phase. Subsequently, the reinforcement learning is because of the Learning Automata algorithm and it achieves better levels of control of the learning rate as well as the handoff capability of the model.

From the presented outline, the basis for the proof of concept and the verification of the metrics used for the initialising the learning stage, will determine the robustness of the selection scheme in an event related scenario. This leads to the next chapter where we present the simulation criteria and the facilitation for the learning approach. The structure of the scheme defined, is to outline how the selection process obtains results, based on the learning criteria and this is a means used to evaluate the proposed framework.
Chapter 5

Effectiveness of a learning scheme for managing handoff
Effectiveness of a learning scheme for managing handoff

Introduction

As a basic outline of the scheme’s sub processes, the sub sections in chapter 4 give some background to the selection approach, for the benefit of the handoff process. Each available variable during a selection segment gives premise to the derivation of an operational level for the CR, when facilitating for a channel switch over. For the proposed framework to show an effective rate of learning, this chapter details the implementation procedure used to show proof of concept.

The starting point is how the node makes a discovery of the channel activity in the environment and this is for the definition of the possible networks for selection. This leads to the derivation of PU channel usage levels, for each period the node is in translation. Involved in the simulation process is the verification of a level of efficiency that the scheme can reach, by subjecting it to scenarios that extend some of the node’s cognitive capabilities to any environment considered for coexistence. This is for the scheme to have a good step size, as the operational levels to produce optimal results come from how much it learns to manage a cognitive handoff.

5.1 Framework definition

An ideal framework for evaluation purposes has to have definitive structures for the extraction of information. This should allow the scheme to project a level of operation that is in line with the requirements of how it should be performing, based on the design philosophy. Overall, the key condition defining performance comes from how it will exhibit the capabilities of prediction, learning, and training, outlining the effectiveness of the scheme. This is by accounting for the prediction process from recognition of the training phase, the realisation of nominal parameters for state estimations and the learning scheme’s level of performance from the node’s point of view.

5.1.1 Deliverables from the framework

The simulation environment should satisfy the following:

- a management capability of the emulated handoff activities, so that the results can allow for tracing of the individual stages of its execution
- an analogous approach to event modelling so that the node can identify the parameters
Effectiveness of a learning scheme for managing handoff

needed for use during every test case
- the definition of a proactive stance from the capabilities of a cognitive node, to define the effectiveness of the proactive-ness in a reactive handoff scenario
- allowing for the variation of channel thresholds, for the representation of the stochastic nature of a radio environment which leading to the definition of an always-changing channel scene

5.1.1.1 Framework requirements

To fulfil the objectives in question, the evaluation framework should be able to satisfy the following conditions during the operation of the scheme:

1. The existence of a heterogeneous (overlay) architecture to define the spectrum-pooling concept as a model, which promotes a load balancing approach in response to the network’s needs as a form of priority within the structure of the sharing conditions.
2. The secondary users can be pre-empted from the current channel they are occupying when a PU arrives at any point.
3. The provision of a suitable channel definition (in a format that allows for characterization) from the observed states as required by the objectives.
4. The service scheduling should be within the requirements of the node while requesting channel access.
5. To allow for the derivation of the optimal performance parameters that will be agnostic of the equipment it is running on
6. Most importantly, to ensure that it meets the learning scheme’s design objectives.

5.1.1.2 Limitations of the framework

A software based simulation with a high mathematical capability has been adopted because of the nature of the scheme and this is to rate the level of computation needed per service phase. This form of the simulating promotes the verification of the scheme’s scalability and leads to a direct estimation of performance results, based on the defined parameters. The scheme’s performance from the verification of these values is strictly in an event driven scenario. The major disadvantage from such a verification process is that the scheme becomes theoretical and does not define how unbiased the trend becomes. This comes from the parameters observed for the scheme’s evaluation. Hardware based testing can be done but due to cost based
Effectiveness of a learning scheme for managing handoff

limitations, it would be best to later adapt to such a platform when a precise scheme has been
developed.

5.2 Implementation procedure

For the scheme to provide a detailed account of its capability and performance, the
simulation is in three stages and this is synonymous with the adopted design. These stages
define the relevance of the proposed solution in the overlay approach, where a node is set to
roam primarily in a mode that allows it to use its own decision-making facilities (a decentralised
approach). If the scheme’s modelling is effective and aligns the results towards the reliance of a
learning approach, this shows how learning is a good basis for managing a cognitive handoff.
The optimisation of a channel selection process through the decision management is an angle
taken for the satisfaction of the handoff process. All the stages have the results deduced from the
use of a discrete event simulator, MATLAB, and its use is comes from the satisfaction of the
conditions specified in section 5.1, to guarantee the accuracy of the modelling stage.

The general operation of each defined overlay is as follows: a random channel generator
runs to provide a set of sixty channels, with each set consisting of the idle, busy, or silent state
emissions. The generation of these states during each run is for every sensing segment and can
have the channel visibility in an ON or OFF mode. The silent states represent channels that the
scheme overlooks, as they are either hidden, unavailable or can be due to sensing
inconsistencies, so that the node understands the stochastic nature of the radio environment. The
definition of the three stages is in the structure of the implementation procedure, with emphasis
to the relevance of the element under results.

5.2.1 Exploration stage (effective sensing capability for metric definition)

This is the initial stage where the node is in an overlay, to gauge the level of network
activity as a starting point. The aim of this process is for the node to have an overview of the
environment, while obtaining a benefit of exploring efficiently for the deduction of several cases,
as benchmarks, for use during the subsequent stages of service provision e.g. any determination
of a channel’s characteristics. The goal from this stage is to deduce how the node can:

1. Reduce the dependence on sensing by teaching itself patterns for prediction purposes
2. Allow the realisation of bad environments, which outline restrictive operational metrics so
that the node can be resilient to some of those effects when provisioning for service.

3. Provide a form of confidence during the generalisation of the state data so that it can learn how to deal with redundant data structures.

4. Have a meta-generalisation capability that can assist in the reduction of the over fitting of data being observed.
 - This is such that, during the creation of state spaces, the node does not resort to a case of passiveness towards the mapping of the environment for the definition of metrics.

5. Assess the environment such that, the form of network activity allows for an easier distinction of any features as they are defined by the use of the HMM, during training.
 - This leads to the creation of a comparison platform, allowing us to deduce if the node can comprehend the differences in the environment activity patterns.

5.2.1.1 The data mining process (learning the value of context variations)

As the node has to determine how contextualisation works, this comes from a rendered view of the environment, as defined, during the first stage of the simulation. The data gathered is to deduce the following during each run:

- The probability based activity patterns that the node will take note of during this segment, are a definition of the level of correlation needed for the benefit of the learning scheme. The probabilities can be an abstraction from another metric or from a current formulation of the network e.g. a direct measurement. When deduced, the CR takes the probability values as:

 1. Distinct network values as it partitions the environment from the channels in view
 2. Mean values of the number of idle channels verified to be available for selection
 3. The threshold value as given by the network, based on the network’s utilisation factor, as a metric taken for activity representation, when found to be in a desirable state.
 4. The minimum threshold for transmission that the network gives when the node selects a channel from the network it is abstracting the information.
 5. Overall, the arrival rate of other nodes on the network, as a means to assess the level
of busyness in the network during the next is during that instant.

During the progression of the data mining stage, the node should be able to deal with some conditions that come from each network selection process. The active state space when extended to relatable network cases, can define a means to assess the CR’s capability to reuse network data in any future segments.

5.2.2 The use of bias for training

While the node is going through the data mining stage, the determination of network usage levels is going to define how the node has captured enough of the environment’s patterns. This is useful during the meta-generalisation process of network data for reactive segments. Before the node is given free reign over its choices, this stage outlines how the learning of the features related to handoff occurs for any decision moments. The data obtained during the exploration stage, together with the recognition of the bias will have the node in a better position to identify how the defined policies will assist in the management of the decision-making process.

5.2.2.1 The features estimation

From all the data gathered, we take the network identity data from the exploration stage and import it to an HMM generator in MATLAB. This is so that the probabilities in use for effecting the training allow for verification of actual stochastic network activity perceived to be affecting the node. The process has the training realised as follows:

1. MATLAB will define an HMM with a sequence of hundred states by making use of the built-in function `hmmgenerate`. This data evolves from the initial state distribution of the HMM, \(\lambda \), which is estimated from the data mining trends.
 a. The data sets produced, come as \((3\times3)\) matrices, representing various spectrum spaces.
 i. The data in the matrices will define the values of the idle, busy and silent states
 ii. The variation of the visible sets, is for the definition of direct channel structures given by the exploratory stage (data mining), with specific band definitions (clustered channel characteristics) to have a view of the overlay
 iii. The network structures from the collation of the bands is based on the other
users data to give a **network use-case** scenario

b. The state space in view has the following data deduced after the generation process:
 i. An output state space where the network partition has the output space, $Y(i)$
 ii. The NVF as a mean measure of the idleness in network activity
 iii. The level of service as a utilisation probability value ρ, in each network
 iv. The hypothesis H, given by the lowest and highest channel values observed.

2. After the state generation stage, the matrices produced go to the next stage, which is the actual feature deduction. The deduced HMM data is used as follows:
 a. MATLAB provides the probability values of the state spaces and emitted channel values. These values are used for the derive:
 i. The emitted state values that are going to define the reliability of the channels, lead to the selection stage in the decision space from their probability levels.
 ii. A belief of the system (network in view), for the characterisation of the environment as a means to prevent the possibility of handoff
 iii. The estimation of a hypothesis value, for the deduction of a resilience level that becomes useful in contributing to a satisfactory action selection
 iv. The estimation of a loss function from the differences noted in the probability estimates during the computation of a decision space
 v. The deduction of the actions that apply to the same or related network data
 b. When the HMM decodes the network output, the node will receive training on how to characterise the form future activity in the adopted state, as a form of prediction. The training commences when we use the `hmmdecode` command to produce posterior probabilities for the observed states, by having the HMM re-compute elements of λ, for each matrix. This will create new output state spaces that will have the node have:
 i. Each new matrix produced, allows for a comparative definition of state changes, where the node can translate this into a handoff prevention measure
 ii. The deduced values showing how the bias being induced in the system is providing enough cause for learning the differences in channel estimates
 iii. To gauge how the node is responding to the values in the matrices and if the acceptance of the belief is assisting in the derivation of better action estimates
iv. The node comprehending the state data accurately for predictive decisions
v. If there is a huge difference noted, the deviation should allow for the deduction of the error margin so that the node can have better loss estimation capabilities.

3. From the prediction feature, we introduce the handoff facilitation by allowing the system to deliver a pre-emptive operation, for the purpose of handoff. After a trial run of making the node understand how prediction works, we define the handoff stage in two steps:
 a. The action initialisation process; this is imperative as at this point, the learning scheme has not been used highlighting how the node needs to be aware of its selection choices before it understands the handoff concept during service provisioning.
 i. The action set, has each action valued at 0.35, 0.45, 0.55, 0.65 and 0.75.
 ii. The conditions for the selection of an action as stated in section 4.4.2.1.
 iii. Allow for action reshuffling if some of the actions keep falling out of the selection boundary i.e. the probability value of the network is high and the action value is not sufficient for the action to initialise.
 iv. Ensure that all channels are within the usable probabilities as defined by \mathcal{H}.
 b. The next stage is to induce handoff effects in the system so that the node can be pre-empted and facilitate the handoff stage. This will define the performance metrics needed to show the effectiveness of the learning scheme, as at this stage the node has not realised the benefit of the learning scheme. To effect this, we make use of:
 i. An increased rate of state change such that the known state activity is altered and induces the occurrence of a forced channel dismissal
 ii. The realisation of the difference in state change to initiate the decision process
 iii. The selection of an action for the facilitation of the handoff and if it does not satisfy the created policy, the node should take note of the activity in the state.
 iv. The session conclusion is by allowing for service absorption without the constant need to migrate between channels in the process.

This stage concludes the training and leads to the actual assessment of the learning scheme.

5.2.3 The learning stage (exploitation and reasoning capability)
To show the effectiveness of the scheme, no parameters are going to be set for the node. It is going to make its selection choices based on the value of the state activity and the use of the reasoning based learning approach to control or manage the handoff process. The use of such a stance, allows the node to:

- Be self-reliant in its decision making as a protective measure during handoff counts
- Control adverse effects without the need for assurance from a central controller
- Define operation strategies that enhance the learning cause, whether it is during handoff or not a handoff segment.
- Outline the cases that show the exploitation of network data and how it can balance the cases for better state identification strategies

5.3 Evaluation of the scheme

For us to gauge the effectiveness of the design philosophy, we are going to separate the sections as they are presented in this dissertation. This gives a view of this section having enough weight in contributing to the learning cause. The two reasons below, define this analogy:

1. The joint modelling of the bias based operation, together with the reinforcement learning has each attribute producing strengths at different times of the schemes operation.
 - This shows how the reasoning enhances the resulting choice by binding the selected parameters when one element of the scheme proposed becomes redundant.
2. The implementation of the handoff sessions in the evaluation stage is without the use of the use of bias as a means for the node to learn independently, based on the training process.
 - This is by using the exploration and training stages, where we are outlining the deduction of all the relevant features for self-management purposes.

In summary, the correlation to the training process has each section assessed individually. This is for us to gauge how each attribute in each selection stage allows the node to identify the key features that are necessary for the learning cause to be realised. It is also important to note that the epochs on each figure represent the instance a channel’s selection from that particular network.

5.3.1 The relevance of efficient exploring (a case of data mining)
In this section, the node has to realise how spectrum occupancy works when participating in any sharing scheme. The definition of a node’s level of operational capability is such that we can assess the value of its random network usage patterns to those of the learning based selection stages. In this stage, the node is in view of the environment and has to present an efficient characterisation of the network activity for its own benefit, based on a random selection process.

The data in figure 5-1 reveals a comparison of the selected channels using the network A’s activity levels. This comes from the opposing values during each selection epoch, as the network provided values that corresponded to the level of node density at a time. The difference noted during epoch 4-6 shows that the random estimations have some influence (as a form of bias) because of the service levels in the network. This then has the node receiving channel values related to the network’s utilisation probability, based on the priority levels awarded to the existing users available in the network i.e. the channel value reduces because of the load balancing process.

Figure 5-1: Channel values from the use of network A

The second network, as represented by figure 5-2, presents a good case of random state of activity. The estimation of traffic patterns in the network comes from the networks level of activity and the channel selection in each epoch is because of what the network could deliver. In addition, the network balanced the channel values for the node as it progressed through its selection moments (epochs) to reduce the service imbalance that comes with each domain. It
also works in the favour of the node in that, the expectation of a good channel is not always a
 guarantee, when it needs to have service provisioned, as the service levels can change despite the
 level of use in the network.

![Figure 5-2: Channel values from the use of network B](image1)

Network three however, shows a very askew method of service provisioning. This is a
conditional form of limitation based on the trail of channel offerings, despite the lowering of
values of the activity patterns as it moved in the network. This is also a good case of
unpredictable network activity as when the history aspect of decision-making comes into

![Figure 5-3: Channel values from the use network C](image2)
consideration; the node will have cases as an example of how unreliable the network can be. To cement this view, the network shows that the next epoch shown could have had a low value of activity deduced but still provides a poor channel value. This would either delay the node in fulfilling the service provision or reveal a huge error value in the prediction of the possibility of disturbance in the next epoch.

![Figure 5-4: The comparison of network activity in view of a node’s random channel selections](image)

Overall, the deduction from the data mining stage is that the scheme captured the activity patterns and this evolved to the selection of a state as shown in figure 5-4. It did come with different forms of limitations but these effects are a necessity for the derivation of relevant features that differentiate the learning based selection from the random forms of selection. In conclusion, the following traits from the exploration of the environment observed during the simulation run:

- There is an environment partitioning within each selection segment and as the usage levels are varying, this results in the node assessing its intention vs. what the network delivered.
- The scheme received channel usage levels between a moderate to a high range of values, outlining a form of a greedy approach during certain epochs.
- The node gives each network weight and the weighing outcome may not correspond to the usage outcome, showing the relevance of resilience to the state effects experienced.

Based on expectation, network B has a better reliability outlook due to a stable operational trend.

5.3.2 *The essence of training*
The results from this section, allow for the determination of how successful the training is, using the biasing method. Again, this form of biasing is a means to make the scheme aware of the varying nature of the instantaneous conditions. This promotes a level of reasoning that should happen during each epoch when a node has to select a channel. To assess the selection’s outline during training, the HMM values are being assessed based on probability estimates given to the scheme as the network’s utilisation level estimates.

![Graph](image)

Figure 5-5: Channel selections based on the training scheme for network A

Figure 5-5 shows the channel values used as by the HMM, for the node to select a channel in network one. As this stage is also responsible for the action initialisation, the action estimates used were made available based on the learning algorithm’s ability to comprehend the state activity. To initialise the use of the LA algorithm, the node had to have a state model to relate to, as it was only receiving probability values of state activity, the NAF, to base the selection on. This was the first feature identified by the node for the recognition of state patterns. The trend in the figure also shows how the selection was within the needs of the node as a means to relate to the sharing scheme’s conditions, as it maintains a load balancing approach. This trend controls the development of a high expectation during selection as it has limited information. From such a selection limitation, the high expectation becomes a basis for the reasoning method with which the scheme will try to maximise the option of losing service vs. the selection of a high channel value.

In figure 5-6, the selection was rather distributed and mostly along the use of how the node
was anticipating the distribution to be oriented. To start off, we observe the selection of a channel in each epoch with a moderate level and as the value within the network activity dropped, the selection trend followed suit. To justify the selection of the relatively high actions, we consider how the HMM evolved the network activity patterns of the exploration stage. As the random activity developed, the decoding of usage levels follows a zigzag pattern, outlining a dependence on the information found in the decision state space, when it needs service. This shows how efficient network characterisation provides a decision space estimation, allowing the scheme to make any defined action choice during the selection phase regardless of the limiting conditions.

![Graph showing channel selection based on the training scheme for network B](image)

Figure 5-6: Channel selection based on the training scheme for network B
Effectiveness of a learning scheme for managing handoff

Figure 5-7: Channel selection based on the training scheme for network C

For the third network, the data projected by the HMM shows that the BW algorithm kept generalising the state spaces and the format can be correlated to the way the node viewed it in the exploration stage. The activity is however different to the manner in which the actions were used in this context because the node had a make a more elaborate choice to reveal its intentions, based on the received value from the HMM. In this network, we see that the verification of state changes was realised through the differences in patterns observed, as a means to develop a belief for that current segment of service. The scheme was however, thrown off as the activity followed a decreasing trend and the node only made better estimations after regretful choices. This is a useful feature showing that the prediction capability is a useful factor to assist with the selection process.

This stage in summary, as shown in figure 5-8, shows that the node manipulated the channel selection based on the HMM provisioned values, after an abstraction of the exploration data semantics. This is evident from some of the reduced channel values as compared to the exploration stage. In comparison, network A had a reduced level of activity and as the simulations continued, the values adjusted in line with each selection. The BW algorithm created a trend that needed the node to adjust its parameters for operation, from the high channel values to those that were within a reasonable maximization level. This is to say it deviates from a greedy type approach and made use of channel levels that it could manipulate, based on the reasoning criteria. The reception of the data between network A and B gives a better
approximation of how the HMM translated data from the exploration stage and further defines the features of a stochastic environment.

Figure 5-8: The comparison of network activity during service provisioning from a HMM

5.3.3 The definition of exploitation (the learning based selection process)

As the scheme is running in a self-sufficient mode, which is the first requirement of the sharing model adopted in this work. It has to show a selection trend that relates to the conditions of the sharing scheme and how the partitioning is provisioning for the required service. A key condition that was set out for each network is that the node always has a view of each network with at least a fifty percent usage level. This limits it to a few channels available in the network as a means to enhance the management capability of the service provisioning with limited resources. The outline of the figures is a comparison of the activity in the networks from the training and the exploitation stages. Hypothesis T represents the training, and the exploitation stage values are as given by the Hypothesis L to show the results from the learning scheme.

From the trend visible in figure 5-9, the node manages to capture the low traffic activity of the network from the activity factors. The evidence from the little to moderate network activity in the state shows that the node did not have to resort to the highest action values for the selection of a channel, as the deduced activity allowed for flexible channel selections. This is also guaranteeing the availability of a channel when the node is pre-empted from the current occupation, as the network has an average to little rate of utilisation. Although low traffic values
Effectiveness of a learning scheme for managing handoff can be viable during selection, they also reveal how the network can be unreliable. This is due to the number of silent states that may be within the sensed segment, increasing the chance of error during the decision space estimations.

![Graph showing comparison of deduced hypothesis values for network A](image)

Figure 5-9: A comparison of the deduced hypothesis values for network A

Figure 5-10 gives a correlation of the activity trend from the training segment, to those of the learning based selection stages. The use of bias reveals how the scheme resorted to reasoning for a decision from the randomness in the context. From the visible outline, each time network B was selected the node translated the limited environment information to its benefit, basing on the history of channel selection within the same domain. This is a good indication of how efficient exploration allows for the determination of the characteristics in the network. This becomes a means to optimise the selection from the data available, showing the relevance of the problem formulation stage. The overall definition of the selection cases is a means to evolve the dynamic operation and characteristics of the scheme.
Network C shows a different view of the exploitation concept. In comparison with the comprehension of the data from the training stage, there is evidence of a neutral approach in this network to allow for the selection of the hypothesis value. This is also in line with the history patterns of selection but the scheme based its decisions on the values the network provided during that stage of selection. Ideally, the training in all cases is supposed to be a means to trace how the features incorporated in the learning, enhance the selection or making of decisions. This allows for verification of past decisions made as time progresses for the node because the
comparison with the history patterns from both networks. Another issue is how the scheme is closely dependent on the value of the activity within the network during each epoch to base its decisions on. As such, this limits the decisions to the threshold obtained but if any other conditions apply in the decision space, the value of an action opted for solidifies the selection of a channel.

To affirm the trend in network C, the learning model is showing an operational bias as the selection of a network comes from the features found in the state activity. Overall, the hypothesis selection stage is an effective one in comparison with some of the cases during training. The node dealt with the conditions that came with little the data from the selection of a state, in account of the evidence laid out for a spectrum decision phase. It maps the domain based on its capability to provide service absorption in a directed manner, from the value of the hypothesis margin. This is outline is defined by the data in figure 5-12, from the performance levels in all three networks.

![Figure 5-12: The comparison of network activity when making use of the learning scheme](image)

The HMM is the biggest differentiator in the levels of activity and it created a platform for the scheme to become aware of the constraints in any network. This makes the scheme more robust to the environment’s effects and this is a key feature from the design. As this was in a decentralized sharing scheme, the node had to show that it could negotiate for a better service, when given a good selection criterion. The relevance of the learning element is in the section below.
5.3.3.1 Management capability from reasoning

This section is the determinant of how the scheme performed from the outline of the design philosophy, which is to manage the effects from traffic conditions while it is trying to access service from a network. The goal is to extend the decision space estimation to a point where there is a reduction of the switching counts associated with the handoff phase. To track the segments effectively, we will observe the attributes that contribute to a good management level of service from any network. This will be from the sequence of events; from receiving network data and translating it into the desired parameters that it needs for a selection case during any epoch.

5.3.3.1.1 Channels selected during translation

In this section, the selection is in line with the management of choices when a node has the hypothesis value estimated. The value has to be in relation to the estimate of the presumed activity that may occur in the next epoch within the same network as defined in section 4.3.2. To allow for the explicit definition of performance, the evaluation relies on the derivation of an action and the performance we observe when the limitation of handoff counts occur during service.

![Graph showing probability values over epoch values](image)

Figure 5-13: Channel selection in Network A, during a service phase

The action selection in network A is synonymous with pattern changes and their relation to the next selection epoch. This shows how an element of prediction came into account as each
subsequent selection epoch is accounted for, when the node is reasoning for a selection segment. This trend further promotes the use of the predictive capability when the objective made a selection choice. The scheme only lowered its selection value after realising the evidence of reduced evidence in state activity that will not affect it in the next epoch as an adaption capability.

![Figure 5-14: Channel selection in Network B, during a service phase](image)

In network B, the selection is proving to be dependent on the values deduced during the selection instant. This is a classic case where it has to reason for the selection of a channel, based on the gravity of the number of instantaneous conditions that were available during the decision making process. The prediction capability is however, often validated as seen by the trend in figure 5-14, when it expects the activity to change, it then may drop in value, having the node use the same hypothesis bounds or selecting an action within the same or a lower range.
The data from the usage patterns of network C, shows that the prediction capability is again, a useful feature for the management of a network. This is based on the Markovian principle (section 4.3.2), that the node is basing its decisions on, as a means to control a lot of parameter change during handoff. The usage values also reveal that the history element may give a misleading impression, making the node continue with a high selection trend. The conditions around channel usage, eventually force it to change its selection strategy when it deviates from the policy in use as seen during the third and eight selection epochs.

5.3.3.1.2 Robustness from the contingencies

The level of precision in the scheme comes from the amount of robustness the node could achieve in the network. This is a good case of how the use of expectation and maximisation when making decisions, allows the node to realise how the evolution of the learning is progressing. This is due to the action usage and characterisation of the network activity during channel selection. There are cases where the node needs to have better assessment techniques and this is by use of the idleness of the channel values available and the blocking probabilities of a context realised.

Figure 5-15: Channel selection in Network C, during a service phase

![Graph showing probability value vs. epoch number with two lines: hypothesis and action.](image-url)
The capability of a node to produce results from the estimate of a network’s blocking probability shows the scheme’s reliance on a proactive approach. Figure 5-16, shows the second network ‘deemed’ reliable because of the low value of \(p(u) \). The reason for estimating the value of \(p(u) \) reveals the adjustment needed to any unexpected conditions that erupt during service. The lower the value of \(p(u) \), the more a node is convinced that there are less busy and silent states, as the value of service has a distribution from a load-balancing basis. From this, the network is seen as having a capability of blocking the node or worse off, because of many constraints, will limit the network’s service provisioning capability, due to the unknown number of users in the network.

Figure 5-16: The blocking probability values for network selection during service

Figure 5-17: The variation of idleness to show context desirability.
The benefit from making use of the state of idleness in a network is from the value of the network’s **stationarity approach**. This may be a contradiction as the other users desiring the same network for the next epoch arrive, thus misleading the node when it accept use of the network. As a strategy, it will allow for the prevention of the under valuing and over estimation of certain parameters, which ultimately can reduce the model to converge to a maxima a lot sooner than it should be. This deduction is shown by a view of the randomness as exhibit by figure 5-17. This enhances the robustness from the missing features that the scheme expects, to allow for the verification of all the variables that are missing during that estimation segment. This way the node will better prepare for the selection of a network under the notion of risk mitigation, as a means to show a form of robustness from the missing information needed for better parameter estimation.

To sum up the capability of the scheme, the graph below shows an impression of handoff control based on the management capability as used during the learning stage. This allowed the node to be pre-empted by a PU and still facilitate a channel switch to effect service completion, based on the limited network data during certain instances. The system did perform well despite a few lags and oversights during selection. This shows that the node had received sufficient training and allowed for expansion of the data into its own planning as shown by the results. The structure of the two models performance wise needed extensive training to get a good step size for the assessment purposes. This is imperative as the LA operates better after at least 200 hundred iterations and gives better reward estimates, bettering the schemes performance for handoff.
5.3.4 The effect of prediction on learning

When the node goes through the training stage for the actions to initialize, there is a huge contrast of any activity patterns with those of stationary context (network) distributions. This is during the exploration stage and it comes in comparison to those that come with a biased state occupancy. The scheme reveals the need to take more than a dynamic approach to capture the handoff occurrence from the parameters selection as well as the declaration of the independent and non-independent variables. This affirms a form of benchmarking of that particular state’s activities with which when used, defines better strategies for the objective from the performance results.

As such, a learning approach is only capable of capturing the independent behaviour of the channels when there is the use of a stationary approach to view the activity in the environment. An analysis of the stationary distributions from the two cases, the HMM provisioning, and the stationary context distributions (exploration) reveals the notable differences in state usage patterns. The use of reasoning for the understanding of such patterns by the LA is such that, when the contexts are abstracted from the environment, it enables for their independent management. Such an element from the node, will allow for a better form of the capturing of the network activity, due to the outline of the contexts as well as the occupation.
density within the environment system. From this realisation, an adoption of a good epoch optimization (predictive) approach each time is because of the node scrutinizing each network’s activity value. This comes within the outlines of each selection and learning epoch, for an effective decision made to be a means of showing the effectiveness of the prediction made.

5.3.5 Significance of a good decision

From the simulation process, we realised that a number of complications can occur because of trying for a direct modelling of the handoff process with the learning and training (HMM) schemes. This cause promotes the model definition to be as presented in this chapter and this result gives a less complex situation for the scheme to deal with, during the capturing of each service segment. Several authors of related work dwell on assumptions to define the existence of certain cases that come with their proposed systems. From this stance, we look at how the decisions made during the translation of the node, emphasise the relevance of the scheme’s background and not resorting to the use of a number of assumptions.

This allows us to relate the dependency of the algorithm on other metrics, (which can be considered trivial) and how their correlation can effect a better decision-making process from the learning scheme.

1. The continuous environment (classification of the different networks)

Due to focusing on a single action for the handoff segment, the network observation is to have some form of discrete relation. This allows the node to recognise the handoff segment and its management when the node captures the network structure correctly. This is to say; if the discretisation of the environment into a state space shows the estimated activity with a finite set of channels, the patterns over time will account for any differences in the observed mix of parameters.

2. The balancing of parameters from both subsystems i.e. the HMM and the LA

To outline this point, we need to map certain conditions with the prescribed changes and have their validation confirmed with the node’s capability to comprehend to them. These cases are in a hierarchical manner, from the least to the most concerning, and can be possibly mitigated through;

- When the node has been pre-empted, its capability to deal with the traffic scaling issue
comes from the values that only effect a change during that moment (from the output space deduced). The re-estimation of the new operating parameters is structured in a manner that does not to affect the generalisation process, so as not to get the required set of probabilities for the handoff, learning and more so, affecting the precision of parameter detection process during a different epoch for another channel selection.

- The concern with multiple observations from each of the observed states is controllable by having the bias account for them. The existence of the multi-teacher approach in this work necessitates the development of a better policy for the node, during decision-making. As the biasing system lead to the training of the node for the recognition of the various scenarios, this showed a possibility of multiple conditions during each observation case.

- The scheme is set up to cater for a single state (network) observation initially and the reason for this is to have the node define the exploration process based on the channels states relevant at that time. For the problem formulation stage of the LA to take advantage of the environment structures during each sensing process, the definition of the finite segments allows for better optimisation strategies. From such a stance, the LA can capture each attribute of the network easily, for ease of interpretation of the activity for better learning moments i.e. the estimation reward for the action that is applicable in the decision space.

- Accounting for the initial parameters for the BW is imperative for the node to learn from the differences in the changes, in relation to the observed data during exploration. This is through the re-estimation of the elements of λ, from the HMM and the steps taken during the simulation process. The cause of such an outcome is the convergence of the BW algorithm, toward a different direction and this defines a trend of more distributed posterior probabilities. As the deviation noted throughout the entire simulation run reveals the accuracy of the training stage, the exploration phase still had to be efficient to account for how the node will comprehend its usage parameters for its own benefit.

- To enhance the level of robustness during the HMM service provisioning stage, the BW makes the use of the forward and backward algorithms, as a means to mismatch the schemes expectation of the state activity, as the training progresses. This condition shows the node that the prediction element will not be consistent at times and as such, allow it to be less reliant on the outcome from the prediction by reasoning for better decisions.
3. **Level of sufficiency needed for the bias system to have effect in any environment**

For this effect to come into consideration, we have to look at the use of an ergodic HMM from an implementation basis, due to its optimality as a system. As the HMM model used in this work realises the value of a fully connected model, this is effective when the system is evolving the data mining values to the posterior probabilities. From this, the training of the node is thus to engage the node fully from the beginning of the state transitions (network changes), to the point where it can be self-sufficient as an independent decision maker. This will work with the LA because the non-stationarity of the effects realised in each context will not gravely affect the node when it has to make its own decisions using the learning-based scheme. The validation of this point is in the exploitation stage, where the node has to make spectrum decisions, with the bias induced as a form of reference to assist with the reasoning method instructed, and the learning case.

4. **Adaption to the changes and different levels in model performance**

For the node to benefit from the use of both schemes, we have the definition of their properties in line with the evolution process of a learning algorithm. This allows the scheme to develop each attribute and benchmark the level of performance for the benefit of the decision process. The overall benefit is from the knowledge bases created during the adaption process that is occurring with the evolution of the scheme.

5.4 Chapter summary

This chapter outlines the relevance of a good management scheme when a cognitive node is going through a service encounter that leads to a handoff process. During the handoff moment, the node evolves the service objective as an assessment basis for the next selection epoch in each scenario. The selection of an action is in relation to the outcome observed from the interpretation of the network data. This process further allows the node to trace the model in an individual capacity and observe where it fails, during service provisioning or handoff facilitation.

The tracing of the service stage reveals how the reliance of a particular belief led to the scheme not being able to make a decision when in such a scenario. From the results observed, the learning plays a great role in the deduction of a suitable response to the environment activity.
This is imperative, as the node will have to deal with the current level of activity in the system regardless of the sensing result. The next chapter gives a concluding assessment of the work done in this thesis, as well as an extension of the work for the benefit of other avenues of research.
Chapter 6

Conclusion
Introduction

The highlight of this work shows the importance of managing handoff from a nodal perspective. With the background of the work based on the selection of a channel during handoff, this thesis discusses the development of better decision-making criteria, in a sharing based architecture for CR. The type of sharing involves having effects from both primary and other secondary user activities and these define how the node will make any parametric deductions, leading to the provision for service and more so, account for the handoff cases. A channel, when used by a potential incoming secondary user into that network, observes it as a basic unit of network activity that will allow for the derivation of an operational state space. This is a best-case scenario development for the node to make any decision from the network’s point of view, in comparison with its own desire to have service.

6.1 Summary

The network definitions came as an overlay and this is to have the node deduce how best to behave in any shared network with a decentralised scheme. From there, we have the node roaming through the networks and gathering data for its own benefit, which is a credible method adopted by the CR for learning purposes. Based on such a learning scenario, the form of decision-making adopted for the different encounters caters for most of the PU concerns as well as the cognitive node in meeting its own intentions i.e. the handoff management. The scheme’s outline is with a regard of the level of activity in the environment, as a means to deduce any nominal state parameters. The results from the deduction process lead to a cause for learning what the environment can offer during the channel selection segment and evolve the decision-making scheme for any future selection of any spectrum bands.

Initially, the node had to learn to define the channel behaviour ‘realistically’ in its favour, such that it can be adapted to model scenarios for mobility management and more so, the decision processes during spectrum handoff. From such a stance, the node will perform an exploration activity as a means to collect data and have a dynamic view of the activity patterns in the environment. The exploration phase is where the node has to observe and understand how the differences in the activity patterns will condition its operating forms when in an overlay. This leads to an outcome where the learning of the usage patterns exhibited in the network will
From the challenges identified in literature, the selection of bias as a means to enhance the capturing of the PU activity promotes the use of training for feature estimations. For the scheme to manage the balance between the CR’s current intention vs. the need to progress in any environment, the training subjects the node to various extremes of disruptive encounters. These came as varying conditions during the selection epochs, enhancing the node’s resilience in any multi-dimensional sharing scheme. Ultimately, the scheme promoted the global variables identified during the exploration stage and created learning objectives to manage the spectrum mobility process.

The key attribute of the scheme is its capability to track the service phase of an SU, from the point of pre-emption to a point where it has to continue with the service provision. This can be in the same state or a different one and in either one; the scheme makes use of two global variables, the arrival rates of other nodes on the same network and its current level of utilisation. The two variables, translate into metrics within that network’s parameter set with which, the channel handoff count’s reduction comes from their use as realised by the learning automata algorithm. In summary, the following give an account of the scheme’s performance and allows a portrayal of the learning benefit through:

1. An exploitation of the spectrum opportunities; this defines the selection of a network based on the variables that are available at a time. With this, the advantage of self-awareness becomes more pronounced as the node is operates in a self-sufficient mode. This mode is when it has to make any decision based on the effects from the visible traffic patterns and what it can comprehend from them without the help of a central controller.
 a. The findings also show the CR’s capability to partition the networks as the sensing progresses, further outlining how the use of network data is from the estimation of suitable variables that assist in the management of the handoff process.
 b. The use of the load balancing approach promotes the selection of a channel within a CR’s transmission needs. This forges a scenario where the node takes advantage of the network data and the result of this manipulation comes with the reduction of the sensing cycles when in a handoff count.
 c. The network selection basis comes from the prescribed activity in the desired state
space. This has the node bettering its negotiation levels when nominating operational policies, based on the density of the nodes during the selection moment.

2. The use of training is a means to enhance the recognition of instantaneous conditions that come because of unpredicted traffic effects and patterns. When the HMM provided a probability value for the network, it came with limitations each time the node needed to make a decision. This is because when the value changes, the node has less room to make an effective decision and considers that segment to have an amount of instantaneous conditions. From this form of interaction:
 a. The node took the probability space for the actions and initialised them based on the distribution space Q. The state space of Q elaborates on effective choices during the management of the handoff process as a means to maximise its cognitive ability.
 b. From the number of limitations observed, the prediction process becomes an advantage when the HMM values change and this is in comparison to the posterior probability values. This stage enhances the cognitive nodes robustness to the ever-changing conditions and this promotes a better handoff policymaking system.
 c. The handoff count, in addition to the conditions in the network subjected the node to varying operational levels. These levels allow the training to have weight because of the changes in the network and this is in comparison to those observed during the data mining (exploration) stage.

3. The exploration capability of the scheme comes as a means of revealing the benefit of the CR’s learning process. This defines how the reasoning and learning aspects of the scheme maintain the need to provision for handoff because of the network usage patterns during the translation period. The structure of scheme is around the node’s probabilistic dependence on the network values, showing if the selection of the network will suffice as a form of activity characterisation. From the network outlook, we have:
 a. The definition of a dynamic approach with which, a node can estimate the value of a session loss or any possible handover delays, allowing for the creation of a contingency relating to a better service estimations, during a channel’s selection.
 b. The CR makes use of the current service objective in relation to the learning’s progression within the network as a means of cooperating with other users during the channel selection.
i. This is visible from the node’s attempt to balance the mean state activity with the channel value in use, based on the action selected by the learning scheme.

c. The satisfaction of an objective during a service segment leads to the backtracking of the node’s performance for the satisfaction of the reward estimate. This is in recognition of an updated belief from the observed patterns translating into a policy definition, based on the decision space. The result is primarily from the scheme’s adaptation capability, showing the node’s progression from the data mining, through its training phase and eventually leads to the learning stage.

d. The scalability of performance comes from the number of allowed permutations at a given time because of adopting the reasoning process. This was enhanced from how the node only had a probability value from the HMM to base all its decisions on. The eradication of the greediness during the channel selection process forces the CR to have reference points in the network, which promote its chances of a successful service count.

Overall, the definition of a state proliferation approach when selecting parameters achieves a better use of the reasoning criteria during the learning and decision-making moments. If the enhancement of the cognition element is fully utilised, the node can realise each channel’s benefit when put to use and in return, maximise the selection process when it is pre-empted by a primary user. As multi-user environments show a level of complexity when being adapted to, the use of an objective enhances the control of the learning approach when deducing the best operational parameters. This allows the node to have a more dynamic view of the decision space when utilising the varying channel composition.

6.2 Recommendations

Some realisations came during the conceptualisation of this scheme and this is in light of how the node was performing. As notable distinctions came with each segment of the evaluation stage, the optimised variables revealed some limitations that can enhance other areas of research, as a continuation of this work. These are:

1. For the **handoff execution**, the node relies on the channel selection strategy and the decision making process, as a phase, is very important as noted in this work. For it to be limited to the general admission of service is a hindering condition in the progression of a
Conclusion

CR’s performance. As such, there should be the development of handoff priority schemes, especially when it has to deduce if it should take the service resumption option or if it has to repeat the transmission. As an attribute, the service criticality define the type of approach that can be opted for, further allowing the node to better handle redundant data structures.

2. The extension of the channel usage patterns to have some form of energy related methods caters for the control of power, along with other metrics that outline the level of power consumed. This area will reveal the benefit of the cognition towards the concept of green computing, when planning for resource management.

3. The issue with channel contentions causes exaggerated levels of delay as the other users force the node to wait for a continuance of the service. This id mostly prevalent in a decentralised form of sharing, where the channel provisioning and selection is very competitive because of the node density in the same band as the cognitive node. The evidence from the environment’s outlay leans towards the development of efficient sharing methods that enhances the nodes capability when roaming in a decentralised architecture. This assists in the management of the computation associated with the service segment and more beneficial in the cases that lack any provisioning of the instantaneous conditions.

4. The use of smart systems is gaining a lot of recognition especially with ‘big data’ being the key buzzword being thrown around in their research and development domains. The manipulation of data has to have each scheme evolve toward better forms of data usage and interpretation and in turn, assists with better data mining capabilities.
Bibliography

2014.

Annexe A: The realisation of learning based on control from the scheme

Figure A-1: A balance of learning vs. control for the proposed selection scheme
Annexe B: Tabulated results of the schemes performance

This section gives all the collated values that outline the quantitative values of the node’s activity in the overlay networks. These values give a descriptive analysis of the action values and their worth when selected, the value from rewarding process, the collated values of probability when the node is roaming in the different contexts and the number of handoff moments experienced in each regard.

Table B-1: Activity patterns for the first network

<table>
<thead>
<tr>
<th>Run count</th>
<th>channel value</th>
<th>$P(u)$</th>
<th>Activity factor</th>
<th>idle</th>
<th>busy</th>
<th>silent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.49</td>
<td>0.2</td>
<td>0.64</td>
<td>10</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>0.36</td>
<td>0.18</td>
<td>0.78</td>
<td>3</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>0.35</td>
<td>0.23</td>
<td>0.71</td>
<td>6</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>0.68</td>
<td>0.13</td>
<td>0.48</td>
<td>10</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0.42</td>
<td>0.15</td>
<td>0.38</td>
<td>8</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>0.51</td>
<td>0.25</td>
<td>0.47</td>
<td>9</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>0.36</td>
<td>0.23</td>
<td>0.65</td>
<td>5</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>0.51</td>
<td>0.15</td>
<td>0.59</td>
<td>7</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>0.55</td>
<td>0.15</td>
<td>0.49</td>
<td>9</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>0.64</td>
<td>0.12</td>
<td>0.36</td>
<td>11</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Mean</td>
<td>0.49</td>
<td>0.17</td>
<td>0.55</td>
<td>7.8</td>
<td>7.6</td>
<td>4.6</td>
</tr>
<tr>
<td>SD</td>
<td>0.12</td>
<td>0.03</td>
<td>0.14</td>
<td>2.53</td>
<td>1.84</td>
<td>2.32</td>
</tr>
</tbody>
</table>
Table B-2: Activity patterns for the second networks

<table>
<thead>
<tr>
<th>Run count</th>
<th>channel value</th>
<th>(P(\mu))</th>
<th>Activity factor</th>
<th>idle</th>
<th>busy</th>
<th>silent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.39</td>
<td>0.1</td>
<td>0.52</td>
<td>4</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>0.65</td>
<td>0.13</td>
<td>0.36</td>
<td>8</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0.72</td>
<td>0.13</td>
<td>0.54</td>
<td>6</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>0.53</td>
<td>0.08</td>
<td>0.40</td>
<td>10</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>0.35</td>
<td>0.08</td>
<td>0.53</td>
<td>8</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>0.62</td>
<td>0.11</td>
<td>0.42</td>
<td>9</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>0.55</td>
<td>0.13</td>
<td>0.58</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>0.68</td>
<td>0.09</td>
<td>0.33</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>0.48</td>
<td>0.14</td>
<td>0.55</td>
<td>8</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>0.35</td>
<td>0.13</td>
<td>0.65</td>
<td>2</td>
<td>13</td>
<td>5</td>
</tr>
</tbody>
</table>

Mean	0.53	0.12	0.49	7	8	5
SD	0.14	0.02	0.10	3	3	2

Table B-3: Activity patterns for the third network

<table>
<thead>
<tr>
<th>Run count</th>
<th>channel value</th>
<th>(P(\mu))</th>
<th>Activity factor</th>
<th>idle</th>
<th>busy</th>
<th>silent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.32</td>
<td>0.15</td>
<td>0.65</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>0.44</td>
<td>0.21</td>
<td>0.54</td>
<td>11</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>0.37</td>
<td>0.20</td>
<td>0.53</td>
<td>11</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0.29</td>
<td>0.19</td>
<td>0.50</td>
<td>5</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0.23</td>
<td>0.17</td>
<td>0.35</td>
<td>9</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>0.44</td>
<td>0.13</td>
<td>0.52</td>
<td>7</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>0.32</td>
<td>0.18</td>
<td>0.52</td>
<td>12</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0.61</td>
<td>0.14</td>
<td>0.39</td>
<td>10</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>0.39</td>
<td>0.18</td>
<td>0.46</td>
<td>6</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>0.79</td>
<td>0.17</td>
<td>0.43</td>
<td>9</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>

Mean	0.42	0.17	0.49	8	8	4
SD	0.17	0.03	0.09	3	3	2
Table B-4: Activity in network one during service provisioning from the HMM

<table>
<thead>
<tr>
<th>Run count</th>
<th>Action number</th>
<th>Channel capacity</th>
<th>Action update value</th>
<th>Handoff Yes/No?</th>
<th>Contingency value for handoff action</th>
<th>Handoff Counts</th>
<th>Service status</th>
<th>Network activity factor</th>
<th>Initial network status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>0.55</td>
<td>2.30E-03</td>
<td>yes</td>
<td>0.20</td>
<td>1</td>
<td>busy state</td>
<td>0.62</td>
<td>busy</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.55</td>
<td>1.40E-03</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.50</td>
<td>busy</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.55</td>
<td>1.70E-03</td>
<td>yes</td>
<td>0.18</td>
<td>1</td>
<td>busy state</td>
<td>0.53</td>
<td>idle</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0.55</td>
<td>1.20E-03</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.43</td>
<td>idle</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0.55</td>
<td>1.90E-03</td>
<td>yes</td>
<td>0.11</td>
<td>1</td>
<td>busy state</td>
<td>0.59</td>
<td>idle</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>0.65</td>
<td>8.99E-04</td>
<td>yes</td>
<td>0.22</td>
<td>1</td>
<td>0</td>
<td>0.40</td>
<td>idle</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>0.55</td>
<td>1.30E-03</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.49</td>
<td>busy</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>0.65</td>
<td>8.94E-04</td>
<td>yes</td>
<td>0.18</td>
<td>1</td>
<td>0</td>
<td>0.38</td>
<td>idle</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>0.55</td>
<td>1.23E-03</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.42</td>
<td>idle</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>0.55</td>
<td>1.80E-03</td>
<td>yes</td>
<td>0.15</td>
<td>1</td>
<td>busy state</td>
<td>0.54</td>
<td>busy</td>
</tr>
</tbody>
</table>

| Mean | 0.57 | | 0.05 | 0.40 | 0.49 |
| SD | 0.04 | | 0.07 | 0.52 | 0.08 |
Table B-5: Activity in network two during service provisioning from the HMM

<table>
<thead>
<tr>
<th>Run count</th>
<th>Action number</th>
<th>Channel capacity</th>
<th>Action Update value</th>
<th>Handoff Yes/No?</th>
<th>Contingency value for handoff action</th>
<th>Handoff Count</th>
<th>Service status</th>
<th>Network activity factor</th>
<th>Initial network status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>0.7</td>
<td>7.93E-04</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.35</td>
<td>desirable</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.65</td>
<td>8.16E-04</td>
<td>yes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.38</td>
<td>idle</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.55</td>
<td>1.80E-03</td>
<td>no</td>
<td>0.11</td>
<td>1</td>
<td>idle</td>
<td>0.35</td>
<td>desirable</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0.65</td>
<td>1.10E-03</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.42</td>
<td>idle</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0.65</td>
<td>1.20E-03</td>
<td>yes</td>
<td>0.25</td>
<td>1</td>
<td>idle</td>
<td>0.44</td>
<td>idle</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>0.55</td>
<td>1.20E-03</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.44</td>
<td>idle</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>0.65</td>
<td>8.23E-04</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.37</td>
<td>idle</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>0.55</td>
<td>1.60E-03</td>
<td>yes</td>
<td>0.17</td>
<td>1</td>
<td>busy</td>
<td>0.50</td>
<td>idle</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>0.65</td>
<td>8.98E-04</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.40</td>
<td>idle</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>0.65</td>
<td>7.97E-04</td>
<td>yes</td>
<td>0.15</td>
<td>1</td>
<td>idle</td>
<td>0.35</td>
<td>desirable</td>
</tr>
</tbody>
</table>

<p>| Mean | 0.63 | | 0.07 | 0.20 | 0.40 |
| SD | 0.05 | | 0.09 | 0.40 | 0.05 |</p>
<table>
<thead>
<tr>
<th>Run count</th>
<th>Action number</th>
<th>Channel capacity</th>
<th>Action Update value</th>
<th>Handoff Yes/No?</th>
<th>Contingency value for handoff action</th>
<th>Handoff Count</th>
<th>Service status</th>
<th>Network activity factor</th>
<th>Initial network status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>0.55</td>
<td>1.60E-03</td>
<td>yes</td>
<td>0.11</td>
<td>1</td>
<td>busy state</td>
<td>0.5</td>
<td>idle</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0.55</td>
<td>2.40E-03</td>
<td>yes</td>
<td>0.2</td>
<td>1</td>
<td>busy</td>
<td>0.63</td>
<td>idle</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.55</td>
<td>1.30E-03</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.49</td>
<td>busy</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.55</td>
<td>1.60E-03</td>
<td>yes</td>
<td>0.16</td>
<td>1</td>
<td>busy state</td>
<td>0.5</td>
<td>idle</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0.55</td>
<td>1.20E-03</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.43</td>
<td>idle</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>0.55</td>
<td>1.70E-03</td>
<td>yes</td>
<td>0.19</td>
<td>1</td>
<td>busy state</td>
<td>0.54</td>
<td>idle</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>0.55</td>
<td>1.30E-03</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.46</td>
<td>idle</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>0.55</td>
<td>1.20E-03</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.42</td>
<td>idle</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>0.65</td>
<td>8.19E-05</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.36</td>
<td>idle</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>0.55</td>
<td>2.30E-03</td>
<td>yes</td>
<td>0.21</td>
<td>1</td>
<td>busy state</td>
<td>0.61</td>
<td>idle</td>
</tr>
</tbody>
</table>

<p>| Mean | 0.56 | | 0.5 | 0.07 | 0.5 |
| SD | 0.03 | | 0.53 | 0.08 | 0.08 |</p>
<table>
<thead>
<tr>
<th>Run Count</th>
<th>Action for channel value</th>
<th>Action number</th>
<th>Action update value</th>
<th>Handoff Yes/No?</th>
<th>Contingency value for handoff action</th>
<th>Handoff Count</th>
<th>Service status</th>
<th>Network activity factor</th>
<th>Initial network status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.55</td>
<td>4</td>
<td>1.90E-03</td>
<td>yes</td>
<td>0.11</td>
<td>1</td>
<td>busy</td>
<td>0.58</td>
<td>idle</td>
</tr>
<tr>
<td>2</td>
<td>0.55</td>
<td>3</td>
<td>1.20E-03</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.45</td>
<td>busy</td>
</tr>
<tr>
<td>3</td>
<td>0.65</td>
<td>2</td>
<td>8.42E-04</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.37</td>
<td>idle</td>
</tr>
<tr>
<td>4</td>
<td>0.65</td>
<td>3</td>
<td>0.0012</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.42</td>
<td>idle</td>
</tr>
<tr>
<td>5</td>
<td>0.55</td>
<td>2</td>
<td>8.30E-04</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.37</td>
<td>idle</td>
</tr>
<tr>
<td>6</td>
<td>0.65</td>
<td>2</td>
<td>8.95E-04</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.40</td>
<td>idle</td>
</tr>
<tr>
<td>7</td>
<td>0.55</td>
<td>4</td>
<td>1.80E-03</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.57</td>
<td>idle</td>
</tr>
<tr>
<td>8</td>
<td>0.65</td>
<td>3</td>
<td>0.0012</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.44</td>
<td>idle</td>
</tr>
<tr>
<td>9</td>
<td>0.55</td>
<td>3</td>
<td>1.30E-03</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.47</td>
<td>busy</td>
</tr>
<tr>
<td>10</td>
<td>0.55</td>
<td>3</td>
<td>1.30E-03</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.49</td>
<td>busy</td>
</tr>
</tbody>
</table>

Mean 0.59 1.25E-03
SD 5.13E-02 3.66E-04

Network 1

<table>
<thead>
<tr>
<th>Mean</th>
<th>0.59</th>
<th>1.25E-03</th>
<th></th>
<th></th>
<th>0.46</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>5.13E-02</td>
<td>3.66E-04</td>
<td></td>
<td></td>
<td>7.31E-02</td>
<td></td>
</tr>
</tbody>
</table>
Table B- 8: Activity in network two during learning the exploitation stage

<table>
<thead>
<tr>
<th>Run Count</th>
<th>Action for channel value</th>
<th>Action number</th>
<th>Action update value</th>
<th>Handoff Yes/No?</th>
<th>Contingency value for handoff action</th>
<th>Handoff Count</th>
<th>Service status</th>
<th>Network activity factor</th>
<th>Initial network status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.55</td>
<td>4</td>
<td>0.0017</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>busy</td>
<td>0.44</td>
<td>idle</td>
</tr>
<tr>
<td>2</td>
<td>0.55</td>
<td>4</td>
<td>0.0018</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.56</td>
<td>idle</td>
</tr>
<tr>
<td>3</td>
<td>0.65</td>
<td>2</td>
<td>8.28E-04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.37</td>
<td>idle</td>
</tr>
<tr>
<td>4</td>
<td>0.55</td>
<td>3</td>
<td>0.0012</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.45</td>
<td>busy</td>
</tr>
<tr>
<td>5</td>
<td>0.65</td>
<td>4</td>
<td>0.0017</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.53</td>
<td>idle</td>
</tr>
<tr>
<td>6</td>
<td>0.55</td>
<td>3</td>
<td>1.30E-03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.47</td>
<td>busy</td>
</tr>
<tr>
<td>7</td>
<td>0.65</td>
<td>2</td>
<td>8.95E-04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.40</td>
<td>idle</td>
</tr>
<tr>
<td>8</td>
<td>0.55</td>
<td>4</td>
<td>1.70E-03</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>busy</td>
<td>0.53</td>
<td>idle</td>
</tr>
<tr>
<td>9</td>
<td>0.55</td>
<td>3</td>
<td>0.0013</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.48</td>
<td>busy</td>
</tr>
<tr>
<td>10</td>
<td>0.55</td>
<td>4</td>
<td>1.80E-03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.57</td>
<td>idle</td>
</tr>
<tr>
<td>Mean</td>
<td>0.59</td>
<td></td>
<td>1.36E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>5.16E-02</td>
<td></td>
<td>3.49E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.79E-02</td>
<td></td>
</tr>
</tbody>
</table>
Table B-9: Activity in network three during learning the exploitation stage

<table>
<thead>
<tr>
<th>Run count</th>
<th>Action for channel value</th>
<th>Action number</th>
<th>Action update value</th>
<th>Handoff Yes/No?</th>
<th>Contingency value for handoff action</th>
<th>Handoff Count</th>
<th>Network state</th>
<th>Activity factor</th>
<th>Initial network status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.65</td>
<td>4</td>
<td>7.79E-04</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.35</td>
<td>desirable</td>
</tr>
<tr>
<td>2</td>
<td>0.55</td>
<td>3</td>
<td>0.0013</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.47</td>
<td>busy</td>
</tr>
<tr>
<td>3</td>
<td>0.65</td>
<td>3</td>
<td>0.0012</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.43</td>
<td>idle</td>
</tr>
<tr>
<td>4</td>
<td>0.55</td>
<td>3</td>
<td>0.0014</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.50</td>
<td>busy</td>
</tr>
<tr>
<td>5</td>
<td>0.55</td>
<td>4</td>
<td>0.0017</td>
<td>yes</td>
<td>0.13</td>
<td>1</td>
<td>busy</td>
<td>0.52</td>
<td>idle</td>
</tr>
<tr>
<td>6</td>
<td>0.55</td>
<td>4</td>
<td>0.0011</td>
<td>yes</td>
<td>0.18</td>
<td>1</td>
<td>busy</td>
<td>0.52</td>
<td>idle</td>
</tr>
<tr>
<td>7</td>
<td>0.55</td>
<td>5</td>
<td>0.0013</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.47</td>
<td>busy</td>
</tr>
<tr>
<td>8</td>
<td>0.65</td>
<td>2</td>
<td>8.90E-04</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.40</td>
<td>idle</td>
</tr>
<tr>
<td>9</td>
<td>0.55</td>
<td>2</td>
<td>8.92E-04</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.40</td>
<td>idle</td>
</tr>
<tr>
<td>10</td>
<td>0.65</td>
<td>3</td>
<td>0.0012</td>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.44</td>
<td>idle</td>
</tr>
</tbody>
</table>

| Mean | 0.61 | 1.24E-03 | | | | | | 0.45 | |
| SD | 6.99E-02 | 3.19E-04 | | | | | | 5.77E-02 | |
Table B-10: Assessment of an exaggerated level of bias during the exploitation stage

<table>
<thead>
<tr>
<th>Run</th>
<th>Channel value</th>
<th>Action number</th>
<th>Update value</th>
<th>Handoff Yes/No?</th>
<th>Contingency</th>
<th>Handoff Count</th>
<th>Handoff Network state</th>
<th>Activity factor</th>
<th>Initial network status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.35</td>
<td>5</td>
<td>4.33E-02</td>
<td>1</td>
<td>0.4</td>
<td>1</td>
<td>busy</td>
<td>0.58</td>
<td>congested</td>
</tr>
<tr>
<td>2</td>
<td>0.35</td>
<td>5</td>
<td>6.23E-02</td>
<td>1</td>
<td>0.4</td>
<td>1</td>
<td>congested</td>
<td>0.83</td>
<td>congested</td>
</tr>
<tr>
<td>3</td>
<td>0.35</td>
<td>5</td>
<td>6.34E-02</td>
<td>1</td>
<td>0.4</td>
<td>1</td>
<td>congested</td>
<td>0.85</td>
<td>congested</td>
</tr>
<tr>
<td>4</td>
<td>0.35</td>
<td>5</td>
<td>0.0702</td>
<td>1</td>
<td>0.4</td>
<td>1</td>
<td>congested</td>
<td>0.94</td>
<td>congested</td>
</tr>
<tr>
<td>5</td>
<td>0.35</td>
<td>5</td>
<td>0.0702</td>
<td>1</td>
<td>0.4</td>
<td>1</td>
<td>congested</td>
<td>0.95</td>
<td>congested</td>
</tr>
<tr>
<td>6</td>
<td>0.35</td>
<td>5</td>
<td>0.0702</td>
<td>1</td>
<td>0.4</td>
<td>1</td>
<td>congested</td>
<td>0.95</td>
<td>congested</td>
</tr>
<tr>
<td>7</td>
<td>0.35</td>
<td>5</td>
<td>0.0702</td>
<td>1</td>
<td>0.4</td>
<td>1</td>
<td>congested</td>
<td>0.95</td>
<td>congested</td>
</tr>
<tr>
<td>8</td>
<td>0.35</td>
<td>5</td>
<td>0.0702</td>
<td>1</td>
<td>0.4</td>
<td>1</td>
<td>congested</td>
<td>0.96</td>
<td>congested</td>
</tr>
<tr>
<td>9</td>
<td>0.35</td>
<td>5</td>
<td>0.0702</td>
<td>1</td>
<td>0.4</td>
<td>1</td>
<td>congested</td>
<td>0.96</td>
<td>congested</td>
</tr>
<tr>
<td>10</td>
<td>0.35</td>
<td>5</td>
<td>0.0702</td>
<td>1</td>
<td>0.4</td>
<td>1</td>
<td>congested</td>
<td>0.35</td>
<td>congested</td>
</tr>
</tbody>
</table>

| Mean | 0.35 | 6.60E-02 | \(0.4 \) | \(0.83 \) | \(\text{congested} \) |
| SD | 5.85E-17 | 8.56E-03 | \(5.85E-17 \) | \(0.2 \) |
Appendix A: The Variable Stochastic Learning Automata (VSLA) Algorithm

To give some background into the Learning Automata concept, this section describes the algorithm’s autonomy from a variable operational point of view. The variation in the model’s operation has a number of actions that have an indirect association with the known outputs when used by the automation process. The key attribute of this scheme has a definition of the actions in line with the progression of the learning curve based on the number of iterations.

The main reason for its consideration in this work is for the node to balance out the conditions from the exploration phase and make use of the results during the exploitation basis. This will have the scheme exhibit the benefits of learning at the intended rate and allow the benefit to be maximised when needed to. The analogy comes from how some reinforcement learning models are subject to several conditions in their rewarding system, leading to the need for a balance to be realised between the two (the exploration and the exploitation phase), which is difficult to satisfy. The definition of the variable action set allows for the independent usage of the actions, which enhances the use of the exploration vs the exploitation concept. This allows the node to have objectives that maintain the long-term goal of learning from their own evaluations and a short-term rewarding option for the actions that bring good results during that epoch.

The probability values obtained in each selection instance encountered, define how the change is applicable to an action subset (the individual actions selected) or for the set of actions as a whole, \(A(n) \). The feedback as a reinforcement factor for the learning to evolve comes from the current interaction with the environment and its use is for a rewarding or penalising the actions that do not produce satisfactory results. For this work, the rewarding in-action mode facilitates an online method of revaluing the actions as a short-term form of recognition of the scheme’s performance. This allows a probability definition between the ranges of 0-1, used by the environment as the feedback that comes for that action choice.

To define how the schemes modelling in line with the objective of the study, we have a set of five finite actions \(\alpha = \{\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n\} \). Each defined action belongs to an action subset defined by \(A = (A_1, A_2, A_3, \ldots, A_5) \), \(A(k) \subseteq \alpha_k \) that can be selected by the LA at a certain instance \(k \).
The selection of a particular action is subject to an external factor, the pre-emption from a channel by a PU and initiating the handoff management segment. This disturbance during service will have the objective formulation defining the use of a probability distribution:

\[Q(k) = Q^1_k, Q^2_k, ..., Q^m_k, \]
as a decision state space, where the scheme will make use of any of the applicable action subsets. This distribution is from the condition:

\[Q^i_k = \text{prob}[A(k) = A_i | A_l \in A, 1 \leq l \leq 2^n - 1], \quad (A.1) \]

However, an extension of \(Q^i_k \) can define the probability of selecting an action \(\alpha_i \) as

\[\hat{p}_i(k) = \text{prob}[\alpha_k = \alpha_i | \alpha_m \in A(k)] \quad (A.2) \]

Subject to the condition, that \(\alpha_i \in A(k) \) and that \(A(k) \) has a history count for the system to select the action \(\alpha_i \). In this case \(\hat{p}_i(k) \) is the scaled probability defined as:

\[\hat{p}(k) = \frac{p^i_k}{K_k} \quad (A.3) \]

Where \(K(k) = \sum_{\alpha \in A(k)} p^i_k \) is the sum of all the probabilities in the action set \(A(k) \), at an instance \(k \) and \(p^i(k) = \text{probability}[\alpha(k) = \alpha_i] \). This is a step taken before the selection of an action from the subset of the action set.

The updating of the sub sets probability is as follows; if \(A(k) \) is the action subset selected with all its history count at instance \(m \), the probability of that action set is scaled using the equation (A.4).

\[p_i(k + 1) = \hat{p}_i(k + 1) \cdot K(k) \forall \alpha_i \in A(k) \quad (A.4) \]

In summary, the LA selects a desired action based on the probability from \(\hat{p}(k) \) (A.2) and pending the response from the environment, the probability update value is from the scaled probability of the selected action. This is only if there is evidence of using that particular action, prior to this epoch based on (A.1). After this stage, the probability vector of all actions in the selected subset are re-scaled, to give this new probability state but is dependent on the scaling value for the scheme [67].
Appendix B: The Baum-Welch Algorithm

This section is a full description of the Baum-Welch algorithm, as an extension to the summary in section 4.2.1. It provides a systematic analysis of how the values of p_{ij} and e_{jk} evolve from their initial values, as they are decoded from the data supplied to the HMM. The initial parameters are such that the probability $P = (O|\lambda)$, is maximised and can be used to deduce the values used as a form of prediction of an observation sequence at a state t, after $P = (O|\lambda)$ been re-estimated.

The derivation of the parameters A, B and π, from the set of λ, is by use of two procedural steps i.e. the forward and backward algorithms. The starting point is from the sequence $\alpha_t(i)$, given as:

$$\alpha_t(i) = P(o_1, o_2, ... , o_t, q_t = S_i|\lambda), \text{ for } 1 \leq i \leq N$$

(B.1)

Where the value of $\alpha_t(i)$ is used as a means of lowering the complexity that is associated with the value of $P(O|\lambda)$. This is from an estimation of the sequence O, when it terminates in a state i, at time t. The value of α_{t+1}, forms a recursive relationship known as the forward variable, expressed by (B.2) through N time steps and an observation period T as:

$$\alpha_{t+1}(j) = e_j(o_{t+1})\gamma_t, 1 \leq j \leq N, 1 \leq t \leq T - 1,$$

(B.2)

Where the value of γ_t is as expressed by (B.3):

$$\gamma_t = \sum_{i=1}^{N} \alpha_t(i)p_{ij}, 1 \leq j \leq N, 1 \leq t \leq T - 1.$$

(B.3)

When the training instance commences, the value of $\alpha_t(i)$, with the initial distribution π, can be expressed as follows,

$$\alpha_1(i) = \pi_i e_i(o_1), 1 \leq i \leq N$$

(B.4)

As we can get to the value of $\alpha_T(i), 1 \leq i \leq N$, the probability of getting the emission state space Y (given the model parameters in λ) is

$$P(Y|\lambda) = \sum_{i=1}^{N} \alpha_T(i)$$

(B.5)

For the backward algorithm, we can derive the outlook of a partial observation sequence, O, when it is in a state i, and recognised during the time, $t + 1$ to the end of the observation period T.

153
In the terms of the state observation sequence,

\[\beta_t(i) = P(O_{t+1}, O_{t+2}, \ldots, O_T, q_t = S_i | \lambda), \text{ for } 1 \leq i \leq N \]

(B.6)

For the derivation of \(\beta_t \), we have the procedure of finding \(\alpha \) coming with the elements of \(P \) and \(E \) involved in the computation process. As this is the backward variable, the value of \(\beta \) is as follows:

\[\beta_t(i) = e_j(o_{t+1}) \varphi_{t+1}, 1 \leq j \leq N, 1 \leq t \leq T - 1, \]

(B.7)

Where \(\varphi_{t+1} \) in (B.8) is with the initial values of \(\beta \) given as \(\beta_T(i), 1 \leq i \leq N \):

\[\varphi_{t+1} = \sum_{j=1}^N \beta_{t+1}(j)p_{ij}, 1 \leq j \leq N, 1 \leq t \leq T - 1. \]

(B.8)

From the two definitions of the forward and backward algorithms, the next step is to refine the estimation of the probabilities of both being in a particular state, \(\gamma \) and that of the transition of states from one state to another, \(\xi \).

\[\gamma_t(i) = P(q_t = x_i | O, \lambda), \]

(B.9)

In terms of the forward and the backward variables, \(\gamma_t \) expressed as:

\[\gamma_t(i) = \frac{\alpha_t(i)\beta_t(i)}{P(O | \lambda)} \]

(B.10)

Because these estimates can be of a varying degree, a new parameter is realized to control the transition of the state progressions from time \(y_i \) at time \(t \), to \(y_j \) at time \(t+1 \) but this is dependent on the visibility of the sequence of \(O \).

\[\xi_t(i,j) = P(q_t = y_i, q_{t+1} = y_j | O, \lambda) \]

(B.11)

Expressing the above equation in terms of the backward and forward variables, gives the following equation:

\[\xi_t(i,j) = \frac{e_j(o_{t+1}) \alpha_t(i)\beta_{t+1}(j)p_{ij}}{P(O | \lambda)} \]

(B.12)

This new estimation allows for the derivation of the accurate values used for the probabilities of \(p_{ij} \) and that of \(e_t(o_{t+1}) \). The expected number of transitions from \(y_i \) can be given
by $\sum_{t=1}^{T-1} \gamma_t (i)$ the expected number of transitions from y_i to y_j are given as $\sum_{t=1}^{T-1} \xi_t (i, j)$ and this allows improved estimates to be calculated. From this, the improved estimate is $\hat{\gamma}_t = \gamma_t (i)$, and the improved transition probability is based on

$$
\hat{p}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t (i, j)}{\sum_{t=1}^{T-1} \gamma_t (i)}
$$

(B.13)

For the transition probabilities:

$$
\hat{e}_{jk} = \frac{\sum_{t=1, o_t = x_k} \gamma_t (j)}{\sum_{t=1}^{T} \gamma_t (j)}
$$

(A.7)

Which is the ratio between the frequency of emitting a particular symbol x_k and the frequency that there is emission on any other symbol [66]. To render the training valid in this work, a comparison with the exploration stage’s results should give a form of variance when the learning is taking effect. This will show the extent in which the channel values obtained from the data mining stage, when made analogous to those of the learning algorithm should reveal the effectiveness of training process. This is also, to allow for the testing of the precision of the prediction stage of the HMM when the node is translating the features from the use of the HMM for its own benefit through learning.
Appendix C: Accompanying CD-ROM

The CD-ROM attached together with this documentation has the following folders, with the related information:

- **Research Literature** contains papers used for the basis of this work and what was referenced in the thesis
- **Publications** contains authored manuscripts of work submitted to conferences in relation to the work in this thesis.
- **Software** contains files used for the analysis of the concept
- **Thesis** contains a PDF copy of this report’s manuscript
- **Results** contains a spreadsheet with the collated results used for proof of concept purposes.