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Abstract Abstract

Abstract

Despite the recognized importance of understanding late Holocene climatic changes

in southern Africa, a dearth of available evidence has resulted in a fragmented

view of the recent past. South Africa has been identified as a key focus region

for palaeoclimatic studies, as it reflects the dynamics of both tropical and temperate

climate regimes. This study aims to create a catchment-integrated view of palaeoen-

vironmental conditions in the country’s Winter Rainfall Zone (WRZ) and Southern

Benguela region during the late Holocene, in order to establish the linkages between

oceanic and terrestrial climate components. A multiproxy analysis was conducted

on a west coast mudbelt sediment core, where continuous deposition over the last

2,250 years has aided the production of an uninterrupted age model. Alkenone and

isotopic analyses were conducted at a multi-decadal resolution to assist in the re-

construction of sea-surface temperature (SST) in the St. Helena Bay region, and

hydrological variation in the WRZ. Changes in moisture availability were inferred via

the application of inorganic proxies, including grain size variation (promoted through

the use of an end-member proxy algorithm) and the Fe/K ratio, a proxy interpreted

to be representative of changes in chemical weathering. Furthermore, a newly-

developed proxy, TEX86, was used as an alternative palaeothermometer. TEX86

produced an additional record of SST, independent of alkenones, eliciting a compar-

ative study between SSTTEX86 and SSTUK’37. The comparison facilitated a review

of the effectiveness of TEX86 within the Benguela Upwelling System, and assisted

in quantifying reasons for the observed differences between the two methods. The

results of the multiproxy analysis shed new light on southwest African late Holocene

climatic dynamics. This study documents a decrease in SST accompanied by in-

creasing WRZ rainfall, which is hypothesized to be a result of large-scale changes in

the position and/or intensity of the austral westerly wind belt. A northerly migra-

tion/increase in intensity of the winds acts to produce cooler SSTs and wetter west

coast continental conditions, both of which were most acutely experienced during

the Little Ice Age (LIA) (1300 – 1850 CE). Zonal symmetry across the Southern

Hemisphere is hypothesized to be a consequence of the large geographical extent of

the westerly winds, as cooler and wetter conditions have been experienced in coastal,

xii



Abstract Abstract

winter-rainfall areas of Chile and Australia. Only subtle changes in vegetation were

observed in the region, and the δ13C and δD records chiefly reflected changes in

water use efficiency. However, δD also reflects significant spatial variation of rainfall

within the WRZ, with a shift towards isotopically-enriched rainfall in coastal re-

gions that evolved during the last millennium. Finally, the recently-developed SST

proxy, TEX86, was determined to be an unreliable indicator of Southern Benguela

SSTs, but may instead be relevant as a gauge for productivity variation. This study

enriches the late Holocene palaeoenvironmental history of South Africa’s WRZ, and

demonstrates the linkages between oceanic and continental processes. Furthermore,

several indications of inter- and intra-hemispheric relationships between southwest

Africa and other continents reveal intriguing avenues for future research. These

include investigations into the driving mechanisms of Northern and Southern hemi-

spheric late Holocene climatic change, as well as exploring the large- and fine-scale

controls on upwelling systems during this time.

Key words: Palaeoclimate; Benguela; Holocene; SST; Mudbelt; Rainfall; South-

west Africa; Winter Rainfall Zone; Inter-hemispheric linkages; Organic geochemistry.
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1 SOUTHERN AFRICA DURING THE LATE HOLOCENE

Part I

Introduction

1 Southern Africa during the late Holocene

Once considered a relatively stable period during the late Quaternary1, the Holocene

is now recognized as an epoch that displays considerable climate variation throughout

the last several thousand years (Mayewski et al. 2004). Reconstructions of the late

Holocene are particularly vital as, in addition to providing a perspective on the nature of

climate dynamics, they offer insights into the complex relationship between humans and

the environment in which they live. Examples of societal collapse due to rapid climate

change have been evidenced through the drought-related demise of the Mayan civilization

around 1200 years ago as well as the breakdown of Greenland colonies during the Little

Ice Age (LIA) (1300 - 1850 CE) (Mayewski et al. 2004). Climate fluctuations during

the late Holocene are also arguably the best indicators of what to expect with regards to

near-future climate conditions, and can serve as critical input data for models.

However, palaeoenvironmental conditions in southern Africa remain relatively un-

known due to the scarcity of available evidence. Key to addressing this lack of knowledge

is determining environmental changes within the Winter Rainfall Zone (WRZ). This area

occupies the south west of South Africa, and due to its latitudinal position, records

changes in both tropical and temperate climate regimes (Carr et al. 2006; Chase et al.

2013). Furthermore, the region’s proximity to the cool Benguela Current leads to com-

plex ocean-atmosphere interactions which significantly affect climate. There is thus an

increasing need for palaeoenvironmental reconstructions of southwest Africa, not only to

increase the accuracy and robustness of future model outputs, but also to understand the

1The geological epoch known as the Quaternary represents the last 2.6 million years (Pillans & Naish
2004). The Holocene epoch is a small subsection within the Quaternary, representing the last 11.5 ka
years.
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3 THE BENGUELA UPWELLING SYSTEM

nature of the past and present relationships between oceanic and continental variables

more comprehensively (Gersonde et al. 2005; Haberzettl et al. 2007).

The thesis presented here aims to address this knowledge deficit, by establishing a

novel outlook on oceanic and terrestrial climatic changes in the WRZ during the late

Holocene. Specific aims and objectives are subsequently outlined in this chapter.

2 Ages and time periods

The ages reported here are derived from 14C dates. These have been converted to calendar

ages, with the suffix “CE” (1950 CE = 1950 AD). Note that in figures, the number -250

CE is used as an equivalent to 250 BCE. The term “late Holocene” is used to cover the

last 2,250 years, a period which encompasses the LIA (1300 – 1850 CE) and the Medieval

Climate Anomaly (MCA = 950 – 1250 CE) (Mann et al. 2009; Nicholson et al. 2013).

The term “ca.” is used to indicate the approximation of a date; this approximation takes

into account age model uncertainty; therefore, when referring to variation in GeoB8323-2,

this study rounds to the nearest 50 years.

3 The Benguela Upwelling System

Although the mechanisms of the modern Benguela Upwelling System (BUS) have been

well studied (eg. Nelson & Hutchings 1983; Demarcq et al. 2003; Weeks et al. 2006;

Hutchings et al. 2009), the relationship between oceanic and continental climate during

the late Quaternary has not yet been fully resolved. The BUS is a complex oceanographic

system, chiefly known for its high levels of productivity and northward-flowing eastern

boundary current. Situated roughly between 14°-37°S (Shannon & Nelson 1996), the

system includes the following elements (shown in Figure 1):

i. the Benguela Current;

ii. the coastal upwelling system;

2



3 THE BENGUELA UPWELLING SYSTEM

iii. the Poleward Undercurrent;

iv. the mudbelt;

v. multiple upwelling cells and filaments;

vi. the eastern limb of the South Atlantic Gyre; and

vii. warm water perturbations that enter the region through Agulhas Rings.

The Poleward Undercurrent and the mudbelt are briefly described here in order to

explain the value of the palaeoenvironmental records from this region. Other particular

features are discussed in later chapters, where relevant.

Sediment arriving at the mouths of West Coast Rivers is moved southwards via the

Poleward Undercurrent, and contributes to the formation of the mudbelt. The mudbelt

therefore contains records of both oceanic and terrestrial conditions, and is a feature that

demonstrates high potential for palaeoclimatic reconstruction. Marine cores sampled in

this region may help to redress the problems of non-continuous deposits and hiatuses in

age models, which occur in terrestrial cores. There is less erosion on the coastal shelf

than on land, and the deposition of fluvially-transported material gives rise to broad,

catchment-integrated signals. Unfortunately, there are relatively few Benguela studies

from the late Quaternary, despite the research cruise M57/1 Meteor successfully recover-

ing several cores off the west coast of South Africa and Namibia (see Herbert & Compton

2007). These cores have arguably been underutilized; although recovered in 2003, organic

geochemical analyses were only performed on GeoB8323-2 in 2014.

3



3 THE BENGUELA UPWELLING SYSTEM

Figure 1: A schematic diagram of Southern African oceanographic, climatic and sedi-
mentological features (adapting features identified in Hutchings et al. 2009). Important
features of the Benguela Upwelling System include the equatorward-flowing current, mul-
tiple upwelling cells (shaded green), a poleward return flow of water along the west coast,
the west coast mudbelt, and warm water perturbations entering the system via Agulhas
Rings (circular arrows). The system’s boundary current forms the eastern arm of the
anticlockwise-flowing South Atlantic Gyre (top left), and the austral westerly winds (bot-
tom left) blow over the Southern Ocean, migrating latitudinally over long- and short-term
time scales.
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4 Existing terrestrial and oceanic palaeoenvironmen-

tal research in southwest Africa

Existing palaeoclimate data from terrestrial sites has provided some idea of the hydrolog-

ical and vegetative conditions in the WRZ during the Holocene (eg. Meadows et al. 2010,

Chase et al. 2013). Proxies are often used in combination, and include stable isotopes

(carbon, hydrogen, nitrogen and oxygen), pollen, diatoms, and charcoal. These studies

have helped to build up a more robust view of changing environmental conditions during

the late Quaternary.

Sites relevant to this study are shown in Figure 2. Sediments from the coastal lake

Verlorenvlei have been successfully used in the reconstruction of Holocene environments

(Meadows et al. 1996; Meadows & Baxter 2001; Stager et al. 2012; Carr et al. 2015), and

the relatively recent technique of using hyrax middens in various isotopic analyses has

resulted in an increasing number of viable mountain sites being identified in the region

(Meadows et al. 2010; Quick et al. 2011; Chase et al. 2013; Valsecchi et al. 2013). The

majority of these studies provide datasets for relatively small regions, and are sometimes

unable to resolve variation at a scale necessary for the observation of rapid climate changes

(ie. decadal or bi-centennial). In addition, there remains ongoing discussion surrounding

the driving factors of proxy records used in hydrological reconstructions. The relative

strengths of these factors appear to rely heavily on site location, and as there exist limited

catchment-scale studies, research has thus far been unable to resolve this issue.

Despite this, several climate trends have been identified on the basis of existing re-

search. Findings from hyrax middens at the De Rif site suggest that the last 2,200 years

have been significantly more humid than during the early to mid- Holocene (Valsecchi

et al. 2013). However, isotopic analysis of hyrax middens from the mountain sites of

Katbakkies Pass and Truitjes Kraal indicate a shift from wet conditions (450 BCE – 650

CE) to dry conditions (650 CE – 1350 CE) (Meadows et al. 2010). Consistent with these

results, a prominent shift from wet to dry is again revealed through the analyses of a
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Figure 2: Map of southwest Africa, showing the position of Core GeoB8323-2 (blue circle).
The map shows height above sea-level, which is overlain by the Winter Rainfall Zone. Also
featured are West Coast rivers, sites mentioned in text (stars), the mudbelt from which
GeoB8323-2 is sourced, the continental shelf (200m) and bathymetric contours (500m
intervals). The vegetative biomes of South Africa are displayed in the top right corner
using data from Mucina & Rutherford (2006).
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second hyrax record recovered from Katbakkies Pass (Chase et al. 2015). However, in

this record, aridity increases from ca. 350 CE, resulting in a discrepancy of some 300

years which the authors attribute to differences in age models and sampling resolution

(Chase et al. 2015).

A shift towards more arid conditions from ca. 50 CE is also documented in the

coastal regions of the WRZ, where a Verlorenvlei diatom record is interpreted as showing

relatively dry conditions (Meadows & Baxter 2001). The authors attributed recent diver-

sification of pollen spectra in core-top sediments to human disturbance, but freshwater

inputs during this time are also indicative of increased humidity. In correspondence with

this, a high resolution diatom study by Stager et al. (2012) proposes a more humid cli-

mate in the Verlorenvlei region during the last several hundred years (1250 - 1950 CE).

A short period of aridity occurred around the time of the MCA, before rainfall increased

at ca. 1000 CE. Precipitation in the Verlorenvlei region rose notably during the LIA,

a conclusion that is reiterated by Hahn et al. (2015), whose multiproxy analysis of two

marine cores exhibit wet periods at ca. 50 CE and 1450 CE. Furthermore, like Stager et

al. (2012), Hahn et al. (2015) identified a distinctly arid WRZ signal coinciding with the

time of the MCA, despite the climatological effects of the epoch being recognized as less

widespread than the LIA.

Links such as these affirm strong connections between oceanic and atmospheric sys-

tems in southwest Africa and other systems further afield. Precipitation in the WRZ

increases during times of sea-ice expansion (Antarctic cold events), with the Southern

Hemisphere mid-latitude westerly winds hypothesized to have moved northwards or in-

tensified during these times (Stuut et al. 2004; Chase et al. 2013; Hahn et al. 2015).

Sea-ice and winds are also closely tied to the position of the ocean fronts, which migrate

parallel to the winds (Stuut et al. 2004). Thus it is likely that the winds associated with

winter cold front systems lay to the north of their present position and/or were most

intense during the LIA (Hahn et al. 2015). Since then, Weldeab et al. (2013) posit

that the westerlies (and ocean fronts) have been shifting southwards, decreasing rainfall
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amount in the WRZ. The inter-relationships between the ocean and atmosphere in this

region advocate for a greater number of multiproxy studies which explore the connections

between the WRZ and BUS.

Prior to this study, palaeoceanographic conditions had not been determined south of

29°S (Leduc et al. 2010). The role of the most southerly section of the BUS during the

Holocene thus remains relatively unknown, and the two studies that have been conducted

by Farmer et al. (2005) and Leduc et al. (2010) have demonstrated that variability within

the BUS is not uniform. Offshore of the Orange River, SST was at a maximum at 1250

CE and 50 BCE, which exhibited coeval negative trends with Morocco and a positive

correlation with Greenland. Further north, within the Lüderitz upwelling cell (Figure 1),

the more coarsely-resolved record showed a minimum at 1250 CE and maximum at 1300

and 1900 CE. In addition, variation in SST offshore of Namibia showed an amplitude

of double that of the region off the coast of the Orange River. The lack of correlation

between the two datasets is recounted in more detail in Chapter 2.

This contrast is compounded by the absence of further data, and has left several

questions relating to the BUS largely unexplored. What significant oceanic changes were

experienced along the southwest coast during the past few thousand years? Has variation

in the BUS been driven predominantly by local forcing factors such as bathymetry and

local winds, or have larger-scale atmospheric features exerted a substantial influence?

What effect, if any, have changes in the interaction between the Benguela and Agulhas

Currents had on the upwelling system? This study is aimed at answering some of these

questions surrounding the BUS during the late Holocene, and to link oceanic variation

with hydrological and vegetative changes that occurred in southwest Africa.

While a comprehensive and detailed assessment of late Holocene climatic changes in

southwest Africa remains elusive, the studies reviewed here suggest that some progress

has indeed been made towards a better understanding of late Quaternary dynamics. They

have revealed meaningful insights into the hydrology, vegetation, and oceanic conditions

of the region over the last few thousand years, and have also begun to draw connections
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between local variation and changes in Southern Ocean and Antarctic influences and other

drivers of climate variability.

5 Site setting

Core GeoB8323-2 is located within the southern section of the west coast mudbelt, within

the BUS and in close proximity to St. Helena Bay (Figure 2). The mudbelt is thin at

this latitude (in comparison to the north), and has a depth range of between 80 and

140m (Gray et al. 2000; Herbert & Compton 2007). The coordinates of GeoB8323-2 are

32°01.89 S and 18°13.19 E, positioned just south of the mouth of the Olifants River, in

water depth of 92 metres.

6 General objectives and research questions

There is a need for increased high-resolution, multi-proxy palaeoclimate datasets in order

to build up a clearer picture of climate variation in the WRZ during the late Holocene.

This study aims to establish a high resolution continuous record of Benguela Current

SSTs over the late Holocene period, and to examine the interactions between oceanic and

continental processes that existed during the late Holocene.

For this thesis, four research questions were identified in relation to the characteristics

of sediments in GeoB8323-2:

1. What trends and variability in SST have been observed over the past 2,250 years?

2. What are the drivers of change in isotopic composition in the WRZ, and what

inferences can be made regarding terrestrial changes in hydrology and vegetation

type during this time?

3. How do the identified marine and terrestrial proxy records compare with one an-

other, and how do they compare with what is known about regional and global
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climate dynamics during this time? Are the conclusions drawn from this study of

southwest Africa applicable at a wider geographical scale?

4. How do TEX86 SST results compare with those obtained via the UK’
37 method?

What accounts for differences between the records and what does this mean for

further GDGT studies in the St. Helena Bay region?

7 Format of this thesis

This thesis is divided into 5 chapters (parts I - V). Chapters 2 and 3 of this thesis are

structured as standalone scientific papers (submitted and soon to be submitted to peer-

reviewed journals) relating to changing climatic conditions in southwest Africa. These

papers make use of multiple proxies to reconstruct oceanic and continental climate dynam-

ics of this region during the late Holocene. The paper in Chapter 2 is entitled Coupling

between late Holocene sea surface temperature and terrestrial hydrology in southwestern

Africa, and is predominantly marine-focused. The paper in Chapter 3, Controls on δ13C

and δD in South Africa’s Winter Rainfall Zone during the late Holocene, focuses more

on terrestrial variation and the utility of isotope analysis within the region of southwest

Africa. Combined, the two papers present a comprehensive view of palaeoclimatic changes

in the WRZ, using a multi-proxy approach. Methods include stable carbon and hydrogen

isotope analyses, alkenone-SST analyses, grain size analyses, end-member analyses, and

elemental ratio analyses.

Whilst now an integral part of this thesis, the status of these two chapters as stan-

dalone scientific papers, with separate abstracts, acknowledgments and references, has

been preserved. Therefore, although some similarity of material exists between the two

in certain sub-sections, this material has been retained, giving rise to some degree of

repetition that would not otherwise have been included.

Chapter 4 briefly describes the results of two additional proxy methods (TEX86 and

Branched vs Isoprenoid Tetraether index), which were obtained from GeoB8323-2, and
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are described separately. Chapter 5 summarizes the main findings of this thesis and

discusses them with regards to the research objectives outlined in this chapter, as well as

commenting on possible future research opportunities.
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Abstract

Southwest Africa is an important region for palaeoclimatic studies, being influ-

enced by both tropical and temperate climate regimes. Despite the understanding

of the climate of the recent past being critically important for studies of the near-

future, relatively little is known about late Holocene climatic changes in this region,

in particular regarding the linkages between oceanic and atmospheric circulation

changes. To improve our understanding of these linkages we investigated a marine

sediment core in the southernmost Benguela Upwelling System (BUS), in order to

reconstruct climate in this region for the past 2,250 years. Our aim was to obtain

records of sea surface temperature changes within the coastal upwelling zone, as well

as hydrological variations in South Africa’s Winter Rainfall Zone (WRZ). Alkenone

analysis was used to acquire SST values, and grain size measurements in combi-

nation with geochemical analysis were conducted to reconstruct changes in fluvial

sediment discharge and weathering intensity. Results show that this specific region

of the Southern Benguela is distinctive from the remainder of the system. A trend

towards lower SSTs was observed from about 700 CE onwards, culminating during

the Little Ice Age (LIA, 1300-1850 CE). This was accompanied by increasing river

discharge from the WRZ. A cooler southernmost BUS with increasing precipitation

in the WRZ was driven by long-term changes towards a more northerly position

of the austral westerly winds, emphasizing the impact of global climate changes on

southwest Africa.

Keywords

Southwest Africa; Holocene; Hydrology; Marine sediments; Sea surface temperature;

Grain size; End-member modeling.
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1 Introduction

Southern Africa displays a dynamic late Holocene climate history (Walker 1990; Chase

et al. 2013). Southwest African climate in particular is significant with regard to palaeo-

climatic studies, primarily due to its latitudinal position between tropical and temperate

climate zones (Chase & Meadows 2007; Chase et al. 2013; Hahn et al. 2015). However,

despite the recognized importance of the region, Holocene climatic variability in south-

west Africa remains relatively unknown. High resolution palaeo-climatic records during

the late Holocene are sparse and palaeo-oceanographic records of adjacent coastal waters

during this time period even more so. In addition, and of relevance due to increasing

anthropogenic influences on proxy data and climate, Southern Africa is of substantial ar-

chaeological importance, with several human occupation sites existing along the country’s

west coast (Smith et al. 1991).

Due to this scarcity of continuous marine records in the region, the ocean-climate link-

age in the Winter Rainfall Zone (WRZ) during the late Holocene has thus far not been

fully established. In the past, research has been focused on climate changes at specific

sites, but this study aims to provide a catchment-integrated signal. In order to improve

our understanding of the late Holocene climate history of the WRZ and its relationship

to oceanic changes, we investigated marine sediment core (GeoB8323-2), situated near St.

Helena Bay in the west coast mudbelt to establish a continuous record of terrestrial and

oceanic climate changes for the past 2,250 years. A high-resolution record of SST varia-

tions in the southwest region of the Benguela Upwelling System (BUS) is reconstructed

using the alkenone-based UK’
37 proxy. In addition, we determined hydrological changes

on the adjacent continent using sediment grain size and elemental changes of discharged

terrestrial material. With these records, we document the as yet unknown relationship

between the marine and terrestrial climatic components of this region.
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Figure 3: Map of southwest Africa showing the extent of the Winter Rainfall Zone (WRZ)
within the greater South Africa region, and the rivers that drain towards the west coast
of the country, including the Olifants River. GeoB8323-2 is located within the mudbelt
at 32°01.89 S, 18°13.19 E. Bathymetric contours are 200m, 500m, 1000m, 1500m and
2000m. The core site is north of St. Helena Bay, and in close proximity to the estuarine
lake Verlorenvlei.

1.1 Regional setting

South Africa is positioned between two ocean boundary currents: the warm western-

boundary Agulhas Current and the cool eastern-boundary Benguela Current, and is in-

fluenced by both tropical and temperate water masses and climate systems (Tyson et al.

1996; Shannon & Nelson 1996; Chase & Meadows 2007; Chase et al. 2013). Tropical

systems bring summer rainfall to the northern and eastern parts of the Summer Rainfall

Zone (SRZ) where moisture from the Indian Ocean is the dominant source of precipita-

tion (Chase & Meadows 2007). In contrast, the WRZ, a smaller, southwestern section, is

affected by temperate climatic influences. Precipitation here occurs as a result of seasonal
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northward shifts of the rain-bearing austral westerly winds around the southernmost tip

of Africa (Tyson & Preston-Whyte 2000). Storm systems travel within the winds systems,

precipitating moisture out over land.

In recent years there has been an increasing palaeo-climatological focus on the WRZ,

partly due to the belief that local environmental changes (variation in precipitation, veg-

etation and adjacent ocean temperatures) within the WRZ are indicative of large-scale

shifts in tropical and temperate climate zones (Carr et al. 2006; Chase & Meadows 2007).

These shifts have been prominently documented over glacial-interglacial time scales, but

they have also been shown to have significant effects on the Southern Hemisphere over

millenial timescales. Noticeable changes during the last few decades have even been ob-

served through satellite imagery (Toggweiler et al. 2006; Shindell & Schmidt 2004). It is

unknown to what extent these modern-day changes are a result of anthropogenic effects,

but the rapidity of the variation has given rise to the hotly-debated term, the Anthro-

pocene, which is used to describe the era in which the consequences of human impact

can be observed (Zalasiewicz et al. 2011). It is therefore becoming increasingly difficult

to distinguish between natural cycles and those enhanced by humans; as a consequence

modern data should be interpreted with caution.

The generally arid western half of southern Africa is traversed by several rivers, both

seasonal and perennial, the largest of which is the Orange River, which borders South

Africa and Namibia and drains a substantial part of the SRZ (Meadows et al. 2002)

(Figure 3). All rivers within the 500 km coastal stretch between the Orange River and

St. Helena Bay drain into the mudbelt on the shelf of southwest Africa, which is an

important source of high-resolution sedimentary archives (Herbert & Compton 2007).

The majority of the sediment is terrigenous in origin and transported by the Orange

River, as well as by the more southerly Olifants and Berg Rivers and other small or

ephemeral rivers in Namaqualand such as the Holgat, Spoeg, Buffels and Groen rivers

(Herbert & Compton 2007; Leduc et al. 2010; Weldeab et al. 2013). Close to St.

Helena Bay the Olifants River discharges a large catchment extending into the southern
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WRZ. The fine terrestrial material derived from all rivers is transported southward along

the inner shelf by the southward-flowing polar undercurrent (Herbert & Compton 2007).

Coarser sand and gravel grains are deposited at the mouth of the Orange River are too

heavy to be transported by the undercurrent, and follow the main path of the Benguela

Current, moving northwards via long-shore drift (Garzanti et al. 2014).

Aeolian transport of material is not considered to be a significant factor at this lo-

cation due to prevailing westerly wind direction. Contrary to locations further north,

there is very limited dust export from southern Africa’s west coast towards the southeast

Atlantic. A latitudinal transect showing terrestrially-derived material off the southwest

African coast demonstrates that very little dust is deposited in the Atlantic south of 20°S

(Rommerskirchen et al. 2003). Furthermore, high-resolution satellite imagery from Sea-

WIFS identify almost no dust plumes occurring south of 28°S, ie. south of the Orange

River mouth (Eckardt & Kuring 2005). In a separate study, satellite imagery was used

to detect absorbing aerosols, and showed that although the Kalahari Desert currently is

a large sand surface, there is very little dust activity in southwest Africa (Prospero et al.

2002). Regarding the deposition of dust from sources further north, Gingele (1996) notes

that the prevailing wind directions in this region (southerly and westerly) account for the

lack of marine aeolian-deposited material in this region, suggesting that only minor dust

input into the southeast Atlantic has occurred during the last 4,000 years.

1.2 The Winter Rainfall Zone

Alongside the Benguela Current, a very steep north-south rainfall gradient along the

western coast of South Africa promotes the existence of several biomes within the WRZ,

namely, the Namib Desert, Succulent Karoo, Nama Karoo, and Fynbos Biomes (Cowling

et al. 1999; Desmet & Cowling 1999) (Figure 3). This steep rainfall gradient is a con-

tributing factor to the difficulty in establishing reliable, continuous palaeo-environmental

records from the region; rainfall patterns at one location may not be representative of

conditions further afield (Meadows et al. 2010). Due to the arid and semi-arid nature
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of the WRZ, there is a general paucity of terrestrial sedimentary archives suitable for

palaeo-climatological research (Chase et al. 2009).

Traditional methods of palaeoclimatological reconstruction are also hampered by the

high relief environment resulting in prominent erosion, and extreme seasonality (Meadows

et al. 2010). Nevertheless, several successful Holocene palaeoenvironmental reconstruc-

tions have been made from Verlorenvlei and the Cederberg Mountains (Meadows et al.

1996; Meadows & Baxter 2001; Stager et al. 2012; Carr et al. 2015). These studies have

consistently identified low amplitude vegetation changes in the WRZ during the Holocene.

More recently, pollen and isotope analysis of hyrax middens have revealed more contin-

uous and detailed palaeoenvironmental evidence spanning the Holocene (Meadows et al.

2010) and even further back in time (Quick et al. 2011; Valsecchi et al. 2013).

Since the region is highly sensitive to hemispheric-scale climate changes, and links with

the austral westerly winds have been documented (Chase & Meadows 2007; Stager et al.

2012; Chase et al. 2013; Weldeab et al. 2013; Carr et al. 2015), studies have drawn the

conclusions that millennial-scale equatorward shifts in the westerly winds coincide with

rainfall increases in the WRZ, whereas southward migrations lead to drier conditions. A

sharp shift towards wetter conditions has been documented by several studies as having

occurred at around 700 or 600 years ago, a period coincident with the Little Ice Age (LIA)

(Stager et al. 2012; Meadows et al. 2010; Weldeab et al. 2013; Carr et al. 2015).

1.3 The Benguela Current

1.3.1 Upwelling

The BUS, one of the world’s major upwelling zones, follows the southwest African coast

between 17-34°S. The BUS is unique among Eastern Boundary systems since both its

northern and southern boundaries consist of warm water systems, namely, the Angola

and the Agulhas Currents (Shillington 1998; Demarcq et al. 2003).

A classical coastal upwelling system is one in which alongshore winds induce Ekman

pumping of cool subsurface waters to the surface leading to enhanced primary production
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and lower SST (Stewart 2009). In austral summer, when the South Atlantic anti-cyclone is

farthest south, alongshore south-easterly winds induce near-shore upwelling accompanied

by lower SSTs and higher primary productivity (Shannon & Nelson 1996; Hutchings et al.

2009). In contrast, during winter months, westerly winds affect the region, suppressing

upwelling and subsequently leading to higher SSTs and lower productivity (Lamont et al.

2015).

1.3.2 St Helena Bay

St. Helena Bay, the southernmost part of the BUS, is a climatologically complex region

due to its irregular coastline and close proximity to the warm Agulhas Current (Figure

3). The bay is the closest identifiable terrestrial feature, at a workable satellite-imagery

scale, to the site of GeoB8323-2, lying 80 km south of the core, thereby affecting current

flow in the area. The shape of the embayment promotes recirculation, which alters the

natural equatorward flow of the equatorward current (Pitcher & Nelson 2006). For this

reason, and also due to the proximity of strong upwelling near Cape Columbine to the

south, and the Namaqua upwelling cell to the north, St. Helena Bay does not display a

“classical” upwelling signal, but instead reacts to other forcing mechanisms that may not

be significant in more northerly parts of the system (Pitcher et al. 2010; Dewar et al.

2012).

Despite not being situated within one of the multiple intense upwelling cells, which

are prominent features of the BUS, the coastal section alongside St. Helena Bay still

experiences strong near-shore upwelling inshore of the shallow 300m continental shelf

upon which the mudbelt is formed (Lamont et al. 2015). Modern satellite-derived SSTs

in St. Helena Bay range from 14.3°C in summer to 15.6°C in winter with a mean annual

SST of 14.9°C (Locarini et al. 2013).

The interaction between the Agulhas Current and the BUS partly accounts for SST

variations in St. Helena Bay, as warm Agulhas water can enter the BUS by means of

warm-water “ring-shedding” at the point of Agulhas retroflection (de Ruijter et al. 1999;
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Garzoli et al. 1999; Schouten et al. 2000). The amount of warm water entrained into

the BUS is hypothesized by Hardman-Mountford et al. (2003) and Weldeab et al. (2013)

to be regulated by changes in the position of the austral westerly wind belt: a northerly

position of the westerlies is thought to limit the amount of warm water through-flow

passing from the Agulhas to the Benguela waters, since in this position, the wind belt

effectively “blocks” westward-moving rings (Rouault et al. 2010; Weldeab et al. 2013).

Therefore, southward shifts in the westerly winds would allow for increased frequency

of warm water incursions, thereby decreasing upwelling and productivity, and increasing

SST. Although little research has been done regarding the interaction between terrestrial

and oceanic palaeoclimate changes in this region, latitudinal changes in the westerly wind

belt appear integral to both BUS SSTs and continental rainfall. Due to the southerly

position of St. Helena Bay and the shape of the embayment, this location is ideal for

observing westerly wind-related palaeoclimatic changes.

2 Methods

2.1 Chronology

Gravity core GeoB8323-2 was recovered during the M57/1 Meteor cruise in January/Febru-

ary 2003 from 32°01.89 S and 18°13.19 E. The core was taken from the west coast mudbelt

at a depth of 92 metres water depth offshore the Olifants River on the west coast of South

Africa.

An age model for GeoB8323-2 was published by Herbert & Compton (2007), and

updated by Hahn et al. (2015) based on a linear-interpolation of 6 radiocarbon dates

from bottom-dwelling gastropods and bivalves. The age model was established using a

reservoir age of 146 ± 85 14C years (Dewar et al. 2012) and the marine calibration curve

(Reimer 2013).

GeoB8323-2 is 2.85 m in length, but results from both Herbert & Compton (2007) and

Hahn et al. (2015) indicate the presence of a hiatus in the lower part of the core (below
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227cm). The sediment directly above the hiatus was dated to 337 years BCE (Herbert &

Compton 2007). The sedimentation rate is consistently around 1 mm per year with the

exception of the interval between 124 and 112 cm (766 - 832 CE) where the sedimentation

rate nearly doubles to 1.8 mm per year.

2.2 Core sub-sampling

GeoB8323-2 is stored at the MARUM Core Repository at the University of Bremen,

at a temperature of 4°C. For alkenone analysis, 43 samples were taken with an initial

resolution of 5 cm (equivalent to an average sample resolution of 25 years) until 150

cm, below which a 10 cm resolution was used (ca. 100 years between samples). Sample

volumes ranged from between 3 and 5 ml of sediment, with dry sample weights between

2.5 and 6.5 g. All samples were freeze-dried and manually ground by mortar and pestle

before analysis. For grain size analysis, separate samples were taken, with the uppermost

114 cm of the core being sampled at 1 cm intervals; thereafter it was sampled every 2 cm

until 226 cm. Samples for grain size analyses were air-dried before analysis. The upper

core was sampled at a higher frequency than the lower in order to obtain a more detailed

perspective of the recent past, particularly during the epochs referred to as the Medieval

Climate Anomaly (MCA) and LIA.

2.3 Alkenone analysis

Ground samples were extracted via accelerated solvent extraction in a DIONEX ASE200

at 100°C and 1000 psi. A solvent mixture of dichloromethane (DCM): methanol (MeOH)

= 9:1 was used for extraction. For extraction, 3 cycles of 5 minutes were run. Afterwards

lipid extracts were concentrated by rotary evaporation, after which asphaltene was precip-

itated via column separation using Na2SO4. Following saponification with 0.1M KOH at

85ºC for 2 hours to remove wax esters which potentially interfere with alkenone quantifi-

cation, neutral fractions were separated by column chromatography using 1%-deactivated

silica and hexane to remove a hydrocarbon fraction and DCM to isolate a ketone fraction.
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Alkenone unsaturation ratios were determined by gas chromatography/flame ioniza-

tion detection (GC-FID) using a ThermoFischer Scientific Focus GC-FID at MARUM,

University of Bremen. The GC-FID was equipped with a split/splitless injector and a 60m

DB-5ms column. Analyses of an external alkane standard of known concentrations were

performed repeatedly. Precision of compound quantifications based on replicate stan-

dard measurements (1σ) is 5%. The UK’
37 method, based on the di- and tri-unsaturated

C37 alkenones, is described in Prahl & Wakeham (1987). UK’
37 is calculated using the

following ratio:

UK′

37 =
C37 : 2

C37 : 2 + C37 : 3

The index is converted to SST using the calibration by Müller et al. (1998):

SST =
UK′

37 + 0.044

0.033

All samples were measured in duplicate, yielding an absolute UK’
37 error of 0.010

UK’
37 units, translating to a mean error in SST estimation of 0.09 ºC.

2.4 Grain size and end-member analysis

Grain size analyses were performed using a Malvern® Mastersizer 2000, which resulted in

78 size classes, from 0.28 to 2000 µm. Grain size measurements were conducted in dupli-

cate for each sample. An end-member modeling algorithm (Weltje 1997) was applied to

the results of the grain size analysis in order to determine changes in relative proportions

of characteristic size spectra (Weltje 1997). A detailed description of the method applied

in this paper can be found in Stuut et al. (2004). The total variability accounted for

by each of the end-member models is represented by r2
mean, and this factor is used to

determine the optimal number of end-members. A three end-member model was chosen

for this study, where, r2
mean= 0.70 (70% of variability is accounted for). EM1 represents

the coarsest fraction and EM3 represents the finest fraction.
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2.5 XRF-scanning:

XRF core scanning was performed on GeoB8323-2 in 2-cm increments using an Avaatech

XRF Scanner at MARUM (University of Bremen). The counting time was 30 seconds,

and the excitation potential and current were kept at 10kV and 250µA respectively. A

more detailed description of XRF scanning methods can be found in Hahn et al. (2015).

For this study we focus on the elemental ratio (Fe/K), which is minimally affected by

variations in grain size and water content (Jansen et al. 1998; Kido et al. 2006; Bloemsma

et al. 2012). Fe/K can be used as an indicator for chemical weathering as K is more easily

leached from soils than less mobile elements such as Fe (Govin et al. 2012).

3 Results

3.1 Sea surface Temperatures

The SST record from GeoB8323-2 (32°S) off the west coast of South Africa reveals a clear

decreasing trend over the last 2,250 years, with a rate of cooling of -0.1 ºC / 100 years

(Figure 4a). This trend becomes more pronounced at around 700 CE, lasting until the

present. Examination at shorter time scales reveals high amplitude variability overlaying

the long-term cooling trend, with a temperature range of 5.6 ºC (Figure 4a).

The oldest part of the record reveals a steady decrease in SST from 250 BCE to 250

CE, followed by a sharp increase during the following 200 years. The period of largest

variability is found between 950 and 1600 CE. During this phase, SSTs are shown to have

changed by as much as 2 or 3 ºC in as little as 50 years, after which the record reveals

the most recent 400 years to have been the coldest in the last 2,250 years. Despite the

large range in SST variability, there are two periods of relative stability, from between

700 and 950 CE and between 1700 and 1850 CE. Peak SST was found to be 16.6 ºC,

which occurred at around 900 CE, and minimum SST was recorded as 11.0 ºC (ca. 1600

CE).
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Figure 4: Benguela Current alkenone-derived sea surface temperature (SST) variations as
reconstructed from (a) GeoB8323-2 (this study) and (b) GeoB8331-4 (Leduc et al. 2010),
and Mg/Ca-derived SST reconstructed from (c) ODP 1084B (Farmer et al. 2005). Mean
values of GeoB8323-2 obtained from duplicate runs are plotted, with error bars repre-
senting absolute deviations between the duplicate analyses. The intervals of the Little
Ice Age (LIA) and Medieval Climate Anomaly (MCA) are indicated as blue and yellow
shading respectively. The regression line of GeoB8323-2 (not shown) has an equation of
y = −0.00106x+ 15.1990, corresponding to a gradient of -0.1 ºC per 100 years.

3.2 Grain size

Figure 5a shows the resulting ratios of the 3 end-member model, with Figure 5b displaying

the eigenvalues and their corresponding end-member number. Grain size analysis of core

GeoB8323-2 reveals a unimodal distribution in the particle size distributions (Figure 5c).

The three members (referred to as EM1, EM2 and EM3) have modal sizes of 19µm,

12µm and 8µm respectively. Fine-grained sediment (EM3) contributes to the majority of
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deposition prior to 800 CE, consisting of more than 43% at any given time. A particularly

stable period with little change in proportions occurred from about 250 – 800 CE, during

which the largest percentage of the material is EM3. The coarse fraction, EM1, is only

present in very small volume prior to 800 CE, and not at all from ca. 400 to 800 CE.

At 800 CE a rapid shift to coarser material (EM1) occurred, perpetuating a series of

peaks and minima between the coarse and fine fractions over the subsequent 800 years

(Figure 5a). Interestingly, the beginning of this rapid shift coincides with the doubling

of the deposition rate (which lasts for roughly 100 years). A second large increase in the

coarse end-member occurred at 1600 CE, after which EM1 becomes the main fraction

of the sediment, reaching up to 78%. This second shift is more marked than the first,

with coarse grain size becoming increasingly dominant during the 200 years that follow.

During this time, the portion of medium-sized grains decreases until it reaches zero at

around 1850 CE. Figure 5a shows that a maximum in coarse grain size (EM1) is centred

around 1800 CE, after which a decrease in EM1 and an increase in EM3, are observed.

3.2 Fe/K Elemental ratio

The lowest values for the Fe/K ratio are found prior to 600 CE, a period in which Fe/K

is relatively stable (Figure 6a). After this, the ratio increases until about 1250 CE, at

which point an interval of lower values is distinguishable, lasting for roughly 150 years.

Fe/K increases again from around 1550 CE. The final 350 years witness the highest values

observed in the record, with peak values occurring at around 1900 CE before a sharp drop

occurs towards the end of the record at ca. 1900 CE.
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Figure 5: Results from end-member modeling. (a) Ratio proportions of EM1 (coarse)
to EM3 (fine); (b) Fraction of variation explained by the amount of end-members; (c)
Unimodal curves of grain size classes of the modelled end-members.

4 Discussion

4.1 Sea surface temperature forcing during the late Holocene

Comparison of core-top alkenone-derived SST from GeoB8323-2 with satellite-derived

SSTs (Locarini et al. 2013) reveals similar temperatures, with our most recent data

point (ca. 1900 CE) reflecting a temperature of 14.4°C. The discrepancy between the
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two is within the UK’
37 SST calibration error of 1°C (Müller et al. 1998). Therefore,

reconstructed SST values may be assumed to reflect mean annual values.

4.1.1 Regional forcing factors

Our results indicate that low SSTs in St. Helena Bay occurred during the last several

hundred years. During this period, relationships between local environmental variation

at other Southern Hemispheric sites (marine, terrestrial and lacustrine) and large-scale

forcings (sea ice and westerly winds) have previously been observed (Lamy et al. 2001,

2002; Stager et al. 2012; Chase & Meadows 2007). This elicited a comparison between

the new Southern BUS SST data and the aforementioned drivers. Low SSTs coincided

with the expansion of sea-ice and low latitude westerly winds (Etourneau et al. 2013;

Lamy et al. 2001; Lamy et al. 2002). It is therefore necessary to look at regional forcing

mechanisms - both oceanic and atmospheric - as well as large-scale processes.

The SST signal from GeoB8323-2 provides a unique record of oceanic changes during

the late Holocene in southwest Africa. The millennial-scale cooling trend observed in

Figure 6b is likely indicative of larger-scale atmospheric forcing mechanisms (similarly

proposed by Lamy et al. 2001), while the shorter semi-centennial time-scale fluctuations

are possibly a result of more regional oceanic variation (Jury & Courtney 1994; Dufois

& Rouault 2012). In the modern southwest African region, large-scale seasonal changes,

such as the variations in the extent of sea-ice around Antarctica, have been shown to

have significant effects on climate (Sokolov & Rintoul 2007). For example, shifts in

Antarctic sea-ice are a result of responses to seasonal changes in insolation, which leads

to expansion during winter and contraction during summer (Moros et al. 2009; Blome

et al. 2012). Cool winter conditions cause the oceanic fronts to migrate north, and

create strong SST gradients that intensify the austral westerly winds and displace them

northward (Renssen et al. 2005; Sokolov & Rintoul 2007). The westerly winds follow the

seasonal latitudinal migration of the fronts. During cool periods with extensive sea-ice,

the intensified onshore westerly winds bring more moisture to southwestern Africa and
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suppress upwelling (Bard & Rickaby 2009). In contrast, southerly displaced fronts lead

to a southward displacement of the South Atlantic anticyclone causing alongshore winds,

increased upwelling, and lowered SST.
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Figure 6: (a) GeoB8323-2 Fe/K ratio as a proxy for chemical weathering. (b) GeoB8323-2
Benguela Current SST in St. Helena Bay. (c) Ratio changes in GeoB8323-2 coarse grain
size (1EM3) to fine and medium grain size. (d) Diatom concentration from Stager et
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This concept of upwelling-driven SST changes, however, is inconsistent with our data.

The data show that changes in local south-easterly winds - responsible for driving coastal

upwelling - were not significant for the majority of the record. This is demonstrated by

the fact that SST in the greater region of St. Helena Bay appears to have no identifiable

link to SST variation at locations further north in the Benguela system (Figure 4) (Farmer

et al. 2005; Leduc et al. 2010). Therefore, we conclude that Holocene SST changes in

this region were not primarily controlled by upwelling, but by other processes.

4.1.2 Controls on the southern Benguela Current

Our data fit with the hypothesis that processes involved in the long-term decrease in

SST are rooted in the progressively northward migration of the austral westerly winds,

which have acted to decrease the ocean temperature (Lamy et al. 2001; Weldeab et al.

2013). This occurred via one or both of two possible mechanisms: firstly, through a

decrease in Benguela Current source water temperature and/or the movement of colder

surface waters into the BUS from the South Atlantic gyre due to the expansion of sea-ice

(Farmer et al. 2005), and secondly, through the pinching off of Agulhas through-flow,

which would reduce warm water transport from the Agulhas Current westwards into the

BUS (Bard & Rickaby 2009).

Further north in the Benguela Current, the mid-latitude westerlies and Agulhas leak-

age are geographically too far away to significantly impact the upwelling system, whose

SSTs are primarily driven by changes in south-easterly winds (Nelson & Hutchings 1983),

but at 32ºS, where GeoB8323-2 is located, these two factors appear to be more influential.

The latitudinal position, combined with the variable coastal topography of the region,

produces a climatic and oceanic signal distinctive from the remainder of the BUS. The

SST range (~5.6ºC) for GeoB8323-2 is also larger than those recorded in the northern

BUS (Leduc et al. 2010, Farmer et al. 2005), and is suggestive of a dynamic micro-system

at this location, which results in an amplified signal.

Despite the fact that large-scale atmospheric forcing dominated SST variation for
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much of the record, upwelling-inducing south-easterly winds seem to have impacted the

signal from 250 BCE until about 250 CE, leading to a decline in SST. During this time

there is no evidence for an increase in sea-ice (Etourneau et al. 2013), or a wetter WRZ

(Stager et al. 2012) either of which might indicate a northward migration of the wind

belt; instead, similarly decreasing SSTs are observed for locations further north in the

Benguela during this time (Farmer et al. 2005; Leduc et al. 2010). Therefore, it would

appear that local scale forcing became important in St Helena Bay when the westerly

wind belt was far south and less proximal to the Agulhas and the Benguela systems. The

remainder of the record documents a progressively northward movement of the wind belt,

with the most northerly position occurring between 1600 and 1900 CE, a period roughly

synchronous with the LIA.

4.2 Late Holocene terrestrial changes in hydrology

4.2.1 Source of material

Sharp changes in grain size distributions (Figure 5a) are most apparent for the coarse grain

size end-member, EM1. Shifts towards a greater proportion of the coarse end-member

occurred at 800 and 1600 CE. The elemental record compares well with the EM variations,

with sharp changes occurring at similar times. The Fe/K ratio indicates an increase in

chemical weathering associated with higher humidity as the fluvial transport increases

(Govin et al. 2012). In effect, wetter conditions induce more chemical weathering, due to

the increased moisture in the environment. Fe/K in this case supports our interpretation

of changes in fluvial transport, due to Fe’s ability to be retained in soil even under

high degrees of chemical weathering (Govin et al. 2012). With regards to grain size,

although traditionally coarse end-members have in the past been seen as representative

of wind-derived sediment, dust particles here are an unlikely source of material, since

studies have documented that there is little wind-transported material from southwest

South Africa deposited in the Atlantic (Prospero et al. 2002; Eckardt et al. 2013; Vickery

et al. 2013; Hahn et al. 2015).
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Material transported to the location of GeoB8323-2 from the catchment region of the

Orange River would only be present as fine-grained deposits. Coarse sediment from the

Orange River reaching the coast cannot be transported southwards, due to the strength of

the poleward undercurrent being sufficient only to keep fine mud in suspension (Shannon

& Nelson 1996). The Orange River therefore cannot be the source of the increasing

proportion of coarse grain size (EM1) exhibited in Figure 6c. Coarse material is thus

most likely derived from the local Olifants catchment and deposited on the shelf through

local river runoff.

Shifts in grain size are interpreted as changing local terrestrial hydrology, i.e., higher

rainfall in the WRZ as EM1 increases. By itself, this proxy is not definitive as an indicator

of precipitation, and changing EM ratios have also been documented as being affected by

variation in bottom current strength and sea-level (Rogers & Rau 2006). Sea-level varia-

tions during the past 2,250 years, however, have an amplitude of ± 1 m (Compton 2001),

are unlikely to have affected the record. In addition, several other proxy methods used

here have in the past been demonstrated to be reliable indicators of moisture availability

(Lamy et al. 2001; Weldeab et al. 2013; Hahn et al. 2015). Coupled to SST and XRF

data, and taking previous research of the region into account, the timing of the shifts in

the EM record provide a strong argument for its use as a proxy for hydrological variation

in this location, an interpretation supported by Hahn et al. (2015) in their analysis of the

WRZ. A long-term increase in Olifants River discharge due to wetter conditions is most

likely the underlying cause for the observed changes in the EM and elemental ratios.

4.2.2 Climatic interpretation

Our results suggest that increasingly wet conditions at the study site, as shown in the

increasing grain size and higher Fe/K ratios, coincided with decreasing SST. This trend

indicates a movement towards a more northerly position of the westerly wind belt, which

progressively caused lower SSTs and increased rainfall in southwestern Africa over much

of the late Holocene. This model fits with those previously describing the WRZ (Stager
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et al. 2012; Weldeab et al. 2012). Fluctuations in Fe/K and EM1 (coarse grain size)

(Figures 6a and c) both register that from 250 BCE until about 750 CE, climate in

the WRZ was stable and drier than the more recent Holocene with driest conditions

occurring between 250 and 0 BCE. A dry WRZ during this time coincides with the

findings of Carr et al. (2015), who document a relatively arid period from 550 BCE to

1000 CE. After this period, the wind belt started to shift to a more northerly position, and

humidity and rainfall in the WRZ increased markedly within half a century. The grain

size and elemental records, through the introduction of coarse fluvial material from the

Olifants River, show that the period from 800 to 1600 CE was wetter but highly variable,

fluctuating between wet and dry conditions. The doubling of the sedimentation rate at

800 CE could be a direct result of increasing transport from the Olifants due to intense

precipitation. This high degree of variability is also seen in the SST record (Figure 6b);

the late Holocene climate phase known as the MCA falls into this time of high variability

(Mann et al. 2009).

A distinct shift towards more consistently wetter conditions occurred at about 1600

CE, forced by the northward migration of the westerly winds. The time of this sharp

change is contemporaneous with an intensely cool spell within the LIA (McGregor et al.

2007; Tyson & Preston-Whyte 2000). These conditions lasted for the next 350 years. The

Fe/K ratio reflects a sharp increase in humidity at the same time, and this increase in

moisture availability in the WRZ during the last several hundred years is in accordance

with several studies which have documented a rapid late Holocene shift towards wetter

conditions in the WRZ (Chase & Meadows 2007; Stager et al. 2012; Carr et al. 2015),

although GeoB8323-2 proxy records show this to have occurred roughly 200 years after

the changes documented in the aforementioned studies. This discrepancy is most likely a

result of differences in calibration of age models between terrestrial and marine archives,

as there will be uncertainties in all stratigraphic core dating.

A noticeable decrease in WRZ rainfall is apparent from about 1800 to 1900 CE,

as shown by the end-member analysis of grain size, while SST increases occurred from
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about 1700 to 1900 CE, reaching modern-day Benguela Current temperatures at around

1850 CE. Studies from Verlorenvlei have also previously documented an intensification in

aridity after wet conditions peaked at around 1850 CE (Figure 6d) (Stager et al. 2012;

Carr et al. 2015). This most recent variation is interpreted here as a southwards shift

in the austral westerly winds at the end of the LIA (1850 CE), a view supported by the

aforementioned studies. This would allow for increased Agulhas leakage and a decrease

in rainfall over land. However, caution is advised when interpreting the most recent

300 years, as account must be made for anthropogenic influence, as humans occupying

southwest Africa began to significantly affect their environment from around this time

(Stager et al. 2012; Hahn et al. 2015).

4.3 Intra- and inter-hemispheric linkages

The significant influence exerted by the austral westerlies on the St Helena Bay region

makes it relevant for larger-scale studies. The long-term decrease in GeoB8323-2 SST is

coeval with SST trends in two marine cores off the west coast of South America located

between 30 and 40ºS in the Peru Current (Kaiser et al. 2008; Lamy et al. 2002). The close

relationship between oceanic and terrestrial climate changes in the realm of the westerly

wind belt has been studied extensively in South America (Lamy et al. 1999, 2001, 2002,

2004, 2010). These studies link the increasing influence of westerly winds to an increase

in moisture availability along the South American southwest coast (Lamy et al. 1999,

2001). The SST record of GeoB3313-1 (Figure 6e) in particular complements the SST

record of GeoB8323-2 (Figure 6b), as does the Antarctic D/T ratio (Figure 6f) to a lesser

extent. This supports the concept of large-scale intra-hemispheric changes significantly

affecting Southern Hemisphere upwelling systems during the late Holocene.

Records from Australia and New Zealand have also been suggestive of close ties be-

tween westerlies and precipitation, although the last 4,000 years have indicated a depar-

ture from the zonal symmetry seen today (Fletcher & Moreno 2012). Climate changes

in this region have therefore not fully mirrored those seen in Southern Africa or South
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Figure 7: Comparison between Benguela Current SST (blue) and Northern Hemisphere
mean annual temperature anomaly (green), from Moberg et al. (2005). The Moberg et
al. (2005) dataset is a combination of several low-resolution proxy records with high-
resolution tree-ring series. A running mean of 40 years is applied.

America, and are likely the result of dominance of other climate forcing mechanisms in

this region (Fletcher & Moreno 2012). However, a record from the Murray Darling Basin,

a semi-arid region in eastern Australia, has recognized a trend towards more variable, wet-

ter conditions during the last 1,000 years, particularly around 1250 CE (Marx et al. 2011).

This record indicates that, at least for this period, there was some Southern Hemisphere

climate symmetry, reflecting austral westerly wind variation. The synchronous changes

experienced by Southern Hemispheric continents are evidence of hemispheric-scale climate

forcing significantly affecting local regions within the Southern Hemisphere.

To reveal inter-hemispheric connections the GeoB8323-2 SST record is compared to the

high-resolution temperature reconstruction for the Northern Hemisphere by Moberg et al.

(2005). Both records reveal a positive correlation (Figure 7) with decreasing trends during

the last 1,000 years, minimum temperatures at around 1550 CE, followed by an increase

towards the present. The observed positive correlation between northern Hemisphere

temperatures and the SST record in St. Helena Bay suggests that the underlying process

for this co-variation is different than the mechanism observed during the last Glacial and

deglaciation, i.e. the asynchrony exhibited through Antarctic warming during a time of

Arctic cooling, transmitted by changes in the Atlantic overturning circulation (Barbante

et al. 2006; Barker et al. 2009). Potential forcing factors are thus global solar insolation
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changes, variations in atmospheric aerosol content and/or other anthropogenic causes.

5 Conclusions

In this study, we present the first SST record for the St Helena Bay region in the south-

ernmost Benguela Current for the last 2,250 years from a marine sediment record, and

discuss the linkages between oceanic and terrestrial climate changes in the WRZ during

the Late Holocene. Our findings reveal a long-term cooling trend, with high variability

apparent at short, i.e. centennial, time scales. Results suggest that SST changes during

the last 2,250 years in this area were not primarily driven by upwelling changes, but by a

larger-scale forcing of latitudinal migrations in the austral westerly wind belt. Northerly-

positioned westerly winds, such as were present during the LIA, acted to decrease Agulhas

warm-water leakage, while re-directing cooler Antarctic waters into the Benguela Current.

When westerly winds were located further to the south, large-scale atmospheric features

became less important, and local SST was chiefly governed by local winds which drove

upwelling variations. In conjunction, these processes led to an amplified SST signal for

this region with a larger range as compared to other locations in the Benguela system.

The terrestrial records from this core indicate a long-term increase in precipitation

and humidity in the WRZ overlain by rapid shifts (within a few decades), rather than

gradual changes. Prior to 800 CE, arid conditions prevailed, whereas recent times have

experienced wet conditions. The substantial increase in moisture observed at around 1600

CE (corresponding to the LIA), supports the results of several previous studies. Rainfall

is concluded to be largely driven by migration of the westerly wind belts, with a more

northerly position leading to higher rainfall in the WRZ.

Despite the lack of correlation between SST evolution in the southernmost Benguela

system and that of existing records in more northerly Benguela locations, similarities

were observed between southern Benguela and Peru Current SSTs, and a tentative link to

Northern Hemisphere air temperatures was recognized. Such intra- and inter-hemispheric

linkages mark this region as sensitive to large-scale atmospheric changes.
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Abstract

Compound-specific isotope analysis of plant lipids in sedimentary archives is a

useful tool for the reconstruction of past vegetation and hydrological changes, but

the specific mechanisms driving leaf-wax isotope variations in the Winter Rainfall

Zone (WRZ) of South Africa have thus far not been established. Towards this end,

stable carbon (δ13C) and deuterium (δD) isotope compositions of leaf waxes were

determined from sediment samples recovered from the southernmost mudbelt off the

west coast of South Africa, which receives terrigenous contributions from the WRZ.

Results were interpreted within the context of established palaeo-climatic changes

from the same sedimentary archive as well as from the broader WRZ. The leaf

wax δ13C compositions, indicating mixed contributions by C3, C4 and CAM plants,

revealed limited vegetation changes over the last 2,000 years, with variability being

interpreted as due to changes in moisture availability and water use efficiency of

plants. Water use efficiency was also established as a dominant influence on the leaf

wax δD compositions in this region, in conjunction with topographic effects related

to shifts in rainfall location (continental and altitude effect). Enriched values were

inferred as reflecting more coastal and mountainous rainfall. Our results indicate an

increase in moisture availability from ca. 1700 CE, as well as a trend towards more

coastal rainfall beginning at ca. 1250 CE. This is in agreement with previous findings

from the region. Isotope analysis was deemed to be a useful tool in palaeo-climatic

reconstruction for the semi-arid WRZ with regards to both spatial and temporal

hydrological variability, but the possibility of multiple drivers of variation in this

complex setting necessitates additional independent proxies.

Keywords:

Leaf waxes, n-Alkanes, Stable carbon isotope, Deuterium, Winter Rainfall Zone, Organic

geochemistry.
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1 INTRODUCTION

1 Introduction

Compound-specific carbon (δ13C) and hydrogen (δD) isotope analyses of lipid biomarkers

have become increasingly recognized as useful tools in regards to palaeo-environmental

reconstruction. The ubiquity of leaf wax-derived n-alkanes in both marine and lacustrine

sediments facilitates compound-specific 12C/13C and 1H/2H analysis. δ13C has predom-

inantly been employed as a gauge of variation between photosynthetic plant types (C3,

C4, CAM), whilst δD changes are usually associated with changes in humidity and pre-

cipitation intensity (Sachse et al. 2012).

The potential significance of these proxies for palaeo-vegetation and -hydrological in-

terpretations is evident, but the isotopic compositions of both δ13C and δD are influenced

by multiple factors, which may vary in relative strength over time and space. These factors

- including changes in temperature, amount of precipitation, altitude and continentality

of rainfall, plant type, rate of evapotranspiration, and water use efficiency of the plants -

may lead to potentially complicating factors in robust interpretations. The difficulty in

numerically quantifying these factors, compounded with the lack of available well-suited

archives in semi-arid southern Africa, has so far impeded the use of these novel approaches

in the Winter Rainfall Zone (WRZ) of South Africa.

This study aims to provide insights into the various potential influences on the molecular-

isotopic signals reflected in leaf waxes from sedimentary archives in the Southern African

WRZ. This is facilitated by building upon research into the climate dynamics of the region,

as presented by Granger et al. (in review), Zhao et al. (2015) and Zhao et al. (in press)

through their various analyses of the same archive as well as by comparison to earlier

paleo-climatic studies from the WRZ. This study focuses on the following objectives:

1. Identifying the dominant drivers of leaf wax δ13C and δD changes in South Africa’s

WRZ;

2. Inferring late Holocene changes in southwest African vegetation and hydrology;

3. Discussing the value of stable isotope analysis, and its contribution to palaeoen-
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1.1 Regional setting 1 INTRODUCTION

vironmental reconstructions within the context of the specific region of southwest

Africa.

1.1 Regional setting

1.1.1 Climate and vegetation

The climate of the WRZ is influenced chiefly by the position of the South Atlantic High

Pressure (SAHP) cell, and rainfall comes primarily from moisture-bearing systems within

the eastward-moving westerly winds (Tyson & Preston-Whyte 2000). These migrate sea-

sonally, with a low-latitude peak during austral winter. In contrast to this, the remainder

of the country, including the Summer Rainfall Zone (SRZ) and Year-round Rainfall Zone

(YRZ), generally relies on easterly wind systems that bring summer rainfall (Tyson &

Preston-Whyte 2000).

A steep south-north decreasing rainfall gradient exists along the west coast of the

country, contributing to the formation of several biomes in southwest Africa (Figures 8a

and b). Each biome supports a wide variety of species, which can be classified according

to their photosynthetic pathway. C3 and C4 plants “fix” molecules with 3 and 4 carbon

atoms respectively; as a result, C4 plants are more successful in warm, arid conditions,

whereas C3 plants thrive in cool, moist environments (Scott and Vogel 2000). CAM

plants are further adapted to water-stressed environments via the mechanisms of water

conservation and resistance of photorespiration (Mooney 1972). This group, which fixes

carbon in a similar way to C4 plants, is often associated with succulents (Mooney 1972;

O’Leary 1988).

The semi-arid Succulent Karoo (SK) covers a large percentage of the WRZ, and within

this biome alone, a wide range of mean annual precipitation averages exists, with the

northern boundary receiving an annual average three times lower than its southern part.

Plant species in the SK have adapted to water stress, resulting in a dominance of suc-

culents with thick, waxy leaf cuticles designed for water retention (Cowling et al. 2004).

The arid terrestrial environment, characteristic of this coastal biome, is strongly coupled
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to the oceanic conditions in the adjacent Benguela Upwelling System (BUS), a highly

productive cool eastern boundary current system (Shi et al. 1998). The WRZ is com-

prised of a mix of C3, C4 and CAM vegetation, with the Fynbos Biome (FB) being

dominated exclusively by C3 plants. The SK predominantly consists of CAM, the Nama

Karoo of mostly C4, and the Namib Desert of CAM and C4 (Rutherford & Westfall 1994;

Rommerskirchen et al. 2003; Cowling et al. 2004).

The offshore mudbelt (described in detail in Herbert & Compton 2007) runs parallel

to the west coast of South Africa, within the BUS. Material drained from rivers along

the country’s west coast (including the Orange and Olifants Rivers, as well as several

ephemeral Namaqualand rivers) is deposited on the continental shelf, thereby contribut-

ing to the formation of the mudbelt (Herbert & Compton 2007). The Olifants River

(Figures 8a and b) originates within the SK, with a tributary also rising in the southern

section of the WRZ, within the FB. The Orange River is the West Coast’s largest river

in terms of annual discharge, draining the Savanna, Nama-Karoo and Desert biomes, and

is responsible for the bulk of sediments that comprise the mudbelt (Herbert & Compton

2007). Although several other west coast rivers drain into the mudbelt, these rivers are

ephemeral and make only modest contributions to the mudbelt sediments (Herbert &

Compton 2007).

The WRZ exhibits a high degree of topographical variability. The Cederberg Moun-

tain Range (the peak of which lies at just over 2000m) runs north-south along the eastern

margin of the WRZ, rising sharply from the flat coastal plains. North and south of the

Cederberg, mountains continue to run in a meridional direction, forming a long strip of

elevated terrain running parallel to the coast (Chapter 2: Figure 1). The headwaters of

the Olifants River originate in this mountain range.

1.1.2 Late Holocene palaeoclimate in southwest Africa

Despite the paucity of favourable sites and the temporal hiatuses that often characterize

the terrestrial records (eg. Baxter & Meadows 1999; Valsecchi et al. 2013; Weldeab et
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Figure 8: Maps of southern Africa presenting (a) modern vegetation biomes (Mucina
and Rutherford 2006) and the Winter Rainfall Zone, showing the site of GeoB8323-2
(32°01.89’S and 18°13.19’E), West Coast rivers and the mudbelt into which they drain.
Also marked are sites mentioned in text (Verlorenvlei, Pakhuis Pass, De Rif, Katbakkies,
Seweweekspoort), and bathymetetric contours at intervals 500m; and (b) modern-day
mean annual precipitation (data source: WorldClim1.4 variable bio12 (Hijmans et al.
2004)).
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al. 2013), several sites have been identified that document Quaternary climate changes

in southwest Africa. Over the past few decades, valuable lacustrine records have been

extracted from Verlorenvlei (Meadows et al. 1996; Stager et al. 2012; Carr et al. 2015),

and climatic conditions of mountainous regions have been inferred from isotopic variation

of hyrax middens (Meadows & Sugden 1993; Scott & Vogel 2000; Scott et al. 2004; Quick

et al. 2011; Valsecchi et al. 2013; Chase et al. 2015). A large percentage of these studies

agree that the WRZ has experienced wetter conditions for much of the past millennium

when compared with that of the mid-Holocene. This time period is coincident with the

Little Ice Age (LIA) (ca. 1350 – 1800 CE) (Stager et al. 2012; Carr et al. 2015). A

substantial increase in precipitation is considered to have begun during this time, around

1400 CE, lasting for several hundred years (Stager et al. 2012; Weldeab et al. 2013; Zhao

et al. in press).

Arid conditions are evident in two records from the Katbakkies hyrax midden moun-

tain site from ca. 250 – 1350 CE, at which point the records end (Meadows et al. 2010;

Chase et al. 2015). A further mountain record (De Rif) displays an increasingly arid

signal over the past thousand years (Chase et al. 2015). However, mountain sites are

located near the edge of the WRZ, and this region may be influenced by both summer and

winter rainfall. Thus, divergences that occur from WRZ trends are explained as predomi-

nantly due to the close proximity of the YRZ and influence of the tropical easterlies. The

nebulousness of this WRZ/YRZ border is again visible in a record from Seweweekspoort

(Chase et al. 2013). Situated within the YRZ, the isotope records extracted from hyrax

middens at this site, give rise to the interpretation of a climate predominantly influenced

by austral westerly winds and winter rains.

1.1.3 Controls on the fractionation of δ13C and δD

The ratio between heavy and light carbon isotopes, δ13C, in leaf lipids can be used

to distinguish between contributions by plants using different photosynthetic pathways,

namely, C3, C4, and crassulacean acid metabolism (CAM) (Cerling et al. 1993). The
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three pathways produce different carbon isotope compositions of plant organic matter and

leaf waxes (Collister et al. 1994). Leaf waxes from C3 plants are more depleted in 13C

than those of C4 plants (Meyers 1997; Kuechler et al. 2013) while those from CAM plants

have intermediate δ13C compositions. The main controls on leaf wax δ13C in sediments

include changes in vegetation and hydrological dynamics, as well as the isotopic signature

of source CO2 (Scott & Vogel 2000; Carr et al. 2006; Meadows et al. 2010). C3 plants are

generally found in cooler, wetter climates, whereas C4 plants, being adapted to warmer

and drier conditions, are associated with savanna, grassland and desert biomes (Pancost

& Boot 2004; Schefuß et al. 2004). δ13C values for C3 plant leaf waxes range from -29 to

-39 ‰ relative to the Vienna Pee Dee Belemnite standard (VPDB) (Vogts et al. 2009).

A period displaying these values at a given time is therefore likely associated with colder

and/or relatively more humid conditions. C4 plant waxes are more enriched in 13C and

lie within the range of -14 to -26‰ VPDB. CAM plant values overlap with those of C3

and C4, falling at intervals between the two (Vogts et al. 2009; Dupont et al. 2013; Boom

et al. 2014). Average values for the n-C29 alkane are -34.7‰ VPDB and -21.7‰ VPDB

for C3 and C4 plants, respectively (Castañeda & Schouten 2011).

However, photosynthetic pathways are not the sole influence on the isotopic compo-

sition of leaf waxes. Variation in plant δ13C can also occur due to variable water use

efficiency by plants (Ehleringer & Dawson 1992; Hou et al. 2007; Seibt et al. 2008).

Water use efficiency refers to the ability of plants to close their stomata to avoid wa-

ter loss during drought conditions, and is a mechanism often associated with arid to

semi-arid regions, including southwest Africa (Tieszen 1991). Stomatal closure results

in 13C-enrichment in lipids, whereas times of increased moisture, and thus lower water

use efficiency, result in higher 13C-fractionation during photosynthesis and thus depleted

δ13C values of plants (Mooney 1972; Leaney et al. 1985; Ehleringer & Cooper 1988).

Isotope fractionation of precipitation occurs via multiple steps. Moisture precipitates

out of vapour form, much of which is sourced from the ocean before travelling some

distance inland (Araguas-Araguas et al. 2000; Gonfiantini et al. 2001; Levin et al. 2009).
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Fractionation of water (H20) isotopes also takes place during rainout, but not during the

transition from ground to leaf water; once water is taken up by plants, fractionation of leaf

wax δD (δDleaf) occurs from the plant-internal leaf water pool (Flanagan & Ehleringer

1991; Fogel & Cifuentes 1993; Sachse et al. 2012). There is a strong linear relationship

between the δDleaf and the δDprecip of higher plants (Sachse et al. 2012), and δD of leaf

waxes is therefore a useful indicator of continental hydrology.

Much of the isotopic variation in δDprecip can be attributed to Rayleigh-type processes

(Gat 1996). Enrichment and depletion of δDprecip can occur via four main processes, which

are listed below (Dansgaard 1964; Gat 1996):

1. Changes in the rainfall amount of a region (the amount effect). Variation in available

moisture leads to depleted (enriched) δDprecip being correlated with higher (lower)

rainfall intensity;

2. Changes in the temperature of a region (the temperature effect). δDprecip is enriched

at higher condensation temperatures;

3. Changes in the over-land distance travelled inland by water vapour before rainout.

δDprecip becomes more depleted in heavy isotopes as distance travelled from the

coast increases (the continental effect); and

4. Changes in the vertical height in the area of rainout. Depletion of δDprecip occurs

via increasing rainout with increasing height (the altitude effect).

δDleaf is influenced by the characteristics of the vegetation type as well as the environ-

mental conditions experienced by the plant (Ziegler et al. 1976; Smith and Freeman 2006;

Feakins and Sessions 2010; Sachse et al. 2012)2.

i. Photosynthetic pathway (C3, C4 or CAM) and plant form/physiology. Different

plant types fractionate against δD at different rates;

2Light intensity and growth rate, which are sometimes listed as influences on δDleaf, are not included
in this list as these factors are chiefly exclusive to algae, and not terrestrial plants.
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ii. Water use efficiency. As water use efficiency increases, enriching δ13C, there is a

higher fractionation against the heavier water isotope. The plant retains isotopically

depleted water and builds waxes depleted in 2H, or D, ie. a negative correlation

exists between δ13C and δD;

iii. Evapotranspiration, including transpiration from both soil and leaf water, with

increasing evapotranspiration leading to isotopic enrichment.

2 Methods

2.1 Chronology

The material used in this study was taken from gravity core GeoB8323-2 retrieved from

the long, shallow coastal mudbelt to the west of South Africa at 32°01.89’S and 18°13.19’E

during RV Meteor cruise M57/1. The core’s original age model was presented by Herbert

& Compton (2007) but has since been revised by Hahn et al. (2015). A hiatus was de-

tected at around 2.27 m core depth (Herbert and Compton 2007). The age just above this

hiatus is ca. 2,290 years before present. For this study only the continuously deposited

sediments above this hiatus will be considered.

2.2 Core sampling

GeoB8323-2 was stored at 4°C in the MARUM Core Repository at the University of

Bremen. 37 samples in total were taken for δ13C and δD analysis using 1cm-wide syringes

to obtain a volume of between 3 and 5 ml per sample, corresponding to a mass of between

2.5 and 6.5 g dry sediment. The samples were obtained at 5 cm intervals between 0 to

150 cm; below this depth, samples were taken every 10 cm. Samples were freeze-dried

and ground using a mortar and pestle before extraction.
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2.3 Laboratory procedure

The preparation and measuring of samples was carried out using the same method as

described by Collins et al. (2011). Samples were extracted by a DIONEX ASE200 at

100°C and 1000 psi using a solvent mixture of DCM:MeOH = 9:1. Squalene was added as

an internal standard before extraction. Extraction was conducted at 1000 psi and 100°C

for 3 cycles with 5 minutes per cycle, after which rotary evaporation was performed to

remove solvents from total lipid extracts. Saponification with 0.1m KOH at 85°C for 2

hours removed wax esters, and neutral fractions were extracted via liquid-liquid extraction

using hexane. Neutral fractions were further separated using column chromatography

with 1%-deactivated silica and hexane, in order to obtain a hydrocarbon fraction. An

AgNO3 column was used to remove unsaturated hydrocarbons.

Gas chromatography/flame ionization detection of n-alkane concentrations was per-

formed using a ThermoFischer Scientific Focus GC at MARUM at the University of

Bremen. An external standard was assessed multiple times during analyses to evaluate

the precision of the quantification. The precision of C18 to C35 n-alkanes, based on the

standard deviation of repeated analyses of the standard measurements is 3.6%. The Av-

erage Chain Length (ACL) and Carbon Preference Index (CPI) were calculated using the

alkane concentration measurements. ACL25-33 was calculated via the following equation:

ACL =

∑
(iXi)∑
(Xi)

where Xi is the abundance of the n-alkane (n-C25 to n-C33) with i number of carbon

atoms. The CPI ratio provides an indication of odd- to even-numbered n-alkanes in a

sample, within the range C25 to C33. Strong odd over even preference (where CPI > 1)

is indicative of fresh, non-degraded plant organic matter (Kolattukudy 1976). CPI was

determined using the following equation:

CPI(25−33) = 0.5
(C25 + C27 + C29 + C31 + C33)

(C24 + C26 + C28 + C30 + C32)
+0.5

(C25 + C27 + C29 + C31 + C33)

(C26 + C28 + C30 + C32 + C34)
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2.4 δ13C and δD analysis

Compound specific δ13C analyses were performed using a Thermo Trace GC Ultra, cou-

pled via a combustion interface at 1000°C, to a Finnigan MAT 252 isotope ratio mon-

itoring mass spectrometer (GC/IR-MS) against calibrated CO2 reference gas. Stable

hydrogen isotope analysis was performed at MARUM at the University of Bremen, using

a Thermo Trace GC coupled, using a pyrolysis reactor at 1420°C, to a Thermo Fischer

MAT 253 isotope ratio mass spectrometer against calibrated H2 reference gas. δ13C val-

ues are given in delta notation relative to the VPDB standard and δD results are given in

delta notation relative to the Vienna Standard Mean Ocean Water (VSMOW) standard.

The squalane internal standards for δ13C and δD (δ13C = -18.9±0.2

‰ and δD=-180±2‰) produced values of -19.0±0.2‰ and -176±2 ‰ (n=37) respec-

tively. Average precision of repeated analyses for the C29 n-alkane (1σ) is 0.2‰ for

δ13C and 1‰ for δD. For the C31 n-alkane, precision is 0.1‰ for δ13C and 1‰ for δD.

The long-term accuracy and precision of the external n-alkane standard is 0 and 0.3‰,

respectively, for δ13C analyses and 0 and 3‰, respectively, for δD analyses.

3 Results

3.1 Isotopic composition of carbon and hydrogen

The strong odd-over-even dominance of the leaf wax n-alkanes is indicated by the high

Carbon Preference Indices (CPI) ranging from 9.8 to 14.2 (n=37) with a mean of 11.8. Av-

erage Chain Length (ACL) values of the leaf wax n-alkanes vary only minimally between

30.9 and 31.1 with a mean of 31.0.

δ13C values of the n-C29 and n-C31 alkanes exhibit similar patterns in variation, but

fall into different isotopic ranges (-26.9 to -28.7‰ VPDB and -25.5 to -26.5‰ VPDB

respectively) (Figure 9a). Deviation between the two homologues occurred only between

150 and 300 CE and 1000 and 800 CE. Maximum n-C29
13C-depletion occurred from be-

tween 1800 to 1900 CE and maximum 13C-enrichment was found at ca. 800 CE and from
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Figure 9: Comparison between n-alkanes C29 (green) and C31 (purple) for (a) stable
compound carbon isotope analysis; and (b) stable compound hydrogen isotope analysis.

ca. 600 to 650 CE. Two periods of relative stability were observed to occur throughout

the record, from 150 BCE to 150 CE and 1400 to 1600 CE (variation = 0.2‰). The

largest and most rapid variability during the last 2,250 years occurred from ca. 1650 CE

to the present. Although the variation during this recent period is proportionally large

with respect to the remainder of the record, it is still within the relatively small 1.8‰

range.

Up until ca. 250 CE, both δ13C and δD varied minimally, but thereafter the records

diverged as more variability occurred (Figures 9a and 9b). Both δD homologues (n-C29

and n-C31) display a similar range of values and similar variations with values ranging

from -131 to -145‰ VSMOW and maximum depletion found around 1300 CE (Figure

9b). At 1750 CE, a shift towards enriched δD values began, a trend which continued until

the present. This coincides with a period of δ13C depletion. Stable periods are found

prior to 300 CE, and from 750 to 1150 CE, varying by 3 and 4‰ VSMOW, respectively.
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3.2 Vegetation-corrected δD (δDvc)

To account for isotope fractionation depending on vegetation type and reconstruct esti-

mated precipitation isotope compositions, we calculated a mixed apparent fractionation

factor (ε) based on the vegetation in the catchment area and pollen findings from this core

(Zhao et al. 2015). We used the following percentages of plant photosynthetic types for

these calculations: C3= 50%; C4= 20%; CAM= 30% (estimated using findings from Zhao

et al. 2015). As end-member fractionation factors we use an apparent fractionation value

of ε = -113±18‰ (n=183) for Fynbos C3 plants (dicots and gymnosperms) (Sachse et al.

2012). For C4 grasses we use the mean apparent fractionation value of ε = -139±25‰

(n=56) (monocots) (Sachse et al. 2012). These values are based on leaf wax n-alkane

measurements from multiple sites across the world, and are biased towards mid-latitude

regions (Sachse et al. 2012). Apparent fractionation values for CAM plants have not

been extensively recorded, but we use the value estimated by Feakins & Sessions (2010)

(ε = -114±22‰; n=17) to approximate the δDleaf correction for the succulents in our

sample. The estimated mixed apparent fractionation factor based on these assumptions

is calculated to - 118±12‰.

The vegetation-corrected isotope composition representing estimates of rainfall isotope

compositions are calculated using the following equation (Sachse et al. 2012; Collins et

al. 2013):

δDvc =

[
(δDwax + 1000)(

ε
1000

)
+ 1

]
− 1000

where δDvc is the vegetation-corrected δD value; δDwax represents the measured δD

values and ε is the estimated mixed apparent fractionation factor.
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4 Discussion

4.1 δ13C

4.1.1 Spatial variation in West Coast vegetation

The total δ13C range of 1.8‰ of leaf-wax n-alkanes in GeoB8323-2 within the last 2,250

years is small in comparison to the amplitude of changes associated with other effects

on δ13C. Shifts in photosynthetic pathways can cause changes in magnitude of the order

of 10-15‰ while fluctuations in water-stress have been demonstrated to be the cause

of to up to 5‰ change within a plant (Farquhar et al. 1989; Tieszen 1991). However,

although small, the documented changes are still significant. A Cederberg hyrax midden

study by Quick et al. (2011) also displayed minimal δ13C change over a much longer

period, revealing limited vegetation dynamics in this area.

Leaf-wax δ13C values fall between those usually associated with C3 and C4 plants.

Since the catchment areas of West Coast rivers draining into the mudbelt span several

biomes, terrestrial organic matter in sediments from GeoB8323-2 is expected to consist

of a mixture of C3, C4 and CAM plant organic material (Hahn et al. 2015; Zhao et al.

2015). The dominant source of C3 material is most likely the FB biome, where C3 shrubs

proliferate. In their comparison between FB and SK vegetation, Carr et al. (2014) doc-

umented clear differences between the two biomes regarding their n-alkane distributions.

The former was found to possess, on average, a shorter chain length than the latter,

maximizing at n-C29. This is true in the cases of both Montane and Lowland Fynbos.

Confirmation of the strong Fynbos signal embedded in the GeoB8323-2 record was re-

ported by Zhao et al. (2015), confirming that the Olifants River is a large contributor

to deposition of terrestrial material to the west coast mudbelt. Combined, these studies

suggest that carbon isotopic variations in the C29 n-alkane homologue can mainly be

ascribed to changes in Fynbos vegetation.

Further north, the dwarf leaf-succulents (CAM) and grasses (C4) indigenous to the

SK produce leaf-wax n-alkanes with longer chains, with a maximum at n-C31 (Boom et
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Figure 10: GeoB8323-2 results of (a) sea-surface temperature (Granger et al. in review);
(b) coarse end-member (EM1) of grain size analysis (Granger et al. in review), indicative
of changes in WRZ rainfall amount; (c) n-alkane C29 for δ13C; and (d) n-alkane C29 for
δDprecip using calculated ε from mixed core-top vegetation estimate.

al. 2014; Carr et al. 2014). Consequently, the dominance of this chain-length throughout

our record indicates that a large portion of plant organic material in this section of the

mudbelt is derived from the SK. A comparison between changes in C29 and C31 revealed

only subtle differences in Fynbos and succulent plant variation. Apart from two short

periods (150 – 300 CE and 800 – 1000 CE), variation patterns within the two biomes

during the late Holocene remain similar to one another.
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4.1.2 Late Holocene δ13C dynamics in the WRZ

The δ13C results from the core suggest that vegetation in the source region has not

changed significantly throughout the past 2,250 years. This is supported by palynological

investigations (Zhao et al. in press) and is in accordance with several other vegetation

studies in the WRZ which concluded that regional vegetation has remained relatively

resistant to substantial climate shifts, particularly within the Fynbos biome (Meadows et

al. 2010; Quick et al. 2011; Carr et al. 2015). Limited vegetative change is indicative of

either a) minor hydrological change in the region, or b) high plant resilience to environ-

mental changes. To determine which scenario is more likely, isotope results are compared

to previous WRZ studies. Using grain size and inorganic geochemical data from the same

archive, Granger et al. (in review) identified SST varibility and dynamic precipitation

changes in the region during the late Holocene (Figures 10a and 10b). These findings,

coupled with the knowledge of vegetation resilience in the region, favours the latter sce-

nario, i.e. relatively resistant vegetation against environmental changes. The observed

variations, which are most marked in the last 250 years of the record, may therefore be

more indicative of changes in water stress / water use efficiency of a relatively stable

vegetation cover. This effect would be reflected as an enrichment of δ13C and limitation

of transpiration during arid periods due to stomatal closure (Farquhar et al. 1989).

The driest period in southwest Africa, according to evidence collected through δ13C

analysis, occurred at around 800 CE (Figure 10c). After this time, the climate appears

to have been relatively steady for the next three centuries, lasting until midway into the

Medieval Climate Anomaly (MCA = ca. 950 to 1250 CE). The δ13C results are also

indicative of a relatively recent increase in humidity, revealing a noticeably wetter past

250 years in southwestern Africa than during the previous two millennia. A distinctive

trend towards more humid conditions began from ca. 1650 CE. This recent shift towards

wet conditions is in accordance with increased coeval grain size in GeoB8323-2 indicating

increased fluvial discharge (Granger et al. in review) and other proxy data from studies

in the Verlorenvlei region, although the signal lags that recorded by dilute-water atoms
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by ca. 300 years (Meadows et al. 1996; Stager et al. 2012; Carr et al. 2015). GeoB8323-2

δ13C data thus indicate that the peak period of moisture availability in the region coin-

cided with the later stages of the LIA, ca. 1800 to 1900 CE. This observation supports

the conclusions of Stager et al. (2012), who concluded that peak rainfall in this region

occurred during the LIA, at around 1850 CE.

4.2 δD

4.2.1 Estimated precipitation δD compositions:

Figure 10d plots the results of the vegetation-corrected δD. Using the estimated mixed ap-

parent fractionation factor based on the vegetation composition as previously described,

we estimated the modern precipitation δD from the core-top values, resulting in a δDvc

of -14.2‰. Comparing this to the mean annual weighted isotopic composition of precip-

itation (δDmap) value for Cape Town (-13.1‰) (West et al. 2014), the close agreement

of both values (see Figure 11) suggests that our assumptions of vegetation compositions

and associated apparent fractionation factors are valid and that changes in plant phys-

iology can be considered negligible in determining the observed δDvc changes. In the

following sections the potential effects of other processes on the temporal δDvc changes

are discussed.

Should the amount effect have been the dominant control of precipitation isotope com-

positions reflected in the leaf-wax δD, southwest Africa would have experienced increas-

ingly arid conditions throughout the last millennium and wetter conditions would have

existed prior to 300 CE and again from 750 to 1350 CE. In strong contrast to this, multi-

ple previous palaeoclimatic studies from this region (including those using GeoB8323-2)

have indicated that the late Holocene has been characterized by an increasingly moist

WRZ (Meadows and Baxter 2001; Stager et al. 2012; Weldeab et al. 2013; Carr et al.

2015; Granger et al. in review). Although it is possible that the δD record could be

reflecting an SRZ signal and suppressing that of the WRZ, there is little evidence for

this, since other proxy data from the same core, including δ13C (this study), show an
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Figure 11: Measured δD of groundwater and tap water in South Africa overlaid on an
isotopic landscape model (data sourced from www.waterisotopes.org), representative of
modern-day isotopic composition of δDprecip.

increasingly humid signal. Zhao et al. (2015) were able to identify stark differences in

pollen that corresponded to different rainfall regimes, and GeoB8323-2 showed a strong

Fynbos signal (unique to the WRZ) throughout the past 2,250 years. For these reasons,

the amount effect is not considered to be a governing factor of the observed δD changes

during the late Holocene.

Temperature variation as a main driver of changes in the record also appears to be

unlikely. δDprecip becomes depleted when condensation occurs at low temperatures (Dans-

gaard 1964). Using Benguela Current SST data from Granger et al. (in review) as a proxy

for southwest African temperature variation, this relationship is found to be inconsistent

with δD data from GeoB8323-2 (Figure 10d). The latter half of the records in particular

presents a contradictory view, that of cool SSTs and accompanying δD enrichment. The

temperature effect is therefore also rejected as a candidate for significant influence on
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δDprecip variation. Similarly, evapotranspiration can be ruled out as a major control on

leaf-wax δD. During wettest times, i.e. LIA, evapotranspiration effects should be minor

but, instead, the most enriched leaf-wax δD is observed.

The factor of water use efficiency, however, is a prominent influence on the stable

carbon isotope composition of plants in semi-arid regions (Tieszen 1991), and having

identified it as the most significant cause of variation in the δ13C record, its effects on

δD must also be considered. Changes in water use efficiency display a negative linear

relationship between δ13C and δD of waxes (Hou et al. 2007). While over the entire

record (Figure 12a) no correlation exists between δ13C and δD of waxes (Fig. 12a) a

negative correlation is evident in the record prior to 600 CE (Figure 12b) where R2=0.59

and from ca. 1650 to 1850 CE (R2=0.23) (Figure 12c). The lack of correlation between

δD and δ13C throughout the remainder of the record, however, suggests that changes

in water use efficiency can only partly explain the observed temporal δD changes in the

record.

In addition, the continental and altitude effects might further explain changes in the

observed leaf-wax δD changes. The two effects of distance and altitude have been shown

to dominate in areas where large changes in altitude occur over a relatively short distance,

as is the case for the WRZ (Dansgaard 1964; Gat 1996). Parts of the Cederberg Mountain

Range (within the Cape Fold Mountain region) rise within 40 km of the coast, to a mean

elevation between 1,200 and 1,500 m (Quick et al. 2011). Unfortunately, although this

effect has been shown to have significantly influenced δD in coastal regions, very little data

exists on the magnitude of such changes. More commonly documented are gradients in

δ18O of precipitation. Well-correlated to δD, changes in δD composition can be up to eight

times greater than those in δ18O (Vimeux et al. 2001; Tierney et al. 2011). Altitudinal

δ18O gradients in the regions of Mt Kilimanjaro, Ecuador and Mexico have been recorded

as ranging from ~ -3‰, -1.7‰ and -2‰ per km height respectively (Gonfiantini et al.

2001), whilst the gradient inland from the Gulf of Guinea to eastern Cameroon averaged

-4‰ over 600km (Njitchoua et al. 1999).
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Therefore, in addition, a ‘selective continental effect’ might further explain changes

in the observed leaf-wax δD changes. For this study, a tentative model is proposed. If

we assume that the bulk of terrigenous sediment originated from coastal areas within

the catchment (as opposed to the further inland, mountainous regions), recorded δD

would be most representative of regions situated close to the ocean. During times of

aridity, moisture will not penetrate far inland, and thus the majority of it precipitates

out over the coastal regions, leading to a relatively depleted δD signal due to full moisture

rainout. In contrast, during times of increased humidity, isotopically-depleted moisture

will be able to migrate further inland after initial coastal rainout, leaving precipitation

over the coastal region relatively D-enriched. Using this model, an increasingly depleted

δD signal such as is observed from ca. 400 to 1300 CE (Figure 9b), would indicate

a decrease in coastal rainfall amount, whilst a trend towards more enriched δD values

(observed in the latter stages of the record during the period from ca. 1300 to 1950

CE) may thus represent a shift towards increasing coastal rainfall, supplemented with

an increase in mountainous rainfall. Although the difficulty in isolating driving forces,

and the developmental nature of this preliminary model is stressed here, this explanation

is consistent with the anti-correlation observed between δ13C and δD. Overall, the high

degree of variability between δD, δ13C and other proxies suggests a complex combination

of drivers of varying strength throughout the late Holocene.

4.2.2 Late Holocene δD dynamics

Interpreting hydrological changes via δD without knowledge from additional proxies would

present a near-impossible task, due to the multitude of factors influencing isotopic com-

position. Using the records of δ13C (this study), grain size and SST (Granger et al. in

review), a coherent preliminary analysis of climatic variation begins to develop.

Prior to 600 CE, conditions were largely controlled by stomatal closure and moisture

availability, with a slight increase in water use efficiency being suggestive of arid conditions
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Figure 12: δD vs δ13C correlation graphs, showing (a) full record (n=37); (b) 250 BCE
– 600 CE (n=10); and (c) 1650 – 1850 CE (n=7), where R2 represents the correlation
coefficient.

throughout the catchment. This is roughly consistent with findings from Granger et al.

(in review), as well as with hyrax midden data from the South Coast (Chase et al.

2015), where dry conditions were hypothesized to have existed until ca. 350 CE. The two

centuries following 600 CE were more mesic, but a distinct rise in humidity began from

ca. 800 CE, and increasingly wet conditions prevailed until relatively recently (ca. 1900

CE).

The visibly strong relationship between δD and δ13C arising from the effect of water

use efficiency on isotopic composition breaks down in the middle of the record, and it

is likely that the altitude and continental effects become more influential during this

period, which consists of highly variable hydrogen isotopic compositions. This could be

a response to larger-scale forcing.

The LIA appears to have been climatologically variable. This sudden change in the

δD/δ13C relationship indicates that a complex mixture of driving forces were exerted on

the records, with the possible inclusion of the amount effect. Should we infer δD changes

here to be driven by a mixture of water use efficiency, altitude and continental rainout

processes, the start of the LIA (~1350 CE) would have consisted of an increase in coastal

precipitation, in addition to increasing mountainous rainfall. During the latter stages of

the epoch, humidity increased to peak record levels at around 1850 CE.
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Despite the concurrence of this research with several late Holocene studies within the

WRZ, others have argued for climate changes that are not identifiable in this record,

especially those positioned within the Cederberg. A synthesis of multiple studies has

revealed clear disparities between various records within the mountains and it is apparent

that neighbouring environments exert unique climate signals, even at short distances from

one another (Valsecchi et al. 2013). Our record adds to this mosaic, concurring with some

and diverging with others.

It is difficult to assess the degree to which changes in the amount of summer rainfall

influenced the record of GeoB8323-2 via the Orange River; however, the end-member

analysis by Granger et al. (in review) (Figure 10a), provenance studies (Hahn et al.

2015), and pollen analysis by Zhao et al. (2015) strongly indicate a regional response to

WRZ climate conditions recorded at the site of GeoB8323-2. In addition, the complexity

that CAM plants are known to exert on isotopic records, may play a role in the enrichment

and depletion of the signals observed in GeoB8323-2.

5 Conclusions

This study presents two new isotope records from the WRZ of southwestern Africa, and

evaluated the significance of compound-specific isotope variation in leaf-waxes in this

specific area within the context of earlier palaeoenvironmental findings.

The leaf-wax δ13C data suggest a mix of C3, C4 and CAM plants in accordance with

pollen data from the same archive (Zhao et al. in press). The modest changes in the

δ13C record during the last 2,250 years are consistent with documented Fynbos resilience

to environmental changes. Despite several significant hydrological shifts having been

recorded in southwest Africa during the late Holocene, there apparently was a muted

response from vegetation. Consequently, the small variations in δ13C are interpreted

as indicative of changes in water stress / water use efficiency in this semi-arid area.

Leaf-wax δD composition is also affected by these changes; however, this is only apparent

in certain periods of the record. At other times, the topographical effects of rainout
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and the transport of isotopically depleted moisture away from coastal locations under

wetter conditions seems to have a significant effect on the observed temporal leaf-wax δD

variation in this setting. The leaf-wax δD composition in this record is therefore partly

indicative of spatial changes of rainfall within the WRZ.

The addition of CAM plants to the record, combined with the multitude of possible

effects on isotope composition necessitates analysis of further data in the reconstruction of

Quaternary climates. This study therefore highlights the need for additional, independent

proxy data to be used in conjunction with isotopes, in order to adequately interpret

palaeo-climatic changes in compound-specific isotope compositions in the semi-arid WRZ

of South Africa.
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Part IV

Glycerol dialkyl glycerol tetraethers

(GDGTs)
Thus far, the previous two chapters have chosen to focus on two elements of palaeocli-

matology: the reconstruction of climate through use of multiple proxies; and the identi-

fication of environmental controls on lipid biomarkers. In this chapter, a third aspect is

addressed, namely, the comparison between two proxies that define a single variable.

This chapter outlines the use of glycerol dialkyl glycerol tetraethers (GDGT) as

a proxy for SST, productivity and terrestrial input in the BUS. SSTs derived from

GeoB8323-2 GDGT concentrations (SSTTEX86) are used here for comparative purposes

in conjunction with alkenone-derived SST (SSTUK’37), and were not used in the recon-

struction of south-west African palaeoclimate (ie. Chapters 1 and 2). However, they

are included in this thesis to record data for possible future research, to consider what

climatic variation can be inferred from their results, and to review the effectiveness of

this relatively new proxy method within the BUS.

The chapter is made up of the following four sections. The introduction briefly summa-

rizes the literature and outlines the objectives, after which the methodology is described.

The results and discussion document and explore the data within the broader context of

what has already been established through Chapters 1 and 2. The chapter concludes by

highlighting the most significant points and evaluating the potential use of GDGTs in the

region of St. Helena Bay.
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1 Introduction

1.1 What are GDGTs?

GDGTs are membrane lipids that are synthesized by Archaea, which are ubiquitous in

marine, lacustrine and soil environments (Hopmans et al. 2004; Smith et al. 2012). The

structure of the tetraethers depends on the environment in which they are produced; the

primary difference between those synthesized by terrestrial Archaea3, and those produced

in a marine setting, is the fact that land-based GDGTs (I-III) have a branched structure,

whereas marine- and lacustrine-derived GDGTs are isoprenoid (0-4) (Figure 13) (Hop-

mans et al. 2004; Weijers et al. 2009)4. In addition, marine Crenarchaeota biosynthesize

discernable amounts of a crenarchaeol regioisomer (4’) (Weijers et al. 2006; Schouten et

al. 2007).

The composition of membrane lipids varies according to the temperature of the en-

vironment in which they are produced (Schouten et al. 2007; Kim et al. 2008; Lee et

al. 2008). The distribution of the isoprenoid GDGTs produced by Crenarchaea varies

depending on growth temperature (Weijers et al. 2006). This variation is used to calcu-

late SST using the TEX86 ratio, which can be calibrated to give exact values in degrees

Celsius. The original index and calibration of TEX86 was established by Schouten et

al. (2002). This thesis uses the modified versions presented in Kim et al. (2010), which

better reflect sub-polar and polar ocean temperatures.

Branched GDGTs (I-III) and the isoprenoid crenarchaeol (4) can be used to establish

a ratio in which the relative fluvial input of terrestrial organic matter (TOM) within a

marine system is calculated (Weijers et al. 2006). This ratio is called the Branched vs

Isoprenoid Tetraether (BIT) index (Hopmans et al. 2004).

The use of GDGTs in palaeoenvironmental reconstructions is a relatively new concept,

3Archaea: a taxonomical kingdom of microorganisms, found across diverse environments (DeLong &
Pace 2001).

4Isoprenoid GDGTs are not exclusively marine: they do occur in terrestrial soils, but only in non-
influential amounts. They can therefore be ignored in calculations (Hopmans et al. 2004; Weijers et al.
2006; Weijers et al. 2009)
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which has emerged through the rapid advancement of high performance lipid chromatog-

raphy (HPLC) (Schouten et al. 2002; Hopmans et al. 2004). The recognition of a new

SST proxy is an important development, due to the pressing need to resolve palaeoceanic

features in order to reconstruct climatic conditions during the late Quaternary. The UK’
37

method is well-established, but may not be suitable in all environments, particularly where

the abundance of haptophyte algae is low. Despite several limitations, TEX86 could fill

these gaps, and serve to increase robustness of SST data. These limitations include:

1. The production of Crenarcaea below the mixed layer in the water column, and not

just the surface layer. TEX86 may therefore not be an accurate representation of

SST, but rather a reflection of an integrated temperature of the water column (Kim

et al. 2008; Lee et al. 2008).

2. Possible seasonal bias of SSTTEX86, depending on when productivity is highest

(Hollis et al. 2012; Lopes dos Sanches 2012).

3. Influence of terrestrially-derived GDGTs on the marine system (Lopes dos Sanches

2012).

The first two issues have been identified as relevant in the case of the BUS, where a cold

bias has been recorded by SSTTEX86 in comparison to satellite-measured mean annual SST

(Lee et al. 2008). The third issue is not relevant in regions of high marine productivity

(Lopes dos Sanches 2012).

The BIT index is unhindered by the above limitations due to branched GDGTs being

terrestrially derived, and is a useful indicator of TOM (Hopmans et al. 2004). A low

BIT has consistently been measured in areas with strong upwelling, because the ratio of

terrestrial/oceanic productivity is low. On the other hand, regions comprising completely

soil-derived organic matter have measured BIT values of >0.9 (Weijers et al. 2009).

1.2 Aims and objectives

GDGT analysis was conducted with the following research question in mind:
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1. How do TEX86 SST results compare with those obtained via the UK’
37 method?

What accounts for differences between the records and what does this mean for

further GDGT studies in the St. Helena Bay region?

To answer this question, three objectives were developed:

i. Compare Benguela Current SSTs via two different proxies (SSTUK’37 and SSTTEX86).

ii. Produce a record of terrestrial/oceanic productivity in southwest Africa during the

late Holocene.

iii. Assess the viability of employing GDGTs in the BUS.

2 Methods

The preparation of samples for GDGT analysis followed the same standard procedure as

described in Chapters 2 and 3. Neutral fractions of samples (n = 37) yielded polar ex-

tracts along with the alkane and ketone fractions (used in compound isotope and GC-FID

analysis respectively). The polar extracts were dried, then redissolved in n-hexane: iso-

propanol (99:1) to bring them to a concentration of 2µg/µl. Samples were analysed using

high performance liquid chromatography/atmospheric pressure chemical ionization-mass

spectrometry (HPLC/APCI-MS), which was carried out on an Agilent 1200 series HPLC

system coupled with an Agilent 6120 MSD.

GDGTs were separated by a Prevail Cyano column and were identified using positive-

ion APCI-MS. Single-ion monitoring (SIM) mode was used, which determines the concen-

tration of specific (M+H)+ ions, with a dwell time of 67 ms per ion. The ten identified

ions include m/z 1302 (GDGT 0), 1300 (GDGT 1), 1298 (GDGT 2), 1296 (GDGT 3),

1292 (GDGT 4), 1292 (GDGT 4’ - crenarcheol regio-isomer), 1050 (GDGT III), 1036

(GDGT II), 1022 (GDGT I) and 744 (C46 standard). Concentrations of GDGTs were
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Figure 13: Structure of individual GDGTs (Castañeda & Schouten, 2011). m/z = mass
to charge ratio.
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quantified by integrating sample peak areas and comparing them to the C46 standard

concentration that had been added prior to extraction via the ASE 200 (1µl/sample).5

The TEX86 index and SST calibration (°C) were calculated using the formulae estab-

lished by Kim et al. (2010).

TEX86 =
log[GDGT 2 +GDGT 3 +GDGT 4]′

GDGT 1 +GDGT 2 +GDGT 3 +GDGT 4′

SST = (68.4 ∗ [TEX86] + 38.6 (r2 = 0.86)

The BIT index was calculated using the equation from Hopmans et al. (2004):

BIT =
[I + II + III]

[I + II + III + 4]

For SSTTEX86, two samples were run in duplicate to establish a mean standard de-

viation. This deviation (equivalent to 0.19°C) was then applied to the sample set. For

the BIT index, two samples were run in triplicate. This equated to a deviation of 0.018,

which was used for the sample set.

A comparison of BIT values with SSTUK’37 was determined statistically using Pear-

son’s Product-moment Correlation coefficient, run in R software. The coefficient measures

the strength of the relationship between two variables. A correlation coefficient was deter-

mined for the full record, as well as for the 1050-year period where the graphs appeared

most synchronized, from the earlier half of the record, ca. 50 BCE to 1000 CE.

5See Chapter 2.2 for details on ASE extraction.
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3 Results and discussion

3.1 BIT

BIT values are consistently low (maximum 0.24) throughout the record (Figure 14). This

is characteristic of upwelling areas, where production of Crenarcheota is high relative to

fluvially transported terrestrial organic input. A steady decrease in BIT occurred from

ca. 500 CE to 1050 CE, after which the low values (<0.17) persisted over the next 700

years, before increasing slightly during the last 2 centuries.

The index, as has been mentioned, is primarily used to gauge changes in the fluvial

transport of terrestrial organic matter (Dupont et al. 2013). Following this logic, the

mid-record decrease seen in Figure 14a indicates a reduction in terrestrial organic mat-

ter being supplied to the system, which contradicts the rainfall increase at ca. 750 CE

described in Chapters 2 and 3. However, there are two possible explanations for this.

Firstly, an increase in rainfall may not necessarily indicate an increase in organic mat-

ter being transported to the ocean, as heavy precipitation could lead to erosion of less

organically-rich soils, with less plant material being transported to the ocean (Dupont et

al. 2013).

The second factor is related to changes in the concentration of Crenarchaeota, and

has not been extensively researched due to the novelty of the proxy. Although it is not

yet clear to what extent changes in marine productivity affect the ratio, several studies

attribute a significant proportion of variation to the changing production of Crenarchaeota

(Fietz et al. 2011; Grauel et al. 2013; Dupont et al. 2013). The results of the Pearson

test support this assessment, as it revealed a significant correlation between BIT and

alkenone-derived SST at the 95% level both for the entire record and the abbreviated

record (see Table 1). This indicates that marine productivity, with its strong inverse

relationship to SST, may exert a larger influence on BIT than has been yet supposed,

and requires further study. This relationship appears to break down somewhat after 1050

CE, possibly as a result of terrestrial input from the Olifants increasing due to higher
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Figure 14: GeoB8323-2 variation in (a) Branched vs Isoprenoid Tetraether index; (b)
Benguela Current SSTTEX86; and (c) Benguela Current SSTUK’37.

rainfall as suggested by the grain size, carbon isotope and Fe/K analyses.

3.2 Comparison between TEX86 and UK’37

Although the GDGT- and alkenone-derived records have similar mean values (14.9°C and

14.1°C respectively), the datasets reveal divergent trends in variation (Figures 14b and

14c). Whereas SSTUK’37 decreased markedly over time, there is no such clear trend in

SSTTEX86. The temperature ranges of the two datasets are different (ca. 5°C and 6.5°C

in SSTUK’37 and SSTTEX86 respectively), and maximum SSTTEX86 was recorded at ca.

1200 CE, when SSTUK’37 was in decline. Likewise, minimum SSTTEX86 occurred at ca.

800 CE, when SSTUK’37 was relatively high.

There are several factors which may account for the differences between proxy results.
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Table 1: Results from Pearson’s product-moment test, showing linear correlation between
BIT and SSTUK’37. N is the sample number of pairs; df is the degrees of freedom (N-2);
p<0.001 and p<0.01; and r is the correlation coefficient (0 to 1). A correlation value be-
tween 0.4 and 0.59 is considered moderate, and a value between 0.6 and 0.79 is considered
strong (Evans, 1996).

Pearson’s Product Moment Test
Full depth

N 37
df 35
p 0.00066
r 0.53445

Abridged (50 BCE to 1050 CE)
N 17
df 15
p 0.00992
r 0.60605

The predominant argument against the use of TEX86 is the tendency for Crenarchaeol to

be produced below the surface in the thermocline layer (Kim et al. 2008; Lee et al. 2008;

Ho et al. 2011). Consequently, environmental temperatures recorded by Archaea may

not accurately represent SST, but rather an integrated temperature signal from the water

column. This is particularly pertinent in the BUS, where nutrient-rich waters upwell from

below the thermocline layer near the coast. A second factor possibly influencing SSTTEX86

is the complex below-surface current movements and recirculation of water in the region

of St. Helena Bay, near our study site.

3.3 TEX86 as a proxy for productivity

The large discrepancy between SSTTEX86 and SSTUK’37 does not disqualify the use of

TEX86 as a proxy in the BUS. A study by Shaari et al. (2013) has suggested that

the issue of production at depth can be resolved by interpreting TEX86 as a potential

indicator of upwelling intensity. The alkenone-derived SST signal is subtracted from

the GDGT-derived SST record, calculating the difference between the TEX86 and UK’
37

temperature values. Upwelling strength is then represented by the variable ΔT in the

following equation:
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Figure 15: Conceptual model from Shaari et al. (2013) showing changes in ΔT during
upwelling and non-upwelling conditions. SML = Surface Mixed Layer; TL = Thermocline
Layer.

4T = TTEX86 − TUK′37

A large ΔT indicates stronger upwelling; a lower ΔT suggests weaker upwelling.

Shaari et al. (2013) demonstrate this mechanism through a simple diagram (Figure

15). At times of intense upwelling, the temperature gradient between the surface layer

(measured by TEX86 and UK’
37) and thermocline layer (measured by TEX86 only) is

smaller than during times of weak upwelling, resulting in a more positive ΔT value. The

reverse is true during times of relaxation/weak upwelling (Shaari et al. 2013).

Applying this index to GeoB8323-2 data, variations in BUS upwelling strength (ΔT)

were determined (Figure 16). Results showed periods of weak upwelling at 500 CE and 700

– 900 CE, and periods of strong upwelling at 150 – 400 CE, 950 – 1050 CE and 1600 – 1850

CE. When considered alongside the conclusions drawn in Chapter 2, ΔT augments the

palaeoclimatic record of the BUS region. Periods of stronger upwelling occurred during

the latter part of the record (ca. 950 CE - present), which complements the decreasing

SST trend previously observed with SSTUK’37. Between 1600 and 1900 CE, cool surface

temperatures appear to have been synchronous with very intense upwelling, whereas the
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Figure 16: Variation in upwelling intensity (ΔT) over time. The dashed line represents
ΔTmean. Values above this are characteristic of stronger-than-average upwelling; values
below this are characteristic of weaker-than-average upwelling.

period between 700 and 900 CE consisted of weak upwelling and higher SSTs. During

this warm period, the westerly flow appears to have been in a more southerly position

(Granger et al. in review), allowing for increased Agulhas leakage to enter the BUS,

which significantly warmed the waters and prevented intense upwelling (see Chapter 2).

However, it remains unclear to what degree the local south-easterly winds that drive

upwelling influenced the system during the late Holocene, since a more southerly position

in the austral westerly winds would also allow for an increased transport of ocean water

away from the continent. Evidence exhibited in Chapter 2, however, advocates that

variation in Atlantic water temperatures feeding into the BUS, and the varying amount

of Agulhas leakage entering the system, were strong enough to overlay the local signal of

south-easterly winds for much of the record.

4 Conclusions

This study determines TEX86 to be an unreliable indicator of SST within the region of

St. Helena Bay, due to large production of Archaea below the surface mixed layer, which
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results in a depth-integrated signal. A comparison between SSTUK’37 and SSTTEX86

yielded no identifiable similarities. However, despite the challenges of using TEX86 in

the BUS, the record, when used in conjunction with UK’
37, produces an index that is

a possible indicator of Benguela productivity. The recognition of this relatively new

palaeoceanographic index will hopefully be more fully explored in the future.

With regards to the BIT ratio, variation demonstrates a meaningful correlation to

alkenone-derived SSTs, particularly during the earlier half of the record. This study

therefore supports the hypothesis that BIT can be significantly affected both by the

supply of marine Crenarchaeota and branched GDGTs (Fietz et al. 2011; Dupont et al.

2013; Grauel et al. 2013). However, this also leads to the conclusion that in the region

of St. Helena Bay, BIT does not reliably estimate variation in terrestrial organic matter.

The combination of results from SSTUK’37, SSTTEX86 and BIT depict a trend towards

cooler, more productive waters in the BUS during the last few hundred years. Apart from

yielding new information about the regional oceanic conditions during the late Holocene,

this chapter has clearly demonstrated the advantages of using multi-proxy records, and

illustrated the need to identify and develop new proxies to increase our understanding of

palaeoclimatic conditions. It thereby significantly adds to this thesis, through the raising

of topical questions within the broader framework of palaeoenvironmental methodology.

This chapter serves as a reminder of the importance of both observing proxy limitations

as well as choosing suitable methods of analysis within a specific environment.
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Part V

Conclusion

1 Introduction

Through the application of multiple inorganic and organic proxies, this study revealed

new information surrounding palaeoenvironmental conditions in southwest Africa, thus

contributing to the late Holocene climate history of the region. Datasets generated from

marine core GeoB8323-2 are useful not only in identifying past relationships between

climate variables, but may also provide valuable insight into present and future climate

interconnections. This chapter summarizes the most important findings of this study;

reviews and answers the initial research questions outlined in Chapter 1; and concludes

by evaluating the success of the study and commenting upon future research opportunities.

2 Summary of proxies

GeoB8323-2 was used to reconstruct climate in southwest Africa over the last 2,250 years,

using the following proxy methods: UK’
37, grain size, elemental ratio Fe/K, compound

specific carbon (δ13C) and deuterium (δD) isotope ratios, and glycerol dialkyl glycerol

tetraethers (GDGTs) (which includes TEX86 and the BIT index). Reconstructions of

palaeoclimatic conditions are thought to reflect climate variation in the Olifants catchment

region (ie. the WRZ).

Provided in this section are tables summarizing proxy methods and their interpreta-

tions (Tables 2 and 3). These tables act as general references; they are added here to

supplement the conclusions drawn in this chapter and are greatly simplified.

Production of a high-resolution sea surface temperature (SST) record via the UK’
37

proxy was a vital component of this thesis, since SST is known to be coupled to low-level

atmospheric conditions. In addition to the SST dataset, end-member (grain size) mod-
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Table 2: Simplified summary of methods used in this study and their proxy interpreta-
tions.

Symbol Proxy Unit Interpretation (simplified)

EM1 coarse grain size unit ratio + increase in WRZ rainfall

- decrease in WRZ rainfall

Fe/K weathering
intensity

unit ratio + increase in WRZ rainfall

- decrease in WRZ rainfall

δD hydrogen isotope ‰ + increase in (coastal) rainfall

- increase in aridity;
increase in mountain/
high-altitude rainfall

δ13C carbon isotope ‰ + increase in aridity

- increase in rainfall

UK’
37 sea surface

temperature
ºC + warm

- cool

BIT Terrestrial organic
matter (TOM)

unit ratio + increase in TOM

- increase in marine
productivity

TEX86 sea surface
temperature

ºC + warm

- cool

∆T Upwelling intensity ºC + increase in upwelling
strength

- decrease in upwelling
strength
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Table 3: Simplified summary of findings by individual proxies.

Proxy 50 BCE - 250
CE

50 - 700 CE 700 - 1300 CE 1300 - 1900 CE

EM1 dry with
moderate
variability

dry variable ( wet and
dry events)

wet

Fe/K dry dry increasingly wet wet

δD dry increasingly dry variable (wet and
dry events)

increasingly wet
esp.1800 - 1900

CE

δ13C dry dry increasingly wet increasingly wet

WUE6 dominant dominant weak moderate

UK’
37 warm increasingly warm increasingly cool cool

BIT increasing TOM variable decreasing TOM;
increasing marine

productivity

high marine
productivity;

increasing TOM

TEX86 warm increasingly cool high variability high variability

∆T low productivity low productivity increasing
productivity

high productivity
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elling and compound-specific carbon isotope analyses were performed to assess temporal

changes in rainfall, with δ13C also providing insight into changing vegetation patterns in

the region. Furthermore, this study concluded that compound-specific hydrogen isotope

analysis in this case is primarily forced through spatial changes in precipitation - a process

known as the continental or altitude effect - rather than reflecting changes in the actual

amount of rainfall. Finally, the elemental ratio of Fe/K is used to highlight changes in

chemical weathering intensity, which is strongly associated with shifts in humidity. The

known climate epochs, the MCA and LIA, overlap the temporal scale of this thesis, and

the regional response of southwest Africa to these climate shifts, traditionally associated

with Northern Hemispheric changes, was assessed.

Because of issues regarding temperature-integration of the water column and high

marine productivity, proxies deriving from marine and terrestrial GDGT concentration

ratios (TEX86 and BIT) were not suited to identifying trends in palaeoenvironmental

conditions, but were instead used:

i. As a comparative index to UK’
37, where the resulting differences in SST values were

discussed with reference to external forcing mechanisms;

ii. To demonstrate the importance of new proxy development;

iii. To assess the viability of these novel proxy methods within the BUS.

3 Review of aims and objectives

The following section summarizes the results of this thesis in the context of the initial

research questions outlined in Chapter 1.

What trends and variability have been observed in SST over the past 2,250

years?

A steady long-term decreasing trend in SST (-0.1ºC / 100 years) was identified to have

occurred in this region during the late Holocene. Temperatures during the last 500 years
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have been cool relative to the remainder of the record, with the lowest SSTs occurring at

ca. 1550 CE, coinciding with the middle of the LIA. After this period of relatively cool

temperatures during the LIA, SST reached a satellite-acquired modern-day equivalent at

ca. 1900 CE, which increases confidence in the palaeothermometer.

The variability in SST during the period under review (250 BCE to 1900 CE) was

surprisingly high, with a larger SST range (~6°) than has been previously identified in

the BUS (~2°C, Farmer et al. 2005), leading to the conclusion that the core’s southerly

position, combined with the complex topography of the embayment and the resulting

recirculation of waters, produces an amplified signal. Site specificity within the BUS is

also a likely cause for the lack of cohesion seen between these results and those of Leduc

et al. (2010) and Farmer et al. (2005).

What are the drivers of change in isotopic composition in the WRZ, and

what inferences can be made regarding terrestrial changes in hydrology and

vegetation type during this time?

Grain size data combined with pollen data (Zhao et al. 2015) revealed a strong WRZ sig-

nal in GeoB8323-2, as opposed to sediment being largely derived and transported from the

larger Orange River to the north. Hydrological changes are therefore taken as a reflection

of vegetative and hydrological changes within the Olifants catchment area (situated in

the WRZ). The increasing ratio of Olifants to Orange River sediment over time suggests

an increasingly wet WRZ, with peak rainfall at ca. 1800 CE, an implication reinforced

by the Fe/K and δ13C records. The inorganic ratio reflected a late Holocene movement

towards more humid conditions, and δ13C, rather than reflecting shifts in vegetation type,

was dominated by the effect of moisture changes within a region of minimal vegetative

change (Ehleringer & Cooper 1988; Scott & Vogel 2000). The strong resilience of South

African West Coast vegetation, with a particular emphasis on the multitude of species

endemic to the Fynbos biome, has been previously acknowledged, and the results of this

study concur with the view of high Fynbos resistance to external changes. A recent shift
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towards depleted δ13C values are manifested as a result of increased moisture availability,

or a decrease in water use efficiency.

Core-top, vegetation-corrected δD values removed possible effects of plant physiol-

ogy and evapotranspiration. Variation in leaf wax δD was found to be representative of

changes in water use efficiency, rainout distance and altitude, rather than precipitation

amount (Gat 1996; Sachse et al. 2012; Collins et al. 2013). Water use efficiency as

a mechanism of change was most evident in the period between 250 BCE and 600 CE,

whereas the relative strengths of the altitude and distance gradients were more prominent

in more recent times. A preliminary model of δD change assumes the signal recorded by

GeoB8323-2 to be mainly representative of coastal regions within the catchment area.

During times of aridity, full rainout occurred over the coastal plains of southwest Africa,

resulting in a more depleted isotopic signal, whereas during more mesic periods, rainfall

was present over the neighbouring Cederberg Mountains, producing a coastal-recorded

signal enriched in δD. The last 600 years (ca. 1350 – 1950 CE) have exhibited a trend

towards increasing moisture availability (the observed enrichment trend in δD being inter-

preted as a consequence decreasing water use efficiency), and rainout over a larger region

within the WRZ. This study’s interpretation of the fluctuations between arid and hu-

mid climate conditions in the Cederberg accords well with several previous records while

contrasting with others. This serves to highlight the importance of accounting for site

specificity and the need for higher resolution data when interpreting mountain records.

However, although δ13C and δD produced records of spatial and temporal hydrological

variability, it is important to recognize the need for multiproxy studies when making use

of isotope analysis in this region. Without the supplementary GeoB8323-2 records of

SST, grain size and Fe/K, as well as the data provided by previous palaeoclimatic studies

of the WRZ, it would have been extremely difficult to identify the root causes of δ13C and

δD variation. Additionally, southwest Africa contains an abundance of CAM succulents,

whose effects on palaeoenvironmental records are not yet fully understood (Boom et al.

2014). Caution is therefore advocated when interpreting isolated isotope signals recovered
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from this region, and suggests further research is necessary before a more robust estimate

can be made.

How do the marine and terrestrial proxy records compare with one another,

and how do they compare with what is known about regional and global climate

dynamics during this time? Are the conclusions drawn from this study of

southwest Africa applicable at a wider geographical scale?

I: The driving mechanism of southwest African climate dynamics

Cooling SSTs appear to be in general associated with increasingly wet WRZ conditions.

This contradicts the modern-day seasonal ocean-atmosphere system, where cold SSTs are

correlated to arid climates. The relationship observed in the GeoB8323-2 record is likely

the result of long-term, large-scale forcing and is not primarily induced by local winds.

Dominance of climate-drivers vary through time, with large-scale forcing mechanisms os-

cillating between periods of relative strength and weakness. Although the primary cause

of long-term change in the Northern Hemisphere is variation in orbital forcing/insolation,

Southern Hemisphere dynamics are heavily influenced by the westerlies (Chevalier and

Chase 2015). Even within the relatively short time-scale recorded in this study, alternat-

ing dominance of drivers is apparent. Shifts in Benguela SST in particular demonstrate

how a decreasing westerly wind presence could have a noticeable effect on the local region

of southwest Africa, as it allows for more local upwelling-driving winds to substantially

influence the system.

Variation in both insolation and the austral westerlies is closely tied to the amount of

moisture entering a system, upon which environmental changes are dependent. This is

consistent with conclusions drawn from several WRZ studies, which postulate that aridity

is a major driving factor in palaeoclimatological records (Chase and Thomas 2006; Chase

et al. 2015, 2013). Changes in the intensity and latitudinal position of the austral westerly

winds can affect both oceanic and terrestrial environments. This study supports the

argument that a northward migration, or intensification of westerly winds, is linked to an

97



3 REVIEW OF AIMS AND OBJECTIVES

increase in sea-ice (Lamy et al. 2004; Bard and Rickaby 2009), which would act to decrease

the temperatures of source waters moving into the BUS, decreasing its SST. Compounding

this, a diminishing influx of warm Agulhas leakage into the system (precipitated through

the wind-induced constriction of the ocean corridor south of South Africa that allows

transport between the eastern and western boundary currents), further cools BUS surface

waters. With regards to terrestrial hydrology, the same change in the austral westerly

wind belt would bring storm systems into closer proximity to South Africa. This would

increase the amount of rainfall falling over the country and accelerate chemical weathering.

An inverse relationship is thus established between SST and humidity.

The last 100 – 200 years experienced more pronounced variability than occurred during

the remainder of the period. The effects of human impact, as has been mentioned, cannot

be ruled out, since inhabitants started to heavily impact the environment at around this

time (Stager et al. 2012). However, the recent shift towards a warmer, drier climate

during this time (as shown by increasing SST and decreasing Olifants River transport) is

also suggestive of a southwards retreat of the austral westerlies. Consequently, the results

documented here likely reflect a combination of climatic and human changes.

II: Large-scale climate dynamics

A contributing factor to the hypothesis of hemispheric-scale forcing is the fact that similar

climate changes have been identified in other Southern Hemispheric palaeoenvironmental

records during the past millennium. Benguela SST variation, as revealed by GeoB8323-2,

and mid-latitude Peru Current SSTs both display a decreasing trend over the last 1000

years. In addition, the south-west coasts of South Africa and Chile both reveal an increase

in chemical weathering and humidity that is roughly synchronous with this cooling of

surface waters, as well as with glacial advancement (Kaiser et al. 2008; Lamy et al.

2002).

East of South Africa, a record from the south-central coast of Australia has also

documented a shift towards wetter conditions in a region sensitive to frontal systems
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borne on the westerlies, during the last 1000 years (Marx et al. 2011). However, the

zonal symmetry that appears throughout these Southern Hemisphere records may not

necessarily be a permanent feature. This study proposes that, at least in the region of

St. Helena Bay, local-scale forcing was dominant prior to 250 CE. This was perhaps due

in part to the position of the westerlies being too far south to exert significant force on

environmental conditions in the BUS and WRZ.

In addition to zonal symmetry, the records from GeoB8323-2 are suggestive of a pos-

sible relationship between Benguela SST in St. Helena Bay and Northern Hemisphere air

temperatures (Moberg et al. 2005). The intriguing correlation between these two vari-

ables (shown in Chapter 2: Figure 7) is not explored in detail here, but may be of interest

in future research, as it demonstrates the pressing need to develop and improve palaeo-

climatic records of the Southern Hemisphere. Increasing the robustness of data from

southwest Africa - a key region where local variation within the WRZ has been shown to

reflect, to some extent, large-scale climatic changes - would assist in this development.

How do TEX86 SST results compare with those obtained via the UK’
37 method?

What accounts for differences in the records and what does this mean for

further GDGT studies in the St. Helena Bay region?

In addition to the three initial research questions surrounding the BUS and southwest

Africa, a further research question was addressed. The TEX86 proxy index was, in this

case, not interpreted within the context of reconstructing southwest African palaeocli-

mate, but instead focused on posing questions with regards to the development of new

proxy methods, and the reliability of these proxies in different locations.

No identifiable relationship was found between the two SST proxies. Issues regarding

the reliability of TEX86 are most likely related to the tendency of Archaea to live within

the mixed layer of the water column and not only the surface (Kim et al. 2008; Lee et

al. 2008). TEX86 has also been documented as recording a seasonal, not mean annual,

temperature depending on when growth was most abundant (Hollis et al. 2012). On the
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grounds of these issues, TEX86 is not considered to be a reliable sea surface palaeother-

mometer in this southerly section of the BUS. This study does not advocate the use of

TEX86 within the St. Helena Bay region as an SST proxy until a clear distinction can

be made between sub-surface and surface oceanic production, as well as between seasonal

and annual mean ocean temperatures. However, TEX86 has proven to be advantageous

when used in conjunction with UK’
37, and may be able to determine changes in ocean

productivity below the surface mixed layer.

The Branched vs Isoprenoid Tetraether (BIT) index, also derived from GDGT con-

centrations, varies similarly to the alkenone-derived SST record, particularly from ca.

50 BCE - 1050 CE. The strong positive relationship between the two during this time

indicates that marine productivity may strongly affect the index, more so than has been

previously recognized. As GDGTs become more widely-used in palaeoclimatic research,

the linkages between SST and BIT will become more firmly established.

4 Challenges and constraints

The challenges of core hiatuses and age model discrepancies that were encountered in

this study are common to the majority of palaeoenvironmental research, namely the

differences in the input data and model software used to generate model ages. To account

for some of this difference, dates were rounded to the nearest half century, and despite

the hiatus in GeoB8323-2 limiting the period available for analysis, above this, sediment

is near-continuous. Furthermore, interpretations of GeoB8323-2 are constrained by their

limited ability to infer climatic conditions and variation in the WRZ at a catchment-level,

upon which account significant changes at individual locations within this region cannot

be separated from the integrated signal.

Unanticipated systemic challenges developed as a result of high productivity in the

BUS. The presence of Archaea within the mixed layer water column had a significant

effect on the SST value derived from GDGTs, to such a degree that there was no visible

correlation between the two SST proxies. In addition, the productivity at depth also
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prevented reliable measurement of GDGT-derived terrestrial organic matter. However,

these limitations served to emphasize the importance of multiproxy records, as well as

the ingenuity of developing alternative uses within a single proxy. Indeed, the comparison

between the two SST proxy methods highlighted both the need for continual development

of new proxies, and the value of method consideration with regards to site specificity.

5 Final remarks

The multiproxy study presented here has illustrated the ways in which southern African

palaeoenvironmental research is increasingly overcoming the stigma associated with the

negative impacts of aridity on palaeo-records. Terrestrial, lacustrine and marine datasets

are being used to significant effect within the region. The paucity of late Holocene studies,

however, remains an issue that has yet to be fully addressed.

The benefits of late Holocene reconstructions are unique within the palaeoclimate

record in that, in comparison to Quaternary timescales, they document relatively recent

conditions, which can be used in near-future prediction models. This rationale, com-

bined with the complex ocean-atmosphere dynamics observed between southwest Africa

and the greater Southern Hemisphere, demonstrates the need for further high-resolution

palaeoenvironmental studies of the WRZ. For this purpose, the recovery and analysis

of additional west coast mudbelt sediment could be facilitated, although more detailed

examination of existing, underutilized, core material may also reveal significant results,

as has been proven here.

This study has achieved its aims and has contributed to a deeper understanding of the

palaeoenvironmental record of the late Holocene in southwest Africa. Critical analysis and

interpretation of the new high-resolution record of variation in the BUS and, by extension,

the WRZ, contributes materially to the literature on late Holocene South African climate

dynamics.
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A AGE MODEL

Part VII

Appendices:

A Age Model
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Figure 17: Age model of GeoB8323 using Marine13 calibration curve. ∆R = 146 ± 85
14C years (Dewar et al. 2012). The different symbols represent different sample batches
and the black line depicts sedimentation rate (based on gastropods). Ages here are in BP
(before present), where 0 BP = 1950 CE.
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A AGE MODEL

Table 4: Age model for Core GeoB8323-2

Depth (cm) Date (CE) Error (years) Material Source

0 1950

1 1943

2 1935

3 1928

4 1921

5 1914

6 1906

7 1899

8 1892

9 1884

10 1877

11 1870

12 1863

12.5 1859 1 gastropod Hahn et al. (2015)

13 1852

14 1850

15 1845

16 1840

17 1834

18 1829

19 1824

20 1819

21 1813

22 1808

23 1803

24 1798
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A AGE MODEL

Table 4: Age model for Core GeoB8323-2

Depth (cm) Date (CE) Error (years) Material Source

25 1793

26 1787

27 1782

28 1777

29 1772

30 1767

31 1761

32 1756

33 1751

34 1746

35 1740

36 1735

37 1730

38 1725

39 1720

39.5 1717 70 gastropod Hahn et al. (2015)

40 1705

41 1692

42 1680

43 1668

44 1655

45 1643

46 1631

47 1619

48 1606

49 1594
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A AGE MODEL

Table 4: Age model for Core GeoB8323-2

Depth (cm) Date (CE) Error (years) Material Source

50 1582

51 1569

52 1557

53 1545

54 1532

55 1520

56 1508

57 1495

58 1483

59 1471

60 1459

61 1446

62 1434

63 1422

64 1409

65 1397

66 1385

67 1372

68 1360

69 1348

70 1335

71 1323

72 1311

73 1299

74 1286

75 1274
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A AGE MODEL

Table 4: Age model for Core GeoB8323-2

Depth (cm) Date (CE) Error (years) Material Source

76 1262

77 1249

78 1237

79 1225

80 1212

81 1200

82 1188

83 1175

84 1163

85 1151

86 1139

87 1126

88 1114

89 1102

90 1089

91 1077

92 1065

93 1052

94 1040

95 1028

96 1015

97 1003

98 991

99 979

100 966

101 954
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A AGE MODEL

Table 4: Age model for Core GeoB8323-2

Depth (cm) Date (CE) Error (years) Material Source

102 942

103 929

104 917

105 905

106 892

107 880

108 868

109 855

110 843

111 837 30 gastropod Hahn et al. (2015)

112 832

113 826

114 821

115 815

116 810

117 804

118 799

119 793

120 788

121 782

122 777

123 771

124 766 35 gastropod Herbert and Compton (2007)

125 755

126 745

127 734
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A AGE MODEL

Table 4: Age model for Core GeoB8323-2

Depth (cm) Date (CE) Error (years) Material Source

128 723

129 712

130 702

131 691

132 680

133 670

134 659

135 648

136 637

137 627

138 616

139 605

140 595

141 584

142 573

143 563

144 552

145 541

146 530

147 520

148 509

149 498

150 488

151 477

152 466

153 455
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A AGE MODEL

Table 4: Age model for Core GeoB8323-2

Depth (cm) Date (CE) Error (years) Material Source

154 445

155 434

156 423

157 413

158 402

159 391

160 380

161 370

162 359

163 348

164 338

165 327

166 316

167 306

168 295

169 284

170 273

171 263

172 252

173 241

174 231

175 220

176 209

177 198

178 188

179 177
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A AGE MODEL

Table 4: Age model for Core GeoB8323-2

Depth (cm) Date (CE) Error (years) Material Source

180 166

181 156

182 145

183 134

184 123

185 113

186 102

187 91

188 81

189 70

190 59

191 49

192 38

193 27

194 16

195 6

196 -5

197 -16

198 -26

199 -37

200 -48

201 -59

202 -69

203 -80

204 -91

205 -101
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A AGE MODEL

Table 4: Age model for Core GeoB8323-2

Depth (cm) Date (CE) Error (years) Material Source

206 -112

207 -123

208 -134

209 -144

210 -155

211 -166

212 -176

213 -187

214 -198

215 -208

216 -219

217 -230

218 -241

219 -251

220 -262

221 -273

222 -283

223 -294

224 -305

225 -316

226 -326

227 -337 35 gastropod Herbert and Compton (2007)
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B INORGANIC ANALYSIS

B Inorganic analysis

Table 5: Eigenvalues for end-member model numbers, from grain size analysis of
GeoB8323-2

Number of EMs R²mean

2 0.560

3 0.704

4 0.734

5 0.750

6 0.782

7 0.803

8 0.823

9 0.843

10 0.849
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B INORGANIC ANALYSIS

Table 6: End-member model results from grain size analysis of GeoB8323-2

Depth (cm) Date (CE) 1EM3 2EM3 3EM3

0 1950 0.556 0.000 0.444

1 1943 0.546 0.000 0.454

2 1935 0.494 0.000 0.506

3 1928 0.563 0.000 0.437

4 1921 0.468 0.000 0.532

5 1914 0.458 0.000 0.542

6 1906 0.468 0.000 0.532

7 1899 0.472 0.000 0.528

8 1892 0.406 0.000 0.594

10 1877 0.422 0.024 0.554

12 1863 0.460 0.092 0.447

13 1852 0.394 0.171 0.435

14 1850 0.445 0.070 0.484

15 1845 0.338 0.000 0.662

16 1840 0.444 0.032 0.524

17 1834 0.552 0.001 0.447

18 1829 0.387 0.135 0.478

19 1824 0.426 0.200 0.374

20 1819 0.436 0.294 0.270

21 1813 0.534 0.256 0.210

22 1808 0.694 0.132 0.174

23 1803 0.772 0.042 0.185

24 1798 0.782 0.041 0.177

25 1793 0.763 0.000 0.237

26 1787 0.743 0.070 0.187

27 1782 0.665 0.090 0.245
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Table 6: End-member model results from grain size analysis of GeoB8323-2

Depth (cm) Date (CE) 1EM3 2EM3 3EM3

28 1777 0.747 0.000 0.253

29 1772 0.764 0.000 0.236

31 1761 0.548 0.331 0.121

32 1756 0.714 0.097 0.188

33 1751 0.522 0.203 0.275

34 1746 0.503 0.178 0.319

35 1740 0.493 0.158 0.349

36 1735 0.571 0.135 0.294

37 1730 0.684 0.056 0.260

38 1725 0.696 0.056 0.248

39 1717 0.654 0.199 0.147

40 1705 0.776 0.053 0.171

41 1692 0.691 0.222 0.087

42 1680 0.436 0.487 0.077

43 1668 0.572 0.426 0.001

44 1655 0.680 0.270 0.051

45 1643 0.464 0.464 0.072

46 1631 0.314 0.686 0.000

47 1619 0.404 0.325 0.271

48 1606 0.555 0.395 0.050

49 1594 0.604 0.306 0.090

50 1582 0.323 0.450 0.227

51 1569 0.388 0.379 0.233

52 1557 0.039 0.706 0.255

53 1545 0.106 0.542 0.352

54 1532 0.068 0.490 0.442
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Table 6: End-member model results from grain size analysis of GeoB8323-2

Depth (cm) Date (CE) 1EM3 2EM3 3EM3

55 1520 0.045 0.605 0.351

56 1508 0.071 0.546 0.383

57 1495 0.031 0.492 0.476

58 1483 0.039 0.517 0.444

59 1471 0.084 0.411 0.506

60 1459 0.105 0.282 0.613

62 1434 0.112 0.412 0.475

63 1422 0.179 0.277 0.544

64 1409 0.271 0.089 0.640

65 1397 0.214 0.326 0.460

66 1385 0.280 0.273 0.447

67 1372 0.195 0.333 0.472

68 1360 0.200 0.356 0.443

69 1348 0.310 0.271 0.419

70 1335 0.133 0.535 0.332

71 1323 0.098 0.589 0.313

72 1311 0.106 0.479 0.415

73 1299 0.140 0.476 0.384

74 1286 0.106 0.550 0.344

75 1274 0.176 0.407 0.416

80 1212 0.000 0.529 0.471

81 1200 0.028 0.490 0.482

82 1188 0.037 0.429 0.535

83 1175 0.050 0.352 0.598

84 1163 0.192 0.300 0.508

85 1151 0.240 0.102 0.658

136
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Table 6: End-member model results from grain size analysis of GeoB8323-2

Depth (cm) Date (CE) 1EM3 2EM3 3EM3

86 1139 0.176 0.387 0.437

87 1126 0.120 0.288 0.592

88 1114 0.245 0.354 0.401

89 1102 0.264 0.440 0.296

90 1089 0.350 0.383 0.267

91 1077 0.158 0.549 0.293

92 1065 0.166 0.487 0.347

93 1052 0.087 0.489 0.424

94 1040 0.172 0.585 0.242

95 1028 0.056 0.429 0.515

96 1015 0.268 0.439 0.293

97 1003 0.074 0.269 0.656

98 991 0.203 0.276 0.520

99 979 0.202 0.347 0.451

100 966 0.111 0.401 0.488

101 954 0.079 0.630 0.290

102 942 0.152 0.471 0.377

103 929 0.052 0.432 0.516

104 917 0.000 0.654 0.346

105 905 0.136 0.575 0.290

106 892 0.036 0.683 0.282

107 880 0.000 0.601 0.399

108 868 0.000 0.653 0.347

109 855 0.147 0.516 0.337

110 843 0.085 0.597 0.318

111 837 0.042 0.598 0.360
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Table 6: End-member model results from grain size analysis of GeoB8323-2

Depth (cm) Date (CE) 1EM3 2EM3 3EM3

113 826 0.237 0.500 0.263

114 821 0.349 0.322 0.328

116 810 0.242 0.442 0.316

118 799 0.266 0.439 0.295

120 788 0.137 0.587 0.276

122 777 0.000 0.311 0.689

124 766 0.000 0.337 0.663

126 745 0.000 0.327 0.673

129 712 0.000 0.288 0.712

130 702 0.000 0.260 0.740

132 680 0.000 0.349 0.651

134 659 0.000 0.212 0.788

136 637 0.000 0.107 0.893

138 616 0.000 0.343 0.657

140 595 0.000 0.184 0.816

142 573 0.000 0.115 0.885

144 552 0.000 0.445 0.555

146 530 0.000 0.131 0.869

148 509 0.000 0.242 0.758

150 488 0.000 0.273 0.727

152 466 0.000 0.276 0.724

154 445 0.000 0.369 0.631

156 423 0.000 0.383 0.617

158 402 0.000 0.152 0.848

160 380 0.009 0.175 0.816

162 359 0.000 0.421 0.579
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Table 6: End-member model results from grain size analysis of GeoB8323-2

Depth (cm) Date (CE) 1EM3 2EM3 3EM3

164 338 0.000 0.305 0.695

166 316 0.000 0.470 0.530

168 295 0.000 0.367 0.633

170 273 0.000 0.137 0.863

172 252 0.000 0.462 0.538

174 231 0.000 0.493 0.507

176 209 0.000 0.469 0.531

178 188 0.000 0.173 0.827

180 166 0.000 0.407 0.593

182 145 0.098 0.187 0.715

184 123 0.043 0.124 0.833

186 102 0.048 0.000 0.952

188 81 0.142 0.097 0.762

190 59 0.000 0.319 0.681

196 -5 0.000 0.000 1.000

198 -26 0.000 0.000 1.000

200 -48 0.000 0.202 0.798

202 -69 0.026 0.000 0.974

204 -91 0.000 0.307 0.693

206 -112 0.000 0.567 0.433

208 -134 0.081 0.249 0.670

210 -155 0.000 0.167 0.833

212 -176 0.000 0.116 0.884

214 -198 0.000 0.086 0.914

216 -219 0.000 0.000 1.000

218 -241 0.000 0.000 1.000
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Table 6: End-member model results from grain size analysis of GeoB8323-2

Depth (cm) Date (CE) 1EM3 2EM3 3EM3

220 -262 0.000 0.000 1.000

222 -283 0.000 0.000 1.000

224 -305 0.000 0.000 1.000

226 -326 0.000 0.000 1.000
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Table 7: End-member model classes from grain size analysis of GeoB8323-2

Class Size (µm) 1EM3 2EM3 3EM3

F01 0.08 0.09 0.1 0.1

F02 0.30 0.09 0.07 0.13

F03 0.34 0.09 0.11 0.22

F04 0.38 0.16 0.18 0.22

F05 0.42 0.18 0.15 0.27

F06 0.47 0.19 0.15 0.33

F07 0.53 0.19 0.23 0.36

F08 0.60 0.23 0.23 0.41

F09 0.67 0.28 0.25 0.47

F10 0.75 0.29 0.29 0.56

F11 0.84 0.37 0.37 0.64

F12 0.95 0.43 0.42 0.77

F13 1.06 0.5 0.51 0.91

F14 1.19 0.6 0.62 1.09

F15 1.34 0.72 0.75 1.29

F16 1.50 0.83 0.9 1.52

F17 1.68 0.99 1.08 1.75

F18 1.89 1.13 1.28 2.01

F19 2.12 1.27 1.5 2.26

F20 2.38 1.43 1.73 2.52

F21 2.67 1.59 2 2.79

F22 2.99 1.76 2.25 3.03

F23 3.36 1.92 2.52 3.28

F24 3.77 2.09 2.79 3.49

F25 4.23 2.28 3.09 3.69

F26 4.74 2.46 3.37 3.88
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Table 7: End-member model classes from grain size analysis of GeoB8323-2

Class Size (µm) 1EM3 2EM3 3EM3

F27 5.32 2.66 3.65 4.03

F28 5.97 2.86 3.91 4.14

F29 6.70 3.08 4.15 4.23

F30 7.52 3.29 4.37 4.26

F31 8.43 3.53 4.56 4.26

F32 9.46 3.77 4.72 4.21

F33 10.62 4.02 4.83 4.12

F34 11.91 4.26 4.87 3.98

F35 13.37 4.5 4.85 3.82

F36 15.00 4.68 4.73 3.61

F37 16.83 4.78 4.53 3.36

F38 18.88 4.82 4.23 3.07

F39 21.19 4.74 3.88 2.74

F40 23.77 4.55 3.42 2.42

F41 26.67 4.24 2.93 2.08

F42 29.92 3.82 2.42 1.75

F43 33.58 3.35 1.92 1.43

F44 37.67 2.82 1.46 1.15

F45 42.27 2.28 1.07 0.91

F46 47.43 1.76 0.74 0.69

F47 53.21 1.3 0.5 0.5

F48 59.71 0.9 0.31 0.37

F49 66.99 0.61 0.19 0.27

F50 75.17 0.36 0.14 0.21

F51 84.34 0.24 0.12 0.14

F52 94.63 0.13 0.11 0.1
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Table 7: End-member model classes from grain size analysis of GeoB8323-2

Class Size (µm) 1EM3 2EM3 3EM3

F53 106.18 0.1 0.1 0.09

F54 119.13 0.1 0.13 0.03

F55 133.67 0.09 0.09 0

F56 149.98 0.08 0.06 0

F57 168.28 0.06 0.02 0

F58 188.81 0.03 0.01 0.01

F59 211.85 0.01 0.01 0.01

F60 237.70 0.01 0.01 0.01

F61 266.70 0.01 0.01 0.01

F62 299.25 0.01 0.01 0.01
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Table 8: Elemental ratio values from GeoB8323-2

Depth (cm) Date (CE) K (cps) Fe (cps) Fe/K

1 1943 19764 74583 3.77

2 1935 16920 70310 4.16

3 1928 13534 68035 5.03

4 1921 13861 72808 5.25

5 1914 14408 83848 5.82

6 1906 14726 78388 5.32

7 1899 12461 70806 5.68

8 1892 12113 69302 5.72

9 1884 18903 83660 4.43

10 1877 15589 76111 4.88

11 1870 17805 76722 4.31

12 1859 17596 75707 4.30

13 1852 16115 71998 4.47

14 1850 17190 73998 4.30

15 1845 16309 74017 4.54

16 1840 13485 71615 5.31

17 1834 12561 65394 5.21

18 1829 15882 67202 4.23

19 1824 15519 63396 4.09

20 1819 15093 64246 4.26

21 1813 15371 61631 4.01

22 1808 15214 62496 4.11

23 1803 14240 60176 4.23

24 1798 15515 62631 4.04

25 1793 16014 64262 4.01

26 1787 15541 64017 4.12
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Table 8: Elemental ratio values from GeoB8323-2

Depth (cm) Date (CE) K (cps) Fe (cps) Fe/K

27 1782 14379 60850 4.23

28 1777 14550 63427 4.36

29 1772 15373 62856 4.09

30 1767 14795 61944 4.19

31 1761 16077 64169 3.99

32 1756 15321 62378 4.07

33 1751 17020 65644 3.86

34 1746 14814 61846 4.17

35 1740 12747 59641 4.68

36 1735 15923 63625 4.00

37 1730 14340 59789 4.17

38 1725 15871 65959 4.16

39 1717 15389 64571 4.20

40 1705 16491 66137 4.01

41 1692 16193 66000 4.08

42 1680 15363 63779 4.15

43 1668 15055 63773 4.24

44 1655 16708 66651 3.99

45 1643 17210 69349 4.03

46 1631 16423 67341 4.10

47 1619 14746 66422 4.50

48 1606 16254 68095 4.19

49 1594 16185 67398 4.16

50 1582 16306 65894 4.04

51 1569 14250 61793 4.34

52 1557 15588 66993 4.30
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Table 8: Elemental ratio values from GeoB8323-2

Depth (cm) Date (CE) K (cps) Fe (cps) Fe/K

53 1545 14783 66284 4.48

54 1532 18391 71264 3.87

55 1520 18726 69490 3.71

56 1508 18195 69302 3.81

57 1495 18710 71066 3.80

58 1483 19122 70027 3.66

59 1471 17745 69643 3.92

60 1459 18608 70081 3.77

61 1446 18038 69203 3.84

62 1434 18690 70871 3.79

63 1422 17432 68233 3.91

64 1409 18122 70469 3.89

65 1397 18346 71457 3.89

66 1385 18744 71718 3.83

67 1372 19058 71932 3.77

68 1360 19847 73470 3.70

69 1348 19278 72916 3.78

70 1335 19879 72673 3.66

71 1323 19321 71470 3.70

72 1311 19645 71430 3.64

73 1299 18118 70818 3.91

74 1286 17695 68145 3.85

75 1274 18810 71064 3.78

76 1262 14553 64914 4.46

77 1249 15460 66497 4.30

78 1237 15842 67973 4.29
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Table 8: Elemental ratio values from GeoB8323-2

Depth (cm) Date (CE) K (cps) Fe (cps) Fe/K

79 1225 16920 67954 4.02

80 1212 16209 66732 4.12

81 1200 15078 65537 4.35

82 1188 16365 67494 4.12

83 1175 14414 63626 4.41

84 1163 13796 60468 4.38

86 1139 16368 66339 4.05

87 1126 17483 73355 4.20

88 1114 18769 73668 3.92

89 1102 19461 74515 3.83

90 1089 19066 72447 3.80

91 1077 19368 74315 3.84

92 1065 19463 75926 3.90

93 1052 19336 75283 3.89

94 1040 18117 74367 4.10

95 1028 19422 73311 3.77

96 1015 18916 72461 3.83

97 1003 19320 71133 3.68

98 991 18743 72147 3.85

99 979 19313 72274 3.74

100 966 18472 71763 3.88

101 954 17939 69985 3.90

102 942 19250 72659 3.77

103 929 19586 73720 3.76

104 917 19101 71901 3.76

105 905 19670 71907 3.66
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Table 8: Elemental ratio values from GeoB8323-2

Depth (cm) Date (CE) K (cps) Fe (cps) Fe/K

106 892 19250 70966 3.69

107 880 19808 71377 3.60

108 868 18654 67657 3.63

109 855 19103 68487 3.59

110 843 18370 68363 3.72

111 837 18593 68474 3.68

112 832 18797 68026 3.62

113 826 19961 72231 3.62

114 821 20185 71364 3.54

115 815 20632 73391 3.56

116 810 20579 74885 3.64

117 804 20233 74416 3.68

118 799 20584 74966 3.64

119 793 20275 74260 3.66

120 788 20312 73524 3.62

121 782 20410 74774 3.66

122 777 19055 73352 3.85

123 771 19806 74050 3.74

124 766 18897 74497 3.94

125 755 19256 74779 3.88

126 745 19463 73160 3.76

127 734 21878 76127 3.48

128 723 21334 76190 3.57

129 712 20787 74149 3.57

130 702 19314 71326 3.69

131 691 20315 72975 3.59
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Table 8: Elemental ratio values from GeoB8323-2

Depth (cm) Date (CE) K (cps) Fe (cps) Fe/K

132 680 19166 72778 3.80

133 670 20511 74386 3.63

134 659 20421 75866 3.72

135 648 20693 74759 3.61

136 637 19819 75377 3.80

137 627 20252 74504 3.68

138 616 19526 72366 3.71

139 605 20580 72817 3.54

140 595 21599 73219 3.39

141 584 20338 67544 3.32

142 573 21103 73567 3.49

143 563 21331 73957 3.47

144 552 20828 72530 3.48

145 541 20897 73267 3.51

146 530 21003 73547 3.50

147 520 21216 73439 3.46

148 509 21461 73862 3.44

149 498 21285 73934 3.47

150 488 19405 68963 3.55

151 477 19639 69980 3.56

152 466 20422 70523 3.45

153 455 19797 69785 3.53

154 445 20012 70631 3.53

155 434 20642 71157 3.45

156 423 19727 69572 3.53

157 413 19755 71302 3.61
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Table 8: Elemental ratio values from GeoB8323-2

Depth (cm) Date (CE) K (cps) Fe (cps) Fe/K

158 402 19427 68550 3.53

159 391 19474 69690 3.58

160 380 19399 69247 3.57

161 370 19126 69090 3.61

162 359 19694 69302 3.52

163 348 19915 70620 3.55

164 338 19684 69964 3.55

165 327 20133 71029 3.53

166 316 19697 71364 3.62

167 306 20336 71315 3.51

168 295 19745 71234 3.61

169 284 19295 70880 3.67

170 273 19155 69254 3.62

171 263 19486 70823 3.63

172 252 19023 69814 3.67

173 241 19220 70701 3.68

174 231 19642 70463 3.59

175 220 18917 69621 3.68

176 209 18474 68818 3.73

177 198 17802 62922 3.53

178 188 18787 67520 3.59

179 177 19794 71863 3.63

180 166 19093 71591 3.75

181 156 19192 72391 3.77

182 145 19750 72976 3.69

183 134 19496 74132 3.80
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Table 8: Elemental ratio values from GeoB8323-2

Depth (cm) Date (CE) K (cps) Fe (cps) Fe/K

184 123 17712 68869 3.89

186 102 19889 77240 3.88

187 91 19308 76521 3.96

188 81 19892 76178 3.83

189 70 20119 77774 3.87

190 59 19947 77035 3.86

191 49 19045 73465 3.86

192 38 19276 75918 3.94

193 27 19324 75840 3.92

194 16 20280 77617 3.83

195 6 19986 76736 3.84

196 -5 19399 75200 3.88

197 -16 20251 76427 3.77

198 -26 20614 75777 3.68

199 -37 20286 75055 3.70

200 -48 20319 74312 3.66

201 -59 21013 75829 3.61

202 -69 20803 75008 3.61

203 -80 21090 74994 3.56

204 -91 20622 74469 3.61

205 -101 20468 74277 3.63

206 -112 21360 74828 3.50

207 -123 20709 73025 3.53

208 -134 20847 71920 3.45

209 -144 21216 74014 3.49

210 -155 21009 73367 3.49
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Table 8: Elemental ratio values from GeoB8323-2

Depth (cm) Date (CE) K (cps) Fe (cps) Fe/K

211 -166 21208 73266 3.45

212 -176 20113 70511 3.51

213 -187 21449 72595 3.38

214 -198 22634 75060 3.32

215 -208 21783 72534 3.33

216 -219 21757 72683 3.34

217 -230 22680 73680 3.25

218 -241 22093 74093 3.35

219 -251 22693 74699 3.29

220 -262 22300 75038 3.36

221 -273 22035 74285 3.37

222 -283 20973 71456 3.41

223 -294 22113 74355 3.36

224 -305 21195 72758 3.43

225 -316 21442 74430 3.47

226 -326 21309 73524 3.45

227 -337 21280 74597 3.51
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C Organic analysis

Table 9: Abundance measurements from GeoB8323-2

Depth

(cm)

Age (CE) Concentration (ng/g) CPI (27-33) ACL (27-33)

nC29 SD nC31 SD nC33 SD

1 1950 573 59 2512 278 1083 143 15.4 31.1

5 1914 600 54 2693 260 1189 137 15.3 31.1

11 1866.5 607 74 2778 361 1254 195 15.3 31.1

15 1845 492 54 2094 247 913 129 14.4 31.1

20 1819 864 87 3272 352 1401 181 13.5 31.0

25 1793 822 109 2828 402 1261 214 11.4 30.9

30 1767 595 59 2046 218 894 114 13.3 30.9

35 1740 795 95 2956 379 1408 216 13.2 31.0

40 1717 602 74 2128 279 951 149 13.7 30.9

44 1655 783 90 2815 348 1272 188 13.1 31.0

50 1582 821 95 3098 385 1460 217 13.3 31.0

55 1520 838 79 3059 307 1414 170 13.1 31.0

60 1459 596 69 2160 267 969 143 12.4 31.0

64 1409 1020 127 3720 495 1721 274 12.8 31.0

70 1335 1050 128 3892 506 1827 285 12.2 31.0

74 1286 392 50 1444 195 607 98 12.4 30.9

80 1212 885 114 3407 471 1623 269 13.2 31.0

86 1139 563 47 2138 192 1019 110 13.4 31.0

90 1089 562 63 2143 255 1001 143 13.4 31.0

95 1028 776 65 2957 265 1341 144 12.7 31.0

100 966 645 60 2421 240 1118 133 12.7 31.0

105 905 814 69 3226 293 1558 170 13.3 31.0
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Table 9: Abundance measurements from GeoB8323-2

Depth

(cm)

Age (CE) Concentration (ng/g) CPI (27-33) ACL (27-33)

110 843 529 58 1990 235 906 128 13.2 31.0

120 788 727 47 2894 201 1346 112 12.7 31.0

125 755 454 46 1826 198 858 111 13.0 31.0

130 702 328 36 1362 159 660 92 13.5 31.1

134 659 1032 117 4190 510 1984 289 13.8 31.1

140 595 413 34 1618 141 708 74 14.0 31.0

144 552 550 47 2118 194 964 106 13.0 31.0

150 488 300 24 1125 97 521 54 12.1 31.0

160 380 1038 96 3855 382 1833 218 12.2 31.0

170 273 829 67 2983 258 1438 149 11.5 31.0

180 166 538 56 1876 209 897 119 12.0 31.0

190 59 828 88 3019 344 1423 194 11.9 31.0

200 -48 904 85 3432 346 1605 194 11.9 31.0

210 -155 559 53 1958 200 875 107 12.2 30.9

220 -262 599 51 2094 189 965 104 13.0 31.0
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Table 10: Carbon isotope results from GeoB8323-2

Depth

(cm)

Date (CE) δ13C29 (‰) σ (29)

(‰)

δ13C31 (‰) σ (31)

(‰)

δ13C33 (‰) σ (33)

(‰)

0.5 1950 -27.8 0.3 -26.4 0.1 -24.6 0.1

5 1914 -28.4 0.1 -26.5 0.2 -24.8 0.1

11.5 1867 -28.7 0.3 -26.0 0.1 -24.5 0.3

15 1845 -27.9 0.4 -26.5 0.1 -24.7 0.3

20 1819 -28.6 0.1 -26.5 0.2 -25.2 0.6

25 1793 -27.6 0.2 -25.9 0.0 -23.8 0.2

30 1767 -27.9 0.2 -25.6 0.1 -24.1 0.4

35 1740 -27.7 0.1 -26.2 0.0 -24.3 0.0

40 1717 -28.1 0.2 -26.0 0.2 -24.3 0.1

44 1655 -27.3 0.3 -25.9 0.0 -24.0 0.1

50 1582 -27.6 0.0 -26.1 0.1 -23.6 0.2

55 1520 -27.7 0.1 -26.0 0.1 -24.0 0.4

60 1459 -27.7 0.4 -26.1 0.1 -24.2 0.2

64 1409 -27.5 0.2 -26.0 0.2 -24.8 0.2

70 1335 -27.8 0.4 -26.1 0.1 -24.8 0.2

74 1286 -27.9 0.1 -25.9 0.0 -24.2 0.1

80 1212 -28.5 0.1 -25.7 0.1 -24.4 0.1

86 1139 -28.0 0.1 -25.8 0.2 -24.3 0.2

90 1089 -27.7 0.4 -25.7 0.1 -24.4 0.1

95 1028 -27.6 0.2 -26.0 0.3 -24.1 0.4

100 966 -27.8 0.3 -26.0 0.1 -24.1 0.1

105 905 -27.9 0.2 -25.7 0.2 -24.5 0.1

110 843 -27.8 0.1 -26.0 0.1 -24.4 0.2

120 788 -26.9 0.1 -26.0 0.2 -24.3 0.4

125 755 -27.9 0.0 -26.0 0.1 -24.3 0.0
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Table 10: Carbon isotope results from GeoB8323-2

Depth

(cm)

Date (CE) δ13C29 (‰) σ (29)

(‰)

δ13C31 (‰) σ (31)

(‰)

δ13C33 (‰) σ (33)

(‰)

130 702 -27.7 0.2 -26.1 0.1 -24.1 0.2

134 659 -27.3 0.2 -26.0 0.1 -24.6 0.2

140 595 -27.5 0.3 -26.0 0.1 -24.1 0.3

144 552 -27.8 0.4 -25.9 0.0 -24.3 0.1

150 488 -27.5 0.2 -25.9 0.0 -24.4 0.1

160 380 -28.1 0.1 -25.9 0.0 -24.1 0.0

170 273 -28.0 0.1 -25.5 0.2 -23.7 0.3

180 166 -27.6 0.0 -25.6 0.1 -23.7 0.3

190 59 -27.5 0.1 -26.1 0.0 -23.9 0.0

200 -48 -27.7 0.2 -26.1 0.1 -24.3 0.2

210 -155 -27.7 0.4 -26.2 0.0 -24.3 0.2

220 -262 -27.9 0.1 -26.1 0.2 -24.6 0.1
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Table 11: Hydrogen isotope results from GeoB8323-2

Depth

(cm)

Date (CE) δD29 (‰) σ (29) (‰) δD31 (‰) σ (31) (‰) δD33 (‰) σ (33) (‰)

0.5 1950 -131 1 -137 1 -137 1

5 1914 -131 4 -134 1 -137 0

11.5 1866.5 -138 1 -136 2 -142 1

15 1845 -133 2 -134 1 -137 1

20 1819 -134 0 -135 1 -135 2

25 1793 -137 3 -135 0 -138 0

30 1767 -137 1 -139 1 -138 1

35 1740 -138 1 -140 1 -139 2

40 1717 -140 1 -142 1 -144 0

44 1655 -139 2 -138 1 -140 3

50 1582 -134 3 -136 1 -139 2

55 1520 -138 3 -140 1 -140 2

60 1459 -138 0 -139 0 -140 3

64 1409 -135 3 -138 0 -139 2

70 1335 -138 1 -139 1 -140 0

74 1286 -145 1 -143 0 -143 0

80 1212 -134 2 -141 3 -138 1

86 1139 -142 2 -141 2 -144 3

90 1089 -141 0 -141 2 -143 1

95 1028 -138 1 -139 0 -138 3

100 966 -142 0 -141 0 -143 1

105 905 -138 2 -142 1 -140 0

110 843 -139 1 -141 0 -140 1

120 788 -139 2 -139 1 -139 2

125 755 -141 0 -140 1 -142 0
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Table 11: Hydrogen isotope results from GeoB8323-2

Depth

(cm)

Date (CE) δD29 (‰) σ (29) (‰) δD31 (‰) σ (31) (‰) δD33 (‰) σ (33) (‰)

130 702 -135 1 -136 0 -138 1

134 659 -134 1 -136 0 -139 1

140 595 -141 0 -141 0 -142 0

144 552 -140 1 -139 1 -141 1

150 488 -142 0 -140 1 -140 1

160 380 -138 1 -135 1 -139 1

170 273 -140 1 -138 2 -141 1

180 166 -141 0 -142 0 -144 0

190 59 -141 0 -141 1 -142 1

200 -48 -140 0 -140 0 -139 2

210 -155 -143 1 -140 0 -140 1

220 -262 -140 1 -140 2 -142 0
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Table 12: Apparent fractionations between leaf wax and source water compared between
taxanomic categories (adapted from Sachse et al. 2012).

eC29/MAP (‰)

Plant group Median δD S.D. n 95% C.I. % Sample

C3 gymnosperms -110 24 15 12

C3 dicots -118 30 168 4

C3 weighted average -113 18 183 50

C4 monocots (e.g. grasses) -139 25 56 7 20

CAM (monocots & dicots) -114 22 17 30

Mixed vegetation ε estimate -118 12

Core-top δD -131
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Table 13: SST results from alkenone analysis of GeoB8323-2

Depth (cm) Date (CE) C37:3 C37:2 UK’37 σUK’37 SST (°C) σ SST (°C)

5 1914 527 565 0.517 0.000 14.35 0.00

11.5 1867 483 473 0.494 0.003 13.64 0.08

15 1845 402 362 0.473 0.004 12.99 0.13

20 1819 692 574 0.454 0.005 12.41 0.15

25 1793 1172 1053 0.474 0.005 13.03 0.14

30 1767 526 480 0.477 0.000 13.13 0.01

35 1740 728 665 0.477 0.004 13.11 0.12

40 1717 365 317 0.465 - 12.76 -

44 1655 832 660 0.442 0.000 12.07 0.01

50 1582 662 453 0.407 0.003 11.01 0.10

55 1520 625 714 0.534 0.003 14.84 0.09

60 1459 763 686 0.472 0.004 12.97 0.12

64 1409 552 477 0.464 0.000 12.71 0.01

70 1335 692 716 0.509 0.004 14.10 0.12

74 1286 634 756 0.543 0.002 15.13 0.06

80 1212 456 468 0.507 0.004 14.03 0.11

86 1139 363 334 0.479 0.001 13.19 0.04

90 1089 520 688 0.568 0.005 15.88 0.16

95 1028 612 517 0.457 0.004 12.51 0.12

100 966 494 448 0.474 0.004 13.04 0.14

103 929 335 424 0.559 0.002 15.60 0.06

105 905 559 702 0.556 0.001 15.52 0.04

107 880 414 600 0.592 0.002 16.60 0.05

110 843 591 764 0.564 0.002 15.77 0.06

112 832 436 570 0.567 0.007 15.85 0.21

115 815 742 822 0.526 0.000 14.60 0.01
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Table 13: SST results from alkenone analysis of GeoB8323-2

Depth (cm) Date (CE) C37:3 C37:2 UK’37 σUK’37 SST (°C) σ SST (°C)

120 788 371 424 0.534 0.005 14.85 0.15

125 755 517 640 0.553 0.001 15.43 0.04

130 702 228 309 0.576 0.005 16.12 0.16

134 659 368 328 0.473 0.006 13.01 0.18

140 595 317 273 0.463 0.001 12.70 0.02

144 552 307 379 0.552 0.000 15.40 0.01

150 488 259 359 0.581 0.001 16.28 0.03

160 380 377 380 0.503 0.005 13.91 0.14

170 273 355 323 0.477 0.002 13.13 0.06

180 166 552 498 0.475 0.005 13.07 0.14

190 59 669 728 0.522 0.004 14.49 0.11

200 -48 600 713 0.544 0.004 15.15 0.13

210 -155 272 322 0.271 - 15.11 -

220 -262 466 601 0.563 0.001 15.74 0.02
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Table 15: Comparison between alkenone and TEX86 SST and the resulting upwelling index ΔT

Age (CE) SSTUK’37 (°C) SSTTEX86 (°C) TEX-UK’37 (ΔT)

1914 14.19 14.35 -0.16

1867 14.31 13.64 0.67

1845 15.86 12.99 2.87

1819 14.50 12.41 2.08

1793 14.69 13.03 1.66

1767 15.04 13.13 1.91

1740 14.94 13.11 1.83

1717 15.48 12.76 2.72

1655 15.03 12.07 2.96

1582 14.62 11.01 3.61

1520 13.08 14.84 -1.75

1459 15.38 12.97 2.41

1409 14.31 12.71 1.60

1335 15.42 14.10 1.33

1286 13.51 15.13 -1.63

1212 16.71 14.03 2.68

1139 14.09 13.19 0.91

1089 14.38 15.88 -1.51

1028 14.73 12.51 2.22

966 16.24 13.04 3.19

929 15.60

905 14.87 15.52 -0.66

880 16.60

843 13.68 15.77 -2.09

832 15.85

815 12.16 14.60 -2.44
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Table 15: Comparison between alkenone and TEX86 SST and the resulting index ΔT

Age (CE) SSTUK’37 (°C) SSTTEX86 (°C) TEX-UK’37 (ΔT)

788 14.40 14.85 -0.45

755 14.98 15.43 -0.46

702 14.58 16.12 -1.54

659 15.31 13.01 2.31

595 14.71 12.70 2.01

552 15.11 15.40 -0.29

488 13.27 16.28 -3.01

380 14.94 13.91 1.03

273 15.79 13.13 2.66

166 14.97 13.07 1.90

59 15.12 14.49 0.63

-48 14.56 15.15 -0.60

-155 16.51 15.11 1.40

-262 14.25 15.74 -1.49
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