N-ACETYLCYSTEINE FOR NON-PARACETAMOL DRUG-INDUCED LIVER INJURY: A SYSTEMATIC REVIEW

Student name: Dr Mohamed Farouk Chughlay

Student number: CHGMOH001

SUBMITTED TO THE UNIVERSITY OF CAPE TOWN
In partial fulfillment of the requirements for the degree

MASTER OF MEDICINE (MMed) IN CLINICAL PHARMACOLOGY

Faculty of Health Sciences

UNIVERSITY OF CAPE TOWN

Date of submission: 10 September 2015

Supervisor: Dr Karen Cohen

University: University of Cape Town, Department of Medicine, Division of Clinical Pharmacology
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
CONTENTS

Declaration

Dedication and Acknowledgements

Acronyms and Abbreviations

PART A: Published Peer-reviewed Protocol

PART B: Publication-ready Manuscript

Ethics Approval

Instructions to Authors (British Journal of Clinical Pharmacology)

Turnitin Plagiarism Report
DECLARATION

I, Mohamed Farouk Chughlay, hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university. I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever.

Signed on 09 September 2015:

Signed
DEDICATION

I dedicate this work to my dearest wife, Sameera. Completing this MMED could not have been achieved without your love and support.

ACKNOWLEDGEMENTS

I have been privileged to work with an exceptionally talented and dedicated team. I have learnt something unique from each of them. Special thanks must go to my friend and co-reviewer, Nicky Kramer, for all her hard work and dedication throughout the review process.
ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASLD</td>
<td>American Association for the Study of Liver Diseases</td>
</tr>
<tr>
<td>ALF</td>
<td>Acute Liver Failure</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine aminotransferase</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate aminotransferase</td>
</tr>
<tr>
<td>DDW</td>
<td>Digestive Diseases Week</td>
</tr>
<tr>
<td>DILI</td>
<td>Drug-induced Liver Injury</td>
</tr>
<tr>
<td>EASL</td>
<td>European Association for the Study of Liver</td>
</tr>
<tr>
<td>ICTRP</td>
<td>International Clinical Trials Registry Platform</td>
</tr>
<tr>
<td>INR</td>
<td>International Normalised Ratio</td>
</tr>
<tr>
<td>NAC</td>
<td>N-acetylcysteine</td>
</tr>
<tr>
<td>NAPQI</td>
<td>N-acetylp-benzo-quinone imine</td>
</tr>
<tr>
<td>PACTR</td>
<td>Pan African National Clinical Trials Registry</td>
</tr>
<tr>
<td>PRISMA</td>
<td>Preferred Reporting Items for Systematic reviews and Meta-Analyses</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomised Controlled Trial</td>
</tr>
<tr>
<td>RevMan</td>
<td>Review Manager</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
</tbody>
</table>
PART A: PUBLISHED PEER-REVIEWED PROTOCOL
N-acetylcysteine for non-paracetamol drug-induced liver injury: a systematic review protocol

Mohamed Farouk Chughlay1*, Nicole Kramer2, Mahmoud Werfalli3, Wendy Spearman4, Mark Emmanuel Engel5 and Karen Cohen1

Abstract

Background: Drug-induced liver injury (DILI) refers to acute or chronic liver injury that may occur as a consequence of using drugs and herbal or dietary supplements. Specific therapies for DILI are limited. There is considerable evidence for efficacy and safety of N-acetylcysteine (NAC) in management of paracetamol-induced liver injury. More recently, research has explored the use of NAC in non-paracetamol drug-induced liver injury. It is important to summarise the evidence of NAC for non-paracetamol DILI to determine if NAC may be considered a therapeutic option in this condition.

Methods/design: We will conduct a systematic review of the benefit and harm of NAC in non-paracetamol drug-induced liver injury. Primary and secondary outcomes of interest are pre-specified. Primary outcomes include all-cause mortality, mortality due to DILI, time to normalisation of liver biochemistry (e.g. return of alanine transaminase to <100 U/l and/or international normalized ratio (INR) <1.5) and adverse events. Secondary outcomes include transplantation rate, time to transplantation, transplant-free survival and duration of hospitalisation. We will include randomized controlled trials (RCTs) and prospective cohort studies. RCTs will contribute to the evaluation of safety and efficacy of NAC, whereas, the cohort studies will contribute exclusively to the evaluation of safety. We will search several bibliographic databases (including PubMed, Scopus, CINAHL, CENTRAL), grey literature sources, conference proceedings and ongoing trials. Following data extraction and assessment of the risk of bias, we will conduct a meta-analysis if feasible, as well as subgroup analyses. We will assess and explore clinical and statistical heterogeneity.

Discussion: The aim of this review is to provide evidence on the effectiveness and safety of NAC in non-paracetamol DILI. We anticipate that the results could aid health care practitioners, researchers and policymakers in the decision-making regarding the use of NAC in patients with non-paracetamol DILI.

Systematic review registration: PROSPERO CRD42014008771

Keywords: N-acetylcysteine, Acetylcysteine, Drug-induced, Hepatitis, Liver, Liver failure, Non-paracetamol, Non-acetaminophen

Background

Drug-induced liver injury (DILI) refers to acute or chronic liver injury that may occur as a consequence of using drugs and herbal or dietary supplements [1, 2]. According to recent estimates, the yearly incidence of DILI is estimated to be between 14–19 cases per 100,000 [3, 4]. While this may suggest that the condition is uncommon, there is still a considerable potential for harm. In the USA, it is the most common cause of acute liver failure, with 11 % of cases due to idiosyncratic DILI [5]. Moreover, the true incidence of DILI may be underestimated due to diagnostic difficulty as well as underreporting [2].

A number of risk factors are thought to be associated with the development of DILI. In general, older age is a risk factor, with DILI occurring more commonly in adults compared with children [6]. While there seems to be a biological basis for age as a risk factor, it may also...
reflect that adults are more frequently exposed to potential hepatotoxins compared with children. However, age as a risk factor does not always hold true, such that for certain drugs, the risk is greater in children e.g. DILI caused by valproic acid is more common in children. Females appear to be at a greater risk compared to their male counterparts [7]. Certain genetic variations place individuals at risk of DILI due to specific drugs e.g. isoniazid DILI and N-acetyltransferase 2 gene polymorphism as well as the HLA-*B5701 genotype and flucloroxacinil [8]. While these genetic variations have been shown to increase the risk for the development of DILI, they do not predict severity of injury. Pre-existing liver disease is a further independent risk factor, with this being observed in patients coinfected with viral hepatitis and tuberculosis who develop DILI in response to antiviral and antituberculous drugs [9, 10]. Furthermore, alcohol abuse and malnutrition are also risk factors associated with the development of DILI [2].

The general management of DILI consists of the discontinuation of the offending drug in combination with supportive treatment [2]. Patients often require prolonged hospital stays which may be costly to both patient and health service. Therapeutic re-challenge with the offending drug is generally not recommended but may be attempted in certain instances after a thorough consideration of the risks and potential benefits. There are specific therapies available for DILI caused by certain drugs. However, these are limited to carnitine for valproic acid and N-acetylcysteine (NAC) for paracetamol overdose [11, 12]. This limited availability highlights the need for further research into therapies for DILI.

NAC was first used as a treatment for paracetamol overdose in 1979 [13]. Since then, it has been firmly established as an effective and safe treatment for this condition [12]. NAC has also been shown to be safe and effective outside of paracetamol overdose. NAC has been evaluated as a treatment option for non-paracetamol acute liver failure in adults and paediatric patients. In a randomised clinical trial comparing NAC with placebo in adults with non-paracetamol acute liver failure, NAC was associated with an improvement in transplant-free survival in a subgroup of patients with grade 1 and grade 2 encephalopathy [14]. In a prospective study conducted in adults with non-paracetamol acute liver failure at a centre without the facility for transplantation, the use of NAC was associated with a mortality benefit [15]. In a retrospective study in paediatric patients with non-paracetamol acute liver failure, NAC was associated with a shorter hospital stay and improved survival post-transplantation [16]. Furthermore, in a case series of patients with DILI secondary to Amanita phalloides mushroom poisoning, 10 out of 11 patients recovered fully after receiving NAC in combination with other therapies [17].

NAC has also been evaluated for non-liver related clinical indications. These indications include its use as a mucolytic agent in pulmonary diseases, in the prevention of radio-contrast associated nephrotoxicity and for the treatment of certain ophthalmic conditions [18–21].

In paracetamol overdose, a form of non-idiosyncratic DILI, the pathogenesis underlying hepatotoxicity is fairly well understood. Here, the metabolism of paracetamol produces an excess of the hepatotoxic metabolite N-acetyl-p-benzo-quinone imine (NAPQI). NAPQI is normally inactivated by hepatic glutathione; however, glutathione is depleted in paracetamol overdose. This results in an accumulation of NAPQI with consequent hepatic cell injury and death. NAC is thought to replenish hepatic glutathione stores, which forms the basis for its efficacy in this condition [22]. In contrast, the mechanism underlying hepatotoxicity in idiosyncratic DILI does not involve glutathione depletion. However, the precise pathogenesis in idiosyncratic DILI is not clearly defined [23]. The proposed pathogenic mechanisms in idiosyncratic DILI include direct cell injury, immune mediated damage and mitochondrial injury. These mechanisms, especially those that lead to mitochondrial damage, have significant implications. Mitochondria are involved in protecting hepatocytes against oxidative stress from oxygen-free radicals in the liver. The damage and loss of mitochondria leads to an accumulation of oxygen-free radicals and subsequent oxidative cell damage. NAC may be of benefit in this context through its antioxidant effect [24, 25]. Furthermore, additional benefits of NAC in this context involve the improvement of systemic haemodynamics and tissue oxygen delivery, as well as other favourable effects on the injured liver [26, 27].

The aim of this systematic review is to review the evidence of safety and effectiveness including improvement in time, if any, to normalisation of liver function tests and of NAC in non-paracetamol drug-induced liver injury. NAC has already been established as a safe and effective treatment for paracetamol-induced liver injury. Recently, the research focus has shifted to investigating the use of NAC in non-paracetamol drug-induced liver injury. It is important to review the evidence of NAC safety and efficacy in this setting to determine if NAC may be considered as a treatment option in non-paracetamol drug-induced liver injury. The evidence from this research may then be used to inform the decisions made by policymakers, health care practitioners, as well as researchers in this area.

Methods/design
This review protocol is registered in the PROSPERO International Prospective Register of systematic reviews, registration number CRD42014008771.
Criteria for considering studies for this review

Types of studies
We will include randomized controlled trials (RCTs) and prospective cohort studies. RCTs will contribute to the evaluation of safety and efficacy of NAC, whereas, the cohort studies will contribute exclusively to the evaluation of safety.

Language and timing
No language and time restrictions will apply.

Types of participants
Human participants of any age diagnosed with non-paracetamol drug-induced liver injury and diagnosed according to recognised diagnostic criteria [28–31].

Types of interventions
Intervention, N-acetylcysteine administered intravenously or orally.
Control, placebo or standard of care (as described in the study) or alternative therapy.
There will be no restriction on dose, timing and route of administration of NAC.

Types of outcome measures
Results must include quantitative data for outcomes measured.

Primary outcomes All-cause mortality, mortality due to DILI, time to normalisation of liver biochemistry (e.g. return of alanine transaminase to <100 U/l and/or international normalized ratio (INR) <1.5), adverse events (graded using the Common Terminology Criteria for Adverse Events) [32].

Secondary outcomes Transplantation rate, time to transplantation, transplant-free survival, duration of hospitalisation.

Search methods for identification of studies
We will perform a comprehensive search of databases and conference proceedings to identify all relevant studies available by October 2014, regardless of language or publication status. We will search both peer-reviewed journal articles and grey literature (unpublished, internal or non-reviewed papers and reports).

Electronic searches
We will search the following electronic databases: Cochrane Library, Medline via PubMed, SCOPUS, Web of Science (SciELO), and EBSCO (CINAHL, Africa-Wide, Academic Search Premier). We will use both text words and medical subject heading (MeSH) terms. The literature search strategy will be adapted to suit each database. Briefly, we will use a combination of the following terms: N-acetylcysteine, Acetylcysteine, Drug-induced, Hepatitis, Liver, Liver Failure, Non-paracetamol, Non-acetaminophen.

The detailed search strategy is provided in Additional file 1.

Conference proceedings
We will conduct a manual search of relevant abstracts or proceedings of the following conferences (2000 to present): American Association for the Study of Liver Diseases (AASLD) Drug-Induced Liver Injury Conference, AASLD-FDA-NIH-PhRMA-Hepatotoxicity Special Interest Group Conferences, European Association for the Study of Liver (EASL), The International Liver Congress and Digestive Diseases Week (DDW). If conference abstracts are not adequately comprehensive, we will use the information from these abstracts to search for the full text articles. We will attempt to contact the authors of the conference abstracts if we are unable to track down the full text articles. If we are unable to obtain the full text articles and contact the authors, we will list the studies as potentially relevant.

Manual searches
We will obtain reference lists of relevant studies identified, and the full text articles reviewed for inclusion in the review will be checked for additional information.

Searching other sources
Grey Literature will include Google Scholar, SCOPUS for conference proceedings. www.opengrey.eu and www.grey lit.org. For ongoing studies, we will search the Pan African National Clinical Trials Registry (PACTR), World Health Organisation (WHO) International Clinical Trials Registry Platform (ICTRP), and ClinicalTrials.gov and NHS Clinical Trials. Individuals and organisations working in the field of drug-induced liver injury will be consulted for information regarding unpublished data and work in progress.

Data collection and analysis
The methods for data collection and analysis will be based on the Cochrane Handbook of Systematic Reviews for Interventions [33].

Selection of studies
Two review authors (MFC and NK) will independently review all relevant material identified from the above search. After reading the titles and abstracts of the identified articles, we will acquire the full text articles of all citations deemed to meet the inclusion criteria. These articles will be independently inspected to verify that they meet the pre-specified inclusion criteria. We will
resolve disagreements between the two reviewers regarding study eligibility through discussion with a third author (KC). For all studies excluded by the assessors, we will describe the reasons for exclusion.

Data extraction and management
MFC and NK will use a standardised data extraction form to extract data from the included studies and to assess the study quality. Extracted information will include administrative details, verification assessment of the diagnosis of DILI, details of the intervention, details of comparators, details of outcomes and information for assessment of the risk of bias. A pilot data extraction will be performed using the data extraction form, and the form will be modified if required. Any discrepancies will be resolved via discussion of the original articles with a third author (KC). We will request missing data from study authors. References will be managed using Mendeley Desktop reference manager and data will be analysed using Review Manager 5.3 (RevMan5) software. MFC and NK will both enter data and conduct cross-checks to ensure that there are no data entry errors.

Assessment of risk of bias in included studies
MFC and NK will independently assess the risk of bias in each of the included studies. The assessment will include information on the following: sequence generation, allocation concealment, blinding, incomplete outcome data or missing data, selective outcome reporting, other sources of bias and overall risk of bias. Each methodological component will be assessed, and the RCTs will be described as having a low, unclear or high risk of bias, as per the Cochrane Handbook of Systematic Reviews of Interventions [33]. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses tool will be used for assessing the risk of bias of the included cohort studies [34]. More specifically, we will use an adapted version of the modified NOS (see Additional file 2) to assess the risk of bias of the included cohort studies [35]. This modified NOS includes seven questions amongst four domains of risk assessment: methods for selecting study participants (selection bias), methods to control for confounding (performance bias), statistical methods (detection bias) and methods of exposure and outcome assessment (information bias). Risk of bias will be measured using a scale ranging from 0 (high risk of bias) to 3 (low risk of bias), and question-specific descriptions including examples of varying degrees of bias are included. Items from the original NOS pertaining to adequacy of follow-up, selection of participants (representativeness of cohort) and assessment of outcomes will be retained in the adapted modified NOS.

The two authors will resolve disagreements in the assessment of risk of bias by discussion and consensus, consulting KC to resolve any persistent disagreements.

Measures of treatment effect
Data will be analysed using RevMan5. The type of outcomes may include dichotomous, continuous and time-to-event data. For dichotomous data, a summary statistic will be calculated (e.g. odds ratio and risk ratio) with accompanying confidence interval (e.g. 95 % CI). For continuous data, a summary statistic such as a mean difference or standardised mean difference will be calculated. Two methods of summarising the time-to-event data will be considered. The first will use the methods of survival analysis and express the intervention effect as a hazard ratio. For the second method, the time-to-event data may be analysed as dichotomous data if the status of all study participants at a fixed time point are known and further summarised as an odds ratio or risk ratio with accompanying confidence interval. Every effort will be made to contact the original authors or investigators of the selected articles to assist with missing or incomplete data.

Dealing with missing data
In the cases of absent or incomplete evidence found in the included studies, authors will be contacted for further information. We will report unclear issues as presented rather than make assumptions. Should they be necessary, we will be explicit about assumptions made.

Data synthesis, assessment/investigation of heterogeneity
Heterogeneity will be assessed by inspecting forest plots initially then through the Cochran’s chi-square test using a 10 % level of significance cut-off (due to the low power of the test) and the I-square statistic (I^2) where values will be evaluated as follows:

- 0–40 % = might not be important
- 30–60 % = moderate
- 50–90 % = substantial
- 75–100 % = considerable

Where heterogeneity is statistically significant, subgroup analysis using the variables of age group, sex and setting (e.g. geographical region), as well as sensitivity analysis, will be conducted to explore the potential sources of heterogeneity. Symmetry of funnel plots will be used to assess for publication or selective reporting bias.

We will attempt primary meta-analyses of the included RCTs for both effectiveness and harm outcomes. If meta-analysis of RCTs is feasible, a random effects model will be constructed. We plan to quantify the statistical reliability of data in the cumulative meta-analysis by undertaking sequential analysis. Should small study effects be found, we
will conduct a meta-regression on small study effects. If the identified RCTs are of substantial heterogeneity rendering meta-analysis not feasible, the findings will be presented in narrative form and will include relevant tables and figures to aid in data presentation. We will consider conducting separate secondary meta-analyses for prospective cohort studies limited to the outcomes of harm. If this is not feasible, the findings from the included cohort studies will be presented in a narrative form. All authors will contribute to the narrative review.

In addition to evaluating all DILI participants, we also plan to explore differences in outcomes between the following subgroups: sex, age strata, geographical region, diagnostic certainty of DILI and exclusion of other possible causes, aetiology of DILI (e.g. antituberculous, HIV antiretrovirals, antiepileptics, herbal supplements), comorbidity, severity of DILI (using severity scales such as Drug-Induced Liver Injury Network 5-point scale where severity of liver injury is based upon the presence of jaundice, hospitalisation, signs of hepatic or other organ failure, ultimate outcome and graded as 1+ mild, 2+ moderate, 3+ moderate-severe, 4+ severe, 5+ fatal) and pattern of liver injury (hepatocellular, mixed and cholestatic). For the analyses of outcomes within subgroups, the same methods of analyses for measuring treatment effects as a whole will be applied.

We will use the grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to assess the quality of evidence [36].

Sensitivity analyses

A sensitivity analysis of the findings from primary meta-analysis is planned, and the aim is to determine whether the findings are robust to decisions made during the review process [32]. Amongst others, we will explore the impact of including or excluding particular studies and the chosen method for analysis. Lastly, we will also evaluate the impact of excluding studies deemed as having a high risk of bias.

Presenting and reporting of results

This systematic review will be reported according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement [37].

Discussion

This review will provide evidence on the effectiveness and safety of NAC in non-paracetamol DILI. We anticipate that the findings could aid health care practitioners and policymakers in the decision-making regarding the use of NAC in patients with non-paracetamol DILI. Furthermore, the findings may benefit researchers by providing guidance for the focus of future research through the identification of gaps in the existing evidence and advise on the conduct of future high-quality research through the identification of the shortcomings in previously conducted research.

Additional files

Additional file 1: Electronic search strategy. This describes the electronic search strategy used in searching the electronic databases.

Additional file 2: Modified Newcastle-Ottawa Scale. This describes an adapted version of a modified Newcastle-Ottawa Scale for the risk of bias assessment of included cohort studies.

Abbreviations

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

MFC conceived the idea for the review. MFC drafted the written protocol with the support of NK. All authors contributed to the development of the protocol. MW provided input on study methodology. INS served as a content expert in the field of drug-induced liver injury. MBE provided input on study methodology, general study oversight and publication support. RC served as the overall supervisor, content expert and provided input on study methodology. MFC and NK will be involved in data acquisition. All authors will contribute to data analysis and the interpretation of results. MFC will draft the final manuscript intended for publication. All authors have given their approval for publication.

Authors' information

Mohamed Faisal Chughlay (MFC) is a clinical pharmacology registrar in the Department of Medicine, UCT. Nicole Kramer (NK) is a research pharmacist at the Clinical Research Centre, UCT. Wendy Spearman (WS) is a consultant hepatologist and is head of the Division of Hepatology, Department of Medicine, UCT. Mahmood Werfalli is a PhD Fellow, Division of endocrinology and Diabetes, Chronic Disease Initiative for Africa (CDIA) Department of Medicine, UCT. Mark Emmanuel Engel (MEE) and is a senior researcher, Department of Medicine, UCT. Karen Cohen is a consultant clinical pharmacologist, Department of Medicine, UCT.

Acknowledgements

The research team would like to acknowledge the following:

- Sameera Ali for her editorial support and valuable input during protocol development.
- The critical input and support of the University of Cape Town (UCT) Evidence-based Medicine Research Support Unit funding through the incentivising research in the Faculty of Health Sciences funding scheme.
- Tammy Sulaaman from the UCT Health Sciences Library, as well as Tamara Kredo and Jay Oliver from the South African Cochrane Centre, for assisting with the development of the search strategy.

Author details

1Division of Clinical Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7025 Cape Town, South Africa. 2Clinical Research Centre, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7025 Cape Town, South Africa. 3Division of Endocrinology and Diabetes, Chronic Disease Initiative for Africa (CDIA) Department of Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7025 Cape Town, South Africa. 4Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7025 Cape Town, South Africa. 5Department of Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7025 Cape Town, South Africa.

References

Additional file 1: Electronic search strategy

<table>
<thead>
<tr>
<th>Search</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>#5</td>
<td>Search (#3 AND #4)</td>
</tr>
<tr>
<td>#3</td>
<td>Search (#1 OR #2)</td>
</tr>
<tr>
<td>#2</td>
<td>Search (liver failure[mh] OR liver failure[tiab] OR hepatic failure[tiab] OR hepatic injur*[tiab])</td>
</tr>
</tbody>
</table>
Additional file 2: Adapted version of a modified Newcastle-Ottawa Scale for single use in specific context

Modified Newcastle-Ottawa Scale (NOS)

Legend

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Definitely no (high risk of bias)</td>
</tr>
<tr>
<td>1</td>
<td>Mostly no</td>
</tr>
<tr>
<td>2</td>
<td>Mostly yes</td>
</tr>
<tr>
<td>3</td>
<td>Definitely yes (low risk of bias)</td>
</tr>
</tbody>
</table>

Domain of evaluation: Methods for selecting study participants (i.e. Selection bias)

Is the source population (cases, controls, cohorts) appropriate and representative of the population of interest?

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>High risk of bias</td>
</tr>
<tr>
<td>1</td>
<td>Mostly no</td>
</tr>
<tr>
<td>2</td>
<td>Mostly yes</td>
</tr>
<tr>
<td>3</td>
<td>Low risk of bias</td>
</tr>
</tbody>
</table>

Example of low risk of bias: A consecutive sample or random selection from a population that is representative of the condition under study.

Example of moderate risk of bias: A consecutive sample or random selection from a population that is not highly representative of the condition under study.

Example of high risk of bias: The source population cannot be defined or enumerated (i.e. volunteering or self-recruitment).

Domain of evaluation: Methods to control confounding (i.e. Performance bias)

Is the sample size adequate and is there sufficient power to detect a meaningful difference in the outcome of interest?

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>High risk of bias</td>
</tr>
<tr>
<td>1</td>
<td>Mostly no</td>
</tr>
<tr>
<td>2</td>
<td>Mostly yes</td>
</tr>
<tr>
<td>3</td>
<td>Low risk of bias</td>
</tr>
</tbody>
</table>

Example of low risk of bias: Sample size was adequate and there was sufficient power to detect a difference in the outcome.

Example of high risk of bias: Sample size was small and there was not enough power to test outcome of interest.

Did the study identify and adjust for any variables or confounders that may influence the outcome?

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Definitely no (high risk of bias)</td>
</tr>
<tr>
<td>1</td>
<td>Mostly no</td>
</tr>
<tr>
<td>2</td>
<td>Mostly yes</td>
</tr>
<tr>
<td>3</td>
<td>Definitely yes (low risk of bias)</td>
</tr>
</tbody>
</table>
Example of low risk of bias: The study identified and adjusted for all possible confounders that may influence estimates of association between exposure and outcome (i.e. Was the patient being treated for a medical condition such as chronic pain and was being prescribed opioids while on methadone treatment?)

Example of moderate risk of bias: The study identified and reported possible variables that may influence the outcome but did not explore the interaction.

Example of high risk of bias: The study either did not report any variables of influence or acknowledge variables of influence when it was clear they were present.

Domain of evaluation: Statistical methods (i.e. Detection bias)

Did the study use appropriate statistical analysis methods relative to the outcome of interest?

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(high risk of bias)</td>
<td></td>
<td></td>
<td></td>
<td>(low risk of bias)</td>
</tr>
</tbody>
</table>

Example of low risk of bias: The study reported use of appropriate statistical analysis as required (i.e. adjusting for an unbalanced distribution of a specific covariate among sexes, or correcting for multiple testing error)

Example of moderate risk of bias: The study either used correct statistical methods but did not report them well, or used the incorrect methods but reported them in detail.

Example of high risk of bias: The study did not use appropriate statistical analysis as required (i.e. did not adjust for an unbalanced distribution of a specific covariate among sexes, or correct for multiple testing error when necessary) or did not report them adequately.

Is there little missing data and did the study handle it accordingly?

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(high risk of bias)</td>
<td></td>
<td></td>
<td></td>
<td>(low risk of bias)</td>
</tr>
</tbody>
</table>

Example of low risk of bias: The study acknowledged missing data to be less than 10% and specified the method of handling it.

Example of moderate risk of bias: The study either had greater than 15% but they specified the method they used to handle it.

Example of high risk of bias: The study had greater than 15% missing data and did not handle it at all.

Domain of evaluation: Methods for measuring outcome variables (i.e. Information bias)

Is the methodology of the outcome measurement explicitly stated and is it appropriate?
Example of low risk of bias: The study provides a detailed description of the outcome measure(s) which are appropriate for the outcome of interest.

Example of moderate risk of bias: The study provides a somewhat complete description of outcome measurements and they are justified.

Example of high risk of bias: The study provides limited information on the methods of measuring the outcome and the measure is not appropriate considering the outcome.

Is there an objective assessment of the outcome of interest?

Example of low risk of bias: The study used objective methods to discern the outcome status of participants (i.e. laboratory measurements, medical records).

Example of moderate risk of bias: The study relied on subjective data as the primary method to discern outcome status of participants (i.e. self-report).

Example of high risk of bias: The study had limited reporting about assessment of outcomes.
N-acetylcysteine for non-paracetamol drug-induced liver injury: a systematic review

Mohamed Farouk Chughlay
Division of Clinical Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
CHGMOH001@myuct.ac.za
Telephone: +27 21 406 6148

Nicole Kramer
Clinical Research Centre, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
Nicky.kramer@uct.ac.za

C. Wendy Spearman
Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
Wendy.spearman@uct.ac.za

Mahmoud Werfalli
Division of Endocrinology and Diabetes, Chronic Disease Initiative in Africa (CDIA) Department of Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
Werfy@live.co.za
Structured Summary

Aims: There are limited therapeutic options for drug-induced liver injury (DILI). N-acetylcysteine (NAC) is known to be of benefit in management of DILI due to paracetamol overdose and may also be useful in the management of non-paracetamol DILI. Our objective was to systematically review evidence for the use of NAC as a therapeutic option for non-paracetamol DILI.

Methods: We conducted a systematic review of the benefit and harm of NAC in non-paracetamol DILI. We searched for randomized controlled trials (RCTs) and prospective cohort studies. We searched several bibliographic databases (including PubMed, Scopus, CINAHL, CENTRAL), grey literature sources, conference proceedings and ongoing trials. Our pre-specified primary outcomes were all cause and DILI related mortality, time to normalisation of liver biochemistry and adverse events. Secondary outcomes were proportion receiving liver transplant, time to transplantation, transplant-free survival and hospitalization duration. Two reviewers independently assessed studies for inclusion and quality and extracted data.

Results: We identified one RCT of NAC versus placebo in patients with non-paracetamol acute liver failure. There was no difference in the primary outcomes of overall survival at 3-weeks between NAC [70%, 95% Confidence Interval (CI)= 60% to 81%, n=81] and placebo (66%, 95% CI= 56% to 77%, n=92). NAC
significantly improved the secondary outcomes of transplant-free survival compared with placebo: 40% NAC (95% CI= 28% to 51%) versus 27% placebo (95% CI= 18% to 37%). A subgroup analysis according to aetiology found improved transplant-free survival in patients with non-paracetamol DILI; NAC (58%, n=19) versus placebo (27%, n=26); odds ratio (OR) 0.27 (95% CI= 0.076 to 0.942). Overall survival was similar NAC (79%) versus placebo (65%); OR 0.50 (95% CI= 0.13 to 1.98).

Conclusion: Current available evidence is limited and does not allow for any firm conclusions to be made regarding the role of NAC in non-paracetamol DILI. We therefore highlight the need for further research in this area.

Systematic Review Registration: This review is registered in the PROSPERO International Prospective Register of systematic reviews, registration number CRD42014008771.

Keywords: N-acetylcysteine, Acetylcysteine, Drug-induced, Hepatitis, Liver, Liver Failure, Non-paracetamol, Non-acetaminophen

What is already known about this subject

- N-acetylcysteine is of benefit in the treatment of paracetamol-induced liver injury.
- Recent literature suggests a possible role for N-acetylcysteine in the treatment non-paracetamol drug-induced liver injury.

What this study adds

- We conducted a systematic review of the benefit and harm of NAC in non-paracetamol DILI.
- There is limited evidence supporting the use of N-acetylcysteine in non-paracetamol drug-induced liver injury.
- We therefore highlight the need for further research.
Background

Drug-induced liver injury (DILI) refers to acute or chronic liver injury that may occur as a consequence of using drugs and herbal or dietary supplements [1, 2]. According to recent estimates, in the United States of America (USA), it is the most common cause of acute liver failure (ALF), with 11% of cases due to idiosyncratic DILI [3]. In South Africa it is the second highest cause of death due to adverse drug reactions in medical wards [4]. Two recent studies estimated incidence at between 14–19 cases per 100,000 persons receiving prescription medication [5, 6]; true incidence of DILI may be underestimated due to diagnostic difficulty as well as underreporting [2].

The general management of DILI consists of the discontinuation of the offending drug in combination with supportive treatment [2]. Patients often require prolonged hospital stays which may be costly to both patient and health service. Therapeutic re-challenge with the offending drug is generally not recommended but may be attempted in certain instances after a thorough consideration of the risks and potential benefits. Specific therapies available for DILI are limited to carnitine for valproic acid and N-acetylcysteine (NAC) for paracetamol overdose [7, 8].

NAC was first used as a treatment for paracetamol overdose in 1979 [9]. Since then, it has been firmly established as an effective and safe treatment for this condition [8]. NAC has also been shown to be safe and effective outside of paracetamol overdose. NAC has been evaluated as a treatment option for non-paracetamol ALF in adults and paediatric patients. In a randomised clinical trial comparing NAC with placebo in adults with non-paracetamol ALF, NAC was associated with an improvement in transplant-free survival, in subgroups of patients with grade 1 and grade 2 encephalopathy [10]. In a cohort study conducted in adults with non-paracetamol ALF at a centre without the facility for transplantation, the use of NAC was associated with a mortality benefit [11]. In a retrospective study in paediatric patients with non-paracetamol ALF, NAC was associated with a shorter hospital stay and improved survival post-transplantation [12]. Furthermore, in a case series of patients with DILI secondary to Amanita phalloides
mushroom poisoning, 10 of 11 patients recovered fully after receiving NAC in combination with other therapies [13].

NAC has also been evaluated for non-liver related clinical indications. These indications include its use as a mucolytic agent in pulmonary diseases, in the prevention of radio-contrast associated nephrotoxicity and for the treatment of certain ophthalmic conditions [14–17].

In paracetamol overdose, a form of non-idiosyncratic DILI, the pathogenesis underlying hepatotoxicity is fairly well understood. Here, the metabolism of paracetamol produces an excess of the hepatotoxic metabolite N-acetylp-benzo-quinone imine (NAPQI). NAPQI is normally inactivated by hepatic glutathione; however, glutathione is depleted in paracetamol overdose. This results in an accumulation of NAPQI with consequent hepatic cell injury and death. NAC is thought to replenish hepatic glutathione stores, which forms the basis for its efficacy in this condition [18]. In contrast, the mechanism underlying hepatotoxicity in idiosyncratic DILI does not involve glutathione depletion. However, the precise pathogenesis in idiosyncratic DILI is not clearly defined [19]. The proposed pathogenic mechanisms in idiosyncratic DILI include direct cell injury, immune mediated damage and mitochondrial injury. These mechanisms, especially those that lead to mitochondrial damage, have significant implications. Mitochondria are involved in protecting hepatocytes against oxidative stress from oxygen-free radicals in the liver. The damage and loss of mitochondria leads to an accumulation of oxygen-free radicals and subsequent oxidative cell damage. NAC may be of benefit in this context through its antioxidant effect [20, 21]. Furthermore, additional benefits of NAC in this context involve the improvement of systemic haemodynamics and tissue oxygen delivery, as well as other favourable effects on the injured liver [22, 23].

The aim of this systematic review was to synthesise the evidence of safety and efficacy including improvement in time, if any, to normalisation of liver function tests and of NAC in non-paracetamol DILI.
NAC has already been established as a safe and effective treatment for paracetamol-induced liver injury. Recently, the research focus has shifted to investigating the use of NAC in non-paracetamol drug-induced liver injury. It is important to review the evidence of NAC safety and efficacy in this setting to determine if NAC may be considered as a treatment option in non-paracetamol DILI. The evidence from this research may then be used to inform the decisions made by policymakers, health care practitioners, as well as researchers in this area.

Methods/Design

This review is registered in the PROSPERO International Prospective Register of systematic reviews, registration number: CRD42014008771. The protocol was peer reviewed [24].

Criteria for considering studies for this review

Types of studies

We included randomized controlled trials (RCTs) and prospective cohort studies.

Language and Timing

No language and time restrictions applied.

Types of participants

Human participants of any age diagnosed with non-paracetamol DILI, diagnosed according to recognised diagnostic criteria [25–28].

Types of interventions

Intervention: NAC administered intravenously or orally. Control: placebo or standard of care (as described in the study) or alternative therapy.

There were no restrictions on dose, timing and route of administration of NAC.
Types of outcome measures

Primary outcomes

All-cause mortality, mortality due to DILI, time to normalisation of liver biochemistry (e.g. return of alanine transaminase to < 100 U/l and/or International Normalised Ratio (INR) < 1.5), adverse events (graded using the Common Terminology Criteria for Adverse Events) [29].

Secondary outcomes

Transplantation rate, time to transplantation, transplant-free survival, duration of hospitalisation.

Search Methods for identification of studies

We performed a comprehensive search in June 2015 of electronic databases and conference proceedings to identify all relevant studies, regardless of language or publication status. We searched both peer-reviewed journal articles and grey literature (unpublished, internal or non-reviewed papers and reports).

Electronic Searches

We searched the following electronic databases: Cochrane Library; Medline via PubMed; SCOPUS; Web of Science (SciELO); EBSCO (CINAHL, Africa-Wide, Academic Search Premier). We used both text words and medical subject heading (MeSH) terms. The literature search strategy was adapted to suit each database. Briefly, we used a combination of the following terms: N-acetylcysteine, Acetylcysteine, Drug-induced, Hepatitis, Liver, Liver Failure, Non-paracetamol, Non-acetaminophen.

Conference proceedings

We conducted a manual search of relevant abstracts or proceedings of the following conferences (2000 to 2015): American Association for the Study of Liver Diseases (AASLD) Drug-Induced Liver Injury Conference, AASLD-FDA-NIH-PhRMA-Hepatotoxicity Special Interest Group Conferences, European Association for the Study of Liver (EASL), The International Liver Congress and Digestive Diseases Week (DDW).
Searching other sources

We searched Google Scholar; SCOPUS for conference proceedings; and www.opengrey.eu and www.greylit.org for grey literature. For ongoing studies, we searched the Pan African National Clinical Trials Registry (PACTR); World Health Organisation (WHO) International Clinical Trials Registry Platform (ICTRP); ClinicalTrials.gov and NHS Clinical Trials. Individuals and organisations working in the field of drug-induced liver injury were consulted for information regarding unpublished data and work in progress.

Data collection and analysis

The methods for data collection and analysis are based on the Cochrane Handbook of Systematic Reviews for Interventions [30].

Selection of studies

Two review authors (MFC and NK) independently reviewed all relevant material identified from the above search. After reading the titles and abstracts of the identified articles, we acquired the full text articles of all citations deemed to meet the inclusion criteria. These articles were independently inspected to verify that they met the pre-specified inclusion criteria. We resolved disagreements between the two reviewers regarding study eligibility through discussion with a third author (KC).

Data extraction and management

Two authors (MFC and NK) used a standardised data extraction form to extract data from the included study and to assess study quality. Any discrepancies were resolved via discussion of the original article with a third author. We requested additional data from study authors. References were managed using Mendeley Desktop reference manager. We prepared our review using Review Manager 5.3 (RevMan5) software [31].
Assessment of risk of bias in included studies

MFC and NK independently assessed the risk of bias in the included study. The assessment included information on: sequence generation, allocation concealment, blinding, incomplete outcome data or missing data, selective outcome reporting, other sources of bias, and overall risk of bias. Each methodological component was assessed and the study was described as having a low, unclear, or high risk of bias, as per the Cochrane Handbook of Systematic Reviews of Interventions [30]. The two authors resolved disagreements in the assessment of risk of bias by discussion and consensus, consulting a third reviewer, KC to resolve any persistent disagreements.

Measures of treatment effect

We planned to conduct our data analysis using Review Manager Version 5.3 [31]. We present the data from the included study with respect to overall survival and transplant-free survival in the overall study population with acute liver failure. We proceeded to calculate the odds ratios and 95% CI for the outcomes of overall survival and transplant-free survival for the DILI subgroup.

Data synthesis, assessment of heterogeneity and sensitivity analyses

In view of limited available data, we could not conduct meta-analysis; assess heterogeneity or sensitivity analyses.

Presenting and reporting of results

This systematic review is reported according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement [32]. We used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to assess the quality of the evidence and summarise relevant study outcomes [33].
Results

Results of Search

Figure 1 shows the flow diagram for study inclusion. A total of 691 records were identified through the search until June 2015. After screening titles and abstracts, we excluded 687 records leaving 4 articles for full-text review. We excluded 3 further articles after full-text review, and identified 1 article from which we could extract data for inclusion in a qualitative analysis. We also identified one ongoing placebo-controlled trial of NAC for DILI due to first-line tuberculosis treatment, still recruiting [34].

Characteristics of included study (See Table 1)

The included study was a randomised, double-blind, placebo-controlled trial investigating a 72-hour intravenous infusion of NAC as treatment for adults with non-paracetamol ALF, at multiple sites in the USA [10]. ALF was defined in the study as encephalopathy with accompanying coagulopathy. Randomisation was stratified by hepatic encephalopathy grade (1-2 versus 3–4) and study site. The study enrolled 173 participants and randomly assigned 81 participants to receive NAC and 92 participants to receive placebo. After randomisation, an infusion of either 5% dextrose with NAC or 5% dextrose only (placebo) was administered. The primary outcome was overall survival at 3 weeks. Although not listed as an outcome of interest, the study did report on rates of adverse events in study participants.

Effect of NAC on outcomes in overall study population (participants with non-paracetamol ALF): Overall survival at 3 weeks was similar for the NAC and placebo groups; 57/81 (70%; 95% CI 60% to 81%); versus 61/92 (66%; 95% CI 56% to 77%), Chi squared p = 0.283. In contrast, transplant-free survival was greater in the NAC group than the placebo group; 32/81 (40%; 95% CI 28% to 51%); versus 25/92 (27%; 95% CI 18% to 37%), Chi squared p=0.043. In a secondary analysis, transplant-free survival was stratified by coma grade. In patients with coma grade I–II survival was higher in the NAC group than the placebo group; 30/58 (52%; 95% CI= 38% to 65%); versus 17/56 (30%; 95% CI 17% to 43%), p=0.010, with an odds ratio (OR) of 2.46 (95% CI= 1.14 to 5.30). In contrast in participants with coma grades III–IV transplant-free survival was lower
in the NAC group but this did not reach statistical significance; 2/23 (9%; 95% CI 0% to 22%); versus 8/36 (22%; 95% CI 7% to 37%), p= 0.912, OR 0.33 (95% CI= 0.06 to 1.74). The difference in odds ratios according to coma grade was statistically significant (p= 0.012). Transplantation rates were 26/81 (32%; 95% CI= 21% to 43%) in the NAC group and 41/92 (45%; 95% CI 34% to 55%) in the placebo group, p=0.09. Rates of adverse events were similar between groups; nausea and vomiting was more common in the NAC than the placebo group, 11/81 (14%; 95% CI 6% to 22), versus 4/92 (4%; 95% CI 0%, 9%), p= 0.031. In total, there were 5 early discontinuations of therapy due to side-effects possibly due to the drug, 4 due to NAC.

Effect of NAC on outcomes in subgroup with ALF due to non-paracetamol DILI: A subgroup analysis by aetiology of ALF was conducted. Non-paracetamol DILI was the largest aetiological subgroup with 45 participants, of which 19 received NAC and 26 received placebo. Outcome data on the 45 DILI participants were limited to overall survival and transplant-free survival. There were 4 deaths in the NAC arm compared with 9 deaths in the placebo arm, which corresponded with an overall survival of 79% (n=15) in the NAC arm and 65% (n=17) in the placebo arm, with an odds ratio of 0.50 (95 % CI= 0.13, 1.98, p=0.33), and risk ratio for death of 0.61 (95 % CI= 0.22 to 1.68. p=0.34). Transplant-free survival was higher in the participants with non-paracetamol DILI treated with NAC than those treated with placebo; 58% (n=11) versus 27% (n=7), with an odds ratio of (95 % CI: 0.076 to 0.942, p=0.04), and risk ratio for death of 0.57 (95% CI 0.32 to 1.03, p=0.06). The study was not powered to detect differences within the DILI subgroups.

Risk of Bias in included study

We graded the overall risk of bias in the study as “unclear”. See Table 2 for further details regarding risk of bias assessment.

Quality of the Evidence

The GRADE assessment of the quality of the evidence indicated that the evidence for the various outcomes to be of “very low” or “low” quality. See Table 3 for the details of the GRADE assessment.
Characteristics of excluded studies (See Table 3)

The first excluded study was a small open-label RCT conducted in Iran that investigated the hepatoprotective effect of NAC in antituberculous DILI [35]. This study was excluded on the basis that it investigated the use of NAC in the prevention of DILI, as opposed to the treatment of DILI.

The second excluded study was a multicentre, randomised, double masked, placebo-controlled trial investigating NAC as treatment for non-paracetamol ALF in paediatric participants [36]. Of relevance to our review is that this study included a subgroup analysis according to the aetiology of ALF. Non-paracetamol DILI was included in the aetiology of ALF and although there were 3 cases of ALF secondary to non-paracetamol DILI in the placebo group, there were no cases of ALF secondary to non-paracetamol DILI amongst those who received NAC. Therefore, we excluded this study on the basis that it could not provide evaluable data for our review.

The third excluded study was a cohort study investigating NAC as treatment in non-paracetamol ALF [11]. This study was excluded on the basis that it included a comparison with retrospective controls, and therefore did not meet our inclusion criteria of being a prospective cohort study.

Discussion

After systematic review of published and unpublished literature, we identified only one study addressing efficacy and safety of NAC in non-paracetamol DILI. Participants with non-paracetamol DILI were a subgroup in this randomized controlled trial. This subgroup analysis only addressed one of our primary endpoints (overall survival) and found no difference in this subgroup, but was underpowered for this comparison. Additionally, GRADE assessment indicated the evidence for this endpoint to be of “very low” quality. Based on this study’s findings NAC may be of benefit in treatment of non-paracetamol DILI in improving the secondary endpoint of transplant free survival. Thus, we cannot draw firm conclusions on the efficacy of NAC in management of non-paracetamol DILI, on the basis of limited low quality outcome
data confined to this small subgroup. Findings may not be generalizable to patients with less severe forms of liver injury. Patients with DILI present on a spectrum from mild liver injury to severe liver injury (ALF). We found no studies exploring the benefit of NAC in patients with less severe forms of liver injury. A final limitation concerns the methodological quality, with the study deemed as having an overall “unclear” risk of bias.

The strengths of our review include the use of a comprehensive search, thereby limiting the likelihood that we missed any potentially relevant studies. In addition, eligibility for study inclusion, data extraction and the risk of bias assessment was carried out by two authors independently, thereby reducing the chances of bias in our review process.

This review has highlighted the need for further research to investigate the role of NAC in non-paracetamol DILI. There is a clear need for prospective studies with sufficient sample sizes that enrol participants with varying grades of severity of DILI. However, there may be certain challenges in undertaking these studies such as the difficulty in enrolling sufficient numbers of participants as a consequence of diagnostic difficulty and underreporting of DILI [2].

We found an ongoing placebo-controlled RCT currently enrolling in South Africa attempting to address this research gap, by investigating the role of NAC in participants with antituberculous DILI [34]. Low-resource settings such as South Africa have a high prevalence of tuberculosis with accompanying high rates of antituberculous DILI between 5-33% of patients [37]. Death may be a consequence of DILI and this was highlighted in a recently published cross-sectional survey in hospitalised patients, which found DILI to be the second most common adverse drug reaction contributing to death, with antituberculous drugs being implicated in the majority of DILI cases [4].
Conclusion

Our review has highlighted a paucity of data, limited to a single RCT in non-paracetamol ALF suggesting a trend for improved transplant and overall survival in a subgroup of participants with non-paracetamol DILI. However, the evidence was graded as “low” or “very low” quality, and the study was not powered to detect differences in this subgroup with DILI. Therefore, due to the limited available evidence, we are unable to conclusively determine if there is a role for NAC in patients with non-paracetamol DILI. Thus, we are unable to make recommendations for clinical practice and emphasise the need for high quality prospective RCTs in this area.

Competing interests

All authors have completed the Unified Competing Interest form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare no support from any organization for the submitted work, no financial relationships with any organizations that might have an interest in the submitted work in the previous 3 years and no other relationships or activities that could appear to have influenced the submitted work.

Sources of funding

There was no specific funding source for this manuscript.

Author’s contributions

MFC conceived the idea for the review and drafted the manuscript. MFC and NK were involved in data acquisition. All authors contributed to the final manuscript. WS served as a content expert in the field of drug-induced liver injury. MW provided input on methodology. KC served as the overall supervisor, content expert and provided input on methodology, data analysis and interpretation. All authors have given their approval for publication.
Author information

Mohamed Farouk Chughlay (MFC) is a clinical pharmacology registrar in the Department of Medicine, UCT. Nicole Kramer (NK) is a research pharmacist at the Clinical Research Centre, UCT. Wendy Spearman (WS) is a consultant hepatologist and is head of the Division of Hepatology, Department of Medicine, UCT. Mahmoud Werfalli is a PhD Fellow, Division of endocrinology and Diabetes, Chronic Disease Initiative for Africa, (CDIA) Department of Medicine, UCT. Karen Cohen is a consultant clinical pharmacologist, Department of Medicine, UCT.

Acknowledgements

1. Dr Sameera Allie for her support and valuable input throughout the review process.
2. Dr Mark Engel from the Evidence-Based Medicine Research Support Unit, Faculty of Health Sciences, University of Cape Town funded through the incentivising research in the Faculty of Health Sciences funding scheme.

References

29. National Cancer Institute Common Terminology Criteria for Adverse Events v4.0 NCI, NIH, DHHS. May 29, 2009 NIH publication # 09-7473

Figure 1: Flow diagram of screened, excluded and included publications
Table 1: Characteristics of included study

Lee et al. 2009 [10]

<table>
<thead>
<tr>
<th>Methods</th>
<th>Randomised, Double-blind, Placebo-controlled Trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>173 patients with non-paracetamol ALF</td>
</tr>
<tr>
<td>Interventions</td>
<td>Intravenous NAC or Placebo infused for 72 hours.</td>
</tr>
<tr>
<td></td>
<td>The NAC regimen was as follows: initial loading dose of 150 mg/kg/h of NAC over 1 hour, followed by 12.5 mg/kg/h for 4 hours, then continuous infusions of 6.25 mg/kg/hr NAC for the remaining 67 hours.</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Primary outcome was overall survival at 3 weeks</td>
</tr>
<tr>
<td></td>
<td>Secondary outcomes included transplant-free survival, rate of transplantation, length of hospital stay and number of organ systems failing</td>
</tr>
<tr>
<td>Results</td>
<td>Overall study population</td>
</tr>
<tr>
<td></td>
<td>Overall survival at 3 weeks:</td>
</tr>
<tr>
<td></td>
<td>70% (95% CI= 60%, 81%) NAC group versus 66% (95% CI= 56%, 77%) placebo group, p = 0.283.</td>
</tr>
<tr>
<td></td>
<td>Transplant-free survival at 3 weeks:</td>
</tr>
<tr>
<td></td>
<td>40% NAC group (95% CI= 28%, 51%) versus 27% placebo group (95% CI= 18%, 37%), p=0.043.</td>
</tr>
<tr>
<td></td>
<td>DILI subgroup</td>
</tr>
<tr>
<td></td>
<td>Overall survival at 3 weeks:</td>
</tr>
<tr>
<td></td>
<td>79% (95% CI= 58% to 100%) NAC group versus 65% (95% CI= 45% to 86%) in the placebo group, odds ratio = 0.50 (95 % CI= 0.13, 1.98, p=0.33).</td>
</tr>
<tr>
<td></td>
<td>Transplant-free survival at 3 weeks:</td>
</tr>
<tr>
<td></td>
<td>58% (95% CI= 33% to 83%) NAC group versus 27% (95% CI= 8% to 46%) placebo group, odds ratio = 0.27 (95 % CI: 0.076 to 0.942, p=0.04).</td>
</tr>
<tr>
<td>Notes</td>
<td>Subgroup of 45 patients with non-paracetamol DILI provided data specific to our review question. Nineteen patients received NAC and 26 patients received placebo.</td>
</tr>
</tbody>
</table>
Table 2: Risk of bias in included study

Lee et al. 2009 [10]

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>Method of randomisation not mentioned in detail. Randomisation was stratified by encephalopathy grade with a blocking factor of 4.</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>High risk</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>Double-blind. Participants and all study personnel, except biostatisticians and site pharmacist were blinded.</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>Double-blind. All study personnel except biostatisticians and site pharmacist were blinded.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>Intention-to-treat analysis. All participants analysed in the group they were randomised to. No missing data.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>No</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 3: GRADE Summary

Lee et al. 2009 [10]

<table>
<thead>
<tr>
<th>Nr of studies</th>
<th>Study design</th>
<th>Nr of patients</th>
<th>Effect</th>
<th>Quality</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N-acetylcysteine</td>
<td>placebo</td>
<td>Relative (95% CI)</td>
<td>Absolute (95% CI)</td>
</tr>
<tr>
<td>Survival in Overall Study Population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (n=173)</td>
<td>randomised trials</td>
<td>57/81 (70.4%)</td>
<td>61/92 (66.3%)</td>
<td>p = 0.283</td>
<td>⬤⬤⬤</td>
</tr>
<tr>
<td>Transplant-free survival in Overall Study Population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (n=173)</td>
<td>randomised trials</td>
<td>32/81 (39.5%)</td>
<td>25/92 (27.2%)</td>
<td>p=0.043</td>
<td>⬤⬤⬤</td>
</tr>
<tr>
<td>Adverse events (Nausea and Vomiting) in Overall Study Population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (n=173)</td>
<td>randomised trials</td>
<td>11/81 (13.6%)</td>
<td>4/92 (4.3%)</td>
<td>p= 0.031</td>
<td>⬤⬤</td>
</tr>
<tr>
<td>Transplantation Rates in Overall Study Population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (n=173)</td>
<td>randomised trials</td>
<td>26/81 (32.1%)</td>
<td>41/92 (44.6%)</td>
<td>p= 0.09</td>
<td>⬤⬤</td>
</tr>
<tr>
<td>Odds of Death in subgroup of study population with Drug-induced ALF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (n=45)</td>
<td>randomised trials</td>
<td>15/19 (78.9%)</td>
<td>17/26 (65.4%)</td>
<td>OR 0.50 (0.13 to 1.98)</td>
<td>168 fewer per 1,000 (from 135 more to 457 fewer)</td>
</tr>
<tr>
<td>Odds of Death without transplant in subgroup of study population with Drug-induced ALF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (n=45)</td>
<td>randomised trials</td>
<td>11/19 (57.9%)</td>
<td>7/26 (26.9%)</td>
<td>OR 0.27 (0.07 to 0.94)</td>
<td>179 fewer per 1,000 (from 12 fewer to 242 fewer)</td>
</tr>
</tbody>
</table>

CI: Confidence interval; OR: Odds ratio

1. Study population includes only patients with severe liver injury i.e Acute Liver Failure (ALF). Furthermore, the aetiology of ALF is not specific to drug-induced liver injury (DILI) only
2. Wide 95% CI for of the point estimate
3. Results derived from small subgroup based on aetiology
4. Small subgroup includes only patients with severe DILI i.e. ALF
Table 4: Excluded studies with rationale

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baniasadi et al. 2010 [34]</td>
<td>Investigated the use of NAC in the prevention of DILI</td>
</tr>
<tr>
<td>Squires et al. 2013 [35]</td>
<td>No evaluable data in patients with non-paracetamol DILI</td>
</tr>
</tbody>
</table>

Baniasadi et al. 2010 [35]

<table>
<thead>
<tr>
<th>Methods</th>
<th>Randomised, Open-label Trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>60 patients with tuberculosis commencing antituberculous therapy</td>
</tr>
<tr>
<td>Interventions</td>
<td>Oral NAC for initial 2 weeks of antituberculous therapy versus no NAC</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Primary outcome was incidence of DILI*</td>
</tr>
<tr>
<td>*DILI defined as:</td>
<td></td>
</tr>
<tr>
<td>1. ALT / AST ≥ 5 times upper limit of normal</td>
<td></td>
</tr>
<tr>
<td>2. Raised serum total bilirubin > 1.5 mg/dl</td>
<td></td>
</tr>
<tr>
<td>3. Any increase in AST and/or ALT above the pretreatment levels together with the hepatitis symptoms</td>
<td></td>
</tr>
<tr>
<td>Reason for Exclusion</td>
<td>Investigated the use of NAC in the prevention of DILI</td>
</tr>
</tbody>
</table>

Squires et al. 2013 [36]

<table>
<thead>
<tr>
<th>Methods</th>
<th>Randomised, Adaptive allocation, Doubly mask, Placebo-controlled Trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>184 paediatric patients with non-paracetamol ALF</td>
</tr>
<tr>
<td>Interventions</td>
<td>Intravenous NAC or Placebo infused for up to 7 days</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Primary outcome was one year survival</td>
</tr>
<tr>
<td></td>
<td>Secondary outcomes included liver transplantation, survival without liver transplantation, length of hospital stay, maximum degree of hepatic encephalopathy and number of organ systems failing</td>
</tr>
<tr>
<td>Reason for Exclusion</td>
<td>No evaluable data in patients with non-paracetamol DILI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methods</th>
<th>Retrospective cohort study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>91 Patients with non-paracetamol ALF</td>
</tr>
<tr>
<td>Interventions</td>
<td>Oral NAC versus no NAC</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Primary outcome was overall survival</td>
</tr>
<tr>
<td></td>
<td>Secondary outcomes included evaluation of factors related to survival and safety of NAC</td>
</tr>
<tr>
<td>Reason for Exclusion</td>
<td>Not a prospective cohort study</td>
</tr>
</tbody>
</table>
05 September 2014

Dr MF Chuglay
Clinical Pharmacology
K Floor
OMB

Dear Dr Chuglay

RE: A SYSTEMATIC REVIEW OF N-ACETYLCYSTEINE IN THE MANAGEMENT OF PATIENTS WITH NON-PARACETOMOL DRUG-INDUCED LIVER INJURY

Thank you for your letter to the Faculty of Health Sciences Human Research Ethics Committee dated 04 September 2014.

The HREC notes your systematic review. This type of research does not need ethical approval from the HREC.

Yours sincerely

Professor M Blockman
Chairperson, FHS Human Ethics
INSTRUCTION TO AUTHORS FOR THE BRITISH JOURNAL OF CLINICAL PHARMACOLOGY (BJCP)

Scope

Papers will be considered for publication if they are relevant to any aspect of drug action in humans.

The Journal publishes papers of various kinds including Original Research Articles, Methods in Clinical Pharmacology, Reviews (including Systematic Reviews), Commentaries, Opinion, Meeting Reports and Letters to the Editors. Original research articles are grouped under headings including Clinical trials, Drugs in pregnancy and lactation, Drug interactions, Drug metabolism, Drug safety, Human Toxicology, Paediatric clinical pharmacology, Pharmacodynamics (PD), Pharmacoeconomics, Pharmacoepidemiology, Pharmacogenetics, Pharmacokinetics (PK), PK-PD relationships, Therapeutics, Translational Research.

Authors are invited to suggest which heading they feel their manuscript would best fit, and may suggest additional headings if they so wish.

For a description of the roles and responsibilities of authors and contributors see http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html. Investigations of human subjects will usually be expected to have been conducted in accordance with good clinical practice which defines investigator responsibilities including among others qualifications, resources, providing medical care to trial participants, communication with the research ethics committee, protocol, informed consent, data integrity and reporting (http://ichgcp.net/4-investigator). Where this is the case we would expect the principal investigator to be an author.

This journal is now published online-only.

Once you have read the submission guidelines below, please go to http://mc.manuscriptcentral.com/bcp to submit your manuscript.
You will need to submit three documents: a. manuscript; b. covering letter that includes specific statements; c. competing interests statement formatted as per our guidelines. If your paper is accepted you will subsequently be required to submit d. a copyright transfer agreement form signed by the corresponding author. Submission can be uploaded as a Word document of as Rich Text Format (rtf) files.

Peer and publication process

The journal operates a single-blind peer-review process using a body of expert peer reviewers.

Correspondence related to published research in BJCP is not usually subject to peer review, but is shared with the authors of the original paper prior to any publication, with a right to reply. All substantive papers — ie original research, reviews (commissioned and non-commissioned), including those published under our open access programme OnlineOpen — undergo the same rigorous and consistent peer review process.

Once submitted, a manuscript will first be checked by the Editorial Office to ensure all elements have been submitted. If any required documentation is not present, the Editorial Office will return the manuscript to the authors and request any missing information or material.

Once a paper is accepted, it is published within a few days on the journal website in the format of the final accepted version, i.e. as a pdf of the Word version. This final accepted version, known as an ‘Accepted Article’ is fully citable. Accepted articles are replaced by the final version of record once published in Early View.

BJCP is covered by Wiley’s Early View service. Early View articles are complete full-text articles published online in advance of their publication in a printed issue. Articles are therefore available as soon as they are ready, rather than having to wait for the next scheduled issue. Early View articles are complete and final. They have been fully reviewed, revised and edited for publication, and the authors’ final corrections have been incorporated. Because they are in final form, no changes can be made after online publication. The nature of Early View articles means that they do not yet have volume, issue or page numbers, so Early View
articles cannot be cited in the traditional way. They are therefore given a Digital Object Identifier (DOI), which allows the article to be cited and tracked before it is allocated to an issue. After print publication, the DOI remains valid and can continue to be used to cite and access the article.

ORCID

We encourage all authors to register with ORCID, which provides a persistent digital identifier for individual researchers that, through integration in key research workflows such as manuscript and grant submission, supports automated links between a researcher and his/her professional activities ensuring that his/her work is recognised. On submission, you will be given an opportunity to link your ORCID number with your Scholar One Account.

Publishing your paper open access

OnlineOpen, Wiley’s open access programme, is available to BJCP authors who wish to make their article available (immediately) to non-subscribers on publication, or whose funding agency requires grantees to archive the final version of their article. With OnlineOpen, the author, the author’s funding agency, or the author’s institution pays a fee to ensure that the article is made available to non-subscribers upon publication via Wiley Online Library, as well as deposited in the funding agency’s preferred archive. Please see here a helpful guide to compliance. See here for open access policies by funder, and please see below more on copyright.

Prior to acceptance there is no requirement to inform the Editorial Office that you intend to publish your paper OnlineOpen if you do not wish to. All OnlineOpen articles are treated in the same way as any other article. They go through the Journal’s standard peer-review process and will be accepted or rejected based on their own merit.

Any authors wishing to send their paper Online Open will be required to complete the payment form.
Preparing and submitting a manuscript

Papers must be written in clear, concise UK English. Avoid jargon and neologisms. Regrettably, the Journal is unable to undertake major corrections to language, which is the responsibility of the author.

There should be no barriers to getting your research published, yet manuscripts are often returned for English language and formatting issues. A pre-acceptance Editing Service (comprising English language editing, translation services, manuscript formatting and preparation) is available and can provide you with expert help to ensure your manuscript is ready for submission. Japanese authors can also find a list of local English improvement services at http://www.wiley.co.jp/journals/editcontribute.html. All services are paid for and arranged by the author, and use of one of these services does not guarantee acceptance or preference for publication.

Note that Japanese fonts must not be used in the creation of files; the standard Adobe Acrobat program is not compatible with these fonts.

A recent issue of the Journal is a good guide to style. Manuscript documents should be typed in double spacing and should be page numbered. **Line numbers must also be added to your manuscript before submission.** A separate title page should be included (see below). The submitting author need not be the same as the corresponding author.

Authors’ checklist

Authors should ensure that they have provided the following information, when appropriate:

1. A cover letter detailing originality of the manuscript and agreement of all authors and also identifying the Principal Investigator who undertook any human studies reported.

2. A title page including a title of no more than 150 characters, all author names and affiliations, and the corresponding author contact information.

3. A structured summary of no more than 250 words.
4. ‘What is known about this subject’ and ‘What this study adds’ statements (up to three bullet point sentences for each).

5. 95% confidence intervals (CI) on differences between major end points.

6. Some numerical data in the summary, including 95% CIs, when appropriate.

7. Details of precision, accuracy, sensitivity, and specificity for drug/metabolite assays.

8. A statement (in Methods) of ethics committee approval and subject consent including the name of the ethics committee and the approval number or identification code.

9. A statement declaring any competing interests, or declaring that there are no competing interests.

10. Acknowledgement of financial and other support.

11. Preprints of relevant unpublished papers.

Figures and tables must be submitted as separate files, and guidance on preparing artwork can be found here. The following formats are accepted: gif, jpg, bmp, tif, pic (figures) and as word and excel files (tables). Pdf and ppt files are **not** accepted.

The main text file must contain the title page, summary, text, references, and figure legends.

Manuscripts in rtf format should not contain word processor styles (for example bold, italics, justification).

For more information about the online submission system, please read the detailed instructions at http://mc.manuscriptcentral.com/bcp Author Centre or email the Editorial Assistant at BJCPedoffice@wiley.com.

Authors may find the following resource useful http://www.mpip-initiative.org/mpip-authorship-activities/authors-submission-toolkit.

Covering letter
Please include in your covering letter the following:

Statements regarding the originality of the work and agreement of all authors to its publication

Papers will not be approved for review unless accompanied by a statement, in the covering letter, that they have not been, and will not be published, in whole, or in part, in any other journal, and that all the authors have agreed to the contents of the manuscript in its submitted form. If authors have a problem in contacting a co-author for approval, the reason for this should be explained in the letter and may subsequently be discussed via email with the relevant Senior Editor.

If there is any overlap between a submitted manuscript of an original paper and a paper that is being submitted elsewhere, the submitting author should draw this to the attention of the Editors in the submission covering letter and enclose a copy of the relevant submitted paper(s).

If there is any overlap with a paper that has already been published elsewhere (including online publication), including use of the same subjects or repetition of any data, that paper must be referred to and cited in full.

If your manuscript refers to unpublished data (see section below “References to data on file”), you should obtain (and provide the Editorial Office with a copy) written permission to mention a responsible individual (e.g. “Prof X...contact address a.x@kcl.ac.uk) or should identify a department in a company that can be contacted, with a contact address.

Principal Investigator

For ALL papers describing investigations of human subjects (e.g. Research Papers) please indicate which of the authors was the Principal Investigator. (If the Principal Investigator is not an author of the paper, please explain why not.)

Reviewers
Authors are asked to facilitate the review process by providing, as part of the electronic submission process via ScholarOne, the names and email addresses of two suitable reviewers, on the understanding that the Editors are not bound by any such nomination.

Competing interests

Authors should provide a statement of any competing interests (or affirm that there are no competing interests) within the submitted manuscript. We will not reject a paper simply because of a competing interest, but we will publish a statement of declared interests, or declarations that there are no interests, in every manuscript.

All authors must download and complete a copy of the unified disclosure form of the International Committee of Medical Journal Editors (available at http://www.icmje.org/coi_disclosure.pdf). They must keep a copy of the form and send a copy to the corresponding author. Instead of submitting the form to the journal we require the corresponding author (or guarantor) to include a statement in manuscript body containing all interests declared on all authors’ forms and a statement affirming that no declarations were made for each case were there was nothing to declare. The corresponding author must keep the original forms and make them available on request.

The statement should follow the format used by the British Medical Journal (BMJ):

"All authors have completed the Unified Competing Interest form at http://www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare: no support from any organisation for the submitted work OR [author initials] had support from [name of organisation] for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous 3 years OR [author initials] [had specified relationship] with [name of organisation] in the previous 3 years; no other relationships or activities that could appear to have influenced the submitted work OR [initials of relevant authors] [had specified relationships or activities of this type]"
Copyright – using the Wiley Author Licensing Service

The author identified as the formal corresponding author for an accepted paper will, on acceptance of their article, receive an email prompting them to login into Author Services, where, via the Wiley Author Licensing Service (WALS), he/she will be able to complete the relevant copyright or licence agreement on behalf of all authors on the paper.

For authors signing the copyright transfer agreement

If the corresponding author does not select the OnlineOpen option in WALS, he/she will be presented with the copyright transfer agreement (CTA) to sign. (See here for further details.)

For authors choosing OnlineOpen

If the OnlineOpen option is selected the corresponding author will have a choice of the following Creative Commons Licences

- Creative Commons Licence Open Access Agreements (OAA)

- Creative Commons Attribution Non-Commercial Licence OAA

- Creative Commons Attribution Non-Commercial -NoDerivs Licence OAA

If a corresponding author selects the OnlineOpen option and his/her research is funded by The Wellcome Trust and members of the Research Councils UK (RCUK) he/she will be given the opportunity to publish the article under a CC-BY licence supporting compliance with Wellcome Trust and Research Councils UK requirements. For more information on funder policies, please see here and here. For a useful guide to ensuring compliance, see here.

Using copyrighted material

It is the author’s sole responsibility to obtain permission to use copyrighted material, including print and electronic forms, in a paper, in advance of submission and to acknowledge fully the source of the material.
Original Research Articles

Papers should be concise and consideration should be given to using supporting information (see http://authorservices.wiley.com/bauthor/suppmat.asp for more information about our Supporting Information service). Most original research articles published in BJCP are between 3000 and 4000 words (for Introduction, Methods, Results and Discussion only). Please refer to a recent issue for examples of length that we regard as appropriate, which varies with the complexity and importance of the study. If you believe your original research paper is going to significantly exceed 4000 words, we require justification for this with your submission letter.

When writing your paper, original research papers should generally be divided into the following sections: Title Page (including PI Statement), Structured Summary, Introduction, Methods, Results, Discussion, Acknowledgements, References, tables and legends to figures (Please remember that figures must be submitted as separate files). In addition authors should provide material for 2 sections, placing this after the Structured Summary:

Section 1: What is already known about this subject: in up to three short bullet point sentences (not more than 50 words in total) summarize the state of scientific knowledge on this subject before you did your study and say why this study needed to be done,

Section 2: What this study adds: In up to three short bullet point sentences (not more than 50 words in total) give a simple answer to the questions “What do we now know as a result of this study that we did not know before?” and “What take-home-message do you want to impart to the readers?”

These two statements should be succinct, accurate and specific.

All Research Papers require a list of author contributions.
Papers should be concise and consideration should be given to using online publication of supplemental tables or other material (see http://authorservices.wiley.com/bauthor/suppmat.asp for more information about our Supporting Information service).

Review articles

Review articles on a wide range of topics appear regularly in the Journal. Articles may be unsolicited, or may be commissioned by the Reviews Editor. Either kind may be single papers or, by prior agreement with the Editor, part of a themed series. Contributors are welcome to submit single review articles directly (systematic reviews are especially welcome). Most reviews should be between 2500 and 3000 words, should be fully referenced, and if judged potentially suitable will undergo peer review. Each review should include a summary but not the boxes (“what is known”/ “what this adds”) that are required only for original research articles. They will be subject to the other requirements of an original research paper.

From time to time the Journal will publish themed issues, including review articles and related original research papers. Authors who want to suggest a theme for a special issue should contact the Editor-in-Chief.

Systematic reviews

The Journal will publish systematic reviews. The manuscript should provide a concise account of the methods used, and concentrate on highlighting key aspects of interest and relevance to clinical pharmacologists, under the following headings: Structured Summary, Introduction, Methods, Results, Discussion, and Conclusion.

- **Introduction** This should mention the background (e.g. relevant clinical and pharmacological issues) and describe the scope and aim of the review. What was the reason for the review? The strengths and weaknesses of the existing literature should be briefly described, earlier reviews identified and the need for the present paper explained.
· **Methods** Study selection (search strategy, type of intervention/exposure, types of studies included, types of outcomes, types of participants); data extraction and synthesis (statistical techniques and use of a quality assessment tool, if any).

· **Results** The key characteristics of the included studies and the main outcome measures; discuss variation within and between studies.

· **Discussion** Compare the findings to existing knowledge; outline the limitations of the review.

· **Conclusion** Summarize the key findings and the implications for clinical pharmacology and/or practical drug therapy.

Letters to the Editors

Comments on previously published papers, items of topical interest, and brief original communications will be considered under this heading. The length, including references, should not exceed 800 words, plus one figure or table. The letter should NOT be divided into sections.

Case reports (to be submitted as Letters to the Editors)

The Journal generally does not publish case reports as full papers but will do so as letters to the Editor. As for other letters the length, including references, should not exceed 800 words, plus one figure or table. Such case reports (for example adverse drug reactions or interactions) should include some novel aspect of drug action in man (for example a new adverse reaction or one that gives insight into a mechanism or method of management). Such reports may include single cases or short case series. Notes and guidelines on the format for publishing such reports, including a structured summary, will be found at http://www.bmj.com/content/suppl/2003/06/19/326.7403.1346.DC1.

Terminology

Stereoisomers

When a drug can exist as stereoisomers or diastereomers (for example geometrical isomers), the form of compound studied must be designated as follows in the methods section.
In the case of racemates the prefix rac- should precede the drug name (for example rac-propranolol).

When possible the absolute configuration of enantiomers should be indicated (for example (S)-warfarin).

Similarly, geometrical isomerism should be indicated by the prefixes Z/E or cis/trans. When appropriate, the interpretation of data obtained using mixtures of isomers should take account of stereochemical aspects.

Drug names

Prescribed drugs should be designated by an International Non-proprietary Name (recommended, rINN, or proposed, pINN). If such a name is not available, a drug should be designated by its British Approved Name (BAN; for example hyoscyamine) or its chemical name (for example glyceryl trinitrate).

When a mixture of drugs has a combination BAN (for example co-trimoxazole, co-fluampicil), that should be used.

For brevity, a company’s code name may be used, but in that case the full chemical name or a figure showing the structure of the drug should be given in the introduction or a reference provided that gives this information.

Some mediators with well established common names (e.g. prostacyclin) are also prescribed as licensed preparations with an rINN (e.g. epoprostenol). In such cases the rINN should be used in the context of therapeutic use. Sometimes English and American usage varies, as with adrenaline / epinephrine and noradrenaline / norepinephrine. “Adrenaline / noradrenaline” relate clearly to terms such as “noradrenergic”, “adrenergic” and “adrenal gland” but we will accept the term preferred by authors.

Units

SI units (mass or molar units) should be used. If other units are used, a conversion factor should be included in the *Methods* section.
Symbols

A set of standard symbols in pharmacokinetics and pharmacodynamics can be found here.

Structure

Title page

The title page should include:

- the title giving an informative and accurate indication of the content of the paper. It should be no longer than 150 characters, including spaces;

- the names, positions, and addresses of the authors;

- the name and e-mail address of the submitting author and the corresponding author, if different;

- a running head of no more than 75 characters, including spaces;

- keywords (these are used to identify potential referees and as indexing terms);

- the word count, excluding the title page, summary, references, tables, and figures;

- the numbers of tables and figures.

In order to ensure correct citation of your article on PubMed, should your article be accepted for publication, please include spaces in-between author’s initials on the title page of your manuscript, e.g. A E Smith. If author’s initials do not appear on the title page of your manuscript according to these guidelines they may appear incorrectly on PubMed until your article has been typeset and published in an issue.

Summary

The text must be preceded by a structured summary, including the following headings:

- Aim(s)

- Methods
· Results (some numerical data, including confidence intervals on differences, when appropriate, must be included)

· Conclusions

The summary should be a maximum of 250 words; abstracting services truncate summaries that are longer. It should be couched in terms that will be understood by most readers of the Journal.

Analytical methods

Authors should include details of the precision, accuracy, sensitivity, and specificity of an analytical method used to measure drugs, metabolites or biomarkers or refer to other publications in which the information is given.

· Precision is a measure of random error, usually expressed as the coefficient of variation.

· Accuracy is a measure of systematic error, also called bias; it can be expressed as the percentage difference between the result for a test sample and the reference value for that compound.

· Sensitivity or lower limit of quantification.

· Specificity is the extent to which the method does not detect compounds other than those intended.

Statistical methods

In the Methods section statistical methods should be described clearly, with references when appropriate. Editors and referees will be particularly concerned that any study described had sufficient statistical power for its purpose; when appropriate, the power of the study and its calculation should be described in the Methods section.

In the Results section 95% confidence intervals of differences should be cited where relevant for important endpoints. This is particularly important when equivalence is being claimed (i.e. for non-significant comparisons). The Editors may utilize specialist statistical referees for manuscript review where necessary.
Tables

Tables should generally not have more than 85 characters to a line (counting spaces between columns as 4 characters) and certainly not more than 110 characters to a line, unless absolutely unavoidable. Each table should be typed on a separate page and be in an editable format (doc or xls).

Figures and use of colour

Please provide high quality figures suitable for the journal’s production processes. Use of colour (free to authors) is encouraged when it improves the clarity of the message conveyed.

To enhance the presentation of their articles, authors are encouraged to use colours in complementary pairs (example): a primary pair that is close to the colour of the journal and existing tables (example); a secondary pair for use when there are multiple figures side by side, or purely for variety within a paper (example); and a third pair to particularly highlight a figure, possibly in the conclusion/results part of a paper (example). With certain figures when it is helpful to strongly differentiate between sets of results, the first colour of each pair should initially be used (example), with the corresponding extra colours introduced as necessary. As blocks, the suggested colours all work together and should be clear to those readers who are colour-blind (example). Although white backgrounds are generally advisable, if necessary a suggested background colour that works both with the overall look of the journal, and the proposed colour palette is illustrated (example).

Digital files should be prepared in accordance with the instructions that will be found at http://authorservices.wiley.com/bauthor/illustration.asp. The eps format (illustrations, graphs, annotated artwork; minimum resolution 800 dpi) and tif format (micrographs, photographs; minimum resolutions 300 dpi) are recommended, although in some cases other formats can be used.

References

References should be cited using the Vancouver style (see examples below; for detailed instructions see http://www.icmje.org).
· References in the manuscript text should appear as numbers in square brackets.

· The reference list should show the references in numerical and not alphabetical order, and should include the names of all the authors, the full title of the article, the title of the publication (abbreviated as in Medline or PubMed), the year, the volume number, and the first and last page numbers.

· References to books should include the names of the editors, the edition number, when appropriate, and the place of origin and the name of the publisher.

· The accuracy of the references is the responsibility of the author. Referencing should be thorough but not excessive. Older literature that has been well reviewed can be referred to indirectly by citing the review(s).

Examples:

· References to papers published as Accepted Articles should be cited thus: Ferro A. Paediatric prescribing: why children are not small adults. Br J Clin Pharmacol 2015. doi: 10.1111/bcp.12540.

· References to archived data supporting the publication should be cited thus: Brown, LJ; Year. Dataset title; Data repository or archive; Version (if any); Persistent identifier (e.g. DOI).

References to data on file

Any assertions within a submitted manuscript which are backed up by reference to unpublished data should be clearly noted as such in the body of the manuscript and should give a clear direction to the reader as to how they might request this data: e.g. ‘ACME34178 is not metabolised by CYP3A4
(unpublished data on file, ACME Drug Co. Ltd., Didcot, UK)’, ‘Drug Z is known to partition extensively into erythrocytes (personal communication from Prof. X, University of Y)’

If making such a reference to unpublished data the author should obtain (and provide the Editorial Office with a copy) written permission to mention an individual (Prof X) or should identify a department in a company that can be contacted with an address (Department of Drug Metabolism, ACME Drug Co, drugmet@acme.com) and the permission should come from the head of that department or their designate.

Acknowledgements

All support, financial or otherwise, for any work described should be acknowledged, with the exception of support from employing institutions identifiable from the title page. Authors are reminded that if they want to acknowledge the assistance of an individual, it is courteous to ask the individual’s permission to do so.

Ethical considerations

The ethical aspects of all studies involving human subjects will be particularly noted when assessing manuscripts. The methods section should include a statement that the study was approved by an identifiable ethics committee or similar body and that the subjects consented to the study after full explanation of what was involved; it should indicate whether or not consent was obtained in writing. Details should be given in the methods section of the approval of the study protocol by an ethics committee or similar body and the approval number or identification code should be provided. The ethics committee that approved the protocol should be described in sufficient detail to allow the committee to be identified.

Studies using human tissues

The Methods section should contain a statement that the study was approved by an identifiable ethics committee or similar body, and that, when applicable, explicit patient consent was obtained for the use of tissue for research. Local laws (e.g. the Human Tissue Act) should be adhered to. Where potentially
relevant (e.g. functional investigations) details of the donors’ drug histories must be provided. Drug history must include any anaesthetic used for the biopsy.

Supporting Information

Supporting Information can be a useful way for an author to include important but ancillary information with the online version of an article. Examples of Supporting Information include additional tables, data sets, figures, movie files, audio clips, 3D structures, and other related nonessential multimedia files. Supporting Information should be cited within the article text, and a descriptive legend should be included. It is published as supplied by the author, and a proof is not made available prior to publication; for these reasons, authors should provide any Supporting Information in the desired final format.

For further information on recommended file types and requirements for submission, please visit: http://authorservices.wiley.com/bauthor/suppinfo.asp

Proofs

Proofs will be sent to the corresponding author and should be returned within 3 days of receipt to the Production Editor. The corresponding author will receive an e-mail alert containing a link to a secure web site. A working e-mail address must therefore be provided for the corresponding author. In the absence of the corresponding author, please arrange for a colleague to access the e-mail to retrieve the proofs.

Acrobat Reader will be required in order to read the proof file and can be downloaded (free of charge) from the following website: http://www.adobe.com/products/acrobat/readstep2.html. This will enable the file to be opened, read on screen, and printed out in order that corrections can be made.

Further instructions will be sent with the proof. In your absence, please arrange for a colleague to access your e-mail to retrieve the proofs.

Corrections should be kept to a minimum. Extensive changes may be charged to the author.
Once proofs have been corrected the paper will be published online in the next available issue. The online version is definitive and there will be no further opportunity for correction. The date of publication of the article is the date of its first appearance online as an Accepted Article.

Author Services

Author Services enables authors to track their article once it has been accepted through the production process to publication online and in print. Submitting authors can check the status of their articles online and choose to receive automated e-mails at key stages of production, so that they don’t need to contact the production editor to check progress. Visit http://authorservices.wiley.com/bauthor for more details on online production tracking and for a wealth of resources, including FAQs, tips on article preparation, submission, and more.

Offprints

Free access to the final PDF offprint of your article will be available via author services only. Please therefore sign up for Author Services if you would like to access your article PDF offprint and enjoy the many other benefits the service offers. Although the journal is now published online only, paper offprints can be ordered at prices quoted on the order form that accompanies the proofs, provided that the form is returned with the proofs.

These are normally dispatched within 3 weeks of publication of the issue in which the paper appears; however please note that they are sent by surface mail, so overseas orders may take up to 6 weeks to arrive. PDF offprints are sent to the requesting author at his/her first e-mail address on the title page of the paper, unless advised otherwise; please therefore ensure that the name, address and e-mail address of the corresponding author are clearly indicated on the manuscript title page if he or she is not the first author of the paper.

The BJCP Prize

The British Pharmacological Society awards an annual prize of £1,000 for the best paper published in the
British Journal of Clinical Pharmacology during a calendar year. Those eligible will be Registrars in Clinical Pharmacology and Therapeutics (usually ST3s and above) registered for Higher Medical Training in the UK and the Republic of Ireland and those in comparable training schemes (including PhD schemes) elsewhere. Potentially eligible authors will be contacted by the Editorial Office at the end of each year and invited to complete an application form, giving information about the provenance of the work and the precise role played by the potential award winner. The Editors will judge all entries, but they may call for expert assistance in making their decision. Their decision is final.

Transfer to other British Pharmacological Society (BPS) journals

Pharmacology Research & Perspectives is jointly edited on behalf of the BPS and the American Society of Pharmacology and Experimental Therapeutics (ASPET).

The Editors of BJCP might consider that a submitted manuscript is out of scope and more suitable for consideration by its sister journals *British Journal of Pharmacology (BJP)* or the open access journal *Pharmacology Research & Perspectives*. If so, the Editors will offer authors the opportunity to transfer their manuscript to the editorial office of its sister journals for consideration, with no need to reformat the manuscript.