Incidence of intraoperative nausea and vomiting
during spinal anaesthesia for caesarean section

Dr Bridget Magni
Student no: MGNBRI002

SUBMITTED TO
THE UNIVERSITY OF CAPE TOWN

In fulfilment of the requirements for the degree:

Master of Medicine in Anaesthesiology
Faculty of Health Sciences
UNIVERSITY OF CAPE TOWN

Date of Submission: January 2016

Supervisors:
Dr J van Nugteren, Prof Robert A. Dyer
Department of Anaesthesia and Perioperative Medicine,
University of Cape Town
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
<table>
<thead>
<tr>
<th>Table of contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration page</td>
<td>3</td>
</tr>
<tr>
<td>List of abbreviations</td>
<td>4</td>
</tr>
<tr>
<td>Part A: Study protocol</td>
<td>5</td>
</tr>
<tr>
<td>Part B: Narrative literature review</td>
<td>9</td>
</tr>
<tr>
<td>Part C: Publication ready manuscript</td>
<td></td>
</tr>
<tr>
<td>1. Title page</td>
<td>23</td>
</tr>
<tr>
<td>2. Structured abstract</td>
<td>24</td>
</tr>
<tr>
<td>3. Main text</td>
<td>25</td>
</tr>
<tr>
<td>4. Figures and tables</td>
<td>31</td>
</tr>
<tr>
<td>5. Acknowledgments</td>
<td>31</td>
</tr>
<tr>
<td>Part D: Supporting documents</td>
<td></td>
</tr>
<tr>
<td>1. Consent and patient information sheet</td>
<td>35</td>
</tr>
<tr>
<td>2. Protocol for doctors</td>
<td>36</td>
</tr>
<tr>
<td>3. Questionnaire</td>
<td>37</td>
</tr>
<tr>
<td>4. Ethics approval letter (Human Research Ethics Committee)</td>
<td>39</td>
</tr>
<tr>
<td>5. Guide to authors (SAJAA requirements)</td>
<td>40</td>
</tr>
</tbody>
</table>
DECLARATION

I, Bridget Magni, hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university.

I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever.

Signed: ..

Date: ..

31-03-16
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5HT<sub>3</sub></td>
<td>Serotonin</td>
</tr>
<tr>
<td>BP</td>
<td>Blood pressure</td>
</tr>
<tr>
<td>CS</td>
<td>Caesarean section</td>
</tr>
<tr>
<td>CTZ</td>
<td>Chemotactic trigger zone</td>
</tr>
<tr>
<td>HxPONV</td>
<td>History of post-operative nausea and vomiting</td>
</tr>
<tr>
<td>IONV</td>
<td>Intraoperative nausea and vomiting</td>
</tr>
<tr>
<td>IVI</td>
<td>Intravenous</td>
</tr>
<tr>
<td>KZN</td>
<td>KwaZulu-Natal, province of South Africa</td>
</tr>
<tr>
<td>MAP</td>
<td>Mean arterial blood pressure</td>
</tr>
<tr>
<td>NVP</td>
<td>Nausea and vomiting of pregnancy</td>
</tr>
<tr>
<td>PONV</td>
<td>Post-operative nausea and vomiting</td>
</tr>
<tr>
<td>SBP</td>
<td>Systolic blood pressure</td>
</tr>
<tr>
<td>UCT</td>
<td>University of Cape Town</td>
</tr>
</tbody>
</table>
Part A: Study protocol

As approved by the Department Research Committee and the Human Research Ethics Committee University of Cape Town
Introduction

The incidence of intraoperative nausea and vomiting (IONV) during spinal anaesthesia (SA) for caesarean section (CS) is extremely variable and is dependent on the anaesthesia technique used, together with preventive and therapeutic measures employed by the anaesthetist.¹

There is no data on the incidence of IONV during SA for CS within our population.

Recently it has been shown that postoperative nausea and vomiting (PONV) in Black South Africans (African) undergoing general anaesthesia is significantly lower than in multi-ethnic South African patients (non-African).²

We hypothesize that the incidence of IONV amongst African patients will also be lower during spinal anaesthesia for caesarean section.

Objectives

1. To assess the incidence of IONV during SA for CS.
2. To compare the incidence of IONV between Black and multi-ethnic patients.

Methodology

A prospective observational study was conducted at Mowbray Maternity Hospital and New Somerset Hospital, after approval had been obtained from the Human Research Ethics Committee of the University of Cape Town. Healthy, term patients undergoing elective SA for CS during daylight hours (8h00-17h00), were studied, during the period August 2014 - February 2015

Inclusion criteria

- All elective caesarean sections
- Age > 18 years
- ASA I and II

Exclusion criteria

- Non-South African Black patients
- Patients who have had > 2 previous caesarean sections
- Previous major abdominal surgery
- 1500 ml estimated blood loss
- Anti-emetics administered prior to theatre
- Preoperative opioid use
- Known adverse reaction to metoclopramide
- Conversion to general anaesthesia
- Preeclampsia or other causes of severe hypertension
- The use of ergometrine

Antibiotics cefazolin (1-2 g) or, if allergic to penicillin, clindamycin (600mg), will be given over a minimum time period of 5 minutes, and at least 10 minutes prior to induction of SA. Should any nausea or vomiting occur as a result it shall be noted separately.

Standard practice for SA for CS at UCT will be employed (i.e. 2 mL hyperbaric bupivacaine plus 10 ug Fentanyl intrathecally, 15 mL/kg crystalloid coload via 18G cannula). Preoperatively, systolic blood pressure (SBP) will be measured twice in theatre with the patient in the left lateral position, and the mean value calculated. The target for treatment of hypotension will be 80% of this value. Blood pressure will be measured every minute for the entire procedure. The initial vasopressor will be phenylephrine 50 µg. A 30% decrease in SBP will be treated with 100 µg of phenylephrine. This will be repeated every minute until the target is achieved (within 20% of baseline value). If the heart rate decreases to less than 55 beats per minute in association with hypotension (SBP decreased by 30% from baseline), ephedrine 10 mg will be administered, followed by atropine 0.25-0.5 mg if bradycardia persists. Ephedrine may also be administered if there is a poor response to two consecutive doses of phenylephrine. Nausea and vomiting will be treated with intravenous phenylephrine to restore blood pressure, and metoclopramide 10 mg.

The patient will then be positioned supine, with 20 degrees left lateral tilt. Block height will be assessed with ethyl chloride cold spray. The highest level of the block will be recorded prior to incision, and again in recovery room. Oxytocin 3 IU will be given over 60 seconds after delivery, preceded by 50 ug phenylephrine.

The following data will be collected by the attending anaesthetist: patient age, booking weight, gestational age, gravity, parity, and number of previous caesarean sections. The lowest systolic blood pressure (SBP) during the procedure will be recorded as well as the highest level of the spinal block, total fluid volume administered, and the total dose of phenylephrine, ephedrine, atropine and metoclopramide. The total blood loss will be estimated by measurement in a graded suction bottle and inspection of swabs. Exteriorisation of the uterus will be recorded. Nausea and vomiting episodes, as well as when they occurred, will be documented.

Duration of surgery and other adverse events will be recorded at the completion of the case.
Interviews are to be conducted after the operation, in the recovery room, prior to the patient being discharged to the ward and consent requested at this time for participation in the study. This will be done in order to exclude potential suggestion bias introduced by explaining the study objectives prior to surgery. The following direct questions will be asked: “What race do you classify yourself?”, “Have you ever experienced motion sickness or post-operative nausea and vomiting?”, and “Did you experience nausea during this operation?”

Statistical analysis

Sample size calculation for the primary outcome was based upon a clinical estimate of an incidence of nausea and/or vomiting of 25% overall, with an absolute accuracy of +/- 6%. This requires 184 patients. Sub-group analysis is planned a priori. With an expected proportion of African/Non-African patients of 66/33%, and an expected incidence of nausea and/or vomiting of 15% amongst Black Africans and 35% in Non-Africans, allowing for 90% power and p<0.05, 156 Black African- and 78 Non-African patients were required. In the time available for the conduction of the audit, 143 Black African- and 112 Non-African parturients were studied. Individual categorical variables will be summarised with frequency and percentage frequency distributions and illustrated using bar charts. Continuous variables will be summarised using means and standard deviations or medians and interquartile ranges. Associations between categorical variables will be summarised in two-way frequency tables and tested for statistical significance using a Chi-square test. Observed p-values are quoted. P-values smaller than 0.05 were considered to be statistically significant. The joint associations between the predictor variables and the presence/absence of nausea/vomiting were modelled using a logistic regression model. The exponentiated coefficients of this model are estimated on adjusted odds ratios. Multinomial logistic regression models were used to estimate the association between predictor variables and the three-level categorical outcomes. These models are equivalent to parallel binary logistic models where the relative odds of each of the categories compared to a chosen reference category is estimated. We chose “none” as the reference category.

Ethics

All patients will be asked to categorise themselves as African (Black South African), or Non-African (Multi-ethnic South African). To avoid bias in this study on nausea and vomiting, the patient will be asked after the
completion of the CS, whether the data recorded may be used for the audit, and a record will be made on the anaesthesia chart. Any patient who is unwilling to participate in the audit, or unable to communicate, and thus cannot be included in the audit, will still receive post-operative treatment based upon good clinical practice. All information shared by patients with the investigators will be kept confidential. Strict confidentiality will be maintained within the health care team environment at all times during the audit.

References

Part B: Narrative literature review
Objectives

The aim of this literature review is to answer the following questions:

1) What is the incidence of intraoperative nausea and vomiting (IONV)?
2) What are the causes of IONV?
3) What antiemetics are effective?
4) Are there ethnic differences with regard to the incidence of IONV?

Literature search strategy

The literature search was performed using the PubMed database from the University of Cape Town Health Sciences Library. Articles not published in English were excluded. The keywords and phrases used in different combinations were; “intraoperative nausea and vomiting”, “regional anaesthesia”, “caesarean section”, “nausea and vomiting”, “prevention of nausea and vomiting”. Additional articles were found from published papers or using the “related links” PubMed function.
Introduction

Spinal anaesthesia (SA) is the method of choice for caesarean section (CS) due to its rapid onset, safety, and symmetrical sensory and motor blockade. However, despite major advances in neuraxial techniques, intraoperative nausea and vomiting (IONV) is still common and an unpleasant side effect.

Nausea and vomiting during SA is a very distressing experience, with patients reporting feelings of discomfort and fear. Disruption of maternal bonding may occur, while at the same time causing anaesthetic and surgical complications. Surgical risks include protrusion of abdominal contents with associated visceral injuries, increased bleeding and an increased surgical time. Abrupt contraction of the upper gastrointestinal tract may lead to aspiration, especially in the pregnant patient who is at an increased risk.

Physiology of nausea and vomiting

The chemoreceptor trigger zone (CTZ) and the vomiting centre regulate nausea and vomiting. The CTZ is located in the area postrema on the floor of the fourth ventricle. The vomiting centre is situated in the medulla and controls the vomiting response. This centre receives input from the gastrointestinal tract via vagal sensory fibres, the cortex of the brain, the vestibular nuclei in the labyrinth of the ear, pressure receptors in the cranium, and the chemoreceptor trigger zone. Histamine, dopaminergic, muscarinic, serotonergic and opioid receptors are involved. The mechanical action of vomiting is initiated via efferent activity to the phrenic, vagal and spinal nerves that supply the abdominal musculature.

The high level of progesterone in the presence of oestrogen during pregnancy leads to smooth muscle relaxation that hinders gastric motility and lowers tone in the lower oesophageal sphincter. Small bowel transit times may also be longer during the 3rd trimester. These hormonal changes may also lead to an increase in IONV due to their effects on the neurovestibular system and the vomiting centre.

The pressure effects from the gravid uterus add to the increased risk of nausea and vomiting. Pressure on the stomach leads to delayed gastric emptying and an increased risk of reflux.

1 The incidence of IONV during spinal anaesthesia for caesarean section

There are few studies measuring the incidence of IONV. Therefore, the incidence of IONV is often taken from the placebo groups of studies examining the effect of antiemetic preventative measures. Some review articles
do quote the incidence of IONV during SA for CS, but most of these have also included postoperative nausea and vomiting (PONV).

Table 1: The incidence of intraoperative nausea and vomiting during spinal anaesthesia for caesarean section

<table>
<thead>
<tr>
<th></th>
<th>Nausea and/or vomiting</th>
<th>Nausea</th>
<th>Vomiting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ishiyama (2001)</td>
<td>70%</td>
<td></td>
<td>40%</td>
</tr>
<tr>
<td>Voigt (2013)</td>
<td>22.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caba (1997)</td>
<td>20% – 60%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Causes of IONV

Many factors contribute to the incidence of nausea and vomiting during caesarean section. The contributory factors are anaesthetic and non-anaesthetic. The anaesthetic risks are hypotension, the use of opioids (both neuraxially and intravenously) and an increase in vagal activity. The non-anaesthetic factors include manipulation and exteriorisation of the uterus, vigorous motion and the use of uterotonic agents such as oxytocin.

Anaesthetic causes

Hypotension

Many studies have shown the correlation between blood pressure control and IONV. A decrease in blood pressure of >30% below baseline has been found to increase the risk of IONV to 60%. The incidence of IONV has been reported to increase in proportion to the percentage decrease from baseline blood pressure. Ngan Kee et al. found the incidence of IONV to be 4%, 14%, and 40% with the target as a percentage of baseline blood pressure of 100%, 90%, and 80% respectively. Hypotension may be compounded by aortocaval compression during SA, particularly if lateral tilt is not adequately applied. Hypotension can lead to hypoperfusion of the bowel resulting in the release of emetogenic substances such as serotonin from the intestine.

To prevent and/or treat hypotension and the associated IONV, a colloid preload or crystalloid coload, a wedged position to prevent aorto caval compression and a vasopressor in the form of phenylephrine boluses or infusion can be used. Crystalloid coload in combination with phenylephrine is most effective.
Vagal hyperactivity

Sympathetic blockade during spinal anaesthesia results in an increased activity of the vagal nerve. This leads to gastrointestinal hyperactivity and an increased risk of IONV. Glycopyrrolate given prior to induction of SA, may reduce the incidence of nausea and vomiting, but is not effective in preventing hypotension.15

Non- Anaesthetic causes

Surgical stimuli

Surgical stimulation such as intra-uterine manipulation, peritoneal traction and the exteriorisation of the uterus can cause IONV. The mechanism is thought to be due to stimulation of visceral afferent fibres and subsequent unmyelinated C-fibre activation. The incidence can be as high as 50\% in patients undergoing SA.5

Uterotonic agents

\textit{Oxytocin}

The administration of oxytocin leads to cardiovascular side effects, particularly hypotension and tachycardia. This is caused by the transient relaxation of vascular smooth muscle cells secondary to stimulation of the nitric oxide pathway. It has been shown that a slower infusion rate over five minutes decreases the hypotensive response.16

\textit{Ergot alkaloids}

Ergot alkaloids, when given as a 0.5 mg IV dose at delivery to prevent blood loss, are associated with an increase in mean arterial pressure, and a high incidence of nausea and vomiting (46\%) and therefore are not considered as a first line agent for uterine atony during SA for CS.17

\textit{Prostaglandins}

Prostaglandins such as F2-alpha also cause nausea and vomiting, with an incidence of 10\% for a 250 µg intramyometrial injection, and may cause fever and diarrhoea.18

Antibiotics

First generation cephalosporins are the antibiotic of choice for majority of surgical procedures, including caesarean section, and reduce post-operative infection by up to 60\%.19,20
Notable side effects include nausea, vomiting, diarrhoea, skin rash and allergic reactions. In view of the risk of nausea and vomiting, cephalosporins are given by slow IV injection.

Motion

For women who have a predisposition towards motion sickness, the added risk factors associated with pregnancy could lead to an increased risk of nausea and vomiting, especially when subjected to sudden movement, changes in position and transfer onto the stretcher at the end of the operation. This emetic response is controlled by afferent fibres to receptors in the vestibular system and efferent fibres to the GIT. Histamine-, muscarinic- and cholinergic receptors are involved.

3 Antiemetic prophylaxis and treatment of IONV

Some of these causes of IONV can be manipulated and controlled, but certain patients may be particularly susceptible. This requires early identification and possibly the use of pharmacological prophylaxis. These medications are not without their risks, which may include agitation, extra-pyramidal symptoms and dystonic reactions.

A recent Cochrane review of the interventions for preventing nausea and vomiting in women undergoing regional anaesthesia for caesarean section reviewed the efficacy of pharmacological and non-pharmacological methods.

The pharmacological interventions included 5-HT₃- receptor antagonists, dopaminergic receptor antagonists, corticosteroids, antihistamines, anticholinergic agents, sedatives (e.g. midazolam, propofol) and opioids.

Anti-emetics

According to the latest Cochrane review, the most effective anti-emetics for the reduction of intraoperative nausea and vomiting were the dopamine antagonists (both metoclopramide and droperidol) and corticosteroids, whereas the 5-HT₃- antagonists and anti-cholinergic agents, such as glycopyrrolate, were only effective at reducing the intraoperative nausea.

Serotonin (5-HT₃) antagonists
Serotonin antagonists such as ondansetron act on the chemo-emetic trigger zone (CTZ), and block the vagal-stimulated emetogenic effect of serotonin. A single dose of intravenous ondansetron (4 mg) after the clamping of the cord has been shown to be more effective than intravenous metoclopramide (10 mg) in preventing nausea. However, there is no difference between ondansetron and metoclopramide in the prevention of vomiting. Serotonin antagonists are considered relatively safe, with minimal headache, tachycardia and sedation. They are, however, relatively expensive.

Corticosteroids

Dexamethasone has been shown to be as effective as any other antiemetic drugs in PONV prophylaxis. The underlying mechanism is thought to be via modulation of the neurotransmitter receptor density in the nucleus of the solitary tract, the raphe nucleus and the area postrema. The onset of action is delayed; however, the antiemetic effect is prolonged. It is therefore useful in PONV prophylaxis but not for IONV. Dexamethasone has no severe side effects, is reasonably priced, and may reduce surgical inflammation.

Anti-histamines

Anti-histamines act on the histamine receptors in the CTZ and inhibit the integrative function of vestibular nuclei. They are often used for motion sickness. Anti-histamines do not have major adverse effects and are cheap. Their use may be limited by major sedation, headache and tachycardia. They are effective at decreasing PONV associated with CS under SA, however there are no studies looking at their effect on IONV.

Dopamine antagonists

These agents work on the dopamine receptors in the CTZ. They also act by increasing the resting tone of the lower oesophageal sphincter and in higher doses antagonises the serotonin receptors. Dopamine antagonists have a fast onset of action (1-3 min). The more common side effects include sedation and dizziness. Their major adverse effects are agitation and extra-pyramidal side effects. After initial concerns about precipitation of ventricular arrhythmias such as Torsades de Pointes, droperidol was withdrawn from certain markets, but has subsequently been reintroduced.
The recent Cochrane analysis found a reduction in PONV with dopamaine antagonists of 0.38 RR.24 The dramatic increase in the price of droperidol has however, restricted its use.

\textit{Combination anti-emetics}

There is a significantly lower incidence of IONV with the use of combination prophylaxis compared with placebo. The serotonin antagonist/dopamine antagonist had a relative risk reduction of IONV of 59% versus the antihistamine/corticosteroid that reduced the risk by 30% and the serotonin antagonist alone that reduced the risk of IONV by 46%.1

\textbf{Acupressure}

Acupressure is a non-invasive method of preventing IONV. Traditionally acupressure point P6 is used.29 Its mechanism of action is through peripheral nerve stimulation and possibly by enhancing gastric motility.30 In a review by Allen in 2008, the benefits of acupuncture were found to be inconsistent.29 Acupuncture did decrease intra-operative nausea but there was no proven reduction in intraoperative or postoperative vomiting.24

\textbf{4 Ethnic differences in the incidence of intraoperative nausea and vomiting}

It has been the perception amongst South African anaesthesiologists that Black South African patients have a decreased incidence in postoperative nausea and vomiting (PONV) after general anaesthesia. A prospective observational study performed in KwaZulu-Natal (KZN) measured the incidence of PONV in patients undergoing general anaesthesia, and showed a significant difference in nausea and vomiting between black South African (African) patients (27%) as opposed to multi-ethnic (non- African) patients (45%).31

It is postulated that the isoenzyme variation in the hepatic P-450 cytochrome system is a potential factor in the precipitation of nausea and vomiting. Patients who have a CYP2E1 poor-metaboliser phenotype may be at a greater risk for the development of PONV. This allele has not been identified in the KZN black population and this may explain the lower incidence of PONV.32 With regard to intraoperative nausea and vomiting during SA for CS, this mechanism does not apply. Other centrally mediated mechanisms may be involved.
It has been shown that nausea and vomiting of pregnancy is more common in Western and Asian populations, than in African, Eskimo and Native Americans. A Canadian study examining the racial differences in the incidence of nausea and vomiting of pregnancy showed that Asian and Black women were less likely to report these symptoms than Caucasians. This difference in the reporting of symptoms was attributed to cultural or genetic factors.

A study investigating racial differences in response to chemotherapy found the African American population have a lower incidence of nausea and vomiting than Caucasian patients.

Conclusions

Nausea and vomiting remain unpleasant symptoms during SA for CS. We therefore regarded it as important to establish the incidence of these side effects in our population, using crystalloid coload and phenylephrine boluses for spinal hypotension, with metoclopramide as rescue anti-emetic. The intention is to introduce interventions to reduce the incidence of IONV, and improve patient experience of the birth and bonding process. Within our literature search criteria, we found no studies specifically examining ethnic differences in susceptibility to IONV during SA for CS. Therefore, it was considered important, in the light of the literature quoted above, to include this aspect as an additional study aim. The findings could necessitate pharmacological prophylaxis in high-risk patients.

References

Part C: Publication ready manuscript
Title page

Incidence of intraoperative nausea and vomiting during spinal anaesthesia for caesarean section

Magni BJ. FCA (SA)
Dyer RA. FCA (SA), PhD
van Dyk D. FCA (SA)
van Nugteren J. FCA (SA)

Corresponding author: Magni BJ. Department of Anaesthesia and Perioperative Medicine, Groote Schuur Hospital, Observatory, 7700, South Africa. lottimac@gmail.com, 0027 (0)738726902
Abstract

The incidence of intraoperative nausea and vomiting during spinal anaesthesia for caesarean section.

Background

Nausea and vomiting (IONV) during spinal anaesthesia (SA) for caesarean section (CS) is unpleasant and may interfere with surgery. We studied the incidence of IONV during elective CS, as well as the influence of ethnicity on this outcome.

Methods

Two hundred and fifty eight healthy term patients undergoing SA for elective CS were recruited to this prospective observational study conducted at two Cape Town Level 2 hospitals. Standard practice was employed for SA for CS at UCT (University of Cape Town): 2 mL hyperbaric bupivacaine plus 10 µg fentanyl at the L3/4 interspace, and 15 mL/kg crystalloid co-load. Spinal hypotension was managed with phenylephrine boluses according to a standard protocol. Nausea and/or vomiting were treated by restoration of blood pressure, and metoclopramide. Intraoperative complaints of nausea, and vomiting, were noted. Patients were also interviewed postoperatively as to any experience of intraoperative- or previous history of nausea.

Results

Of the 258 patients enrolled in the audit, 112 (43.4%) were non-African and 146 (56.6%) were Black African patients. The overall incidence (95% CI) of nausea was 32% (0.27-0.38), with 20% occurring prior to- and 11% after the delivery. The overall incidence of vomiting was 7% (0.05-0.11), with 3.2% occurring prior to, and 3.8% after, delivery. The incidence of nausea and/or vomiting was 33% (0.28 – 0.40). Black Africans experienced significantly less nausea than non-African patients (36/145 [24.8%] vs 47/112 [42.0%] respectively, \(p = 0.004 \)). There was no significant difference in the incidence of vomiting (10/145 [6.8%] vs. 8/112 [7.1%] respectively, \(p = 0.865 \)). The odds of experiencing intraoperative nausea for patients with any blood pressure value <70% of baseline, were 2.46 (95% CI 1.40-4.33).

Conclusions

Though in keeping with international standards, the clinically significant incidence of nausea and/or vomiting of 33% requires adjustments to the management protocol for spinal hypotension. The inclusion of ethnicity as a risk factor for nausea during SA for CS should be considered.

Keywords: intraoperative, nausea and vomiting, caesarean section, spinal anaesthesia, ethnicity
Manuscript

Introduction

Intraoperative nausea and vomiting (IONV) causes distress to the patient and may interfere with the surgery. The incidence of IONV during spinal anaesthesia (SA) for caesarean section (CS) is dependent on the anaesthesia technique used, together with preventative and therapeutic measures employed by the anaesthetist (Balki, 2005). There is little research on the incidence of IONV during SA for CS within the South African population. In a recent study it was shown that postoperative nausea and vomiting (PONV) in Black South African (African) patients undergoing general anaesthesia (GA) is significantly lower than in the remainder of the multiethnic South African population (non-African) (Rodseth, 2010). Clinical experience suggests that the incidence of nausea and vomiting during SA for CS is low in African patients. The primary outcome of this study was thus an assessment of the incidence of nausea and vomiting, and the secondary outcome was a comparison of the incidence of these symptoms between African and non-African patients during SA for CS.

Methods

A prospective observational study was conducted at Mowbray Maternity Hospital and New Somerset Hospital, after approval had been obtained from the Human Research Ethics Committee of the University of Cape Town. Healthy, term patients undergoing elective SA for CS during daylight hours, were studied, during the period August 2014 - February 2015. Exclusion criteria were three previous caesarean sections, previous major abdominal surgery, anti-emetics administered prior to CS, preoperative or intraoperative systemic opioid administration, known adverse reaction to metoclopramide, conversion to general anaesthesia, preeclampsia or other causes of severe hypertension, and the use of ergometrine.

Cefazolin (1-2 g) or, if the patient was allergic to penicillin, clindamycin (600 mg), was given over a minimum time period of five minutes, and at least ten minutes prior to induction of SA. If nausea or vomiting occurred as a result of administration, it was noted separately. Preoperatively, systolic blood pressure (SBP) was measured twice with the patient in the left lateral position, and the mean value calculated. The target for treatment of hypotension was 80% of this value. The procedure included the standard practice for SA for CS at the University of Cape Town, i.e. 2 mL intrathecal hyperbaric bupivacaine plus 10 µg fentanyl, 15 mL/kg crystalloid co-load via 18G cannula. The patient was positioned supine, with 20 degrees left lateral tilt. Dermatomal block height was assessed by temperature sensitivity as assessed by ethyl chloride spray. Blood
pressure was measured every minute for the entire procedure. The initial vasopressor used was phenylephrine 50 µg. A 30% decrease in SBP was treated with 100 µg of phenylephrine. This was repeated every minute until the target SBP was achieved (within 20% of baseline value). If the heart rate decreased to less than 55 beats per minute in association with hypotension (SBP decreased by 30% from baseline), ephedrine 10 mg was administered, followed by atropine 0.25-0.5 mg if bradycardia persisted. Ephedrine was also administered if there was a poor response to two consecutive doses of phenylephrine. Nausea and vomiting were treated with intravenous phenylephrine to restore blood pressure, and metoclopramide 10 mg. Oxytocin 3 IU was given over 60 seconds, after clamping of the cord.

The following data was collected by the attending anaesthetist: patient age, booking weight, gestational age, gravity, parity, and number of previous caesarean sections. Also recorded was the lowest systolic blood pressure (SBP) during the procedure, the highest level of the spinal block, total fluid volume administered, and the total dose of phenylephrine, ephedrine, atropine and metoclopramide. The total blood loss was estimated by measurement in a graded suction bottle and inspection of swabs. Whether or not the uterus was exteriorised was also noted. Episodes of nausea and vomiting were noted, and whether these events occurred prior to, or after, delivery. Other adverse events, as well as duration of surgery, were recorded at completion of the case.

Interviews were conducted after the operation and consent requested at this time for participation in the study. This was done in order to exclude potential suggestion bias introduced by explaining the study objectives prior to surgery. The following direct questions were asked: “What race do you classify yourself?”, “Have you ever experienced motion sickness or post-operative nausea and vomiting?”, and “Did you experience nausea during this operation?”

Statistical analysis

Sample size calculation for the primary outcome was based upon a clinical estimate of an incidence of nausea and/or vomiting of 25% overall, with an absolute accuracy of +/- 6%. This required 184 patients. Sub-group analysis was planned a priori. With an expected proportion of African/Non-African patients of 66/33%, and an expected incidence of nausea and/or vomiting of 15% amongst Black Africans and 35% in Non-Africans, allowing for 90% power and p<0.05, 156 Black African- and 78 Non-African patients were required. In the time available for the conduction of the audit, 143 Black African- and 112 Non-African parturients were studied.
Individual categorical variables were summarised with frequency and percentage frequency distributions and illustrated using bar charts. Continuous variables were summarised using means and standard deviations or medians and interquartile ranges. Associations between categorical variables were summarised in two-way frequency tables and tested for statistical significance using a Chi-square test. Observed p-values are quoted. P-values smaller than 0.05 were considered to be statistically significant. The joint associations between the predictor variables and the presence/absence of nausea/vomiting were modelled using a logistic regression model. The exponentiated coefficients of this model are estimated on adjusted odds ratios. Multinomial logistic regression models were used to estimate the association between predictor variables and the three-level categorical outcomes. These models are equivalent to parallel binary logistic models where the relative odds of each of the categories compared to a chosen reference category is estimated. We chose “none” as the reference category.

Results

Two hundred and fifty eight patients were recruited (146 Black South Africans and 112 multi-ethnic [Non-African] parturients). One patient was excluded from the analysis because of erroneous recruitment (3 previous caesarean sections). Patient demographic data and baseline haemodynamic values were similar in the two groups (Table I). Patient age ranged between 18 and 44 years, and all were American Society of Anaesthesiologists Class I or II.

Primary outcome – Incidence of IONV during SA for CS:

The overall incidence of nausea was 32%, with 20% occurring prior to delivery of the baby and 11% after the delivery. The overall incidence of vomiting was 7%, with 3.1% prior to delivery and 3.8% after the delivery. The combined incidence of nausea and vomiting was 33%.

Secondary outcome – between – group comparison:

There was a significant difference (p=0.004) in the incidence of nausea between African- and non-African patients 36/145 (24.8%) vs. 47/112 (42.0%), p=0.004; Odds ratio [95% CI] = 0.47 (0.27-0.82). There was also a significant difference (p=0.012) in the incidence of nausea and vomiting (combined) between African and non-African patients 38/146 (26%) vs. 48/112 (42%), p=0.012. There was no significant difference between the groups with respect to the incidence of vomiting: African patients 10/145 (6.8%) and non-African patients 8/112 (7.1%), p = 0.865.
In addition, logistic regression showed a correlation between hypotension (SBP<=70% baseline) and IONV. There was no association between IONV and baseline heart rate, incidence of smoking, history of motion sickness, or exteriorisation of the uterus (Table 2).

Discussion

This study showed an overall incidence of nausea of 32% during SA for CS. There was also a significantly lower incidence of nausea in African patients than in the Non-African group. The incidence of vomiting was low (18/258 [7%]), and not significantly different between the groups.

There are few studies measuring the incidence of intraoperative nausea and vomiting (IONV). Therefore, the incidence of IONV is often taken from the placebo groups of studies examining the effect of antiemetic preventative measures. Some review articles do quote the incidence of intraoperative nausea and vomiting (IONV) during SA for CS, but most of these have also included postoperative nausea and vomiting (PONV). Previous studies have reported varying incidences of nausea, ranging from 6.7% to 60%, and vomiting (12% to 58%).

Many factors, anaesthetic and non-anaesthetic, contribute to the incidence of nausea and vomiting during caesarean section. The anaesthetic risks are hypotension, the use of neuraxial- and IV opioids, and an increase in vagal activity. The non-anaesthetic factors include manipulation and exteriorisation of the uterus, vigorous movement of the patient, and the use of uterotonic agents such as oxytocin.

In a review of the incidence of nausea and vomiting during SA for CS, it was suggested that hypotension, baseline heart rate, spinal dermatomal level, a history of smoking, or history of motion sickness increases the risk of nausea and vomiting, either intra- or postoperatively. However, using logistic regression, we showed that heart rate, smoking and a history of motion sickness did not significantly increase this risk. It remains controversial whether exteriorisation of the uterus increases the risk of IONV. We found in the present audit that although there was an increased incidence of vomiting in patients in whom the uterus was exteriorised, this was prior to delivery, and hence prior to exteriorisation of the uterus.

The two causal factors which were associated with intraoperative nausea were ethnicity and hypotension. Interestingly, as anecdotally observed by South African anaesthetists, being non-African is a risk factor for
intra-operative nausea. This is despite an increased incidence of smokers within this group – which is known to be protective for PONV.

Many studies have shown a correlation between blood pressure control and IONV. A decrease in blood pressure of >30% below baseline has been found to increase the risk of IONV to 60%. The incidence of IONV increases in proportion to the percentage decrease from baseline blood pressure. Ngan Kee found the incidence of IONV to be 4%, 14%, and 40% with targets, as a percentage of baseline systolic blood pressure, of 100%, 90%, and 80% respectively. Hypotension may be compounded by aortocaval compression during SA for CS, particularly if lateral tilt is not adequately applied. In the present study, the odds of experiencing nausea with a minimum-recorded SBP less than 70% of baseline were 2.46 times higher than those in whom SBP was always higher than 70% of the baseline value. There was no difference in the incidence of hypotension between our two groups.

Some of the causes of IONV can be manipulated and controlled, but certain patients may be particularly susceptible. This requires early identification and possibly the use of pharmacological prophylaxis. A recent Cochrane review of interventions for prevention of nausea and vomiting in women undergoing regional anaesthesia for CS showed that many agents were effective in preventing IONV, keeping with the multifactorial pathogenesis of the condition. The best agents were 5-HT\textsubscript{3} antagonists, dopamine antagonists and sedatives. They also found that there was little evidence that combinations of treatments were superior to single agents. These medications are not without their risks, which may include agitation, extra-pyramidal symptoms and arrhythmias. In our study, we used metoclopramide 10 mg as treatment of vomiting or reported nausea. Only 7.7% of our patients received this intervention. This percentage was in keeping with the incidence of intraoperative vomiting.

It has been shown that nausea and vomiting of pregnancy is more common in Western and Asian populations than in African, Eskimo and Native Americans. A Canadian study examining the racial differences in the incidence of nausea and vomiting of pregnancy showed that Asian and Black women were less likely to report these symptoms than Caucasians. This difference in the reporting of symptoms was attributed to cultural or genetic factors. A study investigating racial differences in response to chemotherapy found the African American population have a lower incidence of nausea and vomiting than Caucasian patients. It has been the perception amongst South African anaesthiologists that Black South African patients have a decreased incidence in postoperative nausea and vomiting (PONV) after general anaesthesia. A prospective observational
study performed in KwaZulu/Natal (KZN) measured the incidence of PONV in patients undergoing general anaesthesia, and showed a significant difference between Black South African (African) patients (27%) as opposed to multi-ethnic (non-African) patients (45%). It is postulated that the isoenzyme variation in the hepatic P-450 cytochrome system is a potential factor in the precipitation of nausea and vomiting. Patients who have a CYP2E1 poor-metaboliser phenotype may be at a greater risk for the development of PONV. This allele has not been identified in the KZN black population and this may explain the lower incidence of PONV. With regard to intraoperative nausea and vomiting during SA for CS, this mechanism does not apply. Other centrally mediated mechanisms may be involved.

There are certain limitations to this study. We did not use a Visual Analogue Score (VAS) and thus the binary response of "yes" or "no" did not allow for the identification of different levels of nausea. Patient responses may also have been affected by confirmation bias. In addition, nausea is under-reported, and the absence of formally trained interpreters meant that the African patients might not have fully understood the meaning of the word nausea.

Nausea and vomiting remain unpleasant symptoms during SA for CS. We therefore regarded it as important to establish the incidence of these side effects in our population, using a standardised SA technique. The intention was to introduce interventions to reduce the incidence of IONV, and improve patient experience of the birth and bonding process. This study found the incidence of nausea and/or vomiting during SA for CS to be 33% in the South African population. Black South Africans had a significantly lower incidence of intraoperative nausea. The only other factor contributing to an increased incidence of IONV was hypotension. However, in keeping with international standards, the clinically significant incidence of nausea and/or vomiting of 33% require adjustments to our management protocol for spinal hypotension. The inclusion of ethnicity as a risk factor for nausea during SA for CS should be considered.
Table I: Patient demographic data, and relevant data pertaining to spinal anaesthesia

<table>
<thead>
<tr>
<th></th>
<th>African</th>
<th>Non- African</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>NS- not significant</td>
</tr>
<tr>
<td>Number</td>
<td>146</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>29.8</td>
<td>30.4</td>
<td>NS</td>
</tr>
<tr>
<td>Parity</td>
<td>2.6</td>
<td>2.9</td>
<td>NS</td>
</tr>
<tr>
<td>Number of previous caesarean sections</td>
<td>1.2</td>
<td>1.2</td>
<td>NS</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>83.2</td>
<td>79.2</td>
<td>NS</td>
</tr>
<tr>
<td>Smoker (y/n)</td>
<td>8 (5.5%)</td>
<td>40 (35.7%)</td>
<td><0.001</td>
</tr>
<tr>
<td>History of motion sickness (y/n)</td>
<td>17 (11.6%)</td>
<td>12 (10.7%)</td>
<td>NS</td>
</tr>
<tr>
<td>Hypotension</td>
<td>65 (44%)</td>
<td>48 (42.9%)</td>
<td>NS</td>
</tr>
<tr>
<td>(% patients with SBP<=70% baseline)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline heart rate</td>
<td>89</td>
<td>87</td>
<td>NS</td>
</tr>
<tr>
<td>Exteriorisation of uterus</td>
<td>26 (17.8%)</td>
<td>9 (8%)</td>
<td>0.02</td>
</tr>
<tr>
<td>Duration of operation (min)</td>
<td>45</td>
<td>43</td>
<td>NS</td>
</tr>
<tr>
<td>Highest dermatomal level of block (mode)</td>
<td>T3 (C5 - T7)</td>
<td>T3(T1 – T7)</td>
<td>NS</td>
</tr>
</tbody>
</table>

Statistical significance was defined as $p<0.05$

Acknowledgements

Professors M James and J Coetzee, Ms K Mauff, and Dr C Lombard, for statistical advice

Conflict of Interests

There were no conflicts of interest
References

11. Lacasse A, Rey E, Ferreira E, Morin C, Bérard A. Epidemiology of nausea and vomiting of pregnancy:

Supporting documents

1. Consent
2. Questionnaire
3. Ethics Approval
4. SAJAA Guidelines
Consent form to participate in an audit

Incidence of intraoperative nausea and vomiting during spinal anaesthesia for caesarean section

Principle Investigator: Dr J Van Nugteren

Student : Dr Bridget Magni

UCT Department of Anaesthetics

Email: lottimac@gmail.com

Cell: 0738726902

We are doing a study to see how many women suffer of nausea and vomiting during the operation for a baby (caesarean section). We would like to use the information on your anaesthetic chart. This information will be kept confidential.

This will not affect your treatment in any way.

The only question we will ask you is “Did you suffer of nausea during the operation?”

The study is completely voluntary and will not affect your hospital treatment in any way.

I hereby consent to my information to be used in this audit

Sign: ________________________________

Name: _______________________________

Date: _______________________________
Questionnaire

Age: ________ Booking Weight ________ Gestational Age________

G_____ P_____ Number of Previous C/S_______

Previous history motion sickness/ PONV: Yes [] No []

Black African [] Coloured [] Indian [] White []

Smoker [] Yes [] No []

Baseline Heart Rate_________________

Baseline Systolic Blood Pressure __________

80% of Baseline SBP__________70% of Baseline SBP__________

Total fluid volume received______________

Lowest SBP recorded________________________

Total Phenylephrine used_______________

Total Ephedrine used____________________

Total Atropine used_____________________

Total Maxalon used_____________________

Any uterotonic used other than Oxytocin_____________

Uterus: sutured in abdomen [] sutured outside abdomen []
MOST IMPORTANT!! Record N&V from induction until last suture

Nausea yes ☐ no ☐
pre-delivery ☐ post-delivery ☐

Vomiting yes ☐ no ☐
pre-delivery ☐ post-delivery ☐

Other adverse events______________________________________

Highest block height______________________________________

Length of operation (Induction of SA to final suture) ________

Total Blood Loss____________
21 July 2014

HREC REF: 505/2014

Dr J Van Nugteren
Anaesthesia
D23, NGSH

Dear Dr Nugteren

PROJECT TITLE: INTRAOPERATIVE NAUSEA AND VOMITING IN PATIENTS UNDERGOING ELECTIVE CAESARIAN SECTION (MMed candidate- Dr B Magni)

Thank you for submitting your study to the Faculty of Health Sciences Human Research Ethics Committee for review.

It is a pleasure to inform you that the HREC has formally approved the above-mentioned study.

Approval is granted for one year until the 30th July 2015.

Please submit a progress form, using the standardised Annual Report Form if the study continues beyond the approval period. Please submit a Standard Closure form if the study is completed within the approval period.

(Forms can be found on our website: www.health.uct.ac.za/fhs/research/humanethics/forms)

We acknowledge that the MMed student, Dr B Magni is also involved in this study.

Please note that the ongoing ethical conduct of the study remains the responsibility of the principal investigator.

Please quote the HREC reference no in all your correspondence.

Yours sincerely,

PROFESSOR M BLOCKMAN
CHAIRPERSON, FHS HUMAN ETHICS

Federal Wide Assurance Number: FWA00001637.
Institutional Review Board (IRB) number: IRB00001938
This serves to confirm that the University of Cape Town Human Research Ethics Committee compiles to the Ethics Standards for Clinical Research with a new drug in patients, based on the Medical
Author Guidelines for SAJAA Submissions

Aims, scope and review policy
The *SA Journal of Anaesthesia and Analgesia* aims to publish original research and review articles of relevance and interest to the anaesthetist in academia, public sector and private practice. Papers are peer reviewed to ensure that the contents are understandable, valid, important, interesting and enjoyed. All manuscripts must be submitted online.

SAJAA is accredited by the Department of Education for the measurement of research output of public higher institutions of South Africa (SAPSE accredited). All articles in SAJAA will be peer reviewed.

Article sections and length

The following contributions are accepted (word counts exclude abstracts, tables and references):

- **Original research** (2800 – 3200 words/ 4-5 pages)
- **Clinical Reviews** (2400 words/ 3-4 pages)
- **Drug Reviews** (2400 words/ 3-4 pages)
- **Case Studies** (1800 words/ 3 pages)
- **Scientific Letters** (2400 words/ 3-4 pages)
- **Letters to the Editor** (400-800 words)

Please see the journal’s section policies [section policies](#) for further details.

FULL AUTHOR GUIDELINES

Title page
All articles must have a title page with the following information and in this particular order: Title of the article; surname, initials, qualifications and affiliation of each author; The name, postal address, e-mail address and telephonic contact details of the corresponding author and at least 5 keywords.

Abstract
All articles should include an abstract. The structured abstract for an Original Research article should be between 200 and 230 words and should consist of four paragraphs labelled Background, Methods, Results, and Conclusions. It should briefly describe the problem or issue being addressed in the study, how the study was performed, the major results, and what the authors conclude from these results. The abstracts for other types of articles should be no longer than 230 words and need not follow the structured abstract format.

Keywords
All articles should include keywords. Up to five words or short phrases should be used. Use terms from the Medical Subject Headings (MeSH) of Index Medicus when available and appropriate. Key words are used to index the article and may be published with the abstract.

Acknowledgements
In a separate section, acknowledge any financial support received or possible conflict of interest. This section may also be used to acknowledge substantial contributions to the research or preparation of the manuscript made by persons other than the authors.

References
Cite references in numerical order in the text, in superscript format (Format> Font> Click superscript). Please do not use brackets or do not use the foot note function of MS Word.

In the References section, references must be typed double-spaced and numbered consecutively in the order in which they are cited, not alphabetically.

The style for references should follow the format set forth in the Uniform Requirements for Manuscripts Submitted to Biomedical Journals (http://www.icmje.org) prepared by the International Committee of Medical Journal Editors. Abbreviations for journal titles should follow Index Medicus format. Authors are
responsible for the accuracy of all references. Personal communications and unpublished data should not
be referenced. If essential, such material should be incorporated in the appropriate place in the text.

List all authors when there are six or fewer; when there are seven or more, list the first three, then "et
al."

When citing URLs to web documents, place in the reference list, and use the following format:
Authors of document (if available). Title of document (if available). URL. (Accessed [date]).

The following are sample references:

 according to aging process: volume assessment by 3-dimensional reconstruction by high-

groin wound infection after femoral artery catheterization: a case-control study. Infect Control

More sample references can be found at: http://www.nlm.nih.gov/bsd/uniform_requirements.html

Tables
Tables should be self-explanatory, clearly organised, and supplemental to the text of the manuscript.
Each table should include a clear descriptive title on top and numbered in Roman numerals (I, II, etc) in
order of its appearance as called out in text. Tables must be inserted in the correct position in the text.
Authors should place explanatory matter in footnotes, not in the heading. Explain in footnotes all non-
standard abbreviations.

For footnotes use the following symbols, in sequence:* † ‡ § || ** †† ‡‡

Figures
All figures must be inserted in the appropriate position of the electronic document. Symbols, lettering,
and numbering (in Arabic numerals e.g. 1, 2, etc. in order of appearance in the text) should be placed
below the figure, clear and large enough to remain legible after the figure has been reduced. Figures
must have clear descriptive titles.

Photographs and images
If photographs of patients are used, either the subject should not be identifiable or use of the picture
should be authorised by an enclosed written permission from the subject. The position of photographs
and images should be clearly indicated in the text. Electronic images should be saved as either jpeg or
gif files. All photographs should be scanned at a high resolution (300dpi, print optimised). Please
number the images appropriately.

Permission
Permission should be obtained from the author and publisher for the use of quotes, illustrations, tables,
and other materials taken from previously published works, which are not in the public domain. The
author is responsible for the payment of any copyright fee(s) if these have not been waived. The letters
of permission should accompany the manuscript. The original source(s) should be mentioned in the
figure legend or as a footnote to a table.

Review and action
Manuscripts are initially examined by the editorial staff and are usually sent to independent reviewers
who are not informed of the identity of the author(s). When publication in its original form is not
recommended, the reviewers’ comments (without the identity of the reviewer being disclosed) may be
passed to the first author and may include suggested revisions. Manuscripts not approved for publication
will not be returned.

Ethical considerations
Papers based on original research must adhere to the Declaration of Helsinki on "Ethical Principles for
Medical Research Involving Human Subjects"; and must specify from which recognised ethics committee
approval for the research was obtained.

Conflict of interest
Authors must declare all financial contributions to their work or other forms of conflict of interest, which
may prevent them from executing and publishing unbiased research. [Conflict of interest exists when an
author (or the author's institution), has financial or personal relationships with other persons or
organizations that inappropriately influence (bias) his or her opinions or actions.]* *Modified from:
Submissions and correspondence
All submissions must be made online at www.sajaa.co.za and correspondence regarding manuscripts should be addressed to:

The Editor, SAJAA, E-mail: toc@sajaa.co.za

Note: Ensure that the article ID [reference] number is included in the subject of your email correspondence.

Electronic submissions by post or via email
Authors with no e-mail or internet connection can mail their submissions on a CD to: SAJAA, PO Box 14804, Lyttelton Manor, 0140, Gauteng, South Africa.

All manuscripts will be processed online. Submissions by post or by e-mail must be accompanied by a signed copy of the following indemnity and copyright form. CLICK HERE to download and save it to your computer.

Submissions by email should be sent as an attachment to

Tips on preparing your manuscript

1. Please consult the “Uniform requirements for manuscripts submitted to biomedical journals” at www.icmje.org
3. The submission must be in UK English, typed in Microsoft Word or RTF with no double spaces after the full stops, double paragraph spacing, font size 10 and font type: Times New Roman.
4. All author details (Full names, Qualifications and affiliation) must be provided.
5. The full contact details of corresponding author (Tel, fax, e-mail, postal address) must be on the manuscript.
6. There must be an abstract and keywords.
7. References must strictly be in Vancouver format. (Reference numbers must be strictly numerical and be typed in superscript, not be in brackets and must be placed AFTER the full stop or comma.)
8. It must be clear where every figure and table should be placed in the text. If possible, tables and figures must be placed in the text where appropriate. If too large or impractical, they may be featured at the end of the manuscript or uploaded as separate supplementary files.
9. All photographs must be at 300dpi and clearly marked according to the figure numbers in the text. (Figure 1, Table II, etc.)
10. All numbers below ten, without percentages or units, must be written in words.
11. Figure numbers: Arabic, table numbers: Roman
Submission Preparation Checklist

As part of the submission process, authors are required to check off their submission's compliance with all of the following items, and submissions may be returned to authors that do not adhere to these guidelines.

1. This manuscript has currently only been submitted to SAJAA and has not been published previously.
2. This work is original and all third party contributions (images, ideas and results) have been duly attributed to the originator(s).
3. Permission to publish licensed material (tables, figures, graphs) has been obtained and the letter of approval and proof of payment for royalties have been submitted as supplementary files.
4. The submitting/corresponding author is duly authorised to herewith assign copyright to the South African Society of Anaesthesiologists (SASA).
5. All co-authors have made significant contributions to the manuscript to qualify as co-authors.
6. Ethics committee approval has been obtained for original studies and is clearly stated in the methodology.
7. A conflict of interest statement has been included where appropriate.
8. The submission adheres to the instructions to authors in terms of all technical aspects of the manuscript.
9. Plagiarism
 The submitting author acknowledges that the Editorial Board reserves the right to use plagiarism detection software on any submitted material.

Copyright Notice

By submitting manuscripts to SAJAA, authors of original articles are assigning copyright to the SA Society of Anaesthesiologists. Authors may use their own work after publication without written permission, provided they acknowledge the original source. Individuals and academic institutions may freely copy and distribute articles published in SAJAA for educational and research purposes without obtaining permission.

Privacy Statement

The names and email addresses entered in this journal site will be used exclusively for the stated purposes of this journal and will not be made available for any other purpose or to any other party.

South Afr J Anaesth Analg: ISSN (Print): 2220-1181, ISSN (Web): 2220-1173