Glass Beads as Indicators of Contact and Trade in Southern Africa ca. AD 900-AD 1250

Sharma Jeanette Saitowitz

Thesis presented to the University of Cape Town in fulfilment of the requirements for the Degree of Doctor of Philosophy

The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or noncommercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.

Abstract

Luxury goods, used in mediaeval long distance trade ca. AD 900-1250, found an important market among the Iron Age peoples of southern Africa. Indirect evidence of this trade can be seen in the form of archaeological collections of glass beads at sites throughout Africa and Southeast Asia. Thousands of beads have been found at Iron Age sites in the eastern Transvaal Lowveld and at inland sites along the Limpopo Valley and in Botswana. Similar looking types of beads, referred to as small seed beads, were also used in the Muslim mercantile networks and maritime trade in the Indian Ocean, and have been found at coeval sites throughout Southeast Asia, particularly at entrepōt ports in India, eastern and western Malaysia and Thailand. At the commencement of the Iron Age occupation of southern African sites, glass beads of any kind were very rare.

From $c a$. AD 900-1000, Islamic influences spread southward along the African east coast. This coincided with the marked increase of glass beads found in southern Africa. Their presence is direct evidence of foreign industry, external trade and contact.

The beads are widely believed to have originated in India, and to have been distributed through Arab traders in the Indian Ocean. Exports would have included gold, possibly ivory, and other raw materials. Archaeology has much to contribute towards documenting these activities. The identity and location of the bead sources is important to an understanding of early contact and economic and political developments in southern Africa. The trade connection coincided with the beginning of a critical sequence of events in the cultural history of southern Africa, which culminated in the formation of an incipient state at Great Zimbabwe (AD 1250-1450) from precursors at Mapungubwe and related sites.

This period corresponds in time with an important episode in Islamic history, when Muslims conquered Egypt and the Fatimids moved their capital eastwards, in AD 969 , from Tunisia to al-Qahira (Cairo) next to the well established cosmopolitan port entrepôt of alFustat (now old Cairo). Texts, chronicles, glass weights, scribal notes and receipts confirm that it was already a successful industrial centre with a history of glass-making when the Fatimids gained control of Egypt.

In this thesis I have addressed two aspects of research to investigate the trade networks associated with internal and foreign contact: (1) the manufacturing origins of the beads, and, (2) who brought them to southern Africa. Glass material from Egypt, Palestine, Syria and Southeast Asia was used for comparison, and as possible source material. Scientific techniques were used to confirm these operations.

The beads were described, classified, and sampled selectively for physical and chemical analysis. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to determine the rare earth elements (REE) composition. The results show that a particular glass, used to make beads in Egypt, is the same as that used to make some of the beads found at sites in the northern and eastern Transvaal. They document the existence of a trade link with the Mediterranean via the Red Sea 1000 years ago.

Until now, both the origin of this contact and the extent of indigenous responses were largely unknown. These findings cast a different light on maritime trade along the east coast of Africa from a millennium ago.

PREFACE

The research on which this study is based has been supported by the Anglo American De Beers Chairman's Fund Educational Trust and the University of Cape Town Research Committee. Beads and glass material were provided by A. Meyer (University of Pretoria), N. J. van der Merwe (University of Cape Town) and E. Wilmsen and J. Denbow (University of Texas). The Egyptian material was loaned by the Van Riet Lowe Collection, housed at the University of the Witwatersrand. Most of the Southeast Asian samples were provided by Peter Francis Jr. (U.S.A). Maud Spaer (Israel Museum) provided fragments of Islamic glass bracelets and George Scanlon (American University at Cairo) provided archaeological material from Fustat. Robert Brill (The Corning Museum of Glass, NY) kindly donated the glass standards used in the electron microprobe analysis. Adi Haji Taha arranged for me to visit sites in Malaysia that were the sources of associated with study material used in this thesis.

My thanks are due to my supervisors, Professor Nikolaas J van der Merwe (Department of Archaeology, UCT) and Associate Professor Dave L Reid (Department of Geological Sciences, UCT). Associate Professor James Willis and Mr Richard S Rickard, also of the Geological Sciences Department, were very generous with their time.

I am grateful to Revil Mason (Archaeological Research Unit, University of the Witwatersrand) and Tom Huffman (Department of Archaeology, University of the Witwatersrand) for allowing me access to the Van Riet Lowe Bead Collection. I am also particularly grateful for the generous collaboration of Andre Meyer (University of Pretoria) and Peter Francis Jr. (Center for Bead Research).

Analysis by laser ablation inductively coupled plasma mass specrometry was carried out at the Anglo American Research Laboratories (Pty) Ltd., the only facility of this kind in South Africa at the time of my research. I would like to express my deep appreciation to Dara Grigorova, Jan de Brüyn, Alexander Barzev and Nanette Vermaas for their collaboration, and kindness shown to me throughout. Richards Bay Minerals provided comparative analytical data.

Special thanks are due to John Henry at the Sea Fisheries Research Institute in Cape Town, Caitlin Lewis, Richard Perez, Belinda Hofmeyr, Royden Yates, Penny Berens and Ethleen Lastovica. I am indebted to Frank Coleman, without whose editorial assistance and encouragement this project would never have been completed.
Lastly, but by no mean least, I was inspired by my family Charles, Nicole, Romy, Danielle, Raymond and Pauline, and, the memory of my late parents Alfy and Gladys to complete this work.

TABLE OF CONTENTS

Page
Abstract i
Preface ii
Table of contents iii
List of figures vi
List of tables viii
Appendices
Chapter I INTRODUCTION 1
1.1 Possible sources 2
1.2 Glass bead studies in southern Africa 3
1.2.1 The Van Riet Lowe Bead Collection 4
1.3 Archaeological context of the research 5
1.4 Early glass manufacture 7
1.4.1 Islamic glass 8th -11th centuries 8
1.5 Trade and contact 9
1.5.1 Trade routes, goods and volume 10
1.5.2 Islamic commercial networks 11
1.6 The origin of beads found in southern Africa 13
Chapter 2 BACKGROUND 14
2.1 Introduction 14
2.2 Glass and its properties 14
2.2.1 Previous chemical analysis of early glasses 19
Chapter 3 EARLY GLASSMAKING 20
3.1 Introduction 20
3.2 The origins of glass 21
3.2.1 Glass technology 22
3.2.2 Early industry 23
3.2.3 Faience 24
3.3 Primary glass production 25
3.3.1 Secondary reworking 26
3.4 Glassmaking in Africa 27
3.5 Glassmaking in Southeast Asia 30
3.6 Glass bead manufacture 33
Chapter 4 EARLY ISLAMIC GLASS 8th-11th CENTURIES 35
4.1 Introduction 35
4.2 Islamic glassmaking traditions 36
4.3. Glass made at Fustat 41
4.4 Islamic glass coin weights, bracelets \& beads 42
4.5 Some other archaeological sites with Islamic glass 45
4.6 Chemical composition of some Islamic glasses 47
4.7 Islamic glass \& glass beads found at southern
African Iron Age sites 49
Chapter 5 ISLAMIC WORLD TRADE \& CONTACT IN AFRICA 52
5.1 Introduction 52
5.2 Trade routes and the spread of Islamic commercial activities 54
5.2.1 Africa 54
5.2.2 Indian Ocean 58
5.2.3 China 59
5.3 The Fatimids 60
5.4 East Africa 62
5.5 Southern Africa 66
Chapter 6 ARCHAEOLOGICAL CONTEXT OF THE BEADS 71
6.1 Introduction 71
6.2 Non-glass beads 76
6.3 Southern Africa 79
6.3.1 Northern Transvaal 79
6.3.2 Allied sites 90
6.3.3 North Eastern Transvaal 90
6.4 Botswana 90
6.5 Egypt 91
6.6 Palestine \& Syria 94
6.7 Southeast Asia 95
6.8 Burials and beads 100
6.9 Conclusion 101
Chapter 7 METHODOLOGY 103
7.1 Introduction 103
7.2 Conservation of glass beads from Schroda 105
7.3 Visual classification 105
7.3.1 Refractive index (R.I.) 106
7.4 Instrumental techniques used on the glass 106
7.4.1 Scanning elecron microscopy (SEM) 107
7.4.2 Atomic absorbtion spectrometry (AAS) 107
7.4.3 Electron probe microanalysis (EPMA) 108
7.4.4 Laser ablation inductively coupled plasma Mass Spectrometry (LA-ICP-MS) 112
7.5 Preparation of glass samples for analysis 113
7.6 Rare Earth Elements (REE) 114
Chapter 8 RESULTS \& DISCUSSION 117
8.I Visual classification 117
8.1.1 The beads from southern African Iron Age sites 117
8.1.2 Schroda beads re-classified 126
8.1.3 Comparative source \& site material 127
8.1.4 Discussion of visual classification 132
8.2 Chemical analysis 136
8.2.1 Scanning Electron Microscopy (SEM) of Garden Roller and soapstone beads 136
8.2.2 Electron microprobe Major \& Minor Elemental Analysis (EPMA) 138
8.2.3 REE and Trace Element Analysis 138
8.2.4 Discussion of results 138
8.3 Significance of REE profiles 147
8.3.1 Discussion 147
8.3.2 Trade implications using REE Chemical Characterisation 156
Chapter 9 CONCLUSIONS 168
9.1 Scope for future work 173
REFERENCES 175
APPENDICES
Appendix I Early contact and trade before the rise of Islam 191
Appendix IIa. Catalogue of beads from Greefswald and allied sites 200
Appendix IIb Catalogue of beads from N. Transvaal sites 245
Appendix IIc Catalogue of beads from E. Transvaal sites 268
Appendix IId Catalogue of beads from Botswana sites 282
Appendix III A summary of Claire Davison's (1972) neutron activation analyses of glass beads 287

List of Figures

Fig. 3.4.1 The cire purdue casting method used to make Garden Roller beads 31
Fig. 5.2.1.1. Maritime and overland trade routes ca $\mathrm{AD} 900-1250$ 56
Fig. 6.1.1. Iron Age sites in southern Africa 72
Fig. 6.2.1 a-g. Bone, pottery and soapstone beads 78
Fig. 6.3.1.1. The site of K2 81
Fig. 6..3.1.2. Glass beads from skeletons, including K2 and Mapungubwe 85
Fig. 6.5.1. The site of Fustat and other sites in Egypt 92
Fig. 6.5.2. The site of Fustat 93
Fig. 6.7.1. Sites in Southeast Asia 96
Fig. 6.7.2. Southern and eastern India showing Arikamedu 98
Fig. 7.6.1. Examples of chondrite-normalized REE diagrams 115
Fig. 7.6.2. Chondrite-normalized REE diagram of monazite and monazite sand 116
Fig. 8.1.1. Bead frequencies from Greefswald including Mapungubwe \& K2. 118
Fig. 8.1.2. Bead frequencies from the northern Transvaal. 119
Fig. 8.1.3. Bead frequencies from the eastern Transvaal. 120
Fig. 8.1.4. Bead frequencies from Botswana. 121
Fig. 8.1.a. Different bead varieties from K 2 122
Fig. 8.1.b. Different bead varieties from Mapungubwe 123
Fig. 8.1.c. Different bead varieties from Botswana 124
Fig. 8.1.d. Variety of Garden Roller bead shapes and moulds. 125
Fig. 8.1.3.1.a-q Comparative source and site material 128
Fig. 8.1.3.1.(A). Micrograph of soapstone bead sample showing the top view with small grooves. 132
Fig. 8.2.1.1. Broken Garden Roller beads showing reddish/black iron deposit and large air bubbles. 137
Fig. 8.3.1.1. Chondrite-normalised REE abundances in seawater 148
Fig. 8.3.1.2. Examples of negative and positive Ce and Eu anomalies. 149
Fig. 8.3.1.3. Chondrite-normalised REE abundance showing positive Eu anomaly in a piece of glass cullet from Ceylon. 149
Fig. 8.3.2.1. South Africa. Chondrite-normalized REE patterns for beads from the Limpopo Basin and E. Transvaal showing negative Ce anomaly 157
Fig. 8.3.2.2. Egypt and. southern Africa. Chondrite-normalized REE patterns. 157
Fig 8.3.2.3. South Africa and Indonesia. Chondrite-normalized REE patterns. 158
Fig 8.3.2.4. Mapungubwe \& Makahane. Chondrite-normalized REE for celedon green wound beads. 158
Fig 8.3.2.5. K2 \& Schroda. Chondrite-normalized REE patterns 159
Fig 8.3.2.6. South Africa and Indonesia. Chondrite-normalized REE patterns 159
Fig 8.3.2.7. Skutwater. Chondrite-normalized REE patterns 160
Fig. 8.3.2.8 Northern Transvaal, East Africa and Indonesia Chondrite-normalized REE patterns 160
Fig. 8.3.2.9. Eastern Transvaal. Chondrite-normalized REE patterns 161
Fig. 8.3.2.10 Eastern Transvaal and Botswana. Chondrite-normalized REE abundances161
Fig 8.3.2.11.. Botswana, Eastern Transvaal and Ceylon Chondrite-normalized REE patterns 162
Fig 8.3.2.12. Botswana \& Egypt. Eastern Transvaal Chondrite-normalized REE patterns 162
Fig. 8.3.2.13. India. Chondrite-normalized REE patterns 163
Fig. 8.3.2.14. Arikamedu. Chondrite-normalized REE patterns 163
Fig 8.3.2.15. Palestine, Malaysia \& South Africa. Chondrite-normalized REE patterns 164
Fig. 8.3.2.16 Indonesia and eastern Malaysia Chondrite-normalized REE patterns 164
Fig. 8.3.2.17. Western Malaysia. (Kelumpang) Chondrite-normalized REE patterns 165
Fig. 8.3.2.18. Western Malaysia (Pulau Kelumpang) Chondrite-normalized REE patterns 165
Fig. 8.3.2.19. Eastern Malaysia and Ceylon. Chondrite-normalized REE patterns 166
Fig. 8.3.2.20. Eastern Malaysia and Ceylon. Chondrite-normalized REE patterns 166
Fig 8.3.2.21. Thailand \& Fustat. Kong Thom \& Takua Pa. Chondrite-normalized REE patterns 167
Fig 8.3.2.22. Thailand. Takua Pa sample \#133. The chondrite- normalized REE signature is very similar to monazite. 167
List of Tables
Table 2.2.1. Range of \% composition of sodium carbonate from Wadi Natrûn \& Keli or ash from the Syrian desert plant called 'Chinane'. 16
Table 3.2.1. Average percentages of wheat \& straw ash, and early glasses. 22
Table 4.6.1. Chemical analyses of Islamic glasses 48
Table 4.7.1. Chronology of early Roman, Byzantine \& Islamic glass finds AD 100- AD 1400 50
Table 5.5.1. Summary of events associated with Islamic commercial expansion 69
Table 6.3.1.2. Distribution of glass beads excavated at K2 (Eloff \& Meyer) 82
Table 6.3.1.3. Distribution of glass beads found at Mapungubwe (Eloff \& Meyer) 87
Table 6.3.1.4. Glass beads from Skutwater 89
Table 7.4.2.1. Metal concentrations measured in micrograms per gram (μ / g). 108
Table 7.4.3.1 Abundance and identity of elements used in this study and ranges of analytes in the literature 110
Table 7.4.3.2. Glass bead analyses counting statistics. 111
Table 7.4.4.1. Operating parameters of the ICP mass spectrometer and the laserlab 112
Table 8.2.1.1. Chemical analysis of deposit found in the glass matrix of a Garden Roller bead. 136
Table 8.2.2.1. Major and minor chemical analyses expressed in weight $\%$. 141
Table 8.3.1.1. REE and trace-element analyses of zircon and titanium of glass beads and wasters from southern Africa, Egypt, Palestine, India, Ceylon, Indonesia, eastern \& western Malaysia and Thailand (concentration reported in ppm). 151

INTRODUCTION

The main objective of this research is to examine the internal and external trade and contact in southern Africa, AD 900-1250, with emphasis on the Limpopo Basin, eastern Transvaal and Botswana, using glass trade beads excavated from archaeological sites as source material. Glass beads are found at most Iron Age sites in southern Africa from $c a$. AD $800-900$ onward. The only local glass bead technology involved the remelting of small imported beads in clay moulds to make larger ones. All other beads were imported from external glass producing centres. The beads are widely believed to have originated in India, and distributed by Muslim traders in the Indian Ocean, who utilised the the seasonal cycle of the monsoon winds, hence the term 'trade wind' beads to provide a trade connection between India, China and Africa. This presumption has endured since the 1930s.

The period $\mathrm{AD} 900-1250$ encompasses a critical sequence of events in the cultural history of southern Africa, which culminated in the formation of an incipient state at Great Zimbabwe from precursors at Mapungubwe and related sites. It also coincided with the dramatic rise of dar-al-Islam which controlled religious, political and commercial activities across three continents. The social processes which gave rise to incipient state formation in southern Africa are considered by most investigators to include indigenous responses to external trade. Success was contingent on the expansionary role of Islamic enterprise. This component is, arguably, the most important of all.

In this thesis I evaluate some of the events of early trade which culminated in the sovereignty of the Fatimids who ruled Egypt from their capital of al-Qahira (Cairo) AD 969-1171. This period coincided not only with the extension of Muslim trade and commerce but also with the perfection of early Islamic glassmaking. I also review the history of this glassmaking and production at al-Fustat ${ }^{1}$ (now Old Cairo - ca. AD 6421168) and specific type site glass beads. The period also marked the appearance of glass beads at southern African sites.

I examined the glass beads - a major component of this trade - from all the important southern African Iron Age sites, and also from Egypt, the Near East and Southeast Asia. Visual examination and classification was carried out on over a hundred and fifty thousand beads. Various analytical procedures were used to determine the elemental composition of many of them for comparative sourcing studies. Chemical analysis for the major, minor and

[^0]trace elements was undertaken with positive results, especially using the Rare Earth Element (referred to as REE), which showed positively that some beads excavated in the northern and eastern Transvaal ${ }^{2}$ are identical to beads that were produced in Fustat a thousand years ago.

Previous work, including chemical analysis, done by researchers such as Davison (1972) (see chapter 2.2.3) failed to find the source of any of the beads found at southern African sites. Davison determined that most of the glass beads found in Africa had a very long time span and regional distribution, and were therefore not chronologically diagnostic. She concluded that glass beads offered very little potential for pre-historic studies for southern African. I question this conclusion with chemical evidence to the contrary.

1.1 POSSIBLE SOURCES

For centuries, masses of glass beads have been imported into southern Africa from external sources. The glass beads that entered the region from $c a$. AD 800 onwards are very similar in make and shape, and are found in a limited range of colours. This was presumably due to the restricted number of varieties available on the market before European contact. Acceptance of these particular types of beads established a pattern, or precedence, of consumer demand that has continued in southern Africa for centuries. Over time, the selection of beads was copied by various manufacturers to capture the highly lucrative market. So successful are the imitations that they are visually indistinguishable from one another.

There is good reason to believe that trade during the pre-colonial period relied on networks of exchange and barter, and that glass beads were a form of currency. This is explained by the desire or 'ready market' of indigenous communities to trade gold, ivory and fresh produce for glass beads with Muslim Arabs, Portuguese, Dutch and English merchants. Historical records refer to beads being used in return for goods as diverse as land, cattle, gold, copper, ivory, slaves and tortoise shell. Later, glass beads became signifiers of social standing among many indigenous black populations in southern Africa, and have been incorporated into their culture in the form of decorated beaded clothing, communication and religion.

Glass artefacts have been found at many Indian sites from the first millennium BC, through the medieval period, and into the 19th century. However, very few securely dated specimens are available for analysis. A popular assumption is that the beads found in southern Africa originated in India. Large quantities of glass beads and glass waste material have been recovered during various excavations at the site of Arikamedu, situated on the eastern coast of India, approximately 3 km south of Pondicherry. Arikamedu, also known as Virampatnam, was a maritime commercial centre in the early centuries of the Christian era with Mediterranean trading links. It has been identified in ancient texts. Peter Francis, Jr. (Director of the Center for Bead Research, Lake Placid), suggests a long period of bead-making at Arikamedu. Francis supplied comparative material in the form of glass 'scrap' or waste from Arikamedu (1989-1992 excavations - Universities of Pennsylvania and Madras) and one small blob of glass from Purdalpur. This sample was made with locally

[^1]found salt used at a modern primary centre between 1975-1980: the Arikamedu material ranges in time from $c a$. BC 50 to the late medieval period (Francis, pers. comm.).

Reliably documented sources show that Fustat was already a successful industrial centre and cosmopolitan entrepôt, with a history of glass-making, when the Fatimid dynasty gained control of Egypt. These include published and unpublished chronicles, evidence of pilgrims, travellers and diplomats, and the fortuitous treasures found in papyri troves and the mercantile documentation of the Geniza collection (Scanlon 1990:2). It was a clearing and forwarding centre for exotic trade goods and glassware from other glass-houses within the Islamic world. While the entrepôts which supplied and traded glass and glass beads could have changed many times, the most likely primary glass producing centres of known origin were in Egypt, Tunisia, Palestine, Syria, Mesopotamia and Persia. High-quality glassware has been excavated from within the city of Fustat, including distinctive bead types termed Fustat Fused Rod Beads as well as glass coin weights used for accurate gold weighing.

Fustat is a primary source candidate for the production of beads found in southern Africa. To test this connection, several beads reported to have been made in Fustat, including Fustat Fused Rod Beads', were chemically compared with glass material from Arikamedu and Purdalpur together with beads excavated from the twenty southern African sites. One hundred and forty samples were analysed.

1.2 GLASS BEAD STUDIES IN SOUTHERN AFRICA

A strong tradition of glass bead studies existed in the archaeology of southern Africa, before radiocarbon analysis replaced beads as a dating method for Iron Age sites. From an initial impetus in the work of MacIver (1906) and Caton-Thompson (1931) at Great Zimbabwe, this tradition was continued by van Riet Lowe (1955), Schofield (1951) and Summers (1958). Van Riet Lowe suggested an Egyptian or Arabic Asian ${ }^{3}$ origin for the glass beads but he was unable to substantiate his theory with any tangible evidence (Gardner 1963:32). Gertrude Caton-Thompson commissioned British collaborator Horace Beck to analyse the beads from Great Zimbabwe ${ }^{4}$. Beck postulated an Indian source for the beads from Great Zimbabwe, comparing them, by a 'look alike' process, with beads that he had seen from Tangal and Southeast Asia. He based his findings almost entirely on visual observation and on his personal knowledge and experience of working with bead collections from all over the world. He ruled out a possible Mediterranean origin. Many researchers perpetuated this assumption, some adding alternative suppliers from bead manufacturing centres in the Pacific-Rim (Van der Sleen 1967; Chittick 1974; Francis 1990).

[^2]Beck (1931:235) made a big issue out of the fact that no faience material, in the form of beads or small sculptures, was found at Great Zimbabwe. He endorsed his Indian connection by concluding that:
...(o)n account of the absence of faience, as well as the similarity of the beads, the Rhodesian specimens seem to be closely allied to the early Indian civilization.

In 1937 Beck used microscopic examination of the beads in thin section and measurements of specific gravity to classify and compare the beads from Mapungubwe and Zimbabwe more accurately. Unfortunately, his conclusions of the origins of the Mapungubwe material were even less specific than Great Zimbabwe. His impression of the Mapungubwe beads was that they came from a very similar civilization to the Zimbabwe ones (Beck 1937:103113), again inferring an Indian link.

Despite the fact that Beck used specific gravities to amplify his results, Van Riet Lowe considered the Zimbabwe bead analysis superficial. He could not condone the fact that Beck had not used any other methods of analysis, such as spectroscopy (Transvaal Archives, July 1940 - February 1950) ${ }^{5}$.

Although the evidence is inconclusive, the notion that the beads found at southern African sites between ca. AD 900-1250 were made in India still persists. However, Tampoe (1989:139-143), has very adequately shown that, although goods may have been obtained at an Indian port, it did not necessarily mean that they were Indian in origin.

In 1956 van der Sleen coined the phrase 'trade wind' beads, referring to beads used in Indian Ocean trade. Because of their visual similarity they have long been recognised as forming a vague series. In 1972, Claire Davison also adopted this terminology. I believe that these particular beads were only introduced into southern Africa later by Portuguese traders, who could either have bought or commissioned them from manufacturers in Southeast Asia or Europe.

While Horace C. Beck was considered the pioneer of glass bead studies in the United Kingdom, undoubtedly Clarence van Riet Lowe was his counterpart in South Africa. During 1935 and subsequently, van Riet Lowe acted as director of field operations at Mapungubwe and undertook specialist analysis of the glass beads recovered from the site. He published several papers and was an authority on Venda beads. His main publication on Mapungubwe beads, although written in 1940, was published posthumously. Van Riet Lowe became the first director of the Bureau of Archaeology established by the South African Government and discovered over 300 archaeological sites (Malan \& Cooke 1962:39). He travelled extensively overseas representing South Africa at various international conferences, until his retirement in 1955.

1.2.1 The Van Riet Lowe Bead Collection

Van Riet Lowe devoted much of his time and energy to building up a assemblage of beads, and with the assistance of many collaborators he succeeded in bringing together a large

[^3]collection from all parts of Africa, including Zimbabwe, the West Coast and East Coast of Africa, Egypt - Palestine, India, Ceylon, and Indonesia (Cohn 1959:75).

Egyptian beads represented in the collection range from pre-dynastic (BC 3400) to Islamic. The earliest beads are from El Badari, consisting of shell (ostrich and sea shells), camelian and other stone beads. More recent pharaonic beads are mainly glazed cylinders with small red and yellow spacer-beads between them. Many of the beads and pendants were supplied by G. Brunton and came from Matmar (the ancient Muthis, north of Badari and south-west from Siut in Upper Egypt) and Mostagedda in Middle Egypt, which Brunton excavated in 1927-1928. Some of the beads from Great Zimbabwe were identified by the Museum of Arabian Art in Cairo as being of early Islamic origin (Cohn 1959:77).

Van Riet Lowe also accumulated a comprehensive selection of traders' sample bead cards. The collection is now housed in the Archaeology Department at the University of the Witwatersrand. Many of the beads, particularly the Egyptian source material used in this study, were obtained from the Van Riet Lowe Collection.

A valuable source of information pertaining to this collection is housed in the Transvaal Archives, Pretoria: voluminous amounts of archival material confirm his interest in and fascination for glass beads and their origins. A letter dated 20th June 1945 to Capt H. B. Gilliland is only one of many examples (Transvaal Archives, July 1940 - February 1950) ${ }^{6}$:

> Your precious package of glass beads, ceramics and glass wares from Zeila [British Somaliland] and Saada Din island reached me safely a few days ago. The ceramics are interesting and informative in that among many mediaeval Arab types we have five fragments of Chinese celadon ware of the Sung Dynasty. This gives us a chain of Sung wares from Mapungubwe to Memphis and the Nile delta - including Zimbabwe, Tanganyika, the Sudan and Somaliland. The older types of glass beads also reveal valuable links.

1.3 ARCHAEOLOGICAL CONTEXT OF THE RESEARCH

Earlier work by Horace Beck and Claire Davison established a precedent for evaluating small monochrome glass beads found in South Africa as having originated in India. In addition, Davison considered the 'trade wind' group, defined by van der Sleen, as unsuitable temporal indicators for cross-dating archaeological sites, because they were so widely distributed. She inferred that, because they were so similar visually and so 'extraordinarily conservative', they offered few possibilities for comparative research.

Peter Francis Jr supports a Southeast Asian origin for many of the beads, which he has termed Indo-Pacific beads, and suggests that they have been found at archaeological sites in West and southern Africa.

Notwithstanding van Riet Lowe's suggestion that the beads could have originated in Egypt or the Near East, both the expertise of early Islamic glassmaking and the Muslim monopoly

[^4]of trade, particularly during the Fatimid period, have been largely disregarded. The hypothesis investigated here is that many of the glass beads found at southern African Iron Age sites from the 10th to the 12th centuries, originated in Islamic Egypt. Glass material has also been used from alternative beadmaking sites and secure archaeological contexts such as Palestine, India and Malaysia.

The majority of the glass beads used in this study were excavated from southern African Iron Age sites in northern and eastern Transvaal and Botswana. The largest collection by far is that from Mapungubwe, where good stratigraphic control and fine-screening techniques were used by the excavators, such as N. Jones, J. Schofield, J. Eloff and A. Meyer. The most striking feature of the assemblages is that at Schroda, Pont Drift and K2 the number of beads are relatively small compared to that of Mapungubwe; the latter collection numbers in the tens of thousands. In the eastern Transvaal the number of beads excavated from the earlier sites is also very small in comparison, suggesting that either (i) they were not recovered in the archaeology, (ii) they did not preserve well, or (iii) that they were just not there to start with. This could be explained by the fact that the Limpopo Basin was the nucleus of the trade, and that the merchandise spread out from there. Another observation regarding the distribution of beads is the large quantities that were buried with individual skeletons, particularly at Mapungubwe (see Chapter 6.8).

Other large glass bead collections have been recovered from Iron Age sites elsewhere, including Great Zimbabwe, Dhlo-Dhlo, Matendere and Ingombe Ilede. Earlier beads from the Dembeni Phase (9 th-10th century AD) in the Comores, off the East coast of Africa, were excavated by Henry Wright (1984:13-60), and in Chibuene, Mozambique, by Paul Sinclair where a radiocarbon date indicates that the site was occupied in the 8th century AD (1982:150-164). None of these beads was included in this study.

Large assemblages of glass beads have been excavated at sites in Southeast Asia, including Burma, Thailand, Laos, Cambodia, Vietnam, Malaysia, Indonesia and the Philippines. Similar 'looking' bead types have been recorded in East Africa and southern Africa as well. Their exact origins are unknown. This wide distribution suggests a long distance trade network which operated throughout the Indian Ocean and South China Sea.

The glass material from Southeast Asia analysed in this work was excavated at sites from the 5th - 14th centuries AD in the Malay Peninsula and the Indonesian Archipelago (JacqHergoulalc'h 1992:1), Thailand and India. The archaeology of many of these sites is associated with Megalithic cist and slab built graves constructed of large granite blocks

Although glass vessels per se are not often found in the pre-European archaeology of Southeast Asia, except in the straits of Malacca, in western Malaysia., large assemblages of glass beads, numbering in the tens of thousands, have been found at archaeological sites throughout both mainland and island Southeast Asia. One of the common denominators of the small artefactual finds is the preponderance of stone and glass beads. Comparative analysis of some of the glass material was used to establish whether the beads from Southeast Asia were chemically similar to those found in southern and East Africa.

1.4 EARLY GLASS MANUFACTURE (See Chapter 3 for detail)

The history of glass stretches back into antiquity. Glass is one of the most familiar of all materials, with a wide range of applications in the modern world. Archaeological beads provide a valuable record of glass history and technology.

Glass is a unique material. It is a non crystalline, super-cooled liquid which requires specific conditions of manufacture from raw materials that are not in the least way similar to the finished product. Although it is amongst one of the oldest man made materials, the precise origins of glassmaking are unknown. The chances are that observations during related pyrotechnologies used by metal smiths led to the discovery of siliceous slags. Ancient texts attest to the skills and knowledge of an élite band of craftsmen.

Recipes for making glass have been formulated and written in countless variations. Nevertheless, glass-making is really just heating and fusing together of no more than two or three raw materials: a siliceous ingredient (sand or quartz), a fluxing agent (soda or potash) and a stabiliser (calcium oxide or lime). A number of minerals are used for colouring, such as cobalt, copper, and manganese; iron is usually present as an impurity in the sand. Decolourants are added to the glass to eliminate these impurities.

Fluxing agents or alkalis lower the melting point of the sand or quartz to a workable temperature. Both naturally-occurring and man-made compounds of soda, containing different proportions of sodium carbonate, bicarbonate, chloride and sulphate, are used in the glass industry today. Common fluxes used to produce glass in earlier times would have been in the form of plant ash or soda ash.

The shortage of recorded early glassmaking sites is problematic for sourcing studies. Some researchers are of the opinion that relatively few production centres made primary glass either in the form of manufactured ware, or as ingots, blocks of glass, tiles, rods or cullet. This suggestion has led to the belief that a viable trade in secondary glass developed and decentralised or 'cottage' type industries emerged. This concept is different from that of the centralised factory production methods of even the earliest glass houses, where the raw materials of the basic batch entered and the finished glass objects came out (Cummings 1980:17).

The advantage of secondary re-working was that it avoided the necessity of moving fragile merchandise from one destination to another and saved on extra packaging costs. Additionally, re-working required far less initial investment associated with pyrotechnology and technical knowledge, and it reduced the enormous fuel consumption necessary for production. Overall it was far more convenient to use.

Glass beads and other small articles would have been ideal commodities for secondary glass production. The drawn method of making beads, which comprises the bulk of the material used in this work, is associated with mass production rather than individually hand made articles. Either of these two methods could have been used in larger factory warehouse type complexes or semi-privatised 'cottage' industries.

1.4.1 Islamic Glass 8th - 11th Centuries

The study of Islamic glass has been one of the most neglected aspects of all the Islamic arts, and for this reason there are many gaps in our knowledge, particularly of the early period (AD 8th 11 th centuries). The results of recent archaeological excavations, however, are beginning to bridge this hiatus, and I hope the results of this dissertation will add further to this body of information. The period directly related to glass beads being imported into southern Africa corresponds to the early period of Islamic glassmaking. For convenience it will be referred to as Early Islamic glass throughout this thesis.

The most comprehensive and definitive works on Islamic glass were published by Carl Johan Lamm in 1929. More recently, Ralph Pinder-Wilson, formerly a Deputy Keeper in charge of the Islamic collection at the British Museum and now Director of the Royal Asiatic Society, George Scanlon (American University at Cairo), Marilyn Jenkins (The Metropolitan Museum of Art) and Christoph W. Clairmont (Glass Museum, Cologne) have all made considerable contributions in this field.

Islamic glass evolved from a long period of glassmaking history and technology and cannot be considered in isolation. Essentially, Islamic glass in the Early period continued in the Roman Imperial tradition after the collapse of the Empire. After an initial period of adaptation and modification, certain Islamic glasshouses developed distinctive styles and techniques. Some of the most important Islamic contributions to glass technology in the Early period were carving glass in relief, applied decoration, lustre painting, gilding and enamelling. The objects were used as utilitarian as well as decorative ware notably drinking vessels, medicine tumblers, mosque lamps, jewellery, coin weights and vessels for cosmetics, or perfume; glass beads and bracelets were made for personal adornment. Islamic craftsmen also made major contributions in other fields, including textiles, glazed ceramics, woodcarving and architecture.

Archaeological excavation in Fustat revealed the remains of a glass factory and undisturbed pits below and above a house which contained the remains of particularly distinctive glass beads and dated glass coin weights (Pinder-Wilson \& Scanlon 1987:71). The beads, variously referred to as 'fused rod', 'Fustat Beads' and 'Fustat Fused Rod Beads', have been attributed to between AD 800-900 (Spaer 1993:4-11; Francis 1993:29).

Approximately ten thousand Islamic coin weights have survived which now are found in public and private collections worldwide. Glass weights were produced specifically to determine the exact mass of coins and weights. Glass had an advantage over other materials because it could not be cut or tampered with easily (see Ch 4.4). Modern scholars have marvelled at the fact that medieval craftsmen were able to produce glass weights precisely indicating fractions of a gram (Goitein 1967:110). They were issued under strict official control on behalf of the caliph and were stamped and dated with the ruler's, or his agent's name. Various financial directors in Egypt were responsible for distributing coin weights of different clarity and in different coloured glass. One Fatimid weight excavated from Awagust was used as a temporal marker for the site (Devisse 1992:190-215).

1.5 TRADE AND CONTACT

Studies of the effects of contact between various civilizations throughout history often focus on the role of barter or trade. Some scholars (Haas 1982; Mitchell 1994) believe that trade was the result of uneven distribution of resources which led groups of people to exchange products, such as raw materials, finished products or manpower. Trade goods, agriculture, and plant and animal domestication became the impetus for the acceleration of indigenous regional exchange. Participation in the trade system, in terms of contributing labour or exportable goods, would have provided economic gains in the form of the imported goods.

The development of an international shipping trade between several 'worlds' of Asia in the first centuries of the Christian era, the Chinese world in the Far East, the Arab world in the Far West, and, in between the Indian world, resulted in the creation of trade and supply zones of different proportions and importance.

Safe passage and control of a long-distance trade network required stable political and socio-economic conditions to provide adequate military and sea defenses. Moving merchandise overland or in ships without restriction depended on complex and reliable networking that could supply facilities for handling, storing, packaging and processing payment of goods to and from trading outposts in areas removed from main centres. In the Mediterranean, for example, between the 11 th and the major part of the 12 th centuries, there was a general spirit of tolerance and liberalism, and it was a period of relatively free trade with growing activities of exchange between the nations, and the emergence of the mercantile middle-class (Goitein 1967:29). This changed radically during the 13th century, however, with oppressive clerical intolerance on the European shores of the Mediterranean and in the Muslim East.

Natural events such as seasonal land and sea conditions, and religious and everyday considerations were also important components. A letter written from Alexandria during a winter at the beginning of the 11 th century describes this very well:
...(a) great number of travellers had been detained in the city because many ships needed repairs, and over 5000 camel loads of goods, together with the stranded merchants were left to winter in Alexandria (Goitein 1967:215).

Life-sustaining or death-threatening situations, such as the presence or otherwise of tsetse fly, must have imposed a tremendous strain on human endurance and restricted the scope of movement for beasts of burden. And yet, in spite of many adversities even the Sahara Desert, referred to as one of the world's greatest barriers to human movement was repeatedly bridged by trade (Connah 1987:99).

Trading missions or expeditions often took years to accomplish. Usually merchants or trusted family members accompanied their own cargoes and conceivably spent a great deal of time away from their families. Rabinowitz (1948:162) described Raddamite merchants in the 9 th century using one of four trade routes to travel to China - either one of the routes taking from between two to five years to complete.

1.5.1 Trade Routes, Goods and Volume

Trade routes

Historical sources refer to the extreme diversity of goods handled by merchants around AD 1100 for customers in the Mediterranean. However, there are sizeable areas of commercial activities such as wheat, cereals and rice staples, camels, mules or horses that are not mentioned at all, neither is the slave trade or transactions in arms and in timber (Goitein 1967:211). Even more pronounced were the limitations in respect to trade routes. One can only assume that it was not prudent to publicize the exact whereabouts of the trade routes for practical protection, for example, from pirates in the Mediterranean and bandits overland.

In East and southern Africa, no inland trade routes were mapped before the arrival of the Portuguese, although many of their early maps refer to them as being ancient. If the early maps were in error, the mistake was perpetuated. There probably would not have been any need for overland maps since there were daily stopovers and there must have been a continuity of guides. The most predictable or convenient routes would have used water transport, along lakes, river systems and by sea. Ancient overland routes from the coast would be obvious markers. Further investigation of possible land routes would be instructive.

In southern Africa, early long distance overland travel or transport and intercontinental shipment of goods was probably carried out on a very small scale. Although the volume was small, it involved luxury merchandise such as gold and ivory.

Goods

In many regions of Africa and Asia cowrie served both as an item of trade and a form of money (Vogel 1993:211). The cowrie shells of West African commerce have been almost exclusively Cypraea moneta and Cypraea annulus, both Indian Ocean species, the former from the Maldive Islands, and the latter from the East African coast and islands, especially Zanzibar (Johnson 1970:17). Semi-precious stone beads, including the well known carnelian agate, and cotton materials produced at Cambay (in Gujerat, north of Bombay, India) and Mantai (Sri Lanka) were also popular articles of trade (Arkell 1936:292). It is important to note that no carnelian beads were found at any of the Iron Age sites examined in this thesis, although this bead is well known to South African archaeologists from more modern sites usually associated with Portuguese wrecks (Bell-Cross 1987). Six such beads were excavated at Great Zimbabwe by R. N. Hall and are now on display at the South African Museum.

Ivory was the prime export from the eastern coast of Africa from as early as the 7th century AD. India, and later China, emerged as the major market (Sheriff 1987:78). In India most of the ivory was used to make bride bangles, an essential ornament required particularly for upper class wedding trousseaux. It is not known, however, how significant glass beads were in the ivory trade of East Africa (Thorbahn 1979:166), nor how the ivory was transported to the coast. In all probability it was carried by individuals captured for the slave trade.

From ca. AD 960 Europe was flooded with magnificent examples of elephant ivory carvings, many of which were sculptured from pieces more than 110 mm in diameter, a measurement which is found only in African elephant tusks. Horton (1987:76) believes that this evidence, together with contemporary Muslim travellers' written reports, indicate that much of the ivory came from East Africa, from where it was exported into a network of international markets.

Volume of trade.

No recorded information exists on the size and extent of trade, nor on the identity of the merchants or middlemen involved in the internal and external trade of southern Africa during $\mathrm{AD} 900-1250$. It is not thought to have been very extensive. In contrast, many documents confirm the volume of mediaeval commerce and trade at its peak in the Mediterranean, Persian Gulf and Southeast Asia which was great only in comparison with that of earlier periods. A letter written in Fustat, ca. AD 1000, reported that about five thousand passengers made use of the most frequented trade route between Sicily and Egypt (Goitein 1967:215), and that many of them were merchants.

In the 13th century AD, Marco Polo described ocean going trading ships as:
...(b)ig ships requiring large crews ranging from 150 to 300 according to their size. They carried enormous cargos and one ship will take as much as 5000 to 6000 baskets of pepper (Throckmorton 1987:158).

There is also no written information on the value of glass beads that could have been used either for trade, social status, personal adornment, bride wealth (lobola), medicinal or magical purposes in local terms. Neither is there any data on the contact, internal trade or exchange systems which operated in Iron Age societies. One of the most immediate questions is whether the trade was monopolized or controlled exclusively by reigning monarchs, as was the case with Zulu kings such as Shaka, Dingane and Mpande (Saitowitz 1990:19).

1.5.2 Islamic Commercial Networks

Islamic commerce and industry was connected to a wide distribution network, supported by a dominant religion, common language and politics. All of these must also have played pivotal roles in the trade and contact mechanism of southern Africa more than a millennium ago.

The centre of all Muslim pilgrimages, Mecca, occupied a strategic geographical position within Islam itself. The holy journey or hajj to the prophet Mohammed's home became a powerful factor, not only in promoting religious unity, but also strengthening commercial connections between all Islamic countries and imparting amongst Muslims a fairly good knowledge of all parts of the known world. Muslim geographers and astronomers made a considerable contribution to the administration by supplying formal itineraries and topographical descriptions of the different countries belonging to Islam.

Thus, from the 7 th century Islamic commercial enterprise advanced through a common religion, language and administration, linked with organised banking services. By the 9th century, Islamic navigation had reached its widest extent in the Indian Ocean, deriving its chief importance from commercial relations with the non-Islamic coasts of Asia and Africa. Commercial navigation in the Mediterranean, however, was limited to localities under Muslim rule.

The Indian Ocean trade comprised a series of complex, interlinked local trading systems, which stretched from the Red Sea to China, with coastal entrepôts acting as interchange ports for an immense diversity of goods. From about the middle of the 10th century, Muslim ships had already reached the Chinese town of Khanfu (now Canton), which became an important Islamic colony and emporium of the trade with China. The Siraf Report, for example, refers to Chinese stoneware with Arabic names.

By the middle of the 13th century, Cambay had become an established entrepôt, which accessed Indian and Muslim cargo ships en route to the Malay Peninsula, Sumatra, Java, and other spice islands in the Moluccas. A direct route existed across the Indian Ocean from Malaysia and Indonesia to Madagascar, via the Maldives.

In the centuries during which 'the Medieval Islamic Empire' flourished, sea trade was by no means the only means of transport. Caravan traffic was the most common means of travelling and trading between Islamic countries, especially the pilgrim caravans to Mecca. However, caravans had crossed the steppes of Africa and Asia long before the appearance of Islam. It has just become customary to associate caravan trade with Muslim dealings. Important overland routes led out of the Empire, first those to India and China, southern and central Russia, and the African trade-roads (Kramer 1931:99).

The period of Islamic expansion and commercial enterprise directly related to this study is the Fatimid caliphate, centred in the cities of Fustat and al-Qahira (Cairo) which deserves some explanation. The Fatimids originated in North Africa, where they ruled Ifriqiya, an area roughly corresponding to that of Tunisia and parts of Algeria today. After a number of attempts to subjugate Egypt, Fatimid caliphs finally gained sovereignty and built their new walled capital next to Fustat. The new city became the administrative and cultural centre. Fustat was already an old town, inhabited mostly by traders and artisans.

The location of al-Qahira and Fustat provided strategic waterway networks which linked not only Upper with Lower Egypt, the East with the West, but, more importantly, the South with the Mediterranean. The routes stimulated trade, and, the waterways especially assured an uninterrupted supply of provisions and raw materials (Kubiak 1987:131).

Fustat was founded as the seat of a military garrison for Arab troops in the conquered country of Egypt. It became a centre of manufacture of both glass, initially, and, much later, lustre pottery, and later the site of many important excavations. Hundreds of glassmakers moved to Egypt from other Islamic dominions. Archaeological excavations in Fustat discovered the remains of a glass factory and undisturbed pits, in which large deposits of glass fragments and dated glass coin weights were found.

By the middle of the 10th century, Muslim traders were active along the northern coast of Africa, the Atlantic coast, nearly the whole of Spain, Sicily, Crete, Sardinia and Cyprus.

They were also trading in southern India, Ceylon (Sri Lanka), Southeast China and East Africa. This was also the period in which the Persian Gulf trading empire declined and transferred to merchants from the Red Sea and the Gulf of Aden with Mediterranean trading connections.

1.6 THE ORIGIN OF BEADS FOUND IN SOUTHERN AFRICA

It is my contention that the Fatimid caliphate at Cairo was the political entity which most directly affected or controlled the external trade relationships of southern Africa during the period $\mathrm{AD} 900-1250$. The emergence of the Fatimid caliphate coincided with the appearance of large numbers of glass beads at south African Iron Age sites. The arrival of these beads was probably dominated by, or related to, the commercial dealings of Muslim merchants. I propose to show by means of chemical analysis that some of the beads found in southern Africa were made in Fustat. I will also show that such beads were not made in India and that while beads with the same chemical composition occurred in south-east Asia, they were imports. While such proof does not eliminate the possibility of non-Islamic sources for some of the beads from southern African sites, it considerably strengthens the argument that Islamic traders and manufacturers dominated the Indian Ocean trade, of which beads formed such an important part.

2

BACKGROUND TO GLASS COMPOSITION AND ANALYSIS

2.1 INTRODUCTION

In this chapter I examine the raw materials involved in the manufacture of glass, their effects on the finished product and how the chemical components may be utilised for analytical purposes.

2.2 GLASS AND ITS PROPERTIES

Glass batch materials.

The major constituents used to manufacture the analysed glasses in this study comprise: silica or sand $\left(\mathrm{SiO}_{2}\right)=50-80 \%$; sodium oxide $\left(\mathrm{Na}_{2} \mathrm{O}\right)$ or potassium oxide $\left(\mathrm{K}_{2} \mathrm{O}\right)$, or both, as a fluxing or alkali agent to reduce the melting temperature of the silica $=5-20 \%$; and calcium oxide (CaO) from lime $=3-15 \%$. Impurities in the sand together with additives or colourants include iron $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)=0.05-3 \%$, copper $(\mathrm{Cu})=0.1-6 \%$, alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)=0.1-$ 8%, and magnesium $(\mathrm{MgO})=0.1-5 \%$. The fluxing agents could have contained phosphoric oxide, sulphate and chlorite (Turner 1955: 277T-300T). While the quantitative amounts of these major elements are useful indicators for characterising the type or recipe of the glass, they are too imprecise for sourcing purposes (Tables 8.2.1).

Raw materials.

The major elements determined in my own work are silica, sodium, potassium, aluminium, iron, magnesium, calcium, copper, lead, manganese, phosphorus and antimony. They were chosen because they are common indicators of soda-lime-silica and potash-lime-silica glasses, which were the predominant types of early glass. Lead was included as an analyte, because lead-containing glasses were reported in Islamic glass compositions (Table 4.8).

The raw materials, particularly the sand, would have undergone some preliminary screening, washing and burning (fritting) processes to remove extraneous coarse particles, organic matter and impurities. Heavy minerals such as zircon, ilmenite and rutile, which are not dissolved in the glass mixture, give rise to flaws and unsightly spots. The end product would probably not have been as refined as that made by modern mechanised methods and synthetic materials.

Sand

Sand is the cheapest and most readily available of all the raw materials used for glassmaking and the exact amount used can be varied within fairly wide limits without spoiling the glass ${ }^{1}$. Despite extensive analytical studies undertaken in the 1950s, representing thorough and comprehensive analysis on the subject, no studies have shown precisely where the sand used to make ancient glasses was obtained (Turner 1954; Turner 1955; Turner 1956a). In fact, surprisingly few records actually refer to the sources of suitable sand deposits except for Pliny and Strabo; they reported that the sands from the Belus River on the Palestine-Lebanese coast, between Acre and Tyre, and those north west of the ancient harbours of Pozzuali and Naples, were used for glassmaking (Tatton Brown \& Andrews 1991:21).

Several items of useful information have been reported on the geology of Egypt; one striking fact is that the sand found alongside limestone bluffs, which run for hundreds of kilometers parallel to and not far from the Nile, from just south of Cairo to Luxor, contains a high calcium (lime) content. The sand from near the Pyramids at Gizeh also had a substantial calcium content (Turner 1955:282T). This phenomenon would have affected the sands from Fustat and Tel el-Amarna, both of which were glassmaking centres. It it not unexpected, therefore, that the chemical composition of glass beads and a glass rod from Tel el-Amarna and Fustat examined in this study have relatively high proportions of calcium (see Chapter 8, Table 8.2.2.1).

Soda $\left(\mathrm{Na}_{2} \mathrm{O}, \mathrm{NaHCO}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}\right)$

Soda is one of the dominant components in glass. This alkali ${ }^{2}$ serves as a flux in a glass batch, making the mixture melt down more rapidly and uniformly. High soda glasses may contain as much as $23 \% \mathrm{Na}_{2} \mathrm{O}$, but they are prone to weathering. Natron is a well researched impure sodium carbonate and bicarbonate type of alkali found at Wadi Natrûn and El Kab in Egypt. The geological formation below the lakes at Wadi Natrûn is complex. One or more of the lakes contains relatively sweet water, while in some of the others either sodium sulphate, carbonate or chloride is predominant. It is a natural assumption that the alkali from these sources or other lakes containing sodium bicarbonate was used for glassmaking (Turner 1955:283T-299T). Other sources of soda are evaporites from dried seas; salt deposits leached out from soils; and salts derived from the burning of certain plants. The residuary ash from a plant grown in the Syria desert called Chinane (locally known as Keli) was also exceptionally rich in sodium carbonate.

Potassium oxide ($\mathrm{K}_{2} \mathrm{O}$).

Like sodium compounds, potassium oxide also acts as a flux. If sodium oxide is replaced by potassium oxide, the resultant glass has a greater brilliance and a better colour. It tends to be a much harder and more durable glass possessing a higher melting point than the soda

[^5]glass (Hodkin \& Causing 1925:94). Potassium compounds are found in the ashes of wood and land plants and are used to produce many coloured glasses. According to Miles (1948:55), analyses show that there is appreciable $\mathrm{K}_{2} \mathrm{O}$ in most of the glasses from Tel elAmarna and Thebes, while those from Alexandria lack $\mathrm{K}_{2} \mathrm{O}$ or only have small amounts: the variation in the ratio of the two alkalis in the published glass analyses suggests that more than one source of alkali was used in Egypt.

Table 2.2.1.

Range of \% composition of sodium carbonate from Wadi Natrûn \& Keli or ash from the Syrian desert plant called 'Chinane'.

The features of the material are the complexity and variability of composition between the proportions of sodium carbonate, bicarbonate, chloride, hydroxide and sulphate and the exceptionally rich sodium carbonate found in Syrian Keli (or ash) (Tumer 1955:285T287T).

	Ancient Natron from Wadi Natrün	Modern Natron from Wadi Natrûn	Syrian Keli
Sodium carbonate	$15.5-94.0 \%$	$22.4-75.0 \%$	75.0%
Sodium bicarbonate	$5.0-32.4 \%$	$5.0-32.4 \%$	
Sodium chloride	$0.5-39.5 \%$	$2.2-26.8 \%$	
Sodium sulphate	$5.5-27.8 \%$	$2.3-29.9 \%$	
Sodium hydroxide			4.0%
Potassium chloride			7.5%
Potassium sulphide			5.0%

Calcium (lime - CaO)
Calcium is added to the glass to act as a stabilizer, which causes the glass to stiffen quickly as it cools. It also improves the resistance of glass to attack by water, making it more durable. Miles (1948:53) noted that many limestones are of a dolomitic variety and contain a variable amount of MgO with the CaO . These are often present in equal proportions. As MgO is a common constituent of Egyptian glasses it is suggested that the composition of the sand may be responsible for its presence in the glass. He also reported that much of the sand on the northern shore of Egypt contains calcium carbonate as an impurity, a factor which could explain a variance that occurs naturally, rather than by the intentional addition of lime to the batch.

Calcium derivatives occur widely in nature as calcium oxide or lime. Calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$, for example, is found in sea-shells, limestone and chalk. Low lead-soda-limesilica compositions contain up to $8 \% \mathrm{CaO}$; lead glasses usually contain 2.5% (Henderson 1985:271).

Lead oxide usually acts as a glass former and colourant, but many colouring agents give better effects in lead glass than in lime glass (Hodkin \& Cousin 1925:103; Brill, Chow and Fukang 1989:11-15). Lead is generally added in the form of red lead $\left(\mathrm{Pb}_{3} \mathrm{O}_{4}\right)$ and litharge (white lead). It increases the density and refractive index of the glass. Glass with a high lead content is particularly suitable for optical glass and tableware. Lead is also an important ingredient for opaque glasses. One of the earliest references to the use of lead in glassmaking occurs in ancient chemical texts containing recipes for glazes (Turner 1956a:47T). In Europe, lead was used both in transparent and opaque glass since before the Middle Ages, and in western Russia since the 10th century (Henderson 1985:277).

Manganese $\left(\mathrm{MnO}_{2}\right)$.
According to Henderson (1985:283), when manganese oxide is found in glasses at a level of 1% or above, it was added deliberately as a manganese rich compound. The colours produced by manganese are variable, depending on furnace condition and the composition of the glass (i.e. lime or lead glass). Small amounts of manganese in potash glass are used for decolouring the glass, by producing complementary colours.

Zirconium (Zr).

Zirconium is most commonly found associated with silica as zircon $\left(\mathrm{ZrSiO}_{4}\right)$. Incidentally, zargon is an Arabic word denoting the gold colour of the gemstone, which is also refractory and is mined in Sri Lanka and Burma. Zirconium occurs in titanium minerals, such as ilmenite, and in association with others such as rutile and monazite, which occur as beach sands at Tramancore in India. Hafnium is generally found in conjunction with zirconium. Zirconium-rich alkali varieties of all rocks are mainly characterised by increased sodium content. The Na-varieties of alkali rocks possess considerable zirconium concentrations, whereas K-alkali rocks are markedly poor in zirconium (Vlasov 1966:309).

Titanium (Ti).
Titanium occurs in a number of rock forming silicates such as sphene or titanite (Ca Ti SiO_{5}) which are abundant in contact metamorphosed limestones (Read 1962:396). The titanium minerals, ilmenite ($\mathrm{FeO} \mathrm{TiO}_{2}$) and rutile $\left(\mathrm{TiO}_{2}\right)$, are mainly exploited as detrital beach sands.

Rare earth elements (REE)

REE in minerals are found in low concentrations widely distributed in the earth's crust, and in high concentrations in specific minerals such as monazite. REE possess distinct individual properties and are found in almost all massive rock formations.
REE, or Lanthanides, consist of a group of naturally occurring elements from lanthanum (atomic number 57) to lutetium (atomic number 71), These include Lanthanum (La), Cerium (Ce), Praseodymium (Pr), Neodymium (Nd), Promethium (Pm), Samarium (Sm), Europium (Eu), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Erbium (Er), Thulium (Tm), Ytterbium (Yb), and Lutetium (Lu). Promethium (Pm) is a radiogenic element which has long disappeared.

Some properties of the rare earth elements

An in depth study of the rare earth elements, and the geological processes from which sand is derived, goes beyond the limits of this study. However, because the Lanthanides have never been used as sourcing indicators for archaeological glass artefacts found in southern Africa, a brief overview of some characteristics is instructive.

The REE are mostly trivalent elements that decrease gradually in ionic radii from Lanthanum ($1.160 \AA$) to Lutetium $(0.977 \AA)$. There are a very few major elements with ionic radii equivalent to those of the REE. $\mathrm{Ca} 2+(\AA 1.12)$, for example and $\mathrm{Na}+(\AA 1.18)$ have similar radii, and, as such, HREE (heavy rare elements) are quite capable of entering Ca and Na sites in minerals: the ionic radius of $\mathrm{Y} 3+(\AA 1.019)$, is almost equivalent to Er ($\AA 1.004$) and Ho ($\AA 1.015$) behaves like the HREE and is often plotted with the REE. Eu2+ (ionic radius 1.2 A) has the same radius and charge as $\mathrm{Sr} 2+$ (Willis 1993). This results in preferential uptake by some minerals of the HREE, relative to light rare earths (LREE), or vice versa.

Eu is present as Eu2+ under reducing conditions, and Ce will be oxidized from $\mathrm{Ce} 3+$ to Ce4+ under strongly oxidising conditions, as for example are present in sea water, where Ce4+ enters phosphate minerals (Willis op. cit.).

The REE are refractory elements (involatile at temperatures up to $1200^{\circ} \mathrm{C}$).
One of the earliest quantitative explanations of REE behaviour was published diagrammatically in 1962, illustrating a chondrite normalised REE pattern (Allegre \& Minster 1978:2). The values showed the relative abundances of REE found in certain meteorites (chondrites), which are accepted as representative of their overall abundance in the cosmos. When the chondritic rare earth element normalising factors are used to normalise rare earth element data, it gives us an indication of the amount of fractionation relative to primitive abundances.

The lanthanide distribution at the earth's surface is also approximated by the abundances in a composite of North American shales, which are relatively common in sedimentary rocks of post-Archaean age (although absolute concentrations may differ due to different proportions of quartz and clay minerals).

REE analysis has been highly successful in many geochemical tracing studies. REE distribution patterns in rock-forming minerals are very diverse. The REE signature, particularly in sedimentary rocks, is helpful in establishing the source and nature of the original rocks.

Various instrumental techniques are used to obtain elemental information on the REE including optical, infra-red and mass spectroscopy, and radio and nuclear chemistry which permit detection in parts per billion. Willis (1986) improved the X-ray fluorescence technique, although this has limitations in respect of the amounts of material available for analysis and also on the resolution on some of the elements.

2.2.1 Previous Chemical Analyses of Early Glasses

The rationale for selecting particular elements tends to vary between various studies. A review of some of the work shows an emphasis on major elemental analysis for silica, calcium, potassium and sodium, and on particular colourants added intentionally during manufacture, such as cobalt and copper to make blue beads. Brill (1986:1-27), for example, concentrated on the major elemental, and a few trace element components, of the raw materials in sourcing studies. Some researchers, such as Djingova \& Kuleff (1992:5361), question the validity of investigating colouring agents altogether. They preferred to use clear glass for analysis in order to overcome a bias toward colour classification.

Sayre and Smith (1961:1824-1826), whose work predated that of Djingova and Kuleff by over thirty years also elected not to use colour as a denominator to 'avoid undue bias of colour'. They classified ancient glasses from Europe, Western Asia, and Africa from roughly BC 1400 to AD 1100, based on five main compositional categories of the elements in the glass. These were magnesium, potassium, manganese, antimony and lead.

There is no fundamental study to determine the best elemental variables, (irrespective of analytical technique), for the classification and discrimination of glass samples. (Hickman, Harbottle and Sayre, 1983.) It was for this reason that I used trace element analysis as detailed in Chapter 7.

3

EARLY GLASSMAKING

Although glass is one of the oldest of man-made materials if remains, even today, one of the most empirical and least understood of technologies (Goffer 1980:137).

3.1 INTRODUCTION

The chance discovery of glassmaking as recorded by the Roman author Pliny in the 1st century AD is probably one of the most popular texts in the history of glass. The narrative described a group of merchants/sailors (predictably Phoenician) who used some of their cargo to support cooking pots over the fire, while camping overnight on a beach near the mouth of the River Belus, Acre (modern Israel). The cargo was lumps or blocks of nitrum or natron, which is a natural mixture of sodium carbonate and sodium bicarbonate. The fusion of these with the sand resulted in glass. Notwithstanding a few omissions ${ }^{1}$, and the fact that Pliny wrote some 2500 years after the production of the earliest recorded glass objects, the legend probably contains an element of truth. The two important details of his account confirm that the sand from the Belus was renowned for its quality glassmaking properties and that natron, which is a basic glass forming ingredient, was being transported and used as a trading commodity in the Mediterranean. The shipment of natron was probably en route to a primary glass producing centre.

Although the precise origin of glassmaking is not known, current opinion holds that it evolved from pyrotechnologies emanating from Akkadian (Babylonian) craftsmen. Early masters combined chemical formulae and pyrotechnology to produce different types of glass in various colours. Glass-blowing, introduced by the Romans in ca 1st century AD, is one of the most important innovations in the history of glass production. This process spread rapidly throughout the then civilized world. Until this time, glassmaking techniques were restricted to relatively small sized vessels including beads and pendants ${ }^{2}$ that had been mould-pressed, cold cut, or core-wound, indicating that although welldeveloped glass procedures existed, the versatile properties of molten glass technology had not yet been fully exploited.

[^6]There is an important difference between primary manufacture, which implies source, as opposed to secondary glass-reworking (using raw glass in the form of ingots; cullet or scrap i.e. broken bottles; glass cakes; slab or block glass), suggesting trade. Archaeological evidence for glassmaking and glass-reworking has been found at sites throughout the Mediterranean, Near East, Europe, Britain, Ireland, Mesopotamia, North, West and southern Africa, India, Southeast Asia and China. Evidence of secondary glass reworking has been found at southern African Late Iron sites in the northern Transvaal, where Garden Roller beads were made by the cire purdue casting method. The technique of cire purdue consists of translating a form modelled in wax or other modelling medium into glass or metal by direct replacement.

Only a few scanty remains of early glass furnaces have ever been recovered, the majority of which have not survived above the foundation level. Therefore, most of the information on ancient glass melting and techniques depends on descriptions and illustrations in manuscripts and ancient texts. For many centuries glass has been called metal by its workers. Whatever the reason for this, it is interesting to note that in cuneiform texts glass is often called stone.

Glass also occurs naturally as obsidian from volcanic activity, or as tektites which resemble obsidian, but which are derived from meteorite or cometary impact on earth. Tektites are found as small hazel-nut size masses in particular geographical areas, such as Bohemia, Borneo and Java; other sources are Texas, Australia and Tasmania. Obsidian and tektites are dark bottle-green to blackish in colour although various shades of transparent olive green and yellowish-grey have been found. Fulgarite or fused silica is another natural glass produced by the effects of lightning striking desert sand.

3.2 THE ORIGINS OF GLASS

Glassmaking technology is generally associated with early pyrotechnologies such as metals, vitric glazes and faience (Forbes 1957:113; Brill 1963:122; van der Sleen 1967:58; Freestone 1991:37; \& Kurinsky 1991: 24-42), and it is conceivable that early metal-smiths were the first to notice or experiment with siliceous slags from their bronze, copper or iron smelting furnaces. The fact that many early glazes and glasses were coloured blue by the addition of copper lends some support to this assumption, although the connection may not be as simple as it appears because the slags only contain small proportions of copper and are much richer in iron than early glazes or glasses (Singh 1989:14).

Turner (1955:285T-90T) suggested that glass or a glassy like substance could have been the result of a residue produced from burning straw in intense heat, such as those associated with pottery firing ${ }^{3}$. Chemical analysis of ash from wheat and straw shows all the elements required for glass, in the correct proportions, as well as showing low magnesia and high potash concentrations. These amounts are similar to some Egyptian, Roman and Indian glass mixtures (Table 3.2.1.).

[^7]Henderson (1988:441) used the occurrence of low amounts of magnesium and high potassium to distinguish between European Bronze Age glasses found at sites in Switzerland, Italy, Ireland and England and earlier glasses thought to be of Near Eastern or Mediterranean origin (high magnesia-soda-lime-silica glass). Henderson suggested that the fall of the Mycenaean civilisation in the 12th century B.C. disrupted the trade supply of suitable alkali sources. Another explanation may simply be that straw ash was used as a flux in the manufacture of the glass!

Table 3.2.1
Average composition of wheat \& straw ash, and early glasses.
Chemical composition of plant ash from wheat and barley straw (Turner 1955:289T), and Egyptian, Roman and Indian glass formulae (Goffer 1980:141).

No Sample	Silica	Lime	Magnesia	Soda	Potash	
		$\left(\mathrm{SiO}_{2}\right)$	$(\mathrm{Ca} 0)$	$(\mathrm{Mg} 0)$	$\left(\mathrm{Na}_{2} 0\right)$	$\left(\mathrm{K}_{2} 0\right)$
1	Wheat straw	66.2	6.1	2.5	2.8	11.5
2	Barley straw	53.8	7.5	2.5	4.6	21.2
3	Egyptian Glass	69.7	9.6	1.9	2.6	12.6
4	Roman Glass	62.1	8.6	2.9	4.3	2.4
5	Indian Glass	73.6	3.9	2.4	3.1	13.4

3.2.1 Glass Technology

Glass is a non-crystalline material, categorised as super cooled liquid rather than a solid, which liquefies at a much lower temperature than that required to manufacture it. Cotterill (1985: 182) defines glass as the rigid metastable solid produced by cooling the liquid form rapidly enough to prevent crystallization, the stiffening occurring predominantly at the glass temperature. It is characterized by an arrangement of atoms or molecules which is irregular, and which thus contrasts with crystalline order. (According to Kurinsky (1991:43), the art of glassmaking combines two distinct, independently evolving technologies, the development of pneumatically drafted furnaces and the invention of glazes. Technically, faience, glass and vitric ceramic ware are related, in that high temperatures are necessary for their manufacture, similar raw materials are involved and all are vitreous to varying degrees (Henderson 1988:435).

Until relatively recently, it was common for the alkali component of the glass and part of the sand to be preheated and fused before being added to the final ingredients. Thus glass production involved two stages, first the fritting of the raw materials, and second the melting. The fritting-process of this initial stage eliminated some of the gaseous products, and assisted the subsequent melting stage. Scrap glass, known as cullet is often added to the raw material mix to accelerate fusion.

Glass production involves several factors:
(1) The use of a pneumatically drafted furnace capable of producing firing temperatures in excess of $900^{\circ}-1000^{\circ} \mathrm{C}$.
(2) The use of an alkaline flux to reduce the temperature required for vitrification.
(3) A first firing of the mixture of granulated silicate and raw materials resulting in the production of a frit at a temperature of about $750^{\circ} \mathrm{C}$.
(4) A second firing at a higher temperature of about $1000^{\circ} \mathrm{C}$. This firing requires sustained temperatures over lengthy periods of time. Complete vitrification can take many days to achieve.
(5) In order to speed up the vitrification process, cullet is added to the batch. Cullet acts as a catalyst in the process of liquefication into an homogeneous mass.

3.2.2 Early Industry

Cuneiform texts from the Royal Library at Nineveh, excavated from Tel Umar near ancient Babylon, in Mesopotamia, recorded chemical formulae and preparation of the raw materials used to make glass (Kurinsky 1991:31-33; Cummings 1980:11). They also mention the use of closed containers or a complex type of furnace (the reverbatory furnace) dating to the seventh century BC; smoky fires ${ }^{4}$; extended periods of heating; and the need for cooling glass while still within the kiln (Singh 1989:218). Instructions for constructing furnaces, fuels, grinding and moulding guidelines and directions for manufacturing coloured and crystal imitations of highly prized gems were also recorded. (Charleston 1978:9). Based on translations of this text, Henderson's (1988a:439) experimental work yielded glass which, by analysis, was directly comparable to high magnesium glass that formed the basis of Near Eastern or Mediterranean glasses.

One of the earliest examples of a substantial glass industry, using simple open hearth furnaces and small shallow crucibles, was found at the site of Tel el-Amarna in Egypt.

Many of the early furnaces of the southern and eastern Mediterranean appear to have been circular structures with the heat source or fire situated at the lowest level. Only a closed kiln design would have been able to retain sufficient heat to fuse the raw materials needed to make glass. Unfortunately, the superstructures of these early kilns have not survived, therefore their design must remain speculative. Probably the melting pots and work area were placed at the middle level, and the annealing or reheating space for the finished glass at the top. In Palestine (Galilee), built-in rectangular melting tanks were installed while in other areas separate clay crucibles were used instead; available evidence shows that early kiln temperatures did not exceed $1050^{\circ} \mathrm{C}$ or $1100^{\circ} \mathrm{C}$ (Auth 1991:1142). Later, wood-fired medieval furnaces did not achieve heating temperatures much above $1200^{\circ} \mathrm{C}$ either (Turner 1954:443T; Sen \& Chaudhuri 1985:47).

Often crude and misshapen beads, cut or ground from rough lumps of glass and pressed or cast moulded-ware are examples of early glass technology. Molten glass fashioned on a core or core-vessels, popular in Mesopotamia (ca. 2400-1800 BC) and Egypt (ca. 1500 BC) were made by dipping or winding liquefied glass around a pre-shaped body made of a clay and straw mixture or a sand-core on a tapered metal rod (Freestone 1991:38; Mehlman 1982:33; Cummings 1980:19). The encircled mass was rolled or marvered on a flat surface to smooth and homogenize the glass exterior. Finally, after cooling, the core was scraped or burnt out.

[^8]The advent of glass-blowing towards the 1 st century BC had a considerable impact on glassmaking, resulting in relatively inexpensive and efficient manufacture of glass objects and the introduction of new forms.

Until the invention of glass-blowing, glass beads and vessels could have been made from one of four methods:
(1) cutting from solid blocks of glass;
(2) casting in moulds, either pressed in open moulds; or casting in two-piece moulds using powdered glass, or by the 'lost wax' or cire-perdue casting method;
(3) molten glass applied around a core;
(4) sections of coloured rods fused onto a glass matrix.

Ceramic glazes and enamels, and glass have essentially the same chemical composition (Goffer 1980:136). However, they are used in different ways - glazes and enamels are surface coatings applied to a substrate. Enamels are normally fused to metal surfaces. Glass on the other hand, is fashioned into objects unsupported by a backing or body of material. Glazes on pottery protect the article from chemical attack or render it impervious to liquid, in addition to providing decoration.

3.2.3. Faience

Faience or glass paste (a term often used instead of faience) is a sintered material containing all the raw materials of glass manufacture but which has not been subjected to the necessary high temperature to convert it into true glass. The earliest known European record of faience, consisting mostly of beads, was excavated from archaeological sites in Rumania (Henderson 1988:436) and Mycenae (Wace 1932:9-205) and dates between $1600 \mathrm{BC}-1100 \mathrm{BC}$. Egyptian faience was, of course, found at sites predating those in Europe. There are various techniques for making faience. Tite \& Bimson (1983:69) describe faience as 'objects which have a ground quartz body covered with an alkaline glaze', and have documented three processes.

Freestone (1991:37) suggested that failures in the production of faience resulted in the accidental formation of glass, and that the glassy material related to the slag by-product of metallurgical processes, familiar in the Bronze Age, may well have been the catalyst for glassmaking. Kurinsky (1991:44) however, specifically differentiates between glass manufacture and faience, connecting glass production with the chemical knowledge of Sumerian potters who developed the formulae for vitric glazes, and pneumatically drafted furnaces used by metal smelters.

Interestingly, faience is rarely found in China. According to Brill, Tong and Dohrenwend (1989:11) the earliest known date for faience in China is 1 Ith-10th centuries BC, from which period hundreds of small beads have been found. Even these may have been imported, most likely from somewhere to the west. Cognisance must be taken of the fact that these finds do not corroborate glass manufacture, but more likely reflect the extent of ancient trade routes.

Previous work by Allen, Llewellyn \& Schweizer (1973:171) show that there is virtually no evidence for faience in early Islamic Persia, and at Siraf before the 14th century AD. However, Francis (1989:27) argues that there has been an unbroken faience tradition in Persia from at least the time of Alexander the Great.

As no faience artefacts have been found in southern Africa to date, Beck (1931:235) considered its absence significant enough to discount any Mediterranean links.

3.3 PRIMARY GLASS PRODUCTION

The distinction between primary glassmaking and secondary reworking is an important factor in sourcing studies and pivotal to an understanding of the history of glass production, trade and contact. Glass objects found at an archaeological site do not necessarily indicate that it was a primary producing centre. Nor is slag or siliceous material conclusive evidence of glass production, since similar vitreous slags can come from the manufacture of metal or ceramic artefacts; frit or scum [sometimes referred to as gall] are also similar to slag in appearance. Interpreting the difference is difficult and sometimes misleading. Whitcomb (1983:105), for example, compared the differences perceived by two investigators on glass lumps found at archaeological sites:
...(L)amb suggested that raw material, (i.e. lumps of glass) found at this site [Pengkalan Bulang, Malaysia] was used for grinding beads, whereas Bass sees similar material in the Serçe Limani wreck as supplies from itinerant glassmakers.

Some researchers believe that primary glass was made at a number of small factories (Auth 1991:1142); others, such as Brill \& Cahill (1988:17), note that among the excavated ancient glass factories known to them 'fewer than a dozen were probably locations where glass was actually made from scratch starting with raw materials' and that most of the excavated evidence that has been preserved appears to be the remains of processes connected with the forming of objects [i.e. secondary working]. They also showed that cullet and glass 'metal' was frequently manufactured in one place and transported over considerable distances before it was formed into objects. Newton (1971:12-13), maintains that only a few glass centres produced and exported glass ingots of specific colours, which were traded over hundreds if not thousands of miles, where they were used for decorating small items such as beads or bangles

Many descriptions of excavated glasshouses unfortunately lack accurate or sufficient data to determine if the technology used was for primary or secondary glass-working. Although a number of crucibles have been recovered from archaeological sites, very little work has been carried out on the receptacles to determine usage.

Charleston's (1978:9) description of the open hearth furnaces used for melting glass at Tel el-Amarnas ${ }^{\text {s }}$, for example, and the small crucibles that were supported in them on $\%$ refractory drums do not explain whether the glass was made from scratch or whether it was re-worked. Given the nature of the furnace it is unlikely that very high temperatures
could have been achieved. From this explanation one can only assume that the crucibles were used either to make frit, glass of a pasty nature, or to re-heat the glass for secondary working. It could of course have been pressed and moulded into fairly large sizes, but the possibilities of producing hollow-ware were very limited (Forbes 1957:122).

Researchers such as Henderson \& Ivens (1992:52-64) clearly distinguish between articles that had been used for primary raw material production, and those that were used simply to reheat the glass sufficiently to soften it to form and decorate artefacts. Metal heating trays and examples of ceramic crucibles found at Irish Early Christian sites, showed extensive fusion or interaction (wetting) of the raw materials with the clay lining of the crucible. This reaction between the glass and the crucible walls does not occur at the lower temperatures used for secondary reheating practices.

3.3.1 Secondary Re-Working

Secondary re-working facilitated the moving of fragile merchandise from one destination to another, without extra packaging or protection to avoid breakage. The establishment of glass re-working workshops using imported glass ingots would obviate the necessity for an intimate knowledge of glass manufacture. In addition, fuel requirements for secondary working are less than those of initial production ${ }^{6}$. It takes much more heat to melt a glass batch, bring all the materials into solution and remove some of the larger bubbles, than it does to soften it once it has been made.

Brill \& Cahill (1988:17) have shown that frequently cullet was manufactured in one place and transported over considerable distances before it was formed into objects. Newton (1971:12-13) however, was more specific, and thought that only specialized coloured glasses made in relatively few centres were exported as ingots, and used for decorating beads or bangles.

Probably one of the most significant and convincing sources of evidence supporting the export of glass cullet for re-working was found on a a 14th century BC shipwreck off the southwest coast of Turkey at Ulu Burun (Sparrow harbour, situated off the southwest coast of Turkey, opposite the island of Rhodes). The Serçe Limani carried large cargoes of glass ingots and cullet (Bass 1987:693-732). More than 20 cobalt blue glass ingots, weighing 11 kg (25 lbs) each and measuring 178 mm (7inches) in diameter and thickness, were recovered by marine archaeologists. According to Pulak (1988:35), these glass ingots almost certainly originated in Syria-Palestine. More recently, these finds have been attributed solely to Syrian glass-houses (Scanlon, pers. comm.). The forms of some of the glass cargo, recovered from a medieval shipwreck in the Adriatic, off the Island of Mljet, "conform to common medieval models of the eastern Mediterranean" (Kurinsky 1991:373).

Quantities of glass cullet, often in slab form but also as roughly shaped chunks, have been found at Hellenistic Rhodes (Weinberg 1971:148). Spaer (1984:15) suggests that blue

[^9]wound beads and moulded objects produced in Greece and local (referring to the area known as modern day Israel) workshops during the 14th to 12 th centuries BC were made from glass imported from Mesopotamia. Glass has also been found at Karanis.

3.4 GLASSMAKING IN AFRICA

Egypt.

Glass products and glass beads have been manufactured in Egypt for centuries. According to Mehlman (1982:30), Egyptian craftsmen were familiar with glaze techniques and faience prior to BC 3000. Forbes (1957:126-130) reported that glass manufacture suddenly flourished in Egypt from BC 1500 and evidence of glass factories from this period have been found all over the country from Memphis, Tel el-Amarna and Thebes to Elephantine. By BC 1200 the Egyptians had begun to shape glass by pressing it into moulds. The Egyptian industry was firmly rooted in the Delta at or near Alexandria, and reached its height of beauty in the luxury glassware made at Alexandria in the Ptolemaic and early Roman periods BC $300-\mathrm{AD} 100$ (Singer, Homyard \& Hall 1956:322). From about AD 350 they were also producing glass coin weights in Alexandria.

Mehlman (1982:35) considers that the founding of the Roman empire, and the subsequent spreading of its culture to all the provinces, had a substantial influence on glassmaking particularly in Egypt and on the Syrian coast: The glass industry throughout this period continued on a large scale and production in each region remained distinctive ${ }^{7}$. The impact of Roman colonization also led to increased glass exports to Italy, and other later colonies, and a movement of migrant craftsmen to the West.

Glass demonstrating Coptic influence and the glass of the early Islamic period were heirs to this long tradition of glassmaking. Although glass furnaces of this era have not been found, the sheer quantity and style of most glass found from this time suggests that a number of small factories produced glass articles for local use. Evidence from other areas around the Mediterranean shows that glass factories could have been quite small and simple (Auth 1991:1142).

Suitable raw materials such as sand and natrum were plentiful in Egypt in the form of natural soda in the oases of the Western Desert, Wadi Natrun, south and west of Lake Mareotis and west of the Delta. As late as AD 900 the Venetians were carrying the vitreous earth of Alexandria (as well as sand from the Belus) to Italy to use it in their own glassworks, which remained dependent on imports of Egyptian natron very much longer (Forbes 1957:158).

[^10]
North and West Africa.

Kairouan was the main commercial, as well as the most important industrial metropolis in North Africa. Tunis, Sousse, Sfax and Gabes were also important trade centres. The Fatimids controlled Kairouan where glass was manufactured as well as enamelled pottery of high quality (Lewis 1951:163). Textiles became an important industry and were exported to Egypt. Zawila, Çabra, and Bougie were centres for glass manufacturing (Lewis 1951:209). Marçais (1946;180), also reported archaeological evidence of a glass furnace at Zawila (suburb of Mahdiya) and slags at Çabra (next to Kairouan).

Smith (1957:92) comments that most authors on glass history in antiquity have ignored North Africa as a producing area, or at the most they have dismissed the matter summarily as a vague possibility. In his opinion, although the literature is full of references to glass exports from Egypt to North Africa, it is all based on surmise.

Lamb (1970:47) suggested that the bulk of glass found in markets and in archaeological sites in black Africa, with particular reference to West Africa, was imported material. He considered it reasonable to suppose that from very early times, trade in glass cullet and glass ingots existed in sub-Saharan Africa, and that of a number of categories of beads found in Ghana, some were locally produced whilst others were not.

In Nigeria, the Yoruba civilization made glass, ceramics and metals: prior to that, radio carbon dates for Ife pottery suggest that terra-cotta figures were made sometime after 900 BC . and that the culture may have continued production after AD 200 (Fagg \& Willett 1960:245). In 1910, Leo Frobenious discovered glass making crucibles at Ife with remelted residue of opaque glass which he considered to have been
> ...(t)he centre of the great glass making industry which had spread blue glass segi beads across West Africa (Fagg \& Willett 1960:237).

Glass bead moulds and glass fragments dating to the 8th century have been discovered at Tegdaoust in present day Mauritania (Opper \& Opper 1993:37).

South Africa.

Garden Roller beads are the only locally produced glass beads known in southern Africa. The technology involved secondary reworking or remelting of small imported glass beads in clay moulds to make larger barrel-shaped ones (van Riet Lowe 1955:12; Davison 1972:60). Practically all the beads termed Garden Roller (after the shape of rollers used to surface English lawns) were made from beads in various hues of turquoise blue. Most of the beads used in this study were excavated from K2 and Bambandyanalo (AD 1000AD 1220).

Van Riet Lowe (1955:12) suggested that small, seed beads excavated from K2 or Bambandyanalo provided the raw material for the Garden Roller beads. The results of spectrographic analyses are consistent with this theory (Davison 1972:60). Visually, the texture of the glass of many of the beads looks 'sugary', suggesting that either the glass beads or the heating temperatures were insufficient for vitrification.

The only description suggesting their process of manufacture was presented by van Riet Lowe (1955:12).

The small beads from which the larger beads were made were crushed and melted down in a suitable crucible. A metal wire was then dipped into the molten glass and withdrawn with a filament of viscous glass adhering to it. This was then wound up until a spindle-shaped mass about 1 inch long and somewhat under I/2inch in diameter was obtained. The whole was then passed into the mould and the glass at one end detached from the wire which was then retracted so as to bring the other partly solidified end back into the mould. The first end was then reheated in order to attach the glass to the wire when it, in turn was retracted. The wire was then bent over, heated, rotated and finally withdrawn. During the whole of this process the mould and the glass in it were kept at a red heat - at a temperature which just avoided devitrification. An examination of a section of the bead shows how the glass layers have been folded and refolded and the mass of the bead forced out to fill the mould by the effects of retraction at the ends as illustrated in the accompanying text.

Modern techniques of 'mould-pressed' beads involve two basic methods; those made from one piece of glass pressed into a mould and those made from fusing two glass-filled moulds together (Karklins 1985; Saitowitz 1988:43). The moulds can be re-used many times.

I argue from the outset that van Riet Lowe's suggested method is ill conceived. Firstly, winding glass around a metal wire which has not completely melted into an homogeneous state is not feasible. Secondly, although some parts of the beads portray a wound effect (usually around the ends of the beads), this method would not explain the folded layers of glass. Nor would it account for some the bubbles or holes in the glass, which if wound, would have whirled around the perforation. Microscopic examination of many of the samples shows that the bubbles are oriented parallel to the perforation.

A pottery firing kiln or pit associated with Garden Roller bead manufacture and numerous broken moulds have been excavated at K2 (Gardner 1963:7). Some of the moulds have small globules of glass bonded to them, while a few beads still have fragments of pottery adhering to them that had been detached from the moulds.

Gardner (1963:93) noted a complete absence of moulds on Mapungubwe summit. He used this evidence to substantiate the claim that Garden Roller beads were made at K2, and when the settlement was overrun they were no longer made but continued to remain objects of value to the newcomers.

An unbroken one-piece mould, found by A. Meyer (pers. comm.) at K2, clearly shows that the moulds could only have been used once, thus explaining the high proportion of breakage. The shape of the mould plus the fine consistency of the clay body inside the mould could only have been achieved by the cire purdue method of casting. This pyrotechnology has not previously been reported in southern Africa, but it is well known in the Far East, India, Egypt, Near East, West Africa and Peru ${ }^{\mathrm{g}}$. Perhaps van Riet Lowe

[^11](1955:12) would have modified his comments that 'only the inexpert would go to so much trouble'.

The most likely method for making Garden Roller beads would have been either by melting the small beads directly in the clay moulds, or by melting them in a small crucible and pouring the molten glass into the mould. Both of these methods would account for the layering effect. An iron rod or pontil could have been inserted into each end of the mould or plunged directly through it, which resulted in the vertical and horizontal striae described by van Riet Lowe (1955:13). One of the mould ends would have been plugged with clay, wax, or grass (Fig. 3.4.1.).

Herbert (1984:89), pointed out that the earliest evidence (IgboUkwu) of cire purdue yet known in sub-Saharan Africa was found in the region of West Africa, which happens to be a great distance from North Africa, the Nile Valley and the ancient Near East, where the technique already had a long history by the time trading between North Africa and the Sudan intensified in the wake of the Muslim conquest of the Maghreb. She doubted whether this situation would benefit proponents of a diffusionist theory, although she accepted that diffusion from the north or northeast still seems the the most probable explanation.

3.5 GLASSMAKING IN SOUTHEAST ASIA

India

Although glass is mentioned in early Sanskrit and Buddhist literature and referred to in ancient Indian texts, Sen \& Chaudhuri (1985:6) maintain that the origin of glass in India is still surrounded in mystery. Singh (1989:27) considered that the occurence of glass or glass like materials can be traced back to the Harappan period (ca. BC 2350-BC 1750).

According to Francis (1984:152), the earliest date for the introduction of glass production in India was BC 1000. Dikshit (1969:150) is more conservative in his estimates and placed Indian centres such as Arikemedu, a glassmaking site and well known as an emporium on the eastern coast of India, in the early centuries of the Christian era. Brill (1986:2) believes that, although some of the glasses excavated in India could have been imported from the Near East and Roman World in earlier periods, and from Europe, China and Iran in later periods other earlier glasses were actually made locally. Dikshit (1969:157) was rather of the opinion that finished products like bangles ${ }^{9}$ and beads were made from big thick tiles, which were a pre-requisite in medieval and pre-British India (early Indian glass was primarily used for personal ornaments such as beads, bangles and seals). Lal (1958:139) used physical and chemical analyses to examine glass-like material, erroneously identified as fossilized twigs, from Arikamedu. The results confirmed that the material was manufactured glass, attributed to local glass-workers at the site.

[^12]Fig.3.4.1. The cire purdue casting method used to make Garden Roller beads.

After extensive study of early Indian glass, Singh (1989:219) draws the conclusion that Indian glass technology did not compare favourably with contemporaneous cultures. He attributes the limiting factor of mass produced Indian glassware to the absence of suitable natural alkalis such as natron.

Sen \& Chaudhuri (1985:132-135), however, describe Indian sources of raw materials used for making glass, with particular reference to soda-bearing substances called reh ${ }^{10}$ soils which have been used for making glass from ancient times in Bihar and Uttar Pradesh. Reh soils are widespread in the Indo-Gangetic alluvial plains from Bihar through Uttar Pradesh to parts of the Punjab. Salt lakes constitute another important source of sodium salts which are used in many indigenous industries, including glassmaking. Sodium compounds from salt lake deposits yield crystallized compounds of sodium chloride (NaCl), sodium sulphate $\left(\mathrm{NaSO}_{4}\right)$ and sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$.

Malaysia

Glass-house waste and glass beads have been found at many Southeast Asian sites particularly in western and eastern Malaysia, and in Thailand (Beck 1930; Harrison 1964 \& Lamb 1965). Lamb (1965:36) suggests that melted down batches of imported glass scrap, originating in Egypt, the Middle East or Arabia, were used to make beads found in Southeast Asia. More recently, Jacq-Hergoualc'h (1992:1) still considers a MiddleEastern source for some of the glass sherds and glass beads from sites in the province of South Kedah ${ }^{11}$.

Evans (1928:123) and Francis (1990:1-23) support a local beadmaking industry for the beads found at Sungai Mas, (South Kedah), and Kuala Selinsing (Perak) in the Selinsing River estuary, but do not speculate on imported glass being used to make them.

The distinctly orange colour (Munsell 3.75YR 6/14) seed bead is very characteristic of the Southeast Asian collections.

[^13]
3.6 GLASS BEAD MANUFACTURE

Methods of bead manufacture have been described in innumerable publications (Van der Sleen: 1967; Kidd and Kidd 1970; Karklins 1985; Sprague 1985, Francis 1988; Saitowitz 1988). Basically there are four different procedures for making beads from molten glass, i.e., drawn, wound, blown or moulded.

Initially, glass beads were made either by cold working from lumps of glass then by heating, joining and decorating small pieces of glass from rods, or by winding glass threads around a metal rod or wire and fusing the different layers together. In all probability early glass beads were made as subsidiary factory articles or part of cottage industries.

Some of the earliest examples of glass beads are wound, quadrangular, disc-shaped spacer beads (spacer is the name given to any bead having multiple perforations). Over 11000 of these beads were recovered from Nuzi, in north eastern Iraq, dated to the 2nd millennia BC (Spaer 1985:1). The spacers have a decoration of four to seven ribs. Similar spacer beads have been recovered from temples at Beth Shean and Lachish (in modern day Israel). Several wound glass beads and eye beads manufactured by the "stratified" or "layered " technique were also found at Nuzi. Some of the beads were still attached to the copper metal rods, approximately $2-3 \mathrm{~mm}$ in diameter, around which they were wound.

Lamb (1966:85) believes that Arikamedu was a large bead-making site, and that South Indian beadmakers moved to areas in Southeast Asia where they created overseas centres of production. Francis (1991:21-42) suggests that much of the Old World was supplied with drawn monochrome beads made at the site from the third century BC, following the same theory that while the bead industry continued at Arikamedu, bead-makers moved from there to other sites in Ceylon, Malaysia, Indonesia, Vietnam and Thailand. Francis has used diagnostic glass 'wasters' associated with the lada method of bead-making to connect seven sites where Indo-Pacific beads were made. As each site was abandoned, the bead-makers were forced to move. By the 13th-14th century beadmaking in south and southeast Asia had ceased to exist. However, all the bead-making sites lack a firm archaeological context for primary glass production. No glass furnaces have been discovered at Arikamedu so far (Francis 1987:13).

The lada technique of making drawn beads

According to Francis (1991:28-36), the lada technique is an extant method of manufacturing small drawn monochrome beads in India (Papanaidupet, Southeast India). The procedure is fairly labour intensive, involving a number of manufacturing processes and specialised equipment, such as the furnace and the lada. The lada is a hollow metal tube. Softened glass is rolled and worked around the lada to form a large cone shape lump or 'gather' of glass from which a continuous tube of glass can be drawn. An iron rod is pushed through the lada to pierce the cone of glass from the base to the apex. The perforated cone is returned to the furnace, still on the lada, and the tip is drawn out with an iron hook. This procedure produces characteristic glass wasters in the form of 'knots', curved tubes, flakes of glass and collapsed tubing from the end of the draw. After the tubes have been drawn they are cut into segments which are reheated to round off the ends.

An alternative method to form the perforation for drawn beads is by manipulating the glass into a hollow in a molten lump of glass or gather at the end of a glass blowing pipe. The rest of the procedures are basically the same where the glass tube is cut into short portions and rounded off. The glass wasters resulting from these two methods have different attributes.

Harder (1993:272) noted that in ca. 1st century AD South India and Ceylon were in close contact with the Mediterranean and China, and that Mantai was an ancient port of the maritime silk route. He questioned whether the large pieces of prehistoric glass found at different sites in Ceylon were manufactured at the site or imported from elsewhere.

EARLY ISLAMIC GLASS 8th - 11th CENTURIES

4.1 INTRODUCTION

The glass history and production directly related to this study is that of the Early period of Islamic glassmaking from the 8th to the 1lth centuries, which coincides with the appearance of glass beads at southern African Iron Age sites.

Glassmaking under Muslim sovereignty evolved from an existing industry, entrenched by former Greek and Roman art and culture. The decline of the Roman Empire and the transfer of political power from Rome to Constantinople (AD 350), however, interrupted the development of late Roman Imperial art and resulted in a general decline in the availability of glass, particularly of artistic and decorative wares, and mass produced glass products ${ }^{1}$. Nevertheless, glassmaking did not come to a complete standstill. Glasshouses that were still operational in the eastern Mediterranean continued production which provided the link in style and form between past classical designs and the subsequent Islamic genre.

Glass production of the succeeding period did not evolve with the same rapidity as did the Muslim conquest. Thus, glass manufactured during the Early period shows a great deal of Roman influence in shape and decorative techniques. It is, therefore, difficult to specify features characteristic of Islamic glass before the 8th century.

Islamic glassware, glassworkers or glasshouses had a predilection for one or another style or form. In Syria, for example, the overall type of work produced during the Early period was based on Syrian prototypes, such as mould-blown and free-blown vessels for domestic use. Production or the revival of artistic wares was promoted only later by the Abbasid caliphs and their governors. The centres of production in this period were Syria, Egypt, Persia and Mesopotamia ${ }^{2}$. Over time, distinctive styles and specialist technologies emerged, which did distinguish Islamic glass from the previous Roman industry. The techniques of painting in lustre, gilding (gold painting) and enamelling on glass were developed, and, along with marvered, trailed threads in a contrasting colour - either combed or feathered,

[^14]pinched, incised or in relief carving - were perfected by craftsmen during the Early Islamic period; glass and window glass were also used to decorate the interiors of buildings. Unique inscribed glassware confirms the existence of some of this early ware.

In Egypt there was a notable reappearance of earlier glass techniques, such as mosaic ware and deeply incised cut glass. Glassmakers seem to have been preoccupied with surface manipulation; metal tongs were used to impress or stamp designs into the glass. Highquality glass products have been excavated from archaeological deposits in Fustat, including distinctive bead types, termed Fustat Fused Rod Beads, and glass coin weights. During the Early period, Fustat was already a successful cosmopolitan entrepôt and enjoyed a history of glassmaking. The city was a clearing and forwarding centre of glassware from other glasshouses within the Islamic world. The combined skills of Muslim, Coptic (Egyptian Christians) and Jewish glassmakers working in Fustat produced glassware of notable distinction. Egyptian cut glass and rock crystal work reached perfection during the Early period under the Fatimids, and vessels made of rock crystal were among the most highly prized possessions of the opulent Muslim courts (Rice 1956:85).

Glass beads ${ }^{3}$, bracelets, finger rings, and other small items, which probably would not have qualified as masterpieces in their own right, were nevertheless part of Islamic glass-making industry as well. Although beads and bangles were simple body ornaments some of the stylized techniques used to decorate the more elaborate glassware such as mosaic, marvered and trailed, were used on the beads. Three Fustat Fused Rod Beads (now referred to as FFR beads in this text) have been used for research purposes in this thesis, as well as other types of beads that were made either for local or export purposes. Fragments of three glass bangles from an Islamic burial in Palestine dated ca. AD 800 were also available for analysis.

4.2 ISLAMIC GLASS TRADITIONS

Islamic glass has not enjoyed the popularity of, for example, Islamic ceramics such as lustre ware, notwithstanding its importance. Jenkins (1986:4-6) questions why Islamicists have largely abstained from undertaking scholarly investigation of glass as it remains one of the least-studied media in Islamic art. A number of reasons for this are cited including that
(1) there is very little information inherent in the Islamic glass objects themselves such as a source or inscriptions containing makers' marks that can be historically placed ${ }^{4}$;
(2) glassmakers in the Muslim world were mobile and seem to have moved from place to place, which meant that the styles and shapes they created would not necessarily have been at one particular centre and, therefore, could have been made in different countries and continents; and
(3) finished glass products, and probably glass ingots and glazes, were traded from country to country.

[^15]A major problem in identifying or distinguishing Early Islamic ware is the similarity, in both shape and execution, to many pieces made by preceding Roman ${ }^{3}$ artisans. An appreciation of this relationship is important in understanding Islamic glassmaking more fully.

The fall of the Byzantine provinces of Syria and Egypt to Islamic forces probably resulted in the closure of many leading glasshouses and a general decline and shortage of glass and mass produced glassware. However, glassmaking continued at centres along the SyroPalestinian coast and, according to Pinder-Wilson (1991:115), it seems that Persia and Mesopotamia contributed most to the resurgence of glass production in the first three centuries of Islam. Lane (1937:61) and Clairmont (1977:35) also credit the revival of the glass industry, after the Muslim conquest of Syria and Egypt, to the Abbasid caliphs and their governors at various glasshouses or glass producing centres in Mesopotamia and Persia (Sasanian Persia, $100 \mathrm{BC}-\mathrm{AD} 600$). It was in these regions that craftsmen began to satisfy the needs of a new consumer market. Recent archaeological excavations in Persia confirmed that there was a flourishing glass industry that continued without interruption into the Islamic period (Tate 1991:114).

Significant numbers of glass fragments have been excavated from Al Mina in North Syria. Lane (1937:64) notes the corrosive properties of the Syrian soil, contrasted with the good preservation qualities in the dry sand of Fostat [sic], in which a wealth of glass, showing every kind of technique, was found.

Clairmont (1977:31) does not consider the terms 'Roman' or 'Islamic' satisfactory when analysing the stylistic aspects of glass found from this period. Nor does he see merit in assigning any one particular name, shape, technique or decoration characteristic of Islamic glass before the 8th century. Lane (1937:64) also acknowledges difficulties distinguishing between particular glasses, admitting that it was equally as difficult to classify Roman glass made in Syria and that made in Egypt. He is of the opinion that Syrian glass maintained the world-wide prestige it had won in Roman times, and that the shapes or metal, and the family resemblance [Roman] must have outlasted the advent of Arab rule.

Innovative, stylistic techniques and decoration were the essence of Islamic glass. During the early period, craftsmen seem to have been preoccupied with surface manipulation and less inclined to explore polychrome decoration, which was to become the principal feature of later work (Pinder-Wilson 1991:122). By the 10th century, however, Islamic artisans began experimenting with new methods of decoration, and a distinctly Islamic glass style evolved from at least two major glass producing centres within the empire, on a scale which was comparable to the preceding Roman period (Jiayao 1991:6-7).

According to Jenkins (1986:11)

> Islamic glassmakers inaugurated a period of innovation that brought them increasingly further from Roman Imperial glass and culminated in the superb and quintessentially Islamic lustre-painted and relief-cut vessels.

[^16]Glass has been found at Islamic sites in Spain and in North Africa. It is not known whether they were local products or imports from Egypt or the eastern Mediterranean. Glass finds have been recorded at the ancient Tunisian capital of Kairouan [also spelled Qairawan; Quyrawan] (AD 670-1056-57), Bougie and Gabes in Tunisia and Morocco (Fig. 4.2). Archaeological evidence at the site of Çabra (near Kairouan) uncovered some engraved glass objects including goblets and perfume bottles that were similar to the type of glassware found in Egypt during the same period (Marçais 1946:180). According to Smith (1957:117), glass wasters, furnaces and specimens of ribbed vessels and bowls excavated at Sabrah [Çabra], Tunisia, are clear indications of primary glass manufacture in Islamic times

In Egypt, glassmakers specialised in numerous techniques including engraving, incising (intaglio), relief surface decoration, glass enamelling, and composite cane ware, known as mosaic or millefiori. Mould-blowing was peculiar to Syria while in Egypt, lustre-painted and enamelled glass made in the Early period reached a high level of excellence.

Lustre-painting on glass ${ }^{6}$

Lustre-painting is a technique of decoration usually associated with Islamic glassmaking. In 1941 Lamm (1941:23) was very cautious in his assessment of lustre glass and thought that it would be a vain effort to try to make a sharp distinction between Islamic and preIslamic ware. While recognising that pre-Islamic examples of lustered glass, based on stylistic grounds, have been found, the number of artefacts in this category was very small. He suggested that it would probably be more profitable to compare lustered glass with lustered pottery made before or after the foundation of Samarra (AD 836-838). The Tulinid dynasty in AD 868 may also be used as a marker for similar distinctions. More recently, Pinder-Wilson (1991:124) and Scanlon (1990:2) have shown that this technique was used on glass in the second half of the 8th century, and credited its discovery to glassmakers in Fustat, perhaps as early as the 6th or 7th centuries, who made a goblet bowl given to the Governor of Egypt in AD 772: There is evidence that lustre-painted glass was also produced in Syria. It appears that lustre-painting ceased to be practised after the 11th century, being replaced by gold painting ${ }^{7}$ (Pinder-Wilson 1991:130).

Gold painting and enamelling

It is not known whether gold painting originated in Egypt or Syria (Pinder-Wilson 1991:130). Frequently used together with later enamelled ware, this type of decoration became characteristic of glass made at Raqqah, Aleppo and Damascus in Syria. The great Islamic lampshades, or mosque lamps are the best-known Syrian products. They were also produced in Cairo to obviate transport problems. Probably, Syrian enamellers migrated there. Many lamps were often decorated with abstract patterns and quotations from the Koran and many were exported to decorate Egyptian mosques (Vose 1980:53).

[^17]
Glass carving, cutting and etching

Rock crystal carving and glass cutting ${ }^{8}$, including facet cutting and slicing, incised, relief and cameo-cutting all became specialist industries in Islamic glassmaking. The art of glass cutting was revived in the late 8th century and, by the 10th century reached its height in Persia and Mesopotamia (Basra). According to Jenkins (1986:18), when glassmakers in the Early period employed the incising (as opposed to engraving) technique, they preferred glass metal coloured aubergine purple and various shades of blue compared to the colourless variety utilised by the Romans. Relief-cut vessels were and still are costly rarities which require highly specialised skills. As Pinder-Wilson (1991:119) correctly pointed out it would have been far easier to have produced moulded vessels. It is doubtful whether the end results would have been comparable!

Clairmont (1977:83) believed that from the middle of the 9th century the 'trade' in cut decoration passed from Persia and Mesopotamia to Egyptian glassmakers, who familiarized themselves and perfected the techniques by the time of the high Fatimid period (ca. 10001060). Although the chronology and place of manufacture of both these techniques has been debated, ${ }^{9}$ authorities on Islamic art now seem to have reached almost unanimous agreement about the major part of rock crystal carving. The conclusion is that rock crystal work began in the Early period ca. AD 850, and that, contrary to popular opinion, a substantial production of rock crystals occurred prior to the Fatimid sovereignty in Egypt (Clairmont 1977:81).

An important aspect relating to this enterprise is that rock crystal, supposedly of superior quality, was found and traded from central Kenya from the tenth century (Allen 1993: $55)^{10}$. Horton (1987:82) also reported on the rock crystal trade by Swahilis from East Africa to Muslim merchants until AD 1050, noting that after this particular time all traces of rock crystal exchange from the coastal sites in the Lamu archipelago vanished. The reason for this could have been that the demand for rock crystal was replaced by imitation colourless glass. Mehlman (1982:42) confirms that many cut glass pieces of glass associated with the Fatimid period were made from clear colourless glass in imitation of rock crystal.

In Mesopotamia, engraving (as opposed to incising) flourished, especially during the Abbasid dynasty (AD 750-1258). Both Baghdad and Basra were highly acclaimed glass

[^18]producing centres and excavations at Samarra have unearthed large numbers of fragments of glass including millefiori and mosaic examples based on earlier Alexandrian styles (Mehlman 1982:42 \& al-Janabi 1983:312). Four individual moulded glass artefacts, inscribed in Kufic text, were made by the same craftsman in the Abbasid capital of Baghdad as well. The vessels, two of which were created in slightly different clay moulds, confirm one of the only known provenanced inscribed Islamic glasses (Rice 1958:11).

Impressive collections of this selective ware are privately or publicly owned, and are exhibited at institutions such as the Museum of Islamic Art (Cairo), Victoria and Albert Museum (London) the Benaki Museum (Athens), and the Metropolitan Museum of Art (New York).

Trailed ware

This type of decoration was executed by winding a thread of contrasting colour around the piece and subsequently marvering, or pressing the thread into the surface. A comblike tool was then used to create a featherlike design: This technique has a long pre-Islamic history in the Near East; its ultimate origins lie in Dynastic Egyptian core formed vessels (Jenkins 1986:11; British Museum catalogue: Masterpieces of Glass; Louvre publications).

Palestine once renowned for glassmaking, supported an industry ascribed to the Early Islamic occupation. In Jerusalem, a specific type of marvered or trailed ${ }^{11}$ glassware has been found incorporating purple, blue and red glass. According to the evidence, Hasson (1983:109-111) suggests that Islamic Jerusalem was a centre for trailed glass production but believes that only the purple colour was produced there, and that trailed ware output probably peaked during the 11 th and 13 th centuries. Hebron has also been recognised as a glass producing centre, although it is not known with any degree of certainty when - or by whom. Some scholars believe that a glass industry began in AD 800, but they offer no concrete evidence to support their theories: The first authentic documentation in the form of letters, diaries, and other literature written mainly by Christian pilgrims dates from the 14th century (Lehrer-Jacobson 1993:12).

Following the Mongol invasion of Persia in 1248 and the founding of the Yuan (Mongol) dynasty in China, glass decorated in the Chinese style began to make an appearance. Chinese Islamic porcelains and glass decorated with Arabic writing have been found in Malaysia as well (Mohd Othman 1981:17-21).

In 1402, the whole of the Middle East was over-run by the Mongol conqueror Tamerlane, and, following his invasion of Persia, Iraq, Armenia, Syria and India the glass of the Islamic world went into decline; this gave Venice the opportunity to expand and take over the markets which had previously been supplied from the East (Brooks n.d.:17).

[^19]
4.3 GLASS MADE AT FUSTAT

Fustat played a dominant role in Egyptian Islamic glass history and was a thriving commercial and industrial centre throughout the ancient world particularly during the Fatimid period. A parallel glass industry was also established in Syria and Palestine. Glassmaking in Fustat was not only confined to the period of Fatimid occupation. Large quantities of late 8th century glassware and rock crystal carvings have been found (Hasson 1983:112; Pinder-Wilson 1987:60-71; Clairmont 1977; Miles 1948:31-69).

The eleventh century is considered to have been the artistic renaissance of Fatimid Egypt (Pinder-Wilson 1973:13). Fustat not only exported to markets throughout the then known world but also imported products from China ${ }^{12}$ Persia, Iraq, Anatolia and the Byzantine Islands, Syria \& Palestine to the east; Nubia, the Sudan and Ethiopia to the south; the North African littoral, Sicily, southern Italy and Spain (Scanlon 1968:189). According to Pinder-Wilson (op cit:15), wares from the glass houses of Syria, Mesopotamia and Persia certainly reached the markets of Fustat, although it is not possible to distinguish in every case, between imported and locally-made glass. Goitein (1967:110) also confirms that both "local" and imported glasses were available at Fustat, and that Chinese porcelain also reached the markets.

The period relevant to this study ($\mathrm{AD} 900-\mathrm{AD} 1250$) includes the height of the Fatimid dominion and Fustat's greatest prosperity and in many respects illustrates the artistic excellence and cosmopolitan character of the city's commercial life. The pre-eminence of the city was recorded by a Persian traveller, Nasir-i-Khusru, in the middle of the 11th century who noted that there were 20,000 shops in Fustat; interestingly, they were all owned by the government (Lewis 1951:206). The same informant also reported on the fine pottery and glassware produced there. Perhaps one of the reasons for the excellent quality and varied specialist techniques of glassmaking in Fustat was an over supply of SyroPalestinian craftsmen, who fled to Egypt during political unrest in the 11th and 12th centuries (Goitein 1967:51). The Geniza seems to show that the inhabitants of Fustat used glass, even crystal, for utilitarian wares like common drinking cups, tumblers or other household commodities such as primitive lamps made of glass (Goitein 1983:148). Also to be considered is the fact that not only locally-made glass but imported glassware from either Syria, Mesopotamia or Persia was sent to the markets and clearing houses of Fustat.

It is not surprising that the excavations at Fustat revealed large quantities of glass material. The objects included good quality blown glass vessels, window glass, bangles, amulets, beads and dated glass coin weights, and a glass ingot factory (Scanlon 1972:59). The sheer quantity of glass finds leaves no doubt of the existence of a local industry.

[^20]
4.4 ISLAMIC GLASS BEADS, COIN WEIGHTS \& BRACELETS

Egypt

According to Spaer (1989:9), Islamic Egypt is probably the best recorded source of early Islamic beads. Various manufacturing methods were used to make different types of beads. These included wound, drawn seed beads and mosaic, segmented, folded and fused rod beads (Francis 1989:15-28). Distinctive decorative techniques used on the beads were dragged and trailed, feathered, festooned, and folded patterns; some of the basic designs comprised geometric, floral, calligraphic, and stylised animal and human figures (Sherr Dubin 1987:95). Examples of fused rod beads, mosaic, trailed and segmented beads were used for analysis in this dissertation.

Fustat Fused Rod beads

Archaeological investigation in Fustat revealed the remains of a glass factory and undisturbed pits below and above a house which contained a particularly distinctive type of glass bead and dated coin weights; some glass "scrap" material used to produce these beads was found amongst the excavated material (Pinder-Wilson \& Scanlon 1987:71). These beads, variously referred to as 'fused rod', 'Fustat Beads' and 'Fustat Fused Rod Beads', have been dated between AD 800 - AD 900 (Spaer 1993:4-11; Francis 1993:3-4) and are thought to have been made only during a short time (Section 4.4). Chemical analysis was performed on three FFRB beads. (Fig. 8.1.3.1. a-c)

Although the exact manufacturing procedure is not known, the most likely method was to heat and fuse together individually prepared cylindrical rods around a central perforation (Francis (1989:29). The rods are made in a variety of colours (translucent green glass with opaque white, yellow, "Indian" red and blue) which are fused together to form a large barrel shaped bead. Some have 'eye' decoration.

Segmented beads

Segmented beads are a particularly interesting type of glass bead, known to have been made in Islamic and pre-Islamic times. The exact process of manufacture, however, remains conjectural. In 1989 (Francis 1989:28-29) described Early Islamic segmented beads, together with an explanation of how they could have been made. He then drew attention to the fact that examples of segmented beads have been found at Siraf, Nishapur and Fustat, and, are known in Europe, Southeast Asia and beyond. He also pointed out that the most remarkable segmented type of beads are gold-glass, also referred to as giltglass or goldfolium.

In more recent publcations, Spaer (1993:5-9) and Francis (1995:7-9) offered additional evidence retrieved from a ca. 4th-6th century AD glass bead workshop excavated at Alexandria. Amongst the finds were eight stone moulds made of granite, schist or limestone with grooved and ridged tops. The grooves and ridges are alternately carved out of the stone, and vary in size and shape.

Both Spaer and Francis suggest that the technique involves rolling a hot drawn tube [back and forth] over, and into, the grooves of the mould. The ridges in the mould segment the
tube while the grooves determine the shape of the beads. After the tube has cooled, it is cut up, either into single or multi-segment beads. The ends of the beads were finished in a variety of means. Sometimes they were ground, lightly polished or just cut and left ragged without any more finish.

Francis (1995:7) specified two types of segmented beads, one made of a wide tube, Vscored and spaced to make discs, and the other made from medium sized tubes, U -scored and spaced to make short cylinders. He also confirmed V-scored segmented beads made at Fustat, and that similar ones have been found in Sungai Mas, Malaysia.

Three segmented beads excavated from the Iron Age site at Shirbeek, located in the northern Transvaal, have been analysed in this thesis (see chapter 8.1.3.2 \& Table 8.2.2.1 \#152). Another V-scored segmented bead, belonging to the Van Riet Lowe Collection from Fustat, has also been examined for comparative purposes (Table 8.2.2.1 \#20a).

Glass weights

The great majority of known glass weights and stamps are of Egyptian origin although some were also manufactured in Syria during the Umayyad period (Miles 1948:30).

Glass weights or nummi vitrei were made for a utilitarian function. According to Miles (1948:67), the use of glass as a material for producing weights and stamps in the eighth century marked a distinct technological advance over their earlier classical counterparts which were made of clay. The use of glass also implies that it was no longer considered a luxury item.

There are several types of weights, although they are usually small, round or oval glass discs produced in a variety of colours and types of glasses. The precision achieved in manufacture is an indication of the skill of the glassmakers. Production became so accurate that by AD 780 their weights agreed within 0.005 grain (Forbes 1957:158). Besides their accuracy, they also had the advantage that they could not be easily cut, and none of the glass could be tampered with unnoticed. They were prepared in large quantities and were relatively cheap to make, so it would have bee been quite feasible to weigh the weights after manufacture and reject those that differed from the standard (Miles 1948:41). The discarded pieces could easily have been remelted as cullet and made again.

Glass weights were produced over a long period and until the 9th century the common sizes ranged up to about 1 kilogram. Thereafter, smaller weights were produced to verify gold coins until ca. AD 1250. Approximately ten thousand Islamic coin weights have survived and are to be found in public and private collections worldwide.

Glass weights were used to confirm the veracity of coin money ${ }^{13}$ of Islamic commercial merchants, and were central to the economy. They were issued under strict official control

[^21]on behalf of the caliph, and stamped and dated with the ruler's, or local governor's names ${ }^{14}$. Kolbas (1983:95-100) has suggested using the different colours and types of weights minted or produced from these closely referenced sources as an index for dating other Islamic glass material. Sixteen glass weights were excavated from a shipwreck in the Aegean. Three of them were identified as being of the Fatimid caliph al-Zahir manufactured in 1021/22 or 1024/25 (Bass 1984:64).

In the Fatimid period the range of colours is wide, with blue green predominating: Late Abbasid weights of al-Mutsadi and al-Nasir (AD 1170-AD 1225), like many of the still later Ayyubid and Mamluk pieces, are made from opaque glass and occur in many colours, including white, cream, yellow, amber, turquoise, etc. (Miles 1948:34-35).

Glass weights have also been used to date marine and terrestrial archaeological sites in the Aegean and West Africa. Three coin weights, all of Fatimid origin, dated 1021/22 or 1024/25 (Bass 1984:64), were recovered from the shipwreck Serçe Limani, providing a terminus que date of the site as AD 1025.

Glass bracelets

Pre-Islamic and Islamic closed ring glass bracelets or bangles were popular simple objects of personal adornment manufactured, worn and exported throughout the eastern Mediterranean and beyond. They have been described by Spaer (1988:51), as inexpensive ornaments, neither artistically nor technically outstanding, but not without charm; over time they became the most prevalent type of glass jewellery in all of the Levant and further afield.

Archaeological finds of bangles are usually referred to but seldom published in detail. Spaer (1992:44) attributes this to the fact that archaeologists have only recently become interested in Islamic post-medieval studies, and that earlier assumptions were that burial gifts became rare with the introduction of Islam.

Whitcomb (1983:106) reported an entire range of bracelets from the region of Aden, together with wasters and slag: he thought that the Aden glass centres supplied the east African coast and suggested that the distribution of glass products may be further elaborated by considering glass bracelets. Translucent glass bangles or rings have been reported as far afield as Borneo and Malaysia (Harrison 1962:237-238; Lamb 1966:86). Some were also found in an Islamic context at Kaundinyapura, India (Sen \& Chadauri 1985:63).

Excavations at the exclusively Islamic site of Khirbet el-Minyeh, on the Sea of Galilee, and other sites have shown that bracelets were often placed in burials, and that some of them have been preserved intact (Spaer 1988; Spaer 1992). Glass bracelets and beads were also reported from Kibbutz Hagoshrim, located in the upper Galilee (Kurinsky 1991:194). Four fragments of glass bracelets found at these site were analysed in this study.

[^22]Although glass bangles are rarely found in coastal or inland sites in eastern or southern Africa, two fragments were recovered from an excavation at the island port of Manda in East Africa. Both pieces are black. One is D-shaped in section, the other is circular - the latter has a ribbed surface: The most likely date for the first specimen is 13 th to 14th century (Morrison 1984:176).

4.5. SOME OTHER ARCHAEOLOGICAL SITES WITH ISLAMIC GLASS

The wreck of the Serçe Limani

Perhaps the most spectacular archaeological find of Islamic glass has been the recovery of a cargo from a ship wrecked off Serçe Limani, or Sparrow Harbour, opposite the island of Rhodes (near Bodrum - in ca. AD 1025). The ship was bound north, and dated according to glass coin weights found in the hold. The cargo consisted of many tons of raw glass blocks, ranging in size from tiny chips to large chunks up to 300 mm across, and 1 ton of broken brightly-coloured glass fragments (between $1 / 2$ million to 1 million pieces) (Lawton 1984:8). Of an estimated 10,000 glass vessels excavated only 80 remained intact. The broken fragments or cullet is believed to have come from various sources, and was probably collected by dealers going from house to house, as well as factory waste (Bass 1984:65).

The results of chemical analysis carried out at the Corning Museum of Glass on some 80 samples from the Serçe Limani, including vessels and cullet, showed that the majority of the glasses were of a uniform composition and could well have been made at the same factory; only four fragments of emerald-green glass from the wreck have a high lead content (Lawton 1984:11). In addition to its cargo of Islamic glass, other finds include gold coins, Islamic glazed ceramic ware and jewellery of Fatimid origin.

Quseir al-Qadim, Egypt

The site of Quseir (Fig. 4.2.1) was an entrepôt port engaged in the Indian Ocean exchange during two distinct periods: Roman (1st - 2nd centuries) and the Ayyubid-Mamluk (13th and 14th centuries). An interesting range of Islamic glass and Far Eastern ceramics have been excavated from three areas of the site.

The glass assemblage from Quseir has been compared to some of the material from the Serçe Limani, and attributed to Egyptian craftsmen who continued in the Fatimid tradition into the Ayyubid and early Mamluk periods (Whitcomb 19983:105). Much of the glass is believed to have been broken discards from repacking operations. In addition to the Mediterranean parallels, the Quseir glass shows many similarities to glass found at other Red Sea ports such as Aydhab [Aidhab], Aden, and Indian Ocean/Rim entrepôts at Kilwa, Gedi and Pengkalan Bulang, near Penang Island in Malaysia. It must be remembered that while some of the glass at Quseir al-Qadim may have been used at the port, most of the Egyptian glass was intended for export.

Evidence of brick kilns and a glass industry excavated at Sohar in Oman during the 10th century (Williamson 1973:88) may well have been connected to the entrepôt ports of Aqaba, Quseir, Aydhab and Aden.

Glass finds in the vicinity of Aden have been recorded previously. Forneau (1955:56), reported a whole series of objects found at Sheik Othman, near Aden, in the immediate area of an ancient glass-factory site. Ordinary glass, coloured glass, fragments of glass enamelled phials, bracelets, rods and beads were recovered.

West Africa, Tegdaoust

Excavations at archaeological sites in West Africa, including Ghana (Kumbi Saleh) and Tegdaoust (Awdaghust), show an increase in semi-luxury or luxury goods. Glassware in the form of phials, vases, cups, goblets and glass weights were found at Awdaghust. All the glass weights were of Fatimid origin, and some were dated to the tenth century (Devisse 1992:199-200): an imported glass goblet was also recovered, but it is not clear whether it was made at Ifrika (Tunisia) or Egypt.

Glass beads and fragments of glassmaking crucibles with traces of bluish metal have been recovered from sites in Nigeria such as Ita Yemoo, Orun Oba Ado and especially Olokun Grove (Shaw 1978:146; Willet 1960:242). Whether the glass itself was made locally or came from another source has not been established. Willet believes that Ife's famed bead industry was based not on local manufacturing but rather on reworking imported European and Islamic glass beads (Quarcoopome 1993:121).

East Africa, Kilwa

Different fragmentary types of glassware and glass beads have been found at many entrepôt ports along the East Coast of Africa including Kilwa, Shanga and Manda (Horton 1987:298). At Kilwa and Manda a large assortment of beakers, cut glass phials, flasks, and bowl types plus significant numbers of both drawn and wound beads were recovered. Chittick (1974:394) was mindful of the fragmentary nature of the material, and cautious about comparing their resemblance with some of the material found at Fustat, as suggested by R. Pinder-Wilson, then of the British Museum. One unusual complete open bowl was compared with a piece from Syria, attributed to the 13th century. Chittick (op. cit.:238) also acknowledged the likelihood that some of the glass found at Kilwa could have been made at Aden ${ }^{15}$.

At Manda, large assemblages of especially high quality glass-ware were excavated. The material is comparable to other glass-ware from widely dispersed sites during the 9th to the 13th centuries. There is a wide variety of recognisable shapes and types, the majority of which are similar to some found at Siraf: Other parallels have also been drawn to a few types from excavations further south on the East African coast, Nubia, Egypt, the eastern Mediterranean and Persia (Morrison 1984:159-180) ${ }^{16}$.

According to George Abungu (pers. comm.), glass trade beads have been found at inland sites along the Tana River as well.

[^23]
4.6 CHEMICAL COMPOSITON OF SOME ISLAMIC GLASSES

Sayre \& Smith (1961:1824-182626) categorised two major groupings of Islamic glass:
(Table 4.6.1)
(i) Early Islamic glass (8th-10th centuries) - typical soda-lime glass with a low content of antimony and lead. Contains characteristically high percentages of magnesium (between $3.6 \%-6.5 \%$ or an average of 4.9%), and $0.94 \%-2.2 \%$ (or an average of 1.45%) potassium (Tables 3.2.1 \& 8.2.2.1 \#'s 20-27). This group is represented by finds at Fostat (sic), Nishapur, Susa, Kish and Raqqa. They also suggested that pre-Islamic glasses made in the eastern Mediterranean (between the 1st and 7th centuries AD) contained high magnesium and potassium, implying that Islamic glass was a continuation of an earlier glass tradition. According to Forbes (1957:159), high calcium and magnesium are indicative of a dolomitic source.
(ii) Islamic lead glass (8th-10th centuries) has been distinguished by high proportions of lead varying from 40% - 33% (average 36%). Sayre et al (1961:1824) show six samples, all from different sources, with remarkably similar lead composition (Table 3.2.1(iv)). The glass contained considerably more lead and less alkali and lime than other high lead glasses (Table 8.2.2.1).

In his work on Chinese lead glasses Brill (1991:28) acknowledges that
> ...(I)n the West, [West of China] the earliest presently known uses of lead in a base composition was in emerald green Islamic cameo glasses of the 10-IIth centuries and in certain Eastern European glasses, most often in the form of beads.

He also notes that lead oxide was used extensively in colourants, namely yellow opaqueness as $\mathrm{Pb}_{2} \mathrm{SbO}_{7}$ and PbSnO_{3} and in red opaques. This information is directly related to my major elemental analysis, (chapter 8.2.2.1.\#'s $151 \& 151 \mathrm{a}$), where two opaque yellow beads from a burial at Mapungubwe contained a high proportion of lead (50%) and antimony (reported as $\mathrm{Sb}_{2} \mathrm{O}_{5}$). Another bead from Gedong in eastern Malysia (transparent blue green) also has a high content of lead and antimony. They both contain low amounts of sodium and calcium.

Table 4.6.1
Chemical analyses of Islamic glasses

		(i)		(ii)	(iii)	(iv)	(vi)
		Fostat (sic)		$\begin{gathered} \text { Arablic } \\ \text { Glass welght } \\ \text { Egyt } \\ \text { AD } 800 \\ \hline \end{gathered}$	$\begin{gathered} \text { Early } \\ \text { Islamic } \\ \text { AD 800-1000 } \\ n=66 \end{gathered}$	Islamic Lead $\mathrm{n}=6$	$\begin{aligned} & \text { Cadro } \\ & \text { AD } 50 \end{aligned}$
	blue	green	green				
SiO_{2}	71.2	70.5	49.4	71.4			68.73
$\mathrm{Al}_{2} \mathrm{O}_{2}$	1.0	0.8	14.5	4.75			1.69
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	1.4	1.9	8.6	2.02			0.47
$\mathrm{P}_{2} \mathrm{O}_{5}$	0.3	0.6	1.2				
CaO	8.1	7.8	18.7	2.74			8.62
MgO	3.2	1.2	1.4	0.81	4.9	0.33	4.15
$\mathrm{Na}_{2} \mathrm{O}$	11.4	16.1	2.4	16.98			12.54
PbO	ND	ND	ND		0.0088	36.0	2.87
$\mathrm{K}_{2} \mathrm{O}$	2.1	t	3.5	0.27	1.45	0.026	
Mn0	1.2	1.1	1.3	0.3	0.47	0.022	0.74
CuO				0.1			
CoO							
SO_{2}				0.12			
$\mathbf{S b}_{2} \mathbf{O}_{5}$					0.021	0.081	
LI						0.28	

Sources of analyses

(i)	A. Lucas (In Turner, 1956T:172)
(ii)	FR Matson (In Singer et al, 1956:313)
(iii-iv)	Mean concentrations of oxides that best characterise ancient glass (Sayre et al, 1961:1824)
(vi)	Miles (1948:63)

Chemical analysis of lustre glass fragments from Fustat, carried out by Brill revealed two chemically distinguishable types of glass composition (Pinder-Wilson \& Scanlon 1973:15). The variation was attributed to the use of natron and plant ash as alkalis. Brill also suggests that the differences may serve to distinguish between locally made glass and imported wares. Miles (1948:55) also acknowledges the use of more than one source of alkali in Egyptian glasses, such as seaweed plant ash and natron from Wadi Natrun.

4.7 ISLAMIC GLASS \& GLASS BEADS FOUND AT SOUTHERN AFRICAN IRON AGE SITES

The chemical analysis reported in this thesis provides the first firm evidence for the manufacturing source(s) of glass beads found at South African Iron Age sites. However, some finds described in archaeological reports strongly suggest an Islamic origin and require comment. They involve specifically a few wound decorated beads from Great Zimbabwe and a fragment from Mapungubwe.

The original artefacts are not available for analysis, but a watercolour painting of the fragment found at Mapungubwe [probably done by Beck's wife - who did all the illustrations for his work] and a description has been published (Beck 1937:103-113). The bead is a wound glass bead with dragged trails on a dark matrix and is vaguely reminiscent of early Islamic manufacture. Bent (1969:205) photographed and described some black beads with white encircling lines which he found at Renders Ridge Ruins in Zimbabwe. MacIver (1906:82), submitted seven green glass beads the size of a pea, also found in Renders Ruin, to the British Museum for scrutiny. The report on the beads was that:
...(t)hey might well have been made in Egypt or elsewhere in the Mediterranean.
Other beads found at sites in the Limpopo valley and the eastem Transvaal suggest an early Islamic provenance. Segmented beads found at Shirbeek and tubular beads with unusual triangular cross sections found at Shikumbu and Mahlangeni in the eastern Transvaal are analysed in this work.. Beads similar to this were common at Aoudaghost (sic), and some of them were made in Fustat (P. Francis Jr. pers. comm.).

Juta (1956:10), also reported tubular beads with unusual cross sections that were found on a small sand dune near Lorenço Marques [Maputo], Moçambique. He thought that the beads resembled some of those found at Zimbabwe, Mapungubwe and related sites, and were associated with Rongo or Thonga pottery. They were described as:

Small, red, transparent, three-and four sided glass beads painted with gilt, now badly weathered. The sides are all irregular.

At Great Zimbabwe, Caton-Thompson (1931:186) recorded plain, enamelled and engraved glass fragments, authenticated by the British Museum as Arabic. Roger Summers (1969:197-198) also found pieces of a Syrian glass vessel with painted red, white and blue rosette decoration at Great Zimbabwe, and reported that R. N. Hall and D. R. MacIver had found fragments of 14th century Persian faience bowls at Renders Ruins. The faience was dated and authenticated by the British Museum as well. These finds contradict Beck's assertion that no faience was found at Great Zimbabwe (Beck 1931:235).

Table 4.7.1
Chronology of early Roman, Byzantine \& Islamic glass finds AD 100- AD 1400

Place	Date - AD	References
ROMAN EMPIRE	1st C	Freestone (In: Bowman (1991:40)
BYZANTIUM	ca. 337	Kurinsky (1991:365)
COPTIC	ca. 200-1100	Auth (1991:1142)
ISLAM	ca. 708-1494	Kolbas (1983:100)
TUNIS1A	ca. 750-	Marçais 1946:180
	ca. 750	Smith (1957:117)
EGYPT	800	Sayre et al, 1961:1824
FUSTAT	ca. 800	Pinder-Wilson \& Scanion (1987:71)
	9-10th C	Spaer 1993:5-11
	9-10th C	Francis 1993:3-4
	850	Clairmont (1977:81)
SYRIA		
DAMASCUS	661-750	Melman (1982:41)
Al Mina	800-900	Lane (1937:64).
MESOPOTAMIA		
BAGHDAD	ca. 800	Mehlman (1982:41)
\& BASRA		
SAMARRA	833-883	Lane (1937:61)
MALAYSIA	ca.9thC	Beck (1931:236)
KILWA	800-1000	Chittick (1974)
JTEGDAOUST	900	Devisse (1992:201)
KHIRBET EL	750	Spaer (1992:45)
MINYAH (Palestine)		
HEBRON	1300	Leher-Jacobson (1983:12)
JERUSALEM	ca. 1000-1200	Hasson (1983:109-111)
TURKEY	ca. 1025	Lawton (1984:11) Serçe Limani
QUSEIR, ADEN \&		
AYDHAB	ca. 1200-1300	Whitcomb (1983:101)
DAMASCUS	ca. 1250-1400	Mehlman (1982:30)
SYRIA	14 TH C	Freestone (In: Bowman 1991:40)
MALAYSIA	1400	Mohd Othman (1981:21)
WEST AFRICA		

The glass of the Islamic world was widely distributed and traded not only within Muslim countries but also throughout the Mediterranean area, Scandinavia and Russia, East Africa, the shores of the Indian Ocean and even China. While Islamic glass has been greatly admired for many centuries, formal studies worldwide have been overshadowed by the popular appeal of Islamic ceramics, particularly the lustre wares ${ }^{17}$. Unfortunately, this has resulted, until relatively recently, in a lack of information and many inconsistencies particularly with regard to the Early period. However, archaeological investigations, have done much towards remedying the situation, and excavations at the sites of Fustat, Samarra, Siraf, Quseir al Quadim and the cargo of the Serçe Limani shipwreck have produced supportive evidence. Studies of glass beads have also made noteworthy contributions to our knowledge of Islamic glass in this period.

Having now delineated a history of Islamic glass from the Early period, I continue by examining Islamic world trade and contact in Africa, with the intention of demonstrating for the first time that glass beads made in Islamic Egypt were transported as trading items to southern Africa.

[^24]
5

ISLAMIC WORLD TRADE AND CONTACT IN AFRICA

The most powerful imported influence on the indigenous African culture has been Islam (Donley-Reid 1990:47).

5.1 INTRODUCTION

During the course of the 7th century, all the Near Eastern countries, Palestine, Egypt and other regions of North Africa were conquered by Arab armies under the influence of Islam, and in AD 634, Damascus (Syria) was established as the new Islamic capital under the Umayyad dynasty With the advent of the succeeding Abbasid dynasty (AD 750-1258), Baghdad became its capital in Mesopotamia. Abbassid rulers firmly established a single and self contained entity.

The flight of the prophet Muhammad from Mecca, marked the beginning of Islamic history.

$632-661$	The Four Orthodox or Rightly Guided Caliphs.
$661-750$	The Umayyad Caliphs
$749-1031$	The Abbasid Caliphs
$909-1171$	The Fatimids
$819-1005$	The Samanids
$977-1186$	Ghaznavids
$1038-1194$	The Saljuqs
$1077-1307$	The Rum Saljuqs
$1256-1353$	The Il-Khaqnids (Mongols)
$1226-1502$	The Golden Horde (Mongols)

In this chapter I examine some of the wider issues related to circum-maritime and overland trade of the Mediterranean, North, West, East and southern Africa and the sea-routes of the Indian Ocean, under early and medieval Islamic influence. This was a period in economic history, with the exception of some Italian ports such as Genoa, Florence, Venice and Pisa, when the West tended to remain passive from expansive industrial pursuits. However, as a result of the development and expansion of trading networks orchestrated through Muslim channels, coastlines became commonly linked and separated cultures were
modified. Land trade routes made contact with sea-routes. Caravans transferred their goods from camels to Arab Dhows and Swahili Mtepe. The monsoon winds and sea currents were of paramount importance in determining trading patterns, and East Africa was a key participant. Relationships of coexistence and mutual exchange were involved in transporting trade goods among which, no doubt, glass beads played a significant role.

The full extent of this history goes well beyond the scope of this thesis. It is not possible, however, to exclude the broader issues associated with external politics and economics which influenced the prehistory of southern Africa. Therefore, it is my intention to present an overview of some of the global events I believe were ultimately connected to the infrastructures which resulted in the distribution of glass beads into southern African Iron Age communities. The extent of these issues are complex and are only beginning to be accounted for in the broader picture of southern African prehistory.

An upsurge of trade occurred with the rise of Islam. There is also an increase in documentary evidence from then on. By the 9th century Islamic commercial connections stretched from the Atlantic to the Indian Ocean Rim encompassing all the Middle East except Asia Minor. Islam brought together many cultural traditions including, Roman, Greek, Egyptian, Persian and Tartar. Expansionist policies concentrated initially on procuring and converting towns and people, and controlling old and new trade routes especially the gold routes across Africa from Ghana to Egypt, and on silver coming from the Iberian peninsula. Once these were secured the Muslims were able to expand their interests across North Africa, East Africa, India, Southeast Asia and China. In most conquered provinces Muslims established or created main garrison bases which formed an essential role in administration. Arabic was the common language. Besides commercial and military enterprise Islam played a major role in promoting literature, the arts and culture. Specialised traditions evolved from different parts of the Islamic world.

The trade routes within the Muslim world were characterised by overlapping long-andshort distance itineraries. A great diversity of goods was handled by merchants in the Mediterranean trade (ca. AD 1000-1100): Goods were usually ordered and shipped in round numbers although this did not necessarily mean that they were all produced by a single manufacturer (Goitein 1967:210).

The Indian Ocean became the vehicle of a world trade, connecting the water-ways of Mesopotamia and the Persian Gulf with Baghdad, the centre of the Islamic Empire. Merchants in Baghdad obtained silks and porcelains of China, and luxury goods including the spices and aromatics of India and tin from Malaysia. All these wares found their way from Islamic countries to Europe, then deprived of all direct traffic with those countries: A portion of this sea trade did not pass through the Persian Gulf. Instead merchandise was brought to Aden and the Red Sea ports of Jedda and Aydhab.

The African overland trade was divided into an eastern and a western area, although on both sides the chief import was gold. In western Africa Muslim merchants from Morocco, Algeria, and Tunisia travelled south and passed generally through Tegdaoust to Ghana and Nigeria.

In the East the commercial decline, following the demise of the Tang dynasty in China (AD 906) left a vacuum in trade in the Persian Gulf. This resulted in a shift of trade to
merchants from the Red Sea and the Gulf of Aden with Mediterranean trading connections. It was during this period that the Fatimids took control of the Mediterranea Persian Gulftrade route, through Baghdad, to the Red Sea, so linking it to the Far East.

5.2 TRADE ROUTES AND THE SPREAD OF ISLAMIC COMMERCIAL ACTIVITIES

5.2.1. Africa

Spencer Trimingham (1949:249) suggested that the success of Islamic trade was because the Arab adapted his social life to that of the African. The Muslims concentrated initially on securing the main gold and slave routes across Africa, from Ghana to Egypt, and on the silver which was brought from the Iberian peninsula. For that they were prepared to take risks and if necessary fight, but only to keep trade routes open, not for the sake of mere conquest or domination (Coupland 1965:30).

North Africa.

Islam spread rapidly through North Africa. In 647 AD Tunisia was occupied and by the 8th century AD Morocco and Spain were as well.

During the 10th and first half of the eleventh centuries, Tunisia and Sicily formed the hub of Mediterranean trade, selling goods from the East to the West via Egypt, and vice versa. At the same time there were ships that operated directly between Alexandria, Bijaya (Bougie) in present day-Algeria, and the ports of the Atlantic and Mediterranean coasts of Spain, such as Seville and Almeria (Goitein 1967:212). Al-Mahdiyya was the capital (Fig 5.2.1.1.).

The coming of Islam to North Africa brought about the rapid development of the Sahara commerce based on camel transport (Connah 1987:99). Large, regular camel caravans interlaced previously established trade routes. The takeover of the Saharan trade was essential in order to protect the established supply of gold, ivory and slaves. Evidence to show how rapidly Islam spread is demonstrated by an Islamicised burial in the Wadi Mammanet, radio carbon dated to the early 7th century AD (Close 1988:166).

Gold was the essence in the tran-Saharan trade, and yet little reliable information reached Arab geographers and historians about the exact location and nature of the goldfields. It was frequently associated with legends and myths (Levzion 191973:153; Devisse 1992:195), which seems to have been a cunning ploy devised to keep foreign traders away from the sources.

During the first half of the 11th century the Geniza letters contained information showing that a constant flow of gold and silver coins from Tunisia was used to pay for the merchandise from Egypt, Syria and the Orient. However, payments by sealed purses and the simultaneous use of different currencies no longer proved sufficient for the volume of trading taking place. By the middle of the 11 th century a form of medieval money order, similar to the modern cheque, was in use (Goitein 1967:241).

Correspondence sent from Fustat to Baghdad, North Africa and Spain, as well as Italy and France, confirms the large volume of trade between these countries, irrespective of political barriers. A consignment of beads (Kharaz), in amounts of tens of thousands of pieces, was bought in Fustat by two Muslim merchants from Barqua in eastern Libya (Goitein 1983:296).

Trans-Saharan trade \& West Africa

Important north-south and east-west trade routes were already well established before the great cities of the Ghana Empire reached their zenith ca. AD 700 - AD 1000 (Opper \& Opper 1993:37). Trade networks across the Sahara linked Ghana with the markets of the east, where luxury commercial goods left by caravan from Sijilmasa ${ }^{1}$, terminating at the trading towns in southern Mauritania, Ghana and Nigeria. The Sijilmasa caravan passed through Kairouan [sic Qayrawan] on its way to Egypt (Goitein 1967:212). Other trading routes linked Tripoli via Fezzan to Timbuktu and Lake Chad, and another crossed the Libyan desert from the Nile valley via the oasis of Khaza (Hiskett 1984:13). A number of categories of glass trade beads used in this trade have been described by Lamb (1970:247250).

Muslim travellers and geographers such as al-Fazan (AD 750 \& AD 799), and Al-Hamdani (AD 942), confirm the wealth of Islamic trade in West Africa (Horton 1987:77; Hiskett 1984:19). The geographer Ibn Hauqal (ca. AD 975), for example, claimed that he saw in Awdaghost [sic] an I.O.U. for an amount of 42000 dinars, made out to a merchant in Sijilmasa in southern Morocco (Kramers 1931:101) ${ }^{2}$. According to Hiskett (1984:59), the volume of trade was even bigger when the straight road connection existed between the western regions through the Libyan desert from the Nile valley (Hiskett 1984:59). This particular route was abandoned in the 9 th century AD on account of its insecurity.

Gold, ivory and ebony were exchanged for salt, copper, glass beads, hides, dates and textiles. In AD 1068 the king of Ghana was reported to have owned a group of houses on the river which were;

> ...(o)rnamented with designs and sunblinds of glass beads (Spencer Trimingham 1962:56).

The growth of the south western Sahara was largely dependant on the development of the local salt industries and their ability to supply a surplus, which was readily converted into other forms of wealth. The spread of Islam continued along trade routes and an important centre of learning was established at Timbuktu, by a group of merchants and scholars associated with the salt trade (McDougall 1985:1-31; McDougall 1986:46; Bovill 1968:8484).

[^25]Fig. 5.2.1.1 . Maritime and overland trade routes ca AD 900-1250

Egypt.
In AD 639 Byzantine-ruled Egypt, weakened by religious differences, fell to the invading Muslims. Fustat was the original Arab capital of Egypt, founded in AD 642 around the Roman-Byzantine fortified town of Babylon in what is now Old Cairo. It was founded as the seat of a military garrison for Arab troops in conquered Egypt, as well as a base for future campaigns against the enemy (Kubiak 1987:11).

Besides its importance as an administrative and commercial centre, Fustat was the centre of the artistic renaissance of Islam which characterised the eleventh century (Pinder-Wilson \& Scanlon 1973:13). It played a dominant role in Egyptian Islamic history and was renowned as a thriving commercial and industrial centre throughout the ancient world particularly during the Fatimid period.

The original city of Fustat began as an encampment surrounded by a defensive channel, slightly to the north of the Byzantine fortress of Babylon. From its modest beginnings in ca. AD 640, dwellings of mud brick and baked brick houses replaced tents and this narrowlaned complex grew to become the centre of commerce and industry in Islamic Egypt.

In AD 750 the newly established Abbasid Caliphate (AD 749-1258) dynasty established its administrative and military headquarters in a separate suburb, which was gradually drawn into the city's perimeter. The population of Fustat expanded and more suburbs were added to service each new political power. The final and probably most important phase of Fustat's history began when the Fatimid dynasty gained control of Egypt. Fustat, as it is called today, was the capital of Islamic Egypt until the beginning of the Fatimid caliphate in AD 969.

Al-Qahira.

In AD 969 the Fatimids built a walled royal quarter, al-Qahirah, from which the name Cairo is derived. Cairo, built to the northeast of Fustat, became the new capital city and the administrative and religious nucleus of the Fatimid caliphate. It was reported to be the largest and most important metropolis of the Muslim East. From the beginning, Fatimid governments realized the importance of trade both for the prosperity of Egypt and for the extension of Fatimid influence, and devoted great efforts to advance its scope.

Fatimid Egypt marked a period of expansion and prosperity. According to Lewis (1970:190), the first century of Fatimid rule represented the high watermark of medieval Egypt in many ways. Egypt possessed a rich system of waterways, and it is perhaps correct to say that its economic ascendance over its neighbours is owed partly to this advantage (Goitein 1967:133 \& 295 \& Hassan 1990:556).

5.2.2. Indian Ocean

The transformation of the socio-economic structure in the Indian Ocean during the 7th to 10th centuries AD was due to Arab expansion on the one side, and Chinese expansion on the other: economic success was achieved with the aid of skills possessed by the people of the ancient Near East (Chaudhuri 1985:36).

With the rise of Islam, the western shores of the Indian Ocean were under Muslim control. Stability in the region was assured by the existence of two large empires. The Muslim world in AD 660 extended from the western Mediterranean (Spain AD 711), to al-Sind and the T'ang Dynasty (618-907) ruled China as a united empire (Hourani 1963:61).

By conquest and through the expansion of trading networks the Arabs had restored unity to the area previously controlled by the ancient Persian Empire. This meant that both the Red Sea and the Persian Gulf could be used as trade routes. This resulted in increased commerce between Mesopotamia and Egypt; between the Gulf and India and China and between the Gulf and East Africa, where the ancient routes were also revived.

Tampoe (1989:122) described the Indian Ocean trade of the Middle Ages as a series of complex, interlinked local trading patterns stretching from the Red Sea to China, with coastal entrepôts acting as interchange ports for an immense diversity of goods. Silk, porcelain, cotton and indigo were some of the major export commodities. The navigation of the Indian Ocean in the direction of South East Asia and China were mainly undertaken by either Hindu ships or those from the Red Sea and the Persian Gulf.

Sea-borne trade with the Arabs and Hindus of the Malay Archipelago had been ongoing since the 8th century. According to Hornell (1941:251), colonising Indians emigrated to Java, Sumatra and Cambodia during the first seven centuries AD. Later, Muslim traders from Melaka and Sumatra introduced Islam to the trading ports along the north coast of Java, which served the trade route for the spices in the Moluccas (Lubis 1987:58).

Siraf, situated on the Iranian coast of the Persian Gulf became increasingly important during the early expansion of Islamic trade. Siraf traded directly with China via Canton and Shanghai, and became an essential link in trade between Zanzibar on the east coast of Africa, and as far south as Sofala and Madagascar. Another factor which may have affected the fortunes of Siraf was the uprising of the Zanj slaves and the subsequent sacking of Basra in AD 868. This action must have severely disrupted normal transshipments of goods through Iraq between AD 868 and AD 883 (Chaudhuri 1985:48).

Merchants from the Islamic Middle East established their trading posts along the coast of South India and Ceylon. The site of Mantai, situated a short distance north-east of the causeway across the Straits, between India and Ceylon, is a short distance inland from the sea, which could have once been linked by a short canal: Mantai became an important entrepôt for goods exchanged between the eastern and western portions of the Indian Ocean and the mixture of material found at the site suggests that it was one of the great emporiums of the early medieval period, comparable in importance to Siraf on the Persian Gulf (Carswell 1976:124). Exports included worked ivory, bone, horn, coral and tortoiseshell; terra-cotta figurines; copper and iron ornaments and implements; and products from a large bead industry in green and blue glass, paste, malachite and marble,
together with gems of agate, garnet, amethyst, quartz, carnelian, and blue sapphires (Tampoe 1989:109).

Al-Mas'udi mentioned traders from Oman and Siraf visiting the Maldive Islands in AD 916, and al-Biruni in AD 1030. By the 12th century the entire population of the Maldives was converted to Islam (Carswell 1978:139). Several factors lent the Maldives importance for shipping, such as a stop-over for water and provisions from the Far East voyages bound for the Red Sea and East Africa, and also because they were populated by their co-religionists, unlike the ports of India and Ceylon. Travellers to the islands in the 9th and 10th centuries AD noted that cowries were collected by the islanders using rafts made from coconut leaves, to which the living shells attached themselves; other writers described fishing by islanders wading into the sea (Johnson 1970:18).

The Maldivians were chief suppliers of cowries used as small currency ${ }^{3}$. The West African cowrie trade used Cypraea moneta from the Maldives, in a sophisticated form of currency capable of adapting to the particular needs of West African trade (Johnson 1970:17). None of this variety of cowrie appears to have been recorded so far from the Iron Age assemblages in this work.

During this period an intermediate entrepôt, Bambhore, in Pakistan, added lapis lazuli, musk and indigo from the interior to the list of trade goods travelling around the Indian Ocean. Bambhore, like Siraf, was situated on an inhospitable coast which could not have supported cities without the surplus wealth generated by maritime trade.

Many of the early Islamic emporia, including Siraf, (severely damaged by an earthquake in AD 977), Mantai and Bambhore, were supplanted by new ports, in the late 10th century, especially after the Fatimid conquest of Tunisia (c. AD 906) and assumption of the caliphate in Egypt in AD 969. With this shift of power, trade routes were transferred to the Red Sea and Mediterranean regions. Negapatum, on the eastern tip of India, became a major port and it is not unreasonable to suppose that the beadmakers of Mantai transferred their attention and contributed to this port becoming a major glass bead making centre. It was to Negapatum that the Portuguese traders came in order to secure beads for the lucrative East African ivory and gold trade.

5.2.3. China

Chinese expansion under the T'ang dynasty (AD 681-907) created new consumer demands which were met by a resurgence in trade using ancient trade routes over land and sea. The overland routes traditionally took trade commodities such as horses, glass, precious stones, ostrich eggs, aromatic herbs, coral, jade, mail armour, ivories, and entertainers to China with return goods of Chinese silks, worked jade and lacquer, silk paintings and ceramics (Tampoe 1989:100). It is interesting to note that notwithstanding an extensive inland communications network ceramics were not, under normal circumstances, transported overland for any great distances and we should possibly look more closely at sea transport facilities when assessing ceramic finds (Tampoe 1989:45).

[^26]In connection with the Muslim trade relations with China, Velgus (1993:104) quoted sources of merchants, dated approximately to AD 851 who made the journey from Siraf to China during that time. In addition, Fripp (1941:13) reported that a foreign community of Arabs and Persians existed in Canton by the 9th century, and an 'Inspector of Maritime Trade' had been appointed in China. Velgus, also commented on the fact that 'Chinese ships' were referred to in these stories and that al-Mas'udi (died in AD 956) also mentioned ships of the Chinese that visited Oman, Siraf, Ubulla and Basra.

The overriding debate continues as to whether the so-called Chinese ships were built in China and if they were owned by the Chinese or sailed under their command, and whether in fact they visited the Persian Gulf and then presumably Africa at all before the 9th century. The question appears to be based a great deal on interpretation. Opponents of the 'early' hypothesis such as Hourani (1963) believed that Chinese ships did not visit the Persian Gulf even by the middle of the 9th century, and that if they had indeed done so, this probably would have been reflected by Arab writers. In support of this argument he noted that even though Arab geographers and writers mentioned 'Chinese ships' the context indicated that the ships were of western countries.

Although it is evident that ships (of whatever nationality) sailed between the Persian Gulf and China and vice versa, the probability is that they were not Chinese ships. Vegus concluded (1993:109) that Chinese ships themselves did not visit the Persian Gulf before the 12-13th centuries. It is possible that some of the fleet may also have made the journey down the East coast of Africa as far south as Sofala and Madagascar.

5.3 THE FATIMIDS

The success of the Fatimid caliphate depended largely on government support of trade and on the generally favourable situation created by the increasing needs of an economically developing Europe, with Egypt and Syria serving as distribution centres and suppliers.

Fatimid economic policy concentrated primarily on industrial and commercial growth focussed on banking and trade. Bank head offices were established with branches in other cities and an elaborate system of cheques and letters of credit evolved ${ }^{4}$. The increased volume of merchant shipping linked the Muslim coastal ports of the Mediterranean with one another and with the Christian ports of the north. Egyptian fleets controlled the eastern Mediterranean, and in Europe, Egyptian ships sailed to Spain and Sicily and close relations were established with the Italian city-states, especially Amalfi and Pisa (Krueger 1933:417-437) (Fig.5.2.1.1). The important transit trade between Europe, India and the East accelerated this development, and resulted in the gradual extension of the sovereignty and prosperity of Egypt. The navigation of the Indian Ocean in the direction of South east Asia and China was mainly undertaken by either Hindu ships or those from the Red Sea and the Persian gulf (Chaudhuri 1985:49).

The pre-Fatimid trade had been marginal and confined mostly to neighbouring Muslim countries. Inside Egypt the Fatimids promoted Egyptian agriculture and industry and developed an important export trade of local goods. The wide network of commercial

[^27]relations, especially with Europe and India, were two areas where previous Egyptian contact had been minimal.

Harbours and entrepôt ports in Egypt and Syria served as distribution centres and suppliers of world trade. In the East, the Fatimids gradually extended their sovereignty over the ports and outlets of the Red Sea, developed a great sea port at Aydhab, for the trade with India and Southeast Asia, and tried to win power or at least gain influence on the shores of the Indian Ocean (Lewis 1970:191).

Cairo and Alexandria took on new roles as centres of trade whilst the rise of Italy as a sea power meant direct trade between Genoa, Pisa and the Levant, where they obtained goods coming from India and the Far East.

From AD 969 , the royal quarter of old Cairo, al-Qahirah, became the capital of Islamic rule under the Fatimid caliphate and great changes were instituted. Egyptian agriculture and industry was promoted and an important export trade of local goods was developed. Overseas, they expanded commercial relations with Europe and India, where in particular, previous Egyptian contact had been minimal.

The peak of the Fatimid period in Egypt was the reign of the Caliph Mustansir (AD 10361094), under whom the Fatimid Empire included the whole of North Africa, Sicily, Egypt, Syria and western Arabia (Lewis 1958:112).

Muslim contact in Egypt south of Aswan was engaged mainly in slaving and exploiting the mines on the eastern bank of the Nile. In exchange Egypt exported grain and cereals grown on the Nile delta as well as luxury goods including beads (Spencer Trimingham 1949:63).

The middle Nile Christian kingdoms of Nubia (Sudan) resisted Islamic influence and retained their independence for over 800 years. They were still able to participate in the gold, iron, copper, silver, slaves, textiles and pottery trade throughout the region into Arabia and Persia. According to Connah (1987:63), glass and stone beads in this traffic became so common that they may have been used as a medium of exchange. However, by the end of the 14th century $A D$, , Nubia also succumbed to Islamic pressures.

In the centuries that Islam advanced, important overland routes led out of the Islamic Empire, first those to India and China, southern and central Russia, and then the African trade-roads (Kramers 1931:99). Aden was a main port for the entire Indian Ocean trade to India and China. From the Red Sea, traders were active to Abyssinia and Zanzibar (Lewis 1951:208).

Gold and silver formed the basis of the Muslim monetary system, and minting was the exclusive privilege of the acknowledged authority or caliph. From the 10 th century the Fatimids introduced the gold standard into their monetary system and undertook coinage on a scale uprecedented in the Muslim west. According to Devisse (1992:197) the Fatimids minted independent gold coins [dinars with shi'ite inscriptions] in competition with the previously accepted Abbasid gold, which was intended to demonstrate the power and glory of their authority. His interpretation underlined gold as a prime resource
commodity which he considered was of unprecedented importance for the history of African economic relations.

One of the earliest sources of gold in Egypt was from Wadi 'Allaqi, south of Egypt and towards the end of the eighth century the gold of the Sudan was already known: the area was referred to as 'the land of gold' (Levzion 1973:127). The traditional view is that the source of most of the gold for the Fatimid mints came from West Africa, although evidence exists that in ca. 1000 , supplies of gold from West Africa were diverted (Devisse 1992:199). While this source is not disputed, Horton (1987:76) suggests that a variety of evidence exists to show that East Africa was equally as important, presenting a case for exploring alternative sources elsewhere particularly in southern Africa.

5.4 EAST AFRICA

The earliest settlements

Many characteristic elements, such as a startling diversity of languages, monsoon winds, suitable currents, dhows and Mtepes distinguish the East Coast of Africa as an integrated meeting place of many cultures. Trade and shipping have a long history, particularly in the northern section, which was well known to early Persian and Indian traders as well as receiving occasional visits from Greek and other Mediterranean merchants. According to the Arabic writings of Al-Yaqubi, the port of [sic] Zeila, Zaila or Zayla (previously British Somaliland - now Eritrea) had ancient contact with Arab and Persians merchants, exchanging ivory, hides, skins, precious gums, ambergris for cloth, dates, iron weapons, chinaware and pottery (Lewis 1958:218). Allen (1993:32) also supported ancient preIslamic trade connections from the Horn ports, such as Aden, with the East Coast. He suggested the existence of an long overland trade-route starting from Zayla or the Gulf of Aden (or both) right down into central Kenya (Fig. 5.2.1.1).

Detailed accounts and archaeological material collected from Zaila and Saada-ud-din Island, by Captain H. B. Gilliland and Major and Mrs Glover (British Somaliland, East Africa Command), were sent to van Riet Lowe at the Archaeological Survey for identification. The material came mainly from the top 20 cm of soil around the D.C.'s residence at Zeila and in middens at Saada-ud-din. The artefacts, some of which have been referred to in Chapter 1.2.1, consisted of Islamic medieval domestic glassware, Chinese celadon, glass bangles and beads. 'Modern' glass beads were also included in the collections, and it is surprising to note that there were
...(n)o trade goods such as the small glass beads which the Arabs used for barter down the East African coast and into the interior (Transvaal Archives, 1945) ${ }^{5}$.

Although direct evidence or reports on slaving are very limited, some documents do show that slaves from East Africa were used to cultivate the large scale irrigated sugar cane plantations and the date palm forests in Mesopotamia: Cohn (1959:76), for example, reported that the trade between Ethiopia (Himyeratic) and South Arabia (Sabean) developed specifically from a traffic in slaves. He was also of the opinion that trade with

[^28]south east Africa came much later. According to Coupland (1965:34), enslavement was practised from the earliest days by the Africans themselves. Exports from the east coast would probably have been shipped from any one of the east African ports, such as Zaila, either to Aden or the Red Sea ports of Jedda, Aydhyab and Quseir, or entrepôt ports in southern Arabia and the Persian Gulf (Fig 5.2.1.1).

Muslim geographer Al-Mas'udi (ca.915/916) and traveller Ibn Battuta gave eye witness accounts of their visits to East Africa in 1331 (Allen 1993:27). Trimingham (1949:274) however, doubted the reliability of Ibn Battuta's accounts and questioned whether or not he travelled even further south than Mogadishu. Although it is unlikely that the problem associated with indirect historical records will ever be resolved (Chittick 1982:47-61), Ibn Battuta's descriptions of Zeila, Mogadishu, Mombassa, and Kilwa Kisiwani are nevertheless compelling. He noted details of distances between Zeila and Aden as a four day sail, and from Zeila to Mogadishu as a two month march across the desert. By sea it would have taken fifteen nights. In Mogadishu, Ibn Battuta recorded that it was the custom for each visiting merchant to be allocated a host merchant who conducted trade on his behalf; after several days at Mogadishu he travelled to Mombassa and Kilwa, where a merchant told him that Sofala was half a month's march away, and, that Sofala was the place where powdered gold was brought from a location a month's march away (Freeman-Grenville 1962:27-31).

Although the information could have been collected from Arab seafarers, who visited both Canton and the East African coast, a detailed description of an East African coastal settlement appeared in a Chinese source of ca. AD 1225 (Allen 1993:21). The source is of interest for many reasons in that it described unusual details of the inhabitants of the settlement, their mode of dress, daily food, bird trapping, funerary customs, and what was extracted from whales which were washed up on the beaches.

Islam in East Africa

Muslim influences spread southward along the east coast of Africa and by the eighth century AD early Islamic trading settlements were founded along the coast of present Kenya. According to Killick (1987), by the ninth century these proto-Swahili traders had extended their seaborne commerce to southern Mozambique. Horton (1987:290) recorded over 400 sites that were occupied well before the Portuguese arrived in 1498, many of which contain some kind of stone building in the form of mosques, houses and tombs and Tana pottery.. A few are of sufficient size and importance to be described as towns.

As the trade grew in volume so did its effect on the political development throughout Africa (Levtzion 1973:10). By the eleventh century many Muslim heterodox communities existed in East Africa and trade became an important component in its development. Datoo (1975:2-5) referred to this period as the Middle Iron Age and noted that East Africa was, for purposes of trade, only the western shore of the Indian Ocean. This implied that the coast was oriented outwards rather than inwards, seawards rather than landwards, with few connections with what is now considered to be its natural hinterland. More recently, academic researchers have questioned the extent of the influence of Islam on the indigenous coastal populations. According to Abungu and Mutoro (1990:694-704) and Connah

[^29](1987:151), for example, new archaeological evidence suggests that the development of the coastal culture owed far more to its African origins than to any external influences, however contributory these were. The question is whether the East African coast was just the edge of the Islamic world or the centre of an indigenous African development of substantial significance.

Developments at settlements along the coast such as Shanga, Manda Mogadishu, Pemba, Mafia and Kilwa were usually restricted to the coastal strip which Connah (1987:151), describes as a 10 km long narrow 2400 km coastline from the Somali Republic to northern Mozambique. It was along this coast that the distinctive culture, often referred to as the 'Swahili ${ }^{7}$ culture' eventually developed. This culture was in many ways urban, mercantile and literate, with borrowed words from Arabic and a number of other languages. DonleyReid (1990:48) has criticised the tendency towards an Eurocentric interpretation of the archaeology from Swahili sites and the lack of anthropological work related to Islamic analogies.

Timber was one of the main exports from East Africa, which no doubt contributed to the urban growth and commercial success of the coastal entrepôts as well as the widespread development of the Gulf region. Tampoe (1989:104) and Whitehouse (1977:883) emphasize the importance of the East African mangrove imports, equating it to a
...(g)iant timber yard built by foreigners for the express purpose of supplying poles to southern Arabia and the Persian Gulf.

The 'Swahili'

Excavations in the Lamu archipelago, located 2 degrees south of the equator in Kenya, at the island sites of Manda (from which a large quantity of glass beads were recovered), Pate, and Shanga confirm the existence of long established trade between the Persian Gulf and East Africa (Horton 1987:298).

Allen (1993), Horton (1987) and Connah (1987) dispute previous theories that the Swahili were descendants of either Muslim refugees or Arab colonists intermarrying with the local Bantu farmers, and argue that they were African in origin and that their settlements were indigenous. They also opposed theories that Swahili settlements were established to collect supplies for the export trade (Tampoe 1989:111).

Excavations of Swahili sites have yielded both local Tana ware, imported ceramics, glassware and glass beads. In some instances some of these artefacts that have been used to correlate occupation dates of the sites suggest a number of possible trading connections. Allen (1993:25, 30, and 187) acknowledged Fatimid connections with the east coast of Africa in the form of raw materials, building technology and several Fatimid gold dinars that were identified within an East African context. Donley-Reid (1990:50) has stressed the importance of Chinese porcelain brought via India and Persia to the East coast and its role in the Swahili culture even to this day. Abungu (1992:100) confirms that beads in East Africa have special significance, as they are components of everyday dress (especially

[^30]amongst the pastoralists) as well as indicators of age, marital status, and social rank in society.

The resources of the eastern seaboard, such as timber, ivory, sandalwood, tortoise shell, rhinoceros horn, gold and copper meant that an active export commodity trade could have been developed. It is only natural to expect that this trade led to the active development of settlements in conjunction with outside influences. It is quite possible that overdevelopment caused pressure on essential resources, such as water. For example, water in the Lamu Archipelago is drawn from wells, which if overdrawn or sunk too deep, become brackish and unusable (Connah 1987:157). External influences, such as the diminishing ivory trade between East Africa and China via Siraf in the late 9th century AD could have had adverse effects on many early settlements on the East African coast.

Current archaeological excavation of coast-interior sites in Kenya may well provide clues to alternate trading routes, which used inland river transport and then cut through to the coast, in addition to coastal hopping, which is the more popular concept of coastal trade (Fig. 5.2.1.1).

While accepting the many arguments regarding settlement activity along the east African coast this does not detract from the fact that the power and economic base which facilitated the trading ports must have been directed through Islamic entrepreneurial control. Although practically no written sources exist regarding the nature of the trade into the hinterland, East Africa, during this period, surely provided the forum for Islamic control of the trade in glass beads which are so evident at southern African Iron Age settlements. Future scientific sourcing studies of beads found at inland sites could provide information on the external and regional contact trade which linked southern Africa to the rest of the Islamic world.

5.5 SOUTHERN AFRICA

Few, if any would dispute that the presence of Arab contact along the East Coast of Africa was the departure from which the external trade of southern Africa operated. However, little is known about the mechanisms which connected the whole endeavour which must have involved a complexity of social and commercial interaction. It is not even known how the merchandise reached the interior nor is the extent of the southern coastal access (if any) known. Many writers, including Hall (1987:74) and Killick (1987), who broadly connected inland sites with the coast, have accepted the mechanism as Chibuene based on the archaeological finds from there (Sinclair, 1982:150-164).

Not only is there insufficient evidence to support this theory but also other factors have not been considered, such as the hazardous shipping lane between southern Africa and Madagascar, tsetse fly infested areas and the difficult overland route from the coast. If the conjecture is that navigable river transport was used then it is not even known if the Limpopo River was navigable. Although documentary evidence in this regard is sparse, perhaps other avenues of enquiry should be considered. The trade routes and commercial links during this early period could well have been overland and inland down from Zambia and the Zimbabwe plateau rather than along the south east coast.

What were the mechanics behind the trade which resulted in the unprecedented growth of cities or states in the sub-continent such as Mapungubwe or Great Zimbabwe? Whether the polities of Mapungubwe and Great Zimbabwe were those of states is a matter of definition and the subject for continuing argument (Hall 1987:88-90). They certainly exhibited a centralisation of authority on a much larger scale than that of a village or chiefdom. The archaeological evidence for trade at Mapungubwe and Great Zimbabwe is considerable

The more important subject of this argument is why these large-scale political structures emerged. The answer to this question undoubtedly has several elements, of which external trade is an important aspect. Huffman (1982) has argued that Mapungubwe rose to prominence because the Limpopo basin was the first area of southern Africa to become part of the trade networks of the Indian Ocean. The trading items, which would probably have been the most sought after, would have been gold to mint Fatimid dinars, possibly ivory and other raw materials. Datoo (1975:7) suggested that the presence of known gold deposits was the crucial factor in determining why the interior of southern Africa had been tapped in one area but not in another.

Gold

According to Chittick (1974:238), trade must have been by barter, or by payment in gold: Summers (1987:84) estimated that the total Zimbabwe gold production over a period of 800 years was 20 million ounces (568181 kgs). The gold trade must therefore have constituted a major proportion of the trade conducted by the Swahili. Although important, the gold trade on the East Coast appears to have been only a fraction of that in West Africa. Despite Summers' estimates, the records show that during the first 18 months of Portuguese occupation at Sofala only 44 kilograms of gold were exported (Liesegang 1972:152). This vast discrepancy may mean that either Summers has exaggerated gold
production or that the Arabs, who had exploited the coast for hundreds of years prior, had established another route in order to protect this lucrative commodity for themselves.

Balsan (1970:240), asserts that the founders of the Monomotapa dynasty, the Makalanga Bantu, perfected the workings and sale of gold to Arab traders from the coast. Exploring possible trade routes, Balsan traced several alternative passages from Zimbabwe to Sofala. The most direct of these routes is about 400 kilometres and so is well within Ibn Battuta's 'months march' between Yufi and Sofala.

Many early references indicate Sofala as a land or country. Prior to the 11 th century $A D$ there was no recorded settlement called Sofala, but the word sufala means 'shoal' and Arab sailors may have marked that part of the coast due to the navigational difficulties experienced in the Mozambique channel (Spencer Trimingham 1949:121). If there was a Sofala settlement it is most likely that it has disappeared beneath the sea due to erosion, as is happening to the Portuguese fort established in the 16th century (Liesegang 1972:148) some thirty kilometres south of Beira. In 140 years, the coastline at this point has lost a strip approximately half a kilometre wide due to sea encroachment, between a survey conducted in 1833 by Captain Owen and excavations by Dickinson in 1969 (Dickinson 1974:85). Sherds of African pottery, Chinese blue and white porcelain, Islamic brown burnished ware and glass beads were recovered from the site at Sofala. Of the beads recovered from this site, 61% were 'Indian red'; 18% dark blue and smaller quantities of turquoise, light blue, light green, yellow, black and white. One isolated red on white bichrome was found on the main beach.

Oral tradition suggests that an earlier Sofala that had existed at the mouth of the Sabi river, silted up and was moved 100 kilometres north. Subsequent excavations at the Sabi river mouth revealed evidence of settlement and glass beads, African pottery and spindle whorls were found. At this site, 70% of the beads recovered were yellow; 12% green; 11% 'Indian' red and small proportions were black, sky blue and white (Dickinson 1974:90).

Ivory

Archaeological evidence suggests that ivory was obtained across large areas of eastern and southern Africa, with trade routes penetrating as far inland as the Kalahari Desert: long distance trade networks were clearly operating along the coast with local boats carrying the products to the northern entrepôts of the Lamu archipelago (Denbow \& Wilmsen 1986:317). Indian Ocean trade items (including glass beads) are associated with the midden deposits of worked ivory at Schroda and K2.

When the Portuguese landed on the East coast during their voyages of discovery, they found it difficlut to trade with the native population who would not exchange their gold and ivory for the European-manufactured beads that the Portuguese had brought with them. There was obviously a big difference between beads that they traded on the West coast and those required for the East coast trade. In fact, the Portuguese were obliged to bring beads from India (Negapatam) for use in barter exchanges. Portuguese writers described these beads as barros miudos, which is said to mean earthenware beads. I interpret these beads as being 'Indian' red glass beads, which are coloured with cuprous oxide and look very similar to red tiles. This indicates that trade between India and the East coast had been ongoing for a long period of time and that an established system of exchange had been formalised.

Van der Sleen (1958:212) makes a personal observation that drawn 'Indian' red beads are found on many sites in East Africa (Zanzibar, Kilwa, and others) as well as sites in Java, Sumatra and Vohemar, Madagascar. In fact, the Portuguese went on to conquer and take over the factory at Negapatum in order to protect their supply. Naturally, Islamic sources were not specifically available to them.

I have noted the background to the production of 'Early' Islamic glass and examined the possible routes by which this glass, in the form of beads, reached the peoples of the East Coast of Africa and south-central Africa in general, noting also that the European-produced beads offered in due course by the Portuguese were rejected in favour of the types already available.

I now examine the archaeological context of the beads relevant to this study.

Table 5.5.1
Summary of events associated with Islamic commercial expansion

Table 5.5.1 (continued)
Summary of events associated with Islamic commercial expansion

Date AD	Event	Notes of interest
970	African East Coast rock crystal \& ivory traded in Mediterranean.	
909	Fatimids take over Tunisia	Became rulers of Kairouan \& alMahdiyya.
969-1171	Fatimid Caliphate founded Cairo in Egypt	Trade and industry flourished. Shift trade routes to Red Sea and Mediterranean regions.
Late 900s	Commercial decline on East coast of Africa	Collapse of many early settlements.
906	Demise of T'ang dynasty	Decline in trade with China.
960-1368	Supposed Chinese shipbuilding.	
1000-1100	Geniza papers. Extensive records of trade and business of the time. Resembles a free trade area.	
977	Siraf damaged by earthquake affected trade from/to the Persian Gulf.	
961	Al-Biruni visits Ceylon.	
969-1250	Rule of Fatimid and Ayyubid caliphs	Entire region flourished.
1030	Mas'udi vists Ceylon.	
ca. 1030	Regular mail service	Couriers utilized regular caravan routes.
1100-1166	Al ldrisi states that Zanj have no ships	Identifies Sayuna as capital of Sofala
1150	al-Idrisi, Muslim geographer visits Ceylon.	
1127-1279	Song period in China. China became a mariti	me nation.
1159	Mogadishu replaces Kanbalu in importance	Sofala trade.
1200	Chinese shipwrecks indicate ocean going capabilities of V-bottomed craft.	
1291	Genoese traders attempt to find sea passage to the east.	
1273-1331	Description of land of Sofala	Identifies capital as Seruna.
1291	Genoese traders perish at sea	Attempt to find sea passage to the east.
ca. 1300	Nubia succumbs to Islamic pressures after more than 800 years independence.	
1331-1343	Ibn Batuta travels to East	
	Africa, Ceylon \& Maldives	Sofala identified as source of gold.
1400	Records of Chinese visits to Zanzibar	Annual trade.
ca. 1400	Christian explorers set out to find routes to the Indies.	
1414	Chinese fleet off East Africa.	
1415	Giraffe presented to Chines Emperor from Malindi.	
1498	Portuguese land in East Africa.	
1505	Sacking of Mombasa	Start of Portuguese rule.
1593-96	Portuguese build Fort Jesus, Mombasa.	
1696	Siege of Fort Jesus by Arabs.	
1729	End of Portuguese rule in East Africa North of Cape Delgado	

ARCHAEOLOGICAL CONTEXT OF THE BEADS

6.1 INTRODUCTION

Glass bead assemblages have been excavated from major Iron Age sites in the northern and eastern Transvaal and Botswana for the period $c a$. AD 900-1250. Similar beads and other glass artefacts have been found at coeval archaeological sites from potential source areas in Egypt, Palestine, Syria and Southeast Asia. Many of these finds were associated with trade in the Mediterranean, Red Sea, Indian Ocean and the South China Sea. The archaeology includes coastal and inland sites, and entrepôt ports. In southern Africa these include sites between the mouth of the Zambezi and Limpopo Rivers such as Chibuene (Sinclair 1982:150-164) and Manyikeni (Morais 1984:113-128). Except for some of the Southeast Asian sites, most of the archaeological evidence from which the following summaries have been drawn has been published before. This study focuses mainly on the glass bead component of them all.

The sites in the northern Transvaal are located along the southern bank of the Limpopo River, near the confluence of the Shashi River. These include Schroda (AD 800-900), Pont Drift (AD 800-900), Bambandyanalo and K2 (AD 1000-1220), Mapungubwe (AD 12201270) and Skutwater (AD 1150-1250).

The settlements were comparatively large in Iron Age terms and were populated during a limited period of ca. 200 years: In many instances, examples of dry stone walling still exist (Fouché 1937; Hanisch 1980). The Mapungubwe archaeological complex is situated on the farm Greefswald, approximately 70 kilometres west of Messina, and forms part of the Vhembe/Dongola National Park. Two discrete though related sites, Bamabandyanalo and Mapungubwe, were discovered nearby. During the various excavations at Bambandyanalo, the terms K1 and K2 were used to describe specific deposits at the site, such as the enormous central midden. Thereafter, the term K2 became interchangeable with that of the site of Bambandyanalo. Throughout this work the term K2 will be used to refer to this site.

Fig. 6.1.1.
Location of Iron Age sites in southern Africa where glass beads were excavated.

Mapungubwe was built about one kilometre to the northeast of K2 and is characterised by a hilltop settlement in addition to the low-lying, naturally sloping areas surrounding it. The top of the hill is referred to as Mapungubwe Hill (Mapungubwe Kop, MK or Summit) and the Southern Terrace (MST). Collectively the site is referred to as Mapungubwe. It is strategically situated where the Limpopo River forms the northem boundary between the Republic of South Africa and Zimbabwe, and the Shashi River between Botswana and Zimbabwe (Fig.6.1.1). However, these boundaries are relatively recent historical and political demarcations which did not exist a thousand years ago.

Some linguistic and traditional characteristics of Shona, Venda and Sotho speaking inhabitants living in the vicinity endorse earlier movements into the northern Transvaal from the north and the west: Mapungubwe reached the peak of its power in ca. AD 1220-1270 (Fouché 1937; Gardner 1963; van Riet Lowe 1955; (Meyer, pers. comm.).

Most of the artefacts found at these settlements are associated with societies who owned or traded domesticated stock, and farmers who used iron implements for sowing a variety of crops including a type of bean (Vigna unguiculata), sorghum (Sorguhum bicolor) and millet (Pennisetum typhoides). Above all, they used metal smelting techniques, produced ceramics and accumulated surplus of wealth to participate in long distance trade. Evidence of ivory working, glass bead moulds and other remains suggests craft specialization activities at some of the sites.

A large variety of luxury goods such as gold beads and omaments, cowrie shells, glass and ostrich egg shell beads (OES), soap stone beads and pendants were found, particularly among the human burials at Mapungubwe. Artefacts made from non-indigenous materials were also discovered. These could have been obtained either by way of long distance or inter-site exchange systems, or acquired as bride wealth. Glass beads were the most numerous indicators of external long distance trade, although other items such as Chinese porcelain were also recovered. The bead collections from earlier Iron Age sites in the eastern Transvaal, such as those in the Kruger National Park and at Phalaborwa, number from fewer than ten beads to a hundred. The bead assemblages from the northem Transvaal, particularly Mapungubwe, amount to tens of thousands ${ }^{1}$.

Beads and other glass artefacts used for analysis were obtained from various sites inside as well as outside southern Africa. The van Riet Lowe Collection, the Wellington Museum, Peter Francis Jr. and numerous others, provided invaluable comparative material. The material from Southeast Asia examined for this thesis was excavated from Arikamedu in India and sites associated with entrepôt ports in Thailand, the Malay Peninsula and the Indonesian Archipelago, dating from, between ca. 5th to the 14th centuries (Fig.6.7.1.). Many of the samples were either from coeval sites, known glassmaking sites or those that could certainly have been connected to the commercial ties of early Muslim enterprise. The southern African component includes all the beads recovered from major Iron Age sites in the Limpopo Basin, eastern Transvaal, and Botswana.

[^31]
SOUTH AFRICA

Schroda	(AD 800-900 - northern Transvaal). Excavated by E. Hanisch
	ory and Open-air Museum, Pretori
Pont Drift	900 - northern Transvaal). Excavated by E. Hanisch
	Curated by the National Culture History and Open-air Museum, Pretoria. D 1000-1220 - northern Transvaal). Excavated since the 1930.
K2	Curated by the University of Pretoria.
Bambandyanalo	(AD 1000-1220-northern Transvaal). Excavated since the 1930.
	Curated by the University of Pretoria.
Mapungubwe	(AD 1220-1270-northern Transvaal). Excavated since the 1930
	Curated by the University of Pretoria.
Skutwater	(AD 1150-1250 - northern Transvaal). Excavated by J. van Ewyk.
	Curated by the National Culture History and Open-air Museum, Pretoria.
Allied sites	Shirbeek, Singalele \& Parma - northern Transvaal
	Curated by the University of Pretoria.
Letaba, Shikumbu, Mahlengheni,. (ca. AD 900-1250-eastern Transvaal).	
Olifants Rivier, Phalaborwa Excavated by E. Meyer, J. C. Pistorius \& N. J. van der Merwe. Curated by the University of Pretoria and the University of Cape Town.	

BOTSWANA

Nqoma (ca. AD 850-1080 - Botswana). Excavated by E. Wilmsen \& J. Denbow. University of Texas.
Matlapaneng (ca. AD 680-980 - Botswana). Excavated by E. Wilmsen \& J. Denbow. University of Texas.
Kgaswe (ca. AD 990-1090-Botswana). Excavated by E. Wilmsen \& J. Denbow. University of Texas.
Bosutswe (ca. AD 700-1200 - Botswana). Excavated by E. Wilmsen \& J. Denbow. University of Texas.
Toutswe (ca. AD 960-1500-Botswana). Excavated by E. Wilmsen \& J. Denbow. University of Texas.
Tora Nju (ca. AD 1390 Zimbabwe Phase). Botswana. Excavated by E. Wilmsen \& J. Denbow. University of Texas.

Toutswe (ca. AD 960-1500-Botswana. Excavated by E. Wilmsen \& J. Denbow. University of Texas.

From the potential source areas, specimens of glass, glass beads or waste have been compared with material from sites in Egypt, the Near East and Southeast Asia including:

EGYPT

$\left.\begin{array}{ll}\text { Tel el-Amarna } & \text { (BC 1375-1358-Egypt). Excavated by C. L. Wooley. Curated by the } \\ \text { Wellington Museum. }\end{array}\right\}$

PALESTINE

Khirbet el-Minyeh (ca. AD 850 - Palestine). Excavated by A. E. Mader, A. M. Schneider \& O. Puttrich-Reignard. Curated by the Israel Museum.
Hebron ${ }^{3} \quad$ (ca. AD 1750-1800 - Palestine). Van Riet Lowe Collection. Curated

SYRIA

Ba'al-Bakk	(ca. AD $969-$ Syria). Van Riet Lowe Collection. Curated by the
University of the Witwatersrand.	

SOUTHEAST ASIA

Arikamedu	(BC 2nd millennium to medieval - India. Excavated by V. Begley. Universities of Pennsylvania \& University of Madras. (modern). Peter Francis Jr.
Purdalpur	
Ceylon	Ceylon (Sri Lanka). Van Riet Lowe Collection. Curated by the University of the Witwatersrand.
Gedong, Bukit Sandong eastern Malaysia. Excavated by E. Kauri. Curated by the	
Sarawak Museum.	

[^32]
6.2 OTHER TYPES OF NON-GLASS BEADS FOUND AT SOUTHERN AFRICAN SITES

Beads made from ostrich egg shell (OES - Struthio camelus), Achatina shell, (Achatina sp.) and glass were the most numerous found at all the southern African sites, as well as cowrie shells (Cypraea annulus). Although relatively rare, other skilfully fabricated beads made from local materials such as quartz, soapstone, (serpentine), pottery and bone (Fig. 6.2.1. a.- g.) and metal (copper, iron and gold) have been discovered. Many of the skeletons at K2 buried with glass, OES, Achatina shell. Gold beads were mostly found buried with skeletons at Mapungubwe. Gardner (1963:34) described the Achatina beads as being beautifully made of the finest nacre and must, on account of their extreme delicacy, have been very difficult to drill.

A number of cowries were associated with a Beast Burial at K2. They were also found at Mapungubwe but were not nearly as common.

Cypraea annulus and Cypraea moneta are both Indian Ocean species, the former from the East African coast and islands, especially Zanzibar, and the latter from the Maldive Islands (Johnson 1970:17). Cypraea annulus is similar to Cypraea moneta, only slightly larger. Cowries were used as currency as well as decorative, ritual or magical purposes throughout many indigenous communities in Africa.

Some species of cowrie shells (Cypraea annulus), that live only in the estuaries of the Indian Ocean, are well known as a means of ornamenting clothing in southern Africa and have been found as far inland as the Okavango in Botswana (Wilmsen 1989:68). According Voigt (1983:121) cowries were
(a)... very common marine species at $K 2$ most of which had their dorsal surface cut away suggesting that they were attached to clothing, or to objects such as baskets.

Metal beads include those made from iron, copper and gold. Gold beads of various shapes and sizes have been found at other sites in the Transvaal and Zimbabwe, such as Thulamela (Küsel 1992:66; Summers 1969; Harger 1941:138). Thousands of gold beads were found buried with adult and juvenile skeletons on top of Mapungubwe Hill, but rarely from elsewhere at the site (Steyn 1994; Schofield 1958:215). Besides beads, other gold funerary items were made from beaten sheets of gold tacked onto small, shaped wooden cores. Huffman (1992:325), suggests that these grave goods are the earliest evidence for gold used as a status symbol by indigenous people, and therefore provide the first indication that gold had acquired a local intrinsic value. Burials of skeletons adorned with both gold and glass beads have also been found at Ingombe Ilede in Zambia (Hall 1987:98).

Soapstone beads are not often reported in the archaeological literature, particularly of South Africa. It was very exciting, therefore, to find four finely tooled soapstone beads and a pendant at Mapungubwe which had not been previously recorded, and report on an exquisitely sculptured soapstone pendant excavated by Wilmsen and Denbow at Tora Nju in Botswana (Fig.6.2.1. e.). One other soapstone bead was found at Schroda (Hanisch 1980).

It is very likely that these beads came from one of the many factory sites discovered by Harger (1941:129-142) in the area between Zwartruggens and Zeerust in the northern Transvaal, where large quantities of soapstone cylinder and small short beads and pendants were manufactured. The pendant found in Botswana is very reminiscent of soapstone phallic objects and amulets found in the Great Zimbabwe and Chiwona Kopje ruins (CatonThompson 1931).

Apart from the six carnelian (red chalcedony) beads found at Great Zimbabwe ${ }^{4}$, no other semi-precious stone beads have been reported from any Iron Age sites dating from between AD 900 - AD 1250. This is somewhat surprising in light of the 'Indian connection' as promulgated, because stone bead manufacture, especially camelian, was an extremely important export industry at Cambay, in India (Arkell 1936; Gwinnett \& Gorelick 1986). If the early glass beads had been imported from India it is most probable that gem-stone beads should have accompanied them. It was not until a much later date that semi-precious stone beads were introduced into South Africa by the Portuguese, attested to by the hundreds found in shipwrecks along the South African coast (Bell-Cross 1987:20-32).

Although Garden Roller beads are found at other sites, particularly along the Limpopo River and Zimbabwe the majority of them in this study come from K2. Hanisch (1980:283) reported sixteen Garden Rollers from Pont Drift noting that the layers in which they were found corresponded with the discovery of large numbers of small turquoise beads. Pottery moulds, used to manufacture these beads, have been found at K2 and Schroda (Meyer, pers. comm.; Hanisch 1980:178) suggesting local production. One mould fragment was buried with a juvenile human skeleton (Steyn 1994:78). Two broken beads were also recorded from Bosutswe in Botswana. Practically all of the Garden Rollers are made in various hues of turquoise glass.

Substantial numbers of triangular beads were found at Shikumbu and Mahlangeni in the eastern Transvaal. These beads are also referred to as tubular beads with unusual cross sections or Type Ic; similar beads were made at Fustat (Francis, pers. comm.).

[^33]Fig.6.2.1.a-g. Bone, pottery, and soapstone beads.

a. Bone bead from Schroda TSR 1/1:Block:2A (1980)

c. Pottery bead necklace from K2 RN2 C7 (1976)

e. Soapstone pendant from Tora Nju

b. Bone pendant from Mapungubwe Blok C2:Snoer Nr. 74/54 (1954)

d. Soapstone bead from Mapungubwe MST E2 : \quad Snoer nr $7 / 54$ (1954)

f. Soapstone bead from Mapungubwe B8(d)Spit ${ }^{35} / 42^{(1968-1970)}$

g. Soapstone bead from Mapungubwe E2:Block: \quad B7/ $/ 10$ (1968-1970)

6.3 SOUTHERN AFRICA

6.3.1 The Northern Transvaal

Schroda.

The farm Schroda is situated approximately 75 kilometres west of Messina on the Limpopo River ($290^{2} 6^{\prime} 45^{\prime \prime} \mathrm{E}, 22^{\mathrm{O}_{1}} 1^{\prime} 0^{\prime \prime} \mathrm{S}$). The site covers a large surface area (nearly 500 m long by 300m wide) on top of a rocky plateau overlooking the Limpopo River (Hanisch 1980:58). According to Hanisch (1981:39) the overall quantities of cultural remains that were found, compared to the large total amount of soil excavated, were very few. Some of the finds, including skeletons, two of which were buried with grave goods, consisted of grid stones, clay figurines, ivory, bone and glass trade beads. Achatina beads were the most abundant and constituted nearly three quarters of all the beads found on site. Some of the ivory items are thought to have been manufactured for trading purposes either on a local scale, from village to village, or with external contacts with Arab traders (Hanisch 1981:53).

In 1937, Fouché (1937:22) recorded that although much of the walling had fallen down, but two pieces of sandstone wall, measuring about 50 yards long by about 3 feet thick, were still standing on the farm.

Two human skeletons with glass beads were excavated at Schroda. One of them was a child, buried with glass beads underneath the chin (Hanisch 1980:114-115).

When Hanisch described the Schroda beads in 1980, more than three quarters of them were so heavily patinated that he could not identify their colour. Once the deposit had been removed however, using preservation techniques described in chapter 7 (7.2.1), it became possible, with relatively few exceptions, to determine the colours of the whole collection. The re-evaluated results are presented in the Appendix. Turquoise beads were the most common colour found at Schroda. Hanisch (1980:282) reported that white beads were found at Schroda. This has since been corrected (Ch.8.2.2). There were no 'Indian' red beads.

Pont Drift.

The farm Pont Drift is located on the Limpopo River 95 kilometres west of Messina. The site (co-ordinates $29^{\circ} 08^{\prime} 30^{\prime \prime} \mathrm{E}, 22^{\circ} \mathrm{O}^{\prime} 3^{\prime} 45^{\prime \prime} \mathrm{S}$) lies in a raised valley on top of a long high sandstone ridge, running parallel with the Limpopo (Hanisch 1980:227).

Clay figurines, potsherds, metal ornaments, and glass beads including 16 Garden Roller beads were recovered. The number of beads found in the deeper levels was relatively low. As with Schroda, turquoise beads were the most common. The Garden Roller beads were excavated from a layer in which a high proportion of small turquoise seed beads were found. According to Hanisch (1980:282), the glass beads from Pont Drift were basically the same as those from Schroda.

Hanisch (1980:342) also suggested that the trade at Pont Drift was probably local, except for possible contact with the East coast, and that more items appear to have been imported on to the site than were manufactured or collected for export.

K2 and Mapungubwe.

Greefswald is the name of a farm in the northern Transvaal on which the two different yet associated sites were discovered, namely K2 and Mapungubwe.

K2 forms the eastern boundary of the site and is located approximately 1 kilomtre due south of Mapungubwe. It lies in an open valley bounded on one side by a hill called Bambandyanalo. One of the middens located on the floor of this valley was covered with deposit measuring 6 m in places (Fig. 6.3.1.1). According to Fagan (1964:339), the first occupants of Mapungubwe Hill were the people who occupied K2 in its latest stages.

Archaeological evidence shows that these sites were densely populated for a relatively limited period of time, ca. 200 years. Some dry-stone walls are present at K2.

An impressive variety of crafts in the form of decorated bone, ivory and worked ivory arm bands were found during the course of excavation at K2 (Voight 1981:30-31).

Glass beads are more rare in the lower levels of K 2 and Mapungubwe which indicates either a change in trading activities or wealth (Tables 6.3.1.2.).

By AD 1075 the site of K 2 had been abandoned in favour of Mapungubwe, which offered far more living space. This shift in location is marked by an increase of K 2 material in the Mapungubwe deposit (Van Ewyck 1987:158).

Mapungubwe

Mapungubwe is a hilltop fortress, which, according to Fouché (1937:33), was bare before the occupation of the site. It is estimated that the soil cap on the summit, plus the remnants of subsequent hut platforms, built and rebuilt over time, weighed at least 20,000 tons (Hall 1987:77). The soil would have been carried to the top of the hill from the valley below. As natural access to the summit is very limited it is not inconceivable that some type of pulley system could have been set up. Huffman is convinced that Mapungubwe was the first capital of the ancient kingdom of Great Zimbabwe, and that the leaders and their followers including the king's wives, some of his soldiers, musicians and praisers lived on top of the hill (Steyn 1994:5). He also believes that Mapungubwe rose to prominence because the Limpopo basin was the first area of southern Africa to become part of the trade networks of the Indian Ocean (Huffman 1982).

The unstratified midden deposit surrounding the entire foot of the hill (Southern Terrace MST) contains occupational refuse similar to that found on the summit (gold, imported glass beads, ivory and bone awls, masses of potsherds, iron and copper weapons, jewellery, pottery animal figurines and animal bones) which were washed down or windblown from the top (van Riet Lowe 1936:283). Remains of dry-stone retaining walls, hut floors and granary foundations were clearly traceable.

Fig. 6.3.1.1 Greefswald. The site of K2 (Redrawn from Eloff 1979 \& Steyn 1994).

NOTE

Most of the adult and juvenile skeletons were found in the large ash midden area \#4a.
Distribution of glass beads excavated at K2 (Eloff \& Meyer)

$\begin{gathered} \text { K2 } \\ \text { E\& } \&(1971- \\ 1973 \\ \hline \end{gathered}$	$\begin{gathered} \text { K2 } \\ \text { Layer } \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{K} 2 \\ \text { Layer } \\ 2 \end{gathered}$	$\begin{gathered} \text { K2 } \\ \text { Layer } \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{K2} \\ \text { Layer } \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{K2} \\ \text { Layer } \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{K2} \\ \text { Layer } \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{K2} \\ \text { Layer } \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{K2} \\ \text { Layer } \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \text { K2 } \\ \text { Layer } \\ 9 \end{gathered}$	$\begin{gathered} \text { K2 } \\ \text { Layer } \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{K2} \\ \text { Layer } \\ 11 \\ \hline \end{gathered}$	$\begin{gathered} \text { K2 } \\ \text { Layer } \\ 12 \end{gathered}$	$\begin{gathered} \text { K2 } \\ \text { Layer } \\ 13 \end{gathered}$	$\begin{gathered} \mathrm{K2} \\ \text { Layer } \\ 14 \end{gathered}$	$\begin{gathered} \mathrm{K} 2 \\ \text { Layer } \\ 15 \end{gathered}$	$\begin{gathered} \hline \text { K2 } \\ \text { Layer } \\ 16 \\ \hline \end{gathered}$	$\begin{gathered} \text { K2 } \\ \text { Layer } \\ 17 \end{gathered}$	$\begin{gathered} \text { K2 } \\ \text { Layer } \\ 19 \\ \hline \end{gathered}$	$\begin{gathered} \text { K2 } \\ \text { Layer } \\ 20 \\ \hline \end{gathered}$	TOTAL
WHITE	I		2																	3
GREY	1																			1
BLACK	10	8				1					1									20
TURQUOISE	338	405	169	86	46	57	88	43	78	75	32	17	14	79	23	15	7	18	I	1591
CELEDON	47	27	39	10	4	2	1			2	1									133
GREEN	29	12	14	2	2	1	1	2	3	2	2	1		2						73
INDIAN RED	100	68	23	8	15	15	5		4					2				1		241
YELLOW	50	10	9	1	5	3		1		1	3	1	1	4						89
MARIGOLD		1		1		1														3
BRIGHT NAVY																				
BLUE	1	2																		3
PINK																				
MAUVE					1			1												2
OSTRICH EGG SHELL					1															1
MISC	14	14	5	4	4	5	1	5	2	1	1				1					57
Total number of besads	591	547	261	112	78	85	96	52	87	81	40	19	15	87	24	15	7	19	1	2217

K2						rotal
Mever (19\%) ${ }_{\text {Lajer. }}$	$\begin{gathered} \mathbf{K}_{2} \\ 1 \end{gathered}$	$\frac{K_{2}}{2}$	${ }_{\text {L2 }}$		K2	
WHITE						
GREY						
BLACK	3	1				4
turouolse	67	63	16	25	2	173
CELEDON	1	4		2		7
GREEN	6	6	1			13
INDIAN RED	14	10	2	2		28
YELIOW		2				2
Marigold						
BRGHT NAVY						
BLEE						
PINK						
mauve						
OSTRICH EGG SHELL						
GARDEN ROLLER	1	6		1		8
MISCELLANEOUS			1			1
UNIDENTIFIABLE						
Cotinumbero beima	9	9	2	30		25

Fig. 6.3.1.2.
Glass beads from skeletons in the northern Transvaal including K2 and Mapungubwe.

Mapungubwe Hill, is one of several impressive sand-stone formations that rise independently and almost perpendicularly to a height of approximately 100 metres from a valley that feeds the Limpopo River (in the northem Transvaal). The sequence of occupation established for the three sites at Greefswald was based on the occurrence of two pottery types (Van Ewyk 1987:14).

The site has been excavated and reported on by archaeologists and colleagues of the University of Pretoria at various times since the 1930s (Fouché 1937; van Riet Lowe 1936 \& 1955; Gardner 1963; Eloff 1979; Eloff and Meyer 1981; Meyer 1980; Voight 1983 and Steyn 1994). Preliminary archaeological investigation at Mapungubwe began in 1933, under the supervision of Leo Fouché working with three students from the University of Pretoria. They commenced with a series of test trenches dug on the Hill, the Southern Terrace, and K2. In 1934, the Reverend Neville Jones (a Rhodesian archaeologist of the time) John Schofield, and a field assistant P. W. van Tonder, expanded the investigations on top of the Hill, the 'Southern Terrace' and K2. This expedition included work on the summit; the occupied area at the foot of the westem ascent; and K2. Van Tonder continued working at Mapungubwe and made some valuable discoveries such as the 'Grave Area' on top of Mupungubwe Hill or summit.

In 1935, Clarence van Riet Lowe was appointed the director of the 'Greeefswald' excavation, and Captain Guy A. Gardner was assigned 'field director' assisted by Van Tonder. Together they worked at K2 and Mapungubwe Hill until the war halted proceedings in 1940. Towards the end of 1937 the first reports on excavations at Mapungubwe were published on the findings from February 1933 to June 1935. They were edited by Fouché on behalf of the Archaeological Committee of the University of Pretoria (Fouché 1937).

During 1953 to 1954, systematic excavations in this area were carried out by Coertze, H. F Sentiker and students. A permanent grid was marked off on the Southern Terrace.

Small scale excavations were conducted on the Southern Terrace by Eloff (1979) assisted by students from the University of Pretoria. From 1971 to 1979, further work was carried out at K2, Mapungubwe Hill, and the Southern Terrace by J. Eloff and A. Meyer, concentrating their efforts mainly on interpreting the stratigraphy within a cultural sequence (Steyn 1994:14). Periodic small-scale investigations have continued since then with particular attention focused on recovering hut floors at K2, documenting the evidence and curating the sites. In 1993, a casual skeleton was discovered in a pot at K2 (Meyer, pers. comm.). Archaeological research at Mapungubwe continues with staff and student members of the University of Pretoria.

Table. 6.3.1.3.
Distribution of glass beads found at Mapungubwe (Eloff \& Meyer).

MAPUNGUBWE SOUTHERN TERRACE EAM(1971-1973)	MAPST	MAPSTI										
Layer	1	2	3	4	5	6	7	8	11	12	17	ROTAL
WHITE GREY	41						1					
BLACX	208	416	116	11	27	8	5	1				42 812
TUROUOASE	26	B	11	1	1		11					58
CELEDON	32	80	27	1	3	1						144
GREEN		12	6									18
INDIAN RED	58	85	34	27	18	9	17	2	1	1	1	253
YELLOW	6	10	9		2							29
MARIGOLD	10	5	4	1								20
BRIGHT NAVY	9	14	1		1							2
BLUE	1	1	10									12
PDNK								*				0
MAUVE	1											1
OSTMCH EGG SHEL	1											1
GARDEN ROLIER												0
MISCELİANEOUS			2									2
UNIDENITFIABLE					1		1					2
Toxammerd beads:	345	631	26	61	52	18	34	3	1		17	1427

MAPUNGUBWE KOP E\&N(1971.1973)	MAPL	MAPK	MAPK	MAPR	MAPR	MAPR	MAPR	MAPE	MAPE	MAPK	MAPK	MAPK	
Layer.	1	2	3	4	5	6	7	8	9	10	11	15	POTAL
WHITE	2												2
GREY										2			2
BLACK	514	545	237	263	74	235	167	110	71	4	3	57	217
TURQUOLSE	6	2	11	7	1	4	7	3	1	14	10		66
CELEDON	84	70	20	32	8	32	56	30	6	9	3		350
GREEN	26	6	3	7	4	6	2	1	2	3			60
INDIAN RED	68	57	63	48	14	34	39	3	31	113	9	1	601
YELJOW	17	13	14	5	4	6	4	1	4	4	1		73
MARTGOLD	4	3	2	3									12
BRIGHT NAVY	15	B	4	6		4						4	41
BLUE	1	9	2	3		15	12	2	3	3			50
PTNK													0
MAUVE	1					2							3
OSTRICH EGG SHELL				1	1	2			2				6
GAROEN ROLLER		1								2			3
MISCELLANEOUS			2	1			1						A
UNIDENITFIABLE				1			2						3
Tral number of badi	7313	n4	358	376	16	3×13	288	161	ny	192	116		3395

The cemetery or Grave Area at Mapungubwe lies within a well defined area on the lower western slope ${ }^{5}$. Recent work by Maryna Steyn (1994) on individual grave descriptions for skeletons from K2 and Mapungubwe, provides an interesting 'shroud' and insight to burial practices prevalent at the time. For example, juveniles under the age of five were buried with 75% of blue green beads. Steyn reported on twenty seven or twenty eight skeletons from Mapungubwe, of which only eight were buried with glass beads (Steyn 1995:47). This data has been enlarged by classifying additional numbers of beads belonging to Mapungubwe skeleton beads which were submitted to this laboratory (Fig. 6.8.1). The combined results provide the most comprehensive inventory of K2 and Mapungubwe glass bead grave goods.

Skutwater.

The site known as Skutwater (TSW1/1) is located on the farm Skutwater ($22 \mathrm{O}_{21}$ 'S $30^{\circ} 02^{\prime} \mathrm{E}$), approximately 65 kilometres west of Messina. The site comprises a large, more or less circular mound of cultural debris, which rises to a height of 1.75 m above a relatively flat, sandy plain.

Potsherds, fragments of ceramic animal figurines, ostrich egg shell, bone and glass beads were amongst the cultural artefacts occurring in varying frequency throughout the excavation. Only the glass beads were submitted for analysis. Van Ewyk (1987:60), compared his collection of beads with those from K2 and Mapungubwe. He concluded that the only difference between them was one of colour, as the shape and size were fairly constant. Van Ewyk used the same typology with some exceptions regarding subdivisions and variations of colour. A misleading colour choice - orange - was used to describe some of the beads at the Greefswald sites and at Skutwater; I have reclassified them as light and dark marigold (Munsell No's $2.5 \mathrm{Y} 6 / 10 \& 7.5 \mathrm{YR} 6 / 10$). Beads termed as 'orange' (Munsell $3.75 \mathrm{YR} 6 / 14$) are especially characteristic at sites in Southeast Asia. These should not be confused with the southern African sites, where no orange beads have been found.

Human burials with glass beads were excavated at Skutwater. One of them still had the remains of a piece of beaded work around the pelvic area. Many ethnographers and art historians argue that glass beadwork per se was introduced into South African culture only after permanent European contact. The archaeological evidence shows, however, that glass beadwork existed at Skutwater some 400 years before (Van Ewyk 1987:91).

According to Van Ewyk (1987:114) Skutwater represents a single period of occupation with a definite inter-relationship with K2, Mapungubwe Terrace and Mapungubwe Hill.

[^34]Table. 6.3.1.4. Glass beads from Skutwater.

SKUTWATER	SKUT Layer 1	$\left\|\begin{array}{l} \text { SKUT } \\ \text { Leyer 2 } \end{array}\right\|$	$\left\|\begin{array}{l} \text { SKUT } \\ \text { Leyer } 3 \end{array}\right\|$	$\left\|\begin{array}{\|l\|} \text { SKUT } \\ \text { Leyer 4 } \end{array}\right\|$	$\left\|\begin{array}{l} \text { SKUT } \\ \text { Lyyer S } \end{array}\right\|$	$\left\|\begin{array}{l} \text { SKUT } \\ \text { Leyer } 6 \end{array}\right\|$	$\left\|\begin{array}{l} \text { SKUT } \\ \text { Lyyer? } \end{array}\right\|$	$\left\|\begin{array}{l} \text { SKUT } \\ \text { Lyyer } 8 \end{array}\right\|$	$\begin{aligned} & \text { SKUT } \\ & \text { Lyer } 9 \end{aligned}$	$\begin{array}{\|c\|} \text { SKUTT } \\ \text { Skeletons } \end{array}$	total
White									1		1
GREY											0
black	260	118	101	53	18	13	7	7	27	928	1532
turquoise	16	6	6	4		2	1	16	18	131	200
CELEDON	47	29	14	6	5	2	4	1	1	1	110
Greme	19	12	9	7	2	1	1	1	2	6	60
INDIANRED	25	25	28	33	3	6	16	1	1	248	386
YELIOW	19	2	2	3	1	3	3				33
MARIGOLD											0
BRIGHT NAVY	5	1	1		2						9
blue											0
PINK											0
MAUVE											0
OSTRJCH EGG SHELI									1		1
GARDEN ROLIER											0
MISCELILNEOUS											0
UNIDENTITIABLE											
Tola number of beadt:	391	193	161	10.				26	31	1314	2332

Makahane

Makahane is located on the northern Transvaal boundary of Venda and the Kruger National Park: The centre of the settlement is situated on top of an east-west oriented hill covered in extensive residual deposit (Huffman and Hanisch 1987:106; Küsel 1992:66). It was first investigated by Eloff and De Waal (1965). A green wound bead similar to one found at Mapungubwe was excavated by Küsel (pers. comm.) (see Chapter 8.1.3.2. n-o; Tables 8.2.2.1 \& 8.3.1.1.).

6.3.2 Allied Sites

Beyond the boundaries of Greefswald other important sites were discovered. At the end of September 1934, Jones, Schofield and Fouché discovered the 'allied' sites including Singalele, Parma, Maryland, Verdun, Haddon, Islet and Shirbeek. At Haddon, situated 77 kilometres north-east of Mapungubwe, glass beads and very fine pottery were found. The 'allied' sites were classified and described into four groups, according to different methods of stone wall building.

Shirbeek is believed to have been an old Venda settlement. Three segmented beads in various colours were discovered here. (See Fig. 8.1.3.1.(p) p. 130)

6.3.3 North Eastern Transvaal

The north-eastern Transvaal sites consist mainly of open settlements on flat land or low terraced slopes at the bases of small hills (Van der Merwe \& Scully 1971; Chatterton, Collett \& Swan 1979; Meyer \& Pistorius 1984).

Phalaborwa

Phalaborwa and the surrounding area is associated with rich deposits of iron and copper along trade routes that criss-cross the Lowveld of the North-eastern Transvaal. It is located within the dry and harsh Transvaal Lowveld where living conditions were considered unhealthy for man and domestic stock until the turn of the 19th century. Notwithstanding this inhospitable environment, iron and copper ores were mined and worked at Phalaborwa dating from, between $c a$. AD 800 - AD 1300 (Pistorius 1995:45).

Settlement at these sites consisted of villages built at the bases of small hills and settlements erected on low terraced slopes. Two small habitation sites were investigated at Kgopolwe (SPK I, II \& III) Nagome Hill (MN 3, 4, 5 \& 6) and KAL (MK) (van der Merwe \& Scully 1971:178-196). In addition to excavating these settlements, extensive surface collections were made from a number of other sites, including Nagome. Chemical analysis was carried out on beads from Kgopolwe (SPK III) and Nagome (MN3).

The ceramic sequences of pottery found at these sites have been classified by Evers (1987:87-106) and fall into three stylistic groups, Kgopolwe, Moloka and Letaba. Kgopolwe and Moloka are regarded as being similar, and represent the third phase of the Transvaal Western Stream Iron Age immigrants dated from, between AD 100-AD 1300.

6.4 BOTSWANA.

Numerous Early and Late Iron age sites have been found in the Ngamiland District of northwestern Botswana and eastern Botswana, where agropastoral excavations, dating from, between AD 700 and AD 1000, have been carried out since 1975 (Wilmsen 1989; Denbow and Wilmsen 1986:1509-1515). The largest site is Nqoma, situated on a plateau in the Tsodilo Hill about 40 kilometres west of the Okavango River system. At Nqoma, the glass beads were excavated from a house floor together with marine shells, smithing tuyeres, carbonised grain and pottery radiocarbon dated to ca. AD 950, and from the main midden dated $c a$. AD 980 and $c a$. AD 770 . Nqoma is considered to have been occupied
for several decades as the residence of royalty or an elite upper class and an important trade centre as early as the 9th century AD (Wilmsen, pers. comm.). Matlapaneng, on the southeastern Okavango, is also an extensive site dated from, between the late seventh and tenth centuries.

The cowrie and conus shells found at some of the sites in Botswana suggest trade connections, either with the cowrie shell commerce of West Africa, or with the Indian Ocean. Glass, ostrich egg shell beads, iron, worked ivory and pottery were some of the artefacts recovered.

A total of 771 glass trade beads and one soapstone pendant (previously mentioned) were excavated from some of the sites in Botswana. This number represented beads from both earlier levels in the Iron Age sequence and much more modern ones (Chapter 8.1.c). Xaro on the Okavango, and Nyae Nyae, for example, had beads associated with the Portuguese Atlantic trade of the 16th century (Wilmsen 1989: Saitowitz, van der Merwe \& Kaufmann 1994). Besides these, other glass beads were found at Alex/Kwebe, Bosutswe, Kgaswe, Matlapaneng, Nqoma, Rakops, Tora Nju and Toteng. Beads made from different materials, such as metal and ostrich eggshell, were also found. Slate and agate beads were manufactured at Bosutswe (Weedman 1993:40-48).

6.5 EGYPT

Fustat (Fig. 6.5.1).

The first large-scale excavation of Fustat was commenced in 1912 by the Museum of Arab Art in Cairo, directed by Ali Bahgat. During a period of 12 years, about twelve hectares of an important portion of the town were systematically unearthed and a number of large soundings in other parts of the site were made (Kubiak 1988:30). Thousands of artefacts were recovered from this area for the museum. In subsequent years many other, although much smaller, excavations were undertaken in various parts of the site (Fig.6.5.2).

From 1964 to 1981 large-scale scientific excavations were carried out by the American Research Center in Egypt under the direction of George Scanlon (American University at Cairo) and others, including W. Kubiak and trained archaeological workmen. Successive expeditions were joined for short periods by many experts in different fields, including \mathbf{R}. W. Pinder-Wilson, Deputy Keeper of Oriental Antiquities at the British Museum, who worked on the glass finds, and B. Gyllenvärd, Director of the Far Eastern Museum of Stockholm, who concentrated on the Chinese ceramics. Preliminary reports of nine seasons of field work, and other ancillary specialist publications, have resulted.

By 1971, 2500 square metres of Fustat-B were uncovered, contiguous to the parts excavated in 1965-1968. One of the characteristics of the eastern part of Fustat, at least in the sections so far investigated, is that, wherever possible, foundation walls were laid directly on bedrock (Kubiak 1988:30; Kubiak \& Scanlon 1979:103).

Fig. 6.5.1. General situation of Fustat and other sites in Egypt (Redrawn from Kubiak 1988:174).

Fig. 6.5.2

The Site of Fustat

(Redrawn from Kubiak 1988 \& Casanova 1919

In 1965, the remains of a glass ingot producing factory were discovered. According to Scanlon, (pers. comm.), the kiln associated with this factory was definitely Fatimid. The ingots, made in different turquoise, green honey-brown and manganese colours, were probably ground down and reused to make vitreous glazes. Other kilns were also found in later excavations. However, these were differently structured. They were found laid among the debris of the city deserted in 1169.

Streets, housing complexes, such as the Proletarian Quarter, widely scattered remains of masonry, canals, aqueducts, undisturbed pits, baths and a large and intricate sanitation system were exposed under some very high mounds (Scanlon 1976:69-89). Many of the houses were bigger than others, with paved and unpaved floors. According to Scanlon (1990:4), a 12th century Sumatran coin, the only one of its type found in a controlled excavation this far west, and Fatimid manufactured imitation Chinese lacquer allows us to assume that trade between China and Egypt involved more that ceramics and textiles. A fragment of the earliest known resist-dye textile (possibly the oldest, surviving patterned cotton in the world) was also excavated. These and many others artefacts, individually and in sum made Fustat:
...(t)he most important entrepôt of the dar al-Islam (Scanlon 1990:5)

6.6 PALESTINE AND SYRIA

Khirbet el-Minva

Khirbet el-Minya is located on the shore of the Sea of Galilee, about 14 kilometres north of Tiberias and immediately south of the rocky promontory known as Tell el 'Oreimeh (ancient Kinneret). In 1932, excavations were begun by A. E. Mader and continued under his directorship for a further five seasons until 1939. Excavation at the site revealed two major occupational periods. The earlier period at Minya contained a palace and a mosque, a throne room, and a group of five rooms with mosaic floors. An inscription which mentioned the name of al-Walid (AD 705-715) dated the construction to the Umayyad period (Grabar 1977:876).
In 1959 the site was excavated again by O. Grabar and J. Perot, on behalf of the Horace H. Rackham Fund for Research, University of Michigan. The results of this excavation showed a second major occupation of Khirbet el-Minya in Mameluk time, when it became an important stop-over on the caravan route from Egypt to Syria. According to Grabar (1977:876), it was probably the chateau of a princely landowner.

The glass bracelet fragments used in this study were excavated from the Umayyad occupation of Minya, dated to the first half of the eighth century $A D$ (courtesy of M. Spaer, Israel Museum).

6.7 SOUTHEAST ASIA

Many of the archaeological sites in Southeast Asia are situated along rivers, mangrove forests or estuary harbours close to the sea. The rivers flow straight into the ocean or into bigger rivers. Entrepôt ports played a leading role in the international trade of the Malay Peninsula and the Indonesian Archipelago. This type of commercial activity was widespread in a small section of the north-west coast of Malaysia, in south Kedah next to Penang Island, from the 5th to the 14th century AD. According to Jacq-Hergoualc'h (1992:1), these ports prospered for a few decades or a few centuries, and then disappeared, superseded by other, often neighbouring harbours. One of the characteristic features of coastal ports was their instability, brought about by intense siltation. The coast and river beds are alluvial and therefore keep on advancing into the sea or are washed away, a phenomenon which still exists today.

Elsewhere in western Malaysia, such as Kuala Selinsing, situated off the coast of Perak in a mangrove thicket, a number of canoe burials, and large shell middens were excavated. Glass beads formed part of the grave furniture and were brought to the surface by the action of burrowing crabs and hydraulic forces (Lamb 1966:82). Other burials have been recovered from megalithic sites where cists and 'slab-built' graves made from granite slabs were found. Some of the graves were made from a single slab while others were covered with several slabs. Grave goods included potsherds with incised and cord-marked decoration, fragments of bronze bowls, decorated stone, iron implements, and bone tools (Evans 1928:121-132; Evans 1929:175-176; 1932:79-133). Slab-built graves are also found in Java.

The pre-European glass bead collections from India and Southeast Asia are predominantly simple monochrome seed beads. Polychrome glass beads rarely exceeded 1% of the total of glass beads; and non-glass beads such as metal, stone or fossil resin, shell or vegetable material were never more than 10% of the total (Lamb 1966:86). In certain categories of archaeological sites beads are extremely abundant. For example, at Oc-eo in the extreme south of South Vietnam, over 8000 beads were collected, and at Pengkalan Bujang in Malaysia over 4000 glass beads were found (Lamb 1966:80).

The glass material from the Southeast Asian sites analysed for this study came from known sites, but unfortunately only a few dates are presently available. Although glass objects have been excavated from Indian sites dating from the 1 st millennium BC through the mediaeval period and into the 19th century, archaeologists often seem to regard these finds as imports from the Near East and Roman world in earlier periods (Brill 1986:2). While it is likely that some of the glass was imported, the possibility does exist that glass was independently produced.

Fig.6.7.1.
Archaeological sites in Southeast Asia where glass artefacts were found.

Peter Francis Jr., who donated most of the Southeast Asian material, is of the opinion that the sites of Arikamedu (India), Kuala Selinsing and Sungai Mas (western Malaysia), Kambang Unglen (Palembang, Indonesia), Klong Thom and Takuapa (Thailand) were beadmaking sites. However, this does not rule out that imported glass in the form of ingots or cullet could also have been used to make the beads, in a secondary process.

Sites in eastern Malaysia where glass beads were found include Bongkissam, situated in the Sarawak River delta, 40 kms north (and very slightly to the west) of the capital Kuching. Bukit Sandong is 150 kms South-East of Kuching, very near the Indonesian border (Francis, pers. comm.).

Arikamedu

Arikamedu in India, is situated on the bank of a river formed into a lagoon, barred by a sand-bar from the Bay of Bengal on the Coromandel coast of India (11055'; 79050') (Fig. 6.7.2). Extensive areas of the site were excavated by Sir Mortimer Wheeler in 1945, by Jean-Marie Casals between 1947 and 1950, and more recently by Vimala Begley (1983:460-481). The site of Arikamedu is a natural harbour, situated on the Ariyankuppam River, approximately 3 kilometres south of Pondicherry. Begley's (op. cit.) reassessment of the evidence from the two earlier excavations suggests that the ancient settlement of Arikamedu was first established ca. BC 250 and lasted until AD 200, which is a much longer period than Wheeler supposed. Nevertheless, it has evidence for continuous trade with the Mediterranean over an extended period of time.

Although large sections of the site have been destroyed for rice plantations, archaeological evidence of an oblong building, identified as a warehouse, was exposed in the southern sector. In the northern area structural remains revealed drains or conduits and substantial pavements, and cisterns or vats used for dyeing muslin (Gosh 1990:23).

According to Lamb (1966:84):
The surface of the Arikamedu site still abounds with the debris of the ancient bead industry. One can pick up chips of carnelian and crystal. From the surface evidence at Arikamedu there can be no doubt that this was an important centre of bead manufacture.

In fact, most of the material excavated from debris and sediment layers in 'Robber trench' and the southem sector of the site contained glass chunks, 'wasters' and bangles, stone beads, shell, bone and pottery. No glassmaking furnaces, crucibles or mould fragments have been recovered during archaeological excavations. According to Lamb (ibid) Arikamedu was occupied well into medieval times (ca. AD 10th century). Francis, (pers.. comm.), suggested an even later occupation, based on historical grounds, and suggested that the site was abandoned in the 16th century. Most of the material anlaysed from Arikamedu consisted of glass wasters.

Fig.6.7.2.
Southern and eastern India, showing Arikamedu
(Redrawn from Begley 1983:463).

Purdalpur

Purdalpur is a village in Uttar Pradesh, northern India, which is heir to the north Indian glassmaking tradition. Glass beads and bangle manufacture have a long history in this area. During Partition many of the glassmakers from the northern area (all of whom were Muslims) went to Pakistan and the other half settled in Purdalpur (Francis, pers. comm.). A small glass fragment from Purdalpur was used for analysis.

Ceylon (Sri Lanka)

Ceylon also had early trading contacts with the Mediterranean and China, especially the port entrepôts of Mantai and Mannar (Harder 1993:272; Carswell 1978:25-68; Carswell 1976:121-198;). The site of Mantai is horseshoe-shaped and is surrounded by a double moat between triple embankments. Excavation was carried out in a limited area at the centre of the site where a large quantity of Chinese and Islamic pottery made at various centres in the Islamic Empire including Fustat, Nishapur, Kufa and Samarra was found (Carswell 1976:124). Both the Chinese and the Islamic material from Mantai indicates a 9 th to 10 th century date for the upper levels of the site.

Excavations at Mantai (Sri Lanka) were undertaken by Dr R. S. Da Silva (the Archaeological Commissioner) in the 1970s. Glass cullet and beads from Ceylon, belonging to the Van Riet Lowe Collection were used for analysis.

Western Malarsia

Archaeological research in western Malaysia, particularly in the provinces of Perak and South Kedah was first undertaken, at a superficial level, by a British official from 18301850. Although further discoveries took place, systematic archaeological investigation was not carried out until the 1920s, by Ivor H. N. Evans, G. de G. Sieveking and H. G. Quaritch Wales. After the war, no significant work was done before the end of the 1950s. During the 1970s, archaeologists, students and members from the Muzium Negra in Kuala Lumpur, the Universiti Kebangsaan (National University) and the Merbok museum became actively involved. In many instances excavators have had to overcome several difficult obstacles such as intense heat, monsoon rains, dense tropical overgrowth, tidal mud flats, and working below the water table in soil little better than liquid mud. Research continues.

In South Kedah, approximately forty structures associated with temple sculptural remains and inscriptions devoted to Buddhism and Hinduism have been found in connection with the discovery of two major sites of entrepôt ports (Jacq-Hergoualc'h 1992:1). One of these ports, known as Kampung Sungai Emas (Sungai Mas) was located about 30 kilometres from Kota Kuala Muda. Archaeological evidence in the form of subterranean sea shell suggests that the site was formerly part of the shoreline. Large numbers of glass beads, glass fragments, imported glazed ceramics and local pottery were found. The remains of Hindu architecture, Chinese, Indochinese and Malaysian ceramics mixed with glass fragments and glass beads were excavated from sandy soils, shell middens and mangrove mud. Trading activities at Kampung Sungai Emas are believed to have continued from the 5th to the llth century (Ahmad Harun, pers. comm.). According to Andaya \& Andaya (1994:28), commercial activities expanded and peaked between the 10th and 12th centuries possibly due in part to the development of wet rice (padi) on Kedah's alluvial plains.

Large quantities of glass beads have been excavated from Pulau Kelumpang (PK) and Kuala Selingsing, situated on the Selinsing River estuary. Six beads from these sites have been used for chemical analysis in this study. The original site of Kuala Selingsing has been broken up into eleven islands: Some of the material in Trench A (200-220cm) has a C-14 date of BC 200 , while more modern levels $(40-60 \mathrm{~cm})$ are probably 9 th -10 th centuries $A D$ (Francis, pers .comm.).

Thailand.

The ancient settlement of Klong Thom, locally known as Kuan Luk Pad or the Bead Mound, is situated about 1 kilometre south of Klong Thom District, Krabi Province, southern Thailand $\left(07^{\circ} 55^{\prime} 20^{\prime \prime} \mathrm{N}\right.$ by $\left.99^{\circ} 09^{\prime} 20^{\prime \prime} \mathrm{E}\right)$. The site is on the coastal plain approximately 15 or 20 kilometres from the Andaman Sea (Veraprasert 1987:324) has been dated to ca . AD $800-\mathrm{AD} 1100$. The Klong Thom River, which runs through the western side of the site, was an important route connecting the settlement to the Andaman Sea. Klong Thom was conveniently placed as a harbour and entrepôt for traders crossing the Peninsula from west to east. It appears to have been connected to the early maritime trading network linking the western world, via India, with Southeast China (Manguin 1993:252-279). The first settlement of the site probably dates to the late Neolithic period. In time it grew and served as a trading centre for foreign traders, concurrently with Oc-oe, which flourished as an important seaport on the coast of Cochin-China (Veraprasert 1987:329). Artefactual material included polished stone adzes, moulds for casting bronze, gold and bronze coins, glass fragments, glass, stone, tin and gold beads, and potsherds with cord-marked and incised decoration. There are other sites in Krabi which might be culturally related to the Klong Thom site.

The site of Takuapa is located on the west coast of South Thailand. According to Lamb (1966:80) there is an island at the mouth of the Takuapa river estuary, which was possibly an important trading settlement in the T'ang Dynasty (ca. AD 700-900) on the main sea route between the Middle East and the Far East and which was 'a veritable bead field'. The glass bead and glass 'blob' analysed from this site were surface finds collected by A. and T. Srisuchat, who considered it to be a beadmaking site that was occupied only in the 9th century (Francis, pers. comm.).

6.8 BURIALS AND BEADS

Burials, with beads made from a variety of materials, are found at many sites in Africa, and throughout Southeast Asia, such as in Malaysia, South Vietnam, South Sumatra, the Philippines and Java. The bulk of the grave goods, particularly those related to the southern African burials, consisted mainly of glass, OES or Achatina shell and gold beads. Some of the southern African burials contained other cultural artefacts such as ivory, copper, iron and bone ornaments and weapons (unfortunately heavily corroded) and several finely tooled earthenware bowls of a funerary type (van Riet Lowe 1936:285-286). There were no artefacts made from faience.

The majority of beads found on skeletons, including glass, gold, OES and Achatina shell, were associated with human burials at Mapungubwe; in numbers, these far exceed those
found on skeletons at K2, Schroda or Skutwater. Mapungubwe is the only site where skeletons were retrieved with gold beads.

Seventy-three graves were discovered at K2, but only thirty-seven of them contained glass beads (Schofield 1958:211). According to Schofield (1955:7) skeleton 52 at K2 was buried with a wound glass bead with tapered bores, which he considered may have been similar to the so-called 'Persian' beads Kirkman found at Gedi (classes 4-8). Schofield thought that the discovery of one of these beads (amongst the grave goods of skeleton 52 at K2), may have had an important bearing on dating. Unfortunately, this 'Persian' bead has apparently been lost over time, as it was not found among any of the beads examined for this thesis. Steyn (1994:71) also mentions a brown glass bead that had been described in the literature. It is probably the same one, of supposed 'Persian' origin, as that cited by Schofield. Some of the beads from K2 skeletons appear in the inventory under field numbers preceded by the letters 'KS' in the Appendix.

Beast Burials were also found at K2, three of which contained cultural material, including glass beads. The animal remains were not confined to cattle but also other animals as well. The burials were each characterised by a covering and protective border of potsherds (most of which could be joined together to form almost complete pots) (Voight 1983:6). Gardner (1963:32) noted that among all the beast burials not a single black, or what he termed plum-coloured beads were found. He has explained this phenomenon in compelling detail.

A human juvenile skeleton from a K2 (TS2.G3) grave was described by Hertha De Villiers (in Eloff \& Meyer 1979) as being buried with red glass and blue quartz beads scattered in amongst the bones. Two conus shells were found in the cervical region and copper bracelets around each ankle joint. Subsequent investigation in this study shows that the beads were of made of glass and not quartz. The red beads and one Garden Roller were reported by Steyn (1994:80) but were not included in the collection studied here.

In contrast to Islamic funerary practices, where ornamentation such as glass beads were rarely buried with skeletons, whereas in southern Africa, thousands of glass and gold beads were excavated with skeletons.

6.9 CONCLUSION

The glass beads and 'waste' material analysed for this thesis include a representative collection from twelve major sites in India, Ceylon, eastern and western Malaysia, Thailand, and Indonesia where beads were produced at various times, in what is thought to have been an unbroken sequence, from the 3 rd century BC until the present. In addition, glass beads and a bracelet excavated at sites in Egypt, Palestine and Syria were available. The complete excavated collections from all the major sites in the Limpopo Valley and Lowveld regions of the Transvaal and Botswana, which span the period ca. AD 900-1250, including the massive collections of Bambandyanalo and Mapungubwe have also been included. Approximately 150000 beads were used in my study.

The collections, particularly from southern Africa, comprise mainly small, undecorated, glass seed beads, which were probably preferred for their attractive colours, and their suitability for stringing or beadwork. Many of them were buried as grave goods.

The method used to study the beads has been developed over the past six years, beginning with an intensive study of the beads excavated at the Zulu capitals of Mgungundlovu and Ondini (Ulundi) (Saitowitz 1990). The system is based primarily on a standardised, internationally recognised, visual classification scheme to determine method of manufacture and appearance, followed by selective chemical and physical analysis. The results characterise the beads in sufficient detail to make unequivocal comparisons possible. Some of the techniques employed require minimal equipment and have been specifically developed for use by investigators without technical training. The combination of all these techniques represents a new approach to the study of glass beads in southem Africa. It provides an explicit taxonomy which can be repeated by other researchers, while the chemical analysis provides convincing evidence for manufacturing sources in some cases.

METHODOLOGY

7.1 INTRODUCTION

The materials analysed for this thesis include glass trade beads from all the major Iron Age sites in southern Africa (ca. AD 900-AD 1250), as well as comparative bead specimens, fragments of glass bracelets, glass cullet or wasters - from various potential glass sources. The analysis was done in the Archaeomaterials Laboratory in the Department of Archaeology, University of Cape Town. The materials comprise both archaeological and museum specimens, obtained from many institutions and private collections, including the National Cultural History \& Open Air Museum; University of Pretoria; Wellington Museum; The University of the Witwatersrand (The Van Riet Lowe Collection); Center for Bead Research, Lake Placid, NY; Sarawak Museum; The American University at Cairo and the Israel Museum. All the source material from Arikamedu and Purdalpur in India, consisting of factory 'wasters' and broken beads, was donated by Peter Francis Jr., (Center for Bead Research). The specimen from Purdalpur was a small lump of glass collected by Francis personally. The material selected from the Van Riet Lowe Collection was especially useful, containing a variety of decorated beads of reported provenance that were visually identifiable (Fig. 8.1.4.2).

Most of the glass material was well preserved, except for beads from Nqoma in Botswana, Kgopolwe III at Phalaborwa, and Schroda in the northern Transvaal. Binson (1981) and UNESCO (1981) glass conservation recommendations were applied to the beads from Schroda.

The bulk of the southern African material came from Iron Age sites dating between $c a . \mathrm{AD}$ 900-1250, with an additional later Iron Age component (ca. AD 1600-1800); the latter contained more modern beads, probably made in Europe. An important aspect of this thesis was to compile a classification of the beads, and to present the results in one comprehensive catalogue. This provided a convenient reference and descriptions for all the artefacts, and a base from which to select samples for further detailed examination and comparative research.

Initial preparation of the material involved considerable time and effort, particularly the sorting, cleaning and arranging of the K2 and Mapungubwe beads into chronological sequence. The beads from the earlier excavations at these sites were in a state of disarray, due to years in storage (during which time the labels had been eaten by fishmoths and the
containers broken), attempted burglaries, and loans to various institutions that had not been returned (Meyer, pers. comm.). Wherever possible, published reports and documents were used to cross-reference the assemblages described by Fouché (1937), Gardner (1963) and Eloff (1979).

The Schroda and Pont Drift material had been re-packed and labelled by staff of the National Cultural History and Open Air Museum, Pretoria. The same was done by staff and students of the Anthropology and Archaeology Department, University of Pretoria, for the Mapungubwe and K2 beads excavated by Eloff and Meyer.

All the glass beads used in this study were first visually classified in respect of methods of manufacture, shape, size and colour. This stage provides a very important starting point in taxonomic analysis. However, because of manufacturing similarities of the material, classification based on appearance alone it is not sufficient to provide precise information for comparative research. In order to extract as much information from the beads as possible, various other alternatives had to be examined. These would serve to increase not only our understanding and knowledge of the chemistry of glass beadmaking technology, but also to help identify possible origins of manufacture.

The most obvious approach was to determine the chemical composition of the glass, for which a variety of techniques is available. The relative amounts of major and minor elements present in the material may be characteristic of a particular recipe; alternatively, the colouring trace elements may be uniquely diagnostic, or unintentional trace elements may reveal its origin. In addition to the major and minor chemical components, rare earth elements (REEs), and titanium and zirconium, can provide useful information on the impurities in the silica (i.e. sand) and the flux. The sand, reflected in the glass composition of the beads, is the most likely of all the ingredients to be found locally ${ }^{\prime}$. The premise was that its chemistry would not alter too dramatically over a given period in time and space. Monazite REE enriched sand analysis from Richards Bay has been used as an indicator to support this assumption (7.6.1.).

To this end various physical and chemical analytical methods were used, such as refractive index (R.I.), scanning electron microscopy (SEM), atomic absorption spectrometry (AAS), electron microprobe (EMPA), and laser ablation inductively coupled mass spectrometry (LA-ICP-MS). The combination of techniques represents a new approach to the study of glass beads in southern Africa.

All the beads from each site have been visually classified. This information has been sorted and catalogued as appendices. Tabulated summaries of this work are presented in chapter 8.1.1 - 8.1.4. together with illustrations and colour photocopy reproductions of photographs. Selected samples were chosen from the different collections for further analysis.

[^35]
7.2 CONSERVATION OF GLASS BEADS FROM SCHRODA

Only about a quarter of the Schroda beads had been colour classified in the initial work undertaken by Hanisch in 1980, due to the effects of heavy patination and leaching of the glass whilst buried. Extensive conservation measures were subsequently applied in this study, to improve visual evaluation of this important collection and also to stabilize the glass from future deterioration. Prior to treatment, most of the beads had a dark, blueblack surface colour or a whitish appearance, and on some of them the deterioration extended throughout the whole bead.

In order to improve visual analysis, various preservation techniques were used to restore the beads without damaging them. The initial stages involved washing the beads in a mild cleaning solution (Extran MA $\mathbf{O} 2$ neutral), using ultrasonic agitation. They were then rinsed and dried in an electric oven. The best results for removing most of the patination from the surface of the glass were obtained by chemically cleaning them with $20 \% \mathrm{HCl}$, sometimes also with EDTA or Calgon (Binson 1981; UNESCO 1981:112). After this had been accomplished the beads were stabilized in micro-crystalline wax with good results. Using the method described here it was possible to classify practically all of the Schroda collection.

Many of the Nqoma beads from Botswana also had deteriorated exterior surfaces. However, this was a much smaller collection than Schroda and the extent of degeneration was not as severe. The beads were not as friable, so it was possible to distinguish most of the colours without having to undertake preservation procedures.

Patination and leaching of glass is a fairly common occurrence in the archaeological record. Hancock et al (1994:253) reported on glass beads that were prone to disintegration, suggesting that insufficient calcium in soda-lime glasses results in an unstable material, thus causing the glass to deteriorate. This discussion is continued in chapter 8.1.5.

7.3 VISUAL CLASSIFICATION

The first level of classification divides the beads according to their methods of manufacture.
The classification and terminology published in earlier works by Beck (1928:104-118), Gardner (1963:93-168), van Riet Lowe (1955:1-22), Schofield (1951:180-229) and others, have been re-adjusted to a modified version of that used by Kidd and Kidd (1970), Karklins (1985) ${ }^{2}$, Sprague (1985), and Peter Francis Jr. (pers. comm.). The descriptions of all the artefacts are presented in the appendix.

All the beads were identified on the basis of method of manufacture (drawn, wound, blown, moulded) and appearance (colour, type, shape, clarity of the glass and size). Preliminary screening of each assemblage was done in the Archaeomaterials Laboratory using these standardized analytical procedures. Visual observation also includes the use of a microscope and colour identification, standardised by means of Munsell Color (1976). Colour photography has been used extensively as well.

[^36]Horace Beck (1937) correctly pointed out the problems associated with colour recognition of many of the beads, particularly between the pale blue and pale green beads in the Mapungubwe collection. While standardised glass colours (Munsell 1976) have greatly assisted colour designation, there still remains a certain degree of subjectivity by the individual researcher.

The beads that were previously described in the literature, as canes or chopped beads, particularly from K2 and Mapungubwe, are now referred to as type Ia beads (a). The remainder in all the collections, unless specified otherwise, are small, type IIa, seed beads (b).
a). Ia $=d r a w n$ and chopped beads
b) IIa $=d r a w n$ with reworked ends (i.e. the ends have been rounded by heating or 'tumbling').

7.3.1 Refractive Index (R.I.)

Refractive Index provides a means for screening large numbers of beads without resorting to the initial expense and technical complexity of instrumental analysis. R.I. gives little indication of glass type, but methods have been presented for the direct calculation of refractive index of a glass from its composition (Sun 1947:282-287). The technique can be operated easily by inexperienced analysts. R.I. is a fast, sensitive, practically nondestructive technique, and highly reproducible. R.I. has been applied to other glass bead studies in southern Africa (Saitowitz et al 1994).
R.I. has an advantage over many other methods in that it is practically non-destructive and sample preparation is relatively simple. All that is needed is to polish a small inconspicuous area to give a scratch-free and flat surface of a few square millimetres.

There are many ways by which the refractive index of glass can be determined. One of the more convenient methods is based on the measurement of the critical angle of total reflection. The Raynor Dialdex refractometer, together with a sodium light source, was the instrumentation used to measure the refractive indices of the various glasses and three soapstone beads and a pendant excavated at Mapungubwe.

Refractive indices were used to select samples for further chemical analysis. The actual measurements, with an average standard deviation ranging from between $0.663-0.003$, are presented in Table 8.2.3.1.

7.4 INSTRUMENTAL TECHNIQUES USED ON THE GLASS

Attention was given to the feasibility, capability and availability of a number of analytical techniques for use in this thesis. Another consideration was selecting the best elements to examine in order to achieve the most satisfactory classification and discrimination results. Some of the choices were based on previous work and the recommendations of other researchers in the field, although no fundamental study to determine the best elemental variables (irrespective of analytical technique) has been published. Running costs were important considerations, as was the amount of material available, especially where the very small beads were concerned. A non-destructive technique is obviously the ideal.

7.4.1 Scanning Electron Microscopy (SEM)

A Cambridge S180 scanning electron microscope with a KEVEX energy dispersive X-ray fluorescence micro-analysis system was used to analyse a rust reddish/black (Munsell 7.5R 3/8) deposit on the inside central aperture of a Garden Roller bead. Many of the beads that were looked at had similar deposits (Fig. 8.2.1.1.).

Analysis was done in spot and raster mode. In spot mode the volume analysed was approximately 1 micron in diameter and in raster mode $4 \mu^{2}$. Operating conditions were: 20 $\mathrm{KeV} ; 30 \mathrm{~mm}$ WD and 200 seconds acquired time (Miller, pers. comm.) (Table 8.2.1.1.). ZAF software corrections were applied to the results to produce semi-quantitative analysis (Reed 1975). The elemental composition is expressed as oxides.

7.4.2 Atomic Absorption Spectrometry (AAS)

Initially, AAS analysis was chosen as the most appropriate method for a number of reasons. Firstly, it has the advantage of very rapid analysis of a single element in solution; secondly, it is good for samples of which only small volumes are available. It is a well known and highly recommended technique for both major and trace analysis of archaeological silicate materials and ceramics, and is routinely used. AAS has a low detection limit for many of the major and trace elements, including the rare earths (REE).

AAS has distinct cost benefits over other methods, but the technique is slow for multielemental analysis. Hatcher, Tite \& Walsh (1995) have recently compared the use of AAS with inductively-coupled plasma emission spectrometry (ICP-AES; now abbreviated to ICP), on standard reference silicate materials at the Research Laboratory for Archaeology and the History of Art in Oxford. They found that for most of the major elements, AAS and ICP results were very close. A minor disadvantage of ICP is that 100 mg of sample is preferred, for routine analysis, compared to 25 mg for AAS. They also agreed that AAS is restricted by the fact that it cannot measure concentrations for all elements rapidly. In both techniques the sampling procedure is destructive as well.

A pilot study was carried out on a Varian - Spectra AA 10 instrument at the Sea Fisheries Research Institute in Cape Town. Nine glass beads from different sites were selected for analysis (Table 7.4.2.1). The glass colour of samples \#1-8 were all visually classified as turquoise (blue-green - Munsell 5BG 7/4). Numbers \#8-9 were classified as dark shadow blue (Munsell 10B 4/4).

Six trace elements ($\mathrm{Cu}, \mathrm{Zn}, \mathrm{Pb}, \mathrm{Fe}, \mathrm{Mn}$ and Co) were selected for a trial study. To some extent this was an arbitrary choice, because, as I have mentioned before, there is no basic published material available that recommends the best elemental variables or analytical techniques for discriminating early glasses. Certain elements or impurities can be more useful characteristics than others. For example, in relatively recent publications, Hancock \& Aufreiter (1995) and Hancock, Chafe \& Kenyon (1994) considered chlorine and aluminium particularly useful for characterising ceramic or glass source materials.

Table 7.4.2.1. Metal concentrations measured in micrograms per gram (μ / \mathbf{g}).

Bead	Cu	Zn	Pb	Fe	Mn	Co
1. Phalaborwa	7636.2	137.5	624.0	2369	401.9	105.8
2. Mapungubwe 4033.6	158.9	342.2	6191	171.1	18.3	
3. Kruger	2272.8	95.0	140.0	5416	175.0	5.0
4. Kruger	4383.9	1572.4	14160	1234	2892.0	63.1
5. Schroda	3607.9	N.D.	1803.9	6900	992.2	N.D
6. Skutwater	3597.8	69.8	326.7	4873	161.5	14.7
7. K2	1833.0	64.8	379.6	2890	160.1	10.8
8. Diamant	350.8	92.2	985.9	3336	2259.0	189.5
9. Schroda	405.3	67.1	727.4	1522	871.4	213.8

The results showed precise differences in trace element concentrations. Unfortunately, the elements selected for analysis were not diagnostic. Although no further investigations using AAS were carried out for this thesis, future work may benefit from this technique, once the most suitable elements for the classification of glass samples and sourcing studies have been determined.

7.4.3 Electron Probe Microanalysis (EPMA)

EPMA is one of the few, general purpose, non-destructive techniques for major and minor element analysis. The instrument is easy to use and sample preparation is relatively simple. Unfortunately, lower limits of detection for many elements are insufficient for determining most trace elements. This is a standard procedure, relatively inexpensive and quick to perform. The sample, although mounted in resin, is not destroyed and can be used for further analysis if desired. The method consists of directing a beam of electrons, produced by an electron gun, on to a polished sample. The beam is sharply focused by the electromagnetic lenses through which it has to pass. The electron beam bombards the sample and produces fluorescent X-rays. Elements which are present in the sample are identified from the wavelength of the lines in the X -ray spectrum. For quantitative analysis the intensity of the X-ray lines from the specimen are compared with standards which have been set up in the machine, allowing concentrations to be estimated and recorded. The finely focused electron beam gives the technique the advantage of being able to analyse very small selected areas ($10-30 \mu \mathrm{~m}$).

The technique has been applied to a variety of glasses and geological materials (Willis 1986:861).

A Camebax Microbeam electron microprobe, with 4 W.D.S. spectrometers was used for these analyses in the Department of Geochemistry, University of Cape Town, where elements with atomic numbers >9 occurring in concentrations of $\sim 500 \mathrm{ppm}(.05 \mathrm{wt} \%$) are routinely analysed.

The following instrument conditions were used:

Beam current:
Accelerating voltage:
Beam size:
Analyzing crystals:
37.5 nA (average)

15 kV
20 microns
TLAP $\quad \mathrm{Na}, \mathrm{Mg}, \mathrm{Si}, \mathrm{Al}$
LIF200 $\mathrm{Fe}, \mathrm{Mn}, \mathrm{Ni}, \mathrm{Zn}, \mathrm{Cu}, \mathrm{Co}, \mathrm{Pb}$
PET $\mathrm{Ca}, \mathrm{K}, \mathrm{Ti} \mathrm{Cr}, \mathrm{S}$

Each sample was analysed at least three times, at 15 kV accelerating potential and a 37.5 nA (average) incident beam current using a de-focused electron beam ${ }^{3}$. In the case of the elements Sodium (Na), Silicon (Si), Potassium (K), and Chlorine (Cl) the counting time was reduced from 10 seconds to 5 seconds, in an effort to minimise diffusion and vaporisation, and to cause the minimum loss of sodium during the analysis. These compromise parameters have been found to give the most consistent results.

Low oxide totals for some of the analyses (Table 8.2.2.1), can possibly be explained by the displacement of a small proportion of volatile ions under the electron beam, although highly localised compositional heterogeneity is a more likely explanation (Henderson 1988). Water dissolved in glass could also be significant.

Round-robin glass standards (Brill 1972:110) used for the major element determinations were supplied by Dr Robert Brill, Corning Museum of Glass. Results were corrected using a ZAF software programme.

[^37]Table 7.4.3.1.
Abundance and identity of elements used in this study and ranges of analytes in the literature

Table 7.4.3.2
Glass bead analyses counting statistics.

QUALITY OF DATA

	Effective detection limit $\mathrm{ut} \%$	Lower limit of detection LLD (ppm)	Relative analytical accuracy \%
Si	$0.07 \mathrm{wt} \%$	5310 ppm	7.70%
NaO_{2}	$0.03 \mathrm{wt} \%$	2565 ppm	2.27%
$\mathrm{~K}_{2} \mathrm{O}$	$0.01 \mathrm{wt} \%$	1195 ppm	1.57%
Cl	$0.07 \mathrm{wt} \%$	700 ppm	7.68%
$\mathrm{Al}_{2} \mathrm{O}_{3}$	$0.03 \mathrm{wt} \%$	1140 pmm	3.64%
FeO	$0.25 \mathrm{wt} \%$	2710 pmm	23.00%
MnO	$0.20 \mathrm{wt} \%$	1785 ppm	11.40%
MgO	$0.10 \mathrm{wt} \%$	1000 ppm	2.81%
CaO	$0.10 \mathrm{wt} \%$	1670 ppm	1.89%
$\mathrm{P}_{2} \mathrm{O}_{5}$	$0.15 \mathrm{wt} \%$	1130 ppm	33.00%
CuO_{5}	$0.13 \mathrm{wt} \%$	2210 ppm	13.30%
$\mathrm{Sb}_{2} \mathrm{O}_{3}$	$0.11 \mathrm{wt} \%$	1710 ppm	11.24%
PbO	$0.40 \mathrm{wt} \%$	8805 ppm	27.48%

2σ ERROR (95\% CONFIDENCE LIMITS)

Relative 2σ error varies with concentration. In general:

$w t \%$ OXIDE	2σ ERROR
$10-100 \%$	$<1 \%$
$1-10 \%$	$<10 \%$
$<1 \%$	$<50 \%$

N.B. Reported values for volatile elements (especially $\mathrm{Na} \& \mathrm{~K}$) are generally lower than true concentration. As a result, the values for non-volatile elements may be slightly higher than the true concentration.

7.4.4 Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICP-MS)

As the University of Cape Town is not equipped for this type of analysis, the measurements were carried out by the staff of the Anglo American Research Laboratories in Johannesburg. The analytical instrument used was a VG PlasmaQuad inductively coupled plasma mass spectrometer (LA-ICP-MS). It utilises laser ablation for sample injection, making it possible to analyse samples with minimal damage. The method is capable of producing multi-element analysis over a wide range, with very low limits of detection. It has great potential for analysing archaeological specimens (as well as other antiquities), and can be recommended above more destructive methods such as AAS, ICP-AES and instrumental neutron activation analysis (INAA). LA-ICP-MS has considerable advantages over AAS, as it provides analytical data for a greater range of elements simultaneously.

LA-ICP-MS uses a short pulse of focused laser energy to vaporise a small area on the surface of the sample, thereby releasing nanogram quantities of material. The generated vapour is swept by a stream of argon carrier gas into the plasma, where the material is atomised and ionised for mass spectrometric isotope analysis. The ions produced within the plasma are extracted by a sampler and passed through a quadropole mass spectrometer, where they are separated according to their charge to mass ratio. A detector measures the intensity of selected ion beams. This results in a simple mass spectrum with characteristic high sensitivity, low background, and availability of isotope information. Results are obtained rapidly.

Definition limits for the mono-isotopic REE elements such as $\mathrm{La}, \mathrm{Pr}, \mathrm{Tb}, \mathrm{Ho}, \mathrm{Tm}$ and Lu are of the order of 0.05 parts per million. For the remainder of the Lanthanide group, the detection limit is 0.1 parts per million. Overall precision is $10-15 \%$ at the 95% confidence level.

The VG laserlab is built around a 500 mJ Nd-YAG laser operating at a wavelength of 1064 nm . The laser was used in the Q-switched mode. The operating conditions of the ICP mass spectrometer and the laserlab are given in Tables 7.4.3.

Table 7.4.4.1. Operating parameters of the ICP mass spectrometer and the laserlab

Icp-Mass Spectrometer	
Forward power/w	1350
Gas flow rates $/ \mathrm{dm}^{3} \mathrm{~min}^{1}$	
Cool gas	14
Auxiliary	0.5
Carrier	$1.30-1.40$
Laser output/V	1100
Power $\mathrm{mJ} /$ shot	6
Repetition rate HZ	10
Crater diameter $/ \mu \mathrm{m}$	± 150

Laser vaporization is a new technique, used for direct solid sampling applications. The solid sample is placed within the sample cell located on a computer controlled, motorised $\mathrm{X}-\mathrm{Y}-\mathrm{Z}$ stage. Samples are viewed through a colour CCD camera with 100X image magnification.

LA-ICP-MS Standards preparation.

Calibration standards of known composition were not available for the spectral analysis of glass, so a synthetic calibration sample was prepared. The 'model base' was produced by fusing together the main components $\mathrm{Si}, \mathrm{Na}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{K}$ and Al , using specpure oxides and a borate flux.

The following approximate composition was employed:
$\mathrm{SiO}_{2} 65 \%, \mathrm{Na}_{2} \mathrm{O} 9 \%, \mathrm{~B}_{2} \mathrm{O}_{3} 6 \%, \mathrm{CaO} 6 \%, \mathrm{Al}_{2} \mathrm{O}_{3} 4 \%, \mathrm{MgO} 5 \%, \mathrm{~K}_{2} \mathrm{O} 5 \%$
The mixture was fused in a platinum/gold crucible using a high temperature flame. The elements influence the temperature dependency of glass viscosity to varying degrees. Three fusions were therefore done on each sample, with intermediate crushing and grinding of the resulting glass disc. This resulted in a homogeneous solid solution. The resultant model base powder was spiked with specpure rare earth oxides, titanium and zirconium oxides and taken through the fuse and grind stages. Four glass discs were produced at nil blank, $25 \mathrm{ppm}, 50 \mathrm{ppm}$ and 100 ppm and these were used as calibration standards.

Calibration

The mass spectrometer was calibrated by ablating each standard at three different spots. This procedure was repeated after every ten samples to compensate for instrument drift.

7.5 PREPARATION OF GLASS SAMPLES FOR ANALYSIS

Sampling glass specimens for accurate instrumental analysis is often a difficult and laborious task, involving trial and error. In many instances preservation of the material is of great concern, especially when dealing with loaned pieces from museums and other institutions. This was a prime consideration in selecting the analytical techniques described above.

Electron microprobe sample preparation.

Sample preparation for the electron microprobe involved small samples of glass, approximately 1 mm in diameter, which were mounted in polyester resin and polished flat on a Buehler Ecomet V polisher, using successive grades of waterproof silicon carbide paper up to 1200 grit. The samples were finely finished on a Buehler Ecomet III polisher using 3 micron, $1 / 2$ and $1 / 4$ micron diamond pastes. Glasses are poor conductors of electrons and therefore a conducting surface layer of vacuum evaporated carbon was applied to the samples. This coating prevents localised charging and minimises subsequent distortion and deflection of the electron beam.

AAS sample preparation.

(1) Each bead (weighing approximately 0.1 g) was milled to a fine powder (the powder form is not absolutely necessary but it does speed up the dissolution of the material). Care must be taken to keep the powdering equipment clean to avoid contamination.
(2) The powder was weighed accurately (to within - 0.01 g) into an acid-cleaned Teflon container.
(3) 1 ml of deionised water (Milli Q grade) was added to the powder, plus 8 ml of 40% hydrofluoric acid (HF) and 2 ml of nitric acid $\left(\mathrm{HNO}_{3}\right)$. This solution was allowed to stand for 2 hours at room temperature. After 2 hours most of the powder is dissolved. 1 ml of concentrated perchloric acid was added to the mixture and heated on a hot plate at $120^{\circ} \mathrm{C}$ until just dry (Price 1985:230, Carter 1978:262-264). Precaution must be taken not to heat the mixture past just dryness as this causes charring of the residue and loss of the more volatile metals.
(4) The residue was dissolved in 10 ml of 1% nitric acid and the solution analysed by flame AAS (Atomic Absorption Spectroscopy). If the trace element concentrations are too low in the beads the solution has to be adapted for AAS using a graphite furnace. (Perchloric acid for digesting the glass for flame spectroscopy must be avoided, as it can damage expensive graphite furnace tubes).

Obviously, this sample preparation destroys the bead.

LA-ICP-MS sample preparation

Sample preparation is almost minimal. Any solid sample can be analysed in virtually any shape, form or surface texture. Use of the laser makes it possible to analyse small beads with minimal damage: a small crater results which is a few microns deep and across, virtually impossible to detect with the unaided eye.

7.6 RARE EARTH ANALYSIS

The Rare Earth Elements are frequently divided into two groups: Light (LREE), La to Sm, and heavy (HREE), Gd to Lu.

The REE occur at only trace levels. They are elements which are dispersed amongst a number of common major rock-forming minerals in the earth's crust, rather than being concentrated in a select few. Consequently, they form few natural minerals, but may be concentrated in common trace minerals such as zircon, monazite, garnet and tourmaline. These minerals are resistant to alteration, e.g., by weathering, and are, therefore, relatively stable in surface geological processes. The stability of the REE gives them an advantage over other elements for chemical characterisation:

When normalised to some reference materials (such as chondritic meteorites) the REE show smooth abundance patterns. Individual REE-bearing minerals have very distinctive patterns and can be easily recognised and described systematically (Fig. 7.6.1.).

Fig. 7.6.1.
Examples of chondrite-normalised REE diagrams of common heavy minerals showing distinctive patterning (Taylor \& McLennan 1985).

Since the raw materials of early glasses are made up of natural mainerals such as sand, flux, stabilisers, colourants etc. the REE patterns may provide an insight into the nature of these ingredients and provide a means by which different glasses can be 'fingerprinted'. REE were used in this study to investigate whether the REE signature could be carried through the glass making process into chemically distinctive types of glass beads. Geochemical confirmation may allow further characterisation of glass and provide definitive benchmarks for comparative studies.

Fig. 7.6.2.

Chondrite-normalised REE diagram of monazite and monazite sand (ppm)

 (courtesy of Richards Bay Minerals).
MONAZITE \& MONAZITE SANDS FROM RICHARDS BAY, SOUTH AFRICA

T Sand (ppm) * Monazite (ppm)

NOTE

Figure 7.6.2. is an example of how the REE-rich mineral, monazite, can exert a powerful influence on the REE pattern of its host. In this case monazite occurs as a detrital component in coastal dune sands at Richards Bay, Natal, South Africa. The REE pattern of pure monazite is clearly displayed in the sand despite several orders of dilution. This data (by courtesy of Richards Bay Minerals) was taken from sand sampled over an area of approximately 30 km in Richards Bay (Houchin, pers.comm.).

Compare the similarity between the REE monazite pattern and that obtained from a peculiar blob of 'glass' recovered from the site of Takuapa in Thailand (chapter 8.3.1).

8

RESULTS \& DISCUSSION

In this chapter, the results of various analytical procedures applied to the beads excavated from over thirty archaeological sites in southern Africa are reported. Eleven of the sites, such as K2, Mapungubwe, Schroda, Pont Drift and Skutwater were in the northern Transvaal. Ten were from Botswana. A representative sample of glass beads and 'wasters' from twelve potential source areas, including Egypt, Palestine, Syria, India, Ceylon, eastern and western Malaysia, Thailand, and Indonesia is also presented.

Where possible, the information has been summarised and presented diagrammatically or as tables. The results are presented in three sections: 1..Visual classification; 2. Chemical analysis; 3. Significance of REE profiles Discussion and evaluation follows each subdivision

8.1. VISUAL CLASSIFICATION

8.1.1 The Beads from southern African Iron Age Sites

Visual classification of the beads relied upon a number of criteria (outlined in Chapter 7), consisting of a series or levels of analysis which provide precise and repeatable taxonomy. Approximately 150,000 glass beads from over thirty archaeological sites in southern Africa were categorised according to these visual classification procedures. Two classes of drawn beads were noted, according to whether or not their ends have been rounded. The predominant bead type found in all the collections is that of monochrome, drawn beads of type IIa (Karklins, 1985). Except for the modern component, hardly any wound or decorated beads were found in the collections. This appears to be generally the case, although reference has been made to them in early publications on Mapungubwe (Fouché, 1937).

Figs. 8.1.1. to 8.14 represent tabulated summaries of the glass beads; Figs. 8.1.a. - 8.1.d. include illustrations of some of the different varieties of beads such as shell, bone and metal. Appendix I contains classification catalogues of all the artefacts from each site. Many of the beads from earlier excavations at K2 and Mapungubwe have no provenance and have been catalogued as 'no labels'.

Fig. 8.1.1.
Bead frequencies from Greefswald including Mapungubwe \& K2.

Fig. 8.1.2.
Bead frequencies from the northern Transvaal.

Fig. 8.1.3.
Bead frequencies from the eastern Transvaal.

Fig. 8.1.4.

Bead frequencies from Botswana.

Figas.La Differral beasl varietios frum K2.

Fig. 8.1.c.

a Glass seed beads. Types IIa \& IVa (Karklins, 1985).
b 'Trade wind' beads. Type IIa (Karklins, 1985).
c Garden Roller bead.
d Soapstone pendant.
e Modern beads. Types WIb, WId, WIIIa, WIIIb \& WIIq (Karklins, 1985). Probably made in Italy.
f Type If (hexagonal) (Karklins, 1985):

Fig. 8.1.d.
Variety of Garden Roller bead shapes and moulds.

8.1.2 Schroda Beads re-classified

A total number of 667 beads were recovered from Schroda. Of these, a substantial proportion (77\%) were covered with a heavy patina deposit. In others, the glass had deteriorated throughout the bead. Compared to the Pont Drift collection, which contained only 2% that could not be distinguished, this proportion was very high. As a result it was possible to classify only 34% of the entire assemblage (Hanisch 1980). Using conservation methods recommended by UNESCO, outlined in the previous chapter, I was able to improve the condition of the glass and increase classification to 98%.

An important reason for improving the visual description of the Schroda collection is that Hanisch (1980:169) reported a fair proportion of the beads (7.2\%) as white. This finding can be somewhat misleading, because white beads tend to be associated with a more modern period in southern African bead history - ca. AD 1600 onwards. It was, therefore, necessary to corroborate this information.

Subsequent re-evaluation of the beads in this study showed that the thick patina accumulated on the beads gave the wrong impression of a whitish/yellowish appearance. Once this deposit had been removed and the remaining glass stabilized, the colour underneath became discernable. This was especially true for translucent, dark shadow blue (Munsell 10B 4/4) and opaque, yellow (Munsell 5Y 8.5/10) glass beads.

Six hundred and twenty-six beads ($\mathrm{n}=626$) were excavated at Pont Drift. In contrast to the beads found at Schroda, only 12 or 1.92% of those recovered from Pont Drift were heavily patinated, so it was possible to determine their colour. Since relatively few specimens were affected, no conservation procedures were carried out on the beads. Hanisch (1980:282) was of the opinion that the beads from Schroda and Pont Drift were basically the same. Eight similar colour varieties were identified at Pont Drift, with the exception that no white beads were specified. An interesting feature of colour selection is the complete absence of 'Indian' red colour beads from Schroda. At Pont Drift and other more or less contemporaneous sites, such as K2, 'Indian' red beads were very popular.

Comparative chemical analysis carried out on some of the beads from both collections shows a difference between the two. The most obvious difference is that the majority of the Schroda beads have a relatively higher calcium content (in excess of 6.18\%) than those from Pont Drift. This concentration is far in excess of Hancock, Chafe \& Kenyon's (1994:257-259) findings, which showed that glasses with less than 3% calcium were susceptible to leaching and disintegration. The evidence for most of the beads analysed from Pont Drift discloses less than 3% average calcium content, and yet relatively few of them deteriorated. In this instance, the results do not support the theory proposed by Hancock et al (op. cit). Alternative suggestions are discussed below in section 8.2.5.

8.1.3 Comparative Source and Site Material

All the imported glass beads from southern Africa sites were compared to representative samples of material from a variety of potential beadmaking areas in Egypt, the Near East and Southeast Asia. Specimens from thirteen possible beadmaking locations were used, including Tel el-Amarna and Fustat in Egypt; Khirbet el-Minyeh in Palestine and Ba'albakk in Syria; Arikamedu \& Purdalpur in India; Ceylon; Gunang Wingo and Kambang Unglen in Indonesia; Gedong, Bukit Sandong and Bongkissam in eastern Malaysia; Kuala Selinsing and Sungai Mas in western Malaysia; and Klong Thom and Takuapa in Thailand.

Other than the decorated, visually distinctive beads, such as the Fustat Fused Rod Bead (FFRB) ${ }^{1}$ and mosaic ${ }^{2}$ beads (Fig. 8.1.3.1.), most of the source material consisted of seed beads, made from a range of opaque, translucent and transparent glass types and 'wasters' from Arikamedu. Except for the wasters, which contained a great deal of inclusions, the quality of the different glasses was relatively homogeneous, free of impurities and large air bubbles. The material from Palestine consisted of three glass bracelets, excavated at an Islamic burial from Khirbet el-Minyeh (AD 850).

In many instances, the seed beads from the overseas sites look very similar to the ones from southern Africa. A particular example is illustrated in Fig. 8.1.3.1.m. This bead from Sumatra, is almost identical visually (and chemically) to a seed bead excavated from a skeleton at Mapungubwe .

Over 300 unusual beads were excavated at Shikumbu and Mahlangeni. They are described as beads with unusual triangular cross sections (Fig. 8.1.3.1.q). Initially, they were thought to have been made of soapstone. They were chosen for chemical analysis because (1) there was no way of telling what material they were made from and (2) there were so many of them.

Colour photocopy reproductions, taken originally from colour photographs, illustrate some of the beads used in this study (Fig. 8.1.3.1 a-q).

[^38]Fig.8.1.3.1.a-q. Comparative source and site material.

a. Fustat Fused Rod Bead (FFRB). Fustat, Egypt. Yellow, white \& black 'eyes'. Opaque. Van Riet Lowe Collection.

C. FFRB. Fustat. 'Indian' red, yellow, green (opaque), clear (TP). George Scanlon, Cairo (\#2la-c).

e. Fustat. Olive green (TL), \& opaque 'Indian' red 'trailed' decoration. T'alhakimt, Van Riet Lowe Collection.

b. FFRB. Fustat, Egypt. 'Indian' red, green, white. Opaque. Gan Riet Lowe Collection.

d. Early Islamic bead. Opaque wound black with yellow dragged 'trials'. Van Riet Lowe Collection.

f. Fustat. Segmented beads.

Transparent turquoise. Van Riet Lowe Collection.

g. Fustat. Wound coil bead. Transparent turquoise. Van Riet Lowe Collection.

Fig. 8.1.3.1.a-q. Comparative source and site material (continued).

h. Palestine. Hebron bead. Wound. Opaque dirty yellow. Van Riet Lowe Collection.(\#58).

j. Southeast Asia. Sungai Mas. Translucent, dull royal blue with opaque white mosaic decoration. P. Francis Jr. (\#75a).

I. Southeast Asia. Sungai Mas. Mosaic with translucent green \& yellow canes (broken).
P. Francis Jr.

i. Palestine. Hebron bead. Wound. Opaque green.
Van Riet Lowe Collection. (\#59).

k. Southeast Asia. Sungai Mas. Mosaic with translucent blue canes (broken). P. Francis Jr. (\#74-75).

m. Southeast Asia. Sumatra. Kambang Unglen. 'Indian' red \& olive. Drawn, Translucent. (\#51).

Fig. 8.1.3.1.a-q. Comparative source and site material (continued).

NOTES

a-c. Fustat Fused Rod Beads (type beads ca.AD 900-1000).
e. Bead reminiscent of t'alhakimt and tanaghilt ornaments (Liu 1977:21). This particular bead was identified by the Director of the Museum of Arab Art, Cairo (1937) as 'Byzantine from Foustât'[sic].
h -i. Beads thought to have been made at Hebron ca. 18th century AD (van Riet Lowe Collection; Francis Jr.(1990:23-26)
g. According to Francis Jr. (1995) wound coil beads found in the Awad Collection from Fustat were made in China. This type of bead was also amongst the Fustat beads in the van Riet Lowe Collection. Similar looking beads were excavated by Caton-Thompson at Great Zimbabwe (1931).
k-l. Sherr Dubin (1987:348) is of the opinion that even though millifiore beads found in Southeast Asia resemble those of the Roman era, they differ considerably from actual Roman examples. She also suggested that the cane layers used to make this type of bead in Indonesia, were cut locally from preformed glass ingots made in the Roman Empire.
m . An almost identical bead, both visually and chemically was found on a Mapungubwe skeleton sample \#97 (Tables 8.2.2. \& 8.2.3.).
n-o. Furnace wound beads. Similar types have also been found at Great Zimbabwe.
p-q. According to Francis Jr. (1995:10), segmented beads and beads with unusual cross sections were also manufactured in Fustat.

Soapstone bead from Mapungubwe

Four soapstone beads and one soapstone pendant were excavated from different locations at Mapungubwe. The pendant is undecorated, and fashioned in a solid cylinder or rod shape. Unfortunately, the hole for suspension has been broken off. None of these artefacts have been reported previously. Their discovery warranted further investigation, because they are unique. Inquiry focussed mainly on the material that was used to make them and also on the method of manufacture ${ }^{3}$. Soapstone is a relatively soft and friable material (Talc is 1 on Moh's scale, serpentine is 3), so that fabricating very small beads, such as those found at Mapungubwe, to such perfection, is difficult to understand.

All the artefacts were first cleaned, measured and coded using a Munsell colour chart 8.1.1.(A). - (E). Three of these have been reproduced from colour photographs and are illustrated in Fig. 6.2.1. d.-g.

Two of the soapstone beads are cylinder shaped with worked ends. The the other two are very small oblate shaped beads of various proportions. The aperture diameters, drilled completely through all the bead, range in size from between 1.03 mm to 2.05 mm .
8.1.1.(A). Oblate bead

Site: Mapungubwe Hill
Excavators: Gardner \& Schofield (1934)
Skeleton: Skeleton exposed but not removed

Measurements:	D: 2.56 mm
	L: 1.05 mm
Aperture:	D: 1.03 mm
Colour:	Light olive green
	(Munsell $10 \mathrm{Y} 3 / 4$)

8.1.1.(C). Cylinder bead

Site: MST
Excavators: Coertzer \& Sentiker (1954)
Block: C2R $-6^{n \prime} /-12^{n}$ String nr ${ }^{76 / 54}$
Measurements

Colour: Light olive green (Munsell 10Y 3/4)
8.1.1.(B). Pendant (broken)

Site: Mapungubwe Hill
Excavator: A. Meyer (1993)
Surface finds:

Measurements:	D: 5.10 mm
	L: 12.11 mm
Aperture:	(broken)
Colour:	Dark olive green
	(Munsell 10 Y 2/2)

8.1.1.(D). Oblate bead

Site: MST E2: OV1
Excavator: Eloff (1968-1970)
Block: B8(d) DET. (Spit):-34"/-42"
Measurements: \quad D: 4.06 mm L: 1.04 mm
Aperture: $\quad \mathrm{D}: 2.04 \mathrm{~mm}$
Colour: Dark olive green (Munsell 10Y 2/2)
8.1.1.(E). Oblate bead

Site: E2
Excavator: Eloff (1968-1970)
Block: B70/10
Measurements: L:10.06mm
Aperture \quad D: 2.05 mm
Colour: \quad Yellow olive green (Munsell 10Y 2/2)

[^39]Fig. 8.1.3.1.(A). Micrograph of soapstone bead sample showing the top view with small grooves. Measurements D:2.56mm L:1.03mm.

8.1.4 Discussion of Visual Classification

Scanning electron microscopy (SEM) was used to examine one of the oblate soapstone beads (Figure 8.1.3.1.(A). The illustration shows he top view of the bead, accentuating a groove on the edge of the bead which could have been the result of suspending it from a piece of cord. Investigation of other areas illustrate striations or cut markings on the inside. These do not show any specific direction or orientation. The outside surface of the bead was smooth and well polished. The beads were probably made with a thin metal saw, or thin hard plate with a serrated edge (Harger 1941:137). The R.I. of this bead is 1.5833 ± 0.0026).

As there is no prior evidence at Mapungubwe or K2 of indigenous manufacture in the form of chippings or other factory waste, and no known recorded soapstone deposits in the area, it is possible that these finds were trade goods emanating from the eastern Transvaal (Evers, 1979; Harger 1941). They are rare examples of soapstone artefacts retrieved from any Iron Age sites in the Limpopo Basin, and outstanding examples of the dexterity involved in their production.

The dominant type of glass beads described and classified in this thesis, both whole beads and fragments, were made by the drawn, type IIa method (Karklins 1985). They are small, monochrome, oblate shape beads, made in a relatively limited range of colour. They have been referred to as seed beads throughout this work. The average size of most of the beads varies from between $2.0 \mathrm{~mm}-2.5 \mathrm{~mm}$.

Seed beads, made by the drawn technique, are associated with mass production rather than individual working. Some of the beads are of the same colour but made in different shades. This is a particular characteristic amongst the blue green varieties. It can probably be attributed to slight differences in batch ingredients. The colours include opaque black or plum-colour, bright navy blue, light [shadow] blue, 'Indian' red, yellow, light and dark yellow ochre [marigold] ${ }^{4}$, green, and turquoise. A total of 29 hues have been annotated, although for presentation purposes this number has been condensed (Figs. 8.1.1. to 8.1.4).

Many of the beads from various sites, sometimes hundreds of kilometres apart, are so similar that it is almost impossible to distinguish between them. In southern Africa, this was presumably due to the restricted number of types available in the trade before European contact. Acceptance of these varieties probably set the pattern of consumer demand which has lasted for centuries, thus illustrating the conservative and discerning nature of the customers.

The beads are not uniform in shape and size. However, one particular kind of seed bead is quite distinctive. It is found in translucent, yellow, light and dark marigold (Munsell 2.5Y 6/10-7.5YR 6/10), light sage green (Munsell 5GY 5/6), turquoise, black and dark mauve colours. They have characteristically small aperture diameters, and are uniformly spherical rather than oblate shaped. They occur in are small sizes ($\pm 2 \mathrm{~mm}$) and larger ones ($\pm 3 \mathrm{~mm}$). Microscopic examination of a polished section showed the glass to be clear and homogeneous, and almost free of impurities and air bubbles. These beads were only found at Mapungubwe, particularly on skeletons, including MK 1 (original gold skeleton), MK 14 and MK 19.

The small, glass, monochrome, seed beads found at southern African sites, are also ubiquitous at archaeological sites throughout the Indian Ocean Rim, such as India, Sri Lanka, Malaysia, Indonesia, Thailand, Philippines and Vietnam. These were used for chemical analysis in this thesis. Francis (1990:1), has termed them Indo-Pacific beads and describes them as
...(s)mall, usually under 6 mm in diameter. They are undecorated and come in a limited range of colours: various hues of opaque red, orange, green, yellow and 'black', translucent blue and green and less often translucent violet, amber, and clear and opaque white.

No bright orange (Munsell 3.75YR 6/14 - typically found in Southeast Asia) or white colour beads occur in southern African between AD 900 - AD 1250. Translucent oyster white (Munsell 5GY 9/1) first appear after ca. AD 1600, and opaque white (Munsell

[^40]N9.5/90.0/R) appear much later ca. 1800s (Saitowitz, 1990). To date, none of the orange beads have been identified even in more modern collections. Four ($n=4$) beads identified as clear crystal (Munsell N8.25/63.65R) were selected for chemical analysis.

One of these was initially misidentified. Visually the bead was classified as an imported, clear crystal, wound glass bead. However, chemical analysis (Tables. 8.2.3.1. \#93) showed that it contained 63% calcium. Other than chemical analysis there was no way of establishing this information. There is no reason to believe that this bead was imported as other examples of local stone bead technologies have been found. Gardner (1963:34) for example, reported on what he considered to be an indigenous rock crystal bead that was found with incomplete drilling at each end of the sphere. The soapstone bead industry, already referred to, would also be included in this category.

Very few. decorated wound beads occur at any of the Iron Age sites mentioned so far, except those from later colonist-contact occupation. This is regrettable as they offer wide scope for investigation.

Only one striped bead was identified from the entire Greefswald collection (MAP 40: APPENDIX I). It has a black background with an 'Indian' red stripe. Other striped beads (Table. 8.2.3.1.- sample \#198) were found at Shikumbu in the eastern Transvaal.

The European component of the collection from Botswana varies from elaborate Venetian wound beads to hexagonal (cornerless cube) facetted drawn beads (Fig. 8.1.c.). The distribution of these is attributed to Reverend Campbell (Wilmsen, pers. comm.) who took large quantities of glass trade beads with him on his missions throughout Botswana and the eastern Cape (Campbell 1822: 228-274).

Generally, the beads recovered from sites in Botswana represent four classes of beads from different chronological sequences. These are described as 'Early Iron Age', Later Iron Age', 'trade wind' and European beads. Interestingly, the beads from the lower levels of Bosutswe ($70-100 \mathrm{cms}$) differ significantly to those found in upper levels, in that they resemble 'Early' Iron Age beads such as those from the Waterberg dated AD 750, while the rest of the beads from the upper levels resemble what are known as the 'trade wind' beads.

The Mapungubwe sample is characterized by a high proportion of black beads, contrasting with assemblages from K2, where turquoise is the prevalent colour. It is not clear whether this marked absence of black was due to change in supply or whether it was a local phenomenon based on consumer demand.

The glass beads from these sites represent a narrow range of types compared to the range of beads that was probably available on world-wide markets at the time. The dominant bead-type excavated from all the Iron Age sites is monochrome, type IIa seed bead. Types IIb and IVa are the next most frequent. Most of the others (including If, WIb and WII) account for less than 1% of the beads in each sample. Bead types IVa, If \& decorated wound beads such as WIIIa and WIIIb (Karklins 1985) are considered to be much more modern. 'Indian' red or Redwood on green core beads were recovered from most of the sites but very few from Mapungubwe Hill and none from Schroda.

The beads described here are distinguished from those referred to as 'trade wind' (van der Sleen 1967 \& Davison 1972), which I consider to be from a later sequence introduced by the Portuguese. The 'trade wind' colours are very drab and the beads are very misshapen and usually larger than the ones found at these sites.

The other bead varieties found at K2 and Mapungubwe are similar except that no Garden Roller beads were found at Mapungubwe.

The two visually distinct bead types believed to be Early Islamic glass, and identified by Francis (1995:7-10) as having been made in Fustat, were excavated at southern African sites. Three segmented beads were found at Shirbeek, and over 300 unusual cross section beads (triangular) were found at Shikumbu (Fig. 8.1.3.1.q.). The major and minor elemental composition of the beads from Shikumbu and Mahlanegni are almost identical. The REE trace-elements are comparable to beads made at Fustat (Table 8.2.2.1).

8.2 CHEMICAL ANALYSIS

8.2.1 Scanning Electron Microscopy (SEM) of Garden Roller and soapstone beads

Scanning electron microscopy was used to examine the reddish (Munsell 2.5YR 3/8)/black deposit found on the inside of Garden Roller beads and also on one of the small soapstone bead excavated from Mapungubwe. Semi-quantative abundances within the Garden Roller were obtained with SEM (Table 8.2.1.1.) (Miller, pers. comm.).

Garden Roller bead from K2

The majority of the Garden Roller beads reported on in this study were found broken, being split in half down the centre. In some of the beads the glass is very 'bubbly' with large air pockets. Others have the appearance of the glass having been stirred or 'whirled'. Most of the beads have a reddish/black deposit in the central groove area, particularly on either side of the aperture. The same colour deposit is found in the matrix of the glass, in some of the 'whirls'. Chemical analysis of the blackish deposit showed a high iron (FeO) content.

Table. 8.2.1.1. Chemical analysis of deposit found in the glass matrix of a Garden Roller bead.

Composition	Weight \%
SiO_{2}	53.8%
TiO_{2}	0.5%
$\mathrm{Al}_{2} \mathrm{O}_{3}$	4.9%
FeO	14.2%
NiO	6.9%
CuO	5.3%
CaO	2.8%
$\mathrm{~K}_{2} \mathrm{O}$	7.6%
$\mathrm{P}_{2} \mathrm{O}_{5}$	1.1%
SO_{3}	2.2%
Cl	0.7%

Fig. 8.2.1.1. Broken Garden Roller beads showing reddish/black iron deposit and large air bubbles. Most of the Garden Rollers examined in this work have similar characteristics.

8.2.2. Electron Microprobe Major and Minor Elemental Analysis (EPMA)

One hundred and seventy four ($\mathrm{n}=174$) archaeological glass samples, including beads and glass 'waste' material were analysed. The major and minor elemental concentrations are given in Table 8.2.2.1. The constituents of the glass together with their minor colourants and additives were present in detectable amounts. EPMA was used to determine ($\mathrm{n}=14$) major and minor elements.

8.2.3. REE and Trace Element Analysis

REE analyses on one hundred and fifty ($n=150$) beads from ($n=33$) archaeological sites were obtained using LSA-ICP-MS. Analytical techniques employed have been discussed in Chapter 7.

The REE and trace-element concentrations of zircon and titanium are presented in Table 8.2.3.1. Zirconium is most commonly found in nature as the mineral zircon (ZrSiO_{4}). Titanium also commonly occurs in the mineral ilmenite. Both minerals often exist as a heavy mineral component in dune sands.

REE chemical analyses of the glass presented here have provided precise information suitable for sourcing studies. The Ce anomaly would have derived from the fluxing agent under strongly oxidising conditions, as for example are present in sea water. It is most likely that the REE content, including the LREE and HREE slope; accessory phases; and enriched or negative and Eu anomalies would have stemmed from the rock source and ultimately from the sand.

8.2.4. Discussion of Results

Major and minor elements.

Soda-lime-silica was the base composition or predominant type of glass used to make most of the beads investigated for this thesis. Of these, 169 contained relatively high amounts of sodium (about $6-13 \%$) and lower amounts of potassium (under 6\%). The potassium content of two wound beads from Syria (\#15 \& 16), and in three Indian samples (\#32, 35 \& 38) was particularly high (between 14.34% - 17.89\%) (Table 8.2.2.1).

Generally, there is an inverse relationship between sodium and potassium content. In some cases, particularly in very high lead glasses, potassium is usually very low. Predictably, the silica content decreases as the lead increases as well, and some high lead glasses showed higher refractive indices.

A notable difference was detected in the potassium of glass rods from Tel el-Amarna ((Table 8.2.2.1-\#162-173a). None of the fourteen samples ($\mathrm{n}=14$) contained high $\mathrm{K}_{2} \mathrm{O}$; this contradicts Miles (1948:55), who reported that most of the glasses from Tel el-Amarna contained significant $\mathrm{K}_{2} \mathbf{O}$. Possible reasons for this would include trade or secondary worked glass, which would support the argument presented in Chapter 3.3.

I have already discussed in previous chapters fluxing or alkali metals, which are essential ingredients in glassmaking, noting the variety of alkali salts such as carbonate, bicarbonate,
chloride, and sulphate. Determining the alkali is problematic, particularly Na , and unfortunately could not be accomplished using micro-probe analysis.

Calcium and Magnesium.

The CaO versus MgO of all glass samples show good correlation. The Ca (lime) and Mg of these early glasses was probably added to the glass batch unintentionally, either with the silica or the alkali. This is supported by Tumer's suggestion (1955T:282-297) that the calcium, magnesium and chlorine content of glasses made at Fustat and Tel el-Amarna could have come from either (1) the sand found south of Cairo near the Nile to Luxor, which contains relatively high proportions of calcium, or (2) salt from evaporated Nile water which could have had sodium and potassium carbonates, chlorides and sulphates as well as calcium and magnesium carbonates.

Alternatively, calcium could very well have been added intentionally in the form of marine shell fragments which probably would have been burnt first to remove the CO_{2}. Some very early recorded batch recipes specifically refer to the addition of calcium or lime as discussed in earlier chapters.

Another feature which should be noted is the calcium, magnesium and lead content of the distinctive bright orange beads, associated with Southeast Asian sites, but not southern African. Analysis by Harrisson (1962:237) revealed that orange beads with very light black striae from Sarawak in eastern Malaysia contained 3.8 - 3.9% calcium; $0.14-0.15 \%$ magnesium and $0.61-0.75 \%$ lead. Compared to our analytical data on a bright orange bead from western Malaysia, the calcium, magnesium and lead measurements were much higher (Pulau Kelumpang \#73 - Table 8.2.2.1.).

Three samples \#64, $65 \& 69$, this time from eastern Malaysia, were found to contain extremely high quantities of calcium. The beads range from opaque to transparent. The overall chemistry and R.I. are very similar. The beads were all manufactured by the wound technique, WIb \& WIIk (Karklins, 1985).

Lead (Pb).

Eighty-four ($\mathrm{n}=84$ or 48%) specimens out of the total of one hundred and seventy-four ($\mathrm{n}=174$) contained detectable amounts of PbO . Nine contained appreciable amounts, ranging from $13 \%-60 \%$.

Chemical analyses of Islamic glasses by Sayre et al (1961:1824-Table 4.6.1) show lead in amounts of up to 36%. They also note that typical Islamic 8 -10th century soda-lime glass contains a low content of antimony and high lead.

Brill (1991:28) acknowledges that
...In the West, the earliest presently known uses of lead as a major ingredient in a base composition was used in emerald green Islamic cameo glasses of the 10-11th centuries and in certain Eastern European glasses, most often in the form of beads.

A most significant find was the high lead and antimony (Sb) content of glass beads excavated at Mapungubwe and Skikumbu (Table 8.2.3.1. - \#'s 151, 151a, 198 \& 200). Two are yellow seed beads from different Mapungubwe burials. This evidence supports

Brill's (1991:28) findings that lead antimonate $\left(\mathrm{Pb}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}\right)$ was used as the colouring agent in yellow opaque glasses. These data provide an important benchmark for future analysis. They are also typical of the visually diagnostic beads described above as 'uniformly spherical' - rather than oblate shaped seed beads, with relatively small aperture diameters.

The beads from Shikumbu are also seed beads but do not have the same physical attributes as those from Mapungubwe. Some of them have distinctive striations owing to the presence of numerous air bubbles. Neutron activation detection of antimony in similarly described modern glass beads (after AD 1660) have been reported by Hancock et al. (1994) \& Kenyon, Hancock \& Aufreiter (1995). The Shikimbu samples could be part of the modern component and belong to this group. Unfortunately, neutron activation is not a suitable technique for lead analysis and, therefore, no such information is available. These data are unusual and therefore can be considered diagnostic.

According to (Davison 1974), 'trade wind' beads also contain antimony.

Alumina.

Hancock et al (1994) also describe Al as being very useful in characterising glass source materials, but they overlook the fact that it also contributes towards the durability and strength of the glass and is therefore an important ingredient. In their study, most of the deteriorated beads contain less than $1.2 \% \mathrm{Al}_{2} \mathrm{O}_{3}$, which is similar to the Schroda beads (with one exception at 9.51%). On the other hand, the Pont Drift beads, which did not deteriorate, have considerably higher $\mathrm{Al}_{2} \mathrm{O}_{3}$ content, ranging between 7.83% and 11.14%. Further studies using Al as an indicator would be constructive.

Overall, the chemical differences in the glass composition used to make the beads in this study is small. This is not surprising when considering that the relative proportions of major and minor elements manifest in batch components, such as soda, lime, and silica are rather limited. However, results of this work are important as certain inferences can be made about 1) changes in the chemistry of glass technology 2) the use of local raw materials and; 3) differences in batch material. Recent work looks at glass beads within a particular time range and creates chemical profile controls against which beads of unknown or uncertain age can be compared (Kenyon et al (1995). Major and minor-elemental analysis have a limited application for sourcing studies. For this reason I decided on trace element characterisation, using the rare earth elements (REE) as tracers.
(8) eastern Malaysia (9) western Malaysia \& (10) Thailand.

Sample	UCT accession	Location	Colour	Diap	Type	SiO2\%	Na2O\%	K20\%	Cl_{6}	A1203\%	Fe 2 O 3 c	MnO\%	MgO\%	CaO\%	P205\%	C00\%	CuO\%	S6203\%	$\mathrm{PbO} \%$
.	$+$	SOUTH AFRICA (Norlhem Transyaal) Site: K2																	
86	K2-567-127	K2-TS3-layer 2	shadow blue	TL	Ia	66.70	13.76	3.07	0.71	3.17	1.31	1.34	3.80	6.61	0.26	ND	ND	ND	ND
87	K2-632(i)-128	K2-TR-J54/a1/1	TP turquoise	TP	Ita	67.63	11.56	223	0.67	10.39	2.27	ND	0.63	3.87	0.11	ND	1.23	ND	ND
88	K2B-650-54	K2B-BLOCK: 10 -layer 13	blue green	OP	la	61.47	15.66	259	0.93	5.58	1.26	ND	5.54	5.68	0.39	ND	0.10	ND	0.89
89	K2-466-53	KS.skeleton No.60	deep turquoise	TL	IIa	66.22	12.75	2.53	0.67	10.05	1.46	ND	0.34	2.69	0.10	ND	0.91	ND	ND
90	K2-463-51	KS. skeleton No. 18	yellow	OP	Ila	61.98	13.80	2.99	0.93	5.78	1.28	0.24	3.96	4.20	0.38	ND	ND	ND	5.32
91	K2-595-126	K2-TS6-layer 5	"Indian" red	OP	1Ia	63.79	11.19	3.49	0.82	9.44	3.97	ND	0.64	2.73	0.13	ND	0.35	ND	ND
92	K2-466-52	KS. skeleton No. 60	blue green	TP	IIa	6282	13.04	3.65	0.60	9.01	1.08	ND	0.43	1.46	0.10	ND	0.10	ND	ND
AA	352-K2	K2-B3 TS 3.2 layer 1	turquoise	TP	Ila	6230	13.27	2.66	0.89	5.76	1.21	0.11	0.53	203	0.09	ND	0.79	ND	0.18
AA	353-K2	K2-B3 TS 3.2 layer 1	turquoise	TP	Ha	67.32	13.47	3.03	0.67	7.04	1.44	ND	0.57	2.15	0.13	ND	1.02	ND	0.13
AA	354-K2	K2-B3 TS 3.2 layer 1	turquoise	TP	Ila	61.20	14.03	279	0.67	6.24	1.55	ND	0.98	3.76	0.17	ND	0.59	ND	ND
	+	Site: Mapungubwe Ifill (MST \& E2)																	
	MAPK-239-129	A3M. $3^{76} /$-42"	clear crystal	TP	Ita	ND	63.00	ND	ND	ND	ND	ND							
94	MAPK-17-130	MK. skeleton No. 14	deep turquoise	OP	IIa	63.27	14.22	3.32	0.92	5.40	0.86	ND	5.69	4.42	0.26	ND	1.12	ND	0.35
	MAPK-26-59	M: 5.1.11'20'5'1939 (skeleton)	celedon green	OP	WIb	60.06	15.36	280	0.67	6.07	1.32	ND	5.46	5.57	0.43	ND	1.26	ND	1.58
96	MAPST-300-63	MST-B3M-Z1-6 dosie 43/54	blue green	OP	Ila	51.20	14.46	230	0.70	5.00	0.68	0.07	5.03	4.33	0.24	ND	1.20	ND	5.19
96 a	MAP-BB45-302	MK. skeleton No. 23	green	TL	IIa	57.97	9.61	228	0.65	4.81	1.30	ND	3.73	5.34	0.36	ND	1.02	ND	15.04
96b	MAP-BB45-303	MK. skeleton No. 23	mauve	TL	IIa	60.09	1296	3.01	0.79	6.55	1.44	1.71	5.66	6.96	0.51	ND	ND	ND	ND
97	MAPK-47-140	MK. skeleton No. 23	"Indian" \% olive	TL	Па	6269	13.84	220	1.15	8.52	4.43	ND	0.83	273	0.06	ND	ND	ND	ND
98	MAPST-355-64	MST-layer 2(i): Block :F4 B6	blue green	OP	11a	5205	13.36	245	0.68	4.02	0.76	0.09	4.97	4.39	0.39	ND	1.19	ND	5.79
99	MAPK-189-60	MK3-layer 5: Block :A1 B15	medium bright green	OP	IIa	59.12	13.50	280	0.80	5.76	1.43	0.21	5.12	5.41	0.46	ND	1.93	ND	4.53
100	MAPK-196-62	MK3-layer 3: Block:A2 B8	yellow	OP	IIa	56.47	13.77	2.61	0.83	5.45	1.40	0.45	4.69	4.92	0.41	ND	ND	ND	6.59
101	E2-703-65	E2-Block:B11 DET:-12"-18".	yellow	OP	IIa	56.85	1260	258	0.79	5.53	1.52	0.44	4.36	4.55	0.46	ND	ND	ND	8.81
102	MAPK-196-6I	MK3-layer 3: Block:A2 B8	blue green	OP	Пa	61.88	15.50	3.04	0.97	5.81	1.50	ND	4.42	4.96	0.46	ND	1.11	ND	0.34
149	BB17 TQ-163	MK. skeleton No.14:133	blue	TP	IIa	64.64	14.10	0.83	1.35	1.62	0.65	0.21	3.78	9.64	0.17	ND	ND	0.29	0.95
150	BB17 GR-164	MK. skeleton No. 14:133	green	OP	Ша	59.44	14.37	3.30	0.87	5.19	1.03	ND	5.62	4.43	0.28	ND	217	ND	3.54
151	BB17 YE-165	MK. skeleton No. 14:133	bright yellow	OP	IIa	50.42	10.60	2.34	0.63	4.42	0.91	0.50	5.09	4.21	0.24	0.08	0.22	0.17	18.93
151a	BB44-ZIM-143	MK. skeleton No. 19 F.O.G.G.A	yellow	TL	IIa	50.72	10.69	255	0.80	4.60	1.06	0.70	4.90	4.19	0.27	0.12	0.15	0.12	17.12
152	BB-709-166	Shirbeek	turquoise	TP	Segm	60.24	11.88	1.28	0.13	235	ND	ND	ND	7.16	ND	ND	221	ND	5.87
153	BB370 OL-167	MST KB:B1 Layer 1 (1)	olive	TL	1Ia	6261	11.06	1.09	1.49	7.88	244	ND	1.08	3.79	0.12	ND	ND	ND	2.34
154	BB40 AM-168	302 F.E.G.A Ex No 1	dark marigold	TL.	IIa	59.28	13.36	3.20	0.89	5.18	0.89	0.40	4.62	4.17	0.32	ND	ND	ND	6.27
	\#	Site: Pont Drift																	
104	PON-9-74	TPD 1/2 OPG 2:A1 layer 8	bright dusty yellow	TL	II	64.59	12.25	3.50	0.72	8.77	1.29	ND	0.69	3.70	0.06	ND	0.45	ND	ND
105	PON-21-72	TPD 1/2 OPG 2:B1 layer 6	blue green	TL	IIa	63.18	1284	3.12	0.93	11.14	241	0.07	1.03	3.81	0.19	ND	0.71	ND	0.10
106	PON-37.71	TPD 1/2 OPG 2:2A layer 6	blue green	TL	Ila	63.59	9.24	3.30	0.74	10.63	2.06	ND	0.73	262	0.05	ND	0.10	0.07	5.49
107	PON-47.75	TPD 1/2 OPG 2:2AA layer 6	TP turquoise	TP	IIa	60.58	1276	3.31	0.90	10.50	243	ND	1.17	3.90	0.16	ND	ND	ND	2.17
. 108	PON-61-73	TPD 1/2 OPG 2:2B layer 11	brighi dusty yellow	TP	Ila	62.96	1243	3.19	0.90	10.99	229	ND	0.99	3.76	0.17	ND	0.73	ND	ND
AA	349.PON	TPD 1/2 OPG 2:B1 layer 6	TP turquoise	TP	IIa	61.37	14.05	3.27	0.92	10.79	219	0,09	0.97	0.69	0.23	ND	0.69	ND	ND
AA	350-PON	TPD 1/2 OPG 2:B1 layer 6	TP turquoise	TP	IIa	66.17	14.87	3.06	1.08	7.94	1.45	ND	0.55	252	0.13	ND	0.90	ND	ND
AA	351-PON	TPD 1/2 OPG 2:B1 layer 6	blue green	TP	IIa	66.17	14.20	3.02	1.18	7.83	1.48	ND	0.56	3.72	0.12	ND	0.84	ND	ND

(8) eastern Malaysia (9) western Malaysia \& (10) Thailand (continued).

Sample	UCT accession	Location															CuO\%	Sb203\% PbO\%															
103		SOUTH AFRICA (North mestem Transval)																															
	\#	Site: Makahane																															
	K?-MAK2-125	Surface: south terrace: west area celedon green		OP	Wh	60.85	14.25	2.31	0.84	5.68	1.40	ND	5.16	6.66	0.39	ND	1.01	ND	1.23														
189	K?-MAK2-203	Lower settlement	bright navy	TP	wh	68.84	9.54	3.23	0.74	5.26	1.92	0.45	289	4.72	0.33	ND	ND	ND	ND														
190	K?-MAK2-204	Lower settlement	med. bright green	TL	Ha	61.49	11.08	3.39	0.67	6.56	1.60	ND	4.49	7.39	0.63	ND	1.40	ND	1.70														
191	K2-MAK2-205	Lower settlement	med. bright green	TL	Ila	59.77	12.82	3.06	0.81	6.63	1.73	ND	5.26	7.56	0.70	ND	1.22	ND	1.11														
125	*	Site: DiamantDIA-D1-17																															
	AUK-1-98		shadow blue	TL	Ia	64.73	14.22	289	0.80	3.34	1.55	0.71	4.69	6.54	0.24	ND	ND	ND	0.31														
126	AUK-1-133	DIA-D1-17 Site: Goegap	bright shadow hlue	TP	Iha	7205	10.89	287	0.76	3.51	1.04	0.47	3.73	4.58	0.27	ND	ND	ND	ND														
127	K? GOES-99	GG2-SquareI: 1 -layer 2	TP turguoise	TP	Ia	68.26	12.47	5.21	1.23	1.10	0.52	ND	1.29	8.88	0.67	ND	1.29	0.17	ND														
2	BOT:785-56 !	botswana																															
		! Site: Kgaswe																															
		KG-Hut floor (in pot)	blue green"Indian" red	$\mathrm{OP}_{\mathrm{OP}}$	ILa	63.6363.86	13.47	3.233.47	${ }_{0}^{1.63}$	8.64	3.84	ND	0.56	214	0.16	0.35	ND	ND	NDND														
	BOT:785-55	KG-Hut floor (in pot)								8.24	1.33	ND	0.47	227	0.11	ND	0.85	ND															
													4.20		0.94	ND	ND	ND	ND														
3	BOT:786-66	MAT-281.275: $55-65 \mathrm{~cm}$	shadow blue	TP	Ia	67.66	13.71	298	0.89	3.78	1.33	0.78		5.76																			
		Site: Nqome																															
5	BOT:779.69a	NQ-40.00: 60.70 cm	TP turquoise	$\left\|\begin{array}{c} \mathrm{TP} \\ \mathrm{TP} \\ \mathrm{OP} \end{array}\right\|$	Ita	67.10	10.14	3.51	1.16	3.86	0.96	0.33	4.81	7.90	0.76	ND	ND	ND	ND														
	301:776-68a BOT:77467	NQ-180w. $107 \mathrm{7}: 60.70 \mathrm{~cm}$	shadow blue blue green		La	$\begin{aligned} & 67.17 \\ & 63.37 \end{aligned}$	$\begin{aligned} & 11.31 \\ & 12.13 \end{aligned}$	$\begin{aligned} & 3.33 \\ & 3.25 \end{aligned}$	$\begin{aligned} & 0.73 \\ & 0.61 \end{aligned}$	$\begin{aligned} & 291 \\ & 8.58 \end{aligned}$	$\begin{aligned} & 0.69 \\ & 1.27 \end{aligned}$	$\begin{aligned} & 0.48 \\ & \text { ND } \end{aligned}$	$\begin{aligned} & 5.46 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 6.94 \\ & 216 \end{aligned}$	$\begin{aligned} & 0.79 \\ & 0.14 \end{aligned}$	$\begin{aligned} & \text { ND } \\ & \text { ND } \end{aligned}$	$\begin{gathered} \text { ND } \\ 0.78 \end{gathered}$	$\begin{aligned} & \text { ND } \\ & \text { ND } \end{aligned}$	ND														
6		NQ-80.625: $40-50 \mathrm{~cm}$																															
6 a	BOT:728a-228	Site: Bosulswe Surface: Block 5 celedon green		OP	Wb	60.41	1294	289	0.77	6.40	1.38	ND			0.47	ND			1.41														
		East africa																															
13	VRL-93a VRL-92a	Sofala dirty yellow Sofala "Indian" red Site: Zanzibar		OP	Ila	57.99	9.60	2.06	1.14	7.49	241	0.57	1.71	10.18	0.54	ND	ND	ND	2.99														
14				OP	IIa	63.52	8.43	208	1.38	10.90	4.49	1.25	287	0.19	ND	0.57	ND	ND	ND														
134	$\begin{aligned} & \text { VRL-186 } \\ & \text { VRL-187 } \\ & \text { VRL-188 } \end{aligned}$	$\begin{aligned} & \text { Zanzibar } \\ & \text { Zanzibar } \\ & \text { Zanzibar } \\ & \hline \end{aligned}$	"Indian" red	OP	Ila	65.49	7.81	0.93	1.39	7.24	5.61	ND	0.86	6.69	0.09	ND	0.41	ND	ND														
134a			sea green	TP	$\begin{aligned} & \text { Ha } \\ & \text { Ha } \end{aligned}$	$\begin{aligned} & 61.98 \\ & 59.97 \end{aligned}$	$\begin{aligned} & 11.96 \\ & 1239 \\ & \hline \end{aligned}$	$\begin{array}{r} 264 \\ 2.54 \\ \hline \end{array}$	0.93 0.86	$\begin{array}{r} 6.37 \\ 6.37 \\ \hline \end{array}$	1.55	ND	4.98	6.67	0.54	ND	1.37	ND	ND														
134b			Zanzibar yellow								1.24	0.96	6.44	6.60	0.48	ND	ND	ND	2.54														

MS = Istael Museum
$\begin{aligned} \text { - } & =\text { Van Riet Lowe Collection } \\ \text { WM } & =\text { Wellington Museum }\end{aligned}$

Sample	UCT accession	Lecation	Colour	Diap	Type	S102\%	Na20\%	K20\%	C1\%	A1203\%	Fe203\%	MnO\%	MgO\%	CaOg	P205\%	CoO^{2}	CuO\%	Sb203\%	PbO\%
		EGYPT																	
	WM	Site: Tel el-Amama																	
162	UCT-WEL	Tel el-Amarna	green	TL	bead	79.05	6.67	0.60	0.99	1.04	0.45	ND	0.17	1.21	ND	ND	1.96	ND	4.83
26	VRL-FUS-20	Tel el-Amarna	turquoise	TL	rod	71.60	7.80	1.46	1.46	0.67	0.50	ND	3.43	6.95	0.12	ND	1.20	0.78	ND
163	UCT. WEL	Tel el-Amarna	bright navy	TP	rod	68.77	9.14	2.66	0.96	1.72	0.41	ND	5.03	7.85	ND	ND	ND	ND	0.14
164	UCT-WEL	Tet el-Amarna	dark green	OP	rod	69.98	5.71	0.83	1.46	0.73	0.55	ND	3.67	7.98	0.11	ND	2.30	0.19	265
165	UCT-WEL	Tel el-Amarna	dark mauve	TL	rod	9.02	ND	0.07	ND	1.21	0.81	ND	0.95	1.07	0.26	ND	46.85	ND	ND
166	UCT.wEL	Tel el-Amarna	bright blue	Th	rod	68.54	8.90	1.39	1.23	1.50	0.47	0.14	4.17	9.05	0.17	ND	0.24	ND	ND
167	UCT-WEL	Tel el-Amarna	bright turquoise	TL	rod	67.73	7.89	215	1.07	0.74	0.35	ND	4.92	8.94	0.17	ND	1.25	1.65	ND
168	UCT-WEL	Telel-Amarna	dull furquoise	OP	rod	68.66	7.61	254	0.98	1.41	0.70	ND	4.82	10.05	0.71	ND	0.63	1.07	ND
169	UCT-WEL	Tel el-Amarna	bright navy	TP	rod	69.66	8.46	1.42	1.28	1.51	0.47	0.15	4.79	9.05	0.17	ND	0.22	ND	ND
170	UCT-wEL	Tel el-Amarna	green	OP	rod	67.98	8.50	1.79	1.21	0.67	0.38	ND	5.05	10.10	0.15	ND	1.41	ND	0.51
171	UCT WEL	Tel el-Amama	yellow ochre	OP	rod	64.17	10.81	1.77	0.75	0.82	0.66	ND	5.35	9.67	0.17	ND	ND	0.48	4.63
172.	UCT-WEL	Tel cl-Amarna	green	OP	rod	64.90	11.60	1.72	0.85	0.57	0.26	ND	4.98	9.93	0.14	ND	1.48	0.66	1.81
173	UCT-WEL	Tel el-Amarna	bright furquoise	OP	rod	65.86	9.39	213	1.18	0.78	0.58	ND	5.34	6.60	0.61	ND	262	1.51	ND
173a	UCT-WEL-19a	Tel el-Amama	royal blue	TP	rod	66.54	10.07	1.49	1.37	1.52	0.40	ND	4.22	9.15	0.15	ND	0.23	ND	ND
	\% \& SC	Site: Fustal																	
20a	VRL-25/37	Fustal 25/37 Foustat [sic]	light green	TL	Segm	67.81	7.63	1.35	1.14	225	1.08	0.21	1.88	10.74	1.73	ND	ND	ND	ND
21	VRL-FUS-134	Fustal	clear crystal	TP	Ila	67.21	11.67	256	1.16	0.88	0.57	0.97	3.16	11.75	0.36	ND	ND	0.75	ND
21.	GS-FUS-182	"Fustat Fused Rod Bead ${ }^{\text {²}}$	multi-colour (green)	OP	FFRB	66.31	11.07	249	0.95	287	0.85	1.62	4.71	8.90	0.35	ND	0.67	ND	3.06
216	GS-FUS-182	"Fustat Fused Rod Head"	multi-colour (clear)	OP	FFRB	63.77	11.43	297	0.85	3.44	1.65	1.45	4.55	9.35	0.36	ND	1.26	ND	ND
21 c	GS.FUS-182	"Fustat Fused Rod Bead ${ }^{-1}$	multi-colour ("Indian")	OP	FFRB	63.62	6.36	247	0.83	3.27	2.67	1.40	3.48	9.38	0.34	ND	1.46	ND	0.36
23 a	VRL-EGY-136	Fustat (t'alhakimi)	"Indian" red \& olive	TL	arrow	80.50	10.20	3.08	0.91	5.24	0.90	0.41	4.51	4.20	0.33	ND	ND	ND	6.44
249	VRL-FUS-304	Fuslat (coil wound)	turquoise	TP	CWnd	67.08	11.40	1.85	1.23	0.96	0.61	0.26	4.86	7.02	0.20	ND	1.20	ND	ND
25	VRL-FUS-18	Fustal	clear crystal	TP	IIa	69.91	10.20	2.48	1.03	0.84	0.43	0.86	298	11.65	0.32	ND	ND	0.07	ND
25 a	VRL-FUS-305	Fustal (segmented)	teal blue	TP	BLa	68.56	9.68	1.91	0.76	234	0.98	ND	1.93	8.22	0.31	ND	0.94	ND	ND
27	VRL-FUS-24	Fustat	bright green	TL	Ha_{3}	66.25	11.56	268	0.57	9.33	0.74	ND	0.29	1.74	ND	ND	0.68	ND	1.48
		Palestine																	
	Ms	Site: Khirbet el-Minyeh																	
54	SPA-IS-46	Khirbet el-Minyeh	bright navy	TP	Brclt	70.18	10.45	247	0.90	0.90	0.83	0.31	4.38	8.90	0.34	ND	ND	ND	ND
55	SPA-IS-45	Khirbet el-Minyeh	dark navy	TL	Brclt	68.96	10.18	3.04	0.80	1.34	1.01	1.05	4.04	10.20	0.42	ND	ND	0.07	ND
56	SPA-IS-47	Khirbet el-Minyeh	light turquoise	TL	Brelt	78.40	8.63	3.61	0.69	1.02	0.50	ND	0.41	3.42	0.15	ND	0.68	ND	ND
	-	Site: Kibbutz Ginosar																	
57	UCT-131	Kibbutz Ginosar	amberfiurq \& y yellow	TP	Brclt	7292	1268	231	1.14	0.44	0.32	ND	265	5.99	0.22	ND	ND	ND	ND
		Site: Hebron																	
58	VRI-48	Hebron	dirty yellow	OP	Whd	64.10	10.83	269	1.13	1.84	1.11	1.32	1.69	5.88	0.43	ND	1.29	0.15	7.50
59	VRL-49	Hebron	celedon green	OP	Whd	65.65	8.28	256	1.24	1.92	1.04	0.81	1.80	3.44	0.49	IND	1.99	ND	6.02
		SYRIA																	
		Site: Aa'albakk	bottle green	TP	Wrb	65.28	1.31	17.89	0.17	1.10	2.49	0.17	0.74		0.81				
16	VRL-EGY-16	Ba'albakk	green turguoise	TP	wrb	64.13	1.19	17.45	0.18	0.44	241	ND	0.38	11.47	0.37	ND	ND	0.17	ND

Table 8.2.2.1. Major \& minor chemical analyses of glass beads, bracelets \& wasters from (1) southern Africa (2) Egypt (3) Palestine (4) Syria (5) India (6) Ceylon (7) Indonesia (8) eastern Malaysia (9) western Malaysia \& (10) Thailand (continued).

Sampl	UCT accession	Location	Colour	Diap	Type	SiO2\%	$\mathrm{NaO} \%$	K20\%	C1\%	Al20\%	Fe203\%	MnO\%	MgO\%	CaO\%	P205\%	C00\%	CuO\%	Sb203\%	PbO\%
		SOUTHEAST ASIA																	
	\sim	Site:Arikamedu-Viram-Pattinam																	
28	FRA-AV-42	X1.027:a	pale turquoise	TP	cullet	75.75	10.08	0.76	0.84	3.19	0.88	0.25	1.98	4.47	0.52	ND	ND	ND	ND
29	FRA-AV-43	XI-027:b	pale green	TP	cullet	78.17	9.81	0.70	0.91	2.44	2.63	ND	0.45	4.79	0.17	ND	ND	ND	ND
30	FRA-AV-34	X1-003:b (late Medieval)	mid blue	TP	cullet	67.06	16.00	248	0.13	6.46	2.18	1.13	1.20	231	0.82	ND	ND	ND	ND
31	FRA-AV-33	XI-003: ((late Medieval)	dark mauve	OP	cullet	70.93	10.29	1.85	0.72	4.51	1.55	4.74	0.87	3.74	0.30	ND	ND	ND	ND
32	FRA-AV-40	XI-67a (n.d. - early)	dark mauve	OP	cullet	74.24	0.38	14.34	0.24	3.77	1.16	3.33	0.26	0.87	0.53	0.18	ND	0.16	ND
33	FRA-AV-25	VI-013 (imported?)	bright green	TP	cullet	67.77	15.16	202	0.95	1.99	1.40	0.39	1.83	6.71	0.88	ND	2.94	ND	ND
34	FRA-AV-36	X1-004:-blate Medieval:loci	shadow blue	TP	cullet	74.26	10.54	1.27	0.83	3.87	1.45	0.40	0.63	4.03	0.13	ND	ND	ND	ND
35	FRA-AV-41	XI-67:b (n.d. - early)	dark mauve	OP	cullet	74.29	0.25	15.27	0.19	1.60	0.75	4.29	0.26	1.09	0.77	ND	ND	0.23	ND
36	FRA-AV-27	VII-004:b-late medieval	bright blue	TP	cullet	75.74	9.68	245	0.86	1.73	200	3.04	0.56	3.64	0.26	0.16	0.42	ND	ND
37	FRA-AV-30	VII-052:early/ate Medieval	medium green	TP	cullet	72.00	11.90	1.18	1.03	5.29	1.41	ND	0.80	4.54	0.19	ND	ND	ND	ND
38	FRA-AV-32	VII-114 (BC 9-AD 10)	bright blue	TP	cullet	77.58	0.27	16.12	0.10	204	1.43	1.82	0.31	1.30	0.34	ND	ND	ND	ND
39	FRA-AV-29	VII-007:--late Medieval:loci	medium green	TL	cullet	7242	11.84	1.22	1.06	5.29	1.50	ND	0.80	4.58	0.20	ND	ND	ND	ND
40	FRA-AV-38	XI-030a(local or import?)	lichen green	OP	cullet	61.49	5.40	8.01	0.47	231	1.39	0.59	1.09	2.85	0.67	0.17	3.43	0.28	13.56
41	FRA-AV-28	VII-007:- -late Medieval:loci	"Indian" red	OP	cullet	68.87	11.14	3.44	0.94	3.85	1.47	ND	219	4.94	1.07	ND	236	ND	ND
42	FRA-AV-26	VII-004:a-late medieval	"Indian" red	OP	cullet	68.03	1278	3.63	0.86	4.71	1.51	ND	204	4.98	1.04	ND	203	ND	ND
43	FRA-AV-35	X1-004:a-late Medieval:loci	black	OP	cullet	59.98	14.48	6.32	0.94	5.47	2.24	0.24	4.01	4.47	0.08	ND	ND	ND	ND
44	FRA-AV-37	XI-004:--late medieval:loci	"Indian" red	OP	cullet	73.99	9.65	226	0.70	3.89	1.10	0.34	3.45	4.13	0.77	ND	1.80	ND	ND
45	FRA-AV-31	VII-108 (10BC-AD20)	"Indian" red	OP	cullet	68.07	11.16	3.78	0.90	3.41	1.12	0.21	225	4.76	0.90	ND	2.11	ND	ND
46.	FRA-AV-39	XI-030:b (local or import?) Site: Purdalpur	black	OP	cullet	71.87	9.49	7.72	0.75	236	1.23	0.16	298	3.68	0.71	ND	ND	0.20	ND
47	FRA-PU-44	PUR-082	"soil salts"	TP	cullet	71.47	15.26	1.94	0.12	6.87	1.74	ND	0.88	1.95	0.18	ND	ND	ND	ND
	-	CEYLON																	
7	VRL-11	Ceylon	bright navy	TP	Ha	72.54	7.01	1.28	0.92	3.11	1.62	0.16	3.37	7.03	0.31	ND	ND	ND	ND
8	VRL-13	Ceylon	shadow blue	TP	cullet	77.65	4.48	1.52	0.85	5.39	1.17	0.87	0.51	5.07	0.19	ND	ND	ND	ND
9.	VRL-9	Ceylon	dirty yellow	OP	cullet	70.61	8.00	1.23	0.67	4.07	0.94	ND	0.63	7.26	0.12	ND	0.12	0.07	6.16
10	VRL-10	Ceylon	apple green	OP	cullet	71.08	5.69	1.66	0.96	12.33	1.49	ND	0.35	245	0.09	ND	0.91	ND	0.09
11	VRLL-14	Ceylon	"Indian" red	OP	cullet	67.74	6.38	1.55	1.61	11.66	1.52	ND	0.63	269	0.13	ND	1.40	ND	0.40
12	VRL-12	Ceylon	peacock blue	TL	Ila	69.88	7.67	3.12	0.94	3.62	1.26	1.08	4.41	6.07	0.27	ND	ND	ND	ND
BagQ	~	INDONESIA Site: Gunang Wingo (Java)																	
48	FRA-Q-50	JAV: V-Y 3	dark green blue	TL	${ }^{\text {lla }}$	65.19	13.70	3.29	0.70	3.12	1.21	1.04	4.40	6.36	0.28	ND	ND	ND	0.43
48a	VRL-185	Slab grave	"Indian" red	OP	Ha	67.45	8.09	1.72	0.88	7.34	4.01	0.19	1.95	5.67	1.07	ND	204	ND	287
Bag K	~	Site: Kambang Unglen (Sumatra)																	
49	FRA-K-97	KAM-968 (surface)	turquoise \& clear	TP	Mos	63.67	13.74	4.41	0.77	1.92	0.80	0.24	6.07	9.14	0.39	ND	ND	0.14	ND
50	FRA-K-96	KAM. 067 (surface)	black \& white	OP	Mos	68.29	10.50	3.29	0.82	262	0.75	0.64	4.97	6.52	0.35	ND	ND	ND	0.42
51	FRA-K-141	KAM-078 (surface)	"Indian" \& olive	TL	Ila	64.84	11.03	1.68	0.49	14.10	2.23	ND	0.51	3.46	0.0?	ND	0.83	ND	0.23
52	FRA-K.94	KAM-065 (surface)	pale citrus	OP	Ia	7218	5.46	1.60	0.50	9.45	1.43	ND	0.38	2.40	ND	ND	ND	ND	3.44
. 53	FRA-K.95	KAM-066 (surface)	"Indian" red	OP	Ila	67.60	8.80	1.30	0.30	16.12	1.19	ND	0.30	3.60	0.06	ND	0.63	ND	ND

Table 8.2.2.1. (8) eastern Malaysia (9) western Malaysia \& (10) Thailand (continued).

Sample	UCT accession	Location	Colour	Diap	Type	SiO2\%	$\mathrm{Na} 2 \mathrm{O} \%$	K20\%	C1\%	A1203\%	Fe203\%	MnO\%	MgO\%	CaO\%	P205\%	CoO\%	CuO\%	Sb203\%	Pbo\%
		EASTERN MALAYSIA																	
Bag 1	\sim	Site: Gedong (Sarawak)																	
60	FRA-I-137	GED.053: N/E6 6.12" (SF No.128)	blue green	TP	пиa	41.30	0.11	3.39	0.23	0.30	0.50	0.22	0.11	261	0.10	0.39	1.86	0.42	50.53
61	FRA-1-2	GED-048: $\mathrm{N} / \mathrm{ES} 6.122^{\prime \prime}$ (SF No.132)	yellow green	OP	Wİk	65.05	10.66	227	1.26	9.61	1.99	ND	1.03	3.02	0.11	ND	ND	ND	219
62	FRA-I-1	GED-052: 69/488.12' (Box 164)	"Indian" red	OP	WIIk	61.68	11.23	3.13	1.04	8.88	5.82	ND	0.59	215	0.14	ND	0.10	ND	0.28
Bag P	-	Stite: Bukit Sandong (Sarawak)																	
63	FRA-P. 6	BUK-104: A/2 12-18*	clear crystal	TP	WIb	59.18	3.89	8.29	0.93	3.55	0.40	ND	4.12	16.63	ND	ND	ND	0.27	ND
64	FRA-P. 4	BUK-105: $\mathrm{H} / 14$ 0-6"	aqua green	OP	wb	57.78	3.78	7.98	0.93	3.87	0.49	ND	4.45	16.54	ND	ND	0.75	0.31	0.26
65	FRA-P.S	BUK 106: 11/H3 0.6"	sea green	TP	Wrb	62.53	1246	3.75	0.81	9.17	4.97	ND	0.64	260	0.05	ND	0.48	ND	ND
66	FRA.P. 3	BUK-107: 0.6"	"Indian" red	OP	wib	66.77	3.70	228	1.33	1.84	1.12	0.73	1.70	6.41	0.43	ND	239	0.15	5.18
Bag V		Site: Bongkissam (Sarawak)																	
67	FRA-V-8	BON-156: 116 -12" (1955)	yellow	OP	WIIK	58.93	3.78	8.15	0.88	3.72	0.40	ND	4.24	16.60	ND	ND	0.32	0.26	0.13
68	FRA-V. 7	BON-161: J J $6.12^{\prime \prime}$ (1955)	"Indian" red	OP	WIIK	62.82	1230	3.69	0.85	9.06	5.03	ND	0.59	229	ND	ND	0.49	ND	ND
	-	WESTERN MALAYSIA Site: Pulau Kelumpang (Kuala Selings																	
72	FRA PK-138	KS:1-Trench I: $200 .-220 \mathrm{~cm}$ Pk/1/89	"Indian" red	OP	Ma	69.33	10.50	1.99	0.47	7.17	1.65	ND	0.71	273	0.25	ND	3.28	ND	ND
73	FRA-PK-139	KS:1-Trench A:40.60cm Pk//90	bright orange	OP	IIa	5269	11.71	3.69	0.69	9.77	275	0.17	274	6.02	1.68	ND	8.20	0.18	1.72
Bag O	\sim	Site: Sungai Mas																	
74	FRA-SUNG-11	SG-MAS-089 (surface finds)	blue mosaic	OP	Mos	69.42	16.32	1.75	1.06	1.86	0.53	0.18	4.01	6.61	ND	ND	1.14	ND	0.84
75	FRASUNG-11	SG-MAS-089 (surface finds)	green mosaic	OP	Mos	67.98	13.84	1.69	0.99	1.67	0.61	0.21	3.83	6.34	0.14	ND	ND	ND	3.45
75a	FRA-SUNG-11	SG-MAS-090 (surface finds)	green mosaic	OP	Mos	6234	15.39	284	0.74	253	207	0.47	3.51	8.54	0.32	ND	1.98	ND	0.93
76	FRA-SUNG-30	SG-MAS (dull royal blue with white)	dull royal blue/white	Mos	Mos	66.79	1287	3.67	0.77	281	0.56	1.16	3.38	7.71	0.26	ND	0.87	ND	ND
		thailand																	
Bag B	-	Site: Klong Thom																	
128	FRA-B-142	KT-008-1 (surface)	light green	TP	frag	67.61	13.22	3.17	0.55	233	1.03	0.75	5.79	7.03	0.25	ND	ND	ND	ND
129	FRA-B-144	KT. 013 (surface)	blue green	TL	IIa	64.87	11.30	1.96	1.07	1281	1.38	ND	0.40	3.00	0.90	ND	0.50	ND	0.10
130	FRA-B. 145	KT-014 (surface)	deep turquoise	TL	$\mathrm{Ha}^{\text {a }}$	66.37	10.41	271	0.89	1281	0.96	ND	0.32	235	0.12	ND	0.89	ND	ND
131	FRA-B-143	KT-010 (surface)	"Indian" red	OP	Ha	64.60	11.89	242	0.95	14.03	1.31	ND	0.43	277	0.16	ND	1.85	ND	0.25
Bag N		Site: Takua Pa																	
132	FRA-N-147	TP. 087 (surface)	dark green blue	TP	Ha	64.77	13.32	271	0.70	1.81	1.22	0.74	4.07	6.82	0.24	ND	ND	ND	ND
133	FRA-N. 146	TP-084 (surface)	black	OP	cullet	42.70	0.29	0.98	ND	5.91	10.13	7.20	0.55	3.42	0.63	ND	0.28	0.18	ND

8.3. SIGNIFICANCE OF REE PROFILES

8.3.1 Discussion

Fifteen ($\mathrm{n}=15$) glass beads from six southern African sites at K2, Mapungubwe, Makahane, Kgopolwe, Nagome Hill and Shikimbu have pronounced negative Cerium (Ce) anomalies (Fig. 8.3.1.1). All the beads are small seed beads (Figs. 8.3.2.3; 8.3.2.6), except for two, wound, green beads from Mapungubwe and Makahane (Fig. 8.3.2.4), and an unusual, dark brown, triangular cross section bead from Shikimbu (Fig. 8.3.2.9).

Negative Ce anomalies were found in five ($\mathrm{n}=5$) beads from Fustat, including one seed bead (IIa); two Fustat Fused Rod Beads (FFRB), a bead referred to as a t'alhakimt, and a black bead with yellow trailing (Fig. 8.3.2.2).

Nine ($n=9$) beads, from four Southeast Asian sites at Pulau Kelumpang and Sungai Mas (western Malaysia) and Klong Thom and Takuapa (Thailand) have Ce anomaly (Figs. 8.3.2.17; 8.3.2.21). Specimens included glass seed beads and mosaic beads (Sungai Mas) and a most interesting 'blob' of dark blackish/brown cullet from Takuapa (Thailand) (Fig. 8.3.2.22).

In sum, a total of eleven ($n=11$) sites contained glass specimens with the distinctive negative Ce anomaly. None of the glass beads or wasters from the important beadmaking site at Arikamedu have similar Ce -depletion.

Europium (Eu) and Cerium (Ce), are distinctive Lanthanide elements, that can provide useful markers. The REE usually occur in solution as trivalent cations, but Ce and Eu can occur in different oxidation states (Figs. 8.3.1.2; 8.3.1.3). Thus, two of the most salient REE features shown in this study are the pronounced negative Ce an Eu anomalies.

Other REE patterns show characteristic similarities in the steep slope of the LREEs and HREEs (e.g. Figs. 8.3.2.7; 8.3.2.11; 8.3.2.12). The REE patterns of three beads excavated at various sites in Indonesia and eastern Malaysia, are so alike, they could have been manufactured from the same batch of glass (Fig. 8.3.2.16).

Some of the REE analytical results reported on glass beads for this thesis are unique. It is evident, however, that they do not represent the entire macrocosm of sites at which glass trade beads were produced.

Cerium (Ce) anomalies

Preferential extraction of Ce is thought to be due to its oxidation from Ce^{3+} to $\mathrm{Ce}^{4}+$ and its subsequent scavenging from the water column during the formation of bottom precipitates (such as manganese nodules), or inclusion in the skeletons of benthic (deep water) marine organisms. The cerium (Ce)-depleted REE pattern is unique to seawater and its derivatives (marine organisms and certain precipitates) (Henderson, 1984).

Europium (Eu) anomalies.

Under reducing conditions Eu is present as Eu^{2+}; it behaves similarly to Sr^{2+}, so that it can be preferentially extracted along with Sr , in common rock-forming minerals such as feldspars (Taylor \& McLennon 1985). Feldspar-enriched rocks are thus characterised by positive Eu anomalies. Igneous rocks produced through the preferential removal of feldspar develop a complementary negative Eu anomaly. The majority of terrestrial rocks have Ce and Eu anomalies. These are displayed graphically using chondrite normalised REE patterns (Figs. 8.3.2.1-8.3.2.26). The magnitude of the anomaly is measured by comparing the observed Ce_{N} and Eu_{N} values with those predicted by interpolation from adjacent elements. Mathematically, the anomaly is calculated using the following formulae:

Ce anomaly $=\mathrm{Ce} / \mathrm{Ce}^{*}=\mathrm{Ce}_{\mathrm{N}} /\left(\mathrm{La}_{\mathrm{N}} \times \operatorname{Pr}_{\mathrm{N}}\right)^{1 / 2}$
Eu anomaly $=\mathrm{Eu} / \mathrm{Eu}^{*}=\mathrm{Eu}_{\mathrm{N}} /\left(\mathrm{Sm}_{\mathrm{N}} \times \mathrm{Gd}_{\mathrm{N}}\right)^{1 / 2}$
When $\mathrm{Ce} / \mathrm{Ce}^{*}=>1$ it is positive, and $\mathrm{Eu} / \mathrm{Eu}^{*}<1=$ negative (Taylor \& McLennon 1985).

Fig 8.3.1.1. Chondrite-normalised REE abundances in seawater (taken from Fleet 1984:343-369).

Chondrite-normalised REE Abundances in Seawater

Fig. 8.3.1.2. Example of negative and positive Ce and Eu anomalies.

Negative and Positive Ce and Eu Anomalies

Fig. 8.3.1.3. Chondrite-normalised REE abundance showing positive Eu anomaly in a piece of glass cullet from Ceylon.

Coastal or interior dune sands are normally pure quartz as wave or wind actions tend to remove all the impurities, so that a negative Ce anomaly would not be expected. The seawater signature can only be obtained from the sand if significant amounts of seaweed (or some other shallow marine organic remains) are present. Therefore, it is unlikely that the sand component of glass (silica or alumina) can be the source of this anomaly. Resistant heavy minerals do not have negative Ce anomalies either.

The chief sources of soda flux for making glass are usually attributed to plant ash or evaporites. Only ash derived from marine organisms (e.g. seaweed, coastal salt marsh vegetation), or soda in the form of coastal marine evaporites, can provide a Ce -depleted REE pattern.

Fustat's semi-arid desert environment and easy access to coastal marine evaporite deposits favours their exploitation over the use of ash from the terrigenous vegetation of desert areas.

Alternatively, if lime used to make the glass was obtained by heating up seashells, then the seawater signature could also have been inherited. Glassmaking centres in regions with abundant forests, such as Europe or India, coupled with limited access to evaporite deposits, would predictably derive flux from more potassic ash.

The available information on Fustat as a glassmaking centre makes it a primary candidate for producing the beads found in South Africa. To test this connection, some beads reported to have been made at Fustat, including seed beads and Fustat Fused Rod Beads, have been compared with material from archaeological sites in South Africa and sites in Syria, Palestine and Southeast Asia.

Soil salts from alluvial plains in India, for example, will not produce a Ce anomaly, except if they are (or have been) situated in close proximity to coastal deltas where evaporation will involve mixtures of river and seawater. The Ganges delta and the Indus delta (possibly to a lesser extent) are characterised by extensive wetlands, whereas the Nile delta and other Mediteranean/Red sea estuaries are more arid. It is unlikely, therefore, that evaporitic salts would be found at Indian sources. In terms of the REEs, Indian soil salts will not have the Ce anomaly, because there is limited REE distinction between plants or soils. This is not to say, however, that there may not be other types of geochemical variation. Soil salts would probably have more rock-derived impurities.
Table 8.3.1.1. REE \& trace-element (zircon \& titanium) analyses of glass beads, bracelets, \& wasters from (1) southern Africa (2) Egypt (3) Palestine (4) Syria (5) India (6) Ceylon (7) Indonesia (8) eastern Malaysia (9) western Malaysia \& (10) Thailand (concentrations reported in ppm).

Samp	UCT accession	Location	Colour	Diap	R.I.	Type	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Ti	Zr
		SOUTHERN AFRICA (North	nTransvaal)																			
86	K2-567-127 ${ }^{+}$	Site: K2 $\text { K2-TS3-layer } 2$	shadow blue	TL	1.5202	Ia	4.48	4.99	1.62	8.72	2.87	<1.0	3.23	<1.00	3.18	<1.00	<1.00	<1.00	1.05	<1.00	380.0	56.0
87	K2-632(i)-128	K2-TR-D4/81/1	TP turquoise	TP	1.5290	Ila	11.23	13.73	3.06	15.23	4.55	<1.0	4.76	<1.00	5.11	<1.00	1.25	<1.00	1.85	<1.00	720.0	154.0
88	K2B-650-54	K2B-BLOCK:10-layer 13	blue green	OP	1.5203	Ia	5.73	9.40	<1.00	5.84	<1.00	<1.0	2.10	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	1141.0	42.1
89	K2-466-53	KS. skeleton No. 60	deep turquoise	TL	1.5247	Ila	10.20	16.50	2.45	9.03	1.83	<1.0	2.28	<1.00	2.09	<1.00	<1.00	<1.00	<1.00	<1.00	1550.0	105.5
- 90	K2-463-51	KS. skeleton No. 18	yellow	OP	1.5360	lla	8.58	12.80	2.72	11.70	2.56	<1.0	2.99	<1.00	4.03	<1.00	1.68	<1.00	1.48	<1.00	2316.0	73.9
91	K2-595-126	K2-TS6-layer 5	"Indian" red	OP	1.5179	Па	40.95	61.73	9.02	38.88	10.94	<1.0	9.43	<1.00	9.23	<1.00	2.31	<1.00	4.64	<1.00	2456.0	560.0
92	K2-466-52	KS. skeleton No. 60	blue green	TP	1.5151	Ila	18.30	36.00	3.27	19.10	4.50	<1.0	3.54	<1.00	4.81	1.07	3.56	<1.00	2.77	<1.00	25220	156.4
	+	Site: Mapungubwe																				
93	MAPK-239-129	A3M-36"/-42 ${ }^{\text {² }}$	clear crystal	TP	1.5510	11a	<1.00	<1.00	<1.00	5.80	1.65	<1.0	3.06	<1.00	2.37	<1.00	<1.00	<1.00	<1.00	<1.00	28	<1.00
94	MAPK-17-130	MK. skeleton No. 14	deep turquoise	OP	1.5193	IIa	4.02	5.27	1.76	10.00	3.45	<1.0	4.16	<1.00	3.39	<1.00	<1.00	<1.00	1.32	<1.00	582.0	46.0
95	MAPK-26-59	M.5.1.11'20'5' (skeleton)	celedon green	OP	1.5404	WIb	3.53	4.66	<1.00	3.81	1.54	<1.0	1.89	<1.00	1.06	<1.00	<1.00	<1.00	<1.00	<1.00	821.7	33.1
96	MAPST-300-63	MST-B3M-Z-6" dosie 43/54	blue green	OP	1.5312	Ila	4.51	6.53	<1.00	3.04	<1.00	<1.0	203	<1.00	1.74	<1.00	<1.00	<1.00	1.61	<1.00	829.1	51.0
97	MAPK-47-140	MK, skeleton No. 25	"Indian" \& olive	TL	1.5340	Ila	10.04	13.27	2.59	12.91	3.57	<1.0	5.94	<1.00	4.75	<1.00	1.05	<1.00	2.31	<1.00	1075.0	188.0
	MAPST-355-64	MST-layer 2(i): Block :F4 B6	blue green	OP	1.5290	Ha	5.14	9.34	<1.00	4.91	1.26	<1.0	2.56	<1.00	1.22	<1.00	<1.00	<1.00	<1.00	<1.00	1214.0	65.2
99	MAPK-189-60	MK3-layer 5: Block :A1 B15	medium bright green	OP	1.5530	Ila	6.41	1250	1.41	10.90	<1.00	<1.0	3.19	<1.00	1.37	<1.00	<1.00	<1.00	<1.00	<1.00	1357.0	65.6
100	MAPK-196-62	MK3-layer 3: Block:A2 B8	yellow	OP	1.5400	Па	6.01	10.10	1.11	8.05	1.38	<1.0	2.31	<1.00	1.43	<1.00	<1.00	<1.00	1.18	<1.00	1534.0	59.7
101	E2-703-65	E2-Block:B11 DET:-12"-18".	yellow	OP	1.5439	Па	3.56	12.20	1.39	9.96	1.20	<1.0	2.56	<1.00	3.81	<1.00	<1.00	<1.00	<1.00	<1.00	1728.0	59.8
102	MAPK-196-61	MK3-layer 3: Block:A2 B8	blue green	OP	1.5223	IIa	6.98	13.60	1.86	9.05	1.86	<1.0	2.2	<1.00	1.18	<1.00	<1.00	<1.00	<1.00	<1.00	1858.0	71.1
	\#	Site: Pont Drift																				
104	PON-9-74	TPD 1/2 OPG 2:A1 layer 8	bright dusty yellow	TL	1.5212	На	118.20	223.90	26.90	103.00	20.40	226	6.68	3.60	10.50	1.50	5.13	<1.00	6.01	<1.00	4616.0	1182.0
105	PON-21-72	TPD 1/2 OPG 2:B1 layer 6	blue green	TL	1.5301	На	92.40	207.50	22.50	107.10	22.90	293	11.50	2.91	10.60	2.13	4.68	<1.00	4.73	1.57	5694.0	2083.0
106	PON-37-71	TPD 1/2 OPG 2:2A layer 6	blue green	TL	1.5342	Па	110.30	224.40	18.90	101.80	20.50	3.38	11.20	2.41	11.80	1.70	5.83	<1.00	4.90	<1.00	5996.0	1096.0
107	PON-47-75	TPD 1/2 OPG 2:2AA layer 6	TP turquoise	OP	1.5299	Ila	133.50	284.60	33.20	160.10	14.80	4.64	7.20	3.20	8.18	208	5.75	<1.00	6.81	1.09	6690.0	1451.0
108	PON-61-73	TPD 1/2 OPG 2:2B layer 11	bright dusty yellow	TP	1.5270	Па	129.10	276.90	30.50	203.10	14.30	4.29	26.50	2.45	13.10	2.25	6.20	<1.00	5.97	1.30	69220	2261.0
	\#	Site: Schroda																				
109	SCH-45-79	TSR 1/1-OPG 6:B4 layer	vaseline yellow	TL	1.52	La	11.60	23.90	1.02	1230	1.95	1.11	<1.00	<1.00	<1.00	<1.00	3.20	<1.00	< 1.00	<1.00	496.3	99.1
110	SCH-35-77	TSR 1/1-OPG 3:C1 layer 1	dark shadow blue	TL	1.5201	Ia	3.85	6.34	<1.00	6.46	1.33	<1.0	263	<1.00	1.33	<1.00	<1.00	<1.00	<1.00	<1.00	560.1	42.0
111	SCH-123-80	TSR 1/1-OPG 6:2f layer 1.a	dark shadow blue	TL	1.5568	Ia	11.40	28.70	3.09	11.60	1.14	1.21	<1.00	<1.00	1.84	<1.00	<1.00	<1.00	1.21	<1.00	738.4	158.1
112	SCH-69-76	TSR 1/1-OPG 6:6B layer 4	bright dusty yellow	TL	1.5253	Ia	10.50	24.40	2.40	29.40	4.12	1.02	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	8922	151.1
113	SCH-14-81	TSR 1/1-OPG 2:4a Layer 2	blue green	TL	1.5300	IIa	14.20	31.50	3.07	19.70	3.79	1.24	<1.00	<1.00	1.73	<1.00	<1.00	<1.00	3.36	<1.00	956.3	128.1
114	SCH-78-78	TSR 1/1-OPG 6:C4 layer 4	dark shadow blue	TP	1.5109	la	5.21	10.60	1.62	7.56	1.67	<1.0	3.47	<1.00	1.44	<1.00	<1.00	<1.00	<1.00	<1.00	956.2	72.3
115	SCH-174-82	TSR 1/1-OPG 6:5c layer 5	shadow blu	TP	1.5221	Ia	15.00	38.60	5.40	26.10	3.09	<1.0	<1.00	<1.00	294	<1.00	<1.00	<1.00	<1.00	<1.00	2562.0	417.1
116	SCH-191-83	TSR 1/1-OPG 6:6A layer 2	blue green	TL	1.5951	па	83.10	217.20	20.20	101.00	17.80	3.12	5.10	1.75	11.70	1.60	4.60	<1.00	3.66	<1.00	4638.0	1184.0
	\#	Site: Skutwater																				
117	SK-318-84	TWS 1/1: E11 layer 4	celedon turquoise	OP	1.5280	IIa	24.70	43.50	5.26	26.70	5.58	1.75	<1.00	<1.00	2.78	<1.00	205	<1.00	1.21	<1.00	2065.0	252.2
118	SK-319-85	TWS 1/1:E11 layer 5	celedon turquoise	TP	1.5281	II	14.50	34.10	5.35	35.20	6.29	<1.0	<1.00	<1.00	<1.00	1.06	<1.00	<1.00	1.18	<1.00	1769.0	150.7
119	SK.332-86	TWS 1/1:E11/142 layer 9132D	black	OP	1.5391	Ha	142.00	267.30	27.90	116.50	14.00	3.59	4.10	1.40	3.96	1.69	5.01	<1.00	1.97	<1.00	61920	1547.0
120	SK-332-87	TWS 1/1:E11/142 layer 91B2D	TP turquoise	TP	1.5250	IIa	91.10	149.10	16.10	79.90	14.50	1.94	1.76	<1.00	3.93	<1.00	3.28	<1.00	2.15	<1.00	2029.0	648.7
121	SK-332-88	TWS 1/1:E11/142 layer PCB2	TP turquoise	TP	1.5234	Ia	102.30	202.30	23.50	92.50	12.60	1.53	2.87	1.61	9.80	1.42	6.45	<1.00	5.03	<1.00	2346.0	928.4
122	SK-334-89	TWS 1/1:E14 layer 1	blue green	TP	1.5175	IIa	24.10	46.20	6.22	30.90	6.29	2.26	<1.00	< 1.00	<1.00	<1.00	1.68	<1.00	<1.00	<1.00	1922.0	313.7
123	SK-334-90	TWS 1/1:E14 layer 1	bright dusty yellow	OP	1.5205	Шa	32.10	63.70	8.03	35.00	9.26	219	<1.00	<1.00	1.68	<1.00	1.07	<1.00	<1.00	<1.00	2903.0	332.1
124	SK-337.91	TWS 1/1:E14 layer 4	TP turquoise	TP	1.5200	■a	31.60	58.90	7.17	40.40	7.53	2.51	<1.00	<1.00	1.05	1.40	1.52	1.20	<1.00	<1.00	2731.0	318.1

Table 8.3.1.1. REE \& trace-element (zircon \& titanium) analyses of glass beads, bracelets, \& wasters from (i) southern Africa (2) Egypt (3) Palestine (4) Syria (5) India (6) Ceylon (7) Indonesia (8) eastern Malaysia (9) western Malaysia \& (10) Thailand (concentrations reported in pmm) (continued).

Sampt	UCT accession	Location	Colour	Diap	R1	Type	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho_{0}	Er	Tm	Yb	Lu	Ti	Zr
		SOUTH AFRICA (North-eastern	Transvaal)																			
+	+	Site: Letaba																				
77	LET-819-57	TER-LET-STRAT:ASGA	deep turquoise	OP	1.5247	1la	56.10	86.40	1200	57.80	5.73	1.54	4.65	< 1.00	5.72	1.35	3.19	<1.00	6.29	1.21	6726.0	1240.0
78	LET-821-58	TER:LET-6.6:Laycr 1	TP turquaise	TP	1.5250	11a	65.00	100.20	1280	55.70	9.21	1.19	7.58	<1.00	5.31	1.95	6.92	1.04	7.64	<1.00	7878.0	1302.0
	$+$	Stite: Shikumbu																				
79	SHI-885-124	TER:NKW SH3-STRAT:layer 1	dark brown	TL	1.5400		3.08	3.00	1.14	7.93	2.93	<1.0	3.93	<1.00	3.43	<1.00	<1.00	<1.00	1.16	<1.00	279.0	20.0
+	+	Site: Olifants Rivier																				
80	OLI-935-70	TER:OLOPN. TERREIN 0120 Site: Phalaborwa (SPK)	shadow blue	TP	1.5215	la	17.80	30.90	4.63	17.50	280	1.25	1.73	<1.00	3.91	< 1.00	222	<1.00	2.69	<1.00	1603.0	269.8
81	PHA-743-120	SPK-III-D-H ${ }^{\text {7 }}$	deep turquoise	TP	1.5280	Ila	1.99	1.56	1.20	6.43	2.19	<1.0	3.06	<1.00	2.96	< 1.00	<1.00	<1.00	1.19	<1.00	187.0	16.0
82	PHA.756-119	SPK-III K 1'5' 1'6' $^{\prime \prime}$	deeep turquoise	OP	1.5135	12a	5.41	6.97	1.92	9.06	2.56	<1.0	3.96	<1.00	3.31	<1.00	<1.00	<1.00	<1.00	<1.00	567.0	41.0
83	PHA.773-122	MN3-House 2: 1-12"	blue green	TL		lla	5.72	6.08	2.00	9.68	275	<1.0	4.70	<1.00	3.72	<1.00	<1.00	<1.00	1.29	<1.00	730.0	65.0
84	PHA-770-121	MN3-House 1: Unit $20-1 \mathbf{2 '}^{\prime \prime}$	blue green	OP	1.5255	broken	8.71	11.25	235	13.08	3.73	<1.0	5.08	<1.00	4.47	<1.00	<1.00	<1.00	1.42	<1.00	1019.0	96.0
. 85	PHA-773-123	MN3-House 2: 1-12"	"Indian" red	OP	1.5191	Ila	9.13	13.57	263	13.38	4.60	<1.0	5.16	<1.00	4.65	<1.00	<1.00	<1.00	1.99	<1.00	1218.0	1120
		SOUTH AFRICA (North-western	n Transvaal)																			
	\#	Site: Makahane																				
103	K?-MAK2-125	MAK-2 (surface) south terrace: Site: Diamant	pale celedon	OP	1.5400	WIb	3.50	3.94	1.44	8.26	293	<1.0	3.92	<1.00	3.06	< 1.00	<1.00	< 1.00	1.06	<1.00	497.0	37.0
125	AUK-1-98	DLA-D1-17	shadow blue	TL	1.5195	Ia	1.67	3.51	<1.00	1.65	<1.00	<1.0	<1.00	< 1.00	<1.00	<1.00	< 1.00	<1.00	< 1.00	<1.00	2124	28.3
126	AUK-1-133	DIA-D1-17	bright shadow blue	TP	1.5203	lla	3.55	3.09	1.21	7.90	248	<1.0	4.51	<1.00	3.38	<1.00	<1.00	<1.00	<1.00	<1.00	235.0	36.0
	\#	Site: Goegap																				
127	K?-GOES. 99	GG2-Squarel:1-layer 2	TP turquoise	TP	1.5275	$1 a$	3.66	6.46	<1.00	3.06	<1.00	<1.0	1.05	204	2.43	<1.00	<1.00	<1.00	<1.00	<1.00	462.5	25.7
		BOTSWANA																				
	1	Site: Kgaswe																				
1	BOT-785-56	KG-Hut floor (in pot)	blue green	TP	1.5235	11 a	44.30	75.90	9.32	39.70	7.44	<1.0	7.00	<1.00	3.99	1.08	3.11	<1.00	3.54	<1.00	3213.0	676.5
2	BOT-785-55	KG.Hut Iloor (in pot)	"Indian" red	OP	1.5192	IIa	58.50	125.90	1230	48.50	11.20	<1.0	5.92	<1.00	5.68	1.33	3.61	<1.00	4.16	<1.00	4937.0	809.1
		Site: Matlapaneng		TP	1.5175	Ia	20.30					<1.0										
3	BOT-786-66,	Site: Nqoma	shadow blue	IP	1.5175	Ta		34.20	241	17.30	3.85	<1.0	209	<1.00	2.99	<1,00	248	<1.00	1.38	<1.00	1734.0	243.7
4	BOT-779-69	$\mathrm{NO}-40.00: 60-70 \mathrm{~cm}$	TP iurquoise	TP	1.5255	Ila	34.60	54.80	7.72	39.40	12.10	1.40	10.90	2.60	9.23	1.96	4.19	<1.00	3.59	<1.00	<1.00	360.7
5	BOT-776-68	NQ-180w. $107 \mathrm{n}: 60-70 \mathrm{~cm}$	shadow blue	TP	1.5281	Ia	40.80	76.70	9.35	47.50	10.30	2.99	9.33	222	10.50	1.45	4.76	<1.00	3.59	<1.00	<1.00	390.6
6	BOT-774-67	NQ-80.625:40.50cm	blue green	OP	1.5231	IIa	29.80	61.70	4.80	24.60	3.92	<1.0	3.19	<1.00	207	<1.00	1.33	<1.00	1.65	<1.00	3821.0	445.8
		EAST AFRICA Site: Sofala																				
13	VRL-SOF-93	Sofala	dirty yellow	OP	1.5337	[1a	56.60	101.30	10.80	57.10	7.11	<1.0	6.24	<1.00	3.90	1.27	3.27	<1.00	4.13	<1.00	3967.0	400.1
14	VRL-SOF. 92	Sofala	"Indian" red	OP	1.5243	IIa	91.40	164.80	17.50	83.00	12.30	2.94	14.30	1.31	8.72	1.53	5.16	<100	5.61	<1.00	7130.0	558.8

Tahle 8.3.1.1. REE \& trace-element (zircon \& titanium) anałyses of glass beads, bracelets, \& wasters from (1) southern Africa (2) Egypt (3) Palestine (4) Syria (5) India (6) Ceylon (7) Indonesia (8) eastern Malaysia (9) western Malaysia \& (10) Thailand (concentrations reported in pmm) (continued).

Samp	UCT accession	Lacation	Colour	Diap	RI	Type	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Ti	$\mathbf{Z r r}^{\text {r }}$
		EGYPT																				
	w	Site: Tel el-Amama																				
26	VRL-FUS-20	Tel el-Amarna	turquoise	TL	1.5721	rod	20.00	44.90	5.79	43.50	8.23	2.35	8.06	1.65	3.97	285	2.98	< 1.00	1.03	1.39	2331.0	356.9
		Site: Fustat																				
20	VRL-FUS-17a	Fustat	bright navy	TP	1.5300	$\mathrm{Cla}^{\text {a }}$	5.52	13.40	246	15.50	1.94	<1.0	3.10	<1.00	<1.00	<1.00	1.91	<1.00	<1.00	<1.00	121.2	5.3
21	VRL-FUS 134	Fustat	clear crystal	TP	1.5250	Па	289	247	1.32	7.69	2.43	<1.0	3.49	< 1.00	299	<1.00	<1.00	< 1.00	<1.00	<1.00	315.0	13.0
22	VRL-FUS 109	'Fustal Fused Rod Bead' "eye"	multi-colour	OP	1.5490	FFRB	4.03	4.30	1.49	8.33	3.16	<1.0	3.45	<1.00	2.72	<1.00	<1.00	<1.00	<1.00	<1.00	351.0	44.0
23	VRL-FUS 110	'Fustal Fused Rod Bead'	multi-colour	OP	1.5420	FFRB	6.14	7.87	212	11.03	293	<1.0	4.00	<1.00	3.51	<1.00	<1.00	<1.00	1.47	<1.00	625.0	520
23a	VRL-FUS-136	Fustat (t'al hakim)	'Indian'\& olive	TL	1.5500	arrow	10.27	13.04	3.16	13.48	3.80	<1.0	4.22	<1.00	<1.00	<1.00	1.57	<1.00	1.57	<1.00	887.0	61.0
24	VRL-FUS 135	Fustat	black \& y ellow	OP	1.5493	wiIj	5.48	6.20	1.91	9.35	3.06	<1.0	4.3	<1.00	3.16	<1.00	<1.00	<1.00	1.05	<1.00	793.0	67.0
25	VRL-FUS 18	Fustat	clear crystal	TP	1.5296	IIa	25.40	36.90	4.77	43.20	7.83	<1.0	3.92	1.68	5.96	3.08	8.31	<1.00	3.46	1.85	2047.4	261.3
27	VRL-FUS-24	Fustat	bright green	TL	1.5405	Па	57.20	77.20	8.59	46.30	4.67	<1.0	5.23	<1.00	3.61	<1.00	2.20	<1.00	1.20	<1.00	3248.0	798.4
		Palestine																				
	MS	Site: Khirbet el-Minyeh																				
54	SPA-IS-46	Khirbet el-Minyeh	bright navy	TP	1.5178	Brct	1.83	3.56	<1.00	251	< 1.00	< 1.0	<1.00	<1.00	< 1.00	<1.00	<1.00	<1.00	< 1.00	<1.00	168.3	12.2
55	SPA-IS-45	Khirbet el-Minyeh	dark navy	TL	1.5300	Brelt	1.67	3.83	<1.00	<1.00	<1.00	<1.0	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	2424	88.0
56	SPA-IS-47	Khirbet el-Minyeh	light turquoise	TL	1.5002	Brclt	285	8.04	<1.00	287	<1.00	<1.0	<1.00	<1.00	<1.00	<1.00	< 1.00	<1.00	<1.00	<1.00	570.6	162.2
	UCT-131	Site: Kibbutz Ginosar																				
57	UCT-131	Kibbutz Ginosar Site: Hebron	amber/turq \& yellow	TP	1.5329	Brclt	2.21	1.93	1.09	7.08	1.67	<1.0	297	<1.00	2.38	<1.00	< 1.00	<1.00	<1.00	<1.00	134.0	30.0
58	VRL-48	Hebron	dirty yellow	OP	1.5529	Wnd	8.15	18.60	2.16	13.20	1.37	<1.0	<1.00	<1.00	2.23	<1.00	<1.00	<1.00	1.28	<1.00	1530.0	177.9
59	VRL-49	Hebron	celedon green	OP	1.5499	Wnd	9.28	23.20	3.23	8.96	<1.00	<1.0	2.98	<1.00	3.23	<1.00	<1.00	<1.00	1.36	<1.00	1501.0	178.3
		SYRIA																				
		Site: Ba'albakk																				
15	VRL-EGY 15	Ba'albakk	botlle green	TP	1.5256	Wrb	<1.00	<1.00	< 1.00	<1.00	<1.00	< 1.0	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	17.5	1.1
16	VRL-EGY-16	Ba'albakk	green turquoise	TP	1.5272	WIb	1.28	<1.00	1.03	<1.00	<1.00	<1.0	<1.00	<1.00	1.62	<1.00	<1.00	<1.00	<1.00	<1.00	46.8	<1.00

Table 8.3.1.1. REE \& trace-element (zircon \& titanium) analyses of glass beads, bracelets, \& wasters from (1) southern Africa (2) Egypt (3) Palestine (4) Syria (5) India
(6) Ceylon (7) Indonesia (8) eastern Malaysia (9) western Malaysia \& (10) Thailand (concentrations reported in pmm) (continued).

Table 8.3.1.1. REE \& trace-element (zircon \& titanium) analyses of glass beads, bracelets, \& wasters from (1) southern Africa (2) Egypt (3) Palestine (4) Syria (5) India (6) Ceylon (7) Indonesia (8) eastern Malaysia (9) western Malaysia \& (10) Thailand (concentrations reported in pmm) (continued).

Sampl	UCT accession	Location	Colour	Diap	RI	Type	La	Ce	Pr	Nd	Sm	En	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Ti	Zr
.		EASTERN MALAYSIA																				
Bag I	\sim	Site: Gedong (Sarawak)																				
60	FRA-1-137	GED-053: N/E6 6-12" (SF No. 12	blue green	TP	1.5645	Ila	1.20	<1.00	<1.00	5.35	1.39	<1.0	260	< 1.00	1.88	<1.00	<1.00	<1.00	<1.00	<1.00	54.0	2.9
61	FRA-I-2	GED-048: N/E5 6-12" (SF No. 13	yellow green	OP	1.5225	WIIk	18.30	33.80	4.12	20.20	2.60	1.51	3.01	<1.00	2.35	<1.00	1.33	<1.00	<1.00	<1.00	2134.0	336.7
62	FRA-I-1	GED-052: 69/H8 6-12" (Box 164)	"Indian" red	OP	1.5071	WIIk	6.40	93.30	10.30	45.10	7.07	1.01	6.79	<1.00	4.07	1.09	231	<1.00	<1.00	<1.00	2608.0	383.4
Bag P	\sim	Site: Bukit Sandong (Sarawak)																				
63	FRA-P-6	BUK-104: A/2 12-18"	clear crystal	TP	1.5195	WIb	1.48	2.54	<1.00	2.40	<1.00	<1.0	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	608.1	115.8
64	FRA-P-4	BUK-105: H/14 0-6"	aqua green	OP	1.5211	WIb	2.72	3.47	<1.00	3.54	<1.00	<1.0	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	677.8	126.7
65	FRA-P-5	BUK-106: H/H3 0-6"	sea green	TP	1.5211	WIb	2.30	2.94	<1.00	1.78	<1.00	<1.0	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	764.2	169.1
66	FRA-P-3	BUK-107: 0-6"	"Indian" red	OP	1.5560	WIb	13.20	28.40	3.34	14.70	1.71	<1.0	1.80	<1.00	1.03	<1.00	1.54	<1.00	<1.00	<1.00	1580.0	216.9
Bag V	~	Site: Bongkissam (Sarawak)																				
67	FRA-V-8	BON-156: I I 6-12" (1955)	yellow	OP	1.5449	WIIk	16.50	40.40	4.01	15.20	2.67	<1.0	228	<1.00	1.61	<1.00	1.99	< 1.00	2.68	<1.00	1880.0	285.1
68	FRA-V-7	BON-161: J J 6-12" (1955)	"Indian" red	OP	1.5230	WIIk	67.40	105.00	12.40	57.80	8.31	1.37	5.70	<1.00	4.14	1.02	2.29	<1.00	1.68	<1.00	2283.0	435.2
		WESTERN MALAYSIA																				
71	FRA-PK-108	Site: Pulau Kelumpang (Kuaia KS: $1-$ Trench $\mathrm{A}: 40-60 \mathrm{~cm} \mathrm{Pk} / 5 / 90$	grey blue	TL	1.5181	IIa	24.10	37.90	4.80	24.40	4.41	<1.0	6.89	<1.00	5.64	<1.00	3.43	<1.00	3.87	<1.00	1004.0	389.1
72	FRA-PK-138	KS: $1-$ Trench $\mathrm{I}: 200-220 \mathrm{~cm} \mathrm{Pk/1/8}$	"Indian" red	OP	1.5193	IIa	14.26	16.90	3.33	16.40	4.20	<1.0	6.08	<1.00	4.87	<1.00	1.88	<1.00	2.29	<1.00	1846.0	409.0
73	FRA-PK-139	KS:1-Trench A: $40-60 \mathrm{~cm} \mathrm{Pk/5/90}$	bright orange	OP	1.5448	IIa	32.17	48.11	6.86	30.71	7.48	<1.0	7.97	<1.00	5.91	<1.00	1.33	<1.00	2.58	<1.00	2366.0	489.0
Bag O		Site: Sungai Mas																				
74	FRA-O-111a	SG-MAS-089 (surface finds)	blue mosaic	OP	1.5395	Mos	11.15	14.06	292	1299	3.51	<1.0	4.02	<1.00	3.73	<1.00	<1.00	<1.00	1.59	<1.00	878.0	111.0
75	FRA-O-111	SG-MAS-090 (surface finds)	green mosaic	OP	1.5459	Mos	14.13	18.00	3.76	13.80	3.30	<1.0	4.27	<1.00	4.23	<1.00	<1.00	<1.00	1.81	<1.00	1161.0	122.0
		THAILAND																				
Bag B		Site: Klong Thom																				
128	FRA-B-142	KT-008-1 (surface)	light green	TP	1.5162	glass	4.66	5.12	1.58	9.00	280	<1,0	3.87	< 1.00	3.24	<1.00	<1.00	<1.00	1.27	<1.00	378.0	61.0
129	FRA-B-144	KT-013 (surface)	blue green	TL	1.5275	Ila	20.48	29.60	4.26	21.60	6.58	<1.0	6.23	<1.00	4.66	<1.00	<1.00	<1.00	2.10	<1.00	1800.0	482.0
130	FRA-B-145	KT-014 (surface)	deep turquoise	TL	1.5285	IIa	21.11	34.04	5.02	24.17	6.55	<1.0	7.73	<1.00	5.41	<1.00	1.38	<1.00	3.62	<1.00	2156.0	449.0
131	FRA-B-143	KT-010 (surface)	"Indian" red	OP	1.5225	IIa	21.85	43.93	4.42	20.95	6.08	<1.0	4.81	<1.00	5.19	<1.00	1.51	<1.00	3.00	<1.00	2275.0	542.0
Bag N	~	Site: Takua Pa																				
132	FRA-N-147	TP-087 (surface)	dark green blue	TP	1.5197	IIa	6.45	7.27	1.85	9.71	3.03	<1.0	3.94	<1.00	3.25	<1.00	<1.00	<1.00	1.20	<1.00	459.0	67.0
133	FRA-N-146	TP-084 (surface)	black	OP	1.5532	cullet	1007.79	1633.70	280.00	1197.60	499.00	217	478.80	106.90	681.90	138.10	421.80	83.79	631.90	90.15	1907.0	8552.0

8.3.2. Trade implications of REE Chemical Characterisation

The pronounced Ce and Eu anomalies, plus the distinctive steep slope of the LREEs, have been used as indicators to confirm either contact or trading links between archaeological sites some of which are tens of thousands of miles apart. The REE patterns confirm the existence of trade and contact connections, either directly or indirectly, in southem Africa, Egypt, Palestine and Southeast Asia a thousand years ago. Graphs showing the results of selected samples are presented in Figs. 8.3.2.1.- 8.3.2.24.

Some of the beads from Schroda (ca. AD 800-900), Pont Drift (ca. AD 800-900) and Skutwater (ca. AD 1150) have comparable REE signatures (Fig. 8.3.2.5.). The chemistry of these beads is more similar to one another than it is to beads from other sites such as K2 and Mapungubwe. This is somewhat surprising, considering the fact that Van Ewyk (1987:114) showed Skutwater to have a definite inter-relationship with K2 and Mapungubwe. If we accept the argument of Davison (1972) that the same trade beads used in Africa were produced for hundreds of years, then we can explain the temporal disparity. If not, other possibilities should be considered.

The specimen from Takuapa, Thailand is unusual in many respects. It consists of a lump or 'blob' of black siliceous looking material. The REE and trace-elements (ppm) are relatively high (Tables 8.3.1. \& Fig. 8.3.2.24). Except for the accessory phase and dilution factor, the chondrite-normalized REE diagrams for the heavy mineral monazite and sand from Richards Bay is almost identical (Fig. 7.6.1.1). If this were a glass, the high REE concentrations would have made the material too refractive to 'work'. This distinctiveness would suggest local provenance.

Sungai Mas in western Malaysia is considered to have been a glass beadmaking site (Francis, pers. comm.). This supposition may very well be correct for some of the beads. However, the REE patterns obtained from the two mosaic bead samples found there show unmistakable similarities to the glass manufactured at Fustat as well. Based on this evidence, and other published references to similar beads (Sherr Dubin 1987; Beck 1930:163-182; Lamb 1966:80-94), there is a strong possibility that either the primary glass used to make the beads originated in Fustat, or that the beads themselves were exported or traded to the site. This hypothesis is consistent with those of other researchers, such as Jacq-Hergoulalc'h (1992), although it does not totally exclude the possibilty that they could have been made locally, bearing in mind that the extent of Mediterranean trading links throughout the Indian Ocean does tend to obscure many of the issues.

Further evidence such as type site material or specimens within a firm archaeological context must be used to resolve issues such as these. Chondrite-normalized REE patterns provide definitive signatures for comparative studies on trade and contact for the prehistory period of southem Africa, and have tremendous potential for further research.

The combination of techniques and the results obtained in this study using glass beads is unique to the study of Early Islamic glass and the trade which connected southern Africa to Egypt and indeed the Muslim trading world more than a thousand years ago. This information could not have been obtained by any other means. These data have made a significant contribution to our knowledge of ancient glass technology and on glass beads that were in circulation during $c a$. AD 900-1250.

Fig 8.3.2.1. South Africa. Chondrite-normalized REE patterns for beads from the Limpopo Basin \& eastern Transvaal showing negative Ce anomaly.

SOUTH AFRICA Limpopo Basin \& Eastern Tvl

| \#79 Shikumbu - \#82 SPK III $\#$ \#86 K2 | |
| :--- | :--- | :--- |
| \#87 K2 | 米 \#94 MK |

Fig 8.3.2.2. South Africa $\boldsymbol{\&}$ Egypt. Chondrite-normalized REE patterns of glass made in Fustat compared with beads made from similar glass found in southern Africa.

Fig 8.3.2.3. South Africa \& Indonesia. The chondrite-normalized REE patterns for sample \#93 from MK. skeleton is almost identical to \#51 from Kambang Unglen in Indonesia. Visually the beads are similar as well.

Fig 8.3.2.4. Mapungubwe \& Makahane. Chondrite-normalized REE for celedon green wound beads. The beads were probably furnace wound.

- \# 95 Mapungubwe -m- \#103 Makahane

Fig 8.3.2.5. K2 \& Schroda. Bead \#s 88 \& 89 are from K2. \#110 \&\#114 are from Schroda. The similar chondrite-normalized REE patterns strongly suggest some type of contact.

GREEFSWALD

 K2 \& Schroda

Fig 8.3.2.6. South Africa and Indonesia. \#s 86, 87 \& 91 are from K2. Similar Cedepleted chondrite-normalized REE patterns were found in bead $\mathbf{\# 5 1}$ from Kambang Unglen

Fig 8.3.2.7. Skutwater. Chondrite-normalized REE patterns show that the beads from Skutwater are more similar to Schroda and Pont Drift than to K2 and Mapungubwe.

NORTHERN TRANSVAAL
 Schroda, Pont Drift \& Skutwater

Fig 8.3.2.8. Northern Transvaal, East Africa and Indonesia. Chondrite-normalized REE abundances in beads from Pont Drift, Sofala \& Kambang Unglen.

NORTHERN TRANSVAAL, EAST AFRICA \& INDONESIA

[^41]Fig. 8.3.2.9. Eastern Transvaal. Similar chondrite-normalized REE patterns between beads found in the eastern Transvaal \& Botswana.

EASTERN TRANSVAAL
Phalaborwa \& Shikumbu

7- \#81 SPK III	* \#82 SPK III \times \#83 MN3 + \#84 MN3 - \quad \#79 Shikumbu

Fig. 8.3.2.10. Eastern Transvaal \& Botswana. Chondrite-normalized REE abundances in beads from eastern Transvaal \& Botswana.

EASTERN TRANSVAAL \& BOTSWANA

H- \#4 Nqoma + \#78 Letaba

Fig 8.3.2.11. Botswana, Eastern Transvaal and Ceylon. Bead \#12 is from Ceylon, \#4 from Nqoma in Botswana, and \#78 is from Letaba in the eastern Transvaal All have similar chondrite-normalized REE patterns.

BOTSWANA, EASTERN
 TRANSVAAL \& CEYLON

Fig 8.3.2.12. Botswana \& Egypt. Chondrite-normalized REE patterns in beads \#1 \& 2 from Kgaswe in Botswana are compared with \#27 from Fustat.

BOTSWANA \& EGYPT

\#27 Fustat - \#1 Kgaswe \#- \#2 Kgaswe

Fig 8.3.2.13. India. Chondrite-normalized REE patterns of glass 'waste' material from Arikamedu and Purdalpur have no Ce-depletion.

Fig 8.3.2.14. Arikamedu. The chondrite-normalized REE patterns for sample \#s 40, 43 $\boldsymbol{\&} \mathbf{4 5}$ are different from those illustrated above.

Fig. 8.3.2.15. Palestine, Malaysia \& South Africa. Chondrite-normalized REE abundances in beads from Kibbutz Ginosar, Gedong and Makahane.

Fig. 8.3.2.16. Indonesia and eastern Malaysia. The chondrite-normalized REE abundances for beads from these sites are so similar that they could have been made from the same batch of glass.

INDONESIA \& MALAYSIA

- \#62 Gedong :- \#68 Bongkissam \# 51 Kambang

Fig.8.3.2.17. Western Malaysia. Chondrite-normalized REE abundances for beads from Pulau Kelumpang (Kuala Selingsing) \& Sungai Mas. Sample \#s 74 (blue) \& 75 (green) are 'mosaic' glass beads
WESTERN MALAYSIA

Fig.8.3.2.18. Western Malaysia. Chondrite-normalized REE pattern of the distinctive bright orange seed bead, widespread in Southeast Asia but not in southern Africa.

WESTERN MALAYSIA PULAU KELUMPANG (Kuala Selingsing)

Fig. 8.3.2.19. Eastern Malaysia \& Ceylon. Chondrite-normalized REE patterns for glass beads from Gedong, Bongkissam \& Ceylon.

MALAYSIA \& CEYLON

Fig. 8.3.2.20. Eastern Malaysia \& Ceylon. Chondrite-normalized REE patterns for glass beads from Gedong \& Ceylon. These three samples have positive Eu anomalies while those illustrated above do not.

MALAYSIA \& CEYLON

- (61) Gedong

Fig 8.3.2.21. Thailand \& Fustat. Chondrite-normalized REE patterns for beads from Klong Thom \& Takuapa have negative Ce-anomaly.

THAILAND

Fig 8.3.2.22. Thailand \& Richards Bay (South Africa). The Takuapa specimen (sample \#133), is a small, dark blackish/brown 'lump' of glass. The chondrite-normalized REE signature is very similar to monazite (see Chapter 7.6.2).

[^42]
9

CONCLUSIONS

The bead trade, it would seem, deserves a larger place in the history of glass than has generally been assigned to it.
(Lamb 1966:94).

THE HISTORICAL AND ARCAEOLOGICAL CONTEXT OF THE BEADS

The archaeological evidence for contact and trade in southern Africa,, between $c a$. AD 900 - AD 1250, in the form of imported luxury goods is substantial: gold, ivory and other products were exported in exchange for glass beads, ceramics, and metals (slaving and cloth would probably also have been involved in this trade, but no "hard proof" has been found to support this assumption).

During this period, similar trading activities were taking place at coeval sites throughout Southeast Asia, as Muslim maritime trading networks expanded in the Mediterranean, and on the route linking the Red Sea with India and China. Merchants and traders crossed the Indian Ocean to India, South Asia and China. By the 11th century, Islamic influences had spread southward along the East African coast and several heterodox communities were founded. From the 12th century, the evidence for Arab control of trade and influence along the coast of East Africa is well established. However, the long period in between, and the effects of trade into the interior, remain essentially unknown.

Evidence about the identity of seafaring traders who visited the southeast coast of Africa and the source of the beads is at best fragmentary, and at worst unbelievable. Past investigations into the origin of the beads have generally favoured India and the Middle East as manufacturing sources.

Several attempts at tracing the trading routes have been made. The most satisfactory explanation is the development of the Swahili merchants using coastal Mtepe sailing boats and making use of shore winds and currents which were often difficult to navigate. These experienced seafarers became the middlemen in the transport of gold and possibly ivory to the Lamu archipelago, collecting in return quantities of trade goods for exchange in the south. Much later, the Portuguese conquered this trade, and established forts along the coast.

The Iron Age sites situated near the confluence of the Shashi and Limpopo Rivers, particularly Mapungubwe, provide archaeological evidence for the establishment, by the 13th century, of a large scale polity which has variously been called a kingdom or a state. The sites of K2 and Mapungubwe have been investigated since the 1930s by the University of Pretoria and have yielded rich archaeological finds, including gold objects and foreign imports, especially glass beads. Mapungubwe has deep, stratified deposits at the base of the hill, suggesting dense settlement of commoners. At the peak of its power (ca. 12201270 A.D.), its wealthy rulers occupied the summit.

This period coincided with the beginning of an important event in Islamic history when the Fatimid Caliphate conquered Egypt in AD 969, and built their new capital at al-Qahira (Cairo), next to the flourishing commercial city of Fustat. Archaeological evidence and historical sources show that Fustat was an important and well established Early Islamic glassmaking centre, by the time the Fatimids gained control of Egypt. It was also a clearing and forwarding centre for exotic trade goods and glassware from other glasshouses within the Islamic world. High-quality glassware has been excavated from within the city of Fustat, including factory material; distinctive bead types, termed Fustat Fused Rod Beads; and glass coin weights used for accurate gold weighing and useful temporal markers.

When the Fatimids came into power their expansionary political and economic policies promoted commercialism and trade. Their powerful position would have been able to influence, if not control, most trading activities from the Mediterranean through the Red Sea and ultimately, trade around the Indian Ocean rim.

In sum, the external trade relations of southern Africa during ca. AD 900- AD 1250 were most likely to have been associated with the emergence of the powerful Islamic Fatimid caliphate in Egypt; the seat of sovereignty established at the new capital of Cairo; flourishing prosperity and trade in Egypt; culmination of Early Islamic glassmaking at Fustat; expansion of international commerce and trade in the Mediterranean and on the route linking the Red Sea with India and China, and south along the east coast of Africa; the introduction of the gold standard and the discontinuation of gold sources in West Africa used to mint Fatimid coinage, and Muslim trade extending along the East Coast of Africa.

All the beads found at sites in southern Africa were imported, except for the Garden Roller beads and one calcite bead (which at first was misidentified as beaing made of glass). The Garden Rollers were probably made by the cire perdue casting process. This method has not been reported previously for South Africa. Considering that they were made by this very labour intensive technique, the numbers retrieved in the archaeological record is impressive. The Garden Roller beads were produced over a relatively short time period, and most of them, and the pottery moulds used to make them, were found at K2 or Bambandyanalo. Judging from the archaeological record, Garden Rollers were not replaced with similar imported replicas, and were, therefore, probably made for exclusivity.

The majority of the beads, other than glass, were made of gold and shell. More uncommon beads and pendants were made from soapstone and bone. These, plus the distinctively rounded and uniformly shaped seed beads found on some of the skeletons, are particularly discriminating.

ANALYTICAL TECHNIQUES FOR GLASS ANALYSIS

The glass beads and 'waste' material analysed for this thesis include a representative collection from twelve major sites in India, Ceylon, eastern and western Malaysia, Thailand, and Indonesia, where beads were produced at various times in what is thought to have been an unbroken sequence from the 3rd century BC until the present. In addition, glass beads and bracelets excavated at sites in Egypt, Palestine and Syria were also available. At the consumer end, the complete excavated collections from all the major sites in the Limpopo Valley and Lowveld regions of the Transvaal and Botswana, which span the period ca. AD 900-1250, including the massive collections of Bambandyanalo and Mapungubwe have been included. Approximately 150000 beads were examined.

The glass beads imported into southern Africa ca. AD 800 onwards were mostly, small, monochrome, seed beads, manufactured by the drawn technique. Until later European contact, other varieties of beads, particularly decorated beads were rarely found. The few that have been reported in earlier works (MacIver 1906; Beck 1937) are discussed in Chapter 4.7.

The limited diversity of the bead types plus the fact that many of them 'look' identical, although they may have been made in different places, presents a challenging problem. to extract more information from the beads several analytical techniques were investigated for this purpose of this study. The goals were to
(1) chemically differentiate or fingerprint either a number of elements peculiar to the sample or to distinguish diagnostic variables between the glasses; and
(2) investigate possible sources from where the glass beads could have originated, which in turn could provide information on temporal and spatial distribution, and external commercial contact and trade links.

The obvious procedure for determining glass composition is chemical analysis, but this is not a practical approach when working with very large assemblages. Alternate procedures, such as visual inspection and measurements of refractive index (R.I.) were used as initial screening techniques. The chemical composition of selected beads was then more fully analysed.

Pioneers in this field have contributed definitive works. Amongst them are Emeritus Professor W. E. S. Turner, University of Sheffield, United Kingdom; E. V. Sayre, Brookhaven National Laboratory; A. Lamb; R. W. Smith of the International Committee on Ancient Glass, and R. H. Brill, Corning Museum of Glass. Since 1955, research has tended to concentrate on specific components of the glass composition (Sayre \& Smith 1961; Henderson 1985 \& 1988 and Djingova \& Kuleff 1992. Davison (1972) followed in their footsteps and although she incorporated a few of the rare earth elements in her analysis they were not seen to be significant.
H. Beck, C. van Riet Lowe, J. R Schofield, W. G: N. van der Sleen and C. Davison have all made signficant contributions to the study of glass beads found in southern Africa.

The variety of techniques used for systematic chemical analyses for this dissertation includes: Electron microprobe analysis (EPMA), atomic absorption spectrometry (AAS),
laser ablation inductively coupled mass spectrometry (LA-ICP-MS) and scanning electron electron microscopy (SEM). Laser (ICP-MS) offers two important advantages over other techniques. Firstly, in small samples such as beads it is practically non-destructive, and secondly minimal sample preparation is required. This instrument is particularly suitable for multi-element analysis of rare earth elements (REEs) and has excellent precision and low detection limits.

Methodology

Visual inspection utilized in this study followed standardized classification procedures that are internationally recognised and used by other glass bead analysts. The method is based primarily on visual observation to determine method of manufacture and appearance, followed by selective chemical analysis. The physical attributes, coupled with with additional elemental analyses, characterise the glass in sufficient detail to make unequivocal comparisons possible. Extensive colour photography is used a swell. The combination of all these techniques, representing a new approach to the study of glass beads in southern Africa, provides an explicit taxonomy which can be repeated by other researchers.

Visual classification

Visual classification of glass beads relies upon a number of criteria which provide a complete physical description. It consists of a series of componential analysis which, as far as can be determined by visual inspection, produces a sequence of subtypes arranged in a taxonomic hierarchy (Saitowitz 1990:40).

The strategy of processing the beads using the non-technical, but yet objective standardised visual classification procedures was adapted from Kidd \& Kidd 1970; Karklins 1985 \& Sprague (1985). The methodology is based primarly on determining (1) method of manufacture (2) colour (3) size (4) clarity of the glass (5) and shape.

This intial stage of bead processing provides useful information on the availability or choice of particular types of beads; specific colour preferences and continuity of certain popular beads. Some of the more modern collections can be placed within specific time periods by comparing them to dated sample bead cards (when available) of known origin or well provenanced and dated sites.

Refractive index (R.I.).

Beads that appear identical may have different origins and chemical compositions. Over time many popular types were imitated by various manufacturers to satisfy demand. Differences in the 'recipes' of manufacturers can be detected chemically, but chemical analysis is too costly to apply to large numbers of beads. A simple measurement of R.I. helps as a screening device, by providing useful information on the bulk chemical composition. (The speed of light in glass is related to density, which is related to composition). In this study, R.I. measurements were determined to select representative glass bead specimens for chemical characterisation.

Chemical analysis.

The relative amounts of major elements may be characteristic of a glass; alternatively, the colouring trace elements may be uniquely diagnostic, or unintentional trace elements may reveal its origin. In this pilot study the major and minor elemental components of glassmakers ingredients determined were $\mathrm{SiO}_{2}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{O}, \mathrm{MgO}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{TiO}_{2}$, $\mathrm{MnO}, \mathrm{CaO}, \mathrm{P}_{2} \mathrm{O}_{3}, \mathrm{CoO}, \mathrm{SbO}$ and PbO . The rare earth elements (REE) or Lanthanides, zirconium and titanium (usually associated with REE) were used for trace element characterisation. This is a hardrock geochemistry technique which has proved to be highly successful in many geochemical studies (Taylor \& McLennon 1985; Henderson 1984). The analytical instrument used for the REE analyses is ideal for multi-element analyses of small glass samples. The LA-ICP-MS fingerprinting provides a visual comparisson of patterns, associations of elements and isotopes, unique to the samples. Sample dilution, blending or processing may reduce the element concentrations, but will not remove or change the fingerprint so the gross pattern remains unaltered. The procedure is essentially non destructive. This technique is not new. What is new is the way in which it has been applied as a sourcing technique for glass beads.

Other analytical techniques used to investigate the major and minor constituents of the glass have provided useful information on the composition or 'recipe' which could not have been obtained by any other method. REE analysis by means of LA-ICP-MS is by far the most accurate technique available.

REE analysis

I have contended that Fustat is a primary candidate for the production of glass beads found in southern Africa. To test this connection, the rare earth elements (REE) or Lanthanides proved to be the best elemental variables for comparing the glass samples. One of the salient features is the pronounced negative Cerium (Ce) anomaly, attributed to the fluxing component of the glass. The Ce-depleted REE pattern is unique to seawater and its derivatives (marine organisms and certain precipitates) as found on the desert coasts of Egypt.

REE analyses of the provenanced and distinctive Fustat Fused Rod Beads, show that a particular type of glass with the Ce-depleted seawater pattern (flux) used to make these beads is the same as that used to make some of the beads found at five sites in southern Africa, as well as sites in western Malaysia and Thailand. Specimens from two Indian manufacturing sites do not show the same seawater pattern.

Either the glass specimens found with Ce anomaly at some of the other sites in Southeast Asia were made in situ with similar fluxing agent or else the glass from which they were made, or even the beads themselves were imported from Fustat. Except for the characteristic bright orange bead from Pulau Kelumpa I find the latter of the two explanations more acceptable.

Combined bulk and trace elemental analyses of selected seed beads show distinctive differences in the composition used to make some of the beads, which are visually so similar that it is difficult to distinguish between them. This applies particularly to 'Indian red', yellow and blue green beads. This evidence contradicts the conclusions of some other
analysts, that seed beads found in southern Africa are of limited diagnostic value due to their manufacturing similarities and seemingly long temporal ranges.

The chemical data described in this thesis provide precise information on the beads, which reflect the extent of long distance trade which links geographical areas as far afield as Egypt, western Malaysia and South Africa. The data also show either direct or indirect trade or contact links between Iron Age sites in the northern and eastern Transvaal, and Botswana. Almost identical beads were found at K2, Mapungubwe, Makahane, Shikumbu, Mahlangeni and Letaba in South Africa.

These results confirm the existence of a trade link between Egypt and Malaysia, and between Egypt and South Africa ca. 1000 years ago. This information does not exclude he possibility that glass beads from other sources are also present.

In the absence of authoritative written sources about the early period of trade in the Limpopo basin, it remains for archaeologists to identify the sources of foreign imports. Until now, the lack of comparative material from possible source areas and imprecise scientific evidence has defeated all attempts at identification. This problem has now been overcome, making it possible to attempt such identification with renewed confidence.

9.1 SCOPE FOR FUTURE WORK

Information derived from this work promises to increase our knowledge of the origins of one of the most important components of material culture found in southern Africa; to document and broaden our understanding of the complexities involved in coastal maritime and inland trade; and to provide definitive 'fingerprints' for sourcing studies, using the rare earth element components in the raw material used to produce the beads.

For many years the origin of external trade and contact of southern Africa has been blandly lumped together by Iron Age archaeologists as originating in the Indian Ocean, controlled by Arab traders along the African East coast. Little attention has been paid to the complexities involved in that trade or with the nucleus of power which must have controlled it, in this case the Fatimid rulers in Egypt. Great play has been made on the development of Arab or Swahili coastal towns such as Malinde, Zanzibar and Kilwa but relatively little attention has been paid to the presence of glass trade beads found at inland sites.

The entrepôt ports need to be studied more in the context of their hinterland instead of in isolation, as they were often no more than intermediate stages in the transmission of goods. The ultimate destination of imports, like glass beads, was more than likely have been the capitals of the kingdoms and other destinations that the ports served. These could have been situated far inland, such as the Iron Age settlements in the Limpopo Valley and Botswana, where evidence of long distance trade was found.

In addition, the scope of this research can be extended to include beads introduced into southern Africa directly or indirectly through more modern European sources AD 1600 1900. We know that the Portuguese brought vast numbers of beads to Africa. Whether
they were all of European manufacture is not known. Later, the Dutch, French, English and Germans also inundated southern Africa with glass trade beads.

In the longer term, glass beads from sites such as Thulamela (AD 1600) in the northern Transvaal, the Zulu capital at Mgungundlovu (1829-1838), and a Tswana site in Thabazimbi in the south-western Transvaal (AD 1872-1879) can be used to trace European contact with indigenous communities. Tightly dated sites such as these can be used for ethnographic studies by comparing the beads with beaded work of unknown provenance, as found in museums and art galleries, both in southern Africa and abroad.

REFERENCES

ABUNGU, G. H. O. \& MUTORO, H. W. 1993. Coast-interior settlements and social relations in the Kenya coastal hinterland. In Shaw, T., Sinclair, P., Andah, B. \& Okpoko, A. (eds), The Archaeology of Africa. London: Routledge.

ABUNGU, L. L. 1992. Beads on the East African coast: an outline. In Sinclair P. J. J \& Juma, A. (eds), Proceedings of the 1991 Workshop in Zanzibar. Stockholm: Swedish Central Board of National Antiquities.
ADU BOAHEN, A. 1962. The caravan trade in the nineteenth century. Journal of African History 3(2): 349-59.
ALDRED, C. 1978. Jewels of the Pharaohs. New York: Ballantine Books.
AL-JANABI, T. 1983. Islamic archaeology in Iraq: recent excavations at Samarra. World Archaeology 14(3): 305-27.
ALLEGRE, C. J. \& MINSTER, J. F. 1978. Quantitaive models of trace element behaviour in magmatic processes. In Allegre, C.J. \& Hart, S. R. (eds), Trace Elements in Igneous Petrology. New York: Elsevier Scientific.
ALLEN, DE VERE, J. 1993. Swahili Origins. London: Villiers Publications.
ALLEN, J. 1993. The Nordic glass bead seminar. Bead Forum No.23: 4-10.
ALLEN, J. W., LLEWELLYN, L. R. \& SCHWEIZER, F. 1973. The history of so-called Egyptian faience in Islamic Persia: Investigations into Abu'L-Quasim's Treatise. Archaeometry 15(2): 165-73.
ARKELL, A. J. 1936. Cambay and the bead trade. Antiquity 10(39): 292-305).
ANDAYA, B. W. \& ANDAYA, L. 1994. History of Malaysia. Hong Kong: Macmillan.
ASPINALL, A. E., WARREN, S. E., CRUMMETT, J.G. \& NEWTON, R.G 1972. Neutron activation analysis of faience beads. Archaeometry 14: 27-40.
AUTH, S. 1991. Glass, Coptic. The Coptic Encyclopedia. Vol. 4. New York: Macmillan. 1142-47.

BALSAN, F. 1970. Ancient gold routes of the Monomotapa Kingdom. Geographical Journal 136: 240-46.

BASS, G. F. 1987. Oldest known shipwreck. National Geographic 172(6): 693-732.
BASS, G. F. 1984. The nature of the Serçe Limani glass. Journal of Glass Studies 26: 64-9.
BAXTER, M. J. 1991. Principal component and correspondence analyses of glass compositions: an empirical study. Archaeometry 33(1): 29-41.
BEACHEY, R. W. 1976. The Slave Trade of East Africa. London: Rex Collings.
BECK, H. C. 1928. Classification and nomenclature of beads and pendants. Archaeologia 77: 1-76.
BECK, H. C. 1930. Notes on sundry Asiatic beads. Man 30: 163-82.
BECK, H. C. 1931. Rhodesian beads from the 1929 excavations. In: Caton-Thompson, Zimbabwe Culture, Ruins and Reactions: 229-42. Oxford: Clarendon Press.

BECK, H. C. 1937. The Beads of the Mapungubwe District. In: Fouche, L. Mapungubwe Vol I. pp. 104-113. Cambridge CUP.

BEGLEY, V. 1983. Arikamedu reconsidered. American Journal of Archaeology 87(4): 46081.

BELL-CROSS, G. 1987. The occurrence of cornelian and agate beads at shipwreck sites on the southern African coast. Coelacanth: the Journal of the Border Historical Society 25(1): 20-35.

BENT, J. T. 1969. The Ruined Cities of Mashonaland. Bulawayo: Books of Rhodesia.
BHARDWA, H. C. 1991. A note on some lead-barium glasses from India. In: Brill, R. \& Martin, H. (eds), Scientific Research in Early Chinese Glass. New York: Elmira Quality Printers.
BIMSON, M. \& FREESTONE, I. C. 1988. Some Egyptian glasses dated by Royal Inscription. Journal of Glass Studies 30: 11-15.

BINSON, W. 1981. First Aid for Marine finds. Basildon: Trustees of the National Maritime Museum.

BIRMINGHAM, D. 1981. Central Africa to 1870. Cambridge: Cambridge University Press.
BLOMQVIST, J. 1979-1980. The date and origin of the Greek version of Hanno's Periplus. Studier utgivna av Kungl. Humanistiska Vetenskapssamfundet i Lund. Scripta Minora, Studier: 3.

BORAX CONSOLIDATED LIMITED 1977. Glasses. Surrey: Unwin Brothers.
BOVILL, E. W. 1968. The Golden Trade of the Moors. London: Oxford University Press.
BRILL, R. H., TONG, S. S. C., \& DOHRENWEND, D. 1991. chemical analyses of some early Chinese glasses. In: Brill, R., \& Martin, H. (eds), Scientific Research in Early Chinese Glass. New York: Elmira Quality Printers.
BRILL, R. H., TONG, S: S. S. \& FUKANG, Z. 1989. The chemical composition of a faience bead from China. Journal of Glass Studies 31: 11-15.
BRILL, R. H. \& CAHILLL, N. 1988. A red opaque glass from Sardis and some thoughts on red opaques in general. Journal of Glass Studies 30: 16-27.

BRILL, R. H. 1963. Ancient glass. Scientific American 209 (Nov): 120-30.
BRILL, R. H. 1972. A chemical analytical round-robin on four synthetic ancient glasses. Proceedings of the 9th Int. Congr. on Glass, Versailles, pp. 93-110.

BRILL, R. H. 1986. Chemical analyses of some early Indian glasses. In Bhardwaj, H. C.(ed), Archaeometry of Glass. Calcutta: Indian Ceramic Society.
BROOKS, J. A. n.d. Glass. London: Purnell.
CAIGER-SMITH, A. 1973. Tin-Glaze Pottery in Europe and the Islamic World. London: Faber \& Faber.
CAMPBELL, J. 1822. Travels in South Africa. Vol.I. London: Francis Westley.
CARSWELL, J. 1979. China and Islam. Transactions of the Oriental Ceramic Society v. 42. (The Third George de Menasche Memorial Lecture).
CARSWELL, J. 1977. China and Islam. Transactions of the Oriental Ceramic Society v. 41.

CARTER, G. F. 1978. Archaeological Chemistry II. Washington, D.C.: American Chemical Society.

CASANOVA, P. 1919. Essai de reconstitution topographique de las ville d' al Foustât ou Misr. Mémoire 35. Cairo: Institut Français d'Archéologie Orientale.
CATON-THOMPSON, G. 1931. The Zimbabwe Culture. Oxford: Clarendon Press.
CHAFE, A., HANCOCK, R. \& KENYON, I. 1986. A preliminary report on the neutron activation analysis of early historic blue glass trade beads. Unpublished manuscript, on file Rochester Museum and Science Center. Rochester: New York
CHAKRABARTI, D. K. 1991. The External trade of the Indus civilization. Review. Antiquity 65: 406.
CHARLESTON, R. J. 1978. Glass furnaces through the ages. Journal of Glass Studies 20: 931.

CHARLESTON, R. J. 1963. Glass "cakes" as raw material and articles of commerce. Journal of Glass Studies 5: 54-67.
CHAUDHURI, K. N. 1985. Trade and Civilization in the Indian Ocean: An Economic History from the Rise of Islam to 1750. Cambridge: Cambridge University Press.
CHITTICK, H. N. 1982. Mediaeval Mogadishu. Paideuma 28: 47-61.
CHITTICK, H. N. 1974. Kitwa: An Islamic Trading City on the East African Coast. Volume I \& Volume II. Nairobi: British Institute in Eastern Africa, Memoir 5.
CHITTICK, H. N. \& ROTBERG, R. I. 1975. East Africa and the Orient. New York: African Publishing Company.
CLAIRMONT, C. W. 1977. Catalogue of Ancient and Islamic Glass. Athens: Benaki Museum.
CLARK, D. 1962. The spread of food production in Sub-Saharan Africa. Journal of African History 3(2): 211-28.
CLIST, B. 1987. Early Bantu settlements in West-Central Africa: a review of recent research. Current Anthropology 280: 380-82.
CLOSE, A. 1988. Current research and recent radiocarbon dates from Northern Africa. Journal of African History 3(29): 145-76.
COHN, J. C. 1959. The bead collection of the Archaeological Survey, Johannesburg. The South African Archaeological Bulletin 14(54): 75-7.
CONNAH, G. 1987. African Civilizations. Cambridge: Cambridge University Press.
COTTERILL, R. 1985. The Cambridge Guide to the Material World. Cambridge: Cambridge University Press.
COUPLAND, R. 1965. East Africa and its Invaders. New York: Russel \& Russel.
CUMMINGS, K. 1980. The Technique of Glass Forming. Essex: Anchor Press.
DATOO, B. A. 1970. Rhapta: the location and importance of East Africa's first port. Azania 5: 65-75.

DAVISON, C. C. 1972. Glass beads in African Archaeology. Berkeley: Lawrence Berkeley Laboratory, U.S.A.E.C. (Report No.1240).
DAVISON, C. C. \& CLARK, D. 1976. Transvaal heirloom beads and Rhodesian archaeological sites. African Studies 35(2): 123-37.
DAY, L. 1990. The chemical and allied industries. In Neil, I. (ed), An Encyclopedia of the History of Technology. London: Routledge.
DENBOW, J. R. \& WILMSEN, E. D. 1986. Advent and course of pastoralism in the Kalahari. Science 234: 1509-15.

DEVISSE, J. 1992. Trade and trade routes in West Africa. In Hrbeck, I (ed), UNESCO General History of Africa v. 3. California: James Curry.
DICKINSON, R. W. 1975. The archaeology of the Sofala coast. South African Archaeological Bulletin 30: 84-104.
DIKSHIT, M. G. 1969. History of Indian Glass. Bombay: University of Bombay.
DILLON, E. 1907. Glass. London: Methuen.
DJINGOVA, R. \& KULEFF, I. 1992. An archaeometric study of medieval glass from the first Bulgarian capital, Pliska (ninth to tenth century AD). Archaeometry 34: 53-61.
DODSWORTH, R. 1984. Glass and Glassmaking. Aylesbury: Shire Publications.
DONLEY-REID, L. W. 1990. The power of Swahili porcelain, beads and pottery. Archaeological Papers of the American Anthropoligical Association no.2: 4759.

DROOKER, P. B. 1993. Chemical analysis of blue glass beads from the Madisonville site. Unpublished report, Cambridge: Harvard University Peabody Museum.
DU TOIT, A. 1961. Krale as ' n daterinsmiddel in die proto- geskiedkundige argeologie van Suidelike Afrika. MA Thesis. University of South Africa.
ELLIS, W. S. 1993. Glass. National Geographic 184(6): 37-69.
ELOFF, J. F. 1979. Die Kulture van Greefswald. Vols. I-V. Unpublished report. University of Pretoria.
ELOFF, J. F. \& MEYER, 1981. The Greefswald sites. In Voight, E. A. (ed), Guide to Archaeological Sites in the Northern and Eastern Transvaal. Pretoria: KopieRite.
ERDMANN, K. 1951. "'Fatimid" rock crystals. Oriental Art 3: 142-46.
EVANS, I. H. N. 1928. On ancient remains from Kuala Selinsing, Perak. Journal of the Federated Malaya States Museums 12(5): 121-31.
EVANS, I. H. N. 1929. Further notes on a find of stone implements with pottery. Journal of the Federated Malaya States Museums 12(7): 175-6.
EVANS, I. H. N. 1932. Excavations at Tanjong Rawa, Kuala Selinsing, Perak. Journal of the Federated Malaya States Museums 15(3): 79-133.
EVERS, T. M. 1979. Salt and soapstone bowl factories at Harmony, Letaba district, northeast Transvaal. South African Archaeological Society (Goodwin Series) 3: 94-107.

EVERS, T. M. \& VAN DER MERWE, N. J. 1987. Iron age ceramics from Phalaborwa north eastern Transvaal Lowveld, South Africa. South African Archaeological Society 42: 87-106.
FAGAN, B. 1964. The Greefswald sequence: Bambandyanalo and Mapungubwe. Journal of African History 5(3): 337-61.
FAGE, J. 1978. A History of Africa. London: Hutchinson.
FAGG, W. B. \& WILLET, F. 1960. Ancient life: an ethnographical summary. Journal of Yoruba \& Related Studies No. 8.

FLEET, A.J. 1984. Aqueous and sedimentary geochemistry of the Rare Earth Elements.
In Henderson, P. (ed), Rare Earth Geochemistry. Oxford: Elsevier.
FORBES, R. J. 1957. Studies in Ancient Technology. Vol. 5. Leiden: E. J. Brill.
FORNEAU, J. 1955. Search for the origins of the Zanaga beads. South African Archaeological Bulletin 38: 55-9.
FOUCHÉ, L. 1937. Mapungubwe. Vol.1. Cambridge: Cambridge University Press.
FRANCIS, P. Jr. 1984. Untitled note. Journal of Glass Studies 26: 152-53.
FRANCIS, P. Jr. 1988. The Glass Trade Beads of Europe. Lake Placid: Lapis Route Books.
FRANCIS, P. Jr. 1989. Beads of the early Islamic period. In Karklins, K. (ed), Beads 1: 2139.

FRANCIS, P. Jr. 1990. Glass beads in Asia, Part II. Indo-Pacific beads. Asian Perspectives 29(1): 1-24.
FRANCIS, P. Jr. 1990. Beadmaking in Islam: the African trade and the rise of Hebron. In Karklins, K. (ed), Beads 2: 15-28.

FRANCIS, P. Jr. 1991. Beadmaking at Arikamedu and beyond. World Archaeology 23(1): 28-43.

FRANCIS, P. Jr. 1993. More on Fustat Fused Rod Beads. The Bead Forum. 23: 3-4.
FRANCIS, P. Jr. 1995. The beads from Fustat in the Awad Collection. The Margaretologist 8(1): 7-10.
FREEMAN-GRENVILLE, G. S. P. 1962. The East African Coast. London: Oxford University Press.
FREESTONE, I. 1991. Looking into glass. In Bowman, S. (ed), Science and the Past. London: British Museum Press.

FRIPP, C. E. 1941. Chinese mediaeval trade with Africa. N.A.D.A. (Native Affairs Department Annual, Southern Rhodesia) 18: 12-22.

FRYER, B. J. \& TAYLOR R. P. 1987. Rare-earth element distribution in uraninites: Implications for ore genesis. Chemical Geology 63: 101-108.
GARDNER, G. A. 1963. Mapungubwe. Vol.2. Pretoria: van Schaik.
GOFFER, Z. 1980. Archaeological Chemistry: New York: John Wiley.
GOITEIN, S. D. 1967. A Mediterranean Society: The Jewish Communities of the Arab World as Portrayed in the Documents of the Cairo Geniza. Vol.1. Berkeley: University of California Press.

GOITEIN, S. D. 1983. A Mediterranean Society: The Jewish Communities of the Arab World as Portrayed in the Documents of the Cairo Geniza. Vol.4. Berkeley: University of California Press.
GRABAR, O. 1977. Kirbet el-Minya. 875-876. In Avi-Yonah, M. \& Stern, E. (eds), Encyclopedia of Archaeological Excavations in the Holy Land. Vol. 3. Jerusalem.
GRAY, R. \& BIRMINGHAM, D. 1970. Some economic and political consequences of trade in central and eastern Africa in the Pre-colonial Period. In Gray, R. \& Birmingham, D. (eds), Pre-colonial African Trade. London: Oxford University Press.
GWINNETT, A. J. \& GORELICK, L. 1986. Evidence for the use of a diamond drill for bead making in Sri-Lanka c. 700-1000 A.D. Scanning Electron Microscopy 2: 47377.

HAAS, J. 1982. The Evolution of the Prehistoric State. New York: Columbia University Press.
HALL, M. 1987. The Changing Past: Farmers, Kings and Traders in southern Africa, 200 1860. Cape Town: David Philip.

HALL, R. N. 1905. Great Zimbabwe. London: Methuen.
HANCOCK, R. G. V., CHAFE, A. \& KENYON, I. 1994. Neutron activation analysis of sixteenth - and seventeenth - century European blue glass trade beads from the eastern Great Lakes area of North America. Archaeometry 36(2): 253-66.
HANISCH, E. O. M. 1980. An archaeological interpretation of certain Iron Age sites in the Limpopo/Sashi valley. Unpublished MA thesis, University of Pretoria.
HANISCH, E. O. M. 1981. Schroda: a Zhizo site in the northern Transvaal. In Voight, E. A. (ed), Guide to Archaeological Sites in the Northern and Eastern Transvaal. Pretoria: Kopie-Rite.
HARDEN, D. B. 1956. A History of Technology. Vol.6. In Singer, C., Holmyard E. J., Hall, A. R. \& Williams, T. I. (eds), A History of Technology. Oxford: Clarendon Press.
HARDER, H. 1993. Possible prehistoric glasses in the gem trade of Sri Lanka. Journal of Gemmology 23(5): 267-73.
HARGER, H. S. 1941. A stone bead industry of the western Transvaal. Transactions of the Royal Society of South Africa 28: 129-42.
HARRISON, T. 1964. Monochrome glass from Malaysia and elsewhere. Man 50: 37-41.
HARRISON, T. 1962. Translucent glass rings from Borneo. Asian Perspectives no.6: 236-38.
HASSON, R. 1983. Islamic glass from excavations in Jerusalem. Journal of Glass Studies 25: 109-11.
HATCHER, H., TITE, M. S. \& WALSH, J. N. 1995. A comparison of inductively-coupled plasma emission spectrometry and atomic absorption spectrometry analysis on standard reference silicate materials and ceramics. Archaeometry 37(1): 83-94.
HECKROODT, R. O. \& SAITOWITZ, S. J. 1985. Characterization of bottles manufactured at the Cape Glass Company, Glencairn, circa 1904. South African Archaeological Bulletin 142: 94-5.

HENDERSON, J. 1985. The raw materials of early glass production. Oxford Journal of Archaeology 4(3): 267-91.
HENDERSON, J. 1988. Glass production and Bronze Age Europe. Antiquity 62: 435-51.
HENDERSON, J. 1988. Electron probe microanalysis of mixed-alkali glasses. Archaeometry 30(1): 77-91.
HENDERSON, J., \& IVENS, R. 1992. Dunmisk and glass-making in Early Christian Ireland. Antiquity 66: 55-64.
HENDERSON, P. 1984. Rare Earth Elemental Geochemistry. Amsterdam: Elsevier.
HERBERT, E. W. 1984. Red Gold of Africa. Madison: University of Wisconsin Press.
HICKMAN, D. A., HARBOTTLE, G. \& SAYRE, E. V. 1983. The selection of the best elemental variables for the classification of glass samples. Forensic Science International 23: 189-212.
HISKETT, M. 1984. The Development of Islam in West Africa. London \& New York: Longman.
HODDER, I. 1977. The distribution of material culture items in the Baringo district, western Kenya. Man 12: 239-69.
HODKIN, F. W. \& COUSEN, A. 1925. A Textbook of Glass Technology. London: Constable.
HOFMEYER, G. 1982. Admiralty jurisdiction in South Africa. In Aeta Juridica. Cape Town: Juta.
HOLLOWAY, D. G. 1973. The Physical Properties of Glass. London: Wykeham.
HORNELL, J. 1941. Sea-trade in early times. Antiquity 15: 233-55.
HORTON, M. C. \& CLARK, C. M. 1985. Archaeological survey of Zanzibar. Azania 20: 167-71.

HORTON, M. C. 1987. Early Muslim trading settlements on the East African coast: New evidence from Shanga. Antiquaries Journal 67(2): 291-323.
HORTON, M. C. 1987. The Swahili corridor. Scientific American 257 (Sept): 76-84.
HORTON, M. C. \& BLURTON T. R. 1988. 'Indian' metalwork in East Africa: the Bronze lion statuette from Shanga. Antiquity 62: 11-23.
HOURANI, G. F. 1963. Arab Seafaring in the Indian Ocean in Ancient and Early Times. Beirut: Khayats.
HROMNIK, C. A. 1981. Indo-Africa. Cape Town: Juta.
HROMNIK, C. A. 1991. Dravidian gold mining and trade in ancient Komatiland. Journal of Asian \& African Studies 26(3/4): 283-90.
HUFFMAN, T. N. \& HANISCH, E. O. M. 1987. Settlement hierarchies in the northern Transvaal: Zimbabwe ruins and Venda history. African Studies 46(1): 79-115.
HUFFMAN, T.N. 1982. Archaeology and ethnohistory of the African Iron Age. Annual Review of Archaeology (11):133-150
HUFFMAN, T.N. 1992. Southern Africa to the south of the Zambesi. In Hrbeck, I (ed) UNESCO General History of Africa Vol. III. California: James Curry.

JACQ-HERGOUALC'H, M. 1992. La Civilisation de Ports-Entrepôts du Sud Kedah (Malaysia). Paris: L'Harmattan.
JENKINS, M. 1986. Islamic Glass. Vol. 44 No. 2. New York: Metropolitan Museum of Art Bulletin.
JIAYAO, A. 1991. The early glass of China. In Brill, R \& Martin, H. (eds), Scientific Research in Early Chinese Glass. New York: Elmira Quality Printers.
JOHNSON, M. 1970. The cowrie currencies of West Africa. Journal of African History 11(1): 17-49.
JUTA, C. J. 1956. Beads and pottery from Lourenco Marques. South African Archaeological Bulletin 21: 9-11.

KARKLINS, K. 1994. A classification system for drawn glass beads. Conference Proceedings, Historical Archaeology, Vancouver B. C.
KARKLINS, K. 1985. Glass Beads. Studies in Archaeology, Architecture and History. Ontario: Parks Canada.

KATZEV, M. L. 1970. Resurrecting the oldest known Greek ship. National Geographic 137: 841-57.

KENYON, I., HANCOCK, R. G. V. \& AUFREITER, S. 1995. Neutron activation analysis of AD 1660-1930 European copper-coloured blue glass trade beads from Ontario, Canada. Archaeometry 37(2): 323-37.

KIDD, K. \& KIDD, M. 1970. A classification system for glass beads for the use of field archaeologists. Canadian Historic Sites: Occasional Papers in Archaeology and History 1: 45-89. Ottawa: National Historic Sites Service.
KILLICK, D. 1987. European trade beads in South Africa. Bead Forum No.10: 3-9.
KILLICK, D. J. 1991. Technology in its social setting: Bloomery iron smelting at Kasungu, Malawi, 1860-1940 (Unpublished PhD thesis, Yale University).
KIRK, W. 1962. The N.E. Monsoon and some aspects of African history. Journal of African History 3(2): 263-7.
KIRKMAN, J. S. 1974. Fort Jesus. Oxford: Clarendon Press.
KLEMP, E. 1968. Maps on Africa dating from the Twelfth to the Eighteenth century. Leipzig: Edition Leipzig.

KOBISHCHANOW, Y. M. 1965. On the problems of sea voyages of ancient Africans in the Indian Ocean. Journal of African History 6(2): 137-41.
KOLBAS, J. 1983. A color chronology of Islamic glass. Journal of Glass Studies 25: 95-100.
KRAMER, J. H. 1931. Geography and commerce. In Arnold, T. \& Guillaume, A (eds), The Legacy of Islam. London: Oxford University Press.
KRUEGER, H. C. 1933. The routine of commerce between Genoa and North-West Africa during the later twelfth century. Mariner's Mirror 19: 417-38.
KUBIAK, W. B. 1987. Al-Fustat. Cairo: American University in Cairo Press.
KUBIAK, W. B. \& SCANLON, G, T. 1979. Fustat expedition: preliminary report, 1972: Part I. Journal of the American Research Center in Egypt Vol.16: 103-24.

KURINSKY, S. 1991. The Glassmakers. New York: Hippocrene Books.

KÜSEL, M. M. 1992. A preliminary report on settlement layout and gold melting at Thula Mela, a Late Iron Age site in the Kruger National Park. Koedoe 35(1): 55-64.
LAIDLER, P. W. 1934. Beads in Africa south of the Zambezi. Proceedings of the Rhodesian Scientific Association 34: 1-27
LAL, B. B. 1958. Examination of rods of glass-like material from Arikamedu. Ancient India 14: 139-43.

LAMB, A. 1970. Some observations on glass beads in Ghana, West Africa. Annales du 5eme Congrès de l'Assoc. Internationale pour l'Histoire du Verre. Prague, pp.24750.

LAMB, A. 1966. A note on glass beads from the Malay Peninsula. Journal of Glass Studies 8: 80-94.

LAMB, A. 1965. Some glass beads from the Malay Peninsula. Man 30: 36-8.
LAMM, C. J. 1929. Mittelalterliche Glaser und Steinschnittarbeit aus dem nahen Osten, 2 vols. Berlin: D. Reiner.

LAMM, C. J. 1941 . Oriental Glass. Stockholm: Wahström and Widstrand.
LANE, A. 1937. Medieval finds at Al Mina in North Syria. Archaeologia 87: 61-78.
LAWTON, J. 1984. Shards of history. Aramco World Magazine. 35(4): 4-11.
LEHRER-JACOBSON, 1983. Hebron, city of glass. In Zeevy, R. (ed), Israel - People and Land. Tel Aviv: Haaretz Museum.

LEWIS, A. B. 1951. Naval Power and Trade. Princeton University Press.
LEWIS, B. 1958. The Arabs in History. Essex: Anchor Press.
LEWIS, B. 1970. Egypt and Syria. In Holt, P., Lambton, A, \& Lewis, B. (eds), The Cambridge History of Islam. Cambridge University Press.

LEWIS, B. 1984. The Jews of Islam. Princeton University Press.
LUBIS, M. 1987. Indonesia: Land Under the Rainbow. Singapore: Oxford University Press.
LIESEGANG, G. 1972. Archaeological sites on the bay of Sofala. Azania 7: 147-59.
LIU, R. K. 1977. T'alhakimt (Talhatana), a Tuareg omament: its origins, derivatives, copies and distribution. The Bead Journal 13(2): 18-22.
MACDOUGALL, E. A. 1985. The view from Awdaghust: war, trade and social change in the southwestern Sahara from the eighth to the fifteenth century. Journal of African History 26: 1-31.
MACDOUGALL, E. A. 1986. The economics of Islam in the southern Sahara: The rise of the Kunta clan. Asian and African Studies 20: 45-60.
MACIVER, D. R. 1906. Medieval Rhodesia. London: Macmillan.
MACKINNON, E. E. \& BRILL, R. H. 1986. Chemical analysis of some glasses from Sumatra. In Bhardwaj H. C. (ed), Archaeometry of Glass. Calcutta: Indian Ceramic Society.
MALAN, B.D. \& COOK, H. 1962. C. van Riet Lowe: Biographical sketch. South African Archaeological Bulletin. Suppl. 17 of 65: 38-67.
MALLOWS, W. 1985. The Mystery of the Great Zimbabwe. Bury: St. Edmundsbury Press.

MANGUIN, P-Y. 1993. Trading ships of the South China Sea. Journal of the Economic and Social History of the Orient 36(3): 253-79.
MARÇAIS, G. 1946. La Berbérie Musulmane et l'Orient au Moyen Age. Alger: La TypoLitho et Jules Carbonel Réunies.

MAYNARD, J. B., RITGER, S. D. \& SUTTON, S. J. 1991. Chemistry of sands from the modern Indus River and the Archean Witwatersrand basin: Implications for the composition of the Archean atmosphere. Geology 19: 265-68.

MEHLMAN, F. 1982. Phaidon Guide to Glass. Oxford: Phaidon Press.
MEIGUANG, S., OULI, H., ZONGDAO, W. \& FUZHENG, Z. 1991. Investigations of some ancient Chinese lead glasses. In Brill, R \& Martin, H. (eds), Scientific Research in Early Chinese Glass. New York: Elmira Quality Printers.
MEYER, A. 1980. 'n Interpretasie van die Greefswald Potwerk. Unpublished MA thesis, University of Pretoria.

MLLES, G. 1948. Early Arabic glass weights and stamps. American Numismatic Society 3: 31-69.

MTCHELL, S. 1994. Foreign contact and indigenous exchange networks on the Cobourg Peninsular, northwestern Arnheim Land. Conference Proceedings, World Archaeological Congress-3. New Delhi: Academic Committee of WAC-3.
MORAIS, J. 1984. Mozambican archaeology: past and present. The African Archaeological Review 2: 113-28.

MOHD OTMAN, Y. 1981. Chinese Islamic Wares. Kuala Lumpur: Terusan Selatan Sd. Bhd.
MORRISON, H. 1983. Glass and trade of the Kingdom of the ancient Aksumite kingdom. Annales du ge Congrès de l'Association Internationale pour l'Histoire du Verre. Liege: Centre de Publications de l'A.I.H.V.
MORRISON, H. 1984. The glass. In Chittick, H. N., Manda: Excavations at an Island Port on the Kenya Coast. Nairobi: British Institute in Eastern Africa, Memoir 9: 159-80.

MUCKELROY, K. 1980. Archaeology under Water. London: McGraw-Hill Book.
MUNSELL COLOR. 1976. Munsell Book of Color, Gloss Finish Collection. Baltimore: Macbeth Division, Kollmorgen Corporation.

NEWTON, R. G. 1971. A preliminary examination of a suggestion that pieces of strongly coloured glass were articles of trade in the Iron Age in Britain. Archaeometry 13(1): 11-16.

NEWTON, R. G. 1979. British faience beads reconsidered. In Renfrew, C., Problems in European Prehistory. Edinburgh: Edinburgh University Press.

ODDY, A. 1984. Gold in the Southern African Iron Age. Gold Bulletin 17(2): 70-8.
OPPER, M. J. \& OPPER, H. 1993. Powdered-glass beads and bead trade in Mauritania. In Karklins, K. (ed), Beads 5: 37-44.
OLIVER, R. \& FAGAN, B. 1975. Africa in the Iron Age. Cambridge: Cambridge University Press.
PHILLIPS, W. 1967. Oman. London: Longmans.

PILDITCH, J. 1992. The glass beads of Ban Bon Noen, Central Thailand. Asian Perspectives 31(2): 171-181.

PINDER-WLSON, R. H. 1991. The Islamic Lands and China. In Tait, H. (ed), Five Thousand Years of Glass. London: British Museum Press.
PINDER-WLSON, R. H. \& SCANLON, G. 1973. Glass finds from Fustat: 1964-1971. Journal of Glass Studies 15: 12-30.
PINDER-WLLSON, R. H. \& SCANLON, G. 1987. Glass finds from Fustat: 1972-1980. Journal of Glass Studies 29: 60-71.

PISTORIUS, J. C. 1995. Iron Age metal working in Phalaborwa: and ideographic perspective. Proceedings of the 10th Congress of the Pan African Association for the Prehistory and Related Studies - Harare, Zimbabwe.
PISTORIUS, J. C. C. 1989. Die metaalbewerkers van Phalaborwa. Unpublished PhD thesis. University of Pretoria.
POLANYI, K. 1964. "Sortings and ounce trade in the West African slave trade". Journal of African History 3: 381-93.

PRICE, W. J. 1985. Spectrochemical Analysis by Atomic Absorption. Cambridge: Wiley.
PULAK, C. 1988. The Bronze Age shipwreck at Ulu Burun, Turkey: 1985 Campaign. American Journal of Science 92: 1-37.
QUARCOOPOME, N. O. 1993. Notse's ancient kingship: some archaeological and arthistorical considerations. In Goucher, C. L., Phillipson, D. W. \& Schoenbrum, D. L. (eds), African Archaeological Review 11: 109-129.

RABINOWITZ, L. 1948. Jewish Merchant Adventurers: A Study of the Radanites. Altrincham: St Ann's Press.

RANDALL-MACIVER, D. 1906. Medieval Rhodesia. London: Macmillan.
READ, H. H. 1962. Rutley's Elements of Mineralogy. London: Thomas Murby.
REDMAN, C. L. 1983. Comparative urbanism in the Islamic Far West. World Archaeology 14(3): 355-92.
REED, S. J. 1975. Electron Microprobe Analysis. Cambridge: Cambridge University Press.
RICE, D. S. 1956. Dateable Islamic rock crystal. Oriental Art 2: 85-93.
RICE, D. S. 1958. Early signed Islamic glass. Journal of the Royal Asiatic Society Parts 1 \& 2: 1-16.

RIGHTMIRE, G. P. \& VAN DER MERWE, N. J. 1976. Two burials from Phalaborwa and the association of race and culture in the Iron Age of southern Africa. South African Archaeological Bulletin 30: 147-52.
SAITOWITZ, S. J. 1988. Classification of glass trade beads. South African Museums Association 18(2): 41-5.
SAITOWITZ, S.J. 1990. 19th Century glass trade beads from two Zulu Royal residences (Unpublished MA thesis, University of Cape Town).
SAITOWITZ, S. J. \& SAMPSON, C. G. 1992. Glass trade beads from rock shelters in the Upper Karroo. South African Archaeological Bulletin 47: 94-103.

SAITOWITZ, S. J., VAN DER MERWE, N. J. \& KAUFMANN, C. 1994. Chevron beads in an Iron Age context: a unique find from central Angola. Muntu 9: 125-56.
SAITOWITZ, S. J. 1994. The archaeometry of glass beads between southern Africa, Egypt and India AD 900-1250: a pilot study. Conference Proceedings, World Archaeological Congress-3. New Delhi: Academic Committee of WAC-3.

SAITOWITZ, S. J. 1995. Glass bead trade from Islamic Egypt to South Africa ca. AD 900 1250. South African Journal of Science (in press).

SAITOWITZ, S. J. n.d. Bold Vision: the History and Archaeology of the Cape Glass Company 1903-1906 (in prep.).

SAYRE, E. V., \& SMITH, R. W. 1961. Compositional categories of ancient glass. Science 133: 1824-26.

SCANLON, G, T. 1968. Fustat and the Islamic Art of Egypt. Archaeology 21: 188-95.
SCANLON, G, T. 1976. Fustat expedition: Preliminary report, 1968: Part I. Journal of the American Research Center in Egypt 13: 69-89.
SCANLON, G, T. 1981. Fustat expedition: Preliminary report, 1972: Part I. Journal of the American Research Center in Egypt 18: 57-84.
SCANLON, G. T. 1990. The archaeology of Al-Fustat: Some novelties. Bulletin de l'Institut d'Egypte 58/59: 1-15.

SCHOFIELD, J. R. 1938. A preliminary study of the prehistoric beads of the northern Transvaal and Natal. Transactions of the Royal Society of South Africa 26: 341-71.

SCHOFIELD, J. R. 1943. A study of the old trade beads of Nyasaland. Transactions of the Royal Society of South Africa 30: 17-34.
SCHOFIELD, J. R. 1955. The city of Gedi. South African Archaeological Society: Presidential Address.

SCHOFIELD, J. R. 1958. The beads of southern Africa. In Summers, R. Inyanga: 180-229. Cambridge University Press.

SEN, S. N. \& CHAUDHURI, M. 1985. Ancient Glass and India. Calcutta: Eastland Printers.
SHAW, K. 1968. Ceramic Colours and Pottery Decoration. London: Maclaren.
SHAW, T. 1978. Nigeria: Its Archaeology and Early History. London: Thames and Hudson.
SHAW, T. 1985. Always something new from Africa. Antiquity 10: 209-13.
SHEPERD, G. 1982. The making of the Swahili. Paiduema 28: 129-47.
SHERIFF, A. 1987. Slaves, Spices and lvory in Zanzibar. London: James Currey.
SHERR DUBIN, L. 1987 The History of Beads. London: Thames and Hudson.
SINCLAIR, P. 1982. Chibuene - an early trading site in southern Mozambique. Paideuma 28 : 150-64

SINGER, C., HOMYARD, A. R., \& HALL, A. R. 1956. A History of Technology Vol. 6. Oxford: Clarendon Press.

SINGH, R. N. 1989. Ancient Indian Glass. Delhi: Parimal Publications.
SMIȚH, A. 1970. Pre-colonial African Trade. In Gray, R. \& Birmingham, D. (eds), Precolonial African Trade. Oxford: Oxford University Press.

SMITH, R. W. 1957. New finds of ancient glass in North Africa. Ars Orientalis 2: 91-117.
SPAER, M. 1984. On some of our earliest glass finds. Israel Museum Journal 3: 14-6.
SPAER, M. 1985. Some observations on the stratified Mediterranean eye-beads of the first millennium BC. Annales du 10^{e} Congres de l'Association Internationale pour l'histoire du Verre. Madrid-Segovie, pp.1-14.
SPAER, M. 1987. Some egg-shaped glass vessels and reflections on early glassblowing. Israel Museum Journal 6: 51-8.

SPAER, M. 1988. The pre-Islamic glass bracelets of Palestine. Journal of Glass Studies 30: 51-61.

SPAER, M. 1992. Glass bracelets of Palestine: preliminary findings. Journal of Glass Studies 34: 44-62.

SPAER, M. 1993. Gold-glass beads: a review of the evidence. In Karklins, K (ed), Beads 5: 925.

SPAER, M. 1993. Some observations on "Fustat" beads. In: Karklins, K (ed), The Bead Forum No.22: 4-11.
SPENCER TRIMMINGHAM, I. 1949. Islam in the Sudan. Oxford: Oxford University Press.
SPRAGUE, R. 1985. Glass trade beads: a progress report. Historical Archaeology 19(1): 87105.

STEYN, M. 1994. An assessment of the health status and physical characteristics of the prehistoric population from Mapungubwe. Unpublished PhD thesis, University of the Witwatersrand.
SUMMERS, R. 1958. Inyanga. Cambridge: Cambridge University Press.
SUMMERS, R. 1969. Ancient Mining in Rhodesia. Museum Memoir No 3. Salisbury: Mardon Printers.

SUN, K-H. 1947. Calculation of refractive index of a glass as a direct function of its composition. Journal of The American Ceramic Society 30(9): 282-87.
TAMPOE, M. 1989. Maritime trade between China and the West. BAR International Series 555.

TATTON-BROWN, V. \& ANDREWS, C. 1991. Before the invention of glassblowing. In Tait, H. (ed), Five Thousand Years of Glass. London: British Museum Press.
TAYLOR, S. R. \& MCLENNAN, S. M. 1985. The Continental Crust: its Composition and Evolution. Oxford: Blackwell Scientific Publications.
THORBAHN. P. F. 1979. The pre-colonial ivory trade of East Africa: reconstruction of a human-elephant ecosystem. University of Massachusetts PhD . London: University Microfilms International.
THROCKMORTON, P. (ed) 1987. History from the Sea. London: Mitchell Beazley.
TITE, M. S., FREESTONE, I. C., \& BIMSON, M. 1986. Egyptian faience: an investigation of the methods of production. Archaeometry 25(1): 17-27.
TORRENCE, R. 1994. Just another trader? An archaeological perspective on European 'contact' with Admiralty Islanders, Papua New Guinea. Archaeology as an Indicator of Trade \& Contact: Conference Proceedings, World Archaeological Congress-3. New Delhi: Academic Committee of WAC-3.

TRACEY, H. 1963. The Hakata of southern Rhodesia. Southern Rhodesia Native Affairs Department (NADA) 40: 105-107.
Transvaal Archives, July 1940-February 1950. Director Archaeological Survey. SAB. ASW. Vols 32-33. Ref: B11/5.

Transvaal Archives, 1952. C. van Riet Lowe - Personal. SAB. UOD. Vol.2. Ref: E3/1/639.
TRIMMINGHAM, J. S. 1949. Islam in the Sudan. Oxford: Oxford University Press.
TRIMMINGHAM, J. S. 1962. History of Islam in West Africa. Oxford: Oxford University Press.

TURNER, W. E. S. 1954. Studies of ancient glasses and glass-making processes. Part I. Crucible and melting temperatures employed in ancient Egypt at about 1370 B.C. Journal of the Society of Glass Technology 38: 436T-56T.

TURNER, W. E. S. 1955. Studies of ancient glasses and glass-making processes. Part V. Raw materials and melting processes. Journal of the Society of Glass Technology 36: 277T-370T.

TURNER, W. E. S. 1956a. Studies of ancient glasses and glass-making processes. Part III. The chronology of the glassmaking constituents. Journal of the Society of Glass Technology 40: 39T-52T.
TURNER, W. E. S. 1956b. Studies of ancient glasses and glass-making processes. Part IV. The chemical composition of ancient glasses. Journal of the Society of Glass Technology 40: 163T-86T.

UNDERHILL, L. G. \& PEISACH, M. 1985. Correspondence analysis and its application to multi-elemental trace analysis. Journal of Trace Microprobe Techniques 3: 4165.

UNESCO. 1981. Protection of the Underwater Heritage. Switzerland: UNESCO.
VAN DER MERWE, N. J. \& SCULLY, R. T. K. 1971. The Phalaborwa story: archaeological and ethnographic investigation of a South African Iron Age group. World Archaeology 3: 178-96.

VAN DER SLEEN, W. 1967. A Handbook on Beads. Liege: Musee du Verre.
VAN DER SLEEN, W. G. N. 1958. Ancient glass beads with special reference to the beads of East and Central Africa and the Indian Ocean. Journal of the Royal Anthropological Institute of Great Britain and Ireland 88(2): 203-16.
VAN DER SLEEN. W. G. N. 1956. Trade-wind beads. Man 56: 27-9.
VAN DER SLEEN, W. G. N. 1955. Zimbabwe beads and ribbed ware. South African Archaeological Bulletin 10(38): 60.

VAN RIET LOWE, C. 1955. The glass beads of Mapungubwe. South African Archaeological Survey. Archaeological Series 9: 1-22.

VAN RIET LOWE, C. 1936. Mapungubwe. Antiquity 10(39): 282-91.
VELGUS, V. A. 1993. Chinese voyaging to Africa and to the Persian Gulf: hypothesis and sources. St. Petersburg Journal of African Studies 1: 104-12.

VERAPRASERT, M. 1987. Khlong Thom: an ancient bead manufacturing location and an ancient entrepôt. Conference Proceedings, SPAFA Seminar in Prehistory of Southeast Asia (T-Wll) Bangkok, Surat Thani, Phangnga, Phuket and Krabi, Thailand, pp. 323-31.
VERIN, P. 1986. The History of Civilization in North Madagascar. Rotterdam: Balkema.
VINCENT, W. 1800. The Periplus of the Erythrean Sea. Part I. London: T. Cadell \& W. Davies.

VINCENT, W. 1805. The Periplus of the Erythrean Sea. Part II. London: T. Cadell \& W. Davies.
VINCENT, W. 1807. The Commerce \& Navigation of the Ancients in the Indian Ocean. Part II. London: T. Cadell \& W. Davies.

VLASOV, K. A. 1966. Geochemistry of Rare Elements. Vol.1. Jerusalem: S. Monson.
VOGEL, H. U. 1993. Cowrie trade and its role in the economy of Yünnan: from the ninth to the mid-seventeenth century. Part III. Journal of the Economic and Social History of the Orient 36: 211-51.
VOIGHT, E.A. 1983. Mapungubwe. Transvaal Museum Monograph no.1. Pretoria: Transvaal Museum.
VOSE, R. 1980. Glass. London: William Collins Sons \& Co Ltd.
WATSON ANDAYA, B. \& ANDAYA, L. Y. 1994. A History of Malaysia. London: Macmillan.
WACE, A. J. B. 1932. Chamber tombs at Mycenae. Archaeologia v. 82. London: Society of Antiquaries.
WEEDMAN, K. J. 1993. Foragers, Pastro-foragers, and Agro-pastoralist: Lithic Use in Botswana from the 2 nd millennium BC Through the 19 th century AD. Unpublished MA thesis, The University of Texas at Austin.
WEINBERG, G. L. 1971. Glass manufacture in Hellenistic Rhodes. ANATYPON. APXAIOKOCIKON DEKTION 24: 143-64.
WHITCOMB, D. S. 1983. Islamic glass from Al-Qadim, Egypt. Journal of Glass Studies 25: 101-8.
WHITEHOUSE, D. 1983. Maritime trade in the Gulf: the 11th and 12th centuries. World Archaeology 14(3): 328-34.
WILLETT, F. 1960. Ife and its archaeology. Journal of African History 1(2): 231-48.
WILLIAMSON, A. 1974. Harvard archaeological survey in Oman, 1973: III - Sohar and the sea trade of Oman in the tenth century A.D. Proceedings of the Seminar for Arabian Studies 4: 78-96.
WLLLIAMS-THORPE, O. \& THORPE, R. S. 1990. Millstone provenancing used in tracing the route of a fourth-century BC Greek merchant ship. Archaeometry 32(2): 115-37.

WILLIS, J. P. 1986. Instrumental analytical techniques in geochemistry: Requirements and applications. Fresenius' Zeitchrift für analytische Chemie 324:855-864.
WILLIS, J. P. 1993. Rare earth elements in the sedimentary environment. Geological Sciences Honours Course. University of Cape Town.

WILMSEN, E. N. 1989. Land Filled with Flies. Chicago University Press.
WRIGHT. H. T. 1984. Early seafarers of the Comoro Islands: the Dembeni Phase of the IXthXth centuries AD. Azania 19: 13-60.
WRIGLEY, C. 1960. Speculations on the economic prehistory of Africa. Journal of African History 1(2): 189-203.

YAJIMA, H. 1976. The Arab Dhow trade in the Indian Ocean. Institute for the Study of Languages and Cultures of Asia and Africa. Studia Culturae Islamicae No. 3.
YE'OR, BAT. 1985. The Dhimmi: Jews and Christians under Islam. Cranbury: Associated University Presses.

APPENDIX I

EARLY CONTACT AND TRADE BEFORE THE RISE OF ISLAM

Early Trade History in the Mediterranean

The Mediterranean Sea has been used for the passage of trade goods and contact since antiquity. While it is a matter of conjecture who was the first trader to establish extemal contact with his neighbour, it is likely that once trade routes were established they were used by various participants throughout time. The chronological sequence for many of these events is sometimes difficult to ascertain because of scant documentation, but the discoveries of ancient shipwrecks carrying goods provide useful time capsules.

Trade routes throughout the Mediterranean were used by sea-faring Canaanites more than 3000 years ago. According to Klemp (1968:9), they were considered the sea lords of the Mediterranean with established trading centres at Gadir or Gades [Cadiz] (BC 1100), Carthage (BC 814) and at Lixus [present day Morocco]. They had access to silver deposits on the Iberian peninsula and even explored beyond the Straits of Gibraltar, discovering the Canary Isles and Madeira (Klemp 1968:9).

Ancient Trade Routes

Evidence of early trade in the Mediterranean has been found in a shipwreck dated to $c a$ BC 1200. The ship, approximately 13 m long, was found in 30 m of water off Cape Gelidonya, the southernmost part of Asia Minor, opposite the northern coast of Cyprus (Throckmorton 1987:31). In all probability the ship was Canaanite, and carried a cargo of iron and copper ingots, bronze 'bun' ingots, tin ingots, wicker baskets full of bronze scrap and broken bronze tools, metal working tools and a jar of coloured glass beads. The glass beads seemed strong and well preserved whilst still under water, but exploded into particles of dust when they were left to dry out (Throckmorton 1987:102).

Egyptian vessels sailed to the land of Punt, probably situated on the northern Somali coast, as early as BC 2470 (Hourani 1963:7). Numerous reliefs and inscriptions found on Egyptian tombs testify to a trade in spices and African animals. Funerary and worship rites led to the development of the incense trade. The 14th century Mediterranean shipwreck at Ulu Burun yielded numerous items which were indications of trade, amongst which were a number of dark logs thought to be ebony (Bass 1987:729). Analysis of this wood showed it to be African blackwood (Dalbergia melanoxylon) which grows in the Sudan and occurs as far south as Mozambique and Angola. Voyages which departed from Mediterranean ports included -
(1) The voyage of Himilco sailing from Cadiz, $c a$. BC 450, who journeyed to Cornwall in search of tin and Ireland for gold (Throckmorton 1987:52).
(2) The voyage of Hanno. (see below).
(3) Around BC 300 Pytheas sailed to the far north, possibly as far as Iceland where the sea was 'congealed' [frozen] (Throckmorton 1987:54).

As early as BC 800 the Phoenicians (Canaanites) obtained gold from West Africa through Berber middlemen (Hall 1987:26-30). It seems likely that an extensive trading network existed within west Africa before the Arab trade across the Sahara was developed (Connah

1987:120). Further trading lines extended from Tripoli via Fezzan to Timbuktu, and from Tripoli to Lake Chad (Hisket 1984:59).

In BC 450, Herodotus recorded that Carthaginians were trading for gold on the Atlantic coast, and that Phoenician (Canaanite) cities were trading extensively with the Berbers in the Sahara, bartering cloth, beads and metal goods for ivory, gold and slaves; other merchandise included wild animals for the circuses of Rome (Oliver \& Fagan 1975:9). He also reported that the Garamantes [North African nomads] travelled in horse drawn iron chariots along a western route in Mauritania and a central route to Fezzan (Spencer Trimingham 1962:12).

Five years later, in BC 425 King Hanno of Carthage, with 30000 people and sixty ships, undertook his legendary voyage along the shores of North Africa, through the Straits of Gibraltar to Senegal, the Guinea Coast and Mount Cameroon, establishing cities named as Thymiaterion, Soloeis, Karikon Teichos, Gytte, Akra, Melitta, Arambys and Kerne (Blomqvist $1979-80: 12)^{1}$. Hanno's expedition was a complete failure and the only recorded objects he brought back to Carthage were three dead
...(w)ild hairy women called Gorillas (Blomqvist op cit:63).

Throckmorton (1987:60) compiled and computerised almost 600 Roman shipwrecks from the Hebrides to the Red Sea ranging in sizes from small up to 600 tonnes. Cargoes included glass, glass beads, copper, lead, tin, wine, fish sauce, olive oil, pottery, building materials, marble and a host of foodstuffs to feed the Empire. Rome became the centre of a trade network stretching from Wales to China.

During the time of the Roman Empire, trade was already being carried on in Africa where caravans moved northwards from Chad to Numidia and Mauritania [an extension of the old Carthage trade], and to the Upper Nile region in the east (Lubis 1991:30). Macedonia became a link between the Mediterranean, the Middle East and India. Roman trade extended along the silk route to the Pamirs, Turkistan and China under the Han Dynasty. Shipping was extended to India, Ceylon, Indonesia and Malaysia. Southern Arabia also participated in early port entrepôt trade and shipping, involving Egyptians, Greeks, Romans, Indians and Indonesians. The wide frontiers of the Roman Empire were continually threatened by barbarian people who disrupted the delivery of foodstuffs and trade goods. It is interesting to note that there were about 1000 active harbours in the Mediterranean and Black Sea areas during the Roman period (Muckelroy 1980:176). The final collapse of the Roman Empire in AD 476 brought about major changes in shipping, and control of the sea-borne traffic passed into the hands of independent merchants and traders who travelled on their own ships.

Political factors were the main reasons which led to the increase, decrease or even abandonment of early trade routes. Early trade northwards and eastwards across the Sahara is certainly evident, but the west coast was not destined to be a great external trading network until the advent of the European sea traders from the 14th century onwards. This was brought

[^43]about by political constraints resulting in an upsurge of exploration for new routes to the coast ${ }^{2}$

The camel was introduced into the desert regions about AD 100. Following ancient established trade routes, camel caravans transporting merchandise between settlements, carried trade items such as gold, ivory, salt and gum (Adu Boahen 1962: 349). Increased trade led to the establishment of the Roman cities of North Africa - Tumgad, Djemila and Sabratha. It has been suggested that sub-Saharan Africa is separated from the rest of the world by two seas: the sea of salt water that surrounds its coasts and the sea of sand which forms the Sahara (Davison 1972:38). The introduction of the 'ship of the desert', the camel and the development of suitable sea-going ships were responsible for the opening of many trade routes and centres.

North Africa (Including Egypt) and East Africa

Egypt and North Africa were central to the interpretation of trade and trading and there is little reason to segregate the North from the rest of Africa. Oliver \& Fagan (1975:4), state categorically that dynastic Egypt had a culture and a sense of values quite different from anything found in eastern Europe and the western Asian Bronze Age world to the north. Direct caravan routes via North Africa linking Egypt with the gold and copper producing areas of West Africa were evident from the earliest times. Rock art chariot drawings, found close to the copper deposits in southern Mauritania, and artefacts dated to the 5th century BC indicated that the miners were Berbers who traded their goods northwards toward the coast (Oliver \& Fagan 1975:60).

The shift of power eastwards, resulting in the establishment of Byzantium as a second capital to Rome, led to a decrease in trade in North Africa.

In the East African region it is relevant to include the Red Sea, Nubia, a portion of the Sudan, Ethiopia and Somalia, in examining early trading contact. The Red Sea and the river Nile provided a natural link with the Mediterranean basin. A possible trading route based on the spread of the iron trade along the East Coast is from the Red Sea port of Adulis, which became prominent between the 1 st to the 6th centuries AD . Adulis controlled the lower reaches of the Red Sea and was a link between the Mediterranean and the Far East (Morrison 1983:124). The capital of this Sudanic kingdom was Meroe, which had been producing iron since the 7th century BC : Research indicated that in the early centuries AD furnaces used in Meroe were of Roman design (Hall 1987:27). With the demise of Meroe, circa 2nd century AD , an alternative source of iron as a trading commodity was required. Early Iron Age sites have been located near the coast; for example, Kwale (30 km south of present day Mombasa) had a good anchorage and fresh water.

The inhabitants of the East coast have been described by Freeman-Grenville (1962:2) as Negroid, of great stature, living under a tribal system with servant chiefs for each place. Slaves were in great demand as trading commodities and attracted a duty upon sale. A

[^44]reference was made to glass and crystal imports into East Africa in the Periplus of the Erythrean Sea (a guide to the ports of Arabia, East Africa and India) (Vincent 1800:104).

Evidence of the identity of seafaring traders who visited the southeast coast of Africa during the lst millennium AD is fragmentary, although we know that maritime trade on the Indian Ocean developed much earlier than it did on the Atlantic. The earliest evidence for this trade comes from the accounts of explorers and geographers, although it is not really known how far their knowledge was based on personal observation or how far they actually went on their voyages. The often quoted Periplus of the Erythrean Sea depicts Arab traders in the Indian Ocean from India to Tanzania in the 1 st century AD (Vincent 1800:Vol.l). The Periplus was compiled when Egypt was a colony of Rome ca.AD 80^{3}, and contained an account of the navigation of the ancients from the sea of Suez to the coast of Zanzibar. Detailed descriptions were recorded of promontories, river mouths, harbours, coastal towns and voyages involved with trading activities. However, the authenticity of this document has frequently been questioned. There are no further accounts of sea-travel for many years until the first half of the 12 th century when Mohammed al-Idrisi (1099-1164) compiled a book based on his own travels and those of other writers and informers (Klemp 1968:14-15).

During Dynastic Egyptian, Roman and Byzantium times the Sudan was regularly raided for slaves. Slaves were subject to high duties and were regarded as commodity trade. The Periplus mentioned that the south western Arab trade had been ongoing for a long time among ship captains and agents
...(w) ho are familiar with the natives and intermarry with them and who know the whole coast and understand the language (Mallows 1984:93).

Whether or not there was direct contact between the East Coast of Africa and India remains conjectural because of the lack of direct evidence. However, the interpretation of available evidence for early trade on the East coast seems to point to two distinct trading patterns linked by emergent Swahili coastal traders. The first consists of Arab influence from the north with 'coastal hopping' from Arabia and the Persian Gulf regularly reaching as far south as Zanzibar. In the second pattern, long distance ocean going merchants sailed from Southeast Asia via the Laccadive, Maldive and Chagos archipelago to Madagascar and the Comores (Verin 1986).

The Indian Ocean, Pre-Islam

The Indian Ocean comprises a complex of seas (from east to west): - the China Sea; the Java Sea; the Bay of Bengal; the Arabian Sea; the Persian Gulf and the Red Sea. It is possible to distinguish two types of passage within the infrastructure of the Indian Ocean trade. The first took place between the commercial cities of the Red Sea and the Persian Gulf, united after the 7th century by the common bond of Islam; the second type was the long trans-regional trip to India, the Indonesian islands and China (Chaudhuri 1985:15).

India played a pivotal role in the Indian Ocean commercial trade network not only in geographical terms but also in the volume and value of the merchandise exchanged. It is noteworthy that although the coastal rulers of South India and Malabar occasionally emerged

[^45]as sea-powers capable of naval expeditions to the Indonesian archipelago, India lacked seapower in the pre-modern period (Chaudhuri 1985:15).

Two cities in Arabia founded by Alexander the Great (Charax and Apologus), traded with India exporting pearls, purples (dyed cloth), wine, dates, gold and slaves to Barygaza on the Gulf of Cambay in return for copper, ebony and timber of various kinds (Hourani 1963:16). According to Hornell (1941:248), sources of Indian timbers were discovered in Babylonian ruins dated between BC 604-BC 538 which he considered sufficient evidence to indicate sea trade between India and the Euphrates .

Thiel (1969:17) claims that Eudoxus of Cyzicus used the monsoon winds for his voyages to and from India and undertook direct expeditions by sea from Egypt to India in ca. BC 110. The Kings of Egypt commissioned several voyages during this time as well, one during which a Greek navigator [named Hippalus] learned of, and recorded, the art of sailing between Arabia and India, using the southwest monsoon which blows in summer (Hourani 1963 :240).

Shepherd (1982:130) noted that various factors pointed to South Indian based Indonesian traders settling in Madagascar ca. BC 230 - AD 300, suggesting that the occupation of Madagascar originated as a by-product of trade with east Africa, stock-piling goods for the next international monsoon season. A study of food crops of South East Asian origin lists 10 which are found in Madagascar; 9 in the Comores; and 5 on the east African mainland, suggesting a northwards diffusion of these crops from Madagascar. A similar path northwards is noted with the incidence of outrigger canoes. Outriggers are found in Southeast Asia, southwest and south India and the Maldives, Laccadives and Chagos Islands; and Madagascar, Comores and East African coast as far north as Mogadishu.

By AD 150-160 Greeks were sailing to Ceylon and a few adventurers had sailed as far as the Malay peninsula (Hourani 1963:35). With the fall of the Roman Empire trade decreased and recorded sources are scant. A gradual expansion of the Gulf trade by the Sasanians during the 3rd - 5 th centuries AD greatly facilitated trade between China and the West, complementing the long established Silk Route overland. Siraf which became an important entrepôt with the rise of Islam, was emerging as a military settlement at this time (Tampoe 1989:82). However, trade routes were kept open, with the ports of Ceylon emerging as the places where interchange of goods took place. A writer in the 6th century, reported that the island of Ceylon was frequently visited by ships from India, Persia and Ethiopia (Kobishchanow 1965:139). By the 6th century AD westward trade was in the hands of the Persians and Axumites and eastern trade consisted of Chinese and Far Eastern nations. On the western side of the Red Sea Adulis became the prominent port of interchange. Another writer in the 6th century described fleets of ships travelling from Adulis to north India and Ceylon carrying goods which included emeralds (Kobishchanow 1965:140).

Regular trade took place in wine, bronze, tin, gold, manufactured goods to the east, returning from India with silk, cotton, jewels, pepper, sandalwood and various kinds of perfume. Rice, cloves, nutmegs, mace and cinnamon (from Ceylon) were exported to the Persian Gulf and the Red Sea.

Chinese Voyages To Africa

Different groups of researchers have contended that Chinese ships visited the coasts of East Africa in the 8th-9th centuries, others that the Chinese actually sailed to Africa in the 12 th 13th centuries, and that whole flotillas of Chinese vessels, and Chinese nationals flooded the mainland. Others hold the opinion that the Chinese had sailed to Africa in their own ships, reaching the Cape of Good Hope. Joseph Needham, for example, suggested that the Chinese rounded the Cape of Good Hope from east to west much earlier than the Portuguese (Norwich 1983:15-17). Snow (1988:9) reported that Chinese merchants travelled in ships
...(l)ike houses with five to six decks, provisioned for ocean voyages with a years grain supply. Their navigators possessed magnetic compasses and their cartographers produced world maps showing the correct shape of Africa

Fripp (1941:17) once again wrote about the gift of a giraffe presented to the Emperor of China by an envoy from Malindi in AD 1415, and Freeman-Grenville (1962:21-22), recorded that during the latter part of the Song period, (1127-1279) when China became a maritime nation, every year Chinese ships from the Huchala and Tashi areas travelled to Zanzibar to trade with white and red cotton cloth, porcelain and copper.

However, in view of the availability in scientific literature of data on the period of direct Chinese-maritime relations, Velgus (1993:104-112) examines and actually questions whether in fact Chinese ships could have visited the coasts of Africa before the 9th century by first considering the problem of bringing any Chinese ships to the Persian Gulf in the pre-Islamic period. The results of this discourse are discussed in Chapter 5.2.4

The Caravan trade

Well established sea routes between the major cities with regular sailings together with overland caravan routes served to distribute the goods. Caravans connecting the Muslim West - Morocco, Algeria, Tunisia, and Libya with Egypt were of special importance and had a special name - 'mawsim' which meant, literally - fixed, fixed date or season (Goitein 1967: 277) ${ }^{4}$.

Travel overland (until the development of modern roads and railways) was slower and more expensive than sea journeys. During the 2 nd half of the 11 th century, for example, to transport a camel load of paper from Damascus to Cairo cost from $51 / 2$ to 6 gold coins. Couriers utilized regular caravan routes and their charges were relatively inexpensive. Regular sailing voyages were developed in addition to overland caravan routes to carry and distribute goods.

Of great importance to the merchant, businessman and traveller was the ability to communicate regularly and the Geniza papers attested to the existence of a regular overland mail service. Circa 1030, a communal leader in Fustat wrote to a friend in Tunisia ...I regularly send you every Monday two letters (Goitein 1967:287).

[^46]
The Geniza Documents

A unique source of historical documents is the Cairo Geniza, unearthed in Fustat, with many of the texts translated by Goitein (1967, 1971, $1973 \& 1983$). It substantiates the existence of international trade between Islamic countries in the Mediterranean including most of Spain, Sicily and North Africa between AD 1000-1200. At least 80% of the business correspondence of the Geniza papers originated from Tunisia and Sicily. Much also came from Lebanon and Syria. Probably the Geniza originally served the Maghrebi merchants who commuted from the western to the eastern part of the Mediterranean where they partially settled.

The documents contain references to thousands of items including copies of receipts, bills of lading, promissory notes and orders of payment. The Geniza papers were not orderly archival material. They comprised a collection of legal deeds, court records, business letters, personal letters, bills of divorce, trading documents and scrap paper. Paper was an expensive luxury at the time, so that any unused space on a document was filled with all sorts of writing such as drafts, short notes, accounts or even merely trying out a pen. It was not uncommon to find a receipt dated, for example, 26 April 987 AD with the reverse side used to test a pen dated 21 December 1085 AD.

Business letters comprise the largest group of documents. These collections represent a unique resource of knowledge on commerce, industry, overland travel and seafaring. Details recorded receipt and despatch of goods, lists of market prices, orders for new commodities, action taken for and against third persons as well as references to private and public affairs. Inventories of stores, workshops and pawnbrokers, bills of lading, promissory notes and orders of payment were all notated accurately. One example amongst them reported on approximately 45 individual payments or disbursements that were required to transport 1 bale of purple cloth from Fustat to Tunisia.

In addition, the Geniza documents also provide information on a well developed, commercially operated overland mail service that was used by the population at large, as early as the beginning of the eleventh century. Numèrous Geniza letters were written from Aden and India, and throughout the Muslim world, including Palestine, Syria, Persia and Europe.

WORLD TRADE BEFORE THE RISE OF ISLAM

Summary of chronological events relevant to the text		
Date BC	Event	Notes of interest
6000	Sumerians discover formula for glazes.	
4000	Early glazed pottery.	
4000-3000	Glassmaking at Akkadia.	
ca. 4000	Beads, amulets and scarabs made	Egyptian craftsmen.
3000-2000	Trade between Mesopotamia and Pakistan	Swat mountain middlemen.
3000	Maritime trade between Mesopotamia and the Persian Gulf	
3000	Contact between Africa \& India by Arab seafarers	Cotton introduced to the Indus valley from Ethiopia.
3000	Sea faring Canaanites	Consolidation of sea-routes in the Mediterranean.
2500	Intercontinental sea voyages in the Indian	Coastwise voyages by Sinhalese
	Ocean	Indian and southern Arabs.
2470	Egyptian vessels sail to the land of Punt	Punt is probably North Somalia.
2000	Glass beads recovered from Nuzi, East lraq	
2000-1000	Indian Dravidian seafarers familiar with ocean patterns	Possessed ocean going ships and were familiar with navigation.
2000	Native copper melted in bellows assisted furnaces.	Niger
2000	Occupation of Madagascar	Early date disputed
1728-1686	Laws of King Hammurabi	Trading profit identified.
1559-1531	Glassmaking in Egypt	Coloured glass rods for beads.
1473-1458	Glass beads from Deir el Bahri	Identified as early glass.
ca. 1375	Tel el-Amarna (Akhenaten)	Faience beads \& glass rods.
ca. 1300	Shipwreck at Ulu Burun	Dark logs identified as African blackwood.
1200	Shipwreck off Cape Gelidonya	Canaanite ship carrying glass trade beads.
1100-400	Iron chariots in use in North Africa	Early trade in salt, gold and slaves.
1100	Canaanites established Gadir or Gades (Cadiz)	Access to Iberian peninsula silver mines.
974-932	Trading activities of King Solomon, Egypt \& India	Recorded in the Bible.
950	Copper refinery at Tel-al-Khulayfah	Built by King Solomon.
900	Ife terra cotta figures radio carbon dated	Continued production until after AD 200.
ca. 900	Possible evidence for glass making at Ife	Blue beads made from secondary worked glass.
814	Canaanites establish Carthage	Extensive system of docks excavated.
ca. 800	Canaanites sail beyond Straits of Gibraltar	Discovery of Canary Islands.
800	Canaanite trade in gold from West Africa	Obtained from Berber middlemen.
604-538	Indian timbers dated in Babylonian ruins	Evidence of sea trade between India and Euphrates.
600	East/west circumnavigation of Africa	Commissioned by King Necho but only reported in 5th century by Herodotus.
ca. 680	King Necho linked Nile to Suez.	
521-485	Canal link between Nile and Suez	Darius the Great.
ca. 500	Hindu contact with East Africa	Introduction of coconut palm.
500	Regular trade routes between Africa and India	Motivated by quest for gold.

Date BC	Event	
ca. 500	Merchants from Carthage trading in Tibest region North of Lake Chad \& Bodele depression.	i
450	Carthaginians trading for gold	
		cloth, beads and metal for gold and slaves.
450	Herodotus describes Ethiopian gold	
450	Voyage of Himilco from Cadiz	Journey to Cornwall for tin and Ireland for gold.
400	Copper deposits in southern Mauretania exploited by Berber miners.	
ca. 300	Exploration of Red Sea \& East Africa by Ptolomy I	
$\left\lvert\, \begin{array}{cc} 285-221 \\ c o & 100 \end{array}\right.$	Explorations of Ptolomies II \& III Hipplaus records the winds	Voyages to Cape Gardafui
	Hipplaus records the winds and currents in the Indian Ocean \& the monsoon wind patterns.	
Date AD	Event	Notes of interest
96	Strabo reports ships sailing to India.	
100	Camel introduced into Saharan region	Results in increased trade.
ca. 100	Development of iron trade along East coast of Africa	Close affinity with Indian
ca. 100	Early Indo-Indonesian contact with south East Africa.	
100	Seafaring Swahili society established	East coast coastal traders.
100-600	Rise of Adulis as a sea port	Adulis controlled by lower reaches of the Red Sea.
100-700	Colonising Indians emigrated to Java, Sumatra \& Cambodia. Possibly Madagascar as well.	
120	Periplus of the Erythreaen Sea.	
150-160	Greeks sailing to Ceylon	Visits to Malay peninsula also recorded.
ca. 200	Demise of Meroe	Important iron producer since 300 BC .
324	Byzantium founded by Emperor Constantine	Shifted seat of government towards the east.
337	Important glassmaking industry	Constantine exempted 'vitriartii' (glassmakers) \& 'diatretiarii' (glass carvers) from public levies.
300-500	Gulf sea trade to China increases	Complements the long established Silk route overland.
476	Collapse of Roman Empire	Control of sea borne shipping passed into hands of merchants.
600	Ceylon visited by ships from India, Persia \& Ethiopia	Westward trade in hands of Persians \& Axumites; eastern trade in hands of the Chinese \& Far Eastern nations.
618-907	T'ang dynasty	China ruled as a united Empire.
639	Egypt falls to Arabs.	
647	Tunisia occupied by the Muslims.	

APPENDIX IIa
Catalogue of beads from Greefswald and allied sites

GREEFSWALD BEADS

		MAPK	MAPST	BAM	K2	K2B	E2	ASI	NOL	OTAL
NEUTRAL WHITE	N9.5/90.0\% R			96				55		151
OYSTER WHITE	5GY 911	2		22	1		1	85		111
LIGHT GREY	N8.25/63.65R	1	42		4			5		52
GREEN GREY	$10 \mathrm{G} 6 / 2$	1								1
DOVE GREY	7.5B6/2									0
BLACK	N0.5/0.6\%R	85620	2497	81	8554	14	279	43	2282	99370
TRANSPARENT TURQUOISE	10BG 6/8	306	81	855	2504	394	8	4	20	4172
DEEP TURQUOISE	10BG 5/6	128	14	205	376	201	1	71	14	1010
BRIGHTTURQUOISE	7.5B 6/10	1			31					32
MEDIUM TURQUOISE	SB 6/8	6			344					350
PALE TURQUOISE			2							2
CELEDON TURQUOISE	5BG 5/6	319	159	22	361	26	20	5	410	1322
LIGHT CELEDON	5BG 6/6	4								4
DEEP CELEDON	5BG 4/4									0
CELEDON ON WHITE CORE			1							1
BLUE GREEN	5BG 6/4	3178	224	72	468	153	41	7	69	4212
DARK JADE GREEN	10G 4/6									0
SAGE GREEN	7.5GY 4/4	7			5					12
GREEN	5GY 5/6	272	50	182	133	32	6	22	171	868
MEDIUM BRIGHT GREEN	25G 5/6	416	12	13	46	19	3	51	1	561
LIGHT BRIGHT GREEN	25G616	3			2					5
NASTURTIUM GREEN	10BG $6 / 6$									0
INDIAN RED	25 YR 3/8	1129	687	543	1097	79	133	33	331	4032
INDIAN RED ON GREEN CORE	7.5R 3/8	37	1	736	2			99		875
BROWN INDIAN RED	5YR 3/8	5	1							6
INDIAN RED ON BLACK CORE		1								1
BLACK \& INDIAN RED STRIPES		1								1
YELLOW	7.5Y 8.5/10	1549	10	15	394	108	12	30	424	2542
VASELINE YELLOW (TP)	7.5Y 818	104	13		9	2	1	11		140
OLIVE YELLOW*	7.5Y 7/6	35	3	12	17					67
LEMON YELLOW	10Y 8.5/6				1					1
DEEP LEMON YELLOW	10Y $8 / 6$				1					1
BRIGHT DUSTY YELLOW	5Y 8.5/10	15			9				-	24
LIGHT MARIGOLD	25Y 6110	248	13		10			33	8	312
DARK MARIGOLD ${ }^{\text {P }}$	7.5YR 6/10	1114	31		279		3	4		1431
BRIGHT NAVY	7.5 PB 288	9008	68	14	616		11	96	37	9849
BRIGHT NAVY (FACETTED)	7.5 PB 288	1								1
BRIGHT NAVY (ANNULAR)	7.5PE 288			24	11					35
MID BLUE	SPB 4/6	326	1	17				37		381
MEDIUM COPEN BLUE	SPB 6/8	3		96	43			26		168
SHADOW BLUE	25PB $5 / 4$									0
DARK SHADOW BLUE	10B $4 / 4$	49	12	36	5	1		22		125
LIGHT BLCE	10B 7/4			161			7	4		172
PALE PINK ON WHITE CORE	10RP 8/4	1		101	4			5		111
MAUVEPINK	5RP 6/8	23		1074	1			40		1138
DARX MAUVE HEATHER	10P 3/4	132	8		154			2	4	300
OSTRICH EGG SHELI		1770	1136	857	179	2		79	140	4163
GARDEN ROLLER BEAD		4			248	49				301
RUBY ON WHITE CORE	2.5R3/10	18		40				27		85
COPPER BEAD		1			2			3		6
STRIPED BEADS				1			1	17		19
GOLD		1	1							2
POTIERY BEAD					14					14
PIECES OF BONE				1						1
RUBY								2		2
BLOWN BEAD								6		6
HELIX			2							2
SEA SHELL		4		2	3	2				11
MOLLUSC		4								4
SOAPSTONE BEAD		2	1		2		2			7
METAL BEAD		4	19		1	.		7		31
BONEBEAD		1	3	1	1					6
ACHATINA DISCS					265					265
PATINATED BEAD										0
UNUSUAL COLOUR BEAD		26				6				32
WEATHERED BEAD	-	71	3.	3	37	11		6		131
Total number of beads (n):		105951	5095	5282	16234	1099.	529	937	3911	139038


```
す。
```

敂

Σ

	LOCATION：Greefwald								
	SITE：Mapungubwe		UCT		Munsell	Manuracturing			
Heading	Layer	Site	No．	Bead Colour	Number	Method		cture Type	
			BB				${ }^{\text {la }}$	Ifa mil whb	vs
	No $18 \mathrm{B7}$（（no more info）．	MAP	33	black	N0．50．0\％\％ R	10		10	
				celedon turquoise	SBG 5／6	1		1	
				OSTRICH EGG Shell					
	No 23 （no more info．）．	MAP	34	black	N0．50．6\％R	20	8	12	
	No 34 （no more info．）．	MAP	35	BLACK	N0．50．6\％R	5		5	
				TRANSPARENT TURQUOISE	10BG $6 / 8$	1	1		
				blue green	$5 \mathrm{scg} 6 / 4$	2		2	
				Green	5OY 5／6	2		2	
				indian red	2.5 YR 388	16	8	8	
				Yelow	7．5Y 8．5／10	11		11	
				bright navy	7．5PB 288	2			
				ostaich egg shell					
	No 38 （no more info．）．	MAP	36	ostrich egg shell					
	No 174 （no more info．）	MAP	37	deep turouoise	10BG 5／6	${ }^{47}$	11	${ }^{36}$	
				INDIAN RED	25YR 3／8	${ }^{24}$	7	${ }^{17}$	
				MAUVE PINK PINK ON WHTIE CORE	5RP6；8	23		23	
				RUBY ON WHITE CORE	2SR 3／10	12		12	
				INDIAN RED ON GREEN CORE UNKNOWN BEADS（alldark）	7．5R3／8	36	5	31	
	1531 （no more info）．	MAP	39	black	N0．550．6\％R	1		1	
				mmblue	SPB 4／6	${ }^{326}$	126	200	
	Mapungubwe D3 （no more info．）	MAP	41	BLACK	N0．50．6\％R	78	1	77	
	（no more info．）			DEEP TURQUOISE	10BG 5／6	1		1	
				Green	SGY 5／6	37		${ }^{37}$	
Schorield	Map．Hill（later layer） SkeletonS．O．S	$\begin{aligned} & \text { MAP } \\ & \text { MAP } \end{aligned}$	$\begin{aligned} & 42 \\ & 50 \end{aligned}$	black	N0．5／0．6\％R N0．5／0．6\％R	${ }_{266}^{4245}$	93	4245 173	
	viltsalkas（no more info．）．			Celedon turquoise	SBG 5／6	1		1	
				blue green	SBG 6／4	4		4	
				Light marigold	2．5Y 6／10	${ }^{3}$		3	
				mright navy	7．5PB $2 / 8$	2		2	
MK1 A3	$\mathrm{Bl}_{1} \mathrm{~L}$	MAP	51	black	N0．50．6\％R	22		22	
（E\＆M）				TRANSPARENT TURQUOISE	${ }^{108 G G 6 / 8}$	1	1		
				bluegreen	SEG 614	3		3	
				Green		3		3	
	B10 Lg 2	MAP	52		${ }_{\text {N0．50．6\％R }}^{\text {2．5R } 3 / 8}$	3 25		${ }^{3}$	
				celedonturquoise	SbG 5／6	1			
				dark marigold	7．5YR $6 / 10$	1		1	
	B18 Lg 3	MAP	53	black	N0．550．6\％R	5		5	
				blue green	SBG 614	1		1	
	$\mathrm{B} 22184^{4}$	MAP	54	black	N0．50．6\％ R	33	2	31	
				blue green	5BG 6／4	4		4	
				Light bright green	2.56 6／6	2		2	
				Indian red	${ }_{7}^{2.5 Y \mathrm{Yr}} 3.5 / 8$	8 1	2	6	
				Yellow	7．5Y 8．5／10	1		1	
	${ }^{\text {B2 } 2 \mathrm{Lg} 5}$	MAP	55	${ }_{\text {black }}^{\text {dark marigold }}$	7．5YR 6110 N0． $50.6 \% \mathrm{R}$				
				indian red	25YR 3／8	1		1	
				YeLLow	7．5Y 8．5／10．	1		1	

5							
令							

Munsell Number
N0．5／0．6\％R
10B 4／4
25YR 3／8
7．5Y 8．5／10
N0．5／0．6\％R
5BG 6／4
N0．5／0．6\％R
5BG 5／6
5GY 5／6
25YR 3／8
5BG 6／4
25YR 3／8
N0．5／0．6\％R
N0．5／0．6\％R
N0．S／0．6\％R
5BG 6／4
25YR 3／8
7．5Y 8．5／10
5BG $6 / 4$
N0．5／0．6\％R
N0．5／0．6\％R
10B 4／4
$2.5 \mathrm{YR} 3 / 8$
25YR 3／8
N0．5／0．6\％R
5BG 5／6
25YR 3／8
N0．5／0．6\％R
10B 4／4
10BG 6／8
25BG 5／6
5BG 6／4
5BG 5／6
7．5GY 4／4
2．5YR 3／8
7．5Y 8．5／10
7．5YR 6／10
N0．5／0．6\％R
5BG 5／6
25YR 3／8
7．5Y 8／8
N0．5／0．6\％R
10B 4／4
5BG 5／6
5GY 5／6
25YR 3／8
7．5Y 8．5／10
7．5YR 6／10

[^47]$\underset{\sim}{\sim}$

 Σ

罤

Heading
Fouche (1933)

mocillon firecfswitd
SITI: K2
Heading tayer

1938 B. 4. $71215{ }^{\circ}$
(iardner)

${ }^{\text {E }}$

Slla k? Heading I ayer

If H1:

IIOUIER:267 HLOCKTS6A2 1f 7 TOFISSIOOT
11OUIER 257 BI,OCK 1S6A2 Lg 8
HIHITR:259 HITMCK:TS6A2 I.R 10
 K21S6
(Meyen)
1791

SIII: K?
Heading t ayer

1()U:R:191 BI.O:K RN2 1.g 1 DET:BS

IOUU:R:185 BIOCK:RN2134 I.g 2. DFI:B10
IHOFR:204 BI.OCK:RN2C3 T.T. DET:BIS
HIOUER:IRR BICOK:RN2C:3 I.g 2 DET: 37
HOUER:190 BI.OCK:RN2C.31.g 2 DFT:BII
[unusual bead]
IKUII:R:197 BIOCK:RN2(:31.g 3 I)ET:B12

SII: K?

\bar{Z}		
$\overline{3}$		
ミ		

SHITR?
Heading layer

高高

Us:T		
Site	Page	Bead Colour
	No.	
K2	6.32 j	TRANSPARENT TURQUOISE
		DEEPTITRQUOISE
		GRIEEN
K2	632k	TRANSPARENT TURQUOISE
		1)E:SP TURQUOISE
		BLUEGEREEN
		MEDIUM BRIGITT GREEN
		GREEN (I very worn)
		INIDLAN RED
		YELIOW
K2	6321	INDIAN RED
		BONE BEAD
K2	632m	TRANSPARENT TURQUOISE
		INDIAN RED
K2	632n	TRANSPARENT TURQUOISE
		DEEP TURQUOISE
		INDIAN RED
K2	6320	TRANSPARENT TURQUOISE
		DEEP TURQUOISE
		BLUE GREEN
		GREEN (1 very worn)
		YELLOW
K2	632p	TRANSPARENT TURQUOISE
		DEEP TURQUOISE
K	6329	TRANSPARENT TURQUOISE
		DEEP TURQUOISE
		BLUE GREEN

Heading
K2B

SITE: K2B
HOUER:299 BLOCK:TS1.4 Lg 5
HOUER:295 BLOCK:TS1.5 Lg 1
HOUER:297 BLOCK:TS1.5 Lg 1
HOUER:305 BLOCK:TS1.5 Lg 1
HOUER:283 BLOCK:TS1.5 Lg 2
HOUER:284 BLOCK:TS1.5 Lg 3 (basis) NR:5:3.5 HOUER:293 TS1.5 Lg 4 (basis) NR:5.4.1 DET:B17 HOUER:281 BLOCK:TS1.5 Lg 4

怘崽

Heading	Layer		UCT	
		Site	Acc.	Bead Colour
		E2	No.	
E2	HOUER:472 TER:E2 DET:-30"/-33"	E2	688	BLACK
				INDIAN RED
	HOUER:466 BLOCK:B1(b) DET:+9"/+6"	E2	689	BLACK
				CELEDON TURQUOISE
				MEDIUM BRIGHT GREEN
				INDIAN RED
				YELLOW
				BRIGHT NAVY
	HOUER:429 BLOCK:B2(9) DET:-34"/-42"	E2	690	BLACK
				INDIAN RED
	HOUER:434 BLOCK:B2(b) DET:+6"/0" TER:E2(a)	E2	691	BLACK
				BLUE GREEN
				INDIAN RED
	,			YELLOW
				BRIGHT NAVY
	HOUER:443 BLOCK:B2(c) DET:-30"-34"	E2	692	BLACK
	TER:E2			TRANSPARENT TURQUOISE
				INDIAN RED
	HOUER:440 BLLOCK:B3(b) DET:-34//-42"	E2	693	BLACK
	TER:E2:GK			TRANSPARENT TURQUOISE
				INDIAN RED
	' $\mathrm{HOUER}: 526$ BLOCK:B3(b) DET:+6"/0"	E2	694	BLACK
				BLUE GREEN
				INDIAN RED
				DARK MARIGOLD
				BRIGHT NAVY
	HOUER:567.TER:E2 :SS BLOCK:B4(b)	E2	695	OYSTER WHITE
				INDIAN RED
	HOUER:442 BLOCK:B4(c) DET:+6"/0" TER:E2(c)	E2	696	BLACK
				TRANSPARENT TURQUOISE BLUE GREEN
				GREEN
				INDIAN RED
				YELLOW
				BRIGHT NAVY
	HOUER:430 BLOCK:B5(c) DER:01-6"	E2	697	BLACK
	TER:E2(a)			CELEDON TURQUOISE
				BLUE GREEN
				INDIAN RED
				YELLOW

	\sim		\sim		\checkmark
\checkmark	\sim	$\rightarrow-$	\checkmark		
ホナNM－NーN		$9-7$		$0-5-n-n$	m

HOUER：433 BLOCK：B6 DET：0＂－6＂	E2	698	BLACK	N 0．5／0．6\％R	24
TER：E2（b）			BLUE GREEN	5BG 6／4	4
			GREEN	5GY 5／6	2
			INDIAN RED	2．5YR 3／8	33
			YELLOW	7．5Y 8．5／10	1
			BRIGHT NAVY	$7.5 \mathrm{~PB} 2 / 8$	1
HOUER：417 BLOCK：B6（c）DET：－34＂／－42＂	E2	699	BLUE GREEN	5BG 6／4	1
TER：E2：V1			INDIAN RED	2．5YR 3／8	1
HOUER：416 BLOCK：B7（d）DET：－34＂－42＂	E2	700	INDIAN RED	2．5YR 3／8	2
HOUER：447 BLOCK：B7（d）DET：0／－6＂	E2	701	BLACK	N 0．5／0．6\％R	25
TER：E2（c）			TRANSPARENT TURQUOISE	10BG 6／8	2
			BLUE GREEN	5BG 6／4	2
			INDIAN RED	2．5YR 3／8	19
			YELLOW	7．5Y 8．5／10	1
			VASELINE YELLOW（TP）	$7.5 \mathrm{Y} 8 / 8$	1
			BRIGHT NAVY	7．5PB $2 / 8$	1
			GREEN	5GY 5／6	
HOUER：408 BLOCK：B8（d）DET：－34＂／－42＂	E2	702	TRANSPARENT TURQUOISE	10BG 6／8	1
TER：E2：OVI			BLUE GREEN	5BG 6／4	1
			SOAPSTONE BEAD		
HOUER：409 BLOCK：B11 DET：－12＂／－18＂	E2	703	BLACK	N 0．5／0．6\％R	6
TER：E2（6）			GREEN	5GY 5／6	1
			INDIAN RED	2．5YR 3／8	26
			YELLOW	7．5Y 8．5／10	1
HOUER：579 BLOCK：B15（b）DET：－20\％／－30＂	E2	704	BLACK	N 0．5／0．6\％R	2
TER：E2（b）			MEDIUM BRIGHT GREEN	2．5G 5／6	1
			INDIAN RED	2．5YR 3／8	2
HOUER：389 BLOCK：B70／10	E2	705	DEEP TURQUOISE	10BG 5／6	1
			INDIAN RED	$2.5 \mathrm{YR} \mathrm{3/8}$	3
			SOAPSTONE BEAD		

UCT		
Site	Page	Bead Colour
ALL	709a	MAUVE PINK
		RUBY ON WHITE CORE
		INDIAN RED ON GREEN CORE MID BLUE
		STRIPED BEADS
		SEGMENTED HEADS
		OSTRICH EGG SHELL
ALL	710	NEUTRAL WHITE
		OYSTER WHITE
		BLACK
		DEEP TURQUOISE
		MEDIUM BRIGHT GREEN
		INDIAN RED
		Yellow
		bright navy
		MID BLUE
		MEDIUM COPEN BLUE
		INDIAN RED ON GREEN CORE
		STRIPED BEADS
ALL	711	DEEP TURQUOISE
		GREEN
		MEDIUM BRIGHT GREEN
		INDIAN RED
		YELLOW
		VASELINE YELLOW (TP)
		bright navy
		OSTRICH EGG SHELL
ALL	712	OYSTER WHITE
		BLACK
		TRANSPARENT TURQUOLSE
		DEEP TURQUOISE
		YELLOW
		MEDIUM COPEN BLUE
		DARK SHADOW BLUE
		INDIAN RED ON GREEN CORE
		WEATHERED BEADS
ALL	713	NEUTRAL WHITE
		OYSTER WHITE
		LIGHT GREY
		BLACK
		MEDIUM BRIGHT GREEN
		INDIAN RED
		YELLOW
		VASELINE YELLOW (TP)
		BRIGHT NAVY
		mid blue
		DARK SHADOW BLUE

SINGALELE: T1
U. ISLET
V. SHIRBEEK

APPENDIX Ib
 Catalogue of beads from Northern Transvaal sites

NORTHERN TRANSVAAL SITE Skutwater, Pont Drift, Schroda

		SKU	PON	SCH	TOTAL
NEUTRAL WHITE	N9.5/90.0\%				
GREEN GREY	10G 6/2		35	12	47
DOVE GREY	7.5B 6/2			2	2
BLACK	N0.5/0.6\%R	1532	8	7	1547
TRANSPARENT TURQUOISE	10BG 6/8	13	223	116	352
DEEP TURQUOISE	10BG 5/6	1	6	11	18
BRIGHT TURQUOISE	7.5B 6/10	141	191	22	354
MEDIMM TURQUOISE	5B 6/8	45	11	34	90
CELEDON TURQUOISE	5BG 5/6	17	1	15	33
LIGHT CELEDON	5BG 6/6	29	5	3	37
DEEP CELEDON	5BG 4/4			3	3
BLUE GREEN	5BG 6/4	64	14	17	95
DARK JADE GREEN	10G 4/6	1		4	5
SAGE GREEN	7.5GY 4/4	23	16	4	43
GREEN	5GY 5/6		38	23	61
MEDIUM BRIGHT GREEN	2.5G 5/6	14	1	4	19
LIGHT BRIGHT GREEN	2.5G 6/6	22	8	8	38
NASTURTIUM GREEN	10BG 6/6			1	1
INDIAN RED	$2.5 \mathrm{YR} \mathrm{3/8}$	378	27		405
BROWN INDIAN RED	5YR 3/8	8	1		9
YELLOW	7.5Y 8.5/10	6		2	8
VASELINE YELLOW (TP)	7.5Y 8/8	5	6	65	76
OLIVE YELLOW*	7.5Y $7 / 6$			26	26
LEMON YELLOW	10Y $8.5 / 6$		1	2	3
DEEP LEMON YELLOW	10Y $8 / 6$			5	5
BRIGHT DUSTY YELLOW	5Y 8.5/10	22	5	35	62
LIGHT MARIGOLD	2.5Y 6/10			31	31
BRIGHT NAVY	7.5PB $2 / 8$	9	3		12
BRIGHT NAVY (ANNULAR)	7.5PB 2/8				0
MID BLUE	5PB 4/6			7	7
SHADOW BLUE	2.5PB 5/4			2	2
DARK SHADOW BLUE	10B 4/4		7	128	135
OSTRICH EGG SHELL		1	3	28	32
GARDEN ROLLER BEAD			6	2	8
BONE BEAD				3	3
PATINATED BEAD			12	14	26
UNKNOWN COLOUR				17	17
WEATHERED BEAD				42	42
Total number of beads (n):		2331	628	695	3654

					Munsell	Manufactur						
					Number	Method	Structure		Size	Diaphaneity	Lusture	
						D W	S C	VS	S M L	O TL TP	S D	Total
SKUTWATERE	TSW 1/1 BLOCK:E7 Layer 1	SKU	293	BLACK	N 0.5/0.6\% R	29	29		29	29	5. 24	29
				TRANSPARENT TURQUOISE	10BG 6/8	1	1		1	1	1	1
				LIGHT CELEDON (GREEN)	5BG 6/6	1	1		1	1	1	1
				SAGE GREEN	7.5GY 4/4	1	1		1	1	1	1
				INDIAN RED	$2.5 \mathrm{YR} 3 / 8$	3	3		3	3	3	3
				BRIGHT DUSTY YELLOW	5Y 8.5/10	3	3		3	3	3	3
	TSW 1/1 BLOCK:E7 Layer 2	SKU	294	BLACK	N 0.5/0.6\% R	5	5		5	5	5	5
				BLUE GREEN	5BG 6/4	1	1		1	1	1	1
				LIGHT BRIGHT GREEN	$2.5 \mathrm{G} 6 / 6$	1	1		1	1	1	1
				INDIAN RED	2.5YR 3/8	1	1		1	1	1	1
	TSW 1/1 BLOCK:E7 Layer 3	SKU	295	BLACK	N 0.5/0.6\% R	7	7		7	7	7	7
				LIGHT BRIGHT GREEN	2.5G 6/6	1	1		1	1	1	1
				INDIAN RED	2.5YR 3/8	1	1		1	1	1	1
	TSW 1/1 BLOCK: 7 7 Layer 4	SKU	296	BLACK	N 0.5/0.6\% R	2	2		2	2	2	2
	TSW 1/1 BLOCK:E8 Layer 1	SKU	297	BLACK	N 0.5/0.6\% R	17	17		17	17	$6 \quad 11$	17
				BRIGHT NAVY	7.5PB 2/8	1	1	1		1	1	1
:				BLUE GREEN	5BG 6/4	3	3		2	21	3	3
				INDIAN RED	2.5YR 3/8	3	3		3	3	3	3
				YELLOW	7.5Y 8.5/10	1	1		1	1	1	1
.	TSW 1/1 BLOCK:E8 Layer 2	SKU	298	CELEDON TURQUOISE	5BG 5/6	1	1	1		1	1	1
				INDIAN RED	2.5YR 3/8	1	1		1	1	1	1
.	TSW 1/1 BLOCK:E8 Layer 3	SKU	299	BLACK	N 0.5/0.6\% R	8	8		8	8	8	8
				LIGHT BRIGHT GREEN	2.5G 6/6	1	1		1	1	1	1
,				INDIAN RED	2.5YR 3/8	2	2		2	2	2	2
.	TSW 1/1 BLOCK:E8 Layer 5	SKU	300	BLACK	N 0.5/0.6\% R	3	3		3	3	3	3
.				BLUE GREEN	5BG 6/4	2	2		2	2	1	2
				INDIAN RED	2.5YR 3/8		1		1	1	1	1
				BRIGHT DUSTY YELLOW	5Y 8.5/10	1	1		1	1	1	,
	TSW 1/1 BLOCK: E8 Layer 6	SKU	301	BLACK	N 0.5/0.6\% R	1	1		1	1	1	1
				INDIAN RED	2.5YR 3/8		1		1	1	1	1
- .	TSW 1/1 BLOCK:E8 Layer 7	SKU	302	BLACK	N 0.5/0.6\% R	1	1		1	1	1	1
.				INDIAN RED	2.5YR 3/8	1	1		1	1	1	1
	TSW 1/1 BLOCK: E9 Layer 1	SKU	303	BLACK	N 0.5/0.6\% R	18	18		18	18	513	18

TSW 1/1 BLOCK:E9 Layer 1	SKU	303	CELEDON TURQUOISE LIGHT BRIGHT GREEN BRIGHT DUSTY YELLOW
TSW 1/1 BLOCK:E9 Layer 2	SKU	304	BLACK LIGHT CELEDON (GREEN) INDIAN RED
TSW 1/1 BLOCK:E9 Layer 3	SKU	305	BLACK LIGHT BRIGHT GREEN BROWN INDIAN RED
TSW 1/1 BLOCK:E9 Layer 4	SKU	306	BLACK SAGE GREEN MEDIUM BRIGHT GREEN INDIAN RED BRIGHT DUSTY YELLOW
TSW 1/1 BLOCK:E9 Layer 5	SKU	307	BLACK
TSW 1/1 BLOCK:E9 Layer 6	SKU	308	BLACK SAGE GREEN INDIAN RED
TSW 1/1 BLOCK:E9 Layer 7	SKU	309	BLACK
TSW 1/1 BLOCK:E10 Layer 1	SKU	310	BLACK BLUE GREEN INDIAN RED YELLOW
TSW 1/1 BLOCK:E10 Layer 2	SKU	311	BLACK BRIGHT NAVY LIGHT CELEDON (GREEN) SAGE GREEN
TSW 1/1 BLOCK:E10 Layer 4	SKU	312	BLACK BLUE GREEN SAGE GREEN INDIAN RED
TSW 1/1 BLOCK:E10 Layer 7	SKU	313	BLACK
TSW 1/1 BLOCK:E10 Layer 9	SKU	314	MEDIUM BRIGHT GREEN
TSW 1/1 BLOCK:E11 Layer 1	SKU	315	BLACK TRANSPARENT TURQUOISE BRIGHT TURQUOISE

TSW 1/1 BLOCK:E11 Layer 1	SKU	315	BLUE GREEN LIGHT CELEDON (GREEN) BLUE GREEN CELEDON TURQUOISE LIGHT BRIGHT GREEN INDIAN RED VASELINE YELLOW (TP)
TSW 1/1 BLOCK:E11 Layer 2	SKU	316	BLUE GREEN LIGHT CELEDON (GREEN)
TSW 1/1 BLOCK:E11 Layer 3	SKU	317	BLACK BLUE GREEN
TSW 1/1 BLOCK:E11 Layer 4	SKU	318	BLACK BRIGHT TURQUOISE CELEDON TURQUOISE
TSW 1/1 BLOCK:E11 Layer 5	SKU	319	BLACK BLUE GREEN CELEDON TURQUOISE LIGHT BRIGHT GREEN MEDIUM BRIGHT GREEN
TSW 1/1 BLOCK:E11 Layer 8	SKU	320	LIGHT CELEDON (GREEN)
TSW 1/1 BLOCK:E12 Layer 1	SKU	321	BLUE GREEN INDIAN RED
TSW 1/1 BLOCK:E12 Layer 2	SKU	322	BLACK BLUE GREEN
TSW 1/1 BLOCK:E12 Layer 3	SKU	323	BLACK BRIGHT TURQUOISE BLUE GREEN SAGE GREEN MEDIUM BRIGHT GREEN BRIGHT DUSTY YELLOW
TSW 1/1 BLOCK:E12 Layer 4	SKU	324	BLACK MEDIUM TURQUOISE
TSW 1/1 BLOCK:E12 Layer 6	SKU	325	BLACK
TSW 1/1 BLOCK:E13 Layer 2	SKU	326	BLACK

TSW 1/1 BLOCK:E13 Layer 3	SKU	327	BLACK	
			TRANSPARENT TURQUOISE LIGHT CELEDON (GREEN)	
			SAGE GREEN	
TSW 1/1 BLOCK:E13 Layer 4	SKU	328	MEDIUM TURQUOISE	
			MEDIUM BRIGHT GREEN	
			INDIAN RED	
TSW 1/1 BLOCK:E13 Layer 6	SKU	329	BLACK	
Burial (beads found near neck and waist of skeleton). TSW 1/1 BLOCK:E13 Layer 8			CELEDON TURQUOISE	
			MEDIUM BRIGHT GREEN	
	SKU	330	BLACK	
			INDIAN RED	
TSW 1/1 BLOCK:E13 Layer 9	SKU	331	BLACK	
Burial (beads found around			MEDIUM TURQUOISE	
		MEDIUM BRIGHT GREEN		
TSW 1/1 BLOCK:E13/142 Layer	LB2D		332	BLACK
		TRANSPARENT TURQUOISE		
		LIGHT BRIGHT GREEN		
		INDIAN RED		
		OSTRICH EGG SHELL		
TSW 1/1 BLOCK:E13/142 Layer	CB2	333	BLACK	
			TRANSPARENT TURQUOISE BRIGHTTURQUOISE	
			SAGE GREEN	
TSW 1/1 BLOCK:E14 Layer 1		334	BLACK	
		*	BLUE GREEN	
			SAGE GREEN	
			INDIAN RED	
		*	BRIGHT DUSTY YELLOW	
TSW 1/1 BLOCK:E14 Layer 2		335	BLACK	
			BLUE GREEN	
			INDIAN RED	
TSW 1/1 BLOCK:E14 Layer 3		336	BLACK	
			BLUE GREEN	
			CELEDON TURQUOISE	
			INDIAN RED	

				Munsell Number		actu		Type
					D	W	Ila	Ia
TSW 1/1 BLOCK:F6 Layer 2	SKU	348	SAGE GREEN	7.5GY 4/4	1		1	
TSW 1/1 BLOCK:F6 Layer 4	SKU	349	ALL BROKEN					
TSW 1/1 BLOCK:F7 Layer 1	SKU	350	BLACK	N 0.5/0.6\% R	6		6	
TSW 1/1 BLOCK:F7 Layer 2	SKU	351	BLACK	N O.5/0.6\% R	4		4	
			INDLAN RED	2.5YR 3/8	3		3	
TSW 1/1 BLOCK:F7 Layer 3	SKU	352	BLACK	N O.5/0.6\% R	9		9	
			BRIGHT NAVY	7.5PB 2/8	1		1	
			SAGE GREEN	7.5GY 4/4	1		1	
			INDIAN RED	2.5YR 3/8	4		4	
TSW 1/1 BLOCK:F7 Layer 4	SKU	353	BLACK	N 0.5/0.6\% R	1		1	
			LIGHT CELEDON (GREEN)	5BG 6/6	1		1	
			INDIAN RED	2.5YR 3/8	6		6	
TSW 1/1 BLOCK:F7 Layer 7	SKU	354	INDLAN RED	2.5YR 3/8	1		1	
TSW 1/1 BLOCK:FB Layer 1	SKU	355	BLACK	N O.5/0.6\% R	13		13	
			BLUE GREEN	5BG 6/4	1		1	
			LIGHT BRIGHT GREEN	2.5G 6/6	1		1	
TSW 1/1 BLOCK:F8 Layer 2	SKU	356	BLACK	N 0.5/0.6\% R	4		4	
			LIGHT BRIGHT GREEN	2.5G 6/6	1		1	
TSW 1/1 BLOCK:F8 Layer 3	SKU	357	BLACK	N 0.5/0.6\% R	1		1	
TSW 1/1 BLOCK:F8 Layer 4	SKU	358	BLACK	N 0.5/0.6\% R	2		2	
TSW 1/1 BLOCK:F9 Layer 1	SKU	359	BLACK	N 0.5/0.6\% R	1		1	
TSW 1/1 BLOCK:F9 Layer 2	SKU	360	BLACK	N 0.5/0.6\% R	2		2	
TSW 1/1 BLOCK:F9 Layer 3	SKU	361	BLACK	N 0.5/0.6\% R	1		1	
TSW 1/1 BLOCK:F10 Layer 2	SKU	362	BLACK	N O.5/0.6\% R	7		7	
			INDLAN RED	2.5YR 3/8	1		1	
TSW 1/1 BLOCK:F11 Layer 1	SKU	363	BLACK	N 0.5/0.6\% R	7		7	
			TRANSPARENT TURQUOISE	10BG 6/8	1		1	
			BLUE GREEN	5BG 6/4	2		2	
			SAGE GREEN	7.5GY 4/4	1		1	
			MEDIUM BRIGHT GREEN	2.5G 5/6	1		1	
			INDIAN RED	2.5YR 3/8	1		1	
			BRIGHT DUSTY YELLOW	5Y8.5/10	1		1	
			YELLOW	7.5Y 8.5/10	1		1	
TSW 1/1 BLOCK:F11 Layer 6	SKU	364	YELLOW	7.5Y 8.5/10	1		1	
TSW 1/1 BLOCK;F12 Layer 1	SKU	365	BLACK	N O.5/0.6\% R	12		12	
			BRIGHT TURQUOISE	7.5B 6/10	1		1	
-			BLUE GREEN	5BG 6/4	1		1	
			SAGE GREEN	7.5GY 4/4	1		1	
			INDLAN RED	2.5YR 3/8	3		3	

\qquad

				Munsell Number
TSW 1/1 BLOCK: $\mathrm{F}^{\text {12 }}$ Layer 2	SKU	366	BLACK	N 0.5/0.6\%R
			INDIAN RED	2.5YR 3/8
			TRANSPARENT TURQUOISE	10BG $6 / 8$
TSW 1/1 BLOCK: ${ }^{\text {F13 Layer } 1}$	SKU	367	BLACK	N 0.5/0.6\% R
			MEDIUM TURQUOISE	5B6/8
			BLUE GREEN	5BG 6/4
			BRIGHT DUSTY YELLOW	5Y 8.5/10
TSW 1/1 BLOCK:F13 Layer 2	SKU	368	BLACK	N 0.5/0.6\% R
			INDIAN RED	2.5YR 3/8
TSW 1/1 BLOCK:F13 Layer 3	SKU	369	BLACK	N 0.5/0.6\% R
TSW 1/1 BLOCK:F13 Layer 7	SKU	370	INDIAN RED	$2.5 \mathrm{YR} 3 / 8$
			BRIGHT DUSTY YELLOW	5Y 8.5/10
TSW 1/1 BLOCK:F13 Layer 8	SKU	371	BLACK	N 0.5/0.6\% R
			MEDIUM TURQUOISE	5B6/8
			SAGE GREEN	7.5GY 4/4
TSW 1/1 BLOCK:F13 Layer 9	SKU	372	ALL BROKEN	
TSW 1/1 BLOCK:F14 Layer 1	SKU	373	BLACK	N 0.5/0.6\% R
			TRANSPARENT TURQUOISE	10BG 6/8
			DEEP TURQUOISE	10BG 5/6
			BLUE GREEN	5BG 6/4
TSW 1/1 BLOCK:F14 Layer 2	SKU	374	BLACK	N 0.5/0.6\% R
TSW 1/1 BLOCK:F14 Layer 7	SKU	375	BLUE GREEN	5BG 6/4
			VASELINE YELLOW (TP)	7.5Y 8/8
TSW 1/1 BLOCK:F15 Layer 1	SKU	376	BLACK	N 0.5/0.6\% R
			BRIGHT NAVY	7.5PB $2 / 8$
			TRANSPARENT TURQUOISE	10BG 6/8
			MEDIUM TURQUOISE	5B6/8
			SAGE GREEN	7.5GY 4/4
			LIGHT BRIGHT GREEN	2.5G 6/6
			MEDIUM BRIGHT GREEN	2.5G 5/6
			BRIGHT DUSTY YELLOW	5Y 8.5/10
TSW 1/1 BLOCK:F15 Layer 2	SKU	377	BLACK	N 0.5/0.6\% R
			BRIGHT DUSTY YELLOW	5Y 8.5/10
TSW 1/1 BLOCK:F16 Layer 1	SKU	378	BLACK	N 0.5/0.6\% R
			BRIGHT TURQUOISE	7.5B 6/10
			BLUE GREEN	5BG 6/4
			SAGE GREEN	7.5GY 4/4
			LIGHT BRIGHT GREEN	2.5 G 6/6
			INDIAN RED	$2.5 \mathrm{YR} 3 / 8$

\qquad

TSW 1/1 BLOCK:F16 Layer 8
TSW 1/1 BLOCK:F16 Layer 9

UCT			
Layer	Site	Acc	Bead Colour
TPD 1/2 OPG 2 BLOCK:B1 Layer 4	PON	20	BLACK
			BRIGHT TURQUOISE
			BROWN INDIAN RED
TPD 1/2 OPG 2 BLOCK:B1 Layer 6	PON	21	MEDIUM TURQUOISE
			TRANSPARENT TURQUOISE blue green
			LIGHT CELEDON (GREEN)
TPD 1/2 OPG 2 BLOCK:B1 Layer 7	PON	22	TRANSPARENT TURQUOISE
			DEEP TURQUOISE
			BRIGHT TURQUOISE
			MEDIUM BRIGHT GREEN
			GARDEN ROLLER BEAD
TPD 1/2 OPG 2 BLOCK: B1 Layer 8	PON	23	BRIGHT TURQUOISE
TPD 1/2 OPG 2 BLOCK:B1 Layer 9	PON	24	BRIGHT TURQUOISE
			BLUE GREEN
			SAGE GREEN
TPD 1/2 OPG 2 BLOCK:B1 Layer 15	PON	25	BRIGHT TURQUOISE
			VASELINE YELLOW (TP)
TPD 1/1 OPG 1 BLOCK:B1 Layer 1	PON	26	MEDIUM TURQUOISE
			BRIGIT TURQUOISE
			INDIAN RED
TPD 1/1 OPG 1 BLOCK:B1 Layer 2	PON	27	TRANSPARENT TURQUOISE
			INDIAN RED
TPD 1/1 OPG 1 BLOCK:B1 Layer 4	PON	28	BRIGHT TURQUOISE
TPD 1/1 OPG 1 BLOCK:C1 Test trench	PON	29	INDIAN RED
TPD 1/1 OPG 1 BLOCK:C1 Layer 1	PON	30	INDIAN RED
TPD 1/2 OPG 2 BLOCK:2A Layer 1	PON	31	TRANSPARENT TURQUOISE
TPD 1/2 OPG 2BLOCK:2A Layer 4	PON	32	CELEDON TURQUOISE
			INDIAN RED
TPD 1/2 OPG 2 BLOCK:2A Layer 4	PON	33	BRIGHT TURQUOISE
TPD 1/2 OPG 2 BLOCK:2A Layer 4	PON	34	RUBY ON WHITE CORE
TPD 1/2 OPG 2 BLOCK:2A Layer 5	PON	35	TRANSPARENT TURQUOISE

STIE: Schroda

1

Layer
survey) TSR $1 / 1$ OPG 4 BLOCK:A1 Test trench
TSR $1 / 1$ OPG 4 BLOCK:A1 Layer 1

TSR I 11 OPG 4 BLOCK:A1 Layer 2
TSR 1/1 OPG 4 BLOCK:A1 Layer 3 TSR $1 / 1$ OPG 4 BLOCK:B1 Layer 1

ISR 1/1 OPG 4 BLOCK:B1 Layer 3
TSR 1/1 OPG 4 BLOCK:C1 Layer 1 TSR V1 OPG 4 BLOCK:C1 Layer 2 TSR 1/1 OPG 4 BLOCK:C1 Layer 3
-

TSR 1/1 OPG 6 BLOCK:A2 Layer 1
TSR 1/1 OPG 6 BLOCK:A2Layer 2
ISR I/1 OPG 6 BLOCK:A2 Layer 4
 TSR 11 OPG 6 BLOCK:A4 Layer 4
TSR 11 OPG 6 BLOCK:AS Layer 1
TSR $1 / 1$ OPG 6 BLOCK:AS Layer 3

TSR 1/1OPG 6 BLOCK:A6Layer 3
TSR $1 / 1$ OPG 6 BLOCK:A 7 Loose ground
TSR 1/1OPG 6 BLOCK:AA1 Layer 2 TSR 1/1 OPG 6 BLOCK:AA1 Layer 2
TSR 1/1 OPG 6 BLOCK:AA1 Layer 3 TSR 1/1 OPG 6 BLOCK:AA1 Layer 3
TSR $1 / 1$ OPG 6 BLOCK:AA1 Layer 3(i) ISR I/1 OPG 6 BLOCK:AA2 Layer 1 TSR 1/1 OPG 6 BLOCK:AA2 Layer 6
 TSR 1/1 OPG 6BLOCK:B3 Layer 6
TSR 1/1 OPG 6 BLOCK:B4 Layer 3

TSR 1/1 OPG 6 BLOCK: B4 Layer 5
 TSR $1 / 1$ OPG 6 BLOCK:B5 Layer 1
TSR $1 / 1$ OPG 6 BLOCK:B5 Layer 5

TSR 1/1 OPG 6 BLOCK:B6 Layer 3

 TSR 1/1 OPG 6 BLOCK:BB1 Layer 3(i)TSR $1 / 1$ OPG 6 BLOCK: BE 1 Layer 3 TSR 1/1 OPG 6 BLOCK:C2 Layer 1
TSR $1 / 1$ OPG 6BLOCK:C3 Layer 3

 TSR 1/1 OPG 6BLOCK:C6 Layer 1 TSR 1/1 OPG 6BLOCK:C6 Layer 2

TSR 1/1 OPG 6 BLOCK:D1 Layer 1

[^48]TSR 1/1OPG 6 BLOCK:1AA Layer 3

Ste	UCT	
	ace.	Bead Cotour
SCH	113	Dark Shadow blue
		TRANSPARENT TURQUOISE
		Vaskline yellow (TP)
Sch	114	TRANSPARENT TURQUOISE
		BRIGHTTURQUOISE
		Light bright green
		bRight dusty yellow
SCH	115	TRANSPARENT TURQuolse
		Shadow blue
SCH	116	dark shadow blue
SCH	117	Dark shadow blue
		TRANSPARENT TURQUOISE
		BRIGHT DUSTY YELLOW
SCH	118	TRANSPARENT TURQUOISE
Sch	119	Dark shadow blue
		TRANSPARENT TURQUOISE
		bright dusty yellow
		Shadow blue
SCH	120	Dark shadow blue
		BRIGHT DUSTY YELLOW
SCH	121	bright turquoise frag.
SCH		dark shadow blue
		transparent turquoise
		BLACK
		DARK SHADOW BLUE
		transparent turouoise
		Vaseline yellow
SCH	123	dark shadow blue
		Vaseline yellow
		Garden roller
		green
		transparent turquolse
SCH	124	dark shadow blue
		celedon turquoise
		green
SCH	125	CEledon turouoise
SCH	126	celedon turquoise
		Green
		OSTRICH EGG SHELL BEAD
SCH	127	CELEDON TUROUOLSE
		Green
		OSTRICH EGG SHELL BEAD
SC	128	CELEDON TURQUOISE
		transparent turquolse
SCH	129	celedonturquoise
SCH	130	dark shadow blue
SCH	131	TRANSPARENT TURQUOISE
		Sage green
sc	132	bluegreen
		UNIDENTIFIED
SCH	133	bright turquoise
		Vaseline yellow
		UNIDENTIFIED

苟

TSR 1/1 OPG 6 BLOCK:2F Layer 1.A
TSR 1/1 OPG 6 BLOCK:3AA Rabbit Hole
TSR U1 OPG 6 BLOCK:3AA Layer 1
TSR 1HOPG 6 BLOCK:3AA Layer 2
TSR 1/1 OPG 6 BLOCK:3BB Layer 1

 TSR 1/1 OPG 6 BLOCK:3D Layer 2 TSR 1/1 OPG 6 BLOCK:3D Layer 3

ar
so
$\stackrel{0}{0}$
$\stackrel{3}{3}$
z

Layer
$\begin{array}{ll} & \text { TSR 1/1 OPG 6 BLOCK:SF Layer } 2 \\ & \text { TSR 1/1 OPG 6 BLOCK:SF Layer } 4 \\ & \text { TSR 1/1 OPG 6 BLOCK:5F Layer } 5 \\ & \text { TSR } 1 / 1 \text { OPG } 6 \text { BLOCK:5G Layer } 1\end{array}$
TSR $1 / 1$ OPG 6BLOCK:6B Layer 2
TSR 1/1 OPG 6 BLOCK:6B Layer 3

TSR 1/1 OPG 6BLOCK:6B Layer 4
TSR 1/1 OPG 6BLOCK:6B Layer 5
TSR 1/1 OPG 6 BLOCK:6C Layer 1
TSR 1/1 OPG 6 BLOCK:6C Layer 1
TSR 1/1 OPG 6 BLOCK:6C Layer 4

TSR 1/1OPG 6BLOCK:7A Layer 3
TSR 1/1 OPG 6 BLOCK:7B Layer 1

APPENDIX IIc Catalogue of beads from Eastern Transvaal sites

EASTERN TRANSVAAL BEADS

		PHA	L.ET	NKW	PAF	PHA	SH	MAH	OLJ	KWA	SAT	MAS	TOTAL
NEUTRAL WHITE	N9.5/90.0\%R	20		5			12	14		411			462
OYSTER WHITE	5GY 9/1	206	4	5	2		27	17		400	1		662
LIGHT GREY	N 8.25/63.65R						1						1
BLUE NEUTRAL GREY	5BG 6/1	6					1						7
DOVE GREY	7.5B 6/2	15					1						15
GREEN GREY	10G 6/2	2					1	3		1			7
GREY \& OLIVE YELLOW							9						9
BLACK	N0.5/0.6\%R	4	1	1		42	770	140		3			961
TRANSPARENT TURQUOISE	10BG 6/8		1				72	58		4			135
DEEP TURQUOISE	10BG $5 / 6$	17	6	2			1230	354		16	1		1626
CELEDON TURQUOISE	5BG 5/6			2			19	4					25
BLUE GREEN	5BG 6/4	11				7	4				1		23
DEEP CELEDON	5BG 4/4						2						2
GREEN	5GY 5/6	6					2		1				9
MEDIUM BRIGHT GREEN	2.5G 5/6	4		1	1		10	7		20			43
DARK GREEN	$2.5 \mathrm{G} 3 / 6$	235								2			237
INDIAN RED	2.5YR 3/8	11				7	852	11					881
INDIAN RED ON GREEN CORE	7.5R 3/8	15		2	2	5	3394	2113			1		5532
DEEP SCARLET	2.5R 3/10	1								179			180
BRIGHT ORANGE										12			12
YELLOW	7.5Y 8.5/10		1							1			2
VASELINE YELLOW (TP)	7.5Y 8/8					57	763	3					823
KHAKI YELLOW	5Y 7/8						2						2
OLIVE YELLOW	$7.5 \mathrm{Y} 7 / 6$	2					98	1					101
LIGHT MARIGOLD	2.5Y 6/10						3	2		4			9
DARK MARIGOLD	7.5YR 6/10	12								9			21
BRIGHT NAVY	7.5PB $2 / 8$	33		7				80		227	4		351
BRIGHT NAVY (FACETTED)	7.5PB 2/8					12	9	3				1019	1043
BRIGHT NAVY (ANNULAR)	7.5PB 2/8						1						1
MID BLUE	SPB 4/6	4	3	2			2895	135		1	1		3041
MEDIUM COPEN BLUE	5PB 6/8		9				16	6		2			33
DARK SHADOW BLUE	10B 4/4		2				6	10	1				19
SHADOW BLUE	2.5PB 5/4	28											28
LIGHT BLUE	10B 7/4		1		3		247	326					577
PALE PINK	10RP 8/4	2		1			1	10		8	1		23
MAUVE PINK	5RP 6/8	2		1			325	508		18			854
OSTRICHEGG SHELL		105											105
GREY \& CREAM STRIPES							12						12
BLACK \& CREAM STRIPES							5						5
BLUE STRIPE		1											1
PINK STRIPE		1											1
PINK \& GREEN STRIPE		1											1
PINK \& BLUE STRIPE		1											1
DEEP RED BROWN	10R 2/4							2					2
RUBY ON WHITE CORE	2.5R 3/10	2		2			4	4		6	2		20
COPPER BEAD		4											4
STRIPED BEADS				1	1	7	49	45			1		104
UMGAZI	7.5R 3/8	4											4
GREEN GLASS		1											1
DROPLETS OF GLASS							2						2
GYPSUM		1											1
SEED/POD		1											1
FRESH WATER SHELL		1											1
ARMY BUTTON		1											1
MOLLUSC		1											1
TRIANGULAR X SECTION							36	296					332
METAL BEAD	-		2				20	1					23
BONE BEAD			.	.			1						1
TRIANGULAR BEAD							208						208
MELTED FUSED BEAD							85						85
UNUSUAL COLOUR BEAD							4						4
WEATHERED BEAD				1		16	312						329
Total number of beads (n):		761	30	33	9	153	11510	4153	2	1324	13	1019	19007

\qquad

Layer	uet	
	Site Page Bead ColourNo.	
HIOUIR. 485 TER PIIMAIILANGIANT	ETVI, D839	brigitr navy (Facetted)
	ETVI. 8840 P	bldegrein
HOUHR AIT ItR PIG 1 STRATI Angl	ETVI. D841	INDIAN RED
Houterasatirpithisiratimagi	FTVL D842	black
		INDIAN RED
		weathered beads
HOHIER:478 TIER:PI/MAIH.ANGIENI	ETVI. 8843	black
		vaseline yelilow (TP)
		INDIAN RED ON GREEN CORE
		STRIPEID BEADS
IIOUER 38I TIER:PIIGSTRATILAag1	ETVI, D844 BI.ACK	
IOCAIIEN: Linstern Transvaal		
stite Shikumbu		
Hourersil tirsilu	ETVL 8845	DEEP TURQUOISE
SIRATOPPIRVI.akte		MID BLUE
IIOUAR 458 TER SII3	ETVL D846	TRANSPARENT TURQUOISE
SIRATOPPİRVLAKTE		DEEP TURQUOISE
	ETVL D847 PAI.E PINK	
HOUI:R S29 TER SIIBSTRAT:IAag!	ETVL D848	INDIAN RED ON GREEN CORE
HIOIIER:464 TER SIIBSIRATELagl	ETVL D849	NEUTRAL WHITE OYSTER WHITE
HOUER:492 TI:R:SII3 NKW I.gI	ETVL D850	black
		DARK SHADOW BLUE
HOUIER:S62 TER NKW SII3 1.g1	ETVL D8St	BRIGIIT NAVY (ANNULAR)
		BRIGHT NAVY (FACETTED)
HOUER SISTERSSII3STRATILagi	ETVL D852	2 OYSTER WHITE
		MID BLUE
HOUI:R:573TIER:NKW SII3I.gI	ETVL D853	3 BLACK
		LIGHT MARIGOLD
HOUIER:4.18 TER:NKWSI31.gi	ETVI D854	4 DEEP TURQUOISE INDIAN RED
HOUFER:540 TIERSII3	ETVL D8ss	S metal beads
HIUIER:S64 TY:R NKW SII3I.gI	ETVL D856 Black	
		DEFP TURQUOISE
		CELEDON TURQUOISE
		mid blue
IHOHERS60 TIRRNW SII3 M.gh	ETVI. D857	7 OYSTER WIIITE
		TRANSPARENT TURQUOISE MID BIUE
		MEDIUM COPEEN BIUE
		INDIAN REDON GREEN CORE

APPENDIX IId
Catalogue of beads from Botswana sites

BOTSWANA BEADS

NEUTRAL WHITE	N9.5/90.0\%R	ALE BOS		NOO	NYA	RAK	KGA	MAT	TORA XARO TOT			TOTAL
				1	1					3	1	6
OYSTER WHITE	5GY9/1	1			9					1	1	12
GREEN GREY	10G6/2		1	1								2
BLACK	N0.5/0.6\%R		1	3	1	2	16					23
TRANSPARENT TURQUOISE	10BG 6/8			1			45					46
DEEP TURQUOISE	10BG 5/6				2		2					4
CELEDON TUROUOISE	5BG 5/6		4									4
BLUE GREEN	5BG 6/4		2				17					19
GREEN	5GY 5/6		5								1	6
MEDIUM BRIGHT GREEN	2.5G 5/6		1					1	1		1	4
INDIAN RED	2.5YR 3/8		9				488		22			519
INDIAN RED ON GREEN CORE	7.5R 3/8	1								1		2
YELLOW	7.5Y 8.5/10		1			3					1	5
VASELINE YELLOW	7.5Y $8 / 8$		4						1			5
KHAKI YELLOW	5Y7/8		1									1
OLIVE YELLOW	$7.5 Y 716$		11						2			13
LIGHT MARIGOLD	2.5Y $6 / 10$		2						4			6
DARK MARIGOLD	7.5YR 6/10		1									1
BRIGHT NAVY	$7.5 \mathrm{PBB} 2 / 8$	2			6	1				1		10
BRIGHT NAVY (FACETTED)	7.5PB $2 / 8$										10	10
MEDIUM COPEN BLUE	5PB $6 / 8$	1								7	3	11
DARK SHADOW BLUE	108 4/4	10	5	4						1		20
PALE PINK ON WHITE CORE	10RP $8 / 4$										8	8
MAUVE PINK	5RP 6/8									2	5	7
GARDEN ROLLER BEAD			1									1
BLACK \& WHITE STRIPES				2								2
RUBY ON WHITE CORE	2.5R 3/10									2	3	5
STRIPED BEADS					1					1	1	3
BEIGE											1	1
COMPLEX BEAD						3						3
SOAPSTONE BEAD									1			1
BONE BEAD						1						1
ANNULAR BEAD						1					2	3
DIAMOND BEAD						1						1
UNUSUAL COLOUR BEAD				5								5
WEATHERED BEAD				1								1
Total number of beads (n):		15	49	18	20	12	568		31	19	38	771

hochtion: botiswana

APPENDIX III. A summary of Claire Davison's (1972) neutron activation analyses of glass beads

East Coast \& Indian Ocean

Gedi (ca 1399)	GED	Tanzania
Kaole House $(c a .1400)$	KAO	Tanzania
Engaruka $(1400-1500)$	ENG	Tanzania
Kilwa $(1150-1300)$	KII	East Africa
Kilwa (Gereza)(1800)	GER	East Africa
Fort Jesus $(1800-1900)$	FJE	East Africa
Zanzibar	ZAN	East Africa
Siraf		
	SIR	Iran

Vohemar (1550-1570)	VOH	North East Madagascar
Kab'wan		
Manunggol	KAB	Philippines
Santa Ana	MAN	Philippines
Porac	STA	Philippines
Butong	POR	Philippines
Calatagan	BUT	Philippines
	CAL	Philippines

Southern Africa

Makoli	MAK
Lusaka	LUS
Ingombe Iledi (1340-1445)	ING
Dambarare (1570-1750)	DAM
Luanze	LUA
Nyangwe Fort (1500-1600)	NYA
Matendere	MAT
Chibvumani	CHI
Dhlo-Dhlo (1800) Khami (1600-!700) Mjelele Valley (1800) Sofala	DHL
Bambandyanalo (950-1050) Mapungubwe (1150-) Modjadje (1937)	MAP

Botswana?
Zambia
Zimbabwe
Zimbabwe
Zimbabwe/Moçambique
Zimbabwe
Zimbabwe
Zimbabwe
Zimbabwe
Zimbabwe
Zimbabwe
Mocambique

N. Transvaal, South Africa
N. Transvaal, South Africa
N. Transvaal, South Africa

West Africa

Ife $(800-900)+(1300)$	IFE	Nigeria
Igbu Ukwu (800)	IGB	Nigeria
Ita Yemoo	ITA	Nigeria
Orun Oba Ado	ORU	Nigeria
Olokun	OLO	Nigeria

									$\begin{gathered} \mathrm{Mno} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} u \\ \text { (pem) } \end{gathered}$	$\begin{gathered} 1, \lambda \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \left.\mathrm{Sm}_{(\mathrm{pm})}^{(\mathrm{Ybpm}}\right) \\ (\mathrm{pm} \end{gathered}$		C. (ppm)		$\begin{gathered} \text { Th } \\ \text { (ppm) } \end{gathered}$	$\begin{gathered} \mathrm{Co}_{(\mathrm{ppm})} \end{gathered}$	$\begin{gathered} \mathrm{Sc} \\ (\mathrm{ppm}) \end{gathered}$	Ba (ppm)	$\begin{gathered} \mathrm{Sb} \\ (\mathrm{prm}) \end{gathered}$	Sn (ppm)	Cr	$\begin{gathered} \mathrm{HI} \\ (\mathrm{ppm}) \end{gathered}$	Zn (ppm)	A_{B}(ppm)	$\begin{gathered} \mathrm{ce}_{(\mathrm{ppm})} \end{gathered}$	$\begin{gathered} E v \\ (\mathrm{Ppm}) \end{gathered}$
uclif iecon	$\mathrm{Na} 2 \mathrm{O}^{1}$	(a)	c39.	$\frac{\mathrm{Mg} \text { OK }}{4 \mathrm{~m}}$	K20 Fe	ce20 Pr	Phem	$\frac{1178}{113}$				${ }_{6}(\mathrm{ppm})$	$\frac{18 p}{1.52}$	1.45	0.6	039	7.91	${ }^{3} 8.85$	${ }^{3.67}$	517.0	11.00		1270	3.12	54.0	${ }^{4.6}$	${ }^{17.00}$	0.46
MAP ${ }^{\text {If }}$	13 th	815	281	(iv) 2			co.l	1.13	1110	${ }_{6 \times 600}$	0.70	${ }_{6}^{6.32}$	1.46	1.43	0.6	0.94	10.7	3.88	3.42	400.0	113.00	6411.0	41.70	217	37.0	4.6	${ }^{17.80}$	0.41
map II	12.19	${ }^{8115}$	2.11		2 mm	0.91		1.1	11.	698.0	1.69	6.32	3.66	1.34	0.6	216	8.07	79.67	1.59	170.	2220	<200	46.70	3.84	34.0	4.6	33.40	0.88
MAP. 18	12.95	R115	2.16	צM12	2012	2.16		113	1230	7345.0	0.85	6.32	1.51	1.26	0.6	0.37	11.76	5.05	3.72	64.0	131.20	7634.0	38.50	235	70.0	4.6	17.60	022
MAP'	12.1	815	3.39	(90) 2	$2 . \mathrm{m}$	1.ne	col		${ }^{1 / 10}$	5093.0	0.80	6.32	1.59	1.06	0.6	0.24	9.9	3.24	3.74	37.0	200.00	7355.	43.50	234	66.0	4.6	15.20	0.24 1298
MAP ${ }^{2 \prime}$	12.0	ains	253	ant 2	2 mm	ก\%	<11		0.0	0.0	0.0	632	0.00	0.00	0.0	0.82	9.69	19.14	4.43	420.4	115.48	56940	4262	282	114.2	4.6	20.20	
mian	12.98	8 s	2 K	$0(x) 0$	0 mm 1				00	0.0	no	0.00	0.00	0.00	0.0	0.71	1.50	30.27	1.59	158.0	56.78	28	268	0.58	115.5	0.0	6.6	0.2
SII)	0.3	num	0.29	0	0.m) n	n.en		n.m																				
maxt									188.0	600.0	0.47	. 32	. 05	0.63	0.6	0.27	2\%	298	240	297.0	1.20	ND	26.00	. 94	35.0	0.7	1210	0.37
MAP.	12.18	8.15	201		$2 .(1)^{0}$	0.70	0.02	In	3870	600.0	0.86	6.32	1.23	0.73	0.6	0.33	4.33	3.53	278	320.0	1.30	ND	28.5	1.71	180	0.7	14.90	0.32
MAP-H1	1130	$8 \mathrm{8n}$	3s	3 mm 2	2 mm	0./4			81.	500.0	0.85	6.32	1.40	1.00	0.6	0.87	6.47	3.87	3.33	3020	6.40	ND	28.70	211	57.0	0.7	15.10	0.42 0.36
MAP. 12	12.18	115	2 m	3.00 100 100		0.12	0	111	533.0	6n0. 0	0.71	6.32	1.16	0.82	0.6	0.31	6.94	19	289	317.0	5.10	ND	33.40	230	520	0.7	15.40 21.60	
	1148	R10 8105	$\begin{aligned} & 3.5 .1 \\ & 1,28 \end{aligned}$	im 2	$2 . \mathrm{m}$	0.03	0.02	1.13	198.0	6000	1.05	32	1.75	1.31	0.6	0.57	1271	3.37	3.88	340.0	9.70	ND	58.90	229 288	83.0		20.00	0.46 0.58
	12.10	815	159	3.0	2.00	0.04	0.02	1.13	488.0	600.0	1.00	6.32	1.81	1.06	0.6	0.88	13.13	4.69	4.04	5150	4.10	ND	37.35	222	56.0	0.7	16.57	0.42
mind	${ }_{122.48}^{12.18}$	ans	3.45	3.10	2.00	0.70	0.02	1.13	450.	00.0	0.83	632	1.40	0.93	0.6	0.54	7.76	3.94	3.22 0.59	3485 75.7	295	0.0	1217	0.36	14.1	0.0	3.18	0.09
									58.1	0.0	0.19	0.00	0.29	0.23	0.0	0.26												
												6.32	1.38	1.37	0.6	1.37	16.92	5.53	3.33	353.0	167.50	10.7	34.90	275	667.0	23.0	16.30	1.37
M M Pr. 21	0.89	8.15	1.12	3 mo	200			1.13	78.0				1.44	1.47	0.6	1.47	7.85	4.37	3.38	5020	185.50	121	5230	3.6	809.0	23.0	17.10	1.47
MAP 28	61	05	2.81	3.00	2 m	0.as	6.70	13	379.0 3085	8599.0 8651.5	${ }_{0} 0.75$	6.32	1.41	1.42	0.6	1.42	1239	4.95	3.36	427.5	176.50	11.4	43.60	3.20	138	3.0	16.70	1.4
MI:AN	0.71	ans	208	3.00	2 m	nos		1.13	398.5	${ }_{7} 858$	0.06	0.00	0.03	0.05	0.0	0.05	4.54	0.58	0.03	74.5	9.00	0.7	870	0.45	1.0	0.0	0.40	0.05
511	0.06	n.(m)	0.14	0.90																								
									283.0	5000	0.40	6.32	0.79	0.43	0.6	0.21	3.62	3.31	1.89	283.0	1890	3815.0	17.00	1.28	330	7.0	130	${ }_{0}^{0.29}$
	1241	as			2 m	1.03	6.30	ND	21690	60.0	0.79	6.32	1.45	2.15	0.6	0.45	7.52		3.61	4780	40.90 29.90	7214.0	37.10 27	1.89	36.5	7.0	1285	0.40
MAP-24 MiAN	1211		3.64	3 mom	200	nat	6.10	ND	2276.0	600.0	0.60	632	1.12	0.79	0.6	0.33	5.57			${ }^{380.5}$	29.90 11.00	1699.5	10.05	0.60	3.5	0.0	4.45	0.11
MEAN STI.	0	nom	0.27	n.m	n.00	0.21	0	0.0	107.0	0.0	0.19	632	0.33	0.36	0.0	0.12												
Strange (inyr $5 / 6)$													1.31	1.00	0.6	0.44	8.49	4.51	284	471.0	78.60	14928.0	29	240	7167.0	10.6	14.4	0.25
MAP. 25	11.28	Ros	2.98	rm	2.00	$0 . \mathrm{R} 2$	nom	ND	33165.0	600.0	0.64	6.32	1.23	1.15	0.6	1.20	6.78	5.81	289	426.0	73.50	148060	30.60	1.48	69120	10.6	15.0	27
MAP. 26	10.64	8.05	214	3.00	200	n.m			32585	6000	0.76	6.32	1.27	1.08	0.6	0.82	1.64	5.16	287	448.5	76.05	14867.0	30.25	1.94	2039.5	10.6	15.15	0.26
mfan	110.	8.05	212		2 m				93.5	0.0	0.12	0.00	0.04	0.07	0.0	0.38	0.85	0.65	0.02	225	255	61.0	0.35	0.46	127.5	0.0	0.75	0.01
STI)			0.11																									
Ramhandyanalo																												
"M1.punguhwe Chemical (ircup". TABI.E. 2 (pp. R80.1)													175	112	0.8	0.86	12.5	4.42	4.08	375.0	3.00	180.0	259.30	30	720	1.0	19.00	0.47
inmmsimin	13.14	7.03	200.	s.m	250	1.10	<0.0.	1.06	388.0	10.0	1.19	895	1.60	1.00	0.8	0.47	6.90	3.65	3.86	441.0	1.20	180	37.50	246	45.0	1.0	19.00	0.4
	13.17	20	254	s.m	2.50	0.86	<0.04	1.00	530.0	400.0	0.62	8.95	1.46	0.81	0.8	0.38	4.41	4.66	3.42	4620	1.60	180.0	33.20	223	48.0	1.0	16.90	0.47
hamsige	13.52	1.03	1.98	5	25	0.8]	<0.m	1.00	5590	00.0	0.73	8.95	1.52	0.89	0.8	0.61	839	89	3.67	23.0	3.60	180.0	39.80	250	48.0	1.0	1820	0.42
HAM S21:	12.98	1.103	29	5.00	2.50	n.93	<nM		581.0	4 no .0	0.63	8.95	1.57	1.12	0.8	0.72	8.50	11.49	3.64	451.0	8.00	180.0	4280	285	51.0	1.0	16.40	0.50
RAM.21	2.96	1.38	313	sim					504.8	400.0	0.86	895	1.58	0.99	0.8	0.61	8.07	6.63	3.73	430.4	3.48	180.0	8252	267	528	1.0	17.90	0.45
MEN	12.21	1.03	273						69.0	0.0	0.24	0.00	0.09	0.12	0.0	0.17	252	3.05	0.22	30.5	243	0.0	88.45	0.37		. 0	\%	
																			4.49	631.0	1270	1849.0	45.10	$10 \quad 3.54$	313.0	03.0	2210	0.54
Purple Pam SOM					4.90	1.12	0.50	0.74	13378.0	3500	1.28	11.11	1.83 207	1.22 1.63	1.7	${ }_{0}^{0.89}$	29.15	14.35	5.18	741.0	13.70	197.0	60.40	10 3.12	335.0	03.0	27.10	0.488
BAM S? ${ }^{\text {Ph }}$ IBAM.S2\%2	11115		4.25	s.no	4.00	1.25	$0 \leq 0$	0.74	15079.0	350.0	1.29 1.53	11.11	207	225	1.7	1.21	35.01	1218	5.32	6020	16.90	2130.0	76.70	O 3.54	3490	03.0	20.80	0.31
RAMISSM?	10 c	3.6	1.17	s.m	4 mm	1.30	0.50			350.0 350.0	1.93 1.37	1.11	202	1.0	1.7	0.90	28.43	13.93	5.00	6580	14.4	1985.3	60.73	33 3.40	3423	33.0	26.63	0.14
Mlin	10.4	n:	1.16	(.m)	4 mm	1.22	0.50		6982	0.0	0.12	0.00	0.14	0.42	0.0	0.22	5.69	1.32	0.36	59.9	1.79	114.9	1290	0.20	5.7	. 0.0	3.11	1 0.10
SII)	0.50	nom	0.2	,	nom	0.0																						

 ：

Bluck irren

정¢ㅇ웅	¢్ర్ర ¢్రీ	${ }^{\text {E }}$	둥 ¢ ¢ ¢ ¢
		$\frac{1}{2}$	
		最	
		¢	
	స	$\stackrel{5}{7}$	
		$\underline{2}$	
		\％	
	안8ㅏㅇ	$\stackrel{\square}{2}$	
	全号年年	2	
	三巨気家	웅	
	总葍	$\stackrel{3}{0}$	
8\％		区	
	둥＊	＊	중으응ㅇ
ヘッ～ํ	$\cong \bigcirc$	$\stackrel{ }{\sim}$	$\underset{\sim}{\sim} \simeq \sim 9$
		$\stackrel{1}{0}$	三으ㄹㅡㅡ응
O％NNAE	으ㅇㅡㅡㅇ	き	$\underset{\sim}{\operatorname{mon}} \underset{\sim}{\text { E }}$
号号号年 ${ }^{\text {8 }}$		$\underline{\square}$	
		$\stackrel{O}{O}$	
		E	
		$\stackrel{0}{6}$	
$8{ }^{8}$		$\stackrel{\text { ® }}{\text { 区 }}$	を
	立文会䒠	$\hat{\chi}$	
	或気気	E	ミ』き』
	¢	$\stackrel{8}{8}$	产言高要要
	产 $\overline{\text { E }}$	$\underline{\square}$	
		ξ	号 ${ }_{\square}^{\text {E }}$
틍휴유의	E¢ ¢ ¢	E	
毞三ご気		$\underset{\text { 曷 }}{ }$	三三事辰
	マ 2		

									MmO	rim	11	$1 \times$	Sm		C		Th	Co	5 c	Hz	Sb	Sn	Cr	Hir	7π			Eu
Muetirem	$\mathrm{Na}_{3} \mathrm{O}_{1}$	Catm	20\％	Mes）	k\％	Fer 0	Phers	（1）	（rpm）	（ppm）	（pmm）	（ppm）	（ppm）	pm）	（ppm）	（epm）	（ppm）	（pem）	（ppm）	（ppm）	（ppm）	（ pmm ）	（ppm）	（ppm）	（ppm）	（ppra）	（ppm）	（ppm）
mow ${ }^{\text {a }}$	119	16	19	2tu	2in	18	nim	1.10	290	¢120	112.6	N）	358	130	1.5	0.57	23.00	48.43	4.82	ND	4.90	90.1	21.40	4.30	170.0	30	ND	0.55
м介川	156	$1{ }^{1}$	： 1	2m	？	18	n＇1	1.4	28.0	5215.0	58.15	ND	298	1.18	1.5	0.55	1 man	7.12	s．ns	no	1.00	90． 1	16.80	4.45	170.0	3.0	ND	0.55
м（N）2t	110	16	\because	$2(10)$	${ }^{2} \mathrm{~m}$	tum	am	1.11	UK．	$5.41 / 0$	08.82	NI）	3.14	0.89	1.5	0.12	19.56	1272	1.46	ND	6.89	90.1	26.10	4.9	17.0	3.0	ND	0.55
Matisd	14.10	＂	${ }^{11}$	2 mm	$3(1)$	${ }^{1 / 8}$	nos	1.19	322.	12170	n． 21	NI）	1.19	0.61	15	0.31	7.84	63.08	270	ND	2 m	0.1	14.00	4．n	170.0	3.0	ND	0.55
motes	111	19	18	208	（\％）	1.2	＂ 11	1．$\%$	290	sisan	16.22	NI	275	1.94	1.5	0.17	15.08	136.32	1.31	ND	11.70	0.1	29.60	1.30	177.0	3.0	ND	0.55
M11）${ }^{\text {d }}$	16.12	14	：18	2mm	$2(14)$	1%	001	1.01	2590	1351.0	11.11	ND	3.05	0.88	1.5	0.99	16.91	51.23	5.00	ND	5.90	0.1	26.20	1.30	1 mo	3.0	ND	0.5
1211.48	409	＋is	！	2（10）	24	1.15	0 n	1．8． 1	\＄1．0	5102.0	87.16	ND	3.01	1.26	1.5	0.48	24.16	14.45	5.3	ND	9.10	<200	23.80	5.04	170.0	3.0	ND	n．ss
	119	15	2.11	2 m	2.11	1tw	0.0	1.41	2R．0	4597.0	117.40	ND	235	0.89	1.5	0.16	18.18	13 Le	4.00	ND	11.80	＜20n	26.00	211	170.0	3.0	ND	o．ss
（1）H．tisic	1168	is	19	2 w	2 mm	069	nom	1.26	2800	1977.0	19.58	ND	212	0.84	1.5	0.32	17.56	47.95	252	Ni）	270	＜200	1260	4.25	170.0	3.0	ND	n．ss
mi1． 169	14．89	19	am	2 mm	2 m	n／o	an	108	3 ma	52720	11.00	ND	1.93	0.69	1.5	0.31	1277	48.18	256	ND	350	<200	15.10	200	170.0	3.0	ND	0.55
inlis ins	1412	4	？	2 mm	2010	062	0.03	$1+0$	172.0	3487.0	38.30	ND	1.34	0.51	1.5	0.38	10．84	76.90	293	ND	7.50	<200	18.10	1.16	17.0	3.0	ND	0.55
12f1． 1 mm	1582	4	P18	2 mm	2.010	ก80	0 an	1.55	25.0	51.20	87.07	ND	1.74	0.63	1.5	0.34	9.95	28.12	27	ND	280	3 nan 0	ก0． 30	1.97	170.0	3.0	ND	0.55
MII： 41	1466	$1{ }^{1}$	＇11	2 mm	2 m	1.21	（an）	1.40	2 m 0	1841.0	53.45	ND	267	1.09	1.5	0.62	14.95	38.31	4.69	ND	19.20	＜200	21.40	3.40	17.0	3.0	ND	0.55
min 62	H＂	$4{ }^{1}$	2\％	2.10	$2 . \mathrm{m}$	111	n．a	180	2720	1815.0	74.13	ND	2\％	1.01	1.5	0.48	15.85	295	4.27	ND	16.50	<200	26.10	3.29	170.0	3.0	ND	0.55
MIIC，	14.2	ts	${ }^{188}$	2 mo	2 m	121	nu	1．4	2670	6207.0	66.12	ND	3.37	1.27	1.5	0.54	2280	6254	4.81	ND	8.20	＜200	40.30	5.80	170.0	3.0	ND	0.55
M11：${ }^{\text {S }}$	1129	19	1．1）	2 m	2 m	128	nor	1.7	24.0	39400	106.31	ND	271	0.56	1.5	0.46	11.71	188.24	4.57	ND	6.90	<200	39.90	3.11	17.0	3.0	ND	0.58
MIIAN	1500	14	119	2 m		1.11	n．n	1.15	24.9	4871.0	67.45	ND	257	0.9	1.5	0.48	16.07	71.85	3.99	ND	778	56.4	2.01	3.66	170.0	3.0	ND	0.55
sm．	n．${ }^{\prime \prime}$	010	asp	n（m）	0．m	$n{ }^{12}$	（0．1）	0.21	15.8	608.7	30.12	ND	0.65	0.26	ND	0.16	4.48	44.73	1.04	ND	4.74	80.2	8.46	1.17	0.0	0.0	n，00	0.00
Corbis mue																												
monsa	1.91	4.12	3 Br	211		1.60	n．0）	1．fn	365.0	－500	79.00	ND	4.17	1.12	1.5	0.58	25.07	1709.00	8.01	ND	290	<200	9.40	7.40	170.0	3.0	ND	0.55
мenish	15．14	15	115	2．10	2 mm	1.69	am：	1.44	36.0	＜500	889 15	ND	3.36	${ }^{0.82}$	1.5	0.88	20.93	1400．00	4.93	ND	280	＜200	3250	5.48	170.0	3.0	ND	0.55
1011．169	142	15	3 n	zem	2 m		0 n	2 mo	2620	＜500	80.33	ND	4.55	1.32	1.5	$0 . n$	18.24	929.00	4.83	ND	3．70	99.1	3.60	4.30	1 m .0	3.0	ND	0.55
	ハン9	19	156	2 m	2.00	1 m	au	1.70	2090	＜smo	41.83	ND	226	0.81	1.3	0.41	14.06	879.00	3.24	ND	200	99.1	15.70	4.30	170.	3.0	ND	e．ss
DIII． $1 \times$	chat	cs	11	2 mm	2：n	1.3	\％n	1.23	388.0	＜sob	61.17	ND	3.24	1.36	1.5	0.60	24.07	96800	5．05	ND	3.10	90.1	35.20	4.30	1700	3.0	ND	0.55
1915：13592d	tham	158	412	2 min	2 mm	1．m	0.03	1.91	311.0	＜ 50	91.12	ND	3.68	0.61	1.5	0.57	21.08	1418.00	5．0	ND	4.00	99.1	30.00	4.30	17 n .0	3.0	ND	0.55
pht mese	189	1.52	2.95	$2 . \mathrm{m}$	2.10	1.21	0.03	1.52	367.0	－ 510	40.62	ND	205	0.42	1.9	0.45	14.38	750.00	4.26	ND	3.20	99.1	30.00	4.30	170.0	3.0	ND	0.55
minn	15.26	1.12	צ11）	2 （1）	2 m	1.14	00	1.63	325.7	－500	70.79	ND	3.33	0.92	1.3	0.60	19.69	1154.71	4.86	ND	3.10	20．8	27．06	4.91	17.0	3.0	ND	0.55
517	$0<0$	0×1	$0 \leq 1$	0 m	nm	0.2	n．00	n． 25	38.4	00	21.14	0.00	0.85	${ }^{0.33}$	0.0	0.15	4.03	324.91	0.85	0.0	${ }^{0.60}$	41.8	9．60	1．0）	0.0	0.0	0.00	0.00
M（N） a	ast	1.9	1.14	$0 \cdot 3$	1.10	n．$/ 8$	0.09	1.52	503.0	9040	1.80	5.31	0.74	5.00	3.7	0.20	4.00	64.53	1.82	ND	663.70	826	39.30	200	100.0	3.0	6.10	0.00
Mont th	Q，	1.4	1.10	n\％	109	0 n 4	0.09	1.45	mago	115120	1.33	5.31	0.47	5.00	3.7	0.13	\＄．09	87.58	1.48	ND	2275	126	11.70	200	100.0	3.0	6.00	0.00
mepla	011	［．1）	a 08	O． 3	4.00	0×1	п．p	1.97	567.0	${ }^{8819.0}$	1.45	5.31	0.62	5.00	3.7	0.16	3.17	75.33	1.38	ND	333.60	826	21.80	200	1000	3.0	6.100	0.90
Mow to	（10）	1.4	1087	n． 3	$4 . \mathrm{m}$	n_{2}^{28}	n． 0^{6}	1.78	58.0	9670.0	1.54	5.31	0.33	5.00	3.7	0.19	219	${ }^{43} .85$	1.09	ND	110.40	826	21.80	200	100.0	3.0	6.00	0.00
M（\％）te	1719．	191	п．	0．7．	$1{ }^{118}$	0.13	n．mo	1.00	350.0	751.0	1.31	5.31	0.71	5.00	3.7	0.19	3.35	73.03	1.53	ND	210.70	825	21.20	200	1 m .0	3.0	660	0.90
	091	fot	ก．9．	$0 \cdot 3$	．tal	0.45	0.00	1.05	315.0	10389.0	1.55	5.31	0.62	5.00	3.7	0.21	3.57	60.12	1.38	ND	300.20	826	25.10	200	100.9	3.0	600	0.00
Aife mid	н¢4	194	10／0	0.3	40	0.10	n． 00	1.59	980． 0	10533.0	269	5.31	0.60	5.00	3.7	0.19	1.40	91.11	1.39	ND	534.90	826	20.50	200	100.0	3.0	6.00	n．0n
NIIS： th ？	$4{ }^{\text {R }}$	1.91	nom	n！	40	nct	n． 0	1.94	296.0	9200， 0	231	5.31	0.67	5.00	3.7	0.17	1.73	61.90	1.45	ND	204.60	826	29.90	200	100.0	3.0	6.10	$0.0 n$
MII： W ，	981		0 яo	日，	4 AM	0.1	anm	1.92	184.0	1052m．	3.46	531	0.62	5.00	3.7	015	1.46	43.42	1.36	ND	203.00	826	19.50	200	100.0	3.0	f．om	0.00
	0.61	1.91	4．\％	$0 \cdot 3$	（10）	Q ${ }^{1}$	nim	1．41）	2660	204．0	1.17	5.31	0.58	5.00	3.7	${ }^{0.18}$	1.15	69.10	1.25	ND	405.50	826	15.10	200	100.0	3.0	ano	n．an
mina	Q．in	191	（0，	n．n	40	0.18	nom	1.13	445.3	94．37．6	1.86	5.31	0.54	5.00	3.7	0.18	274	67.23	1.42	ND	301．96	826	${ }^{2218}$	200	100.0	3.0	6.00	0.90
st1）	9.5	（1）（1）	0.1	ann	0 0．4	0.1	nom	0.10	205.0	1074.2	0.0	0.00	0.08	0.00	0.0	0.02	1.22	13.20	0.18	0.0	181.25	0.0	7.18	0.00	0.0	0.0	0.00	n．00
corvil ther								1.11	110.0	280.0	1.69	5.1	0.71	5.00	3.7	0.17	5.51	305．00	1.54	N）	15200	826	11.30	200	100.0	3.0	6.00	0.00

Igho lkwu	1.17	$1 \mathrm{~F}^{22 \mathrm{Lb}}$							Mno																			
"Indian" red ICil X	$\frac{\mathrm{Na} 2 \mathrm{O}}{1.8}$	${ }^{\text {Cat\% }}$	$\frac{1203 \%}{623}$						(ppm)	(pmm)	(ppm)	${ }_{\text {(ppm) }}^{641}$					(ppm)	(pem)	${ }_{\text {(ppm) }}^{\text {sc }}$	(epm)	${ }_{\text {(ppm) }}^{\text {sb }}$	(ppm)		(ppm)	(ppm)	${ }_{\text {(pmm) }}^{\text {Ag }}$	(ppm)	(ppm)
\%18.1]	1.65	320	511	1,60	320	213	ND	0.5	S20	${ }^{30120}$	${ }^{1.42}$	${ }^{691}$										161.0	104.00	1.38	4520		20.27	0.38
	8.51	3.20	1.15	1.(4)	3.21	1.08	N)	0.50	115.0	${ }_{12564} 110$	${ }_{0.98}^{1.48}$	293 120.34	${ }_{1}^{1.62} 1$	1.07	${ }_{4}^{240}$	${ }_{0.12}^{0.71}$	${ }_{228}^{227}$	9.32 0.45	${ }_{\text {ciss }}^{685}$	155.0 2120	${ }_{3200}^{2200}$	${ }^{1670}$	104.00	243	${ }^{4520}$	4.5	20.27	0.38
\|i8.1.12	8.58	3.20	1.62	4.69	3.20	1.05	Ni)	0.50	41.0	1249.0	0.97	13.46	1.62	113	S.00	${ }^{0.81}$	${ }_{28}^{248}$	9,45	${ }_{\text {s. }}^{5}$	${ }_{2}^{2120}$	3830	3000	104.00	3.12	4520	4.5	20.27	0.38
MiAN	7.14	3.20	5.19	1.6)	320	211	ND	a.so	1198	994,5	1.20	3729	1.62	0.9	4.15	as	220	10	12	${ }^{227.0}$	36.50	3220	10400	3.03	452	4.5	20.27	0.38
Sti	1.16	0.00	0.71	0.0	$0 \times$	1.22	a.m	0.09	649	40037	0.3	4802	0.00	0.15	1.02	0.10	0.43	1317	1.93	528	11.86	13.9	10000	0.69	${ }^{4520}$	4.5	${ }_{0}^{20.27}$	0.38 0.00
Blueckiren																												
MsA	10.13	9 m	3.18	N1	3.m	0.90	ND	1.10	626.0	10886	0\%	9.9	1.88	1.26	250	0.56	293	389	3.53	261.0	23.00	2630	51.00	3.00	460.0		2600	
MSt	${ }_{1225}^{122}$	-000	213	ND	3.00	1.23	N	1.130	353.0	151990	1.14	10.44	1.88	1.66	260	0.97	3.49	11.18	4.44	23.0	23.4	180	51.00	3.24	46.0	120	26.00	0.60
	1131		2.65	ND	$3 . \mathrm{m}$	${ }^{1.017}$	${ }^{\text {N }}$)	1.00	489.	${ }^{131925}$	1.05	10.20	1.88	1.46	255	0.7	3.21	28.05	3.9	247.0	23.20		51.00					
${ }_{\text {(ireen }}^{\text {sil }}$			0.52	0.(x)	am	0.17	0.00	.0.0	136.5	2306.5	0.09	0.24	0.00	0.20	0.05	0.20	0.28	13.87	0.45	14.0	0.20	41.5	0.00	0.12		0.0	0.00	0.00
${ }^{1 / 8.8 .72}$	10.68		1.51			0.93	ND	1.30	1015.0	110200	0.91	10.39	1.88	1.19	9.20	0.54	7.00	3274	3.04	186.0	27.9	1420	S1.00	293				
	0.12	0,00	2.9	0.00	0.00	0.86	0.m0	0.00	530.0	10580.8	0.83	825	1.50	1.15	${ }^{3.38}$	0.61	${ }^{3} 38$	24.35	3.98	188.2	19.54	141.3	40.80	248	3680	9.6	20.80	0.48
Igho 1 kw	IV. T	31.E23																										
coluricic																												
cis.v1	281	13.94	${ }_{6}^{6.4}$	200	32	0.10	ND	0.16	6380	23.0	0.97	4.47	1.22	0.95	250	4.62	1.19	3.64	0.93	1080	1.20	110.0	27.00	1.22	25.0		16.83	
	3.19 3.1	15.29 15.4	1.81 1.29	200	3.20 320	${ }_{0}^{0.21}$	${ }_{\text {ND }}^{\text {ND }}$	0.16	41700 580 800	233.0 233 2	${ }^{0.7}$		${ }_{122}^{1.22}$	0.74	260	225	1.19	3.94	${ }^{0.81}$	${ }^{1760}$	1.20	110.0	27.00	1.04	25.0	20	16.83	0.27
mi:AN	331	1480	126	m	32	22			S590	23.0	-	3.32		0.74	280	2.36	1.26	19.4	0.91	${ }^{185.0}$	1.20	110.0	27.00	0.66	15.0	20	16.83	0.27
sti)						0.0	000	000	${ }_{7} 98$	00	0.11	0.41		0.09			1.21	9.02	${ }^{0.88}$	1563	1.20	110.0	27.00	0.97	15.0	20	16.83	
Gireen																				34.4	0.00	0.00	0.00	0.23	0.0		0.00	0.0
Ifis. ${ }^{\text {d }}$	253	14.87	131	2 m	. 20	248	ND	0.16	${ }^{420}$	23.1	249	931	1.22	1.28	87	209	3.30	6.31	206	150.0	1.20	110.0	27.00	$1 . n$	\% 50	20	16.83	
${ }_{\text {Kib.ss }}$	267	11.83	7.07	2 m	3.20	260	ND	0.16	481.0	23.0	253	173	1.22	1.25	890	204	3.92	6.21	201	1660	1.20	110.0	27.00	1.99	15.0	20	16.83	0.27
MEAN	2×0	1335	1.22	2 m	320	254	ND	0.16	486.5	233.0	251	ass	1.22	1.27	880	207	3.86	6.26	207	1580	1.20	110.0	27.00	1.86	5.0	20	16.83	0.27
	0.07	1.52		0.00	0 m	0.6		0.00	s. 5	0.0	0.02	0.82	0.00	0.02	0.10	0.02	0.06	0.05	0.00	so	0.00	0.00	.00					2.
${ }_{\text {cosem }}$	228.	10.43	0.56	200	3.20	0.68	ND	0.16	7980	23.0	1.58	1864		0.94	1280	1.64	171	11048	299	6170	180	1100	270		750	20		

[^0]: '. Al-Fustat, sometimes spelled Fostat or Foustat is now referred to as Fustat

[^1]: ${ }^{2}$. The term 'Transvaal' is so well established in the archaeological record, that at this period of flux in South African provincial nomenclature, I continue to use it as a geographical standard.

[^2]: ${ }^{3}$. Transvaal Archives, 1952. C. van Riet Lowe - Personal. SAB. UOD. E3/1/639.
 ${ }^{4}$. Horace C. Beck's (1873-1941) innovative research in glass beads resulted in the publication in 1928 of his definitive work on glass beads entitled Classification and Nomenclature of Beads and Pendants. His nomenclature remains standard to this day. He performed hardness. specific gravity and microscopic analyses on glass beads. Photographs which were used for his numerous articles were taken by himself and the colour representations painted by his wife. Over the years, he acquired a comprehensive collection of beads from all over the world which he used for comparative analysis.

[^3]: ${ }^{5}$. Transvaal Archives, July 1940. February 1950. Director Archaeological Survey. A letter to R. Summers dated 10th December, 1948. Part III. SAB. ASW. Vols. 32-33. B11/5.

[^4]: ${ }^{6}$. Transvaal Archives, July 1940 - February 1950. Director Archaeological Survey. Part III. SAB. ASW. Vols. 32-33. B11/5.

[^5]: ${ }^{1}$. Sand should have an optimal particle size for glassmaking. Finely ground quartz pebbles would also have been suitable for melting. Ideally the sand should be angular grained, and be able to pass through a 20 -mesh sieve. According to British Standard the majority should be retained by 100 -mesh sieve, i.e. $0.1 \mathrm{~mm}-0.5 \mathrm{~mm}$ (Borax Consolidated Limit ed 1977:9).
 ${ }^{2}$. The term alkali is Arabic in origin, meaning ashes, and was used to described partly vitrified ashes of plants prepared in Egypt and Arabia (Turner 1956a:44T).

[^6]: ${ }^{\prime}$. The tale never mentioned that the impurities in the sand, such as shell, would have benificated the glassmaking process as well.
 ${ }^{2}$. An Egyptian pendant (BC 1500) was made virtually from a standard ingot of glass. Its granular appearance would suggest that it was cast from grains of glass (Cummings 1980).

[^7]: ${ }^{3}$. In 1788, an English glassworks produced glass made of one part of sand and three parts of ash. The ash most favoured was obtained from a neighbouring bakehouse where straw was used for firing the baking ovens (Turner 1955:289T).

[^8]: ${ }^{4}$: These conditions are necessary to maintain a reducing environment required to complete the reduction of copper colourant additives in making opaque red/brick coloured glass (Brill \& Cahill 1988:18-19).

[^9]: 6. The most widely used fuel was wood, although in the geographical areas such as Egypt and Mesopotamia. where wood was in relatively short supply, other materials were used including dried dung and the roots of certain plants, including the papyrus plant. But, for the more primary processes such as pottery firing or glassmaking, wood and charcoal had to be imported (Day 1990:206). Two cubic metres of burned solid wood produced one kilogram of primary glass (Harder 1993:272).
[^10]: ${ }^{7}$. Syrian glass-makers were among the first to employ the technique of mould-blowing for domestic wares, a method by which the hot glass was suspended at one end of a blow-pipe and placed inside a hollow wood or clay mould, then blown into shape (Mehlman 1982:35)

[^11]: ${ }^{8}$. The process consists of making a wax replica, encasing it in a ceramic mould and heating it over a fire or in a kiln. The heat causes the wax to melt and flow out through a special hole/holes. The wax is

[^12]: replaced by a metal or glass. After the form had cooled and hardened the mould is broken, thus, freeing the cast object. The final product is cleaned and polished, either by heat polishing or with abrasives.
 ${ }^{9}$. The fact that they were made from tiles is indicative of secondary reworking.

[^13]: ${ }^{10}$. Collectively these are referred to as urao, although some mineralogists have preferred to use the term trona for the compound (Sen \& Chaudhuri 1985:136-7). According to P. Francis. Jr. (pers. comm), deshi kach or soil salts are salts which effloresce on the soil after rains (or alternately are gathered from evaporating pans). This is the basic traditional material used for lndian glass. In the north it is called reh and in the south sondu. At Purdalpur the reh is gathered and fired in a special furnace for about a week to make frit (they did not need to add sand, as the soil particles they gathered up with it contained sufficient amounts). This was then made into glass. Early descriptions of glassmaking in India describethis process. It was also used sometimes in China.
 ${ }^{11}$. Archaeological excavations along the Bujang River in South Kedah show evidence of entrepôt activity engaged in handling foreign wares such as Arab glasses and Chinese porcelain (Andaya \& Andaya 1994:28).

[^14]: '.The 'dark age' (AD 6th-8th century) of the post-Roman Empire was formerly regarded as a period of reorientation. But see Scanlon 1968 (my refs. P. 186) for an updated analysis consequent on the finding of a lustred glass goblet et al in a pit at Fustat in 1965.
 ${ }^{2}$. The decorative arts of Persia, in particular, had a profound effect on the glassware produced at these centres.

[^15]: ${ }^{3}$. Contemporary Islamic glass beads are used as amulets for protection against the evil eye. In certain parts of Africa, Italy and Spain, glass itself is considered amuletic; certain colours are associated with helping cure specific ailments (Allen 1993:6).
 ${ }^{4}$. This is in direct contrast to the Fatimid lustre pottery which was quite frequently signed: signatures do not only identify the artist but also acknowledge that the particular piece was personally valued and recognised (Caiger-Smith 1973:37).

[^16]: 5. The term 'Roman glass' is used here in a general sense to describe objects that were made throughout the empire during the first four centuries of the Christian era. The variety of glass produced during this period can be classified broadly into two major categories. that of utilitarian ware such as bottles, beakers, vases etc. and artistic or luxury glassware associated with body uses and decoration or religious purposes.
[^17]: ${ }^{6}$. Lustre-painting decoration consists of painting onto the glass a film of colour made from various combinations of sulphur, silver oxide and copper oxide in a medium of vinegar. The vessel is fired in a reducing kiln after which the painted decoration becomes lustrous when fired (Pinder-Wilson 1991:124; Mehlman 1990:42).
 ${ }^{7}$. The technique should not be confused with that of earlier gilded glass, in which gold leaf was sandwiched between two layers of glass. Enamelling is the application of ground glass mixed with colouring material to a surface and subsequent firing at a low temperature (Pinder-Wilson 1991:130).

[^18]: ${ }^{8}$. As far as is known, relief cutting was carried out by means of the bow drill which consisted of a fixed spindle to which were attached the appropriate discs - either a fine cutting edge for incised work or a broader edge for grinding: the drill was rotated by the backwards and forwards movement of the bow (Pinder-Wilson 1991:119).
 ${ }^{9}$. A general sequence of cut glass vessels has been mapped independently by various scholars on the basis of excavations in the Near East and glasses of known provenance, and a sizeable number of vessels, dating from the 5th-7th centuries confirm production in these geographic areas (Clairmont 1977). Although a large group of carved crystals is referred to in the literature as Fatimid (the description is based on the fact that two pieces were inscribed with the names of two Fatimid caliphs) (Erdman 1951:142) it is not clear whether or not the cut-glass industry in Egypt was developed under the first Fatimid rulers by glassmakers emigrating from Persia and Iraq to Egypt.
 ${ }^{10}$. Rock crystal was not found exclusively in Kenya. According to Rice ([956:45) the raw material was imported from the Arabian peninsula, especially Yemen and the Red Sea coast. Madagascar, Laccadive and Maldive islands, Kashmir, Afghanistan and Maghrib centres.

[^19]: ${ }^{11}$. In this thesis, trailed ware refers to glassware that has been decorated with either feather and herringbone patterns, or straight. wavy and oblique lines.

[^20]: 12. The shift of the trade from the Persian Gulf to the Red Sea made a great difference to Islamic entrepôt activities.
[^21]: ${ }^{13}$. Three denominations of coins - gold (dinar), silver (dirham) and copper (fals). Another type of weight. known as a ring weight was used specifically for weighing produce such as meat and other commodities (Jenkins 1986:56).

[^22]: ${ }^{14}$. The impression of inscriptions in glass with iron dies requires much skill and careful timing. for hot glass will rapidly attack an iren surface and will soon obliterate the inscription on a die by forming a scaly oxide coating if the operator is inexperienced or careless (Miles 1948:69):

[^23]: 15. Sherds of early Chinese blue-and-white porcelains recovered from coastal sites in East Africa, particularly Kilwa, were also found at the medieval port of Aydhab on the Red Sea, no doubt on its way overland to the Nile, to be shipped downstream to Fustat (Carswell 1976:122).
 ${ }^{16}$. Morrison does not actually mention the fact that most of the material she classified from Manda was compared with glass-ware from the predominantly Islamic glass producing centres, such as Siraf as well as in the Gulf region, Egypt, the eastern Mediterranean, Mesopotamia and Persia.
[^24]: 17. Caiger-Smith (1973:26) attributes the beginnings of polychrome lustre pottery (perfected by Islamic potters) to glassmakers in Fustat who used silver and copper stains on glass in the eighth century if not earlier.
[^25]: ${ }^{1}$. The Sijilmasa caravan, named for its Moroccan desert port of departure, also served as a terminal for the Saharan traffic (Goitein 1967:212).
 ${ }^{2}$. The modern word 'cheque' is derived from the Arabic word sakk (Kramers 1931:103).

[^26]: ${ }^{3}$. The Maldives supplied coir rope and turtle shells to India where they were made into boxes and caskets ornamented with gold and silver, bracelets and other ornaments (Carswell 1978:140).

[^27]: ${ }^{4}$. These concepts were brought back to Europe by the Crusaders and became widely accepted.

[^28]: 5. Transvaal Archives. SAB.ASW. Vols 32-33. B1 1/5.
[^29]: ${ }^{6}$. This method of trading obviously ensured exclusivity, and meant that great control was exercised over imports and exports.

[^30]: . Connah (1987:151), is of the opinion that the term 'Swahili' should not be used in contexts earlier than the last few centuries.

[^31]: ${ }^{1}$. Although cognizance has been taken of the retrieval methods and volume of excavated material the numbers for earlier sites are comparatively low.

[^32]: ${ }^{2}$. The archaeological collection of artefacts from Tel el-Amarna. Egypt (BC 1375-1358) was presented to the Huguenot University College, by Miss E. Armistead of Wolverhampton, England. It is now housed in the Wellington Museum. The artefacts were presented to Miss Armistead by C. Leonard Wooley, of the British Museum, in appreciation for her participation in the 1930-1931 excavation. Tel el-Amarna is thought to have been one of the earliest known glassmaking complexes in Egypt. The collection is unique in South Africa. Although the glass specimens (mostly glass rods) used for analysis in this thesis predate all the other the material, the reason for incorporating it is described in chapter 7.6.1.
 ${ }^{3}$. Conversely this material is much more modern. The same reasoning outlined in chapter 7.6.1 applies.

[^33]: ${ }^{4}$. These beads are now housed in the South African Museum, Cape Town.

[^34]: ${ }^{5}$. In almost every instance the body was interred in a flexed position on its side with no regard for orientation. The women were found with masses of metal anklets and bangles made of wire, mostly iron, wound round fibre or sinew. In two case the bodies were buried with considerable masses of gold finely wrought and moulded gold-foil or plating. The plating was secured to small sculptures, such as the well know Mapungubwe rhinoceros, with pure gold tacks: Where the body was not flexed and lying on its side, usually on the right side, the manner of burial seems to have been in a sitting or squatting position (Van Riet Lowe 1936:286) .

[^35]: ${ }^{1}$. There are exceptions to sand found locally, as in the case of the large glass producing centres of Venice and the island of Murano, both of which imported all the raw ingredients used for glassmaking. including the sand.

[^36]: ${ }^{2}$. Karklins (1994:1-10) has recently upgraded his classification system and increased the categories of dräwn beads. While cognisance has been taken of this, it has not been incorporated into this thesis.

[^37]: ${ }^{3}$. The kinetic energy of the electron beam can give rise to local heating which causes the sodium and volatile elements to migrate away from the point of impact (Henderson 1988:788).

[^38]: ${ }^{1}$. Two of the three FFRB beads used for analysis. were purchased from M. H. Mansoor in Cairo. The third bead was excavated from Fustat by George Scanlon.
 2. These types of beads have both been well documented (Sherr Dubin 1987; Beck 1930:163-182; Lamb 1966:80-94).

[^39]: 3.. The possible factory site sources in the western Transvaal have already been discussed in chapter 6.

[^40]: ${ }^{4}$. This colour has replaced the orange colour which has been used in previous publications. which should not be confused with the bright orange bead (Munsell 3.75YR 6/14) characteristic in the Southeast Asian trade.

[^41]:

[^42]: \rightarrow Takua Pa $\quad-1$ Monazite Sand (ppm) -4 Monazite (ppm)

[^43]: ${ }^{1}$ The interpretational problems associated with Hanno's voyage are well known, but technically it was possible. A replica ship currently sailing in the Mediterranean demonstrated that long voyages were possible. (Throckmorton 1987:69).

[^44]: ${ }^{2}$ Thiel (1969:9), notes that there was a general lack of interest in exploring the west coast sea routes. He believed that one of the principal factors attributing to this was the expansion of the sea-bome trade between Egypl and India.

[^45]: ${ }^{3}$ Now revised to AD 120-130 (Datoo 1970;73).

[^46]: ${ }^{4}$ Incidentally, this same word is used for the seasonal winds of the Indian Ocean and enters the English language as monsoon.

[^47]: 家密

[^48]: TSR 1/1 OPG 6 BLOCK:D2 Layer 3
 TSR 1/1 OPG 6 BLOCK:1A Layer 31 TSR 1/1 OPG 6 BLOCK:1AA Control block
 ISR $1 / 1$ OPG 6 BLOCK:1AA Layer 1

