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Synopsis 

Synthetic Aperture Radar (SAR) is a popular tool for airborne and space­

borne remote sensing. Inherent to SAR imagery is a type of multiplicative 

noise known as speckle. There are a number of different approaches which 

may be taken in order to reduce the amount of speckle noise in SAR imagery. 

One of the approaches is termed post image formation processing and this is 

the main concern of this thesis. 

Background theory relevant to the speckle reduction problem is presented. 

The physical processes which lead to the formation of speckle are investi­

gated in order to understand the nature of speckle noise. Various statistical 

properties of speckle noise in different types of SAR images are presented. 

These include Probability Distribution Functions as well as means and stan­

dard deviations. Speckle is considered as a multiplicative noise and a general 

model is discussed. The last section of this chapter deals with the various 

approaches to speckle reduction. 

Chapter three contains a review of the literature pertaining to speckle reduc­

tion. Multiple look methods are covered briefly and then the various classes 

of post image formation processing are reviewed. A number of non-adaptive, 

adaptive and segmentation-based techniques are reviewed. Other classes of 

technique which are reviewed include Morphological filtering, Homomorphic 

processing and Transform domain methods. From this review, insights can 

be gained as to the advantages and disadvantages of various methods. A 

number of filtering algorithms which are either promising, or are representa­

tive of a class of techniques, are chosen for implementation and analysis. 

The chosen filters are implemented and a discussion of their algorithms is 
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SYNOPSIS lll 

presented. The theory and operation of each of the filters is explained. The 

filters which are presented are the Mean, Median, Lorentzian, K Nearest 

Neighbour (KNN), Hirosawa, Maximum a Posteriori, Frost and Maximum 

Homogeneous Region filters. The filters all operate on the principle of a two 

dimensional window which is shifted across the image, one pixel at a time. 

The pixels covered by the window are used to determine the new value of 

the pixel at the centre of the window. For certain of the filters the local 

mean and standard deviation (the local statistics) are used to modify the 

filter response in the presence of edges or point targets. Detailed listings of 

the source code for all of the filters is given in the appendices. 

The chosen filters are used to filter three test images, i.e. one and four 

look ESAR images and a simulated four look image. After filtering, both 

qualitative and quantitative assessments of filter performance are made. In 

order to measure the trade-off between geometric and radiometric resolutions 

two quantities are calculated from the filtered and unfiltered images. These 

quantities are the Equivalent Number of Looks (an indication of radiometric 

resolution) and an edge measure, which represents the geometric resolution of 

the image. The local statistics filters (Frost and MAP) are found to produce 

the best geometric resolution, but only a slight reduction in the amount of· 

speckle. Good edge preservation is also provided by the Median filter. The 

Mean filter is found to provide the best speckle reduction, but it causes degra­

dation of the geometric resolution. Two filters which achieve a compromise 

between speckle reduction and edge preservation are the Hirosawa and KNN 

filters. The point is made that all filters are dependent on the selection of 

parameters. It is possible to change the performance of the filters by chang­

ing the number of iterations, the window size, or other parameters. The 

results presented in this section are therefore not absolute and merely serve 

to provide information on the typical performances of different filters. 

The choice of filtering algorithm and its parameters is seen to be closely re­

lated to the purpose for which the final image will be used. Filters should be 

chosen according to whether large or small scale features are of interest. The 

work presented in this thesis provides valuable insights into the potential of 
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post image formation speckle reduction methods. These algorithms can be 

used in addition to, or in lieu of, multiple look methods in order to reduce 

the speckle in SAR images. 

Further research into post image formation techniques, as well as multiple 

frequency and multiple polarization methods, is suggested. This further com­

parison could provide valuable information about the potential for further 

reducing speckle in SAR imagery. 
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Chapter 1 

Introduction 

In order to gain information about his changing environment, man has devel­

oped many ways to observe and ·measure the environment and any changes 

which it experiences. To this end, the field of remote sensing has been de­

veloped, enabling mankind to monitor its world from airborne or spaceborne 

platforms. 

Imagery obtained from these platforms contains a great deal of information. 

These images enable man to monitor the size of rain forests, observe urban . 
expansion and detect large-scale geological features. Valuable information 

can be obtained about all aspects of the world in which mankind lives. 

Radar imagery can provide information which is not available from photo­

graphic imagery: this includes information about sub-surface structures in 

arid areas and specific information about crop-types in agricultural scenes. 

In addition, radar images can be obtained in cloudy conditions and at night. 

These advantages make radar imagery more versatile than its photographic 

counterpart. 

The two most common types of radar imagery used for remote sensing are 

Side Looking Airborne Radar (SLAR) and Synthetic Aperture Radar (SAR). 

The imagery examined in this thesis is obtained using a SAR system, due to 

its superior resolution and potential to provide polarimetric information. 
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CHAPTER 1. INTRODUCTION 2 

In any kind of coherent imagingyrocess, including SAR imaging, there is an 

inherent phenomenon called speckle. Speckle appears as 'Salt and Pepper' 

noise in the final image, causing image degradation and making both human 

interpretation and mechanical feature extraction difficult. In order to make 

optimum· use of SAR images, steps must be taken to reduce the amount of 

speckle in the images. 

There has been a large amount of work done on developing different speckle 

reduction techniques and there are many different techniques which have 

been documented. The objective of the research presented in this disserta­

tion is to review and compare existing algorithms for speckle reduction, and, 

in so doing, present information which identifies the trends in the field of 

speckle reduction. 

SAR data sets consisting of co-registered multiple frequency or multiple po­

larization images are not readily available and this limitation has restricted 

this study to techniques involving single frequencies and polarizations. In 

addition, the scope of this dissertation includes only post image formation 

speckle reduction techniques and does not include a comprehensive study of 

multilook algorithms. 

Chapter 2 details the theory of speckle. The physics of speckle formation is 

explained and the statistical properties of speckle are detailed briefly. Dif­

ferent approaches to the reduction of speckle are also mentioned here. 

This dissertation provides a comprehensive review of the various classes of 

post image formation techniques and identifies certain filters which are rep­

resentative of their classes and which seem to provide efficient speckle re­

duction. Many of the reviewed papers compare existing speckle reduction 

methods, but few present a full quantitative comparison. Quantitative mea­

sures of the amount of speckle are quoted but few of the papers present a 

measure of the resolution degradation. The selected algorithms include the 

Mean filter and a number of its derivatives, as well as three filters which 

adapt to the image according to the local statistics. 



----- -- -------------------------------------------

CHAPTER 1. INTRODUCTION 3 

The algorithms for the selected filters are described in order to give the 

reader an appreciation for the different approaches which may be taken in 

developing a filter for speckle reduction. The various algorithms have been 

implemented in 'C' code and are used to reduce the level of speckle in a 

number of test images. 

A quantitative comparison of the various speckle-reduced images is made. 

Here, emphasis is given both to the amount of speckle reduction as well as 

the degree of edge preservation of the various algorithms. In this section 

of the dissertation, the merits and demerits of the various algorithms and 

classes of algorithm become clear. 

Lastly, conclusions are drawn as to the efficiency of the various algorithms 

and their suitability for the filtering of different types of SAR images. Rec­

ommendations for future research are also made. 



Chapter 2 

Background Theory 

When a scene is illuminated with a single frequency (coherent) source of elec­

tromagnetic radiation, the reflected radiation is subject to a process known 

as fading. Fading manifests itself on images as a type of multiplicative noise 

known as Speckle [13]. Strictly, speckle is not noise, as it is directly de­

pendent on the structure of the imaged surface. However, the information 

contained in the speckle pattern is useless to most image users and it ob­

structs the identification of structures in the image by perturbing the useful 

information. The presence of speckle in an image makes both human and 

machine interpretation of images difficult. Speckled images have a false tex­

ture in homogeneous areas, and point targets and edges are obscured by the 

presence of speckle. 

This chapter explains the basic theory of speckle, starting with the physical 

processes which cause it. Next, a brief overview of the statistics of speckled 

images is given. The final two sections ·are dedicated to the modelling of 

speckled images and techniques for speckle reduction. 

2.1 Speckle Physics 

Although speckle is present in all coherent imaging systems, the more specific 

case of speckled Synthetic Aperture Radar (SAR) ima.ges will be considered 

here. In SAR, as in all types of radar, information about a target (in this 

case, the earth's surface) is obtained by transmitting electromagnetic radia-

4 



CHAPTER 2. BACKGROUND THEORY 5 

tion and then receiving the radiation which is reflected by the surface. The 

properties of the received radiation vary according to the characteristics of 

the imaged surface. The reflected radiation (known as backscatter) can vary 

in amplitude, phase and polarization, depending on the properties of the re­

flecting surface. 

Radar backscatter is influenced by the following characteristics of the reflect­

ing surface: 

• orientation of the surface (or part thereof) relative to the antenna 

• moisture content 

• surface roughness relative to transmitted wavelei{gth 

In addition, the calibration of the antenna and the radar receiver are factors 

which determine the appearance of the final image. 

When an electromagnetic wave encounters a surface (represented by a change 

in dielectric constant, t) a certain amount of reflection takes place. In the 

case of a perfectly smooth surface, the reflection obeys the laws of geometric 

optics, and the wave is reflected with the angle of incidence equal to the angle 

of reflection, as illustrated in Figure 2.1. However, perfectly flat surfaces do 

I 
normal 

~ 
1 - angle of Incidence 

A 
r - angle of reflection 

smooth surface 

Figure 2.1: Reflection at a smooth surface 

not occur in nature, as all surfaces have some degree of roughness [39]. A 
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surface is considered to be 'rough' if it has undulations or features which have 

sizes comparable to, or greater than, the radar wavelength. A rough surface 

causes the electromagnetic waves to be reflected in directions other than that 

dictated by geometric optics. The rougher the surface, the wider the range 

of angles through which the radiation is scattered. The above process· is 

known as surface scattering. Another important scattering process is known 

as volume scattering: this occurs when the electromagnetic radiation pene­

trates the surface and is reflected from a number of different levels below. 

Volume scattering is well illustrated by the interaction of electromagnetic . 

radiation with forest areas. In areas with large trees, such as forests, there 

is reflection of radiation from the topmost leaves (or canopy layer), from 

branches, trunks and the ground. In a real SAR system, the received radar 

returns are made up of components from both surface and volume scattering. 

In SAR, the smallest image unit is known as a resolution cell. It is important 

to note that, in the final image, one pixel does not necessarily represent one 

resolution cell. Image sub-sampling can lead to the pixel spacing being less 

than the size of a resolution cell. The size of a resolution cell is typically in 

the range of 3mx3m to 50mx50m. Thus, the dimensions of a resolution cell 

are large relative to the typical radar wavelength, which is usually tens of 

centimeters. For each resolution cell there will be a large number of radar 

returns, each of which can be represented by the vector: Aei4>. Each radar 

return has a characteristic magnitude, A and phase, </>. At the radar receiver, 

all the returns for a specific resolution cell are added vectorially, yielding: 

n 

v(x,y) = :l:Aei4>; (2.1) 
i=O 

Where x and y are the azimuth and range coordinates of the resolution cell 

and n is the number of scatterers within the cell. The amplitude of the 

individual radar returns is determined by the size, orientation and roughness 

of the scatterer on the ground. The phase is determined by the two-way path 

length from the transmitter to the scatterer (2R) and is given by: 

</> = 47r R - k27r 
,\ 

(2.2) 

where k is an integer and ,\ is the radar wavelength. Because the scatterers 
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within a resolution cell are at different (random) positions, the path length 

from each scatterer to the transmitter or receiver is different. These differing 

path lengths cause the returns from different scatterers to have different 

phases. Considering equation 2.1, it is evident that for high n and random</>, 

the value of the function is random. The vector addition of a number of radar 

returns with random phase is indicated in Figure 2.1. Each resolution cell is 

-return from single 
scatterer 

""'""'""""" resultant vector 

Q 

Figure 2.2: Vector addition of random-phase radar returns 

represented by its resultant vector as shown in Figure 2.1. Raw SAR data 

comprises in-phase (I) and quadrature (Q) representations of these resultant 

vectors. In order to obtain SAR images from the raw data, the amplitude 

of each IQ element is taken. It is the randomness of the amplitude of each 

cell's resultant vector which leads to the speckled appearance of the final 

SAR image. 
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2.2 Speckle Statistics 

The formation of speckle can be considered to be a statistical process and 

this approach can be used to derive statistical models for speckled images. 

The statistics relating to speckle at a particular point in an image are known 

as first-order statistics (PDF, mean, variance), while the statistics relating 

neighbouring pixels are known as second-order statistics (e.g. correlation). 

SAR images can take a number of different forms, these are: 

• Intensity images, which are the product of square-law detection and 

thus represent the received signal power. After detection, the N look 

image is generated as follows: 

(2.3) 

where Pij represents the final pixel intensity in row i, pixel number j. 

The intensity image is the most common type of SAR image and is 

used throughout this dissertation. 

• Amplitude images, which result from a linear detection law and repre­

sent the received voltage. Multilook amplitude images are generated · 

as follows: 
N 

Aii = ~ L)Iiik]1
12 

k=l 

(2.4) 

• Another type of image which is sometimes encountered is the Square­

root Intensity image. This image is formed by receiving the signal with 

a squar~-law detector, resulting in an intensity image and then taking 

the square-root of each pixel value in order to compress the dynamic 

range of the image. Multilook square-root intensity images are created 

according to the following: 

[ 

N l 1/2 

. Sij = ~ L Iijk 
k=l 

(2.5) 

Because of the various detection laws and transfer functions employed, these 

images have different statistical properties. This section briefly outlines the 
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image statistics. For a more thorough treatment, see Ulaby et al [45] as well 

as [3, 20, 34, 35, 46]. 

2.2.1 First-order Statistics 

The first-order image statistics relate to a particular point in an image and 

include the Probability Distribution Function (PDF), mean and variance of 

the image pixels. 

• Intensity Image. The PDF for a single-look image of an homogeneous 

scene is a negative exponential distribution, while the PDF of an N­

look image is simply the convolution of N exponential distributions, 

the result of wl;tich is a Gamma distribution [46]. The PDF is given by 

the following: 

where: 

. IN-113-Ne-I/{3 
p(I) = f(N) 

/3 = E[I] =< I > / N 
N 

f(N) = (N - 1)! 

where I represents the image intensity. 

This leads us to the multiplicative image model: 

z 
I=< I> 2N 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

where z represents the fading random variable and is characterized by 

a normalized chi-square distribution with 2N degrees of freedom. The 

chi-square PDF is as follows: 

with: 

zN-le-z/2 
Pz(z) = 2Nf(N) 

E[z] = 2N 

var(z) = 4N 

(2.10) 

(2.11) 

(2.12) 
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• Amplitude Image .. For an Amplitude image, the PDF of the speckle in 

a single look image is Rayleigh distributed. The Rayleigh distribution 

is given as [36]: 

(2.13) 

with: 

E[x]=~ (2.14) 

7r 
var(x) = (2 - "2 )a2 (2.15) 

The N look PDF of the speckle is obtained by convolving N Rayleigh 
' 

distributions [46]. 

• Square-root Intensity Image. The PDF of the fading random variable 

UN), in an N look square-root intensity image is given by [46]: 

- 2JjJ-t NN exp-NfJ., 
PUN) - (N -1)! ' 

with: 

where µJN = E[fN]· 

f(N + 1/2) 
E[fN] = Nt/2f(N) 

var UN) = 1 - µ} N 

2.2.2 Second-order Statistics 

(2.16) 

(2.17) 

(2.18) 

Second-order image statistics measure the relationship between neighbouring 

pixels. A common way of measuring this relationship is by using the auto­

correlation function (ACF). 

SAR images can exhibit a number of different characteristic correlation lengths. 

In images with large, repeated features, such as agricultural fields, there will 

be a characteristic correlation length which is approximately the same as the 

length of the fields. The local mean value will exhibit this feature correlation 

length and this is an important consideration when selecting how many pix­

els to average when reducing speckle. The same image may also show other 

lengths at which there is a high autocorrelation, this can be caused by other 
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repetitive features such as trees or ocean waves. 

SAR images can also have a high correlation between adjacent pixels because 

of speckle. If the image is sampled with the pixel spacing equal to or greater 

than the size of a resolution cell, the speckles will be restricted to a single 

pixel and will not cause correlation between adjacent pixels. Image sampling 

with pixel spacing less than the size of a resolution cell will cause speckles 

to span more than one pixel and a correlation length equal to the size of 

the speckles will be evident in the image. This correlation between adjacent 

pixels is important for speckle reduction, as it can reduce the effectiveness of 

simple pixel averaging. 

These different scales of correlation length give an indication of the type of 

information contained in the image. In certain images, the feature correlation 

length will be greater than the correlation length of the speckle. In these 

images, it is possible to reduce the speckle while still retaining the majority of 

the information contained in the image. If the image has a feature correlation 

length which is approximately two or three pixels, it will be impossible to 

reduce the speckle appreciably without removing a large proportion of the 

information contained in the image. 

2.3 Modelling Speckle 

Speckle is often referred to as multiplicative noise. A common model for 

images containing speckle noise is presented by Frost et al. [11]. In this 

model, the returned radar power, Pr is given by: 

Pr(x, y) = r(x, y )n(x, y) (2.19) 

where (x,y) is the imaged position, r represents the unspeckled image and n 

is the speckle noise. The suitability of this multiplicative model is confirmed 

by observing that for a given image, within homogeneous regions, the ratio of 

the standard deviation to the mean is constant. Within purely homogeneous 

regions, the standard deviation of a noise free image is equal to zero. So, in 

speckled images, the local standard deviation measured in an homogeneous 
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area is caused solely by the speckle and represents the speckle noise. Had the 

speckle noise been additive, the standard deviation would have been constant 

for all homogeneous areas. The fact that the ratio of standard deviation to 

mean is constant, is indicative of multiplicative noise. 

Oliver [34] shows that, for a 1 look intensity image, the standard deviation 

is equal to the mean and thus the speckle may be referred to as 100% mul­

tiplicative noise. 

The multiplicative noise model can be used in conjunction with statistical 

representations of speckle in order to derive various speckle reduction tech­

mques. 

2.4 Speckle Reduction 

In order to make proper use of SAR images, steps must be taken to reduce 

the amount of speckle. The different approaches which have been taken when 

reducing speckle usually use some sort of averaging to combine different im­

ages or parts of an image. Because of the random nature of speckle, when a 

scene is imaged from a slightly different angle or using a different frequency, 

the speckle pattern is completely different. Two images obtained in such a 

way have identical features and this allows them to be averaged, resulting in 

a reduction of the amount of speckle. 

It is necessary to quantify the amount of speckle in a SAR image in order to 

compare the effectiveness of different speckle reduction techniques. A useful 

measure of the amount of speckle is the equivalent number of looks, (ENL), 

obtained in an homogeneous area, and given by [30]: 

ENL =<I >2 /ai (2.20) 

where a1 is the local standard deviation of the intensity and < 1 > is the 

local mean intensity value. Images characterized by large amounts of speckle 

will have a low ENL, while images with less speckle will have a higher ENL. 

When N independent images of the same scene are averaged, the ENL is 
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increased by a factor of N. 

Speckle reduction techniques fall into one of the following categories: 

• multiple frequency methods 

• multiple polarization methods 

• multiple look methods 

• post image formation methods 

Techniques which use multiple frequencies require the SAR platform to be 

equipped with transceivers which operate at different frequencies. For suc­

cessful speckle reduction the frequencies should be similar, in order to avoid 

vastly different returns from the same surface. If the radar frequencies are too 

dissimilar it is possible that, due to resonance or increased penetration, the 

images may be considerably different. The need for two or more transceivers 

of similar frequency on a single SAR platform has made this particular ap­

proach to speckle reduction impractical and there is therefore not a great 

deal of data available. The presence of only two distinct frequencies is a 

severe limitation in that it only allows the ENL to be increased by a factor 

of two. 

Multiple polarization methods require data sets which consist of a number 

of images of the same surface, obtained using different polarizations. The 

different polarizations cause the images to have different speckle patterns 

and allow the speckle to be reduced by averaging a number of these im­

ages. The extent to which the speckle can be reduced using this method 

is limited, as conventional radar systems only produce four different types 

of polarization, namely horizontal-horizontal (HH), horizontal-vertical (HV), 

vertical-horizontal (VH) and vertical-vertical (VV). This means that the ENL 

value can only be increased by a factor of four. In addition, it is possible 

that the different polarization combinations will produce vastly different lo­

cal returns because of factors such as scatterer orientation. It is possible 

that a specific orientation may produce larger returns for one polarization 
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combination, thereby resulting in a different final image. These image differ­

ences also reduce the effectiveness of polarimetric speckle reduction methods. 

Multiple look methods make use of excess beamwidth in the SAR antenna 

(and therefore, excess data) in order to produce a number of independent 

(or semi-independent) looks. One method used in SAR processing divides 

the reference function into a number of parts in the spatial frequency do­

main. Each of these parts is known as a look. In practice there is a certain 

amount of overlap between looks. For example, the reference function could 

be divided into three looks (see Figure 2.4), with 50 % overlap. In this case, 

we have two independent (non-overlapping) looks. Each look will produce 

Weighting 

Three looks 
(two independent) 
50% overlap 

Frequency 

Figure 2.3: Multilook division of SAR reference function 

a different version of the imaged scene and each of these versions will have 

a different speckle pattern. The looks are then averaged non-coherently in 

order to produce a reduction in the amount of speckle. For N independent 

looks, .the ENL value is increased by a factor of N. There is, however, a 

tradeoff between radiometric resolution (the amount of speckle) and geomet-
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ric resolution (the imaged resolution). This tradeoff means that the imaged 

resolution is reduced by a factor of N for N. independent looks if the SAR 

data is processed to its full bandwidth. A study of speckle in a single im­

age pixel, and how it is affected by multiple look averaging, is presented by 

Tomiyasu [43]. 

Post image formation speckle reduction methods are characterized by spatial 

or frequency domain filtering of the SAR image. Initial attempts at removing 

the speckle noise (which has a high spatial frequency) by low pass filtering 

proved unsuccessful, as the high frequency component in edges and point 

targets was also removed, leading to edge blurring. Most techniques in this 

category operate in the spatial domain by convolving a filtering window with 

the SAR image. These filters also seek to achieve an optimal tradeoff between 

speckle reduction (simple smoothing) and edge preservation. A popular way 

of achieving this trade-off is by using adaptive filters which are able to adjust 

to the presence of edges and point targets. 

By making use of the physical and statistical properties of speckle, it is pos­

sible to design efficient speckle reducing filters which maintain much of the 

information content of the image. Speckle statistics can be used to iden­

tify homogeneous and non-homogeneous areas and therefore can control the 

amount of speckle reduction which is performed. Factors such as feature cor­

relation length can be used to determine the optimum filter window size. In 

Chapter 3 a review of literature pertaining to the despeckling of SAR images 

is presented. Many of the techniques presented make use of insight gained 

from consideration of the properties of speckle. 

. I 



Chapter 3 

Review of Despeckling 

Literature 

This chapter contains a review of existing literature pertaining to speckle 

reduction. In the first section, a number of papers which propose new or 

improved multilook methods are reviewed. Following this is a comprehensive 

review of post image formation techniques which have been broken up into a 

number of classes. Comparisons are drawn between these algorithms and a 

number are selected for review. The selected algorithms are not necessarily 

the most efficient but are chosen as good representatives of a class of tech­

niques, or because they illustrate important basic principles. 

This literature review does not include certain other classes of speckle re­

duction techniques. No attempt has been made to review polarimetric and 

multiple frequency methods. A lack of readily available multiple polariza­

tion and multiple frequency data sets has caused the primary focus of this 

dissertation to be post image formation techniques. 

In addition to the four classes of technique described in Section 2.4, certain 

other speckle reduction strategies have been developed. An example of an 

alternative technique is give in a paper by Mancini [26]. This technique 

involves modification of the SAR antenna in order to reduce the amount of 

speckle in the final image. 

16 
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3.1 Multiple Look Processing 

The basic principle behind multiple look processing of SAR images is the cre­

ation of independent images or 'looks' which can be averaged non-coherently. 

The non-coherent averaging leads to a reduction in speckle, but the genera­

tion of independent looks results in a reduction in geometric resolution. 

There are many different multiple look techniques which use various methods 

to generate independent looks, but they all operate on the same underlying 

principle, that is, a trade-off between geometric and radiometric resolution. 

In theory, for N independent looks, there will be a reduction in geometric 

resolution of 1/ N and the speckle standard deviation will be decreased by a 

factor of JN. 

In a paper by Tomiyasu [43], the amount of speckle in a single pixel contain­

ing various numbers of scatterers, is investigated. Pixel values are seen to 

vary by up to 28 dB due to speckle. This pixel variation is seen to be greatly 

reduced by averaging a number of independent azimuth looks. 

Multiple looks are created by dividing up either the azimuth or range fre­

quency spectrum with filters known as 'look' filters. By dividing up the 

reference function frequency spectrum, performing the multiplication with 

the frequency domain data, and then taking the inverse FFT and obtaining 

the image magnitude, a number of different spatial domain versions of the 

image are produced. These can now be averaged non-coherently, produc­

ing a final speckle-reduced image. The looks are overlapped so as to use 

the bandwidth more efficiently. Forte [9] suggests methods for determining 

both the optimum amount of overlapping as well as the optimum weighting 

of each filter. Forte notes that the optimum weighting leads to a 0.125 dB 

improvement in the radiometric resolution, while optimizing the overlapping 

yields a 0.33 dB improvement. 

Two improved multilook (IML) techniques are proposed by Moreira [30). 

The first IML technique involves creating two frequency domain reference 

functions, each split into looks with different bandwidths. For example, the 
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first reference function is divided into three 'large' looks, with a 50% overlap. 

The second reference function is divided into seven 'small' looks, also with 

50% overlap. Each reference function is now used to generate a multilook 

image in the conventional way. In order to achieve the optimum compromise 

between.radiometric and geometric resolution, the 'small' and 'large' looks 

are weighted and then averaged non-coherently. The second IML technique 

involves removing the 'small' look overlap in order to improve the equivalent 

number of looks (ENL). Here, the bandwidth of each look is increased by 

20% in order to compensate for the reduced resolution of the small looks . 
• 

Both IML techniques, when compared with traditional multilook methods, 

yield improved ENL values for a given resolution. 

Scivier and Gorr [41] propose a new method for reducing speckle based on the 

adaptive enhancement of multiple looks. The conventional multilook process 

is followed, until N independent images are generated. Instead of simply 

averaging these images non-coherently, the local statistics within a speci­

fied window in all N images are used to modify pixel values in the preferred 

look. This method of speckle reduction is claimed to improve the radiometric 

resolution of the image by the same amount as conventional multiple look 

processing. Scivier's method should provide better quality images than con­

ventional multilook methods, as it compensates for scene variations from look 

to look. 

Li et al. [12] categorize speckle reduction techniques into three broad groups. 

DMI (Discrete Mixed Integrator) or conventional multi-looking, CMI (Con­

tinuous Mixed Integrator) which is multilooking with overlapping segments 

and IDF (Image Domain Filtering). Comparisons are drawn between DMI, 

CMI and various IDF techniques using the equivalent number of looks (ENL). 

Results indicated that better speckle reduction was achieved by using cer­

tain IDF techniques than when the DMI or CMI methods were used. No 

measurement of resolution degradation was made and so a full comparison 

of algorithm efficiency is not possible from their results. 
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3.2 Post Image Formation Processing 

A number of image filtering techniques are reviewed and compared. The aim 

of this comparison is to identify filters which are able to suppress as much 

speckle as possible whilst preserving the information content of the original 

image. This preservation of information content is very important, as it al­

lows both human interpretation and machine feature extraction. 

The filters which are reviewed are divided into a number of logical groupings 

depending on their method of operation. Comparisons are drawn between 

filters in all groups. 

3.2.1 Basic Spatial Filtering 

The simplest form of spati{l.l filtering is to simply run a small window across 

the surface of the image, replacing the centre pixel of the window with the 

mean value of the pixels within the window. This is referred to as a Box or 

Mean filter. The Box filter is investigated by Lopes [23] and is observed to 

produce a final image which is smoothed, with all fine detail removed. This 

technique is unsatisfactory as it does not maintain edge sharpness or any fine 

detail. 

The Spatial Averaging Filter reviewed by Sadjadi [40] is simply a slightly 

improved version of the Box filter, with different weightings. This filter also 

leads to a large amount of blur and smearing of fine detail. 

A better technique is the Median filter. This operates in the same way as 

the Box filter, except that the centre pixel is replaced with the median of 

the pixels in the window. Sadjadi [40] found the Median filter to be almost 

as effective as the spatial averaging filter in removing speckle, and better 

at maintaining fine detail in the image. Median filtering, however, has the 

potential to partially or totally reduce the amplitude of point targets. 

Masuoka [29] compares the effectiveness of a number of spatial filters at 

reducing speckle in satellite SAR images. The following filters are compared: 
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• Mean filter as described above. 

• Median filter as described above. 

• /(Nearest Neighbour Average filter. This filter has a similar form to 

the Mean filter except that the centre pixel is replaced by the average 

of a number of neighbouring pixels with intensity values closest to that 

of the centre pixel. 

• Selective Average Filter. The centre pixel of the window is only replaced 

with the average of the neighbouring pixels if there are enough _pixels 

which differ from the centre pixel by a certain threshold value. 

• Spatial Domain Convolution. In this technique, a window is convolved 

with the image and the centre pixel of the window is replaced with the 

sum of the convolved pixels. 

Masuoka states that the K Nearest Neighbour (KNN) filter was preferred to 

the other techniques because some speckle was reduced, while image reso­

lution was maintained. All the other techniques reduced more speckle, but 

they caused blurred edges and a loss of fine detail. An important conclusion 

reached by Masuoka was that the success of speckle reduction techniques 

is dependent on the type of terrain being imaged. Because of this, a filter 

which performs well on one type of terrain may not be as successful on other 

surfaces. 

In a paper by Abdelhamid et al. [1], averaging over N uncorrelated pixels is 

taken to be equivalent to the averaging of N independent images. In other 

words, the effect of the Mean filter is taken to be the same as that of multi­

ple look processing. The frequency domain representation of the Mean filter 

has a sin( x) / x or sine shape. It is suggested that this is not the optimum 

spectrum, and an improved filter is proposed. This new filter has an impulse 

response which has a sine shape and is limited with a Hanning window, 

yielding a spectrum with a flat passband and low sidelobe levels. The results 

produced by the new filter are an improvement on the Mean filter in that the 

loss in resolution is the same, but the speckle reduction is greatly enhanced. 
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A number of variations on the Box filter are implemented by Li et al. [12], 

these are merely Mean filters with various weighting functions applied. The 

weighting functions are: 

• Triangle 

• Sine Squared 

• Exponential 

• Lorentzian 

The equivalent number of looks (ENL) produced by filtering with the Lorentzian 

weighting function is found to be greater than the other weighting functions 

for both agricultural and ocean scenes . 

The filters described in this section on basic spatial filtering are the Mean 

and Median filters, with all others simply being variations on the Mean filter. 

By modifying the weightings applied to the Mean filter, the amount of edge 

blurring can be decreased. Of the various weighting functions, the Lorentzian · 

function seems to produce the best results. Another promising method is the 

KNN filter, which reduces edge blurring by only using a specified number of 

the pixels in the surrounding window which are closest in intensity value to 

the central pixel. The Mean filter is a useful filter for purposes of comparison 

as it provides a rough upper bound on the amount of speckle reduction which 

can be achieved for a given window size. 

3.2.2 Local Statistics (Adaptive) Filtering 

Adaptive filtering techniques attempt to vary the extent of smoothing ac­

cording to the statistics of the area covered by the filtering window. This 

adaptivity allows for more smoothing in homogeneous regions, while still 

maintaining edges, point targets and image texture. 

The Sigma filter [14, 20, 21, 27] is a well documented filter which works by 

adapting to the local statistics of the image. The central pixel is thought of 

as being the mean of a Gaussian distribution and is then replaced with the 
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average of all surrounding pixels which lie within two standard devia~ions of 

the mean. 

The Frost Filter [11, 14, 23] makes use of a simplified image model and uses a 

Minimum Mean Squared Error (MMSE) filter in order to estimate the ideal 

terrain refledivity from the degraded image. Frost makes both qualitative 

and quantitative comparisons with Median and ·Box filters. Due to its ability 

to adapt to the presence of edges in the filtering window, the Frost filter 

produces superior results to the filters with which it is compared. · 

The Weighting Filter [14, 27] is a method proposed by Martin and Turner in 

which pixels within the window (µi) are only included in a weighted replace­

ment of the central pixel (zc) if a Gaussian distribution centred on the pixel 

µi has Zc within its two-sigma bounds. Both Martin and Gordon conclude 

that, despite slightly inferior speckle reduction, the Weighting filter may be 

superior to the Sigma Filter due to the fact that it retains more of the intrin­

sic detail of the image. In addition, Gordon [14] concludes that the Weight 

filter gives better results than Median, Sigma, Frost and Modified Frost (see 

below) filters for large scale images. 

Kuan ei al. [19, 23, 49) model speckle according to the coherent process of 

image formation, instead of assuming a multiplicative model. A linear min­

imum mean-square error filter is derived, based on the speckle model. This 

is an adaptive filter. which is implemented as a two dimensional recursive 

algorithm. The Kuan filter takes into account the speckle correlation and 

this is used in order to produce improved speckle reduction. 

Lee [20] proposes a local statistics method of speckle suppression which is 

very similar to the Kuan filter. This is an adaptive filter which operates with­

out a statistical model for the image and which adapts itself to the statistics 

of a local 5x5 or 7x7 window. Lee finds the filter to be effective, since it 

adapts itself to edge areas, thus maintaining the integrity of edges, while still 

smoothing uniform areas of the image. 
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Adair and Guindon [2] compare the Frost and Lee Sigma filters. The compar­

isons are made on a quantitative basis, involving the preservation of existing 

edges and the generation of spurious ones. The Frost filter is found to have 

a better performance in both respects and thus is seen to preserve the infor­

mation content of the original image better. 

Lopes et al. [23] consider a number of well known filters, including the Box, 

Lee and Frost Filters. They find the Lee and Frost filtering methods to 

be based on the local coefficient of variation, which is a measure of image 

homogeneity. The local coefficient of variation within the filtering window 

is considered and two thresholds are imposed. Modified forms of the Lee 

and Frost [14] filters are now developed and compared with the originals. 

For homogeneous areas, the Modified Frost filter is found to be as effective 

at suppressing speckle as the Box Filter, while the Modified Lee, although 

quicker, is slightly less effective. The modified Frost and Lee filters are both 

found to suppress speckle while still adequately maintaining point targets 

and edges. In general, the modified filters are found to be better at pre­

serving edges and textural information than their original counterparts. The 

modified Frost and Lee Filters are found to have very similar performances, 

with the modified Lee filter being more computationally efficient for smaller 

windows. 

A theoretical analysis of three adaptive filtering methods ts provided by 

Oliver [34] these methods are: 

• Adaptive Linear Despeckling. This is a Minimum Mean Squared Er­

ror (MMSE) method which smooths low contrast areas and preserves 

high contrast areas. The performance of this filter can be improved by 

iterating it, leading to a non-linear filtering process. 

• Analytic Bayesian Speckle Reduction. A non-linear approach is adopted 

from the start and this leads to a non-linear maximum a posteriori 

(MAP) filter. In this method, the underlying cross-sectional area can 

be represented by either Gaussian or Gamma-distributed PDFs. The 

Gamma-distributed PDF is found to preserve bright objects better than 

the Gaussian distribution. 
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• Bayesian Reconstruction by Stochastic Relaxation with Annealing. This 

method takes into account the correlations between neighbouring pix­

els. The success of this method depends on the quality of the prior 

knowledge used in the filtering process. For real SAR images it is al­

most impossible to predict, with any accuracy, the speckle-free form of 

the imaged area. 

The best results seem to be produced by the second method, that is, Bayesian 

MAP reconstruction using a Gamma-distributed PDF. The speckle reduction 

is not as effective as the last method, but edges and fine detail are better 

preserved. 

An adaptive filter which takes into account lines and edges contained within 

the filtering window is proposed by Lopes et al. [24]. The filter is referred to 

as the Gamma-Gamma MAP (Maximum a posteriori) filter and it takes into 

account the local coefficient of variation in the filtered window, assuming both 

the speckle and the imaged surface to have Gamma distributed probability 

distribution functions. Comparisons are drawn between the following filters: 

• Box filter as described in the previous subsection 

• Lee filter as described above 

• Refined Lee filter which is a version of the Lee filter modified to take 

into account the local statistics around edges, by means of gradient 

operators 

• Frost filter as described above 

• Gamma-Gamma MAP filter 

The Gamma-Gamma MAP filter is found to outperform all other filters in 

terms of its edge and isolated target preservation. Only the Box filter was 

found to deliver better speckle reduction, at the cost of greater edge smearing. 

An improved version of the Gamma-Gamma MAP filter is proposed by Nezry 

et al. [33]. The local mean value required in the filter algorithm is calculated 

using the image ACF. This method takes care of the correlation between 
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adjacent pixels and causes the final image to be closer in appearance to a 

photographic image than products of the original filter. 

A local linear minimum mean square error (LLMMSE) filter is proposed by 

Harvey and April [16]. This filter works in the intensity domain by compar­

ing a windowed portion of the image with a noise model and then minimizing 

the mean square error. The LLMMSE filter is found to be more efficient than 

the Mean filter, in that it is better able to preserve edge information. 

An Adaptive Block Kalman Filter (ABKF) is proposed by Azimi-Sadjadi 

and Bannour [4]. The filter reduces the effect of speckle as well as additive 

receiver thermal noise and blur. It is shown that this filter can successfully 

reduce speckle while maintaining edge clarity. 

An adaptive filter dependent on the local statistics of an image is proposed by 

Nathan and Curlander [32], this filter is known as the Local Adaptive Filter 

(LAF). Comparisons were drawn with a number of other speckle reduction 

techniques, including Lee, Median and Box filters, as well as multilook pro­

cessing. Use was made of a quantitative measure of speckle reduction(F) 

consisting of the ratio of equivalent number of looks (ENL) to the resolution 

degradation (R), as follows: 
F= ENL 

R 
(3.1) 

where R is measured by filtering simulated point targets and measuring the 

width of the filtered and unfiltered point targets in order to quantify the 

resolution degradation. The LAF method was found to give better results 

than all others when applied to the test data. 

A speckle reduction method for application to one look images is proposed 

by Hirosawa and Kimura [17]. It is an adaptive method in which the central 

pixel in a window is changed according to the local statistics of the window. 

Comparison is made with q. three look image with no post image-formation 

processing, showing the new method to be more effective due to the higher 

resolution of the final image. The improvement in radiometric resolution is 

roughly equal to that of a three or four look image, with no apparent loss of 
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geometric resolution. 

A comprehensive comparison of six common speckle reducing filters is drawn 

by Shi and Fung (42). The six filters investigated are: 

• The Lee filter 

• The J( uan filter 

• The Frost filter 

• The Enhanced Lee and Frost filters 

• The Gamma Map filter 

The experimental results show that different filters give better results in dif­

ferent aspects of the filtering process, for example, the Kuan filter is better 

than the other filters at preserving point targets while still reducing sur­

rounding speckle. It is seen that the values of the filter parameters aire 

important in determining the filter's effectiveness. Overall, the best results 

seem to be produced by the Frost filter, as well as by the two enhanced filters. 

Durand et al. [7) compare the effectiveness of ten different spatial domain 

filters, some adaptive and some not. They conclude that adaptive filters are 

better suited to speckle reduction as they are able to distinguish between use­

ful information and speckle. The filtering method which is chosen as being 

the best compromise between maintaining geometric resolution and enhanc­

ing radiometric resolution was a variant of the Lee filter [20, 21). 

A filter which takes into account the correlation between pixels has been 

proposed by Lopes and Sery [22). This is the Vector LMMSE (Linear Mini­

mum Mean Square Error) filter. The filter is adaptive in that it performs less 

speckle reduction in textured areas, thereby preserving the original texture 

of the scene. In theory, ·the filter does not apply in the vicinity of edges or 

lines, but speckle reduction is also achieved in these regions. The authors do 

not comment on the ability of the filter to preserve point targets or edges. 
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A filter which adapts to the presence of an edge within the window area 

is proposed by Ueno and Hiirosawa [44]. If a change in intensity level (ie. 

an edge) is detected within the window, then the pixels are sorted into two 

groups, representing the high and low intensity areas. The value of the cen­

tral pixel is now determined as the mean of the larger group. In this way, 

the filter compensates for and preserves edge clarity, but no such attempt 

is made for point targets. Ueno's filter is compared with Mean and Median 

filters, an adaptive filter and a Wiener filtering (Transform domain) method. 

The new filter was found to preserve edges relatively well and also to be 

superior to the other filters in the smoothing of homogeneous areas. 

Comparison of various speckle filters is complicated by the fact that certain 

filters are more efficient than others on different types of terrain. Thus, a 

filter which performs well on sea surfaces may be outperformed in forested 

or urban areas. This, coupled with vast differences in performance due to 

variations in parameter values, makes filter comparison difficult. 

Two adaptive filters which seem to produce promising results are the Frost 

and Gamma-Gamma MAP filters, both of which are typical of the local 

statistics type of filtering. Another interesting filter is the Hirosawa filter 

which seems to produce promising results when filtering one look images. 

A disadvantage associated with local statistics filtering is the failure to reduce 

speckle in areas adjacent to edges or strong point targets. 

3.2.3 Shape Adaptive Filtering 

In addition to adapting to the local statistics of an image, it is possible 

to design filters which include some measure of shape adaptivity. This ad­

ditional adaptivity allows features such as edges to be better represented 

within the filtering window. Wu and Maitre [49] suggest a generalized filter 

which exhibits shape adaptivity. This filter is referred to as the Maximum 

Homogenous Region (MHR) filter. The basic operation of the filter involves 

starting with a small window and enlarging it for as long as the area within 

the window is determined to be homogeneous. If an edge is detected, the 
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window expansion continues by means of a semiwindow which includes the 

largest homogeneous part of the window. Once an homogeneous area has 

been identified by the MHR filter, any known adaptive filtering method can 

be applied in order to reduce the speckle within this homogeneous area. The 

local statistics smoothing method proposed by Lee [20) is used in the MHR 

filter, and the results produced by the MHR filter are compared with results 

. from Median, Gaussian and Kuan filtering. The MHR filter was found to 

have better performance than any of the other filters due to its shape adap­

tivity characteristic. 

A filter which adapts itself to the orientation of edges is proposed by Nagao 

and Matsuyama [31]. The filter works by calculating the variance of the im­

age under different orientations of a bar-shaped mask. The mask orientation 

which yields the smallest variance indicates the most homogeneous area. By 

averaging over the most homogeneous area, edge integrity is preserved (or 

even enhanced) and efficient smoothing is performed. The authors suggest 

this as a general smoothing filter and not specifically for SAR images. How­

ever, as the smoothing is simply performed by taking the mean, this filter is 

suitable for removing speckle from SAR images. 

An Edge Preserving Optimized Speckle filter (EPOS) is proposed by Hagg 

and Sties [15). This is a filtering method whereby the largest region contain­

ing no edges is used for averaging. The presence of an edge is detected using 
. ' 

the relative standard deviation (R) within a region, this is given by: 

R = uif <I> (3.2) 

Where u1 is the standard deviation and < I > is the mean. The relative 

standard deviation should remain constant within homogeneous areas but in­

crease when an edge is present. This property is used to identify the largest 

possible homogeneous area surrounding a pixel. Once this area has been 

identified, the grey-scale value of the chosen pixel is changed to the average 

value of the chosen area. When EPOS was applied to an ERS-1 image, the 

amount of speckle was reduced and edges seemed to be preserved. The per­

formance of EPOS on a synthetically generated image was compared with 

that of the Sigma filter. The EPOS algorithm produced better speckle re-
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duction and also maintained more edge clarity than the.Sigma filter. 

Shape adaptive filtering is a promising area in speckle reduction, and offers 

the possibility of better speckle reduction and edge preservation than normal 

local statistics methods. Shape adaptivity allows filters to accurately main­

tain edge clarity and position which is important for image interpretation. 

However, these advantages are offset by increased computation time due to 

window sizing and shaping. A filter which seems to be representative of this 

class of algorithms is the MHR filter proposed by Wu and Maitre. It should 

be noted that accurate adaption of window shape is made difficult because 

of the image speckle, which presents itself as false edges. 

3.2.4 Segmentation Based Filtering 

Spatial filtering techniques are inherently limited in that they require a large 

window size for optimum filtering, and at the same time need to keep the 

window size small enough to only cover homogeneous areas. This problem 

seems to suggest that some sort of image segmentation prior to filtering would 

produce the best results. Successful image segmentation, however, requires 

a high degree of prior knowledge which is usually not available. 

White [48] proposes an algorithm which performs radar cross-section estima­

tion on SAR images, using a technique called simulated annealing. Conven­

tional annealing techniques attempt to categorize each pixel as belonging to 

one of a fixed number of states. In order to avoid the restrictions imposed 

by forcing the pixels into a fixed number of states, an edge detection stage 

is included. This allows the algorithm to have a real-valued output. The 

annealing algorithm is equivalent to adaptive filtering and results indicate 

that speckle is significantly reduced, while a high degree of edge clarity is 

maintained. 

Ellis et al. [8] suggest that neural networks should be used in order to provide 

the capability to learn the segmentation task by example. A neural network 

was trained to reduce speckle using the results of White's simulated anneal­

ing technique [48]. The results produced by the neural network approach 
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are close to those produced by the simulated annealing technique. It is sug­

gested that good results should be produced if the neural network is trained 

by using single and multiple look images. 

Another segmentation based approach to speckle reduction is proposed by 

Mascarenhas and Frery [28]. The image segmentation is achieved through the 

use of the Iterated Conditional Modes (ICM) algorithm, which is an iterative 

technique for parameter estimation. The ICM algorithm is shown to be ef­

fective at noise reduction and to perform better than the N agao-Matsuyama 

algorithm [31]. 

A Structure Detection Filter (SDF) originally presented by Nezry has been 

modified by Baraldi and Parmiggiani [5]. The modified SDF adapts to both 

local statistics and geometric properties of an image. The shape and ori­

entation of the adaptive window is chosen using a statistical edge detector 

and a thin linear structure detector. Segmentation is performed using edges 

detected in the image and a statistically adaptive filter (such as the Gamma­

Gamma MAP filter) is applied to the segmented image. Experimental results 

show that the modified SDF reduces speckle and is better at retaining fine 

image detail than a plain adaptive filter with no image segmentation step. 

Image segmentation, when used as a precursor to image filtering, allows more 

efficient and more accurate filtering of speckled images. Effective segmenta­

tion allows for better speckle reduction in the resulting homogeneous areas 

and also contributes to maintaining the integrity of edges and of the areas 

which they separate. The. presence of speckle, however, makes successful im­

age segmentation a difficult task as the speckle obscures real edges and can 

cause the detection algorithm to find false edges. These two factors can lead 

to an image being incorrectly segmented. 

Image segmentation can be very time-consuming and often requires a high 

degree of prior knowledge about the imaged scene. It is possible to use images 

from optical sensors in order to segment SAR images1
. This method requires 

1see: Schoenmakerset al, "Results of a Hybrid Segmentation Method", Image and Sig-
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SAR and optical coverage of the same region and overlays the segmentation 

information from the optical image on the SAR image. The lack of availabil­

ity of prior knowledge is limitation in the image segmentation approach to 

speckle reduction. 

3.2.5 Morphological Filtering 

The basic binary morphological operators are known as dilation and erosion. 

The action of these operators is illustrated by running a structuring element 

around the inside (for erosion) or outside (for dilation) of an image feature. 

The size of the feature is now increased or decreased by including or rejecting 

the pixels covered by the structuring element. These binary operators can 

also be extended to the grey-scale case, where differing grey-scale values are 

used instead of binary values. 

From these two basic operators, further operators can be derived, for ex­

ample, opening (erosion followed by dilation) and closing (dilation followed 

by erosion). Kher and Mitra (18] derive new operators and develop pro­

cesses known as bounded opening and closing. They also propose a sampling 

method which reduces computation time, at a slight loss of image clarity. 

The proposed morphological filtering technique reduces speckle and, at the 

same time, preserves some fine boundary details and fractal features. 

3.2.6 Homomorphic Processing 

Speckle noise can be assumed to be multiplicative. In order to convert this 

multiplicative noise to additive noise, the natural logarithm of the image can 

be taken, as follows: 

log(g(x,y)) = log(f(x,y)) + log(I(x,y)) ' (3.3) 

where g is the speckled image, f is the uncorrupted image and I is the speckle 

noise. Now any t~chnique for removing additive noise can be used to filter 

the image. This filtering in the logarithmic domain is known as homomorphic 

nal Processing for Remote Sensing, Rome, SPIE Proceedings, vol.2315, pp 123-125,1994. 
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:filtering. Sadjadi (40] applied Homomorphic Median and Homomorphic spa­

tial average filters to images and found that Homomorphic filtering showed 

little or no improvement over normal filtering. 

The LLMMSE filter proposed by Harvey (16] was also applied to the log 

intensity domain representation of the image and this was found to produce 

similar results to those obtained in the intensity domain (see Section 3.2.3). 

In a recent paper by Franceschetti et al. [10], an iterative homomorphic tech­

nique using Wiener filtering is presented. The intensity image is transformed 

into the log intensity domain and then into the frequency domain for Wiener 

filtering. Due to the lack of prior knowledge relating to the unspeckled scene, 

an iterative technique is implemented in order to approximate the power spec­

trum of the speckle-free image. This :filtering method, when applied to ESAR 

single look data, produced a final image ENL of 19. The :filtering method is 

also shown to maintain good edge clarity. 

Homomorphic processing has been found to be no more effective than Inten­

sity domain filtering when applied in conjunction with filters which reduce 

additive or multiplicative noise. Improvements over Intensity domain tech­

niques seem unlikely to result from this area of speckle reduction. However, 

this method of filtering is useful in that it allows noise reduction techniques 

which have been developed for additive noise to be applied to speckled im­

ages. 

3.2. 7 Transform Domain Filtering 

Early approaches to speckle reduction consisted of a two dimensional Fourier 

Transform, followed by 2-D low pass filtering of the resulting spectrum. Due 

to the fact that a large proportion of the speckle noise power is situated in 

the high-frequency area, this technique reduced the speckle noise favourably. 

The chief limitation of this technique is that high-frequency image compo­

nents were not taken into account and this resulted in drastic blurring of 

edges and point targets as well as the eradication of certain scene texture 

variations. 
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MacKinnon [25] proposes a method of noise reduction which involves min­

imization of cross-entropy. The cross-entropy function for a set of equally 

spaced intensities, Xk > 0, k = 0, 1, 2, ... , N - 1, is given by: 

N-1 

H = L Xkln(xk/bk) (3.4) 
k=O 

where bk is a set of values which represents the prior knowledge of the inten­

sities Xk. MacKinnon showed the sample entropy to be a function of phase in 

the Fourier domain. The cross-entropy method was shown to be an iterative 

method which can be computationally expensive if provided with incorrect 

prior knowledge. 

Ranchin and Cauneau (38] present a method based on the Wavelet Transform 

(WT) and Wiener filtering. An improvement is achieved over methods based 

on the Fourier transform and Wiener filtering. Ranchin investigates the 

choice of WT algorithm and mother wavelet. In addition to reducing the 

speckle noise, it is claimed that the WT method only reduces the geometric 

resolution of the filtered image slightly. 

3.2.8 Other Filtering Techniques 

A Geometric Filter is implemented by Crimmins [6]. A convex hulling al­

gorithm is applied alternately to the image and its inverse in horizontal, 

vertical and the two diagonal directions. The convex hull of a set of points S 

is defined as the boundary of the smallest convex domain co~taining S. For 

further details of this geometric technique, see Preparata and Shamos [37, 

pp. 95-225). Comparisons are drawn between the performance of this filter 

and multiple look proces::;ing. Results seem to indicate that the geometric 

filter outperforms look averaging. From the presented results it seems as 

though this filter could be used on single look images in order to produce 

high resolution, speckle reduced images. However Lee [21] states that this 

filter will blur and possibly wipe out features such as roads and rivers which 

~re only one or two pixels wide. 
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A simplified and improved version of Crimmins' filter, called ABSEIL, is 

proposed by Whatmough (47]. The performance of ABSEIL was found to 

be superior to the Mean and Median filters in that more detail was pre­

served. Unlike local statistics methods, it removed noise close to edges, and 

it also smoothed speckle ih areas of both weak and strong background, unlike 

Crimmins' Geometric filter. 

3.3 Summary of Techniques 

In order to compare different speckle reduction techniques, it is necessary 

to take a number of factors into account. The trade off between geometric 

and radiometric resolutions is the most important factor. Computational 

efficiency can also be very important, as SAR images can contain a large 

number of data points, making the filtering process a lengthy one. Other 

important factors include the applicability of a particular filter to the type 

of terrain being imaged and the purpose for which the final image will be used. 

Few of the reviewed papers give full quantitative results for the speckle filters. 

Qualitative assesment is useful for comparing images which differ markedly, 

but an accurate comparison can only be conducted with the aid of quantita­

tive results for both the radiometric and geometric resolutions. 

The non-adaptive filt'ering techniques are the most computationally efficient 

and tend to reduce speckle significantly. These techniques, in general, do not 

preserve edge clarity as well as the other forms of technique which have been 

presented. The two basic techniques are the Mean and Median filters and 

two promising algorithms are the KNN and Lorentzian filters, which seem to 

offer the best edge preservation of this class of technique. These four filters 

have been chosen for implementation. 

The adaptive filtering techniques are less computationally efficient and do 

not result in as great a degree of speckle reduction as the non-adaptive tech­

niques. This class of technique, however, provides good edge preservation and 

can maintain the original information content of the image. Two algorithms 
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which are typical of this class of technique are the Frost and Gamma-Gamma 

MAP filters. Another interesting algorithm is the Hirosawa filter for single 

look images, which, together with the Frost and MAP filters, has been chosen 

for implementation and evaluation. 

Shape adaptive filtering techniques are often heuristic in nature and it is 

difficult to predict their performance compared to ordinary adaptive filters. 

An interesting filter is the MHR filter which has been selected for implemen­

tation and evaluation. 

Segmentation based filtering is a promising field. The segmentation task is 

made difficult by the presence of speckle in the image and this, together with 

the increased complexity of filtering algorithms creates severe limitations to 

this type of filtering. Due to time constraints, no filters from this class of 

technique have been implemented. 

There are few promising speckle reduction algorithms in the Geometric, Ho­

momorphic and Transform domain classes. The focus of this dissertation 

has been the larger, more promising classes which give an indication of the 

general trends in the field of speckle reduction. In keeping with this, no filter 

from these smaller, less promising classes has been implemented. 
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4.1 Mean Filter 

The Mean (Box) filter [23] is a basic, non-adaptive filter which smooths 

speckle. The algorithm involves running an N x N filter across the speckled 

image. The filter is moved one pixel at a time and at each location, the 

central pixel is replaced by the mean value of the N 2 pixels contained within 

the window. The filter is run left to right, top to bottom of the image, how­

ever the two-dimensional nature of the filter makes the order of operation 

arbitrary. The C code for the mean filter is given in Appendix B. 

The Mean filter reduces speckle by simply smoothing the image. In this way 

the speckle amplitude is reduced, but it is expected that point targets and 

edges will also be blurred or removed. The parameters for the Mean filter 

have been chosen to yield a large reduction in the amount of speckle, at the 

price of greatly reduced geometric resolution (see Appendix B). 

4.2 Median Filter 

The Median filter [40] is similar in operation to the Mean filter (see previous 

section). The only difference in the two algorithms is that the Median filter 

requires the centremost pixel of the filtering window to be replaced with the 

median (not the mean) of the pixel values within the window. The C code 

for this filter is given in Appendix C. 

The Median filter is not expected to reduce speckle as significantly as the 

Mean filter, but good edge preservation is expected. In addition, it is also 

possible that point targets could be removed from the image. ·The parameters 

for the Median filter (see Appendix C) have been chosen to yield the best 

edge preservation possible. 

4.3 Lorentzian Filter 

The Lorentzian filter [12] is a derivative of the Mean filter and seeks to 

improve on its performance by introducing a weighting function onto the 
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·window. Thus the window shape is changed from a rectangular function to 

the Lorentzian function. The Lorentzian function is expected to result in 

improved edge clarity after filtering, while still reducing the level of speckle 

noise. The Lorentzian function is applied according to the distance from 

the centre of the window to the pixel in question. The Lorentzian weighting 

function is given by the following [12]: 

1 
w(x) - (4 1) - 1 +~2x2 . 

where x is the distance from the centre of the filtering window. The C code 

which implements the Lorentzian filter cari be found in Appendix E. 

The parameters for the Lorentzian filter have been chosen to yield the best 

possible filter performance (see Appendix E). 

4.4 K Nearest Neighbour Filter 

The K Nearest Neighbour filter [29] is also a derivative of the mean filter. 

This filter seeks to improve on the performance of the mean filter by averag­

ing only a certain number of pixels (K) which are closest in intensity value 

to the pixel which is to be replaced. 

The algorithm works by first dividing the pixels within the window into two 

· groups according to their intensity values, i.e. those greater or less than the 

central pixel. The pixels within these groups are now arranged in order of 

ascending intensity value. Pixels which are equal in intensity to the central 

pixel are placed straight into an array of size f{, for averaging. This array 

is now filled with the pixels from the two groups which are closest in value 

to the central window pixel. When the array has been filled, the values 

are averaged and the central window pixel is replaced with this value. This 

provides a certain amount of adaptivity to edges, in that the majority of the 

pixels which are averaged will lie on the same side of the edge as the central 

pixel, as they have similar intensity values. The code listing and parameter 

details for the KNN filter are given in Appendix D. The parameters for 

the KNN filter have been chosen to reduce speckle significantly, while still 

maintaining some edge clarity. 
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4.5 Hirosawa Filter 

This filter is proposed by Hirosawa and Kimura [17]. It is designed for use 

on single look images and is suggested as a substitute for conventional fre­

quency domain multiple look techniques. The code for the Hirosawa filter 

can be found in Appendix F. 

The filter operates on the principle that, in an homogeneous area, one may 

adjust individual pixel values (P) without lo~ing information, as long as the 

mean pixel value is unchanged. The filter algorithm is as follows: 

• A threshold value, k is set in order·to identify homogeneous and non­

homogeneous areas. 

• The local image mean, µ and standard deviation, <7 are calculated for 

an nxn window with central pixel value equal to Pi. 

• If u / µ > k then P = Pi. 

• If u/µ :'5 k then P = µ + g(Pi - µ) where g is a parameter which 

specifies the amount of speckle reduction performed. A value of g = 0.5 

corresponds roughly to 4 looks, while g = 0.6 corresponds to 3 looks. 

Despite the fact that this filter is suggested for use on 1 look images only, its 

design does not restrict it to only single look images. This filter has therefore 

been applied to both single and multiple look images. 

The filter parameters (see Appendix F) have been chosen to maintain good 

edge clarity, while still reducing the amount of image speckle. 

4.6 Gamma-Gamma MAP Filter 

The Maximum a Posteriori (MAP} filter is presented by Lopes et al. [24]. 

The presented filter assumes a Gamma speckle model and a Gamma reflec­

tivity model as well as I<-distributed multilook data. Two MAP filters are 

presented by Lopes, a single point MAP filter for multiple look images and a 

multiple points filter for the filtering of single look SAR images. The single 
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point filter has been implemented and the source code can be found in Ap­

pendix G. 

This filter involves running an N x. N window over the image and replac­

ing the central pixel. The pixels within the filtering window are used to 

calculate the local statistics for the pixel which is to be replaced. For a fil­

tering window containing N 2 pixels, let I be the N 2 dimensional observation 

vector and R be the N 2 dimensional scene vector. Now, the MAP equa­

tion is developed by maximizing the a posteriori conditional pdf Pc(R/ I), 

i.e. RMAP = argR[max Pc(R/1)]. Where argR[] indicates the argument of 

the PDF. According to the Bayes rule, 

Pc(R/ J) = PR(R)pc(f / R)/p1(R) (4.2) 

and it is therefore equivalent to maximize the right hand side of equation 4.2. 

Here, Pc(I / R) is the maximum likelihood term, describing the detected in­

tensity, given the noise model. The first and second order speckle statistics 

are introduced through Pc(I / R), while PR(R) is the scene model. Assuming 

a I< distributed pdf for image intensity, PR(R) is given by: 

o:a 1 R . a-1 
PR(R) = R . r( )exp(-o: R )R < >Cl' 0: < > 

(4~3) 

where, 

• o: = 1/ < CR >2 is the heterogeneity parameter 

• UR is the local scene standard deviation 

• < R > is the local mean value of the scene 

Now, the single point MAP solution for the new value of the window's central 

pixel is: 

(o: - L - 1) < R > +J< R >2 (a: - L - 1)2 + 4o:LI < R > 
RMAP = 2o: . 

( 4.4) 
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where Lis the number of looks, I is the observed intensity value and RMAP 

is the value to be calculated. 

The parameters for the MAP filter have been chosen so as to provide the 

best possible edge preservation (see Appendix G). The single point Gamma­

Gamma MAP filter is not designed for 1 look images, and good filter perfor­

mance is therefore only expected for multiple look images. 

4. 7 Frost Filter 

Frost et al (11] develop a statistical model for radar noise and an image en­

hancement technique which is based on this model. The image enhancement 

technique makes use of a minimum mean square error (MMSE) filter which 

attempts to estimate the terrain backscatter from the image data. 

In designing an MMSE filter, it is necessary to assume stationarity of both 

the signal and noise. In radar images, it is valid to assume that the noise 

is stationary, but invalid to assume a stationary model for the signal, as the 

mean backscatter varies according to the type of surface being imaged. It 

is therefore necessary to adapt. the filter to local changes in the amount of 

backscatter. The local mean and standard deviation are used to adapt the 

filter so that MMSE estimates are produced inside locally homogeneous areas. 

The image model gives I, the image intensity, as: 

I(x,y) = (r(x,y)n(x,y)] * h(x,y) (4.5) 

where r is the radar backscatter, n is the speckle noise, h ,is the system im­

pulse response and * denotes convolution. In developing the filter, use is 

made of rand ari the backscatter mean and standard deviation, as well as 

n and O"n the speckle noise mean and standard deviation. 

An MMSE estimate of r(x, y) is now generated from I(x, y) and from this, 

the filter impulse response ( m( x, y)) is obtained. The mean square error f, 

is given by: 

f
2 = E((r(t) - I(t) * m(t))2] (4.6) 
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where t = (x,y) is the spatial coordinat~. From this, it can be shown [11] 

that the impulse response of the filter is given by: 

(4.7) 

where 

a= [ n] 2 1 
2a Un 1 + [;J2 +a (4.8) 

and /(1 is a normalizing constant. Frost goes on to show that 

(4.9) 

The Frost filter is an adaptive filter which is expected to preserve edges well 

whilst reducing the amount of speckle. The algorithm for this filter is based 

on the me.an filter algorithm, but the central window pixel is replaced with the 

average of the surrounding pixels, weighted according to equation 4.7. The 

code for the Frost filter can be found in Appendix H. The filter parameters 

for the Frost filter have been chosen to provide a compromise between edge 

preservation and speckle reduction (see Appendix H). 

4.8 MHR Filter 

A promising filter which adapts itself to the largest possible homogeneous 

region is presented by Wu and Maitre [49]. The algorithm first calculates the 

standard deviation for the filtering window and the change in local standard 

deviation when the window size is increased. These two quantities are used 

in order to ascertain whether the window contains a pike, an edge or is ho­

mogeneous. If the window covers an homogeneous region, the window size is 

increased and the process is repeated. Windows containing pikes are filtered 

using local statistics filtering and windows containing edges are subjected to 

the shape adaptation process. In this way, the window size is increased until 

an edge enters the window, or a maximum window size is reached. 

Windows which have reached the preset threshold size are subjected to local 

statistics filtering. Windows in which an edge is detected are assigned one of 

eight configurations, according to the orientation of the edge. Once an edge 
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configuration has been assigned, the window (now called a semi-window) is 

grown in the direction away from the edge, resulting in a large homogeneous 

region which is filtered using local statistics methods. 

The paper by Wu and Maitre provides only a brief explanation of the semi­

window configuration process. It is stated that the configuration process is 

driven by grey level gradient detection, followed by appropriate quantization 

into one of eight edge configurations. Because of a lack of information re­

garding to the original edge detection process, an algorithm was developed 

in order to determine the final edge quantization. 

The new edge detection algorithm involved multiplying the window by two 

orthogonal binary level masks, containing the values 1 and -1. These masks 

are show:q. in Figure 4.1. The masks are used to calculate edge gradient in 

1 1 1 -1 1 

-1 1 

-1 -1 -1 .-1 1 

Figure 4.1: Masks for calculating edge orientation 

the x and y directions and these gradients are then used to assign an edge 

configuration number. 

The developed edge quantization process was found to be not robust enough 

to detect edges reliably in the presence of speckle. This caused the detection 

of false edges and the introduction of artifacts into the final image. As a 

result the final results were not as ideal as those which Wu and Maitre claim 

to have achieved. Development of a more robust edge detection technique 

was deemed to be beyond the scope of this thesis a.nd the results for the MHR 

filter have been included in a separate appendix, along with details of the 
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filtering algorithm. The MHR filtered test images have also been included in 

Appendix K. 



Chapter 5 

Filter Evaluation 

This chapter details the results produced by the filters described in Chapter 4. 

The filters are run over the test image shown in Figure 5.1. The imaged scene 

Figure 5.1: ESAR test image for evaluation of filters 

contains a number of fields with varying intensities as well as a railway line. The 
raw imagery was taken from a flight of the DLR's C-band sensor of the airborne 

45 
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sensor operated at C-Band (5.3 GHz). Processing at UCT has generated 

both single and multiple look images from the raw data ~nd these images are 

used in testing the efficiency of the spatial filters. 

A simulated SAR image is also used for evaluation of the filters. This image, 

which is shown in Figure 5.2, contains simulated fields at various intensities, 

as well as linear features and point targets. The simulated image has an ENL 

Figure 5.2: Simulated SAR image for evaluation of filters 

value of four and the speckle has a normal distribution. Normally distributed 

speckle was chosen as a convenient approximation to the more complicated 

Chi-squared distribution. 

The amount of speckle in an image is referred to as the radiometric resolution 

of the image. A measure of the amount of speckle in the filtered images is 

obtained by considering the local statistics in the homogeneous areas marked 

A and Bin Figure 5.1 and Figure 5.2. The term geometric resolution refers to 

the amount of fine detail that is represented in the image. A useful indication 
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of the geometric resolution of an image can be obtained by observing the 

steepness of edges. The marked areas, covering edges in Figure 5.1 and 

Figure 5.2 are used to observe the geometric resolution of the test image after 

filtering. In order to reduce the effect of speckle on the edge measurement, 

a number of adjacent parallel cuts through the edges are averaged. 

5.1 Radiometric Resolution 

In order to obtain a quantitative measure of the amount of speckle in the 

test image, use was made of the equivalent number of looks (ENL). The ENL 

was calculated using the local statistics of the homogeneous areas marked in 

Figures 5.1 and 5.2. The results given in Table 5.1 are for the areas labelled 

B. For full results, refer to Appendix A. 

Table 5.1 gives ENL values for various combinations oflook number and filter. 

The ENL values given for the 'three unfiltered images correspond well to the 

Table 5.1: ENL for different look/filter combinations 

ESAR data simulated data 
1 look 4 look 4 look 

Frost 1.04 6.04 8.17 
Hirosawa 2.43 10.88 14.32 
KNN 2.02 9.96 12.99 
Lorentzian 1.27 5.08 19.49 
MAP 1.34 7.70 7.67 
mean 10.62 53.82 201.42 
median 1.99. 11.26 23.77 
unfiltered 1.01 4.10 4.07 

actual number of looks for each image. These unfiltered ENL values provide 

a starting point for the various filters, and all improvements should be mea­

sured relative to them. It is, however, important to note that these results 

are highly dependent on the choice of filter parameters. The performance 

of these filters, relative to each other, can be influenced by adjusting the 

various filter parameters and this should be borne in mind when comparing· 
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the various filters with each other. As an example of this, the ENL value for 

a mean filtered, three look image is seen to vary from 9.69 to 37.67 when the 

window size is varied from 3 to 7 pi.xels on a side (see Appendix B, Table B.l). 

As expected, the mean filter provides the l.argest ENL value for all test im­

ages. This filter is able to reduce the amount of speckle substantially. 

The Frost and MAP filters, which both fall into the Adaptive Filters cate­

gory, produce the lowest ENL values for all images. The Frost filter does not 

affect the ENL value of the one look image, but a noticeable improvement in 

ENL is evident for both of the four look images. This indicates that this filter 

is not suitable for speckle reduction of one look images. The MAP filter, as 

expected, also produces better results for the multiple look images than for 

the single look case. Both of these adaptive filters are thus more suited to 

speckle reduction in multiple look images. 

The Hirosawa and KNN filters produce ENL values whieh are higher than 

the Frost and MAP filters, but in most cases less than both the mean and 

median filters. The Hirosawa filter performs well for all three test images, 

supporting the assumption that its algorithm is valid for single and multi­

ple look images. Excluding the mean and median filters, the Hirosawa filter 

produces the best ENL values for both ESAR images. 

The median filter produces ENL values which are similar to those of the Hi­

rosawa and KNN filters for all three images. For the single look image, the 

performance of the median filter is inferior, while for the four look images, 

the median filter provides greater speckle reduction than the Hirosawa and 

KNN filters. 

The Lorentzian filter, which has little effect on the ENL value of the 1 look 

image also performs poorly when used to filter the 4 look ESAR image. This 

filter, however, performs well on the simulated 4 look image, suggesting that 

it may be suitable for filtering images which have little or no correlation be­

tween adjacent pixels due to speckle size. 
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While certain filters (see above) do not reduce speckle in the one look image, 

all of the algorithms examined are able to increase the ENL noticeably for 

the 4 look images. The lower bound on ENL improvement is provided by the 

Lorentzian and Frost filters which, in the case of the 4 look ESAR image, 

increase the ENL to approximately 5 and 6 looks respectively. The majority 

of the filters provide larger ENL gains for the simulated 4 look image than for 

the ESAR 4 look image. This is due to the speckles in the simulated image 

only covering one pixel, whilst, in the ESAR image, the speckles are larger. 

Smaller speckles mean that fewer pixels are needed in order to increase the 

ENL by the same amount and this leads to the higher values in the right-hand 

column of Table 5.1. 

5.2 Geometric Resolution 

In addition to removing speckle, spatial filters tend to blur edges and point 

targets and remove texture, thereby removing fine detail from an image. This 

degradation corresponds to a decrease in geometric resolution. Reduction in 

geometric resolution can be measured by observing an edge before and after 

filtering. 

The edge areas (marked with arrows) in Figures 5.1and5.2 are used to obtain 

a quantitative indication of image resolution. After averaging a number of 

adjacent cuts through the edge, an edge measure was calculated. Various 

methods of obtaining an edge measure were tried and some of the more 

conventional techniques proved to be imprecise in differentiating between 

various filters. The methods tried were: 

• Measuring the slope between the points one third and two thirds of the 

way up the edge. Because of the small number of pixels over which 

the edge lies (between 2 and 6), this method was unable to distinguish 

between edges which were obviously very different. 

• Measuring the slope between the mean values at the upper and lower 

sides of the edge. This produced results which were very similar to 
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those produced above. This quantitative edge measure also failed to 

agree with the qualitative decisions which were obtained from viewing 

a cut through the edge. 

• Measuring the slope between the maximum and minimum edge values. 

Despite being relatively unorthodox, this method produced the best 

agreement with qualitative results obtained from observation of the 

edge. Smoothing tends to affect the top and bottom of an edge more 

than the central portion. It is because of this that the previous two 

methods failed to distinguish sufficiently between various edges. 

Following from the above discussion of techniques, the last method was cho-

sen for calculating the edge measure. According to this, the edge measure is 

given by: 
L\Y 

edge measure = L\X x < I > (5.1) 

where L\Y is the difference in intensity value between the peak and trough 

pixels, L\X is the pixel difference between the peak and trough pixels and 

< I > is the image mean. The factor of < I > is included in order to allow 

comparison of images filtered with different algorithms, which might have 

different image means. An edge cut in which the peak and trough pixels are 

identified is given in figure 5.3. Visual comparison of the two curves reveals 

that the unfiltered image (high geometric resolution) has a sharper edge than 

the image after mean filtering (low geometric resolution). The small differ­

ence between the two curves in the central edge region supports the fact that 

the first two attempts at an edge measure method were inconclusive. 

Figure 5.4 is a bar graph of the edge measure values for the one look ESAR 

image, filtered with all of the chosen filters. It is expected that the un­

filtered image should have the highest edge measure and that the filtered . 

images should all have slightly degraded e~ges, as none of the filters in­

cluded any sort of edge enhancement algorithm. Figure 5.4 shows that the 

Frost, Lorentzian,MAP and median filters all have edge measure values which 

are comparable with the value for the unfiltered image. These results indi­

cate that the Frost, Lorentzian, MAP and median filters do not degrade 

the edge appreciably. It is interesting to note that the Lorentzian filter (see 
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Figure 5.3: Edge cut indicating peak and trough pixels 
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Figure 5.4: Edge measure for filtered 1 look ESAR image 
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Appendix A, Table A.2) provides edge measure values which are slightly bet­

ter than the unfiltered case for all three test images. The Lorentzian filter 

modifies the mean values of the areas surrounding the edge, causing the in­

tensity variation across the edge and therefore the edge measure value to be 

increased. This effect can be seen clearly in Figure 5.5. In the areas ad-
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Figure 5.5: Edge plot of ESAR 4 look image for various filters 

jacent to the edge, the Lorentzian filtered image has intensity values which 

are appreciably different from the unfiltered and MAP filtered images. The 

alteration of mean values relative to each other perturbs the real data and 

may cause problems in image interpretation. 

The mean filter produces the lowest edge measure values for all three test 

images (see Figures 5.4, 5.6 and 5. 7). Visually, this edge degradation presents 

itself as severe blurring in the filtered image. 

The Hirosawa and KNN filters have similar edge preserving characteristics 

and for all test images produce edge measure values which lie below those of 

the other adaptive filters. For the 4 look images, however, the Hirosawa and 

KNN filters cause less edge degradation than for the 1 look case. 
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The median filter performs well on the one look image, but causes edge degra­

dation on the four look images. The results on the ESAR four look image are 

comparable to those of the KNN and Hirosawa filters. When used to filter 

the simulated four look image, the loss in geometric resolution was greater 

than that caused by all other filters,· except for the mean filter. 

Figures 5.6 and 5. 7 are bar graphs of the edge measure values for the four 

look ESAR image and simulated four look image. 
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Figure 5.6: Edge measure for filtered 4 look ESAR image 

5.3 Summary of Results 

The results presented in the previous two sections serve to quantify the trade~ 

off between geometric and radiometric resolution which is associated with any 

speckle reduction algorithm. It is important to note that these results can 

be changed by varying the parameters of each filter. 

The edge measure values given above clearly show that images filtered with 

local statistics based methods have the· highest geometric resolution. These 
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Figure 5.7: Edge measure for filtered simulated SAR image 

. 
local statistics methods (the Frost and MAP filters) do not, however, pro-

duce greatly improved radiometric resolution. These filters are ideally suited 

to the filtering of images which contain a large amount of fine detail, such as 

urban scenes. 

I The mean filter produces images with low geometric resolution, but is able 

to improve the radiometric resolution more than the other filters. This filter 

is useful only for reducing speckle in images which contain large-scale detail 

such as large fields or geographical features. 

The Lorentzian filter, which alters local mean values in the image (as dis­

cussed in Section 5.2), produces high edge measure results, but low ENL 

values. This filter is only successful when applied to the simulated SAR im­

age. It is thought that the lack of correlation between adjacent speckles in 

the simulated image makes the Lorentzian filter more effective. 

'The Hirosawa filter, which is a less elegant adaptive filter represents a good 

trade off between geometric and radiometric resolution. This filter and the 

KNN filter both yield considerably improved ENL values and are able to 
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maintain edge clarity in the test images. These filters lend themselves to 

general-purpose despeckling in images which do not contain large amounts 

of fine detail. The median filter performs as well as the Hirosawa and KNN 

filters on the ESAR images, but not as well when used to filter the simulated 

image. This is because the median filter does not derive any benefit from the 

lack of inter pixel correlation. It is important to note that a major limitation 

of the median filter is that it has the potential to wipe out small point targets. 



Chapter 6 

Conclusions 

An analysis of the results presented in chapter 5 shows that post image forma­

tion techniques present a practical and efficient method of reducing speckle 

in SAR images. These methods require only image data and do not need 

complex in-phase and quadrature data as their input. 

The process of speckle reduction involves a trade-off between the radiometric 

and geometric resolutions of the image. Increased speckle reduction leads 

to increased edge degradation and a compromise acceptable to the end user 

must be reached. In order to select the correct speckle reduction algorithm, 

it is important to consider the application for which the final image will be 

used. Applications which make use of fine image detail will require :filtering 

which preserves edges and other small-scale image features. Applications 

which only concentrate on large-scale features do not have edge preservation 

requirements which are as stringent. 

Certain classes of speckle filter (i.e. local statistics :filtering) are able to 

maintain excellent edge clarity, but only a slight reduction in speckle noise 

is achieved. Other types of filter (i.e. the Mean filter) are able to reduce the 

speckle noise substantially, but severe edge degradation is brought about. A 

good compromise between radiometric and geometric resolution is achieved 

by the KNN and Hirosawa filters as these provide good speckle reduction, 

whilst still maintainip.g some edge clarity. 
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The speckle reduction algorithms have a number of parameters which influ­

ence the performance of the filters. The filters can be highly dependent on 

the choice of input parameter. It is important that filter parameters are opti­

mized for theparticular task at hand in order to give the best possible results. 

The filters which have been investigated provide an indication of the potential 

of post image formation speckle reduction techniques. It is possible to select 

filters or groups of filters which can filter SAR images according to the needs 

of different end users. Post image formation techniques are easy to apply 

and are capable of further reducing the speckle in multiple look SAR images. 

Certain of these techniques can also be used as a substitute for multiple look 

processing in order to provide speckle reduced one look images. 



Chapter 7 

Recommendations 

In order to gain complete. insight into the potential of various speckle re­

duction algorithms, it will be necessary to investigate fully all classes of post 

image formation algorithm. Particularly, an investigation of the performance 

of segmentation based methods is suggested. Further work on the edge detec­

tion stage of the MHR filter is also required in order to evaluate its potential 

as a viable filter. 

A recent paper by Franceschetti et al. (see section 3.2.6) presents an efficient 

speckle reduction algorithm. This work was discovered in the final stages of 

this thesis and was not implemented due to time constraints. Implementa­

tion and evaluation of this algorithm is suggested as a future work. 

Further research into other areas of speckle reduction, such as multiple polar­

ization and multiple frequency methods, could provide valuable information 

about how these techniques compare with the post image formation methods 

reviewed in this dissertation. 
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