An agglomerate scale model for the heap bioleaching of chalcocite

by N. Ogbonna*, J. Petersen*, and H. Laurie†

Synopsis
A mathematical model for bioleaching at the agglomerate scale is developed. The agglomerate is defined as a unit volume of a heap which contains a solid phase (a size distribution of ore particles), a liquid phase (stagnant and flowing leaching solution) and a gas phase (flowing air and air pockets). Leaching at the level of an ore particle is modelled using a diffusion-reaction equation, and oxidation by attached and detached microbes is treated separately. With the aid of the mathematical model, the effect of particle size distribution on the bioleaching of an ore containing a mixture of chalcocite and pyrite, and a culture of iron oxidizers, is investigated.

Introduction
Bioleaching refers to the mobilization of metal ions from insoluble ores by biological oxidation and complexation (Rohwerder et al., 2003). The application of bacterial leaching to metal recovery from mineral ores has progressed steadily in the last 20 years (Olson et al., 2003). Heap bioleaching involves stacking the ore to form a heap, and applying acidified leaching solution to the top of the heap. This technique is used to treat mostly low grade ore, and copper is the primary targeted metal, although it is also considered for zinc, cobalt and nickel recovery. It is also used for the pretreatment of refractory gold ores. Despite the present widespread use of heap bioleaching in industry, the process is still plagued by low recoveries, long extraction times, and high operation costs. Hence there is a need to optimize heap operations.

Investigation of the interactions between the physical, chemical and biological processes that drive a heap provides knowledge that can be applied to optimize heaps. Such investigations can be carried out with the aid of mathematical models. A number of heap bioleaching models have been developed, some of which are reviewed by Dixon (2003). Most of the early heap bioleaching models dealt with leaching at the particle scale (Bartlett, 1992; Braun et al., 1974; Davis et al., 1986; Davis and Ritchie, 1986, 1987; Roman and Olsen, 1974; Shafer et al., 1979). On the other hand, more recent bioleaching models emphasize the effects of bulk scale phenomena, such as liquid flow, gas flow, and temperature distribution, on heap performance (Dixon, 2000; Dixon and Petersen, 2003; Leahy et al., 2003, 2005a,b; Moreno et al., 1999; Ogbonna et al., 2005; Pantelis et al., 2002; Petersen and Dixon, 2002; Sidborn et al., 2003).

Although both particle scale and bulk scale effects are important in heap bioleaching, little has been done to systematically integrate particle scale models into bulk scale models. Most existing bulk scale models account for particle scale effects using simplified models such as the shrinking core model, applied to a single particle size. Implicit in this is an assumption regarding the relative significance of particle scale phenomena, and which process (diffusion or reaction kinetics) is limiting at the particle scale.

However, particle scale effects in heap bioleaching are influenced by several factors, including the particle size distribution, the mineralogy of the ore, and microbial interactions. In addition, particle scale phenomena can limit the rate of extraction under certain leach conditions, as highlighted in the study by Dixon and Petersen (2003). Therefore, it is difficult to decide a priori which process will be limiting.

This paper is concerned with the development of a mathematical model for heap bioleaching at an intermediate ‘agglomerate’ scale. The agglomerate model includes detailed particle scale processes, and can form the building blocks of (or be incorporated into an existing) bulk scale model. Hence, it provides a
An agglomerate scale model for the heap bioleaching of chalcocite

systematic link between particle and bulk scale heap bioleaching models. The agglomerate model can also be used to study bioleaching in short laboratory columns, which are more representative of an agglomerate scale than a full heap scale. The work in this paper derives from the heap scale model developed by Dixon and Petersen, a schematic representation of which is shown in Figure 1 (for a review, see (Ogbonna et al., 2005)). This heap scale model adopts simplified particle scale interactions: at a computation node, a block of solid ore is assumed to be in contact with leaching solution. The proposed agglomerate model provides a more detailed description of the interactions at the level of a cluster of ore particles, and can be integrated into the heap scale model by assuming that the heap consists of agglomerate volumes, as shown in Figure 2. The agglomerate model will be applied to a case study of copper leaching from ore containing chalcocite and pyrite, in the presence of iron-oxidizing microbes.

Theory

In this study, the agglomerate is defined as a unit volume of a heap that comprises a solid phase (a size distribution of ore particles), a liquid phase (stagnant and flowing leaching solution, which contains dissolved solutes, attached and planktonic microbes) and a gas phase (flowing air and air pockets). The unit volume approach to heap bioleaching was applied in an early model by Roman and Olsen (1974). However this application had limited sophistication, and the concept is driven further here. A conceptual diagram of the agglomerate is shown in Figure 2. The agglomerate model can be extended to a heap scale model by stacking the unit volumes to form a unit heap column, and including in the model the interaction between neighboring unit volumes in the unit heap column, and bulk flow phenomena. Further development from this point will require a description of the interaction between adjacent heap columns. The focus of this study, however, is on the agglomerate model.

The significant processes that occur at the agglomerate level are:

- Mineral dissolution reactions
- Microbial processes (growth, oxidation and transport)
- Intra- and inter-particle diffusion of dissolved solutes
- Heat generation and diffusion
- Solution and gas flow through the agglomerate.

Model assumptions

A number of simplifying assumptions are made, for the purpose of initial model development. The agglomerate model is developed under isothermal conditions. At the moment, the gas phase is not included explicitly; it is rather assumed that dissolved oxygen is present in the incoming flowing phase at a fixed concentration. The liquid phase in the agglomerate is separated into the stagnant (or bulk) and flowing phases, with exchange of chemical and microbial species occurring across these phases. This is done to capture the situation in heaps where solution distribution favours channelling between relatively large clusters of material, which are

![Figure 1—Schematic representation of heap scale model by Dixon and Petersen](image1)

![Figure 2—Modification of the model in Figure 1, treating the heap as a collection of agglomerate volumes](image2)
An agglomerate scale model for the heap bioleaching of chalcocite

exposed only to stagnant solution (Dixon, 2003; Orr, 2002; Petersen and Dixon, 2003). It is assumed that the concentration gradient in the bulk phase in the agglomerate is small (relative to the scale of the heap), and so diffusion within the bulk solution will not be included in the model. Exchange across the agglomerate boundaries by diffusion is not considered. Chemical and microbial reactions in the flowing solution are not included in the model.

Although a size distribution of ore particles is investigated, it is assumed that the particles are uniformly distributed in the agglomerate. The ore particles are assumed to be spherical, and only radial diffusion of dissolved species in the ore particles is considered. The microbial species exist as adsorbed and planktonic microbes within the agglomerate. Adsorbed microbes form an exopolysaccharide (EPS) layer, which provides a reaction space within which the microbial oxidation reactions take place more rapidly (Rawlings, 1997, 2005; Rohwerder et al., 2003). Microbial activity at the particle surface is accounted for by introducing a microbial source term at the particle surface. Hence, the growth rate of, and the oxidation by, adsorbed and planktonic microbial populations are treated differently. The partitioning of microbes into adsorbed and desorbed populations is implemented using the Langmuir isotherm.

Model equations

Chemical reactions

Chalcocite leaches by a 2-stage mechanism: it reacts with ferric ions to release copper and a form covellite-like intermediate mineral (Equation [1]), which then reacts with ferric ions to release more copper and form elemental sulfur (Equation [2]). The kinetics of the two stages are different. The first stage (Equation [1]) proceeds quickly even at room temperature, releasing about 40% of the total copper, and has a relatively low activation energy (up to about 25 kJ/mol) (Petersen and Dixon, 2003). The second stage (Equation [2]) proceeds more slowly, and releases the remaining 60% of the total copper. The rate of the second stage increases significantly with temperature, with activation energy of the order of 100 kJ/mol (Petersen and Dixon, 2003). Pyrite is often found with chalcocite in practice, and so is included in the model. Pyrite leaches by reacting with ferric ions to release ferrous ions and acid (Equation [3]). The presence of gangue in the ore leads to acid consumption by gangue (Equation [4]).

\[
\begin{align*}
Cu_2S + 1.6Fe^{3+} &\rightarrow 0.8Cu^{2+} + 1.6Fe^{2+} + CuS \quad [1] \\
CuS + 2.4Fe^{2+} &\rightarrow 1.2Cu^{2+} + 2.4Fe^{2+} + S \quad [2] \\
FeS_2 + 14Fe^{3+} + 8H_2O &\rightarrow 15Fe^{2+} + 16H^+ + 2SO_4^{2-} \quad [3] \\
MO + H_2SO_4 &\rightarrow MSO_4 + H_2O \quad [4]
\end{align*}
\]

Ferrous ions are oxidized to ferric ions (Equation [5]) in the presence of iron-oxidizing microbes such as Leptospirillum ferrophilum or Acidithiobacillus ferroxidans (Rawlings, 2005). For many years, At. ferroxidans was considered to be the most important micro-organism in commercial bioleaching and biooxidation plants that operate in the mesophilic temperature range. However, recent findings suggest that Leptospirillum-like bacteria may play a more important role in commercial bioleaching/biooxidation processes (Rawlings, 2002). Elemental sulphur produced in Equation [2] may also be re-oxidized to sulphuric acid (Equation [6]) in the presence of sulphur-oxidizing microbes such as Acidithiobacillus thiooxidans and Acidithiobacillus caldus (Rawlings, 2005).

\[
\begin{align*}
Fe^{2+} + 0.25O_2 + H^+ &\rightarrow Fe^{3+} + 0.5H_2O \quad [5] \\
S + 1.5O_2 + H_2O &\rightarrow H_2SO_4 \quad [6]
\end{align*}
\]

The rate of the sulfide mineral leaching reactions (Equation [1]–[3]) is a function of temperature, reactant concentration and the unreacted mineral fraction. It can be expressed in terms of the rate of change mineral conversion X:

\[S = \rho(1-\varepsilon) \frac{\partial g}{\partial t} = \rho(1-\varepsilon)g_0 \frac{\partial X}{\partial t}, \quad \text{where} \quad [7] \]

\[\frac{\partial X}{\partial t} = k(T)f(C)h(X) \quad [8] \]

(Dixon and Petersen, 2003). In Equation [7], \(\rho \) is the ore density, \(\varepsilon \) is the particle porosity, and \(g_0 \) is the initial mineral grade. \(k(T) \) in Equation [8] is the Arrhenius rate constant given by:

\[k(T) = k_{ref} \exp \left(-\frac{E}{RT} \right) \quad [9] \]

(Dixon and Petersen, 2003), where \(T_{ref} \) is the reference temperature (in Kelvin), \(k_{ref} \) is the Arrhenius constant at the reference temperature, \(E \) is the activation energy, and \(R = 8.314 \text{J/mol/K} \) is the gas constant. The concentration function \(f(C) \) is obtained from the electrochemistry of the leaching process, and is expressed as:

\[f(C) = \frac{C_{Fe^{3+}}}{(k_A + C_{Fe^{3+}})^{\phi}} \quad [10] \]

(Dixon and Petersen, 2003). \(h(X) \) is a topological term which accounts for the change in reacting surface. A power law, proposed by Dixon and Hendrix (1993), is implemented:

\[h(X) = (1 - X)^\gamma \quad [11] \]

\(\gamma \) is an empirical parameter that usually falls between 0.5 and 2.0 (Petersen and Dixon, 2002).

The rate of microbial oxidation is related to the microbial growth rate \(\mu \) (through a stoichiometric factor, the yield coefficient Y), and to the cell maintenance rate \(k_m \) (Dixon and Petersen, 2003; Ojumu et al., 2005). The rate of microbial oxidation of a species i is expressed as:

\[\dot{S} = N_i \left[\frac{H^+}{Y} + k_m f(T) \right] \quad [12] \]

In Equation [12], \(N \) is the microbial population density, and the function \(f(T) \) describes the dependence of microbial activity on temperature. The subscript k identifies either the adsorbed or planktonic microbial population. The microbial growth rate \(\mu \) is given by the maximum growth rate of the microbes \(\mu_{max} \) multiplied by limiting factors. For iron-oxidizing species, the limiting factors include acid, ferrous, and dissolved oxygen concentrations, temperature, and the microbial population (cell crowding factor):
An agglomerate scale model for the heap bioleaching of chalcocite

\[\mu = \mu_{\text{max}} f(T) \left(1 - \exp \left[-\frac{C_{\text{acid}}}{K_{\text{acid}}^n} \right] \right). \]

(13)

The Ratkowsky equation (Franzmann et al., 2005; Ratkowsky et al., 1983) is employed to describe the dependence of microbial growth rate on temperature, \(f(T) \) (see Equation [12], Equation [13]). Describing \(f(T) = F(T)/F(T_{\text{opt}}) \) as the normalized temperature function \((T_{\text{opt}} \text{ is the temperature at which optimal microbial growth rate is achieved}) \), the Ratkowsky function \(F(T) \) is given by:

\[
F(T) = \sqrt{\frac{r}{b}} = b \left(T - T_{\text{min}} \right) \left(1 - \exp \left(c \left(T - T_{\text{max}} \right) \right) \right).
\]

(14)

where \(r \) is the growth rate constant, \(T \) is the temperature (in kelvin), and \(b, c \) are fitting parameters. \(T_{\text{min}}, T_{\text{max}} \) are the theoretical extrapolated minimum and maximum temperatures for microbial growth. Ratkowsky parameters for Leptospiillum ferriphilum (reported by Franzmann et al. (2005)) are used in this study.

Mass balances

Chemical species

Each particle size-class \(j \) is modelled by a representative (or mean) particle of radius \(R_j \).

The mass balance equation in the ore particles for each dissolved chemical species \(i \), in each size-class \(j \), is given by the diffusion-reaction equation below:

\[
\begin{align*}
\frac{\partial C_i}{\partial t} & = D_i \left(\frac{\partial^2 C_i}{\partial r^2} + \frac{1}{r} \frac{\partial C_i}{\partial r} \right) + \\
& \sum_{m} v_{im} S_{im} + \delta (R - r) \sum_{m} v_{im} S_{im, m} \end{align*}
\]

(15)

where \(C_i \) is the species concentration, \(D_i \) is the species diffusion coefficient, \(v_{il} \) is the stoichiometry coefficient of a species \(i \) in chemical reaction \(l \) (see Equations [1]-[4]), and \(S_j \) is the rate term for mineral leaching reaction \(l \), given in Equation [7]. At the surface of the particle, an extra source term is introduced to account for microbial oxidation, where \(v_{im} \) is the stoichiometry coefficient of a species \(i \) in reaction \(m \) (see Equations [5]-[6]), and \(S_{im} \) is the microbial oxidation at the particle surface, given in Equation [12]. The boundary conditions for Equation [15] are:

\[
\frac{\partial C_i}{\partial r} (0, t) = 0,
\]

(16)

\[
-D_i \frac{\partial C_i}{\partial r} \bigg|_{r=R} = -k_{im} (C_{bi} - C_{bi}),
\]

(17)

where \(C_b \) is the bulk concentration of the species, and \(k_{ob} \) is the mass transfer coefficient at the particle surface/bulk interface. At initial time, a constant concentration of species \(i \) in size-class \(j \) is assumed.

The rate of change of the concentration of a chemical species in the bulk solution as a result of exchange at the particle surface/bulk interface, exchange at the bulk/flowing solution interface, and the rate of formation (or consumption) of the species within the bulk. This is represented by the mass balance equation below:

\[
\begin{align*}
\varepsilon_i & \frac{dC_{bi}}{dt} = -3 \varepsilon_i \sum_j \frac{W_j}{R_j} k_{ob} (C_{bi} - C_{bi}) + \\
& k_{ub} (C_{bi} - C_{bi}) + \varepsilon_i \sum_m v_{im} S_{bulk,m} \left[\frac{\text{mol}}{\text{cm}^3 \text{min}} \right]
\end{align*}
\]

(18)

The symbols are defined in the nomenclature. The first term on the RHS in Equation [18] represents average exchange at the particle surface/bulk interface, where the subscript \(j \) stands for particle size-class. The second term represents exchange at the bulk/flowing interface. \(k_{ub} \) is the mass transfer rate at this interface, given by

\[
k_{ub} = k_{ef} \cdot \frac{\text{exchange surface area}}{\text{agglomerate volume}},
\]

where \(k_{ef} \) is the mass transfer coefficient at the bulk/flowing interface. The third term represents the generation or consumption of species in the bulk as a result of microbial oxidation reactions. In this study, only ferrous oxidation is considered. \(S_{bulk} \) is given in Equation [12].

The rate of change of the concentration of a chemical species in the flowing phase is due to advection, and the rate of exchange with the bulk solution. This is given by the equation below:

\[
\varepsilon_j \frac{\partial C_{ji}}{\partial t} = -u \frac{\partial C_{ji}}{\partial z} - k_{ob} (C_{ji} - C_{bi}) \left[\frac{\text{mol}}{\text{cm}^3 \text{min}} \right]
\]

(19)

where \(u \) is the superficial velocity of the flowing solution.

Microbial species

The rate of change of adsorbed microbes \(N_a \) is expressed as:

\[
\frac{dN_a}{dt} = N_a (\mu - k_{\text{death}}), \frac{\text{cells}}{g_{\text{ore}} \text{min}}
\]

(20)

for each size-class \(j \), where \(\mu \) is the growth rate of the adsorbed microbes (see Equation [13]) and \(k_{\text{death}} \) is the microbial death rate. A constant \(k_{death} \) is assumed. Other models for the death rate are possible. For example, Dixon and Petersen (2003) implement a combination of an endogenous decay rate and a temperature dependent death rate.

The rate of change of desorbed microbes \(N_d \) is expressed as:

\[
\varepsilon_k \frac{dN_d}{dt} = \varepsilon_k N_d (\mu - k_{d\text{death}}) + \\
k_{ob} (N_j - N_d) \left[\frac{\text{cells}}{\text{cm}^2 \text{min}} \right]
\]

(21)
An agglomerate scale model for the heap bioleaching of chalcocite

where μ_s is the growth rate of the desorbed microbes, and N_f is the microbial population density in the flowing phase.

The adsorbed and desorbed microbial populations are assumed to be in equilibrium and related by the Langmuir isotherm:

$$\frac{N_f}{N_{\text{max},f}} = \frac{K_{\text{ff}}N_d}{1 + K_{\text{ff}}N_d}. \quad [22]$$

The rate of change of the microbial population in the flowing solution is due to advection, and rate of exchange with the bulk solution. This is given by the equation below:

$$\epsilon_f \frac{\partial N_f}{\partial t} = -u \frac{\partial N_f}{\partial z} - k_{\text{ad}} \left(N_f - N_d \right) \left[\frac{\text{cells}}{\text{cm}^3 \text{ min}} \right]. \quad [23]$$

Numerical results and discussion

The mathematical model developed above was tested on a case study built by taking parameter values from literature. The equations were solved for the minerals (chalcocite, covellite, pyrite), the chemical species (copper, ferrous, ferric, acid, oxygen) and the iron-oxidizing microbial species. In programming the model equations, it was assumed that all covellite available from chalcocite was present at initial time. This is a valid assumption as seen from the simulation results, which show that covellite in any region in the ore particle is not significantly leached till the chalcocite in that region has reacted completely. The partial differential equations were semi-discretized using method of lines, by applying second order finite difference discretization in space. The resulting system of ordinary differential equations was integrated using the scipy.integrate.odeint routine in Python. Mass balance tests were conducted at the end of each simulation, and a maximum relative error of 0.15% in the mass balance calculations was recorded. Simulations were run for three particle size-classes of radii 0.5 mm, 2.5 mm and 5 mm. The following initial conditions were used:

$$C_{\text{Fe}^{2+}, \text{Fe}^{3+}}(0, t) = 0.1 \text{ g/L}, \quad [24]$$

$$C_{\text{H}_2\text{SO}_4}(0, t) = 0.1 \text{ g/L}, \quad [25]$$

$$C_{\text{Fe}^{3+}, \text{Fe}^{2+}}(0, t) = 0.008 \text{ g/L}, \quad [26]$$

$$N_d(0) = 10^{10} \text{ cells/L}, \quad [27]$$

$$N_d(0) = 0 \text{ cells/g}.$$
An agglomerate scale model for the heap bioleaching of chalcocite

Table IV

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho)</td>
<td>g/cm(^3)</td>
<td>1.45</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>cm(^3)/cm(^3)</td>
<td>0.08</td>
</tr>
<tr>
<td>(r_b)</td>
<td>cm(^3)/cm(^3)</td>
<td>0.3</td>
</tr>
<tr>
<td>(r_f)</td>
<td>cm(^3)/cm(^3)</td>
<td>0.1</td>
</tr>
<tr>
<td>(T)</td>
<td>°C</td>
<td>38.6</td>
</tr>
<tr>
<td>(L)</td>
<td>cm</td>
<td>20</td>
</tr>
<tr>
<td>(u)</td>
<td>cm/min</td>
<td>0.05</td>
</tr>
<tr>
<td>(k_{bs})</td>
<td>cm/min</td>
<td>0.1</td>
</tr>
<tr>
<td>(k_{ar})</td>
<td>1/min</td>
<td>0.1</td>
</tr>
</tbody>
</table>

\(L \) in Table IV is the length of a side of the agglomerate volume.

The bulk concentration of copper shows variations which are mostly influenced by mineral conversion in the 0.5 mm radius size-class. Figure 3(a) shows a sharp increase in the bulk concentration of copper in the first 5 days of leaching. This is because the rapid leaching of chalcocite in the 0.5 mm size-class in this time interval (conversion reaches about 10%) introduces copper into the system, and the resulting steep diffusion gradient causes the copper to diffuse at a fast rate into the bulk solution. Subsequent removal of copper by the flowing solution leads to a decrease in bulk copper concentration, but in a less steep manner. Between days 50 and 150 of leaching, a fairly constant bulk concentration of copper is observed (see Figure 3(a)). This is due to an increased copper production rate in the 0.5 mm size-class, which in turn is a consequence of the increase in covellite conversion rate in this size-class. As chalcocite conversion releases 40% of the total copper while covellite conversion releases 60%, covellite leaching introduces a significant amount of copper into the system. Figure 3(b) and Figure 3(c), respectively, show that between days 50 and 150, the rate of chalcocite conversion in the 0.5 mm size-class is reduced, while the rate of covellite conversion in this size-class increases appreciably. This behaviour is linked to the relative intrinsic rates of chalcocite and covellite conversion.

As shown in Figure 4(a), chalcocite reacts more rapidly than covellite, and is primarily limited by diffusion of ferric ions into the particle. Initially, ferric ions diffusing into the particle come in contact (and react with) chalcocite. As chalcocite conversion progresses into the particle, ferric becomes available for covellite leaching in the outer regions, and consequently, less ferric reaches the inner regions of the particle to react with chalcocite. As a result, the average rate of chalcocite reaction in the particle decreases, while the average rate of covellite conversion in the particle increases appreciably.

From day 200, the bulk concentration of copper increases, reaching a peak at about 260 days. This rise in the bulk concentration of copper coincides with the completion of chalcocite conversion in the 0.5 mm size-class (see Figure 3(b)), which means that ferric becomes available for the leaching of covellite. Hence covellite conversion in the...
An agglomerate scale model for the heap bioleaching of chalcocite

The bulk concentration of copper, and the average conversion of chalcocite, covellite and pyrite in each of the particle size-classes for leaching in the presence of iron-oxidizing microbes are shown in Figure 6. All other conditions are kept the same as the abiotic leaching case. Comparing Figure 6 to Figure 3, it is seen that a faster rate of copper extraction is achieved in the presence of iron-oxidizing microbes. This is due to the microbial regeneration of ferrous, leading to a higher ferric concentration in the system. The sharp increase in bulk copper concentration, (within the first 5 days of leaching), reaches a higher level of 0.014 g/L compared to 0.01 g/L in the abiotic case. In addition, the ‘bump’ in bulk copper concentration occurs about 100 days earlier in the biotic case than in the abiotic case.

The effect of iron-oxidizing microbes on the iron concentration in the system is clearly illustrated in Figure 7, which shows the ferric/ferrous ratio in the each particle size-class for abiotic and biotic cases. A higher ferric/ferrous ratio (in other words, a higher redox potential) is attained in the biotic case. Although this ratio is smaller than the values typically obtained in laboratory experiments (≥ 10), it shows that the model predicts expected behaviour. It is anticipated that careful calibration of model parameters will yield results that are closer to observed values.

Figure 8 shows the average mineral conversion curves for the 0.5 mm size class after 400 days, and the 5 mm size class after 1000 days. The effect of diffusion distance on mineral leaching is illustrated by these graphs. Figure 8(a) shows that the minerals are leached at very different rates in the smaller sized particles. In the larger sized particles, on the other hand, not only are the minerals leached slower, but the rates of leaching are quite similar, especially for chalcocite and pyrite, even after 1 000 days (Figure 8(b)).

This behaviour is observed because as chalcocite leaching progresses into the particle, ferric ions diffusing into the particle come in contact (and react with) the unreacted covellite and pyrite before they can get to the chalcocite (Figure 9). Therefore, chalcocite cannot leach much faster
An agglomerate scale model for the heap bioleaching of chalcocite

Figure 6—Biotic simulation. (a) shows the bulk concentration of copper, (b)-(d) show the mineral conversion profiles in each of the size-classes

Figure 7—Ratio of ferric concentration to ferrous concentration for the abiotic and biotic case

Figure 8—Comparison of average mineral leaching profiles in the 0.5 mm radius size-class after 400 days, and the 5 mm radius size-class after 1 000 days
An agglomerate scale model for the heap bioleaching of chalcocite

than pyrite or covellite. This behaviour is not observed in the smaller sized particles as ferric has only a short distance to travel. Pyrite in the unreacted region is consumed at a faster rate than covellite initially due to its predominance by mass. Hence, in larger sized particles, pyrite retards the rapid release of copper observed in the smaller particles.

Effect of size class distribution
Figure 10 shows the cumulative copper recovery in the flowing solution, and the ferric/ferrous ratio in the bulk solution, for size the 0.5 mm, 2.5 mm and 5.0 mm class distributions, where the three size classes are equally weighted, distributed in a ratio of 0.2 : 0.2 : 0.6 and distributed in a ratio of 0.6 : 0.2 : 0.2. The model predicts that the most recovery is achieved when there is a higher proportion of 0.5 mm sized particles, as expected. The bulk ferric/ferrous ratio is at low levels for the duration of chalcocite leaching in the 0.5 mm particles. In the case where there is a higher proportion of fine particles, a significant increase in the ferric/ferrous ratio, accompanied by a rise in copper recovery, is attained on completion of chalcocite leaching in the 0.5 mm particles after about 150 days, as shown in Figure 10. This increase is less rapid as the mass fraction of fine particles is reduced.

Conclusions and future work
This paper describes an agglomerate model for heap bioleaching, which is an intermediate model between particle scale models and bulk scale models. By enabling the observation of particle scale leaching and the prediction of copper recovery, while allowing for the possibility of inclusion into a bulk scale model, the agglomerate model can serve as a link between particle scale and bulk scale modelling. With the aid of this model, abiotic and biotic leaching for an ore containing chalcocite and pyrite, in a system with a size distribution of particles was studied. It was observed that in larger sized particles, pyrite effectively retards the rapid release of copper observed in smaller size particles. It was also observed that with a higher proportion of fine particles, there is a marked increase in copper recovery at the onset of covellite leaching in the fine particles, which is in agreement with expected behaviour.

For the purpose of initial model development, oxygen gas-liquid transfer and temperature variation were not included. This assumption is limiting, as the mineral leaching reactions (especially covellite leaching), and the microbial growth rate, are temperature dependent. Also, the rate of gaseous oxygen uptake into solution, which is a temperature dependent mass transfer step, is an important parameter in heap modelling, since oxygen is a key reactant in the microbial oxidation reactions. Therefore, future work should include these processes. In addition, the integration of the agglomerate model into a bulk scale model should be addressed.

Nomenclature

Greek Letters
- \(\varepsilon \): Particle porosity
- \(\mu \): Microbial growth rate (1/min)
- \(\nu \): Stoichiometry coefficient
- \(\rho \): Ore density (g/cm\(^3\))
- \(\varepsilon_b \): Stagnant liquid volume fraction
- \(\varepsilon_f \): Flowing liquid volume fraction
- \(\varepsilon_p \): Particle volume fraction

Roman Letters
- \(C \): Concentration (mol/L)
- \(D \): Diffusion coefficient (cm\(^2\)/min)
- \(E \): Activation energy (J/mol)
- \(g \): Mineral grade (mol/g)
- \(k_A \): Ferric mass transfer parameter (mol/L)
- \(k_B \): Ferric reduction parameter (mol/L)
An agglomerate scale model for the heap bioleaching of chalcocite

K_i Monod constant for substrate i mol/L
K_{acidlim} Acid limitation constant mol/L
K_d Adsorption equilibrium constant L/cell
K_{dos} Mass transfer coefficient (particle surface/bulk interface)
K_{death} Microbial specific death rate 1/min
K_i Cell inhibition factor cells/L
K_m Microbial maintenance rate mol Fe^{2+}/cell/min
K_{ref} Arrhenius constant 1/min
K_{mfb} Mass transfer rate (bulk/flowing interface) 1/min
N Microbial population density cells/L or cells/g
\rho Particle radius mm
S Source term mol/cm^3/min or mol/L/min
T Temperature K
\tau Time min
u Superficial velocity cm/min
w Mass fraction
Y Microbial yield coefficient cells/mol Fe^{2+}

Subscripts
b Bulk
f Flowing
p Particle

References

