A STUDY OF BISTATIC RADAR
AND THE
DEVELOPMENT OF AN INDEPENDENT
BISTATIC RADAR RECEIVER

M DEL MISTRO
FEBRUARY 1992

Submitted to the University of Cape Town in partial fulfilment for the degree of Master of Science in Engineering
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
Declaration

I, Mario Del Mistro, submit this thesis in partial fulfilment of the requirements for the degree of Master of Science in Engineering. I claim that this is my work and that it has not been submitted in this, or any similar form, for a degree at any University.

Signature of candidate
Acknowledgements

It is with great pleasure that I take this opportunity to thank the staff in the Department of Electrical and Electronic Engineering at the University of Cape Town who assisted me with this thesis project. In particular, I owe much to my supervisor Professor Inggs who was always ready to assist and advise me.
Terms of Reference

This thesis report was commissioned by Professor M.R. Inggs of the Electrical Engineering Department at the University of Cape Town. The project was to develop an experimental bistatic radar receiver at UCT. The bistatic system would use the already operational L-Band transmitter at D.F. Malan airport. Research for this project commenced in February 1991.

The bistatic receiver was built around the following guidelines:

1. Establish the detection range possible with a non-moving receiver antenna.

2. Large target echoes, clutter and the direct illumination of the transmitter main beam must not saturate the receiver.

3. The receiver must maintain PRF and azimuth synchronization with the transmitter at all times.

4. The receiver must display the received echoes and correct for bistatic distortion on a PPI display.
Synopsis

This report contains a literature review of bistatic radar and also describes an experimental L-Band bistatic radar receiver which was built at the University of Cape Town.

In a bistatic radar the transmitter and receiver are separated by an amount which is comparable to the distance to the targets which are being displayed. The separation of the transmitter and receiver cause various parameters to change when comparing the bistatic radar to a monostatic radar. Some of these parameters are listed below.

1. The radar range equation is now a function of $\frac{R_T^2 R_R^2}{R_M^4}$ and no longer R_M^4. The gain of the transmitter and receiver antenna must be taken into account as two different antennas are being used.

2. In a monostatic radar the constant range contours form circles around the collocated transmitter and receiver whereas in a bistatic radar they form ellipses and the transmitter and receiver are the foci of the ellipses.

3. The constant power contours of a monostatic radar are also circles. In a bistatic radar they are ovals surrounding the transmitter and receiver. As the ovals get closer to the line separating the transmitter and receiver (baseline) the ovals collapse and start forming separate circles around the transmitter and receiver.

4. The coverage of a bistatic radar is the area which is illuminated, simultaneously by both the transmitter and the receiver. The coverage area can never exceed that of a monostatic radar.

5. The range and cell area resolution degrades as the target approaches the baseline. In order to compete with a monostatic radar very narrow transmit and receive antenna beams are required.
6. Due to the separation of the transmitter and the receiver, a PPI display will be distorted. This distortion is commonly called bistatic distortion.

7. The bistatic radar target cross section (RCS) varies according to target position relative to the transmitter and the receiver. When the target crosses the baseline, its forward RCS is observed. The forward RCS is sometimes 15dB larger than the monostatic reverse RCS. As the target moves further away from the baseline the bistatic RCS starts approximating the monostatic RCS.

8. As the cell area (area of ground illuminated by the transmitter and receiver antenna) of a bistatic radar is larger than that of the monostatic radar near the baseline, the bistatic radar is inherently more susceptible to clutter.

The receiver must maintain synchronization in transmitter azimuth and PRF, at all times, in order to correct for bistatic distortion on a PPI display. This distortion is corrected by converting the transmitter-to-target azimuth to the receiver-to-target azimuth and determining the target-to-receiver range which is a function of the delay time. The delay time is the time difference between the direct pulse and the reflected pulse. This will cause the trace on the display to move in a complex pattern, hence correcting this distortion.

A bistatic radar receiver was built for the Electrical Engineering Department at UCT. The purpose of the radar is to monitor aircraft approaching and departing from D.F. Malan airport. The motivation for this project is to utilize one of the many advantages of the bistatic radar. This advantage is [5]:

"For military and civilian air surveillance radar application in an area where there are several airfields. Each airfield will have its own bistatic radar receiver. The targets will be illuminated by one high power, expensive transmitter located in the required coverage area. The advantage is that mutual interference between several transmitters will be eliminated and the utilization of the spectrum improved."
The receiver is designed to "hitchhike" off the L-Band transmitter at D.F. Malan airport which is 15km away. The peak power of the transmitter is 2.5MW and the transmitted pulse width is 2.5µsec. The design of the receiver at UCT, which is shown in Figure 1, can be broken down into five sections, namely:

1. The antenna which floodlights the coverage area. This is a simple dipole antenna with one reflector.

2. The receiver front end. This is a superheterodyne type, providing a down conversion from 1.35GHz to 70MHz. There are three amplifiers and an STC circuit producing a variable gain from 24dB to 76dB. The amplifier after the antenna is a low noise
amplifier. The total receiver losses are 24dB and it has a noise figure from 14dB to 47dB depending on the gain of the STC circuit. To maximize SNR, matched filtering is used after the detector stage. The receiver has variable sensitivity of -103dBm to -24dBm with a SNR of 12dB at the display. The maximum range of the receiver is 127km for a target with an RCS of 50m².

A local oscillator generates 1.42GHz at a level of 7dBm to feed the mixer. At present manual tuning is used to cater for the 7MHz drift of the transmitter.

The output of the IF amplifier passes through the detector and the video signal is then applied to the PPI display. Preceding the STC circuit is a power splitter. Here part of the signal is level detected. This is required for the synchronization circuits.

3. The azimuth synchronization system. This synchronization is performed when the receiver is illuminated by the transmitter (dwell period). The centre of the dwell period is determined and a counter is reset. The counter then counts 1024 discrete azimuth positions corresponding to the transmitter antenna azimuth.

To avoid errors caused by variations in the antenna’s rotation rate, the output of the azimuth counter is checked before resetting and if required, is corrected by the operator. The azimuth synchronization circuit has a resolution of 2.1°.

4. Range synchronization system. During the dwell period the PRF is also synchronized at the receiver. The PRF is 400Hz wobbled at 50Hz by the local mains supply. This requires synchronization to 400Hz and 50Hz. A square wave 400Hz VCO is used to regenerate the PRF independently at the receiver. The VCO is then frequency modulated at 50Hz which is derived from the mains. The 50Hz is adjusted in phase and amplitude and the VCO will be reset during the dwell period in order to remain in alignment with the transmitter.

5. The display system. This system must correct for bistatic distortion. For every discrete transmitter azimuth position the display must determine the receiver azimuth and target
to receiver range for a set number of delay times. This is achieved with the use of an EPROM look-up table. The EPROMs store the azimuth and range information in cartesian coordinates in order to drive the display. A counter is used to address the memory and synchronization is maintained by the PRF and transmitter azimuth information derived by the synchronization systems. The display has an angular resolution of 1.3° and a range resolution of 782m.

It was shown that relatively simple PRF and azimuth scanning synchronization is achievable, allowing for a conventional PPI display of target information.
Table of Contents

Declaration .. i
Acknowledgements ... ii
Terms of Reference .. iii
Synopsis ... iv
Table of Contents .. ix
List of Illustrations ... xiv

1. INTRODUCTION ... 1

2. AN OVERVIEW OF BISTATIC RADAR 4
 2.1 DEFINITIONS AND REQUIREMENTS 4
 2.2 THE HISTORY OF BISTATIC RADAR 6
 2.3 APPLICATIONS OF BISTATIC RADAR 9
 2.4 AN ANALYSIS OF BISTATIC RADAR............... 11
 2.4.1 THE GEOMETRY 11
 2.4.2 THE RADAR RANGE EQUATION 13
 2.4.3 CONSTANT RANGE CONTOURS 13
 2.4.4 CONSTANT BISTATIC ANGLE AND RANGE RATIO CONTOURS 15
 2.4.5 CONSTANT POWER CONTOURS 18
 2.4.6 TARGET LOCATION AND COVERAGE 21
 2.4.7 RANGE AND CELL AREA RESOLUTION 25
 2.4.8 BISTATIC DISTORTION AND DISPLAY CORRECTION .. 30
 2.4.9 BISTATIC DOPPLER CHARACTERISTICS 34
 2.4.10 RADAR TARGET CROSS SECTION 36
2.4.11 CLUTTER ... 40
2.5 OTHER ASPECTS ON BISTATIC RADAR 42
 2.5.1 PULSE CHASING .. 42
 2.5.2 BEAM SCAN ON SCAN 44
2.6 CONCLUSION .. 46

3. AN INDEPENDENT BISTATIC RADAR RECEIVER 49
 3.1 GEOGRAPHICAL LAYOUT OF THE RADAR 50
 3.2 TRANSMITTER PARAMETERS 52
 3.3 RECEIVER SYSTEM ANALYSIS 56
 3.3.1 RECEIVER REQUIREMENTS 57
 3.3.2 BANDWIDTH REQUIREMENTS 59
 3.3.3 THE COMPONENTS OF THE RECEIVER 61
 3.3.3.1 ANTENNA ... 61
 3.3.3.2 LOW NOISE AMPLIFIER AND ANTENNA FEED 64
 3.3.3.3 PRESELECTOR FILTER 67
 3.3.3.4 MIXER ... 68
 3.3.3.5 MATCHED FILTER 71
 3.3.3.6 PREAMP AND POWER SPLITTER 73
 3.3.3.7 SENSITIVITY TIME CONTROL 75
 3.3.3.8 IF AMP-Amplifier 81
 3.3.3.9 ENVELOPE DETECTION AND INTEGRATION 83
 3.3.3.10 THRESHOLD DETECTOR 87
 3.3.4 SPECIFICATIONS OF THE RECEIVER 88
 3.3.4.1 POWER OF DETECTED DWELL PERIOD PULSES 88
 3.3.4.2 MAXIMUM DETECTED POWER LEVEL OF A TARGET 89
 3.3.4.3 SYSTEM NOISE FIGURE AND SENSITIVITY 90
 3.3.4.4 RADAR RANGE AND COVERAGE 97
 3.3.4.5 RESOLUTION ... 98
 3.3.5 AZIMUTH SYNCHRONIZATION 101
 3.3.6 PULSE REPETITION FREQUENCY SYNCHRONIZATION 104
 3.3.7 THE PLAN POSITION INDICATOR DISPLAY 108
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4 CLUTTER PREDICTIONS</td>
<td>109</td>
</tr>
<tr>
<td>3.5 CONCLUSION</td>
<td>116</td>
</tr>
<tr>
<td>4. CONCLUSION</td>
<td>117</td>
</tr>
<tr>
<td>5. RECOMMENDATIONS</td>
<td>118</td>
</tr>
<tr>
<td>BIBLIOGRAPHY AND REFERENCES</td>
<td>120</td>
</tr>
<tr>
<td>APPENDIX 1</td>
<td>122</td>
</tr>
<tr>
<td>APPENDIX 2</td>
<td>124</td>
</tr>
<tr>
<td>APPENDIX 3</td>
<td>126</td>
</tr>
<tr>
<td>APPENDIX 4</td>
<td>129</td>
</tr>
<tr>
<td>APPENDIX 5</td>
<td>130</td>
</tr>
<tr>
<td>APPENDIX 6</td>
<td>136</td>
</tr>
<tr>
<td>APPENDIX 7</td>
<td>140</td>
</tr>
<tr>
<td>APPENDIX 8</td>
<td>143</td>
</tr>
<tr>
<td>APPENDIX 9</td>
<td>146</td>
</tr>
<tr>
<td>APPENDIX 10</td>
<td>151</td>
</tr>
<tr>
<td>APPENDIX 11</td>
<td>154</td>
</tr>
</tbody>
</table>
List of Illustrations

<table>
<thead>
<tr>
<th>Figure</th>
<th>Illustration</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Block diagram of the receiver</td>
<td>vi</td>
</tr>
<tr>
<td>2.1</td>
<td>Bistatic radar coordinate system</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Constant range contours</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Constant bistatic angle contours</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Ovals of Cassini</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>Ratio of bistatic to monostatic coverage area</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>Geometry showing the cell area</td>
<td>29</td>
</tr>
<tr>
<td>2.7</td>
<td>Bistatic distortion on a PPI display</td>
<td>31</td>
</tr>
<tr>
<td>2.8</td>
<td>Receiver range vs delay time</td>
<td>32</td>
</tr>
<tr>
<td>2.9</td>
<td>Receiver azimuth vs delay time</td>
<td>33</td>
</tr>
<tr>
<td>2.10</td>
<td>PPI scan pattern for a bistatic display</td>
<td>34</td>
</tr>
<tr>
<td>2.11</td>
<td>Curves of constant doppler reduction</td>
<td>36</td>
</tr>
<tr>
<td>2.12</td>
<td>Coordinate system for clutter measurements</td>
<td>40</td>
</tr>
<tr>
<td>2.13</td>
<td>Receiving arc due to Tx beamwidth</td>
<td>43</td>
</tr>
<tr>
<td>3.0</td>
<td>Geographical coverage area of the radar</td>
<td>51</td>
</tr>
<tr>
<td>3.1</td>
<td>PRF sampled during the dwell period</td>
<td>52</td>
</tr>
<tr>
<td>3.2</td>
<td>Transmitter elevation radiation pattern</td>
<td>54</td>
</tr>
<tr>
<td>3.3</td>
<td>Transmitter azimuth radiation pattern</td>
<td>55</td>
</tr>
<tr>
<td>3.4</td>
<td>Block diagram of the receiver</td>
<td>57</td>
</tr>
<tr>
<td>3.5</td>
<td>$\sin(x)/x$ transfer function</td>
<td>59</td>
</tr>
<tr>
<td>3.6</td>
<td>Receivers frequency map</td>
<td>60</td>
</tr>
<tr>
<td>3.7</td>
<td>Receiver antenna and balun construction</td>
<td>62</td>
</tr>
<tr>
<td>3.8</td>
<td>Receiver antenna gain pattern</td>
<td>62</td>
</tr>
<tr>
<td>3.9</td>
<td>Receiver antenna S_{11} parameters</td>
<td>63</td>
</tr>
<tr>
<td>3.10</td>
<td>Coaxial attenuation characteristics</td>
<td>65</td>
</tr>
<tr>
<td>3.11</td>
<td>LNA circuit diagram</td>
<td>66</td>
</tr>
</tbody>
</table>
3.44 SCR (receiver azimuth = 80 degrees) .. 111
3.45 SCR (receiver azimuth = 45 degrees) .. 111
3.46 SCR (receiver azimuth = 12 degrees) .. 112
3.47 SCR (receiver azimuth = 30 degrees) .. 112
3.48 Larson's clutter coefficient data ... 113
3.49 SCR (constant range contour = 19km) 114
3.50 SCR (constant range contour = 27km) 115
CHAPTER 1

INTRODUCTION

In a bistatic radar the transmitter and receiver are separated by an amount which is comparable to the distance to the targets which are being displayed. The separation between the transmitter and receiver introduces certain factors which have to be taken into account.

- the receiver must have some way of synchronizing to the PRF as well as the transmitter azimuth angle at any particular point in time.

- the receiver must correct for bistatic distortion on the Plan Position Indicator (PPI) display.

Why use bistatic radar which requires this additional synchronization and display conversion? Some advantages of the bistatic radar over the monostatic radar are listed below.

1. A monostatic radar with co-located transmitter and receiver are susceptible to external interference sources, such as jamming. The transmitter, being an active input, clearly advertises its position. In a bistatic system the receiver is a passive element, hence difficult to detect.

2. For air surveillance applications in an area where there are several airfields, each airfield will have its own receiver. The targets will be illuminated by one high power, expensive transmitter. In this case mutual interference between several transmitters will be eliminated.
3. The bistatic forward radar target cross section is several times larger than the monostatic radar target cross section.

An experimental L-Band bistatic radar receiver and display system is in development at the University of Cape Town (UCT). The receiver will hitchhike off the transmitter at D.F Malan airport. The objective of the receiver is for air surveillance purposes and to detect these aircraft as they approach and depart from D.F. Malan airport.

The objectives of this report are:

1. To briefly give the history of bistatic radar and several examples of previous systems and their applications.

2. To determine the advantages and disadvantages of a bistatic radar and to give several applications where the advantages outweigh the disadvantages when compared to a monostatic radar.

3. To give the reader a basic understanding of the bistatic radar geometry and theory.

4. To explain the detailed design of the bistatic receiver, which was developed to achieve certain requirements.

5. To provide a detailed outline of the performance of the receiver.

6. To draw conclusions and make recommendations.

The information on which this report is based was gathered from text books and several papers.

The first chapter is a literature review of bistatic radar. The chapter begins by defining bistatic radar and explaining its various configurations. The history and several applications are then covered. The bistatic radar is then analyzed with respect to; geometry, radar range
equation, constant range contours, constant power contours, coverage, resolution, doppler characteristics, bistatic distortion, clutter and radar target cross section.

The second chapter discusses the specific bistatic radar, where the receiver is at the University of Cape Town. Firstly the geometry is described and then the expected requirements of the receiver are given. Secondly the receiver is broken down into its several component systems (receiver front end, synchronization circuits and display) and described. The parameters of each component are also given. Finally the specifications of each component are listed and the performance of the receiver determined. The system design parameters are then compared to the actual performance.
A Bistatic radar is a system where the transmit and receive antennas are located on separate sites. Target detection is achieved by the illumination of the target by the transmitter and the scattered signal from the target (target echoes) is then detected by the receiver.

This chapter is written in order to give the reader background information on bistatic radar. This information will be both historical and technical. The information was gathered from several publications. At several points in this chapter the bistatic characteristics for a particular application will be mentioned.

This particular application is a bistatic system used for air surveillance purposes. The transmitter has a rotating fan beam antenna and the receiver has a floodlight antenna.

2.1 DEFINITIONS AND REQUIREMENTS

Skolnik [10] defines a bistatic radar as:

"...a bistatic radar is assumed to be one in which the separation between transmitter and receiver is comparable to the target distance."

If separate transmit and receive antennas are on the same site then the system is considered to be monostatic, according to the above definition. These systems are also
known as "quasi-bistatic" [9]. When two or more receive sites with common spatial coverage are employed and target data from each is combined at a central location, the system is called a multistatic radar. Multiple transmitters can be used with any of these configurations. They can be located at separate sites or collocated with the receive sites. Bistatic radars can operate in either of three different modes [1], namely:

1. **Dedicated** - This is defined as being under both design and operational control of the bistatic radar system.

2. **Cooperative** - This system is designed for other functions but found suitable to support bistatic operations and the transmitter can be controlled to do so.

3. **Non-cooperative** - This system is designed for other functions and is suitable to support bistatic operation, however the transmitter cannot be controlled.

To determine target location the receiver must know the transmit azimuth and elevation and the timing of the transmitted signal. For matched filter operation, the transmitted waveform must be available and for coherent receiver operation the phase of the transmitted waveform must be available to the receiver. Hence in a bistatic or multistatic system synchronization between the transmitter and receiver must be maintained [1][9]. This can be achieved in either of three ways:

1. **Direct synchronization** is when a signal is sent from the transmitter to the receiver. This signal is used to synchronize a clock. This can be accomplished by either a land line, communication link, or directly at the transmitters RF if an adequate line of sight exists between transmitter and receiver.

2. **Indirect synchronization** is achieved by using identical stable clocks at the transmitting and receiving sites. The clocks however must be periodically synchronized.
3. **Direct breakthrough synchronization** is achieved when the transmitting beam scans past the receiving site, given an adequate line of sight. The receiver then synchronizes on the pulses received during the main beam illumination period (dwell period).

For this application the system is non-cooperative and direct breakthrough synchronization is used. In other words the receiver is hitchhiking off the transmitter.

2.2 THE HISTORY OF BISTATIC RADAR

In 1904 the first radar was developed by a German engineer, Christian Hulsmeyer [1] to detect ships. This was bistatic in nature. Several countries, during the 1920s and 1930s, were conducting radar experiments simultaneously and independently. These were the United States, the United Kingdom, France, Italy, Russia, Japan and Germany. Later in the late 1930s the first array of radars started to make their appearance. These radars were predominantly bistatic. With the advent of the duplexer at the US Naval Research Laboratory in 1936, research into the bistatic radar became virtually dormant. The duplexer allowed transmitting and receiving to be done with the same antenna. This was the advent of the monostatic (single site) radar. It was not until the 1950s that interest in bistatic radars was revived. The research work was primarily focused on theory and measurements, forward scatter fences, semiactive homing missiles and multistatic radars. In the 1970s and 1980s a second bistatic resurgence [1] took place. This was initiated by the ability of the enemy to home in on the transmitter radiation. To make the transmitter less vulnerable it could be moved out of the battle field and into a sanctuary. A second threat which began to emerge was the retrodirective jammer, in which a high gain jamming antenna is directed toward the monostatic radar. By selecting the correct bistatic geometry (bistatic angle) the
effectiveness of the retrojammer could be reduced. Research into clutter tuning also began.

The first bistatic radars used CW transmitters and detected a beat frequency produced between the direct-path signal from the transmitter and the doppler frequency shifted signal scattered by a moving target. The target would be detected when crossing the base line. This effect was called CW interference [3]. At the Naval Research Laboratory, A. Taylor and L.C. Young detected a wooden ship using a CW wave interference radar with a wavelength of 5 m. In 1932 they accidentally detected an aircraft 3.2 km away while working at 33 MHz. Later that same year they detected an aircraft 80 km away [6].

In 1935, Sir Robert Watson-Watt of the UK used radios to detect aircraft. This developed into the Chain Home network of radars along the British coast. They operated at HF. This system played an important role in the Battle of Britain in 1940. The French, in 1941, also developed a bistatic CW radar in a two-fence configuration which had a wavelength of 4 m.

In 1934 the Soviet Union developed bistatic radars which operated at 75 MHz. These were known as RUS-1. They were later replaced by RUS-2 and RUS-2C. In 1941, 45 RUS-1 systems were built in the Far East and Caucasus. At the same time the Japanese deployed 100 bistatic CW fence radars (Type A). They were able to detect aircraft up to 800 km away, operated between 40 and 80 MHz and had a transmitter power of 400 W. They remained in service till the end of the second world war.

During World War 2 the Germans built the Klein Heidelberg. This was the first noncooperative bistatic configuration. It used the British Chain Home radar transmitters. The receivers were then able to detect Allied bombing raids while still over the English Channel, without endangering the German ground sites.
During the first resurgence of bistatic radar in the early 1950s, RCS theory and measurements for the reverse and forward scatter areas were developed and taken respectively. This led to clutter measurements. Bistatic radar theory was also codified by Skolnik. In 1954 the Canadian Air Force detected scale model aircraft flying across the beam in the forward scatter region. During the 1960s the AN/FPS-23 Fluttar radar was developed. This is a CW fixed beam bistatic fence radar. It was used to detect penetration of the Distant Early Warning (DEW) line, in the Arctic by low flying bomber aircraft [6].

A great deal of research and development work was done on the semiactive homing missile detector. At the same time Navspur was developed [6]. This was used to detect orbiting objects and ballistic missiles as they passed through the electronic fence over the continental United States. Also developed was the AZUSA, the Udop and the Mistram which were multistatic radars. They were used for precision measurements of trajectories at missile and test ranges.

During the second resurgence of bistatic radar, Sanctuary, an experimental bistatic radar system, was developed by Technology Service Corporation. The system used a ground based coherent radar receiver site operating with a cooperative airborne transmitter to perform surface-to-air surveillance and target tracking [6]. The Sanctuary provided protection from antiradiation missiles (ARM) and retrodirective jamming.

The Environmental Research Institute of Michigan developed an experimental synthetic aperture radar (SAR). The system uses X-Band transmitters and receivers mounted in a Convair CV-50 aircraft. This system was used to produce two dimensional images of mapped areas. Another SAR system, the BTT/TBIRD was developed. This was to demonstrate clutter tuning, forward-looking SAR operation and side-looking moving target indication operation.

A bistatic pulse doppler intruder detection radar was also developed to protect military aircraft on the ground from intruders, known as an aircraft security sensor (ASR). Five
portable transmitter-receiver units, separated by 65m, were located around the aircraft, with one transmitter servicing the adjacent receiver. It was configured for near forward scatter operation [3].

The TRADEX L-Band and ALTAIR UHF monostatic radars are also used in multistatic configurations [6]. This configuration was developed to track ballistic missile skin echoes. The system which was developed in 1980 is projected to measure three dimensional position and velocity with accuracies better than 4m and 0.1m/s respectively.

Some other non-military developments of bistatic radar have been high-resolution imaging at short ranges for use by robotics in an industrial environment; airport ground vehicle and aircraft collision warning and avoidance using a baseband bistatic radar; planetary surface and environment measurements using a satellite-based transmitter and an earth-based receiver; ocean wave spectral measurements using a Loran-A system and detection of tropospheric layers and ionospheric layers using ground-based sites.

2.3 APPLICATIONS OF BISTATIC RADAR

Several applications for bistatic radar will be mentioned below. The applications have been divided into two categories, namely military and non-military applications.

Military Applications

1. Bistatic techniques were used in semiactive homing missiles. Here the large, heavy and costly transmitter could be off-loaded from the small expendable missile onto the launch platform.
2. When the target crosses the line joining the transmitter and the receiver (baseline), the radar system operates in the forward-scatter mode (forward-scatter fence). In this mode the bistatic radar target cross section (RCS) increases when compared to the monostatic RCS. The improvement is a result of the forward scatter phenomenon [14]. The magnitude of the forward scatter return is not dependent on the target's material composition. Hence, detection of an object with a monostatic RCS reduced through shaping or by treatment of radar absorbing materials, as the stealth bomber, is possible.

3. The transmitter can be placed in a sanctuary where it is protected from antiradiation missiles and retro-directive jamming. The receiver can then be operated relatively safely in the field.

4. A bistatic receiver can be placed on an aircraft which then uses transmitters of opportunity (hitchhiking) to detect targets near the aircraft or transmitting site. This setup can warn the pilot of an intruding aircraft or missile while the pilot's primary sensor is off. This concept is known as passive situation awareness (PSA) [1].

Non-military applications

1. For civilian (as well as military) air surveillance radar applications in an area where there are several airfields. Each airfield will have its own receiver. The targets will be illuminated by one high power, expensive transmitter located in the required coverage area. This will eliminate mutual interference between several transmitters and receivers and the utilization of the spectrum is improved. An additional advantage is that the receivers will operate passively [7][11].

2. Synthetic aperture radar (SAR) images can be produced by placing the transmitter and receiver on different airborne platforms. In this configuration the separate
velocity vectors can be changed to control or "tune" the ground clutters doppler shift and doppler spread. This concept is known as clutter tuning.

3. A short-range bistatic radar can be used in precollision warning/avoidance and ground-air traffic control. Subnanosecond video pulses drive a wideband transmitting antenna. The radiated pulse reflects off a target and returns to a similar receiving antenna and display network [6].

4. It can be used for planetary surface and environmental measurements using a satellite-based transmitter and an earth-based receiver or a planet-based transmitter and a satellite-based receiver.

2.4 AN ANALYSIS OF BISTATIC RADAR

This section describes the basic principles of a bistatic radar. The principles covered, amongst others are the geometry or the layout of the bistatic radar. This geometry then gives the bistatic radar its unique qualities, such as isorange contours, constant bistatic angle contours, ovals of Cassini, spatial coverage, forward scatter RCS, bistatic clutter and bistatic distortion. These topics will all be covered briefly, below.

2.4.1 THE GEOMETRY

The coordinate system used to describe the bistatic geometry will be the two dimensional, North-referenced coordinate system. This is shown in Figure 2.1. The bistatic plane is the plane in which the transmitter (Tx), receiver (Rx) and target (Tgt) lie. This is also known as the bistatic triangle. The distance between
Figure 2.1 Bistatic radar North-Referenced coordinate system.

The transmitter and the receiver is called the baseline (L). The extended baseline is defined as continuing the baseline beyond the transmitter or receiver. The distance from the transmitter to the target is defined as R_T and from receiver to target as R_R.

The bistatic angle β is the angle between the transmitter and receiver with the vertex at the target. The receiver look angle is θ_R and the transmitter look angle is θ_T. Note that:

$$\theta_T + \theta_R = \beta \text{ for } 0^\circ < \theta_T < 180^\circ \text{ and } 180^\circ < \theta_R < 360^\circ.$$

The look angles are taken as positive in the clockwise direction. They are also known as the angles of arrival (AOA) [1].

In general, the performance and operation of the bistatic radar is the same irrespective of whether the target lies above or below the baseline. This is due to the symmetrical nature of the geometry.
2.4.2 THE RADAR RANGE EQUATION

The bistatic radar range equation is derived in exactly the same way as in the monostatic case. A derivation can be found in reference [2]. There are several differences however, which will be described later. The bistatic range equation [1][11] is shown below.

\[
(R_T R_R)_{\text{max}} = \sqrt[3]{\frac{P_T G_T G_R \lambda^2 \sigma_B F_T^2 F_R^2}{(4\pi)^3 k T B (S/N)_{\text{min}} L_T L_R}}
\]

where

\(R_T \) = transmitter to target range
\(R_R \) = receiver to target range
\(P_T \) = power of the transmitter
\(G_T \) = gain of the transmitter's antenna
\(G_R \) = gain of the receiver's antenna
\(\lambda \) = wavelength
\(\sigma_B \) = bistatic radar target cross section
\(F_T \) = transmitter pattern propagation factor
\(F_R \) = receiver pattern propagation factor
\(k \) = Boltzmann's constant
\(T \) = receiver noise temperature
\(B \) = receiver noise bandwidth
\((S/N)_{\text{min}} \) = signal to noise ratio needed for detection
\(L_T \) = losses in the transmitter
\(L_R \) = losses in the receiver
\(\kappa \) = bistatic maximum range product
For the bistatic range equation to be reduced to the monostatic range equation the following changes are made:

1. \(\sigma_M = \sigma_B \)
2. \(L_T \cdot L_R = L_M \)
3. \(R_t^2 \cdot R_r^2 = R_M^4 \)

Also note that \((R_M)_{\text{max}} = \sqrt{k} \). Hence when the target range in the bistatic radar is extended to infinity, the bistatic radar reduces to the monostatic case.

The pattern propagation factors take into account the gains of the transmit and receive antennas as a function of pointing angle. They also take into account the loss that the signal experiences (atmospheric absorption, diffraction, refraction) while propagating through the atmosphere.

2.4.3 CONSTANT RANGE CONTOURS

The total distance travelled by the signal from the transmitter to the target to the receiver is:

\[T = R_t + R_r \]

When the total range \((T) \) is kept constant, constant range sum ellipses (isoranges) are formed. The transmitter and receiver then form the foci of the ellipse. This is shown in Figure 2.2.
The constant range contours are also known as constant delay time contours. Note that the bisector of the bistatic angle is orthogonal to the tangent of the isorange contour at any point on the contour [1]. The following equations express the isorange contours in cartesian coordinates.

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
\]

\[
\frac{L^2}{4} = c^2 = a^2 - b^2
\]

The origin of the cartesian coordinates will be at the midpoint of the base line. The transmitter and receiver are placed at ±c (the foci). The semimajor axis is represented by a and the semiminor axis by b. Also note that \((R_T + R_R) = 2a\).

Knowing the eccentricity of the isorange contour simplifies expressions involving these contours. The eccentricity (e) of an ellipse is:
\[e = \frac{L}{(R_T + R_R)} \]
\[= \frac{L}{2.a} \]
\[= \frac{\sqrt{a^2 - b^2}}{a} \]

The value of \(e \) lies in the range of \(0 < e < 1 \). When \(e = 0 \), then \(L = 0 \) and the ellipse is a circle, i.e. representing a monostatic radar.

2.4.4 CONSTANT BISTATIC ANGLE AND RANGE RATIO CONTOURS

For certain bistatic configurations, operation of the radar is constrained by a maximum or minimum bistatic angle. An example of this is if the system operates in the forward scatter mode. In this case one does not want the bistatic angle to deviate much from \(180° \). In this section the maximum bistatic angle in the ellipse is determined and constant bistatic angle contours are plotted.

Contours of constant range ratio are also shown. The importance of this will be discussed later in the section on pulse chasing.

When the bisector of the bistatic angle is perpendicular to the baseline, it will cut the baseline at the midpoint or origin. At this point the bistatic angle is a maximum (\(\beta_{\text{max}} \)). The bisector is also the semiminor axis of that constant range ellipse. When the bistatic angle is a maximum then;

\[R_T = R_R \]
\[\theta_T = \theta_R \]
From the above the following equations can be derived [1]:

\[\beta_{\text{max}} = 2 \sin^{-1}\left(\frac{L}{2R_T}\right) \]
\[\beta_{\text{max}} = 2 \sin^{-1}\left(\frac{L}{2R_R}\right) \]
\[\beta_{\text{max}} = 2 \sin^{-1}(e) \]

Note also that at this point \(\theta_T \) and \(\theta_R = \sin^{-1}(e) \).

Points that have a constant bistatic angle are known to lie on circles passing through the transmitter and receiver [8]. These contours are centred on the midline or perpendicular bisector of the baseline at:

\[d_p = \frac{L}{2 \tan \beta} \]

The radius of the circles are:

\[r_p = \frac{L}{2 \sin \beta} \]

These contours are also known as iso-\(\beta \) contours. Iso-\(\beta \) contours are shown in Figure 2.3. For \(\beta = 0^\circ \) the contour lies on the extended baseline and for \(\beta = 180^\circ \) the contour lies on the baseline.

Note that as \(\beta_{\text{max}} \to 180^\circ \), \(e \to 1 \). In general when \(\beta_{\text{max}} > 140^\circ \) many approximations used in estimating bistatic radar performance break down [1].

From Figure 2.3 one notes that the transmitter (circles not shown) and receiver are surrounded by circles. These circles are constant range ratio contours \((K = R_T/R_R) \) [8]. The centres lie on the extended baseline.
Figure 2.3: Constant iso-β contours and constant range ratio contours (R_T/R_R).

The equations for the centre (c) and radius (r) are given below.

\[
 r = \frac{K}{K^2 - 1}
\]

\[
 c = \frac{(K^2 + 1)}{K^2 - 1} / 2
\]

The intersection of the tangents of iso-β and range ratio contours are perpendicular. The K value changes from a negative value to a positive value as the centre of the baseline is crossed from the transmitter to receiver. It is close to unity at long ranges from the transmitter or receiver.

When the transmitter's look angle lies between 180° and 360°, the range ratio starts from zero and increases towards unity at a decreasing rate as R_T is increased. For other look angles the sightline crosses the midline into the receivers area and the ratio rises to a maximum exceeding unity and then falls back again towards unity.

18

2.4.5 CONSTANT POWER CONTOURS

Bistatic geometry affects the received echo power differently from the monostatic case. This is because the path loss factor for the bistatic case is $1 / R_T^2 R_R^2$ where as for the monostatic case it is $1 / R_M^4$. Now the effective range is the geometric mean $\sqrt{(R_T R_R)}$. This section will illustrate how this affects the received power or signal to noise ratio on the bistatic plane [1][8].

Signal to noise ratio contours, where $R_T R_R$ are kept constant for each contour are called ovals of Cassini. To obtain these curves one would solve the radar range equation described in section 2.4.2 for the SNR. This is shown below.

$$S/N = \frac{k}{R_T^2 R_R^2}$$

where

$$k = \frac{P_T G_T G_R \lambda^2 \sigma_B F_T^2 F_R^2}{(4 \pi)^3 K T B L_T L_R}$$

The term k is called the bistatic radar constant. The minimum SNR contour can be determined from:

$$(S/N)_{\text{min}} = k / \kappa^2$$

The ovals of Cassini are shown in Figure 2.4. These contours apply to any bistatic plane.

One notes from Figure 2.4 that the ovals shrink and finally collapse around the transmitter and receiver as the SNR increases. This same effect occurs if the baseline (L) length is increased. The point on the baseline where the ovals break into two parts is called the cusp. Here the oval is called a lemniscate (two parts).
At this point the target would be at the centre of the baseline and one arrives at the following equation [1]:

\[
\frac{S}{N} = \frac{(16 \cdot k)}{L^4} \\
\frac{S}{N} = 2 \sqrt{k}
\]

From these equations three operating regions can be defined, namely:

1. **The receiver centred region.** This occurs when \(L > 2\sqrt{k} \) and \(R_T > R_R \). Here the ovals break into two parts.

2. **The transmitter centred region.** This occurs when \(L > 2\sqrt{k} \) and \(R_R > R_T \). Here the ovals break into two parts.

3. **The cosite region.** This occurs when \(L < 2\sqrt{k} \). Here the ovals remain single.
When $L = 0$ the ovals become circles which is the monostatic case. Some bistatic radar applications for the different regions are given in Appendix 1.

Another method of characterizing constant SNR contours is to plot the SNR contours as a function of bistatic ranges, each normalized to the baselength. This, however, is not shown here. See reference [1].

2.4.6 TARGET LOCATION AND COVERAGE

In a bistatic radar configuration one usually wants to know the target range and azimuth relative to the receiver, i.e. R_R and θ_R need to be calculated. This section will provide several equations which are used to determine these coordinates and the measurements required to solve them, such as the delay time. Other techniques are also briefly mentioned. This section concludes with a discussion of the coverage area of a bistatic radar.

In order to solve the target location (R_R, θ_R) from the receiver site certain parameters need to be known. These parameters are the baseline length (L), transmitter azimuth (θ_T) and the range sum. The baseline length is either set or it can be measured with a transmitter location system. The receivers look angle can either be measured directly or θ_T can be converted to θ_R.

Two methods are used to determine the range sum, namely:

1. **The direct method** [3]. With this method the receiver measures the time interval ΔT between the reception of the transmitted pulse and the target echo. The range sum is then calculated from:
(R_T + R_R) = c \cdot \Delta T + L

2. **The indirect method** [3]. With this method synchronized stable clocks are used by the receiver and transmitter. The receiver measures the time interval \(\Delta T \) between transmission of the pulse and reception of the target echo. The range sum is then calculated from:

\[(R_T + R_R) = c \cdot \Delta T\]

Where \(c \) is the approximate speed of light \((3 \times 10^8 \text{ m/s})\) in a vacuum.

The equations that follow are used to solve for \(R_R \) and \(\theta_R \). These equations are obtained by solving the bistatic triangle described in section 2.4.1.

\[
\frac{R_R}{2} = \frac{(R_T+R_R)^2 - L^2}{2(R_T+R_R+Lsin\theta_R)}
\]

\[
R_R = \sqrt{(R_T^2+L^2 - 2R_TLsin\theta_T)}
\]

\[
\theta_R = \theta_T - 2 \cdot \arctan \left(\frac{\cos \theta_T}{(c \cdot \Delta T/L) + 1 - \sin \theta_T} \right)
\]

Several other techniques can be used to solve the target location. The techniques used depend on the geometry of the system. Sometimes more than one receiver is required, such as in a netted multistatic system. Some examples are given below.

A theta-theta location technique uses the angles \(\theta_T \) and \(\theta_R \) and the baseline length. Normally \(\theta_T \) is provided by a monostatic radar which acts as a cooperative bistatic transmitter [3][1].
An Overview of Bistatic Radar

Two or more receiving sites (multistatic system) can be used to detect targets. Target location is by means of combined angle measurements from each site. This technique is known as triangulation [18][19].

Another technique which only uses range information (trilateration) can also be used. Here the receiver measures the difference in propagation times from three separate transmitters. The locus of the target will lie on two hyperbolas. The point of intersection of these hyperbolas will indicate the target's position. This is also known as the hyperbolic measurement system [3].

By using only doppler measurements, it is also possible to determine the trajectory of the target [10]. Here a continuous record of the variation of the doppler frequency caused by the target must be measured as a function of time. This curve must then be matched with curves previously calculated for various trajectories.

The next important point in locating the target is to be able to define the coverage area of the bistatic radar. The bistatic coverage of a bistatic radar is defined as the region or area on the bistatic plane where the target is visible, i.e. detectable by the receiver and within line of sight of both transmitter and receiver [1]. Bistatic coverage is established in either of two ways, namely:

1. Detection-constrained coverage. Here the coverage is established by the maximum range oval of Cassini \((R_T R_R)_{\text{max}} \). When the oval of Cassini surrounds both the transmitter and receiver (the cosite region), the coverage area will be approximated by the following expression:

\[
A_{\text{BI}} \approx \Pi \cdot \kappa \left[1 - (1/64)(L^4/\kappa^2) - (3/16384)(L^4/\kappa^4) \right]
\]

When the oval of Cassini surrounds the transmitter and receiver with two separate circles (receiver-transmitter-centered region), the coverage area will be approximated by the following expression:

23
An Overview of Bistatic Radar

\[A_{B2} = \frac{2\pi k^2}{R^2} \left(1 + 2k^2/L^4 + 12k^4/L^8 + 100k^6/L^{12} \right) \]

The coverage area for a monostatic radar is \((L = 0) \):

\[A_{M} = \pi \cdot k \]

Figure 2.5 shows how the coverage area varies as a function of baseline length when compared to the monostatic coverage area [1]. It is assumed that a suitable LOS exists.

![Figure 2.5 Ratio of bistatic to monostatic coverage area as a function of baseline length.](image)

2. Line-of-sight-constrained coverage. Here the target must be simultaneously illuminated by the transmitter and receiver. For a smooth earth these requirements are established by coverage circles centered at each site. The bistatic coverage area is the area common to both circles [1]. Under realistic conditions
this form of coverage is affected by multipath, refraction, diffraction, shadowing and the earth curvature. For a 4/3 earth model, ignoring multipath, the radii of these coverage circles (in km) are approximated by [1][8]:

\[
\begin{align*}
 r_R &= 130(\sqrt{h_t} + \sqrt{h_R}) \\
 r_T &= 130(\sqrt{h_t} + \sqrt{h_T}) \\
\end{align*}
\]

where
\[
\begin{align*}
 r_R &= \text{coverage area of the receiver} \\
 r_T &= \text{coverage area of the transmitter} \\
 h_t &= \text{target altitude} \\
 h_R &= \text{receiver antenna altitude} \\
 h_T &= \text{transmitter antenna altitude} \\
\end{align*}
\]

The common coverage area is then the intersection of the two circles. This is:

\[
A_c = 0.5[r_R^2(\phi_R - \sin \phi_R) + r_T^2(\phi_T - \sin \phi_T)]
\]

where
\[
\begin{align*}
 \phi_R &= 2\arccos\left(\frac{r_T^2 - r_T^2 + L^2}{2r_T L}\right) \\
 \phi_T &= 2\arccos\left(\frac{r_R^2 - r_R^2 + L^2}{2r_R L}\right)
\end{align*}
\]

The above equations are valid for \(L + r_R > r_T > L - r_R\) or \(L + r_T > r_R > L - r_T\). Whenever the right hand side of the inequality is not satisfied then \(A_c = 0\), ie the coverage areas do not intersect. When the left hand side of the first inequality is not satisfied then \(A_c = \Pi r_R^2\) and when the second inequality is not satisfied then \(A_c = \Pi r_T^2\). This is because the transmitters coverage circle includes the receivers coverage circle or vice-versa.
For this particular bistatic system, the range sum is determined from the direct method and the coverage area is detection-constrained. Also the baseline L is less than $2\sqrt{k}$. Hence the area will be determined by A_B. One must also note that the coverage area is also dependent on the antennas. A_B assumes that both the transmit and receive antennas operate equally in all directions. For this particular case the receive antenna only illuminates in one direction, hence $(R_T R_R)_{\text{max}}$ varies according to target azimuth. A_B will therefore not be correct.

2.4.7 RANGE AND CELL AREA RESOLUTION

The range and cell area resolution differ significantly from the monostatic radar. The major differences are noted at the baseline. A relationship illustrating how the range and cell area resolution change as a function of target position will be given in this section.

From Figure 2.2, which shows the constant range ellipses one notices that the range between two ellipses, which are next to each other increases as the bistatic angle moves from the extended baseline to the midpoint line (perpendicular bisector of the baseline). In a monostatic case the distance between two circles is constant however in the bistatic radar, the distance between two range rings is:

$$\Delta R_M = c.\tau / 2$$

where τ is the pulse width. Hence this value determines the range resolution of the monostatic radar [20].
For a bistatic radar given a constant pulse width (τ), the separation between the range rings (∆R_b) increases as the bistatic angle increases, so that on the extended baseline or at long ranges they become equispaced or start representing the monostatic case. An approximation for ∆R_b, the range resolution, is:

\[
\Delta R_b = \frac{\Delta R_M}{\cos(\beta/2)} = \frac{c\tau}{2\cos(\beta/2)}
\]

From the above equation one notes that the bistatic operation is related to the equivalent monostatic operation by the factor \(\cos(\beta/2)\). This relation is carried through to other operations. For example, bistatic target doppler is reduced by \(\cos(\beta/2)\) compared to the equivalent monostatic doppler. This will be shown in Section 2.4.8. The bistatic RCS of complex targets is equal to the monostatic RCS, but reduced in frequency by \(\cos(\beta/2)\) when \(\beta\) is small.

As stated in Section 2.4.4, as the bistatic angle increases, or the eccentricity of the ellipse increases the error in the bistatic approximations increase. The maximum error for ∆R_b \((\epsilon_{\text{max}})\) occurs on the perpendicular bisector of the baseline. It is given as [1];

\[
\epsilon_{\text{max}} = \frac{a(a'-a)}{b(b'-b)} - 1
\]

where

- \(a\) = semimajor axis of inner ellipse
- \(a'\) = semimajor axis of outer ellipse
- \(b\) = semiminor axis of inner ellipse
- \(b'\) = semiminor axis of outer ellipse
\(\epsilon_{\text{max}} \) is always positive hence the expression for \(\Delta R_B \) yields a separation that is greater than or equal to the exact value. As the bistatic angle tends to 180° this approximation breaks down because the true separation cannot approach infinity.

The actual area illuminated by the bistatic radar is dependent on the transmit and receive antenna beamwidth. This then leads one onto the topic of cell area resolution. Cell area resolution can be divided into two groups, namely beamwidth-limited and range-limited cell area.

Beamwidth-Limited. This cell area is the intersection of the transmit and receive antenna beams. This is shown in Figure 2.6. At small grazing angles, a two dimensional approximation to \(A_b \), which is a parallelogram is [1]:

\[
A_b = \frac{(R_R \Delta \theta_R)(R_T \Delta \theta_T)}{\sin \beta}
\]

Where \(\Delta \theta_T \) and \(\Delta \theta_R \) are the 3-dB beamwidths and \(R_R \Delta \theta_R \) and \(R_T \Delta \theta_T \) are the cross-range dimension for the receiver and transmitter respectively. The cross-range dimension increases as the range increases, hence the cell area increases. The beams are assumed to be parallel as the range sum is much greater than the baseline range. The cell area is at a minimum when \(\beta = 90^\circ \).

Range-Limited. This area is shown in Figure 2.6. This is similar to the beamwidth-limited case except that the pulse width needs to be taken into account. The two cross-range dimensions \((R_R \Delta \theta_R \text{ and } R_T \Delta \theta_T) \) are multiplied to obtain the overall directivity factor, and in the Gaussian case this is equivalent to the monostatic operation with a 3dB, one way linear beamwidth of [8]:

\[
W_E = \frac{\sqrt{2} R_T \Delta \theta_T R_R \Delta \theta_R}{\sqrt{(R_T \Delta \theta_T)^2 + (R_R \Delta \theta_R)^2} \cos(\beta/2)}
\]
An Overview of Bistatic Radar

This corresponds to the transverse dimensions conventionally assigned to the resolution cells of monostatic radars. Note that it is the smaller cross-range dimension which controls the transverse dimension. Now, by combining \(W_e \) and the range resolution equation \((\Delta R_R) \) we arrive at the bistatic area resolution \(A_r \).

\[
A_r = \frac{W_c c \tau}{2 \cos(\beta/2)}
\]

\[
= \frac{c \tau R_T \Delta \theta_T R_R \Delta \theta_R \sec^2(\beta/2)}{\sqrt{2 \sqrt{(R_T \Delta \theta_T)^2 + (R_R \Delta \theta_R)^2}}}
\]

This equation should not be used when calculating the cell area near the baseline as the range resolution equation breaks down.

Figure 2.6 Geometry showing the cell areas.
2.4.8 BISTATIC DISTORTION AND DISPLAY CORRECTION

If the bistatic radar video signals are fed into a conventional PPI display, the display sweep rate synchronized with the transmitting antenna rotation rate and the target range synchronized to the PRF a radar display will be obtained [7]. This display will, however, be distorted. This section will show how to correct for this bistatic distortion on a PPI display.

The bistatic display will be distorted because it assumes $\Delta T = 2R_r/c$ and therefore the displayed range R is given by [7]:

$$R = \frac{(R_T + R_q)}{2} - \frac{L}{2}$$

Targets at any point along the baseline are represented as having zero displayed range and cannot be resolved. The display distortion is that given by compressing the geometry so that transmit and receive sites merge to a single point.

Assume an aircraft flies across the centre of the baseline, from North East to South West. The trajectory of the aircraft on a PPI display is shown in Figure 2.7. The PPI display on the left shows the bistatic distortion while the display on the right has been corrected for this distortion.

To correct this distortion, the transmitter azimuth needs to be converted to the receiver azimuth and the receiver-to-target range needs to be determined. This will be for a PPI display centered at the receiver. In Section 2.4.6 equations were given in order to determine R_R and θ_R. These equations are repeated below.
Figure 2.10 shows the shapes the traces must have on a PPI display to correct for bistatic distortion. The PPI display is centred at the receiver.

Figure 2.8 Sweep law for a PPI display with the receiver at the origin.
Figure 2.9 Receiver pointing direction as a function of delay time.
An Overview of Bistatic Radar

Figure 2.10 Curves demonstrating the required trace the PPI display must have in order to correct for bistatic distortion.

2.4.9 BISTATIC DOPPLER CHARACTERISTICS

In a bistatic radar a target flying at a constant velocity does not give a constant doppler shift as a monostatic radar would do. This is due to the geometry of the radar. A brief explanation will be given below, relating doppler shift to the targets position and velocity.

Firstly, an equation will be defined which gives a measure of the shape of the bistatic triangle and position of the target. This is commonly called the triangulation factor (F) [9].
The doppler frequency in a bistatic system can be split into three parts [9]. The first part gives an expression for the bistatic doppler frequency.

\[f_d = f_o \cdot D \cdot \cos(\delta) \]

Where \(f_o \) is the maximum doppler frequency of the target. The second part relates the direction in which the target is moving to an elliptic system by;

\[\delta = \psi - (\theta_R + \theta_T) / 2 \]

From the above equation, the paths of zero doppler shift are ellipses and the paths of maximum doppler shift are hyperbolas orthogonal to the ellipses. The third part is the doppler reduction (D) equation caused by the triangulation factor (F).

\[D = \cos((\theta_R - \theta_T) / 2) \]
\[= \sqrt{1 - F^2} \]

The curves of constant doppler frequency (D) and the location of the above angles are shown in Figure 2.11.

When a target flies on a hyperbolic trajectory (corresponds to radial trajectory in a monostatic radar), the doppler frequency varies from a monostatic maximum at large ranges to zero when it crosses the baseline. This doppler information is useful in determining the target trajectory but limits the estimation of target velocity [9][10].
When $-90^\circ < \delta < 90^\circ$, the bistatic target doppler is positive. Hence, a closing target referenced to the bistatic bisector generates a positive or "up" doppler. When $\delta = \pm 90^\circ$ the bistatic doppler is zero, i.e. when the target flies on an isorange contour (ellipse) it has zero doppler frequency as was mentioned earlier.

2.4.10 RADAR TARGET CROSS SECTION

The radar target cross section (RCS) of a target is defined as an equivalent area producing the same amount of energy returned to the radar as would be produced by the mentioned scatterer [2]. The bistatic RCS is a function of bistatic and aspect angles. Hence it is different to the monostatic RCS. The bistatic RCS will be discussed below.
The bistatic RCS can be divided into three regions, the pseudomonostatic region, the bistatic region and the forward-scatter region [1].

The pseudomonostatic RCS region. The region is defined as the region greater than the bistatic threshold value. The monostatic-bistatic equivalence theorem (by Crispin and Siegel), which is only valid in this region, states:

"For vanishingly small wavelengths, the bistatic RCS of a sufficiently smooth, perfectly conducting target is equal to the monostatic RCS measured on the bisector of the bistatic angle."

This region varies for different objects. The smaller the object being detected is, compared to the transmitted wavelength, the smaller the threshold value for the bistatic angle. For targets of more complex structures, this region is reduced considerably. Kell [1] developed a variation to the equivalence theorem for more complex targets. It states:

"For small bistatic angles, typically less than 5°, the bistatic RCS of a complex target is equal to the monostatic RCS measured on the bisector of the bistatic angle at a frequency lower by a factor of \(\cos(\beta/2) \)."

Kell's complex targets are an assembly of discrete scattering centres. These models approximate various targets (aircraft, ships etc) when the wavelength is small compared to the target size. Whenever the equivalence theorem is valid it is possible to derive bistatic RCS data from the monostatic RCS data.

Another paper [12] determines the effect of coupling on the monostatic-bistatic equivalence theorem. Here an attempt is made to determine the error associated with the equivalence theorem where coupling between scatterers is significant. The paper concludes that very small bistatic angles can significantly affect the
monostatic RCS results obtained from bistatic data, however, this error can be corrected for.

The bistatic RCS region. This region is defined by the bistatic angle. The start of this region is at the bistatic angle for which the equivalence theorem no longer holds. Here the bistatic RCS starts to diverge from the monostatic RCS.

Three reasons have been identified by Kell. These reasons state why the bistatic RCS diverges from the monostatic RCS. They are:

1. Changes in relative phase between discrete scattering centres. This is analogous to fluctuations in monostatic RCS as the target aspect angle changes except in the bistatic radar, the bistatic angle is changing.

2. Changes in radiation from discrete scattering centres. This occurs when energy is reradiated back towards the transmitter. This causes a reduction in energy received by the bistatic receiver. In a monostatic radar the receiver is collocated with the transmitter, i.e. it would detect the reradiated energy, hence the reduction in the bistatic case.

3. Changes in the existence of centres, i.e. the appearance of new centres or disappearance of present centres. This can be caused by shadowing which occurs in the bistatic case and not in the monostatic case.

In general the bistatic RCS is lower than the monostatic RCS. There are, however, exceptions such as targets that have a low monostatic RCS but a large bistatic specular RCS or shadowing that sometimes occurs in the monostatic geometry and not in the bistatic geometry.

Another advantage of the bistatic RCS is the reduction of glint. In a monostatic radar, phase interference from two or more scatters causes a distortion of the echo
signal. As a result, changes in target aspect angle with respect to the radar cause the apparent phase centre of radar reflections to wander from one point to another. This random wandering of the radar reflecting centres can lead to jittered angle tracking, known as target glint [6].

Forward-scatter RCS region. This region is defined as the region where the bistatic angle is approximately 180°. Within this region the RCS can be more than 15 dB larger than the monostatic RCS. The magnitude of the objects forward scatter return does not depend on its material composition. Hence, a "forward scatter" radar might be able to detect an object with a monostatic RCS specially reduced through shaping or by treatment with radar-absorbing materials.

When a target (can be smooth or complex) is illuminated by the transmitter on the baseline, a shadow is produced if the target's dimensions are larger than the transmitted wavelength [14]. This shadow region occurs on the opposite side of the target from the transmitter. With the use of Babinet's principle it is possible to solve for the forward-scatter RCS [1][14].

Experiments conducted by Glaser [14], which are to determine the forward-scatter RCS, noted that the RCS value is best when the bistatic angle is 180° and deteriorates as the bistatic angle decreases.
2.4.11 CLUTTER

Clutter is defined as radar returns resulting from the interception of the radar beam with the ground, sea etc [2]. The presence of clutter almost always causes degradation of radar performance. The reason for this is that the target returns have to compete with the clutter returns and the radar clutter cross sectional area is usually larger than the target RCS. This section will examine bistatic clutter in terms of its scattering coefficient and give an example relating to this particular bistatic radar.

The equation for bistatic radar cross section of clutter is [3][15]:

\[\sigma_c = \sigma_{B0} A_c \]

where

- \(\sigma_c \) = bistatic radar cross section of clutter
- \(\sigma_{B0} \) = clutter scattering coefficient (clutter cross section per unit area illuminated surface)
- \(A_c \) = clutter cell area

![Coordinate system for bistatic clutter measurements.](image)
The same equations and theory apply to the clutter cell area as was described in Section 2.4.7. Compared to monostatic clutter measurements, very little work has been done on bistatic clutter coefficients.

The clutter scattering coefficient can be split into two sections, namely the in-plane clutter scattering coefficient and the out-of-plane clutter scattering coefficient [3]. See Figure 2.12 which shows the coordinate system for the clutter measurements: The in-plane clutter scattering coefficient is when $\phi = 180^\circ$ and the out-of-plane clutter scattering coefficient is for $\phi < 180^\circ$. The monostatic case is presented when $\beta = 0^\circ$. Also note that:

$$\beta = \arccos(\sin\theta \sin\theta_s - \cos\theta \cos\theta_s \cos\phi)$$

Clutter measurements are very sensitive and vary as a function of the surface composition, frequency, and the geometry. A summary of several measurement projects performed on bistatic clutter scattering coefficients is taken from [1] and shown in Table 1.2 in Appendix 1.

Clutter will not be discussed in any more detail as these measurements vary significantly from one author to another. For example, the out-of-plane measurements for σ_b° done by Cost and Larson show only a limited correlation under identical geometries, polarization, frequency and similar ground compositions (sand, loam and 8cm soyabeans foliage by Cost and 120cm weeds and scrub trees for Larson) [1]. The maximum variation is up to 20dB for σ_b°. It is best to measure the clutter at the radar site and then to design the bistatic radar accordingly. In Chapter 3 the subject of clutter will be readdressed in order to calculate the clutter power returns expected at the receiver for this particular application.
2.5 OTHER ASPECTS ON BISTATIC RADAR

Bistatic radars, unlike monostatic radars suffer from scan on scan coverage losses and when compared to the monostatic radar, are more prone to clutter. The bistatic radar will never exceed the target-receiver range capabilities of a monostatic radar. Methods of improving the performance of a bistatic radar are detailed below.

2.5.1 PULSE CHASING

In order to improve the performance of a bistatic radar, the radar must use all the target-scattered energy which arrives at the receiver and exclude all interfering signals, noise, sidelobe clutter and target echoes from incorrect areas. This means that the receiver has to look at the radar cell from which target echoes caused by the illumination from the transmitted pulse can arrive. In order to do this a high gain steerable receive antenna is required. As a pulse is transmitted the receivers antenna will swing away from the baseline and "chase" the pulse in order to cover the sensitive sector from which echoes might arrive. Hence the term pulse chasing.

In order for the receiver to illuminate the appropriate range cell its beamwidth needs to change as it chases the transmitted pulse. The beamwidth of the receiver is dependent on two criteria, namely the transmitter beamwidth and the pulse duration [8]. See Figure 2.13 for the geometry of the transmit and receiver beams.
Figure 2.13 Receiving arc due to transmitter beamwidth and pulse length.

The beamwidth of the receiver is [8]:

$$\Delta \theta_R = \frac{\left(\Delta \theta_{R1}, R_R \right) + \left(\Delta \theta_{R2}, R_R \right)}{R_R}$$

where

$$\Delta \theta_{R1} = \Delta \theta_T, R_T / R_R$$
$$\Delta \theta_{R2} = \left(c \cdot \tau \cdot \tan(\beta/2) \right) / R_R$$

Recall from Section 2.4.4 the contours on constant range ratio (R_T/R_R), the receiver's beamwidth ($\Delta \theta_{R1}$) will be reasonably narrow except near the receiver but if targets in its immediate vicinity are to be detected then the instantaneous receiving beamwidth must be very wide unless the transmitter's beam is extraordinarily narrow. The receiver's beamwidth ($\Delta \theta_{R2}$) is the reciprocal of the distance from the receiver, as with the transmitter beamwidth effect but now there is an extra strong directional dependence. The receiver's beamwidth requirement is small when the lines-of-sight of the transmitter and the receiver are nearly parallel, as is the case on the extended baseline or at long range. For detection close to the baseline it is large, especially at the receiver end.
The pointing direction of the receiver beam and the rate at which it changes are also important factors. Note that the echo from a target does not come directly from the current transmitted pulse position but from a point behind it where the transmitter beam intersects the appropriate range ring. The distance that the receiver trails behind the transmitted pulse is equal to the receiver range from which a target echo could originate from. From Section 2.4.8 one can see the contour that the receiver azimuth must follow in order to chase the transmitted pulse. The rate at which the receiver’s azimuth changes is determined from the following equation [8]:

$$\frac{d\theta_R}{dt} = \frac{c \tan(\beta/2)}{R_R}$$

degrees/µs

In order for the receiver to meet these requirements, it will need either electronic scanning or fast switching over a set of narrow beams as mechanical scanning cannot meet these requirements. A phased array antenna would probably be most suited [9].

2.5.2 BEAM SCAN ON SCAN

Beam scan on scan is usually used for surveillance purposes. Inefficient use is made of the radar energy when high gain scanning antennas are used by the transmitter and receiver, since only the volume common to both beams (the bistatic footprint) can be observed at any given time. Targets illuminated by the transmit beam outside the footprint are not detected. There are four remedies to this problem [3], i.e.:

1. **Step scan.** This is when the transmitter beam is fixed giving the receive beam time to scan the surveillance frame. The transmit beam is then stepped
An Overview of Bistatic Radar

to the next surveillance frame and fixed while the receive beam then scans this area and so on. The disadvantage is that a dedicated transmitter is required. An increase in surveillance time per frame is unsuitable for surveillance purposes.

2. **Multiple simultaneous beams-receivers-signal process.** Here multiple receive beams are used simultaneously to scan the transmit beam and complete the surveillance frame. The disadvantage is that the complexity and cost of the system is increased as separate receivers must be used for each beam.

3. **Pulse chasing.** This is described in section 2.5.1. The disadvantage with this system is that an expensive inertialess antenna (phased array) is required with complex and precise beam scheduling.

4. **Floodlight beams.** Either the transmit or receive beams floodlight the surveillance area and then the receive or transmit beams respectively scan this area. The disadvantage with this system is that there is a reduced S/N ratio as the gain of the system is reduced. It also suffers increased clutter levels and decreased target resolution and angle measurement accuracy.

In this particular system a floodlight receiver beam is used while the transmitter has a fan beam antenna. This causes \((R_T - R_R)_{\text{max}}\) to be reduced by a factor of 10 when compared to the base case [1]. The base case is defined as having one transmit and one receive beam with no scan on scan losses.
2.6 CONCLUSION

From this chapter one noted that a bistatic radar is significantly more complex than a monostatic radar. This is due to the bistatic geometry. This separation between the transmitter and receiver give the bistatic radar some distinct advantages. Some of these advantages are listed below.

1. In a military context, a monostatic radar is susceptible to external interference, such as jamming devices. The transmitter being an active input clearly advertises its position due to the emission of RF pulses. In a bistatic system the receiver is a passive element and thus difficult to detect.

2. For air surveillance radar applications in an area containing several airfields. Each airfield will have its own receiver. The targets will be illuminated by one high power, expensive transmitter located in the required coverage area. This will eliminate the mutual interference between several transmitters and receivers and the utilization of the spectrum is improved.

3. If a multistatic environment, as described in 2 above, is netted, the probability of target detection is improved. In addition, the range resolution is improved by triangulation and the cooperation of many units can be a protection against the failure of individual units.

4. When the radar operates in the forward scatter region the targets RCS is improved by up to 15dB. The forward scatter RCS is independent of target shape.

5. Doppler information can be used to determine the trajectory of the target.

6. The transmit and receive antennas can be designed independently to fulfil a specific function such as pulse chasing for air surveillance purposes.
An Overview of Bistatic Radar

7. An airborne bistatic system has the ability to control clutter (clutter tuning). The ground clutter spectrum can be manipulated by controlling the relative motion of the two aircraft with respect to the target. This is done in forward-looking synthetic aperture radar.

8. Blind speeds are eliminated due to the isorange contours.

Bistatic radars also suffer significant disadvantages when compared to the monostatic radar. Some of these are listed below.

1. Bistatic radars require additional complex circuitry in order to maintain synchronization between the receiver and transmitter. The PPI display also needs to be corrected for bistatic distortion.

2. The resolution (range, isorange, doppler and cell area) is degraded as the target approaches the baseline or the bistatic angle approaches 180°.

3. The receiver is more susceptible to clutter near the baseline due to the degraded cell area resolution. Also if the receiver has a wide beamwidth it is more susceptible to noise interference directed towards it.

4. The coverage area of a bistatic radar can never exceed that of a monostatic radar.

5. Targets on the baseline become indeterminate as the transmitted pulse arrives at the same time as the target echo.

6. The receiver can be saturated when the transmit beam sweeps directly over the receiver. During this period the receiver will have to switch in several dBs of attenuation.
Another point noted is that as the bistatic angle tends towards zero or the target range becomes large, the bistatic theory tends towards that of the monostatic.

It is evident from this chapter that a bistatic radar's performance can never exceed that of a monostatic radar. However, a bistatic radar has some distinct applications which cannot be implemented by the monostatic radar.
CHAPTER 3
AN INDEPENDENT BISTATIC RADAR RECEIVER

An experimental bistatic radar receiver has been built at the University of Cape Town. This radar has been designed for short range air surveillance purposes. It hitchhikes off the L-Band radar at D.F. Malan airport, where the transmitter is noncooperative. Synchronization between the transmitter and receiver is achieved by direct breakthrough. Target detection is achieved by illuminating the target with the transmitters rotating fan beam antenna and the receiver floodlight antenna. This type of radar has also been called a parasitic radar [1].

Two projects of a similar nature have been noted in the literature. In the first project [7], a totally independent bistatic receiver using the transmissions from a UHF air traffic control radar was built at University College London. In the second project [13] the independent bistatic receiver also hitchhiked off an air traffic control radar. The transmitter transmitted 500kW RF pulses at a frequency of 591MHz. This experimental system was built near the Blackpool airport in St Annes.

The aim of this chapter is to show the reader that it is possible to build a cost-effective, functional bistatic radar receiver which does not involve complex circuitry. The receiver, which is still in the experimental stage, will be broken up into three sections, i.e. the front end, the synchronization section and the display. Each section will be given a technical description. The performance in terms of noise figure, sensitivity etc, will also be discussed. As a bistatic radar is inherently prone to clutter, clutter predictions will also be made. Finally conclusions will be drawn regarding the feasibility of the present system.
3.1 GEOGRAPHICAL LAYOUT OF THE RADAR

In order for the reader conceptualise the bistatic radar layout and coverage area, a few parameters and a map of the Cape Peninsula will be given in this section.

The transmitter is situated at D.F. malan airport and the receiver at the University of Cape Town. The separation between the transmitter and receiver (baseline range) is 15km. Figure 3.0 shows the geographical layout of the radar system. Note that the baseline runs from West to East with the receiver facing in an Easterly direction. Targets behind the receiver (West of the receiver) will not be detected as they are not illuminated by the receiver. The receiver is also 200m higher than the transmitter. Note the areas where the Cape Flats and mountain ranges are located as these become significant when discussing clutter in Section 3.4. The maximum target range is 127km. How this figure was obtained will be shown in Section 3.3.4.4.
Figure 3.0 Geographical layout and coverage of the bistatic radar in Cape Town. The maximum on axis range is 127km.
3.2 TRANSMITTER PARAMETERS

The L-band transmitter of the air traffic control radar at D.F. Malan airport is being used. The transmitter has the following parameters:

1. PRF = 400Hz with a 50Hz wobulation
2. Pulse width = 2.5µsec
3. Transmitted power = 2.5MWatts
4. Antenna rotation rate = 5rpm

The transmitter operates at two frequencies. On odd days it transmits at 1.304GHz ± 7MHz and on even days at 1.35GHz ± 7MHz. The PRF is wobulated in order to prevent blind speeds. The 50Hz modulating frequency is derived from the mains in order to generate the wobulated 400Hz frequency. The depth of wobulation is ±20Hz. Two 50Hz cycles in the PRF were measured at UCT. Figure 3.1 shows the variation in frequency during these cycles. The transmitter is also non-coherent from pulse to pulse.

![Figure 3.1](image)

Figure 3.1 The frequency variation in the PRF was measured during the dwell period at UCT. The graph clearly shows the 50Hz wobulation.

The radiation patterns of the antenna are shown in Figure 3.2 and 3.3. Figure 3.2 shows the azimuth radiation pattern and Figure 3.3 shows the elevation radiation pattern.
The azimuth radiation pattern has a pencil beam shape. The 3dB beamwidth is 1.35°. The first nulls are at ±2° and the first sidelobes are 23dB down from the mainlobe.

The antenna is tilted at 4° from the horizontal in elevation. Above the 4° elevation, the radiation pattern is approximately cosecant-squared and below the radiation pattern is approximated by:

\[G_\tau = \exp(-a^2 (4 - A_\tau)^2) \]

where
\[a^2 = 2.776/\delta \]
\[\delta = 4.9° \quad \text{(from Figure 3.2)} \]

The antenna polarization is horizontal with a maximum gain of 34dB for clear weather. In wet weather the antenna is circularly polarized with a maximum gain of 31dB.
Figure 3.2 The transmitter azimuth radiation pattern.
Figure 3.3 The transmitter elevation radiation pattern.
3.3 RECEIVER SYSTEM ANALYSIS

This bistatic receiver is comprised of three main components. These are listed below.

1. The superheterodyne receiver used to detect the signal.

2. The synchronization component which regenerates the PRF and transmit antenna azimuth information and synchronizes the display.

3. The display processor which corrects for bistatic distortion on the PPI.

Figure 3.4 shows a block diagram of the bistatic receiver with its individual component systems. The sections which follow will determine the design criteria for the receiver, describe the operation of each component system in the receiver and then give the receiver specifications.
3.3.1 RECEIVER REQUIREMENTS

In order for this bistatic radar to be operational and feasible certain criteria had to be established. The receiver would then be designed to meet them or get as close as possible. These criteria are listed below.
1. It must illuminate a semi-hemisphere with the receiver being at the origin facing D.F. Malan airport.

2. It must have a detection probability of 80% and false alarm probability of 10^{-8}.

3. It must not saturate when detecting a target at the minimum target-receiver range (75m) assuming an RCS of 50m2.

4. It must not saturate when being illuminated by the transmitter.

5. It must not saturate when receiving scattered clutter returns.

6. It must regenerate the PRF of the transmitter at the receiver.

7. It must generate transmitter azimuth information.

8. It must correct for bistatic distortion on the PPI display.

For the receiver front end, the aim will be to maximize the sensitivity to obtain the maximum dynamic range. To prevent saturation of the receiver a variable gain amplifier will have to be built. This will prevent saturation by the clutter and the main bang pulses but will still maximize the dynamic range.

No constraints have been put on the accuracy of the regenerated azimuth and PRF information, as this system is still the first prototype and error analysis is not within the scope of this project. Other complications such as the 50Hz wobbled PRF and short dwell period make it difficult to determine a realistic error in the PRF synchronization.
3.3.2 BANDWIDTH REQUIREMENTS

By definition: the instantaneous bandwidth of a component is the frequency band over which the component can simultaneously amplify two or more signals to within a specified gain tolerance. The tuning range is the frequency band over which the component may operate without degrading the specified performance if suitable electrical or mechanical controls are adjusted [21].

The bandwidth of the receiver is an important property as it affects the noise and signal. To maximize the signal to noise ratio matched filtering is required [24]. That is when;

\[BW.\tau = 1 \]

Where \(BW \) is the bandwidth and \(\tau \) is the pulse width. Ideally the transfer function of the filter must be the same as that of the pulse. The frequency spectrum of the transmitted 2.5\(\mu \)sec pulse will be a \(\sin(x)/x \) function. This is shown in Figure 3.5. Hence the ideal bandwidth for the receiver is 400kHz.

![Figure 3.5](image)

Figure 3.5 The \(\sin(x)/x \) function for a 2.5\(\mu \)sec pulse. For matched filtering, the filter must have the same transfer function.

The front end of the receiver needs to be tunable as two frequencies (1.304GHz and 1.35GHz) are being transmitted. Hence the tuning bandwidth of the receiver must be 60.4MHz. This also takes into account the 7MHz drift in the RF frequency.
The received RF signal is down converted to an IF frequency. The mixing process is described by:

\[\text{IF} = \text{RF} \pm \text{LO} \]

An IF frequency of 70MHz was selected for the receiver for two reasons. Firstly, according to the mixer spurious-effect chart [21], the spurious frequencies in this region originate from extremely high-order terms in the power series model and are consequently sufficiently low in amplitude that they can be ignored. The power series model represents the mixer and is a way of predicting the various spurious effects that are noted in the mixer operation. More will be said about this in Section 3.3.2.4.

Secondly a 70MHz IF main amplifier was already available.

Hence the local oscillator must be tunable at two frequencies, namely 1.374GHz and 1.42GHz. A frequency map of the receiver is shown in Figure 3.6.

![Frequency map of the bistatic radar receiver.](image)
3.3.3 THE COMPONENTS OF THE RECEIVER

This bistatic radar uses a superheterodyne receiver. The superheterodyne principle is when the received echo pulse (RF) is shifted down to an intermediate frequency (IF) where amplification and filtering can be done more effectively [21]. An advantage of this type of receiver is that the LO frequency can be varied to follow the transmitter frequency without disturbing the filtering at IF. The front end of the receiver can be seen in Figure 3.4 from Section 3.3. Each component in the front end of the receiver will now be described in the following sections.

3.3.3.1 ANTENNA

In this receiver it was decided to floodlight the coverage area. The reason for this is that the antenna design would be much simpler and control over the antenna would not be required. To satisfy this condition and criteria 1 in Section 3.3.1, a dipole array antenna was designed and mounted on the top of the Engineering building.

The dipole array consists of two dipoles lying broadside to each other, the one dipole being parasitic. The parasitic dipole is longer than the driven dipole making it the reflector. This dipole array is also known as a Yagi antenna [20]. Figure 3.7 shows the antenna used by the receiver.

The gain of the antenna is given by [20]:

\[G(\theta) = G_0 \cdot \cos((\pi/2)\sin(\theta)) / \cos(\theta) \]
\(G_o \) is the on axis gain and is 1.64. The antenna gain pattern is shown in Figure 3.8. From Figure 8.14 in reference [20] the directivity of the antenna is obtained and is 3.1. The antenna is mounted horizontally, making the polarization horizontal.

Figure 3.7 The Yagi antenna used by the receiver to floodlight the coverage area.

Figure 3.8 The receiver antenna gain pattern.
The antenna then feeds into a 50\,\Omega coaxial cable. As this type of antenna is inherently balanced due to its construction, a BALUN is required to match the unbalanced coaxial cable to the antenna [22]. The construction of the BALUN is shown in Figure 3.7.

The return loss (S11 parameter) of the antenna against frequency was measured and is shown in Figure 3.9. From Figure 3.9 the bandwidth and input impedance of the antenna can be determined. The 3dB bandwidth is 10MHz with the centre frequency at 1.337GHz and the return loss at 1.304GHz and 1.35GHz is -23dB. The input impedance is 55\,\Omega, hence the antenna is suitably matched to the coaxial cable.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{Antenna_Characteristics.png}
\caption{The return loss of the Yagi antenna versus frequency.}
\end{figure}
3.3.3.2 LOW NOISE AMPLIFIER AND ANTENNA FEED

A low noise amplifier (LNA) is mounted at the antenna. This was done to compensate for the degradation in the noise figure of the system due to the loss in the coaxial cable feeding the antenna.

An RG 217 coaxial cable was used to connect the LNA to the receiver. The cable is 30m long and a loss of 7.4dB was measured, which agreed with the manufacturers specifications (7.2dB/100ft). The cables S21 parameter can be viewed in Figure 3.10. The delay time of the signal in the cable is 150nsec.

The design for the LNA comes from the Mini-Circuits application notes, reference [22]. The circuit diagram of the amplifier is shown in Figure 3.11. From Figure 3.11, the amplifier is one chip (MAR 6 amplifier) which has been biased to allow 20mA to flow into the collector. A 15V potential is injected into the coaxial cable at the receiver in order to supply power to the LNA at the antenna. The MAR 6 amplifier is soldered onto a microstrip board. The board material is Epoxy-Glass (board thickness = 1.53mm) with a dielectric constant of 4.8 which is suitable at this operating frequency [22]. The microstrip lines have an impedance of 50Ω. The artwork is shown in Appendix 2. As the input and output impedance of the MAR 6 amplifier is 50Ω no matching is required. The measured parameters of the LNA at 1.35GHz are:

1. LNA gain = 12dB
2. Noise figure = 3dB
3. 1dB gain compression point = 0dBm
4. Maximum input power with no distortion = -13dBm
5. Input return loss = 20dB
6. Output return loss = 10dB
Figure 3.10 The measured forward transfer parameter (S21) for an RG217 coaxial cable. The cable is 30m long.

The input power versus output power curve is shown in Figure 3.12. The manufacturers specifications are shown in Appendix 3. The measured gain is slightly less than the manufacturers stated gain (15dB), however, this can be accounted for as there is a 2dB loss in the microstrip board and 15V injection circuitry.
Figure 3.11 The LNA circuit diagram. The diagram also shows the 15V injection circuit required to supply power to the LNA.

Figure 3.12 The input power versus the output power of the LNA.
3.3.3.3 PRESELECTOR FILTER

The preselector filter is placed before the mixer and it must satisfy certain requirements. These requirements are:

1. The IF frequency (70MHz) must be sufficiently attenuated such that it does not exceed the noise level, as the mixer can pass signals from its input port to its output port without conversion due to its imperfect isolation [4].

2. The leakage of the LO frequency must be reduced to the noise level.

3. The image frequency must be attenuated such that it does not exceed the noise level as it will produce an unwanted IF frequency which can not be filtered out [27].

A mechanically tunable waveguide preselector was made available for the receiver. It comes from an old signal analysis system, made by Polarad Electronics. The measured parameters of the preselector are listed below:

1. Tunable frequency range = 100MHz to 2.8GHz.
2. 3dB bandwidth = 14MHz.
3. Insertion loss = -2.8dB

It has a flat frequency response over the tunable range. Figure 3.13 shows the forward transfer characteristics (S21) when it is tuned to either one of the two frequencies, namely 1.304GHz and 1.35GHz.
3.3.3.4 MIXER

In a superheterodyne receiver a mixer is required to convert the incoming RF signal down to an intermediate frequency (IF). Any non-linear device can be used as nonlinearity is required for the production of frequencies not in the input [25]. The theory of the mixer is not going to be dealt with here but the reader is referred to references [25] and [27].

For this application the main parameters to look for are the conversion loss and the dynamic range of the mixer. The conversion loss is an indication of the noise
An Independent Bistatic Radar Receiver

figure and is always lower than the noise figure (±2dB), hence it determines the lower limit of the dynamic range. The upper limit of the dynamic range is determined by the conversion compression point [27].

A double balanced mixer would be ideal for this application as it has the following advantages [25]:

1. High degree of isolation between the three ports.
2. Large dynamic range.
3. Low conversion loss and noise figure.

The frequencies generated by the double balanced mixer are:

\[f = n.f_{LO} \pm f_{RF} \quad \text{where } n \text{ is odd.} \]

The unwanted frequencies will be filtered out by the matched filter. A problem with mixers is the spurious response (the production of outputs at the intermediate frequency (IF) due to signals at frequencies other than the desired frequency), ie the image frequency (\(f_{\text{image}} = 2.\text{LO} - \text{RF} \)), this inserts an additional 3dB noise power therefore it is important for the preselector to filter these frequencies out as described in Section 3.3.3.3.

The double balanced mixer used in the receiver is an LMX-174 by Mini-Circuits. From Figure 3.14, the measured conversion loss is 8.6dB and the 1dB compression point is 0dBm. The noise figure of the mixer is 11.7dB. This mixer requires an LO level of 7dBm to drive it. The variation in conversion loss as a function of the LO power level is shown in Figure 3.15. The isolation between the ports is:

1. LO-RF isolation = 30dB
2. LO-IF isolation = 20dB
Figure 3.14 The input power versus the output power of an LMX-174 double balanced mixer.
3.3.3.5 MATCHED FILTER

Matched filtering is required to maximize the signal to noise ratio. The theory on matched filtering is given in reference [24]. The filter has been placed after the mixer to suppress the unwanted frequencies produced by the mixer and to cut down on the noise power, thereby reducing the risk of saturating the following amplifier stages.

A Chebyshev bandpass filter has been designed to fulfil this purpose. The filter design was obtained from reference [22]. Figure 3.16 shows the circuit diagram of the filter. It is basically a 6th order high pass and low pass filter which have
been cascaded together. The coils (inductors) have been made from 1mm thick insulated wire to reduce losses at high frequencies (fringing effect). The coils have been designed according to an inductance formula given in reference [26]. A simulation of the filter was done on PSPICE. The results are shown in Appendix 4. From this simulation the following was determined, the bandwidth of the filter is 4.2MHz and the input and output impedance is 560Ω.

The following measurements (at 70MHz) were taken from the circuit:

1. Input return loss = 10dB.
2. Output return loss = 15dB.
3. Insertion loss = -1.96dB.
4. 3dB bandwidth = 2.2MHz.
5. Noise figure = 1.3dB.

The frequency response versus the S_{21} transfer parameter is shown in Figure 3.17.

One notes from Figure 3.17 that this filter is not matched, as the bandwidth is 2.2MHz and not 400KHz. Unfortunately it was not possible to build a relatively simple circuit at this frequency with such a narrow bandwidth and still have a low insertion loss. The matched filtering will therefore take place after the detector where the frequency is much lower. Another discrepancy lies in the measured bandwidth (2.2MHz) and the simulated PSPICE model bandwidth (4.2MHz). This
can be accounted for by the fact that the PSPICE model does not take into account stray capacitance and inductance.

3.3.3.6 PREAMP AND POWER SPLITTER

To synchronize the receiver with the transmitter, it is necessary to detect the pulses which arrive at the receiver during the dwell period (period during which the transmitter antenna beam illuminates the receiver). A power splitter is used to route half the power of the received signal to a threshold detector. The function and operation of the threshold detector will be described in Section 3.3.3.10. A low noise preamp is inserted before the power splitter to reduce the degradation in noise figure which is caused by the high noise figure of the main IF amplifier.
The preamplifier uses a MAR-6 as in the LNA and Mini-Circuits also supplied a suitable 2 way power splitter (PSC 2-1). Both components are mounted on the same microstrip board. The board is made of Epoxy-Resin (dielectric constant = 4.8) and the width of the microstrip lines are 3mm such that their impedance is 50Ω. The artwork is shown in Appendix 2.

![Preamp and Power Splitter](image)

Figure 3.18 The circuit diagram of the preamplifier and the power splitter.

The manufacturer's specifications for the power splitter and MAR-6 amplifier are shown in Appendix 3. The circuit diagram of the preamp and power splitter are shown in Figure 3.18. For the correct operation of the preamplifier the open collector must be biased at 20mA. The measured specifications of the circuit are:

1. Gain = 16dB
2. Input return loss = 16dB
3. Output return loss = 26dB
4. Max input power at 1dB compression point = -18dBm
5. Noise figure = 4dB

Figure 3.19 shows the measured response of the input power versus the output power of the preamp and power splitter. Note that the maximum output power during saturation is 6dBm. To prevent destruction of the device the input power must not exceed 15dBm.
3.3.3.7 SENSITIVITY TIME CONTROL

Sensitivity time control (STC) is a technique which causes the radar receiver sensitivity to vary with time in such a way that the amplified radar echo strength is independent of range or expressed in another way the receiver gain is programmed as a function of time [3]. Two reasons are given below to necessitate the use of STC.
1. The radar echo power received from a target varies inversely to the fourth power of the range or propagation time.

2. As described in Section 2.4.11, bistatic radar is inherently prone to strong clutter returns especially at close range and near the baseline. These clutter returns can then saturate the receiver.

A PIN diode attenuator circuit is used to perform the STC function. The design came from the Hewlett Packard application note 936 which is shown in Appendix 5. The application note also describes the advantages of using a PIN diode instead of transistors as a voltage controlled attenuator. In order to allow the circuit to have a gain and a loss, a MAR-6 amplifier was added after the PIN diode attenuator section. This is shown in Figure 3.20.

Figure 3.20 The circuit diagram of the STC circuit.

An HP 5082-3081 PIN diode is used in the attenuator. The specifications for this diode are shown in Appendix 6. The STC circuit is built on Epoxy-Resin board...
An Independent Bistatic Radar Receiver

with a ground plane on the other side in order to prevent unwanted high frequency anomalies. The artwork can be viewed in Appendix 2. The noise figure and gain of the attenuator and amplifier sections are shown below.

Attenuator: \[NF = 2\text{dB} \]
Mar-6: \[NF = 3\text{dB} \]

\[
\text{Loss} = 1.23\text{dB to 53.5dB}
\]
\[
\text{Gain} = 17.27\text{dB}
\]

According to the noise figure equation [23],

\[NF_{\text{total}} = NF_1 + \frac{(NF_2 - 1)}{G_1} \]

The noise figure of the combined system will vary with variation in gain. This is shown for various gains.

1. Gain = 17dB \[NF = 4.6\text{dB} \]
2. Gain = 0dB \[NF = 18\text{dB} \]
3. Gain = -35dB \[NF = 53\text{dB} \]

The gain of the STC circuit is voltage controlled. The curve showing the gain as a function of voltage is shown in Figure 3.21. From this Figure one notes that the maximum gain is 17dB and the maximum attenuation is 35dB. The curve is not linear due to the diodes non-linear characteristics and the maximum change in attenuation (30dB) occurs when the control voltage is between 10 and 11 volts. An advantage of a PIN diode attenuator is that the input impedance does not change much over the entire control voltage range (0V to 13V). This is shown in Figure 3.22 as the input return loss (S11 parameter) and the output return loss (S22 parameter).
In order to control the gain of the STC circuit as a function of time, a control voltage curve had to be developed. This control voltage curve would then be triggered by the regenerated PRF. The three criteria in developing this curve are:

1. The STC circuit must be set at maximum attenuation during the dwell period.
2. The bistatic clutter returns must not saturate the main IF amplifier.
3. The sensitivity of the receiver must increase as a function of time.

As no measurements have been done to determine the magnitude of the clutter returns as a function of time and azimuth, the control voltage curve will be based on the predicted clutter values which will be determined in Section 3.4. When reading Section 3.4 one will note that the bistatic clutter returns are a function of...
Figure 3.22 The STC circuit input and output return loss as a function of control voltage.

time as well as azimuth. As this STC circuit cannot generate a new curve for each azimuth position, an average value has been taken over all azimuth positions as a function of time or range. By using the STC attenuation curve (Figure 3.21) and the clutter information (Section 3.4), the required control voltage curve was calculated in order to obtain the correct attenuation. This curve is shown in Figure 3.23. One notes from this curve that there is a notch at \(t = 150\mu\text{sec} \), this is to prevent echo returns from the Hottentots Holland mountain range from saturating the receiver. Large returns were noted from this area. The gain is set to be variable over a range of a 100km from the receiver. During the rest of the period (including the period when the direct pulses from the transmitter are received) the attenuation is set to a maximum.

The circuit generates this curve by switching two sections in, one after the other. Timing pulses for the switching are derived from the regenerated PRF. The first section switches in the variable curve. This is obtained by switching in six
integrating sections, with different time constants, one after the other. The second section switches in the curve to maintain maximum attenuation. The operator can adjust the dc offset of the variable section from the front panel but not the shape of the curve. As this curve has been determined from predicted values, it has been
made possible to adjust the shape of the curve once more accurate clutter information has been obtained. The circuit diagram is shown in Figure 3.24.

Figure 3.24 The STC control voltage generating circuit.

3.3.3.8 IF AMPLIFIER

This amplifier provides the main gain of the system. A 70MHz IF amplifier made by Raytheon was used as it fitted the receiver requirements and was immediately available. Unfortunately no circuit diagrams were made available for it.
The measured amplifiers parameters at 70MHz are:

1. Gain = 52dB
2. Noise figure = 10.2dB
3. 3dB Bandwidth = 20MHz to 95MHz
4. Input return loss = 12dB
5. Output return loss = 13dB
6. Maximum input power at 1dB compression point = -55dBm

Figure 3.25 shows the gain of the amplifier as a function of input power and Figure 3.26 shows the noise figure and gain as a function of frequency.

Figure 3.25 *The power gain characteristics of the main IF amplifier.*
Figure 3.26 The noise figure and the gain of the main IF amplifier as a function of frequency.

3.3.3.9 ENVELOPE DETECTION AND INTEGRATION

Video detection of the signal after the main IF amplifier stage is necessary for display purposes. A diode detector configuration is used to achieve this. The diode used, is a Schottky barrier diode as it offers high detection efficiency. A description of various diode detector configurations can be found in reference [28]. The video signal is then amplified and level shifted to drive the PPI display.

The circuit diagram of the diode detector and the video amplifier is shown in Figure 3.27.
From Figure 3.27, a broadband biased diode detector is used. The detector can operate in either of two regions, the square law region (input power is proportional to output voltage) or the linear region (input voltage is proportional to output voltage). The progressive change over from the square law to the linear region occurs when the input signal level is approximately -20dBm [28]. As the information of the signal is not in its amplitude, the translation of the signal amplitude from IF to video is not an important parameter. The detector is therefore not restricted to operate in a specific region. The dynamic range of the detector may be defined as the difference between the maximum output level of the main IF amplifier (-4dBm) and power input corresponding to the tangential signal sensitivity (TSS). A small forward bias current, $I_0 = 15\mu\text{A}$ has been applied to the diode to improve the sensitivity of the detector. The input impedance as seen by the incoming signal is the parallel combination of the 47Ω shunt resistor at the input and the video impedance (R_v) of the diode. For a Schottky barrier diode, $R_v = 28/I_0$ (in mA) hence the video impedance is 1870Ω. The relatively high diode impedance therefore has little effect on the input match of this detector. From Figure 3.28 one notes that the operation of the detector is mainly confined to the linear region, hence envelope detection.
The input power versus the output voltage of the detector. It is clearly seen that the circuit behaves as an envelope detector when the input power exceeds -30dBm.

The filter which follows the diode removes the higher frequency components of the rectified signal, leaving the pulse envelope behind. Here matched filtering is approximated as the bandwidth of the first order filter is set at 420KHz.

For correct operation of the present display the voltage output of the detector must be in the range of -5V to +5V. At -5V the display is set at zero brightness and at +5V at maximum brightness. In order to achieve this an amplifier with a variable voltage gain (G = 53 to 86) and level shift follow the detector stage.

During the illumination period of the target several non-coherent pulses are received at the receiver and integrated. Post-detection integration is performed on a PPI display. The efficiency of post-detection integration depends on the number of pulses being integrated. The loss with respect to coherent integration is defined as [2]:

85
\[L_i = 10 \log(N.x_2 / x_1) \]

where:
- \(L_i \) = integration loss
- \(N \) = number of pulses integrated
- \(x_1 \) = required value S/N to produce a given probability of detection for \(N = 1 \)
- \(x_2 \) = required value of S/N to produce the same probability of detection with \(N \) pulses.

The gain of the integrator is determined by the number of pulses received during the target illumination period. The number of pulses received is:

\[N = \theta_{bw} \cdot \text{PRF} / \delta \]

where:
- \(\theta_{bw} \) = 3dB beamwidth of transmitter antenna
- \(\text{PRF} \) = pulse repetition frequency
- \(\delta \) = rotation rate of transmitter antenna.

For this receiver the number of pulses received during the target illumination is 18. The integration loss determined from graph 6.5 of reference [2] is 3dB. The integration gain is then determined by:

\[G_i = 10 \log N - L_i = 9.5 \text{dB} \]

Hence the integrator has a gain of 12.5dB and a 3dB loss, assuming that the PPI display has sufficient persistence to integrate all pulses.
3.3.3.10 THRESHOLD DETECTOR

The azimuth and PRF synchronization circuits require the pulses received during the dwell period in order to maintain synchronization of the receiver with the transmitter. This is achieved with a threshold or level detector.

Figure 3.29 shows the circuit of the threshold detector. The front end (diode detector and video amplifier) is identical to the envelope detector described in Section 3.3.3.9, therefore nothing more will be mentioned here.

Following the video amplifier is a comparator which discriminates between the main bang pulses and the other unwanted pulses during the dwell period. As the main bang pulses are significantly larger (±40dB for the maximum variation and ±10dB for the minimum variation) this is made possible. The sensitivity of the comparator can be adjusted in order to prevent the detection of false pulses. The number of pulses detected varies on a daily basis and is dependent on the weather and the transmitter being used. On average about 30 pulses are being detected. Note that the sidelobes of the transmitter antenna are also being included in the dwell period for this case. This allows more than 18 pulses to be detected which then improves the performance of the synchronization circuits. Care must be
taken not to make the comparator too sensitive as this will lead to the thresholding of false pulses and consequent loss in azimuth synchronization.

After the comparator the pulse train is given a 50% duty cycle. This improves the performance of the PRF synchronization circuitry.

3.3.4 SPECIFICATIONS OF THE RECEIVER

Until this point in the chapter the objectives and requirements of the receiver have been laid out and the components of the receiver have been described. This section will show the validity in the choice of the components and which requirements have been achieved satisfactorily.

3.3.4.1 POWER OF DETECTED DWELL PERIOD PULSES

Everytime the transmit antenna illuminates the receiver (dwell period), several pulse are detected. The maximum detected level was calculated and measured at the receiver front end. These values are shown below.

The maximum power received during the dwell period was calculated using the following radar equation:
As the elevation angle of the transmit antenna is 4°, the gain of the transmit antenna, when illuminating the receiver, is 28dB and not 34dB (see Section 3.2). The calculated main bang power level is 5.5dBm.

The measured power level varied between 3dBm and 5dBm, which is in agreement with the calculated value.

3.3.4.2 MAXIMUM DETECTED POWER LEVEL OF A TARGET

The maximum echo power received from a target at the receiver is obtained when the target is in the vicinity of the transmit or receive antenna as illustrated by the ovals of Cassini in Section 2.4.5. In order to prevent the receiver from saturating, the magnitude of the echo had to be known.

Three assumptions are used in calculating this value:

1. The RCS of the target is 50m². This is an average value for a large aircraft taken from reference [2].
2. The target is never closer than 75m from either the transmit or receive antennas.

3. The target is on the ground hence the transmit antenna gain is 25dB as it has an elevation angle of 4°.

The bistatic radar equation shown in Section 2.4.2 is used to calculate the target echo power. All losses are assumed to be zero. The calculations are shown in Appendix 7. The calculated value is -28.9dBm.

3.3.4.3 SYSTEM NOISE FIGURE AND SENSITIVITY

This section calculates the receivers power levels, signal and noise, at different points. The noise figure of the system is also determined. Measured noise values are then compared to the calculated values.

The noise at the antenna was not measured as the equipment available was insensitive to such small power levels, however, a theoretical value is assumed. From reference [3] the effective antenna noise temperature is given by:

\[T_{ea} = 0.876.T_s + 36 \]

\(T_s \) is the noise temperature of an idealized antenna facing the sky. For an antenna facing the horizon and tuned at 1.337GHz, \(T_s = 178K \) ([3], Fig 2.9). The above equation assumes that a portion of the receive antenna beam illuminates the earth which has an effective temperature of 290K and there are no antenna losses. The effective antenna noise temperature is therefore 192K. The noise power at the input to the receiver is calculated from \(P_{in} = k.T_{ea}.B \) and is -120dBm.
Appendix 7 shows the calculations used to obtain the noise figure, sensitivity and target range. All the equations and theory come from references [3] and [23]. The noise after the main IF amplifier was also measured with an HP spectrum analyzer. The input to the receiver (after the antenna) was terminated in a 50Ω load during the time taken for the measurements.

One will note from the next noise measurement Figures that there is a ±21dB discrepancy between the measured and calculated results. This is due to the spectrum analyzer being incorrectly calibrated. The scaling error was determined by measuring the noise with a digital oscilloscope and converting the rms noise voltage to a power level for a 400KHz bandwidth. The spectrum analyzer and oscilloscope readings were compared and a 21dB scaling error was calculated, hence -21dB must be added to all the noise power measurements shown in the next Figures.

The receiver is designed to have a 12dB signal to noise ratio at the output. This gives the system a probability of detection equal to 80% and probability of a false alarm equal to 10^{-8} [2]. As shown in Section 3.3.3.9 the integrator has a gain of 9.5dB, therefore the signal to noise ratio at the output of the main IF amplifier must be 2.5dB. The signal to noise ratio is set at the output of the main IF amplifier because the noise contribution of the detector stage is insignificant as shown by the receiver noise figure equation in Appendix 7.
An Independent Bistatic Radar Receiver

The following parameters were obtained for the receiver in various configurations:

<table>
<thead>
<tr>
<th>Gain of receiver</th>
<th>LNA at antenna, no STC</th>
<th>LNA at mixer, no STC</th>
<th>LNA at antenna with STC G = max</th>
<th>LNA at antenna with STC G = min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain of receiver</td>
<td>59dB</td>
<td>59dB</td>
<td>76dB</td>
<td>59dB</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>-103dBm</td>
<td>-102dBm</td>
<td>-103dBm</td>
<td>-101dBm</td>
</tr>
<tr>
<td>Signal after IF amp</td>
<td>-44dBm</td>
<td>-43dBm</td>
<td>-27dBm</td>
<td>-42dBm</td>
</tr>
<tr>
<td>Noise after IF amp, calculated</td>
<td>-46.5dBm</td>
<td>-45.5dBm</td>
<td>-29.5dBm</td>
<td>-44.5dBm</td>
</tr>
<tr>
<td>Noise after IF amp, measured</td>
<td>-44dBm</td>
<td>-43dBm</td>
<td>-28.9dBm</td>
<td>-43.8dBm</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>14.3dB</td>
<td>15dBm</td>
<td>14.12dB</td>
<td>16.2dB</td>
</tr>
</tbody>
</table>

Table 3.1

Note that the calculated noise at the output of the IF amplifier takes into account the noise of the antenna whereas the measured values do not. This will only cause a 0.8dB variation in the two sets of values. The maximum variation between these two sets of noise values is 6dB, however, this is within the error tolerance.
Some explanations for these errors are:

1. Noise generated by the connections between components.

2. Filters do not have ideal characteristics.

3. Noise figures of some components have come from the data sheets and have not been checked due to unavailability of equipment.

4. System temperature could be greater or less than the standard room temperature of 290K.

The measured noise of the receiver when viewed on the spectrum analyzer is shown in Figures 3.30 to 3.34.

Figure 3.30 The noise of the receiver with the LNA placed at the antenna. The receiver has no STC circuit and is terminated in 50Ω at the I/P.
Figure 3.31 The noise of the receiver with the LNA placed at the mixer. The receiver has no STC circuit and is terminated in 50Ω at the I/P.

Figure 3.32 The noise of the receiver with the STC set to give the receiver maximum gain. The input to the receiver is terminated in 50Ω.
From the above Figures and Table 3.1 the following can be deduced:

1. The sensitivity of the receiver is improved by 1dB if the LNA is placed before the coaxial cable at the antenna.
An Independent Bistatic Radar Receiver

2. The sensitivity and noise figure of the receiver vary as the gain varies.

3. There would be a degradation in the receiver sensitivity of 11dB if the LNA is removed from the receiver.

4. The STC circuit has the largest effect on the noise figure of the receiver, especially when reducing the gain of the receiver. This is not a problem as the target range is usually small when the STC is set at maximum attenuation.

The effect that the components of the receiver have on the propagation of the signal and noise through the receiver is shown in Table 3.2. Two examples are shown. Firstly the receiver is set to have a maximum gain in order to detect the smallest target echo and secondly the receiver is set to a minimum gain so that it does not saturate when detecting the largest target echo.

<table>
<thead>
<tr>
<th>Component</th>
<th>Min Signal</th>
<th>Noise</th>
<th>Max Signal</th>
<th>Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna</td>
<td>-103dBm</td>
<td>-120dBm</td>
<td>-28.9dBm</td>
<td>-120dBm</td>
</tr>
<tr>
<td>LNA</td>
<td>-91dBm</td>
<td>-105dBm</td>
<td>-16.9dBm</td>
<td>-105dBm</td>
</tr>
<tr>
<td>Coaxial cable</td>
<td>-98.4dBm</td>
<td>-112.4dBm</td>
<td>-24.3dBm</td>
<td>-112.4dBm</td>
</tr>
<tr>
<td>Filter</td>
<td>-101.2dBm</td>
<td>-115.2dBm</td>
<td>-27.1dBm</td>
<td>-115.2dBm</td>
</tr>
<tr>
<td>Mixer</td>
<td>-110.2dBm</td>
<td>-116.3dBm</td>
<td>-35.7dBm</td>
<td>-116.3dBm</td>
</tr>
<tr>
<td>Filter</td>
<td>-112.1dBm</td>
<td>-117.6dBm</td>
<td>-37.6dBm</td>
<td>-117.6dBm</td>
</tr>
<tr>
<td>Preamp</td>
<td>-96dBm</td>
<td>-98.9dBm</td>
<td>-21.6dBm</td>
<td>-98.9dBm</td>
</tr>
<tr>
<td>STC</td>
<td>-79dBm</td>
<td>-81.8dBm</td>
<td>-56.6dBm</td>
<td>-111.6dBm</td>
</tr>
<tr>
<td>Main amp</td>
<td>-27dBm</td>
<td>-29.4dBm</td>
<td>-4.6dBm</td>
<td>-49dBm</td>
</tr>
</tbody>
</table>

Table 3.2
From Table 3.2 one will note that the receiver will not saturate for targets at close range and it meets the SNR requirements for targets at maximum receiver-target range. A problem exists, however, with the main bang pulse. This will cause all the amplifiers in the receiver to saturate. This requirement has not been met.

3.3.4.4 RADAR RANGE AND COVERAGE

The maximum range and approximate coverage of this receiver will be shown below.

From Section 3.3.4.3 the sensitivity of the receiver is -103dBm. Using the radar range equation described in Section 2.4.2 the maximum range of the receiver can be calculated. Two assumptions are made in the calculation, namely:

1. There are no propagation losses.

2. The bistatic radar equation approximates the monostatic radar equation at long target ranges (80km or more).

The calculation is shown in Appendix 7 and the calculated maximum target-receiver range is 127km for an RCS of 50m². The geographical coverage of this radar, taking into account the variation in the receiver gain as the target moves away from the baseline, is shown in Figure 3.0 of Section 3.1.
3.3.4.5 RESOLUTION

The theory on bistatic resolution is discussed in Section 2.4.7, however, the range and cell area resolution are calculated for this bistatic radar and illustrated in this section.

The range and cell area resolution is dependent on baseline range, pulse length, azimuth angle and range, hence there is no one figure to represent them. For the range resolution, the maximum resolution is:

$$\text{Maximum Range Resolution} = \frac{c \cdot r}{2} = 375\text{m}.$$

The range and cell area resolution over several constant range contours was calculated by a program shown in Appendix 10. As the receiver only illuminates one direction, the resolution values have only been plotted over a receiver azimuth range from -90° to 0°. Figure 3.35 and 3.36 show the range resolution for a constant range contour of 17km and 59km respectively. From these figures one will note that the resolution degrades as the baseline is approached or when the bistatic angle increases. Note that the best resolution is achieved when the transmit antenna azimuth is -90°. A minimum constant range contour of 17km was chosen as the eccentricity of the ellipse is 0.9. At an eccentricity greater than 0.95 the equations used break down [1].

The cell area resolution degrades in a similar way to the range resolution. In this case the minimum cell area is also determined when the transmit antenna azimuth is -90°. The cell area resolution over a constant range contour of 17km and 59km is shown in Figure 3.37 and 3.38 respectively.
An Independent Bistatic Radar Receiver

Figure 3.35 The range resolution over a constant range contour of 17km.

Figure 3.36 The range resolution over a constant range contour of 59km.
Figure 3.37 *The cell area resolution over a constant range contour of 17km.*

Figure 3.38 *The cell area resolution over a constant range contour of 59km.*
The range and cell area resolution on the baseline are undefined. The azimuth resolution is that of the transmitter antenna, namely 1.35°.

3.3.5 AZIMUTH SYNCHRONIZATION

The receiver needs to know, at all times, the transmitter antenna’s azimuth angle in order to display accurate azimuth information of the target on a PPI display at the receiver, as was described in Section 2.4.8. Hence the receiver must be synchronized to the transmitter antenna’s rotation. A digital circuit was designed to accomplish this as will be explained below.

Azimuth synchronization is performed during the dwell period. During this period about 32 direct pulses are obtained and from this the time that the main beam points at the receiver can be determined. The centre of the main beam is determined by counting the number of pulses received during the dwell period. The beam is then declared to be centred when the number of pulses counted is equal to half the number of the previous count. When the centre of the main beam is detected a counter is reset, providing a reference for the transmitter pointing angle. It then starts counting out 1024 discrete azimuth positions in the 360° rotation, giving an angular resolution of 0.35° per count. When the centre of the main beam is detected again the counter is reset and the cycle repeats itself. Before the counter is reset the final count is noted and the operator is informed whether the count rate is too fast or too slow. The rate at which the counter counts can then be adjusted by the operator to maintain synchronization. The frequency of the counter can be varied from 75Hz to 115Hz allowing tuning for a rotation period between 9sec and 13sec. A 10 bit bus, containing the azimuth information, is connected to the display processor in order to drive the PPI display. A block diagram of the azimuth synchronization circuit is shown in
Figure 3.39 which illustrates what has been described in the above paragraph. The circuit diagram is given in Appendix 8. Figure 3.40 shows the train of threshold detected pulses, determination of the centre of the main beam and then resetting of the counters.

Two causes for an error in the synchronization can be obtained, namely:

1. The period of rotation of the transmit antenna is not consistent.

2. The within-scan rotation rate fluctuates.

The first error can be corrected for by the operator by adjusting the count rate of the counter. The second error presents a problem as the receiver has no way in determining these fluctuations without some form of communication between the
transmitter and the receiver. This therefore leads to a degradation in accuracy. As no measurements have been done to determine this error, it is assumed that for the purposes of this project that the transmit antenna scan rate is constant.

Other sources of error are the determination of the centre of the main beam signal and in alignment of the transmitter-receiver baseline and the stability of the voltage controlled oscillator which determines the azimuth count rate. The number of pulses counted during the dwell period never varied by more than 8 counts from one receiver illumination to the next. This would cause, in the worst case, the counter to be reset four pulses too soon or too late, giving a maximum error of $\pm 0.3^\circ$. In the second case, the voltage controlled oscillator has a stability of ± 0.4Hz. This gives an error of 1.68°.

The error of the system was measured on a calm day with no wind (to avoid errors caused by in-scan variations) and shown to have an accuracy of 2.1°.

Figure 3.40 The top two graphs show the pulses detected during the dwell period and the circuit determining the centre of the pulse train. The bottom graphs show the first two bits of the azimuth counter resetting.
3.3.6 PULSE REPETITION FREQUENCY SYNCHRONIZATION

The receiver must regenerate the PRF of the transmitter at the receiver and maintain synchronization, in order to determine the correct target-receiver range and to trigger the STC circuit. An analog circuit consisting of a sampled phase locked loop was designed to achieve this.

The receiver PRF synchronization is also performed during the transmitter main beam dwell period. A block diagram of the PRF synchronization circuit is shown in Figure 3.41. Recall from Section 3.2 that the 400Hz PRF is wobbled at 50Hz. A precision voltage controlled oscillator (VCO) is tuned to its centre frequency of 400Hz. A 50Hz signal, which is tunable in phase and amplitude, is used to frequency modulate the centre frequency of the VCO thereby regenerating the PRF frequency. The 50Hz signal is obtained from the mains and is suitable as the transmitter uses the same source. Synchronization is performed during each main beam dwell period to align the transmitter and receiver PRF signals. Before this synchronization takes place the relative timing of the two PRF signals are
compared, in order that the VCO centre frequency may be altered to compensate for frequency drifts due to temperature variations in either the transmitter or receiver. This is achieved by incorporating the VCO into a phase lock loop (PLL). The error voltage out of the comparator will then adjust the VCO frequency accordingly. As the main beam dwell period only lasts for \(\pm 80\text{msec} \) in a 12sec period, a sample and hold is required to hold the error voltage till the next dwell period. A "signal present" circuit is used to switch the sample and hold between its two modes. The circuit diagram of the PRF synchronization circuit is shown in Appendix 9.

The theory of PLL will not be dealt with here but the reader is referred to references [24] and [29]. The main criteria of the circuit is for the PLL to lock within a maximum time of 80msec. An XR-2212 PLL was chosen as it is an ideal FM detector and one has the ability to control the individual components which make up a PLL (phase comparator and VCO) independently. The specifications of this PLL are in Appendix 9. The loop damping factor is set at 0.3 making the loop underdamped thereby decreasing the lock-in time. The PLL has a gain of 432Hz/rad and a tracking bandwidth of 180Hz. The PLL has an average lock-in time of 60msec with a standard deviation of 17msec which is sufficient to achieve synchronization.

A problem which had to be overcome was the fact that the low pass filter did not sufficiently suppress the interference (2V p-p, 800Hz) on the DC error voltage. This interference caused the sample and hold to lock on at the incorrect error voltage. This was corrected by placing a low pass filter \((\tau = 18\text{msec})\) before the sample and hold. This reduced the interference to 30mV p-p. The reduced interference will cause a maximum error of \(\pm 0.7\text{Hz} \) and the probability of obtaining this error is 0.06. Two sample and hold circuits are used to reduce the droop rate of the held error voltage. For a hold period of 12sec an increase in frequency of 0.09Hz was observed.
The main problem in the design was to insert the 50Hz wobulation into the 400Hz signal. An initial attempt was to use two PLLs, one to lock onto the 50Hz component and the other the 400Hz component, during the main beam dwell period. The regenerated 50Hz would then be used to wobulate the 400Hz signal. This would prevent any phase error. This attempt was unsuccessful as only two cycles were present during the dwell period. The PLL required a minimum of six cycles to achieve lock. The second method, as described above, used the 50Hz from the mains. This method works but has several disadvantages, namely:

1. The circuit is not entirely independent.

2. To keep the two PRF signals in alignment, the 50Hz signal requires periodic tuning in phase and amplitude.

3. When large inductive loads are switched on and off on the electrical power network, a shift in phase is caused.

4. There is no visual indication to inform the operator that the circuit is out of synchronization.

5. It is difficult to synchronize as there are two parameters and one does not know whether the electrical network is stable at the time.

Due to the scope of this project no error measurements were taken, hence the accuracy of the system is unknown at this stage. Measurements showing the lock in time of the PLL during the dwell period are shown in Figure 3.42 and Figure 3.43. The error in the loop and the filtered error voltage used by the sample and hold are shown. Here the suppression of the interference on the error voltage to the sample and hold is clearly shown. In Figure 3.42 there is a 60° phase error in the 50Hz modulating frequency. Tuning of the PRF circuit is ideally done by reducing the AC error voltage to a DC voltage as shown in Figure 3.43.
Figure 3.42 Shows the error voltage of the PLL. The smooth curve is the filtered error voltage applied to the sample and hold. Here there is a 60° phase error in the 50Hz signal.

Figure 3.43 Shows the error voltage of the PLL. The smooth curve is the filtered error voltage applied to the sample and hold. Here the circuit is tuned. The vertical scale = 2V/div with an 8V offset.
It is felt that due to the many disadvantages, an alternative approach should be taken. This will be discussed in the Recommendations.

3.3.7 THE PLAN POSITION INDICATOR DISPLAY

In order for the operator to determine the targets position relative to himself or the receiver some form of display is required. A display system was designed and built by R. Blatch. A detailed analysis of the display system will be found in reference [30], however, a summary is provided in this Section.

A plan position indicator (PPI) is used. The display corrects for bistatic distortion which is achieved by controlling the motion of the scanning beam of the display according to the equations given in Section 2.4.8 on bistatic distortion. Basically for every discrete transmitter azimuth position the display must determine the receiver azimuth and target to receiver range for a set number of delay times. The maximum delay time is determined by the maximum range of the bistatic radar, in this case the display has been designed to monitor a maximum range of 100km. The period between two delay times is determined by the bistatic radar resolution. In order to drive the display, the polar coordinates (receiver azimuth and target to receiver range) are converted to cartesian coordinates and then applied to the x and y deflection plates of the display. The output of the detector (video output) from the receiver is connected to the z input of the display.

An EPROM based counter is used to drive the display. The EPROMs store the azimuth and range information in cartesian coordinates. A counter is used to address the memory and synchronization of the display is maintained by the PRF and transmitter azimuth information derived by the synchronization systems.
Due to availability an HP1311A is used as a PPI display. The display has three inputs, namely the x and y inputs which determine the beam position and the z input which accepts the video signal. Enhancements are made to the display with the use of an HP1350A graphics translator and an HP85 computer. These two items allow a geographical map of the coverage area and range rings to be displayed on the screen permanently. A major pitfall of the display is its low permanence phosphor. This makes it difficult for the operator to read the screen as the received echoes are short lived.

The display provides an azimuth resolution of 1.3° and a range resolution of 782m.

3.4 CLUTTER PREDICTIONS

It is important to know the clutter power returns at the receiver. This is to enable proper design of the receiver and prevent the receiver from saturating. Two projects were carried out in order to determine the expected clutter returns at the receiver at UCT. These will now be described.

The first project was carried out by Tim Courtenay [4]. As he was unable to find bistatic data on the clutter coefficients, he used monostatic data. His motivation for this is that at long target ranges compared to the baseline range (small bistatic angle), the bistatic radar starts approximating a monostatic radar. From Section 2.4.10 the bistatic-monostatic equivalence theorem states that the monostatic RCS can be used in place of the bistatic RCS under these conditions. Also for this reason only equations describing the monostatic radar were used.
The following assumptions were made in his calculations:

- low grazing angle
- radar energy scattered isotropically
- sidelobes add negligible clutter
- Cape region can be divided into discrete areas with different scattering coefficients.

The illuminated region was divided into the following areas and given three clutter coefficients [4], namely case 1, case 2, and case 3:

- urban Cape Flats, \(\sigma^{o}_{M} = 0.04/RT^{0.5}, 0.01/RT^{0.5} \text{ and } 0.05/RT \)
- Constantiaberg, \(\sigma^{o}_{M} = 0.03, 0.01 \text{ and } 0.01 \)
- Hottentots Holland mountains, \(\sigma^{o}_{M} = 0.03, 0.01 \text{ and } 0.01 \)
- Tierberg mountains, \(\sigma^{o}_{M} = 0.03, 0.01 \text{ and } 0.01 \)
- Sea, -45dB

The results of his project are shown in Figures 3.44, 3.45, 3.46, 3.47.
Figure 3.44 Signal to clutter ratio for $\theta_f = 80^\circ$.

Figure 3.45 Signal to clutter ratio for $\theta_f = 45^\circ$.
Figure 3.46 Signal to clutter ratio for $\theta_r = 12^\circ$.

Figure 3.47 Signal to clutter ratio for $\theta_r = 30^\circ$.

112
From these Figures, the signal to clutter ratio is high over the sea and lower over the Cape Flats region, as expected. A bad signal to clutter ratio is detected when passing the Hottentots Holland mountain range.

The second project calculates the expected clutter power returns using bistatic clutter coefficient data.

This data was obtained from Larson [1][15]. The data is out-of-plane, horizontally polarized, \(\sigma_B^o \) for tall weeds and scrub trees. Figure 3.48 shows Larson's L-band data.

![Figure 3.48 Larson's out-of-plane, horizontally polarized, bistatic RCS coefficient for tall weeds and scrub trees.](image)

This data is valid for the Eastern side of D.F. Malan airport only but does not take into account the Hottentots Holland mountain range. The rest of the area is urban and no bistatic clutter coefficient data was available for this. Another difference is that the grazing angle is less than 2° at the transmitter and Larson's data is measured for a grazing angle of 10°. However, from reference [16] it was noted that the clutter coefficients for this case do not change significantly between 0 and 10 degrees.
Another approximation in the calculations, the clutter contributed by the sidelobes, has been ignored. The program which calculates the expected clutter returns is shown in Appendix 10. The signal to clutter ratio for two constant range contours of 19km and 27km are shown in Figure 3.49 and 3.50.

![Signal to Clutter Ratio](image)

Figure 3.49 *Signal to clutter ratio on a constant range contour of 19km.*
According to these figures clutter will present a problem for a target with an RCS of 50m². It appears that the SCR is large at the receiver azimuth angle of ±80°, however this is not consistent from one range contour to the next. One trend is noted: the average difference in the maximum and minimum SCR decreases as the range of the constant range contour is increased.

It is not possible to compare the two projects due to the many different assumptions made, however, it is interesting to note the vast differences. From the literature and Section 2.4.11 it is clear that bistatic radars are more susceptible to clutter than monostatic radars. This fact is definitely noticed in the above projects. For future work on this radar, it is recommended that accurate clutter measurements are taken in order to design a more appropriate STC control voltage curve or set of curves. From basic measurements on an A-scope and from the above results, the present STC circuit provides sufficient attenuation to prevent saturation, however the average sensitivity of the receiver is reduced due to the inefficiency.
3.5 CONCLUSION

Based on what has been said in this Chapter about the receiver, the following conclusions can be made:

1. The receiver sensitivity of -103dBm is sufficient to obtain a maximum dynamic range of 120km assuming no propagation losses.

2. The receiver will not be saturated by clutter or by a target with an RCS of $50m^2$ at the minimum transmitter-target or receiver-target range of $75m$.

3. The power level of the pulses received during the dwell period will saturate the receiver. This requirement is not attained. This, however, is not critical as it only occurs during the dwell period when the receiver is blind.

4. The receiver regenerates the transmitter azimuth information for the purposes of this project with sufficient accuracy (2.1°).

5. The PRF synchronization circuit has several disadvantages due to the 50Hz wobulation. A problem with this circuit is that it relies on the mains to obtain the 50Hz. This is undesirable as the receiver is not totally independent. The accuracy of the regenerated PRF has not been ascertained.

6. The PPI display corrects the bistatic distortion satisfactorily. Unfortunately at the completion of the receiver and synchronization circuits the display was not operational due to an unknown electronic fault.

7. From the predicted clutter results, it appears that the detection of targets with an RCS of $50m^2$ will be severely hampered due to the large clutter echoes received.
CHAPTER 4
CONCLUSION

This report has discussed most of the aspects about bistatic radars. It was shown that the complexity of the bistatic radar is greater than the monostatic radar as remote synchronization is required and the PPI display is distorted. The performance of a bistatic radar will not exceed that of a monostatic radar, however, a bistatic radar has several advantages over the monostatic radar. Some of these advantages have been discussed. These advantages also make a bistatic radar the desired system for specific applications.

An experimental bistatic radar receiver has also been described for use in an air traffic control environment. Relatively simple and inexpensive PRF and azimuth scanning synchronization is achievable, allowing for a conventional PPI display of target information.
CHAPTER 5
RECOMMENDATIONS

To improve the performance of the bistatic radar receiver, the following recommendations are made:

1. A dedicated local oscillator can be designed to make the receiver less reliant on support equipment. This also allows the design of a sampled AFC circuit which is required to compensate for the transmitter and receiver frequency drift.

2. A limiter should be placed at the input of the low noise amplifier. This will prevent saturation of the receiver amplifiers during the main bang pulse. The limiter should be set such that the amplifiers operate just below the 1dB compression point. This will prevent the limiter from affecting the sensitivity of the level detector.

3. The azimuth resolution can be improved by replacing the VCO with a more stable oscillator such as a voltage controlled crystal oscillator or a crystal oscillator as a reference in a phased lock loop configuration. This method was used in the bistatic receiver designed at University College London. See reference [7].

4. An alternative method to regenerate the PRF should be used. One such method would require the use of a computer and an I/O card. The idea would be to sample and store the received PRF during the dwell period. The stored sample would have sufficient information to regenerate the PRF accurately. This method eliminates the need to use the unstable 50Hz from the mains.

5. Accurate clutter measurements should be taken for all azimuth positions. STC voltage control curves should then be determined for several azimuth angles. This can be done by using a look-up table. An EPROM can be used to store several curves and then the appropriate curve can be addressed for the corresponding azimuth.
6. The present display circuitry should be rebuilt onto a PC board to improve its reliability and the display must be replaced with one that has a much higher permanence phosphor.

From this report it is noted that the signal to clutter ratio could present a problem. An enhancement which can be done to improve this problem would be:

The antenna at the receiver can be replaced with a high gain directional scanning antenna. The scanning antenna can be synchronized to the existing azimuth synchronization system. In this case the antenna beam would not illuminate as much ground, hence reducing received clutter level. This system has the additional advantage that the dynamic range of the receiver would be increased.
BIBLIOGRAPHY AND REFERENCES

29. Signetics Application Notes, Signetics Corporation, pp 6-1 to 6-64, 1974.
APPENDIX 1

Table 1.1 gives some general bistatic radar applications for various transmitter and receiver configurations. The table was obtained from reference [1].

Table 1.1

<table>
<thead>
<tr>
<th>Bistatic Radar Operating Regions</th>
<th>Range Relationships</th>
<th>Dedicated</th>
<th>Cooperative</th>
<th>None-cooperative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver Centered</td>
<td>$L > 2\sqrt{s}$</td>
<td>• Air-to-ground attack (silent penetration)</td>
<td>• Over-the-shoulder operation</td>
<td>• Passive situation awareness</td>
</tr>
<tr>
<td></td>
<td>$R_T \gg R_R$</td>
<td>• Semiactive homing missile (LOAL)$_T$</td>
<td>• Passive situation awareness</td>
<td></td>
</tr>
<tr>
<td>Transmitter Centered</td>
<td>$L > 2\sqrt{s}$</td>
<td></td>
<td></td>
<td>• Monitoring</td>
</tr>
<tr>
<td></td>
<td>$R_T \gg R_R$</td>
<td></td>
<td></td>
<td>• Launch alert</td>
</tr>
<tr>
<td>Cosite</td>
<td>$L < 2\sqrt{s}$</td>
<td>• Medium-range air defense</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Satellite tracking</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Range instrumentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Semiactive homing missile (LOBL)$_P$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Intrusion detection</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1.2 gives a summary of measurement programs for bistatic radar scattering coefficients. This table was obtained from reference [1].

<table>
<thead>
<tr>
<th>Reference (Date)</th>
<th>Organization</th>
<th>Author</th>
<th>Surface Composition</th>
<th>Frequency</th>
<th>Polarization</th>
<th>Measurement Angles (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>θ_1</td>
</tr>
<tr>
<td>42 (1965)</td>
<td>Ohio State University (Antenna Laboratory)</td>
<td>Cost, Peakes</td>
<td>Smooth sand Loam Soybeans</td>
<td>10 GHz</td>
<td>VV, HH, HV</td>
<td>5-30, 10-70</td>
</tr>
<tr>
<td>43 (1966)</td>
<td>Johns Hopkins University (APL)</td>
<td>Pidgeon</td>
<td>Rough sand Loam with stubble Grass</td>
<td>10 GHz</td>
<td>VV, VH</td>
<td>5-70</td>
</tr>
<tr>
<td>107 (1967)</td>
<td>G.E.C. (Electronics) Ltd., England</td>
<td>Domville</td>
<td>Sea (Sea states 1, 2, 3)</td>
<td>X-band</td>
<td>HH</td>
<td>1-8</td>
</tr>
<tr>
<td>110 (1968)</td>
<td>University of Michigan (ERIM)</td>
<td>Larson, Heimiller</td>
<td>Grass with cement Taxiway Weeds and shrub trees</td>
<td>1.3 and 9.4 GHz</td>
<td>HH, HV</td>
<td>10, 15, 20</td>
</tr>
<tr>
<td>113 (1982)</td>
<td>Georgia Institute of Technology (EES)</td>
<td>Ewell, Zehner</td>
<td>Sea (0.9m, 1.2-1.8 m wave heights)</td>
<td>9.38 GHz</td>
<td>VV, HH</td>
<td>≤ 0</td>
</tr>
</tbody>
</table>

Note: θ_1, θ_2, and ϕ represent the measurement angles in degrees.
APPENDIX 2

The artwork of the PC boards used in several circuits are shown in this appendix. The artwork diagrams have not been scaled.

Figure 2.1 The artwork of the LNA circuit.

Figure 2.2 The artwork of the preamplifier and power splitter circuits.
Figure 2.3 The artwork of the STC circuit.
APPENDIX 3

The specifications of the Mini-Circuit components used in the receiver are given below.

Power Splitter/Combiners

2 WAY-0°

DC to 4.2 GHz

<table>
<thead>
<tr>
<th>FREQ. RANGE MHz</th>
<th>ISOLATION dB</th>
<th>INSERTION LOSS dB Above 3dB</th>
<th>PHASE UNBALANCE Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPS</td>
<td>10-500</td>
<td>35 75 25 35 25 35 75 25</td>
<td>35 75 25 35 25 35 75 25</td>
</tr>
<tr>
<td>MSC-2-1</td>
<td>10-200</td>
<td>20 40 20 40 20 40 20 40</td>
<td>20 40 20 40 20 40 20 40</td>
</tr>
<tr>
<td>SCP-2-1</td>
<td>10-400</td>
<td>15 30 15 30 15 30 15 30</td>
<td>15 30 15 30 15 30 15 30</td>
</tr>
<tr>
<td>TSC-2-1</td>
<td>10-600</td>
<td>20 60 20 60 20 60 20 60</td>
<td>20 60 20 60 20 60 20 60</td>
</tr>
</tbody>
</table>

PSC-2-1 Power Splitter.
Monolithic Amplifiers

50 ohms, up to +11 dBm out
dc to 2 GHz, surface mountable

<table>
<thead>
<tr>
<th>Model</th>
<th>Color</th>
<th>Freq. MIN</th>
<th>Max. 500/000</th>
<th>2000 MHz</th>
<th>Gain, dB</th>
<th>Max. Power, dBm</th>
<th>Dynamic Range</th>
<th>VSWR</th>
<th>DC Power @ Pin 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR-1 Brown</td>
<td>DC-2000</td>
<td>16.5 15.5 15.2</td>
<td>-13.0</td>
<td>0</td>
<td>+10</td>
<td>5.0</td>
<td>15</td>
<td>1.5:1</td>
<td>40</td>
</tr>
<tr>
<td>MAR-2 Red</td>
<td>DC-2000</td>
<td>12 12.5 12.5</td>
<td>-11.0</td>
<td>2.5</td>
<td>+3</td>
<td>+15</td>
<td>6.5</td>
<td>13</td>
<td>1.4:1</td>
</tr>
<tr>
<td>MAR-3 Orange</td>
<td>DC-2000</td>
<td>10.4 10.4 10.4</td>
<td>-9.0</td>
<td>2.5</td>
<td>+3</td>
<td>+15</td>
<td>6.0</td>
<td>16</td>
<td>1.2:1</td>
</tr>
<tr>
<td>MAR-4 Yellow</td>
<td>DC-2000</td>
<td>8 8.0 8.0</td>
<td>-6.0</td>
<td>-1</td>
<td>+15</td>
<td>7.0</td>
<td>19</td>
<td>1.1:1</td>
<td>85</td>
</tr>
<tr>
<td>MAR-5 Violet</td>
<td>DC-2000</td>
<td>6 6.0 6.0</td>
<td>-3.0</td>
<td>-2</td>
<td>+15</td>
<td>7.5</td>
<td>21</td>
<td>1.0:1</td>
<td>100</td>
</tr>
<tr>
<td>MAR-6 Blue</td>
<td>DC-1000</td>
<td>3 3.5 3.5</td>
<td>-0.5</td>
<td>-3</td>
<td>+15</td>
<td>8.0</td>
<td>24</td>
<td>1.0:1</td>
<td>120</td>
</tr>
</tbody>
</table>

NOTES:
1. Price and specifications subject to change without notice.
2. With no load output. Determine maximum input power (no damage) by 10dB.
3. Price and specifications subject to change without notice.
4. Maximum gain at highest frequency point and over full temperature range.
5. Surface mount models are available in tape & reel.
6. MAR-8: input/output impedance is 50 ohms, see data sheet.

Stable for source/load impedances VSWR less than 3:1.

Designers Amplifier kit, DAK-2
5 of each model, total 35 amplifiers
only $59.95

Also, for your design convenience, Mono-Circuits offers chip coupling capacitors at 12 cents each.

Designers kit, KCAP-1: 50 pcs. of each capacitor value, only $5.95.
LMX-149 Double Balanced Mixer.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>LO-IF</th>
<th>IF</th>
<th>LO-RF</th>
<th>IF</th>
<th>LO-IF</th>
<th>IF</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAM-1</td>
<td>400</td>
<td>500</td>
<td>600</td>
<td>700</td>
<td>800</td>
<td>900</td>
</tr>
<tr>
<td>SAM-2</td>
<td>500</td>
<td>600</td>
<td>700</td>
<td>800</td>
<td>900</td>
<td>1000</td>
</tr>
<tr>
<td>TSM-1</td>
<td>600</td>
<td>700</td>
<td>800</td>
<td>900</td>
<td>1000</td>
<td>1100</td>
</tr>
<tr>
<td>TSM-2</td>
<td>700</td>
<td>800</td>
<td>900</td>
<td>1000</td>
<td>1100</td>
<td>1200</td>
</tr>
</tbody>
</table>

CONVERSION LOSS

<table>
<thead>
<tr>
<th>FREQUENCY (MHz)</th>
<th>LO-RF</th>
<th>IF</th>
<th>LO-RF</th>
<th>IF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>60</td>
<td>50</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>1200</td>
<td>70</td>
<td>60</td>
<td>70</td>
<td>60</td>
</tr>
</tbody>
</table>

LO-RF ISOLATION (dB)

<table>
<thead>
<tr>
<th>FREQUENCY (MHz)</th>
<th>LO-RF</th>
<th>IF</th>
<th>LO-RF</th>
<th>IF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>60</td>
<td>50</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>1200</td>
<td>70</td>
<td>60</td>
<td>70</td>
<td>60</td>
</tr>
</tbody>
</table>

PRICE

<table>
<thead>
<tr>
<th>DISTRIBUTOR</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>50</td>
</tr>
<tr>
<td>BBB</td>
<td>60</td>
</tr>
</tbody>
</table>

LMX-149 Double Balanced Mixer.

In Stock...Immediate Delivery

128
APPENDIX 4

Given below is the listing and the results of the PSPICE program used to simulate the Chebyshev bandpass filter circuit and to predict its performance.

Pspice input file.

```plaintext
*** CASCADED HP AND LP FILTER
**** CIRCUIT DESCRIPTION
******************************************************************************
*CHEBYSHEV 5 ELEMENT
.AC LIN 500 30MEGhz 140MEGhz
VIN 1 0 AC 1volt
r1 1 2 50ohms
r2 11 0 50ohms
l1 2 3 0.12uh
r3 3 4 0.001ohms
l3 4 5 0.236uh
r4 5 6 0.001ohms
l5 6 7 0.12uh
r5 7 8 0.001ohms
c2l 4 0 75.21pf
c4l 6 0 75.21pf
c1h 8 9 42.81pf
c3h 9 10 21.905pf
c5h 10 11 42.81pf
l2h 9 12 0.069uf
r6 12 0 0.001ohms
l4h 10 13 0.069uf
r7 13 0 0.001ohms
rc1 8 9 10gohms
rc2 9 10 10gohms
rc3 10 11 10gohms
.PLOT AC VDB(11)
.PROBE
.END
```
Pspice results.
This appendix contains a copy of the Hewlett Packard application note 936. The title of this application note is, "High Performance Pin Attenuator for Low Cost AGC Applications".

SUMMARY

PIN diodes offer an economic way of achieving excellent performance in AGC circuits. Significant improvements in crossmodulation and intermodulation distortion performance compared to transistors are obtained.

Other advantages of PIN diodes, such as good low frequency operation, constant impedance levels, and low power consumption will be discussed in this article.

INTRODUCTION

In the short time since its introduction, the PIN diode has found many areas of application. New developments in diode design have allowed the PIN diode to be useful at much lower frequencies than ever before. This article describes its use as an attenuator for automatic gain control and compares its performance to a transistorized AGC system in a television receiver.

The most important feature of the PIN diode is its inherent ability to act as a current controlled resistor at RF frequencies. Most diodes possess this capability to some degree, but the PIN diode is especially optimized in design to achieve a wide resistance range with consistently good linearity and low distortion. As typically shown in Figure 1, when the control current is varied continuously from 1 µA to 100 mA, the resistance of a PIN diode will change from over ten thousand ohms to about one ohm. This characteristic variation of resistance with current makes the PIN diode ideally suited for application in automatic gain control systems.

The PIN diode is similar to ordinary PN junction diodes except for an added intrinsic region (I-layer) sandwiched between the p+ and n+ layers. It is in

[Image: Typical Pin Diode Resistance Versus Control Current.]

AUTOMATIC GAIN CONTROL SYSTEMS

Many receivers today use transistors to accomplish their AGC requirements. For normal operation these transistors are biased for maximum gain. When the signal exceeds a set threshold level, automatic gain control is achieved by an increase in bias current, which results in a gain reduction. The principle of forward AGC is applied.
A block diagram of a typical AGC system in a television receiver is shown in Figure 2. The objective is to keep the output of the video detector constant with increasing RF signal levels. The usual way of determining the signal strength of the incoming signal is to use the height of the horizontal pulses as a reference. A synchronized AGC keyer is used for this purpose. The threshold level required to trigger the keyer is preset. A winding in the flyback transformer supplies the horizontal pulses needed to bias the keyer transistor. When the keyer is off, the AGC amplifier supplies the required voltage to bias the RF and IF amplifiers for maximum gain. When the signal from the video amplifier exceeds the threshold level during the horizontal sync pulse, the keyer turns on and biases the AGC off. This results in an increased AGC voltage to the RF and IF amplifiers and thus a reduction in gain.

![Figure 3. Use of a PIN Diode Attenuator as an Interstage for Providing AGC.](image)

When AGC is applied to a transistor, the optimum operating point is disturbed, and the input and output impedances change drastically. This change will, of course, adversely affect the associated tuned circuit. The use of a PIN diode attenuator as an interstage, as shown in Figure 3, will provide a wide range of gain control without disturbing the optimum operating point of the associated circuit elements. This minimizes changes in impedance levels, phase shift and tuning, while achieving the required change in gain.

When the basic requirements of an attenuator for AGC application in a receiver are considered, the reasons for the superiority of PIN diodes over other PN junction diodes will become obvious. In particular, consider the use of 3 low frequency diodes in a \(\pi\) configuration attenuator as shown in Figure 4. The ratio of on to off resistance of PIN diodes is significantly greater than that of other diodes, so that the insertion loss is lower and the maximum attenuation is greater. In terms of AGC this means larger dynamic range. The linearity of resistance as a function of bias makes the PIN diode less susceptible to modulation distortion.

![Figure 4. 3 Diode \(\pi\) Attenuator.](image)

![Figure 5. Transistor AGC Circuit.](image)

The VHF/UHF range distortion from partial rectification cannot be tolerated. The use of low frequency PIN diodes ensures that distortion is minimized at these low frequencies. HP 5082-3080 and 5082-3081 PIN diodes with lifetime, respectively, in excess of 1 and 1.5 microseconds are usable below 10 MHz.

PERFORMANCE CHARACTERISTICS

A transistorized amplifier stage and a low frequency PIN diode attenuator built for AGC performance comparison are shown, respectively, in Figures 5 and 6. In each case there is a fixed supply voltage of 12 volts and a variable voltage for AGC control.

In the transistor circuit the principle of forward AGC is applied. In addition to the fixed 12 volts an AGC voltage of -4.5 volts is required to bias the
transistor for maximum gain. Further increase in AGC voltage results in a larger collector current and a reduction in gain. A curve of Gain Reduction versus AGC voltage at 45 MHz is shown in Figure 7. A maximum gain of approximately 40 dB is obtained at an AGC voltage of -4.5 volts. With more AGC voltage the gain decreases until a gain reduction of 40 dB is achieved at about 11.5 volts of AGC voltage.

Attenuation versus AGC voltage for the PIN attenuator circuit is shown in Figure 8. There is minimum attenuation when the AGC voltage is zero. The attenuation increases with AGC voltage until 40 dB of attenuation is obtained with 8.75 volts of AGC voltage. For 40 dB of attenuation the PIN attenuator requires 35 mW of power, while the transistor circuit consumes 120 mW for the same gain reduction.

Intermodulation and crossmodulation characteristics of the transistor and PIN attenuator AGC circuits are illustrated in Figures 9 through 14. A block diagram of the test equipment used for these distortion measurements is shown in Figure 15. The wave analyzer is used only for the crossmodulation tests. The tests are conducted with two equal amplitude input signals, one at 45 MHz and the other at 45.5 MHz. For the crossmodulation measurements one of the input signals is 100% modulated with a 15 KHz signal from the wave analyzer.

Examination of the distortion characteristics will reveal significant differences in performance of the two AGC circuits. Over a 30 dB dynamic range,
it is seen that second order intermodulation distortion at the same level of fundamental output is less in the PIN attenuator than in the transistor circuit. The difference at some points in the range is in excess of 10 dB. Longer lifetime HP 5082-3081 PIN diodes definitely show more favorable intermodulation characteristics than the HP 5082-3080 diodes. The superiority of the PIN attenuator as an AGC circuit is even more apparent with comparison of the crossmodulation characteristics. At some power levels, crossmodulation in the transistor circuit is seen to be 50 dB worse. A comparison of Figure 12 and 14 indicates better crossmodulation rejection when using HP 5082-3080 PIN diodes.

A comparison of the PIN and transistor AGC circuit performance is shown in Table 1.

<table>
<thead>
<tr>
<th>Power Consumption, mW</th>
<th>2nd Order Intermod, dB</th>
<th>Crossmodulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 (5082-3080)</td>
<td>-59 (-20 dBm output)</td>
<td>-68 (-20 dBm output)</td>
</tr>
<tr>
<td>35 (5082-3081)</td>
<td>-64 (-20 dBm output)</td>
<td>-59 (-20 dBm output)</td>
</tr>
<tr>
<td>120</td>
<td>-55 (-20 dBm output)</td>
<td>-37 (-20 dBm output)</td>
</tr>
</tbody>
</table>

Figure 11. 2nd Order Intermodulation Versus Attenuation PIN Diode Attenuator AGC Circuit Using HP 5082-3080.

Figure 12. Crossmodulation Versus Attenuation PIN Diode Attenuator AGC Circuit Using HP 5082-3080.

Figure 13. 2nd Order Intermodulation Versus Attenuation PIN Diode Attenuator AGC Circuit Using HP 5082-3081.

Figure 14. Crossmodulation Versus Attenuation PIN Diode Attenuator AGC Circuit Using HP 5082-3081.

Figure 15. Block Diagram of Test Equipment used for Distortion Measurement.
CONCLUSION

Automatic gain control in a transistorized circuit requires that the optimum operating point of the AGC transistor be shifted. This produces a drastic change in the impedance level, which severely affects the adjoining tuned circuit.

The use of a PIN diode attenuator as the AGC control element will provide the required gain control without the attendant problems of large impedance shift. The result is minimum distortion in the output coupled with low power consumption. The use of long lifetime PIN diodes gives added assurance of usefulness at low frequencies for low cost applications.
APPENDIX 6

The specifications of the Pinn diode used in the STC circuit are shown below. The Pinn diode used is an HP5082-3081.

PIN DIODES FOR RF SWITCHING AND ATTENUATING

Features
- Low Harmonic Distortion
- Large Dynamic Range
- Low Series Resistance
- Low Capacitance
- Low Temperature Coefficient
 - Typically less than 20% resistance change from 25°C to 100°C

Description / Applications
These general purpose switching diodes are intended for low power switching applications such as RF duplexers, antenna switching matrices, digital phase shifters, and time multiplex filters. The 5082-3168/3188 are optimized for VHF/UHF bandswitching.

Mechanical Specifications
The HP Outline 15 package has a glass hermetic seal with dural leads. The leads on the Outline 15 package should be restricted so that the bend starts at least 1.18 inch (2.6 mm) from the glass body. With this restriction, Outline 15 package will meet MIL-STD-750, Method 2036, Conditions A, D, E, and F. The maximum soldering temperature is 230°C for five seconds. Typical package inductance and capacitance are 2.5 nH and 0.13 pF, respectively. Marking is by digital coding with a cathode band.

Maximum Ratings at T_{CASE} = 25°C
- Junction Operating and Storage
 - Temperature Range: -65°C to +150°C
 - Operation of these devices within the above temperature ratings will assure a device Mean Time Between Failure (MTBF) of approximately 1 x 10⁷ hours.
 - Power Dissipation: 250 mW
 - Peak Inverse Voltage (PIV): V_{BR}

HEWLETT PACKARD COMPONENTS
General Purpose Diodes

Electrical Specifications at $T_a = 25^\circ C$

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Maximum Total Capacitance</th>
<th>Minimum Breakdown Voltage</th>
<th>Maximum Residual Series Resistance</th>
<th>Minimum Effective Carrier Lifetime τ_{eff}</th>
<th>Maximum Reverse Recovery Time τ_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>5082-3037</td>
<td>0.2 µF</td>
<td>200 V</td>
<td>0.3 µA</td>
<td>500 ns</td>
<td>100 ns</td>
</tr>
<tr>
<td>5082-3038</td>
<td>0.25 µF</td>
<td>200 V</td>
<td>0.3 µA</td>
<td>500 ns</td>
<td>100 ns</td>
</tr>
<tr>
<td>5082-3039</td>
<td>0.25 µF</td>
<td>150 V</td>
<td>0.3 µA</td>
<td>500 ns</td>
<td>100 ns</td>
</tr>
<tr>
<td>5082-3040</td>
<td>0.3 µF</td>
<td>100 V</td>
<td>0.3 µA</td>
<td>500 ns</td>
<td>100 ns</td>
</tr>
<tr>
<td>5082-3041</td>
<td>0.4 µF</td>
<td>50 V</td>
<td>0.3 µA</td>
<td>500 ns</td>
<td>100 ns</td>
</tr>
<tr>
<td>5082-3042</td>
<td>0.4 µF</td>
<td>25 V</td>
<td>0.3 µA</td>
<td>500 ns</td>
<td>100 ns</td>
</tr>
<tr>
<td>5082-3043</td>
<td>0.5 µF</td>
<td>10 V</td>
<td>0.3 µA</td>
<td>500 ns</td>
<td>100 ns</td>
</tr>
<tr>
<td>5082-3044</td>
<td>1.0 µF</td>
<td>5 V</td>
<td>0.3 µA</td>
<td>500 ns</td>
<td>100 ns</td>
</tr>
<tr>
<td>5082-3045</td>
<td>2.0 µF</td>
<td>2.5 V</td>
<td>0.3 µA</td>
<td>500 ns</td>
<td>100 ns</td>
</tr>
<tr>
<td>5082-3046</td>
<td>3.0 µF</td>
<td>2 V</td>
<td>0.3 µA</td>
<td>500 ns</td>
<td>100 ns</td>
</tr>
<tr>
<td>5082-3047</td>
<td>4.0 µF</td>
<td>1 V</td>
<td>0.3 µA</td>
<td>500 ns</td>
<td>100 ns</td>
</tr>
</tbody>
</table>

The 1N5767 has the additional specifications:

- Typical CW power switching capability for a shunt switch in a 50Ω system is $2.5W$.

FF Current Controlled Resistor Diodes

Electrical Specifications at $T_a = 25^\circ C$

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Minimum Effective Carrier Lifetime τ_{eff}</th>
<th>Minimum Breakdown Voltage V_B</th>
<th>Maximum Residual Series Resistance R_s</th>
<th>Maximum Total Capacitance C_T</th>
<th>High Resistance Limit R_h</th>
<th>Low Resistance Limit R_l</th>
<th>Maximum Difference in Resistance vs. Bias Slope ΔR</th>
</tr>
</thead>
<tbody>
<tr>
<td>5082-3048</td>
<td>100 ns</td>
<td>100 V</td>
<td>0.3 µA</td>
<td>1100 ns</td>
<td>1650 ns</td>
<td>160 ns</td>
<td>15%</td>
</tr>
<tr>
<td>5082-3049</td>
<td>100 ns</td>
<td>100 V</td>
<td>0.3 µA</td>
<td>1100 ns</td>
<td>1650 ns</td>
<td>160 ns</td>
<td>15%</td>
</tr>
<tr>
<td>5082-3050</td>
<td>100 ns</td>
<td>100 V</td>
<td>0.3 µA</td>
<td>1100 ns</td>
<td>1650 ns</td>
<td>160 ns</td>
<td>15%</td>
</tr>
<tr>
<td>5082-3051</td>
<td>100 ns</td>
<td>100 V</td>
<td>0.3 µA</td>
<td>1100 ns</td>
<td>1650 ns</td>
<td>160 ns</td>
<td>15%</td>
</tr>
<tr>
<td>5082-3052</td>
<td>100 ns</td>
<td>100 V</td>
<td>0.3 µA</td>
<td>1100 ns</td>
<td>1650 ns</td>
<td>160 ns</td>
<td>15%</td>
</tr>
<tr>
<td>5082-3053</td>
<td>100 ns</td>
<td>100 V</td>
<td>0.3 µA</td>
<td>1100 ns</td>
<td>1650 ns</td>
<td>160 ns</td>
<td>15%</td>
</tr>
<tr>
<td>5082-3054</td>
<td>100 ns</td>
<td>100 V</td>
<td>0.3 µA</td>
<td>1100 ns</td>
<td>1650 ns</td>
<td>160 ns</td>
<td>15%</td>
</tr>
<tr>
<td>5082-3055</td>
<td>100 ns</td>
<td>100 V</td>
<td>0.3 µA</td>
<td>1100 ns</td>
<td>1650 ns</td>
<td>160 ns</td>
<td>15%</td>
</tr>
</tbody>
</table>

The 1N5767 has the additional specifications:

- $I_f = 100mA$ minimum
- $V_p = 50V$ maximum at $V_{g} = 50V$
- $V_f = 1V$ maximum at $I_p = 100mA$.
Typical Parameters

Figure 1. Typical Forward Current vs. Forward Voltage.
Figure 2. Typical RF Resistance vs. Forward Bias Current.
Figure 3. Typical RF Resistance vs. Bias for HPND-4165.
Figure 4. Typical RF Resistance vs. Bias for HPND-4166.
Figure 5. Typical RF Resistance vs. Forward Bias Current.
Figure 6. Typical Capacitance vs. Reverse Voltage.
Typical Parameters (Continued)

Figure 7. Typical Capacitance vs. Reverse Voltage 5082-3080, 3081, 3168, 3169.

Figure 8. Typical Reverse Recovery Time vs. Forward Current for Various Reverse Driving Voltages, 5082-3042, 3043.

Figure 9. Typical Reverse Recovery Time vs. Forward Current for Various Reverse Driving Voltages.

Figure 10. Typical Second Order Intermodulation Distortion.

Figure 11. Typical Cross Modulation Distortion.
APPENDIX 7

The calculations to determine the noise figure, sensitivity, maximum dynamic range, power level of the pulses received during the dwell period and minimum range were done on a mathematical software package (Mathcad). The Mathcad worksheet containing these calculations is given here.

BISTATIC RECEIVER

The receiver is at UCT, and 15km from the transmitter at D.F. Malan airport. The receiver is 200m above the transmitter. The transmit antenna is elevated at 4 degrees. The peak gain of transmit antenna is 34 dB. The transmit antenna illuminates the receiver with a gain of 28 dB. 6 dB down. The height of main beam axis 100km away is 7km.

To calculate the noise figure and maximum range of a radar receiver as well as the sensitivity.

System parameters:

\[\begin{align*}
\text{Pt} & := 2.5 \times 10^{6} \text{ Watts} \\
\text{Gt} & := 25 \text{dBI} \\
\text{Gr} & := 1.64 \text{ m}^{-2} \\
T & := 273 + 23 \text{ Kelvin} \\
f & := 1.35 \times 10^{9} \\
c & := 3 \times 10^{8} \\
\lambda & := \frac{c}{f} \\
k & := 1.38 \times 10^{-23} \\
\text{BW} & := 400 \times 10^{3} \text{ Hz} \\
\text{SNR} & := 2.5 \text{ dB at the output of main IF amplifier in the receiver}
\end{align*} \]

Stage 1 = LNA
Stage 2 = cable
Stage 3 = preselector
Stage 4 = mixer
Stage 5 = matched filter
Stage 6 = preamp
Stage 7 = limiter amp
Stage 8 = IF amp

Convert dB's to a size

\[\begin{align*}
\text{x} & := \frac{x}{10} \\
\text{f(x)} & := \frac{f(x)}{10} \\
\text{g(x)} & := \frac{g(x)}{10}
\end{align*} \]

Noise figure of system is:

\[\begin{align*}
\text{nfa} & := \frac{f(F1) + \frac{f(F2) - 1}{g(G1)} + \frac{f(F3) - 1}{g(G1) \cdot g(G2)} + \frac{f(F4) - 1}{g(G1) \cdot g(G2) \cdot g(G3)} + \frac{f(F5) - 1}{g(G1) \cdot g(G2) \cdot g(G3) \cdot g(G4) \cdot g(G5) \cdot g(G6)}}{f(F6) - 1} \\
\text{nfb} & := \frac{\frac{f(F7) - 1}{g(G1) \cdot g(G2) \cdot g(G3) \cdot g(G4) \cdot g(G5) \cdot g(G6)}}{g(G4) \cdot g(G1) \cdot g(G2) \cdot g(G3) \cdot g(G4) \cdot g(G5) \cdot g(G6) \cdot g(G7)} \\
\text{nfc} & := \frac{\frac{f(F8) - 1}{g(G1) \cdot g(G2) \cdot g(G3) \cdot g(G4) \cdot g(G5) \cdot g(G6) \cdot g(G7)}}{g(G4) \cdot g(G1) \cdot g(G2) \cdot g(G3) \cdot g(G4) \cdot g(G5) \cdot g(G6) \cdot g(G7)}
\end{align*} \]
\[nfc = 0.037 \]
\[nf := nfa + nfb + nfc \]

Input noise to the system is determined by the antenna. The effective noise temperature is obtained from the atmosphere. It is 150K.

\[\text{Tea} := 192 \text{ Kelvin} \]
\[\text{Nin} := k \cdot \text{Tea} \cdot \text{BW} \]

Noise is derated due to nf therefore the effective noise at input must be:

\[\text{Neff} := \text{Nin} \cdot \text{nf} \]

\[\text{SNR} := 10 \cdot \log(\text{snr}) \]

The desired SNR is 9.5dB

\[\text{nf} = 25.825 \]
\[\text{NF} = 14.12 \text{ dB} \]

SNR

\[\text{sin} = \frac{10}{\text{snr}} \text{ converting from dB to size} \]

Therefore the input signal must be:

\[\text{Sin} := 10 \cdot \log\left(\frac{\text{snr} \cdot \text{Neff}}{0.001}\right) \]
\[\text{si} := \text{snr} \cdot \text{Neff} \]

\[\text{Sin} = -103.127 \text{ dBm also known as the sensitivity of the receiver.} \]

Therefore the maximum range obtainable is:

\[R := \frac{1}{4} \left(\frac{\text{Pt} \cdot \text{Gt} \cdot \text{Gr} \cdot \lambda \cdot \sigma}{3} \right) \cdot \text{si} \]
\[R := 127.37 \text{ km} \]

\[\text{Gtot} := G1 + G2 + G3 + G4 + G5 + G6 + G7 + G8 \]
\[\text{Gtot} = 76.11 \text{ dB} \]

Determine maximum input power without saturating the receiver. In this case the target is at the airport and is at all times not within 75m of the transmit antenna. The gain of the transmit antenna is 9dB down from the peak gain at this level, hence Gta = 316.

\[\text{Rmin} := 75 \]
\[\text{Gta} := 316 \]
\[\text{Rmin} := 14925 \]

\[\text{prmax} := \left(\frac{\text{Pt} \cdot \text{Gta} \cdot \text{Gr} \cdot \lambda \cdot \sigma}{3} \right)^{2/2} \]
Determine the power of the main bang pulse. The gain of the transmitter antenna is 6 dB down from the peak gain when it illuminates the receiver antenna.

\[
P_{\text{rmax}} := 10 \cdot \log \left(\frac{P_{\text{rmax}}}{0.001} \right)
\]

\[
P_{\text{rmax}} = -28.906 \text{ dBm}
\]

\[
G_{\text{te}} := 10^{\frac{10 \cdot \log G_{\text{te}} - 6}{10}}
\]

\[
P_{\text{rmb}} := \left(\frac{P_{\text{r}} \cdot G_{\text{te}} \cdot G_{\text{r}} \cdot \lambda}{16 \pi^2 \cdot 15000} \right)^2
\]

\[
P_{\text{rmb}} := 10 \cdot \log \left(\frac{P_{\text{rmb}}}{0.001} \right)
\]

\[
P_{\text{rmb}} = 5.556 \text{ dBm}
\]
APPENDIX 8

The azimuth synchronization circuit diagram and the artwork for the PC board is given in this appendix.

Figure 8.1 The azimuth synchronization circuit. Header 2 is connected to two LEDs. The LEDs show the operator whether the circuit is synchronized or not.
Figure 8.2 The PC board artwork. This is the top layer of the azimuth synchronization board.
Figure 8.3 The PC board artwork. This is the bottom layer of the azimuth synchronization board.
APPENDIX 9

This appendix contains the circuit diagram of the PRF synchronization circuit and specifications of the XR-2212 PLL used in the circuit.
Figure 9.1 The PRF synchronization circuit diagram.
XR-2212

ELECTRICAL CHARACTERISTICS

For Conditions: $V_{CC} = +12V$, $Ta = \pm 25^\circ C$, $R_{P} = 30 \, k\Omega$, $C_{G} = 0.033 \, \mu F$, unless otherwise specified. See Figure 2 for component designation.

FUNCTIONAL BLOCK DIAGRAM

FEATURES
- Quadrature VCO Outputs
- Wide Frequency Range: 0.01 Hz to 300 kHz
- Wide Supply Voltage Range: 4.5V to 20V
- TUTT/LUT/LC Logic Compatibility
- Wide Dynamic Range: 2 mV to 3 Vrms
- Adjustable Tracking Range (±1% to ±20%) Excellent Temp. Stability: 20 ppm/°C, Typ.

APPLICATIONS
- Frequency Synthesis
- Data Synchronization
- FM Detection
- Tracking Filters
- FSK Demodulation

ABSOLUTE MAXIMUM RATINGS
- Power Supply: 18V
- Input Signal Level: 3 Vrms
- Power Dissipation:
 - Ceramic Package: 750 mW
 - Plastic Package: 625 mW
- Derate Above $Ta = +25^\circ C$:
 - Ceramic: 6 mW/°C
 - Plastic: 5 mW/°C

SYSTEM DESCRIPTION

The XR-2212 is a complete PLL system especially designed for data communications and control system applications. Its on board reference and uncompensated operational amplifier, together with a typical temperature stability of better than 20 ppm/°C, make it ideally suited for frequency synthesis, FM detection, and tracking filter applications. The wide input dynamic range, large operating voltage range, large frequency range, and ECL, DTL, and TI compatibility contribute to the usefulness and wide applicability of this device.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>Operating frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>XR-2212M</td>
<td>Ceramic</td>
<td>±55°C ±1%</td>
</tr>
<tr>
<td>XR-2212CN</td>
<td>Ceramic</td>
<td>0°C ±5%</td>
</tr>
<tr>
<td>XR-2212CP</td>
<td>Plastic</td>
<td>0°C ±5%</td>
</tr>
<tr>
<td>XR-2212HN</td>
<td>Ceramic</td>
<td>0°C ±0.5%</td>
</tr>
<tr>
<td>XR-2212FP</td>
<td>Plastic</td>
<td>0°C ±0.5%</td>
</tr>
</tbody>
</table>

INPUT PREAMP SECTION

- Input Impedance: 20 KΩ
- Input Signal to Cause Limiting: 20 mVp-p

AMP SECTION

- Input Gain: 55 dB
- Input Bias Current: 0.1 mAi
- Input Voltage: ±20 mV
- Frequency: 2 Hz

INTERNAL REFERENCE

- Freq. Level: 4.9 V to 5.3 Vrms
- Voltage Source Current: 700 mA
- Duty Cycle

PARAMETERS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>XR-2212/2212M</th>
<th>XR-2212CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 V DC</td>
<td>20 KΩ</td>
<td>0.1 mAi</td>
</tr>
<tr>
<td>55 V DC</td>
<td>50 KΩ</td>
<td>0.1 mAi</td>
</tr>
</tbody>
</table>

CONDITIONS

- Measured at Pin 5.
- Measured at Pin 3.
- Measured at Pin 15.
- Measured at Pin 11.
- Measured at Pin 10.
- Measured at Pin 2.
- $R_{L} = 5.1 \, k\Omega$, $R_{P} = \infty$
- AC Small Signal
In the range of 10 mV to 5 V peak.

Phase Detector Output (Pin 10): This terminal provides a low-voltage (≈ 500 mV) buffered output for the VCO, and it can directly interface with low-power Schottky TTL. For interfacing with standard TTL circuits, a 7400 pull-down resistor from pin 5 to ground is required. For operation of the PLL without an external divider, pin 5 can be dc-coupled to pin 16.

Amp Compensation (Pin 6): The no load amp section is frequency compensated by connecting an external resistor from pin 6 to the amplifier output (Pin 8). For unity-gain compensation a 20 pF capacitor is recommended.

VCO Output (Pin 10): The amp output is an open-circuit type gain stage and requires a pull-up resistor, R, to V+ for proper operation. For most applications, a recommended value of R1 is 10 kΩ to 10 kΩ range.

Frequency Adjustments:

1. **VCO Timing Capacitor (Pin 12 and 14):** VCO frequency is inversely proportional to the external timing capacitor, C, connected across these terminals (see Figure 5). C must be nonpolar, and in the range of 200 pF to 10 µF.

2. **VCO Oscillator Output (Pin 15):** This low-level (-0.6 Vpp) output at this pin is ac coupled to this terminal. This is not recommended, and the output at pin 15 must be buffered with an external high-impedance amplifier. When not in use, pin 15 should be left open-circuited.

Phase Select Input (Pin 16): Voltage output of the VCO (pin 5) or the output of an external frequency divider is connected to this pin. The dc level of the sensed threshold for the phase detector is referenced to Vdd if the signal is capacitively coupled to pin 16, then this pin must be bypassed through an external resistor, R1, to ±5 V. The peak voltage swing applied to pin 16 must not exceed (V+ - 1.5) V.

Phase-Locked Loop Parameters:

- **Transfer Characteristics:**
 - Figure 9 shows the basic frequency vs. voltage characteristics of XR-2212. With no input signal present, the phase detector output voltage is approximately equal to the internal reference voltage, Vref at Pin 11.
 - The PLL can track an input signal over its tracking bandwidth, shown in the figure. The frequencies fIT and fTR represent the lower and upper edge of the tracking range, fTR represents the VCO center frequency.

Design Equations:

(See Figure 2 and Figure 9 for definition of components.)

1. **VCO Center Frequency, f0:**

 $f_0 = \frac{1}{2\pi R \cdot C}$
APPLICATION INFORMATION

FM DEMODULATION:

XR-2212 can be used as a linear FM demodulator for both narrow-band and wide-band FM signals. The generalized circuit connection for this application is shown in Figure 10, where the VCO output (pin 5) is directly connected to the phase detector input (pin 16). The demodulated signal is obtained at phase detector output (pin 10). In the circuit connection of Figure 10, the op amp section of XR-2212 is used as a buffer amplifier to provide both additional voltage amplification as well as current drive capability. Thus, the demodulated output signal available at the op amp output (pin 8) is low-buried from the rest of the circuit.

In the circuit of Figure 10, R_2C_1 set the VCO center frequency. R_1 sets the tracking bandwidth, C_2 sets the loop low-pass filter time constant. Op amp feedback resistors R_3 and C_3 set the voltage gain of the amplifier section.

Design Instructions:

The circuit of Figure 10 can be tailored to any FM demodulation application by a choice of the external components R_2, R_1, R_3, R_4, C_2 and C_3. For a given FM center frequency and frequency deviation, the choice of these components can be calculated as follows, using the design equations and definitions given on page 1-34, 1-35 and 1-36.

Table 1

<table>
<thead>
<tr>
<th>Deviation of FM Signal (assuming Max Deviation)</th>
<th>Recommended value of N</th>
<th>Bandwidth Ratio, N</th>
<th>$N = N_{fMAX}$ (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pm 1%$ of max</td>
<td>10</td>
<td>$\pm 1.5%$</td>
<td>10</td>
</tr>
<tr>
<td>$\pm 2%$ of max</td>
<td>5</td>
<td>$\pm 3%$</td>
<td>5</td>
</tr>
<tr>
<td>$\pm 5%$ of max</td>
<td>2</td>
<td>$\pm 10%$</td>
<td>2</td>
</tr>
<tr>
<td>$\pm 10%$ of max</td>
<td>1.5</td>
<td>$\pm 30%$</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Deviation of FM Signal (assuming Max Deviation)</th>
<th>Recommended value of N</th>
<th>Bandwidth Ratio, N</th>
<th>$N = N_{fMAX}$ (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pm 1%$ of max</td>
<td>10</td>
<td>$\pm 1.5%$</td>
<td>10</td>
</tr>
<tr>
<td>$\pm 2%$ of max</td>
<td>5</td>
<td>$\pm 3%$</td>
<td>5</td>
</tr>
<tr>
<td>$\pm 5%$ of max</td>
<td>2</td>
<td>$\pm 10%$</td>
<td>2</td>
</tr>
<tr>
<td>$\pm 10%$ of max</td>
<td>1.5</td>
<td>$\pm 30%$</td>
<td>1.5</td>
</tr>
</tbody>
</table>

The total tracking range of the PLL (see Figure 9) should be chosen to accommodate the lowest and the highest frequency deviations, and to be symmetrical. The recommended choice is to choose a tracking bandwidth Δf such that:

$$\Delta f = \frac{f_{MAX} - f_{MIN}}{2}$$

Where f_{MAX} and f_{MIN} are the maximum and the minimum values of output frequency, respectively.

Frequency Synthesis

With the same considerations as for FM demodulation, the VCO can be used as the output of the PLL to provide a fixed frequency with a specified deviation. The recommended choice of N values for various applications is to choose a tracking bandwidth Δf, such that:

Where f_{MAX} and f_{MIN} are the maximum and the minimum values of output frequency, respectively.

Design Instructions

For a given performance requirement, the circuit of Figure 11 can be optimized as follows:

a) Choose N based on the required deviation, f_{MAX} and f_{MIN}.

b) Choose the input frequency f_{IN} and the desired output frequency f_{OUT}.

c) Choose the appropriate values of R_2, R_1, R_3, R_4, C_2, and C_3 to achieve the desired performance.

In the circuit configuration of Figure 11, the external timing components, R_2 and C_2, set the VCO free-running frequency. R_1, sets the tracking bandwidth, and C_1 sets the loop damping, i.e., the low-pass filter time constant (see design equations).
APPENDIX 10

The listing of a C program is given in this section. The program calculates the expected signal to clutter ratio at the receiver, the cell area and range resolution. The data is then written to a file called "Clutter.dat".

```c
/*
CLUTTER PREDICTIONS FOR A BISTATIC RADAR
/* This program calculates the expected clutter power received. The bistatic radar is situated at the University of Cape Town and D.F. Malan airport. The radar clutter cross sectional data used is Larsons L Band data. This data assumes that the surroundings are tall weeds and scrub trees. This however is only true for the western side of the airport.

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <math.h>
#define c 3e8
#define Pt 2.5e6
#define Gt 331
#define Gro 1.64
#define LAMDA 0.222
#define BEAMWID 0.02356
#define PULSEWID 2.5e-6
#define base 7500
#define Pl 3.14159
FILE *fptr;

FILE *fptr; /* to create an output data file */

/* Out of plane, horizontally polarized radar clutter cross sectional coefficients for tall weeds and scrub trees. Larsons L Band data. */
float coeficient[37] = (0.63, 0.4, 0.25, 0.25, 0.25, 0.16, 0.1, 0.06, 0.06, 0.05, 0.02, 0.04, 0.035, 0.035, 0.044, 0.044, 0.0004, 0.0003, 0.0007, 0.0032, 0.011, 0.016, 0.025, 0.016, 0.011, 0.011, 0.016, 0.02, 0.02, 0.02, 0.02, 0.02, 0.028, 0.028, 0.035, 0.035, 0.035, 0.035, 0.04, 0.04);

float plane_angd[37] = (0, 5, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 94, 96, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180);

/* main program */
main()
{
    int i, m, p, q;
    float a, b;
    float area, coef, clutter_area, Gr, Prm, SCR, Rres;
    float x, y, xkm, ykm, Rt, -Rtkm, Rr, Rrkm, Rtotal,
    Pr, Prdb, lookang;
    float theta1, theta2, alpha, bistat, bistatang, plane_ang[37];
    fptr = fopen("a:\clutter.dat","wt"); /* open data file to write */
    /* data information */
    for (m=0 ; m<36 ; m++)
    {
        plane_ang(m) = (plane_angd(m) / 180) * PI;
        a = 7550;
        for ( p=0 ; p<=20 ; p++ )
        {
            /* Determine equation for first range ellipse */
            m = m + 1;
            b = sqrt(pow(a,2) - pow(base,2));
            fprintf(fptr,"\nRange Ring %.d",m);
            fprintf(fptr,"Bistat_Angle Rx_Lookang Rt Rtot Pr Cross_Area Area \n");
```
\[x = (-a); \]

\[
\text{do } \]

\[
y = \text{pow}(b, 2) - (\text{pow}(x, 2) * \text{pow}(b, 2)) / \text{pow}(a, 2); \]

\[
\text{if } (y <= 0) \]

\[
y = 0; \]

\[
\text{else} \]

\[
y = \sqrt{y}; \]

\[
/^* \text{ Determine out of plane angle. } */^* \\
\text{if } (x >= -7500) \]

\[
\text{theta1} = \text{atan} (y / (x + \text{base})); \]

\[
\text{else} \]

\[
\text{theta1} = \text{PI} - \text{atan}(y / \text{fabs}(x + \text{base})); \]

\[
\text{if } (x <= 7500) \]

\[
\text{theta2} = \text{atan} (y / \text{fabs}(x - \text{base})); \]

\[
\text{else} \]

\[
\text{theta2} = \text{PI} - \text{atan}(y / (x - \text{base})); \]

\[
/^* \text{ Determine receiver look angle. } */^* \\
\text{if } (x == \text{base}) \]

\[
\text{lookang} = 0; \]

\[
\text{else} \]

\[
\text{lookang} = ((\text{theta2} / \text{PI}) * 180) - 90; \]

\[
/^* \text{ Determine bistatic data. } */^* \\
\text{alpha} = \text{theta1} + \text{theta2}; \]

\[
\text{bistatang} = (\text{PI} - \text{alpha}); \]

\[
\text{bistat} = ((\text{PI} - \text{alpha}) / \text{PI}) * 180; \]

\[
i = 0; \]

\[
/^* \text{ Extrapolate cross sectional coefficient from Larsons data } */^* \\
\text{while } (((\text{alpha} >= \text{plane_ang}[i]) \& \& (\text{alpha} <= \text{plane_ang}[i + 1]))) \]

\[
i = i + 1; \]

\[
\text{coef} = (\text{coefficient}[i] + \text{coefficient}[i + 1]) / 2; \]

\[
\text{if } (\text{theta1} == 0) \]

\[
\text{theta1} = \text{theta1} + 0.0008; \]

\[
\text{if } (\text{theta2} == 0) \]

\[
\text{theta2} = \text{theta2} + 0.0008; \]

\[
/^* \text{ Determine transmitter to clutter and receiver to clutter } */^* \\
/^* \text{ range. } */^* \\
\text{if } ((y > -0.01) \& \& (y < 0.01) \& \& (x < \text{-base})) \]

\[
\text{Rt} = \text{fabs}(x + \text{base}); \]

\[
\text{else if } ((y > -0.01) \& \& (y < 0.01) \& \& (x > \text{-base})) \]

\[
\text{Rt} = (2 * \text{base}) + (x - \text{base}); \]

\[
\text{else if } (x <= \text{-base}) \]

\[
\text{Rt} = y / \sin(\text{PI} - \text{theta1}); \]

\[
\text{else} \]

\[
\text{Rt} = y / \sin(\text{theta1}); \]

\[
\text{if } ((y > -0.01) \& \& (y < 0.01) \& \& (x < \text{base})) \]

\[
\text{Rr} = (2 * \text{base}) + \text{fabs}(x + \text{base}); \]

\[
\text{else if } ((y > -0.01) \& \& (y < 0.01) \& \& (x > \text{base})) \]

\[
\text{Rr} = x - \text{base}; \]

\[
\text{else if } (x == \text{base}) \]

\[
\text{Rr} = y / \sin(\text{PI} - \text{theta2}); \]

\[
\text{else} \]

\[
\text{Rr} = y / \sin(\text{theta2}); \]

\[
/^* \text{ Determine area covered by the crossing of the Tx and Rx beams. Then calculate the clutter cross sectional area } */^* \\
\text{area} = (\text{Rt} \times \text{BEAMWID} \times \text{PULSEWID}) / (2 * \text{pow} (\text{bistatang}/2, 2)); \]

\[
\text{clutter_area} = \text{area} \times \text{coef}; \]

\[
/^* \text{ Gr is the gain of the receiver as a function of theta2 } */^* \\
\text{if } (\text{theta2} >= 1.562) \]

\[
\text{Gr} = 0.000000001; \]

\[
\text{else} \]

\[
\text{Gr} = \text{Gro} * (\text{cos}(\text{PI}/2) * \text{sin}(\text{theta2})) / \text{cos}(\text{theta2}); \]

152
/* power received due to target echo */
Pr = (Pt^2511.8*Gr*power(LAMDA,2)*50) / (power((4*PI),3)*power(Rt,2)*power(Rr,2));

/* power received due to clutter */
Pre = (Pt*Gt*Gr*power(LAMDA,2)*clutter_area) / (power((4*PI),3)*power(Rt,2)*power(Rr,2));

/* determine signal to clutter ratio */
SCR = Pr / Pre;

if (SCR == 0)
 SCR = -200;
else
 SCR = 10*log(SCR);

/* Determine range resolution */
Rres = (c*0.0000025) / (2*power(cos(bistatang/2),2));

Rtkm = Rt / 1000;
Rrkm = Rr / 1000;
xkm = x / 1000;
ykm = y / 1000;
Rtotal = Rtkm + Rrkm;
fprintf(fptra, "%5.1f %5.1f %5.2f %5.1f %5.1f %5.2f",
 bistat, lookang, Rrkm, Rtotal, SCR, clutter_area);
fprintf(fptra, "%.2f", area);
fprintf(fptra, "%.2f m", Rres);

/* Increment to next x axis position */
if ((a >= 20000) && (a <= 30000))
 x = x + 2000;
else if (a > 30000)
 x = x + 4000;
else
 x = x + 1000;
while((x <= a) && (theta2 <= (PI/2)));
/* Increment to next range ring */
a = a + 2000;
}
fclose(fptra);
APPENDIX 11

This appendix shows the precision power supply and its PC board used to power the receiver. The power supply generates a constant ±15V at the output.

Figure 11.1 *The PC board artwork of the power supply.*
Figure 11.2 The precision ±15V Power supply circuit diagram.