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Mathematicians are Like Frenchmen :
whatever you Aay to them they thanslate
Anto thein own Language and forthwith
At 48 something entinely different.
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ABSTRACT

In 1984 it became legal for pharmacists to offer customers a cheaper
generic a]ternative for a given prescription. The motivation for this
was the excessively high cost of brand name drugs. The substitution of
a generic alternative for a brand name drug is based on the assumption
that drugs with a comparable chemical composition will have a similar
therapeutic effect. The fact that this supposition is not always true
has been demonstrated by a number of particular drugs, digoxon being

perhaps the most vivid example.

The objective of this thesis is to review the statistical aspects

associated with
(1) measuring the bioavailability of a drug (Chapter 2)

(ii) establishing the equivalence of a new and standard formulation

of a drug (Chapter 3).

In the process of reviewing the 1iteratuqe two problems were identified.
Firstly, it is commonly assumed that bioavailability parameters follow
either the normal or lognormal distribution. This assumption is
difficult to defend, hence procedures based on such as;umptions became

suspect. Secondly, bioavailability is inherently multivariate whereas

in practice univariate procedures are employed.

Efron's bootstrap method, which does not rest on assumptions about the
underlying distribution, is proposed as a tool for assessing bio-

equivalence. A new measure of bioequivalence, the Index of Concordance,
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is proposed. This index can be computed with equal ease for uni-

variate or multivariate data using the bootstrap (Chapter 5).

The bootstrap idea of resampling the data can also be applied to com-
partmental modelling of bioavailability data. One result of this is
a nonparametric estimate of the underlying distribution of the bio-

availability parameters (Chapter 6).

The bootstrap is, on its own, a fascinating concept. A review of the

bootstrap is given in Chapter 4.



1.1

CHAPTER 1

OVERVIEW OF BIOAVAILABILITY

1.1 Concept of bioavailability

When a drug is administered it undergoes numerous processes before it
enters the systemic system from which it is eventually delivered to

the site of action. For example, tablets must disintegrate and
dissolve in the gastric juices. After dissolution the drug is absorbed
through the gastro-intestinal wall into the gastro-intestinal portal
blood. During this process the drug may be altered metabolically by
the gastric juices and the blood. The drug and any metabolites that
have formed are then transported by the blood to the liver which may
alter the drug and its metabolites even further. From the liver the
blood goes to the lungs where further biotransformation may take place.
Only after all this has occurred does the drug and its metabolites
reach the systemic circulation. Of course, the drug is being metabo-
lised continually by the blood. Thus, the amount of unchanged drug
‘that eventually reaches the systemic system is a fractional part of the

original dose.

The concept of bioavailability (biological availability) describes the
net result of this process and is used to define the rate and extent of
drug appearance in the systemic circulation (Melander (1984)). However,
the term bioavailability is often usedvas a shortened form of

"comparative bioavailability" or "bioequivalence". Two formulations
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dose

site of

absorption portal blood

JANA

drug metabolites
liver
Tungs

systemic system

site of action

Figure 1.1 Schematic diagram of processes through which a drug,

administered orally, must pass.

of the same drug are considered bioequivalent if they contain the same
quantity of active drug and deliver this active drug to the circulating
blood at the same rate and extent (Meti]er (1974), Wagner (1975),
Westlake (1979)). Of course, as Metzler (1974) points out the primary
question in bioequivalence is "whether two on more formulations con-

taining the same active ingredient are therapeutically equivalent."
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1.2 Definitions and assumptions

Metzler (1974) suggests that three types of equivalents are involved:

chemical equivalents: drug products of the same dosage form
which contain equal amounts of the same active ingredient as

indicated by official standards;

biological equivalents: those chemical equivalents which
deliver the same amount of active ingredient to the circulating
blood. (Although he does not say so, one feels that the wording

"at the same rate" should be added to this.)
)

therapeutic equivalents: those chemical equivalents which produce
the same therapeutic effect as measured by the control of a

symptom or disease.

He goes on to point out that chemical equivalents are not necessarily
therapeutic equivalents, as was once assumed. Therapeutic equivalence
of two chemically equivalent formulations can only be assessed via a
clinical efficacy trial. Efficacy trials are both expensive and
difficult to carry out, and bioavailability trials are an attempt to
infer therapeutic equivalence without doing efficacy trials. The basic

assumption of bioequivalence is one of continuity:

two formulations that have similar bioavailability characteris-

tics will have similar therapeutic efficacy.

This assumption says that once the active ingredient is in the circulating
blood, distribution, metabolism and excretion will not be influenced by

formulation.
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1.3 Measures of bioavailability

In order to be of any practical va1ue the definition of bioequivalence
must be interpreted in terms of some measurable quantity. The usual
measurement is the level of the drug in the blood or serum from the

time a single dose of the drug is taken until it has been completely
metabolised or excreted (see Figure 1.2). Another measure is the amount

of drug excreted in the urine.

According to Metzler (1974) the least controversial comparison of bio-
availability would result if two average continuous concentration-
time curves from a number of subjects were superimposable and had equal
variability. However, in general continuous sampling is not possible
and hence comparison is made on the basis of discrete sampling times
denoted by t1,...,tk. If these are well chosen a good comparison can

result.

And so we have .

First interpretation of bioequivalence: Chemical equivalents that have

essentially similar concentration-time profiles.

The inherent difficulty of sensibly comparing two sets of blood/serum
profiles has focused attention on certain aspects of these profiles.
The area under the concentration-time curve (AUC) is by far the most
popular measure of bioavailability. The AUC is believed to be pro-
portional to the total amount of active drug delivered to the systemic
system. The maximum concentratioh (CMAX) and time to maximum concen:
.tration (TMAX) contain information about the rate and extent of

absorption. More recently the half-life of the drug (T%) has also been
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shown to be important in the case of repeated dosages (Bruce (1984)),

Greenblatt et al (1984)).

concentration

TMAX

Figure 1.2 A typical concentration vs time curve showing the

usual bioavailability parameters.

From this we obtain:
Second interpretation of bioequivalence: Chemical equivalents that

have the same AUC, CMAX, TMAX and Ti. (This is based on the basic bio-
availability assumption and the assumption that the four parameters AUC

etc, adequately describe the concentration-time profi]és.)

The great advantage of this interpretation is the reduction in dimen-
sionality of the problem. In fact many authors consider that AUC is
by far the most important bioavailability parameter (Melander (1984))

and, for many drugs, the only parameter of importance. Hence we have:
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Third interpretation of bioequivalence: Chemical equivalents that have

the same AUC.

The majority of statistical papers on biocequivalence are based on this
interpretation of bioequivalence. They assume that bioequivalence will

be assessed on the basis of one clinical parameter, usually AUC.

However, Westlake (1975) warns against the use of overall rules of thumb
for deciding on bioequivalence. He proposes the general principle:
"Statistical tests should be carrnied out only on those characteristics
04 the bLood-Level sequence that have some meaningful relationship to
the therapeutic use of the drug."

He cites the following examples: The drug imipramine has an extremely
delayed onset of action. As a result of this, TMAX has no clinical
significance. Bioequivalence can only be judged on the basis of AUC.
Another example is the drug Chlorpheniramine which has a very long
eiimination half-l1ife. However therapeutic effect is dependent on re-
peated dosing at close intervals. Blood levels have little to do with
therapeutic effect. Yet a third example are antibiotics that have a
minimum inhibitory concentration for effective therapy. The two para-
meters of interest are

(i) the time ébove the minimum inhibitory concentration and

(i1) the time required to first reach this level (Westlake (1975)).

Wagner (1975 p.339) discusses fallacies that have arisen around the
concept of biocavailability. He discusses factors that should be con-
sidered when assessing bioavailability and when extrapolating the

- results of a bioavailability study to other similar drugs or formulations.
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Briefly these are

(a) even if a drug passes official compendial standards this does not

guarantee bioavailability in man,

(b) differences in bioavailability will not necessarily be recognised
in the clinical use of the drug, nor will differences necessarily

be reported in the literature,

(c) if two formulations of the same drug are shown to be bioequivalent
it cannot be assumed that all formulations of the drug are bio-

equivalent,

(d) bioavailability cannot be assessed from "in vitro" dissolution

tests alone,

(e) differences in bioavailability from one manufacturer's products to
the next are at least as important as differences between the label

dose,

(f) bioavailability is not necessarily related to pharmacological

effects or clinical response.

For this thesis we shall assume that the basic assumption of bioavail-
ability (see earlier) holds good. We shall also adopt the definition

given in Wagner (1975, p.340) of bioavailability : the extent and rate
of absorption for a dosage form as reflected by the time-concentration
curve of the administered dose in the systemic circulation. The term

bioequivalents will mean chemical equivalents that have comparable

bioavailabilities.
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1.4 Pharmacokinetic Modelling

The absorption of a drug as described in section 1.1 is a complex process
involving many independent variables. Pharmacokinetics deals essentially
with the description of concentration changes of drugs in the blood as a

function of time. Pharmacokinetic models provide a highly simplified,

but useful mathematical description of the process.

These models view the absorption, distribution and elimination process

as though occurring in a series of compartments with linear drug transfer
rates between compartments. These compartmentalised models give rise to
~a system of linear differential equations whose solution are functions

that are polyexponential in form

i.e. Yj(t) L. C.. exp(-Aijt) for j =1,...,k

1 1)

concentration in jth compartment at time t

where Yj(t)

k

number of compartments

.. are coefficients determined by the transfer rates

€ M4

and initial conditions.

Wagner (1975) gives an extensive account of one, two and three compart-
ment models. He discusses models for intravenous injection, intra-
venous infusion and oral administration. He also considers the case
where the drug is converted into a single metbolite as well as the case
in which the drug is converféd into a primary metabolite, which is turn
is converted into a secondary metabolite and the drug and both metabo-
lites are excreted in the urine. Over and above this, he also considers

single and multiple dosing.
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Steinijans (1975), Steyn and van Wyk (1977) and Greenblatt et al

(1984) give a simple but useful account of one and two compartment
models. These authors achieve simplification by combining two mechanisms
of drug elimination namely metabolism and excretion under the label

"elimination."

Following Steyn and van Wyk (1977) and Greenblatt et al (1984) we shall

restrict attention to one and two compartmént models and to single dosing.
The three compartment model leads to a four term polyexponential function.
Parameter estimates for this function become very unstable and therefore,

useless. (Lanczos (1957), Hibbert and Steyn (1982).)

1.4.1 Two compartment model

A basic interpretation of the two compartment model supplies a useful
abstraction of the abéorption process. Since we will be concerned only
with the blood/serum concentration of the drug and hot its metabolites,
we use the word elimination to include metabolism and excretion. This
simplifies Wagner's classification somewhat but leads to a similar ex-
pression for blood Tevels. Our development follows that of Steinijans

(1975), Steyn and van Wyk (1977) and Greenblatt et al (1984).

A drug dose'(D) is introduced into the absorption site (usually the
gastro-intestinal tract) at time t =0 (Figure 1.3). The drug then
passes into the central compartment (the blood) with absorption rate
proportional to the concentration of the drug at the site of absorption.
The constant of proportionality is denoted by ka' Reversible drug

distribution occurs between the central and peripheral compartments.




dose

central peripheral
compartment compartment
A I
site of 1 —— Y2(t)
absorption vy | v, '
k21

+

ke

Figure 1.3 Schematic representation of the two compartment open model

The rate of distribution from the central to the peripheral compartment
is denoted by k12 and that from the peripheral to the central com-
partment by k21. Irreversible drug elimination takes place only from

the central compartment (the blood) at rate Ko

This model predicts that the concentration in the central compartment
(i.e. blood/serum concentration) Y, will be a tri-exponential

function of time (t) after dosing:

(t) =—(P+P,) exp(-k,t) + P, exp(-at) + P, exp(-Bt)

-—

where

Q
i

= dlkgprkyprkgd + Vlkyovky  +k )% =k kg

8= dlkyprkprkel = Ylkyatkaytke )™ = Bkarke

. kaFD . k21-OL
1 V1 Tka'a)(B'a)

O
|

KFD kpy8
2~V " Tk,-BI(a-B)




fraction of dose absorbed?

n
i

D = administered dose

V1 volume of compartment no 1.

A semi-logarithmic plot of Y1(t) versus t (Figure 1.4) will reveal

three distinct phases that correspond to

phase 1 - absorption of drug into central compartment or blood,
phase 2 - distribution of drug from central to peripheral
compartment,

phase 3 - elimination of drug.

absorption

elimination

concentration

distribution

— time

Y1(t) =-(P1+P2) exp(-kat) + Py exp(-at) + P, exp(-8t)

Figure 1.4 Blood/serum concentration curve plotted on semi-
logarithmic scale for the two compartment open model.

Except for AUC the bioavailability parameters CMAX, TMAX and T%

cannot be expressed in closed from and will have to be found numerically.

1. This is the classical measure of bioavailability.
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1.4.2 One compartment model

If the distribution process occurs much more rapidly than the absorp-
tion and elimination, then the body may be considered as a single homo-
geneous compartment. In this instance there is no need for a peripheral

compartment (Figure 1.5).

dose

central compartment

site of

absorption Yi(t)

=

Figure 1.5 Schematic representation of one compartment open models

Again it is assumed that the dose is introduced to the site of absorp-
tion as a bolus at time t = 0. The drug is absorbed into the central
compartment with absorption rate constant ka which is assumed to be
first order. Drug elimination is also first order with rate constant
ke‘

According to this model the predicted concentration Y1(t) at time t

after dosing is



k
/ a_) {exp(- ) - exp(-kat)}

' (8) = =g
where F = fraction of dose absorbed
"D = administered dose

A semi-logarithmic plot of the blood/serum concentration has two phases:

phase 1 - increasing concentration that corresponds

to absorption

phase 2 -'decreasing concentration that corresponds to elimination.

This is shown in Figure 1.6

—

elimination

concentration

absorption

Figure 1.6 Blood/serum concentration curves corresponding to

a one compartment open model

The bioavailability parameters are easily expressible in closed form:

[ ol _Fa Y1,
e - | vy(t) dt \E‘?E;><ke s R;)
THAX = (£n k_ - £ k_)/(k -k)

CMAX = Y(TMAX)



1.5 Statistica] Considerations

Bioavailability trials consist of two types, depending on the objective:
One may be interested in assessing the absolute biocavailability of a
new but unknown drug or in the comparative biocavailability of a new
formulation/preparation of a generic alternative. In either case,

there are a number of interrelated problems of a statistical nature.

In absolute bioavailability studies one is attempting to assess the rate
and extent of absorption o% a drug and/or its active metabolites. Such
a study would typically involve a panel of subjects (from six to

twenty four). These subjects are sreened medically and, under con-
trolled conditions, given the drug dosage form. B1ood samples are taken
from each individual at predetermined sampling times t1,...,tk after
application. The extent and rate of absorption are then estimated from

these blood concentration profiles.

In comparative bioavailability studies one is attempting to assess the
relative magnitudesof the rate and extent of absorption of a standard
product and one or more test products. A guideline protocol for com-
parative bioavailability trials has been devised by the Food and Drug
Administration (FDA). IWagner (1975, p.353) gives a draft of the pro-
posed guidelines but warns that this draft should not be construed as a
summary of the guidelines. The draft is comprehensive coverihg ten

sections:

Title; Names of investigators; Synopsis; Background information;

Objectives of the study; Clinical facilities available; Institutional



review; Experimental plans; References and Appendices.

Section VIIT on Experimental Plans is relevant to the statistical

aspects. The Experimental Plans cover the following topics:

(A) Subject selection. This covers who the subjects will be and how
they will be selected; Age range, body weight range etc; Clinical

screening teststhat are to be given; Exclusion of concurrent medication.

(B) The drug. Various details about the drug are to be recorded. For

example, tests used to characterise the drug, etc.

(C) Control or Reference: Various details, similar to that of the test

~ drug, are to be recorded.

(D) Treatment schedule and Doses: A table should be given which clearly
indicates the treatment schedule; the assignment of subjects to treat-
ments; the number of subjects; fasting conditions and the time of
administration of the doses in relation to food intake; the level of
activity of the patients; the amount of water to be ingested during

each test day.

Wagner (1975, p.354) quotes the FDA draft as saying: "The number of
subjfects employed in the test should be adequate to demonstrate the Lack
04 a statistically signigicant practical diggerence among the blo-
availability parameters selected with an alpha o4 0.05 and a beta o4
0.20." The draft also stated: "Generally 12 to 20 subjects are
sufgicient for bioavallability studies."”

(E) Observations: Specify when the blood and/or urine is to be sampled

i.e. specify t1,...,tk; how these samplies are to be treated, stored



and transported. Statements as to how side effects and intolerance

are to be evaluated and reported.

(F) Assay Method(s): Details of assay methods to be used to analyse

blood and/or urine should be stated.

(G) Data Analysis: Method of data analysis should be specified.
Statisticé] considerations should be clearly stated. Computer programs

to be used should be specified and referenced.

It is from these data that the bioavailability parameters AUC, etc, are
calculated and bioequivalence assessment is made;, The statistical con-
siderations involved and methods used will be the subject matter of
chapters 2 and 3. Chapter 4 is an account of the statistical method
called the bootstrap and methods for deriving bootstrap confidence
intervals. In chapter 5 we propose a new method for assessing bio-

equivalence using the bootstrap.
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CHAPTER 2

ESTIMATING THE BIOAVAILABILITY
PARAMETERS

2.1 1Introduction

The result of a bioavailability trial, either absolute or comparative,
is a set of data for each of n individuals consisting of sampling

times t ...,tk and corresponding blood/serum concentrations

1’
y.(t1),...,yi(tk) i=1,...,n. A typical set of data is given in

Table 2.1 from Button (1979).

The data analysis proceeds in two stages. Firstly the data from each
individual are used to estimate the pharmacokinetic parameters AUC,
TMAX, CMAX and T3, or some subset of these. The individual eStimates
obtained in the first step are then used to make inference about the

population parameters.

In this chapter the focus will be on the first stage of the data analysis.

We consider data (Eyyo), (q,y1),...,(tk,yk) for an individual and our

task is to estimate the pharmacokinetic parameters for that individual.
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Table 2.1 Six horses received 15 mg/kg theophylline as aminophylline

by intragastric administration. Theophylline assay by

high performance liquid chromatography. Concentrations in ug/m¢

horse
Time 1 2 3 4 5 6 mean * SD
0,166 | 4,2 10,1 3,7 12,6 11,9 | 7,0 + 5,1
0,333 | 1,5 15,0 14,8 11,6 18,0 16,3 | 12,9 + 6,0
0,5 6,8 17,5 19,9 19,7 20,9 18,3 | 17,2 + 5.2
0,666 | 14,0 19,5 22,1 21,4 22,0 19,3 | 19,7 + 3,1
1 16,5 20,3 20,8 23,9 20,3 20,9 | 20,5 : 2.4
1,5 21,3 22,9 20,3 21,8 19,7 19,0 | 20,8 + 1.4
2 19,8 20,4 19,7 18,9 20,1 18,2 | 19,56 + 0,8
2,5 | 18,2 19,1 18,9 18,7 18,4 17,0 | 18,4 + 08
3 17,3 17,7 17,3 16,2 17,7 16,2 | 17,0 = 07
4 15,6 16,8 16,1 15,5 16,1 14,3 | 15,7 + 0,8
5 14,6 15,5 15,0 14,4 15,4 13,9 | 14,8 + 0.6
6 13,3 14,6 14,2 13,4 14,8 12,9 | 13,9 = 0,8
8 11,6 13,6 13,2 13,0 13,2 11,9 | 12,8 + 0,8
10 11,2 12,0 12,3 12,0 12,4 10,6 | 1.8 £ 0,7
12 10,0 10,6 10,8 11,6 11,1 10,2 | 10,7 + 0,6
24 5,5 6,9 6,5 7,0 6,3 5,7 6,3 + 0,6
30 4,4 4,6 4,6 5,0 4,8 4,8 4,7 £ 02
48 25 24 1,7 2.2 1,9 1,9 2,1 + 0,3
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2.2 Direct estimation of the AUC

The AUC may be estimated
(i) directly by numerical integration, or

(ji) derived from the estimated parameters of a compartmental model or
some curve fitted to the concentration-time data. In this section
we will consider estimating the AUC directly by numerical
integration. Deriving the AUC from estimated parameters will be

considered in section 2.3.

In performing a numerical integration the true curve between two successive

concentrations yj

such as a straight line, polynomial or exponential. Four algorithms are

and yj+1 is approximated by some simple function

commonly used and differ mainly in the form of the approximating function.

The algorithms, which will be discussed in more detail below are

(i) the Trapezoidal rule

(ii1) the Log-trapezoidal rule

(ii1) the Lagrange method
)

(iv) Cubic splines

Numerical integration methods only provide the AUC(O,tk) - the area
under the curve from time zero to the final observation time, tk.
The total AUC(0,») must be found by some extrapolation method. This

will be discussed in section 2.2.5.

2.2.1 The Trapezoidal Rule

The simplest method of estimating AUC(O,tk) numerically is to join the
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points (to,yo), (t1,y1),...,(tk,yk) by a series of straight Tines.
The resulting figure will be a polygon consisting of k trapezia.

The_fota] area under this polygon from time t = tO =0 to t = tk isv

then the sum of the areas of the k trapezia.

CAUC(0,t) = T (yy#y g (Ey,q-t5)/2 (2.1)

j+ J

2.2.2 The Log-trapezoidal rule

The Log-trapezoidal method approximates y between any two obser-
vations Yi and Y; using a single exponential. This is equivalent

to approximating £Zn y by a straight line between successive points.

Inferpo]ating on the interval (ti-1’ti) we have

gny = £n y1_1 + (t_t1_1) £n (Y1/Y1_1)/(ti‘t- )

i-1

or alternately

y = yj-1 exp{-(t-t1_1) £n (yi/yi_1)}/(ti‘ti_1) ) (2.2)

Integrating (2.2) we obtain

”~ -l

AUC(t. 4,t:) = ( y dt
=10 J

Yo

= (yi-yi_1)(ti—t1_1)/€n (yi/yi_1)

This log-trapezoidal method is best suited for data that is monotonically
_ decreasing. It cannot be used if any observed y value is zero or if
two consecutive values are equal. Furthermore the method may produce
large errors when used on ascending curves,near a peak or on a steeply

descending polyexponential curve (Yeh and Kwan (1978)).




2.5

2.2.3 Lagrange method

In the Lagrange method interpolation is achieved using cubic polynomials.

To interpolate in the interval (t1_1,t1) the equation
Y =a; +bit+cit?+ d.t ' (2.3)

is fitted to the four adjacent data points (ti-?’yi-?)’ (ti-1’yi-1)’

(ti’yi) and (ti+1,y1+1). The four coefficients ai? b.

i Cj and di

~ may be obtained by solving the following system of linear equations:

(1t B H5) () = (Vi | (2.4)
Tt Y Ho| b Yi-g

1 ti t% t% C, Y;

1 t1'+1 t?+1 t%+1) di y1+1/

The area under the concentration-time curve betweén ti_4y and t, s
estimated by integrating (2.3) over this interval, to give
. t.

A~ _ [~ i | ,
AUC(t, 4,t5) = I, (a;+bst+c t2+d. t2) dt
| i-1

3 (=t ) + by (85-t5_1)/2 + c (t3-t3_1)/3

+d (ti-tt_,)/4 | (2.5)

Equation (2.4) can be applied serially for each i = 2,3,...,n-1 but

not for the two end intervals (to’t1) and (tk_1,tk). For these two

intervals, the nearest three points are used to fit a parabola

y =a; + bt +c,t? ~ (2.6)

b, and c. are calculated by solving a

The three coefficients ai, b; j

system of three simultaneous Tinear equations, analogous to equation
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(2.4). The corresponding areas are obtained by integrating equation (2.6).

The cumulative area AUC(O,tk) is then computed by summation

AUC(0, t) = Z AUC t.) (2.7)

1 =177

2.2.4 Cubic Spline Method

The cubic spline method is similar to the method of Lagrange in that
interpolation is achieved using cubic polynomials. However there is an

additional constraint of differentiability at each data point.

General spline functions are defined as piecewise polynomials of degree

k, connected at several knots, such that tﬁe fitted curve and its first
k-1 derivatives are continuously differentiable. For cubic splines k

is defined to be 3 and the knots are taken to be‘the data points

themselves.

The derivation presented below follows that of Dunfield and Read (1972)
and Yeh and Kwan (1978).

The cubic polynomial in equation (2.3) is differentiated three times to

give
y' =b; + 2cit + 3d;t? (2.8)
y" = 2¢c; + bd.t (2.9)
y''= 6d. (2.10)

i

From equation (2.9) it is evident that y" 1ds linear over each interval

[t. (,t:]. Because of the linearity it may be rewritten in the

=127

following form
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y = Y?_1(t1't)/h1 + YQ(t'ti_

1)/h;

; (2.11)

where hi = ti - t1_1. This equation is integrated twice to give

‘< .
]|

~<
1]

v 1(t -t)3/6h, + ?(t-ti_1)3/6h1 + syt +s, (2.13)

where Sy and S, are constants of integration. These constants are

determined by evaluating equation (2.13) at t1._1 and ti’ giving

t

u /6 + s

Yi-1 = ¥54M 1t (2.14)

1

t. (2.15)

174

+

Y y;h§/5 +s

-1 %5

Solving these two equations for- Sy and So gives
sy = (vioyso)/hg = h(yley!_)/6 (2.16)
p = (¥ g ¥yt /b, = hy(Ey! oyt )76 (2.17)
A1l quantities in equation (2.13) are known except for y$_1 and y?.
These values are determined as follows:
Equation (2.12) is evaluated at t1._1 from the interval [t1 it 1

and from the interval [ti-Z’ti—1] to give the following two equations,

respectively:

Yiog = Yi_qhi/2 + (yi-y1;1)/h hilyi-yi ()6 - (2.18)

.i

Yiet = Yiqhiog /22 iy )iy = i (i )6 (2.19)

Combining equations (2.18) and (2.19) and rearranging gives
h1 1y" 2/6 + (h. +h1 1)yl 1/3 + ij?/6 = (yi'yi_1)/h1

- yiogyi/hi (2.20)
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Equation (2.20) can be applied to all intervais except the first and
last. This will yield n-1 equations. Since there are n+] unknowns
two additional equations are required. These are obtained by speci-

fying two extra conditions. In the present case these are y?'= yg

and y;t1 = y;'. The third derivatives are given by equation (2.10).
i = gy 220
vz = ayy)/hy (2.22)
Yn-t1 = Wnoq¥pea) /g (2.23)
Yo = W ¥pag)/hyg , A | (2.28)

Combining equations (2.21) and (2.22) and equations (2.23) and (2.24),
respectively, gives

] - -1,.-1 1 1] =
Yo/ hy (hO +h1 ) i * y5/hy = 0 (2.25)

" - -1 -1 " T _
yn-2/hn-1 (hn-1+hn ) Y1 ¥ yn/hn =0 (2.26)

The n+1 unknowns Yo

,...,y; may be obtained by solving (2.20),
(2,25) and (2.26) simultaneously. Once these are known equation (2.13)

may be integrated over each interval [ti-1’ti] to give
~ » [' 1 .
AUC(t: ,,t.) = y dt
i-1°7d ]
ti-g

h3(yi+yi_q)/28 + holsy(tiets 4)/2 + 5] (2.27)

The cumulative area from time t =0 to t = tk is

AUC(0,t,) = L5y AUC(t. ,,t.) (2.28)
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~ 2.2.5 Extrapolating the AUC

Four methods have been given estimating AUC(O,tk) directly. However,
in bioavailability studies it is the total area AUC(0,») from zero

time to time infinity that is of interest (Wagner 1975, p.344).

Using any method AUC(O,tk) underestimates AUC(0,~). But without
making assumptions about the form of the concentration-time curve it is
not possible to correct or extrapolate AUC(O,tk) to give an estimate

of the desired quantity AUC(0,=).

If one is willing to assume a compartmentalised model with linear transfer
rates, then the concentration-time curve will be polyexponential in

form. Suppose for example this is

[ -kt -k t)

y(t) = Ale -e / ky > kg
-ket -kat ‘
=Ae -Ae , (2.29)
-kat _ -ket
Since ka > ke’ e approaches zero more rapidly than does e .
If the ratio ka/ke is sufficiently large then for large t we
effectively have
-k t
y(t) ~Ae © (2.30)

The unobserved area from tk to « can now be approximated by the
area under the curve defined by (2.30) between t and «, Denoting

this unobserved area by AUC(tk,w) we have

0 -kt

AUC(t, ,») = J Ae € dt
t
k

~y kg | S (2.31)



A Tog-linear plot of the data will achieve two ijectives it will
display whether or not (2.30) provides a reasonable description of the
data for large t. If (2.30) is reasonable then the last few data
points will Tie approximately on a straight line. Secondly, the slope
of the line through these last few points is an estimate of -ke. This

may be obtained either by eye or by Tinear regression of log Y;

against ti’

Hence we have an estimate of the unobserved area
AUC(tk,w) = yk/ke (2.32)

Using (2.32) as a correction term we have an estimate of the total

AUC(0,,)

AUC(0 o) = AGC(o,tk) " AGC(tk,m)

where AGC(O,t is obtained by any one of the four methods that have

K
been described earlier.

Although the concentration-time curve was assumed to be a sum of two
exponentials to obtain the correction term (2.32) a similar argument
applies to any polyexponential function, provided that a log-linear plot

of the data lie eventually on a straight line.

2.2.6 Discussion on numerical integrating h]gorithms

Yeh and Kwan (1978) have, through a series of five simulation experiments,
tested the relative merits of the four algorithms presented above on

various types of data. They considered simulated sets of data



(i) that vary linearly between points without error,
(i1) exponentially decreasing data without error,
(1if) from a two compartment open model without error,

(iv) from a two compartment open model with error introduced in various ways.

‘ In conclusion Yeh and Kwan suggest that if the data are functionally
smooth and error free the Lagrange and cubic spline method will give the
best approximation to the system. However since errors are experimentally
inevitable, the superiority afforded by these methods becomes less
certain, and this uncertainty may increase with increasing noise in

the data.

Both the Lagrange and cubic spline methods may produce spurious and

unrealistic oscillations and need to be monitored.

Although the two trapezoidal methods are less accurate they may be the
Togical choice because of their simplicity. They are particularly
suitable when estimates of AUC are the data that will be used for

testing bioequivalence.

2.3 Fitting a polyexponential model

For numerical integration we do not assume any particular model for the

concentration-time curve, except to derive the correction term.

From the theory of compartmental models many concentration-time curves

can be represented as a polyexponential function
-b.t

- i

y = 15. age



If this approach is taken some estimation procedure is used to find or

estimate the coefficients CRRRRRR and b1,...,bp. The pharmacokinetic

b
parameters AUC etc., are then calculated from the fitted equation.

The methods considered in this thesis are

(i) The graphical method ‘ | .
(i) Least squares
(iii) Weighted least squares

(iv) Maximum likelihood

2.3.1 The Graphical method

The graphical method of finding estimates has been well discussed and
documented by Gurpide et al. (1964), Atkins (1969 pp.101-106), Foss
(1969), Wagner (1975) and Steyn and van Wyk (1977). The method has also
been given various other names; the "stripping" procedure (Wagner);

the "back-projection" technique (Wagner); the "peeling-off" technique

(Foss).

The method is based on the observation that a polyexponential function

-b, t -bzt -byt
e.g. y = Ase + A2e + Ase (2.33)
=.V1 +.V2 +..Y3 .
with 0 < b3 < b2 < b1

will, for large values of t,. behave approximately as

-b3t
yy = Age _ - (2.34)

if b1, b2 and b3 are sufficiently separated. This can be detected

by plotting £€n y vs t. If this plot is approximately linear for large




values of t then by taking Togarithms we obtain
A}
Iny = £n y, = {n Ay - byt . (2.35)
Using the last few "linear points" as data the slope (-b3) and

intercept (£n A3) can be estimated either by eye or by linear re-

gression. From these estimates we obtain

A A -b3t
y3 = Ay e (2.36)
Substracting (2.36) from (2.33) we obtain
A -b‘lt _bzt
y-yg=he | +A e (2.37)

Since 0 < b2 < b1 (2.37) will, for "large" values of t behave as
N —bzt
y - )’3 = A2 e (2.38)
This can be detected by plotting En(y-;3) vs t. If this plot is

approximately linear for "large" t then approximately

Zn (y-y3) = fn A, - b2t (2.39)
Again, using the last few points as data, one can obtain estimates of

A2 and b2. We have

~

~ A -bt

2
Yo = A2 e (2.40)

Subtracting (2.40) from (2.37) we obtain
-b,t

y-y3-Yo= A e 1 (2.41)
A plot of Zn(y-;3-y2) vs t should be approximately linear and yield

estimates of A1 and b1.

Examples are given in Foss (1969), Wagner (1975) and Steyn and van Wyk
(1977).
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2.3.2 Least squares

Consider the statistical model
y; = flty, 8) + e, (2.42)

where Y; represents the blood/serum concentration at time ti
6 is a vector of m unknown model parameters which are to be
estimated
f(ti,g) is the model or response function that represents the
assumed functional relationship between t, 8 and y.

For our purposes f(ti,.g) is a polyexponential function.

The least squares estimate of & 1is defined as that vector é which
minimises the objective function
5(0) = TK_,fy -F(t,,0))e (2.43)

Provided that S(8) is differentiable the least squares estimate 6 is

the solution of the so called normal equations

VS(@) = -a—e— =0 (2.43&)
) 1 Y
9S
)
where
2 75 1y -f(t,0)} 2 J=1,..,m (2.43b)
%9, J

Note that if f(t,8) 1is nonlinear in the parameters 6, then the

system of equations (2.43a) can only be solved iteratively.



Algorithms for computing 6 are described in section 2.4.

2.3.3 Weighted least squares

Let WiseonsWy be a set of non-negative numbers, usually called weights.
The number W, reflects the relative contribution of the ith observation
(ti’yi) to the estimate of ©. The weighted Teast squares estimate
corresponding to w' = (wy,...,w,) is defined as that vector éﬁﬁ)

which minimises the objective function

k
i=1

S(8(w)) = Yiq wily,-f(t;,8))2 (2.44)

Setting W, = 1, 1=1,...,k produces the ordinary least squares

estimate.

A common choice of W, is
= 1/02
W, 1/01

where 0% is the variance of Y- Brownlee (1960), Wagner (1975,

pp.288-289) suggests the following weighting factors

or alternately

Wi = 1/y3

The problem of choosing the weights W, is by no means settled. As
~Wagner mentions the choice W, = 1 will result in the terminal concen-
trations having almost no effect on 6. This is because the residuals

Yy - f(ti%g) are extremely small for terminal values of t. However,

any of the choices 1/0%, 1/y1 or 1/y§ result in the terminal con-
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centrations carrying more and more weight. The smaller the concentra-
tion the more weight it will have. Concentrations of zero have infinite

weight. So these choices also seem unsatisfactory.

2.3.4 Maximum Likelihood

If one is prepared to make assumptions about the distributional structure
of the error terms in the model then one can estimate the unknown
parameter 6 wusing the likelihood principle i.e. select that vector 6
which maximises the likelihood. The problem is, of course, to find
assumptions which seem reasonable. This is another unsettled problem;

to find distributional assumptions that are in accordance with the

observations.

If one assumes that

EY, = f(ti,g)
and that
€. are i.i.d. as N(0,0?) (2.45)

i

then the log-likelihood is

2(esor) = (k/2) tn (210%) = J¥_ {y,~f(t,8))2/20% (2.46)

From equation (2.46) it is clear that the maximum Tikelihood estimator
is identical to the least squares estimator, under the assumption of

normality.

However, for biocavailability studies the model is a repeated measures

model and the assumption of independent errors does not seem reasonable.

Further, it seems evident from the column of standard deviations in



Table 2.1 that the assumption of constant variance is rather dubious.
The data in Table 2.1 suggests that the standard deviation may be

approximately proportional to Y; the observed concentration.

2.4 Minimisation techniques.

For nonlinear models coefficients cannot be estimated directly. An iter-
ative estimation procedure is required. Consider the problem of selecting
a vector 9 that minimises some objective function S(8). This problem
occurs in least squares, weighted least squares and maximum likelihood
estimation. Many iterative algorithms have been developed for solving

this problem. The usual paradigm is

Step 1 : Select an initial estimate go

Step 2 : iteratively obtain a new estimate §n+1 from the estimate

gn as follows

-e—n+1=gn_§n

rules are given for computing the correction term e, These

rules are usually dependent on S.

Step 3 : stop when e, Ties within some specified neighbourhood of

zero i.e. if |e | <& where §>0 is specified.

The major difference befween algorithms is the manner in which the
correction term [ is combuted. We will consider three of thé most
well known algorithms; steepest descent, Newton-Raphson and the Gauss-
Newton procedure. These methods are discussed in detail in Royce

Sadler (1975)



2.4.1 Steepest descent

| Let the gradient of S,. evaluated at. gn, be denoted by 9

95

where: hn is a scalar which determines the length of the step taken in

the direction -a ; and

=n’
I is the mxm identity matrix, introduced here to unify the

treatment.

- The step length hn is calculated by line search i.e. solve the one

dimensional minimisation problem

min S(6_-hlg )
h>0 -N =N

Provided that g # 05 S(8 ) <S(6,)

n+1

Although steepest descent will invariably steer clear of troublesome
saddle points it is not in general a finite process. It may also converge
too slowly. Royce Sadler (p.15) suggests that as a practical minimisation

method its use is not recommended.




2.4.2 Newton-Raphson

Let Hn denote the Hessian of S evaluated at Qn

B _ 32S
Hn - Hn(gn) - (ae.ae.)
17799/

J

0 =80
-~

The Newton-Raphson iterative formula is then

_ oyt
Ope1 = & " Hy 9,

Newton's method specifies direction and step length simultaneously.

The positive definiteness of H plays a role analogous to the sign of the

second derivative in the case of one variable.

Geometrically this is equivalent to approximating the surface S with
the osculating paraboloid resulting from a three term Taylor approximation

to S. At each step one moves to the minimum of the osculating paraboloid.

A problem arises if H 1is ill-conditioned and difficult to invert. A
possible solution would be to replace H with a positive definite matrix.

This is done in the Gauss-Newton method that follows.

2.4.3 Gauss-Newton

Let f(t,g) be the model for the data and let Vfin denote its gradient

evaluated at 6,  for the sampling time t,
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(3f(t..0) _
Vf1n = —‘—a—é—‘i—'——' 1 = 1, ,k
af(t;,0)
kL) _
m )@= 8,

The Gaussian approximation to the Hessian is

_ k T
Hn = Gn =2 21'=1 Vf1’n Vfin

Royce Sadler (1975, p.21) derives this result.
The iterative formula is
9n+1 &, n Jn
The Gaussian approximation to the Hessian is attractive for two reasons:

1) G is always positive definite
2) it requires only first derivatives of the regression function.
Since these are also required for computing g anyway, obtaining

G involves very little extra work.

Although G 1is always positive definite it may be near singular. This
occurs especially in the fitting of sums of exponential functions

Juritz et al. (1983). In order to overcome the near singularity the
Marquardt-Levenberg method may be used. The ill-conditioning is reduced

by adding a term AnI - to Gn where Ag > 0 1is chosen so that

Gn + AnI

is positive definite.
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2.5 Finding initial estimates

To start an iterative estimation procedure such as the three methods
outlined in the previous section initial estimates 90 must be
supplied. Although general rules cannot be given for finding 1n1t1a1‘
estimates a number of procedures have been developed for polyexponential

functions.

Steyn and van Wyk (1977) and Hibbert and Steyn (1982) discuss the following

initial estimation methods

(i) Graphical method. This has been described in section 2.3.1.
Although this method is often used to give final parameter esti-
mates, these estimates may also be used as initial values in an

iterative algorithm,
(ii1) methods for the one exponentia1 case,

(1i1) Fourier transform method for exponentially spaced data, Steyn
(1980),
(iv) regression-difference equation method for equally spaced data,

Shah (1973),

(v) method of partial sums for equally spaced data, Cornell (1962,
1965), Agha (1971), Della Corta et al. (1974),

(vi) numerical integration method, Foss (1970), Fresen and Juritz (1985).

Since in practice bioavailability data are seldom equally or exponentially
spaced methods (i) and (vi) are most useful and practical. Since the
graphical method has been described in section 2.3.1 we will only discuss

the numerical integration method proposed by Foss (1970) and the modifi-



2.22

cation proposed by Fresen and Juritz (1985).

We shall consider methods for obtaining initial parameter estimates for
the polyexponential function

m -b;t
y =y(t) =J5 42 e (2.47)

and propose a simple modification to Foss's method (Foss 1970) which will
accommodate fitted values that must pass through the origin. Furthermore,
Foss's method becomes unstable under certain extreme conditions. Because

a practitioner needs to know about the conditions under which the procedure

will fail we examine these conditions.

For simplicity we consider only the sum of two exponentials. However the
method can be extended to polyexponential functions consisting of three

or more terms.

2.5.1 Foss's method for a sum of two exponentials

Consider the two exponential function

'-b1t -bzt

By differentiating this function twice with respect to t it can be

shown to satisfy the differential equation
y" + (by*by) y' + bibyy = 0 (2.49)
The initial conditions are
Yo = 31 + 25, yé = -a4b, - a,b, (2.50)

Integrating (2.49) over t, we have
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) "y [t ()
y"(g) dg=-(b,+b,) y'(g) dg - b,b £) dg (2.51)
o 127 ], (he 25 P
on integrating this becomes
t
Y] - vy = (by#by) (v (8)) - byb, [ y(e) g (2.52)
0

Integrating again over t, we obtain

t . ' [t [t A
jo ' ()-ygh = (o9bg) | 1ygy() 01 - by, JoJ y(£) de i

t teA

Y=Yy Yol = (b1+b2){yot-{oy(k) dA}-b,b, { J y(g) dg dx (2.54)
0“0
t A

['t
j y(£) de da
0

Now Tet F(t) = | y(1) dx and G(t) = J
0 0

Substituting F and G and the initial conditions into (2.54) we obtain

y=agta,+ (a1b2+a2b1)t - (b1+b2) F(t) - b1b2 G(t)
=a + bt + cF(t) + dG(t) (2.55)
where a = ay + ay; b = a1b2 + a2b1; c = -(b1+b2); d = -b1b2 (2.56)

However, if y, =0, then a, +a, =0 and (2.55) becomes

y = bt + cF(t) + dG(t) (2.57)

The functions F(t) and G(t) are unknown but we can approximate them

using numerical quadrature: Let tr be a typical sampling point then
t .

[ r
Fit) = |y d - (2.58)
0 .

The numerical quadrature procedure that Foss (1970) invokes in order to
estimate F assumes that y may be interpolated between observations

using a single exponential function, i.e.

8.t
y=oa;e ! by <t<t, i=0,...,n-1 (2.59)
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Suppose that the observations are (to,yo), (t1,y1),...,(tn,yn) then
the incremental area between t; and ti+1 is approximately
i+1
Jt. Y dt = (i) (G ty)/8n {y3/y4,4) (2.60)
; _
for Y; # Yise If Yi = Yin then
jti+1 )
y dt = y.(t. ,-t.
t, AL (2.61)
The estimate of F(tr) is then given by
~ e t1'+1
F(t,) = Yiso Jt y dt (2.62)

.i
This numerical quadrature procedure is a slight modification of what Yeh

and Kwan (1978) describe as the log-trapezoidal method.

[ r
For G(t ) = | J y(g) dg dx
0

r
= J F(x) dx (2.63)
0

Foss (1970) uses the trapezoidal rule applied to the estimated values
of F to give

"~

6(t,) = Ti2g (F(tg) + Flty, )}ty qmty)/2 (2.64)

After making these substitutions equations (2.55) and (2.57) may be
regarded as linear models in the parameters a, b, ¢ and d. These
parameters can be estimated by a multiple linear regression using

least squares.

Having obtained estimates for a, b, ¢ and d estimates of the initial
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parameters are obtained by'solving the system of equations (2.56).

The solutions are:

b1 = 3{-c + /cZ+4d} b2 = -d/b1 (2.65)
ay = (ab1—b)/(b1-b2) a, = a-a,

2.5.2 Comments on Foss's method

Foss's method works for data that decreases monotonically. He gives an
example to demonstrate this. However, his method does not work if
'applied to data that builds up from zero to a peak and then decreases
back to zero. Such data is encountered in bioavailability trials of

vora]]y administered drugs (Wagner (1975)).

There are two reasons why his procedure does not work for such data; if
the first observation Yo is zero then formula (2.60) breaks down

attempting to take the logarithm of zero.

Secondly if two consecutive observations Y; and yJ.+1 have approxi-
mately the same values, as may happen near the peak, then the denomi-

nator Zn(yj/y ) will be very close to zero. In this instance formula

J+1
(2.60) may be inaccurate. Yeh and Kwan (1978) report that the log-
trapezoidal method may produce large errors when used in an ascending
curve, near a peak or in a steeply descending polyexponential curve.
These large errors result in a poor estimate of F and hence also of

G. The end effect is a breakdown of the linear relationship as given in

equations (2.55) and (2.57).
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2:5.3 Modification

In order to remedy both problems outlined in the previous section one
need only alter the numerical quadrature method for estimating F. The
simplest method to achieve this is to apply the trapezoidal method to

give (Lanczos 1957, Yeh and Kwan 1978)

e r-1
F(tr) = zj=0 (}’J+}’J+1)(tJ+1'tJ)/2

for r =1,2,...,N.

Alternately one may use a combination of methods as outlined in Yeh and
Kwan (1978). For example, use the trapezoidal method until just after:
the peak and thereafter the log-trapezoidal method. The author has found

)
the trapezoidal method gives satisfactory results.

2.5.4 Extreme Conditions

As the ratio b,/b; increases the functions t, F(t) and G(t) become
almost linearly dependent. This causes a co-linearity problem when
attempting to fit the linear model defined by (2.55) and (2.57).

Because of this the coefficients become unstable and the procedure breaks

down.

The condition can be detected by plotting concentration or log-concen-
tration against time; an early peak indicates that b2/b1 is large.

The earlier the peak, the larger the ratio b2/b1.

In order to see how this collinearity develops we may, without loss of

generality,.suppose that t and y have been scaled so that

y = et - ekt k>1 (2.66)
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Here k represents the ratio bz/b1. Figure 1 gives a plot of this
function for k = 1,5; 2; 5; 20 and «. It is evident from the plot

that, as k increases (2.66) approximates et very closely.

kt

t

Figure 2.1 : Plot of the function y =e = - e for various values

of k. k =1,5;2; 5; 10; 20 and =,

Consider first the case where k = « so that

y = et (2.67)
This function satisfies the differential equation

y' = -y (2.68)
with the initial conditions

Yy, =1; yc') = -1 _ (2.69)

Integrating (2.68) over time gives
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[ yre) de < -j y(£) de

JO 0
t

y(t) -1 = -{ y(£) de (2.70)
0

Integrating (2.70) over time gives

t t th
J y(x) dx - J di = -J ] y(g) dg dx (2.71)
0 0 0’0
t
Corresponding to k = =« we define Fw(t) = j y(A) dx and
0
tr
G (t) = y(g) dg dA
JoJo

Substituting F_ and G_ into (2.71) we have

F(t) -t =-6.(t)

[e2]

F(t) +6(t) -t=0 t >0 (2.72)

Hence for k = « the functions t, F_, and G_ are linearly dependent.

We now consider the case for which k < «, In this instance define

t -
Fi(t) = J (e -e7k) | (2.73)
0
t t A
e £ ke
6, (t) JO F(0) dh jojo (e C-e "K€) dr di (2.70)

Now consider

ot
F(t) - F(t) = J e tax = 1 (1-e7KE) (2.75)
0
and
t
606 - (1) = [ (F,00 - F (D)
0o
t
-4 Jo (1-e"%)
=1 b - (2.76)
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From (2.75) and (2.76) it is clear that Fi(t) > F(t) and
G (t) > G (t) as k.

Therefore Fk(t) + Gk(t) -t>0 as k> (2.77)

Hence for large k the functions t, Fk and Gk or simply t, F and

G are almost Tinearly dependent.

Fresen and Juritz (1985) and Fresen (1985) give examples where the method -
works and where the method breaks down.

\

2.6 Asymptotic distribution of Least Squares/Maximal Likelihood estimators

Consider the statistical model given by (2.42) or alternately the model
. given by (2.45). The partial derivative of the response funétion with
respect to the rth parameter er for the uth sampling point tu,
evaluated at the unknown true parameter 6*, is denoted by

f =

w] |
ru ] 55 Je s (2.78)

There are k sampling points and m parameters; therefore the kxm

matrix of these derivatives is

F= (fru)

It is well known that the Teast squares estimator has variance-covariance

matrix which is approximated by (Box and Lucas, 1959)
V= (FR)7 o (2.79)

If the errors are assumed independent and normal then the Fisher infor-
mation is F'F/o2. Hence (2.79) is also the asymptotic variance-

covariance matrix for the maximum 1ikelihood estimates.
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2.7 Other methods for estimating the pharmacokinetic parameters

Four methods for estimating the model coefficients have been described

in section 2.3; graphical method, least squares, weighted least squares
and maximum likelihood. These four methods are perhaps the best known.
However least squares is known to be sensitive to outliers. Rhodda et al.
(1975) claim that a single outlier can have a devastating effect on the
least squares estimates. For weighted least squares one is faced with
the unsolved problem of choosing weights and maximum 1ikelihood is

dependent on distributional assumptions which seem hard to justify.

To avoid these weaknesses other approaches have been proposed. These

include

(i) Ordered Simulation Estimation Procedure (OSEP)
(ii) Fourier analysis
(ii1) Lp estimation

(iv) Statistical moments

We shall give a brief description of each method.

2.7.1 Ordered Simulation Estimation Procedure (OSEP)

Rhodda et al. (1975) propose a robust non-parametric procedure for the
simplest pharmacokinetic model, the one compartment open model. They

call their method the Ordered Simulation Estimation Procedure.

The one compartment open model leads to a sum of two exponentials

y = Ale -e b2 > b1
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The domain is partitioned into three phases; absorption, peak and

elimination. See Figure 2.2.

Selecting one observation (tﬁ, yi) from each of these three regions

generates a system of three equations in three unknowns, viz

bty -bot.)
y; = A(e e 27)  for i=1,2,3

where t, € (absorption phase), t, € (peak phase) and t; € (elimination

phase).

-b

t -b,t
Figure 2.2 : Typical plot of y = A(e 1 -e 2 ) showing partitioning
of domain 1nto absorption, peak and elimination phases

These three equations are solved for A, b1 and b2' using an iterative

procedure such as Newton-Raphson or Steepest descent approach.

This procedure is repeated for each of the N = Ny Ny Ng possible com-
binations and produces N estimates of A, b1 and b2. These N
estimates are ordered and the median of each estimated parameter is used

as an estimate of the unknown parameter.

Rhodda et al. (1975) compare this estimation procedure with least squares

using a Monte Carlo study. They recommend this estimation procedure
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whenever outliers are known to exist, otherwise they recommend least

squares.

As motivation for this procedure they cite an analogous procedure for

the linear case as described by P.K. Sen (1971).

The drawback of this procedure is the arbitrary manner of partitioning
the domain into the three regions absorption, peak and elimination. The

effect of different partitions has not been studied.

2.7.2 Fourier Analysis

Gardner et al. (1959) proposed a method for fitting polyexponential
functions based on Fourier analysis. Smith et al. (1976) proposed a
discrete analogue to Gardner's method via spectral analysis. According
to Steyn (1980) these methods did not gain wide acceptance because the
numerical evaluation of Fourier integrals was then extremely difficult
and tedious. He showed how the Fast Fourier Transform together with a
filtering and smoothing technique can be used with success to estimate
the coefficients or parameters in the model. However, the method is

derived for exponentially spaced observations

ie. t = exp{2a(x-m)/N} x = 0,1,...,N-1.

If the observations are not precisely exponentially spaced Steyn suggests .
interpolating the y-values at the precise ty points and then applying

his method.

He compares this method with the graphical method and concludes that this

method yields parameter values that describe the model more accurately.
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It is clear that this method may be viewed as a method of obtaining

initial estimates.

The details of the method are given in Steyn (1980).

2.7.3 Lp—norm estimation

The Lp-norm estimator is defined as that vector 8 that minimises the

objective function

)
SLp(e) = Zi=1|yi - f(ti,g)lp where 1 <p <o

For p =2 this is equivalent to the least squares estimator.
Gonin and Money (1985a,b) discuss the choice of p as well as its

asymptotic distribution.

2.7.4 Statistical Moments

Two pharmacokinetic parameters not yet mentioned are the Mean Residence
Time (MRT) and the Mean Absorption Time (MAT). The MRT is defined in

terms of the AUC and the first moment of the AUC (AUMC). Let

AUC(0,) = fw y dt
0

and

AUMC(0,) = Jf ty dt
(0]
Then the MRT is defined as
" MRT = AUC(0,%)/AUMC(0,»)

Both AUC(0,~) and AUMC(0,») can be evaluated using numerical integration

or by fitting a polyexponential model.
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3.2 The two period cross-over trial

The two period cross-over trial compares two formulations of a drug, a
new (N say) with a standard (S), each received by every subject over
two periods. The n subjects are randomly divided into two groups of
sizes ny and n,. It is preferable to have equal group sizes i.e.

ny = n,. One group receives the treatments in order N-S the other
group in the reverse order. Often, a washout period between treatments
is allowed to eliminate carry over effects. A typical form of the

design is given in Figure 3.1,

PERIOD 1 PERIOD 2
GROUP 1 N Washout S
Period
GROUP 11 S N

Figure 3.1 Two period cross-over trial with washout period

For bioavailability trials it is usual to have between 12 and 20 subjects.
However, as was mentioned in section 1.5, the FDA draft suggests that
"The number of subjects employed in the test should be adequate to
demonstrate the Lack of statistically signiflcant pnacticaz difgerence
among the biloavailability parameters éeﬁecfed with an alpha of 0.05

and a beta of 0.20."

There are two models to consider for this design; one with residual

or carry over effect and the other without.
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3.2.1 Model I : With residual/carry over effects

Consider the jth patient in the ith sequence or group in the kth

period and denote the response by yijk' The model is

Yig THF By Mo hp tegg 1 =152

J=1,...,N

k =1,2
£ =1,2
where u = general mean
gij = effect of jth patient within ith sequence a random variable
with mean zero and variance og

T = effect of the kth period

$p = direct effect of the £th drug

AE = residual effect of the £th drug

€ijk ~ random fluctuation distributed with mean 0 and variance

oé, -and is independent of gij'

With these assumptions the variance of an observation is

Var(y;s ) = o + o2

ijk S

and any two observations on an individual have covariance

Covlyigq» ¥ij2) = 0%
Observations made on different subjects are independent, i.e.
Covlyipg> Yige) =0 r#t
Grizzle (1965, corrected 1969) discusses the estimation and testing

procedures for this model in detail.
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The contrasts of interest and their variances are given in Table 3.1.

Table 3.1 Contrasts of interest (Grizzle 1965)

Contrast Estimate Variance
T =T Not estimable A -

41 7 % Vi - Vp 4 o*/n
MR 91.1‘91.2'92.1'92.2 2 02(1+p)/n

02 +02
e S

In the table: 0?2

H

2 2 2
0 os/(oe + 02)

S

In most clinical trials, the hypotheses of interest are, either indi-
vidually or jointly, A1 = AZ and ¢1 = ¢2. The period contrast
Ty o= T is not estimable under the model assumed. If there is

interest in this contrast, a different design should therefore be used.

The analysis of variance for individual tests of hypothesis is given

in Table 3.2.
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The MAT is the difference between the MRT for a non instantaneous input
(MR_Tn ; v) and the MRT as they occur in the in vivo release and

absorption process (MRTi v )

MAT = MRT, . . - MRT, .

v.

Riegelman and Collier (1980) discuss the estimation and relevance of

these concepts.
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CHAPTER 3

ASSESSING BIOEQUIVALENCE

3.1 Introduction

Methods of assessing bioequivalence may be broadly classified in the

following manner:

- (i) methodology employed; hypothesis testing, the use of confidence

intervals or Bayesian procedures,
(ii) parametric or non-parametric, and

(iii) difference or ratio of the parameters involved.

The simple cross-over design is used so frequently in bioequivalence
trials that it might be thought of as the standard design (Steinijans
and Diletti (1983), Huitson et al (1982)). We shall therefore re-

strict attention to the simple two period cross-over trial and assume

that the data is a result of such a trial.

Most of the procedures discussed in this chapter are univariate. How-
ever, in practice bioequivalence is assessed on a number of parameters.
This is achieved by applying a univariate procedure to each parameter
individually. The effect is a reduction of the significance levels

and coverage probabilities.

The purpose of this chapter is to give a brief review of the two way

cross-over trial and the methods for assessing bioequivalence.



Table 3.2 Analysis of Variance for Cross-over Design with Residual Effects (Model I)

Source of Variation df Sum of squares Expected mean squares

Residual Effect 1 .?ﬁfﬁgﬁ(n2Y1.. - n1Y2.'.)2 Oé + 202 + E%;g(x1-x2)2
Sﬁbject (seq) n-2 5(2;11 Yij. + 2251 Yéj, i; Y%..) 62 + 20

Treatment 1 n112n (nv2Y1.1 - n1Y2.1)2 02 + 0L+ n1n2(¢l'¢2)2

Error n-2 Z§=1<zgi1 Y%j1 - Yi;1> of + o2

Remarks: (i) Y1'. is the total of all observations on the first sequence, etc.

(ii) the sums of squares for error is obtained from the first period only.

G'¢
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3.2.2 Model II : Without residual/carry over effects

If no residual/carry over effects are assumed then a model for the

data would be

Yigh TR Bt et b+ ey 1=1,2
J=1,.om
k=12 (3.2a)
L=1p2

where wi = effect of the ith sequence group and the other symbols

have the same meaning as for model I.

The analysis of variance for this model is given in Table 3.3a.



Table 3.3a Analysis of Variance for Cross-over Design without Residual Effects (Model II)

Source of Variation df Sum of squares Expected mean square
2non, (b, -9,)2
1 ) : 1M2\¥17V5
Sequence 1 ?ﬁTﬁEﬁ (n2Y1 nY, ) of + 202 + -
n Y Y2
. _ 1 s 2 Coh 200N
Subject (seq) n-2 §(53_1 Y1J +zj=1 Y%J T ) o + 202
1 : , , . 2nqny(dg-9,)2
Treatment 1 | SST = ZETHEH (nzG1 - n1Gz) a2 + -
2n,n,(m,-m,)2
. o 112117
Period 1 SSP = ?ﬁTﬁEﬁ (nzG1 +‘n1Gz) oé + -
. Y. .-Y. ,)2
) .02 N 2] ( i.1 .27
Error n-2  SSE = §f1_1{[2j=1( i1 132) i - | o2
Where G1 =Y Y

=Y 1

1.1 "
difference between the totals for drug N and drug S in first sequence

-y

1.

n=mng o+,

2.2
difference between the totals for drug N and drug S in second sequence

L°€
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Remarks: A number of authors use a slightly different model to (3.2a).
The term allowing for the effect of the ith sequence group Vs is

omitted. This simplifies the model which now becomes
Yigk =H* Ej5 F Tt 9t g5y (3.2b)

The ANOVA for this model is obtained from Table 3.3 by combining the

sums of squares for sequences and subjects-within-sequence. The re-

sulting sum of squares is called the variation due to subjects. For

the sake of simplicity they let T = ¢y = -¢2 (Treatment effect) and
P=m = -, (Period effect). This gives o - by = 2T and

mo= Ty = 2P. It is further assumed that n, = Nos and let

0§ = 02 + 202.
A e S

For completeness, the ANOVA corresponding to these simplifications is

given in Table 3.3b.

Table 3.3b Analysis of variance for the cross-over design without
Residual Effects. (Model II - with simplifications)

Source of Expected
Variation df Sum of Squares Mean Square

Formulations 1 SST 2n{(Y1.1+Y2.2)/2-Y“.}2 OZ + 2nT2

Periods 1 SSP =2n(Y ,-Y )2 02 + 2np?
Subjects n-1 SSS = 223 yﬂ/z(v.. -Y )2 02 = g2 +202

i=143=1""43. ... A e S
Error n-2 SSE = By subtraction oé

Same as in Table 3.3a

See Steinijans and Diletti (1983), Selwyn et al (1981), Rocke (1984),

Flueher et al (1983).
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Mendallaz -and Mau (1981) use a simplified model but assume that the
subject effect is fixed for normally distributed data. For log

normally distributed data, they assume that the subject effect is random.

The essence of bioequivalence is the comparison of a new formulation, N,
with a standard formulation, S. To aid recognition the following

notation will be used:

1) My and Hg represent the population means of the biocavailability

parameter for the new and standard formulations respectively.

2) Yy =Yy 4

and standard formulations respectively.

and VS = '2 ; will represent the sample means of the new

3.2.3 Problems of the cross-over design

The FDA have discouraged the use of the two period cross-over design
-where unequivocal evidence of the treatment differenceslis required.
The essential problem with the cross-over design is the estimation of
treatment effect in the presence of period interaction, carry over
effects or group effects. These three effects are totally confounded
‘and can only be detected relatively inefficiently because they must be
tested against the between subject variation. If a treatment by period
interaction exists but is not detected the estimated tredtmeht effect

will be biased and perhaps meaningless.

Against this argument, many statisticians believe that a carry over
effect is inappropriate for bioequiva1ence trials. A blood sample drawn
immediately prior to the drug administration in the second period is

regarded as sufficient evidence to demonstrate that the drug has been



eliminated from the system. This however, does not allow for the pre-
sence of metabolites of the drug, or for other subtle changes induced
by the drug administration in the first period. Clearly, this is still
a controversial issue. See Wallenstein and Fisher (1977), Westlake

(1979), Huitson et al (1982), Selwyn et al (1981).

3.2.4 Non-parametric.analysis of the cross-over design

Koch (1972), Taulbee (1982) and Steinijans and Diletti (1983, 1985)
discuss the use of non-parametric methods in the analysis of the two
period cross-over design. Tests are provided for the hypothesis

A1 = AZ and ¢1 = ¢2. Equality of direct effects can be examined by
applying the sign test or the Wilcoxon signed rank test. Koch (1972)
out]ines_the‘steps needed in the analysis. Steinijans and Diletti
(1983, 1985) show how to compute non-parametric confidence intervals for

the difference or the ratio of treatment means.

3.2.5 Formulating other hypotheses

The classical null hypothesis which the ANOVA address is

Ho + 1y = Hs
Anderson and Hauck (1983) maintain that this hypothesis is inappropriate
for two reasons. Firstly, it may lead to the situation where a diff-
erence is statistically significant but not clinically meaningful.
The second concerns the logic of an hypothesis teét. They argue that

in order to demonstrate equivalence, the equivalence hypothesis should

be the alternate and ggi the null hypothesis.



They set up a null and alternate hypothesis as follows

HO DUy T K <-A or uN-uS>B

and
HA:A<UN-US<B
and most often A = -B,

The test statistic is

Y - ¥
12N S

i S(1/n, + 1/n2)é

- 1(A+B)

where the Y's are the respective sample means, n, and no the group
sample sizes (usually ny = n2) and S is calculated from the appro-
priate ANOVA. T then has a non-central t distribution with non-
centrality parameter

UN - US - é(A+B)

A= )é

c(1/n1 + 1/n2

Rocke (1984) compares four procedures that focus on an hypothesis that
the true difference ¢ = Hy " Mg is less than some specified tolerance

A.

f.e. Hy:t-a<d<a or || < A

He defines two formulations to be bioequivalent with tolerance A,
abbreviated B,, if [§] < A.
The four procedures, denoted by P1, P2, P3 and P4, are:

P, : construct an ordinary (1-a)100% confidence interval for & and
conclude BA whenever that confidence interval is contained in

[-A,A]. Metzler (1974), Kirkwood (1981).



P2 : construct a confidence interval symmetric around O and conclude
BA if that interval is contained in [-A,A]. Westlake (1972, 1974,

1975, 1976, 1979).
: use P1 with a (1-2a)100% confidence interval. Westlake (1981).

K Let D be an estimate of § and T(x) be a one-sided tail area
beyond x for the t distribution with v df. Conclude BA
whenever | .

T{(a-|D])/s} - T{(a+|D])/s} <« for |D| < A
or

1 - T{(a-|D|)/s} - T{(a+|D|)/s} <a for |D]| > A

He proves the following theorem:

(i) For any spécific instance of D; s, v and A, let Pys Pos P3
and Py be nominal p-values associated with the test procedures

P P

1» Pos P3 and P,. Then p, < ps < p, < py.

(ii) If each procedure is run with nominal size o, and a1(6),
uz(d), a3(6) and a4(6) are the actual probabilities of con-
cluding B, if E(D) = &, then a1(6) < a2(6) < a3(6) <
a,(8) <a whenever [&] > A, with equality if & = A. Thus Py

has actual size o whereas the other procedures are conservative

and have actual sizes strictly less than the nominal size «a.

(iii) If 11, I2, 13 and 14 are nonequivalence intervals for the four
procedures, then I4 c 13 c 12 c 11. Thus P4 gives the most

precise nonequivalence interval.

Mandallaz and Mau (1981) view the bioequivalence problem in terms of the

ratio of means 6 = “N/“S‘ Bioequivalence is defined as the condition



ry < 6 < rs (0 < ry < 1 < r2). The hypotheses to be considered are:

H:06¢€ [r1, r2], the null hypothesis of bioequivalence

K:o¢ [r1, rz], the alternate hypothesis of no bioequivalence

They compare Westlake's approximate symmetric confidence interval with

the well known exact Fieller confidence interval and derive an exact
version of Westlake's procedure. They also give a Bayesian interpretation
viz. the posterior probability P[6 € (r1, r2)], to the exact version
they have derived. This is achieved using a vague improper prior distri-
bution (cf. Box and Tiao, 1973, §1.3). The data are assumed normal or

lognormal. -

3.3 Confidence Intervals

Westlake (1972, 1975, 1976, 1979) has argued strongly that establishing

a confidence interval is more appropriate than hypothesis testing in
bioavailability studies. Others who concur with this opinion are

Metzler (1974), Shirley (1976), Steinijans and Diletti (1983) and Anderson
and Hauck (1983). Consequently, a number of methods have been derived

for establishing a confidence interval. These are

(i) confidence interval based on the ANOVA

(i) Westlakefs modification of the ANOVA based confidence interval
(ii1) confidence interval based on the paired t-test

(iv) nonparametric confidence intervals based on the Wilcoxon signed

rank test

(v) nonparametric confidence intervals based on Pitman's permutation tests.
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A brief review of these methods will be given here. The development

given here follows that given in Steinijans and Diletti (1983).

For the purpose of computing confidence intervals ft will be assumed that
carry over effects are of no concern. (If they are present they may be
confounded with direct effects, then only the data from the first period
can be used.) Using this assumption model Il is appropriate, the ANOVA
of which is given in Table 3.3a or Table 3.3b depending on the assumed

model.

3.3.1 Confidence interval based on the ANOVA

- A two-sided (1-a)100% confidence interval for the expected meah difference

§ =y - U =T - T is calculated as follows:

d + t(n-25 1 - 5)VZWMSE/N (3.3)
where d = (Y1_2 + Y2.1)/2 - (Y1_1 - Y2.2)/2
, = estimated mean difference between the new and standard
formulations
MSE = mean square for efror in the ANOVA
t(v,1- ) =1 - $ fractile of the t distribution with v df.

An approximate (1-a)100% confidence interval for the bioavailability ratio
8 = “N/“S is given by

(Ty * t(n-2, 1 - 3) JZWSE/N)/Vg (3.4)

If log (AUC) rather than AUC is assumed to follow the normal distri-
bution (Metzler 1974, Westlake 1973, 1976, Steinijans et al 1982) then

the confidence limits defined by (3.3) apply to logarithms of the



expected bioavailability ratio. Taking antilogs thus provide (1-a)100%
confidence limits for the bioavailability ratio itself. A point esti-

mate of this ratio is given by the geometric mean of individual ratios.

3.3.2 Westlake's modification of the ANOVA based confidence 1ntérya1

The confidence interval defined by (3.3) is symmetrical about the esti-
mated mean difference d. In order to shift the emphasis from estimation
to decision making Westlake (1972, 1976 and 1979) proposed a confidence
interval symmetric about 0. This is achieved by selecting two con-

stants k1 and k2 that satisfy

ky + ky = 2(\?N - YS)//Z MSE/n (3.5)
and k2
N
J ft(n_z)(S) dS =1 - «a (3.6)
1

Equation (3.6) ensures that the interval (k,, k,) includes (1-a)100%

of the mass of the t distribution.
A (1-0)100% confidence interval, symmetric around 0, 1is given by

(d + k1¢?_MSE7ﬁ , d+ kz/Z_MSE737 (3.7)
Aé before, approximate éonfidence 1imits can be obtained for the ratio
Hy/ug by |

(Yy * kVZ MSE/n) /Y i=1,2 (3.8)
These symmetrical confidence intervals have been critised by both Mantel

(1977) and Kirkwood (1981). Mantel gives a few exaggerated (his own

adjective) examples that demonstrate the absurdities that might arise



by taking confidence intervals symmetrical about the null value. He
considers, for example, what happens when the point estimate of a
difference between two means is far from the null value of zero, e.g. the
point estimate is 100 + 3. The usual confidence interval is approxi-
mately (94; 106) while that symmetric about zero is approximately

(-105; 105). 'A1ternate1y, the outcome 5 + 3 would lead to symmetric
limits of (-9,935; 9,935). Yet those same symmetric 1imits would have
arisen had the outcome been -5 + 3. Mantel also suggests that for
ratios, symmetric intervals are absurd on the grounds that 0,5 is as far
from 1 as is 2, 0,1 is as far from 1 as is 10. He also suggests that a
problem could arise if the confidence interval for a ratio could not be
constructed. Since the lower bound is 0 the largest possible interval

is (0,2). Kirkwood makes similar remarks.

Westlake (1977, 1981) defends his symmetrical intervals on the grounds
that they were intended solely for use in bioequivalence assessment and
were essentially proposed as a decision making device, i.e. two formu-
.1ations are declared bioequivalent if the confidence interval lies
wholly inside the bioequivalence specification interval which is
usually symmetric. Rocke (1984) has established that, as a decision
making device, these symmetrical intervals are superior td the standard
intervals in the sense that has already been discussed in section 3.2.5.
Hence both Mantel's and Kirkwoodfs objections are largely irrelevant in

bioequivalence assessment,

3.3.3 Confidence intervals based on the paired t-test

If no period effect is assumed the model (3.2b) for the ANOVA reduces to



.yijk=u+€1'j+¢z+€ (3-9)

ijk
Intra-individual d1fferences_ d1j = y1j2 - y,I.1 and d2j = y2j1 - y2j2

in sequences 1 and 2 respectively, have expectation and variance

Estimating the variance V(dij) by

5§ ° Z§=1;g£$ (dij-a)z/(n-1)

(1-a)100% confidence 1imits are given by

d + t(n-1; 1-a/2) S /vn

As before, approximate (1-a)100% confidence limits for the ratio

“N/”S are given by

{Ty + tin-15 1-0/2) S4/ /AT o (3.10)

N

The procedure for log-transformed data is straightforward. Notice that
the paired t-test is closely related to the ANOVA.' The estimate of

V(dij) can be obtained as follows

~

Var(dij) = (SSE + SSP)/(n-1)

where SSE and SSP are obtained from Tables 3.3a or 3.3b.

3.3.4 Nonparametric confidence intervals based on Wilcoxon's
signed rank tests

Wilcoxon's signed rank test is the nonparametric analogue of the paired

t-test. The test is based on the assumption that no period effect is
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present. Intra-individual differencesare denoted by dj, i=1,...,n

irrespective of the sequence of administration.

The model is
d. = 8§ + ¢, i=1,...,N (3.11)

where the €'s are random error terms and & is the expected difference
between formulations. The distributional assumptions on the error term
are that the €'s are independent and symmetrically distributed about

0 from a continuous distribution. See Hollander and Wolfe (1973. pp.

26-33) and Steinijans and Diletti (1983, 1985).

To form a nonparametric confidence interval the n(n+1)/2 arithmetic

Walsh averages aij are computed

ai; = (d1+dj)/2 i<j; J=1,...5n ' (3.12)

Let a(1),...,a(n(n+1)/2) denote their ordered values. The (1-a)100%

confidence interval (L,U) is given by
L=a(C ) 5 U =a(n(n+s1)/2 + 1 - Ca)

where C_ = n(n+1)/2 + 1 - t(a/2; n)
t(a/2; n) s the critical point of the Wilcoxon sum of

positive ranks.

A table of values of C, and n(n+1)/2 - C, 1s given in Table 2 of

Hollander and Wolfe (1973 pp.269-271).

This method may be modified for ratios instead of differences by taking
logarithms of the AUC. The details are given in Steinijans and

Diletti (1983).



3.3.5 Nonparametric confidence intervals based on Pitman's

permutation test

The model for the permutation test is again given in (3.11) but with the
distinction that the ¢€'s need not necessarily come from a continuous

distribution. The distribution is still assumed symmetric though.

Under the hypothesis & = 0, the 2" permutations of signs produce a
discrete uniform distribution with point mass 27" The (1-2)100%

confidence limits are computed as follows:

(i) Let {11,...,im} denote a nonempty subset of the index set
{1,..,,n}. There are 2"-1 such subsets; n have only 1 element

i.e. m= 1,.(2) have two elenents i.e. m = 2, etc.

(ii) Let A be the set of all 2"-1 arithmetic averages of observed
differences di (i =1,...,n):
A = {M'1Xr=1 dip ¢+ {igseenipd = (s 0}
(iii) Let a(1),..,,a(2n-1) denote the ordered elements of A.
(iv) The (1-0)100% confidence limits (L,U) are given by

L = a(k,) U = a(2n-ka)

where ka is chosen such that ka/zn < a/2
This procedure can be modified to ratios in a similar manner to the

Wilcoxon procedure.

3.4 Bayesian approach to bioequivalence

The Bayesian approach to bioequivalence assessment has been derived for

both the difference 6 = Hy - Hg (Selwyn et al, 1981) and the ratio
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6 = “N/“S (Mandallaz and Mau 1981, Fluehler et al 1983) of the formu-

lation means. In both cases the two period cross-over trial is assumed.

The Bayesian criterion adopted for bioequivalence is a high posterior
probability that the parameter 8, either the difference or ratio of

formulation means, lies inside a specified interval.

Selwyn and Hall (1984) extend the Bayesian methodology to other designs
such as the Latin square and a design where the formulations are
administered simultaneously. The simultaneous design is achieved by
tagging a radio active isotope to the new formulation and administering
both formulations simultaneously. The concentration of tagged and un-
tagged drug are measured simultaneously by the combined use of gas

chromatography and mass spectrometry of the blood samples.

Section 3.4.1 considers the Bayesian approach for the difference between
formulation means without carry over effects, section 3.4.2 includes a
carry over effect and section 3.4.3 considers the ratio of formulation

means without carry over effect.

3.4.1 Difference between fokmu]ation means without carry over effect

Selwyn et al (1981) assume a two period cross-over design and, initially,
that no carry over effect is present. The model for the data is there-
fore given by equation (3.2b). Fof simplicity they let

T =0y =0, (Treatment effect), P = M= =T, (Period effect) and

G2 = g2 + 2,
AT %% 205
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The criterion adopted for bioequivalence is a high posterior probability
that the difference in formulation means is less than some fraction,
say k, of the mean of the standard. With the above notation

Hg = M + T and My = H - T. The criterion is
luy - ugl <k ug (3:13)

After substituting for Hg and Hy into (3.13) the criterion for bio-

equivalence translates into

luy = ugl < koug

lu = T =u=T| < k(p+T)

|2T] < k(u+T)
or ' k1p < T« kzu (3.14)
where k, = -k/(2+k) and k, = k/(2-k)
The posterior density of u and T is computed and then this density
is integrated over the wedge shaped region defined by (3.14) to obtain
the posterior probability. If the posterior probability is sufficiently
high the formulations are considered biocequivalent. Non-informative

priors are used and the components of the likelihood are assumed to be

normal or chi-squared.

They test the sensitivity of the posterior probability on the prior by

considering four different non-informative priors
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Pq(,P,T,08,0%) = O;ZGAZ

P, (1,P,T,02,02) = O;ZOAZ for of > o2

P3(u P,T,o2 ,OA) « 0;10A1 (3.15)
pa(HsP,T,02,03) = O;IOAI for ot > of

They give the following discussion on these priors:

The priors Py and p, are obtained from Jeffrey's (1966)* rule.

Prior Py results in a joint posterior density for u and T, which
is the product of t-densities.and thus conforms most closely to standard
practice. Prior Ps incorporates the knowledge that Oi > cé. However
the difference is only expected to matter if the F ratio for subjects
is small. Priors P3 and Py are flatter than Py and Py and hence

lead to longer tailed posterior densities for u and T.

Denoting the sum of squares due to subjects and error by SSS and SSE

respectively the log likelihood is

~

- n(ump)2/a - n(P-P)2/ct -

gnL = -nén °A -néngo 2

e

n(?-T)Z/og - $53/203 - SSE/zsg (3.16)

Combining the prior Py with the likelihood and integrating out P
from the posterior density yields

Py (usTo02,0f 1) = 01 expl-b(0)/03+0,/03)) (3.17)

2n(u-u)2 + SSS

where Q1

Q, 2n(T-T)2 + SSE

I

*Jeffrey's Rule for obtaining non-informative prior densities (Box and
Tiao, 1973, p.54): The prior distribution for a set of parameters is
taken to be proportional to the squareroot of the determinant of the
information matrix.



- 3.23

By applying (A2.1.2) of Box and Tiao (1973) they show that the posterior

density of u and T based on prior P is

p (1, TIY) = n(n-2) {n(s55-SSE) ¥+ {1+2n(fi-u)2 /5551 ™2

{1+2n(T-T)2/ssg}~(n-1)/2 (3.18)

The posterior probability for assessing bioequivalence is obtained by
integrating (3.18) over the region defined by (3.14). This integration
will have to be done numerically. Selwyn et gl_(1981) recommend the
Gauss-Hermite procedure. They also suggest that this will be the most

difficult aspect of the Bayesian method for the practising statistician.

Let C denote the constraint oﬁ > oé. Then the posterior densities that
correspond to priors Py and py are related to the unconstrained

priors P and py as follows (see 1.5.5 of Box and Tiao 1973)

Py (1, TIY) = py(u,TIY)P, [Clu,T,Y1/P, [C]Y] (3.19)

and

p3(1,T[Y) P5IC|u,T,Y1/P5IC]Y] (3.20)

p4(U3T I_Y_)

The probabilities on the right hand side of (3.19) and (3.20) are com-
puted using Py and P3 respectively. These turn out to be (details

are given in Selwyn et al (1981) and Box and Tiao (1973))

P,(C|Y) = PIF < (n-2) $SS/{(n-1)SSE}] - (3.21)

n-1,n-2
and -

P1(C|u,T,X) = P[Fn,n-1 < (n-1) Q1/n02] (3.22)

Similarly
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1
2

Py (1, T]Y) = n(n-3){n(SSS-SSE) }‘1{1+2n(ﬁ-u)e/gss}'(n-1)/2 y

{1+2n(T-T)2/s5E) "V 241 (3.23)

and
P3lCIY] = PIF , 5 < (n-3)S55/1(n-2)SSE}] (3.24)
PylClu,TLY] = PIFy p < (n-2)0/{(n-1)Q,31 (3.25)

3.4.2 Difference between formulation means with carry over effects

Selwyn et al (1981) incorporate a carry over effect into the Bayesian
framework by putting a normal prior on the carry over. Letting R
denote the carry over of the standard formulation, with prior density

centred at 0 with standard deviation TRs the joint prior becomes

p(u,P,T,R,0Z,03) ? o;zogzexp(-R2/205) (3.26)

oﬁ can be thought of as reflecting one's prior belief in the plausi-
bility of a carry over effect. A R close to zero indicates a strong
prior belief of no carry over effect while a large O corresponds to

a suspected presence of a carry over effect.
They derive the conditional posterior density of u and T given
R and Y to be
— % _1. ~ 2 'n/2
p(u,TIR,Y) = n(n-2){n(D-SSE)*} " {1+2n(u-p)2/D} x
{1+2n(T-E)2/ss€3(N"1)/2 (3.27)

A

SSQ + n(R-R)2/2

where D

E=T+R/2

SSQ = sums of squares for subjects within sequences
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The posterior conditional density for R given Y is

pRIY) = [1en(R-R)2/(2(n-2)55Q}1™ "™V 2ep(Res203)  (3.28)

3.4.3 Ratio of formulation means

Once again, the two period cross-over design is assumed. The data are
assumed to be normally or log normally distributed and no carry over
effect is allowed. Mandallaz and Mau (1981) derive the theory while

Fluehler et al (1983) give a practical discussion via an example.

The condition of bioequivalence is accepted if the posterior probability
that the ratio 6 = “N/“S of formulation means belonging to the interval

(r1, r2) is sufficiently large.
i.e. if P[ee(r1,r2)] is large.

For normally distributed data this posterior probability can be computed

by

B
PLOE(r, 1) = {A t 00 (3.29)

where tn_z(x) is the density of a t-distribution with n-2 df

A = (6-rnt/(cv(1+r2)?)

B = (6-r,)n?/(CU(1+r3)?)

6 = /7

CV = (Error mean square)é/?S

For log normally distributed data a similar formula applies except that

YN and YS will denote the means of the log-transformed data and the

limits of integration are given by
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A=

<

MR A (r1))n5/(2és)

B = (T, - T - ¢n (rz))né/(ZéS)

The derivation is given in Mandallaz and Mau (1981).

3.5 Discussion

Perhaps the most pressing question at the end of this review is: how
does a pharmacologist draw useful information from a bioequivalence
trial? Does he resort to frequentist methods or to Bayesian methods?
Does he test hypotheses or Compute confidence intervals? Should he work
with the difference of two means or their ratio or perhaps even with

individual ratios?

There are no clear-cut answers. The choice between frequentist and
Bayesian approach is a continuing controversy, see for example

Geertsema (1983). Ultimately this choice may be largely a matter of
individual preference, but it should be noted that the Bayesian methods
offered so far depend entirely upon the assumption that the bioavailability
estimates are normally distributed. While this may be a reasonable ‘

assumption for AUC it may not be for CMAX or TMAX.

In the assessment of bioequivalence the pharmacologist must make a
decision as to whether or not two substances are for all practical
purposes equivalent, and also must be able to give some indication of

the amount of variation there is in his estimate.

Thus it would seem that both hypothesis testing and an estimate plus

confidence interval approach seem appropriate.
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In the frequentist framework, for decision purposes it would appear
that the methods of Anderson and Hauck (1983) and Rocke (1984) are most
appropriate since the null hypothesis tested is that of non-equivalence
rather than equivalence. These tests also depend on thé assumption

of normality or log-normality.

In giving a confidence interval again one has the choice between normal
theory and non-parametric intervals. Here, as in the Bayesian approach,
the normality assumption for AUC may be reasonable but not for CMAX
or TMAX. Thus the non-parametric techniques offered by Steinijans and
Diletti (1983, 1985) would be more appropriate and for consistency of

analysis it would seem best to apply them to all three quantities.

In practice assessment of- bioequivalence is essentially a multivariate
problem since AUC, TMAX and CMAX are interdependent, and a decision
would rarely be made on the basis of one of these alone. Classical
multivariate statistical techniques depend heavily upon the assumption
of joint normality of the variables and as remarked earlier with such
diverse quantities as AUC, TMAX and CMAX, this assumption is difficult
"~ to justify. The pragmatic approach has been to ignore the interdepend-
ence and apply univariate procedures to each parameter individually.

This affects significance levels and coverage probabilities.

Another problem in assessing bioequivalence is the definition of bio-
equivalence itself. Although this is a clinical problem and not a
statistical one, it is inevitable that the available statistical mac-
hinery will influence the clinical definitibn, perhaps even dictate it.

Certainly if pharmacologists wish to make use of statistics to assess
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bioequivalence they are forced to make use of the available procedures

and to formulate their problems conformable with these procedures.

3.6 Recommendations

In order to remedy some of the problems outlined in the previous section,
we propose that Efron's (1979) bootstrap procedure should be used to
assess bioequivalence. The bootstrap is extremely simple and versatile.
Because of this versatility it will allow a clinical definition of
bioequivalence that reflects the clinical requirements and does not

‘depend on the available statistical procedures.

The bootstrap frees one from simple distributional assumptions and
tractible mathematics that is the hallmark of traditional statistical
procedures. It achieves this at the expense of computational effort.
However, with the advent of modern micro computers and the low cost of

computing this is no drawback at all.

An overview of the bootstrap method is given in Chapter 4 and its appli-

cation to bioequivalence assessment is discussed in Chapter 5.
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CHAPTER 4

BOOTSTRAP METHOD

4.1 Introduction

In 1979 an article entitled "Bootstrap Methods : Another look at the
Jackknife" appeared in the Annals of Statistics. The author was
Bradley Efron of Stanford University. In that artic]e he outlined

a statistical method that is extremely simply yet extremely versatile.

He named the method "the bootstrap."

The bootstrap provides a non-parametric method for the following
familiar problem : Given a random sample X = (X1,...,Xn)‘ of size n
from an unknown probability distribution F estimate the sampling
distribution of some prespecified random variable T(X,F) on the

basis of the observed data x (Efron 1979(a), Singh (1981)).

Efron's bootstrap has proved to be a powerful and popular tool among
statisticians. This is evident by the increasing number of journal |
articles on both theoretical and applied aspects of bootstrapping.
The random variable T(X,F) is often of the following form : Let
6(F) be a functional which is to be estimated and let 8(5) be an

estimator of 6(F). Then we would define

T(X,F) = 8(X) - o(F)

estimator - parameter

5 -0
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If 8 1is an unbiased estimater of 6 then expectation of T will
be zero. Knowledge of the true distribution of T wou]d enable one

to determine confidence intervals for 6.

Alternatively, let g : R = R be monotonic, then T can have the

form

T(X,F) = g{8(X)} - g{8(F)}

¢

An example of a random variable T(X,F) is the arc tanh transformation
‘of the correlation coefficient that Fisher proposed. Let p denote
the population correlation coefficient and r the sample correlation

coefficient., Fisher considered the random variable

arc tanh r - arc tanh p

g{6(X)} - gle(F)}

T(X,F)

Here g(t) = arc tanh (t) is a monotonic function. This example is

discussed in more detail in section 4.11%,

Another common choice for the random variable T 1ds the "t-statistic"

form

TOGF) - g{6(X)} - gl6(F)}
s{o(F)}

Here s{6(F)} 1is meant to serve as a scale factor. The standardised

sample mean is of this form, with g being the identity function.

A useful and convenient estimator for 6(F) is

A X
6(X) = o(F)
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where Fﬁ is the e.d.f. (empirical distribution function) of the random

sample X1,...,X . If 8(F) 1is a sufficiently smooth real valued

n
functional then e(Fﬁ) is an asymptotically optimal estimate of 'e(F)
in the locally asymptotic minimax sense (Beran (1982)). This is however
by no means the only choice for 6(X). Any estimator may be used. Of

course, the choice of estimator will affect the sampling distribution

of T.

4.2 The Bootstrap Approximation

The following formal description of the bootstrap is taken from Singh
(1981) : "Let {X;,...,X } be a random sample of size n from a

W F) be a

population with distriibution F and Let T(Xg, .0 0,X
specified nandom variable of interest, possibly depending on the un-
known distribution F. Let Fé denote the e.d.§. o4 {X,,...,Xn},
L.e. the distrnibution that puts mass 1/n at each of the points

X X, The bootstrnap method 4is to approximate the sampling dis-

[rees
tuibution of T(Xp,...,X; F) unden F by that of T(Y,,...,Y; Fil

unden Fﬁ whene {VI,...,VH} denotes a nandom sample 04 s4ize n

grom Fﬁ."

H will denote the sampling distribution of T(X1,...,Xn; F) under
Fi H, will denote the distribution of T(Yy,...,Y ; F\) under FX
and will be called the bootstrap distribution.

The bootstrap distribution Hy, of T(Y1,...,Yn; Fﬁ) under Fﬁ, is

. . 8 8 n .
necessarily discrete. There are, in fact, n  ways of drawing a

random sample of size n from Fﬁ. Each of these has equal probability
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mass of n . Therefore, in principle at least, it is possible to
systematically obtain the bootstrap distribution Hb' The difficulty

n

is that n~ soon becomes impossibly large.

The principal methods to approximate Hb are:

Method 1. Direct theoretical calculation. This is usually very
difficult in all but the simplest of examples. Efron (1979a) derives

the bootstrap distribution of the median.

Method 2. Monte Carlo approximation. This is the method most frequently
employed and makes the bootstrap easy to achieve using a computer. The
Monte Carlo algorithm is described later in this section. See also

~ Efron (1979a).

Method 3. An Edgeworth series approximation; This method has been
used to derive asymptotic results for the bootstrap for special cases
of the random variable T. The standardised sample mean is one such
case although many other cases have also been considered. Bickel and
Freedman (1980, 1981), Singh (1981), Beran (1982), Efron (1984a). This

approximation is discussed later in this section.

The Monte Carlo algorithm for approximating the bootstrap distribution
_is:
(i) Construct Fn’ the empirical distribution function of the obser-

nI(x < t) where I s the

: ' a1
vations Xy,....x . F (t)=n""f ;

indicator function.

(i1) Draw a bootstrap sample Y,»...,Y, by independent random sampling
from Fn. In other words make n random draws with replacement

from {x1, x2,...,xn}. Compute T for this sample.
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(iii1) Do step (ii) some large number "B" of times to obtain the values

T1""’TB'

The distribution, denoted by H¥*, that puts mass 1/B at each value
T1"“’TB is the Monte Carlo approximation to the bootstrap distribution

Hy of T(Y1,...,Yn; F,) under F_. Note that as B+ the approxi-

n
mation, by definition, becomes exact. It is conventional not to distin-
guish between the bootstrap distribution Hb and the Monte Carlo
approximation B, calling both "the bootstrap distribution" (Efron

1981a). We shall not follow this convention.

In using the Monte Carlo approximation one must consider a suitable
choice of B. The choice of B will depend to a large extent on those
aspects of the bootstrap distribution Hb in which one is interested.
Efron (1981a) suggests that B in the range 50-200 is adequate for
esfimating standard errors but that Targer values are needed for confi-
dence interval calculations. For calculating a 1-2a confidence

interval with o = 0,16 for a correlation coefficient he uses B = 1000.

Of course, as o decreases so B will need to increase. However one
will need to consider each application of the bootstrap on its own

merits. General rules are not yet available.

The Edgeworth series expansion may be described as follows: The true
sampling distribution H(x) of T(X,F) under F is a function of the
sample size n, the functional form of T and the distribution F. If

H tends to the standard normal distribution as n + « then for large n
one can approximate the sampling distribution H(x) by the standard
normal distribution &(x). An example of such a random variable is the

standardized sample mean. Many others, especially those that depend on
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sums of variates, 1ike the moments also tend to normality under a
~central 1imit effect. However, this approximation by the standard
normal distribution effectively uses only the first two moments.
Remembéring that some random variables tend to normality much more
rapidly than others there may be advantage in utilising higher moments

or cumulants.

In these circumstances the Edgeworth series may provide an approximation
to H(x) which is an improvement over ¢&(x). The Edgeworth series
achieves this improvement by making use of the first four moments or

cumulants of H(x).

Suppose that H(x) has zero mean and unit standard deviation while its
skewness Yy and excess Y, are (y1,y2 are the 3rd and 4th cumulants
(Kendall and Stuart (1977) p.88) :

H3

Yy = ug/o? or Yy =y
H2
Yo = u4/0l+ -3 or Y, =u/u5 -3
The Edgeworth approximation to H(x) up to terms of order n—1 is

(see Cox and Hinkley (1974) p.464).
3 ) Y1 o Y Vi
G(x) = o(x) ‘b(x){ﬁ Ho(x) + 5= Ha(x) + 95 H5(X)}
where Hr(x) denotes the rth degree Hermite polynomial defined by

H(x) = (-7 P DN

Here D = é% is the differential operator and @¢(x) and ¢(x) are,

respectively, the standard normal distribution and density functions.

The three Hermite polynomials of interest are (Kendall and Stuart (1977)

p.167) .
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H2(X) = XZ - 1
H3(x) = x3 - 3x
Hs(x) = x5 - 10x3® + 15x

In order for G(x) to be of practical va]ue. Yy and Yo need to be
expressed in terms of the parent population F. The rth moment of T,
that is the rth moment of its sampling distribution H(x) is (Kendall
and Stuart (1977) p.243).

E(Th) = J ...J " dF(x,) ... dF(x,)

This will express moments of H in terms of moments of F. The
Edgeworth approximation to the bootstrap distribution Hb(x) is obtained
by replacing F with Fﬁ. In this case Yy and Yo are the skewness
X

and excess of Hb(x) and are expressed in terms of the c.d.f. Fn‘

We shall denote the Edgeworth approximation to the bootstrap distribution

by He(x).

4.3 Standard Errors

How does one use the bootstrap to estimate the standard error of a

statistic T = T(X1,...,Xn; F)? Our development will closely follow that

of Efron (1981a). The true standard error of T 1ds a function of the
sample size n, the functional form of T and the distribution F.

We denote this standard error by o(n,T,F).

1
o = o(n,T,F) = VAR T(X1,...,Xn; F)1 (4.1)

The only unknown in this expression is F which we estimate using the

e.d.f. Fﬁ. The bootstrap estimate of o, denoted by Sb’ is
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A _ X _ )
0 = O(n,T,Fn) = [VARFX T(Y1,...,Yn, F
n

Xy.3 ,
)] | (4.2).

A

For most statistics g cannot be expressed in closed form. However
it is easily approximated by Monte Carlo methods : Given the Monte Carlo

values T1""’TB Sb is approximated by

1]

5 = ({28, oy - Torfreen | | (4.3)

_ o1 B
T.=8 5T, (4.2)

Notice that we are using an approximation chain here : og is the

Monte Carlo approximation to o which in turn is the bootstrap

Q

approximation to

=
a
—
Y
(8a]
~—

i.e. cg g o

4.4 Confidence intervals

Suppose that our problem is to construct a confidence interval for the
functional 6(F) using the bootstrap method. By a confidence interval
we mean Tower and upper points L = L(X) and U = U(X) such that

P[L < 8 < U] = 1-2a. Our discussion will be confined to central confi-
dence intervals, i.e. intérva]s (L,U) such that P[6 < L] =

P > U] = a.

Tibshirani (1984) discusses five methods for constructing a central con-
fidence interval for 6 wusing the bootstrap. These are: the pivotal,
generalised pivotal, percentile, bias-corrected percentile and the
tilting methods. Tibshirani's paper expands the methods proposed by
Efron (1981a). We will restrict attention to the first four methods

listed above.
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4.5 The Simple Pivotal Interval

Suppose that the random variable of interest has the form

T(X, F)

8(X) - 6(F)

or . T .6 - Hn~nH

The bootstrap approximation to this is

T(Y, FY) = 8(y) - o(F)
Tb =0*¥ -9 n Hb

~In order to construct a confidence interval for 6 we make two assumptions:

A1 : the distribution H does not involve 6.
In other words Qe assume that

T=6-06 1is pivotal.

A2 : the bootstrap distribution Hb closely approximates the

distribution H.

Assumption A2 is based on the premise that if Fn is close to F, the
bootstrap distribution of 6* - 8 will be close to 6 - 8, as long as

6(-) 1is a reasonably smooth functional.

Under A1 and A2 we have

1-20 = PIH (@) < 6 = 6 < H ' (1=0)]

1-2a

PI6 - H ' (1-a) <8 <6 - H1(a)] (4.5)

where H_1(k) ‘denotes the kth percentile of H and 6 is the value

obtained from the original sample.



Since H s unknown we approximate H'1(-) by H;1(-).
1-20 = P8 - H'(1-0) < 8 < 6 - H ' (a)]
-1 A -
50 (6 - H'(1-0), 6 - ') | (4.7)

is a central (1-2a)100% Bootstrap Pivotal interval.

Of course as has been pointed out previously, one seldom has the bootstrap
distribution Hy but rather the Monte Carlo approximation Hr. There-
fore in practice a (1-2a)100% Bootstrap Pivotal interval is

(6 - #7(1-0), 8 - HTN (@) (4.8)

Notice again the approximation chain

(6 - #1(1-0), 8 - HETN(0)) (4.9)
By

6 - H'(1-0), 6 - H () (4.19)
Ny

(6 - H'(1-a), 8 - H ' (a)) (4.11)

Interval (4.8) can be expressed in a different manner as follows:
Let CDF(t) be the Monte Carlo approximation to the bootstrap distri-

bution of 6*

i.e. CDF(t) = H*(t-8) = st vteR
and HE_1(a) - ooF (o) - 8. v0<o<]

Substituting this into (4.8) the bootstrap pivotal interval becomes

(26 - CDF ™' (1-a), 26 - CDF™ (o)) (4.12)



Example: Consider a random sample X1,...,Xn from the N{u,1)
distribution and let 6 = /i X and © = /A 6.

Here T = /ﬁ(é-e) is pivotal with true distribution H(x) which is
equal to the standard normal distribution &(x). The usual (1-2a)100%

confidence interval is

(% - 0 1-a); % -1 @) )

or, since in this case H(x) = &(x)
o -1 G -1
(X -9 "(1-0) , X =0 '(a)) .
However this confidence interval may be‘expressed in terms of the distri-

bution of 6 = /n X which is N(u,1), say C(x). We have

n
(S]]
—_

>
~—
1}
X
—
>
~—

C(x-8)
and hence

H ) = 07 (a) = ¢ () - o

n
(@]
]
—
Q
~—
]
>

Substituting this into the above interval, we obtain

(2% - ¢ (1-a), 2% - ¢ (o))

If the parent distribution is not known and T 1is pivotal, we replace
the true distribution H(x) by its bootstrap estimate, either Hb or

HE and replace C by CDF. The two intervals are then

(X - H;‘1(1-a), % - HB_1(a))

and

(2% - cOF '(1-0), 2% - ¢OF (o))



4.6 Generalised Pivotal Intervals

For the simple pivotal we assumed the following form for the

random variable of interest
T=T(X,F) =0-6

We now suppose that T 1is an arbitrary, but known, function of 8 and
8, say t(6,0). We also require that t(6,8) be monotone in 6. Let
the inverse of t(.,-) with respect to the second argument be t£1(-).

Again we assume that random variable

A

T(X, F) = t(8,0) v H (4.13)

is pivotal and that the bootstrap distribution of
T(Y, FY) = t(6%,8) ~ H -
> Fo s b (4.14)

closely approximates the true distribution H.

From (4.13) and the pivotal assumption we have

1-20 = P[H" N(a) < £(6,8) < H ' (1-0)]

If t(.,-) is monotone increasing in © theh
ol P 11 ‘

1-20 = P[t, {H (@)} <6 <ty {H (1-a)}] (4.15)
Approximating H'1(-) by H;1(-) or its Monte Carlo approximation
HE'1(-) we obtain the generalised bootstrap pivotal interval

st T, N (1-0h) (4.16)

2 °'b > "2 b .
If t(.,.) 1is monotone decreasing in 6 then the interval is

OO (B M (-l (9 (4.17)



4,7 Percentile intervals

If in addition to assumptions A1 and A2 we can further assume that
A3£ H is symmetric around 0
i.e. H(-t) = 1-H(t) vteR
~ and H-1(1-a) = - H-1(a) Vv0<ac<i

then (4.12) becomes

(coF '), COF'(1-a)) - (4.18)

To see this note that if H 1is symmetric around zero.then Hb should
also be close to symmetric ardund zero hence also HE. Therefore

CDF is (close to) symmetric around 6.

3[CDF (o) + COF™'(1-a)1 = ©

oF Y(1-a) = 26 - coF (o)

and “ COF (a) = 26 - cOF 1 (1-a)

4.8 Generalisation of the Percentile Interval

Let us suppose that a symmetric pivot exists on some other scale, i.e.

A4: g(6) - g(8) v H

and

A5: g(e*) - g(8) ~ Hb

with H symmetric around zero and g(-) an unknown, monotone increasing

function, then as for (4.15) we get a central confidence interval for

g(0):



(6, (o), &' (1-a)) (4.19)

where Gb is the bootstrap distribution of g(6*). Transforming back

to the ©6 scale gives a confidence interval for 6:
-1, -1 R P | |
(g (6 ()5 g (6 (1-a))) (4.20)
= (0F (@) 5 cOFN(1-a)) (4.21)

which is again a percentile interval. A similar argument applies if
g(-) 1is monotonic decreasing. Thus the percentile interval has the
correct coverage if a symmetric pivotal exists on any scale. The real
benefit is that we do not have to know g(-) because the resultant

interval (4.21) does not depend on g(-).

4.9 Bias-Corrected Percentile Intervals

If the distribution H in assumption A4 is symmetric around some value
u # 0, the percentile interval will be biased and may not have the
correct coverage. This would happen if 6 was a baised estimator of

8. It is possible to estimate u and derive a corrected interval

provided that we are willing to assume a parametric form for H.

Let H be a symmetric distribution that belongs to a symmetric location-
scale family, say H(x|u,0) = Ho(féE) . Initially, we consider the case

with o = 1. We assume that a pivot exists on some scale and that

9(5) - 9(8) v H (x-u) y | (4.21)

and .

g(6%) - g(8) ~ Hy (x-u) (4.22)

where g 1is some monotonic function.
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We can estimate p' by noting that .

P[g(a) - g(8) < 0] = H (-u) (4.23)
' and |

PLg(6%) - g(8) < 01 = H,(-u) (4.24)

But, since g 1is monotonic

P[g(a*) < 9(5)] = P[6* < 8] = CDF(6) (4.25)
Hence, from (4.24) and (4.25) we have
| u o= --H;1{C6F(6)} | | (4.26)
since by assumption H = H we estiﬁate' u by
b = - H'{CDF(8)}. | (4.27)

in order to derive a confidence interval for 8 we consider the distri-

- bution of g(8) - g(a):

By assumption

A

g(8) - g(8) ~ H(u)

wg(8) - g(8) - unH

0
o g(8) - g(6) + pn H0 N Ho symmetric about zero
= g(6) - g(6) v H, - u

Define a distribution function Dg as follows:

p9(q(t)) = Plg(8) - g(8) < g(t) - g(8)]

Plg(e) - 9(5) +u<g(t) - 9(5) + ul

Ho(g(t) - 9(3) + ) _ (4.28)



Note that the quantiles of D9 would define a confidence interval for
g(e) - g(g), hence also for g(6) and for 6. We shall see that g

does not need to be known.

Next we consider the bootstrap distribution and its Monte Carlo approxi-

mation.

1R

CDF(t) = P[6* < t]

P[g(é*) < g(t)]

= P[g(g*) - 9(5) - u<g(t) - g(g) - u]
= Hyfg(t) - g(8) - u}
= Holg(t) - g(8) - u}- (4.29)

Solving (4.29) for g(t) - g(g) we get

12

g(t) - g(8) = HJUCOF(t)} +u (4.30)

Substituting (4.30) for g(t) - g(8) and (4.27) for u into (4.28),

we obtain the approximation
D9(g(t)) = H [H: {CDF(t)} + 2b] (4.31)

Setting (4.31) equal to o and 1-a and solving for t we get a

1-20. confidence interval (L,U) for & where

- cBF'1[HO[H;1(a) + 271 {CDF(8) 1] | (4.32)

-
i

U

c0F™ Vi, 1] (1) + 24 KCDF(8)}1] (4.33)

If o #1 and we repeat the above derivation, we get

b

alxe

- -0V cCDE(B
= -H_"{CDF(8)}

and we obtain the same interval as defined by (4.32) and (4.33)



" Note that when b = 0, the bias corrected percentile interval reduces

to the percentile interval.

Tibshirani (1984) has compared the amount of bias correction (that is
HO[H;1(a) + 2H;1{C6F(5)}]) for the normal, logistic and Cauchy distri-
butioné when o = 0.05 and for various choices of H;1{C6F(6)}. He
concludes that the choice of symmetrical distribution HO appears to
make little difference.

4.10 Discussion of Bootstrap confidence intervals

Four methods of constructing bootstrap confidence intervals have been
derived : the pivotal, the generalised pivotal, the percentile and
the bias-corrected percentile. Each of these methods differ in their

assumptions.

In order to construct a pivotal interval we had to specify the exact

form of the pivot but nothing was assumed about the pivotal distribution.
In order to build a percentile interval we did not have to know the exact
form of the pivot, g, but we did assume that the pivotal distribution
was symmetric about zero. For the bias-corrected percentile interval

we assumed a parametric distribution, symmetric about some point .

In order to check whether or not a random variable t(5,e) is a pivotal
quantity Hinkley (1983) has suggested that one should "bootstrap the

bootstrap." Specifically, let Z, = (Y?,...,Y;) be a random sample

of size n from the distribution F_ and let G:] be the e.d.f. of Z,.

Suppose now that one has M such random samples 21,...,ZM with

corresponding c.d.f.'s G1, G2,...,GM

n* Gn n If one now performs a separate



bootstrap on each of these distributions one will have a check on the
distribution of t(@,e) for a variety of values of 6, = e(G;).
Denote the bootstrap distribution of t(é,e) under G; by Hbi

and its Monte Carlo approximation by Hgi. If t(a,e) is indeed a
pivotal random variable then we expect the distribution of t(é,e) under
G; to be identical for every G; i.e. we expect Hb1’ Hb2""’HbM all
to be identical. A plot of quantiles of Hbi or, perhaps Hgi Vs 81
should produce lines of constant height. A trend upward or downward or

a change of spread would be symptomatic of a non-pivotal quantity.

4,11 Examples

Tibshirani (1984) gives three examples to illustrate the theory. We shall
expand on his discussion. In each case, the data are assumed to be

Gaussian. We also cite an example from Efron (1984a).

Example 1 The Mean : Let 6 = E(X), 6 =X = e(Fﬁ). Suppose the variance
0?2 is known. Since n%(g-e)/o is pivotal with symmetric distrib&tion
the bootstrap pivotal interval and the percentile interval will both
apply. We expect both methods to yield similar results, each with

approximately the correct coverage.

Example 2 The Correlation Coefficient : Let 8 = p be the population
X)

" the sample correlation co-

correlation coefficient and 6 = r = 8(F
efficient. By the familiar arc tanh transformation due to Fisher we know
that the r.v. T = arc tanh r - arc tanh p is approximately
N(8/(2(n-1)); 1/(n-3)). Here T s biased but has a symmetric, para-
metric pivotal distribution about u = 8/(2(n-3)). Hence the bias

corrected pivotal interval using the normal family should yield Timits




with the correct coverage. The uncorrected percentile interval, Efron's

initial example, is expected to be biased (Efron, 1979, 1983).

Example 3 The Variance : Let 6 = E(X-E(X))? = J’(x-u)2 dF(x).
This provides an interesting example where one may want to choose 8
different from e(Fﬁ) = Z(Xi-i)z/n which is a biased estimate of 9.

We shall compare the two familiar estimators

8y = 6(F\) = Z(X;-X)2/n  E(8,) = (n-1)6/n

and

Case 1 : 81 = Z(Xi-i)z/n

It is well known that the random variable
t1(8,9) = ne1/e v x2(n-1) = H

Since x2(n-1), or H, does not depend on 6 it follows that t1

is a pivotal quantity. Hence we expect the generalised pivotal

interval to have the correct coverage. Denoting the Monte Carlo approxi-
mation to the bootstrap distribution of t1é133) by HB and the

inverse of t1(.,.) w.r.t. the second argument by t1£1(-) the

generalized percentile interval is obtained using the interval (4.17)

(t1£1{HB_1(1—a)}, t151{H3'1(a)}) (4.34)

Note that since the true sampling distribution H, of t1(81,e) is
not symmetric one would not expect the percentile or bias corrected
percentile interval to give the correct coverage unless of course a
‘symmetric pivotal exists on some other scale. Notice also that one
could apply the bootstrap to the random variable

Zn(t1/n) = £&n 8 - £€n 6 v £n x?. Again the generalised pivotal

interval should give the correct coverage, with the obvious adjustments.



4.20

Case 2 : 6 = Z(Xi-X)/(n-1)

Here we have

A

’ t2(9,0) = (n-1)8/e noy2(n-1) H,

Like t1, this random variable t2 1is pivotal.

By.an analogous argument the generalised pivotal interval is appropriate.
Denoting the inverse of t2(-,-) w.r.t. the second argument by t2£1(-),

the required interval is

(12 g 1)y, 62y T (e (4.35)

The bootstrap could be applied to the random variable

en(t2/(n-1)) = 1n 8, - £n 6.
We expect bofh (4.34) and (4.35) to yield the correct coverage.

Shenker (1985) gives a discussion of this example and shows that the

percentile type intervals do not give satisfactory results.

Example 4 Ratio Estimatibn : This examp]e‘is taken from Efron (1984)
and has strong relevance to the problem of bioequivalence. .He discusses
sampling from a bivariate normal population with mean vector

U= (u1, “2) and identity covariance matrix i.e. N(E,I). He shows that
the bootstrap bias corrected percentile.interval for 6 = uz/u1 using
the maximum likelihood estimate 6 = 22/21 for ©6 agree closely with
the intervals obtained from the exact Fieller (1954) distribution. He
also shows fhat the uncorrected bootstrap percentile interval gives

the Creasy (1954) fiducial solution.
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4,12 Asymptotic accuracy of the bootstrap

In order to indjcate dependence on the sample size n, we shall for the
present discussion denote H(x) by H(x,n), Hb(x) by Hb(x,n) and
He(x) by He(x,n).

How good is the bootstrap approximation? This question cannot be
answered in general but various special cases have been considered in
detail. Although the bootstrap would probably only be uséd in practice
when the sampling distribution could not be derived analytically it is
important to check the behaviour of the bootstrap in situations which

are simple enough to be handled analytically. Efron (1979a) gives a
number of examples in which the bootstrap works. He also establishes

that the method works for a general class of statistics when the sample
space is finite. Singh (1981) gives a detailed account of the bootstrap -
in the case of the standardised sample mean and sample quantile.

Bickel and Freedman (1981) show that the bootstrap method works for
means; for pivotal quantities of the "t-statistic" sort; and their
multivariate extensions; U-statistics and other von Mises functionals;
the empirical process; the quan£11e process; and Trimmed means and
Winsorised variances. They also give examples where the bootstrap fails,
for instance, when estimating 6 from variables uniformly distributed
over the interval [0,6]. Beran (1982) establishes that Hb(x,n) is
asymptotically minimax; the loss function being any bounded monotone
increasing function of a certain norm on the scaled difference

n%{H(x,n) - Hb(x,n)}. He also establishes that the estimated first order
Edgeworth expansion He(x,n) is also asymptotically minimax and is

3

equivalent to Hb(x,n) up to terms of order n . By comparison the

straight forward normal approximation, with estimated variance, is
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usually not asymptotically minimax, because of bias. Efron (1984a)
discusses fhe use of the bootstrap in setting confidence intervals for a
real valued function © of an unknown parameter vector n when sampling
from the family of densities f(x; n). He considers sampling from a
bivariate normal distribution N(x;n,I), n = (n1,n2) and setting
confidence 1imits for 6 = t(n) a well behaved function. As examples
he considers 8, = n,/ny; 6, = IInl| and 63 = ny n,. Within this class
of problems the bootstrap bias corrected percentile interval improves on
the asymptotic normal approximation. For the more complicated problem
of setting a confidence interval for 6, having observed y exﬁg,.
the bootstrap biés corrected percentile interval gives only a partial
improvement over the asymptotic normal approximation. An interesting
point that Efron (1984a) mentions; when sampling from a parametric

~

family the estimated Edgeworth expansion H_ is equivalent to using

e
B = « for the Monte Carlo estimate HB.

Singh (1981) considers the following basic cases of T(X,F); in - U,

(in-p)/o ~ and F;1(t)-F-1(t) where in = X;/n, w = Ec(X),

1 1

0 <02 =VA(X) and F; ~and F ' are the right continuous versions

o

of F, and F respectively, at some fixed value t € (0,1).

The essence of his first theorem is as follows: the bootstrap approxi-
mation to the distribution of n%(in—u)/c is better than the approxima-
tion by the limiting normal distribution, provided that the underlying
distribution is non-lattice. He establishes that the difference in
accuracy between the two approximations decreases with decreasing
skewness of the underlying distribution and is non-existent for

symmetric distributions.
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His second theorem considers the bootstrap and normal approximations
to the distribution of n*(F '(t) - F7'(t). 1f F'(F"'(t)) s known
exactly then the normal approximation is better. If this quantity is
not known, as is usually the case, then the bootstrap approximation is

as good as the normal approximation.

Refering to the definition of the bootstrap given in section 4.2 we
introduce the following notation : Vn = I¥./n, S = Z(Xi-i)z/n,

Uy = EF(X-u)3, £3 = Z(Xi-i)3/n and  p = E|[X-u[>. P and P* denote
probabilities under F and Fﬁ; E and E* denote expectations under
F and Fﬁ, respectively. The norm || || under consideration is the

sup-norm supxeﬂzl'l.

We now state the theorems. The proofs are given in Singh (1981).

Theorem 1

A:If EX? <, then for T = n%(Xn-u)

[H(x,n) - Hb(x,n)H + 0 a.s. (4.36)

B : If EX* < «, then for
I T S VI
T = n*(X_-u) and Tb n (Yn Xn)

Lim sup_ ., n%(log log n)-%HH(x,n) - Hy(x,n)j

= (207 (2re)?) 2V ((Xx-w)2)E aus. (4.37)

C: If E|X|® <, then for
T=n¥X -u)/c and T, = n¥(V -X)/S
n b n “n n

Lim sup pc'3néﬂH(x,n) - Hb(x,n)H < 2K a.s. (4.38)

where K is the universal appearing in the Berry-Esséen bound.
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D: If E[X]? < and F is non-lattice, then for T = n%(in-u)/o

8

i
>

N
Py
<\

]
>k
~—
~~
w

and Tb =

Hy(x,n) = o(x) + {u3(1-x2)/(603n;‘“)}¢(X) + O(n'%) (4.39)

or
-1

Hb(x,n) = He(x,n) + o(n 2)

uniformly in x a.s. where &(x) and ¢(x) are the standard

normal distribution function and density respectively; therefore

in this case

n?[HOGn) - HoGon)| > 0 aus, (4.40)

E: If E|X|® <= and F is lattice with span h then for

1
2

T=n¥R-1)/c and T, = n¥(¥ -%)/S
H b n "n

n
H(xn) = 8(x) + Cug(1-x2)/(B02nt) }o(x) +
{h/(cné)}g(nésnx/h)¢(x) + o(n-é) (4.41)
uniformly in x a.s. where g(t) = [yl -y +3% vteR.
Also, in this case

Lim sup ., n%HH(x,n) - Hb(x,n)ﬂ = h(chz)_% "a.s. (4.42)

Theorem 2 : If F has bounded second derivative in a neighbourhood of

Fl(t) and F'(F"1(t)) > 0, then a.s. for T = n’f(F;Qt) - F )
and T, = n?(67'(t) - F;1(t)) |
Lim sup n%(log log n)—éHH(x,n) - Hb(x,n)n = Ky f (4.43)

a constant depending upon t and F only. Here Gn(t) is the e.d.f.

of Y .

1,-.. n



4.25

Remarks

1)

4)

Parts A and B of Theorem 1 establish the uniform convergence to zero

of the normed distance between the actual distribution H of

né(i-u) and the bootstrap approximation Hy of it.

Parts C, D and E discuss the same convergence problem for the distri-
bution of né(i-u)/c. Part D establishes that for non-lattice dis-
tributions the bootstrap has the edge over the asymptotic normal
approximatibn. Part E establishes that this convergence is not valid
for distributions defined on a Tattice. However Part E does show |
the effect of rounding data on the bootstrap approximation. In
equation (4.42) one may use the quantity h as the rounding error in

the sampled values.

The Edgeworth expansion given in (4.39) demonstrates why the bootstrap
approximation has the edge over the limiting normal distribution if
the sampling is from a skew distribution F. This expansion also
supplies an alternative to the Monte Carlo method of approximating

the bootstrap distribution. One would need to estimate H3 and o¢?

using the sample values X1,...,Xn.

The bootstrap distribution Hb(x) can be expanded up to as many terms
as one wants provided that the Cramer conditions are imposed on the
distribution F. Singh (1981) uses the three term expansion to
estab]ish'that

[H{x,n) = Ho(x,n)| = O{n-1(1og log n)?}

provided that E[X|® < o and the Cramer condition about F holds.
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The Cramer conditions are given in Kendall and Stuart (1977) vol. 1
p.173. They give the warning as do Cox and Hinkley (1974) that this

series is only useful in cases of moderate skewness.

5) Theorem 2 establishes the consistency of the bootstrap approximation
of né(F;1(t) - F'1(t)) and provides the exact rate at which the

normed distance between the two distributiohs converges to zero.

4.13 Conditions for Bootstrapping

Beran (1982) gives a counter example to demonstrate that the bootstrap

is not foolproof, even for statistics {Tn} whose asymptotic distribu-
tion is normal. He says that asymptotic optimality, or even consis-
tency of the bootstrap estimate Hb can only be expected if the sampling

distribution H(x) depends smoothly on F.

Bickel and Freedman_(1981) give two counter examples for which the boot-
~ strap does not work. They devise the following rule which they term

"rough". The bootstrap will work provided that

n 1,...,Xn; G) tends weakly to a limit law LG whenever

X1,...,Xn are i.i.d. with distribution G, for all G in a

“neighbour" of F into which Fr falls with probability 1,
b) the convergence in (a) is uniform, and

¢) the function G » LG is continuous.
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CHAPTER 5

BOOTSTRAP APPROACH TO BIOEQUIVALENCE

5.1 Introduction

Given the data AUC, TMAX and CMAX from a biocavailability study this
chapter considers what the bootstrap has to offer in the problem of

assessing bioequivalence.

The bootstrap may be used in two different ways to assess bioequivalence:
(i) by computing confidence intervals, and/or

(i1) by estimating the relative frequency that the biocequivalence
specifications would be met if the bioequivalence trial were
repeated indefinitely. We shall call this relative frequency

the Index of Concordance.

The bootstrap offers a new look at bioequivalence assessment : it re-
leases the definition of bioequivalence from its previous dependence
on available statistical procedures. Secondly it frees one from simple

distributional assumptions and tractable mathematics.

5.2 Assessing bioequivalence using intervals

In this section we shall suppose that bioequivalence is to be assessed
on the basis of a single parameter, which we denote by 6. This
assumption is made in order to allow a comparison with the procedures
described in Chapter 3. Further, we conform with Rocke's (1984) method
of declaring two formulationsbioequivalent; which may be described as

follows:
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1) define a specification interval, (a,b) say, into which © should

fall in order that the two formulations be considered bioequivalent
2) compute a central (1-2a)100% confidence interval, say (L,U) for

3) declare bioequivalence, with level (1-22)100%, if the confidence
interval (L,U) 1is wholly contained in the specification interval

(a,b) i.e. (L,U) = (a,b).

The parameter © may be any one of three familar cases that are commonly

discussed in the Titerature.

S

Case 1: parameter = difference between population means

=
w
i

(e
61 =Y
The random variable to be bootstrapped is

A

T1 = 61- 6

estimator N YS = difference between sample means

(5.1)

Case 2: parameter 62 = = ratio of population means

A

§
=
=
~
=
wn
1

estimator 62 = YN/YS ratio of sample means
The random variable to be bootstrapped is

T, =8, -6, (5.2)

geometric mean of the population of individual

Case 3: parameter 63

ratios

( n )1/”

r

estimator 93 i=1 T3

geometric mean of observed individual ratios
(Steinijans and Diletti 1985)

The random variable to be bootstrapped is

A

T, =6,-0

3 3 3



5.3

However, the bootstrap will work for other choices of 6 and is not

restricted to the three cases given here.

5.3 Assumptions of bootstrap interval

In Chapter 4, four methods of constructing bootstrap intervals are de-

rived. These are:

(i) pivotal T=0-06nH pivotal
(ii) generalised pivotal T = t(g,e) ~ H pivotal
(iii) percentile T = g(g)-g(e) v H symmetric pivot

about 0

(iv) bias corrected percentile T = g(6)-g(8) ~ H symmetric location
‘ scale pivot

Each of these methods differ in their assumptions:

(i) For pivotal and generalised pivotal intervals : the assumption is
that the sampling distribution, H, 1is pivotal i.e. does not
depend on the unknown parameter 6. But we do not assume anything
about the form of H. However, the exact form of t(é,e) must be

known in order to construct the interval.

(11) For percentile intervals : we assume that a symmetric pivot exists

on some scale, i.e. we assume the existence of a monotonic function

g : R+R such that the sampling distribution of

g(8) - g(6) v H 1is symmetric.

(ii1) For bias corrected percentile intervals : we assume that on some
scale a symmetric pivot exists that belongs to a location scale

family, i.e. g(g) - g(8) ~ H(x; u,0) = Ho(ﬁég)
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The advantage of the percentile and bias corrected percentile intervals
is that we do not need to know the form of g at all, but only assume

its existence (cf. Chapter 4).

5.4 Choosing an interval

Shenker (1985) has demonstrated that bootstrap intervals should not be
applied blindly. Some consideration should be given to the bootstrap
assumption (mentioned above). The following criterion has been adopted

for selecting a bootstrap interval:

Use the interval that will give the correct answer if

the data are normally/lognormally distributed.

The idea is that, should the data be normal/lognormal, then little will
be lost by applying the bootstrap instead of the parametric procedures.
- Should the data not be normal/lognormal then the bootstrap, by virtue

of its robustness, should have the advantage.

Although a criterion has been adopted, diagnostic methods for checking

on the assumptions is an area that needs further research.

For the three random variables given in (5.1), (5.2) and (5.3) that are
appropriate for bioequivalence which bootstrap intervals should be

used? Each will be discussed in turn.
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]

For (5.1) : T, =8, - o,

= (Vy-Yg) - (uymug)
If the data are normal then T1 will also be normal and will not depend
on 6. Hence the distribution of T1 is a symmetric pivotal location-
scale distribution. It seems likely that any bootstrap interval would
work well for this random variable. If the data are not normal and come
from a skewed distribution then the bias-corrected interval is re-

commended.

For (5.2) : T2 = 82 - 0,

.
Efron (1984a, 1985) and Efron and Tibshirani (1985) have considered this

problem in detail under the heading of Ratio Estimation. Efron has
shown that under the assumption of normality the bias corrected percen-
tile interval approximates closely the exact Fieller solution, while the
percentile interval that does not correct for bias gives the Creasy
(1954) fiducial solution. Therefor the bias corrected interval is

recommended.

For (5.3) : T3 63 - 63
r.

_ (N 1/n _

- (H1=1 1) %

The motivation for this choice of 6 1is the assumption that the log-
transformed data are normally distributed. Hence under the assumption

of Tog normality the quantity



5.6

T4 = log 6y - log 64

9(83) = 9(63)

H

follows a normal distribution that does not depend on 6. This is a
symmetric location-scale pivotal quantity on the log scale. If the data
is not lognormal then to allow for possible bias the bias-corrected

interval is recommended.

5.5 Algorithm for computing the bias corrected interval

As before, for the purpose of computing confidence intervals it will be
assumed that carry over effects are of no concern. Effectively this
means that the data may be viewed either as though it were the result of
a simple two sample experiment comparing a standard formulation (S)

with a new formulation (N). Alternatively the data may be viewed as

though coming from a matched-pairs experiment comparing S with N,

. To describe the bootstrap algorithm a simplified notation for the data

will be adopted:

Yg; = response of the jth individual to the standard formulation

J
yy; = response of the jth individual to the new formulation
xj=(‘yNJ*ySJ) J=1,..-,n
Also, let

Y

N
N7 Ljag Ypg/n

sample mean for new formulation

and

v n
Yo = 1joq Ygy/m

sample mean for standard formulation
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and

r, = yNj/ij J=1,...5n

ratio of responses to new and standard formulations for

jth individual.

The algorithm for generating a bias-corrected percentile interval for
6 =6, or 6, or 6, is described below. Note that the Monte Carlo

approximation to the bootstrap distribution is used.

Step 1 The random mechanism generating the data is estimated by the

e.d.f.

Fn : mass 1/n at each observation XpoeeesXpe

Recall that x; s the vector (yNj’ij)'

Step 2 Obtain a random sample of size n (with replacement) from Fn
to give x*,...,x;. Call this a bootstrap sample. Compute g* for

this sample,

Step 3 Repeat Step 2 B times to give the bootstrap values

6*%(1),...,0%(B).

Step 4 Compute the function CDF(t)

~

COF(t) = #(6%(i) < t)/B

proportion of bootstrap values less than or equal to t.

This can be most easily done by ordering the values 6*(1),...,8%(B)
from smallest to largest and then computing the "less-than" cumulative

percentage frequency.
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~

Step 5 Compute CDF(6) = proportion of bootstrap values less than the

original estimate.

~

Step 6 Compute z, = ®_1(CDF(6)) where & 1is the standard normal

cumulative distribution function.

Step 7 Finally compute the quantities

L CﬁF'1(®(®'1(a) +2z))

and

[
1

CoF ™ (o(6™ " (1-a) + 22,))

The interval (L,U) 1is a bias-corrected percentile interval for 6.

Notice that if CDF = %, i.e. exactly half the bootstrap values 6*
are less than the original sample estimate ©, then Z, = 0 and the

interval endpoints become

~ ~

L = cDF(a) U= cDFH-a)

the o and 1-a percentiles of the bootstrap distribution CDF.

If CDF # 3 then the term z_ compensates for the bias of 6 as an

0
estimator of 6.

In Steps 6 and 7 of the bootstrap algorithm it is necessary to evaluate
both & and @’1, the cumulative standard normal and its inverse.
These cannot be computed in closed form but good approximations are

given below.
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Given z compute &(z) —© < 72 <

Step 1 : Compute x = 1/(1+a|z]) a = 0,2316419

Step 2 : Compute R(z) ¢(z)(b1x+b2x2+b3x3+b4x“+b5x5)

where ¢(z) = (21r)'ée'22/2
= standard normal density
b, = 0,319381530

b, = -0,356563782

2

b3 = 1,781477937
b4 = -1,821255978
b5 = 1,330274429

‘Step 3 : o(z) = R(z) if z<0
{1-R(z) if z2>0

Given o compute ®-1(d)v' 0<ao< 1

Step 1 : Compute t {(-2 £n (1-a))é if 0,5 <a <1
(-2 en o)t if 0<a=<0,5

2
c +c1t+c2t

Step 2 : Compute z =t - 1+d?t+d2t2+d3tj
where ¢ = 2,515517 d, = 1,432788
| ¢, = 0,802853  d, = 0,189269
c, = 0,010328 ' dy = 0,001308

Step 3 : o (q) = {-z if 0<a<0,5

z if 0,5 <a <1

Reference: Abramowitz and Stegun (1970) Handbook of Mathematical

Functions p.932-933.



5.6 Example of bootstrap intervals

To demonstrate the bootstrap intervals we take an example from Steinijans
and Diletti (1983). The objective of the experiment from which the data
are taken was to investigate the influence of food intake on the bio-
availability of theophylline from a sustained-release aminophylline

preparation. The data are given in Table 5.1.

Table 5.1 : Area under the concentration/time curve, AUC, after ad-

ministration of 385,6 mg theophylline in a sustained re-

lease preparation under reference condition (fasted) and
test condition (standard breakfast) ‘

Subject AUC(mg/1 h)

Reference Test Ratio
1 136,0 135,7 1,00
2 152,6 155,3 1,02
3 123,1 148,9 1,21
4 77,0 81,2 1,05
5 115,7 139,2 1,20
6 72,0 91,7 1,27
7 116,4 118,7 1,02
8 151,1 . 133,2 0,88
9 118,9 115,6 0,97
10 156,1 150,3 0,96
11 : 222,4 223,9 1,01
12 158,1 154,1 0,97

Geometric mean 127,7 133,1 1,04



For the data in Table 5.1 Steinijans and Diletti (1983) derive confidence
intervals for what they call the "bioavailability ratio" using the eight
different procedures listed in Table 5.2. Table 5.2 is a reproduction

of Table 6 in Steinijans and Diletti (1983), except that the bootstrap
bias-corrected intervals have been added. The bootstrap 1imits have been

computed by choosing B = 1000 in Step 3 of the bootstrap algorithm.

Notice that there are two ways of computing a "bioavailability ratio":

(1) ratio of two arithmetic means. This computation would be used if
the bioavailability ratio referred to the ratio of two expectations

i.e. 6 =uy/us. (Used for the first three intervals in Table 5.2.)

(ii) geometric mean of individual ratios = ratio of geometric means.
Steinijans and Diletti (1983). This estimator makes use of the
matched pairs nature of the data.

(Used for the last four intervals in Table 5.2.)

These two statistics do not estimate the same theoretical quantity. The

choice Wi11 of course depend on the definition of bioequivalence.

Steinijans and Diletti (1983, 1985) have argued convincingly in favour of
distribution free methods for computing confidence intervals for bio-
availability parameters. Especially so in the case of skewed or bi-
modal distributions. They recommend Tukey's procedure based on the
Wilcoxon signed rank test where the assumption is that each error term*
comes from a continuous distribution (not necessarily the same one)

symmetrical about zero.

The bootstrap does not require the assumption of symmetry but only that

a transformation to symmetry exists (cf. Chapter 4) and has the further

*The model for the Wilcoxon signed rank test is given by di =8 +e;.
See equation (3.11).




Table 5.2 Point estimate and 95% confidence limits of bioavailability ratio for data given in Table 5.1

Statistical method Point 95% confidence Exact level of
estimate Timits confidence

Normal distribution Paired t-test 1,03 0,97 ; 1,09

ANOVA ,03 0,97 ; 1,10

Westlake 0,92 ;, 1,08 > 0,95
Lognormal distribution Paired t-test 1,04 0,97 ; 1,12

ANOVA 1,04 0,97 ; 1,12

Westlake 0,89 ; 1,1 > 0,95
Distribution-free Signed rank test (Tukey) 1,02 0,97 ; 1,11 0,9575
(nonparametric) Pitman's permutation test 1,04 0,97 ; 1,12 0,9502
ratio analysis
Distribution free Bootstrap 1,04 0,98 ; 1,10

(Ratio of individual readings)
Distribution free Bootstrap 1,03 0,98 ; 1,09

(Ratio of arithmetic means)

AR
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i

advantage that it mimics reality. It does this by treating the sample

as though it were the population and then repeatedly drawing random
samples from this population. For each sample the statistic is com-

puted. The cumulative distribution CDF(t) referred to in Step 4 of

the bootstrap algorithm is built up from these values. Figure 5.1 gives

- a comparison of the cumulative distributions CDF(t) (bootstrap) and

1.8

G(t) (Tukey) for the data in Table 5.1.

- Tukey

i Bootstrap ‘ﬁ%¥fijf,//

Figure 5.1 : Cumulative probability distributions for geometric mean
of individual ratios for Tukey and bootstrap methods
The bootstrap curve is a Monte Carlo approximation using
B = 100 ' i

5.7 Wilcoxon and Pitman procedures as resampling plans

“Efron (1982) defined a resampling procedure as a generic term for all

methods which evaluate 6 at reweighted versions of the e.d.f. Fn'

He described a resampling procedure as follows:

I
5.6 + ///
.4 + }j |
L 4
A
.2 +
8.8 * : " , |
g.9 , 1.8 1.1 ‘ 1.
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"For samplicity consdder a functional statistic 6 = e(Fn). The data
XpseensX, @re thought of as observed and gixed in what follows. A

nesampling vecton

P+ = (P*, P*

*
2""’Pn)

45 any vecton on the n-dimensional sdimplex
= * *, * =
S, = {(P*:Pt>0, IPt =1}

An other wornds, any probability vector. Comnresponding fo each P* (s

a reweighted e.d.§. F;"L = Fn(z*)
F; s mash Pz on x;, £L=1,...,n,

and a resampled value of 6, say 6%,

~

0* = 8lF, (P*)) = 8(P*)

Some of the resampling vectors play special roles in the bootstrap and
jackknife theonies. In particular,

o - (l. 1 !
R

}

corvesponds to Fn Ltselg L.e. Fn(PO) = Fn, and the observed value 04

the statistic © = 8(PY). The jackknife considers the vectons

oo 1 1 1 L
P(L) = (-V—L-:T, m‘,...,o,...,n—_—l') (0 4n Lith pﬂace)

with cormresponding values %U o4 the statistic £ =1,...,n. The

bootstrap considens all P* vectons of the form M*/n, M*  having

non-negative integer coorndinates adding to n."

The nonparametric Wilcoxon procedure considers all Walsh averages of the

i=1,...,n. The Walsh averages a.. are

differences d; = YNi T Vs ij

-l’
defined by



a5 =~(di+dj)/2

This corresponds to a resampling vector with 3 in the ith and jth places

Pij = (0,...,%,0,...,%,0,...,0) 14737

and a resampling vector with 1 in the ith place

Pi.i =(0,ooa,1,u-.,0) ]' :j

It is clear that the Wilcoxon procedure may be viewed as a resampling

plan.

It should further be noted that if n is even then every Walsh average

is also a bootstrap point. This is evident from the identity

a. .

i (di+dj)/2

n/2 terms n/2 terms

(d} + di +...% di + dj + dj tooot dj) n

This corresponds to a bootstrap resampling vector with M* having n/2

in the ith and jth places

M* = (0,...,n/2,0,...,n/2,0,...,0)

Pitman's procedure may also be viewed as a resampling plan. Referring

2n-1

to the notation in Chapter 3, consider any one of the Pitman

averages. Suppose that it is the point

a = Zdi /M
m

where the index set is {11,...,iM} c {1,...,n}.

The resampling vector corresponding to this point a has 1's in positions

iy,...,iy and zero elsewhere, rescaled by M'1, i.e.
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A final point worth noting is the comparison of the number of point or
probability atoms in each of the nonparametric procedures. This is

given in Table 5.3.

Table 5.3 : Comparisdn of the number of points in the support of the
Wilcoxon, Pitman's and bootstrap distributions

Method General n n=12

Wilcoxon n(n+1)/2 78
Pitman's 2" 4 095
Bootstrap (22;1) 1 352 078

This comparison between bootstrap distribution and certain other non-
parametric distributions needs further development. Efron (1981a,

1982a) has compared a number of nonparametric procedures in some detail.

‘5.8 Index of Concordance

Essentially bioequivalence is a multivariate problem, yet in practice a
uhivariate procedure is applied to each bioavailability parameter indi-
vidually. A possible reason for this is that most useful multivariate

procedures rest heavily on the assumption of joint normality, which

hardly seems feasible for the biocavailability parameters.

It is possible to obtain a bivariate or even multivariate bootstrap
distribution and this might offer hope of deriving multivariate bootstrap

confidence regions. However it is not yet clear how this should be done.



To overcome this difficulty we propose a new measure of bioequivalence
which we shall call the Index of Concordance. The Index of Concordénce
In for the population is the relative frequency with which the bio-
equivalence specification is met if applied to a group of n individuals

at random.

In principle, to compute the index of concordance one would need to take
every possible sample of size n from the population, perform the clinical

trial on each group, and then compute In

I

n Index of Concondance

_ number of times specifications were met
number of clinical trials performed

Clearly In is a number lying between 0 and 1. Values of In lying

close to 1 indicate that the bioequiva]enée specifications are met in
most cases while values of In lying close to 0 indicate that the bio-

equivalence specifications are seldom met.

The bootstrap provides a very simple method for estimating In‘ The

bootstrap uses the sample values as though they were the population.

The bootstrap estimate of In is obtained by taking random samples of

size n, over and over again, say B times from a population with dis-
tribution Fn, the e.d.f. (A random sample of size n is obtained by
sampling with replacement from the n original data values.) The boot-

strap estimate of the index of concordance is then

A

I, = number of times specifications were met/B

The index of concordance has the advantage of being extremely easy to

compute for any number of parameters jointly, and the problem of inter-



pretation does not arise. It has the further advantage of being easy
to understand by those with a limited statistical background. The con-
cepts underlying hypothesis testing, confidence intervals and posterior

probabilities are not easily communicated to non-statisticians.

5.9 Example

To illustrate the index of concordance we use the data from Fluehler
et al (1983). The data relates to a comparison of a slow release
formulation (New) against a standard formulation with the aim ofvpro-
ducing markedly lower peak concentrations. The bioequivalence specifi-

cation region is

AUC : 0,8 < 61 < 1,2
and

CMAX 6, < 0,6

For AUC they use the ratio of means as a statistic while for CMAX they
use the geometric mean of individual ratios. This is because they
assume AUC to be normally distributed and CMAX to be lognormally distri-
buted. For the sake of comparison we shall use the same statistics.

The data are given in Table 5.4.

For this data the estimated joint index of concordance, based on a boot-

strap with B = 1000, is

~

I, = In[0,8 <8y < 1,23 8, < 0,6] = 0,8480



Table 5.4 : Comparative bioavailability data from Fluehler et al (1983). Comparison of a slow release

formulation (New) against a standard

" Number of Standard Formulation New Formulation

Subjects Period AUC CMAX En(CMAX) Period AUC CMAX en(CMAX)
1 2 114,57 296,11 5,6907 1 115,21 67,97 4,2190
2 1 98,17 146,69 4,9883 2 106,60 92,63 4,5286
3 1 121,87 259,37 5,5583 2 129,7d 97,75 4,5824
4 ' 2 30,20 197,36 5,2850 . 1 52,85 196,53 5,2808 )
5 2 131,51 281,37 5,6397 1 59,42 59,71 4,0895
6 1 104,17 179,14 5,1882 2 152,76 54,99 4,0072
7 1 71,54 251,37 5,5269 2 31,24 93,11 4,5337
8 2 71,98 233,29 5,4523 1 108,22 109,26 4,6938
9 2 78,83 173,61 5,1568 1 82,05 152,18 5,0251
10 1 140,48 227,56 5,4274 2 101,10 177,09 5,1767
11 2 75,27 211,85 5,3559 1 58,72 100,70 4,6121
12 1 111,56 225,71 5,4192 2 83,27 172 ,22 5,1488

Mean - v98,35 223,62 5,3907 - 90,10 114,51 4,6581

6lL°§
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Fluehler gE_gl_(1983) compute the marginal posterior probabilities but
do not compute the joint posterior probability. As a comparison the
marginal indices of concordance have been computed. The results are

summarised in Table 5.5.

Table 5.5 : Comparison of marginal posterior probabilities and
marginal indices of concordance for the Fluehler
et al (1983) data

: Marginal Marginal Index
Event Posterior Probability of Concordance
0,8 < e1 < 1,2 0,846 0,898
92 < 0,6 0,906 0,947

~ ~

Notice that since In is simply a proportion the variance of In- is

approximately

A A

Var(I ) = fn(1-1n)/3

5.10 Conclusions
The bootstrap has much to offer in dealing with the problem of bio-
equivalence. Some of the advantages are:

(i) It frees the clinician to define bioequivalence in a manner that
will reflect clinical requirements and not depend on the available

statistical procedures or on his knowledge of statistics.

(11) The bootstrap can be easily described to the statistical layman.
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(iii) For univariate bioequivalence assessment bootstrap confidence
intervals can be obtained for almost any definition of a

bioequivalence parameter.

(iv) For univariate or multivariate bioequivalence assessment, the

index of concordance can be computed with equal ease.

(v) The basic bootstrap makes no assumptions about the functional
form of the random mechanism F generating the data. However,
should one want to make assumptions about F these can be
easily accommodated by using for example, a parametric bootstfap.
See Efron (1982). In this sense the bootstrap encompasses

parametric methods.
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CHAPTER 6

BOOTSTRAPPING THE TOTAL RESPONSE TO A
BIOAVAILABILITY STUDY

6.1 Introduction

The bootstrap is a procedure for estimating the sampling distribution,
or some functional thereof , of a specified random variable. This is
achieved by resampling the data in a suitable way.

This idea of resampling the data may be applied to compartmental model-

ling of bioavailability studies. The technical difficulties associated

with compartmental models include

(i) appropriateness of model
(i1) correlation between errors
(111) unequal varianceé at different time points

(iv) possible instability of coefficient estimates.

If a compartmental model has been fitted to the data by some étatistica]
procedure , then in addition to the fitted values, there is a set of
residuals. Assumptions have been placed on the residuals explicitly or
implicitly by the fitting procedure. If the residuals are resampled,
preserving this stochastic structure, a distribution is generated using

the model's own assumptions.

Assuming the model and estimated parameters to be correct, resampling the

residuals produces pseudo-data which mimics a new set of experiments.
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Using the pseudo-data it is possible to focus on any aspect of the ex-
periment that may be of particular interest. For example the pseudo-
data could be used to “"predict" the possible behaviour of a given
subject on a number of.future occasions. Alternatively it may be used
to "observe" the joint distribution of the derived parameters such as

AUC, TMAX and CMAX, either within subjects or between subjects.

This pseudo-data may be a useful guide to planning future investigations

or even deciding if further investigation is necessary.

Although similar results could be obtained using the model equation and
attaching an error generated from a N(0,02) distribution the advantage '
in using the experimental observed residuals is that they contain the

stochastic variability that is inherent in the data.

We shall illustrate some of these possibilities with a simple example.

6.2 Data, model and assmptions

For the data in Table 2.1 (Button (1979)) we shall suppose that the
appropriate model is the sum of two exponentials. Denoting the observa-

tion at time tj on the ith individual by yij i=1,...,6 and

j=1,...,18 the model is

-b,.t. -b,.t.
B 175 217 .
T O A

It
J—y
-
-
[e)]

(6.1)

The errors ¢ are assumed to be independent. However the usual

N
assumption of constant variance does not seem appropriate.
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The parameters (Ai,b11,b21) i =1,..,6 wi11 be estimated using
ordinary least squares. This choice of using ordinary least squares in
favour of weighted least squares is motivated largely by the lack of

an obvious choice of weighting factors. A discussion of the choice of

weighting factors is given in Chapter 2.

The bjoavailability parameters AUC, TMAX and CMAX are nonlinear functions

of the model parameters (A,b1,b2) (cf. Chapter 1). For i =1,...,6

we have
AUC; = A;(1/by. = 1/b,.)
TMAX = (Zn b21 - £n b11)/b21 - b11)
o, - Ai<e—b1i AK; by TMAXi)
] Ai(bZi/b1i)b11/(b11‘b21) ] (b21/b11)b21/(b11‘b21)

It is well known that the maximum 1ikelihood estimator for the vector
(A,b1,b2) is asymptotically multivariate normal with variance-covariance
matrix oZ(F'F)'1, where F 1is the design matrix. For details and
notation see Box and Lucas (1959). However we do not know how closely the
sample behaviour is to the asymptotic behaviour and we know»even less about
the distribution of the derived parameters AUC, TMAX and CMAX. It there-
fore seems desirable to adopt a nonparametric approach. The bootstrap
procedure was chosen because, according to Efron (1981), of all non-

parametric procedures, "the bootstrap performs notably best."

In addition to estimating the variance-covariance structure from a practical

viewpoint, an 'estimate' or display of the distribution of possible values
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of AUC, TMAX and CMAX would be of great interest. After all, the drug is
to be given to an individual and it would be of interest to know where he/
she might 1ie on the distribution. 1In fact the quantiles of these distri-
butions are probably of more interest than the mean}and variance. How-
‘ever, bioavailability parameters are usually estimated from experiments
based on only a few subjects, typically five to ten. Is there a way in
which we can obtain some idea of the possible variability? It seems that

the bootstrap can help here in the following ways:

(i) Give insight into the way in which the pharmacological parameters

behave in a population.
(ii) Indicate the extreme instances.

(iii) Give a graphical indication of the distribution of these parameters.

This could not be done with only six original observations.

6.3 The bootstrap algorithm

The bootstrap algorithm devised for this problem is as follows:

1. Fit the model given by equation (6.1) to each of the six data sets

given in Table 2.1.

2. For each of the data sets store the vector of fitted values as well

as the vector of residuals.

‘3; Generate a 'bootstrap curve' consisting of 18 points. (The method

for doing this is described below.)
4. Fit model (6.1) to the bootstrap curve.

5. Repeat steps 3 and 4 a total of 250 times.
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The details of the bootstrap are:
(a) Fit all curves using ordinary least squares.

(b) The method of generating a bootstrap curve is as follows:
Select at random a vector of fitted values from the six available.
This vector consists of 18 points and to each of these we must add
an error term. Starting with the first point we choose at random
one of the six 'first' residuals. With the second pbint we choose
one of the six 'second' residuals. We repeat this for all 18 points.

Call this set the bootstrap parameters.

Thﬁs algorithm is based on the following assumptions.

(i) model (6.1) is correct
(ii) errors are independent
(i11) unequal variance at different sampling times.

18

The total bootstrap distribution consists of 6x6 'bootstrap curves'

. or pseudo-data. We have used the Monte Carlo method to approximate this

distribution (cf. Chapter 4).

6.4 Results

6.4.1 Original data

Model (6.1) was fitted to each of the six horses in Table 2.1 to give
(Ai’ b11, b21) i=1,...,6. These estimates were then used to compute
(AUCi, TMAX. CMAXi) i=1,...,6. The results are given in Table 6.1.
The fit was found to be reasonable but not very good. There was slight

evidence of patterned residuals, the pattern being to overestimate the

first few points, underestimate the peak and overestimate the tail points.
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Table 6.1 Estimated parameters for the data in Table 2.1
HORSE
1 -2 3 4 5 6 Mean SD
A 22,54 22,54 21,78 21,18 21,57 20,00 21,60 0,953
b1. 0,0686 0,0600 0,0588 0,0606 0,0562 0,0592 0,0606 | 0,0042
b2 1,242 2,905 4,295 3,087 5,931 - 5,646 3,848 [ 1,786
AuC 310 368 365 343 380 334 351,5 25,03
TMAX 2,47 1,36 1,01 1,30 0,79 0,82 1,2917} 0,624
CMAX 18,0 20,3 20,2 19,2 20,4 18,9 19,50 0,963
Marginal histogramsof AUC, TMAX and CMAX are given in Figure 6.1.
AUC —eo o—eo | ——oo—o l
300 400
|
A —ee—¢———ee— t o T
1 2 3
CMAX - o}—o —eoo—
18 19 20
Figure 6.1 Marginal histograms for AUC, TMAX and CMAX based on the data

in Table 6.1.
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6.4.2 Bootstrap distribution of (A, by b2) and (AUC, TMAX, CMAX)

Model (6.1) was fitted to each of the 250 'bootstrap curves' to give
(Ag, b?j’ bgj) -j = 1,...,250. These estimates were then used to com-
pute (AUC?, TMAX}, CMAXE) J=1,...,250. As with the original sample,
_the fit was found to be reasonable but not very good. There was slight
evidence of patterned residuals, the pattern being similar to that in

the original data. The serial correlations for the residuals tended to

be smaller for the bootstrap curves fhan for the original data.

The distribution putting mass 1/250 at each vector will be called the
bootstrap distribution. Although, of course, it is actually the Monte

Carlo approximation to the bootstrap distribution.

The marginal bootstrap distributions of AUC, TMAX and CMAX proved to be
most interesting. Especially those of TMAX and CMAX, both of which are

bi-modal.

The bootstrap identified two groups for TMAX: A large group of ‘normal'
responders (about 82%) and a small group of 'slow' responders {about
18%). Perhaps this is to be expected because the first horse in

Table 2.1 was a slow responder. Similar comments apply to the marginal
bootstrap distribution of CMAX. In contrast, the marginal bootstrap

distribution of AUC was unimodal and even close to normality.

However, what is most significant, and surprising, is that no such grouping
was evident in the marginal bootstrap distributions of A, b1 and b2.

These distributions were unimodal.




6.8

The remainder of this section consists of tables and figures that compare
and summarise the results for the original sample, the bootstrap and

some asymptotic results.

Table 6.2 gives a comparison of the means and standard deviations for the

original sample, the bootstrap and, where possible, asymptotic results.

Table 6.2 : Comparison of means and standard deviations for the original

sample and the bootstrap

Original sample Bootstrap Asymptotic
n==ot n = 250
~ Mean 21,60 21,67 21,42
A
SD 0,95 0,97 0,62
. Mean 0,0606 0,0600 0,0588
b
LN 0,0042 0,0040 0,0048
Mean 3,85 3,55 3,32
b
2 5p 1,79 1,38 0,32
Mean 352 352 -
AUC |
SD 25 22 -
Mean 1,29 1,32 -
TMAX
SD- 0,62 0,47 -
Mean 19,51 19,62 -
CMAX |
SD 0,96 1,18 -

Notice how the bootstrap results agree with the original sample whilst

the asymptotic standard deviations of A and b2 are markedly smaller.
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COUNT MEAN ST.DEV.
250 352.046 22.098
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Figure 6.2 Normal probability plot of AUC

Figure 6.2 indicates that the marginal bootstrap distribution of AUC

is close to normal with perhaps slightly heavier tails.
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COUNT MEAN ST.DEV.
250 1.315 .472
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Figure 6.3 Normal probability plot of TMAX

The two groups in this plot correspond to the 'normal' responders in the
Tower left hand corner and the fs]ow' responders in the upper right hand
corner. The two groups indicate the bimodal nature of the marginal boot-
strap dfstribution of TMAX which is distinctly non-normal. The histogram

in Figure 6.4 displays this clearly.
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COUNT MEAN ST.DEV.
250 1.315 .472
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Figure 6.4 Histogram of TMAX

Bi-modal marginal bootstrap distribution of TMAX. The numbers on the ex-
treme left of the figure indicate where the original sample values lay on
the distribution. Notice how the bootstrap has produced even more extreme
cases than the original sample. The gap between '1' and '2' noted in the
original sample did not close in the bootstrap distribution.
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COUNT MEAN ST.DEV.
250 19.620 1.176
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Figure 6.5 Normal probability plot of CMAX

This indicates a bi-modal marginal bootstrap distribution for CMAX.
Again the histogram illustrates the bi-modal nature more effectively

than the normal probability plot. The histogram is given in Figure 6.6.
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Figure 6.6 Histogram of CMAX

Bi-modal marginal bootstrap distribution of CAMX. The numbers of the
extreme left of the figure indicate where the original horses lay on the
distribution. Notice again, as for TMAX, the bootstrap has produced more
extreme cases than noted in the original sample, and the gap between

'1" and '6' noted in the original sample did not close in the bootstrap
distribution.
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This plot indicates that the marginal bootstrap distribution of

is close of normality.




COUNT MEAN ST.DEV.
250 ~.060 ~.004
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- Figure 6.8 Normal probability plot of b1

This plot indicates that the left hand tail of the marginal bootstrap

distribution of b1 is heavier than found in the normal distribution.
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COUNT MEAN ST.DEV.
250 3.549 1.377
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Figure 6.9 Normal probability plot of b2

This plot indicates that both tails of the marginal bootstrap distri-
bution of b2 are heavier than those of the normal distribution.

However the distribution does appear to be symmetric.



Table 6.3 : Bootstrap correlation matrix

1 2
A 1 0,40 -0,07
b1 i -0,13
b 1

Table 6.4 : Asymptotic correlation matrix

A b1 b2
A 1 -0374 0,64
b1 T -0,44

The asymptotic correlations are markedly different to the bootstrap

correlations. The asymptotic correlations are larger in magnitude than
those for the bootstrap. While the correlation between A and b1 is
positive for the bootstrap values (0,4) it is strongly negative (-0,74)
in the asymptotic correlation matrix. The correlation between A and
b2 is in ‘the bootstrap (-0,07) but is given as 0,64 in the asymptotic

matrix.

6.5 Conclusions

By utilizing the assumptions that are built into the statistical model
and the Monte Carlo method, it has been possible to estimate the distri-

bution of the bioavai]ébi]ity parameters AUC, TMAX and CMAX. The




assumption of normality or lognormality has been replaced with more
appropriate but more complex assumptions and prodigious calculation.
Using this method a detailed graphic picture has been obtained of the
way in which the important parameters AUC, TMAX and CMAX might behave

in a population. Note particularly how it emphasises the unusual cases.
Asymptotic results based on normal theory give smoothed estimates and

little indication of sampling variability.

Under special circumstances, (normal distribution of AUC, TMAX and CMAX)
all information about their distribution can be derived from a knowledge
of the mean and variance. Good classical statistics would allow us to
draw inference from samples as small as six. However we have obtained
the derived parameters AUC etc., in a complex manner and there is no
guarantee that the distribution of these quantities is normal. In fact,
as we have seen, the bootstrap indicates that these quahtities are not

normally distributed although AUC is nearly so.

The bootstrap has utilised the evidence available in the sample in a
manner that summary statistics are not able to do. It has shown that
although the multivariate normal distribution might serve as an approxi-
mate model for the vector (A, by b2) it is by no means a good model

for the derived parameters.

The objective of the experiment is to measure the derived parameters
whereas statistical theory focuses on estimation and asymptotic

normality of A, b1 and b2. It is no easy task to obfain analytic
results for the distribution of AUC, TMAX and CMAX. However, in the
¢pharmaco1ogﬁc Titerature it is often assumed that the normal or log-

normal distribution provides a good model for the marginal distributions



of these parameters. The results of this chapter indicate that for

TMAX and CMAX such an assumption may well be erroneous.

In assessing the effectiveness of a drug one would 1ike to know more
than can be given by a few summary statistics.
e.g. Percentiles

Skewness

Construct tolerance intervals

Bi-variate plots of the derived parameters

Are the distributions symmetric?

Are there any unusual cases? Thé method given here gives answers

to these questions without recourse to normal theory.

Other statistical aspects of bioavailability depend to a greater or
lesser extent on the distribution of the derived parameters. For example
comparative bioavailability is concerned with the comparison of two drug

formulations and depends on these distributions.
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The following computer program will compute bootstrap bias
corrected confidence intervals for data from a  bioequivalence
trial. Confidence intervals are computed for three common measures
of bioequivalence:

1) difference between formulation means THETAl

2) ratio of formulation means THETA2

3) geometric mean of individual ratios - THETA3.
The response may be either AUC, TMAX, CMAX or even some other
bioavailability parameter of interest.

It is assumed that there are 'N' subjects, each of whom has two
responses - for the new and the standard formulation. The data are
read in with a maximum of ten on a line in free format. The data
for the standard formulation are entered first and then the data
for the new formulation are entered.

The size of the bootstrap (=M), the number of subjects (=N) and
the required coverage probability (=C) are treated as parameters
and are defined in the first three lines of the program. These are
currently set at the values B = 1000, N =12 and C = 0.95.

Example of input format: data from Steinijans and Diletti(1983)

136.0 152.6 123.1 77.0 115.7 72.0 116.4 151.1 118.9
156.1 222.4 158.1 (standard data)

135.7 155.3 148.9 81.2 139.2 91.7 118.7 133.2 115.6
150.3 223.9 154.1 (New data)

The program listing is given below.

PARAMETER M=1000
PARAMETER N=12
PARAMETER C=0.95

M IS THE NO OF TIMES WE ARE GOING TO BOOTSTRAP
N IS THE NO OF SUBJECTS

THIS MUST BE CHANGED FOR DIFFERENT EXAMPLES

C IS THE REQUIRED COVERAGE PROBABILITY

eNeYeXe!

DIMENSION AUC(2,N),AGUC(2,N),THETA1(M),THETA2(M),
DIMENSION XU(3),XL(3),ANSL(3),ANSU(3),THETA3(M),CDF(3)

AUC IS THE AREA UNDER THE CURVE

AGUC IS THE VECTOR GENERATED AFTER USING URAND
THETAl,THETA2, THETA3 ARE ESTIMATORS

CDF IS THE CUMULATIVE DISTRIBUTION FUNCTION
THREE PARAMETERS.

Q00

INTEGER NO(N),LANS(3),UANS(3)
C NO IS AN ARRAY THAT CONTAINS THE GENERATED NOS
REAL MEAN(2),INVPHI(3),INALPH(2),LBOUND(3),UBOUND(3)
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100

FORMAT()

FORMAT(15X,F6.2,18%X,F6.2/)

FORMAT(4X, 'DIFFERENCE OF MEANS = ',F6.2,/,/,4%X,

'RATIO OF MEANS = ',F6.2,/,/,4X%,

'GEOMETRIC MEAN OF RATIOS = ',F6.2)

FORMAT(1HO, 'MEAN(1) = ',F6.2,5X, 'MEAN(2) = ',F6.2,/,1H0,
'THETAl(',I3[') = 'IF6.2,2X1'THETA2(',I3[') = '1F6,2;
2X,'"THETA3(',I3,') = ',F6.2)

FORMAT(1H1,20X,'ORIGINAL VALUES OF DATA',/,20X,23('-"'),
/+/+10X, ' STANDARD FORMULATION',4X,'NEW FORMULATION',/,/)
FORMAT(6X,'MEAN = ',F6.2,13X,'MEAN = ',F6.2,/)

READ(5,100)( (AUC(I,J),J=1,N),I=1,2)
WRITE(6,140)

- . —— — —— — —— — D . - — — —— —— — — — i —— S — ———— > — ———— —— —— — — - — o -

A —————— ——————— ——— o - ——— — — - - - ———— — " —— —

DO 10 I=1,2

SUM=0.0

DO 20 J=1,N
SUM=AUC(I,J)+SUM

CONTINUE

MEAN(I)=SUM/N

CONTINUE

WRITE(6,150) (MEAN(I),I=1,2)

C CALCULATE THE DIFFERENCE OF MEANS,RATIO OF MEANS AND
C GEOMETRIC MEAN OF RATIOS

90

30

60

. - —— — ——— ————— — — D D - —— Y — ——— ———— ————— —— — o — —— - - ———— - ————

THET1=MEAN(2)-MEAN(1)

THET2=MEAN(2)/MEAN(1)

TOTALS=1.0

TOTALN=1.0

DO 90 I=1,12
TOTALS=AUC(1,I)*TOTALS
TOTALN=AUC{2,I)*TOTALN

CONTINUE

THET3=(TOTALN/TOTALS)**(1.0/N)

WRITE(6,120) THET1, THET2, THET3

ISEED=0

DO 40 J=1,M

ISEED=ISEED+20

DO 30 I=11N
K=INT(URAND(ISEED)*N+1)

A RANDOM NO BETWEEN 1 AND 12
NO(1I)=K

CONTINUE

DO 50 I=1,2

DO 60 L=1,12
AGUC(I,L)=AUC(I,NO(L))

CONTINUE
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50 CONTINUE

C CALCULATE THE MEANS,DIFFERENCE OF MEANS,RATIO OF MEANS AND
C GEOMETRIC MEAN OF RATIOS M TIMES

DO 70 I=1,2
SUM=0.0
DO 80 L=11N
SUM=AGUC(I,L)+SUM
80 CONTINUE
- MEAN(I)=SUM/N
70 CONTINUE 7
THETAL1(J)=MEAN(2)-MEAN(1)
THETA2(J)=MEAN(2)/MEAN(1)
TOTALS=1.0
TOTALN=1.0
DO 200 I=1,12
TOTALS=AGUC(1,I)*TOTALS
TOTALN=AGUC(2, I)*TOTALN
200 CONTINUE
THETA3(J)=(TOTALN/TOTALS)**(1.0/N)
40 CONTINUE

CALL SORT(THETAl, M)

CALL SORT(THETA2, M)
CALL SORT(THETA3, M)

WRITE(6,501) (THETAL1(I),THETA2(I),THETA3(I),I,I=1,M)
501 FORMAT(3(5X,F6.2),5%x,16)

CALL FUNCT(THETAl, THET1,M,CDF(1
CALL FUNCT(THETA2,THET2,M,CDF(2
CALL FUNCT(THETA3,THET3,M,CDF(3

— N
—

C WRITE(G[l?O)(CDF(I)II=113)
170 FORMAT(3(5X,F6.2))
G e o e et e e e —m e — e ——————
C CALCULATE THE CONFIDENCE INTERVALS
C _________________________________________________________

C0=2.515517
Cl=0.802853
C2=0.010328
D1=1.432788
D2=0.189269
'D3=0.001308
ALPHA=(1.0-C)/2.0
ALPH=1-ALPHA

CALL INV(CDF(1),Cc0,Cl1l,C2,D1,D2,D3,INVPHI(1))
CALL INV(CDF(2),c0,Cl,C2,D1,D2,D3,INVPHI(2))
CALL INV(CDF(3),CO,Cl,C2,Dl,D2,D3,INVPHI(3))
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CALL INV(ALPHA,CO,Cl1,C2,D1,D2,D3,INALPH(1))

CALL INV(ALPH,CO,Cl,C2,D1,D2,D3,INALPH(2))
C WRITE(6,180) (INVPHI(I),I=1,3),(INALPH(II),II=1,2)
180 FORMAT(2X,F8.4)

DO 230 I1=1,3
XL(I)=INALPH(1)+2*INVPHI(I)
XU(I)=INALPH(2)+2*INVPHI(TI)

230 CONTINUE

A=0.2316419
PI=3.141593
B1=0.319381530
B2=-0.356563782
B3=1.781477937
B4=-1.,821255978
B5=1.330274429

DO 240 1=1,3

CALL PHI(XL(I),A,PI,Bl,B2,B3,B4,B5,ANSL(I))

CALL PHI(XU(I),A,PI,Bl,BZ,B3,B4,BS,ANSU(I))
240 CONTINUE

C WRITE(6,250)(XL(I),XU(I),ANSL(I),ANSU(I),I=1,3)
250 FORMAT(4(5X,F8.4))

DO 270 1=1,3

LANS(I)=INT(ANSL(I)*M)

UANS(I)=INT(ANSU(I)*M)
270 CONTINUE

LBOUND(1)=THETALl(LANS(1))
LBOUND(2)=THETA2(LANS(2))
LBOUND(3)=THETA3(LANS(3))
UBOUND(1)=THETAL(UANS(1))
UBOUND(2)=THETA2(UANS(2))
UBOUND(3)=THETA3(UANS(3))

WRITE(6,280) (LBOUND(I),I=1,3),(UBOUND(I),I=1,3)

280 FORMAT(1H1, 20X, 'CONFIDENCE INTERVALS',/,21X,20('='),/.,/,
26X,'THETALl' ,10X, 'THETA2',10X, 'THETA3"',/,/,
5X, 'LOWER BOUND',10X,F6.2,10X,F6.2,10X,F6.2,/,/,

5X, 'UPPER BOUND',10X,F6.2,10X,F6.2,10X,F6.2)

R

STOP

INCLUDE UCT*ASCII.URAND

END

SUBROUTINE FUNCT(THETA,THET,LEN,CDF)

DIMENSION THETA(LEN)

DO 270 I=1,LEN
IF(THETA(I).GT.THET)THEN
CDF=(I-1)*1.0/LEN
GO TO 300
END IF

270 CONTINUE
300 RETURN
END

SUBROUTINE SORT(ARRAY,LENGTH)
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DIMENSION ARRAY(LENGTH)
DO 210 1I=1,LENGTH-1
DO 220 L=I+1,LENGTH
IF(ARRAY(I).GT.ARRAY(L))THEN
TEMP=ARRAY(1I)
ARRAY(I)=ARRAY(L)
ARRAY(L)=TEMP
END IF
220 CONTINUE
210 CONTINUE
RETURN
" END

SUBROUTINE INV(CDF,C0,Cl,C2,D1,D2,D3,INVPHI)
REAL INVPHI
IF(CDF.GT.0.5.AND.CDF.LT.1.0)THEN
T=(-2.0%¥ALOG(1.0~-CDF) )**(1.0/2.0)
ELSE
T=(-2.0*ALOG(CDF) )**(1.0/2.0)
END IF

Z=T-( (CO+C1l*T+C2* (T*T))/(1L+D1*T+D2* (T*T)+D3*(T*T*T)))
IF(CDF.GT.0.0.AND.CDF.LE.O.5)THEN
INVPHI=-Z
ELSE
INVPHI=Z
END IF
RETURN
END

SUBROQUTINE PHI(T,A,PI,B1l,B2,B3,B4,B5,ANS)
X=1.0/(1.0+A*ABS(T))
Y=((2.0*%PI)**(-0.5))*(EXP(=-(T*T)/2.0))
R=Y* (BL*X+B2* (X*X)+B3* (X*X*X ) +B4* (X*X*X*X ) +BS* (X*X*X*X*X) )
IF(T.LT.0.0)THEN

ANS=R

ELSE

ANS=1-R

END IF

RETURN

END

A MDYV 100





