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A B S T R A C T 

In 1984 it became legal for pharmacists to offer customers a cheaper 

generic alternative for a given prescription. The motivation for this 

was the excessively high cost of brand name drugs. The substitution of 

a generic alternative for a brand name drug is based on the assumption 

that drugs with a comparable chemical composition will have a similar 

therapeutic effect. The fact that this supposition is not always true 

has been demonstrated by a number of particular drugs, digoxon being 

perhaps the most vivid example. 

The objective of this thesis is to review the statistical aspects 

associated with 

(i) measuring the bioavailability of a drug (Chapter 2) 

(ii) establishing the equivalence of a new and standard formulation 

of a drug (Chapter 3). 

In the process of reviewing the literatu~e two problems were identified. 

Firstly, it is commonly assumed that bioavailability parameters follow 

either the normal or lognormal distribution. This assumption is 

' difficult to defend, hence procedures based on such assumptions became 

suspect. Secondly, bioavailability is inherently multivariate whereas 

in practice univariate procedures are employed. 

Efren's bootstrap method, which does not rest on assumptions about the 

underlying distribution, is proposed as a tool for assessing bio-

equivalence. A new measure of bioequivalence, the Index of Concordance, 
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is proposed. This index can be computed with equal ease for uni­

variate or multivariate data using the bootstrap (Chapter 5). 

The bootstrap idea of resampling the data can also be applied to com­

partmental modelling of bioavailability data. One result of this is 

a nonparametric estimate of the underlying distribution of the bio­

avai labil ity parameters (Chapter 6). 

The bootstrap is, on its own, a fascinating concept. A review of the 

bootstrap is given in Chapter 4. 



1. 1 

C H A P T E R 

OVERVIEW OF BIOAVAILABILITY 

1.1 Concept of bioavailability 

When a drug is administered it undergoes numerous processes before it 

enters the systemic system from which it is eventually delivered to 

the site of action. For example, tablets must disintegrate and 

dissolve in the gastric juices. After dissolution the drug is absorbed 

through the gastro-intestinal wall into the gastro-intestinal portal 

blood. During this process the drug may be altered metabolically by 

the gastric juices and the blood. The drug and any metabolites that 

have formed are then transported by the blood to the liver which may 

alter the drug and its metabolites even further. From the liver the 

blood goes to the lungs where further biotransformation may take place. 

Only after all this has occurred does the drug and its metabolites 

reach the systemic circulation. 

lised continually by the blood. 

Of course, the drug is being metabo­

Thus, the amount of unchanged drug 

that eventually reaches the systemic system is a fractional part of the 

original dose. 

The concept of bioavailability (biological availability) describes the 

net result of this process and is used to define the rate and extent of 

drug appearance in the systemic circulation (Melander (1984)). However, 

the term bioavailability is often used as a shortened form of 

"comparative bioa:vailability" or 11 bioequivalence 11
• Two formulations 
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dose 

portal blood 

drug metabolites 

1 iver 

lungs 

systemic system 

site of action 

Figure 1.1 Schematic diagram of processes through which a drug, 
administered orally, must pass. 

of the same drug are considered bioequivalent if they contain the same 

quantity of active drug and deliver this active drug to the circulating 

blood at the same rate and extent (Metzler (1974), Wagner (1975), 

Westlake (1979)). Of course, as Metzler (1974) points out the primary 

question in bioequivalence is "whethVt .two oJt moJte. i)o1tmu.tatioVL6 c.on.-
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1.2 Definitions and assumptions 

Metzler (1974) suggests that three types of equivalents are involved: 

chemical equivalents: drug products of the same dosage form 

which contain equal amounts of the same active ingredient as 

indicated by official standards; 

biological equivalents: those chemical equivalents which 

deliver the same amount of active ingredient to the circulating 

blood. (Although he does not say so, one feels that the wording 

"at the same rate" should be added to this.) 
l 

therapeutic equivalents: those chemical equivalents which produce 

the same therapeutic effect as measured by the control of a 

symptom or disease. 

He goes on to point out that chemical equivalents are not necessarily 

therapeutic equivalents, as was once assumed. Therapeutic equivalence 

of two chemically equivalent formulations can only be assessed via a 

clinical efficacy trial. Efficacy trials are both expensive and 

difficult to carry out, and bioavailability trials are an attempt to 

infer therapeutic equivalence without doing efficacy trials. The basic 

assumption of bioequivalence is one of continuity: 

two formulations that have similar bioavailability characteris­

tics will have similar therapeutic efficacy. 

This assumption says that once the active ingredient is in the circulating 

blood, distribution, metabolism and excretion will not be influenced by 

formulation. 
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1.3 Measures of bioavailability 

In order to be of any practical value the definition of bioequivalence 

must be interpreted in terms of some measurable quantity. The usual 

measurement is the level of the drug in the blood or serum from the 

time a single dose of the drug is taken until it has been completely 

metabolised or excreted (see Figure 1.2). Another measure is the amount 

of drug excreted in the urine. 

According to Metzler (1974) the least controversial comparison of bio­

availability would result if two average continuous concentration­

time curves from a number of subjects were superimposable and had equal 

variability. However, in general continuous sampling is not possible 

and hence comparison is made on the basis of discrete sampling times 

denoted by t 1, ••• ,tk. If these are well chosen a good comparison can 

result. 

And so we have 

First interpretation of bioequivalence: Chemical equivalents that have 

essentially similar concentration-time profiles. 

The inherent difficulty of sensibly comparing two sets of blood/serum 

profiles has focused attention on certain aspects of these profiles. 

The area under the concentration-time curve (AUC) is by far the most 

popular measure of bioavailability. The AUC is believed to be pro­

portional to the total amount of active drug delivered to the systemic 

system. The maximum concentration (CMAX) and time to maximum concen­

tration (TMAX) contain information about the rate and extent of 

,absorption. More recently the half-life of the drug (T~) has also been 
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shown to be important in the case of repeated dosages (Bruce (1984)), 

Greenblatt et al (1984)). 

CMAX 

c: 
0 .,.... ....., 
tO 
s.. ....., 
c: 
Q.J 
u 
c: 
0 
u 

Figure 1.2 A typical concentration vs time curve showing the 
usual bioavailability parameters. 

From this we obtain: 
Second interpretation of bioequivalence: Chemical equivalents that 

have the same AUC, CMAX, TMAX and T~. (This is based on the basic bio-

availability assumption and the assumption that the four parameters AUC 

etc, adequately describe the concentration-time profiles.) 

The great advantage of this interpretation is the reduction in dimen-

sionality of the problem. In fact many authors consider that AUC is 

by far the most important bioavailability parameter (Melander (1984)) 

and, for many drugs, the only parameter of importance. Hence we have: 
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Third interpretation of bioequivalence: Chemical equivalents that have 

the same AUC. 

The majority of statistical papers on bioequivalence are based on this 

interpretation of bioequivalence. They assume that bioequivalence will 

be assessed on the basis of one clinical parameter, usually AUC. 

However, Westlake (1975) warns against the use of overall rules of thumb 

for deciding on bioequivalence. He proposes the general principle: 

"Sta.U.4lic.a1 tu.t6 1.ihou£d be. c.aNU..e.d out onl.y on. tho1.i e. c.h.aJz.a.c.tvU.!.ilic.J.i 

06 the. blood-R.e.ve.1. J.ie.que.n.c.e. tha.:t have. 1.iome. me.a.IU.n.g6u£ Jte.1.ilion.J.ihip to 

the. the.Jta.pe.ulic. uJ.i e. o 6 the. dJtug • " 

He cites the following examples: The drug imipramine has an extremely 

delayed onset of action. As a result of this, TMAX has no clinical 

significance. Bioequivalence can only be judged on the basis of AUC. 

Another example is the drug Chlorpheniramine which has a very long 

elimination half-life. However therapeutic effect is dependent on re­

peated dosing at close intervals. Blood levels have little to do with 

therapeutic effect. Yet a third example are antibiotics that have a 

minimum inhibitory concentration for effective therapy. The two para­

meters of interest are 

(i) the time above the minimum inhibitory concentration and 

(ii) the time required to first reach this level (Westlake (1975)). 

Wagner {1975 p.339) discusses fallacies that have arisen around the 

concept of bioavailability. He discusses factors that should be con­

sidered when assessing bioavailability and when extrapolating the 

results of a bioavailability study to other similar drugs or formulations. 
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Briefly these are 

(a) even if a drug passes official compendial standards this does not 

guarantee bioavailability in man, 

(b) differences in bioavailability will not necessarily be recognised 

in the clinical use of the drug, nor will differences necessa;ily 

be reported in the literature, 

(c) if two formulations of the same drug are shown to be bioequivalent 

it cannot be assumed that all formulations of the drug are bio­

equivalent, 

(d) bioavailability cannot be assessed from 11 in vitro 11 dissolution 

tests alone, 

(e) differences in bioavailability from one manufacturer's products to 

the next are at least as important as differences between the label 

dose, 

(f) bioavailability is not necessarily related to pharmacological 

effects or clinical response. 

For this thesis we shall assume that the basic assumption of bioavail­

ability (see earlier) holds good. We shall also adopt the definition 

given in Wagner (1975, p.340) of bioavailability : the extent and rate 

of absorption for a dosage form as reflected by the time-concentration 

curve of the administered dose in the systemic circulation. The term 

bioequivalents will mean chemical equivalents that have comparable 

bioavailabilities. 
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1.4 Pharmacokinetic Modelling 

The absorption of a drug as described in section 1.1 is a complex process 

involving many independent variables. Pharmacokinetics deals essentially 

with the description of concentration changes of drugs in the blood as a 

function of time. Pharmacokinetic models provide a highly simplified, 

but useful mathematical description of the process. 

These models view the absorption, distribution and elimination process 

as though occurring in a series of compartments with linear drug transfer 

rates between compartments. These compartmentalised models give rise to 

a system of linear differential equations whose solution are functions 

that are polyexponential in form 

i.e. = L:. c .. exp(->. .. t) 
l lJ l J 

for j = 1 , ••• , k 

where Yj(t) = concentration in jth compartment at time t 

k = number of compartments 

c .. , >. .. are coefficients determined by the transfer rates 
l J l J 

and initial conditions. 

Wagner ( 1975) gives an extensive account of one, two· and three compart-

ment models. He discusses models for intravenous injection, intra-

venous infusion and oral administration. He also considers the case 

where the drug is converted into a single metbolite as well as the case 

in which the drug is converted into a primary metabolite, which is turn 

is converted into a secondary metabolite and the drug and both metabo-

lites are excreted in the urine. Over and above this, he also considers 

single and multiple dosing. 
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Steinijans (1975), Steyn and van Wyk (1977) and Greenblatt et~ 

(1984) give a simple but useful account of one and two compartment 

models. These authors achieve simpnfication by combining two mechanisms 

of drug elimination namely metabolism and excretion under the label 

"elimination." 

Following Steyn and van Wyk (1977) and Greenblatt et~ (1984) we shall 

restrict attention to one and two compartment models and to single dosing. 

The three compartment model leads to a four term polyexponential function. 

Parameter estimates for this function become very unstable and therefore, 

useless. (Lanczos (1957), Hibbert and Steyn (1982).) 

1.4.1 Two compartment model 

A basic interpretation of the two compartment model supplies_ a useful 

abstraction of the absorption process. Since we will be concerned only 

with the blood/serum concentration of the drug and not its metabolites, 

we use the word elimination to include metabolism and excretion. This 

simplifies Wagner's classification somewhat but leads to a similar ex­

pression for blood levels. Our development follows that of Steinijans 

(1975), Steyn and van Wyk (1977) and Greenblatt et~ (1984). 

A drug dose (D) is introduced into the absorption site (usually the 

gastro-intestinal tract) at time t = 0 (Figure 1.3). The drug then 

passes into the central compartment (the blood) with absorption rate 

proportional to the concentration of the drug at the site of absorption. 

The constant of proportionality is denoted by ka. Reversible drug 

distribution occurs between the central and peripheral compartments. 
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dose 

central peripheral 
compartment compartment 

ka y 1 ( t) 
k12 

Y2(t) 

v, 
k21 

v2 

Figure 1.3 Schematic representation of the two compartment open model 

The rate of distribution from the central to the peripheral compartment 

is denoted by k12 and that from the peripheral to the central com­

partment by k21 . Irreversible drug elimination takes place only from 

the central compartment (the blood) at rate ke. 

This model predicts that the concentration in the central compartment 

(i.e. blood/serum concentration) v1 will be a tri-exponential 

function of time (t) after dosing: 

where 

6 = i[k12+k21+ke] - /(k12+k21+ke) 2 
- 4k21ke 

kaFD k21 -a 
p1 = -V,-- · (ka-a)(B-a) 

kaFD k21 -B 
p2 = -V,-- · (ka-B)(a-B) 
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F = fraction of dose absorbed 1 

D = administered dose 

v1 =volume of compartment no 1. 

A semi-logarithmic plot of v1(t) versus t (Figure 1.4) will reveal 

three distinct phases that correspond to 

phase 1 - absorption of drug into central compartment or blood, 

phase 2 - distribution of drug from central to peripheral 

compartment, 

phase 3 - elimination of drug. 

c: 
0 
·~ 
+' 
ro s.. 
+' 
c: 
QJ 
u 
c: 
0 
u 

absorption 

distribution 

time 

Figure 1.4 Blood/serum concentration curve plotted on semi­
logarithmic scale for the two compartment open model. 

Except for AUC the bioavailability parameters CMAX, TMAX and T~ 

cannot be expressed in closed from and will have to be found numerically. 

1. This is the classical measure of bioavailability. 
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AUC 

1.4.2 One compartment model 

If the distribution process occurs much more rapidly than the absorp­

tion and elimination, then the body may be considered as a single homo­

geneous compartment. In this instance there is no need for a peripheral 

compartment (Figure 1 .5). 

dose 

central compartment 

Figure 1.5 Schematic representation of one compartment open models 

Again it is assumed that the dose is introduced to the site of absorp­

tion as a bolus at time t = 0. The drug is absorbed into the central 

compartment with absorption rate constant ka which is assumed to be 

first order. Drug elimination is also first order with rate constant 

According to this model the predicted concentration v1(t) at time t 

after dosing is 
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where F = fraction of dose absorbed 

D = administered dose 

A semi-logarithmic plot of the blood/serum concentration has two phases: 

phase 1 - increasing concentration that corresponds 

to absorption 

phase 2 - decreasing concentration that corresponds to elimination. 

This is shown in Figure 1.6 

c:: 
0 .,.. 
.µ 

"' s... 
.µ 
c:: 
QJ 
u 
c:: 
0 
u 

Figure 1.6 

elimination 

Blood/serum concentration curves corresponding to 

a one compartment open model 

The bioavailability parameters are easily expressible in closed form: 

AUC = J
00 

Y1(t) dt = FD(k ~k )(-d- +ii-) 
a a e e a 

TMAX = (.en ka - .en ke)/(ka-ke) 

CMAX = Y(TMAX) 
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1.5 Statistical Considerations 

Bioavailability trials consist of two types, depending on the objective: 

One may be interested in assessing the absolute bioavailability of a 

new but unknown drug or in the comparative bioavailability of a new 

formulation/preparation of a generic alternative. In either case, 

there are a number of interrelated problems of a statistical nature. 

In absolute bioavailability studies one is attempting to assess the rate 

and extent of absorption of a drug and/or its active metabolites. Such 

a study would typically involve a panel of subjects (from six to 

twenty four). These subjects are :creened medically and, under con-

trol led conditions, given the drug dosage form. Blood samples are taken 

from each individual at predetermined sampling times t 1 , ..• ,tk after 

application. The extent and rate of absorption are then estimated from 

these blood concentration profiles. 

In comparative bioavailability studies one is attempting to assess the 

relative magnitudesof the rate and extent of absorption of a standard 

product and one or more test products. A guideline protocol for com­

parative bioavailability trials has been devised by the Food and Drug 

Administration (FDA). Wagner (1975, p.353) gives a draft of the pro­

posed guidelines but warns that this draft should not be construed as a 

summary of the guidelines. The draft is comprehensive covering ten 

sections: 

Title; Names of investigators; Synopsis; Background information; 

Objectives of the study; Clinical facilities available; Institutional 
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review; Experimental plans; References and Appendices. 

Section VIII on Experimental Plans is relevant to the statistical 

aspects. The Experimental Plans cover the following topics: 

(A) Subject selection. This covers who the subjects will be and how 

they will be selected; Age range, body weight range etc; Clinical 

screening teststhat are to be given; Exclusion of concurrent medication. 

(B) The drug. Various details about the drug are to be recorded. For 

example, tests used to characterise the drug, etc. 

(C) Control or Reference: Various details, similar to that of the test 

drug, are to be recorded. 

(D) Treatment schedule and Doses: A table should be given which clearly 

indicates the treatment schedule; the assignment of subjects to treat­

ments; the number of subjects; fasting conditions and the time of 

administration of the doses in relation to food intake; the level of 

activity of the patients; the amount of water to be ingested during 

each test day. 

Wagner (1975, p.354) quotes the FDA draft as saying: "The. numbeJt 06 

.6ubje.ct6 employe.d in :the. :te..6:t .6hould be. a.de.qua:te. :to demoYl..6.tJtate. .the. la.c.k. 

o 6 a. .6:ta:t,l.6tic.a.Uy .6ig M6ic.a.n:t p'1.Clc.tic.a.l di6 6 Vte.nc.e. arno ng :the. bio­

a.va.ila.bili:ty pa.Mme.:te!l...6 .6 e.le.c.:te.d with a.n alpha. o 6 0. 0 5 a.nd a. be.ta. o 6 

O.ZO." The draft also stated: "Ge.neJta.Uy 72 :to ZO .6ubje.ct6 aJte. 

.6u66ic.ie.n:t 6M. bioa.va.ila.bili:ty .6:ludie..6." 

(E) Observations: Specify when the blood and/or urine is to be sampled 

i.e. specify t 1 , ... ,tk; how these samples are to be treated, stored 



1.16 

and transported. Statements as to how side effects and intolerance 

are to be evaluated and reported. 

(F) Assay Method(s): Details of assay methods to be used to analyse 

blood and/or urine should be stated. 

(G) Data Analysis: Method of data analysis should be specified. 

Statistical considerations should be clearly stated. Computer programs 

to be used should be specified and referenced. 

It is from these data that the bioavailability parameters AUC, etc, are 

calculated and bioequivalence assessment is made. The statistical con­

siderations involved and methods used will be the subject matter of 

chapters 2 and 3. Chapter 4 is an account of the statistical method 

called the bootstrap and methods for deriving bootstrap confidence 

intervals. In chapter 5 we propose a new method for assessing bio­

equivalence using the bootstrap. 



2.1 Introduction 

2. 1 

C H A P T E R 2 

ESTIMATING THE BIOAVAILABILITY 
PARAMETERS 

The result of a bioavailability trial, either absolute or comparative, 

is a set of data for each of n individuals consisting of sampling 

times t 1, ... ,tk and corresponding blood/serum concentrations 

yi(t1), ... ,yi(tk) i = 1, .•. ,n. A typical set of data is given in 

Table 2.1 from Button (1979). 

The data analysis proceeds in two stages. Firstly the data from each 

individual are used to estimate the pharmacokinetic parameters AUC, 

TMAX, CMAX and T~, or some subset of these. The individual estimates 

obtained in the first step are then used to make inference about the 

population parameters. 

In this chapter the focus will be on the first stage of the data analysis. 

We consider data (1b,y
0
), (t1,Y1), ... ,(tk,yk) for an individual and our 

task is to estimate the pharmacokinetic parameters for that individual. 
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Table 2.1 Six horses received 15 mg/kg theophylline as aminophylline 
by intragastric administration. Theophylline assay by 
high performance liquid chromatography. Concentrations in µg/mt 

h 0 r s e 

Time 1 2 3 4 5 6 mean ± SD 

0' 166 4,2 10 '1 3,7 12 ,6 11 '9 7' 1 + 5' 1 -
0 ,333 1 ,5 15 '1 14,8 11 '5 18' 1 16 ,3 12,9 ± 6,0 

0,5 6,8 17,5 19,9 19,7 20,9 18' 3 17,2 ± 5 ,2 

0,666 14,0 19,5 22' 1 21 ,4 22,0 19,3 19' 7 ± 3 '1 
I 

1 16,5 20,3 20,8 23,9 20,3 20,9 20,5 ± 2 _,4 

1 '5 21'3 22,9 20,3 21,8 19,7 19' 0 20,8 ± 1A 

2 19 ,8 20,4 19, 7 18,9 20' 1 18,2 19' 5 ± 0 ,8 

2,5 18,2 19' 1 18,9 18, 7 18,4 17,0 18,4 ± 0 _,8 

3 17,3 17,7 17,3 16,2 17,7 16,2 17' 1 ± 0 _,7 

4 15,6 16,8 16' 1 15,5 16' 1 14,3 15,7 ± 0 ,8 

5 14,6 15,5 15 _,O 14,4 15,4 13,9 14,8 ± 0 ,6 

6 13,3 14,6 14,2 13,4 14,8 12,9 13,9 ± 0 _,8 

8 11 '6 13,6 13,2 13,0 13,2 11 '9 12,8 ±· 0 _,8 

10 11 ,2 12' 1 12 _,3 12_,0 12 _,4 10,6 11 _,8 ± 0,7 

12 10,0 10,6 10,8 11 '6 11 ' 1 10,2 10,7 ± 0,6 

24 5,5 6 _,9 6,5 7 ,0 6,3 5 ,7 6,3 ± 0,6 

30 4,4 4,6 4,6 5 '1 4,8 4,8 4,7 ± 0 ,2 

48 2,5 2' 1 1 '7 2 ,2 1 '9 1 ,9 2' 1 ± 0,3 
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2.2 Direct estimation of the AUC 

The AUC may be estimated 

(i) directly by numerical integration, or 

(ii) derived from the estimated parameters of a compartmental model or 

some curve fitted to the concentration-time data. In this section 

we will consider estimating the AUC directly by numerical 

integration. Deriving the AUC from estimated parameters will be 

considered in section 2.3. 

In performing a numerical integration the true curve between two successive 

concentrations yj and yj+l is approximated by some simple function 

such as a straight line, polynomial or exponential. Four algorithms are 

commonly used and differ mainly in the form of the approximating function. 

The algorithms, which will be discussed in more detail below are 

(i) the Trapezoidal rule 

(ii) the Log-trapezoidal rule 

(iii) the Lagrange method 

(iv) Cubic splines 

Numerical integration methods only provide the AUC(O~tk) - the area 

under the curve from time zero to the final observation time, tk. 

The total AUC(0, 00 ) must be found by some extrapolation method. This 

will be discussed in section 2.2.5. 

2.2.1 The Trapezoidal Rule 

The simplest method of estimating AUC(O,tk) numerically is to join the 



2.4 

points (t
0

,y
0
), (t1,y1), •.. ,(tk,yk) by a series of straight lines. 

The resulting figure will be a polygon consisting of k trapezia. 

The total area under this polygon from time t = t
0 

= 0 to t = tk is 

then the sum of the areas of the k trapezia. 

A k 
AUC(O,tk) = '· (y.+y. 1)(t. 1-t.)/2 

f. J =o J J + J + J 
( 2. 1 ) 

2.2.2 The Log-trapezoidal rule 

The Log-trapezoidal method approximates y between any two obser­

vations yi-l and yi using a single exponential. This is equivalent 

to approximating £n y by a straight line between successive points. 

Interpolating on the interval (ti-l ,t;) we have 

£n y = £n y. 1 + (t-t. 1) £n (y./y. 1)/(t.-t. 1) ,_ ,_ 1 ,_ 1 ,_ 

or alternately 

y = Y.· 1 exp{-(t-t. 1) £n (y./y. 1)}/(t.-t. 1) ]- ,_ 1 ,_ 1 ,_ 

Integrating (2.2) 
A 

AUC(t;_ 1,t;) 

we obtain 
t. 

= f 1 y dt 
t. 1 ,_ 

= (y.-y. 1)(t.-t. 1)/£n (y./y. 1) 1 ,_ 1 ,_ 1 ,_ 

(2.2) 

This log-trapezoidal method is best suited for data that is monotonically 

decreasing. It cannot be used if any observed y value is zero or if 

two consecutive values are equal. Furthermore the method may produce 

large errors when used on ascending curves, near a peak or on a steeply 

descending polyexponential curve (Yeh and Kwan (1978)). 
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2.2.3 Lagrange method 

In the Lagrange method interpolation is achieved using cubic polynomials. 

To interpolate in the interval (t. 1,t.) the equation 
l - l 

y =a. + b.t + c.t2 + d.t 3 (2.3) 
l l l l 

is fitted to the four adjacent data points (ti_2,yi_2), (ti_
1

,yi_
1
), 

(ti,yi) and (ti+1 ,y1+1). The four coefficients ai' bi, ci and di 

may be obtained by solving the following system of linear equations: 

t. 2 t~ 2 t~ 2 a. = y. 2 (2.4) 1- 1- 1- l 1-

t. 1 1- t~ 1 1- t~ 1 1-
b. 

l y. 1 1-

t. H t~ c. y. l l l l l 

ti+1 t~ 1 1+ t~ 1 1+ d. 
l Yi+1 

The area under the concentration-time curve between ti_
1 

and ti is 

estimated by integrating (2.3) over this interval, to give 
t. 

A r 1 
AUC(t. 1,t.) = J (a.+b.t+c,t2 +d.t 3 ) dt 

1- l t l l I l 
i -1 

= a.(t.-t. 1) + b.(t~-t~ 1)/2 + c.(t~-t~ 
1
)/3 

l 1 1- 1 l 1- l l 1-

+ d.(t~-t~ 1)/4 
1 1 l - (2.5) 

Equation (2.4) can be applied serially for each i = 2,3, ... ,n-1 but 

not for the two end intervals (t
0
,t1) and (tk_ 1,tk). For these two 

intervals, the nearest three points are used to fit a parabola 

Y = a. + b.t + c.t2 
l l 1 (2.6) 

The three coefficients ai, bi and ci are calculated by solving a 

system of three simultaneous linear equations, analogous to equation 
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(2.4). The corresponding areas are obtained by integrating equation (2.6). 

A 

The cumulative area AUC(O,tk) is then computed by summation 

(2. 7) 

2.2.4 Cubic Spline Method 

The cubic spline method is similar to the method of Lagrange in that 

interpolation is achieved using cubic polynomials. However there is an 

additional constraint of differentiability at each data point. 

General spline functions are defined as piecewise polynomials of degree 

k, connected at several knots, such that the fitted curve and its first 

k-1 derivatives are continuously differentiable. For cubic splines k 

is defined to be 3 and the knots are taken to be the data points 

themselves. 

The derivation presented below follows that of Dunfield and Read (1972) 

and Yeh and Kwan (1978). 

The cubic polynomial in equation (2.3) is differentiated three times to 

give 

y' = b. + 2c.t + 3d .t2 (2.8) 
1 1 1 

y" = 2c. + 6d.t (2.9) 
1 1 

y"' = 6d. 
1 

(2.10) 

From equation (2.9) it is evident that y" is linear over each interval 

[ti_ 1,ti]. Because of the linearity it may be rewritten in the 

following form 
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y II = y'! 1 ( t . - t ) I h . + y '! ( t- t . 1 ) I h . 
1- , 1 1 1- 1 (2.11) 

where hi =ti - ti_ 1. This equation is integrated twice to give 

y I = -y'! 1 ( t . - t ) 2 I 2 h . + y '! ( t- t . 1 ) 2 I 2 h . + s 1 
1- 1 1 1 1- 1 (2.12) 

y = y~ 1(t.-t) 3 /6h. + y~(t-t. 1)3 /6h. + s
1
t + s

2 1- , 1 , 1- , (2.13) 

where s1 and s2 are constants of integration. These constants are 

determined by evaluating equation (2.13) at ti_ 1 and ti, giving 

Y. 1 = y'.' 1M/6 + s1t. 1 + s
2 1- 1- 1 1- (2.14) 

y. = y~h~/6 + s1t. 1 + s2 1 , , 1 - (2.15) 

Solving these two equations for s1 and s2 gives 

s1 = (yi-yi_ 1)/hi - hi(y~-y~_ 1 )/6 (2.16) 

s2 = (t.y. 1-y.t. 1)/h. - h.(t.y'! 1-y'!t. 1)/6 (2.17) 1 1-. , 1- 1 1 1 1- , 1-

All quantities in equation (2.13) are known except for y~ 
1 

and y~. 
1 - 1 

These values are determined as follows: 

Equation (2.12) is evaluated at t. 1 from the interval [t. 
1
,t.] 

1- ,_ 1 

and from the interval [t. 2,t. 11 to give the following two equations, 1- 1-

resp~ctively: 

= -y~ 1h./2 + (y.-y. 1)/h. - h.(y~-y~ 1)/6 1- 1 1 ,_ 1 1 1 1- (2.18) 

= -y '! 1 h . 1 I 2 + ( y . 1 -y . 2 ) I h . 1 - h . 1 ( y '! 1 -y '! 2 ) I 6 1- ,_ 1- 1- 1- ,_ 1- ,_ (2.19) 

Combining equations (2.18) and (2.19) and rearranging gives 

h. 1y'! 2/6 + (h.+h. 1)y'! 1/3 + h.y'!/6 = (y.-y. 
1
)/h. 1- ,_ 1 ,_ 1- 1 1 1 ,_ , 

- (y. 1-y. 2)/h. 1 ,_ 1- 1- (2.20) 
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Equation (2.20) can be applied to all intervals except the first and 

last. This will yield n-1 equations. Since there are n+l unknowns 

two additional equations are required. These are obtained by speci-

fying two extra conditions. In the present case these are y;11 = Y2' 

and ylU = y111 
• The third derivatives are giv,en by equation (2.10). n-1 n 

YIU= 1 (y" -yll) /h 1 0 1 (2.21) 

YIU= 2 (y"-y" )/h 2 1 2 (2.22) 

y'" n-1 = (y~_,-y~-2)/hn-1 (2.23) 

YIU= n (y"-y" ) /h n n-1 n (2.24) 

Combining equations (2.21) and (2.22) and equations (2.23) and (2.24), 

respectively, gives 

Y11 /h - (h- 1+h-1) y11 + y2
11 /h2 = 0 

0 1 0 1 1 (2.25) 

Yll /h - (h-1 +h- 1) y11 + y11 /h = 0 n-2 n-1 n-1 n n-1 n n (2.26) 

The n+1 unknowns y~, •.• ,y~ may be obtained by solving (2.20) ~ 

(2,25) and (2.26) simultaneously. Once these are known equation (2.13) 

may be integrated over each interval 
t. 

A r 1 
AUC(ti_ 1,ti) = J y dt 

t. 1 1-

[t. 1,t.] to give 
1 - 1 

The cumulative area from time t = 0 to t = tk is 

A k A 

AUC ( 0, tk) = \. 1 AUC ( t. 1 , t. ) l1= 1- 1 

( 2. 27) 

(2.28) 
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2.2.5 Extrapolating the AUC 

Four methods have been given estimating AUC(O,tk) directly. However, 

in bioavailability studies it is the total area AUC(0, 00 ) from zero 

time to time infinity that is of interest (Wagner 1975, p.344). 

Using any method AUC(O,tk) underestimates AUC(0, 00). But without 

making assumptions about the form of the concentration-time curve it is 

not possible to correct or extrapolate AUC(O,tk) to give an estimate 

of the desired quantity AUC(0, 00 ). 

If one is willing to assume a compartmentalised model with linear transfer 

rates, then the concentration-time curve will be polyexponential in 

form. Suppose for example this is 

Since 

( -k t -k t\ 
y(t) = A\e e - e a ) 

-k t -k t 
= A e e - A e a 

approaches zero more rapidly than does 

If the ratio ka/ke is sufficiently large then for large t we 

effectively have 
-k t 

(2.29) 

-k t 
e e 

y(t) ~A e e (2.30) 

The unobserved area from tk to 00 can now be approximated by the 

area under the curve defined by (2.30) between tk and 00 • Denoting 

this unobserved area by AUC(tk, 00 ) we have 

00 -k t 
AUC(tk,00 ) ~ f A e e dt 

tk 
-k t 

= A e e k/k 
e 

(2.31) 
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A log-linear plot of the data will achieve two objectives : it will 

dispiay whether or not (2.30) provides a reasonable description of the 

data for large t. If (2.30) is reasonable then the last few data 

points will lie approximately on a straight line. Secondly, the slope 

of the line through these last few points is an estimate of -ke. This 

may be obtained either by eye or by linear regression of log yi 

against ti. 

Hence we have an estimate of the unobserved area 
A A 

(2.32) 

Using (2.32) as a correction term we have an estimate of the total 

AUC(O,oo) 

A A A 

AUC(O,oo) = AUC(O,tk) + AUC(tk,00 ) 

A 

where AUC(O,tk) is obtained by any one of the four methods that have 

been described earlier. 

Although the concentration-time curve was assumed to be a sum of two 

exponentials to obtain the correction term (2.32) a similar argument 

applies to any polyexponential function, provided that a log-linear plot 

of the data lie eventually on a straight line. 

, 

2.2.6 Discussion on numerical integrating al~orithms 

Yeh and Kwan (1978) have, through a series of five simulation experiments, 

tested the relative merits of the four algorithms presented above on 

various types of data. They considered simulated sets of data 
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(i) that vary linearly between points without error, 

(ii) exponentially decreasing data without error, 

(iii) from a two compartment open model without error, 

(iv) from a two compartment open model with error introduced in various ways. 

In conclusion Yeh and Kwan suggest that if the data are functionally 

smooth and error free the Lagrange and cubic spline method will give the 

best approximation to the system. However since errors are experimentally 

inevitable, the superiority afforded by these methods becomes less . 

certain, and this uncertainty may increase with increasing noise in 

the data. 

Both the Lagrange and cubic spline methods may produce spurious and 

unrealistic oscillations and need to be monitored. 

Although the two trapezoidal methods are less accurate they may be the 

logical choice because of their simplicity. They are particularly 

suitable when estimates of AUC are the data that will be used for 

testing bioequivalence. 

2.3 Fitting a polyexponential model 

For numerical integration we do not assume any particular model for the 

concentration-time curve, except to derive the correction term. 

From the theory of compartmental models many concentration-time curves 

can be represented as a polyexponential function 
-b.t p l 

Y =\.
1

a.e 
"1= l 
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If this approach is taken some estimation procedure is used to find or 

estimate the coefficients a1, ... ,ap and b1 , .•. ,bp. The pharmacokinetic 

parameters AUC etc., are then calculated from the fitted equation. 

The methods considered in this thesis are 

(i) The graphical method 

(ii) Least squares 

(iii) Weighted least squares 

(iv) Maximum likelihood 

2.3.1 The Graphical method 

The graphical method of finding estimates has been well discussed and 

documented by Gurpide et.!!_. (1964), Atkins (1969 pp.101-106), Foss 

(1969), Wagner (1975) and Steyn and van Wyk (1977). The method has also 

been given various other names; the 11 stripping 11 procedure (Wagner); 

the 11 back-projection 11 technique (Wagner); the 11 peeling-off 11 technique 

(Foss). 

The method is based on the observation that a polyexponential function 

-b1t -b2t -b3t 
e.g. y = A1e + A2e + A3e (2.33) 

= Y1 + Y2 + Y3 

with 0 < b3 < b2 < b1 

will, for large values of t,. behave approximately as 
-b t 

Y3 = A3e 3 (2.34) 

if b1, b2 and b3 are sufficiently separated. This can be detected 

by plotting tn y ~ t. If this plot is approximately linear for large 
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values of t then by taking logarithms we obtain 
\ 

(2.35) 

Using the last few "linear points" as data the slope (-b3) and 

intercept (tn A3) can be estimated either by eye or by linear re­

gression. From these estimates we obtain 

(2.36) 

Substracting (2.36) from (2.33) we obtain 
A -b t -b t 

A 1 + A2 e 2 y - Y3 ~ 1 e (2 .37) 

Since 0 < b2 < b1 (2.37) will, for "large" values of t behave as 

A -b2t 
y - y3 ~ A2 e (2.38) 

A 

This can be detected by plotting tn(y-y3) vs t. If this plot is 

approximately linear for "large" t then approximately 

A 

tn (y-y3) ~ tn A2 - b2t (2.39) 

Again, using the last few points as data, one can obtain estimates of 

A2 and b2. We have 
A 

A -b t 
Y2 = A2 e 2 (2.40) 

Subtracting (2.40) from (2.37) we obtain 

A -b1t 
y - Y3 - Y2 ~ A1 e (2.41) 

A A 

A plot of tn(y-y3-y2) ~ t should be approximately linear and yield 

estimates of A1 and b1. 

Examples are given in Foss (1969), Wagner (1975) and Steyn and van Wyk 

( 1977). 
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2.3.2 Least squares 

Consider the statistical model 

y
1
. = f(t., e) + s. 

l - l (2.42) 

where yi represents the blood/serum concentration at time ti 

e is a vector of m unknown model parameters which are to be 

estimated 

f(t.,e) is the model or response function that represents the 
l -

assumed functional relationship between \, .§_ and y. 

For our purposes f(t., e) 
l -

is a polyexponential function. 

The least squares estimate of .§_ is defined as that vector e which 

minimises the objective function 

(2.43) 

Provided that S(~) is differentiable the least squares estimate e is 

the solution of the so called normal equations 

VS(~) 
35 

= 
381 

= 0 (2.43a) 

where 
35 tk 3f ~8 = -2 1.·_1{y.-f(t.,e)} ~e 

0 . -1- l l - 0 • 

J J 
j = 1, ... ,m (2.43b) 

Note that if f(t,.§_) is nonlinear in the parameters .§_, then the 

system of equations (2.43a) can only be solved iteratively. 
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Algorithms for computing e are described in section 2.4. 

2.3.3 Weighted least squares 

Let w1, ••• ,wk be a set of non-negative numbers, usually called weights. 

The number wi reflects the relative contribution of the ith observation 

(t.,y.) to the estimate of e. The weighted least squares estimate 
1 1 

A 

corresponding to ~· = (w1, ... ,wk) is defined as that vector e(w) 

which minimises the objective function 

k S(e(w)) = \._1 w.{y.-f(t.,e)}2 
-· - L1 - 1 1 1 -

(2.44) 

Setting wi = 1, 

estimate. 

i = 1 , ... ,k produces the ordinary least squares 

A common choice of w. is 
1 

w. = 1 I a~ 
1 1 

where cri is the variance of yi. Brownlee (1960), Wagner (1975, 

pp.288-289) suggests the following weighting factors 

W· = 1/y. 
1 1 

or alternately 

w. = 1/y~ 
1 1 

The problem of choosing the weights w. 
1 

is by no means settled. As 

Wagner mentions the choice w. = 
1 

1 wi 11 result in the terminal concen-

trations having almost no effect on e. This is because the residuals 

yi - f(ti ,~) are extremely small for terminal values of t. However, 

any of the choices 1/cri, 1/yi or 1/yi result in the terminal con-
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centrations carrying more and more weight. The smaller the concentra­

tion the more weight it will have. Concentrations of zero have infinite 

weight. So these choices also seem unsatisfactory. 

2.3.4 Maximum Likelihood 

If one is prepared to make assumptions about the distributional structure 

of the error terms in the model then one can estimate the unknown 

parameter Q_ using the likelihood principle i.e. select that vector e 

which maximises the likelihood. The problem is, of course, to find 

assumptions which seem reasonable. This is another unsettled problem; 

to find distributional assumptions that are in accordance with the 

observations. 

If one assumes that 

and that 

E i a re i . i . d . as N ( 0 , a2 
) (2.45) 

then the log-likelihood is 

.e(e.-;o2 ) = (k/2) .en (2no2 ) - {~_ 1 {y.-f(t.,6)}2/2o2 
·1- , , -

(2.46) 

From equation (2.46) it is clear that the maximum likelihood estimator 

is identical to the least squares estimator, under the assumption of 

norma 1 i ty. 

However, for bioavailability studies the model is a repeated measures 

model and the assumption of independent errors does not seem reasonable. 

Further, it seems evident from the column of standard deviations in 
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Table 2.1 that the assumption of constant variance is rather dubious. 

The data in Table 2.1 suggests that the standard deviation may be 

approximately proportional to yi the observed concentration. 

2.4 Minimisation technique~ 

For nonlinear models coefficients cannot be estimated directly. An iter­

ative estimation procedure is required. Consider the problem of selecting 

a vector ~ that minimises some objective fu~ction S(~). This problem 

occurs in least squares, weighted least squares and maximum likelihood 

estimation. Many iterative algorithms have been developed for solving 

this problem. The usual paradigm is 

Step Select an initial estimate ~ 

Step 2 

Step 3 

iteratively obtain a new estimate ~+l from the estimate 

~ as follows 

~+1 = ~ - ~ 

rules are given for computing the correction term ~· These 

rules are usually dependent on S. 

stop when ~ lies within some specified neighbourhood of 

zero i.e. if I~! < 6 where 6 > 0 is specified·. 

The major difference between algorithms is the manner in which the 

correction term ~ is computed. We will consider three of the most 

well known algorithms; steepest descent, Newton-Raphson and the Gauss­

Newton procedure. These methods are discussed in detail in Royce 

Sadler (1975) 
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2.4.1 Steepest descent 

Let the gradient of S, evaluated at ~' be denoted by ~ 

as 
aem e = e - ~ 

The steepest descent iteration is defined by 

where: hn is a scalar which determines the length of the step taken in 

the direction -~n; and 

I is the mxm identity matrix, introduced here to unify the 

treatment • 

. The step length hn is calculated by line search i.e. solve the one 

dimensional minimisation problem 

min S(e -hlg ) 
h>o --n ~ 

Although steepest descent will invariably steer clear of troublesome 

saddle points it is not in general a finite process. It may also converge 

too slowly. Royce Sadler (p.15) suggests that as a practical minimisation 

method its use is not recommended. 
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2.4.2 Newton-Raphson 

Let Hn denote the Hessian of S evaluated at ~ 

Hn = Hn(~) = (a~~~e.) 
l J ij ~ = ~ 

The Newton-Raphson iterative formula is then 

Newton's method specifies direction and step length simultaneously. 

The positive definiteness of H plays a role analogous to the sign of the 

second derivative in the case of one variable. 

Geometrically this is equivalent to approximating the surface S with 

the osculating paraboloid resulting from a three term Taylor approximation 

to S. At each step one moves to the minimum of the osculating paraboloid. 

A problem arises if H is ill-conditioned and difficult to invert. A 

possible solution would be to replace H with a positive definite matrix. 

This is done in the Gauss-Newton method that follows. 

2.4.3 Gauss-Newton 

Let f(t,~) be the model for the data and let Vf in denote its gradient 

evaluated at ~n for the sampling time ti 



Vf. = 
in 

af(t.,e) 
l -

ae. 
l 

af(t;,e) 
' -

e = e - -n 

2.20 

i = 1, ..• ,k 

The Gaussian approximation to the Hessian is 

k T H o.! G = 2 L· 1 Vf. Vf
1
.n n n i= in 

Royce Sadler (1975, p.21) derives this result. 

The iterative formula is 

-1 e = e G g -n+1 -n - n -=<.fl 

The Gaussian approximation to the Hessian is attractive for two reasons: 

1) G is always positive definite 

2) it requires only first derivatives of the regression function. 

Since these are also required for computing g anyway, obtaining 

G involves very little extra work. 

Although G is always positive definite it may be near singular. This 

occurs especially in the fitting of sums of exponential functions 

Juritz et~· (1983). In order to overcome the near singularity the 

Marquardt-Levenberg method may be used. The ill-conditioning is reduced 

by adding a term Anl to Gn where An > 0 is chosen so that 

is positive definite. 
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2.5 Finding initial estimates 

To start an iterative estimation procedure such as the three methods 

outlined in the previous section initial estimates ~ must be 

supplied. Although general rules cannot be given for finding initial 

estimates a number of procedures have been developed for polyexponential 

functions. 

Steyn and van Wyk (1977) and Hibbert and Steyn (1982) discuss the following 

initial estimation methods 

(i) Graphical method. This has been described in section 2.3.1. 

Although this method is often used to give final parameter esti­

mates, these estimates may also be used as initial values in an 

iterative algorithm, 

(ii) methods for the one exponential case, 

(iii) Fourier transform method for exponentially spaced data, Steyn 

(1980), 

(iv) regression-difference equation method for equally spaced data, 

Shah (1973), 

(v) method of partial sums for equally spaced data, Cornell (1962, 

1965), Agha (1971), Della Corta et~· (1974), 

(vi) numerical integration method, Foss (1970), Fresen and Juritz (1985). 

Since in practice bioavailability data are seldom equally or exponentially 

spaced methods (i) and (vi) are most useful and practical. Since the 

graphical method has been described in section 2.3.1 we will only discuss 

the numerical integratiori method proposed by Foss (1970) and the modifi-
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cation proposed by Fresen and Juritz (1985). 

We shall consider methods for obtaining initial parameter estimates for 

the polyexponential function 

-b.t 
Y = y(t) = I7=1 ai e , (2.47). 

and propose a simple modification to Foss's method (Foss 1970) which will 

accommodate fitted values that must pass through the origin. Furthermore, 

Foss's method becomes unstable under certain extreme conditions. Because 

a practitioner needs to know about the conditions under which the procedure 

will fail we examine these conditions. 

For simplicity we consider only the sum of two exponentials. However the 

method can be extended to polyexponential functions consisting of three 

or more terms. 

2.5.1 Foss's method for a sum of two exponentials 

Consider the two exponential function 

-b1t -b2t 
y = a1 e + a2 e (2.48) 

By differentiating this function twice with respect to t it can be 

shown to satisfy the differential equation 

(2.49) 

The initial conditions are 

Y - a + a y
0
1 = -a1b1 - a2b2 0 - 1 2' (2.50) 

Integrating (2.49) over t, we have 
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(2.51) 

on integrating this becomes 

rt 
y 1 (t) - y~ = (b1+b2)(y0 -y(t)) - b1b2 Joy(~) d~ (2.52) 

Integrating again over t, we obtain 

t t t A 

f {y'(A)-y~} dA = (b1+b2) Jr {yo-y(A)} dA - b1b2 Jr f y(~) d~ dA 
0 0 0 0 

(2.53) 

(2.54) 

t 
Now let F(t) = J

0 
y(A) 

Substituting F and G and the initial conditions into (2.54) we obtain 

y = a1 + a2 + (a1b2+a2b1)t - (b1+b2) F(t) - b1b2 G(t) 

= a + bt + cF(t) + dG(t) 

However, if y
0 

= 0, then a1 + a2 = 0 and (2.55) becomes 

(2.55) 

(2.56) 

y = bt + cF(t) + dG(t) (2.57) 

The functions F(t) and G(t) are unknown but we can approximate them 

using numerical quadrature: Let tr be a typical sampling point then 
tr 

F(tr) = J
0 

y(A) dA (2.58) 

The numerical quadrature procedure that Foss (1970) invokes in order to 

estimate F assumes that y may be interpolated between observations 

using a single exponential function, i.e. 
-f3.t 

y=a.e 1 t.<t<t. 1 i=O, ••. ,n-1 
l l l+ 

(2.59) 
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Suppose that the observations are (t
0

,y
0
), (t1,y1), •.• ,(tn,yn) then 

the incremental area between ti and ti+l is approximately 

t. 1 

I 
l+ 

y dt = (y. +y. 1 )( t. 1-t.) I en 
t. l l+ l+ l 

l 

for y. F y. 1 . If y. = y. 1 then 
l l+ l l+ 

t. 1 

J 
l+ 

y dt = y. ( t. 1-t. ) 
t. l l+ l 

l 

The estimate of F(tr) 

t. 1 
A r-1 I i+ 
F(tr) = li=o 

t. 
l 

is then given by 

y dt 

(2.60) 

(2.61) 

(2.62) 

This numerical quadrature procedure is a slight modification of what Yeh 

and Kwan (1978) describe as the log-trapezoidal method. 

tr Ii. 

For G(tr) = Jr f y(~) d~ dli. 
0 0 

tr 
= t F(li.) d/i. (2.63) 

Foss (1970) uses the trapezoidal rule applied to the estimated values 

of F to give 

G(tr) = 1~-l {F(t .) + F(t. 1 )}(t. 1-t .)/2 
J=O I J J+ J+ J 

(2.64) 

After making these substitutions equations (2.55) and (2.57) may be 

regarded as linear models in the parameters a, b, c and d. These 

parameters can be estimated by a multiple linear regression using 

least squares. 

Having obtained estimates for a, b, c and d estimates of the initial 
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parameters are obtained by solving the system of equations (2.56). 

The solutions are: 

(2.65) 

2.5.2 Comments on Foss's method 

Foss's method works for data that decreases monotonically. He gives an 

example to demonstrate this. However, his method does not work if 

applied to data that builds up from zero to a peak and then decreases 

back to zero. Such data is encountered in bioavailability trials of 

orally administered drugs (Wagner (1975)). 

There are two reasons why his procedure does not work for such data; if 

the first observation y
0 

is zero then formula (2.60) breaks down 

attempting to take the logarithm of zero. 

Secondly if two consecutive observations y. 
J and Yj+1 have approxi-

mately the same values, as may happen near the peak, then the denomi­

nator en(yj/Yj+1) will be very close to zero. In this instance formula 

(2.60) may be inaccurate. Yeh and Kwan (1978) report that the log-

trapezoidal method may produce large errors when used in an ascending 

curve, near a peak or in a steeply descending polyexponential curve. 

These large errors result in a poor estimate of F and hence also of 

G. The end effect is a breakdown of the linear relationship as given in 

equations (2.55) and (2.57). 
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2.5.3 Modification 

In order to remedy both problems outlined in the previous section one 

need only alter the numerical quadrature method for estimating F. The 

simplest method to achieve this is to apply the trapezoidal method to 

give (Lanczos 1957, Yeh and Kwan 1978) 

A r-1 F(t ) = l· (y.+y. 1)(t. 1-t.)/2 
r J=O J J+ J+ J 

for r = 1,2, •.• ,n. 

Alternately one may use a combination of methods as outlined in Yeh and 

Kwan (1978). For example, .use the trapezoidal method until just after 

the peak and thereafter the log-trapezoidal method. The author has found 
j 

the trapezoidal method gives satisfactory results. 

2.5.4 Extreme Conditions 

As the ratio b2Jb1 increases the functions t, F(t) and G(t) become 

almost linearly dependent. This causes a co-linearity problem when 

attempting to fit the linear model defined by (2.55) and (2.57). 

Because of this the coefficients become unstable and the procedure breaks 

down. 

The condition can be detected by plotting concentration or log-concen-

tration against time; an early peak indicates that b2/b1 is large. 

The earlier the peak, the larger the ratio b2/b1• 

In order to see how this collinearity develops we may, without loss of 

generality, suppose that t and y have been scaled so that 

k > 1 (2.66) 
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Here k represents the ratio b2;b1• Figure 1 gives a plot of this 

function for k = 1,5; 2; 5; 20 and 00 • It is evident from the plot 

that, as k increases (2.66) approximates e-t very closely. 

1. .0' 

.0'. 8 

f6. 6 

.0. 4 

f6. 2 

Jl1 • Jl1 
.0' • Jl1 1 • .0' 2. ii 3 . .0 4. ii 5. ii 

Figure 2.1 : Plot of the function y = e-t - e-kt for various values 

of k. k = 1,5; 2; 5; 10; 20 and oo. 

Consider first the case where k = 00 so that 

-t Y = e 

This function satisfies the differential equation 

y' = -y 

with the initial conditions 

y0 = 1; y~ = -1 

Integrati~g (2.68) over time gives 

(2.67) 

(2.68) 

(2.69) 



2.28 

rt . Jt J y'(s) ds = - Y(sJ ds 
0 0 

y(t} -1 = -J: y('} d' (2.70) 

Integrating (2.70) over time gives 

Jt Jt JtfA y(A) dA - dA = - J Y(s) ds dA 
0 0 0 0 

(2.71) 

Corresponding to k = 00 we define F
00

(t} = J: y(A} dA and 

t A 
G (t) = f f y(s) ds dA 

00 JOJO 

Substituting F and G into (2.71) we have 
00 00 

F (t) - t = -G (t) 
00 00 

F (t) + G (t) - t = 0 
00 00 

t > 0 (2.72) 

Hence for k = 00 the functions t, F
00 

and G
00 

are linearly dependent. 

We now consider the case for which k < 00 • In this instance define 
t -

I ( -A -kA Fk(t) = 
0 

e -e . ) dA 

t t A 
Gk(t) = J

0 
F~(A) dA = J

0
J

0 
(e-s-e-ks) ds dA 

Now consider 

and 

(2.73) 

(2.74) 

(2.75) 

(2.76) 
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From (2.75) and (2.76) it is clear that Fk(t) + F
00
(t) and 

Gk(t) + G
00

(t) as k + oo. 

Therefore Fk(t) + Gk(t) - t + 0 as k + 00 (2.77) 

Hence for large k the functions t, Fk and Gk or simply t, F and 

G are almost linearly dependent. 

Fresen and Juritz (1985) and Fresen (1985) give examples where the method 

works and where the method breaks down. 

2.6 Asymptotic distribution of Least Squares/Maximal Likelihood estimators 

Consider the statistical model given by (2.42) or alternately the model 

given by (2.45). The partial derivative of the response function with 

respect to the rth parameter er for the uth sampling point tu, 

evaluated at the unknown true parameter !!._*, is denoted by 

(2.78) 

There are k sampling points and m parameters; therefore the kxm 

matrix of these derivatives is 

It is well known that the least squares estimator has variance-covariance 

matrix which is approximated by(Box and Lucas, 1959) 

V = (F'F)-l cr2 
(2.79) 

If the errors are assumed independent and normal then the Fisher infor­

mation is F1F/cr2
• Hence (2.79) is also the asymptotic variance­

covariance matrix for the maximum likelihood estimates. 
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2.7 Other methods for estimating the pharmacokinetic parameters 

Four methods for estimating the model coefficients have been described 

in section 2.3; graphical method, least squares, weighted least squares 

and maximum likelihood. These four methods are perhaps the best known. 

However least squares is known to be sensitive to outliers. Rhodda et al. 

(1975) claim that a single outlier can have a devastating effect on the 

least squares estimates. For weighted least squares one is faced with 

the unsolved problem of choosing weights and maximum likelihood is 

dependent on distributional assumptions which seem hard to justify. 

To avoid these weaknesses other approaches have been proposed. These 

include 

(i) Ordered Simulation Estimation Procedure (OSEP) 

(ii) Fourier analysis 

(iii) LP estimation 

(iv) Statistical moments 

We shall give a brief description of each method. 

2.7.1 Ordered Simulation Estimation Procedure (OSEP) 

Rhodda et~· (1975) propose a robust non-parametric procedure for the 

simplest pharmacokinetic model, the one compartment open model. They 

call their method the Ordered Simulation Estimation Procedure. 

The one compartment open model'leads to a sum of two exponentials 

( 
-:-b1t -b2t) 

y = A e -e b2 > b1 
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The domain is partitioned into three phases; absorption, peak and 

elimination. See Figure 2.2. 

Selecting one observation (ti, yi) from each of these three regions 

generates a system of three equations in three unknowns, viz 

for i = 1,2,3 

where t 1 E (absorption phase), t 2 E (peak phase) and t 3 E (elimination 

phase). 

-b t -b t 
Figure 2.2 Typical plot of y = A e 1 -e 2 showing partitioning 

o amain into absorption, peak and elimination phases 

These three equations are solved for A, b1 and b2 using an iterative 

procedure such as Newton-Raphson or Steepest descent approach. 

This procedure is repeated for each of the N = n1 n2 n3 possible com-

bi nations and produces N estimates of A, b1 and b2. These N 

estimates are ordered and the median of each estimated parameter is used 

as an estimate of the unknown parameter. 

Rhodda et al. (1975) compare this estimation procedure with least squares 

using a Monte Carlo study. They recommend this estimation procedure 
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whenever outliers are known to exist, otherwise they recommend least 

squares. 

As motivation for this procedure they cite an analogous procedure for 

the linear case as described by P.K. Sen (1971). 

The drawback of this procedure is the arbitrary manner of partitioning 

the domain into the three regions absorption, peak and elimination. The 

effect of different partitions has not been studied. 

2.7.2 Fourier Analysis 

Gardner et~- (1959) proposed a method for fitting polyexponential 

functions based on Fourier analysis. Smith et al. (1976) proposed a 

discrete analogue to Gardner 1 s method via spectral analysis. According 

to Steyn (1980) these methods did not gain wide acceptance because the 

numerical evaluation of Fourier integrals was then extremely difficult 

qnd tedious. He showed how the Fast Fourier Transform together with a 

filtering and smoothing technique can be used with success to estimate 

the coefficients or parameters in the model. However, the method is 

derived for exponentially spaced observations 

i.e. tx = exp{2a(x-m)/N} x = 0,1, •.. ,N-1. 

If the observations are not precisely exponentially spaced Steyn suggests. 

interpolating the y-values at the precise tx points and then applying 

his method. 

He compares this method with the graphical method and concludes that this 

method yields parameter values that describe the model more accurately. 
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It is clear that this method may be viewed as a method of obtaining 

initial estimates. 

The details of the method are given in Steyn (1980). 

2.7.3 LP-norm estimation 

The LP-norm estimator is defined as that vector e that minimises the 

objective function 

where 1 ~ p < oo 

For p = 2 this is equivalent to the least squares estimator. 

Ganin and Money (1985a,b) discuss the choice of p as well as its 

asymptotic distribution. 

2.7.4 Statistical Moments 

Two pharmacokinetic parameters not yet mentioned are the Mean Residence 

Time (MRT) and the Mean Absorption Time (MAT). The MRT is defined in 

terms of the AUC and the first moment of the AUC (AUMC). Let 

AUC(O,oo) = j y dt 
Jo 

and 

AUMC(O,oo) = J: ty dt 

Then the MRT is defined as 

MRT = AUC(O,oo)/AUMC(O,oo) 

Both AUC(O,oo) and AUMC(0,00 ) can be evaluated using numerical integration 

or by fitting a polyexponential model. 
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3.2 The two period cross-over trial 

The two period cross-over tri a 1 compares two formul ati ans of a drug, a 

new (N say) with a standard (S), each received by every subject over 

two periods. The n subjects are randomly divided into two groups of 

sizes n1 and n2. It is preferable to have equal group sizes i.e. 

n1 = n2. One group receives the treatments in order N-S the other 

group in the reverse order. Often, a washout period between treatments 

is allowed to eliminate carry over effects. A typical form of the 

design is given in Figure 3.1. 

PERIOD 1 PERIOD 2 

GROUP I N Washout s 

Period 
GROUP II s N 

Figure 3.1 Two period cross-:over trial with washout period 

For bioavailability trials it is usual to have between 12 and 20 subjects. 

However, as was mentioned in section 1.5, the FDA draft suggests that 

"The. nwnbVt 06 1.iu.bje.cto employed .{,n the. te.1.it 1.ihou..f.d be. ade.qu.a;te. to 

demo Yl.l.itJl.a.:te. the. .ta.dz o 6 1.i ta;t.{,J.itic.a.Uy 1.i .{,g n.{. fi.{,c.ant pJta.c.tic.a.f. d.{, 6 6 Vte.nc.e. 

among the. b.{.oavailabilUy paJr..ame.tVtJ.i 1.i e..f.e.c.te.d wdh an a.f.pha o 6 O. 0 5 

and a be.ta o 6 0. 2 0. " 

There are two models to consider for this design; one with residual 

or carry over effect and the other without. 
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3.2.1 Model I : With residual/carry over effects 

Consider the jth patient in the ith sequence or group in the kth 

period and denote the response by yijk. The model is 

Y· ·k = J1 + t;. · + 'TTk +<Po+ Ao + E:. ·k = 1,2 lJ lJ ~ ~ lJ 

where µ = general mean 

j = 1, ... ,ni 

k = 1 ,2 

t = 1,2 

( 3. 1 ) 

t; .. = effect of jth patient within ith sequenc~ a random variable 
lJ 

with mean zero and variance cr2 
s 

Tik = effect of the kth period 

<P,e = direct effect of the tth drug 

A.,e = residual effect of the tth drug 

= random fluctuation distributed with mean 

cr~, ·and is independent of t;ij. 

0 and variance 

With these assumptions the variance of an observation is 

Var(y .. k) = cre2 + cr2 

1 J s 

and any two observations on an individual have covariance 

Cov (y .. 1 , y .. 2) = cr2 

lJ lJ s 

Observations made on different subjects are independent, i.e. 

r # t 

Grizzle (1965, corrected 1969) discusses the estimation and testing 

procedures for this model in detail. 
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The contrasts of interest and their variances are given in Table 3.1. 

Table 3.1 Contrasts of interest (Grizzle 1965) 

Contrast 

1T 1 - 1T2 

¢1 - ¢2 

"1 - "2 

In the table: 

Estimate 

Not estimable 
- -
y 1 .1 - Y2·1 
- - - -
Y1.1-Y1.2-Y2.1-Y2.2 

02 = 02 + 02 
e s 

P = 0 2 I ( 0 2 + 0 2 ) s e s 

Variance 

4 0 2 /n 

2 0 2 (1+p)/n 

In most clinical trials, the hypotheses of interest are, either indi-

vidually or jointly, Al = "2 and ¢1 = ¢2. The period contrast 

is not estimable under the model assumed. If there is 

interest in this contrast, a different design should therefore be used. 

The analysis of variance for individual tests of hypothesis is given 

in Table 3.2. 
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The MAT is the difference between the MRT for a non instantaneous input 

(MRTn.i.vl and the MRT as they occur in the in vivo release and 

absorption process (MRTi.v_.) 

MAT= MRT . - MRT. n.1.v. i.v. 

Riegelman and Collier (1980) discuss the estimation and relevance of 

these concepts. 
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C H A P T E R 3 

ASSESSING BIOEQUIVALENCE 

3.1 Introduction 

Methods of assessing bioequivalence may be broadly classified in the 

following manner: 

· (i) methodology employed; hypothesis testing, the use of confidence 

intervals or Bayesian procedures, 

(ii) parametric or non-parametric, and 

(iii) difference or ratio of the parameters involved. 

The simple cross-over design is used so frequently in bioequivalence 

trials that it might be thought of as the standard design (Steinijans 

and Diletti (1983), Huitson et~ (1982)). We shall therefore re­

strict attention to the simple two period cross-over trial and assume 

that the data is a result of such a trial. 

Most of the procedures discussed in this chapter are univariate. How­

ever, in practice bioequivalence is assessed on a number of parameters. 

This is achieved by applying a univariate procedure to each parameter 

individually. The effect is a reduction of the significance levels 

and coverage probabilities. 

The purpose of this chapter is to give a brief review of the two way 

cross-over trial and the methods for assessing bioequivalence. 



Table 3.2 Analysis of Variance for Cross-over Design with Residual Effects (Model I) 

Source of Variation df Sum of squares Expected mean squares 
1 n n 

Residual Effect 2n
1
n
2

n(n2Y1 .. - n1y2 .. )2 02 + 202 + 1 2(A -A )2 
e s 2i1 1 2 

( n1 n2 y2 y2 
Subject (seq) n-2 v1 . v2. 

1.. + 2 .. \ 
~ lj=1 + lj=1 - n,- n:;-J 02 + 202 

J . J. e s 

Treatment 1 (n y - n1v2.1)2 02 + 02 + 
n1n2(<P1-<P2) 2 

n1n2n 2 1.1 e s n 

Error n-2 2 ( ni 
y~ · 1 

Yi. 1 \ 02 + 02 li=1 lj=1 lJ - -n-. ) e s w 1 . 
(Jl 

-·-
Remarks: ( i) Y is the total of all observations on the first sequence, etc. 1.. 

(ii) the sums of squares for error is obtained from the first period only. 
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3.2.2 Model II : Without residual/carry over effects 

If no residual/carry over effects are assumed then a model for the 

data would be 

Y· "k = ]l + iµ. + ~ .. + 'TTk + <P.e + e: .. k i = 1 ,2 
lJ 1 lJ lJ 

j = .1 , ••• ,n i 

k = 1 ,2 (3.2a) 

.e = 1 ,2 

where I/Ji = effect of the ith sequence group and the other symbols 

have the same meaning as for model I. 

The analysis of variance for this model is given in Table 3.3a. 



Table 3.3a Analy~is of Variance for Cross-over Design without Residual Effects (Model II) 

Source of Variation df 

Sequence 

Subject (seq) n-2 

Treatment SST 

Period 

Error n-2 SSE 

Where G1 = y 1. 1 - y 1 . 2 

= difference between 

G2 = y 2. 1 - Y2.2 

= difference between 

n = n1 + n2. 

Sum of squares 

2 {[ ni l (Y. 1-Y. 2>2L 
= ~\. 1 \. 1(Y .. 1-Y .. 2)2J - l. l. f 

'·1= '·J= lJ 1J n. 
l 

Expected mean square 

0 2 + 202 

e s 

2n1n2(¢1-¢2)2 
02 + -----­e n 

2n1n2(n1-n2)2 
02 +------
e n 

02 
e 

the totals for drug N and drug S in first sequence 

the totals for drug N and drug Sin second sequence 

w . 
........ 
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Remarks: A number of authors use a slightly different model to (3.2a). 

The term allowing for the effect of the ith sequence group ~i is 

omitted. This simplifies the model which now becomes 

Y· "k = µ + ~-. + Ti"k +<Po + s. "k lJ lJ . ~ lJ (3.2b) 

The ANOVA for this model is obtained from Table 3.3 by combining the 

sums of squares for sequences and subjects-within-sequence. The re-

sulting sum of squares is called the variation due to subjects. For 

the sake of simplicity they let T = ¢1 = -¢2 (Treatment effect) and 

P = n1 = -n2 (Period effect). This gives ¢1 - ¢2 = 2T and 

n1 - n2 = 2P. It is further assuma:lthat n1 = n2, and let 

aft. = cr~ + 2cr~. 

For completeness, the ANOVA corresponding to these simplifications is 

given in Table 3.3b. 

Table 3.3b Analysis of variance for the cross-over design without 
Residual Effects. (Model II - with simplifications) 

Source of Expected 
Variation df Sum of Squares Mean Square 

Formulations SST = 2n{(Y 1.1+Y 2.2)/2-Y ... }2 cr2 
e + 2nT2 

Periods SSP = 2n(Y -Y •• 1 ••• 
)2 cr2 

e + 2nP2 

Subjects n-1 SSS 2 n/2 a2 = cr2 +20 2 = 2I--1I·-1(Y .. -v )2 1- J- lJ .•.. A e s 

Error n-2 SSE = By subtraction a2 
e 

= Same as in Table 3.3a 

See Steinijans and Diletti (1983), Selwyn et~ (1981), Rocke (1984), 

Flueher et~ (1983). 
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Mendallaz and Mau (1981) use a simplified model but assume that the 

subject effect is fixed for normally distributed data. For log 

normally distributed data, they assume that the subject effect is random. 

The essence of bioequivalence is the comparison of a new formulation, N, 

with a standard formulation, S. To aid recognition the following 

notation will be used: 

1) ~ and µS represent the population means of the bioavailability 

parameter for the new and standard formulations respectively. 

2) YN = v1.1 and Ys = v2.1 will represent the sample means of the new 

and standard formulations respectively. 

3.2.3 Problems of the cross-over design 

The FDA have discouraged the use of the two period cross-over design 

·where unequivocal evidence of the treatment differences is required. 

The essential problem with the cross-over design is the estimation of 

treatment effect in the presence of period interaction, carry over 

effects or group effects. These three effects are totally confounded 

and can only be detected relatively inefficiently because they must be 

tested against the between subject variation. If a treatment by period 

interaction exists but is not detected the estimated treatment effect 

will be biased and perhaps meaningless. 

Against this argument, many statisticians believe that a carry over 

effect is inappropriate for bioequivalence trials. A blood sample drawn 

immediately prior to the drug administration in the second period is 

regarded as sufficient evidence to demonstrate that the drug has been 
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eliminated from the system. This however, does not allow for the pre­

sence of metabolites of the drug, or for other subtle changes induced 

by the drug administration in the first period. Clearly, this is still 

a controversial issue. See Wallenstein and Fisher (1977), Westlake 

(1979), Huitson et~ (1982), Selwyn et~ (1981). 

3.2.4 Non-parametric-analysis of the cross-over design 

Koch (1972), Taulbee (1982) and Steinijans and Diletti (1983, 1985) 

discuss the use of non-parametric methods in the analysis of the two 

period cross-over design. Tests are provided for the hypothesis 

A1 = A2 and ¢1 = ¢2• Equality of direct effects can be examined by 

applying the sign test or the Wilcoxon signed rank test. Koch (1972) 

outlines the steps needed in the analysis. Steinijans and Diletti 

(1983, 1985) show how to compute non-parametric ~onfidence intervals for 

the difference or the ratio of treatment means. 

3.2.5 Formulating other hypotheses 

The classical null hypothesis which the ANOVA address is 

Ho : µN = µs 

Anderson and Hauck (1983) maintain that this hypothesis is inappropriate 

for two reasons. Firstly, it may lead to the situation where a diff­

erence is statistically significant but not clinically meaningful. 

The second concerns the logic of an hypothesis test. They argue that 

in order to demonstrate equivalence, the equivalence hypothesis should 

be the alternate and not the null hypothesis. 
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They set up a null and alternate hypothesis as follows 

or 

and 

and most often A = -B. 

The test statistic is 

where the Y's are the respective sample means, n1 and n 2 the group 

sample sizes (usually n1 = n2) and S is calculated from the appro­

priate ANOVA. T then has a non-central t distribution with non-

centrality parameter 

µN - µ5 - HA+B) 
/.. - -------.--

Rocke (1984) compares four procedures that focus on an hypothesis that 

the true difference o = µN - µ5 is less than some specified tolerance 

/::;.. 

i.e. H : -6. < o < 6. 
0 

or 

He defines two formulations to be bioequivalent with tolerance 6., 

abbreviated B6, if Joi < 6.. 

The four procedures, denoted by P1, P2, P3 and P4, are: 

P1 : construct an ordinary (1-a.)100% confidence interval for o and 

conclude B6 whenever that confidence interval is contained in 

[-6.,6.]. Metzler (1974); Kirkwood (1981). 
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P2 construct a confidence interval symmetric around 0 and conclude 

86 if that interval is contained in [-6,6). Westlake (1972, 1974, 

1975, 1976, 1979). 

P3 use P1 with a (1-2a)100% confidence interval. Westlake (1981). 

P4 Let 0 be an estimate of o and T(x) be a one-sided tail area 

beyond x for the t distribution with v df. Conclude 86 
whenever 

T{(6-IOl)/s} - T{(6+IOl)/s} <;a for IOI ...;; 6 

or 

- T{(6-IOl)/s} - T{(6+IOJ)/s} <;a for IOI > 6 

He proves the following theorem: 

( i ) 

(ii ) 

For any specific instance of 0, s, v and 6, let P1 ' P2' P3 

and P4 be nominal p-values associated with the test procedures 

p 1 ' P2, P3 and P4. Then P4 < P3 < P2 < p 1 • 

If each procedure is run with nominal Sile a, and a1(o), 

a2(o), a3(o) and a4(o) are the actual probabilities of con­

cluding 86 if E(O) = o, then a1(o) < a2(o) < a3(o) < 

a4{o) <a whenever Joi ? 6, with equality if o = 6. Thus P4 
has actual size a whereas the other procedures are conservative 

and have actual sizes strictly less than the nominal size a. 

(iii) If I1, I2, 13 and I4 are nonequivalence intervals for the four 

procedures, then I4 c 13 c I2 c I1. Thus P4 gives the most 

precise nonequivalence interval. 

Mandallaz and Mau (1981) view the bioequivalence problem in terms of the 

ratio of means e = µN/µs· 8ioequivalence is defined as the condition 
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r1 < e < r2 (0 < r1 < 1 < r2). The hypotheses to be considered are: 

H e E [r1, r2J, the null hypothesis of bioequivalence 

K e ¢ [r1, r2J, the alternate hypothesis of no bioequivalence 

They compare Westlake's approximate symmetric confidence interval with 

the well known exact Fieller confidence interval and derive an exact 

version of Westlake's procedure. They also give a Bayesian interpretation 

viz. the posterior probability P[e E (r1, r2)J, to the exact version 

they have derived. This is achieved using a vague improper prior distri­

bution (cf. Box and Tiao, 1973, §1 .3). The data are assumed normal or 

lognormal. 

3.3 Confidence Intervals 

Westlake (1972, 1975, 1976, 1979) has argued strongly that establishing 

a confidence interval is more appropriate than hypothesis testing in 

bioavailability studies. Others who concur with this orinion are 

Metzler (1974), Shirley (1976), Steinijans and Diletti (1983) and Anderson 

and Hauck (1983). Consequently, a number of methods have been derived 

for establishing a confidence interval. These are 

(i) confidence interval based on the ANOVA 

(ii) Westlake's modification of the ANOVA based confidence interval 

(iii) confidence interval based on the paired t-test 

(iv) nonparametric confidence intervals based on the Wilcoxon signed 

rank test 

(v) nonparametric confidence intervals based on Pitman's permutation tests. 
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A brief review of these methods will be given here. The development 

given here follows that given in Steinijans and Diletti (1983). 

For the purpose of computing confidence intervals it will be assumed that 

carry over effects are of no concern. (If they are present they may be 

confounded with direct effects, then only the data from the first period 

can be used.) Using this assumption model II is appropriate, the ANOVA 

of which is given in Table 3.3a or Table 3.3b depending on the assumed 

model. 

3.3.1 Confidence interval based on the ANOVA 

A two-sided (1-a)100% confidence interval for the expected mean difference 

o = µN - µS = n1 - n2 is calculated as follows: 

a + t(n-2; 1 - -2-) 12 MSE/n (3.3) -

where a = (Y1.2 + Y2.1)/2 - (Y1.1 v2.2);2 

= estimated mean difference between the new and standard 

formulations 

MSE = mean square for error in the ANOVA 

t(v,1- ~) = 1 - ~ fractile of the t distribution with v df. 

An approximate (1-a)100% confidence interval for the bioavailability ratio 

e = µN/µ 5 is given by 

(YN + t(n-2, 1 - ~) 12 MSE/n)/Y5 
(3.4) 

If log (AUC) rather than AUC is assumed to follow the normal distri­

bution (Metzler 1974, Westlake 1973, 1976, Steinijans et!!._ 1982) then 

the confidence limits defined by (3.3) apply to logarithms of the 



3. 15 

expected bioavailability ratio. Taking antilogs thus provide (1-a)100% 

confidence limits for the bioavailability ratio itself. A point esti-

mate of this ratio is given by the geometric mean of individual ratios. 

3.3.2 Westlake's modification of the ANOVA based confidence interval 

The confidence interval defined by (3.3) is symmetrical about the esti­

mated mean difference d. In order to shift the emphasis from estimation 

to decision making Westlake (1972, 1976 and 1979) proposed a confidence 

interval symmetric about 0. This is achieved by selecting two con-

stants k1 and k2 that satisfy 

(3.5) 

and 

1 - a (3.6) 

Equation (3.6) ensures that the interval (k1, k2) includes (1-a)100% 

of the mass of the t distribution. 

A (1-a)100% confidence interval, symmetric around 0, is given by 

(3. 7) 

As before, approximate confidence limits can be obtained for the ratio 

11N111s by 

(YN + ki/2 MSE/n)/Ys = 1 '2 (3.8) 

These symmetrical confidence intervals have been critised by both Mantel 

(1977) and Kirkwood (1981). Mantel gives a few exaggerated (his own 

adjective) examples that demonstrate the absurdities that might arise 
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by taking confidence intervals symmetrical about the null value. He 

considers, for example, what happens when the point estimate of a 

difference between two means is far from the null value of zero, e.g. the 

point estimate is 100 : 3. The usual confidence interval is approxi­

mately (94; 106) while that symmetric about zero is approximately 

(-105; 105). Alternately, the outcome 5 + 3 would lead to symmetric 

limits of (-9,935; 9,935). Yet those same symmetric limits would have 

arisen had the outcome been -5 + 3. Mantel also suggests that for 

ratios, symmetric intervals are absurd on the grounds that 0,5 is as far 

from 1 as is 2, 0,1 is as far from 1 as is 10. He also suggests that a 

problem could arise if the confidence interval for a ratio could not be 

constructed. Since the lower bound is 0 the largest possible interval 

is (0,2). Kirkwood makes similar remarks. 

Westlake (1977, 1981) defends his symmetrical intervals on the grounds 

that they were intended solely for use in bioequivalence assessment and 

were essentially proposed as a decision making device, i.e. two formu­

lations are declared bioequivalent if the confidence interval lies 

wholly inside the bioequivalence specification interval which is 

usually symmetric. Rocke (1984) has established that, as a decision 

making device, these symmetrical intervals are superior to the standard 

intervals in the sense that has already been discussed in section 3.2.5. 

Hence both Mantel's and Kirkwood's objections are largely irrelevant in 

bioequivalence assessment. 

3.3.3 Confidence intervals based on the paired t-test 

If no period effect is assumed the model (3.2b) for the ANOVA reduces to 
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Y· 'k = J.l + t;, .. +<Po + c:. 'k lJ lJ ~ lJ 
(3.9) 

Intra-individual differences d1j = y1j 2 - Y1 .1 and d2j = Y2j 1 - Y2j 2 
in sequences 1 and 2 respectively, have expectation and variance 

E(dij ) = µN - J.ls 

V( d .. ) = 202 

lJ e 

Estimating the variance V( d .. ) 
lJ by 

sd2 = \'~ 1\~/21 (d .. -d)2/(n-1) 
l1 = /.J = 1 J 

(1-a)100% confidence limits are given by 

d + t(n-1; 1-a/2) Sd/ln 

As before, approximate (1-a)100% confidence limits for the ratio 

The procedure for log-transformed data is straightforward. Notice that 

the paired t-test is closely related to the ANOVA. The estimate of 

V(d .. ) can be obtained as follows 
lJ 

A 

Var(d .. ) = (SSE+ SSP)/(n-1) 
lJ 

where SSE and SSP are obtained from Tables 3.3a or 3.3b. 

3.3.4 Nonparametric confidence intervals based on Wilcoxon's 
signed rank tests 

Wilcoxon's signed rank test is the nonparametric analogue of the paired 

t-test. The test is based on the assumption that no period effect is 
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present. Intra-individual differencesare denoted by dj, j = 1, ... ,n 

irrespective of the sequence of administration. 

The model is 

d. = cS + s. 
1 1 

i = 1, ... ,n (3.11) 

where the s's are random error terms and cS is the expected difference 

between formulations. The distributional assumptions on the error term 

are that the s's are independent and symmetrically distributed about 

0 from a continuous distribution. See Hollander and Wolfe 0973. pp. 

26-3~ and Steinijans and Diletti (1983, 1985). 

To form a nonparametric confidence interval the n(n+1)/2 arithmetic 

Walsh averages aij are computed 

a . . = ( d . +d . ) I 2 
1 J 1 J 

io<j; j=1, ..• ,n (3.12) 

Let a(1), •.. ,a(n(n+1)/2) denote their ordered values. The (1-a)100% 

confidence interval (L,U) is given by 

= a(n(n+1)/2 + 1 - C) a 

where C = n(n+1)/2 + 1 - t(a/2; n) a 

t(a/2; n) is the critical point of the Wilcoxon sum of 

positive ranks. 

A table of values of Ca and n(n+1)/2 Ca is given in Table 2 of 

Hollander and Wolfe (1973 pp.269-271). 

This method may be modified for ratios instead of differences by taking 

logarithms of the AUC. The details are given in Steinijans and 

Diletti (1983). 
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3.3.5 Nonparametric confidence intervals based on Pitman's 
permutation test 

The model for the permutation test is again given in (3.11) but with the 

distinction that the £'s need not necessarily come from a continuous 

distribution. The distribution is still assumed symmetric though. 

Under the hypothesis 6 = 0, the 2n permutations of signs produce a 

discrete uniform distribution with point mass 

confidence limits are computed as follows: 

-n 2 . The (1-a)100% 

( i ) Let {i 1, ... ,im} denote a nonempty subset of the index set 

{ 1 ,. .. · ,n}. There are 2n-1 such subsets; n have only 1 element 

i . e. m = 1 ' (~) have two ele.nents i.e. m = 2, etc. 

(ii) Let A be the set of all 2n-1 arithmetic averages of observed 

differences di (i = 1, ... ,n): 

A= {M- 1 I~=l dik : {i 1 , ... ,im} c {1, ... ,n}} 

(iii) Let a(1), .. ~ ,a(2n-1) denote the ordered elements of A. 

(iv) The (1-a)100% confidence limits (L,U) are given by 

where k is chosen such that k /2n ..;;; a/2 a a 

This procedure can be modified to ratios in a similar manner to the 

Wilcoxon procedure. 

3.4 Bayesian approach to bioequivalence 

The Bayesian approach to bioequivalence assessment has been derived for 

both the difference e = µN - µS (Selwyn et~, 1981) and the ratio 
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e = µN/µs (Mandallaz and Mau 1981, Fluehler et!}_ 1983) of the formu­

lation means. In both cases the two period cross-over trial is assumed. 

The Bayesian criterion adopted for bioequivalence is a high posterior 

probability that the parameter e, either the difference or ratio of 

formulation means, lies inside a specified interval. 

Selwyn and Hall (1984) extend the Bayesian methodology to other designs 

such as the Latin square and a design where the formulations are 

administered simultaneously. The simultaneous design is achieved by 

tagging a radio active isotope to the new formulation and administering 

both formulations simultaneously. The concentration of tagged and un­

tagged drug are measured simultaneously by the combined use of gas 

chromatography and mass spectrometry of the blood samples. 

Section 3.4.1 considers the Bayesian approach for the difference between 

formulation means without carry over effects, section 3.4.2 includes a 

carry over effect and section 3.4.3 considers the ratio of formulation 

means without carry over effect. 

3.4.1 Difference between formulation means without carry over effect 

Selwyn et!}_ (1981) assume a two period cross-over design and, initially, 

that no carry ov~r effect is present. The model for the data is there­

fore given by equation (3.2b). For simplicity they let 

T = ¢1 = -¢2 (Treatment effect), P = n1 = -n2 (Period effect) and 

0 2 = 0 2 + 202 
A e s· 
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The criterion adopted for bioequivalence is a high posterior probability 

that the difference in formulation means is less than some fraction, 

say k, of the mean of the standard. With the above notation 

µ5 = µ + T and µN = µ - T. The criterion is 

(3.13) 

After substituting for µ5 and µN into (3.13) the criterion for bio­

equivalence translates into 

or 

lµN - µsJ < k µs 

Iµ - T - µ - TI < k ( µ+ T) 

l2TI < k(µ+T) 

where k1 = -k/(2+k) and k2 = k/(2-k) 

(3.14) 

The posterior density of µ and T is computed and then this density 

is integrated over the wedge shaped region defined by (3.14) to obtain 

the posterior probability. If the posterior probability is sufficiently 

high the formulations are considered bioequivalent. Non-informative 

priors are used and the components of the likelihood are assumed to be 

normal or chi-squared. 

They test the sensitivity of the posterior probability on the prior by 

considering four different non-informative priors 
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p 1 ( µ ,P, T, cr~, crA) 
-2 -2 

ex: cre crA 

p 2 (µ,P,T,cr~,crA) 
-2 -2 

for a2 > a2 
ex: cre crA A e 

p 3 (µ,P,T,cr~,crA) 
-1 -1 (3.15) 

ex: cre crA 

p4 (µ,P,T,cr~,crA) 
-1 -1 

for a2 > a2 ex: cr 
e 0A A e 

They give the following discussion on these priors: 

The priors p1 and p2 are obtained from Jeffrey's (1966)* rule. 

Prior p1 results in a joint posterior density for µ and T, which 

is the product oft-densities.and thus conforms most closely to standard 

practice. Prior p2 incorporates the knowledge that crA > cr~. However 

the difference is only expected to matter if the F ratio for subjects 

is small. Priors p3 and p4 are flatter than p1 and p2 and hence 

l~ad to longer tailed posterior densities for µ and T. 

Denoting the sum of squares due to subjects and error by SSS and SSE 

respectively the log likelihood is 

" " 
tn L = -n tn crA - n tn cre - n(µ-µ) 2 /crft. - n(P-P) 2 /cr~ -

" n(T-T) 2 /cr2 - SSS/2cr2 - SSE/2cr2 
e A e (3.16) 

Combining the prior p1 with the likelihood and integrating out P 

from the posterior density yields 

(3.17) 

" where Q1 = 2n(µ-µ) 2 + SSS 
" 

Q2 = 2n(T-T) 2 +SSE 

*Jeffrey's Rule for obtaining non-informative prior densities (Box and 
Tiao, 1973, p.54): The prior distribution for a set of parameters is 
taken to be proportional to the squareroot of the determinant of the 
information matrix. 
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By applying (A2.1.2) of Box and Tiao (1973) they show that the posterior 

density of µ and T based on prior p1 is 

p1(µ,Ti!) = n(n-2){n(SSS.SSE)~}- 1 {1+2n(~-µ) 2 /SSS}-n/ 2 x 

{1+2n(T-T) 2 /SSE}-(n- 1)/2 (3.18) 

The posterior probability for assessing bioequivalence is obtained by 

integrating (3.18) over the region defined by (3.14). This integration 

will have to be done numerically. Selwyn et~ (1981) recommend the 

Gauss-Hermite procedure. They also suggest that this will be the most 

difficult aspect of the Bayesian method for the practising statistician. 

Let C denote the constraint aA > a~. Then the posterior densities that 

correspond to priors p2 and p4 are related to the unconstrained 

priors p1 and p3 as follows (see 1 .5.5 of Box and Tiao 1973) 

(3.19) 

and 

(3.20) 

The probabilities on the right hand side of (3.19) and (3.20) are com­

puted using p1 and p3 respectively. These turn out to be (details 

are given in Selwyn et~ (1981) and Box and Tiao (1973)) 

P1(Ci!) = P[Fn- 1,n_2 < (n-2) SSS/{(n-1)SSE}] (3.21) 

and · 

(3.22) 

Similarly 
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{1+2n(T-T) 2 /SSE}-n/ 2+1 

P3[CJ!_J = P[Fn-2,n_3 < (n-3)SSS/{(n-2)SSE}] 

P3[CJu,T,!_J = P[Fn- 1,n_2 < (n-2)Q/{(n-1)Q2}J 

(3.23) 

(3.24) 

(3.25) 

3.4.2 Difference between formulation means with carry over effects 

Selwyn et~ (1981) incorporate a carry over effect into the Bayesian 

framework by putting a normal prior on the carry over. Letting R 

denote the carry over of the standard formulation, with prior density 

centred at 0 with standard deviation oR, the.joint prior becomes 

p(µ,P,T,R,o~,ol) ~ 0;2 0~2 exp(-R2 /2oR) (3.26) 

oR can be thought of as reflecting one's prior belief in the plausi­

bility o.f a carry over effect. A oR close to zero indicates a strong 

prior belief of no carry over effect while a large oR corresponds to 

a suspected presence of a carry over effect: 

They derive the conditional posterior density of µ and T given 

R and Y to be 

p(µ,TJR,!_) = n(n-2){n(D·SSE)i}-f{1+2n(C-µ) 2 /D}-n/2 x 

{1+2n(T-E) 2 /SSE}-(n-1)/2 

A 

where D = SSQ + n(R-R) 2 /2 
A 

E = T + R/2 

SSQ = sums of squares for subjects within sequences 

(3.27) 
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The posterior conditional density for R given Y is 

p(Rj_r) ~ [1+n(R-R) 2 /{2(n-2)SSQ}J-(n-1)/2exp(-R2 /2crR) (3.28) 

3.4.3 Ratio of formulation means 

Once again, the two period cross-over design is assumed. The data are 

assumed to be normally or log normally distributed and no carry over 

effect is allowed. Mandallaz and Mau (1981) derive the theory while 

Fluehler et ~ (1983) give a practical discussion via an example. 

The condition of bioequivalence is accepted if the posterior probability 

that the ratio e = µN/µs of formulation means belonging to the interval 

(r1, r2) is sufficiently large. 

i.e. if P[8E(r1,r2)J is large. 

For normally distributed data this posterior probability can be computed 

by -
(3.29) 

where t 2(\) is the density of a t-distribution with n-2 df n-
A = (e-r 1 )n~/(CV(1+r1)~) 
s = (e-r2 )n~/(CV(1+r2)~) 
A 

e = YN/Ys 

CV = (Error mean square)~;v5 
For log normally distributed data a similar formula applies except that 

YN and v5 will denote the means of the log-transformed data and the 

limits of integration are given by 
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A = (YN - y s - tn (r 1 ))n~/(2~S) 
B = (YN - y - tn (r2 ))n~/(2~S) s 

The derivation is given in Mandallaz and Mau (1981). 

3.5 Discussion 

Perhaps the most pressing question at the end of this review is: how 

does a pharmacologist draw useful information from a bioequivalence 

trial? Does he resort to frequentist methods or to Bayesian methods? 

Does he test hypotheses or compute confidence intervals? Should he work 

with the difference of two means or their ratio or perhaps even with 

individual ratios? 

There are no clear-cut answers. The choice between frequentist and 

Bayesian approach is a continuing controversy, see for example 

Geertsema (1983). Ultimately this choice may be largely a matter of 

individual preference, but it should be noted that the Bayesian methods 

nffered so far depend entirely upon the assumption that the bioavailability 

estimates are normally distributed. While this may be a reasonable 

assumption for AUC it may not be for CMAX or TMAX. 

In the assessment of bioequivalence the pharmacologist must make a 

decision as to whether or not two substances are for all practical 

purposes equivalent, and also must be able to give some indication of 

the amount of variation there is in his estimate. 

Thus it would seem that both hypothesis testing and an estimate plus 

confidence interval approach seem appropriate. 
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In the frequentist framework, for decision purposes it would appear 

that the methods of Anderson and Hauck (1983) a~d Rocke (1984) are most 

appropriate since the null hypothesis tested is that of non-equivalence 

rather than equivalence. These tests also depend on the assumption 

of normality or log-normality. 

In giving a confidence interval again one has the choice between normal 

theory and non-parametric intervals. Here, as in the Bayesian approach, 

the normality assumption for AUC may be reasonable but not for CMAX 

or TMAX. Thus the non-parametric techniques offered by Steinijans and 

Diletti (1983, 1985) would be more appropriate and for consistency of 

analysis it would seem best to apply them to all three quantities. 

In practice assessment of- bioequivalence is essentially a multivariate 

problem since AUC, TMAX and CMAX are interdependent, and a decision 

would rarely be made on the basis of one of these alone. Classical 

multivariate statistical techniques depend heavily upon the assumption 

of joint normality of the variables and as remarked earlier with such 

diverse quantities as AUC, TMAX and CMAX, this assumption is difficult 

to justify. The pragmatic approach has been to ignore the interdepend­

ence and apply univariate procedures to each parameter individually. 

This affects significance levels and coverage probabilities. 

Another problem in assessing bioequivalence is the definition of bio­

equivalence itself. Although this is a clinical problem and not a 

statistical one, it is inevitable that the available statistical mac­

hinery will influence the clinical definition, perhaps even dictate it. 

Certainly if pharmacologists wish to make use of statistics to assess 
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bioequivalence they are forced to make use of the available procedures 

and to formulate their problems conformable with these procedures. 

3.6 Recommendations 

In order to remedy some of the problems outlined in the previous section, 

we propose that Efron's (1979) bootstrap procedure should be used to 

assess bioequivalence. The bootstrap is extremely simple and versatile. 

Because of this versatility it will allow a clinical definition of 

bioequivalence that reflects the clinical requirements and does not 

depend on the available statistical procedures. 

The bootstrap frees one from simple distributional assumptions and 

tractible mathematics that is the hallmark of traditional statistical 

procedures. It achieves this at the expense of computational effort. 

However, with the advent of modern micro computers and the low cost of 

computing this is no drawback at all. 

An overview of the bootstrap method is given in Chapter 4 and its appli­

cation to bioequivalence assessment is discussed in Chapter 5. 
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C H A P T E R 4 

BOOTSTRAP METHOD 

4.1 Introduction 

In 1979 an article entitled "Bootstrap Methods : Another look at the 

Jackknife" appeared in the Annals of Statistics. The author was 

Bradley Efron of Stanford University. In that article he outlined 

a statistical method that is extremely simply yet extremely versatile. 

He named the method "the bootstrap." 

The bootstrap provides a non-parametric method for the following 

familiar problem: Given a random sample ! = (X 1, •.. ,Xn)' of size n 

from an unknown probability distribution F estimate the sampling 

distribution of some prespecified random variable T(!,F) on the 

basis of the observed data ~ (Efron 1979(a), Singh (1981)). 

Efron's bootstrap has proved to be a powerful and popular tool among 

statisticians. This is evident by the increasing number of journal 

articles on both theoretical and applied aspects of bootstrapping. 

The random variable T(!,F) is often of the following form : Let 
A 

e(F) be a functional which is to be estimated and let 8(!) be an 

estimator of e(F). Then we would define 

A 

T(!,F) = e(X) - e(F) 

= estimator - parameter 
.A 

= 8 - 8 
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A 

If e is an unbiased estimater of e then expectation of T will 

be zero. Knowledge of the true distribution of T would enable one 

to determine confidence intervals for e. 

Alternatively, let g : lR -+ lR be monotonic, then T can have the 

form 
A 

T(!,F) = g{8(!)} - g{e(F)} 

An example of a random variable T(!,F) is the arc tanh transformation 

of the correlation coefficient that Fisher proposed. Let p denote 

the population correlation coefficient and r the sample correlation 

coefficient. Fisher considered the random variable 

T(X,F) = arc tanh r - arc tanh p 
A 

= g{e(!)} - g{e(F)} 

Here g(t) =arc tanh (t) is a monotonic function. This example is 

discussed in more detail in section 4.11. 

Another common choice for the random variable T is the 11 t-statistic 11 

form 

A 

T(!,F) = g{S(!)} - g{e(F)} 
s{e(F)} 

Here s{e(F)} is meant to serve as a scale factor. The standardised 

sample mean is of this form, with g being the identity function. 

A useful and convenient estimator for e(F) is 
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where FX is the e.d.f. (empirical distribution function) of the random n 
sample x1, ••. ,Xn. If e(F) is a sufficiently smooth real valued 

functional then e(F~) is an asymptotically optimal estimate of e(F) 

in the locally asymptotic minimax sense (Beran (1982)). This is however 
" by no means the only choice for 8(!). Any estimator may be used. Of 

course, the choice of estimator will affect the sampling distribution 

of T. 

4.2 The Bootstrap Approximation 

The following formal description of the bootstrap is taken from Singh 

( 1981) : "Let {X 1, ••• ,Xn} be a .tr.a.ndom -6ample 06 ,t,,{,ze n 6Jz.om a 

popula.t{.on wlth fu.:tJU.bu-tion F and let T(X1, ••• ,Xn; F) be a 

-6pecJ..6,{,ed Jz.andom vaUable 06 bi:teJz.ef.>:t, po,t,,t,,{,bly depend,{,ng on :the cm-

X 
~nown fu.:tJU.bu-tion F. Let Fn deno:te :the e.d.6. 06 {X1, ••• ,Xn}, 

,{,,e. :the fu.:tJU.bu-tion :tha:t pu:t6 ma-6-6 1/n a:t each 06 :the po,{,n:t-6 

x1, ••• ,Xn. The boou:tJz.ap method ,{,}., :to appJz.Ox,{,ma:te :the -6ampUng fu­

.:tJU.bu:t.<.on 06 T(X1, ••• ,Xn; F) undeJz. F by :tha:t o{i T(Y 1, ••• ,Yn; ~) 

undeJz. ~ wheJz.e {Y 1, ••• , Y n} deno:te-6 a Jz.andom -6ample 06 ,t,,{,ze n 

1Jz.om 0 " u n· 

H will denote the sampling distribution of T(X1, ••• ,Xn; F) under 

F; Hb will denote the distribution of T(Y 1, ••• ,Yn; F~) under F~ 

and will be called the bootstrap distribution. 

The bootstrap distribution Hb, of T(Y 1, ••• ,Yn; F~) x under Fn, is 

necessarily discrete. There are, in fact, nn ways of drawing a 

random sample of size n from F~. Each of these has equal probability 
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-n mass of n • Therefore, in principle at least, it is possible to 

systematically obtain the bootstrap distribution Hb. The difficulty 

is that nn soon becomes impossibly large. 

The principal methods to approximate Hb are: 

Method 1. Direct theoretical calculation. This is usually very 

difficult in all but the simplest of examples. Efron (1979a) derives 

the bootstrap distribution of the median. 

Method 2. Monte Carlo approximation. This is the method most frequently 

employed and makes the bootstrap easy to achieve using a computer. The 

Monte Carlo algorithm is described later in this section. See also 

Efron (1979a). 

Method 3. An Edgeworth series approximation. This method has been 

used to derive asymptotic results for the bootstrap for special cases 

of the random variable T. The standardised sample mean is one such 

case although many other cases have also been considered. Bickel and 

Freedman (1980, f981), Singh (1981), Beran (1982), Efron (1984a). This 

approximation is discussed later in this section. 

The Monte Carlo algorithm for approximating the bootstrap distribution 

is: 

(i) Construct Fn, the empirical distribution function of the obser­

vations x1, .•• ,xn. Fn(t)=n- 1 I~= 1 I(xi <; t) where I is the 

indicator function. 

(ii) Draw a bootstrap sample v1, ••• ,Yn by independent random sampling 

from Fn. In other words make n random draws with replacement 

from {x 1, x2, •.• ,xn}. Compute T for this sample. 
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(iii} Do step (ii) some large number 11 811 of times to obtain the values 

T1' .•. ,T8• 

The distribution, denoted by HS, that puts mass 1/B at each value 

T1, ... ,T8 is the Monte Carlo approximation to the bootstrap distribution 

Hb of T(Y1, •.• ,Yn; Fn) under Fn. Note that as B + oo the approxi­

mation, by definition, becomes exact. It is conventional not to distin­

guish between the bootstrap distribution Hb and the Monte Carlo 

approximation HS, calling both "the bootstrap distribution" (Efron 

1981a). We shall not follow this convention. 

In using the Monte Carlo approximation one must consider a suitable 

choice of B. The choice of B will depend to a large extent on those 

aspects of the bootstrap distribution Hb in which one is interested. 

Efron (1981a) suggests that B in the range 50-200 is adequate for 

estimating standard errors but that larger values are needed for confi­

dence interval calculations. For calculating a 1-2a confidence 

interval with a= 0,16 for a correlation coefficient he uses B = 1000. 

Of course, as a decreases so B will need to increase. However one 

will need to consider each application of the bootstrap on its own 

merits. General rules are not yet available. 

The Edgeworth series expansion may be described as follows: The true 

sampling distribution H(x) of T(!,F) under F is a function of the 

sample size n, the functional form of T and the distribution F. If 

H tends to the standard normal distribution as n + oo then for large n 

one can approximate the sampling distribution H(x) by the standard 

normal distribution ~(x). An example of such a random variable is the 

standardized sample mean. Many others, especially those that depend on 
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sums of variates, like the moments also tend to normality under a 

central limit effect. However, this approximation by the standard 

normal distribution effectively uses only the first two moments. 

Remembering that some random variables tend to nonnality much more 

rapidly than others there may be advantage in utilising higher moments 

or cumulants. 

In these circumstances the Edgeworth series may provide an approximation 

to H(x) which is an improvement over ¢(x). The Edgeworth series 

achieves this improvement by making use of the first four moments or 

cumulants of H(x). 

Suppose that H(x) has zero mean and unit standard deviation while its 

skewness y1 and excess y2 are (y1 ,y2 are the 3rd and 4th cumulants 

(Kendall and Stuart (1977) p.88): 

Y1 = µ3/03 or Y1 = ].13 
3j2 

µ2 

y = µ /a'+ - 3 2 4 or Y2 - ]J /µ2 -- 4 2 3 

The Edgeworth approximation to H(x) 

(see Cox and Hinkley (1974) p.464). 

up to terms of order 

G(x) = ¢(x) - ¢(x){6Y)n H~(x) + 2Yin H3(x) + iYJn H5(x)} 

-1 
n is 

where Hr(x) denotes the rth degree Hermite polynomial defined by 

Hr(x) = (-1)r e~x2 Dr(e-~x2) 

Here D = -£x is the differential operator and ¢(x) and ¢(x) are, 

respectively, the standard normal distribution and density functions. 

The three Hermite polynomials of interest are (Kendall and Stuart (1977) 

p.167) . 



H2{x) = x2 - 1 

H3(x) = x3 - 3x 

H5{x) = x5 
- 10x3 + 15x 

4.7 

In order for G{x) to be of practical value y 1 and y 2 need to be 

expressed in terms of the parent population F. The rth moment of T, 

that is the rth moment of its sampling distribution H(x) is (Kendall 

and Stuart (1977) p.243). 

-oo -oo 

This will express moments of H in terms of moments of F. The 

Edgeworth approximation to the bootstrap distribution Hb(x) is obtained 

by replacing F with F~. In this case y 1 and y 2 are the skewness 

and excess of Hb(x) and are expressed in terms of the c.d.f. 

We shall denote the Edgeworth approximation to the bootstrap distribution 

by H (x). e 

4.3 Standard Errors 

How does one use the bootstrap to estimate the standard error of a 

statistic T = T(X1, ••• ,Xn; F)? Our development will closely follow that 

of Efron (1981a). The true standard error of T is a function of the 

sample size n, the functional form of T and the distribution F. 

We denote this standard error by o(n,T,F). 

(4.1) 

The only unknown in this expression is F which we estimate using the 
x e.d.f. Fn. The bootstrap estimate of a, denoted by ab, is 
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;b = cr(n,T,F~) = [VARFX T(Y 1, ..• ,Yn; F~)]i 
n 

( 4. l). 

For most statistics cr8 cannot be expressed in closed form. However 

it is easily approximated by Monte Carlo methods Given the Monte Carlo 

values r 1, .•• ,T8 crb is approximated by 

;s = [{r~= 1 tri - r.J 2 }1ts-1)]i (4.3) 

T. = B- 1 l~= 1 Ji (4.4) 

Notice that we are using an approximation chain here : as is the 
A 

Monte Carlo approximation to crb which in turn is the bootstrap 

approximation to cr. 

(4.5) 

4.4 Confidence intervals 

Suppose that our problem is to construct a confidence interval for the 

functional e(F) using the bootstrap method. By a confidence interva{ 

we mean lower and upper points L = L(~) and U = U(X) such that 

P[L < e < U] = 1-2a. Our discussion will be confined to central confi­

dence intervals, i.e. intervals (L,U) such that P[e < L] = 

P[e :> U] = a. 

Tibshirani (1984) discusses five methods for constructing a central con-

fidence interval for e using the bootstrap. These are: the pivotal, 

generalised pivotal, percentile, bias-corrected percentile and the 

tilting methods. Tibshirani's paper expands the methods proposed by 

Efron (1981a). We will restrict attention to the first four methods 

listed above. 
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4.5 The Simple Pivotal Interval 

Suppose that the random variable of interest has the form 

" T(!, F) = 8(!) - 8(F) 

. " 
or T=8-8rvH 

The bootstrap approximation to this is 

x " 
- 8(F~) T(1_, Fn) = 8(1_) 

" " 
Tb = 8* - 8 rv Hb 

·In order to construct a confidence interval for 8 we make two assumptions: 

A1 : the distribution H does not involve 8. 

In other words we assume that 
" T = 8 - 8 is pivotal. 

A2 the bootstrap distribution Hb closely approximates the 

distribution H. 

Assumption A2 is based on the premise that if Fn is close to F, the 
" " bootstrap distribution of 8* - 8 will be close to 8 - 8, as long as 

8(·) is a reasonably smooth functional. 

Under A1 and A2 we have 

1-2a = P[H-1(a) < e - 8 < H- 1(1-a)] 
" -1 " 1 1-2a = P[8 - H (1-a) < e < 8 - H- (a)] (4.6) 

where H- 1(k) denotes the kth percentile of H and 8 is the value 

obtained from the original sample. 
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Since H is unknown we approximate H- 1(.) by Hb 1(.). 

A 1 A 

1-2a = P[e - Hb (1-a) < e < e -1 ] - Hb (a) 

so A -1( A -1 
(e - Hb 1-a), e - Hb (a)) ( 4. 7) 

is a central (1-2a)100% Bootstrap Pivotal interval. 

Of course as has been pointed out previously, one seldom has the bootstrap 

distribution Hb but rather the Monte Carlo approximation Hb. There­

fore in practice a (1-2a)100% Bootstrap Pivotal interval is 

A 1 A 1 
(8 - HS- (1-a), 8 - HS- (a)) (4.8) 

Notice again the approximation chain 

A -1 A HS-1 (a)) (8 - HS (1-a), 8 (4.9) 

B+oo 
A -1 A Hb1(a)) (8 - Hb ( 1-a), 8 (4.10) 

n+oo 
A -1 A -1 (8 - H ( 1 -a) , e - H (a) ) (4.11) 

Interval (4.8) can be expressed in a different manner as follows: 
A 

Let CDF(t) be the Monte Carlo approximation to the bootstrap distri-
A 

bution of 8* 
A 

i . e. · coF(t) = H;(t-e) = #( 0 * 8~ t) V t E lR 

and -1 A -1 Hb (a) = CDF (a) - 8. V0<a<1 

Substituting this into (4.8) the bootstrap pivotal interval becomes 

A A -1 A A -1 
(28 - CDF (1-a), 28 - CDF (a)) (4.12) 
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Example: Consider a random sample x1, ..• ,Xn from the N{µ,1) 
A 

distribution and let e = In X and e = ;n e. 
A 

Here T = /n{e-e) is pivotal with true distribution H(x) which is 

equal to the standard normal distribution ¢{x). The usual (1-2o:)1oo% 

confidence interval is 

or, since in this case H(x) = ¢{x) 

- -1 - -1 ( x - ¢ ( 1 -o:) ' x - ¢ ( 0:) ) • 

However this confidence interval may be expressed in terms of the distri­

bution of e = lrl X which is N{µ,1), say C(x). We have 

C(x-e) = ¢{x) = H(x) 

and hence 

H-1(0:) = ¢-1(0:) = c-1(0:) - e 

~ c- 1(a) - x 

Substituting this into the above interval, we obtain 

- -1 - -1 (2X - C (1-o:), 2X - C (o:)) 

If the parent distribution is not known and T is pivotal, we replace 

the true distribution H(x) by its bootstrap estimate, either Hb or 
A 

Hb and replace C by CDF. The two intervals are then 

- -1 - -1( (X - Hb (1-o:), X - Hb o:)) 

and 

- A -1 - A -1 
(2X - CDF (1-o:), 2X - CDF (o:)) 
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4.6 Generalised Pivotal Intervals 

For the simple pivotal we assumed the following form for the 

random variable of interest 
• A 

T = T(X, F) = e - e 
A 

We now suppose that T is an arbitrary, but known, function of e and 
A A 

e, say t(e,e). We also require that t(e,e) be monotone in e. Let 

the inverse of t(.,·) with respect to the second argument be t2 1(.). 

Again we assume that random variable 

A 

T(~, F) = t(e,e) ~ H (4.13) 

is pivotal and that the bootstrap distribution of 

(4.14) 

closely approximates the true distribution H. 

From (4.13) and the pivotal assumption we have 

1-2a = P[H- 1(a) < t(e,e) < H- 1(1-a)l 

If t(·,·) is monotone increasing in e then 

1-2a = ~[t2 1 {H- 1 (a)} < 8 < t21{H-1(1-a)}] (4.15) 

-1 -1 ) Approximating H (.) by Hb (· or its Monte Carlo approximation 

Hb- 1(.) we obtain the generalised bootstrap pivotal interval 

If t(.,.) is monotone decreasing in e then the interval is 
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4.7 Percentile intervals 

\ 

If in addition to assumptions A1 and A2 we can further assume that 

A3: H is symmetric around 0 

i.e. 

and 

H(-t) = 1-H(t) 

H- 1(1-a) = - H- 1(a) 

then (4.12) becomes 

V t E 1R 

V 0 <a< 

(4.18) 

To see this note that i'f H is symmetric around zero~ then Hb should 

also be close to symmetric around zero hence also Hb. Therefore 

CDF is (close to) symmetric around 8. 

A 1 A -1 A 

~[CDF- (a) + CDF (1-a)] = 8 

A -1 A A -1 
CDF (1-a) = 28 - CDF (a) 

A -1 A A -1 
and . CDF (a) = 28 - CDF (1-a) 

4.8 .Generalisation of the Percentile Interval 

Let us suppose that a symmetric pivot exists on some other scale, i.e. 

A 

A4 : g ( 8) - g ( 8) '\, H 

and 
A A 

AS: g(8*) g(8) '\, Hb 

with H symmetric around zero and g(·) an unknown, monotone increasing 

function, then as for {4.15) we get a central confidence interval for 

g(8): 
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A 

where Gb is the bootstrap distribution of g(8*). Transforming back 

to the e scale gives a confidence interval for e: 

(4.20) 

A -1 
CDF (1-a)) (4.21) 

which is again a percentile interval. A similar argument applies if 

g(·) is monotonic decreasing. Thus the percentile interval has the 

correctcoverage if a symmetric pivotal exists on any scale. The real 

benefit is that we do not have to know g(·) because the resultant 

interval (4.21) does not depend on g(·). 

4.9 Bias-Corrected Percentile Intervals 

If the distribution H in assumption A4 is symmetric around some value 

µ ~ 0, the percentile interval will be biased and may not have the 
A 

correct coverage. This would happen if e was a baised estimator of 

e. It is possible to estimate µ and derive a corrected interval 

provided that we are willing to assume a parametric form for H. 

Let H be a symmetric distribution that belongs to a symmetric location­

scale family, say H(xlµ,o) = H0 (x~µ) . Initially, we consider the case 

with a= 1. We assume that a pivot exists on some scale and that 
A 

g(e) - g(e) ~ H
0

(x-µ) 
/ 

(4.21) 

and 
A A 

g(e*) - g(e) ~ Hb(x-µ) (4.22) 

where g is some monotonic function. 
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We can estimate µ by noting that. 
A 

P[g(e) - g(e) < OJ = H
0

(-µ) 

and 
A A 

P[g(8*) - g(e) < 0] = Hb(-µ) 

But, since g is monotonic 
A A A A 

P[g(8*) < g(e)] = P[e* < 8] = CDF{e) 

Hence, from (4.24) and (4.25) we have 

. 1 A A 

µ = - Hb {CDF{e)} 

since by assumption Hb ~ H
0 

we estimate µ by 

b = - H- 1{CDF(e)}. 
0 . 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

( 4. 27) 

In order to derive a confidence interval for e we consider the distri-
A 

bution of g(e) - g(e): 

By assumption 

A 

g(e) - g(e) ~ H(µ) 
A 

~ g(e) - g{e) - µ ~ H 
0 

A 

~ g(e) - g(e) + µ ~ H 
0 

·: H 
0 

symmetric about zero 
A 

~ g(e) - g(e) ~ H - µ 
0 

Define a distribution function o9 as follows: 

o9(g(t)) = P[g(e) - g(e) <: g(t) - g(e)] 
A A 

= P[g(e) - g(e) + µ <: g(t) - g(e) + µJ 
A 

= H
0

(g(t) - g(e) + µ) (4.28) 
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Note that the quantiles of Dg would define a confidence interval for 
A 

g(e) - g(e), hence also for g(e) and for e. We shall see that g 

does not need to be known. 

Next we consider the bootstrap distribution and its Monte Carlo approxi-

mation. 
A A 

CDF(t) ~ P[e* < t] 
A 

= P[g{e*) < g(t)] 

" " " = P[g(e*) - g(e) - µ < g(t) - g(e) - µ] 

" = Hb{g(t) - g(e) - µ} 

" 
~ H

0
{g(t) - g(e) - µ} · (4.29) 

A 

Solving (4.29) for g(t) - g(e) we get 

g(t) - g(e) ~ H~ 1 {CDF(t)} + µ (4.30) 

A 

Substituting (4.30) for g(~) - g(e) and (4.27) for µ into (4.28), 

we obtain the approximation 

(4.31) 

Setting (4.31) equal to a and 1-a and solving for t we get a 

1-2a confidence i nterva 1 ( L, U) for e where 

L = coF- 1 [H0 [H~ 1 (a) + 2H~ 1 {cDF{eJ}lJ 

u = CDF- 1 [H0 [H~ 1 (1-a) + 21.f
0
1{CDF(e)}Jl 

If a ~ 1 and we repeat the above derivation, we get 

1 A A 

b = ~ = -H- {CDF(e)} a o 

and we obtain the same interval as defined by (4.32) and (4.33) 

(4.32) 

(4.33) 
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Note that when b = 0, the bias corrected percentile interval reduces 

to the percentile interval. 

Tibshirani (1984) has compared the amount of bias correction (that is 

H 0 [H~ 1 (a) + 2H~ 1 {CDF(e)}]) for the normal, logistic and Cauchy distri­

butions when a = 0.05 and for various choices of H~ 1 {CDF(e)}. He 

concludes that the choice of symmetrical distribution H
0 

appears to 

make little difference. 

4.10 Discussion of Bootstrap confidence intervals 

Four methods of constructing bootstrap confidence intervals have been 

derived : the pivotal, the generalised pivotal, the percentile and 

the bias-corrected percentile. Each of these methods differ in their 

assumptions. 

In order to construct a pivotal interval we had to specify the exact 

form of the pivot but nothing was assumed about the pivotal distribution. 

In order to build a percentile interval we did not have to know the exact 

form of the pivot, g~ but we did assume that the pivotal distribution 

was symmetric about zero. For the bias-corrected percentile interval 

we assumed a parametric distribution, symmetric about some point µ. 

A 

In order to check whether or not a random variable t(e,e) is a pivotal 

quantity Hinkley (1983) has suggested that one should "bootstrap the 

bootstrap. 11 Specifically, let z1 = (Y1, ••• ,Y~) be a random sample 

of size n from the distribution Fn and let G~ be the e.d.f. of z1. 

Suppose now that one has M such random samples z1, ... ,ZM with 
1 2 M corresponding c.d.f. 1 s Gn, Gn,··· ,Gn. If one now performs a separate 
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bootstrap on each of these distributions one will have a check on the 
A 

distribution of t(e,e) for a variety of values of e. 
1 

= e ( G~). 
A 

Gi Denote the bootstrap distribution of t(e,e) under by Hbi n 
A 

and its Monte Carlo approximation by Hbi. If t(e,e) is indeed a 
A 

pivotal random variable then we expect the distribution of t(e,e) under 

G~ to be identical for every G~ i.e. we expect Hbl' Hb2, .•• ,HbM all 

to be identical. A plot of quantiles of Hbi or, perhaps H*b. vs e. 
1 1 

should produce lines of constant height. A trend upward or downward or 

a change of spread would be symptomatic of a non-pivotal quantity. 

4. 11 Examp 1 es 

Tibshirani (1984) gives three examples to illustrate the theory. We shall 

expand on his discussion. In each case, the data are assumed to be 

Gaussian. We also cite an example from Efron (1984a). 

Example 1 The Mean : Let e = E(X), e = X = e(F~). Suppose the variance 
l A 

02 is known. Since n2 (8-8)/0 is pivotal with symmetric distribution 

the bootstrap pivotal interval and the percentile interval will both 

apply. We expect both methods to yield similar results, each with 

approximately the correct coverage. 

Example 2 The Correlation Coefficient : Let e = p be the population 

correlation coefficient and e = r = e(FX) the sample correlation co­n 

efficient. By the familiar arc tanh transformation due to Fisher we know 

that the .r.v. T = arc tanh r - arc tanh p is approximately 

N(e/(2(n-1)); 1/(n-3)). Here T is biased but has a symmetric, para­

metric pivotal distribution about µ = e/(2(n-3)). Hence the bias 

corrected pivotal interval using the normal family should yield limits 
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with the correct coverage. The uncorrected percentile interval, Efron's 

initial example, is expected to be biased (Efron, 1979a, 1983). 

Example 3 The Variance : Let 8 = E(X-E(X)) 2 = f (x-µ) 2 dF(x). 

This provides an interesting example where one may want to choose 8 

different from 8(F~) = L(Xi-X) 2 /n which is a biased estimate of 8. 

We shall compare the two familiar estimators 

A 

E(8 1) = (n-1)8/n 

and 
A 

82 = L(Xi-X) 2 /(n-1) 

A 

Case 1 : 81 = L(Xi-X) 2 /n 

It is well known that the random variable 
A A 

t1(8,8) = n8 1/8 ~ x2 (n-1) = H 

Since x2 (n-1), or H, does not depend on 8 it follows that t1 

is a pivotal quantity. Hence we expect the generalised pivotal 

interval to have the correct coverage. Denoting the Monte Carlo approxi-
A 

mation to the bootstrap distribution of t1~1'8) by Hb and the 

inverse of t1(.,.) w.r.t. the second argument by t121(.) the 

generalized percentile interval is obtained using the interval (4.17) 

-1 -1 -1 -1 (t12 {HS (1-a)}, t12 {HS (a)}) (4.34) 

A 

Note that since the true sampling distribution H1 of t1(8 1 ,8) is 

not symmetric one would not expect the percentile or bias corrected 

percentile interval to give the correct coverage unless of course a 

symmetric pivotal exists on some other scale. Notice also that one 

could apply the bootstrap to the random variable 

tn(t1/n) = tn 8 - tn 8 ~ tn x2 • Again the generalised pivotal 

interval should give the correct coverage, with the obvious adjustments. 
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A 

Case 2 : 8 = ~(Xi-X)/(n-1) 

Here we have 

A A 

t2(8,8) = (n-1)8/8 ~ x2 (n-1) ~ H1 

Like t1, this random variable t2 is pivotal. 

By an analogous argument the generalised pivotal interval is appropriate. 

Denoting the inverse of 
1 . 

t2(·,·) w.r.t. the second argument by t22 (.), 

the required interval is 

( -1 -1( ) t22 £HS 1-a J, 

The bootstrap could be applied to the random variable 
A 

tn(t2/(n-1)) = ln e2 - tn 8. 

We expect both (4.34) and (4.35) to yield the correct coverage. 

(4.35) 

Shenker (1985) gives a discussion of this example and shows that the 

percentile type intervals do not give satisfactory results. 

Example 4 Ratio Estimation : This example is taken from Efron (1984) 

and has strong relevance to the problem of bioequivalence .. He discusses 

sampling from a bivariate normal population with mean vector 

E. = {µ 1, µ2) and identity covariance matrix i.e. N(µ,I). He shows that 

the bootstrap bias corrected percentile interval for e = µ2/µ 1 using 
A 

the maximum likelihood estimate e = x2;x1 for e agree closely with 

the intervals obtained from the exact Fieller (1954) distribution. He 

also shows that the uncorrected bootstrap percentile interval gives 

the Creasy (1954) fiducial solution. 

~ .................................................. .. 



4.21 

4.12 Asymptotic accuracy of the bootstrap 

In order to indicate dependence on the sample size n, we shall for the 

present discussion denote H(x) by H(x,n), Hb(x) by Hb(x,n) and 

He(x) by He(x,n). 

How good is the bootstrap approximation? This question cannot be 

answered in general but various special cases have been considered in 

detail. Although the bootstrap would probably only be used in practice 

when the sampling distribution could not be derived analytically it is 

important to check the behaviour of the bootstrap in situations which 

are simple enough to be handled analytically. Efron (1979a) gives a 

number of exarrples in which the bootstrap works. He also establishes 

that the method works for a general class of statistics when the sample 

space is finite. Singh (1981) gives a detailed account of the bootstrap 

in the case of the standardised sample mean and sample quantile. 

Bickel and Freedman (1981) show that the bootstrap method works for 

means; for pivotal quantities of the "t-statistic" sort; and their 

multivariate extensions; LI-statistics and other van Mises functionals; 

the empirical process; the quantile process; and Trimmed means and 

Winsorised variances. They also give examples where the bootstrap fails, 

for instance, when estimating e from variables uniformly distributed 

over the interval [0,e]. Beran (1982) establishes that Hb(x,n) is 

asymptotically minimax; the loss function being any bounded monotone 

increasing function of a certain norm on the scaled difference 

n~{H(x,n) - Hb(x,n)}. He also establishes that the estimated first order 

Edgeworth expansion He(x,n) is also asymptotically minimax and is 

equivalent to Hb(x,n) up to terms of order n-~. By comparison the 
'·• 

straight forward normal approximation, with estimated variance, is 
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usually not asymptotically minimax, because of bias. Efron (1984a) 

discusses the use of the bootstrap in setting confidence intervals for a 

real valued function e of an unknown parameter vector n when sampling 

from the family of densities f(x; n). He considers sampling from a 

bivariate normal distribution N(x;n,I), n = (n 1,n2) and setting 

confidence limits for e = t(n) a well behaved function. As examples 

he considers e1 = n2/n 1; e2 = llnll and e3 = n1 n2. Within this class 

of problems the bootstrap bias corrected percentile interval improves on 

the asymptotic normal approximation. For the more complicated problem 

of setting a confidence interval for e, having observed y ~ ex1 9,. 

the bootstrap bias corrected percentile interval gives only a partial 

improvement over the asymptotic normal approximation. An interesting 

point that Efron (1984a) mentions; when sampling from a parametric 

family the estimated Edgeworth expansion He is equivalent to using 

B = oo for the Monte Carlo estimate Hb. 

Singh (1981) considers the following basic cases of T(~,F); xn - )l' 

O<n-µ)/0 and F- 1(t)-F-1(t) 
n where x = n L:X ;f n, )l = EF(X), 

0 < 02 = VF(X) and -1 
Fn . and F-1 are the right continuous versions 

of Fn and F ~espectively, at some fixed value t E (0,1). 

The essence of his first theorem is as follows: the bootstrap approxi­

mation to the distribution of n~(Xn-µ)/0 is better than the approxima­

tion by the limiting normal distribution, provided that the underlying 

distribution is non-lattice. He establishes that the difference in 

accuracy between the two approximations decreases with decreasing 

skewness of the underlying distribution and is non-existent for 

symmetric distributions. 
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His second theorem considers the bootstrap and normal approximations 

to the distribution of ni(F~ 1 (t) - F- 1(t)). If F'(F- 1(t)) is known 

exactly then the normal approximation is better. If this quantity is 

not known, as is usually the case, then the bootstrap approximation is 

as good as the normal approximation. 

Refering to the definition of the bootstrap given in section 4.2 we 

introduce the following notation : Yn = LYi/n, S~ = L(Xi-X) 2 /n, 
A 

µ3 = EF(X-µ) 3
, µ3 = L(Xi-X) 3 /n and p = EFjX-µj 3 • P and P* denote 

probabilities under F and F~; E and E* denote expectations under 

F and F~, respectively. The norm II JI under consideration is the 

sup-norm supxEJR J J. 

We now state the theorems. The proofs are given in Singh (1981). 

Theorem 1 

A : If EX 2 < oo, then for T = ni(xn-µ) 

l!H(x,n) - Hb(x,n)I! -+ 0 a.s. (4.36) 

B If EX 4 < oo, then for 

T = ni(xn-µ). and Tb = ni(vn-Xn) 

Lim supn~ n~(log log n)-il!H(x,n) - Hb(x,n)I! 

= (202 (2ne)i)- 1(2VF((X-µ) 2 ))i a.s. (4.37) 

C If EjXj 3 < 00 , then for 

T = ni(x -µ)/a and Tb = n~(Y -X )/S n n n n 

Lim supn~ po- 3n~l!H(x,n) - Hb(x,n)I! ....; 2K a.s. (4.38) 

where K is the universal appearing in the Berry-Esseen bound. 
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D If EIXl 3 < oo and F is non-lattice, then for T = n~(Xn-µ)/a 

and Tb = n~(Yn-Xn)/Sn 

Hb(x,n) = ¢(x) + {µ3 (1-x2 )/(6a3 n~)}¢(x) + o(n-~) (4.39) 

or 
-l 

Hb(x,n) = He(x,n) + o(n 2
) 

uniformly in x a.s. where ¢{x) and ¢(x) are the standard 

normal distribution function and density respectively; therefore 

in this case 

a.s. (4.40) 

E If EIXl 3 < oo and F is lattice with span h then for 
1 - l - -

T = n2 (X-µ)/a and Tb = n2 (Yn-Xn)/Sn 

Hb(x,n) = ¢(x) + {µ3 (1-x 2 )/(6a2 n~)}¢(x) + 

{h/(an~)}g(n~snx/h)¢(x) + o(n-~) (4.41) 

uniformly in x a.s. where g(t) = [y] - y + ~ v t E 1R. 

Also, in this case 

Lim sup ni~H(x,n) - Hb(x,n)~ = h(2na2 )-~ ·a.s. n+xi (4.42) 

Theorem 2 : If F has bounded second derivative in a neighbourhood of 

F-1(t) and F'(F- 1(t)) > 0, then a.s. for T = n~(F~{t) - F- 1{t)) 

and Tb= n~(G~ 1 (t) - F~ 1 (t)) 

Lim supn+xi n~-(log log n)-~IJH(x,n) - Hb(x,n)jj = Kt,F (4.43) 

a constant depending upon t and F only. Here Gn(t) is the e.d.f. 

of Y 1 ' ..• 'Y n. 
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Remarks 

1) Parts A and B of Theorem 1 establish the uniform convergence to zero 

of the normed distance between the actual distribution H of 

n~(X-µ) and the bootstrap approximation Hb of it. 

2) Parts C, D and E discuss the same convergence problem for the distri­

bution of n~(X-µ)/cr. Part D establishes that for non-lattice dis-

tributions the bootstrap has the edge over the asymptotic normal 

approximation. Part E establishes that this convergence is not valid 

for distributions defined on a lattice. However Part E does show 

the effect of rounding data on the bootstrap approximation. In 

equation (4.42) one may use the quantity h as the rounding error in 

the sampled values. 

3) The Edgeworth expansion given in (4.39) demonstrates why the bootstrap 

approximation has the edge over the limiting normal distribution if 

the sampling is from a skew distribution F. This expansion also 

supplies an alternative to the Monte Carlo method of approximating 

the bootstrap distribution. One would need to estimate µ3 and a2 

using the sample values x1, •.. ,Xn. 

4) The bootstrap distribution Hb{x) can be expanded up to as many terms 

as one wants provided that the Cramer conditions are imposed on the 

distribution F. Singh (1981) uses the three term expansion to 

establish that 

-1 ~ llH{x,n) - Hb(x,n)ll = O{n (log log n) } 

provided that EIXl 6 < 00 and the Cramer condition about F holds. 
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The Cramer conditions are given in Kendall and Stuart (1977) vol. 1 

p.173. They give the warning as do Cox and Hinkley (1974) that this 

series is only useful in cases of moderate skewness. 

5) Theorem 2 establishes the consistency of the bootstrap approximation 

of n~(F~ 1 (t) - F- 1(t)) and provides the exact rate at which the 

normed distance between the two distributions converges to zero. 

4.13 Conditions for Bootstrapping 

Beran (1982) gives a counter example to demonstrate that the bootstrap 

is not foolproof, even for statistics {Tn} whose asymptotic distribu­

tion is normal. He says that asymptotic optimality, or even consis-

tency of the bootstrap estimate Hb can only be expected if the sampling 

distribution H(x) depends smoothly on F. 

Bickel and Freedman (1981) give two counter examples for which the boot-

strap does not work. They devise the following rule which they term 

"rough". The bootstrap wi 11 work provided that 

a) Tn(X1, ••• ,Xn; G) tends weakly to a limit law LG whenever 

x1, ••• ,Xn are i.i.d. with distribution G, for all G in a 

"neighbour" of F into which Fn falls with probability 1, 

b) the convergence in (a) is uniform, and 

c) the function G +LG is continuous. 
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C H A P T E R 5 

BOOTSTRAP APPROACH TO BIOEQUIVALENCE 

5.1 Introduction 

Given the data AUC, TMAX and CMAX from a bioavailability study this 

chapter considers what the bootstrap has to offer in the problem of 

assessing bioequivalence. 

The bootstrap may be used in two different ways to assess bioequivalence: 

(i) by computing confidence intervals, and/or 

(ii) by estimating the relative frequency that the bioequivalence 

specifications would be met if the bioequivalence trial were 

repeated indefinitely. We shall call this relative frequency 

the Index of Concordance. 

The bootstrap offers a new look at bioequivalence assessment : it re­

leases the definition of bioequivalence from its previous dependence 

on available statistical procedures. Secondly it frees one from simple 

distributional assumptions and tractable mathematics. 

5.2 Assessing bioequivalence using intervals 

In this section we shall suppose that bioequivalence is to be assessed 

on the basis of a single parameter, which we denote by e. This 

assumption is made in order to allow a comparison with the procedures 

described in Chapter 3. Further, we conform with Rocke's (1984) method 

of declaring two formulationsbioequivalent; which may be described as 

follows: 



5.2 

1) define a specification interval, (a,b) say, into which 8 should 

fall in order that the two formulations be considered bioequivalent 

2) compute a central (1-2a)100% confidAnce interval, say (L,U) for 8 

3) declare bioequivalence, with level (1-2a)100%, if the confidence 

interval (L,U) is wholly contained in the specification interval 

(a,b) i.e. (L,U) c (a,b). 

The parameter 8 may be any one of three familar cases that are commonly 

discussed in the literature. 

Case 1: parameter= 81 = µN - µS =difference between population means 
A 

estimator = 81 = YN - ¥5 = difference between sample means 

The random variable to be bootstrapped is 

( 5. 1 ) 

Case 2: parameter 82 = µN/µs = ratio of population means 
A 

estimator 82 = YN/Ys = ratio of sample means 

The random variable to be bootstrapped is 

(5.2) 

Case 3: parameter 83 = geometric mean of the population of individual 

ratios 

estimator e3 = ( ~ r.)l/n 
l = 1 l 

= geometric mean of observed individual ratios 

(Steinijans and Diletti 1985) 

The random variable to be bootstrapped is 

(5.3) 
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However, the bootstrap will work for other choices of e and is not 

restricted to the three cases given here. 

5.3 Assumptions of bootstrap interval 

In Chapter 4, four methods of constructing bootstrap intervals are de-

rived. These are: 

( i) pivotal T = e - e rv H pivotal 
A 

(ii) generalised pivotal T = t(e,e) "'H pivotal 
A 

(iii) percenti 1 e T = g(e)-g(e) "' H symmetric pivot 
about 0 

A 

(iv) bias corrected percentile T = g(e)-g(e) "' H symmetric location 
scale pivot 

Each of these methods differ in their assumptions: 

(i) For pivotal and generalised pivotal intervals the assumption is 

that the sampling distribution, H, is pivotal i.e. does not 

depend on the unknown para~!ter e. But we do not assume anything 
A 

about the form of H. However, the exact form of t(e,e) must be 

known in order to construct the interval. 

(ii) For percentile intervals : we assume that a symmetric pivot exists 

on some scale, i.e. we assume the existence of a monotonic function 

g : JR +JR such that the sampling distribution of 
A 

g(e) - g(e) rv H is symmetric. 

(iii) For bias corrected percentile intervals : we assume that on some 

scale a symmetric pivot exists that belongs to a location scale 
A 

family, i.e. g(e) - g(e) rv H(x; µ,a) = H0 (x~µ) 
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The advantage of the percentile and bias corrected percentile intervals 

is that we do not need to know the form of g at all, but only assume 

its existence (cf. Chapter 4). 

5.4 Choosing an interval 

Shenker (1985) has demonstrated that bootstrap intervals should not be 

applied blindly. Some consideration should be given to the bootstrap 

assumption (mentioned above). The following criterion has been adopted 

for selecting a bootstrap interval: 

Use the interval that will give the correct answer if 

the data are normally/lognormally distributed. 

The idea is that, should the data be normal/lognormal, then little will 

be lost by applying the bootstrap instead of the parametric procedures. 

Should the data not be normal/lognormal then the bootstrap~ by virtue 

of its robustness, should have the advantage. 

Although a criterion has been adopted, diagnostic methods for checking 

on the assumptions is an area that needs further research. 

For the three random variables given in (5.1), (5.2) and (5.3) that are 

appropriate for bioequivalence which bootstrap intervals should be 

used? Each will be discussed in turn. 
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A 

For (5.1) T1 = 81 - 81 

= (VN-VS) - (µN-µS) 

If the data are normal then T1 will also be normal and will not depend 

on 81. Hence the distribution of T1 is a symmetric pivotal location­

scale distribution. It seems likely that any bootstrap interval would 

work well for this random variable. If the data are not normal and come 

from a skewed distribution then the bias-corrected interval is re-

commended. 

For (5.2) : T2 = 82 - 82 

= 9N19s - µN/µs 

' 
Efron (1984a, 1985) and' Efron and Tibshirani (1985) have considered this 

problem in detail under the heading of Ratio Estimation. Efron has 

shown that under the assumption of normality the bias corrected percen­

tile interval approximates closely the exact Fieller solution, while the 

percentile interval that does not correct for bias gives the Creasy 

(1954) fiducial solution. Therefor the bias corrected interval is 

recommended. 

For (5.3) : T3 = 83 - 83 
=(IT~ r.) 1/n - 8 

1=1 l 3 

The motivation for this choice of 8 is the assumption that the log­

transformed data are normally distributed. Hence under the assumption 

of log normality the quantity 
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A 

T4 = log 63 - log 63 
" = g(83) - g(83) 

follows a normal distribution that does not depend on ·e. This is a 

symmetric location-scale pivotal quantity on the log scale. If the data 

is not lognormal then to allow for possible bias the bias-corrected 

interval is recommended. 

5.5 ~lgorithm for computing the bias corrected interval 

As before, for the purpose of computing confidence intervals it will be 

assumed that carry over effects are of no concern. Effectively this 

means that the data may be viewed either as though it were the result of 

a simple two sample experiment comparing a standard formulation (S) 

with a new formulation (N). Alternatively the data may be viewed as 

though coming from a matched-pairs experiment comparing S with N. 

To describe the bootstrap algorithm a simplified notation for the data 

wi 11 be adopted: 

Ysj = response of the jth individual to the standard formulation 

YNj = response of the jth individual to the new formulation 

x. = (yN. ,yS.) j = 1 , ... ~n 
J J J 

Also, let 

YN 
n = lj=1 YN/n 

= sample mean for new formulation 

and 

vs = l.~=1 Ys/n 

= sample mean for standard formulation 
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and 

j = 1, ... ,n 

= ratio of responses to new and standard formulations for 

jth individual. 

The algorithm for generating a bias-corrected percentile interval for 

8 = 81 or 82 or 83 is described below. Note that the Monte Carlo 

approximation to the bootstrap distribution is used. 

Step 1 The random mechanism generating the data is estimated by the 

e.d.f. 

Fn : mass 1/n at each observation x1, ... ,xn. 

Recall that xj is the vector (yNj'YSj). 

Step 2 Obtain a random sample of size n (with replacement) from Fn 
A 

t . * * ogive x1, ... ,xn. Call this a bootstrap sample. Compute 8* for 

this sample. 

Step 3 Repeat Step 2 B times to give the bootstrap values 
A A 

8* ( 1 ) p •• , 8* ( B) . 

A 

Step 4 Compute the function CDF(t) 
A A 

CDF(t) = #(8*(i) < t)/B 

= proportion of bootstrap values less than or equal to t. 

" " This can be most easily done by ordering the values 8*(1), ... ,8*(8) 

from smallest to largest and then computing the "less-than" cumulative 

percentage frequency. 
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" " 
Step 5 Compute CDF(e) = proportion of bootstrap values less than the 

original estimate. 

-1 " " Step 6 Compute z
0 

= <I> (CDF(e)) where <I> is the standard normal 

cumulative distribution function. 

Step 7 Finally compute the quantities 

and 

The interval (L,U) is a bias-corrected percentile interval for e. 

" Notice that if CDF = ~, i.e. exactly half the bootstrap values e* 
" are less than the original sample estimate e, then z

0 
= 0 and the 

interval endpoints become 

A " L = CDF(a) U = CDF(1-a) 

the a and 1-a percentiles of the bootstrap distribution CDF. 

If CDF f ~ then the term z
0 

compensates for the bias of e as an 

estimator of e. 

In Steps 6 and 7 of the bootstrap algorithm it is necessary to evaluate 

both <I> and -1 
<I:> ' the cumulative standard normal and its inverse. 

These cannot be computed in closed form but good approximations are 

given below. 
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Given z compute ¢(z) -00 < z < 00 

Step 1 Compute x = 1/(1+alzl) a = 0,2316419 

Step 2 Compute R(z) = ¢(z)(b1x+b2x2 +b3x3 +b4x4 +b5x5 ) 

Step 3 

where ¢(z) = (2n)-!e-z
2

/ 2 

= standard normal density 

b1 = 0,319381530 

b2 = -0,356563782 

b3 = 1'781477937 

b4 = -1,821255978 

b5 = 1,330274429 

¢(z) = {R(z) 

·. 1-R(z) 

if z < 0 

if z :> 0 

Given a compute ¢- 1(a) 0 <a< 1 

Step 1 : Compute t = {(-2 .en ( 1-a)) ~ 

(-2 .en a)~ if 

if 0,5<a<1 

0 <a...;;;; 0,5 

Step 2 

where co = 2,515517 d1 = 1,432788 

c1 = 0,802853 d2 = 0,189269 

c2 = 0,010328 d3 = 0,001308 

-1 
if 0 < a < 0,5 O (a) • c 
.if 0,5 < a < 1 

Step 3 

Reference: Abramowitz and Stegun (1970) Handbook of Mathematical 

. Functions p.932-933. 

/ 
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5.6 Example of bootstrap intervals 

To demonstrate the bootstrap intervals we take an example from Steinijans 

and Diletti (1983). The objective of the experiment from which the data 

are taken was to investigate the influence of food intake on the bio-

availability of theophylline from a sustained-release aminophylline 

preparation. The data are given in Table 5.1. 

Table 5.1 : Area under the concentration/time curve, AUC, after ad­
ministration of 385,6 mg theophylline in a sustained re­
lease preparation under reference condition (fasted) and 
test condition (standard breakfast) 

Subject AUC(mg/l h) 
Reference Test Ratio 

136,0 135,7 1'00 

2 152,6 155 '3 1,02 

3 123 '1 148,9 1 '21 

4 77 ,0 81 '2 1 ,05 

5 115,7 139,2 1'20 

6 72,0 91,7 1'27 

7 116 ,4 118 '7 1'02 

8 151 '1 133,2 0,88 

9 118' 9 115 '6 0,97 

10 156' 1 150,3 0,96 

11 222,4 223,9 1 '01 

12 158' 1 154' 1 0,97 

Geometric mean 127,7 133' 1 1,04 

\ 



\ 

5. 11 

For the data in Table 5.1 Steinijans and Diletti (1983) derive confidence 

intervals for what they call the 11 bioavailability ratio 11 using the eight 

different procedures listed in Table 5.2. Table 5.2 is a reproduction 

of Table 6 in Steinijans and Diletti (1983), except that the bootstrap 

bias-corrected intervals have been added. The bootstrap limits have been 

computed by choosing B = 1000 in Step 3 of the bootstrap algorithm. 

Notice that there are two ways of computing a 11 bioavailability ratio 11
: 

(i) ratio of two arithmetic means. This computation would be used if 

the bioavailability ratio referred to the ratio of two expectations 

i.e. 8 = µN/µ 5. (Used for the first three intervals in Table 5.2.) 

(ii) geometric mean of individual ratios = ratio of geometric means. 

Steinijans and Diletti (1983). This estimator makes use of the 

matched pairs nature of the data. 

(Used for the last four intervals in Table 5.2.) 

These two statistics do not estimate the same theoretical quantity. The 

choice will of course depend on the definition of bioequivalence. 

Ste{nijans and Diletti (1983, 1985) have argued convincingly in favour of 

distribution free methods for computing confidence intervals for bio­

avai labil ity parameters. Especially so in the case of skewed or bi­

modal distributions. They recommend Tukey•s procedure based on the 

Wilcoxon signed rank test where the assumption is that each error term* 

comes from a continuous distribution (not necessarily the same one) 

symmetrical about zero. 

The bootstrap does not require the assumption of symmetry but only that 

a transformation to symmetry exists (cf. Chapter 4) and has the further 

*The model for the Wilcoxon signed rank test is given by di = o + si. 
See e_quation (3.11). 



Table 5.2 Point estimate and 95% confidence limits of bioavailability ratio for data given in Table 5.1 

Statistical method Point 95% confidence Exact level of 
estimate 1 imits confidence 

Normal distribution Paired t-test 1,03 0,97 1 ,09 
ANO VA 1 '03 0,97 1 '10 
Westlake 0,92 1,08 ;;;.. 0,95 

Lognormal distribution Paired t-test 1 ,04 0,97 ; 1 '12 
AN OVA 1,04 0,97 1 '12 
Westlake 0,89 1 ' 11 ;;;.. 0,95 

Distribution-free Signed rank test (Tukey) 1 ,02 0,97 1 ' 11 0,9575 
(nonparametric) Pitman's permutation test 1 '04 0,97 1 '12 0,9502 
ratio analysis 

Distribution free Bootstrap 1,04 0,98 1 ' 10 U1 

(Ratio of individual readings) . 
N 

Distribution free Bootstrap 1 ,03 0,98 1 ,09 
(Ratio of arithmetic means) 
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advantage that it mimics reality. It does this by treating the sample 

as though it were the population and then repeatedly drawing random 

samples from this population. For each sample the statistic is com-
"' puted. The cumulative distribution CDF(t) referred to in Step 4 of 

the bootstrap algorithm is built up from these values. Figure 5.1 gives 
"' a comparison of the cumulative distributions CDF(t) (bootstrap) and 

G(t) (Tukey) for the data in Table 5.1. 

Tukey 
Bootstra.p 

Jll. 9 l. 0 1. 1 1. 2 

Figure 5.1 Cumulative probability distributions for geometric mean 
of individual ratios for Tukey and bootstrap methods 
The bootstrap curve is a Monte Carlo approximation using 
B = 

5~7 Wilcoxon and Pitman procedures as resampling plans 

Efron (1982) defined a resampling procedure as a generic term for all 
"' methods which evaluate e at reweighted versions of the e.d.f. Fn. 

He described a resampling procedure as follows: 
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"Fon -0-<.mpUc,,i,,ty c.on6ideJL a. 6wiction.al -0.:ta;ti.f.d.ic. e ::: e ( F n. l . The. da.:ta. 

x1, ... ,xn. a.Jte. thought 06 a.-0 ob-OeJLve.d a.n.d 6ixe.d in. wha.t 60.e.tow-0. A 

Jte.-OampUn.g ve.c.toJt 

in. o.:theJL wond-0, a.n.y pnoba.bility ve.c.toJt. CoMupon.din.g ;to e.a.c.h P* i-0 

F* ::: F ( P*) 
Yl. Yl. -

"' "' and a nuample.d value. 06 e, -0ay e*, 
A r, 

8* ::: e(F (P*)) ::: e(P*J 
Yl. - -

Some. 06 the. Jte.-OampUn.g ve.c.toM play -Ope.c.iai. Jtolu in. the. boot-Ot!ta.p a.n.d 

jac.kJmi6e. the.o!tiu. In. pa.Jttic.ula!t, 

c.oMupon.d-0 to F n. ilie.l6 Le.. F (P0
J ::: F , and the. ob-OeJLve.d value. 06 

Yl. Yl. 

the. -Ota.ti-Ode. e ::: e (P0
). The. ja.c.k.k.ni6e. c.on6ideJL-O the. ve.c.toM 

1 1 1 
p( ') ::: (-,, -,, ••• ,0, ... ,-,l 
~ n.- n.- n.- ( 0 in. ith pla.c.e.) 

with C.OMUpon.din.g valuu e (i) 06 the. .6.:ta.ti-Otic. i ::: 1, .•• ,n.. The. 

boot-Ot!ta.p c.on6ideJL-O all.. P* ve.c.toM 06 the. 6oJtm M* /n., M* ha.vin.g 

n.on.-n.e.ga..tive. in.te.geJL c.oondin.a.:tu adding to n.." 

The nonparametric Wilcoxon procedure considers all Walsh averages of the 

differences d . = YN . - Y5 . , 1 1 1 
i = 1, ... ,n. The Walsh averages aij are 

defined by 
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a .. = ( d. +d.) /2 
1 J 1 J 

This corresponds to a resampling vector with ! in the ith and jth places 

Pij = (O, ... ,!,O, ... ,!,O, ... ,O) i I j 

and a resampling vector with 1 in the ith place 

Pii = (0, .•. ,1, ... ,0) i = j 

It is clear that the Wilcoxon procedure may be viewed as a resampling 

plan. 

It should further be noted that if n is even then every Walsh average 

is also a bootstrap point. This is evident from the identity 

a . . = ( d . +d . ) I 2 
1 J 1 J 

n/2 terms n/2 terms 
= ca. +a. + ... + 

1 1 
a. + a. + a. + ... + d.) n 

1 J J J 

This corresponds to a bootstrap resampling vector with M* having n/2 

in the ith and jth places 

M* = (O, ... ,n/2,0, ... ,n/2,0, ••. ,o) 

Pitman's procedure may also be viewed as a resampling plan. Referring 

to the notation in Chapter 3, consider any one of the 2n- 1 Pitman 

averages. Suppose that it is the point 

a = L:d. /M ,m 

where the index set is {i 1, ... ,iM} c {1, ... ,n}. 

The resampling vector corresponding to this point a has 11 s in positions 
-1 i 1, ... ,iM and zero elsewhere, rescaled by M , i.e. 
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-1 P* = M ( 0 , ... , 1 , • . • , 1 ,. . • , 1 , . . . , 1 , ..• , 0 ) 

A final point worth noting is the comparison of the number of point or 

probability atoms in each of the nonparametric procedures. This is 

given in Table 5.3. 

Table 5.3 Comparison of the number of points in the support of the 
Wilcoxon, Pitman's and bootstrap distributions 

Method 

Wilcoxon 

Pitman's 

Bootstrap 

General n 

n(n+1)/2 

2n-1 

( 2 n-1 ) 
n 

n = 12 

78 

4 095 

352 078 

This comparison between bootstrap distribution and certain other non­

parametric distributions needs further development. Efron (1981a, 

1982a) has compared a number of nonparametric procedures in some detail. 

5.8 Index of Concordance 

Essentially bioequivalence is a multivariate problem~ yet in practice a 

univariate procedure is applied to each bioavailability parameter indi-

vidually. A possible reason for this is that most useful multivariate 

procedures rest heavily on the assumption of joint normality, which 

hardly seems feasible for the bioavailability parameters. 

It is possible to obtain a bivariate or even multivariate bootstrap 

distribution and this might offer hope of deriving multivariate bootstrap 

confidence regions. However it is not yet clear how this should be done. 
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To overcome this difficulty we propose a new measure of bioequivalence 

which we shall call the Index of Concordance. The Index of Concordance 

In for the population is the relative frequency with which the bio­

equivalence specification is met if applied to a group of n individuals 

at random. 

In principle, to compute the index of concordance one would need to take 

every possible sample of size n from the population, perform the clinical 

trial on each group, and then compute In 

In = Index of Concondance 

= number of times specifications were met 
number of clinical trials performed 

Clearly In is a number lying between 0 and 1. Values of In lying 

close to indicate that the bioequivalence specifications are met in 

most cases while values of In lying close to 0 indicate that the bio­

equivalence specifications are seldom met. 

The bootstrap provides a very simple method for estimating In. The 

bootstrap uses the sample values as though they were the population. 

The bootstrap estimate of In is obtained by taking random samples of 

size n 3 over and over again, say B times from a population with dis-

tribution Fn 3 the e.d.f. (A random sample of size n is obtained by 

sampling with replacement from the n original data values.) The boot-

strap estimate of the index of concordance is then 

"' In = number of ti~es specifications were met/B 

The index of concordance has the advantage of being extremely easy to 

compute for any number of parameters jointly, and the problem of inter-
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pretation does not arise. It has the further advantage of being easy 

to understand by those with a limited statistical background. The con­

cepts underlying hypothesis testing, confidence intervals and posterior 

probabilities are not easily communicated to non-statisticians. 

5.9 Example 

To illustrate the index of concordance we use the data from Fluehler 

et!.!_ (1983). The data relates to a comparison of a slow release 

formulation (New) against a standard formulation with the aim of pro­

ducing markedly lower peak concentrations. The bioequivalence specifi­

cation region is 

AUC : 0, 8 < e 1 < 1 ,2 

and 

CMAX : e2 < 0,6 

For AUC they use the ratio of means as a statistic while for CMAX they 

use the geometric mean of individual ratios. This is because they 

assume AUC to be normally distributed and CMAX to be lognormally distri­

buted. For the sake of comparison we shall use the same statistics. 

The data are given in Table 5.4. 

For this data the estimated joint index of concordance, based on a boot-

strap with B = 1000, is 

A A 

In= In[0,8 < e1 < 1,2; e2 < 0,6] = 0,8480 



Table 5.4 Comparative bioavailability data from Fluehler ~~ (1983). Comparison of a slow release 

formulation (New) against a standard 

· Number of Standard Formulation New Formulation 
Subjects Per1oa ;n;uc CM;ll;X ,en{CMAX) Perioa AUC CfVl]l;X .en { CM;ll;X) 

2 114,57 296' 11 5,6907 115,21 67,97 4,2190 

2 98,17 146,69 4,9~83 2 106,60 92,63 4,5286 

3 121'87 259,37 5,5583 2 129,70 97,75 4,5824 

4 2 30,20 197,36 5,2850 52,85 196 ,53 5,2808 

5 2 131,51 281,37 5,6397 59,42 59,71 4,0895 

6 104,17 179' 14 5' 1882 2 152,76 54,99 4,0072 

7 71,54 251,37 5,5269 2 31,24 93,11 4,5337 

8 2 71,98 233,29 5,4523 108,22 109,26 4,6938 

9 2 78,83 173,61 5' 1568 82,05 152' 18 5,0251 

10 140,48 227,56 5,4274 2 101,10 177 ,09 5,1767 

11 2 75,27 211 '85 5,3559 58, 72 100,70 4,6121 

12 111 '56 225,71 5,4192 2 83,27 172 ;2.2 5' 1488 

Mean 98,35 223,62 5,3907 90,10 114 ,51 4,6581 

(J1 . 
l.O 

------------------------------------------------ ---------
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Fluehler et~ (1983) compute the marginal posterior probabilities but 

do not compute the joint posterior probability. As a comparison the 

marginal indices of concordance have been computed. The results are 

summarised in Table 5.5. 

Table 5.5 : Comparison of marginal posterior probabilities and 
marginal indices of concordance for the Fluehler 
et al (1983) data --

Event 

0 ,8 < 81 < 1 ,2 

Marginal 
Posterior Probability 

0,846 

0,906 

A 

Marginal Index 
of Concordance 

0,898 

0,947 

Notice that since In is simply a proportion the variance of In is 

approximately 

A A A 

Var(In) C:! In(1-In)/B 

5.10 Conclusions 

The bootstrap has much to offer in dealing with the problem of bio­

equivalence. Some of the advantages are: 

(i) It frees the clinician to define bioequivalence in a manner that 

will reflect clinical requirements and not depend on the available 

statistical procedures or on his knowledge of statistics. 

(ii) The bootstrap can be easily described to the statistical layman. 
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(iii) For univariate bioequivalence assessment bootstrap confidence 

intervals can be obtained for almost any definition of a 

bioequivalence parameter. 

(iv) For univariate or multivariate bioequivalence assessment, the 

index of concordance can be computed with equal ease. 

(v) The basic bootstrap makes no assumptions about the functional 

form of the random mechanism F generating the data. However, 

should one want to make assumptions about F these can be 

easily accommodated by using for example, a parametric bootstrap. 

See Efron (1982). In this sense the bootstrap encompasses 

parametric methods. 
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C H A P T E R 6 

BOOTSTRAPPING THE TOTAL RESPONSE TO A 
BIOAVAILABILITY STUDY 

6.1 Introduction 

The bootstrap is a procedure for estimating the sampling distribution~ 

or some functional thereof, of a specified random variable. This is 

achieved by resampling the data in a suitable way. 

This idea of resampling the data may be applied to compartmental model­

ling of bioavailability studies. The technical difficulties associated 

with compartmental models include 

(i) appropriateness of model 

(ii) correlation between errors 

(iii) unequal variances at different time points 

(iv) possible instability of coefficient estimates. 

If a compartmental model has been fitted to the data by some statistical 

procedure~ then in addition to the fitted values~ there is a set of 

residuals. Assumptions have been placed on the residuals explicitly or 

implicitly by the fitting procedure. If the residuals are resampled, 

preserving this stochastic structure~ a distribution is generated using 

the model's own assumptions. 

Assuming the model and estimated parameters to be correct~ resampling the 

residuals produces pseudo-data which mimics a new set of experiments. 
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Using the pseudo-data it is possible to focus on any aspect of the ex­

periment that may be of particular interest. For example the pseudo­

data could be used to "predict" the possible behaviour of a given 

subject on a number of future occasions. Alternatively it may be used 

to "observe" the joint distribution of the derived parameters such as 

AUC, TMAX and CMAX, either within subjects or between subjects. 

This pseudo-data may be a useful guide to planning future investigations 

or even deciding if further investigation is necessary. 

Although similar results could be obtained using the model equation and 

attaching an error generated from a N(0,02 ) distribution the advantage 

in using the experimental observed residuals is that they contain the 

stochastic variability that is inherent in the data. 

We shall illustrate some of these possibilities with a simple example. 

6.2 Data, model and assmptions 

For the data in Table 2.1 (Button (1979)) we shall suppose that the 

appropriate model is the sum of two exponentials. Denoting the observa­

tion at time tj on the ith individual by yij i = 1 , ••• ,6 and 

j = 1 , •.• , 18 the mode 1 is 

( 
-b1itj -b2itj) 

y .. =A. e - e + s .. lJ , lJ = 1, ... ,6 ( 6. 1 ) 

j = 1, ... ,18 

The errors E: •• 
lJ 

are assumed to be independent. However the usual 

assumption of constant variance does not seem appropriate. 
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The parameters (A. ,b1 . ,b2
. ) 

1 1 1 
i = 1 , ... ,6 will be estimated using 

ordinary least squares. This choice of using ordinary least squares in 

favour of weighted least squares is motivated largely by the lack of 

an obvious choice of weighting factors. A discussion of the choice of 

weighting factors is given in Chapter 2. 

The bioavailability parameters AUC, TMAX and CMAX are nonlinear functions 

of the mode 1 parameters (A ,b 1 ,b2) (cf. Chapter 1 ) . For i = 1 , ..• ,6 

we have 

AUC. = A. ( 1 /b1 . - 1 /b2 ·) 
1 1 1 1 

TMAXi = (,en b2i - tn b-1 i )/ b2i - b1 i) 

( -b1i TMAXi -b2i TMAXi\ 
_ CMAXi = Ai\e - e } 

b1i/(b1i-b2i) b2i/(b1i-b2i) 
= Ai(b2i/b1i) - (b2i/b1i) 

It is well known that the maximum likelihood estimator for the vector 

(A,b1 ,b2) is asymptotically multivariate normal with variance-covariance 

matrix cr2 {F 1 F)- 1, where F is the design matrix. For details and 

notation see Box and Lucas (1959). However we do not know how closely the 

sample behaviour is to the asymptotic behaviour and we know even less about 

the distribution of the derived parameters AUC, TMAX and CMAX. It there-

fore seems desirable to adopt a nonparametric approach. The bootstrap 

procedure was chosen because, according to Efron (1981), of all non­

parametric procedures, "the boo.:t6:tJLap peA6oJLJn6 vwta.bly beot." 

In addition to estimating the variance-covariance structure from a practical 

viewpoint~ an •estimate• or display of the distribution of possible values 
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of AUC, TMAX and CMAX would be of great interest. After all, the drug is 

to be given to an individual and it would be of interest to know where he/ 

she might lie on the distribution. In fact the quantiles of these distri­

butions are probably of more interest than the mean and variance. How­

ever, bioavailability parameters are usually estimated from experiments 

based on only a few subjects, typically five to ten. Is there a way in 

which we can obtain some idea of the possible variability? It seems that 

the bootstrap can help here in the following ways: 

(i) Give insight into the way in which the pharmacological parameters 

behave in a population. 

(ii) Indicate the extreme instances. 

(iii) Give a graphical indication of the distribution of these parameters. 

This could not be done with only six original observations. 

6.3 The bootstrap algorithm 

The bootstrap algorithm devised for this problem is as follows: 

1. Fit the model given by equation (6.1) to each of the six data sets 

given in Table 2.1. 

2. For each of the data sets store the vector of fitted values as well 

as the vector of residuals. 

3. Generate a 'bootstrap curve' consisting of 18 points. (The method 

for doing this is described below.) 

4. Fit model (6.1) to the bootstrap curve. 

5. Repeat steps 3 and 4 a total of 250 times. 
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The details of the bootstrap are: 

(a) Fit all curves using ordinary least squares. 

(b) The method of generating a bootstrap curve is as follows: 

Select at random a vector of fitted values from the six available. 

This vector consists of 18 points and to each of these we must add 

an error term. Starting with the first point we choose at random 

one of the six 1 first 1 residuals. With the second point we choose 

one of the six 1 second 1 residuals. We repeat this for all 18 points. 

Call this set the bootstrap parameters. 

This algorithm is based on the following assumptions. 

(i) model (6.1) is correct 

(ii) errors are independent 

(iii) unequal variance at different sampling times. 

The total bootstrap distribution consists of 6x6 18 'bootstrap curves' 

or pseudo-data. We have used the Monte Carlo method to approximate this 

distribution (cf. Chapter 4). 

6.4 Results 

6.4.1 Original data 

Model (6.1) was fitted to each of the six horses in Table 2.1 to give 

(A. , b
1 

. , b
2

.) 
1 1 1 

i = 1 _, •.. ,6. These estimates were then used to compute 

(AUCi' TMAXi' CMAXi) i = 1, ••. ,6. The results are given in Table 6.1. 

The fit was found to be reasonable but not very good. There was slight 

evidence of patterned residuals, the pattern being to overestimate the 

first few points, underestimate the peak and overestimate the tail points. 
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Table 6.1 Estimated parameters for the data in Table 2.1 

A 

b1 

b2 

AUC 

TMAX 

CMAX 

• 

HORSE 

1 2 3 4 5 6 Mean SD 

22,54 22,54 21,78 21,18 21 '57 20,00 21,60 0,953 

0,0686 0,0600 0,0588 0,0606 0,0562 0,0592 0,0606 0,0042 

1 ,242 2 ,905 4,295 3,087 5,931 5,646 3,848 1'786 

310 368 365 343 380 334 351,5 25,03 

2,47 1 ,36 1 '01 1,30 0,79 0,82 1,2917 0,624 

18,0 20,3 20,2 19,2 20,4 18,9 19,50 0,963 

Marginal histogramsof AUC, TMAX and CMAX are given in Figure 6.1. 

AUC I • f' • •• • 
300 400 

TMAX - + •• • 
2 3 

CMAX + •I • ••• 
18 19 20 

Figure 6.1 Marginal histograms for AUC, TMAX and CMAX based on the data 
in Table 6.1. 
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6.4.2 Bootstrap distribution of (A, b1, b2) and (AUC, TMAX, CMAX) 

Model (6.1) was fitted to each of the 250 'bootstrap curves' to give 

(Aj, b1j' b2j) j = 1, ... ,250. These estimates were then used to com­

pute (AUCj, TMAXj, CMAXj) j = 1, ... ,250. As with the original sample, 

the fit was found to be reasonable but not very good. There was slight 

evidence of patterned residuals, the pattern being similar to that in 

the original data. The serial correlations for the residuals tended to 

be smaller for the bootstrap curves than for the original data. 

The distribution putting mass 1/250 at each vector will be called the 

bootstrap distribution. Although, of course, it is actually the Monte 

Caria approximation to the bootstrap distribution. 

The marginal bootstrap distributionsof AUC, TMAX and CMAX proved to be 

most interesting. Especially those of TMAX and CMAX, both of which are 

bi-modal. 

The bootstrap identified two groups for TMAX: A large group of 'normal 1 

responders (about 82%) and a small group of 'slow' responders (about 

18%). Perhaps this is to be expected because the first horse in 

Table 2.1 was a slow responder. Similar comments apply to the marginal 

bootstrap distribution of CMAX. In contrast, the marginal bootstrap 

distribution of AUC was unimodal and even close to normality. 

Howeve~, what is most significant, and surprising, is that no such grouping 

was evident in the marginal bootstrap distributions of A~ b1 and b2• 

These distributions were unimodal. 
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The remainder of this section consists of tables and figures that compare 

and summarise the results for the original sample, the bootstrap and 

some asymptotic results. 

Table 6.2 gives a comparison of the means and standard deviations for the 

original sample, the bootstrap and, where possible, asymptotic results. 

Table 6.2 Comparison of means and standard deviations for the original 
sample and the bootstrap 

Original sample Bootstrap Asymptotic 
n = 6 n = 250 

Mean 21,60 21 ,67 21 ,42 
A 

SD 0,95 0,97 0,62 

Mean 0,0606 0,0600 0,0588 
b1 

SD 0,0042 0,0040 0,0048 

Mean 3,85 3,55 3,32 
b2 

SD 1'79 1 '38 0,32 

Mean 352 352 
AUC 

SD 25 22 

Mean 1'29 1 ,32 
TMAX 

SD 0,62 0,47 

Mean 19,51 19,62 
CMAX 

SD 0,96 1 '18 

Notice how the bootstrap results agree with the original sample whilst 

the asymptotic standard deviations of A and b2 are markedly smaller. 
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Figure 6.2 Normal probability plot of AUC 

Figure 6.2 indicates that the marginal bootstrap distribution of AUC 

is close to normal with perhaps slightly heavier tails. 
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Figure 6.3 Normal probability plot of TMAX 

The two groups in this plot correspond to the 'normal 1 responders in the 

lower left hand corner and the 'slow• responders in the upper right hand 

corner. The two groups indicate the bimodal nature of the marginal boot­

strap distribution of TMAX which is distinctly non-normal. The histogram 

in Figure 6.4 displays this clearly. 
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Bi-modal marginal bootstrap distribution of TMAX. The numbers on the ex­
treme left of the figure indicate where the original sample values lay on 
the distribution. Notice how the bootstrap has produced even more extreme 
cases than the original sample. The gap between 1 11 and 1 21 noted in the 
original sample did not close in the bootstrap distribution. 
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Figure 6.5 Normal probability plot of CMAX 

This indicates a bi-modal marginal bootstrap distribution for CMAX. 

Again the histogram illustrates the bi-modal nature more effectively 

than the normal probability plot. The histogram is given in Figure 6.6. 
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Bi-modal marginal bootstrap distribution of CAMX. The numbers of the 
extreme left of the figure indicate where the original horses lay on the 
distribution. Notice again, as for TMAX, the bootst~ap has produced more 
extreme cases than noted in the original sample, and the gap between 
1 1' and 1 61 noted in the original sample did not close in the bootstrap 
distribution. 
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Figure 6.7 Normal probability of plot of A 

This plot indicates that the marginal bootstrap distribution of A 

is close of normality. 
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This plot indicates that the left hand tail of the marginal bootstrap 

distribution of b1 is heavier than found in the normal distribution. 
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Figure 6.9 Normal probability plot of b2 

This plot indicates that both tails of the marginal bootstrap distri­

bution of b2 are heavier than those of the normal distribution. 

However the distribution does appear to be symmetric. 
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Table 6.3 Bootstrap correlation matrix 

A 

Table 6.4 : Asymptotic 

A 

A 

b1 

b2 

0,40 

t 

correlation 

b1 

-0,74 

-0,07 

-0,13 

matrix 

b2 

0,64 

-0,44 

The asymptotic correlations are markedly different to the bootstrap 

correlations. The asymptotic correlations are larger in magnitude than 

those for the bootstrap. While the correlation between A and b1 is 

positive for the bootstrap values (0,4) it is strongly negative (-0,74) 

in the asymptotic correlation matrix. The correlation between A and 

b2 is in the bootstrap (-0,07) but is given as 0,64 in the asymptotic 

matrix. 

6.5 Conclusions 

By utilizing the assumptions that are built into the statistical model 

and the Monte Carlo method, it has been possible to estimate the distri­

bution of the bioavailability parameters ALIC, TMAX and CMAX. The 
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assumption of normality or lognormality has been replaced with more 

appropriate but more complex assumptions and prodigious calculation. 

Using this method a detailed graphic picture has been obtained of the 

way in which the important parameters AUC, TMAX and CMAX might behave 

in a population. Note particularly how it emphasises the unusual cases. 

Asymptotic results based on normal theory give smoothed estimates and 

little indication of sampling variability. 

Under special circumstances, (normal distribution of AUC, TMAX and CMAX) 

all information about their distribution can be derived from a knowledge 

of the mean and variance. Good classical statistics would allow us to 

draw inference from samples as small as six. However we have obtained 

the derived parameters AUC etc., in a complex manner and there is no 

guarantee that the distribution of these quantities is normal. In fact, 

as we have seen, the bootstrap indicates that these quantities are not 

normally distributed although AUC is nearly so. 

The bootstrap has utilised the evidence available in the sample in a 

manner that summary statistics are not able to do. It has shown that 

although the multivariate normal distribution might serve as an approxi­

mate model for the vector (A, b1, b2) it is by no means a good model 

for the derived parameters. 

The objective of the experiment is to measure the derived parameters 

whereas statistical theory focuses on estimation and asymptotic 

normality of A, b1 and b2. It is no easy task to obtain analytic 

results for the distribution of AUC, TMAX and CMAX. However, in the 

,pharmacologic literature it is often assumed that the normal or log­

normal distribution provides a good model for the marginal distributions 
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of these parameters. The results of this chapter indicate that for 

TMAX and CMAX such an assumption may we 11 be erroneous. 

In assessing the effectiveness of a drug one would like to know more 

than can be given by a few summary statistics. 

e.g. Percentiles 

Skewness 

Construct tolerance intervals 

Bi-variate plots of the derived parameters 

Are the distributions symmetric? 

Are there any unusual cases? The method given here gives answers 

to these questions without recourse to normal theory. 

Other statistical aspects of bioavailability depend to a greater or 

lesser extent on the distribution of the derived parameters. For example 

comparative bioavailability is concerned with the comparison of two drug 

formulations and depends on these distributions. 
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APPENDIX l -1 

The following computer program will compute bootstrap bias 
corrected confidence intervals for data from a bioequivalence 
trial. Confidence intervals are computed for three common measures 
of bioequivalence: 

l) difference between formulation means - THETA! 
2) ratio of formulation means - THETA2 
3) geometric mean of individual ratios - THETA3. 

The response may be either AUC, TMAX, CMAX or even some other 
bioavailability parameter of interest. 

It is assumed that there are 1 N1 subjects, each of whom has two 
responses - for the new and the standard formulation. The data are 
read in with a maximum of ten on a line in free format. The data 
for the standard foFmulation are entered first and then the data 
for the new formulation are entered. 

The size of the bootstrap (=M), the number of subjects (=N) and 
the required coverage probability (=C) are treated as parameters 
and are defined in the first three lines of the program. These are 
currently set at the values B = 1000, N = 12 and C = 0.95. 

Example of input format: data from steinijans and Diletti(l983) 

136.0 
156.l 
135.7 
150.3 

152.6 
222.4 
155.3 
223.9 

123.l 
158.l 
148.9 
154.l 

77.0 115.7 
(Standard 

81.2 139.2 
(New data) 

72.0 116.4 151.l 118.9 
data) 

91.7 118.7 133.2 115.6 

The program listing is given below. 

PARAMETER M=lOOO 
PARAMETER N=l2 
PARAMETER C=0.95 

C M IS THE NO OF TIMES WE ARE GOING TO BOOTSTRAP 
C N IS THE NO OF SUBJECTS 
C THIS MUST BE CHANGED FOR DIFFERENT EXAMPLES 
C C IS THE REQUIRED COVERAGE PROBABILITY 

DIMENSION AUC(2,N),AGUC(2,N),THETAl(M) 1 THETA2(M) 1 

DIMENSION XU(3),XL(3),ANSL(3),ANSU(3),THETA3(M),CDF(3) 

C AUC IS THE AREA UNDER THE CURVE 
C AGUC IS THE VECTOR GENERATED AFTER USING URAND 
C THETA1,THETA2 1 THETA3 ARE ESTIMATORS 

. C CDF IS THE CUMULATIVE DISTRIBUTION FUNCTION 
C THREE PARAMETERS. 

INTEGER NO(N) 1 LANS(3),UANS(3) 
C NO IS AN ARRAY THAT CONTAINS THE GENERATED NOS 

REAL MEAN(2),INVPHI(3) 1 INALPH(2),LBOUND(3),UBOUND(3) 
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100 FORMAT() 
110 FORMAT(l5X,F6.2,18X 1 F6.2/) 
120 FORMAT(4X,'DIFFERENCE OF MEANS=' 1 F6.2 1 / 1 / 1 4X 1 

& 'RATIO OF MEANS= ' 1 F6.2,/ 1 / 1 4X, 
& 'GEOMETRIC MEAN OF RATIOS = ' 1 F6.2) 

130 FORMAT(lHO,'MEAN(l) = 1
1 F6.2,5X,'MEAN(2) = 1

1 F6.2 1 /,lHO, 
& 'THETA1(',I3 1 ') = ',F6.2,2X,'THETA2(' 1 I3,') = 1

1 F6,2, 
& 2X,'THETA3(',I3 1 ') = ',F6.2) 

140 FORMAT(1Hl,20X,'ORIGINAL VALUES OF DATA' ,;,2ox,23('-' ), 
& /,/,lOX,'STANDARD FORMULATION' ,4X,'NEW FORMULATION',/,/) 

150 FORMAT(6X,'MEAN = ',F6.2,13X,'MEAN = ',F6.2,/) 

READ(5,lOO)((AUC(I,J),J=l,N),I=l,2) 
WRITE(6 1 140) 
WRITE(6,ll0) ( (AUC(I,J) I I=l,2) ,J=l,N) 

c---------------------------------------------------------
c CALCULATE THE MEANS OF THE STANDARD AND NEW FORMULATIONS 

c---------------------------------------------------------
DO 10 I=l 1 2 
SUM=O.O 
DO 20 J=l,N 
SUM=AUC(I,J)+SUM 

20 CONTINUE 
MEAN(I)=SUM/N 

10 CONTINUE 
WRITE(6 1 150)(MEAN(I) 1 I=l,2) 

c-------------------------------------------------------------
c CALCULATE THE DIFFERENCE OF MEANS,RATIO OF MEANS AND 
C GEOMETRIC MEAN OF RATIOS 

C-------------------------------------------------------------
THETl=MEAN ( 2) -MEAN ( l) 
THET2=MEAN(2)/MEAN(l) 
TOTALS=l.O 
TOTALN=l.O 
DO 90 I=l,12 

TOTALS=AUC(l,I)*TOTALS 
TOTALN=AUC(2 1 I)*TOTALN 

90 CONTINUE 
THET3=(TOTALN/TOTALS)**(l.O/N) 
WRITE(6,120)THET1,THET2 1 THET3 

c--------------------------------------------------------------
c GENERATE M NEW AUC(l) VECTORS AND M NEW AUC(2) VECTORS 

c--------------------------------------------------------------
ISEED=O 
DO 40 J=l 1 M 
ISEED=ISEED+20 
DO 30 I=l 1 N 

K=INT(URAND(ISEED)*N+l) 
C K IS A RANDOM NO BETWEEN l AND 12 

NO(I)=K 
30 CONTINUE 

DO 50 I=l,2 
DO 60 L=l,12 

AGUC(I,L)=AUC(I,NO(L)) 
60 CONTINUE 
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50 CONTINUE 

c------------------------------------------------------------
c CALCULATE THE MEANS,DIFFERENCE OF MEANS,RATIO OF MEANS AND 
C GEOMETRIC MEAN OF RATIOS M TIMES 

c------------------------------------------------------------
DO 70 I=l 1 2 
SUM=O.O 
DO 80 L=l,N 
SUM=AGUC(I,L)+SUM 

80 CONTINUE 
MEAN(I)=SUM/N 

70 CONTINUE 
THETAl(J)=MEAN(2)-MEAN(l) 
THETA2(J)=MEAN(2)/MEAN(l) 
TOTALS=l.O 
TOTALN=l.O 
DO 200 I=l,12 

TOTALS=AGUC(l 1 I)*TOTALS 
TOTALN=AGUC(2 1 I)*TOTALN 

200 CONTINUE 
THETA3(J)=(TOTALN/TOTALS)**(l.O/N) 

40 CONTINUE 

C---------------------------------------------------------
C SORT THE ARRAYS 
c---------------------------------------------------------

CALL SORT(THETAl,M) 
CALL SORT(THETA2,M) 
CALL SORT(THETA3,M) 

WRITE(6,50l)(THETAl(I) 1 THETA2(I) 1 THETA3(I) 1 I,I=l,M) 
501 FORMAT(3(5X,F6.2),5x,I6) 

c-------------------------~-------------------------------
c CALCULATE THE CUMULATIVE DISTRIBUTION FUNCTIONS 
c---------------------------------------------------------

CALL FUNCT(THETAl,THETl,M,CDF(l)) 
CALL FUNCT(THETA2,THET2,M,CDF(2)) 
CALL FUNCT(THETA3,THET3 1 M1 CDF(3)) 

C WRITE(6,170)(CDF(I),I=l,3) 
170 FORMAT(3(SX,F6.2)) 

c---------------------------------------------------------
c CALCULATE THE CONFIDENCE INTERVALS 

c---------------------------------------------------------
C0=2. 5l55l7 
Cl=0.802853 
C2=0.0l0328 
Dl=l. 432788 
D2=0.189269 

·D3=0.001308 
ALPHA=(l.O-C)/2.0 
ALPH=l-ALPHA 

CALL INV(CDF(l),co,c1,c2,Dl,02,03,INVPHI(l)) 
CALL INV(CDF(2),co,c1,c2,01,02,03,INVPHI(2)) 
CALL INV(CDF(3),co,c1,c2,01,02,03,INVPHI(3)) 
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CALL INV(ALPHA,co,c1,c2,Dl,D2,D3,INALPH(l)) 
CALL INV(ALPH,co,c1,c2,Dl,D2,D3,INALPH(2)) 

C WRITE(6,180)(INVPHI(I),I=l,3),(INALPH(II),II=l,2) 
180 FORMAT(2X,F8.4) 

DO 230 I=l 1 3 
XL{I)=INALPH(l)+2*INVPHI(I) 
XU{I)=INALPH(2)+2*INVPHI(I) 

230 CONTINUE 

A=0.2316419 
PI=3.141593 
Bl=0.319381530 
B2=-0.356563782 
B3=1. 781477937 
B4=-l.821255978 
85=1.330274429 

DO 240 I=l 1 3 
CALL PHI(XL(I),A 1 PI 1 Bl 1 B2 1 B3 1 B4 1 B5 1 ANSL(I)) 
CALL PHI(XU(I),A,PI,Bl,B2,B3,B4,B5,ANSU(I)) 

240 CONTINUE 

c WRITE(6,250)(XL(I),xu(I),ANSL(I),ANSU(I),I=l,3) 
250 FORMAT(4(5X 1 F8.4)) 

DO 270 I=l,3 
LANS(I)=INT(ANSL(I)*M) 
UANS(I)=INT(ANSU(I)*M) 

270 CONTINUE 

LBOUND(l)=THETAl(LANS(l)) 
LBOUND(2)=THETA2(LANS(2)) 
LBOUND(3)=THETA3(LANS(3)) 
UBOUND(l)=THETAl(UANS(l)) 
UBOUND(2)=THETA2(UANS(2)) 
UBOUND(3)=THETA3(UANS(3)) 

WRITE(6,280)(LBOUND(I) 1 I=l 1 3),(UBOUND(I) 1 I=l,3) 
280 FORMAT(1Hl,20X 1 'CONFIDENCE INTERVALS' 1 / 1 21X 1 20( '-'),/,/, 

& 26X,'THETA1' ,1ox, 'THETA2' ,1ox, 1 THETA3',/,/, 
& 5X,'LOWER BOUND' ,1ox,F6.2,1ox,F6.2,10X,F6.2,/,/, 
& 5X,'UPPER BOUND' ,1ox,F6.2,1ox,F6.2,10x,F6.2) 

STOP 
INCLUDE UCT*ASCII.URAND 
END 
SUBROUTINE FUNCT(THETA 1 THET 1 LEN,CDF) 
DIMENSION THETA(LEN) 
DO 270 I=l,LEN 

IF(THETA(I).GT.THET)THEN 
CDF=(I-1)*1.0/LEN 
GO TO 300 
END IF 

270 CONTINUE 
300 RETURN 

END 

SUBROUTINE SORT(ARRAY 1 LENGTH) 
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DIMENSION ARRAY(LENGTH) 
DO 210 I=l 1 LENGTH-l 
DO 220 L=I+l,LENGTH 

IF(ARRAY(I).GT.ARRAY(L))THEN 
TEMP=ARRAY(I) 
ARRAY(I)=ARRAY(L) 
ARRAY(L)=TEMP 
END IF 

220 CONTINUE 
210 CONTINUE 

RETURN 
END 

SUBROUTINE INV(CDF,co,c1,c2,01,D2,D3,INVPHI) 
REAL INVPHI 
IF(CDF.GT.0.5.AND.CDF.LT.l.O)THEN 

T=(-2.0*ALOG(l.0-CDF) )**(l.0/2.0) 
ELSE 

T=(-2.0*ALOG(CDF))**(l.0/2.0) 
END IF 

Z=T-((CO+Cl*T+C2*(T*T))/(l+Dl*T+D2*(T*T)+D3*(T*T*T))) 
IF(CDF.GT.O.O.AND.CDF.LE.0.5)THEN 

INVPHI=-Z 
ELSE 

INVPHI=Z 
END IF 
RETURN 
END 

SUBROUTINE PHI(T 1 A,PI 1 Bl 1 B2,B3,B4 1 B5,ANS) 
X=l.0/(1.0+A*ABS(T)) 

-5 

Y=((2.0*PI)**(-0.5) )*(EXP(-(T*T)/2.0)) 
R=Y*(Bl*X+B2*(X*X)+B3*(X*X*X)+B4*(X*X*X*X)+BS*(X*X*X*X*X)) 
IF(T.LT.O.O)THEN 
ANS=R 
ELSE 
ANS=l-R 
END IF 
RETURN 
END 
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