The influence of birth site on short-term outcomes of encephalopathic newborn infants treated with therapeutic hypothermia at Groote Schuur Hospital, Cape Town, South Africa.

by

VICTORIA NAKIBUUKA KIRABIRA

Student number: NKBVIC001

A minor-dissertation submitted in partial fulfillment of the requirements for the degree

Master of Philosophy in Neonatology

Faculty of Health Sciences

UNIVERSITY OF CAPE TOWN

May 2015

Supervisors:

Assoc. Prof Alan R Horn Department of Paediatrics, University of Cape Town

Dr Natasha R Rhoda Department of Paediatrics, University of Cape Town
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
Table of Contents

Declaration .. iv
Abstract .. v
Acknowledgements .. vi
List of Figures and Tables .. vii
Abbreviations ... viii

CHAPTER 1 Introduction .. 1
1.1 Context .. 1
1.1.1 Methods .. 3
1.2 Ethical considerations .. 5
1.3 Author guidelines for Journal of Tropical Pediatrics ... 5
1.4 References for chapter 1 ... 7

CHAPTER 2 ... 9
2.1 Title Page .. 9
Author contributions ... 9
2.2 Summary .. 10
2.3 Text .. 11
2.3.1 Background .. 11
2.3.2 Method .. 12
2.3.3 Inclusion and exclusion criteria ... 13
2.3.4 Data collection and analysis ... 14
2.3.5 Results ... 14
2.3.6 Discussion .. 15
2.3.7 Conclusion ... 17
2.4 Funding .. 19
2.5 Acknowledgements ... 20
2.6 References for chapter 2 .. 21
2.7 Legends to figures ... 24
2.8 Tables .. 25
2.9 Figures .. 27

APPENDICES .. 29
Appendix 1: Author guidelines for Journal of Tropical Pediatrics ... 29
Declaration

I, Victoria Nakibuuka hereby declare that the work presented in this dissertation is original and has not been presented for any other degree in any University

Signed

………………………………………………………Date ……………………………

This dissertation has been submitted for examination with approval of the following supervisors;

1. A/Prof Alan Horn

………………………………………………………Date…………………………

2. Dr. Natasha Rhoda

………………………………………………………Date…………………………
Abstract

Background: International consensus guidelines recommend that term or near-term newborns with moderate or severe hypoxic ischaemic encephalopathy (HIE) should be treated with induced hypothermia within 6 hours of birth, but many of the affected babies are born outside treatment centers. There are conflicting data describing the influence of birth site on outcome after HIE – and no published data from South Africa.

Objective: To compare the frequency of abnormal outcome (mortality or abnormal aEEG) before discharge between inborn and outborn infants treated with hypothermia

Methods: This was a retrospective analysis of data extracted from a prospectively collated registry of babies with moderate or severe HIE, treated with hypothermia in a tertiary hospital in South Africa, between 1 January 2011 and 31 December 2012.

Results: A total of 57 babies were treated with hypothermia of which 23 (40%) were inborn and 34 (60%) outborn. Cooling was initiated earlier among the inborn babies (age 2.3 hours vs. 4.3 hours, p=0.002). Pregnancy complications and abnormal intrapartum fetal heart rates occurred more frequently in inborn infants (65.2 % vs. 24.2%, p=0.0001 and 47.8% vs. 20.6%, p=0.03 respectively). More outborn babies died or had an abnormal aEEG at 48 hours (32% vs. 22%, p=0.556) and fewer outborn babies achieved normal feeding at discharge (22% vs. 38%, p= 0.189), but these differences were not statistically significant.

Conclusion: The majority of infants treated with induced hypothermia in an urban/peri-urban setting in South Africa were not born in a cooling centre. There were significant delays in initiating cooling among the outborn babies. Short-term morbidity and mortality were not significantly different in outborn babies but interpretation is limited by the small sample size.
Acknowledgements

With deep Gratitude I wish to acknowledge:

1. The Almighty God for his faithfulness and love which enabled me to complete the thesis
2. My dear husband Peter for his patience and positive feedback. I thank my dear mother Esther and sister Ruth for taking care of my little children while I was away for these particular studies.
3. My supervisors, Prof. Alan Horn, Dr. Natasha Rhoda, for their invaluable guidance, valuable criticism, tireless effort, dedication and constant encouragement I received from them during the study and write up of the thesis.
4. Prof. Alan Horn for his valuable time and assistance with drafting the study protocol, data analysis and writing up the Manuscript.
5. Dr. Natasha Rhoda, for assistance with drafting the proposal, positive criticism and encouragement to complete the thesis.
6. All neonatologists in the department of neonatology GSH for their advice, constructive ideas, and encouragement.
List of Figures and Tables

Table 1: Maternal and infant characteristics at initiation of cooling …………………… 25

Table 2: Neonatal morbidity…………………………………………………………………26

Figure 1: Pregnancy complications in mothers of inborn vs. outborn cooled infants………27

Figure 2: Short term outcomes of inborn vs. outborn cooled infants ……………………28
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>aEEG</td>
<td>Amplitude-integrated Electroencephalography</td>
</tr>
<tr>
<td>CFM</td>
<td>Cerebral Function Monitor</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>EEG</td>
<td>Electro-Encephalogram</td>
</tr>
<tr>
<td>GSA</td>
<td>Geographic Service Area</td>
</tr>
<tr>
<td>GSH</td>
<td>Groote Schuur Hospital</td>
</tr>
<tr>
<td>HIE</td>
<td>Hypoxic Ischemic Encephalopathy</td>
</tr>
<tr>
<td>ICE</td>
<td>Infant Cooling Evaluation</td>
</tr>
<tr>
<td>ICU</td>
<td>Intensive Care Unit</td>
</tr>
<tr>
<td>KMC</td>
<td>Kangaroo Mother Care</td>
</tr>
<tr>
<td>NMR</td>
<td>Neonatal Mortality Rate</td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>UCT</td>
<td>University of Cape Town</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
CHAPTER 1

Introduction

1.1 Context

Hypoxic–ischemic encephalopathy (HIE) is the altered neurological state that can occur after fetal hypoxia during labour; it is a significant cause of death and neuro-developmental delay in children. Worldwide 10–60% of affected newborn infants die, and at least 25% of survivors have an adverse long-term neurodevelopmental outcome. (1) It is one of the top 20 leading causes of burden of disease in all age groups (in terms of disability life adjusted years) according to the World Health Organization (WHO). (2) Even at referral centers in developed countries, death or moderate to severe disability occurs in 53–61% of newborn infants diagnosed as having moderate-severe HIE. (3, 4) The incidence of moderate-severe HIE is 0.5–1 per 1,000 live births in developed countries and estimates in developing countries range from 2.3–26.5 per 1,000 live births (5); a study including data from 2008 and 2009 in the Southern Cape Peninsula (now known as the Metro West Geographical Service Area (GSA)), South Africa, found that the incidence of moderate-severe HIE varied from 2.3 to 4.3 per 1,000 live births, depending on which definition of HIE was used. (6)

Neuronal death associated with HIE occurs in two phases; primary neuronal death due to cellular hypoxia with exhaustion of the cell’s high energy stores (primary energy failure); then after a variable latent period, usually of at least 6 hours, the secondary phase of delayed neuronal death begins (secondary energy failure). (7, 8) In the secondary phase the severity of the encephalopathy typically increases; cytotoxic oedema, seizure activity and apoptosis are perpetuated by a combination of hyperaemia, mitochondrial failure, accumulation of cytotoxic excitatory toxins
and release of free radicals. The interval between primary and secondary energy failure represents a latent phase that corresponds to a potential therapeutic window. Therapeutic hypothermia instituted within this therapeutic window has been shown to be an effective treatment for some infants with HIE and it is now a recommended standard of care for infants with moderate-severe HIE in settings where intensive care is available. (9)

Meta-analysis of therapeutic hypothermia for the treatment of HIE, published by the Cochrane Library in 2008 and 2012 reported a 24% and 25% reduction of mortality respectively. (10, 11) In the same analyses, the reduction of neurological disability at 18 months among surviving term infants with moderate and severe HIE that were treated within 72 hours of moderate hypothermia was 32% and 23% respectively. (10, 11)

Therapeutic hypothermia should be initiated within 6 hours of birth (7) and yet the majority of babies with HIE are born outside the tertiary institutions that offer cooling services. Data from studies on the effect of birth location on outcomes after induced hypothermia are conflicting. Girijja et al. reported that outborn babies experienced significant delays in initiation of therapy, had lower baseline temperatures and had increased occurrence of severe HIE (43% vs. 29%), compared to inborn babies. (12) Eicher et al. reported that 92% of the deaths of babies with HIE occurred among outborn babies. (13) The Infant Cooling Evaluation (ICE) trial that evaluated the effects of whole body cooling in 220 infants reported no significant difference in adverse outcomes between inborn and outborn babies. (14) However, in the ICE trial, cooling was initiated during transportation to the tertiary institutions and the lack of significant effect of birth site on outcomes in this study, suggests that the early initiation of cooling played a role.
Although, cooling is recommended for babies with HIE in settings where intensive care facilities are available, the greatest burden of HIE occurs in low- and middle-income countries and particularly in Sub-Sahara Africa (SSA). Many of the countries in the SSA region do not have intensive care facilities and therapeutic hypothermia is not used as part of standard care.(2, 9) In Africa, appropriate newborn care is significantly compromised by secondary delays including poor transportation as a result of poor road infrastructure which is a significant limitation in the implementation of therapeutic hypothermia.(15) Chaudhary et al. have recently proposed cooling during transportation to treatment centers to mitigate such delays.(16) The study reported in chapter two of this thesis aims to compare short-term outcomes (mortality or abnormal aEEG) between inborn and outborn infants with HIE who were treated with induced hypothermia. The results may influence policy on such critical issues as the need for cooling during transportation, the age of initiation of cooling and the measures needed to promptly identify newborn infants in need of referral for possible cooling. Section 1.1.1 emphasises methodological aspects of study site and cooling methodology in more detail than was possible within the constraints of the publication-ready manuscript presented in chapter two.

1.1.1 Methods

Study site

The study was conducted at the neonatal unit at Groote Schuur Hospital (GSH) which is a tertiary hospital providing neonatal intensive care to the Metro-west GSA of the Western Cape, South Africa. In 2012, this region had approximately 40,000 deliveries.(17) The GSH neonatal unit has 75 beds, including 20 intensive care beds. The resources in this setting are more limited than in high-income countries with a nurse to baby ratio in the intensive care unit varying from 1:2 to 1:4. The unit bed occupancy is above 100% throughout the year. However, there are
facilities for neonatal ventilation, blood gas analysis, invasive blood pressure monitoring, and administration of inotropic agents. A total of 2,202 babies were admitted to the unit in 2011 and 2,423 were admitted in 2012.(17) Therapeutic hypothermia is provided using the servo-controlled gel-pack method (18), or using the Tecotherm Neo [TEC COM GmbH, Halle, Germany], depending on availability.

Details of the cooling methods used

i) Tecotherm Neo

The baby was placed on a coolant-filled mattress which was wrapped around the trunk and legs. A rectal probe was inserted 4–5 cm to measure core body temperature. The automated mode was used; the mattress cooled the infant down to a rectal temperature of 33.5°C as fast as possible, usually within 30 minutes. Once 33.5°C was reached this temperature was held constant for 72 hours via a servo-control mechanism. After 72 hours the mattress automatically re-warmed the infant, aiming to increase the core temperature to 37.0°C in increments of no more than 0.5°C per hour.

ii) Servo-controlled gel-pack method

Cool gel packs (at 7-10°C) were applied to the head and upper body and replaced hourly. The core temperature was servo-controlled by an overhead radiant warmer [Servocrib, Servocare Medical Industries cc, Cape Town], capable of controlling to a low target temperature of 33.5°C. A heat shield was placed over the head to prevent local head heating. After 72 hours the cold gel packs were removed and the temperature of the radiant warmer was increased every hour by 0.2°C, until a core temperature of 36.5–37°C was achieved.
1.2 Ethical considerations

Approval to conduct the study was obtained from the University of Cape Town (UCT) Health Sciences Faculty Human Research Ethics Committee and approval number was 612/2013. Permission was obtained from the superintendent of Groote Schuur Maternity Block to proceed with the study. Rules and procedures for responsible conduct of research were adhered to, ensuring confidentiality throughout the study and thereafter. All records identifying the subject were kept confidential. All computer entry of data was password protected and the final data set for analysis had identifying data removed.

Informed consent was not required since the study is retrospective, the data was de-identified before analysis and the data was extracted from an existing HIE registry that has previously been approved by the UCT Health Sciences Faculty Human Research Ethics Committee.

There weren’t any physical or psychological risks to the patients or parents, nor any direct benefit, since this was a retrospective review of stored data. However, the study was expected to be of potential benefit to the community from the knowledge gained by analysis of the data. The results of this study may be used to influence policy on the need for cooling during transportation, the need to research later cooling initiation periods and the need for appropriate resources to allow initiation of cooling at referral hospitals.

1.3 Author guidelines for Journal of Tropical Pediatrics

The Journal of Tropical Pediatrics was chosen as a target journal for the manuscript as it is well known internationally and is tracked by Thomson Reuters. Moreover, it typically reports pediatric research relevant to resource-limited situations similar to those that occur in South
Africa. The author guidelines are included as Appendix 1 – the journal restricts the word count to 2000 words excluding references, tables and figures.
1.4 References for chapter 1

17. Rhoda NR. Annual Perinatal death audit report Western Cape Province South Africa. Cape Town; 2012. Personal communication

CHAPTER 2 Publication–ready manuscript

2.1 Title Page

Title: The influence of birth site on short-term outcomes of encephalopathic newborn infants treated with therapeutic hypothermia at Groote Schuur Hospital, Cape Town, South Africa.

Authors:

V Nakibuuka Kirabira* MBChB, MMED (Paed) MUK.
NR Rhoda†, MBChB, FCPaed (SA), Cert. Neon. (SA)
AR Horn†, MBChB, DCH (SA), FCPaed (SA), Cert Neon. (SA), PhD

* Department of Paediatrics, Nsambya Hospital Uganda

† Neonatal Medicine, Department of Paediatrics, University of Cape Town.

Corresponding Author/Reprint Requests: V Nakibuuka Kirabira

Email: nakibuukarv@gmail.com Telephone: +256772369325, Fax: +256-414-267870.

Address: St. Francis Hospital Nsambya, P.O. Box 7146, Kampala.

Competing interests: None of the authors have any competing interests.

Key Words/MeSH:

Newborn infant, therapeutic hypothermia, hypoxia-Ischemia, developing-countries.

Word Count for Main Text: 1936 words (Excluding title page, summary, key words, figure legends and references)

Number of Figures: 2 Number of Tables: 2

Author contributions

VNK: Drafted the proposal, collected and analysed the data, and wrote the manuscript
NRR: Assisted with drafting the proposal and critically reviewed the manuscript
ARH: Assisted with drafting the proposal, data analysis and critically reviewed the manuscript
2.2 Summary

Background: International consensus guidelines recommend that term or near-term newborns with moderate or severe hypoxic ischaemic encephalopathy (HIE) should be treated with induced hypothermia within 6 hours of birth, but many of the affected babies are born outside treatment centers. There are conflicting data describing the influence of birth site on outcome after HIE – and no published data from South Africa.

Objective: To compare the frequency of abnormal outcome (mortality or abnormal aEEG) before discharge between inborn and outborn infants treated with hypothermia

Methods: This was a retrospective analysis of data extracted from a prospectively collated registry of babies with moderate or severe HIE, treated with hypothermia in a tertiary hospital in South Africa, between 1 January 2011 and 31 December 2012.

Results: A total of 57 babies were treated with hypothermia of which 23 (40%) were inborn and 34 (60%) outborn. Cooling was initiated earlier among the inborn babies (age 2.3 hours vs. 4.3 hours, p=0.002). Pregnancy complications and abnormal intrapartum fetal heart rates occurred more frequently in inborn infants (65.2 % vs. 24.2%, p=0.0001 and 47.8% vs. 20.6%, p= 0.03 respectively). More outborn babies died or had an abnormal aEEG at 48 hours (32% vs. 22%, p=0.556) and fewer outborn babies achieved normal feeding at discharge (22% vs. 38%, p= 0.189), but these differences were not statistically significant.

Conclusion: The majority of infants treated with induced hypothermia in an urban/peri-urban setting in South Africa were not born in a cooling centre. There were significant delays in initiating cooling among the outborn babies. Short-term morbidity and mortality were not significantly different in outborn babies but interpretation is limited by the small sample size.
2.3 Text

2.3.1 Background

Hypoxic–ischemic encephalopathy (HIE) can be defined as the altered neurological state that occurs after fetal hypoxia during labour; it is a significant cause of death and neurodevelopmental delay in children.(1) Worldwide 10–60% of affected newborn infants die, and the majority of survivors of severe HIE have an adverse long-term neurodevelopmental outcome.(1) The incidence of moderate-severe HIE in the developing world is estimated to be 10–20 times more common than in the developed world.(2)

Neuronal death due to HIE occurs in two phases, and the interval between primary and secondary energy failure represents a latent phase that corresponds to a potential therapeutic window.(3,4) The most recent systemic review has shown that newborns with moderate or severe HIE who are treated with hypothermia have significantly improved neurological outcomes.(5,6) International consensus guidelines recommend that hypothermia should be provided as standard care in settings where intensive care is available; and it should be initiated within 6 hours of birth.(7)

Timeous initiation of cooling can be challenging as many infants are born outside treatment centres.(8,9) A study in the United States of America reported that outborn infants with HIE who were treated with induced hypothermia, were ten times more likely to die than inborn infants.(9) Other studies comparing outcomes of HIE management between inborn and outborn infants did not report any significant differences.(8,10) In middle-income countries such as South Africa, where therapeutic hypothermia is limited to very few centres (11), the extent to which being born outside a treatment centre compromises outcome may be substantial, but there are no published data. Long-term follow up is often difficult in resource-limited settings, but a severely
suppressed amplitude-integrated electroencephalography (aEEG) background at age 48 hours in cooled babies is strongly associated with poor long-term outcome.(12)

The Primary objective of this study was to compare the frequency of abnormal outcome (mortality or severely abnormal aEEG at 48 hours) before discharge, between inborn and outborn infants treated with hypothermia in a tertiary hospital in South Africa during a two-year period. The secondary objectives were: i) to describe the demographic and perinatal characteristics; and ii) to compare the age and temperature at initiation of cooling, and the proportions of co–morbidities between inborn and outborn infants.

2.3.2 Method

The study was conducted at Groote Schuur Hospital (GSH) a tertiary hospital providing neonatal intensive care to the Metro West Geographic Service Area of the Western Cape, South Africa. Therapeutic hypothermia was the standard of care for infants with moderate-severe HIE and was provided using the servo-controlled gel-pack method (13), or the Tecotherm Neo [TEC COM GmbH, Halle, Germany].

This was a retrospective analysis of data extracted from a prospectively collated registry of babies with moderate or severe HIE, who were admitted to the neonatal intensive care unit (NICU) and treated with hypothermia at GSH between 1 January 2011 and 31 December 2012. The study was approved by the University Of Cape Town Faculty Of Health Sciences Human Research Ethics Committee.
2.3.3 Inclusion and exclusion criteria

All the following criteria (A+B+C) were required for both provision of therapeutic hypothermia and inclusion in the study:

A. Infants ≥ 36 weeks gestation and birth weight ≥ 1800 grams with moderate to severe HIE at age < 6 hours

B. Potential intrapartum hypoxia, suggested by at least one of:
 - a 10-minute Apgar score of < 7, and/or
 - ongoing respiratory support at 10 minutes, and/or
 - a cord pH ≤ 7 or a base deficit of ≥ 12 within 60 minutes of birth

C. Signs of encephalopathy during the first 6 hours of life indicated by at least one of:
 - three clinical signs of moderate-severe HIE, using the modified Sarnat classification as defined by Shalak et al. (14) and/or
 - a depressed level of consciousness plus abnormal tone, and/or
 - clinical seizure(s), and/or
 - Abnormal amplitude-integrated Electro-encephalopagram(aEEG) defined by at least one of: moderately abnormal background, suppressed background, discontinuous normal voltage, burst suppression, low voltage, flat trace or seizures.

Infants with any of the following conditions were excluded: a severe congenital anomaly; congenital infection; persistent pulmonary hypertension, systemic hypotension or bleeding that was not responding to treatment; moribund and unlikely to benefit from cooling.
2.3.4 Data collection and analysis

The following infant/maternal data were extracted from the registry data forms: demographic characteristics at birth; temperature and age at cooling commencement at GSH; mortality; background aEEG pattern at 6, 24 and 48 hours; the presence of seizures and systemic co-morbidities; and the severity of the encephalopathy. Published data shows wide variations in the outcomes of inborn vs. outborn infants and data were not adequate to guide sample size. Our research is therefore exploratory using a convenience sample including all infants with moderate or severe HIE during a two-year period. The Chi square or Fischer’s exact tests were used to compare categorical variables and the Student t-test or the Wilcoxon Mann-Whitney U test (depending on the distribution of the data) were used to compare continuous variables. Stata version 12 (Stata Corporation; College station, USA) was used for statistical analyses, all tests were two-sided and statistical significance was assigned at P < 0.05.

2.3.5 Results

During the study period, a total of 57 infants with moderate or severe HIE were treated with induced hypothermia, of which 23 (40%) were inborn and 34 (60%) were outborn. The characteristics of the infants and their mothers at initiation of cooling are shown in Table 1. The median age of initiation of cooling in the outborn infants was double that of the inborn infants. Biochemical and clinical indicators of intrapartum hypoxia and encephalopathy were similar between the groups, but pre-existing maternal complications, pregnancy complications and abnormal fetal heart rate were more frequent among the inborn group (52.2% vs. 26.5%, p=0.048; 65.2% vs. 24.2%, p=0.001; and 47.8% vs. 20.6%, p=0.03; respectively). The individual pregnancy complications are shown in Figure 1 and the frequencies of clinically
important morbidities are shown in Table 2; there were no significant differences between the two groups.

The mortality and neurological outcomes at discharge are shown in Figure 2. A greater proportion of outborn infants died or had a severely abnormal aEEG at 48 hours (the primary outcome) compared to inborn infants (32% vs. 22%) but the difference was not statistically significant (Odds ratio (OR) 1.72, 95% Confidence Interval (CI) 0.45–7.45, p=0.382). A tendency towards poorer outcomes in outborn infants was also shown for the other individual short-term neurological outcomes but the differences did not reach statistical significance.

2.3.6 Discussion

This retrospective study describing the influence of birth site on short-term outcomes of infants with HIE who were treated with therapeutic hypothermia found that; a large proportion of the babies were outborn; the inborn infants had a higher rate of reported antenatal and intrapartum complications; the time to initiation of cooling in the outborn infants was twice that of the inborn infants; and abnormal outcome at discharge was more common in outborn infants, though the difference was not statistically significant.

The high proportion of outborn infants (60%) in our study is similar to the data reported by Eischer et al. where 75% of infants were outborn.(9) This trial was conducted in the USA and it studied the feasibility of initiating hypothermia in outlying hospitals. The high incidence of outborn infants in both studies is to be expected following the recommendation from the World Health Organization (WHO), that cooling should only be conducted in facilities with intensive care, necessitating referral of babies born in centres without these facilities.(15) The WHO recommendation can be expected to increase the burden of disease of HIE in the tertiary
institutions and it is also likely to result in the referral of a large number of infants with borderline signs of HIE who do not meet all the criteria for cooling. In the absence of aEEG, an early clinical indicator that predicts abnormal neurological outcome might be useful to identify infants who need referral for further assessment, as well as those who don’t. An early Thompson HIE score of \(\geq 5 \) at age 1–3 hours identified all infants who had an abnormal aEEG at age 3 or 6 hours (16) – the application of this score in settings where aEEG is not available may decrease the burden of disease of infants referred with mild HIE in tertiary centres.

In our study maternal complications including pre-eclampsia, diabetes and seizures, were reported more frequently among the inborn babies (65.2%). This distribution is expected, because these complications are indications for referral to a tertiary centre. Abnormal fetal heart rate was also reported more often among the inborn infants – this difference is difficult to explain because all inborn and outborn infants had HIE and similar proportions would be expected to have an abnormal fetal heart rate during labor. Additionally, caesarean sections, breech deliveries and instrumental deliveries occurred more often among the inborn infants. This is expected as some infants would have been referred for that reason and facilities for caesarean section are not available at all primary care centers. The data may also suggest that infants are not being timeously referred in-utero.

The initiation of cooling of the outborn babies was significantly delayed. This finding was similarly reported in two studies in North America (17, 18) Natarajan et al. reported initiation of cooling at a mean (SD) time of 5.5 (1.1) hours compared to 4.4 (1.2) hours for inborn babies (17); and Khurshid et al. reported a median (IQR) age at initiation of cooling of 6 (7.6–9.6) hours for outborn babies (18) The delay is likely to be most affected by transport from referring centres.
in the absence of cooling in transit, but difficulty with the recognition of moderate to severe HIE at the referring hospital or tertiary institution would be expected to compound the delay further.

Despite the increased frequency of complicated deliveries and abnormal fetal heart rates among the inborn infants, adverse outcomes including mortality, abnormal CFM at 48 hours and delayed nutritive suck at discharge occurred more often in the outborn infants. Although the difference between the groups was not statistically significant, our findings were similar to those reported by Eischer et al, where 70% of the mortality was among the outborns (9), however in Eischer’s study 77% of the babies in the outborn group had severe HIE. In contrast, Jacobs et al. found no differences in outcomes of inborn vs. outborn infants, but passive cooling and rectal temperature monitoring was initiated at the referral hospital and continued during transportation.(8) Experimental data in animal models suggest that cerebral hypothermia that is initiated as early as possible in the latent phase of injury is associated with neuroprotection,(19). However, in the Cool Cap trial there was no greater improvement in those treated earliest after birth compared to those treated later (2.6–6hours).(20)

The strengths of this study are that the source database was prospectively collated and the study contributes novel data in the geographical setting. However, the study is limited by the small sample size and the lack of long-term follow up data due to the poor follow-up attendance in our setting.

2.3.7 Conclusion

In conclusion, this study demonstrates that the majority of babies who were treated with induced hypothermia in an urban/periurban setting in South Africa were not born in a tertiary hospital. The significant delays in initiating of cooling and the apparent lower occurrence of fetal heart
rate abnormalities in the outborn babies are highlighted. Although short-term morbidity and mortality were not significantly different in outborn babies, the data could be used to inform a larger study. Moreover, our data indicates the need to implement techniques of rapid screening and/or diagnosis of HIE at referral hospitals to allow prompt and appropriate initiation of therapeutic hypothermia.
2.4 Funding

This work was partially funded by the African Pediatric Fellowship Programme – an academic programme under the auspices of the Department of Paediatrics, University of Cape Town.
2.5 Acknowledgements

We acknowledge the staff in the neonatal ward of Groote Schuur Hospital for their tireless efforts in taking care of the infants with HIE.
2.6 References for chapter 2

2.7 Legends to figures

Figure 1: Pregnancy complications in mothers of inborn vs. outborn cooled infants

Figure 2: Short term outcomes of inborn vs. outborn cooled infants
2.8 Tables

Table 1: Maternal and infant characteristics at initiation of cooling

<table>
<thead>
<tr>
<th>Variable</th>
<th>In-born N=23</th>
<th>Out-born N=34</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>11 (47.8)</td>
<td>13 (38.2)</td>
<td>0.472</td>
</tr>
<tr>
<td>Cord or infant blood gas done within the first hour of birth</td>
<td>22 (95.6)</td>
<td>31 (91.2)</td>
<td>0.641*</td>
</tr>
<tr>
<td>Base Deficit (mmol/l): Mean (SD)</td>
<td>16.7 (8.4)</td>
<td>16.7 (5.9)</td>
<td>0.999</td>
</tr>
<tr>
<td>Lactate (mmol/l): Mean (SD)</td>
<td>10.4 (3.9)</td>
<td>9.4 (3.3)</td>
<td>0.312</td>
</tr>
<tr>
<td>Chest compressions at birth</td>
<td>4 (17.4)</td>
<td>8 (23.5)</td>
<td>0.744*</td>
</tr>
<tr>
<td>Adrenaline at birth</td>
<td>3 (13.0)</td>
<td>5 (14.7)</td>
<td>1.000*</td>
</tr>
<tr>
<td>Preexisting maternal conditions a</td>
<td>12 (52.2)</td>
<td>9 (26.5)</td>
<td>0.048</td>
</tr>
<tr>
<td>Pregnancy complications b</td>
<td>15 (65.2)</td>
<td>8 (24.2)</td>
<td>0.001</td>
</tr>
<tr>
<td>Non-reassuring CTG or fetal bradycardia</td>
<td>11 (47.8)</td>
<td>7 (20.6)</td>
<td>0.030</td>
</tr>
<tr>
<td>Delivery complications c</td>
<td>14 (60.9)</td>
<td>19 (55.9)</td>
<td>0.708</td>
</tr>
<tr>
<td>Mode of delivery:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-labour CS</td>
<td>5 (21.7)</td>
<td>3 (8.8)</td>
<td>0.001*</td>
</tr>
<tr>
<td>In-labour CS</td>
<td>10 (43.5)</td>
<td>5 (14.7)</td>
<td>0.02</td>
</tr>
<tr>
<td>SVD cephalic</td>
<td>4 (17.4)</td>
<td>21 (61.8)</td>
<td>0.009</td>
</tr>
<tr>
<td>SVD (Breech)</td>
<td>4 (17.4)</td>
<td>1 (3)</td>
<td>0.05</td>
</tr>
<tr>
<td>Instrumental</td>
<td>0</td>
<td>4 (11.8)</td>
<td>0.08</td>
</tr>
<tr>
<td>Maternal HIV status:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>3 (13)</td>
<td>7 (21.2)</td>
<td>0.789*</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>1 (3)</td>
<td>0.456*</td>
</tr>
<tr>
<td>On treatment</td>
<td>2 (8.7)</td>
<td>2 (6)</td>
<td>0.495*</td>
</tr>
<tr>
<td>Abnormal CFM Pattern at 6 hours</td>
<td>9/21 (42.9)</td>
<td>17 (50)</td>
<td>0.606</td>
</tr>
<tr>
<td>Severely abnormal CFM at 6 hours</td>
<td>7/21 (33.3)</td>
<td>15 (44)</td>
<td>0.428</td>
</tr>
<tr>
<td>Cooled with gel pack method</td>
<td>20 (87)</td>
<td>25 (74)</td>
<td>0.325*</td>
</tr>
<tr>
<td>Age at initiation of cooling in hours. Median (IQR)</td>
<td>2 (1–4)</td>
<td>4 (4–5)</td>
<td>0.0001‡</td>
</tr>
</tbody>
</table>

CS – caesarean section; CFM – cerebral function monitor; CTG – Cardiotocograph; IQR – interquartile range

a: Preexisting maternal conditions - Diabetes Mellitus, Hypothyroidism, Hypertension

b: Pregnancy Complications - Diabetes, Illicit Drug use/ Alcohol use, Maternal seizure, Placaenta Preavia, Pre-eclampsia, Thyroid disease, bleeding, infection, anaemia, smoker, Chorioamnionitis:

c: Delivery Complications - Head entrapment, Placental Abruptio, Cord Prolapse, Ruptured Uterus, Shoulder dystocia

‡: Wilcoxon-Mann-Whitney test

*: Fisher’s exact test
Table 2: Neonatal morbidity

<table>
<thead>
<tr>
<th>Variable</th>
<th>In born</th>
<th>Out born</th>
<th>OR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypoglycemia</td>
<td>6(26.1)</td>
<td>3(8.8)</td>
<td>0.27 (0.04 – 1.51)</td>
<td>0.137*</td>
</tr>
<tr>
<td>Hypomagnesaemia</td>
<td>3(13.0)</td>
<td>11(32.4)</td>
<td>3.19 (0.69 – 19.91)</td>
<td>0.097</td>
</tr>
<tr>
<td>Hypotension</td>
<td>3(13.0)</td>
<td>6(17.7)</td>
<td>1.43 (0.26 – 9.82)</td>
<td>0.726*</td>
</tr>
<tr>
<td>Serum Creatinine >115 μmol/l</td>
<td>1(4.4)</td>
<td>2(5.9)</td>
<td>1.38 (0.07 – 84.75)</td>
<td>1.000*</td>
</tr>
<tr>
<td>Pulmonary hypertension</td>
<td>2(8.7)</td>
<td>3(8.8)</td>
<td>1.02 (0.11 – 13.14)</td>
<td>1.000*</td>
</tr>
<tr>
<td>Meconium aspiration</td>
<td>3(13.0)</td>
<td>4(11.8)</td>
<td>0.89 (0.13 – 6.74)</td>
<td>1.000*</td>
</tr>
<tr>
<td>Mechanical ventilation</td>
<td>7(30.4)</td>
<td>13(38.2)</td>
<td>1.41 (0.40 – 5.20)</td>
<td>0.545</td>
</tr>
<tr>
<td>Late onset sepsis</td>
<td>1(4.3)</td>
<td>1(2.9)</td>
<td>0.67 (0.01 – 54.68)</td>
<td>1.000*</td>
</tr>
<tr>
<td>Necrotising enterocolitis</td>
<td>0</td>
<td>1(2.9)</td>
<td></td>
<td>0.407</td>
</tr>
<tr>
<td>Bradycardia < 80 bpm</td>
<td>3(13.0)</td>
<td>3(8.8)</td>
<td>0.64 (0.08 – 5.35)</td>
<td>0.677*</td>
</tr>
</tbody>
</table>

CI – confidence interval; OR – odds ratio

*: Fisher’s exact test
2.9 Figures

Figure 1

![Bar chart showing the number of patients for various conditions: Diabetes mellitus, Drug use, Maternal seizure, Placenta Praevia, Emphysema, Anaemia, placenta Praevia, PROM. The bars are divided into Outborn and Inborn categories.](image)
Figure 2

- Mortality
- Absent Nutritive suck at discharge
- Severely Abnormal aEEG at 48 Hours
- Severely abnormal aEEG or Death

Number of patients

- Inborn
- Outborn
APPENDICES

Appendix 1: Author guidelines for Journal of Tropical Pediatrics

PREPARATION OF MANUSCRIPTS

Original papers should not usually be more than 2000 words in length; brief reports should not be more than 1000 words in length, and letters not more than 500 words. Manuscripts should be legibly typed, using double spacing throughout, with 25 mm margins at each side. Regular full length papers should be divided into the following sequence of sections, and each section should begin on a new page:

- Title page
- Summary
- Text
- Acknowledgements
- References
- Legends to figures
- Tables.

Number each page at the top right corner consecutively, beginning with the title page. Please avoid footnotes; use instead, parentheses within brackets. Underline only words which should appear in italic. Clearly identify unusual or handwritten symbols and Greek letters. Differentiate between the letter O and zero, and the letters I and l and number 1. Mark the position of each figure and table in the margin. SI units should be used for scientific measurements.

References

Number references consecutively in the order in which they are cited in the text. Published articles and those in press (state the journal which has accepted them) may be included. References should include (in the following order) author's names, editors (books only) paper title in full, journal/book title, name and address of publisher (books only), year, volume number
and inclusive page numbers. Personal communication should be authorized by those involved, in writing, and unpublished data should be cited as (unpublished data). Papers in preparation or submitted for publication should not be in the reference list. They should be cited in the text as follows: H. G. Jones, unpublished results/submitted for publication/in preparation (as appropriate).

Style in the reference section should be as follows:

Tables

Tables should be typed on separate sheets, and numbered consecutively. Tables should be self-explanatory and include a brief descriptive title. Footnotes to tables indicated by lower case letters are acceptable, but they should not include extensive experimental detail. Cite each table in the text in consecutive order.

Illustrations

All illustrations must be cited in the text in consecutive order. The back of each figure should be labelled clearly with the title of the paper, the name of the first author, and the figure number. Also indicate clearly the top margin of the figure. Figures should be submitted in the desired
final size so that reduction can be avoided. The type area of a page is 206 (height) mm x 150 mm (width); a single column is 71 mm (width).

Photographs. Photographs should be of sufficiently high quality with respect to detail, contrast, and fineness of grain to withstand the inevitable loss of contrast and detail inherent in the printing process. Indicate the magnification by a rule on the photographs.

Line drawings. These should be clear, sharp prints, suitable for reproduction as submitted. Ensure that the size of lettering is in proportion with the overall dimensions of the figure.

Figure legends. These should be on a separate, numbered manuscript sheet. Define all symbols and abbreviations used in the figure.

Funding

Details of all funding sources for the work in question should be given in a separate section entitled 'Funding'. This should appear before the 'Acknowledgements' section. The following rules should be followed:

- The sentence should begin: ‘This work was supported by …’
- The full official funding agency name should be given, i.e. ‘National Institutes of Health’, not ‘NIH’ (full RIN-approved list of UK funding agencies) Grant numbers should be given in brackets as follows: ‘[grant number xxxx]’
- Multiple grant numbers should be separated by a comma as follows: ‘[grant numbers xxxx, yyyy]’
- Agencies should be separated by a semi-colon (plus ‘and’ before the last funding agency)
- Where individuals need to be specified for certain sources of funding the following text should be added after the relevant agency or grant number 'to [author initials]'.

An example is given here: ‘This work was supported by the National Institutes of Health [AA123456 to C.S., BB765432 to M.H.]; and the Alcohol & Education Research Council [hfygr667789]."
Appendix 2: HIE Cooling registry data forms

Section 1:

Surname……………………………………………………………………………………..

Infant folder number ……………………………… DOB………….. Time OB………

Other Infant ID No…………………….. Mother folder no……………………………..

Birth site: GSH/MNH/NSH/TGBG/George/MOU/Ambulance/Home/Other……………..

Hospital providing cooling: GSH/MMH/TBGB/George, Other……………………..

Clinical details of Baby at Birth Gestation at Birth Completed weeks Sex M/F
Birth weight ……………….gm COH …………..cm First gasp at Min
Chest compressions Y/N Adrenaline Y/N

Early blood gas results (worst base excess within 60 minutes of birth including cord blood) available Y/N

Result: PH……………….. Base excess……………… Lactate…………………………

Section 2:

Clinical details at Age 3-6 hours

Visible seizures Y/N Thompson HIE score HIE grade............

Cooling Details

Cooling none/cap/mat/ fan/ gel

Age commenced Hrs Min Target core temp......°C

Temperature at the time of initiation of cooling°C
Maternal Details

Age ………………... Gravidity………………. RVD pos/neg/UK / Pos+ ARV VDRL
Pos/neg/UK/Post+ Fully treated

Pre-existing maternal Medical conditions or treatment Y/N

If yes give details…………………………………………………………………………………………

Section 3:

Pregnancy complications Y/N If yes Diabetes Y/N Illicit Drug or alcohol abuse Y/N

Maternal seizure Y/N Placenta praevia Y/N Pre-eclampsia Y/N Thyroid disorder Y/N

Bleeding Y/N Infection Y/N Anaemia Y/N Pyrexia illness Y/N Smoker Y/N

PROM > 18 h Y/N Chorioamnionitis Y/N Other Y/N detail……………………………………

Mode Of delivery Pre labour CS / In – labour CS/ SVD cephalic / SVD breech/
instrumental

Delivery complications Y/N If yes: Head entrapment Y/N Placental abruption Y/N

Prolapse cord Y/N Ruptured Uterus Y/N Shoulder dystocia Y/N

Meconium Stain Liquor Y/N Non – reassuring CTG or Fetal Bradycardias Y/N/UK

Prolonged 2nd Stage Y/N/UK other Ante Partum Haemorrhage Y/N Maternal Hypoxia Y/N

Other sentinel Events Y/N detail ………………………………………………………………………

Congenital Abnormalities present at Birth Y/N detail ……………………………………………

Was an AEGG (CFM) Performed in the first 6 hours of life? Y/N

CFM findings (1st 6 Hours)

Voltage (Normal) or moderately abnormal or severely abnormal seizures Y/N

Pattern FT/BS/CLV/DNV/CNV
Section 4:

During the time of admission were any of these present?

Clinical or EEG Seizures Y/N

Sepsis Y/N

Hypoglycaemia Y/N

CPAP or Nasal Canula Oxygen Y/N

Mechanical ventilation Y/N

Hypotension Y/N

Coagulopathy Y/N

Arrhythmia Y/N

Sinus Bradycardia Y/N

Serum Hyponatraemia Y/N

Hypomagnesaemia Y/N

Bleeding /SAH Y/N

Section 5:

Head scan structural abnormality Y/N

Diagnoses during admission None of the below Y/N

Major cerebral Anomaly Y/N

Pneumonia Y/N
Major Cerebral Anomaly Y/N Pulmonary air leak Y/N
Meconium Aspiration Y/N Pulmonary Haemorrhage Y/N
Necrotising enterocolitis Y/N Pulmonary Hypertension Y/N
Late Onset Sepsis (> 72 hrs) Y/N Renal failure with Dialysis Y/N

Adverse effects due to cooling or re warming

..

Cooling for less than 72 hours; Explain Why...
..

Full sucking/ Cup Feeding established by discharge Y/N If yes, age established (d)..........
..

HIE Score at 6 hours............
HIE Score at 24 hours
HIE Score at 48 hours............
HIE Score at day 5.................
Appendix 3: The Thompson HIE Score

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limb tone</td>
<td>Normal</td>
<td>Generally Hypertonic</td>
<td>Generally Hypotonic</td>
<td>Flaccid</td>
</tr>
<tr>
<td>LOC</td>
<td>Normal</td>
<td>Hyper alert or staring</td>
<td>Lethargic or obtunded</td>
<td>Coma or stuporose</td>
</tr>
<tr>
<td>Visible Fits</td>
<td>None</td>
<td>Infrequent</td>
<td>Frequent</td>
<td></td>
</tr>
<tr>
<td>Posture</td>
<td>Norm/Other</td>
<td>Fisting</td>
<td>Strong Distal Flexion</td>
<td>decerebrate</td>
</tr>
<tr>
<td>Moro</td>
<td>Normal</td>
<td>Partial</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td>Grasp</td>
<td>Normal</td>
<td>Poor</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td>Suck</td>
<td>Normal</td>
<td>Poor</td>
<td>Absent/ Bites</td>
<td></td>
</tr>
<tr>
<td>Respiration</td>
<td>Normal</td>
<td>Normal</td>
<td>Transient Apnoea</td>
<td>Apnoea requiring IPPV</td>
</tr>
<tr>
<td>Fontanel</td>
<td>Normal</td>
<td>Full</td>
<td>Tense</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **LOC** (Level of Consciousness) reflects the patient's wakefulness and alertness.
- **Visible Fits** indicate the frequency of convulsions.
- **Posture** describes the positioning and tension of the limbs.
- **Moro** refers to the Moro reflex, which is an infant's response to a sudden movement or change in posture.
- **Grasp** assesses the strength of the grip on a finger.
- **Suck** evaluates the ability to suck and swallow.
- **Respiration** measures the quality and rate of breathing.
- **Fontanel** refers to the soft spot on the top of an infant's head, which can indicate intracranial pressure.
Appendix 4: Ethics approval

07 October 2013

HREC Refs 812/2013

Dr V Nakatshoka
c/o Dr A Horn
Neonatology
HSC, CMB

Dear Dr Nakatshoka

PROJECT TITLE: THE INFLUENCE OF BIRTH SITE ON SHORT-TERM OUTCOMES OF INFANTS TREATED WITH THE RAPID DEXTERITAS AT GROOTES SCHUUR HOSPITAL

Thank you for submitting your study to the Faculty of Health Sciences Human Research Ethics Committee for review.

It is a pleasure to inform you that the HREC has formally approved the above-mentioned study.

Approval is granted for one year until the 30th October 2014

Please note:

1. The protocol refers to a registry in Groote Schuur Hospital for all babies admitted with HIE, that has been approved by the HREC (HREC Ref 0607/2010). The HREC has recently updated the procedures for the registration of databases to facilitate research and administration. The HREC recommends that if further research is planned a new application for a database be submitted to the HREC for approval. Please refer to the FHS257 form for more information regarding this process http://www.health.uct.ac.za/research/humanethics/forms).

2. Permission to access medical records will need to be obtained from Groote Schuur Hospital. Please submit this evidence of institutional approval to the HREC.

Please submit a progress report, using the standardized Annual Report Form, if the study continues beyond the approval period. Please submit a Standard Closure form if the study is completed within the approval period.

Form can be found on our website: http://www.health.uct.ac.za/research/humanethics/report

Please note that the ongoing ethical conduct of the study remains the responsibility of the principal investigator.

Please quote the HREC reference in all your correspondence.

Yours sincerely,

PROFESSOR H BLOCKMAN
CHAIRPERSON, THE HUMAN ETHICS
Federal Wide Assurance Number: FWA00001557
Institutional Review Board (IRB) number: IRB00009216

HREC Ref 812/2013