The research in this report is based on independent work performed by the candidate and neither the whole work nor any part of it has been, is being or is to be submitted for another degree to any other university. The same mentioned research has not been published prior to registration for the abovementioned degree.
PART A: PROTOCOL

Sentinel node biopsy for the N+ and N- neck in squamous carcinoma of the head and neck

Principal Investigators

Dr O Edkins
Dr C Hofmeyr
Professor JJ Fagan

Division of Otolaryngology
Medical School
University of Cape Town
Observatory
Cape Town
7925
Tel: 021 4066420
Fax: 021 4488865
Cell: 0794383710
Email: oskar.edkins@uct.ac.za
INTRODUCTION

The internationally accepted standard of care for clinically palpable neck nodes situated within the lymphatic drainage area of a squamous cell carcinoma of the head and neck is to remove all lymphatic tissue from that side of the neck by means of a comprehensive neck dissection, either radical (RND) or modified (MND). This practice is founded on the following assumptions:

- Palpable neck nodes represent metastases
- The morbidity associated with over-treatment of the clinically overstaged (pN₀) neck is outweighed by the consequences of under-treatment of the pN+ neck.

FNAC is generally not employed to inform decisions about treatment for the cN+ neck, as there is concern about the specificity of FNAC, and hence potential for understaging and consequently under treating the occult positive neck.

A number of studies have been published on, and there is ongoing research into, the use of sentinel node biopsy for the N₀ neck, in order to avoid elective neck dissection (END) [1]. Currently, the literature shows it to be feasible for the clinically N₀ neck but alone is insufficient to stage disease accurately [2]. The value of sentinel node biopsy in the N+ neck has not yet been explored.

The results of a study, published in The Journal of Laryngology and Otology in December 2003, by De Waal, Fagan and Isaacs at the University of Cape Town (attached) suggest that the 1st assumption, i.e. that palpable neck nodes represent
metastases, does not apply to a Developing World practice such as ours. Table 1 summarises the positive predictive values (PPV) and false +ve rates of preoperative clinical staging in accordance with nodal staging in 261 neck dissections for squamous cell cancer by De Waal.

<table>
<thead>
<tr>
<th>Preoperative stage</th>
<th>pN+</th>
<th>PPV</th>
<th>False +ve rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>N+</td>
<td>117/172</td>
<td>68%</td>
<td>32%</td>
</tr>
<tr>
<td>N₁</td>
<td>25/47</td>
<td>53%</td>
<td>47%</td>
</tr>
<tr>
<td>N₂a</td>
<td>23/29</td>
<td>79%</td>
<td>21%</td>
</tr>
<tr>
<td>N₂b</td>
<td>27/41</td>
<td>66%</td>
<td>34%</td>
</tr>
<tr>
<td>N₂c</td>
<td>30/44</td>
<td>68%</td>
<td>32%</td>
</tr>
<tr>
<td>N₃</td>
<td>11/11</td>
<td>100%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Table 1

It is apparent that 47% of N₁ necks (single node, <3cms) were pathologically N₀, and had undergone unnecessary MND. The same applied, to a lesser extent, to N₂b (multiple ipsilateral nodes), N₂c (bilateral nodes), and to N₂a (single ipsilateral node) necks.

Likely reasons for clinical overstaging include lymphadenopathy associated with HIV, TB, and inadequately treated dental, oral and venereal disease. With the predicted increase of HIV and TB in Sub-Saharan Africa, it is reasonable to assume that the false +ve rate of clinical N-staging will increase.
Employment of FNAC and/or sentinel lymph node biopsy (SLNB) to improve the specificity of staging for patients with cN+ necks, and hence reduce the number of unnecessary MNDs or RNDs, has not been reported.

Sentinel Lymph Node Biopsy

Head and neck squamous cell carcinoma (SCC) spreads via lymphatics to the regional draining lymph nodes in the neck. This is thought to be embolic in nature [3]. As the presence of lymph node metastases is an important prognostic factor in Head and Neck cancer (50% decrease in survival) [4], reliable staging is imperative to determine further management. Modalities such as physical examination, ultrasound scanning, computed tomography and magnetic resonance imaging of the neck have not proved to be highly reliable to assess nodal involvement [5].

Extensive research has been done on lymphatic spread in malignant melanoma [6]. The initial node(s) to which tumour has spread can be isolated and are termed sentinel lymph nodes (SLNs). These primary draining nodes are postulated to be representative of the rest of the lymphatic chain in the neck, and if negative on biopsy, would theoretically prevent the morbidity of an unnecessary neck dissection [7].

Sentinel nodes are located using a combination of staining by dye and radiocolloid uptake following peri-tumoural injection prior to surgery. Lymphoscintigraphy mapping also aids lymphatic channel identification prior to surgery.
AIMS OF STUDY

- To determine the positive (PPV) and negative predictive values (NPV) of sentinel node biopsy of cervical nodal metastasis in squamous cell carcinoma of the head and neck.
- To determine a diagnostic and therapeutic approach to the cN+ neck in a Developing World setting.
- To assess sentinel node biopsy as an indicator of regional lymph node status in the N0 neck.

INCLUSION CRITERIA

- Patients with histologically proven oral or oropharyngeal SCC accessible to injection, and where surgical excision with elective or therapeutic neck dissection is planned.

EXCLUSION CRITERIA

- Pregnancy, lactation, patients with previous surgery or radiotherapy to the neck.

MATERIAL AND METHOD

- Prospective clinico-pathological study
- Institution: Groote Schuur Hospital
• Informed consent from patients

• No change from standard surgical management with regards to type of neck dissection

• Peri-tumoural injection of 0.3 - 1.0ml of 40 - 60MBq 99mTc-labelled Human Serum Albumin (Nanocoll) in the Nuclear Medicine Department on the morning of surgery, followed by mouthwash immediately afterwards to prevent pooling or swallowing of residual radioactivity by the patient

• Static lymphoscintigraphy performed at 15 and 30 minutes post injection

• After induction in theatre, 1-2ml of blue dye (Methylene Blue) is injected throughout the normal mucosa and submucosa surrounding the tumour

• Standard skin incision for MND and skin flaps raised

• SLN(s) identified using dyed lymphatics and/or gamma probe, resected and radioactivity within the node confirmed ex-vivo

• SLN(s) labeled according to their colour, radioactivity and anatomical neck level and sent for histological examination in 10% formalin

• Planned neck dissection continued (levels identified and sent for histological evaluation separately) and primary tumour removed

ANALYSIS OF RESULTS

• Accuracy of techniques (dye vs isotope) to locate the SLN

• Number of cases SLN correctly identified

• Number of SLNs identified in each case and anatomical location
• Could the SLN biopsy correctly predict nodal status? (NB: were there any false negatives)

CONCLUSIONS

1. Can SLN biopsy be used in a Developing World setting to correctly predict the oncologic status of palpable neck nodes in patients with head & neck SCC and therefore prevent unnecessary neck dissections?

2. Reliability of SLN biopsy in clinical & pathological N+ neck vs. that of the clinically N+ / pathologically N0 neck?

3. The role of SLN biopsy in the N0 neck in a Developing World setting?
REFERENCES

PART B: LITERATURE REVIEW

OBJECTIVES

The objectives of the literature review for sentinel lymph node biopsy in head and neck squamous cell carcinoma (SCC), was to determine current understanding of the topic as determined from previous studies and review articles. This was to aid in the formulation of a protocol for this study, to assess where this investigation has been used with success and to identify gaps in current knowledge where this study may prove helpful.

LITERATURE SEARCH STRATEGY

A literature search was undertaken of the Pubmed Medline and Cochrane database for articles in journals that are listed on the Index Medicus. The following keywords were used: SLNB; Head and neck squamous cell carcinoma; lymphatic drainage of the head and neck; Blue dye in SLNB; and fine needle aspiration cytology (FNAC) in head and neck cancer.

Numerous articles were found in the literature pertaining to the above topics. Initially the abstracts were reviewed and assessed according to the questions raised and answered by the paper, the number of patients included in the studies, evidence of statistical significance of the findings and any review articles on the topics. The relevance to this
study was also considered with regard to techniques used and methods of data analysis to assist in the reporting of the data.

Inclusion criteria for articles were: Peer reviewed articles; Prospective studies and review articles on SLNB in the clinically N₀ neck in head and neck SCC; Technical issues relevant to SLNB and articles relevant to the lymphatic drainage pathways in the head and neck region; and prospective and retrospective studies on the accuracy of FNAC in head and neck SCC.

Exclusion criteria included: SLNB in head and neck tumours other than mucosal SCC i.e. malignant melanoma, cutaneous SCC, thyroid carcinoma and salivary gland neoplasms; preliminary studies and studies with very small numbers. However some of these studies were included in the review articles that met the inclusion criteria.

Assessment of quality was based on the levels of clinical evidence. Meta-analyses and review articles were considered as stronger evidence. Studies with larger patient numbers carried greater statistical weight than those with smaller patient numbers. Controlled trials with outcome based results were also sought out as the results of these might provide more significant clinical evidence.
It is generally accepted that the future behaviour of a malignancy can be predicted by
knowledge of the extent of tumour spread at the time of presentation[1]. This is the
premise on which staging systems have been developed. Staging seeks to reflect patient
outcome based on survival rates. In head and neck SCC, a key prognostic factor in
predicting patient survival is the extent of loco-regional lymphatic spread[2]. The
survival rate drops by approximately 50% for the pathologically N+ as compared to the
N\textsubscript{0} neck in these patients[3]. SLNB has been increasingly investigated as a tool in the
management of the clinically N\textsubscript{0} neck with a view to preventing morbidity associated
with potentially avoidable END [1, 4-7]. Sentinel lymph node sampling by the use of a
radioactive isotope, dye or by combining these, has become the standard of care in many
centers in the world for the management of patients with cutaneous malignant melanomas
and with breast carcinomas[1]. In oral and oropharyngeal SCC, this technique has been
shown to have a high degree of sensitivity, to be reliable and reproducible. Reported
sensitivity ranges from 89 – 100% with false negative rates of 0 – 12.5%[1]. In a meta-
analysis of 19 studies, Paleri V et al reported an overall pooled sensitivity of 0.926 (95%
CI, 0.852–0.964) [1, 8].

Despite its reported high sensitivity, SLNB has numerous technical issues that should be
taken into consideration. Before discussing this in detail, it might be useful to review the
concept of the sentinel node (SN). The SN is the first lymph node in the nodal basin that
receives lymphatic drainage from a malignant tumour, and is thus theoretically the first
node to contain any metastases if lymphatic spread was to occur (*Figure 1*). It follows that if a SN was found to be free of metastatic disease then it would suggest that the status of remainder of the nodal basin would be negative. However the drainage pathways in the head and neck region have been shown to be complex and variable and hence tend to be slightly less predictable than this theory would suggest. This is in contrast to the relatively more ordered arrangement of the lymphatic drainage of the breast and other regions of the body [9, 10]. Nodal basins for different head and neck primary tumour subsites are well known. However, evidence of skip lesions are also documented, particularly with primary tumours involving the oral tongue, where metastatic deposits have been demonstrated in level IV only, thus ‘bypassing’ the presumed ‘first port of call’ for metastatic spread, i.e. levels I-III[1, 4, 11, 12]. The potential pitfall with squamous carcinoma of the oral tongue might be that nodes in levels I-III may demonstrate uptake of tracer, blue dye or both and be designated the ‘sentinel nodes’ whereas in fact a metastatic deposit may be overlooked in level IV. Another theoretical problem is that when a lymph node contains metastatic carcinoma, lymphatic flow may be blocked in that lymphatic channel or node and the tracer or dye may be diverted past the true first echelon node(s) to a ‘false SN’ [10].
The modality used to delineate the sentinel nodes is an issue that also needs to be considered. Lymphoscintigraphy is performed preoperatively with a peritumoral injection of a radioisotope to delineate the sentinel nodes which can then be marked on the skin (Figure 2). Intraoperative identification of the nodes with the use of a handheld gamma probe, which detects levels of radioactivity within the tissues sampled, is then undertaken. The commonly used radiotracers are technetium Tc 99m-labelled sulfur colloid and technetium Tc99m-labelled human serum albumin[1].
Figure 2: Lymphoscintigraphy; radioactivity seen from injection site around the primary tumour (*) and the sentinel nodes (arrows).

A peritumoral injection of dye is also widely used. The dye is taken up by the lymphatics and the sentinel nodes are identified by blue discolouration [1, 4] (Figure 3). Various dyes can be used: Methylene blue, isosulvan blue, patent blue and patent blue violet to name a few. All are equally effective in identifying sentinel nodes; however the triphenylmethane group of dyes, to which the latter three belong, carry a significant risk of allergic reactions and anaphylaxis [13]. The accuracy of these techniques differs. Lymphoscintigraphy and the handheld gamma probe are superior to blue dye when used individually. Combining all three techniques has been shown to improve the ability to identify the sentinel nodes [1, 4]. Technical problems may arise with the use of blue dye insofar as that resection of the primary tumour may be hampered by blue staining of the peritumoral tissues and may lead to oncologically inadequate resection margins. The extent of the surgery may also be inappropriately increased with the use of blue dye as a larger area of the nodal basin may need to be exposed in order to visualize the dye in the lymphatics[4].
Intraoperative localisation of the nodes can be complicated by ‘shine-through artifact’ and needs to be taken into account at surgery. Shine-through refers to the situation when the first echelon nodes are in close proximity to the primary e.g. floor of mouth tumours and first echelon nodes in Level 1 of the neck. Radioactivity emitted by the radiolabelled tracer at the primary tumour site may then obscure detection with the gamma probe of radioactivity emitted by the sentinel nodes and hamper accurate localisation of the SN [6, 12]. In such instances the primary needs to be resected prior to removal of the SN.
The sentinel nodes are defined in the literature as the three nodes with the highest radioactivity. This definition limits the number of nodes that needs to be removed and to obtain an oncologically sound result [5, 14].

The means by which one histologically analyses the sentinel nodes for metastasis is also of importance and is a source of much debate. Intraoperative frozen section analysis would give the surgeon immediate information necessary to make a decision whether to proceed with a comprehensive neck dissection. However frozen section is not recommended as it is not accurate at detecting microscopic deposits of tumour and may lead to underestimating the true status of the neck [1, 5]. Histopathological analysis with or without immunohistochemistry (IHC) is the most reliable method of detecting tumour. Standard analysis of neck nodes harvested by neck dissection is by bisection of the nodes in the longitudinal plane and H&E staining. The literature shows that this routine method misses up to 21% of metastases as this technique only evaluates the central portion of the node, and small metastatic deposits in other areas of the node may be missed [4]. The recommended histological examination of nodes harvested by SLNB is that after bisecting the node, it should be further sectioned into slices of less than 2.5mm. Serial sections are then done at 150μm. Out of each four sections, one will be stained by H&E and another by IHC for cytokeratin. The rest of the slices are retained for possible future analysis. This evaluation is considered to be essential if SLNB is used to guide treatment of the neck [4].
When a sentinel node is found to have histopathological evidence of metastatic tumour, then the question arises as to the ideal further management of the patient. A completion neck dissection would add further morbidity and possibly be more technically challenging, depending on the timeframe between the SLNB and the completion surgery. Radiotherapy also carries significant morbidity, along with the fact that once irradiated, patients with recurrences or new primaries in the irradiated field cannot be reirradiated. Another relative contraindication for radiotherapy would be that the rest of the lymphatics in the neck would not be available for pathological analysis, thereby precluding accurate pathological staging of the neck [12]. Intraoperative analysis would be ideal but at present may not be entirely reliable for the reasons already mentioned [5].

If SLNB alone were to be utilised, then removal of the all SNs only would have equal regional control rates of END [5]. As yet there is no evidence in the literature to conclude which approach is best. Paleri V et al in their meta-analysis developed a decision analysis model based on current knowledge to statistically predict outcomes for these management options. A sensitivity analysis concluded that END had a slight advantage over SLNB[8].

From published data and review articles in the literature, certain conclusions have been drawn regarding the use of SLNB in the clinically N0 neck in head and neck carcinoma. It is suggested that its use should be restricted to early stage, T1/2 N0, SCC of the oral cavity and oropharynx [4]. It has been shown to be feasible, reproducible and to have a high sensitivity [1, 7, 8]. However on its own, it is insufficient for staging of the neck[1]. As
yet its use as a ‘standard of care’ cannot be supported [1, 12]. Despite the reported high
sensitivity, there is no evidence in the form of randomised control trials (RCT) to suggest
that the use of SLNB improves patient outcome, rates of local recurrence or survival
when compared to END [4]. One European research group has adopted SLNB as part of
their management and do not perform neck dissections on patients if the SN is negative in
T 1-4 SCC of the oral cavity [12]. According to certain authors, SLNB in head and neck
SCC remains an investigational tool pending outcomes of RCT [1, 4]. There is also said
to be a significant learning curve associated with SLNB due to technical issues with the
procedure and it has been suggested that the technique be standardised [4, 8].

No studies have been reported on the use of SLNB in the clinically N+ neck. It is
presumed that these patients harbour nodal metastases and are candidates for a
therapeutic neck dissection[1]. However in Southern Africa and the developing world
questions exist regarding the accuracy of clinical staging due to the high prevalence of
other causes for palpable lymphadenopathy in patients with a confirmed head and neck
mucosal SCC primary tumour. These include HIV, tuberculosis and untreated upper
respiratory and dental infections. This would result in overstaging of the neck due to the
misdiagnosis of cervical adenopathy as cervical metastases, leading to potential
overtreatment of the neck by means of a MND, and hence unnecessary morbidity and
expense[15]. De Waal, Fagan and Isaacs reported a false positive rate of 32.0% for the
clinically N+ neck when comparing clinical staging to pathological analysis[15].
Whether FNAC can be used routinely to accurately stage the clinically N+ neck in patients with a confirmed primary SCC of the upper aerodigestive tract has not been reported in the literature. Fine needle aspiration cytology (FNAC) is widely used as an investigation for masses in the head and neck region[16]. It is often performed blindly in a clinical setting or under image guidance, most often with the use of ultrasound, which improves the diagnostic yield. FNAC has a high level of accuracy [16, 17]. However it is operator dependent and has been shown to be more accurate when performed by an experienced clinician [17]. Cytopathologists have the highest accuracy with this technique and have an added advantage of being able to immediately assess the adequacy of the sample and repeating the procedure if necessary [17]. A systematic review and meta-analysis by Tandon S et al showed the accuracy of FNAC in lymph nodes to be: sensitivity 92.5%, specificity 97.8%, PPV 98.8% and NPV 86.7%. For SCC the sensitivity was found to be 92% [17]. However, a limitation of FNAC is that there is a high rate of inadequate or non-diagnostic aspirates with lymph nodes aspirates [16, 17]. This may lead to multiple aspirations and hence a delay in the diagnosis and management. Howlet DC et al reported that out of a total of 205 patients at five different hospitals, 121 (52%) had non-diagnostic aspirates of neck nodes. Fifty four of these patients had surgery and of these 30 (56%) were found to have malignant cytology[16]. In the United Kingdom, the establishment of combined “one-stop” head and neck lump clinics, where FNAC may be cytologist-led, shows potential in this regard [16]. Other limitations of FNAC include the inability to sub-classify lymphomas, missed diagnoses of low grade lymphomas, the inability to distinguish thyroid follicular adenoma from
carcinoma and difficulty with the diagnosis of salivary gland neoplasms [16, 17]. There is also a rare but reported risk of seeding of tumour along the needle tract [17].

With this reported high degree of accuracy, FNAC may spare patients with cervical adenopathy due to non-oncologic reasons unnecessary neck dissection. The major question that first has to be addressed however is what the risk is of missing metastatic deposits within clinically enlarged lymph nodes when FNAC is done without ultrasound imaging? In our head and neck cancer service, FNAC on neck masses are currently performed by clinicians (specialists or registrars) without the aid of image guidance or immediate cytopathology assessment. With a high rate of non-diagnostic aspirates and lower accuracy without image guidance, relying on this investigation to confirm evidence of lymphatic spread in patients with a known SCC primary and clinically palpable lymph nodes in our setting would seem not be feasible.

REFERENCES

PART C: ARTICLE MANUSCRIPT

(For submission to ‘The Laryngoscope’)

Sentinel Lymph Node Biopsy in Head and Neck Squamous Cell Carcinoma: The N0 and N+ Neck

Dr Oskar Edkins MBCh, MRCS (Edin) ¹, Dr Chris Hofmeyr MBChB, FCORL (SA),
Professor Johan J Fagan MBChB, FCS (SA), MMed (Otol) ¹

¹Division of Otorhinolaryngology, University of Cape Town, Groote Schuur Hospital

Address for correspondence

Dr Oskar Edkins
Division of Otorhinolaryngology
H53 Old Main Building, Groote Schuur Hospital
Observatory, 7925, Cape Town, South Africa
Tel: +27 21 4488865; Fax: +27 21 4488865; Email: oskar.edkins@uct.ac.za

Acknowledgements:

Dr T Kotze, Dr R Stein & Mrs G Boltman
Department of Nuclear Medicine, Groote Schuur Hospital
Professor L Myer
University of Cape Town; for assistance with statistical analysis
Abstract

Objectives/Hypothesis

The objectives of the study were to determine the accuracy of Sentinel Lymph Node Biopsy (SLNB) in head and neck squamous cell carcinoma (SCC); to determine its role in the approach to the clinically N+ neck in a Developing World setting; and its accuracy as an indicator of regional lymph node status in the clinically N0 neck.

Study Design

The study included patients with proven SCC of the oral cavity or oropharynx undergoing surgical resection and neck dissection with clinical stages T1-4 N0-3.

Methods

Sentinel and echelon lymph nodes were identified by means of a combination of lymphoscintigraphy, gamma probe and blue dye identification, were analysed histologically and compared to the rest of the neck dissection specimen to determine accuracy. Patients were grouped into clinically N0 and N+ groups.

Results

Thirty three patients were included in the study, 13 in the N0 and 20 in the N+ group. The mean age of the patients in the study was 58 years with a male to female ratio of 2.3:1. In the clinically N0 group a sensitivity of 100% and specificity of 85% was found and in the clinically N+ group the sensitivity and specificity were 60% and 60% respectively.

Conclusions

The results show that the accuracy of SLNB in the clinically N+ neck is poor. In the Developing World with the high prevalence of benign lymphadenopathy, treatment of patients with primary SCC of the head and neck and clinically N+ necks should include
neck dissection, pending a reliable non-invasive method of distinguishing benign from malignant nodal pathology.

Keywords

Sentinel Lymph Node, Head and Neck, Squamous cell carcinoma
Introduction

SLNB is being increasingly investigated as a tool in the management of the clinically N_0 neck with a view to preventing morbidity associated with potentially avoidable elective neck dissection (END) $^{1-5}$. However no studies have been reported on the use of SLNB in the clinically N_+ neck.

Cervical adenopathy in patients with SCC of the upper aerodigestive tract are usually assumed to represent nodal metastases and is treated as such, usually by means of a therapeutic neck dissection1. However, particularly in Southern Africa and the Developing World, the accuracy of clinical staging of cervical adenopathy may be confounded by the high prevalence of other causes for lymphadenopathy such as HIV, tuberculosis and untreated upper respiratory and dental infections. This would result in overstaging of the neck due to the misdiagnosis of cervical metastases, leading to overtreatment of the neck by modified neck dissection (MND)6. De Waal, Fagan and Isaacs reported a false positive rate of 32% for the clinically N_+ neck when comparing clinical staging to pathological analysis6.

Materials and Methods

The study was a clinico-pathological observational study, and was conducted by the Division of Otorhinolaryngology of the University of Cape Town at Groote Schuur Hospital, Cape Town, South Africa between March 2004 and May 2009. The study had been approved by the University of Cape Town Ethics Committee. The aims of the study were to determine the accuracy of sentinel lymph node biopsy (SLNB) in SCC of the
head and neck, i.e. sensitivity, specificity, positive (PPV) and negative predictive values (NPV); to determine whether SLNB can be used in the diagnostic and therapeutic approach to the clinically N⁺ neck in a Developing World setting; and to evaluate SLNB as an indicator of regional lymph node status in the clinically N₀ neck.

Inclusion criteria were as follows: Histologically proven oral or oropharyngeal SCC that was accessible to transoral peritumour injection; primary surgical resection; and all T and N clinical stages. Exclusion criteria were pregnancy, lactation and patients who had undergone previous surgery or radiotherapy to the neck. The SLNB findings did not alter the surgical management with regards to the type of neck dissection or type of resection of the primary tumour.

On the morning of surgery, lymphoscintigraphy was carried out in the Department of Nuclear Medicine at Groote Schuur Hospital. A peri-tumoural injection of 99mTc-labelled Human Serum Albumin (Nanocoll) was done. This was followed immediately by a saline mouthwash to prevent pooling or swallowing of the residual radioactivity. Continuous flow lymphoscintigraphy was performed for 30 minutes with a static film at 15 and 30 minutes post-injection. The sentinel lymph nodes (SLN) were then marked on the skin using a radioactive tracer to locate the level of the sentinel nodes found on lymphoscintigraphy. Once in the operating theatre and after induction of general anaesthesia, 1-2ml of Methylene Blue dye was injected in the normal mucosa and submucosa surrounding the primary tumour. Standard neck dissection skin incisions and approaches were used. The SLNs and echelon lymph nodes (ELN) were identified using
combinations of gamma probe localization and identification of blue stained lymphatics and lymph nodes. These nodes were then resected, their radioactivity measured *ex-vivo* and labeled according to their colour, radioactivity and anatomical neck level. These nodes were then sent individually for histological analysis in 10% formalin. The planned neck dissection and primary tumour removal were performed and sent for histological examination. In some cases the primary tumour was removed prior to exploring the neck. This facilitated SLNB where the shine through of radioactivity from the primary interfered with location of the SLN.

The following clinical details were recorded for each patient: age, sex, tumour site, clinical staging, and levels of clinically palpable nodes. The data of the intra-operative stage of the study were entered into a data capture sheet. The number of radioactive-only nodes, the number of blue-only nodes, the number of nodes that were both radioactive and blue stained, the radiation counts of the respective nodes, the background radioactivity and the anatomical levels of the nodes were all documented. The interval time from isotope injection to surgery, the length of time for the SNB, lymph node basins explored and any technical difficulties were also recorded. Histopathology was recorded in the data capture sheet according to pathological stage (TNM), tumour thickness, status of the SLNs and nodal status of the rest of the neck dissection specimens.

Results

Thirty four patients were initially recruited for the study. However one patient (study number: 4) was excluded intra-operatively due to progression of the primary tumour
rendering the patient inoperable. Thus a total of 33 patients were available for analysis.

The mean age of the patients in the study was 58 years (range 42-89) with a male to female ratio of 2.3:1. In the clinically N_0 the staging of the primary tumours ranged from T_{1-4} and in the clinically N_+ group the staging ranged from T_{1-4} and N_{1-3}.

The analysis of the results was based on data collected for each patient from the data capture sheet and cross referencing with the histopathology reports. The data is outlined in Table 1.

The volume of peri-tumoural injection of 99mTc-labelled Human Serum Albumin (Nanocoll) varied with the size of the primary tumour and ranged from 0.2-0.6ml with a mean of 0.37ml. The dosage range was 29.0-66.0 MBq (mean: 47.2 MBq). Three patients underwent lymphoscintigraphy the afternoon before surgery and the rest of the patients immediately prior to surgery. The time interval between injection and surgery was a mean of 233 minutes (range 91-1185 min).

The accuracy of SLNB to predict the status of the lymph node basin in the neck was calculated separately for the clinically N_0 and clinically N_+ patients. The sensitivity, specificity, positive (PPV) and negative (NPV) predictive value were calculated. The accuracy in each group was subdivided for each individual modality alone and for a combination of the modalities in detecting the sentinel and echelon nodes (Table 2 & 3).

The clinically N_0 group comprised 13 patients, 12 of which had ipsilateral and one bilateral END (14 neck dissection specimens). In the N_+ group there were 20 patients, of
which 10 had ipsilateral and 10 bilateral modified radical neck dissections (30 neck dissection specimens).

In the clinically N\textsubscript{0} neck there was a high degree of accuracy with a sensitivity of 100% and specificity of 85% when using a combination of lymphoscintigraphy, gamma probe and blue dye to identify the sentinel nodes. The accuracy in the clinically N\textsubscript{+} group was significantly lower, with sensitivity and specificity of 60% and 60% respectively when combined modalities were used. The accuracy for the individual modalities was poor \textit{(Table 3)}.

Discussion

Sentinel lymph node sampling by the use of a radioactive isotope, dye or combinations thereof has become the standard of care in many centers in the world for patients with cutaneous malignant melanoma and breast carcinoma1. In oral and oropharyngeal SCC, this technique has been shown to have a high degree of sensitivity, to be reliable and reproducible. Reported sensitivity ranges from 89 – 100% with false negative rates of 0 – 12.5\%1. In a meta-analysis of 19 studies, Paleri V et al reported an overall pooled sensitivity of 0.926 (95% CI, 0.852–0.964)7. This accuracy was echoed in the results of the clinically N\textsubscript{0} group in our study with a sensitivity of 100%, the numbers albeit small.

From published data and review articles in the literature, certain conclusions have been made regarding the use of SLNB in the clinically N\textsubscript{0} neck in head and neck carcinoma. It is suggested that its use should be restricted to early stage, T\textsubscript{1/2} N\textsubscript{0}, SCC of the oral cavity and oropharynx4. It has been shown to be feasible, reproducible and to have a high
sensitivity 1,3,7. However on its own, it is insufficient for staging of the neck1. As yet its use as a ‘standard of care’ cannot be supported and despite the reported high sensitivity, there is no evidence in the form of randomised control trials (RCT) to suggest that the use of SLNB improves patient outcome, rates of local recurrence or of survival when compared to END4. One European research group has adopted SLNB as part of their management and do not perform neck dissections on patients if the SN is negative in T$^{1-4}$ SCC of the oral cavity8. According to certain authors, SLNB in head and neck SCC remains an investigational tool pending outcomes of RCT1,4. There is also said to be a significant learning curve associated with SLNB due to technical issues with the procedure and it has been suggested that the technique be standardised4,7.

The SN is the first lymph node in the nodal basin that receives lymphatic drainage from a malignant tumour, and thus theoretically is the first node to contain lymphatic metastasis if spread were to have occurred. It follows that if a SN was found to be free of metastatic disease then it would suggest that the metastatic status of the remainder of the nodal basin would be negative. However the drainage pathways in the head and neck region have been shown to be complex and variable and hence tend to be slightly less predictable than this theory would suggest. This is in contrast to the relatively more ordered arrangement of the lymphatic drainage of the breast and other regions of the body9,10. Nodal basins for different head and neck primary tumour subsites are well known. However, evidence of skip lesions are also documented, particularly with primary tumours involving the oral tongue, where metastatic deposits have been demonstrated in level IV only, thus ‘bypassing’ the presumed ‘first port of call’ for metastatic spread, i.e. levels I-III1,4,8,11.
The potential pitfall with SCC of the oral tongue might be that nodes in levels I-III may demonstrate uptake of tracer, blue dye or both and be designated the ‘sentinel nodes’ whereas in fact a metastatic deposit may be overlooked in level IV. Another theoretical problem is that when a lymph node contains metastatic carcinoma, lymphatic flow may be blocked in that lymphatic channel or node and the tracer or dye may be diverted past the true first echelon node(s) to a ‘false SN’.

In our clinically N+ group, four of the twenty patients were found to be pathologically N0 despite having clinically palpable lymph nodes. The preoperative clinical staging in these patients was: T2N1, T3N1, T3N2b, and T4N2c. Histologically the palpable nodes were generally reactive lymph nodes. These patients had not been routinely tested for HIV and no tuberculosis was found in any of the lymph node specimens. Thus 20% of patients in this group underwent unnecessary neck dissections due to the presumed clinical evidence of nodal metastases. The question arises as to whether these patients could be spared a therapeutic neck dissection, by means of a less invasive, accurate investigation.

From the literature we see that despite it’s accuracy in the clinically N0 neck, SLNB has yet to be accepted as a standard therapeutic option. Our results in the clinically N0 neck confirm this high degree of accuracy, suggesting that the technique was appropriate, and adequate. Hence the suboptimal accuracy of the SLNB in the clinically N+ necks can be assumed not to be related to technical issues or a “learning curve” associated with the procedure, but reflects the inadequacy of SLNB as a staging tool in the clinically N+ neck.
Conclusions

The results of our study show that the SLNB is not accurate in the clinically N+ neck and cannot be relied upon in the therapeutic approach to the clinically N+ neck.

SLNB in Head and Neck SCC as a therapeutic procedure has not been shown to be superior to END in terms of improving patient outcome in the clinically N0 neck.

Thus, in the Developing World with the high prevalence of diseases resulting in lymphadenopathy in the neck, treatment of patients with primary SCC of the head and neck region with palpable neck nodes should be based on the assumption of nodal metastases, pending a more reliable non-invasive method of distinguishing these other pathologies from malignancy.

References

Table 1: Results of sentinel node biopsy study

<table>
<thead>
<tr>
<th>Trial No.</th>
<th>Sex</th>
<th>Age</th>
<th>Tumour site</th>
<th>Side</th>
<th>Clinical Stage</th>
<th>Histopathological SCC</th>
<th>Sentinel Nodes</th>
<th>Non-SN Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>N</td>
<td>L</td>
<td>R</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>69</td>
<td>Floor of mouth (FOM)</td>
<td>L</td>
<td>2</td>
<td>1</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>60</td>
<td>FOM</td>
<td>L</td>
<td>2</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>55</td>
<td>Tongue</td>
<td>R</td>
<td>4</td>
<td>2b</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>49</td>
<td>Tongue ant 2/3 & post 1/3</td>
<td>L</td>
<td>3</td>
<td>2a</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>45</td>
<td>FOM</td>
<td>L</td>
<td>1</td>
<td>3</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>65</td>
<td>Tongue ant 2/3 & FOM & Inferior alveolus</td>
<td>R</td>
<td>4</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>89</td>
<td>Tongue ant 2/3</td>
<td>L</td>
<td>1</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>54</td>
<td>FOM</td>
<td>L / ML</td>
<td>4</td>
<td>2c</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>51</td>
<td>Tongue ant 2/3 & FOM</td>
<td>L</td>
<td>2</td>
<td>0</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>51</td>
<td>FOM & Inferior alveolus</td>
<td>R / ML</td>
<td>4</td>
<td>2c</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>65</td>
<td>Tongue ant 2/3</td>
<td>L</td>
<td>3</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>59</td>
<td>Buccal & Retromolar trigone</td>
<td>L</td>
<td>4</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>42</td>
<td>Tongue ant 2/3 and post 1/3</td>
<td>L</td>
<td>3</td>
<td>1</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>52</td>
<td>Tongue post 1/3 & Soft palate</td>
<td>R</td>
<td>3</td>
<td>2a</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>16</td>
<td>M</td>
<td>59</td>
<td>Tongue post 1/3</td>
<td>L</td>
<td>2</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>17</td>
<td>M</td>
<td>52</td>
<td>Tongue ant 2/3 & Post 1/3 & Hard and soft palate</td>
<td>L</td>
<td>4</td>
<td>2a</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>63</td>
<td>Tongue post 1/3</td>
<td>L</td>
<td>2</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>19</td>
<td>M</td>
<td>61</td>
<td>FOM</td>
<td>L / ML</td>
<td>2</td>
<td>2b</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>20</td>
<td>M</td>
<td>65</td>
<td>Buccal & Inferior alveolus</td>
<td>L</td>
<td>4</td>
<td>0</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>F</td>
<td>49</td>
<td>Tongue ant 2/3</td>
<td>L</td>
<td>3</td>
<td>1</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>M</td>
<td>63</td>
<td>FOM</td>
<td>R / L</td>
<td>3</td>
<td>2c</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>23</td>
<td>M</td>
<td>62</td>
<td>FOM</td>
<td>L / ML</td>
<td>3</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>24</td>
<td>M</td>
<td>57</td>
<td>FOM & buccal & Inferior alveolus</td>
<td>R</td>
<td>4</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>25</td>
<td>F</td>
<td>58</td>
<td>Tongue post 1/3 & buccal</td>
<td>R</td>
<td>2</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>26</td>
<td>F</td>
<td>57</td>
<td>Tongue post1/3 & Retromolar trigone & Soft palate</td>
<td>L</td>
<td>3</td>
<td>2b</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>M</td>
<td>65</td>
<td>Tongue ant 2/3</td>
<td>L</td>
<td>3</td>
<td>0</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>28</td>
<td>M</td>
<td>56</td>
<td>FOM / Inferior alveolus</td>
<td>R / L</td>
<td>4</td>
<td>2c</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>29</td>
<td>F</td>
<td>57</td>
<td>Tongue post 1/3</td>
<td>R</td>
<td>3</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>30</td>
<td>F</td>
<td>44</td>
<td>Buccal mucosa</td>
<td>R</td>
<td>3</td>
<td>2b</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>31</td>
<td>M</td>
<td>54</td>
<td>Tongue ant 2/3</td>
<td>R</td>
<td>3</td>
<td>2c</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>32</td>
<td>F</td>
<td>82</td>
<td>Buccal & Inferior alveolus</td>
<td>R</td>
<td>4</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>33</td>
<td>M</td>
<td>61</td>
<td>FOM</td>
<td>R / L</td>
<td>3</td>
<td>2c</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>34</td>
<td>F</td>
<td>59</td>
<td>Tongue post 1/3 & ant 2/3</td>
<td>L / R</td>
<td>3</td>
<td>2c</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

ML: midline; Sentinel Nodes = sentinel lymph nodes including echelon nodes; Non-SN Nodes = all other lymph nodes in the neck dissection specimens; Y = positive for SCC; N = negative for SCC
Table 2: Accuracy of sentinel node biopsy in N0 group

<table>
<thead>
<tr>
<th></th>
<th>Combined</th>
<th>Scintigraphy</th>
<th>Gamma Probe</th>
<th>Blue Dye</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPV</td>
<td>33%</td>
<td>33%</td>
<td>33%</td>
<td>67%</td>
</tr>
<tr>
<td>NPV</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Specificity</td>
<td>85%</td>
<td>85%</td>
<td>85%</td>
<td>92%</td>
</tr>
</tbody>
</table>

Combined = Sentinel & echelon nodes by all 3 modalities

PPV = positive predictive value; NPV = negative predictive value.

Table 3: Accuracy of sentinel node biopsy in N+ group

<table>
<thead>
<tr>
<th></th>
<th>Combined</th>
<th>Scintigraphy</th>
<th>Gamma Probe</th>
<th>Blue Dye</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPV</td>
<td>60%</td>
<td>88%</td>
<td>64%</td>
<td>50%</td>
</tr>
<tr>
<td>NPV</td>
<td>60%</td>
<td>46%</td>
<td>56%</td>
<td>50%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>60%</td>
<td>37%</td>
<td>56%</td>
<td>40%</td>
</tr>
<tr>
<td>Specificity</td>
<td>60%</td>
<td>91%</td>
<td>64%</td>
<td>60%</td>
</tr>
</tbody>
</table>

Combined = Sentinel & echelon nodes by all 3 modalities

PPV = positive predictive value; NPV = negative predictive value
PART D: SUPPORTING DOCUMENTS

- Data Capture Sheet
- Consent Form
- Tabulated Database of Sentinel Lymph Node Biopsy Results
- Research Ethics Committee Approval
- Instructions to Authors: The Laryngoscope (Part C)
PATIENT DETAILS

<table>
<thead>
<tr>
<th>Patient trial #</th>
<th>yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>yrs</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
</tr>
<tr>
<td>Date of sentinel node biopsy</td>
<td>/ /</td>
</tr>
<tr>
<td>Tumour site:</td>
<td>(indicate site on diagram)</td>
</tr>
<tr>
<td>Clinical staging</td>
<td>T N M</td>
</tr>
<tr>
<td>Nodal levels, number</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TREATMENT TO PRIMARY:

- Excision
- External Beam Radiotherapy
- Interstitial radiotherapy
- Other (state).................
LYMPHOSCINTIGRAPHY

Type of colloid injected

- Nanocoll
- Other (state)……

Amount

mL

Time of injection

h

No of scintigraphy nodes at: 15mins:

30mins

Levels of nodes: (L) (R)

Nuclear Medicine Clinician

SURGERY

Surgical team

No of radioactive only nodes

/

/

No of blue only nodes

Time of skin incision

h

No of hot blue nodes

Interval time (isotope to surgery)

min

Lymph node basins explored

Lt neck (levels I-V)

Rt neck (levels I-V)

Other (state)……

Any non-sentinel nodes excised

How many........................

Which nodal levels...................

Length of time for SNB: (tick appropriate box) Radiation Count:

- <15 mins
- 15-30mins
- 30-45mins
- 45-60mins
- >1 hour

background

SLN 1

SLN 2

SLN 3

Technical difficulties:

- none and all sentinel nodes removed
- some difficulties but all sentinel nodes removed
- severe difficulties and all sentinel nodes not removed
- abandoned with no neck surgery
- abandoned with neck dissection

Whole procedure of sentinel node biopsy

- satisfactory
- unsatisfactory
PATHOLOGY

FNA cytology

<table>
<thead>
<tr>
<th>Node 1</th>
<th>Node 2</th>
<th>Node 3</th>
<th>Node 4</th>
<th>Node 5</th>
<th>Node 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left or Right</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anatomical level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malignant cytology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benign cytology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insufficient for analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pathological stage: T N M Tumour thickness:……..(mm)

Lymphatic invasion: Y / N Vascular invasion: Y / N Perineural invasion: Y / N

Non-Sentinel nodes: Involved: Y / N

<table>
<thead>
<tr>
<th>If Yes</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary of sentinel node information:

<table>
<thead>
<tr>
<th>Node 1</th>
<th>Node 2</th>
<th>Node 3</th>
<th>Node 4</th>
<th>Node 5</th>
<th>Node 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomical level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions in mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue stained?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radioactive?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histology (SCC,reactive,TB,HIV, sarcoid,syphilis etc)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra-capsular spread (Y/N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONSENT TO ACT AS A SUBJECT IN A CLINICAL STUDY

TITLE: Sentinel lymph node biopsy in oral and oropharyngeal carcinoma

INVESTIGATORS:
Oskar Edkins, Christopher J Hofmeyr, Johannes J Fagan

ADDRESS FOR ALL INVESTIGATORS:
Division of Otolaryngology, Groote Schuur Hospital, Observatory, Cape Town

DESCRIPTION: You have been diagnosed with cancer of the mouth/throat and need an operation to remove the tumour. If there has been spread of the disease already, the most likely site of spread are the glands in your neck. For this reason you may also require removal of these glands at the time of surgery. If enlarged glands are present in your neck prior to surgery, it will be necessary to remove all the glands on that side of your neck in order to determine if the cancer has spread there. Presently we are unable to determine with certainty if there has been spread prior to surgery. In locally advanced tumours without palpable nodes in the neck, we will selectively remove the lymph nodes most likely to be involved, and clear all the neck nodes on that side of the neck if suspicious nodes are found at surgery.

With this in mind we are conducting a clinical study to determine if it is possible to identify the first gland(s) in the neck that cancer spreads to (called the sentinel lymph node). Two methods are being tested: (1) blue dye, which when injected around the tumour stains the draining lymphatics and sentinel lymph node blue, and (2) radio labelled isotope, when injected around the tumour spreads to the sentinel lymph node and is picked up by a hand held gamma probe.

This will mean going to the department of nuclear medicine on the morning of your operation for the isotope to be injected and some special scans to be taken. The dye will only be injected once you are asleep in theatre.

There will be no change from standard surgical management with regards to the type of operation performed.

RISKS AND BENEFITS: There are no additional risks and no danger of radiation exposure. The isotope injection is small (0.5mls) and fairly painless. Your participation in this trial will hopefully benefit future patients from having unnecessary neck dissections.

COSTS AND PAYMENTS: There will be no additional costs to you or your family.

CONFIDENTIALITY: The information obtained from this study will be published in the future such that your identity will remain anonymous. Medical records related to this study are confidential, but may be examined by researchers from this institution.

RIGHT TO WITHDRAW: You have the right to refuse to participate in this study at any time, and your decision will not adversely affect your care at this institution.

VOLUNTARY CONSENT: I understand what is stated above and agree to participate in this clinical trial.

Date: ______________________ Patient signature: ______________________

Witness: ______________________

I certify that I have explained to the above individual the nature and purpose, the potential benefits, and possible risks associated with participating in this research study, have answered any questions that have been raised and have witnessed the above signature.

Clinician signature: ______________________
<table>
<thead>
<tr>
<th>Trial No.</th>
<th>Sex</th>
<th>Age</th>
<th>Tumour site</th>
<th>Side</th>
<th>T</th>
<th>N</th>
<th>Level</th>
<th>Clinical Stage</th>
<th>SLN Results</th>
<th>Histopathological Status</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>69</td>
<td>FOM</td>
<td>Lt</td>
<td>2</td>
<td>1</td>
<td>Lt L1</td>
<td>Lt L1 L1</td>
<td>N N Y</td>
<td>SCC</td>
<td>Lt 0/47</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>60</td>
<td>FOM</td>
<td>Rt</td>
<td>2</td>
<td>1</td>
<td>Rt L1</td>
<td>Rt L1 L1</td>
<td>N Y N</td>
<td>Negative</td>
<td>Rt 0/21 & Lt 0/26</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>55</td>
<td>T</td>
<td>Lt</td>
<td>4</td>
<td>2b</td>
<td>Lt L2</td>
<td>Lt L2 L2</td>
<td>Y Y N</td>
<td>SCC</td>
<td>Rt 4/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lt L3 L3</td>
<td>Y Y N</td>
<td>SCC</td>
<td>Lt 12/30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lt L3 L1</td>
<td>Y Y Y</td>
<td>Reactive</td>
<td>Lt 6/80 & Rt 0/59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lt L4 L1</td>
<td>Y Y N</td>
<td>SCC & Reactive</td>
<td>Scan done day before surgery</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lt L3 L3</td>
<td>Y Y Y</td>
<td>SCC & Reactive</td>
<td>Scan done day before surgery</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>53</td>
<td>FOM</td>
<td>Lt</td>
<td>3</td>
<td>2a</td>
<td>Lt L2</td>
<td>Lt L2 L2</td>
<td>Y Y N</td>
<td>SCC</td>
<td>Lt 0/44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lt L3 L3</td>
<td>Y Y Y</td>
<td>Negative</td>
<td>Lt 0/15 & Low radiation counts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lt L3 L1</td>
<td>N Y N</td>
<td>Negative</td>
<td>Rt 0/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lt L1 L1</td>
<td>N Y N</td>
<td>Negative</td>
<td>Salivary gland SCC</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>49</td>
<td>FOM</td>
<td>Lt</td>
<td>3</td>
<td>2a</td>
<td>Lt L2</td>
<td>Lt L2 L2</td>
<td>N Y N</td>
<td>SCC</td>
<td>Lt 0/16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lt L3 L3</td>
<td>Y Y Y</td>
<td>Negative</td>
<td>Lt 0/42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lt L1 L1</td>
<td>N Y N</td>
<td>Negative</td>
<td>Lt 0/26 & Lt 0/15</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>45</td>
<td>FOM</td>
<td>Lt</td>
<td>1</td>
<td>3</td>
<td>Lt L1</td>
<td>Lt L1 L1</td>
<td>_ _ _</td>
<td>SCC</td>
<td>Lt 0/44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lt L2 L2</td>
<td>_ _ _</td>
<td>Reactive</td>
<td>Lt 0/15 & Low radiation counts</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>65</td>
<td>LA</td>
<td>Rt</td>
<td>4</td>
<td>0</td>
<td>Rt L2</td>
<td>Rt L2 L2</td>
<td>Y Y N</td>
<td>SCC</td>
<td>Lt 0/15 & Low radiation counts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rt L3 L3</td>
<td>Y Y N</td>
<td>Negative</td>
<td>Salivary gland SCC</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>89</td>
<td>T Ant 2/3</td>
<td>Lt</td>
<td>1</td>
<td>0</td>
<td>Lt L2</td>
<td>Lt L2 L2</td>
<td>N Y Y</td>
<td>SCC</td>
<td>Lt 0/42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lt L3 L3</td>
<td>N Y N</td>
<td>Negative</td>
<td>Lt 0/15 & Low radiation counts</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>51</td>
<td>T Ant 2/3</td>
<td>Lt</td>
<td>2</td>
<td>0</td>
<td>Lt L1</td>
<td>Lt L1 L1</td>
<td>N N N</td>
<td>SCC</td>
<td>Lt 0/42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lt L1 L1</td>
<td>N N N</td>
<td>Negative</td>
<td>Lt 0/26 & Lt 0/15</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>51</td>
<td>FOM / LA</td>
<td>Lt</td>
<td>2</td>
<td>0</td>
<td>Lt L1</td>
<td>Lt L1 L1</td>
<td>Y Y N</td>
<td>SCC</td>
<td>Lt 0/42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lt L2 L2</td>
<td>Y Y Y</td>
<td>Reactive</td>
<td>Lt 0/26 & Lt 0/15</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>51</td>
<td>FOM / LA</td>
<td>Rt</td>
<td>4</td>
<td>2c</td>
<td>Lt L1</td>
<td>Lt L1 L1</td>
<td>Y Y Y</td>
<td>Reactive</td>
<td>Lt 0/15 & Low radiation counts</td>
</tr>
<tr>
<td>Patient</td>
<td>Age</td>
<td>Sex</td>
<td>Side</td>
<td>Cauda</td>
<td>L1</td>
<td>L2</td>
<td>L3</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>65</td>
<td>F</td>
<td>Lt</td>
<td>3</td>
<td>0</td>
<td>Lt L3 Y Y Y Reactive</td>
<td>Lt 0/27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>59</td>
<td>F</td>
<td>Lt</td>
<td>4</td>
<td>0</td>
<td>Lt L1 N Y N Negative</td>
<td>Lt 0/34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>42</td>
<td>M</td>
<td>Lt</td>
<td>3</td>
<td>1</td>
<td>Lt L1 A N Y N Negative</td>
<td>Lt 4/36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>52</td>
<td>M</td>
<td>Rt</td>
<td>3</td>
<td>2a</td>
<td>Lt L2 Y Y N Negative</td>
<td>Lt 0/25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>59</td>
<td>M</td>
<td>Lt</td>
<td>2</td>
<td>0</td>
<td>Lt L1 N Y N Negative</td>
<td>Lt 1/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>52</td>
<td>M</td>
<td>Lt</td>
<td>4</td>
<td>2a</td>
<td>Lt L2 N Y Y SCC</td>
<td>Lt 3/13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>63</td>
<td>M</td>
<td>Lt</td>
<td>2</td>
<td>0</td>
<td>Lt L1 N Y Y Negative</td>
<td>Lt 0/32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>61</td>
<td>F</td>
<td>Lt &</td>
<td>ML</td>
<td>2b</td>
<td>Lt L2 N N Y Negative</td>
<td>Lt 1/32 &</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>65</td>
<td>M</td>
<td>Lt</td>
<td>4</td>
<td>0</td>
<td>Lt L2 N Y N SCC</td>
<td>Lt 10/36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>49</td>
<td>F</td>
<td>Lt</td>
<td>3</td>
<td>1</td>
<td>Lt L1 SM N Y N SCC</td>
<td>Lt 1/34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>63</td>
<td>M</td>
<td>Lt</td>
<td>3</td>
<td>2c</td>
<td>Lt L2 N N Y SCC</td>
<td>Lt 1/42 &</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>62</td>
<td>M</td>
<td>Lt &</td>
<td>ML</td>
<td>3</td>
<td>Lt L2 N Y N Negative</td>
<td>Lt 0/25 &</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case</td>
<td>Sex</td>
<td>Age</td>
<td>Tumor Site</td>
<td>Ulceration</td>
<td>Lymph Nodes</td>
<td>Submental Nodes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>M</td>
<td>57</td>
<td>FOM / BM</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>F</td>
<td>58</td>
<td>T Post 1/3</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>F</td>
<td>57</td>
<td>T Post 1/3</td>
<td>L1 L2</td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>M</td>
<td>65</td>
<td>T Ant 2/3</td>
<td>L1 L2</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>M</td>
<td>56</td>
<td>FOM / LA</td>
<td>L1 L2</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>F</td>
<td>57</td>
<td>T Post 1/3</td>
<td>L1 L2</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>F</td>
<td>44</td>
<td>BM</td>
<td>L1 L2</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>M</td>
<td>54</td>
<td>T Ant 2/3</td>
<td>L1 L2</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>F</td>
<td>82</td>
<td>BM / LA</td>
<td>L1 L2</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>M</td>
<td>61</td>
<td>FOM</td>
<td>L1 L2</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lt L1</td>
<td>(SM)</td>
<td>Lt 0/38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt L1</td>
<td>(SM)</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt Facial</td>
<td>N</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt Facial</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt Facial</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt L1</td>
<td>N</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lt L3</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lt L4</td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lt L1</td>
<td>N</td>
<td>(weak)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lt L2</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lt L4</td>
<td>N</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lt L2</td>
<td>N</td>
<td>(weak)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1:
M (male), F (female), FOM (floor of mouth), T (tongue), BM (buccal mucosa), RMT (retromolar trigone), LA (lower alveolus), HP (hard palate), SP (soft palate), Rt (right), Lt (left), ML (midline). SN (sentinel lymph nodes including echelon nodes), Non-SN (all other lymph nodes in the neck dissection specimens), SCC (positive for squamous cell carcinoma)

Columns 1-3: Patient demographics
Columns 4-8: Clinical details and staging
Columns 9-12: Sentinel and echelon nodes removed; surgical level, whether detected by lymphoscintigraphy, gamma probe or blue dye.
Columns 13-14: Histopathological status of the sentinel and non sentinel nodes (number of positives out of all nodes dissected).
Column 15: Comments
04 June 2003

REC REF: 098/2003

Dr C Hofmeyr
ENT
GSH

Dear Dr Hofmeyr

FINE NEEDLE ASPIRATION CYTOLOGY FOR N+ AND SENTINEL NODE BIOPSY FOR THE N+ AND N- NECK IN SQUAMOUS CARCINOMA OF THE HEAD AND NECK

Thank you for submitting your study to the Research Ethics Committee for review.

It is a pleasure to inform you that the Ethics Committee has formally approved the above-mentioned study.

Please quote the Reference number in all correspondence.

Yours sincerely,

[Signature]

PROF T. ZABOW
CHAIRPERSON
INSTRUCTIONS TO AUTHORS: THE LARYNGOSCOPE

The Laryngoscope is an international peer-reviewed periodical dedicated to the advancement of patient care in otolaryngology–head and neck surgery. As such, The Laryngoscope publishes original articles relating to both the clinical and basic science aspects of otolaryngology–head and neck surgery. The Laryngoscope reserves the right to exclusive publication of all accepted manuscripts. We will not consider any manuscript previously published nor under review by another publication. Once accepted for review, the manuscript must not be submitted elsewhere. Unethical publishing such as plagiarism, undisclosed conflicts of interest, inappropriate authorship, and duplicate publication are forbidden. This includes publication in a non-otolaryngologic journal or in another language. In case of doubt, disclosure is essential and the editor is available for consultation. Transfer of copyright to The Laryngoscope is a prerequisite of publication. All authors must sign the copyright transfer form. (This does not preclude publication of abstracts in the transactions or proceedings of the various societies.)

Authors must disclose any financial relationship at the time of submission and must be updated by the authors prior to the time of publication. Information that could be perceived as potential conflict of interest must be stated, including personal relationships, interests, and affiliations over the past three years. This information includes, but is not limited to, grants or funding, employment, affiliations, patents, inventions, honoraria, consultancies, royalties, stock options/ownership, or expert testimony.

Manuscripts are subject to peer review and revision may be required as a condition of acceptance. These instructions apply to all submissions.

Manuscripts reporting original scientific investigation, both basic science and clinical reports, are required to use the manuscript format described under “Manuscript Format” unless otherwise directed. The Laryngoscope will consider for publication Contemporary Reviews, Scientific Reviews, Rapid Communications, Case Reports, Letters to the Editor, and “How I Do It” submissions (note manuscript format in each section).

Contemporary Review manuscripts should review topics of contemporary interest and importance, and ideally should address controversial issues by expressing both sides of the controversy. The review should be comprehensive and authoritative as reflected by a contemporary bibliography. The review should emphasize the best evidence currently available. We especially invite collaborative efforts by authors representing different points of view. The manuscript format should conform to the format described below (see Manuscript Preparation for original scientific manuscripts). Contemporary Review articles do not require a Materials/Methods or Results section.

Original Reports present data which has not yet been published. An emphasis is given for higher levels of evidence. The manuscript should be formatted in accordance with the structure described under “Manuscript Format” below. The abstract should be limited to 250 words. The level of evidence presented should be indicated at the end of the abstract.

Rapid Communications report information of importance to otolaryngology–head and neck surgery not suitable for presentation as a full-length manuscript. Rapid Communications should be limited to three double-spaced typewritten pages. An abstract and references are not required.

Case Reports describes encounters with one or several patients with unique or unusual clinical situations. The key to an acceptable Case Report is the identification of a clinical pearl or clinical wisdom that could benefit future patients. Case Reports should be limited to four double-spaced typewritten pages and no more than eight references. An abbreviated abstract limited to less than 100 words that captures the essential value of the Case Report should be included.

Letters to the Editor should be directed to the Editor regarding manuscripts previously published in which significant scientific controversy exists. Letters to the Editor deemed appropriate for publication will be submitted to the author(s) of the manuscript of interest comment. Letters to the Editor should be limited to three double-spaced type written pages including references.

“How I Do It” submissions report innovative solutions to clinical problems. Originality and quality of illustrations (when appropriate) are essential ingredients. “How I Do It” manuscripts should have a clear practical value and be no more than four double-spaced typewritten pages. An abstract is “required” in ScholarOne Manuscripts (http://mc.manuscriptcentral.com/lscope) as it enables the reviewer to see a summary of your paper and determine if they have the expertise to review it. An abstract “is not required” for the paper that is submitted for possible publication.
Authorship Criteria and Responsibility

The Laryngoscope insists that all authors are truly qualified to be listed as such. Others who have contributed to the work but are not qualified to be authors should be “acknowledged” at the end of the article.

Authorship credit is based only on having made a substantial contribution to the published work by virtue of meeting all the following three criteria:

1. Conception and design of project or analysis of the manuscript data;
2. Drafting or critically revising the content of the manuscript submitted for publication, and;
3. Giving final approval of the version to be published.

All three criteria must be met for an individual to be listed as an author or co-author on a published paper.

Please note that other criteria, which do not qualify an individual for “author status,” include the following:

1. Supplying funding or other resources;
2. Collecting data (only);
3. General supervision of the research group, and;
4. Being departmental chair or division chief.

Special Approval

Manuscripts that include information obtained from human or animal research must include (in the text or an appropriate footnote) verification of the review and approval of the appropriate institutional research oversight committee for the work that is reported.

Preparation of Manuscript

Original scientific manuscripts and review articles that do not adhere to the following instructions will be returned to the corresponding author for technical revision before undergoing peer review. PLEASE NOTE: if you are not listed in the system as the “Corresponding Author,” the submission will not show up in your queue for approval.

Manuscript Submission

Authors must submit their manuscript online through http://mc.manuscriptcentral.com/lscope

Manuscripts submitted online are received on the day of submission and quickly assigned to reviewers. Through individual Author Centers on this website, authors can view the status of their manuscripts as they progress through the review process. Notification of the disposition of each manuscript will be sent by E-mail to the corresponding author on the day of decision. To submit your manuscript online:

- Go to http://mc.manuscriptcentral.com/lscope
- Click on the “Check for Existing Account” button at the bottom of the opening page. If you do not already have an account, then create one by clicking on the “Create an Account” button. You then will be able to submit your manuscript.
- Click on “Author Center.” Follow the on-screen instructions carefully. Submit the complete manuscript with text (including references), tables, and figures as separate files. You do not need to mail paper copies of your manuscript.
- At the end of a successful submission, you will see a confirmation screen with your manuscript number, and you will receive a separate E-mail confirmation of manuscript reception by the journal. If these two messages do not appear, then go into your Author Center and make sure that you have clicked on the “Submit” button or contact technical support at support@scholarone.com.

Manuscript Format: The manuscript for the body of the text should not exceed 15 double-spaced typewritten pages. (Please see above additional requirements for Rapid Communication, “How I Do It,” etc.)
The elements of a full-length article should be in the following sequence: Title Page, Structured Abstract and Key Words, Text (Introduction, Materials and Methods, Results, Discussion, Conclusion), Acknowledgment, References, Tables, and Figure Legends. (Note: all figures must be submitted as a separate attachment. Do not insert figures into the main document. “Attached Figures” must be identified within the “Text Portion” of the paper. The “Attached Figures” must be labeled [e.g., Figure 1, Figure 2, etc.] Authors may either type the label in the “Caption/Legend” box or add a text box onto each figure.) Each of these elements should begin on a new page, and each page should have a short running title (see next section: Title Page).

Title pages:

- “Online” Title page must be submitted as a separate file on the first page of the online system. This should contain: article title (not to exceed 75 characters, including spaces).
- “Formal” Title page must be submitted as part of your manuscript. This should contain: article title (not to exceed 75 characters, including spaces); names of authors, their degrees and affiliations (dept., institution, city, state, country); institution where the work was done (indicate which author is in which department); a short running title of no more than 45 letters and spaces; source of financial support or funding; and a footnote indicating the author to whom correspondence, reprint requests, and proofs will be sent, with complete address (including e-mail address and postal codes) and telephone and telefax numbers. If the paper was presented at a meeting, give society name, city, state, country, and exact date meeting was held.
- Financial Disclosure Information: The Title page must also include disclosure of funding:
 a. All financial and material support for this research and work.
 b. Any financial interests the authors may have in companies or other entities that have an interest in the information in the Contribution (e.g., grants, advisory boards, employment, consultancies, contracts, honoraria, royalties, expert testimony, partnerships, or stock ownership in medically-related fields).
 c. Indication of no financial disclosures, if appropriate. For example, please include “Conflict of Interest: None” if you have no conflicts to disclose.

Structured abstract and key words: Limit the abstract to 250 words. Do not cite references in the abstract. Limit the use of abbreviations and acronyms. Use the following subheads: Objectives/Hypothesis, Study Design (randomized, prospective, etc.); Methods, Results, and Conclusions.

New Required Information: Add to the submitted abstract “Level of Evidence.” For more information, please click here.

Text: The text is to be divided into five sections with the following headings: Introduction, Materials and Methods, Results, Discussion, and Conclusion. Define abbreviations at first mention in text and in each table and figure. If a brand name is cited, supply the manufacturer’s name and address (city and state/country). The introduction should be limited to two paragraphs of pertinent information. The discussion should not be an exhaustive review of the literature; it should be succinct and limited to conclusions that can be reached based on the results.

Abbreviations: Use generic names for drugs. List supplier of manufacturer for products and instruments; include supplier’s city and state (e.g., Glaxo Wellcome, Research Triangle Park, NC). Audiograms must be plotted according to ISO standards and must be in black and white. For commonly accepted abbreviations, consult Logan’s Medical and Scientific Abbreviations. Authors are encouraged to consult Dorland’s Illustrated Medical Dictionary (28th Edition), American Medical Association Manual of Style, and Council of Biology Editors Style Manual (available from the Council of Biology Editors, 9650 Rockville Pike, Bethesda, MD 20814, U.S.A.). The full term for which an abbreviation stands should precede its first use unless it is a standard unit of measurement.

Style: Pattern manuscript style after the American Medical Association Manual of Style (9th Edition), Stedman’s Medical Dictionary (27th Edition) and Merriam Webster’s Collegiate Dictionary (10th Edition) should be used as standard references. Refer to drugs and therapeutic agents by their accepted generic or chemical names, and do not abbreviate them. Use code numbers only when a generic name is not yet available. In that case, supply the chemical name and a figure giving the chemical structure of the drug. Capitalize the trade names of drugs and place them in parentheses after the generic names. To comply with trademark law, include the name and location (city and state in U.S.A.; city and country outside U.S.A.) of the manufacturer of any drug, supply, or equipment mentioned in the manuscript. Use the metric system to express the units of measure and degrees Celsius to express temperatures, and SI units rather than conventional units.
Permissions: The author is responsible for obtaining written permission to reproduce previously published material (direct quotations, unpublished data, tables, or figures) from the copyright holder. Enclose all letters granting permission at the time the manuscript is submitted for publication. Any permissions fees that might be required by the copyright owner are the responsibility of the authors requesting use for the borrowed material, not the responsibility of the Triological Society or Wiley-Blackwell. Photographs of recognizable persons must be accompanied by a signed release from the patient. For a photograph of a minor, signed parental permission is required.

Internal Review: All authors are strongly encouraged to have their manuscripts thoroughly and critically reviewed within their institution before submitting to The Laryngoscope.

References: The authors are responsible for the accuracy of the references. The Journal complies with the reference style given in “Uniform Requirements for Manuscripts Submitted to Biomedical Journals” (available from The New England Journal of Medicine, Bulk Reprints, 1440 Main Street, Waltham, MA 02154, U.S.A.; send self-addressed stamped envelope). References are to be cited in numerical order in text and identified by Arabic numerals set in superscript type. Authors will be charged $3.00 for each reference over 15. The reference section should be typed double-spaced at the end of the text, following the sample formats given below. For abbreviations of journal names, refer to List of Journals Indexed in Index Medicus (available from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402, U.S.A.; DHEW Publication No. (NIH) 91-267; ISSN 0093-3821).

Provide all authors’ names when fewer than seven; when seven or more, list the first three and add et al. Provide article titles and inclusive pages. “Unpublished observations” and “personal communications” do not qualify as references and should be placed parenthetically in the text. Accuracy of reference data is the responsibility of the author.

Sample references are given below:

Journal article

Book chapter

Entire book

Software

Online journals

Database

Websites

Figures

Each figure must be identified individually (e.g., Figure 1, Figure 2, etc.) and within the text of the manuscript. Authors may either type the label in the "Caption/Legend" box or add a text box onto each figure. Black and white illustrations will be published without charge. Authors will be charged for color illustrations in print. Color illustrations online are free of charge. The Publisher will provide, upon request, an estimate of the cost of color artwork.

a. All figures must be submitted as a separate attachment. Do not insert figures into the main document.

b. "Attached Figures" must be identified within the "Text Portion" of the paper.

c. The "Attached Figures" must be labeled (e.g., Figure 1, Figure 2, etc). Authors may either type the label in the "Caption/Legend" box or add a text box onto each figure.

Digital art needs to be created/scanned and saved and submitted as either a TIFF (tagged image file format), an EPS (encapsulated postscript) file. PPT (Power Point) files will also be accepted. Electronic photographs—radiographs, CT scans, and so on—and scanned images must have a resolution of at least 300 dpi. Line art must have a resolution of at least 1200 dpi (dots per inch). If fonts are used in the artwork, they must be converted to paths or outlines or they must be embedded in the files. Color images must be created/scanned and saved and submitted as CMYK files. If you do not have the capability to create CMYK files, please disregard this step. Indicate in your cover letter that you are unable to produce CMYK files. Cite figures consecutively in the text, and number them in the order in which they are discussed.

Digital Art Checklist:

- Create and submit artwork in the actual size it will appear in the journal
- Crop out any extra white or black space surrounding the image
- Text within figures should be in an acceptable font (Helvetica is preferred) and sized consistently throughout the artwork using 8–12 point type
- Text within figures should be embedded in the file or converted to an outline or path
- For black and white images: create and save in grayscale format
- For color files: create and save in CMYK format (not RGB)
- For line art: save and submit at a resolution of at least 1200 dpi
- For images/photosgraphs: save and submit at a resolution of at least 300 dpi
- For combination halftones: save and submit TIFF or EPS files. Do not select “Save as Compressed TIFF” when saving files. PowerPoint files are also acceptable
- Save each figure as a separate file and save them separate from the accompanying text file(s). For multipanel or composite figures only: send as one files with each part labeled the way it is to appear in print
- Name figures in the format: corresponding author's last name_figure 1.tif, etc.
- Upload figures consecutively to the submission site.

Detailed Figure Instructions: Please refer to this website for detailed information on digital figure preparation, and to check your figure instantly for printer compatibility:

http://rapidinspector.cadmus.com/RapidInspector/docs/index.html

Figure legends: Each figure must be accompanied by an explanatory legend, typewritten with double spacing (legends should be separate from the figures, but do not use a separate sheet for each legend). They should be brief and specific, and they should appear on a separate manuscript page after the references. Use scale markers in the image for electron micrographs, and indicate the type of stain used. Explain all symbols used in the figure.

Tables: Each table must be identified individually and within the text of the manuscript. Do not include the same information in both tables and figures. Create tables using the table creating and editing feature of your word processing software (e.g., Word, WordPerfect). Do not use Excel or comparable spreadsheet programs. Group all tables in a separate file. Tables should be typed neatly, each table on a separate sheet, with the title above and any notes below. Explain all abbreviations. Tables should be numbered consecutively beginning with Roman numeral I. A table must have at least two columns. Lists are to be incorporated into the text. Each table should
appear on a separate page and should include the table title, appropriate column heads, and explanatory legends (including definitions of any abbreviations used). Do not embed tables within the body of the manuscript. They should be self-explanatory and should supplement, rather than duplicate, the material in the text. Do not use patient initials in tables. Patients should be referred to by sequential Arabic numerals, not by their initials.

Supporting Information (Supplementary Materials):

Authors may publish additional article-related materials online that compliments and reinforces information published in the print journal. Supplementary material posted online is intended to enhance print article content, and may include figures, tables, movies and animation.

All supplemental materials must be submitted with the original submission via Manuscript Central for peer-review and be approved by the Editor in order to be published online. Authors should reference the fact that they have supplied supplemental data with their submission in their cover letter as well as designate the files as Supplemental Files during upload.

There are no restrictions on file types of the data that you submit. Please keep in mind, however, that the more universal the file type, the more accessible to the community.

Because all supplementary materials submitted for addition online are posted exactly as provided to the Publisher, authors are advised to review materials carefully. Data will be posted as it is submitted; it will not be professionally edited or proofread. No additional work or file processing will be performed on any submission. The Publisher will not be responsible for errors or omissions.

Audio and Video Files: Short audio and video clips may be submitted for posting online as a .wav, .avi, .mov or .mpg file format. Audio and video files must be compressed to the smallest possible size that still allows for high resolution and quality presentation. The total size of all clips, along with other submitted files for any given article, should not exceed 5MB. File size limitation is intended to ensure that end-users are able to download and view files in a reasonable time frame. If files exceed the specified size limitation, they will not be posted to online and returned to the author for re-submission.

Submitting Revisions: If you have been invited to submit a revised manuscript, please submit it online via your author center following instructions found there. When submitting a revision, please submit both a clean copy and marked copy of the manuscript. The marked copy should highlight all of the changes made the by authors after the original review. Authors can use the track changes feature of the Microsoft Word program to create a marked copy. Authors also should submit all tables and figures in separate files for production purposes.

After Acceptance

Page proofs and corrections: Corresponding authors will receive will receive electronic page proofs to check the copyedited and typeset article before publication. Portable document format (PDF) files of the typeset pages and support documents (e.g., reprint order form) will be sent to the corresponding author by e-mail. Complete instructions will be provided with the e-mail for downloading and printing the files and for returning the corrected pages to the Publisher. It is the author’s responsibility to ensure that there are no errors in the proofs. Changes that have been made to conform to journal style will stand if they do not alter the authors’ meaning. Only the most critical changes to the accuracy of the content will be made. Changes that are stylistic or are a reworking of previously accepted material will be disallowed. The Publisher reserves the right to deny any changes that do not affect the accuracy of the content. Authors may be charged for alterations to the proofs beyond those required to correct errors or to answer queries. Proofs must be checked carefully and corrections returned within 24 to 48 hours of receipt, as requested in the communication accompanying the page proofs.

Reprints Authors will receive a reprint order form and a price list with the page proofs. Reprint requests should be faxed to the publisher with the corrected proofs. Reprints are normally shipped 4 to 6 weeks after publication of the issue in which the item appears. Contact the Reprint Department: Email: reprints@wiley.com with any questions.

Publisher’s Contact: Email corrected page proofs and any other related materials to Production Editor, The Laryngoscope, rsheehan@wiley.com

Manuscript Checklist (before submission)
- Title page with complete mailing address, telephone, disclosure of funding information, telefax, and e-mail of corresponding author
- Abstract in structured format and keywords
- References double-spaced in AMA style and in proper format, and numerical order in the body of the text
- Permission to reproduce copyrighted materials or signed patient consent forms
- Acknowledgments listed for grants and technical support
- Manuscript conforming to criteria listed in Instructions to Authors
- Clear indication of approval of appropriate institutional research oversight committee

Note to NIH Grantees: Pursuant to NIH mandate, Wiley-Blackwell will post the accepted version of contributions authored by NIH grant-holders to PubMed Central upon acceptance. This accepted version will be made publicly available 12 months after publication. For further information, see www.wiley.com/go/nihmandate.

Pre-Submission English-Language Editing

Authors for whom English is a second language may choose to have their manuscript professionally edited before submission to improve the English. A list of independent suppliers of editing services can be found at www.blackwellpublishing.com/author/english_language.asp. Japanese authors can also find a list of local English improvement services at http://www.wiley.co.jp/journals/editcontribute.html. All services are paid for and arranged by the author, and use of one of these services does not guarantee acceptance or preference for publication.