RELATIONSHIP BETWEEN PESTICIDE RESIDUE LEVELS AND NEUROTOXICITY AMONG WOMEN ON FARMS IN THE WESTERN CAPE

Author: Motsoeneng Mamonyowe Portia
Supervisor: Mohamed Aqiel Dalvie

September 2014
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
PART 0: PREAMBLE
RELATIONSHIP BETWEEN PESTICIDE RESIDUE LEVELS AND NEUROTOXICITY AMONG WOMEN ON FARMS IN THE WESTERN CAPE

MOTSOENENG PORTIA MAMONYOWE
STUDENT NUMBER: MTSMAM012

Thesis submitted to the Faculty of Health Sciences, University of Cape Town in fulfilment of the requirements of the degree Master of Public Health.

Supervisor:
Associate Professor Mohamed Aqiel Dalvie
Centre for Occupational & Environmental Health Research (COEHR)
School of Public Health & Family Medicine
Health Sciences Faculty, University of Cape Town
Declaration

I, Motsoeneng Portia Mamonyowe (MTSMAM012) hereby declare that the work in this mini dissertation is based on my original work (except where acknowledgements indicate otherwise) and has not, in whole or in part, been submitted towards another degree at this or any other university.

I empower the University of Cape Town to reproduce for the purpose of research, either the whole or any portion of the contents.

Signed by candidate
Signature Removed

Signature:____________________

Date: September 2014
Dedication

To my Family - Parents (Mathapelo and Tlhware Motsoeneg), my brother (Thapelo Motsoeneng), my nephew (Motlalepula Motsoeneng) and my grandparents (Majwalane and Jonas Dlamini). For their love and support thank you.

To my loving boyfriend Corey Springer. My pillar of strength thank you.
Acknowledgements

I would like to thank my supervisor, Associate Professor Mohamed Aqiel Dalvie from the Centre for Occupational and Environmental Health Research, School of Public Health and Family Medicine, University of Cape Town for his advice, insights and patience while working on this research project.

To the Centre for International Health of the Ludwig-Maximilian-University Munich, Germany (CIHLMU) and the Department of Education (health) Free State I would like to thank them for funding my studies while at the University of Cape Town.

A special thank you goes to the following organisations and individuals for their roles in the project:

Financial support:

The Women on Farms Project and the University of Cape Town (Prof Jeebhay Allergy Research Fund)

Sampling and provision of fieldwork venue:

Dr Colette Solomon and the rest of the WFP management and staff

Research assistance:

Algernon Africa, School of Public Health and Family Medicine, UCT

Dawn Venter, School of Public Health and Family Medicine, UCT

Mohammed Sharief Abrahams, School of Public Health and Family Medicine, UCT

Deon September, School of Public Health and Family Medicine, UCT

Michael Luma Ekema-Agbaw, Department of Psychology, Virginia Polytechnic Institute and State University
WFP staff

Laboratories:

National Institute for Occupational Health, Johannesburg

Path care
Thesis Abstract

Background: Farm workers and residents living in and around farms are exposed to pesticides. Women are vulnerable to health risks posed by pesticides. To date there are few studies that have investigated the relationship between pesticide residues in human body fluids and neurotoxicity.

Objective:
This study therefore aims to investigate the relationship between urinary pesticide residue levels and neurotoxicity amongst women working in farms in the Western Cape, South Africa.

Method: A cross-sectional study was conducted among 211 women recruited from farms (farm group, n = 121) and neighbouring towns (town group, n = 90). Testing included a general questionnaire, the Q16 questionnaire, reported pesticide exposures and measurement of urinary metabolite concentrations of dialkyl phosphates (DAP), the chlorpyriphos, metabolite 3, 5, 6-trichloropyridinol (TCPY) and pyrethroid (PYR).

Results: The median age of the Farm Group was 33 years (interquartile range: 27 - 40 years) and for the Town Group was 40 years (interquartile range 31-49 years). Median urinary pesticide metabolites were 6-49% higher in the Farm Group compared to the Town Group. The concentration (median and interquartile range) of DAP (sum of the 6 metabolites), TCPY and PYR (sum of the 5 metabolites) was respectively 141.42(37.4-249.8); 6.15(3.50-10.64) and 6.60(3.61-9.96) µg/g of creatinine in the Farm Group compared to 132(45.64-204.45); 4.26(2.72-8.27 and 5.26 (2.74-8.42) µg/g of creatinine in the Town Group.
The prevalence of all Q16 symptoms was higher amongst farm women compared to non-farm women. Three pyrethroids metabolites (cis- DCCA, trans DCCA, DBCA) were positively associated with at least 12 of the Q16 symptoms adjusting for confounders. The strongest association between for a pyrethroid metabolite was between problems with buttoning and DBCA (Odds ratio = 8.93, 95% Confidence Interval: 1.71-46.5. Problems with buttoning and reading was also significantly positively associated with, trans DCCA , DBCA. Taking notes due to problems with memory was positively significantly associated with DBCA. There was no association between Q16 symptoms and OP metabolites.

Conclusion: Women farm residents and rural women from neighbouring towns in the Western Cape are exposed to OP and PYR pesticides. The study provides evidence that PYR pesticides may result in neurotoxic effects but not OP pesticides. These results should be explored further in a bigger longitudinal study using more sensitive neurotoxic measures such as World Health Organisation Neurobehavioral Core Test Battery, The Brief Symptom Inventory and vibration sense threshold testing.
Table of Contents

Cover Page .. 1

PART 0: PREAMBLE ... 2

Declaration .. 4

Dedication ... 5

Acknowledgements ... 6

Thesis Abstract ... 8

Part A protocol ... 15

1. Introduction .. 16

1.1 Background .. 16

1.2 Literature review ... 16

1.2 Problem statement ... 18

1.3 Justification ... 21

1.4 Research Question .. 22

1.5 Hypothesis ... 22

1.6 Aim .. 22

1.7 Objectives ... 23

2. Methods .. 23

2.1 Study Design ... 23

2.2.2 Study population ... 24

2.2.3 Sample size .. 25

2.3 Measurement .. 25

2.3.1 Instruments .. 25

2.4 Pesticide biomonitoring ... 26
Part C: Publication-ready Manuscript

Abstract

1. Introduction

2. Material and Methods

2.1 Study design, population and sampling

2.2 Questionnaire

2.3 Urinary pesticide metabolites determination

2.3 Variables

2.4 Statistical Analysis

3. Results

3.1 Participants

3.2 Demographic information, socio-economic status, lifestyle factors and self-reported pesticide exposure

3.3 Urinary pesticide metabolites results

3.5 Response to Q16 questionnaire

3.6 Multivariate associations between pesticides exposure indices and Q16 questionnaire items.

4. Discussion

5. Conclusion

6. Acknowledgment

7. Reference

Supplementary material to the journal manuscript

Part D Appendices

A 1 English Questionnaire

A 2 Afrikaans Questionnaire

B Consent Form

C Ethics approval letter

D Progress Report
List of tables

Part A
Table 1: Study Participants...25
Table 2: Continuous variables..31
Table 3: Categorical variables...31
Table 4: Time line...34

Part C
Table 1: Demographic information, socio-economic status, living and working history and lifestyle factors participants in the study.
Table 2: Household pesticide exposure and pesticide poisoning of participants.
Table 3: Pesticide residues levels among the rural female workers.
Table 4: Responses to Q16...81
Table 5a,b,c: Adjusted multiple logistic regression models of the association between pesticide exposures and neurotoxic outcomes among rural women in Western Cape.

Supplementary tables to the journal manuscript
Table 1: Participation of rural women participants in the study.........................98
Table 2a: Unadjusted odd ratios association between q16 outcomes and possible confounders.
Table 2b: Unadjusted odd ratios association between...100
q16 outcomes and possible confounders.

Part D

Table 1: Analysis including Pest-poisoning ...163

Table 2: Analysis excluding Pest-poisoning ...164

Table 3: Multivariate analysis: Excluding Participants who are 50 years and older165

List of figures

Part C

Figure 1: Study participants ..69

Supplementary materials

Metabolites Distribution between Farm and Town Group ...101

Figure 1: OPs metabolites ..101

Figure 2: OPs metabolites ..102
Part A protocol
1. Introduction

1.1 Background

Farm workers and residents living in and around farms are highly exposed to pesticides. Women and children are the most vulnerable group to health risks posed by pesticides toxins. There are few studies that have investigated the relationship of pesticide exposure and neurological disorders in South Africa. This study therefore aims to investigate the effect of pesticide exposure on neurotoxicity amongst women working in farms in the Western Cape, South Africa. The study results will provide insight on the need to develop strategies to reduce pesticide exposure among women farm workers and residents.

1.2 Literature review

South Africa has the largest agriculture sector in sub-Saharan Africa. Farm workers and residents can be exposure to pesticides through various routes including exposure to pesticides sprayed on farms, residues in water and food, household usage, gardens, and lawn usage. The amount of pesticide usage in South Africa is regulated by the Fertilisers, Farm Feeds, Agricultural remedies and Stock Remedies ACT, 1947 (ACT NO ,36 OF 1947) of South African. This body is aimed at regulating the responsible usage of pesticide among the general population.
In many of the developing countries agricultural farming continues to grow due to the high demand of food security. And the need for high quality foods increases the usage of pesticides.

However, for a farm worker the workplace poses many health related hazards. The everyday usage of tractors, pesticide spreaders, harvesters, etc increases the risks of being exposed to highly concentrated amounts of pesticides, and most of the pesticide is either inhaled, ingested from drinking contaminated pesticide water, or mainly being absorbed by the skin. (Dalvie et al 2003). For women who breastfeed one of the health hazards they face is their breast milk getting contaminated with pesticide, which poses harm not only to mothers but also their children. Women farm workers who work as fieldworkers are said to be the highest risk group, due to high exposed to pesticide residues either in the soil or on the primary leaf surfaces.

Commonly known pesticides health effects include neurological, reproductive health effects and skin problems. Organophosphate (OP) pesticides are currently the most widely used insecticides and they have been associated with neurological disorders (London et al 2011, Rolhman et al 2006). Many international epidemiological studies have shown that there is an association between neurotoxicity and pesticide exposure. In SA, a cross-sectional study done by London et al showed that there is a significant association between reduced neurological tremor scores and previous pesticide poisoning (OR 4.08, 95%CI 11.48-11.22). However this study results showed no significant association between average lifetime OP exposure and neurological symptoms. Thus these results may suggest that the association between OP
exposure, without prior pesticide poisoning is either weak or does not exist (London et al 1998).

A nationwide survey conducted in the rural areas of South Korea among 1958 male farmers showed an association between pesticide exposure and depressive symptoms (OR = 1.61). For measuring depression symptoms among the participants a Korean version of Geriatric Depression Screening Scale was used (Kim et al 2012). The incidences and prevalence of neurodegenerative diseases like Parkinson diseases Alzheimer disease, multiple sclerosis and suicides are high in areas with high pesticide usage (Parron et al 2011).

1.2 Problem statement

World-wide pesticides usage has increased in the past few years, especially in the developing countries (Zhang et al 2011). Developing countries account for most pesticides consumptions due to fast growing agriculture sectors. Africa alone accounts for 3% of the world’s pesticide consumption of which 2% is used by South Africa (Zhang et al 2011). Pesticide exposure is a public health threat not only to agricultural workers but also to the general population (Zhang et al 2011). Continued wrongful disposal of these chemicals into the environment remains a major environmental health problem. Sixty seven tons of the pesticides chemicals are released into the environment yearly (Zhang et al 2011). Residues of pesticides, found in water, food, and in the environment, pose harm to both human and animal health. Each year approximately 370 000 people die from pesticides consumption, either in the form of rat poisoning or plant poisoning (Dawson et al 2010). Women and children remain the highest risk group(Freire et al 2012).
Pesticides are a combination of a multitude of chemicals used to kill, prevent, repel or extenuate any pests (insects, moulds, rats, snails, worms, weeds etc) used mainly in agriculture, health and other human interests. Pesticides are comprised of different classes including organophosphates, organochlorines, carbonates, organobromides, inorganics, phenoxy herbicides, and pyrethroids.

Pesticides exposure can be associated with damage to the nervous system and lungs, they also cause skin rashes, skin cancer and mental disorders such as Parkinson’s disease and Huntington’s disease (Parron et al 2011, Alavanja et al 2004). Other chronic effects include birth defects, development problems in children, lungs, liver, kidney and neurological diseases (Alavanja et al 2004, London et al 2012, Taetzsch et al 2012). Pesticides enter the human body either by the water we drink, the chemicals used in our homes for killing rats, cockroaches, bedbugs etc, chemicals used in producing crops or residues in the food we eat (Marion, 1995).

Humans may suffer acute and long term chronic effects due to pesticide exposures (Bjorling-Poulsen et al 2008). Exposure to pesticides has been associated with increase depression in cotton farmers (Keifer et al 1996). Rolhman and colleagues in 2006 also showed that long time low levels exposure to pesticides may be associated with neurological damage (Rolhman et al 2006). Studies in developing countries show that women working in agriculture is a high risk group (London et al 2002, Zhang et al 2002). Increased risk of neurological disorders has also been associated with pesticide exposure (Parron et al 2011). Exposure to
pesticides among Brazilian farmers has also been associated with psychiatric disorders and suicidal behaviour (Freire et al 2012)

Neurotoxicity develops when one is exposed to natural or toxic substances, which can affect the normal functioning of the nervous system and the brain. Common symptoms include impairment memory, low concentration, and problems with reaction time, reasoning, thinking, language, personality changes, depression and feet and hands numbness (Mason et al 2013).

Neurotoxicity and neurodegenerative disease like Parkinson’s disease have been associated with chemical exposure of pesticides (Parron et al 2011). Commonly used insecticides like organophosphates have been associated with neurological damage. Neurological damage is characterized into the central nervous system (CNS) disorders and peripheral nervous system (PNS) disorders. The commonly known disorders are Alzheimer’s, Parkinson’s and Huntington’s disease.

A member of the organophosphate (OP) insecticide, chlorpyrifor, a commonly used insecticide in crops, has also been associated with neurotoxic effects, reproductive and development effects (Perera et al 2005). Many of the pesticides health related effects may go unnoticed for ages especially among agricultural workers (Zhang et al 2002).
1.3 Justification

Farmworkers are exposed to a number of hazards due to the nature of their work. Potential adverse health effects includes, respiratory problems, depression, suicidal behaviour, neurologic disorders and cancer. Some of these conditions have been associated with long or short term pesticides exposure. However the usage of pesticides in the agriculture industry continues to be high despite the already mentioned health related effects of pesticide exposure. South Africa alone consumes 2% of the world pesticides production, and only one study has been published on the neurotoxic effects of pesticides usage. Studies done in other countries have found that there is an association between pesticides exposure and neurological disorders. Long term pesticide exposure has been associated with deficits in cognitive and psychomotor functioning (Kamel et al 2003). A recent study done by London et al in 2012 showed that prolonged organophosphate insecticides (pesticides) exposure may be associated with psychiatric disorders (London et al 2012). However there was no research done on the association of pesticides residues and neurotoxicity.

The currently available data both international and here at home on health effects of pesticides exposure, are mainly on adult male farm workers, children and females are under-represented especially in the developing countries, however female farmworkers are high risk group. Most of the women farm workers suffer neurological damage but go unnoticed for years, due to the level of education and accessibility to healthcare.
Thus, this current study will shed some light on the association of pesticides exposure and neurotoxicity among farm women in the Western Cape. The study results will be used by the farm owners, policy makers, environmental advocacy groups and other stakeholders in implementation of interventions that will reduce the risk of exposure to pesticides and neurotoxicity. The data produced from this study will also provide an indication of the prevalence of neurological disorders among farm women. Knowledge about the burden of neurotoxicity among the women farm workers will also assist in the prevention and control strategies to reduce the health related disorders associated with pesticide exposure.

1.4 Research Question

Does pesticides exposure cause neurotoxicity among women farm workers in the Western Cape?

1.5 Hypothesis

Exposure to pesticides among farm women in the Western Cape cause neurotoxicity.

1.6 Aim

To determine the neurotoxic effects of occupational and environmental pesticides exposure amongst women on farms in the Western Cape.
1.7 Objectives

- Determine the demographic and socio-economic factors of the study population.
- Measure the OP pesticides exposure of the women.
- Determine neurotoxicity amongst the women
- Determine the confounding factors for the relationship between pesticides exposure and neurotoxicity.
- Determine the association between pesticides exposure and neurotoxicity in women controlling for applicable confounders.

2. Methods

2.1 Study Design

The study is part of a larger cross-sectional study investigating the association between pesticides exposure and its health effects on rural women in the Western Cape. The data was collected in 2009 from 211 women recruited from farms and the neighbouring towns in the Boland regions of Western Cape Province in South Africa. The study data was collected with the assistance of a non-governmental organisation, Women on Farms (WFP). WFP assisted in the recruitment of participants, providing the study site and transportation of the participants.
2.2 Population and sampling

2.2.1 Inclusion criterion

The main study inclusion criteria included women from the Boland region of Western Cape who currently lived in the farms and those in the surrounding towns. Men and children were excluded from the study.

2.2.2 Study population

A total number of 211 women were recruited by the WFP into the study, 113 of these women were living and working on a farm and 98 from the surrounding towns. Initially the WFP was instructed to recruit 100 women from the farms in the 5 most accessible (located near the fieldwork site) but representative crop farming areas in the Western Cape which include Stellenbosch, Ceres, Paarl, Grabouw and Worcester and 100 women not living on farms from the areas surrounding the farms. Approximately 4 women, 20 participants each from farms and towns, from each of the 5 targeted areas were targeted.

The participants were from the most accessible houses and for the farm area 5-10 most accessible farms in the area were chosen. One adult female participant per household was selected. Eight of the women who lived in a town but worked in the farms were included into the farm group. And 24 of the women included in the farm group lived in the farms but they did not work in the farms. The participants who lived in the farms are referred to as “Farm Group” and those women who stayed in the towns and did not work in the farms were called
“Town Group”. The table below shows the study population. The participants were not randomly selected due to time-constrains and logistic difficulties.

Table 1: Study Participants

<table>
<thead>
<tr>
<th>Area</th>
<th>Town Group (n=90)</th>
<th>Farm Group (n=121)</th>
<th>Total (n=211)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceres</td>
<td>19</td>
<td>23</td>
<td>42</td>
</tr>
<tr>
<td>Grabouw</td>
<td>3</td>
<td>35</td>
<td>38</td>
</tr>
<tr>
<td>Paarl</td>
<td>23</td>
<td>16</td>
<td>39</td>
</tr>
<tr>
<td>Stellenbosch</td>
<td>22</td>
<td>25</td>
<td>47</td>
</tr>
<tr>
<td>Worcester</td>
<td>23</td>
<td>22</td>
<td>45</td>
</tr>
<tr>
<td>Total</td>
<td>90</td>
<td>121</td>
<td>211</td>
</tr>
</tbody>
</table>

2.2.3 Sample size

Using the results from a recently published study by Wesseling et al 2002. The calculated sample size using the two sample comparison of proportions (Stata Corporation. 2003) with exposure/control ratio =1, significance level of $\alpha = 0.05$ and 80% power, to detect a prevalence 25-45% of neurotoxicity among farmer is 164 participants.

2.3 Measurement

2.3.1 Instruments

Questionnaires

Since this study is part of a big study, a subset of the questionnaire will be used for the analysis of this study objectives (Appendix A1 and A2). The questionnaire was translated both into Afrikaans and Xhosa and then back translated into English to ensure language accuracy. The questionnaire included demographic information (age, education level, language), household factors (house owner, house utilities, people living in the household),
economic factors (occupation, family socio-economic statues), residential history (where participant live and lived before), work history (current occupation, previous occupation), alcohol usage, smoking and other drug usage (usage of drugs, age started using drugs), household pesticide usage (household usage of pesticides in the house, gardens), neurotoxicity Q16.

The Q16 questionnaire is commonly used in studies to study the prevalence of neurotoxic symptoms among the workers who are exposed to toxic substances. This questionnaire has 16 questions on the symptoms which these workers commonly describe eg. Short memory, poor concentration, tired etc (Lundberg et al 1997). Interviews were administered in the participants preferred language. The study fieldwork was done in the WFP premises.

2.4 Pesticide biomonitoring

OP pesticide residues testing

Spot urinary samples (50 ml) were collected in plastic containers topped with a plastic cap and kept on dry ice in the field and during transport and then stored at -20 degree Celsius before being sent to the laboratory for analysis. The urine samples were couriered to National Institute for Occupational Health (NIOH) laboratory in Johannesburg which has already set up methods for measuring the organophosphate pesticide metabolites, dialkyl phosphates and the chlorpyrifos metabolite, 3,5,6-trichloropyridinol (TCPY).

Urine samples (50 mL) were collected from participants in plastic containers topped with a plastic cap. A indoor clean toilet was available for participants who were told to take precautions not to contaminate samples such as removing contaminated clothing, washing
hands before handling containers, not touching the inside of containers and closing the containers immediately after producing the sample. The samples were kept on dry ice in the field and during transport and then stored at -20° centigrade before being sent for pesticide analysis to the NIOH laboratory, Johannesburg, SA. The DAP metabolites, dimethylphosphate (DMP), dimethyldithiophosphate (DMTP), dimethyldithiophosphate, (DMDTP), diethylphosphate (DEP), diethylthiophosphate (DETP), and diethyldithiophosphate (DEDTP); TCPY and PYR metabolites were measured according to the method by Hardt et al 2000 with slight modifications.

Briefly, after allowing the samples to thaw at room temperature, 2mL of urine was pipetted into screw top vials, which already contained approximately 2g of sodium chloride. An internal standard, dibutylphosphate was added to all tubes. The samples were acidified with 250µL hydrochloric acid (6M), and extracted with a mixture of acetonitrile /diethylether(1:1 v/v). The extraction was repeated, and both the extracts were combined. The extracts were dried under a gentle stream of nitrogen, with the temperature set not higher than 40°C. The dry residue was suspended in acetonitrile (500µL), followed by the addition of approximately 10g of anhydrous potassium carbonate. Derivatization was performed by adding pentafluorobenzyl bromide (50µL) in a sealed vial and heated overnight (16 hours) at 40°C. After cooling to room temperature, the pentafluorobenzyl esters were extracted with hexane (5mL) twice. The extracts were combined and dried down under a gentle stream of nitrogen. The samples were reconstituted in toluene(100µL) and transferred to gas chromatography (GC) vials with low volume inserts fitted, and were ready for analysis.

Analysis were performed on a HP 6890 GC equipped with a split-splitless injector, a HP 7683A automatic liquid injector system and a HP 5973 mass selective detector (MSD,
quadrupole). GC conditions were as follows: capillary column, 5% phenylmethylpolysiloxane DB 5MS (30m x 0.25 mm i.d x 0.25µm film thickness, J & W Scientific, Folsom, CA). Temperatures were as follows: injection port 250°C; transfer line 280°C; column 140°C for 3 min, raised at a rate of 7°C/min to 227°C, and then raised at a rate of 20°C/min 260°C for 5 min. Helium (99.999% purity) was used as the carrier gas. The sample injection volume was 1µL, with split less injection.

The MSD was operated in negative chemical ionization mode, using methane (99.9999% purity) gas. The source temperature was at 150°C and the quadruple temperature set at 100°C. The MSD was operated in selected ion monitoring mode (SIM).

A multi-component stock solution of all 6 dialkyl phosphate (20µmol), TCPY and PYR metabolites were used to prepare the calibration. From the stock solution, nine calibration standards were prepared with concentrations of 0, 500, 1000, 1500, 2000, 2500, 3000, 4000 and 5000 nmol/L. For quality assurance, we used spike pooled urine at a concentration 2000 nmol/l for each of the metabolites.

Results were adjusted for urinary creatinine to take account of hydration. Urine samples with creatinine concentrations within and outside the WHO recommended creatinine concentration range of 0.3 x 106 µg/L – 3.0 x 106µg/L were distinguished and taken into account in the analysis. Those outside the WHO range are not presented. The limit of detection (LOD) for all analytes were determined and values too low to be quantified were assigned a value equivalent to the LOD x (2)-1/2. The LOD for the pesticide metabolites were 0.5 µg/l for
TCPY; 1 μg/l for DMP; and 0.05 μg/l for DMTP, DMDTP, DEP, DETP, DEDTP, cis-DCCA, trans-DCCA, DBCA, 4F3PBA and 2PBA.

2.5 List and definition of Variables

The following list of variables will be used for the study analysis.

Exposure variables of interest

(a) Organophosphate metabolite concentrations in urine:

(i) TCPY

(ii) Six DAP metabolites (DMP, DEP, DMTP, DMDTP, DETP and DEDTP)

(b) Pyrethroid metabolites (3PBA; 4F3PBA; DBCA and cis-DCCA and trans-DCCA]

(c) History of living on the farms, current farm residence, being born on the farm and household pesticide usage.

Outcome variables

The following outcome variable will be used:

(a) Neurotoxicity outcomes will include the items in the Q16 questionnaire.
2.6 Validity and reliability of the study

The Q16 questionnaire has been validated for identifying long-term health effects including neurotoxicity Q16 (Axelson & Hogstedt et al 1988). The rest of the questionnaire was based on that used in previous studies in the Western Cape.

2.7 Pilot study

The questionnaire was piloted to test and work out the logistics for the main study. The pilot study for the main study fieldwork was conducted from 24 October to 3 December 2009.

3 Analysis plan

3.1 Data analysis plan

Statistical software STATA 11 (Stata Corp, Texas) will be used for data exploration and analysis of this study. Release 11 Statistical software.

3.2 Data Exploration

Descriptive analysis will be carried out to provide a general characteristics of the data set eg; the number of observations, the normality of the collected information, missing information. The following tests will be used to test if the data is normally distributed Shaphiro S wilk test. If the data is not normally distributed suitable transformations will be made. For all the continues values which are not normally distributed, median and interquartile ranges will used to summarise the variables and for further analysis non parametric tests will be used.
And those which are normally distributed the mean, standard deviation will be calculated and for further analysis parametric tests will be used. To determine any outliers in the data Box and Whisker plots will be drawn. Chi-squared test and contingency tables will be used to test and compare the pesticides exposure difference between the two groups. Univariate analysis will be carried out for the first part of the study analysis.

Univariate analysis of independent variables

Table 2: Continuous variables

<table>
<thead>
<tr>
<th>Variables</th>
<th>Farm group</th>
<th>Town group</th>
<th>t-test (difference of means)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Standard deviation</td>
<td>Mean</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...etc</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Categorical variables

<table>
<thead>
<tr>
<th>Variables</th>
<th>Farm Group</th>
<th>Town Group</th>
<th>X^2 test (difference of proportions)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
<td>Percentage</td>
<td>Frequency</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...etc</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The different categorical variables will be described using frequency distributions and percentage.

3.3 Bivariate associations

The bivariate analysis will be carried out to determine the associations between the variables and the outcome of interest. To determine significance of the association between the numerical and dichotomous variables the Wilcoxon rank sum or t test will be carried out. For
categorical variables the chi-square test will be used and the Fischer’s Exact test will be used for values which are less than 5.

3.4 Multivariate analysis

Multiple logistic regression analyses will be used to test for associations between dichotomous outcomes and exposure variables while controlling for confounding variables and linear regression will be used for the Q16 score.

4. Ethics

The study was conducted according to the Helsinki Declaration. The main study proposal was approved by the ethics committee at the University of Cape Town Human Research and Ethics Council committee (reference number 393/2009) (Appendix C). Information regarding the study was made available in the mother tongue of participants to ensure full understanding of the provided information. To ensure autonomy written consent were obtained from the participants. To improve subject confidentiality in the study only the author and the supervisors were able to access the study data. Participants remained anonymous for the study data collection, data analysis and the write-up. Study Codes were used for identification of the participants instead of the participant’s real names.

Study information sessions were held to provide the participants with the study information. The following information was provided to the participants during the information sessions, description of the research, names of the researchers, contact person information, purpose of research, expected benefits to participants, costs pertaining participation and expected risks or
discomfort. The participants were free to participate or decline participation into the study at any time without any consequences.

Dissemination of the results - A feedback session will be held on the farms, to provide the participants with the study results and be told about the potential interventions to reduce the harmfulness of pesticides exposure to the farmers.

4.1 The study risk or harms

There are no real additional harm to the women since the current study only involves the analysis of the already collected data.

4.2 Benefits

There will be no financial benefits from this study. However the study results will help in further understanding of the harm that pesticides exposure pose on the farm workers

5. Stakeholders, reporting and implementation

The study stakeholders are as follows:

The women who participated in the study

The farm owners

The WFP women on farms

The University of Cape Town
6. Reporting

The study results will be disseminated to the relevant stakeholders involved with the ultimate aim of implementing the necessary interventions and strategies to reduce the risk of neurotoxicity due to pesticides exposure among the farm workers. These interventions will be discussed and implemented where possible. The gathered information will also be written up as a journal article and published, the published article will be available at the University of Cape Town various libraries.

7. Logistics

Table 4: Time line

<table>
<thead>
<tr>
<th>Activity</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>June</th>
<th>July</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol development and departmental approval</td>
<td></td>
</tr>
<tr>
<td>Data cleaning and organisation</td>
<td></td>
</tr>
<tr>
<td>Literature review</td>
<td></td>
</tr>
<tr>
<td>Article write for selected journal</td>
<td></td>
</tr>
<tr>
<td>Complete write up and submission</td>
<td></td>
</tr>
</tbody>
</table>
8. References

35

Organophosphate and n-Methyl Carbamate pesticide among Banana Workers.

Part B Literature Review

THE RELATIONSHIP BETWEEN PESTICIDE EXPOSURE AND NEUROTOXICITY AMONG WOMEN FARM WORKERS.
1. Introduction

Pesticides include herbicides (used to kill weeds), insecticides (used to kill insects), fungicides (used to kill fungi), rodenticides (used to kill rats, mice, and other rodents), plant regulators and others (Weiss et al 2004, Aktar et al 2009). They are used in the home, in businesses, in public places, in agriculture and horticulture. Organophosphates (OP) are globally the most widely used insecticides (Binukumar et al 2011, Quinn et al 2011). There are many different OP’s used as insecticides for e.g. 40 different types are registered with the US- EPA (www.epa.org). Another group of chemicals widely used as insecticides are the pyrethroids (PYR), which are used for agricultural and household purposes. There are over 3500 registered PYR products in the used globally (www.epa.org).

Pesticide usage in South African agriculture is the highest in the region and is not decreasing (Dalvie et al 2009). The Western Cape is one of the most agriculturally productive provinces in the country and focuses on agriculture as an important industry and income earner. The crops which are commonly grown in this area include grapes, mangoes, apples, potatoes and wheat. In the Western Cape chlorpyrifos and azinphos methyl are commonly used organophosphates to control arthropods pests in orchards (Reinecke et al 2007). The commonly used PYR insecticides used in the Western Cape include cyfluthrin, cyhalothrin, cypermethrin, pypermethrin, deltamethrin and esfenvalerate (Quinn et al 2011).
Previous studies show that the pesticide usage is high in the rural environment in the Western Cape compared to the urban areas. (Dalvie et al 2003, Dalvie et al 2009, Dalvie et al 2011). Women farm workers are at particular risk from occupational and environmental hazards in agriculture resulting from farm work, spray drift and from environmental exposures (Forastieri et al 1999, McCoy et al 2002). Women are more likely to be employed to work on activities with high pesticide exposure compared to men and the ones who are tasked with the mixing of the chemicals for pesticide applicators and tractor sprayers (Rother et al 2000). During harvesting seasons women are mainly the once who will work in the fields collecting and packaging of the harvested crops. In many instances women working in the field are exposed to tractor sprayers and because protective clothing is rarely available for them, they are directly exposed (Nkurlu et al 1999, Araujo et al 1999).

An important concern about toxicity due to organophosphate use is that more than 3 million people experience acute organophosphate poisoning yearly (www.who.int/topics/pesticides/en/) according to the World Health Organisation.
1.1 Objectives of the literature review

The objectives of this literature review was to review currently available data on the neurotoxicity associated with OP and pyrethroid pesticides, types and mechanisms of neurotoxicity due to these pesticides, methods used to measure neurotoxicity, epidemiological evidence of neurotoxicity caused by OP and pyrethroid pesticides in women, and bio-monitoring of OP and pyrethroid pesticides in agricultural communities.

1.2 Search strategies

This review used electronic sources including PubMed / Medline, EBSCO, Scopus, Google Scholar and JSTOR as well as paper sources including text books, journals and previous thesis from the University of Cape Town Medical Library. The following keywords were used for searches in electronic resources: OP pesticides, pyrethroid pesticides, OP pesticides and neurotoxicity, pyrethroid pesticides and neurotoxicity, OP pesticides and neurotoxicity and women, pyrethroid pesticides and neurotoxicity and women, OP bio-monitoring, pyrethroid pesticides, bio-monitoring, urinary levels of OP pesticides, urinary levels of pyrethroid pesticides, neuropsychiatric tests and the Q16 questionnaire. The searches on neurotoxicity of pesticides focussed on women from general populations and farming populations exposed to pesticides but also include men. Epidemiological studies from all countries and with different study designs were considered in this review.
2. Neurotoxicity associated with OP and pyrethroid pesticides

Both OP and pyrethroid pesticides can disrupt the general cellular mechanisms necessary for supporting the high metabolic activity of both the central and the peripheral nervous system. (Keifer et al 2007).

2.1 Neurotoxicity of OP pesticides

There are four general categories in which the neurotoxic effects of OP pesticide poisoning can be summarised. Firstly, acute cholinergic effects causing acute poisoning (Costa et al 2006). Secondly, the intermediate syndrome (IMS) which may develop between one or four days post-acute pesticide poisoning (Balali-Mood et al 2012). Thirdly OP - induced delayed neurotoxicity(OPIDN) which follows after repeated pesticides exposure or and it may follow after 4 weeks of acute pesticide exposure (Lotti et al 2005). Lastly, chronic neurotoxicity resulting from long term exposure to pesticides (Ray et al 2001).

The acute toxicity of OP pesticides are associated with their inhibition of the enzyme acetylcholinesterase (AcHE), that is primarily found in the synaptic membrane whose function is to produce choline and acetate that are important for the regulation of synaptic activity in the central and the peripheral systems (Elersek et al 2011). The accumulation of acetylcholine in the synaptic cleft causes neuromuscular paralysis in the body (Gupta et al 2006). In the peripheral system the excess accumulation of acetylcholine causes the activation of muscarine and nicotine receptors which increases the activation of the sympathetic and parasympathetic parts. Acute effects due to OP pesticides include neurotoxic
symptoms like headaches, acute pesticide poisoning, vomiting, teary eyes, insomnia and confusion (Rother and Jacobs, Steenland et al 1994, Ross et al 2013, Sanborn et al 2004).

Long-term low dose neurotoxic effects due to OP exposure have been associated with cognitive effects, reduction in sensory and motor functioning, psychological dysfunction, change in behaviour, neurodegenerative and neurodevelopment effects, as well as suicide (Sanborn et al 2007, Starks et al 2012). Chronic effects are, however, not yet well understood (Sanborn et al 2007, Starks et al 2012). There are a number of possible mechanisms which have been proposed for chronic OP neurotoxicity including prolonged AChE inhibition, abnormal cerebral circulation, long term pre-synaptic disorder, disturbed cellular turnover and trans- membrane signalling and CNS receptor deregulation (Jamal et al 2002).

2.2 Neurotoxicity of pyrethroid pesticides

Neurotoxicity due to pyrethroid insecticides have been attribute to their disruption of nerve membrane permeability to sodium ions which impairs nervous system function (Soderlund et al 1989, Weiss et al 2004). Pyrethroids can be subdivided into two subclasses based on the mode of action on the sodium channels. Type I pyrethroids (e.g. allethrin, permethrin, bifenthrin, resmethrin and tetramethrin) produces repetitive nerve discharge causing whole body tremors and prostration. Type II pyrethroids (e.g. cyhalothrin, cypermethrin, cyfluthrin and deltamethrin) produces stimulus- dependent nerve depolarazation and blockage which is associated with hyperactivity, incoordination, writhing and convulsions (Soderlund et al 1989, Palmquist et al 2012).
Pyrethroid neurotoxicity is much lower than that of OPs. Pyrethroid compounds which have the \textit{IR} cis configuration (e.g. \textit{1R,cis}-permethrin (permethrin) and NRDC 157 (a deltamethrin analogue) are toxic to mammals (Soderlund et al 2002).

3. Methods used to measure neurotoxicity

Due to the complexity of the central nervous system (CNS), using a single tests to assess neurotoxic effects of pesticides may be inadequate (Bjorling-Poulsen et al 2008). Testing for neurotoxicity is aimed at determining changes in the structure and/or functioning of the CNS and tests currently used include indexes of neurofunction, behaviour and specific psychological effects. Neuropsychology is thought to be the most sensitive means of detecting neurotoxic damage (Lezak et al 2004).

Tests used for testing neurotoxicity include psychometric tests, electroencephalography (EEG), neurological examination, nerve conduction tests, needle electromyography (EMG), quantitative sensory neuromuscular testing, jitter testing, cognitive evoke potentials, SPECT (single photon emission computer tomography), the 28-item General Health questionnaire (GHQ-28), the GHQ Depression subscale, Beck’s scale for Suicidal Ideation (SSI) and the Q16 questionnaire (Lundberg et al 1997, Slikker et al 2000, London et al 2012).

The Q16 questionnaire was developed by Hogstedt in the early 1980’s (Ihrig et al 2001) to determine neurotoxicity among workers exposed to chemicals, and it has been used in a
number of studies investigating neurotoxicity of pesticides. The Q16 questionnaire consists of 16 Yes/No questions on symptoms commonly associated with neurotoxicity (Lundberg et al, 1997).

4. Epidemiological evidence of neurotoxicity caused by OP and pyrethroid pesticides

4.1 OP studies on neurotoxicity

There are numerous epidemiological studies in the literature that have investigated the neurological effects of OP pesticides. Recently Ross et al. (2012) conducted a systematic review on neurobehavioral problems associated with low-level exposure to OP pesticides for the period 1960-10th February 2012. A total of 644 articles were found from which 16 studies were selected for the review including studies from both developing and developed countries. The inclusion criteria included: evidence of prolonged exposure to OPs, comparison of exposed individuals with unexposed individuals, investigation of effects of long-term low-level exposure in the absence of an episode of acute poisoning and objective measures of cognitive function and validated measures of emotional state. The review found an overall significant relationship between low level OP exposure and cognitive functioning (language, general knowledge, attention psychomotor speed and memory). The review also showed that neurobehavioral health problems due to pesticides develop from prolonged exposure and not from a single exposure (Ross et al, 2012). Duration of OP exposure that can result in neurotoxicity ranged from 2- over 20 years. The review concluded that there was still uncertainty on the association between long term pesticides exposure and some neurobehavioral effects. Most of these studies were conducted on men and women with no gender differences reported.
4.2 Pyrethroid studies on neurotoxicity

Laboratory evidence has shown that PYR pesticides cause behavioural effects and effects CNS motor activity (Nasutī et al 2006, Starr et al 2012). Common symptoms which have been associated with PYR toxicity are over excitement, restlessness and body tremors from ingestion of type I PYR pesticides. Dizziness, headache and fatigue are associated with type II PYR pesticicides (Sonderland et al 1989, Bradberry et al 2005). No epidemiological study investigating the neurotoxicity of pyrethroid pesticides could be found in the literature.

4.3 Studies investigating neurotoxicity due to OP and PYR pesticide exposure in women.

Only two studies could be indentified in the literature that have investigated neurotoxic effects of OP pesticides only on women. The first was a small cross-sectional study that found that the neurobehavioural scores of 51 women employed as gardeners and exposed to OP pesticides were significantly lower than that of 25 women who did not work with chemicals. The following neurotoxic outcomes were measured: depression, reaction times, motor steadiness, tension and fatigue (Bazylewicz-Walczak B et al 1999). The second was a case control study that found that reported exposures (recent exposoure, years using pesticides, washing contaminated clothing) to OP pesticides amongst 341 women with glicomas were not significantly higher than 528 controls (Carreon at al 2005). As indicated before, no epidemiological studies were found that investigated neurotoxic effects of PYR pesticides. With no gender differences reported in studies conducted in men and women, there is therefore a lack of studies investigating neurotoxic effects of OP and PYR pesticides amongst women. More studies, especially large longitudinal studies in both developed and developing
countries using sensitive exposure measures identifying specific pesticides as well as sensitive neurotoxic outcome measures are required in the literature.

4.4 Studies on neurotoxicity in South Africa

To date in South Africa only two studies have investigated the neurotoxic effects associated with pesticides exposure amongst farm workers (London et al 1998, London et al 2012). In a cross-sectional study of 752 grape farm workers (41% female) from 57 farms in the Western Cape, neurotoxicity was measured using the 28-item General Health questionnaire (GHQ-28), the GHQ Depression subscale and Beck’s scale for Suicidal Ideation (SSI). The results of the study did not show an association between long-term OP exposure and impulsivity, depression or depression among the study participants. The study found an association between past pesticide poisoning and mood disorders (London et al 2012).

The other study was also a cross-sectional investigation into the association of pesticide long term exposure and neurotoxicity measured using neurological symptoms and tremor scores. Among 247 Western Cape farm workers, of which 164 were pesticide applicators and 93 non applicators. The results showed a significant association between reduced neurological tremor scores and previous pesticide poisoning (OR 4.08, 95%CI1.48-11.22), but there was no significant association between average lifetime OP exposure and neurological symptoms (London et al 1998).
5. Urinary levels of OP and pyrethroid pesticide residues

Measurement of pesticide residues in human body fluids is a useful tool for assessing short-term pesticide exposure to agricultural pesticides. The body fluids in which pesticides have been measured include amongst others blood, saliva and urine. Urine is the most commonly used body fluid because of its availability in high volume compared to other bodily fluids (Kapka-Skrzypczak et al 2011). The use of urinary pesticide metabolites as biomarkers to assess acute or short-term exposure to pesticides is well described (Roberts and Reigart, 1999; Maroni et al, 2000). This review will focus on urinary metabolites of OP and pyrethroids as these were measured in the study.

5.1 Urinary levels of OP pesticide metabolites in farming communities

Most of the OPs are metabolized to one or more of the six dialkyl phosphate metabolites (DAP). The measurement of urinary DAP is a sensitive indicator of non-specific short-term (24-48 hours) exposure to OP’s in humans (Roberts and Reigart, 1999). Exposure to specific OP pesticides is also measured and the most commonly monitored pesticide is chlorpyrifos. In humans the major chlorpyrifos-specific metabolite is 3, 5, 6- trichloro-2-pyridinol (TCPY) which is used as a bio marker to test for the short-term exposure (24-48 hours) to chlorpyrifos and chlorpyrifos-methyl in human.

The only study that measured urinary levels of pesticide residues in South Africa, was a cross sectional study among Western Cape grape farm workers to investigate the effects of chlorpyrifos spraying on urinary levels of DAPs among applicators and non-applicators. The study found that the median level of the dimethylthiophosphates (DMTP) and
dimethyldithiophosphates (DMDTP) measured before and after spraying were higher among the farm workers compared to non-farming communities in other settings and at the high end of the spectrum compared to farm workers in other settings. (Dalvie et al. 2011).

5.2 Urinary levels of pyrethroid pesticide metabolites in farming communities

Commonly measured pyrethroid metabolites includes [3- phenoxybenzoic acid (3PBA); 4-fluoro-3-phenoxybenzoic acid (4F3PBA); cis-2, 2-dibromovinyl-2, 2-dimethylcyclopropane-1-carboxylic acid (DBCA) and cis- and trans-isomers of 2, 2-dichlorovinyl-2, 2-dimethylcyclopropane-1-carboxylic acid (cis- and trans-DCCA)]. The most frequently measured of these metabolites is the 3PBA. No previous study has measured pyrethroid metabolites in South Africa.

6. Conclusion

There is strong epidemiological evidence that OP pesticides causes acute neurological impairments but the evidence that they cause chronic neurological impairment is still growing. Although there is evidence from laboratory studies that PYR pesticides cause neurotoxic effects, there are no epidemiological studies that have investigated neurotoxic effects PYR pesticides. Because limited understanding of the central nervous system functions, the diversity in the neurotoxic events and the large number of cellular and molecular targets involved there remains uncertainty about mechanism and dose response relationship associated with the pesticide exposures.
Most of epidemiological studies that investigated neurotoxic effects of pesticides were conducted on both men and women with no gender differences reported. There are also few studies that have investigated the relationship between pesticide metabolites and neurotoxicity. Epidemiological studies investigating neurotoxic effects of pesticides among women, especially large longitudinal studies in both developed and developing countries using sensitive exposure measures identifying specific pesticides as well as sensitive neurotoxic outcome measures are required in the literature. Future research should also focus on a better understanding of the central nervous system in order to fully understand the neurotoxic effects associated with pesticide exposure. This is particularly relevant to South Africa who has a growing number of women exposed to pesticides on farms and where both OP and PYR pesticides are commonly used and have been detected in the environment.
7. References

organophosphate and n-methyl carbamate pesticides among banana workers.

Part C: Publication- ready Manuscript

This manuscript is prepared for submission to the journal of Environment International. The journal’s guidelines for authors are attached (Appendix E), The Author has adhered to these guidelines with the exception that some of the tables have been included in the articles main text.
Title: Relationship between urinary pesticide residue levels and neurotoxicity among women on farms in the Western Cape

Authors:
Motsoeneng Mamonyowe Portia a*, Mohamed Aqiel Dalvie a
a Centre for Occupational and Environmental Health Research (COEHR)
School of Public Health and Family Medicine
University of Cape Town.

*Correspondence directed to:
Motsoeneng Mamonyowe Portia: mamonyowe.portia.64@gmail.com

*Abbreviations: DDT, dichlorodiphenyltrichloroethane; WFP, Women on Farms Project; OP, Organophosphates; PYR, pyrethroids; DAP, dialkyl phosphate; TCPY, 3,5,6-trichloropyridinol; OR, odds ratio; 95% CI, ninety five percent confidence interval; IQR, interquartile range.
Abstract

Background: Farm workers and residents living in and around farms are exposed to pesticides. Women are vulnerable to health risks posed by pesticides. To date there are few studies that have investigated the relationship between pesticide residues in human body fluids and neurotoxicity.

Objective:
This study therefore aims to investigate the relationship between urinary pesticide residue levels and neurotoxicity amongst women working in farms in the Western Cape, South Africa.

Method: A cross-sectional study was conducted among 211 women recruited from farms (farm group, n = 121) and neighbouring towns (town group, n = 90). Testing included a general questionnaire, the Q16 questionnaire, reported pesticide exposures and measurement of urinary metabolite concentrations of dialkyl phosphates (DAP), the chlorpyriphos, metabolite 3, 5, 6-trichloropyridinol (TCPY) and pyrethroid (PYR).

Results: The median age of the Farm Group was 33 years (interquartile range: 27 - 40 years) and for the Town Group was 40 years (interquartile range 31-49). Median urinary pesticide metabolites were 6-49% higher in the Farm Group compared to the Town Group. The concentration (median and interquartile range) of DAP (sum of the 6 metabolites), TCPY and PYR (sum of the 5 metabolites) was respectively 141.42(37.4-249.8); 6.15(3.50-10.64) and 6.60(3.61-9.96) µg/g of creatinine in the Farm Group compared to 132(45.64-204.45); 4.26(2.72-8.27) and 5.26 (2.74-8.42) µg/g of creatinine in the Town Group.
The prevalence of all Q16 symptoms was higher amongst farm women compared to non-farm women. Three pyrethroids metabolites (cis- DCCA, trans DCCA, DBCA) were positively associated with at least 12 of the Q16 symptoms adjusting for confounders. The strongest association between for a pyrethroid metabolite was between problems with buttoning and DBCA (Odds ratio = 8.93, 95% Confidence Interval: 1.71-46.5. Problems with buttoning and reading was also significantly positively associated with, trans DCCA , DBCA. Taking notes due to problems with memory was positively significantly associated with DBCA. There was no association between Q16 symptoms and OP metabolites.

Conclusion: Women farm residents and rural women from neighbouring towns in the Western Cape are exposed to OP and PYR pesticides. The study provides evidence that PYR pesticides may result in neurotoxic effects but not OP pesticides. These results should be explored further in a bigger longitudinal study using more sensitive neurotoxic measures such as World Health Organisation Neurobehavioral Core Test Battery, The Brief Symptom Inventory and vibration sense threshold testing.

Keywords: Neurotoxicity, Organophosphates, pyrethroid, neurotoxicity, Q16, female farmer workers.

Highlights:

- Rural women who live on farms have higher levels of pesticide residues compared to rural women who reside in towns
- Women who live or work on farms reports higher neurotoxic symptoms than those who do not live on farms
- Exposure to PYR was associated with neurotoxic outcomes
1. Introduction

Organophosphate and pyrethroids insecticides, commonly used in agriculture have been associated with neurological deficits (Bjorling-Poulsen et al 2008). Neurological effects from exposure to or poisoning from to OP pesticides include problems with memory, sleeping, numbness, dizziness, weakness, confusion, depression, personality changes, thinking, concentration and language disabilities (Ross et al 2012). The neurotoxic effects of pesticide exposure can be summarised into both acute and chronic health effects. Acute neurotoxic effects are well studied and it is said to be caused by the inhibition of the enzyme acetylcholinesterase (AChE) causing changes in central nervous system function (Costa et al 2006, Lauder et al 1999). However there remains conflicting information about the severity of chronic neurotoxic effects of pesticides exposure (Ross et al 2012).

There are numerous epidemiological studies in the literature that have investigated the neurological effects of OP pesticides. Recently Ross et. al. (2012) conducted a systematic review on neurobehavioral problems associated with low-level exposure to OP pesticides for the period 1960 -10th February 2012. The review found an overall significant relationship between low level OP exposure and cognitive functioning (language, general knowledge, attention psychomotor speed and memory). The review also showed that neurobehavioral health problems due to pesticides develop from prolonged exposure and not from a single exposure (Ross et al 2012). Duration of OP exposure that can result in neurotoxicity ranged from 2- over 20 years. The review concluded that there was still uncertainty on the association between long term pesticides exposure and some neurobehavioral effects. Most of
these studies were conducted on men and women with no gender differences reported. Women are increasing exposed to pesticides in agriculture (Rother et al 2000). There is limited evidence from two studies in the literature that have investigated neurotoxic effects of OP pesticides only on women and no studies investing PYR neurotoxicity (Bazylewicz-Walczak B et al 1999, Carreon at al 2005).

Urinary concentration levels of pesticide metabolites such as the six dialkyl phosphate (DAP) metabolites of organophosphate pesticides, 3,5,6- trichloropyridinol (TCPY) which is a specific metabolite of chlorpyrifos (Smith et al 2009) and metabolites of pyrethroid pesticides have been shown to be higher in farm workers compared to the general population. (Barr et al 2008, Phung et al 2012). However, only 2 studies have investigated the association between urinary levels of pesticide metabolites and neurological health (Eskenazi et al 2007, Bouchard et al 2010) but these were on chid participants and not on adults. To our knowledge there is no previous study which has investigated the association between urinary levels of pesticide metabolites and neurotoxicity in adults.

South Africa is the highest user pesticides in sub-Saharan Africa and the Western Cape is an important agricultural area in the country (Zhang et al 2011, Reinecke et al 2007). Pesticide residues have been detected in environmental samples and high levels in farm workers (Dalvie et al 2011, Dalvie et al 2006, Rother et al 2000). One study has been conducted investigating neurological disorders due to agricultural pesticides amongst farm workers in the Western Cape and this study did not provide evidence of neurotoxicity due to OP exposure (London et al 1998). No previous studies have been conducted investigating the
relationship between pesticide residues levels in biological samples and neuroxicity in South
Africa. Female farm workers in South Africa are increasingly exposed to pesticides (Bowers
et al 2009).

The data presented in this paper is part of a bigger study investigating neurotoxic, respiratory
health and reproductive health effects of pesticide exposure among women living/working on
farms in the Western Cape in South Africa. The aim of this analysis is to investigate the
effect of occupational and environmental pesticide exposure on neurotoxic outcomes
measured by means of the Q16 questionnaire.

2. Material and Methods

2.1 Study design, population and sampling

A cross-sectional study of women farm workers and residents and women living in towns
neighbouring the farms, in the Western Cape region of South Africa was conducted during the
period 24 October to 3 December 2009. The Women on Farms Project (WFP), a rural
women’s rights non-governmental organisation, assisted with the recruitment of participants.
About 100 women living on farms were targeted from the 5 most accessible agricultural areas
representative of the Western Cape and 100 women from neighbouring towns that were about
5 to 10km away from agricultural areas (Supplementary Material, Table 1). The only
inclusion criteria for women from these areas was age (above 18 years and below 70 years).
The study areas included Stellenbosch, Ceres, Paarl, Grabouw and Worcester. Farm workers and residents were selected from the 5-10 most accessible and representative farms in each area and town dwellers from the most accessible and representative houses in each area. One adult female participant per household was selected. A total of 211 women were recruited into the study including 113 women currently living on a farm and 98 residents in towns. There were 8 women who lived in town but were actually farm workers. In total there were therefore 97 farm workers (89 women living in farms and 8 not living in farms). There were an additional 24 women residing but not working on farms who were included with the farm workers in the “Farm Group (n = 121) as the results of sub-analysis showed they had similar results to that of farm workers. The remaining 90 women who neither lived nor worked on a farm are referred to as “Town Group” (Figure 1). The study was approved by the University of Cape Town’s (UCT) Research Ethics Committee (Reference 393/2009). Informed consent was obtained from participants prior to the interview.
2.2 Questionnaire

The questionnaire had sections on socio-demographic information (age, schooling, home language, income, employment); residential history (farm or town); pesticide household pesticide exposure; occupational and environmental pesticide exposure (being an applicator, re-entry pesticide exposure, pesticide drift, distance of residence to spraying and other exposures to agricultural spraying), job history (farm worker, non-farm worker, number of years in a job, job title), lifestyle factors (smoking, drug usage and alcohol consumption), pesticide poisoning and the Q16 questionnaire commonly used in studies that investigating
neurotoxic symptoms among the workers who are exposed to toxic substances (Lundberg et al 1997).

The Q16 questionnaire which consists of 16 questions, with yes/ no responses to symptoms associated with neurotoxicity. The Q16 questionnaire has been used successfully by many neurotoxic researchers although the instrument has been criticized for lacking sensitivity and specificity (Bast-Pettersen et al 2006).

The study interviews were administered in the participants preferred language and the questionnaire was translated into Afrikaans and Xhosa and then back translated into English. Fieldwork was done on the WFP premises.

2.3 Urinary pesticide metabolites determination

Urine samples were collected in 50 ml plastic containers. Participants were instructed to take precautions not to contaminate samples by not removing contaminated clothing, making sure that they wash their hands before handling urine containers, not touching the inside of containers and closing the containers immediately after producing the sample. The samples were then kept on dry ice, and stored at -20 degree Celsius before being sent for analysis at the National Institute for Occupational Health (NIOH) laboratory in Johannesburg, South Africa. The urine samples were analysed for the organophosphate pesticide metabolites, dialkyl phosphates, the chlorpyrifos specific metabolite, TCPY and pyrethroid metabolites.
Briefly, after allowing the samples to thaw at room temperature, 2 ml of urine was pipetted into screw top vials, which already contained approximately 2g of sodium chloride. The samples were acidified and extracted. The extraction was repeated, and the two extracts were combined and dried. The dry residue was suspended in acetonitrile (500µL). Derivatization was performed by adding pentafluorobenzyl bromide (50µL). After cooling at room temperature the samples were reconstituted and transferred to gas chromatography ready for analysis.

Analysis was performed on a HP 6890 GC. For calibration a multi-component stock solution of all 6 dialkyl phosphate (20µmol) metabolites, TCPY and PYR metabolites were used. For quality assurance, we used spike pooled urine at a concentration 2000 nmol/l for each of the dialkyl phosphate metabolites, TCPY and PYR metabolites.

Results were adjusted for urinary creatinine to take account of hydration. Urine samples with creatinine concentrations within and outside the WHO recommended creatinine concentration range of 0.3 x 106 µg/L – 3.0 x 106µg/L were distinguished and taken into account during analysis. Those outside the WHO range are not presented (n = 18).

The following metabolites were measured: OP metabolites (according to the methods by (Hardt et al, 2000) including dimethyl phosphate (DMP), diethyl phosphate (DEP), dimethyl thiophosphate (DMTP), dimethyl dithiophosphate (DMDTP), diethyl thiophosphate (DETP), diethyl dithiophosphate (DEDTP); and 3,5,6- trichloropyridinol (TCPY), the specific chlorpyrifos metabolite (Sams & Jones, 2011) and the 5 PYR metabolites 3- phenoxybenzoic acid (3PBA), 4-fluoro-3-phenoxybenzoic acid (4F3PBA), cis-2,2-dibromovinyl-2,2-
dimethylcyclopropane-1-carboxylic acid (DBCA), and cis- and trans isomers of 2,2-dichlorovinyl-2,2-dimethylcyclopropane-1-carboxylic acid (cis- and trans-DCCA) (according the methods of (Areebola et al 1999).

The limit of detection (LOD) for all analyses were determined and values too low to be quantified were assigned a value equivalent to the LOD x (2)-1/2. The limit of detection (LOD) for the pesticide metabolites were 0.5 μg/l for TCPY; 1 μg/l for DMP; and 0.05 μg/l for DMTP, DMDTP, DEP, DETP, DEDTP, cis-DCCA, trans-DCCA, DBCA, 4F3PBA and 2PBA (n < LOD = 8, 1, 1 for TCPY, DAP and PYR respectively). There were 8, 16 and 11 insufficient urine samples for TCPY, DAP and PYR analysis respectively.

2.3 Variables

The outcome variables included the dichotomous (Yes, No) Q16 questions, a continuous Q16 score variable which was calculated as the sum of positive responses (positive responses coded as 1 and negative responses as 0) to Q16 questions. The Q16 score was also dichotomised at the median and 75th percentile. The exposure variables included the dichotomous self reported history of living or working on farms (Yes, No), Farm Group/Town Group, and born on a farm as well as the urinary pesticide metabolite levels which were analysed as continuous variables.
2.4 Statistical Analysis

The selected software for analysis was Stata: Release 11 (StataCorp.al Software.College Station,TX:StataCorp LP). Since all continuous variables were not normally distributed, median and interquartile ranges were used to summarise these variables. After conducting univariate and bivariate analysis, multiple logistic regression analyses were used to test for associations between dichotomous outcomes and exposure variables while controlling for confounding and linear regression was used for the Q16 score. Confounders were selected on an *a priori* basis, according to biological plausibility, or based on their association with outcomes in bivariate testing if p < 0.1. (Tables 2a, b provided in the supplementary materials). Age, education, household income were selected *a priori* and drugs, alcohol usage, current smoking, language and previous poisoning were selected based on bivariate testing. Exposure variables were then added separately to all the different outcomes adjusting for these covariates.

To test for effect modification, interaction variables were created between exposure variables and potential effect modifiers (smoking, years of schooling and being born on a farm). These were the products between each exposure variable and a suspected effect modifier. For all the outcomes, an interaction term between the variable and the exposure variable of interest was included in the model. If this interaction term was significant (p<0.05), the variable would be an effect modifier. None of the interaction terms were significant so all were not retained in the models.
3. Results

3.1 Participants

Two hundred and eleven women were recruited into the study with 20% (n= 42) coming from Ceres, 18% (n=38) from Grabouw, 19% (n= 39) from Paarl, 22% (n= 47) from Stellenbosch and 21% (n = 45) from Worcester. Table 1 (Supplementary section) summarises the distribution of Farm Group and Town Group (as already been defined earlier) that participated in the study. Twenty- five (28%) of the women in the Town Group previously lived on farms. Among all the studied participants only two (2%) of the farm workers reported that they were applicators.

3.2 Demographic information, socio-economic status, lifestyle factors and self-reported pesticide exposure

In both groups Afrikaans was the most spoken language (> 87%) and less than 1% of the total studied population spoke English (Table 1). The median age in the Town Group was higher (40.5 years) than in the Farm Group (33 years) due to the fact that 25% of the Town Group were older than 50 years (excluding women aged higher than 50 years from the analysis did not change the results in the study). The number of women who attended school were not different in the two groups with over 96% of the participants in both groups who had attended school. The number of women who had matriculated was significantly more in the Farm Group although only 2% overall matriculated in both groups.
Median household income was statistically significantly higher in the Town Group.

Unemployment was statistically significantly higher in the Town Group compared to the Farm Group (17% compared to 71% in the Town Group).

Table 1: Demographic information, socio-economic status, living and working history and lifestyle factors of participants in the study

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Farm Group (n = 121)</th>
<th>Town Group (n = 90)</th>
<th>Total (n = 211)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic characteristics: (Median, IQR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years) (n = 207)</td>
<td>33.0(27.0 - 40.0)</td>
<td>40.5(31.0 - 49.0)</td>
<td>37.0(28.3 - 45.0)</td>
</tr>
<tr>
<td>Weight (Kg)</td>
<td>61.0(51.0 - 72.1)</td>
<td>70.0(58.3 - 81.1)</td>
<td>65.0(54.0 - 75.1)</td>
</tr>
<tr>
<td>Home language</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>0(0%)</td>
<td>1(1.1%)</td>
<td>1(0.5%)</td>
</tr>
<tr>
<td>Afrikaans</td>
<td>119(98%)</td>
<td>79(88%)</td>
<td>198(94%)</td>
</tr>
<tr>
<td>Isixhosa</td>
<td>2(2%)*</td>
<td>10(11%)</td>
<td>12(6%)</td>
</tr>
<tr>
<td>Level of Education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No schooling</td>
<td>4(3%)</td>
<td>4(4%)</td>
<td>8(4%)</td>
</tr>
<tr>
<td>Matriculated</td>
<td>1(1%)*</td>
<td>3(3%)</td>
<td>4(2%)</td>
</tr>
<tr>
<td>Length of stay in current residence</td>
<td>15.0(8-24)</td>
<td>21.5(12-41)</td>
<td>17(9-29)</td>
</tr>
<tr>
<td>Born on a farm</td>
<td>83(69)</td>
<td>13(14)</td>
<td>96(46)</td>
</tr>
<tr>
<td>History of ever? living or working on</td>
<td>121(100)*</td>
<td>26(29)</td>
<td>147(70)</td>
</tr>
<tr>
<td>farms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socio economic status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployment: n (%)</td>
<td>20(17)</td>
<td>65(71)</td>
<td>85(40)</td>
</tr>
<tr>
<td>Household income/month (SUS) (Median, IQR)</td>
<td>270.0(188-500)*</td>
<td>378.7(221-744)</td>
<td>324.0(199-600)</td>
</tr>
<tr>
<td>Lifestyle factors (n %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current cigarette smoker</td>
<td>69(57)</td>
<td>36(40)</td>
<td>105(50)</td>
</tr>
<tr>
<td>Current alcohol consumption</td>
<td>79(65)</td>
<td>39(43)</td>
<td>118(56)</td>
</tr>
<tr>
<td>Use drugs</td>
<td>0(0)</td>
<td>2(2)</td>
<td>2 (0.01)</td>
</tr>
</tbody>
</table>

Abbreviations: IQR- Inter quartile range, Kg- kilograms, SUS- United states dollar, n- number, % -percentage
Current cigarette smoker: having smoked at least 20 packs of cigarettes or 30 grams of tobacco in a lifetime or at least one cigarette per day for one year AND having smoked tobacco in the last month or more.
P<=0.05 is said to be significant and denoted by *
Statistical Tests: t-test (for normally distributed data) or Wilcoxon rank sum test (for data not normally distributed) was used for one dichotomous and one continuous variable, and Chi-square testing for 2 dichotomous variables.
Alcohol consumption and smoking was more prevalent in the Farm Group. Household pesticides usage was prevalent in both groups although slightly higher in the Farm Group. Household pesticide exposures were higher in the Farm Group including 10 (8%) who uses empty containers. As expected, past pesticide poisoning events diagnosed by a doctor were more prevalent in the Farm Group but low in both groups. On spraying days, about two thirds (67%) of the Farm Dwellers reported that they re-entered the field on the same day after pesticide spraying. Workers were employed for an average of five years on the farms and about a third of Farm dwellers were seasonal farm workers (Table 2).
Table 2: Household pesticide exposure, pesticide poisoning and agricultural pesticide exposure of participants

<table>
<thead>
<tr>
<th>Pesticide Exposure</th>
<th>Farm Group N (%)</th>
<th>Town Group N(%)</th>
<th>Total N(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use pesticides at home</td>
<td>67(55)</td>
<td>56(62)</td>
<td>123(58)</td>
</tr>
<tr>
<td>Member of the family works as a pesticide applicator</td>
<td>36(30)</td>
<td>1(1)</td>
<td>37(18)</td>
</tr>
<tr>
<td>Pesticide contaminated clothing washed at home</td>
<td>58(48)</td>
<td>1 (1.1)</td>
<td>59(28)</td>
</tr>
<tr>
<td>Clothing washed with rest of washing</td>
<td>39(32)</td>
<td>0(0.0)</td>
<td>39(18)</td>
</tr>
<tr>
<td>Use of empty pesticide containers at home for drinking</td>
<td>10(8)</td>
<td>0 (0.0)</td>
<td>10(5)</td>
</tr>
</tbody>
</table>

Pesticide poisoning
- Pesticide poisoning Confirmed by a doctor? 6(5) 1(1) 7(3)

Farm worker status (n=208)
- Permanent 53(45)* 0(0) 53(25)
- Seasonal 40(34)* 4(4) 44(21)

Re-entry into sprayed fields
- Delayed re-entry\(^a\) 33(27)* 1(1) 34(16)
- Immediate re-entry\(^b\) 81(67)* 0(0) 81(38)

Abbreviations: n- number, % percentage
\(P<0.05\)*
\(^a\) re-entry into field on the same day after pesticide spraying
\(^b\) re-entry into field 1 to 7 days after pesticide spraying

3.3 Urinary pesticide metabolite results

Table 4 below gives a summary of the urinary pesticides metabolites measured among the study participants. A total of 186 urine samples were collected from the participants from which 18 had a creatinine concentration which was outside the WHO recommended range.

For seven of the participants (4%) the collected urine sample were not enough for measuring TCPY, for the dialkyl phosphates 15(8%) and for pyrethroid 10(5%).
Most of the urinary organophosphate and pyrethroid metabolites were not significantly different between the two groups with only TCPY and trans-DCCA levels significantly higher in the Farm Group.
Table 3: Pesticide residues levels among the rural female workers

<table>
<thead>
<tr>
<th>Pesticide metabolites</th>
<th>Farm Group</th>
<th>Town Group</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median (IQR)</td>
<td>Corrected for creatinine (µg/g creatinine)</td>
<td></td>
</tr>
<tr>
<td>Organophosphate metabolites</td>
<td>n = 101</td>
<td>n = 77</td>
<td>n = 178</td>
</tr>
<tr>
<td>∑DAP</td>
<td>141.42(37.4-249.83)</td>
<td>132(45.64-204.45)</td>
<td>133.59(41.86-229.09)</td>
</tr>
<tr>
<td>DMP</td>
<td>32.91(13.50-55.75)</td>
<td>26.19(14.33-52.36)</td>
<td>29.63(14.06-53.22)</td>
</tr>
<tr>
<td>DMTP</td>
<td>13.41(3.05-62.45)</td>
<td>36.44(6.11-71.85)</td>
<td>21.87(4.03-65.85)</td>
</tr>
<tr>
<td>DMTP</td>
<td>5.70(0.83-51.51)</td>
<td>9.57(0.87-66.22)</td>
<td>6.87(0.85-61.77)</td>
</tr>
<tr>
<td>DEP</td>
<td>5.01(1.37-12.90)</td>
<td>4.13(0.59-9.47)</td>
<td>4.27(1.08-10.04)</td>
</tr>
<tr>
<td>DETP</td>
<td>3.70(1.15-26.98)</td>
<td>3.94(1.35-26.18)</td>
<td>3.87(1.20-26.98)</td>
</tr>
<tr>
<td>DEDTP</td>
<td>1.99(0.55-5.10)</td>
<td>1.70(0.60-8.02)</td>
<td>1.89(0.58-6.44)</td>
</tr>
<tr>
<td>Chlorpyrifos metabolite n = 104</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCPY</td>
<td>6.15(3.50-10.64)*</td>
<td>4.14(2.70-7.57)</td>
<td>5.16(2.84-9.24)</td>
</tr>
<tr>
<td>Pyrethroid metabolites n=101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>∑Pyrethroids</td>
<td>6.60(3.61-9.96)</td>
<td>5.26(2.74-8.42)</td>
<td>6.01(3.24-9.67)</td>
</tr>
<tr>
<td>cis-DCCA</td>
<td>0.71(0.27-1.28)</td>
<td>0.56(0.23-1.13)</td>
<td>0.62(0.26-1.24)</td>
</tr>
<tr>
<td>trans-DCCA</td>
<td>0.85(0.47-1.29)*</td>
<td>0.59(0.28-1.02)</td>
<td>0.70(0.37-1.22)</td>
</tr>
<tr>
<td>DBCA</td>
<td>0.31(0.05-0.63)</td>
<td>0.30(0.04-0.60)</td>
<td>0.30(0.04-0.62)</td>
</tr>
<tr>
<td>4F3PBA</td>
<td>0.73(0.31-1.32)</td>
<td>0.70(0.33-1.30)</td>
<td>0.73(0.32-1.32)</td>
</tr>
<tr>
<td>3PBA</td>
<td>3.61(2.11-6.25)</td>
<td>3.34(2.27-5.92)</td>
<td>3.40(2.18-6.00)</td>
</tr>
</tbody>
</table>

*p < 0.05; TCPY: 3,5,6- trichloropyridinol; DAP: sum of the 6 dialkyl phosphate metabolites; DMP: dimethyl phosphate; DMTP: dimethyl thiophosphate; DMDTP: dimethyl dithiophosphate; DEP: diethyl phosphate; DETP: diethyl thiophosphate; DEDTP: diethyl dithiophosphate; Pyrethroids: sum of the 5 pyrethroid metabolites; cis-DCCA: cis-2,2-dichlorovinyl-2,2- dimethylcyclopropane-1-carboxylic acid; trans-DCCA: trans-2,2-dichlorovinyl-2,2- dimethylcyclopropane-1-carboxylic acid; DBCA: cis-2,2-dibromovinyl-2,2-dimethylcyclopropane-1-carboxylic acid; 4F3PBA: 4-fluoro-3-phenoxybenzoic acid; 3PA: 3- phenoxybenzoic acid

Values below LOD were substituted by LOD divided by square root of 2

Σ: total sum
3.5 Response to Q16 questionnaire
Positive responses to individual items in the Q16 questionnaire were all more prevalent in the Farm Group with 10(63%) items statistically significantly higher in this group. The total score was therefore also statistically significantly higher in the Farm Group.
Table 4: Responses to Q16

<table>
<thead>
<tr>
<th>Question</th>
<th>Farm group N=121(57)</th>
<th>Town group N=90(43)</th>
<th>Total N=211(100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are you abnormally tired? (tired)</td>
<td>81(77)*</td>
<td>37(41)</td>
<td>118(56)</td>
</tr>
<tr>
<td>Do you have palpitations of the heart when you do not exert yourself? (heart palpitations)</td>
<td>60(50)*</td>
<td>26(29)</td>
<td>86(41)</td>
</tr>
<tr>
<td>Do you often have painful tingling in some part of your body? (tingling)</td>
<td>55(46)*</td>
<td>24(27)</td>
<td>79(37)</td>
</tr>
<tr>
<td>Do you often feel irritated without any particular reason? (irritated)</td>
<td>59(49)*</td>
<td>22(24)</td>
<td>81(38)</td>
</tr>
<tr>
<td>Do you often feel depressed without any particular reason? (depressed)</td>
<td>62(51)*</td>
<td>30(33)</td>
<td>92(44)</td>
</tr>
<tr>
<td>Do you often have problems concentrating? (poor concentration)</td>
<td>34(28)</td>
<td>20(22)</td>
<td>54(26)</td>
</tr>
<tr>
<td>Do you have a short memory? (short memory)</td>
<td>59(49)*</td>
<td>28(31)</td>
<td>87(41)</td>
</tr>
<tr>
<td>Do you often perspire without any particular reason? (perspire)</td>
<td>30(25)</td>
<td>15(17)</td>
<td>45(21)</td>
</tr>
<tr>
<td>Do you have any problems with buttoning and unbuttoning? (button)</td>
<td>6(5)</td>
<td>4(4)</td>
<td>10(5)</td>
</tr>
<tr>
<td>Have your relatives told you that you have a short memory? (fam mem)</td>
<td>32(26)</td>
<td>16(18)</td>
<td>48(22)</td>
</tr>
<tr>
<td>Do you sometimes feel a heavy feeling on your chest? (chest) (reading)</td>
<td>48(40)*</td>
<td>17(19)</td>
<td>65(31)</td>
</tr>
<tr>
<td>Do you often have to make notes about what you must remember? (notes)</td>
<td>36(30)*</td>
<td>14(16)</td>
<td>50(24)</td>
</tr>
<tr>
<td>Do you often have to go back and check things you have done such as locking the door? (check door)</td>
<td>64(53)*</td>
<td>26(29)</td>
<td>90(43)</td>
</tr>
<tr>
<td>Do you have a headache at least once a week? (headache)</td>
<td>105(87)*</td>
<td>42(47)</td>
<td>147(70)</td>
</tr>
<tr>
<td>Do you think that you have less sex than most persons of your age? (less-sex)</td>
<td>53(44)</td>
<td>35(39)</td>
<td>88(42)</td>
</tr>
<tr>
<td>Total Score (median, range) (q16 score)</td>
<td>7 (0-16)*</td>
<td>2.5(0-15)</td>
<td>5(0-16)</td>
</tr>
</tbody>
</table>

* P < 0.05 comparing Farm group to Town group

* * shows that there is a significant difference between the two groups.
3.6 Multivariate associations between pesticides exposure indices and Q16 questionnaire items.

Tables 5a, b, c below gives details of the multivariate association between Q16 outcomes and pesticides exposure indices (farm group, history of ever living on a farm, born on a farm and pesticide residue levels) among the women who live on farms and neighbouring towns in the rural Western Cape areas. The prevalence of fifteen Q16 symptoms was higher in the Farm Group compared to the Town Group with 10 statistically significantly higher (tired, heart palpitations, tingling, irritated, depressed, short memory, chest, notes, check door and headache). All the Q16 symptoms were positively associated with history of ever living on a farm of which 8 were statistically significant (tired, heart palpitation, irritated, tingling, poor concentration, short memory, perspire and chest). The sum of Q16 score was also positively significantly associated with Farm Group and history of living on a farm. Eight Q16 symptoms were positively associated with born on farm and 6 symptoms were positively associated with household pesticides of which 1 (button) was significant.

Three pyrethroids metabolites (cis- DCCA, trans DCCA, DBCA) were positively associated with at least 12 of the Q16 symptoms. The strongest associations was between DBCA and Q16 outcome “Button” \([(OR(95\%CI)=8.93(1.71-46.5)] \) (Table 5c). “Button” and “Reading” were significantly positively associated with, trans DCCA, DBCA and “Notes” was positively significantly associated with and DBCA.

There was no significant association between any Q16 symptom and any of the dialkyl phosphate and chlorpyrifos metabolites (Table 5b). Excluding those previously poisoned from the analysis did not make a difference to the results.
Table 5a: Adjusted models for the association between pesticide exposures and neurotoxic outcomes among rural women in Western Cape.

<table>
<thead>
<tr>
<th>Pesticide exposure</th>
<th>Odds Ratio/ Regression Coefficient (95% Confidence Interval)</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of ever living and/or working on farm</td>
<td>Born on farm</td>
<td>Household pesticides</td>
</tr>
<tr>
<td>Tired</td>
<td>3.3(1.46-7.36)</td>
<td>0.95(0.50-1.78)</td>
</tr>
<tr>
<td>Heart palpitations</td>
<td>4.73(1.98-11.31)</td>
<td>1.29(0.66-2.41)</td>
</tr>
<tr>
<td>Tingling</td>
<td>4.72(1.94-11.50)</td>
<td>0.85(0.44-1.62)</td>
</tr>
<tr>
<td>Irritated</td>
<td>4.25(1.82-9.95)</td>
<td>0.77(0.41-1.45)</td>
</tr>
<tr>
<td>Depressed</td>
<td>1.89(0.87-4.11)</td>
<td>0.91(0.49-1.69)</td>
</tr>
<tr>
<td>Poor concentration</td>
<td>4.15(1.59-10.80)</td>
<td>1.36(0.67-2.77)</td>
</tr>
<tr>
<td>Short term memory</td>
<td>2.94(1.34-6.45)</td>
<td>1.48(0.78-2.79)</td>
</tr>
<tr>
<td>Perspire</td>
<td>4.35(1.42-13.31)</td>
<td>1.05(0.49-2.29)</td>
</tr>
<tr>
<td>Button</td>
<td>5.83(0.56-60.74)</td>
<td>1.17(0.28-4.94)</td>
</tr>
<tr>
<td>Reading</td>
<td>2.16(0.79-5.86)</td>
<td>1.05(0.51-2.32)</td>
</tr>
<tr>
<td>Fam mem</td>
<td>1.54(0.54-3.96)</td>
<td>1.93(0.88-4.25)</td>
</tr>
<tr>
<td>Chest</td>
<td>5.21(1.90-14.25)</td>
<td>0.63(0.31-1.29)</td>
</tr>
<tr>
<td>Notes</td>
<td>1.55(0.64-3.77)</td>
<td>1.03(0.49-2.19)</td>
</tr>
<tr>
<td>Check door</td>
<td>1.46(0.85-2.3)</td>
<td>1.34(0.71-2.54)</td>
</tr>
<tr>
<td>Headache</td>
<td>2.13(0.91-5.00)</td>
<td>0.79(0.40-1.56)</td>
</tr>
<tr>
<td>Less sex</td>
<td>1.70(0.78-3.73)</td>
<td>0.71(0.38-1.32)</td>
</tr>
<tr>
<td>Q16 score</td>
<td>2.69(1.71-10.14)</td>
<td>2.10(0.72-6.10)</td>
</tr>
<tr>
<td>Q16 score50</td>
<td>5.3(2.22-12.69)</td>
<td>0.79(0.42-1.51)</td>
</tr>
<tr>
<td>Q16 score75</td>
<td>5.01(1.76-14.25)</td>
<td>1.68(0.77-3.54)</td>
</tr>
</tbody>
</table>

Confounder: Age, level of education, drugs, current smoking, alcohol consumption, household income, language, past pesticide poisoning.
Table 5b: Adjusted models for the association between OP metabolites and Q16 outcomes among rural women in Western Cape

<table>
<thead>
<tr>
<th>Q16 outcomes</th>
<th>Dialyil phosphates</th>
<th>Odds Ratio</th>
<th>Regression Coefficient (95% Confidence Interval)</th>
<th>Chlorpyrifos metabolite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DMP</td>
<td>DMTP</td>
<td>DMDTP</td>
<td>DEP</td>
</tr>
<tr>
<td>Tired</td>
<td>0.998(0.985-1.009)</td>
<td>1.001(0.996-1.005)</td>
<td>0.998(0.995-1.005)</td>
<td>1.006(0.995-1.022)</td>
</tr>
<tr>
<td>Heart palpitations</td>
<td>0.999(0.977-1.002)</td>
<td>0.999(0.995-1.009)</td>
<td>1.002(0.998-1.006)</td>
<td>1.003(0.998-1.019)</td>
</tr>
<tr>
<td>Tingling</td>
<td>1.003(0.989-1.009)</td>
<td>0.999(0.995-1.003)</td>
<td>0.999(0.995-1.004)</td>
<td>1.002(0.978-1.017)</td>
</tr>
<tr>
<td>Irritated</td>
<td>0.997(0.985-1.008)</td>
<td>1.001(0.997-1.005)</td>
<td>1.000(0.996-1.005)</td>
<td>1.002(0.986-1.016)</td>
</tr>
<tr>
<td>Depression</td>
<td>1.002(0.991-1.013)</td>
<td>1.000(0.996-1.004)</td>
<td>0.999(0.996-1.003)</td>
<td>0.999(0.985-1.013)</td>
</tr>
<tr>
<td>Poor concentration</td>
<td>1.009(0.9971-1.0022)</td>
<td>1.000(0.996-1.005)</td>
<td>0.996(0.995-1.003)</td>
<td>0.994(0.976-1.012)</td>
</tr>
<tr>
<td>Short term memory</td>
<td>1.005(0.994-1.014)</td>
<td>1.006(0.996-1.005)</td>
<td>1.000(0.997-1.005)</td>
<td>0.996(0.976-1.010)</td>
</tr>
<tr>
<td>Perspire</td>
<td>0.999(0.985-1.014)</td>
<td>1.003(0.998-1.007)</td>
<td>0.999(0.984-1.004)</td>
<td>0.985(0.959-1.011)</td>
</tr>
<tr>
<td>Button</td>
<td>1.010(0.984-1.035)</td>
<td>1.003(0.996-1.007)</td>
<td>0.994(0.980-1.007)</td>
<td>0.972(0.907-1.045)</td>
</tr>
<tr>
<td>Reading</td>
<td>0.997(0.983-1.100)</td>
<td>1.005(1.001-1.100)</td>
<td>0.999(0.995-1.005)</td>
<td>0.986(0.966-1.007)</td>
</tr>
<tr>
<td>Fam mem</td>
<td>0.997(0.983-1.101)</td>
<td>0.996(0.991-1.002)</td>
<td>1.002(0.998-1.006)</td>
<td>0.995(0.976-1.015)</td>
</tr>
<tr>
<td>Chest</td>
<td>0.993(0.979-1.006)</td>
<td>1.001(0.997-1.006)</td>
<td>1.004(0.999-1.009)</td>
<td>0.998(0.978-1.010)</td>
</tr>
<tr>
<td>Notes</td>
<td>1.009(0.995-1.022)</td>
<td>1.004(0.999-1.009)</td>
<td>0.999(0.993-1.005)</td>
<td>0.991(0.967-1.014)</td>
</tr>
<tr>
<td>Check door</td>
<td>1.006(0.995-1.018)</td>
<td>0.999(0.996-1.004)</td>
<td>1.997(0.993-1.001)</td>
<td>0.992(0.978-1.020)</td>
</tr>
<tr>
<td>Headache</td>
<td>0.995(0.983-1.007)</td>
<td>1.001(0.997-1.006)</td>
<td>0.999(0.995-1.004)</td>
<td>0.993(0.983-1.015)</td>
</tr>
<tr>
<td>Less sex</td>
<td>0.994(0.982-1.005)</td>
<td>0.999(0.995-1.007)</td>
<td>0.996(0.995-1.000)</td>
<td>1.008(0.993-1.024)</td>
</tr>
<tr>
<td>Q16 score</td>
<td>1.002(0.984-1.020)</td>
<td>1.002(0.997-1.006)</td>
<td>0.999(0.993-1.006)</td>
<td>1.007(0.981-1.032)</td>
</tr>
<tr>
<td>Q16 score75</td>
<td>1.000(0.989-1.012)</td>
<td>1.001(0.997-1.005)</td>
<td>0.999(0.996-1.005)</td>
<td>0.995(0.975-1.007)</td>
</tr>
</tbody>
</table>

Confounder: Age, level of education, drugs, current smoking, alcohol consumption, household income, language, past pesticide poisoning
<table>
<thead>
<tr>
<th>Neurotoxic outcomes</th>
<th>cis-DCCA</th>
<th>trans-DCCA</th>
<th>DBCA</th>
<th>4F3PBA</th>
<th>3PBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tired</td>
<td>1.22(0.74-2.00)</td>
<td>1.44(0.81-2.56)</td>
<td>1.91(0.80-4.55)</td>
<td>1.16(0.80-1.68)</td>
<td>1.00(0.98-1.02)</td>
</tr>
<tr>
<td>Heart palpitations</td>
<td>1.03(0.63-1.66)</td>
<td>1.17(0.72-1.89)</td>
<td>1.14(0.49-2.64)</td>
<td>0.92(0.65-1.32)</td>
<td>1.00(0.98-1.02)</td>
</tr>
<tr>
<td>Tingling</td>
<td>0.81(0.488-1.34)</td>
<td>0.92(0.56-1.54)</td>
<td>0.82(0.34-1.95)</td>
<td>0.73(0.46-1.14)</td>
<td>1.00(0.98-1.02)</td>
</tr>
<tr>
<td>Irritated</td>
<td>1.02(0.63-1.65)</td>
<td>1.18(0.73-1.90)</td>
<td>1.34(0.58-3.07)</td>
<td>0.94(0.66-1.34)</td>
<td>1.00(0.98-1.02)</td>
</tr>
<tr>
<td>Depression</td>
<td>1.05(0.67-1.66)</td>
<td>1.10(0.69-1.76)</td>
<td>1.54(0.69-3.42)</td>
<td>0.96(0.68-1.34)</td>
<td>1.00(0.98-1.02)</td>
</tr>
<tr>
<td>Poor concentration</td>
<td>1.06(0.63-1.78)</td>
<td>0.93(0.55-1.59)</td>
<td>1.49(0.61-3.65)</td>
<td>0.82(0.52-1.28)</td>
<td>0.97(0.91-1.03)</td>
</tr>
<tr>
<td>Short term memory</td>
<td>1.00(0.61-1.62)</td>
<td>1.14(0.70-1.85)</td>
<td>1.35(0.58-3.13)</td>
<td>0.78(0.51-1.18)</td>
<td>1.00(0.98-1.02)</td>
</tr>
<tr>
<td>Perspire</td>
<td>1.00(0.55-1.74)</td>
<td>1.11(0.65-1.90)</td>
<td>1.22(0.46-3.29)</td>
<td>0.72(0.42-1.23)</td>
<td>1.01(0.99-1.03)</td>
</tr>
<tr>
<td>Button</td>
<td>3.03(1.22-7.50)</td>
<td>2.47(0.94-6.45)</td>
<td>8.93(1.71-46.5)</td>
<td>1.47(0.85-2.54)</td>
<td>1.02(0.99-1.05)</td>
</tr>
<tr>
<td>Reading</td>
<td>1.57(0.92-2.67)</td>
<td>1.63(0.94-2.83)</td>
<td>2.95(1.16-7.54)</td>
<td>1.08(0.74-1.57)</td>
<td>1.01(0.99-1.03)</td>
</tr>
<tr>
<td>Fam mem</td>
<td>1.08(0.63-1.87)</td>
<td>1.01(0.59-1.73)</td>
<td>1.45(0.56-3.78)</td>
<td>0.90(0.56-1.45)</td>
<td>1.00(0.97-1.03)</td>
</tr>
<tr>
<td>Chest</td>
<td>0.96(0.57-1.60)</td>
<td>0.94(0.57-1.57)</td>
<td>1.12(0.46-2.76)</td>
<td>0.62(0.38-1.04)</td>
<td>1.00(0.98-1.02)</td>
</tr>
<tr>
<td>Notes</td>
<td>1.54(0.88-2.71)</td>
<td>1.82(1.00-3.32)</td>
<td>2.82(1.04-7.63)</td>
<td>1.19(0.81-1.75)</td>
<td>1.00(0.97-1.02)</td>
</tr>
<tr>
<td>Check door</td>
<td>1.17(0.74-1.86)</td>
<td>1.43(0.85-2.39)</td>
<td>1.53(0.68-3.48)</td>
<td>1.09(0.77-1.53)</td>
<td>1.00(0.98-1.02)</td>
</tr>
<tr>
<td>Headache</td>
<td>1.11(0.66-1.85)</td>
<td>1.03(0.60-1.77)</td>
<td>1.04(0.43-2.52)</td>
<td>0.97(0.67-1.39)</td>
<td>0.98(0.96-1.01)</td>
</tr>
<tr>
<td>Less sex</td>
<td>0.85(0.53-1.38)</td>
<td>0.88(0.54-1.43)</td>
<td>0.66(0.28-1.54)</td>
<td>0.77(0.51-1.15)</td>
<td>0.99(0.96-1.02)</td>
</tr>
<tr>
<td>Q16 score</td>
<td>1.32(0.60-2.92)</td>
<td>1.35(0.53-3.42)</td>
<td>1.46(0.38-3.63)</td>
<td>0.93(0.55-1.56)</td>
<td>0.98(0.96-1.01)</td>
</tr>
<tr>
<td>Q16 score50</td>
<td>1.06(0.66-1.71)</td>
<td>1.10(0.68-1.79)</td>
<td>1.56(0.68-3.59)</td>
<td>0.82(0.56-1.20)</td>
<td>1.00(0.98-1.02)</td>
</tr>
<tr>
<td>Q16 score75</td>
<td>1.12(0.65-1.92)</td>
<td>1.29(0.76-2.20)</td>
<td>2.06(0.80-5.25)</td>
<td>0.87(0.55-1.37)</td>
<td>1.01(0.99-1.03)</td>
</tr>
</tbody>
</table>

Confounder: Age, level of education, drugs, current smoking, alcohol consumption, household income, language, past pesticide poisoning
4. Discussion

This study showed that Q16 symptoms used as the neurotoxic outcome in the study, are more prevalent among women currently living or working on farms compared to those living in nearby towns and, those who have a history of living on farms compared to those who have lived in nearby towns. This suggests that women living and working on farms are showing neurotoxic effects likely due to pesticides exposure on farms. The neurotoxic effect of pesticide exposure was found even when controlling for pesticide poisoning which have not previously been demonstrated with the Q16 questionnaire. Previous studies in Nicaragua and California have shown significantly higher positive symptoms responses in those that experienced poisoning compared to a non-poisoned group (Rosenstock et al 1991, Steenland et al 1994, Wesseling et al 2002). This is also the first study that has found an association between neurotoxicity and pesticide exposure only in women.

The study results showed no significant association between urinary metabolite levels of organophosphates, the most commonly used neurotoxic pesticides worldwide (Van der Schans et al 2013, Barr et al 2006) and in South Africa and the Q16 outcomes. The median levels of DAP metabolites in this study (134 µg/g of creatinine) were lower than that measured in a previous study in the Western Cape among farm workers (1587.5 µg/g creatinine (Dalvie et al 2011). In this study median DAP levels were also at the low end of the spectrum when compared to those of the Netherlands farm workers in another setting (296.0 µg/g creatinine) (Ye et al 2008). The reason for no positive associations of DAP metabolites with Q16 outcomes could be therefore due to low levels of total organophosphate pesticide exposure of the female participants in this study. The low level OP exposure is
probably due to the fact that only two of the farm workers reported that they were applicators. Another reason for the lack of association between OP metabolites can be due to the lack of specificity and sensitivity of the Q16 questionnaire. (Bast-Pettersen et al 2006) and that more sensitive neurotoxic test are required to explore this association.

Cis and trans-DCCA are metabolites for permethrin, cypermethrin and cyfluthrin that are commonly used on farms in the Western Cape crop farming; DBCA, is the metabolite of deltamethrin and 4F3PBA, a metabolite of cyfluthrin which are also both commonly used on Western Cape farms. 3PBA is a non-specific metabolite for common synthetic pyrethroids (Barr et al 2008). The median PYR metabolites measured in this study in both the Farm and Town Groups (6.60 μg/g creatinine and 5.26 μg/g creatinine respectively) was higher than those measured in the general population in other settings such as the Mexican study, MICASA (Trunnelle et al 2014), and the two USA population based studies NHANES data set 1999-2002 and CHAMACOS cohort with U.S. National Health and Nutrition Examination Survey data set 1999–2002.

We could not find another epidemiological study that have investigated the relationship between pyrethroid levels and neurotoxic outcomes but altered nerve functioning has been found in rats dosed with pyrethroid compounds through intracerebral dosing experiment (Soderlund et al 2002).

The consistent positive associations between PYR metabolites, cis- DCCA, trans DCCA , DBCA and Q16 symptoms should be studied further using sensitive neurotoxic outcomes
such as World Health Organisation Neurobehavioral Core Test Battery, The Brief Symptom Inventory and vibration sense threshold testing. With most of the positive associations with the three PYR metabolites not significant, this also indicates lack of statistical power in the current study and that a bigger sample size would be required for future studies.

It is interesting that the levels of OP and PYR metabolites amongst women in the Town Group were also substantially higher than those in general populations (Trunnelle et al 2014). This indicates that those residents who live in towns are also exposed to pesticides. The most likely pesticide exposures in rural towns include household pesticide and environmental exposure to agricultural pesticides.

A key limitation in this study is the cross-sectional design; consequently it cannot be established with certainty if the associations are the result of a temporal relationship between pesticide exposure and outcomes. The short half-lives (< 48 hours) of the pesticides in the body (Roberts and Reigart, 1999) is particularly relevant here as exposures would be variable and one spot urinary sample is not an ideal indicator of exposure. A longitudinal design whereby pesticide exposure especially urinary pesticide metabolites and neurotoxic outcomes are measured repeatedly over time would be more powerful. With respect to the comparison of Q16 symptoms between the Farm Group and Town Group, the healthy worker effect commonly observed in cross-sectional studies may have resulted in farm workers affected by pesticides to move to towns and thereby reducing the level of neurotoxicity in the Farm Group. However, the study results show Q16 symptoms were significantly higher in the Farm Group (Table 5 a) despite a possible Health Worker Effect. Additionally, Q16 symptoms were
significantly higher among women with a history of ever living and/or working on farm compared to those not. (Table 5a). Furthermore sub-analyses excluding town women who had previously lived or worked on farm from the analyses did not change the results found. Another important limitation in the study is the fact that age, income and employment status in the Farm Group and Town Group were different. These variables were not found to have strong associations with the Q16 symptoms in bivariate analysis and age and income were controlled for in multivariate analysis as they were included apriori. There might, however, have been residual confounding especially with income as the only indicator of socio-economic status. The most important limitations in the study was a lack of a sensitive outcomes due to a low budget, and the cross-sectional design which precludes the determination of the temporal effects and also a lack of statistical power due to a too small sample size. With a bigger budget, a larger study cohort study incorporating sensitive neurotoxic outcomes and multiple pesticide bio-monitoring measurements could have been conducted.

5. Conclusion

This study found that urinary levels of DAP metabolites of rural women in the Western Cape to be lower than those in other settings, but PYR metabolites to be higher than those in other settings. The prevalence of all Q16 symptoms was higher amongst farm women compared to non-farm women. Three urinary pyrethroids metabolites (cis- DCCA, trans DCCA , DBCA) were positively associated with at least 12 of the Q16 symptoms adjusting for confounders. These results should be explored further in a bigger longitudinal study using more sensitive neurotoxic measures. The study results highlight the need to develop strategies to reduce pesticide exposure among women farm workers and residents.
6. Acknowledgment

This study was supported by the Women on Farms Project and the University of Cape Town. Motsoeneng Portia Mamonyowe is sponsored by the Centre for International Health of the Ludwig-Maximilian-University, Munich, Germany (CIHLMU) and Department of Health/Education Free State.

7. Reference

Supplementary material to the journal manuscript
Supplementary Table 1: Participation of rural women participants in the study

<table>
<thead>
<tr>
<th>Area</th>
<th>Farm group</th>
<th>Town group</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceres</td>
<td>23 (19)</td>
<td>19 (21)</td>
<td>42 (20)</td>
</tr>
<tr>
<td>Grabouw</td>
<td>35 (29)</td>
<td>3 (3)</td>
<td>38 (18)</td>
</tr>
<tr>
<td>Paarl</td>
<td>16 (13)</td>
<td>23 (26)</td>
<td>39 (19)</td>
</tr>
<tr>
<td>Stellenbosch</td>
<td>25 (21)</td>
<td>22 (24)</td>
<td>47 (22)</td>
</tr>
<tr>
<td>Worcester</td>
<td>22 (18)</td>
<td>23 (26)</td>
<td>45 (21)</td>
</tr>
<tr>
<td>Total</td>
<td>121 (100)</td>
<td>98 (100)</td>
<td>211 (100)</td>
</tr>
</tbody>
</table>
Supplementary table 2a, b: Unadjusted odd ratios for associations between Q16 outcomes and possible confounders.

<table>
<thead>
<tr>
<th>Confounder variables</th>
<th>Prevalence, (%) (n=211)</th>
<th>Age (years)</th>
<th>Education</th>
<th>Alcohol</th>
<th>Household income</th>
<th>Poisoning</th>
<th>Drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tired</td>
<td>55%</td>
<td>1.00(0.98-1.00)</td>
<td>1.00(0.95-1.07)</td>
<td>0.92(0.64-1.33)</td>
<td>0.99(0.99-1.00)</td>
<td>0.99(0.40-2.43)</td>
<td>1.57(0.38-6.40)</td>
</tr>
<tr>
<td>Heart palpitations</td>
<td>41%</td>
<td>0.98(0.96-1.00)</td>
<td>1.02(0.95-1.10)</td>
<td>0.93(0.61-1.42)</td>
<td>1.00(0.99-1.00)</td>
<td>1.09(0.40-2.98)</td>
<td>2.17(0.53-8.89)</td>
</tr>
<tr>
<td>Irritated</td>
<td>38%</td>
<td>0.99(0.97-1.01)</td>
<td>1.05(0.97-1.14)</td>
<td>1.02(0.65-1.59)</td>
<td>0.99(0.99-1.00)</td>
<td>1.19(0.44-3.28)</td>
<td>2.37(0.58-9.72)</td>
</tr>
<tr>
<td>Depression</td>
<td>44%</td>
<td>0.99(0.98-1.01)</td>
<td>1.01(0.94-1.09)</td>
<td>0.96(0.62-1.49)</td>
<td>0.99(0.99-1.00)</td>
<td>1.16(0.43-3.19)</td>
<td>2.31(0.57-9.45)</td>
</tr>
<tr>
<td>Poor concentration</td>
<td>26%</td>
<td>0.99(0.95-1.00)</td>
<td>1.03(0.94-1.13)</td>
<td>1.18(0.68-2.03)</td>
<td>1.00(0.99-1.00)</td>
<td>0.86(0.21-3.54)</td>
<td>1.72(0.24-12.49)</td>
</tr>
<tr>
<td>Short term memory</td>
<td>41%</td>
<td>0.98(0.97-1.00)</td>
<td>1.04(0.97-1.12)</td>
<td>1.04(0.68-1.60)</td>
<td>1.00(0.99-1.00)</td>
<td>1.08(0.40-2.95)</td>
<td>2.15(0.53-8.79)</td>
</tr>
<tr>
<td>Perspire</td>
<td>21%</td>
<td>0.97(0.94-1.00)</td>
<td>1.10(0.99-1.22)</td>
<td>1.21(0.67-2.21)</td>
<td>1.00(0.99-1.00)</td>
<td>1.04(0.25-4.31)</td>
<td>§</td>
</tr>
<tr>
<td>Button</td>
<td>5%</td>
<td>0.98(0.93-1.03)</td>
<td>1.16(0.90-1.48)</td>
<td>1.10(0.73-1.67)</td>
<td>1.00(0.99-1.00)</td>
<td>1.02(0.37-2.78)</td>
<td>1.00(0.14-7.20)</td>
</tr>
<tr>
<td>Reading</td>
<td>22%</td>
<td>0.97(0.94-0.99)</td>
<td>1.00(0.91-1.10)</td>
<td>1.10(0.61-1.95)</td>
<td>1.00(0.99-1.00)</td>
<td>0.49(0.07-3.53)</td>
<td>1.98(0.27-14.42)</td>
</tr>
<tr>
<td>Fam mem</td>
<td>24%</td>
<td>0.98(0.96-1.00)</td>
<td>1.13(1.01-1.26)</td>
<td>0.87(0.50-1.53)</td>
<td>1.00(0.99-1.00)</td>
<td>0.93(0.23-3.85)</td>
<td>1.86(0.26-13.53)</td>
</tr>
<tr>
<td>Chest</td>
<td>31%</td>
<td>0.98(0.96-1.00)</td>
<td>1.05(0.97-1.15)</td>
<td>1.30(0.79-2.14)</td>
<td>1.00(0.99-1.00)</td>
<td>1.87(0.75-4.67)</td>
<td>1.42(0.20-10.30)</td>
</tr>
<tr>
<td>Notes</td>
<td>24%</td>
<td>0.98(0.96-1.00)</td>
<td>1.01(0.92-1.10)</td>
<td>0.95(0.54-1.66)</td>
<td>1.00(0.99-1.00)</td>
<td>1.95(0.70-5.43)</td>
<td>¥</td>
</tr>
<tr>
<td>Check door</td>
<td>43%</td>
<td>1.00(0.97-1.00)</td>
<td>1.03(0.96-1.10)</td>
<td>1.40(0.91-2.15)</td>
<td>1.00(0.99-1.00)</td>
<td>1.90(0.87-4.11)</td>
<td>1.02(0.14-7.37)</td>
</tr>
<tr>
<td>Headache</td>
<td>70%</td>
<td>0.99(0.97-1.00)</td>
<td>1.00(0.95-1.06)</td>
<td>1.14(0.82-1.59)</td>
<td>1.00(0.99-1.00)</td>
<td>0.95(0.42-2.16)</td>
<td>1.25(0.31-5.10)</td>
</tr>
<tr>
<td>Less sex</td>
<td>53%</td>
<td>0.99(0.97-1.00)</td>
<td>1.02(0.95-1.10)</td>
<td>1.12(0.73-1.71)</td>
<td>1.00(0.99-1.00)</td>
<td>0.83(0.30-2.27)</td>
<td>1.67(0.41-6.83)</td>
</tr>
<tr>
<td>Q16 score</td>
<td>38%</td>
<td>0.98(0.98-0.99)</td>
<td>1.02(1.00-1.04)</td>
<td>1.07(0.95-1.20)</td>
<td>1.00(1.00-1.00)</td>
<td>1.22(0.93-1.60)</td>
<td>1.66(1.04-2.64)</td>
</tr>
</tbody>
</table>

Coefficient 95% Confidence Interval

| Q16 score 50 | -0.00(-0.10-0.00) | 0.02(-0.01-0.04) | 0.04(-0.05-0.18) | -0.00(-0.00-0.00) | 0.55(0.18-0.93) | -0.00(-0.00-0.00) |
| Q16 score 75 | -0.01(-0.10-0.00) | 0.02(-0.01-0.04) | 0.09(-0.03-0.20) | -0.00(-0.00-0.16) | 0.34(0.18-0.66) | -0.00(-0.00-0.00) |

*p<0.1
Supplementary table 2b: Unadjusted odd ratios for association between Q16 outcomes and possible confounders.

<table>
<thead>
<tr>
<th>Confounder variables. Odd’s Ratio (95% Confidence Interval)</th>
<th>Current smoke</th>
<th>Language</th>
<th>Farm vs. town dwellers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurotoxic outcomes</td>
<td>Current smoke</td>
<td>Language</td>
<td>Farm vs. town dwellers</td>
</tr>
<tr>
<td>Tired</td>
<td>0.90 (0.64-1.29)</td>
<td>0.93 (0.71-1.24)</td>
<td>1.58 (1.07-2.34)</td>
</tr>
<tr>
<td>Heart palpitations</td>
<td>0.79 (0.52-1.21)</td>
<td>0.87 (0.65-1.15)</td>
<td>1.67 (1.05-2.65)</td>
</tr>
<tr>
<td>Tingling</td>
<td>0.79 (0.49-1.19)</td>
<td>0.86 (0.65-1.52)</td>
<td>1.66 (1.02-2.67)</td>
</tr>
<tr>
<td>Irritated</td>
<td>0.69 (0.45-1.07)</td>
<td>0.96 (0.72-1.27)</td>
<td>1.94 (1.19-3.17)</td>
</tr>
<tr>
<td>depression</td>
<td>0.94 (0.63-1.42)</td>
<td>0.97 (0.74-1.30)</td>
<td>1.50 (0.97-2.31)</td>
</tr>
<tr>
<td>Poor concentration</td>
<td>1.17 (0.68-2.00)</td>
<td>1.01 (0.74-1.39)</td>
<td>1.22 (0.71-2.04)</td>
</tr>
<tr>
<td>Short term memory</td>
<td>0.93 (0.61-1.41)</td>
<td>0.97 (0.73-1.29)</td>
<td>1.52 (0.97-2.39)</td>
</tr>
<tr>
<td>perspire</td>
<td>1.00 (0.56-1.78)</td>
<td>1.00 (0.70-1.40)</td>
<td>1.44 (0.78-2.69)</td>
</tr>
<tr>
<td>button</td>
<td>2.02 (0.52-7.83)</td>
<td>1.24 (0.66-2.36)</td>
<td>1.08 (0.31-3.84)</td>
</tr>
<tr>
<td>reading</td>
<td>0.76 (0.43-1.35)</td>
<td>1.00 (0.71-1.39)</td>
<td>1.40 (0.76-2.56)</td>
</tr>
<tr>
<td>Fam mem</td>
<td>0.80 (0.46-1.39)</td>
<td>0.92 (0.67-1.29)</td>
<td>1.28 (0.72-2.29)</td>
</tr>
<tr>
<td>Chest</td>
<td>0.70 (0.43-1.14)</td>
<td>0.86 (0.64-1.16)</td>
<td>2.04 (1.17-3.55)</td>
</tr>
<tr>
<td>Notes</td>
<td>0.80 (0.46-1.39)</td>
<td>1.04 (0.74-1.45)</td>
<td>1.86 (1.00-3.45)</td>
</tr>
<tr>
<td>Check door</td>
<td>0.95 (0.63-1.43)</td>
<td>1.08 (0.81-1.43)</td>
<td>1.78 (1.13-2.81)</td>
</tr>
<tr>
<td>Headache</td>
<td>0.93 (0.67-1.28)</td>
<td>0.95 (0.70-1.28)</td>
<td>1.81 (1.26-2.59)</td>
</tr>
<tr>
<td>Less sex</td>
<td>0.80 (0.53-1.21)</td>
<td>1.12 (0.81-1.53)</td>
<td>0.88 (0.58-1.36)</td>
</tr>
<tr>
<td>Q16 score</td>
<td>0.83 (0.74-0.94)</td>
<td>0.99 (0.96-1.03)</td>
<td>1.53 (1.37-1.75)</td>
</tr>
<tr>
<td>Q16 score 50</td>
<td>-0.004 (-0.14-0.13)</td>
<td>-0.15 (-0.43-0.13)</td>
<td>-0.00 (-0.00-0.00)</td>
</tr>
<tr>
<td>Q16 score 75</td>
<td>0.007 (-0.10-0.12)</td>
<td>-0.11 (-0.35-0.13)</td>
<td>0.00 (-0.00-0.00)</td>
</tr>
</tbody>
</table>

*p<0.1
Metabolites Distribution between Farm and Town Group

Figure 1 OPs metabolites
Figure 2 PYR metabolites

dcca Vs Town and Farm Group

cis_dcca_cr

dcca Vs Town and Farm Group

trans_dcca_cr

dcca Vs Town and Farm Group

cis_dbva_cr

cis_dbva Vs Town and Farm Group

fpba_cr

fpba Vs Town and Farm Group

pba_cr

pba Vs Town and Farm Group
Part D Appendices
English Questionnaire

Health effects due to pesticide exposure amongst rural women in the Western Cape

UNIVERSITY OF CAPE TOWN

Study Number

Date

Area

Farm Name

Name of Interviewer

GENERAL INSTRUCTIONS

Thank you for agreeing to take part in this study.

We will work through the questionnaire as follows: I will ask the questions and give you the answer choices and tick or circle the answers you give me in the questionnaire. Choose the answer that is the closest to how you feel.

Please note that there are no right or wrong answers to the questions asked. Please feel free to answer just what you think. You may stop at any time if you do not want to carry on with these questions. Your answers are
Section 1: DEMOGRAPHIC CHARACTERISTICS

We would like to ask you a few questions about yourself.

1.1 How old are you? _________ (years)
 Date of birth ____/_____/_____

1.2 What is the highest level of education you have passed?

<table>
<thead>
<tr>
<th>Education Level</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than one year completed</td>
<td>1</td>
</tr>
<tr>
<td>Sub A/Class 1/Grade 1</td>
<td>2</td>
</tr>
<tr>
<td>Sub B/Class 2/Grade 2</td>
<td>3</td>
</tr>
<tr>
<td>Standard 1/Grade 3</td>
<td>4</td>
</tr>
<tr>
<td>Standard 2/Grade 4</td>
<td>5</td>
</tr>
<tr>
<td>Standard 3/Grade 5</td>
<td>6</td>
</tr>
<tr>
<td>Standard 4/Grade 6</td>
<td>7</td>
</tr>
<tr>
<td>Standard 5/Grade 7</td>
<td>8</td>
</tr>
<tr>
<td>Standard 6/Grade 8</td>
<td>9</td>
</tr>
<tr>
<td>Standard 7/Grade 9</td>
<td>10</td>
</tr>
<tr>
<td>Standard 8/Grade 10</td>
<td>11</td>
</tr>
<tr>
<td>Standard 9/Grade 11</td>
<td>12</td>
</tr>
<tr>
<td>Standard 10/Grade 12</td>
<td>13</td>
</tr>
<tr>
<td>Further studies – incomplete</td>
<td>14</td>
</tr>
<tr>
<td>Diploma/other post school – complete</td>
<td>15</td>
</tr>
<tr>
<td>Degree</td>
<td>16</td>
</tr>
</tbody>
</table>

1.3 Which main language do you speak at home? ____________________

Section 2: HOUSEHOLD FACTORS

105
2.1 Is the house you live in:

- Owned by your family 1
- Rented 2
- Owned by the owner of the farm 3
- Other (please specify) 4

Specify _________________________________

2.2 Does your house have:

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Electricity</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>A radio</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>A television</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>A landline telephone</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>A fridge</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>A computer</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>A washing machine</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>A cell phone (anybody)</td>
<td></td>
</tr>
</tbody>
</table>

2.3 How many people usually live and sleep in your household?

<table>
<thead>
<tr>
<th>Number of people</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Section 3: ECONOMIC FACTORS

Now we would like to ask a few questions about you and the work that you do.

3.1 What kind of work do you do? (If working, please tell me your occupation. For example, Farmer, Street Trader, Primary School Teacher, Domestic Worker)

<table>
<thead>
<tr>
<th>Not working</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working</td>
<td>Yes</td>
</tr>
</tbody>
</table>
If working, specify

3.2 Please indicate which of the following are your sources of income. Please answer this question whether or not you are working.

<table>
<thead>
<tr>
<th>Source</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B Spouse/partner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Parents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D Brothers and/or sisters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E Children</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F Child Support Grant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G State Old Age Pensions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H Disability Grant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I Care Dependency Grant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J Foster Care Grant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K Grants-in-Aid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L Workman’s Compensation Fund</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M Other (Please specify)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3 What is your household income? ________________

3.4 How often do the people in your family go hungry or have no food to eat?

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never</td>
<td>0</td>
</tr>
<tr>
<td>Seldom</td>
<td>1</td>
</tr>
<tr>
<td>Sometimes</td>
<td>2</td>
</tr>
<tr>
<td>Often</td>
<td>3</td>
</tr>
</tbody>
</table>

3.5 During which months of the year do you go hungry? ________________ (months of year).

Section 4. RESIDENTIAL HISTORY

Now I’d like to ask you a few questions about the places where you have lived in your lifetime:

4.1 Where do you currently live (Town, city, farm)? ____________

How long have you lived here? ________________ (Years/Months)
If on a farm,

4.2 What kind of farm is this? (what is grown here?) _______________________

4.2.1 Is this an export farm? _______ (Yes, No)
 If yes, where are crops exported to? _______________________ (countries)

4.2.2 Is this a Tesco farm ________ (Yes, No)

4.3 How far from your house is the nearest vineyard/orchard? _______________ (meters)

4.4 Are pesticides sprayed on the vineyard/orchard during the year? ____ (Yes/No)

4.5 When last was pesticides applied in the vineyard/orchard? ________ (number of days)

IF YES, complete the following:

4.5 How many months a year are pesticides applied on the farm ______

 How many days per month are pesticides applied during the spraying months? _____

 Number of days per year ________
4.6 Does the pesticides spraying come into the house? ________ (Yes/No)

4.7 Do you come into contact with pesticides outside the house while spraying occurs (e.g. hanging your washing)? ________ (Yes/No)

4.8 Who apply pesticides on this farm ______________ (Men, Women, Both)

4.9 Does the farmer provide you with protective clothes and equipment (including gloves, masks, overalls, etc)? ________
 If yes, is it free of charge? ________ (Yes, No)

4.10 Are shower/washing rooms provided for workers coming into contact with pesticides? ________ (Yes, No)

4.11 When spraying happens, are workers expected to work in sprayed blocks? ___(Yes, No)

4.12 How soon after spraying/application of pesticides do you return to the vineyard/orchard? ________ (number of days)

4.13 What is the method of pesticide application? ________ (Tractor, backpack or other methods)

4.14 What are the sources of drinking water at your house? __________________
 (municipal water, storage dam on mountain, borehole/spring, river water, farm
4.15 What are the sources of water for recreational use (bathing, washing of clothes) at your house? ____________________ (municipal water, storage dam on mountain, borehole/spring, river water, farm dam, rain water tank, etc)

4.16 Did you live elsewhere before? _____ (Yes/No)

If YES,

Please provide the details about the places where you have lived PREVIOUSLY in the following table:

<table>
<thead>
<tr>
<th>Places lived previously</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of years</td>
<td></td>
</tr>
<tr>
<td>Was pesticides</td>
<td></td>
</tr>
</tbody>
</table>

4.12 Were you born on a farm where pesticides were applied? ___ (Yes/No)

Section 5. WORK HISTORY

Current job

5.1 What is your current occupation? ________________

5.2 What is your job title? ________________________
5.3 For how many years have you worked in this job? __________ (years)

5.4 Do you currently work on a farm? ___ (Yes/No)

If you work on a farm,

5.5 Are you a permanent or seasonal farm worker? ________________

5.6 If you do not live on the farm you work at:

5.6.1 Which crops are produced on the farm _____________________________

5.6.2 Is the farm you work on an export farm? ________ (Yes, No)

If yes, where are crops exported to? _____________________________ (countries)

5.6.3 Is the farm you work on a Tesco farm? ________ (Yes, No)

5.7.1 Do you work in the field? ________ (Yes/No)

5.7.2 Do you apply (spray/mix) pesticides ________ (Yes/No)

5.7.3 If YES which pesticides do you use _____________________________

__

5.7.4 When last did you apply pesticides? ________ (number of days)
5.7.5 How many months a year do you apply pesticides? _________

How many days per month do you apply pesticides in the spraying months? _______

Total number of days per year _____

5.7.6 Do you drive a tractor while others spray pesticide? _______(Yes/No)

If yes, how many times per year? __________

5.7.7 Which Personal Protective Equipment do you use? ____________

(Indicate with A = Apron, B = Boots, G = Gloves, M = Mask, O = Overalls, Gls = Goggles)

5.7.8 Is PPE provided free of charge? __________ (Yes, No)

Previous jobs

Please provide the details about your PREVIOUS work in the following table

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of years</td>
<td></td>
</tr>
<tr>
<td>Work on a farm (Yes, no)</td>
<td></td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
</tr>
<tr>
<td>Job</td>
<td></td>
</tr>
<tr>
<td>If on farm: Do you work in the field? (Yes, No)</td>
<td></td>
</tr>
<tr>
<td>Do/did you apply (spray or mix) pesticides (Yes, No)</td>
<td></td>
</tr>
<tr>
<td>How many days per year do/did you apply pesticides?</td>
<td></td>
</tr>
<tr>
<td>Were you the tractor driver? (Yes, No)</td>
<td></td>
</tr>
<tr>
<td>How many days per year were you the tractor driver?</td>
<td></td>
</tr>
<tr>
<td>Which PPE did you use?*</td>
<td></td>
</tr>
<tr>
<td>*Indicate with A = Apron, B = Boots, G = Gloves, M = Mask, O = Overalls, Gls = Goggles</td>
<td></td>
</tr>
</tbody>
</table>

112
Section 6. ALCOHOL USE

6.1 Do you drink alcohol or did you drink before ___________? (Yes/No)

If yes,

6.2 Have you ever felt that you should drink less alcohol? ____ (Yes/No)

6.3 Have people ever angered you by criticising your drinking habits? ____ (Yes/No)

6.4 Have you ever felt guilty or bad because you drink alcohol? ____ (Yes/No)

6.5 Have you ever had a drink early in the morning to make you
feel better or to get over a ‘babalaas’? ____ (Yes/No)

Section 7. SMOKING AND OTHER DRUG USE

7.1 Have you ever smoked tobacco (cigarettes or pipe) for as long as a year? ____ (Yes/No)

(‘Yes’ means at least 20 packs of cigarettes or 30 grams of tobacco in a lifetime or at least one cigarette per day for one year)

If Yes,

7.1.1 How old were you when you started smoking? ____ (years)

7.1.2 Do you smoke currently? ____ (Yes/No)

(‘Yes’ means smoking tobacco in the last month or more)
7.1.3 If no, how old were you when you stopped smoking? _________

7.1.4 How much do/did you now smoke on average?

 Number of cigarettes per day ____

 Pipe tobacco in grams/week ______

7.1.5 Do you or did you inhale the smoke? ____ (Yes/No)

7.2 Have you been regularly exposed to tobacco smoke from other people smoking cigarettes or pipe in the last 12 months?

 (‘Regularly’ means on most days or nights)

7.3 Do you take drugs or have taken drugs before? _______ (Yes/No)

 7.3.1 If YES, please state for how many years ________ (years)

Section 8. HOUSEHOLD PESTICIDE USAGE

8.1 Do you or any one in your house use pesticides in the garden

 or in your home?_____ (Yes/ No)

 If yes, what do you use? ________________________________

8.2 Do pesticide contaminated clothes get washed at home? ____ (Yes/ No)
8.4 If yes, does it get washed with the rest of the washing? _____ (Yes/ No)

8.5 Do you eat fruit or vegetables from your garden? _____ (Yes / No)

8.6 Do you use empty pesticide containers at home for domestic purposes? ____ (Yes/ No)

8.7 If yes, what do you use them for? ________________________________

Section 9 MEDICAL, REPRODUCTIVE AND RESPIRATORY HISTORY

9.1 Do you suffer from:
 Asthma ____ (Yes/No)
 Bronchitis ____ (Yes/No)
 TB ____ (Yes/No)
 Eczema ____ (Yes/No)
 Hayfever ____ (Yes/No)
 Farmers Lung ____ (Yes/No)
 Other diseases: ____ (Yes/No) if yes, specify _________________________

9.2 What was your weight at birth ________________

9.3 At what age did you reach puberty? ______

9.4 Did you ever experience pesticide poisoning that was confirmed by a doctor? ____ (Yes, No)

 If yes, how many times__________
9.5 Do you frequently feel/have:

Dizzy _______ (Yes/No)
Nauseas _______ (Yes/No)
Headaches _______ (Yes/No)
Skin, nose and/or eye irritation ______ (Yes/No)
Skin rashes ______ (Yes, No)
Nauseas and want to vomit (Yes, No)
Cold or open sores ______ (Yes, No)

Section 10 (Q16)

10.1. Are you abnormally tired? _____ (Yes / No)

10.2. Do you have palpitations of the heart when you do not exert yourself? _____ (Yes/No)

10.3. Do you often have painful tingling in some part of your body? _____ (Yes/No)

10.4. Do you often feel irritated without any particular reason? _____ (Yes/No)

10.5. Do you often feel depressed without any particular reason? _____ (Yes/No)

10.6. Do you often have problems concentrating? _____ (Yes/No)

10.7. Do you have a short memory? _____ (Yes/No)

10.8. Do you often perspire without any particular reason? _____ (Yes/No)

10.9. Do you have any problems with buttoning and unbuttoning? _____ (Yes/No)

10.10 Do you generally find it hard to get the meaning from reading newspapers and books? _____ (Yes/No)

10.11 Have your relatives told you that you have a short memory? _____ (Yes/No)
10. 12. Do you sometimes feel a heavy feeling on your chest? _____ (Yes/No)

10. 13. Do you often have to make notes about what you must remember? _____ (Yes/No)

10. 14. Do you often have to go back and check things you have done such as locking the door? _____ (Yes/No)

10. 15. Do you have a headache at least once a week? _____ (Yes/No)

10. 16. How many times do you have sex per week? _____ (Yes/No)

10. 16a. Do you think that this is less than most persons of your age? _____ (Yes, No)

Section 11. Time to pregnancy

11. 1. Have you ever been pregnant? _________ (Yes/No)

11. 2. If yes, how many times? ______

11. 3. List how many pregnancies ended in

 Live birth _____
 Stillbirth _____
 Miscarriage _____
 Ectopic/Tubal pregnancy _____
 Other _____

11.4 FOR LIVE BIRTHS AND STILLBIRTHS ONLY (omit twins) Fill in the following
 Table:

<table>
<thead>
<tr>
<th>Pregnancy</th>
<th></th>
</tr>
</thead>
</table>

117
Weight

During

Method

Were

If NO

*oral (the

Section 12. ALLERGIC HEALTH PROBLEMS

12.1 Have you had wheezing or whistling in your chest at any time

in the last 12 months? _____ (Yes/No)

If yes, go on to Question 12.2

If no, go on to Question 12.4

12.2 Have you been short of breath when the wheezing noise was present? _____ (Yes/No)

12.3 Have you had this wheezing or whistling when you did not have a cold or flu? ___ (Yes/No)

12.4 Have you been woken up with a feeling of tightness in your chest at any

time in the last 12 months? _____ (Yes/No)

12.5 Have you had an attack of shortness of breath that came on during the daytime when you were at

rest at any time in the last 12 months? _____ (Yes/No)

12.6 Have you been woken by an attack of coughing at any time in the last 12

months? _____ (Yes/No)
12.7 Have you ever had asthma? ____ (Yes/No)

If Yes, go on to Question 12.
If No, skip to next Question

12.8 If yes, was this confirmed by a doctor?

12.9 How old were you when you were told you have asthma? ______ (years)

12.10 Have you had an attack of asthma in the last 12 months? _____ (Yes/No)

12.11 Are you using any medicines, including inhalers/pumps, nebulizers, syrups or tablets, for asthma or breathing problems? ____ (Yes/No)

12.12 When you are near animals, feather or in a dusty part of the house, do you ever get a feeling of tightness in your chest? ____ (Yes/No)

12.13 Do you get a tight chest or wheeze when you work in the:
 12.13.1 Vineyard/Orchard ____ (Yes/No)
 12.13.2 Packing room ____ (Yes/No)
 12.13.3 Other ____ (Yes/No) If yes, specify _____________________________

12.14 Have you had any nasal allergies including hay fever or itchy and watery eyes/nose in the last 12 months? ____ (Yes/No)

12.15 Do you get itchy/watery eyes or nose when you work in the:
 12.14.1 Vineyard/Orchard ____ (Yes/No)
 12.14.2 Packing room ____ (Yes/No)
12.14.3 Other (Yes/No) If yes, specify ______________________________

12.16 Have you had any skin problems in the last 12 months? (Yes/No)

12.17 Do you get red, itchy pimples when you work in the:

12.17.1 Vineyard/Orchard (Yes/No)

12.17.2 Packing room (Yes/No)

12.17.3 Other (Yes/No) If yes, specify ______________________________

Thank you for taking part in this study
Afrikaans Questionnaire
Gesondheids gevolge weens blootstelling aan gifstowwe op landlike vrouens in die Weskaap

UNIVERSITEIT VAN KAAPSTAD

Vraelysnommer ______

Datum ________________

Area _______________________________

Naam van plaas _______________________________

Naam van
Onderhoudvoerder _______________________________

ALGEMENE INSTRUKSIES

Dankie dat jy ingestem het om aan hierdie studie deel te neem.

Ons gaan soos volg deur die vraelys werk: Ek sal die vrae vra en aan jou die moontlike antwoordkeuses gee en ek sal jou antwoorde merk en omsirkel in die vraelys. Kies die antwoord wat die naaste is aan hoe jy voel.

Let asseblief op dat daar geen regte of verkeerde antwoorde op die vrae is nie. Antwoord asseblief soos jy voel. Jy kan enige tyd ophou as jy nie wil voortgaan met die vrae nie. Jou antwoorde is vertroulik en sal aan niemand anders bekend gemaak word nie. Slegs die navorsings personeel sal toegang tot die vraelys hê nadat dit voltooi is.
Afdeling 1: DEMOGRAFIESE BESONDERHEDE

Ons wil jou graag ‘n paar vroe oor jouself vra.

1.1 Hoe oud is u? ________ (jaar)
 Geboortedatum ___/_____/_____

1.2 Wat is die hoogste vlak van onderrig wat jy geslaag het?

- Minder as een jaar voltooi: 1
- Sub A/Klas 1/Graad 1: 2
- Sub B/Klas 2/Graad 2: 3
- Standerd 1/Graad 3: 4
- Standerd 2/Graad 4: 5
- Standerd 3/Graad 5: 6
- Standerd 4/Graad 6: 7
- Standerd 5/Graad 7: 8
- Standerd 6/Graad 8: 9
- Standerd 7/Graad 9: 10
- Standerd 8/Graad 10: 11
- Standerd 9/Graad 11: 12
- Standerd 10/Graad 12: 13
- Verdere onderrig – onvoltooid: 14
- Diploma/ander naskools – voltooid: 15
- Graad: 16

1.3 Wat is die taal wat die meeste tuis gepraat word? ________________________

Afdeling 2: INLIGTING OOR HUISHOUDING

2.2 Is die huis waarin jy woon:

- Die eiendom van jou gesin: 1

- Gehuur: 2

122
2.2 Is die volgende in jou huis:

<table>
<thead>
<tr>
<th></th>
<th>Ja</th>
<th>Nee</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3 Hoeveel mense woon en slaap gewoonlik in jou huishouding?

<table>
<thead>
<tr>
<th>Aantal mense</th>
<th></th>
</tr>
</thead>
</table>

Afdeling 3: EKONOMIESE FAKTORE

Nou wil ons graag ’n paar vrae oor jou en die werk wat jy doen, vra.

3.2 Watter soort werk doen jy? (Indien jy werk, wat is jou beroep? Byvoorbeeld boer, straathandelaar, laerskoolonderwyser, huishulp)

<table>
<thead>
<tr>
<th>Werk nie</th>
<th>Nee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werk</td>
<td>Ja</td>
</tr>
</tbody>
</table>

Indien u werk, spesifiseer
3.2 Dui asseblief aan watter van die volgende is jou bronne van inkomste. Antwoord asseblief hierdie vraag – of jy werk of nie.

<table>
<thead>
<tr>
<th></th>
<th>Ja</th>
<th>Nee</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Werk</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Eggenoot/lewensmaat</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Ouers</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Broers en/of susters</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Kinders</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Kinderonderhoudstoelae</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Staatsouderdomspensioen</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Ongeskiktheidstoelae</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Sorgafhanklikheidstoelae</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Pleegsorgstoelae</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Hulptoelae</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Vergoeding vir beroensbemerings</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Ander</td>
<td></td>
</tr>
</tbody>
</table>

Indien ander, spesifiseer asseblief __

3.3 Wat is u totaal huishoudelike inkomste? ____________________

3.4 Hoe gereeld ly die mense hier honger of het nie kos om te eet nie?(please tick)

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nooit</td>
</tr>
<tr>
<td>Selde</td>
</tr>
<tr>
<td>Soms</td>
</tr>
<tr>
<td>Dikwels</td>
</tr>
</tbody>
</table>

3.5 Gedurend watter maande van die jaar, ly u honger? ____________________________

__ (maande van die jaar)

Afdeling 4. LEWENSGESKIEDENIS

Nou wil ek jou graag ’n paar vrae vra oor die plekke waar u al in jou leeftyd gewoon het:
4.1 Waar woon jy nou? (Dorp, stad, plaas)? ___________

Hoe lank woon jy al hier? _______________________(jare/maande)

Indien op ’n plaas woon nie, skip na vraag 4.15

4.2 Watter soort plaas is hierdie (waarmee word hier geboer)? ________________

4.2.1 Is hierdie plaas ’n uitvoerplaas? ____ (Ja/Nee)

Indien ja, waarnatoe uitvoer hierdie plaas hul gewasse? ______________________

_______________________________ (lande)

4.2.2 Is hierdie ’n Tesco plaas? ____ (Ja/Nee)

4.3 Hoe ver is jou huis van die naaste wingerd/lande? ________________ (meters)

4.4 Word gifstowwe gedurende die jaar op die wingerd/lande gespuit? ____ (Ja/Neee)

4.5 Wanneer laas was daar gifstowwe aangewend op die wingerd/boord. ____________ (aantal dae)

Indien Ja, Voltooi die volgende:

4.6 Hoeveel maande ’n jaar word gifstowwe op die plaas aangewend? ___________
Hoeveel dae in die maand word gifstowwe aangewend gedurende die bespuiting maande? ________________

Aantal dae in ’n jaar ______

4.7 Kom die gifstowwe in die huis in? ____ (Ja, Nee)

4.8 Kom u in kontak met gifstowwe buite die huis terwyl daar gespuit word?
 (b.v. wanneer u wasgoed buitekant gaan op hang)? ____ (Ja, Nee)

4.9 Wie wend gifstowwe aan op die plaas? _________________ (Mans, vrouens, albei)

4.10 Voorsien die plaas eienaar/bestuurder u vir klere van beskerming en Toerusting?(b.v. handskoene, oorpakke en maskers ens.) ____ (Ja/Nee)
 Indien ja, is dit gratis? ____ (Ja/Nee)

4.11 Het die plaas ’n stort vir plaaswerkers wie in aanraking kom met gifstowwe ____ (Ja/Nee)

4.12 Wanneer bespuiting plaasvind, word dit verwag van die werkers om in hierdie blokke te werk wat kortliks gespuit was? ____ (Ja/Nee)

4.13 Nadat hulle die gifstowwe aangewend het, hoeveel dae daarna gaan u terug wingerd/boorde toe? _______________ (aantal dae)

4.14 Dui aan hoe u die gifstowwe aanwend:
Trekker met balkspuit _____ (Ja/Nee)
Trekker sonder balkspuit _____ (Ja/nee)
Rugsak _____ (Ja/Nee)
Quad bike _____ (Ja/Nee)
Ander _____ (Ja/Nee) Indien ja, spesifiseer ___________________

4.15 Waar kom die drinkwater in jou huis vandaan? ____________________
(Munisipale water, opgaardam op berg, boorgat/fontein, rivierwater, plaasdam,
reënwatertenk, ens.)

4.16 Waar kom die water vir gebruiksdoeleindes in jou huis vandaan (b.v. bad of klere
was)?____________________________ (munisipale water, opgaardam op berg,
boorgat/fontein, rivierwater, plaasdam, reënwatertenk, ens.)

4.17 Het u in die verlede erens anders gewoon? _____ (Ja/Nee)

Indien Ja,

Gee asseblief besonderhede van die plekke waar u IN DIE VERLEDE gewoon het in die volgende tafel

<table>
<thead>
<tr>
<th>Plekke</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waar het u gewoon?</td>
<td></td>
</tr>
<tr>
<td>Antal jare</td>
<td></td>
</tr>
<tr>
<td>Was gifstowwe</td>
<td></td>
</tr>
</tbody>
</table>

4.18 Was u gebore op ’n plaas waar hulle gifstowwe aangwend het? _____ (Ja/Nee)
Afdeling 5. WERKGESKIEDINIS

Huidige werk

5.1 Wat is u huidige beroep? ________________________________

5.2 Wat is u werkstitel? _____________________________

5.3 Hoeveel jare doen u die werk? _______ (jare)

5.4 Is u ’n lid van ’n vakbond? ____ (Ja/Nee)

5.5 Werk u huidiglik op ’n plaas? ____ (Ja/Nee)

Indien u op’n plaas werk, gaan voort van vraag 5.6 af

Indien u nie op ’n plaas werk nie, skip na vraag 5.12

5.6 Is u ’n permanent of seisoen plaaswerker? ____________________________

5.7 Indien u nie op die plaas woon waar u werk:

5.7.1 Met watter soort gewasse boer hierdie plaas ____________________________

5.7.2 Is hierdie plaas ’n uitvoerplaas? ____ (Ja/Nee)

Indien ja, waarnatoe uitvoer hierdie plaas hul gewasse? _________________

__ (lande)
5.7.3 Die plaas waar u werk, is dit ’n Tesco plaas? ____ (Ja/Nee)

5.8 Werk u in die wingerd/boord? ___ (Ja/Nee)

5.9 Wend u gifstowwe aan? (mend/spuit) ___ (Ja/Nee)

5.9.1 Indien Ja, watter gifstowwe gebruik u? _______________________________

_______________________________ (name van die gifstowwe)

5.9.2 Wanneer laas het u gifstowwe aangewend? ________ (aantal dae)

5.9.3 Hoeveel maande ’n jaar wend u gifstowwe aan? _______ (aantal maande)

Hoeveel dae in die maand word gifstowwe aangewend gedurend die
bespuiting maande? ______________

Aantal dae in ’n jaar _______

5.10 Ry u ’n trekker terwyl anders, van agter die trekker, spuit? ____ (Ja/Nee)

Indien ja, hoeveel keer in ’n jaar? ____________________________

5.11 Watter klere van beskerming dra u? _______________________ (Dui aan met V = Voorskoot, S =

Steuwels, H = Handskoene, M = Masker, GM = Gasmasker, O = Oorpak, SB = Skermbril)

5.12 U klere van beskerming en toerusting, is dit gratis? ___ (Ja/Nee)
Vorige werk

Gee asseblief die besonderhede oor jou VORIGE werk met gifstowwe in die volgende tabel

<table>
<thead>
<tr>
<th>Vorige</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aantal</td>
<td></td>
</tr>
<tr>
<td>Op 'n</td>
<td></td>
</tr>
<tr>
<td>Beroep</td>
<td></td>
</tr>
<tr>
<td>Werkstel</td>
<td></td>
</tr>
<tr>
<td>Indien</td>
<td></td>
</tr>
<tr>
<td>het u in</td>
<td></td>
</tr>
<tr>
<td>Het u</td>
<td></td>
</tr>
<tr>
<td>Hoevee</td>
<td></td>
</tr>
<tr>
<td>Het u</td>
<td></td>
</tr>
<tr>
<td>Hoevee</td>
<td></td>
</tr>
<tr>
<td>Watter</td>
<td></td>
</tr>
</tbody>
</table>

*Dui aan

Afdeling 6. ALKOHOLGEBRUIK

6.1 Drink jy alkohol of het u al voorheen alkohol gedrink? ____ (Ja/Nee)

Indien Ja,

6.2 Het jy al gevoel dat jy minder alkohol moet gebruik? ____ (Ja/Nee)

6.3 Het jy al kwaad geword as mense jou drinkgewoontes kritiseer? ____ (Ja/Nee)

6.4 Het jy al ooit sleg of skuldig gevoel oor jy alkohol gebruik? ____ (Ja/Nee)

6.5 Het jy al ooit vroeg in die oggend gedrink om beter te voel of om jou babelas beter te maak? ____ (Ja/Nee)
Afdeling 7. ROOK EN ANDER DWELM MIDDEL GEBRUIK

7.1 Het u al ooit al oor ’n jaar tabak, sigarette of pyp gerook ? ____ (Ja/Nee)

(‘Ja’ beteken ten minste 20 pakke sigarette of 30 gramme van tabak in ‘n leeftyd of ten minste een sigaret ‘n dag vir een jaar)

Indien Ja,

7.1.1 Hoe oud was u toe u begin rook? ____ (jaar oud)

7.1.2 Rook u op die huidige oomblik? ___ (Ja/Nee)

(‘Ja’ beteken rook in die afgelope maand of meer)

7.1.3 Indien nee, hoe oud was u toe u ophou? _______ (jaar oud)

7.1.4 Hoeveel rook u of het u ongeveer gerook?

Aantal sigarette ‘n dag ____

Pyp tabak in gramme/week ______

7.1.5 Haal u of het u die rook ingehaal? ____ (Ja/Nee)

7.2 In die afgelope 12 maande, was u gereeld bloedgestel aan tabak rook van ander mense wie sigarette en pyp rook? ____ (Ja/Nee)

(‘Gereeld’ beteken op meeste dae en aande)

7.3 Neem u dwelmmiddels of het enige dwelmmiddels voorheen gebruik? ____ (Ja/Nee)

7.3.1 Indien Ja, dui asseblief aan vir hoeveel jare _____ (jare)
Afdeling 8. GEBRUIK VAN HUISHOUDELIKE GIFSTOWWE

8.1 Gebruik jy enige gifstowwe in jou tuin of in jou huis? ____ (Ja / Nee)

(bv. Target of Doom)

Indien JA – watter gifstowwe gebruik u? ________________________________

__

8.2 Werk enige ander persoon in die huis met gifstowwe? ____ (Ja/Nee)

8.3 Word klere wat met gifstowwe besmet is, by die huis gewas? ____ (Ja/Nee)

8.4 Indien JA, word dit saam met ander wasgoed gewas? _____ (Ja/ Nee)

8.5 Eet jy vrugte of groente uit jou tuin? _____ (Ja/ Nee)

8.6 Gebruik jy leë plaagdoderhouers tuis vir huishoudelijke doeleinde? ____ (Ja/Nee)

8.7 Indien JA, waarvoor gebruik jy dit? ________________________________

Afdeling 9. MEDIESE, VOORPLANTING EN ASEMHALING GESKIEDINIS

9.6 Lei u aan:
Asma ______ (Ja/Nee)
Brongitis ______ (Ja/Nee)
TB ______ (Ja/Nee)
Ekseem ______ (Ja/Nee)
Hooikoors ______ (Ja/Nee)
Boer se longe ______ (Ja/Nee)
Ander siekte: ______ (Ja/Nee) indien ja, spesifiseer _____________________

9.7 Wat was u geboorte gewig? _______________
9.8 Op watter ouderdom het u puberteit bereik? _______
9.9 Was u al ooit vergif deur gifstowwe wat bevestig was deur ‘n dokter? ___(Ja, Nee)

Indien ja, hoeveel keer__________

9.10 Het u of voel u dikwels:

Duiselig ____ (Ja/Nee)
Mislik(naar) ___(Ja/Nee)
Hoofpyn ____ (Ja/Nee)

Prikkeling in u vel, neus of/en oog ______ (Ja/Nee)

Vel uitslag ______ (Ja/Nee)

Mislik (naar) en u wil opgooi ____ (Ja/Nee)

Verkoue of wonde wat oop is _____ (Ja/Nee)

Adeling 10 (Q16)
10.1 Voel u buitengewoon moeg?

10.2 Het u hartkloppens al het u nie geoefen nie?

10.3 Het u dikwels pynvolle prikkel sensasies in ’n gedeelte van jou liggaam?

10.4 Voel u dikwels geirriteerd sonder enige rede?

10.5 Voel u dikwels teneergedruk sonder enige rede?

10.6 Het u dikwels probleme met konsentrasie?

10.7 Is u kort van gedagte?

10.8 Sweet u dikwels sonder enige rede?

10.9 Het u enige probleme om u knope vas en los te maak?

10.10 Vind u dit oor die algemeen moeilik om koerante en boeke te verstaan?

10.11 Het u familie al vir u gese dat u kort van gedagte is?

10.12 Voel u soms ’n swaar drukking op u bors?

10.13 Moet u dikwels notas maak oor dinge wat u moet onthou?

10.14 Moet u dikwels teruggaan om seker te maak dat u sekere dinge gedoen het bv. Of die deur gesluit is?

10.15 Het u ’n hoofpyn ten minste een keer per week?
10.16a. Dink u dat dit minder is as ander persone van u ouerdom? (Ja/nee)

Afdeling 11. TYD VAN SWANGERSKAP

11.1 Was u al ooit swanger? ________ (Ja/Nee)

11.2 Indien ja, hoeveel keer? ______

11.3 Lys hoeveel keer toe u swanger was, het u swangerskap op ge-eindig in:

Lewendige geboortes _____
Dood geboortes _____
Miskraam _____
Ectopic/Swangerskap in die eierstok _____
Ander _____

11.4 VIR LEWENDIGE GEBOORTES EN DOOD GEBORTES ALLENLIK(nie tweelings nie) Voltooi die volgende tafel: (gee 'n antwoord vir elke baba)

<table>
<thead>
<tr>
<th>Swangerskap</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewig</td>
<td></td>
</tr>
<tr>
<td>Gedure</td>
<td></td>
</tr>
<tr>
<td>Metode</td>
<td></td>
</tr>
<tr>
<td>Het u</td>
<td></td>
</tr>
<tr>
<td>Indien</td>
<td></td>
</tr>
</tbody>
</table>

*mondeling(die pil), gekronkel of lissie, Kondome, diafragma (kap), ritme of ontrekking, ander

11.5 Is gesonheidsdienste toeganklik vir u om die volgende by te woon:

Swangerskap _____ (Ja/Nee)
Indien ja, watter dienste (hospitaal, kliniek) ___________________

Geboorte aan u kinders ____ (Ja/Nee)
Indien ja, watter dienste (hospitaal, kliniek) ___________________

Ginekologiesesorg ____ (Ja/Nee)
Indien ja, watter dienste (hospitaal, kliniek) ___________________

Seksuele oorsending siekte ____ (Ja/Nee)
Indien ja, watter dienste (hospitaal, kliniek) ___________________

Ander voorplantingsdienste ____ (Ja/Nee)
Indien ja, spesifiseer watter probleeme en watter dienste (hospitaal, kliniek)

__

Adeling 12. ALLERGIESE GESONDHEIDSPROBLEEME

12.1 In die afgelope 12 maande, het u ‘n asemfluit of ‘n fluit van keel op u bors al ooit gehad al? ______ (Ja/Nee)

Indien ja, gaan voort met 12.2
Indien nee, gaan voort met 12.4

12.2 Was u kort van asem toe die geluid van die asemfluit teenwoordig was? ____ (Ja/Nee)
12.3 Het u die asemfluit/semhyg gehad terwyl u nie griep of verkoue gehad het nie ____ (Ja/Nee)

12.4 Het u al ooit wakker kom word deur 'n gevoel van u bors wat toe trek? _____ (Ja/Nee)

12.5 In die afgelope 12 maande, het u al ooit 'n aanval gehad deur kort van asem wees gedurende die dag terwyl u rustig gewees het? ____ (Ja/Nee)

12.6 In die afgelope 12 maande, het u al ooit wakker kom word deur 'n aanval van hoes? _____ (Yes/No)

12.7 Het u al ooit aan asma gelei? ____ (Ja/Nee)

Indien ja, gaan voort met 12.7.1

Indien nee, skip na vraag 12.8

12.7.1 Indien ja, was dit bevestig deur 'n dokter?

12.7.2 Hoew oud was u toe u ingelig was dat u aan asma lei? _____ (jare oud)

12.7.3 In die afgelope 12 maande, het u 'n aanval van asma gehad? ____ (Ja/Nee)

12.7.4 Gebruik u enige medisyne, ingesluit met pompe/opsnuifers, nebulizers, stroop of pille vir asma of asemhalingsprobleeme? ____ (Ja/Nee)

12.8 Wanneer u naby diere of in stowwewige gedeeltes is van die huis, kry u ooit 'n gevoel van toetrek in u bors? _____ (Ja/Nee)
12.9 As u op 'n plaas werk, trek u bors toe of 'n asemfluit wanneer u in die:

12.9.1 Wingerd/boord werk ____ (Ja/Nee)

12.9.2 Pakstoor werk ____ (Ja/Nee)

12.9.3 Ander ____ (Ja/Nee) Indien ja, spesifiseer asseblief ________________

12.10 In die afgelope 12 maande, het u al ooit nasaal allergies probleeme saam met hooikoors of kraperige en waterige oe en neus gehad? ____ (Ja/Nee)

12.11 As u op 'n plaas werk, kry u kraperige/waterige oe of neus wanneer u in die:

12.11.1 Wingerd/boord werk ____ (Ja/Nee)

12.11.2 Pakstoor werk ____ (Ja/Nee)

12.11.3 Ander ____ (Ja/Nee) Indien ja, spesifiseer asseblief ________________

12.12 In die afgelope 12 maande, het u enige vel probleeme gehad? ____ (Yes/No)

12.13 As u op 'n plaas werk, kry u rooi kraperige puisies wanneer u in die:

12.13.1 Wingerd/boord werk ____ (Ja/Nee)

12.13.2 Pakstoor werk ____ (Ja/Nee)

12.13.3 Ander ____ (Ja/Nee) Indien ja, spesifiseer asseblief ________________

12.14 In die afgelope 12 maande, apart van u werk, was u blootgestel aan enige gifstowwe? ____ (Ja/Nee)

DANKIE DAT U AAN HIERDIE STUDIE DEELGENEEM HET
B Consent Form
Consent to participate in a survey investigating health effects due to pesticide exposures on women from the rural Western Cape

1. Title of research project

Health effects due to pesticide exposure amongst rural women residents in the Western Cape

2. Names of the researchers
Mohamed Aqiel Dalvie (BSc, Honours, MSc, PhD)
Algernon Africa (BTech)
Vicky Major (MSc)
Lungiswa Giwane
Jean May

3. Purpose of research

This study is being conducted by The University of Cape Town to investigate the health effects of pesticides on women in the Western Cape. We would like to conduct measurements on you. The study will be of benefit to women living in farming areas and who are exposed to pesticides in the environment.

4. Description of the research project

Your son will be required to produce a urine and 2 blood samples and undergo a respiratory test and you will complete a questionnaire.

a) Questionnaire: A member of our study team will interview you in privacy to complete the questionnaire. You will be asked questions about general personal information, your general medical health, and lifetime environmental exposure to pesticides.

b) Urine sample: You will produce a urine sample (in privacy) in a plastic container and give it to the nurse. The sample will be analysed for pesticides.
c) **Blood sample:** A nurse will draw 14 ml blood from a vein on your arm. The blood will be analysed for to test your allergy status and for pesticide residues.

d) **Respiratory test:** A nurse will perform a respiratory test.

5. **Risks and discomforts of the research**

 a) **From the blood tests.** A single needle stick will be felt when the blood is taken. Sometimes a small bruise may occur from the needle stick, but this is minor and will heal quickly. The total amount of blood taken is quite small and the body will quickly replace it. Blood samples will be used only to measure allergy and will be destroyed at the end of the study.

 b) **From the questionnaire.**

 There are minimal risks associated with completing the questionnaire. The only risk is a loss of confidentiality about personal information but the data will be seen only by study personnel. All reports will present aggregate data in which individuals will not be identifiable.

6. **Expected benefits to you and others**

 Your health will be assessed for free.

 Refreshments will be provided as compensation for time in participating in the study.

 This study on the health effects of pesticides will benefit women living in farming areas and who are exposed to pesticides in the environment. Steps can be taken to reduce or prevent exposure to the pesticides or the pesticide can be banned. The blood and urine results can be used to develop ways in which the amount of pesticides in your body can be monitored.

7. **Costs to you resulting form participation in the study**
The study is offered at no cost to you.

8. Confidentiality of information collected

Study participants will not be personally identified in any reports on this study. The records will be kept confidential to the extent provided by law. The records, including any identification information, will be destroyed after the results have been fully analysed.

9. Documentation of the consent

One copy of this document will be kept together with our research records on this study. A second copy will be given to you to keep.

10. Contact person.

You may contact the following person for answers to further questions about the research, your rights, or any injury you may feel is related to the study.

Name of person: MA Dalvie (The principal investigator) telephone 021 4066610
Name of person: Lamees Emjedi (Ethics administrator) telephone 021 4066492

11. Voluntary nature of participation

Your participation in this project is voluntary. Subsequent to your consent, you may refuse to participate in or withdraw from the study at any time without penalty or loss of benefits to which you may otherwise be entitled.

12. Consent of the participant

I have read the information given above. I understand the meaning of this information. I hereby consent to participate in the study.

____________________________ _______________________
Printed name of participant signature
Letter of Approval from Research Ethics Committee

31 October 2009

REC REF: 295/2009

Dr. M. J. Doble
Professor

Dear Dr. C. Calleja,

I am pleased to inform you that the Research Ethics Committee has formally approved the above-mentioned study.

The project title is "Health effects due to pesticide exposure amongst rural women in the Western Cape.

Approval is granted for one year, until 31 October 2010.

Please ensure that all ethical requirements are met and that the study is conducted in accordance with the guidelines provided.

Please note that the ongoing ethical conduct of the study remains the responsibility of the principal investigator.

Please sign the REC REF on all your correspondence.

Yours sincerely,

[Signature]

Professor M. J. Doble
Chairperson, Research Ethics Committee

P.O. Box 12000, Cape Town 8000, South Africa

Tel: +27 (0) 21 408 1777
Fax: +27 (0) 21 408 1776

Letter of Approval from Research Ethics Committee
Annual Progress Report

Date: 25/2/2013
HREC REF Number: A9212009

Protocol number (if applicable) & Protocol title:
- Title of full study: Health effects due to pesticide exposure amongst rural women residents in the Western Cape
- Title of sub-study: Asthma and allergy due to pesticide exposure amongst rural women residents in the Western Cape/ Relationship between pesticide residues and asthma outcomes among women farm workers

Principal Investigator: M A Dalvie

Department / Office / Institutional Mail Address:
School of Public Health and Family Medicine

List of documentation:

N/A

HREC office use only (FWA00001637; IRB00001938)

☐ Approved
☐ Not approved
☐ Expedited
☐ Full committee

Type of review:
- Expiration date: 15 March 2014

Signature:

Date: 27/...
E. Authors instruction

DESCRIPTION

Environment International covers all disciplines engaged in the field of *environmental research*. It seeks to quantify the impact of *contaminants* in the human environment, and to address *human impacts* on the *natural environment* itself. We recognize that scientific issues related to environmental health and human welfare are inherently interdisciplinary and, therefore, we welcome articles that cover the entire spectrum of sources, pathways, sinks and interactions between environmental pollutants, whether chemical, biological or physical. The primary criteria for publication are scientific quality and environmental significance.

Benefits to authors

We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services. Please see our *Guide for Authors* for information on article submission. If you require any further information or help, please visit our support pages: http://support.elsevier.com

AUDIENCE
Environmental scientists, ecotoxicologists, environmental chemists, environmental health specialists, environmental regulators, ecologists, biologists, hydrologists, geologists, marine and atmospheric scientists.

IMPACT FACTOR
2012: 6.248 © Thomson Reuters Journal Citation Reports 2013
AUTHOR INFORMATION PACK 7 Feb 2014 www.elsevier.com/locate/envint 2

ABSTRACTING AND INDEXING
ABI/Inform
Current Contents
EMBASE
Elsevier BIOBASE
Energy Data Base
Energy Research Abstracts
Environmental Periodicals Bibliography
MEDLINE®
Research Alert
Science Citation Index
Scopus

EDITORIAL BOARD

Editor-in-Chief:
R.E. Alcock, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK, Email: r.alcock@lancaster.ac.uk

Associate Editors:
J.L. Domingo, Universitat Rovira i Virgili, Reus, Catalonia, Spain, Email: joseluis.domingo@urv.cat
O.I. Kalantzi, University of the Aegean, Mytilene, Greece, Email: Kalantzi@aegean.gr
Y-G. Zhu, Chinese Academy of Sciences (CAS), Beijing, China, Email: ygzhu@rcees.ac.cn

Advisory Review Editor:
R.J. Letcher, National Wildlife Research Center, Ottawa, ON, Canada, Email: robert.letcher@ec.gc.ca

Editorial Board:
B. Antizar-Ladislao, University of Edinburgh, Edinburgh, UK
D. Barceló Cullerès, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
N. Basu, University of Michigan, Ann Arbor, MI, USA
P.A. Behnisch, BioDetection Systems BV (BDS), Amsterdam, Netherlands
P. Bhattacharya, KTH Royal Institute of Technology, Stockholm, Sweden
L.S. Birnbaum, National Institutes of Health (NIH), Research Triangle Park, NC, USA
J. Biasco, Campus University Rio San Pedro, Puerto Real (Cadiz), Spain
J.L. Butenhoff, 3M Company, St. Paul, MN, USA
D.O. Carpenter, State University of New York (SUNY) at Albany, Rensselaer, NY, USA
C.J. Charlier, CHU Sart-Tilman, Liege, Belgium
A. Covaci, Universiteit Antwerpen, Wilrijk-Antwerpen, Belgium
A. del Valls, Universidad de Cadiz, Cadiz, Spain
J. Dorea, University of Brasilia, Brasilia, DF, Brazil
R. Duarte-Davidson, Health Protection Agency, Didcot, Oxon, England, UK
S. Harrad, University of Birmingham, Birmingham, England, UK
J. Hofman, Masaryk University, Brno, Czech Republic
O.I. Kalantzi, University of the Aegean, Mytilene, Greece
K. Kannan, State University of New York (SUNY) at Albany, Albany, NY, USA
H. Koch, Ruhr-University Bochum, Bochum, Germany
J. LaKind, LaKind Associates, LLC, Catonsville, Maryland, USA
University of Maryland, Baltimore, Maryland, USA
C. Lau, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC, USA
M. Lorber, US Environmental Protection Agency, District of Columbia, WA, USA
GUIDE FOR AUTHORS

Your Paper Your Way

Types of paper
No single format can accommodate all useful contributions to this journal. Five formats are offered, two of which (Reviews and New Developments), fall within the Progress in Environmental Science reviews section:

1. Editorial articles are published by the Editor-in-Chief or other Editors, members of the Editorial Board or invited Guest Editors. These focus attention on contemporary important environmental issues in relation to environmental health and are designed to stimulate debate and discussion.

2. Research Articles are up-to-date, original papers that present developments in any scientific field pertinent to environmental contamination and environmental health. Informative abstracts are required and articles must be fully referenced. Criteria for publication are weighted toward scientific quality and environmental significance. The manuscript will be evaluated on the basis of its conciseness, clarity, and presentation. The work will be assessed according to its originality, scientific merit, and experimental design. Poorly written manuscripts will be returned to the authors with a request to improve the quality of the paper prior to peer review.

3. Correspondence is encouraged. Opinions, perspectives and insight on articles published in Environment International are very welcome.

4. Reviews represent articles that trace recent developments and discuss trends in a particular field of research. They may be of a broad nature, providing accounts of specific fields of interest in any relevant area. Authors are encouraged to write in a clear and simple manner so that the article is understandable to readers from a broad cross section of disciplines. On average, a text length (excluding references) of c. 8000 words is required. Prospective authors should contact the Editor.
in Chief in the first instance to discuss the suitability of proposed topics. Articles should not be case
studies, not reporting of personal research.
5. **New Developments** are short articles presenting the latest developments in scientific, technological
and policy developments relating to environmental contamination and environmental health. On
average, a text length (excluding references) of c.3000 words is required. Abstracts are not included
in these short articles. Readers are encouraged to suggest subjects for inclusion in this section. Since
the journal will serve a multidisciplinary audience, authors are urged to write for non-
specialists. In particular, they are discouraged from using expressions that are comprehensible only
to a select audience. Clarity should be the guide when preparing manuscripts. All the contributions
will be subjected to peer review.

Special issues
Proposals for special themed issues, or special issues arising from conferences, should be discussed
with the Editor-in-Chief Dr Ruth Alcock (ruth.alcock@virgin.net). Guest Editors will coordinate the
review and submission process of special issue papers and will prepare an introduction. Special prices
for bulk orders of a special issue can be arranged.

Contact details for submission
All manuscripts should be submitted electronically through the Elsevier Editorial System (EES) which
can be accessed at http://ees.elsevier.com/envint/
If you are not able to submit your paper to ENVINT electronically please contact the
Editor-in-Chief, Ruth Alcock, Email: ruth.alcock@virgin.net for further instructions.

BEFORE YOU BEGIN

Ethics in publishing
For information on Ethics in publishing and Ethical guidelines for journal publication see
http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-
authors/ethics.

Conflict of interest
All authors are requested to disclose any actual or potential conflict of interest including
any financial,
personal or other relationships with other people or organizations within three years of
beginning the
submitted work that could inappropriately influence, or be perceived to influence, their
work. See
also http://www.elsevier.com/conflictsofinterest. Further information and an example of
a Conflict of
Interest form can be found at:

AUTHOR INFORMATION PACK 7 Feb 2014 www.elsevier.com/locate/envint

Submission declaration
Submission of an article implies that the work described has not been published
previously (except
in the form of an abstract or as part of a published lecture or academic thesis or as an
electronic
preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere including electronically in the same form, in English or in any other language, without the written consent of the copyright-holder.

Changes to authorship
This policy concerns the addition, deletion, or rearrangement of author names in the authorship of accepted manuscripts:
Before the accepted manuscript is published in an online issue: Requests to add or remove an author, or to rearrange the author names, must be sent to the Journal Manager from the corresponding author of the accepted manuscript and must include: (a) the reason the name should be added or removed, or the author names rearranged and (b) written confirmation (e-mail, fax, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed. Requests that are not sent by the corresponding author will be forwarded by the Journal Manager to the corresponding author, who must follow the procedure as described above. Note that: (1) Journal Managers will inform the Journal Editors of any such requests and (2) publication of the accepted manuscript in an online issue is suspended until authorship has been agreed.
After the accepted manuscript is published in an online issue: Any requests to add, delete, or rearrange author names in an article published in an online issue will follow the same policies as noted above and result in a corrigendum.

Copyright
This journal offers authors a choice in publishing their research: Open Access and Subscription. For Subscription articles
Upon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement' (for more information on this and copyright, see http://www.elsevier.com/copyright). An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Journal Publishing Agreement' form or a link to the online version of this agreement. Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution.
outside the institution and for all other derivative works, including compilations and translations (please consult http://www.elsevier.com/permissions). If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases: please consult http://www.elsevier.com/permissions.

For Open Access articles

Upon acceptance of an article, authors will be asked to complete an 'Exclusive License Agreement' (for more information see http://www.elsevier.com/OAauthoragreement). Permitted reuse of open access articles is determined by the author's choice of user license (see http://www.elsevier.com/openaccesslicenses).

Retained author rights

As an author you (or your employer or institution) retain certain rights. For more information on author rights for:

Subscription articles please see http://www.elsevier.com/journal-authors/author-rights-and-responsibilities.

Open access articles please see http://www.elsevier.com/OAauthoragreement.

Role of the funding source

You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated. Please see http://www.elsevier.com/funding.

AUTHOR INFORMATION PACK 7 Feb 2014 www.elsevier.com/locate/envint 6

Funding body agreements and policies

Elsevier has established agreements and developed policies to allow authors whose articles appear in journals published by Elsevier, to comply with potential manuscript archiving requirements as specified as conditions of their grant awards. To learn more about existing agreements and policies please visit http://www.elsevier.com/fundingbodies.

Open access

This journal offers authors a choice in publishing their research:

Open Access

• Articles are freely available to both subscribers and the wider public with permitted reuse
• An Open Access publication fee is payable by authors or their research funder

Subscription

• Articles are made available to subscribers as well as developing countries and patient groups through our access programs (http://www.elsevier.com/access)
• No Open Access publication fee

150
All articles published Open Access will be immediately and permanently free for everyone to read and download. Permitted reuse is defined by your choice of one of the following Creative Commons user licenses:

Creative Commons Attribution (CC BY): lets others distribute and copy the article, to create extracts, abstracts, and other revised versions, adaptations or derivative works of or from an article (such as a translation), to include in a collective work (such as an anthology), to text or data mine the article, even for commercial purposes, as long as they credit the author(s), do not represent the author as endorsing their adaptation of the article, and do not modify the article in such a way as to damage the author's honor or reputation.

Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA): for noncommercial purposes, lets others distribute and copy the article, to create extracts, abstracts and other revised versions, adaptations or derivative works of or from an article (such as a translation), to include in a collective work (such as an anthology), to text and data mine the article, as long as they credit the author(s), do not represent the author as endorsing their adaptation of the article, do not modify the article in such a way as to damage the author's honor or reputation, and license their new adaptations or creations under identical terms (CC BY-NC-SA).

Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND): for noncommercial purposes, lets others distribute and copy the article, and to include in a collective work (such as an anthology), as long as they credit the author(s) and provided they do not alter or modify the article.

To provide Open Access, this journal has a publication fee which needs to be met by the authors or their research funders for each article published Open Access. Your publication choice will have no effect on the peer review process or acceptance of submitted articles. The publication fee for this journal is **$3300**, excluding taxes. Learn more about Elsevier's pricing policy: http://www.elsevier.com/openaccesspricing.

Language (usage and editing services)

Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the English Language Editing service available from Elsevier's WebShop (http://webshop.elsevier.com/languageediting/) or visit our customer support site (http://support.elsevier.com) for more information.

Submission
Submission to this journal proceeds totally online and you will be guided stepwise through the creation and uploading of your files. The system automatically converts source files to a single PDF file of the article, which is used in the peer-review process. Please note that even though manuscript source files are converted to PDF files at submission for the review process, these source files are needed for further processing after acceptance. All correspondence, including notification of the Editor's decision and requests for revision, takes place by e-mail removing the need for a paper trail.

NEW SUBMISSIONS

Submission to this journal proceeds totally online and you will be guided stepwise through the creation and uploading of your files. The system automatically converts your files to a single PDF file, which is used in the peer-review process. As part of the Your Paper Your Way service, you may choose to submit your manuscript as a single file to be used in the refereeing process. This can be a PDF file or a Word document, in any format or layout that can be used by referees to evaluate your manuscript. It should contain high enough quality figures for refereeing. If you prefer to do so, you may still provide all or some of the source files at the initial submission. Please note that individual figure files larger than 10 MB must be uploaded separately.

References

There are no strict requirements on reference formatting at submission. References can be in any style or format as long as the style is consistent. Where applicable, author(s) name(s), journal title/book title, chapter title/article title, year of publication, volume number/book chapter and the pagination must be present. Use of DOI is highly encouraged. The reference style used by the journal will be applied to the accepted article by Elsevier at the proof stage. Note that missing data will be highlighted at proof stage for the author to correct.

Formatting requirements

There are no strict formatting requirements but all manuscripts must contain the essential elements needed to convey your manuscript, for example Abstract, Keywords, Introduction, Materials and Methods, Results, Conclusions, Artwork and Tables with Captions. If your article includes any Videos and/or other Supplementary material, this should be included in your initial submission for peer review purposes. Divide the article into clearly defined sections.
Please ensure your paper has consecutive line numbering - this is an essential peer review requirement.

Figures and tables embedded in text
Please ensure the figures and the tables included in the single file are placed next to the relevant text in the manuscript, rather than at the bottom or the top of the file.

REVISED SUBMISSIONS
Use of word processing software
Regardless of the file format of the original submission, at revision you must provide us with an editable file of the entire article. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier: http://www.elsevier.com/guidepublication). See also the section on Electronic artwork. To avoid unnecessary errors you are strongly advised to use the ‘spell-check’ and ‘grammar-check’ functions of your word processor.

Article structure
Subdivision - numbered sections
Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1 (then 1.1.1, 1.1.2, ...), 1.2, etc. (the abstract is not included in section numbering). Use this numbering also for internal cross-referencing: do not just refer to ‘the text’. Any subsection may be given a brief heading. Each heading should appear on its own separate line.

Introduction
State the objectives of the work and provide an adequate background, avoiding a detailed literature survey or a summary of the results.

Material and methods
Provide sufficient detail to allow the work to be reproduced. Methods already published should be indicated by a reference: only relevant modifications should be described.

Theory/calculation
A Theory section should extend, not repeat, the background to the article already dealt with in the Introduction and lay the foundation for further work. In contrast, a Calculation section represents a practical development from a theoretical basis.

RESULTS
Results should be clear and concise.

Discussion
This should explore the significance of the results of the work, not repeat them. A combined Results and Discussion section is often appropriate. Avoid extensive citations and discussion of published literature.
Conclusions
The main conclusions of the study may be presented in a short Conclusions section, which may stand alone or form a subsection of a Discussion or Results and Discussion section.

Appendices
If there is more than one appendix, they should be identified as A, B, etc. Formulae and equations in appendices should be given separate numbering: Eq. (A.1), Eq. (A.2), etc.; in a subsequent appendix, Eq. (B.1) and so on. Similarly for tables and figures: Table A.1; Fig. A.1, etc.

Essential title page information

- **Title.** Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.

- **Author names and affiliations.** Where the family name may be ambiguous (e.g., a double name), please indicate this clearly. Present the authors' affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author's name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name and, if available, the e-mail address of each author.

- **Corresponding author.** Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. Ensure that phone numbers (with country and area code) are provided in addition to the e-mail address and the complete postal address. Contact details must be kept up to date by the corresponding author.

- **Present/permanent address.** If an author has moved since the work described in the article was done, or was visiting at the time, a 'Present address' (or 'Permanent address') may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.

Abstract
A concise and factual abstract is required. The abstract should state briefly the purpose of the research, the principal results and major conclusions. An abstract is often presented separately from the article, so it must be able to stand alone. For this reason, References should be avoided, but if essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself.

Graphical abstract
A Graphical abstract is optional and should summarize the contents of the article in a concise, pictorial
form designed to capture the attention of a wide readership online. Authors must provide images that clearly represent the work described in the article. Graphical abstracts should be submitted as a separate file in the online submission system. Image size: Please provide an image with a minimum of \(531 \times 1328\) pixels (h \(\times\) w) or proportionally more. The image should be readable at a size of \(5 \times 13\) cm using a regular screen resolution of 96 dpi. Preferred file types: TIFF, EPS, PDF or MS Office files. See http://www.elsevier.com/graphicalabstracts for examples. Authors can make use of Elsevier’s Illustration and Enhancement service to ensure the best presentation of their images also in accordance with all technical requirements: [Illustration Service](http://www.elsevier.com/illustrationservice).

Highlights

Highlights are mandatory for this journal. They consist of a short collection of bullet points that convey the core findings of the article and should be submitted in a separate file in the online submission system. Please use 'Highlights' in the file name and include 3 to 5 bullet points (maximum 85 characters, including spaces, per bullet point). See http://www.elsevier.com/highlights for examples.

Keywords

Immediately after the abstract, provide a maximum of 6 keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, 'and', 'of'). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

Abbreviations

Define abbreviations that are not standard in this field in a footnote to be placed on the first page of the article. Such abbreviations that are unavoidable in the abstract must be defined at their first mention there, as well as in the footnote. Ensure consistency of abbreviations throughout the article.

Acknowledgements

Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing language help, writing assistance or proof reading the article, etc.).

Math formulae
Present simple formulae in the line of normal text where possible and use the solidus (/) instead of a horizontal line for small fractional terms, e.g., X/Y. In principle, variables are to be presented in italics. Powers of e are often more conveniently denoted by exp. Number consecutively any equations that have to be displayed separately from the text (if referred to explicitly in the text).

Footnotes

Footnotes should be used sparingly. Number them consecutively throughout the article. Many wordprocessors build footnotes into the text, and this feature may be used. Should this not be the case, indicate the position of footnotes in the text and present the footnotes themselves separately at the end of the article. Do not include footnotes in the Reference list.

Table footnotes

Indicate each footnote in a table with a superscript lowercase letter.

Artwork

Electronic artwork

General points

- Make sure you use uniform lettering and sizing of your original artwork.
- Preferred fonts: Arial (or Helvetica), Times New Roman (or Times), Symbol, Courier.
- Number the illustrations according to their sequence in the text.
- Use a logical naming convention for your artwork files.
- Indicate per figure if it is a single, 1.5 or 2-column fitting image.
- For Word submissions only, you may still provide figures and their captions, and tables within a single file at the revision stage.
- Please note that individual figure files larger than 10 MB must be provided in separate source files.

A detailed guide on electronic artwork is available on our website: http://www.elsevier.com/artworkinstructions.

You are urged to visit this site; some excerpts from the detailed information are given here.

Formats

Regardless of the application used, when your electronic artwork is finalized, please 'save as' or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):

- **EPS (or PDF):** Vector drawings. Embed the font or save the text as 'graphics'.
- **TIFF (or JPG):** Color or grayscale photographs (halftones): always use a minimum of 300 dpi.
- **TIFF (or JPG):** Bitmapped line drawings: use a minimum of 1000 dpi.
- **TIFF (or JPG):** Combinations bitmapped line/half-tone (color or grayscale): a minimum of 500 dpi is required.

Please do not:

- Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); the resolution is too low.
- Supply files that are too low in resolution.
- Submit graphics that are disproportionately large for the content.

Color artwork
Please make sure that artwork files are in an acceptable format (TIFF (or JPEG), EPS (or PDF), or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color on the Web (e.g., ScienceDirect and other sites) regardless of whether or not these illustrations are reproduced in color in the printed version. **For color reproduction in print, you will receive information regarding the costs from Elsevier after receipt of your accepted article.** Please indicate your preference for color: in print or on the Web only. For further information on the preparation of electronic artwork, please see http://www.elsevier.com/artworkinstructions.

Please note: Because of technical complications which can arise by converting color figures to 'gray scale' (for the printed version should you not opt for color in print) please submit in addition usable black and white versions of all the color illustrations.

Figure captions
Ensure that each illustration has a caption. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Tables
Number tables consecutively in accordance with their appearance in the text. Place footnotes to tables below the table body and indicate them with superscript lowercase letters. Avoid vertical rules. Be sparing in the use of tables and ensure that the data presented in tables do not duplicate results described elsewhere in the article.

References
Citation in text
Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either 'Unpublished results' or 'Personal communication'. Citation of a reference as 'in press' implies that the item has been accepted for publication.

Reference links
Increased discoverability of research and high quality peer review are ensured by online links to the sources cited. In order to allow us to create links to abstracting and indexing services, such as Scopus, CrossRef and PubMed, please ensure that data provided in the references are correct. Please note that incorrect surnames, journal/book titles, publication year and pagination may prevent link creation. When copying references, please be careful as they may already contain errors. Use of the DOI is encouraged.

References in a special issue
Please ensure that the words 'this issue' are added to any references in the list (and any citations in the text) to other articles in the same Special Issue.

Reference management software
This journal has standard templates available in key reference management packages EndNote (http://www.endnote.com/support/enstyles.asp) and Reference Manager (http://refman.com/support/rmstyles.asp). Using plug-ins to wordprocessing packages, authors only need to select the appropriate journal template when preparing their article and the list of references and citations to these will be formatted according to the journal style which is described below.

Reference formatting
There are no strict requirements on reference formatting at submission. References can be in any style or format as long as the style is consistent. Where applicable, author(s) name(s), journal title/book title, chapter title/article title, year of publication, volume number/book chapter and the pagination must be present. Use of DOI is highly encouraged. The reference style used by the journal will be applied to the accepted article by Elsevier at the proof stage. Note that missing data will be highlighted at proof stage for the author to correct. If you do wish to format the references yourself they should be arranged according to the following examples:

Reference style

Text: All citations in the text should refer to:
1. Single author: the author's name (without initials, unless there is ambiguity) and the year of publication;
2. Two authors: both authors' names and the year of publication;
3. Three or more authors: first author's name followed by 'et al.' and the year of publication.

Citations may be made directly (or parenthetically). Groups of references should be listed first alphabetically, then chronologically.
Examples: 'as demonstrated (Allan, 2000a, 2000b, 1999; Allan and Jones, 1999). Kramer et al. (2010) have recently shown'

AUTHOR INFORMATION PACK 7 Feb 2014 www.elsevier.com/locate/envint 11

List: References should be arranged first alphabetically and then further sorted chronologically if
necessary. More than one reference from the same author(s) in the same year must be identified by
the letters 'a', 'b', 'c', etc., placed after the year of publication.

Examples:
Reference to a journal publication:
Reference to a book:
Reference to a chapter in an edited book:
Mettam, G.R., Adams, L.B., 2009. How to prepare an electronic version of your article, in: Jones, B.S.,

Journal abbreviations source
Journal names should be abbreviated according to the List of Title Word Abbreviations:

Video data
Elsevier accepts video material and animation sequences to support and enhance your scientific
research. Authors who have video or animation files that they wish to submit with their article are
strongly encouraged to include links to these within the body of the article. This can be done in the
same way as a figure or table by referring to the video or animation content and noting in the body
text where it should be placed. All submitted files should be properly labeled so that they directly
relate to the video file’s content. In order to ensure that your video or animation material is directly
usable, please provide the files in one of our recommended file formats with a preferred maximum
size of 50 MB. Video and animation files supplied will be published online in the electronic version
of your article in Elsevier Web products, including ScienceDirect:
Please supply 'stills' with your files: you can choose any frame from the video or animation or
make a separate image. These will be used instead of standard icons and will personalize the
link to your video data. For more detailed instructions please visit our video instruction pages at
http://www.elsevier.com/artworkinstructions. Note: since video and animation cannot be embedded
in the print version of the journal, please provide text for both the electronic and the print version
for the portions of the article that refer to this content.

AudioSlides
The journal encourages authors to create an AudioSlides presentation with their published article.
AudioSlides are brief, webinar-style presentations that are shown next to the online article on
ScienceDirect. This gives authors the opportunity to summarize their research in their own words and to help readers understand what the paper is about. More information and examples are available at http://www.elsevier.com/audioslides. Authors of this journal will automatically receive an invitation e-mail to create an AudioSlides presentation after acceptance of their paper.

Supplementary data
Elsevier accepts electronic supplementary material to support and enhance your scientific research. Supplementary files offer the author additional possibilities to publish supporting applications, high-resolution images, background datasets, sound clips and more. Supplementary files supplied will be published online alongside the electronic version of your article in Elsevier Web products, including ScienceDirect: http://www.sciencedirect.com. In order to ensure that your submitted material is directly usable, please provide the data in one of our recommended file formats. Authors should submit the material in electronic format together with the article and supply a concise and descriptive caption for each file. For more detailed instructions please visit our artwork instruction pages at http://www.elsevier.com/artworkinstructions.

Data at PANGAEA
Electronic archiving of supplementary data enables readers to replicate, verify and build upon the conclusions published in your paper. We recommend that data should be deposited in the data library PANGAEA (http://www.pangaea.de). Data are quality controlled and archived by an editor in standard machine-readable formats and are available via Open Access. After processing, the author receives an identifier (DOI) linking to the supplements for checking. As your data sets will be citable you might want to refer to them in your article. In any case, data supplements and the article will be automatically linked as in the following example: doi:10.1016/0016-7037(95)00105-9. Please use PANGAEA’s web interface to submit your data (http://www.pangaea.de/submit/).

Submission checklist
The following list will be useful during the final checking of an article prior to sending it to the journal for review. Please consult this Guide for Authors for further details of any item.

Ensure that the following items are present:
One author has been designated as the corresponding author with contact details:
- E-mail address
- Full postal address
- Telephone
All necessary files have been uploaded, and contain:
- Keywords
• All figure captions
• All tables (including title, description, footnotes)
Further considerations
• Manuscript has been 'spell-checked' and 'grammar-checked'
• All references mentioned in the Reference list are cited in the text, and vice versa
• Permission has been obtained for use of copyrighted material from other sources (including the Web)
• Color figures are clearly marked as being intended for color reproduction on the Web (free of charge) and in print, or to be reproduced in color on the Web (free of charge) and in black-and-white in print
• If only color on the Web is required, black-and-white versions of the figures are also supplied for printing purposes
For any further information please visit our customer support site at http://support.elsevier.com.

AFTER ACCEPTANCE

Use of the Digital Object Identifier
The Digital Object Identifier (DOI) may be used to cite and link to electronic documents. The DOI consists of a unique alpha-numeric character string which is assigned to a document by the publisher upon the initial electronic publication. The assigned DOI never changes. Therefore, it is an ideal medium for citing a document, particularly 'Articles in press' because they have not yet received their full bibliographic information. Example of a correctly given DOI (in URL format; here an article in the journal *Physics Letters B*):
http://dx.doi.org/10.1016/j.physletb.2010.09.059
When you use a DOI to create links to documents on the web, the DOIs are guaranteed never to change.

Online proof correction
Corresponding authors will receive an e-mail with a link to our ProofCentral system, allowing annotation and correction of proofs online. The environment is similar to MS Word: in addition to editing text, you can also comment on figures/tables and answer questions from the Copy Editor. Web-based proofing provides a faster and less error-prone process by allowing you to directly type your corrections, eliminating the potential introduction of errors. If preferred, you can still choose to annotate and upload your edits on the PDF version. All instructions for proofing will be given in the e-mail we send to authors, including alternative methods to the online version and PDF. We will do everything possible to get your article published quickly and accurately - please upload all of your corrections within 48 hours. It is important to ensure that all corrections are sent back.
to us in one communication. Please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility. Note that Elsevier may proceed with the publication of your article if no response is received.

Offprints
The corresponding author, at no cost, will be provided with a PDF file of the article via email (the PDF file is a watermarked version of the published article and includes a cover sheet with the journal cover image and a disclaimer outlining the terms and conditions of use). For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. Both corresponding and co-authors may order offprints at any time via Elsevier’s WebShop (http://webshop.elsevier.com/myarticleservices/offprints).

Authors requiring printed copies of multiple articles may use Elsevier WebShop’s ‘Create Your Own Book’ service to collate multiple articles within a single cover (http://webshop.elsevier.com/myarticleservices/offprints/myarticleservices/booklets).

AUTHOR INQUIRIES
For inquiries relating to the submission of articles (including electronic submission) please visit this journal’s homepage. For detailed instructions on the preparation of electronic artwork, please visit http://www.elsevier.com/artworkinstructions. Contact details for questions arising after acceptance of an article, especially those relating to proofs, will be provided by the publisher. You can track accepted articles at http://www.elsevier.com/trackarticle. You can also check our Author FAQs at http://www.elsevier.com/authorFAQ and/or contact Customer Support via http://support.elsevier.com.

© Copyright 2012 Elsevier | http://www.elsevier.com
The effects of previous pesticide poisoning on the results

Table 1 Analysis including Pest- poisoning

<table>
<thead>
<tr>
<th>Pesticide exposure</th>
<th>Odds Ratio/ Regression Coefficient (95% Confidence Interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>History of ever living and/or working on farm</td>
</tr>
<tr>
<td>Q16 Outcomes</td>
<td></td>
</tr>
<tr>
<td>Tired</td>
<td>3.31(1.64-7.36)</td>
</tr>
<tr>
<td>Heart palpitations</td>
<td>4.73(1.98-11.31)</td>
</tr>
<tr>
<td>Tingling</td>
<td>4.72(1.94-11.50)</td>
</tr>
<tr>
<td>Irritated</td>
<td>4.25(1.82-9.95)</td>
</tr>
<tr>
<td>Depression</td>
<td>1.89(0.87-4.11)</td>
</tr>
<tr>
<td>Poor concentration</td>
<td>4.15(1.59-10.80)</td>
</tr>
<tr>
<td>Short term memory</td>
<td>2.94(1.34-6.45)</td>
</tr>
<tr>
<td>Perspire</td>
<td>4.35(1.42-13.31)</td>
</tr>
<tr>
<td>Button</td>
<td>5.83(0.56-60.74)</td>
</tr>
<tr>
<td>Reading</td>
<td>2.16(0.79-5.86)</td>
</tr>
<tr>
<td>Fam mem</td>
<td>1.34(0.54-3.36)</td>
</tr>
<tr>
<td>Chest</td>
<td>5.21(1.90-14.25)</td>
</tr>
<tr>
<td>Notes</td>
<td>1.55(0.64-3.77)</td>
</tr>
<tr>
<td>Check door</td>
<td>1.90(0.85-4.23)</td>
</tr>
<tr>
<td>Headache</td>
<td>2.13(0.91-5.00)</td>
</tr>
<tr>
<td>Less sex</td>
<td>1.70(0.78-3.73)</td>
</tr>
<tr>
<td>Q16 score</td>
<td>2.69(1.71-10.14)</td>
</tr>
<tr>
<td>Q16 score50</td>
<td>5.31(2.22-12.69)</td>
</tr>
<tr>
<td>Q16 score75</td>
<td>5.01(1.76-14.25)</td>
</tr>
</tbody>
</table>

Confounder: Age, level of education, drugs, current smoking, alcohol consumption, household income, language, past pesticide poisoning
Table 2 Example of Analysis excluding past pesticide poisoning

<table>
<thead>
<tr>
<th></th>
<th>History of ever living and/or working on farm</th>
<th>Born on farm</th>
<th>Household pesticides</th>
<th>Farm vs. Town Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tired</td>
<td>3.3 (1.46-7.36)</td>
<td>0.93 (0.50-1.78)</td>
<td>0.59 (0.07-4.77)</td>
<td>4.04 (2.07-7.76)</td>
</tr>
<tr>
<td>Heart palpitations</td>
<td>4.35 (1.87-10.14)</td>
<td>1.24 (0.66-2.41)</td>
<td>0.42 (0.04-4.59)</td>
<td>3.590 (1.70-6.78)</td>
</tr>
<tr>
<td>Tingling</td>
<td>4.39 (1.85-10.4)</td>
<td>0.83 (0.49-1.62)</td>
<td>0.44 (0.04-5.07)</td>
<td>3.71 (1.88-7.74)</td>
</tr>
<tr>
<td>Irritated</td>
<td>3.98 (1.74-9.12)</td>
<td>0.76 (0.48-1.45)</td>
<td>1 (omitted)</td>
<td>4.17 (2.09-8.36)</td>
</tr>
<tr>
<td>Depression</td>
<td>1.87 (0.87-4.04)</td>
<td>0.90 (0.59-1.69)</td>
<td>0.39 (0.04-4.10)</td>
<td>2.60 (1.38-4.88)</td>
</tr>
<tr>
<td>Poor concentration</td>
<td>4.08 (1.59-10.80)</td>
<td>1.36 (0.67-2.77)</td>
<td>0.93 (0.09-9.95)</td>
<td>1.80 (0.91-4.12)</td>
</tr>
<tr>
<td>Short term memory</td>
<td>2.91 (1.34-6.45)</td>
<td>1.46 (0.78-2.79)</td>
<td>1.50 (0.20-11.73)</td>
<td>3.02 (1.56-5.80)</td>
</tr>
<tr>
<td>Perspire</td>
<td>4.33 (1.42-13.31)</td>
<td>1.05 (0.49-2.29)</td>
<td>0.75 (0.07-8.20)</td>
<td>1.79 (0.98-3.66)</td>
</tr>
<tr>
<td>Button</td>
<td>5.01 (0.56-60.74)</td>
<td>1.18 (0.08-4.94)</td>
<td>10.07 (1.73-146.18)</td>
<td>0.88 (0.19-3.25)</td>
</tr>
<tr>
<td>Reading</td>
<td>2.15 (0.79-5.86)</td>
<td>1.05 (0.51-2.32)</td>
<td>2.70 (0.34-21.37)</td>
<td>1.57 (0.76-3.65)</td>
</tr>
<tr>
<td>Fam mem</td>
<td>1.33 (0.54-3.36)</td>
<td>1.92 (0.68-4.25)</td>
<td>4.55 (0.58-35.88)</td>
<td>2.02 (0.98-4.16)</td>
</tr>
<tr>
<td>Chest</td>
<td>4.65 (1.90-14.25)</td>
<td>0.62 (0.32-1.29)</td>
<td>2.34 (0.30-18.91)</td>
<td>3.74 (1.97-8.33)</td>
</tr>
<tr>
<td>Notes</td>
<td>1.50 (0.64-3.77)</td>
<td>1.01 (0.49-2.19)</td>
<td>0.78 (0.08-9.05)</td>
<td>2.97 (1.92-5.48)</td>
</tr>
<tr>
<td>Check door</td>
<td>1.75 (0.85-4.23)</td>
<td>1.27 (0.81-2.54)</td>
<td>1.11 (0.16-9.30)</td>
<td>3.10 (1.60-6.00)</td>
</tr>
<tr>
<td>Headache</td>
<td>2.10 (0.91-5.00)</td>
<td>0.78 (0.40-1.56)</td>
<td>0.38 (0.05-3.03)</td>
<td>9.45 (4.36-20.40)</td>
</tr>
<tr>
<td>Less sex</td>
<td>1.70 (0.78-3.73)</td>
<td>0.70 (0.98-1.32)</td>
<td>0.48 (0.05-5.02)</td>
<td>1.45 (0.50-2.40)</td>
</tr>
<tr>
<td>Q16 score</td>
<td>2.64 (1.71-10.14)</td>
<td>2.02 (0.72-6.10)</td>
<td>0.07 (0.01-0.60)</td>
<td>58.41 (6.96-524.51)</td>
</tr>
<tr>
<td>Q16 score50</td>
<td>4.46 (2.22-12.69)</td>
<td>0.77 (0.32-1.51)</td>
<td>0.66 (0.13-7.92)</td>
<td>5.65 (2.62-10.59)</td>
</tr>
<tr>
<td>Q16 score75</td>
<td>4.46 (1.76-14.25)</td>
<td>1.59 (0.77-3.54)</td>
<td>2.41 (0.32-19.72)</td>
<td>3.25 (1.39-6.87)</td>
</tr>
</tbody>
</table>

Confounder: Age, level of education, drugs, current smoking, alcohol consumption, household income, language

Conclusion

The inclusion or exclusion of previous pest- poisoning does not affect the study results substantially
Table 3: Example of Multivariate analysis excluding participants who are 50 years and older

<table>
<thead>
<tr>
<th>Organophosphate metabolites</th>
<th>Dialkyl phosphates. Odds Ratio</th>
<th>Regression Coefficient (95% Confidence Interval)</th>
<th>Chlorpyrifos metabolite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DMP</td>
<td>DMTP</td>
<td>DMDTP</td>
</tr>
<tr>
<td>Q16 outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tired</td>
<td>0.997(0.985-1.009)</td>
<td>1.001(0.996-1.005)</td>
<td>0.998(0.995-1.005)</td>
</tr>
<tr>
<td>Heart palpitations</td>
<td>0.995(0.977-1.002)</td>
<td>0.987(0.995-1.009)</td>
<td>1.002(0.998-1.006)</td>
</tr>
<tr>
<td>Tingling</td>
<td>1.003(0.989-1.009)</td>
<td>0.982(0.995-1.003)</td>
<td>0.999(0.995-1.004)</td>
</tr>
<tr>
<td>Irritated</td>
<td>0.997(0.985-1.008)</td>
<td>1.001(0.997-1.005)</td>
<td>1.000(0.996-1.005)</td>
</tr>
<tr>
<td>Depression</td>
<td>1.002(0.991-1.013)</td>
<td>1.000(0.996-1.004)</td>
<td>0.999(0.996-1.003)</td>
</tr>
<tr>
<td>Poor concentration</td>
<td>1.009(0.997-1.022)</td>
<td>1.000(0.996-1.005)</td>
<td>0.997(0.995-1.003)</td>
</tr>
<tr>
<td>Short term memory</td>
<td>1.005(0.994-1.014)</td>
<td>1.000(0.996-1.005)</td>
<td>1.000(0.997-1.005)</td>
</tr>
<tr>
<td>Perspire</td>
<td>0.956(0.985-1.014)</td>
<td>1.001(0.996-1.007)</td>
<td>0.998(0.994-1.004)</td>
</tr>
<tr>
<td>Button</td>
<td>1.010(0.984-1.035)</td>
<td>1.003(0.996-1.010)</td>
<td>0.994(0.980-1.007)</td>
</tr>
<tr>
<td>Reading</td>
<td>0.985(0.983-1.100)</td>
<td>1.005(1.001-1.010)</td>
<td>0.999(0.995-1.005)</td>
</tr>
<tr>
<td>Fam mem</td>
<td>0.996(0.983-1.101)</td>
<td>0.992(0.991-1.002)</td>
<td>1.002(0.998-1.006)</td>
</tr>
<tr>
<td>Chest</td>
<td>0.995(0.979-1.006)</td>
<td>1.001(0.997-1.006)</td>
<td>1.004(0.999-1.009)</td>
</tr>
<tr>
<td>Notes</td>
<td>1.001(0.995-1.022)</td>
<td>1.004(0.999-1.009)</td>
<td>0.997(0.993-1.005)</td>
</tr>
<tr>
<td>Check door</td>
<td>1.006(0.995-1.018)</td>
<td>1.000(0.996-1.004)</td>
<td>1.999(0.993-1.001)</td>
</tr>
<tr>
<td>Headache</td>
<td>0.994(0.983-1.007)</td>
<td>1.001(0.997-1.006)</td>
<td>0.998(0.995-1.004)</td>
</tr>
<tr>
<td>Less sex</td>
<td>0.991(0.982-1.005)</td>
<td>0.989(0.995-1.007)</td>
<td>0.996(0.995-1.000)</td>
</tr>
<tr>
<td>Q16 score</td>
<td>1.002(0.984-1.020)</td>
<td>1.002(0.996-1.006)</td>
<td>0.999(0.993-1.006)</td>
</tr>
<tr>
<td>Q16 score50</td>
<td>1.000(0.989-1.012)</td>
<td>1.001(0.997-1.005)</td>
<td>0.987(0.996-1.005)</td>
</tr>
<tr>
<td>Q16 score75</td>
<td>1.006(0.992-1.019)</td>
<td>1.002(0.997-1.007)</td>
<td>1.000(0.995-1.005)</td>
</tr>
</tbody>
</table>

Confounder: Age, level of education, drugs, current smoking, alcohol consumption, household income, language, past pesticide poisoning. N = 177

Summary - Exclusion of women over 49 years of age does not change the results substantially.
Template for submission of dissertation corrections/revisions

Candidate: Motsoeneng Mamonyowe Portia
Degree: Master Public health
Department: Public health and family medicine
Title: Relationship between urinary pesticide residue levels and neurotoxicity among women on farms in the Western Cape
Supervisors: Mahomed Aqiel Dalvie

Examiner 1 - (Give name of examiner if known)

<table>
<thead>
<tr>
<th>Original dissertation</th>
<th>Corrected/Revised dissertation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Comment 1, pg 63</td>
<td>In what?</td>
</tr>
<tr>
<td></td>
<td>Now on pg 62 Changes made, Paragraph1 line 1</td>
</tr>
<tr>
<td>2 Comment 2, pg 64</td>
<td>Not clear what you mean here</td>
</tr>
<tr>
<td></td>
<td>Now on pg 63 Changes made, Paragraph1 line 3-4</td>
</tr>
<tr>
<td>3 Comment 3, pg 64</td>
<td>In blood?</td>
</tr>
<tr>
<td></td>
<td>Now on pg 63 Changes made Paragraph 2, Line 1</td>
</tr>
<tr>
<td>4 Comment 5, pg 64</td>
<td>Split into the two groups</td>
</tr>
<tr>
<td></td>
<td>Now on pg 63 Changes made Paragraph 4, Line 1</td>
</tr>
<tr>
<td>5 Comment 5-10, pg 64</td>
<td>In which group. Univariate results of Farm Group and Town Group in Abstract to be split.</td>
</tr>
<tr>
<td></td>
<td>Now on pg 63 Changes made Paragraph 4, Line 5-8</td>
</tr>
<tr>
<td>6 Comment 11, pg 65</td>
<td>Be specific, individual Q 16 item, if so please specify!!</td>
</tr>
<tr>
<td></td>
<td>Now on pg 64 Changes made Paragraph1, Line 4</td>
</tr>
<tr>
<td>7 Comment 12, pg 65</td>
<td>What about the lack of association with OP shouldn’t that be mentioned either?</td>
</tr>
<tr>
<td></td>
<td>Now on pg 64 Changes made Paragraph2, Line 2-3</td>
</tr>
<tr>
<td>8 Comment 13, pg65</td>
<td>Like which? List Neurotests</td>
</tr>
<tr>
<td></td>
<td>Now on pg 64 Changes made Paragraph2, Line 4-5</td>
</tr>
<tr>
<td>9 Comment 14, pg66</td>
<td>Unclear what is meant here, brain damage of any cause or specifically from pesticide exposures?</td>
</tr>
<tr>
<td></td>
<td>Now on pg 65 Changes made Paragraph 1, Line 4</td>
</tr>
<tr>
<td>10 Comment 15, pg67</td>
<td>You are just presenting one and there seems to be at least another one (Bouchard et al. 2010)</td>
</tr>
<tr>
<td></td>
<td>Now on pg 66 Details of both studies investigating the relationship between biological levels of pesticides and neurotoxic outcomes were included in the text on paragraph 1, line</td>
</tr>
<tr>
<td>Comment, pg</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>11 Comment 16, pg67</td>
<td>This should go to materials and methods</td>
</tr>
<tr>
<td>12 Comment 17, pg67</td>
<td>Any evidence, references for this rather sweeping statement?</td>
</tr>
<tr>
<td>Comment 18, pg67</td>
<td>Please make clear what this analysis entails. Which part of the larger study are you addressing and what exactly is your aim and which research questions will you try to answer!</td>
</tr>
<tr>
<td>Comment 19, pg68</td>
<td>Any selection criteria use. E.g. age criteria, etc.</td>
</tr>
<tr>
<td>Comment 20, pg68</td>
<td>So was the actual grouping based on being a female agricultural worker or based on residence: farm versus town?</td>
</tr>
<tr>
<td>Comment 21, pg69</td>
<td>This is hard to follow. A diagram showing the different groups and color coding the nto show how they were</td>
</tr>
<tr>
<td>Comment 22, pg69</td>
<td>One could argue to leave out the farm workers not living on farms and similarly exclude the people living on farms but not working on farms. In order to create more contrast in exposure between the groups.</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>Comment 23, pg69</td>
<td>why not more specific items on pesticide related work? E.g. being an applicator, re-entry work etc.</td>
</tr>
<tr>
<td>Comment 24, pg70</td>
<td>Sentence is not correct</td>
</tr>
<tr>
<td>Comment 25, pg71</td>
<td>Why, how many??, please be more specific</td>
</tr>
<tr>
<td>Comment 26, pg72</td>
<td>Again be more specific present the actual LOD and indicate how many samples were below LOD</td>
</tr>
<tr>
<td>Comment 27, pg73</td>
<td>Unclear sentence</td>
</tr>
<tr>
<td>Comment 28, pg73</td>
<td>Unclear what you exactly have been testing here</td>
</tr>
<tr>
<td>Comment 29, pg73</td>
<td>Previous poisoning ?? and why not excluded?? If you are looking at environmental exposure</td>
</tr>
<tr>
<td>Comment 30, pg73</td>
<td>Interactions ...?? What exactly do you mean?</td>
</tr>
</tbody>
</table>
These were the products between each exposure variable and a suspected effect modifier. For all the outcomes, an interaction term between the variable and the exposure variable of interest was included in the model. If this interaction term was significant (p<0.05), the variable would be an effect modifier. None of the interaction terms were significant so all were not retained in the models.

Comment 31, pg74	Why just this fact?	Now on pg 73	More details on participation were added to the text and in Table1. Most of the details has already been described in the methods section on sampling.
Comment 32, pg74	Provide percentages!	Now on pg 73	Change made paragraph3 line1
Comment 33, pg74	Why (age higher in Town Group)	Now on pg 74 and 166	The reason for the higher median age of the Town Group was given and also that excluding women > 50 years did not change the results.
Comment 34, pg74	What matters is whether the groups were different.	Now on pg 74	The text now state if the results in the two groups were different.
Comment 35, pg75	Provide percentages, significant or not?	Now on pg 74	Changes made paragraph 2.
Comment 36, pg75	Why only this one with one decimal?	Now on pg 75	All the results in Table 1 were rounded to 1 decimal
Comment 37, pg76	Which test have you used for this?	Now on pg 75	Described in Table 1
Comment 38, pg76	What about exposures at work?	Now on pg 77	Occupational exposures were added to Table 2 and described in the text in the first paragraph of page 76.
Comment 39, pg76	There are also symptoms in this table.....	Now on pg 77	Symptoms were deleted from the Table2.
Comment 40, pg77	Only discuss the ones that are statistically significant	Now on pg 77	Changes made paragraph 1 -2
different between the two groups. The others should be seen as not being different between the two groups of individuals.

<table>
<thead>
<tr>
<th>Comment 41, pg 77-8</th>
<th>Add numbers of samples within each group</th>
<th>Now on pg 79</th>
<th>Requested changes were made to Table 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment 42, pg 78</td>
<td>These * are hard to see, maybe place them after the percentage of the farm group?</td>
<td>Now on pg 81</td>
<td>Requested changes were made to Table 4</td>
</tr>
<tr>
<td>Comment 43, pg 79</td>
<td>So do I understand this correctly that you’ve lumped the two groups together for this analysis?</td>
<td>Now on pg 82</td>
<td>For multivariate analysis various exposure indices were used to investigate the relationship between pesticide exposures and outcomes including farm group, history of ever living on a farm, born on a farm. This has now been stated more clearly in the text.</td>
</tr>
<tr>
<td>Comment 44, pg 79</td>
<td>Please focus on the ones that are really statically significantly different from</td>
<td>Now on pg 82</td>
<td>Changes made paragraph 1-2; The associations not exceeding 1 were deleted from the text which now only list the significant associations.</td>
</tr>
<tr>
<td>Comment 45, pg 81</td>
<td>Please use bold to indicate the significant ones</td>
<td>Now on pg 83-5</td>
<td>Changes made table 5a,b,c</td>
</tr>
<tr>
<td>Comment 46, pg 81</td>
<td>I don’t understand how the ORs can be so different between the first column and the last. These classifications must be almost the same??</td>
<td>Now on pg 84</td>
<td>The classifications are not the same – Farm Group/Town group refers to current residence which is different to history of ever living on a farm. Table 1 shows that 26 women (29%) in the Town Group actually previously lived on a farm. The results was checked and confirmed to be correct. The results are now presented to 3 decimals rather than rounded to 1 as done previously for many of the associations.</td>
</tr>
<tr>
<td>Comment 47, pg 85</td>
<td>What kind of models are we looking at? And why are they all so close to 1.00? Especially the chlorpyrifos results are unexpected, because we saw the biggest differences between the groups for this metabolite see table 3. These ORs should be presented per standard amount of increase in conc of the metabolite</td>
<td>Now on pg 84-85</td>
<td>The results presented in the table are ODs from logistic regression analysis where the outcomes were dichotomous (individual symptoms and dichotomous categories) and regression coefficients for linear regression analysis for continuous outcomes (symptom score). We agree that the results are strange in that they are all close to one but these results have been checked several times including by a statistician. The output is attached. The change in outcome per unit increase exposure is actually applicable to linear regression analysis and is applicable when both outcome and exposure are continuous. The latter is only applicable for the symptom score.</td>
</tr>
<tr>
<td>Comment 48, pg 85</td>
<td>You only present one of these groupings? Or am I missing something</td>
<td>Now on pg 83</td>
<td>The results of the relationship between Q16 symptoms and currently living or working on a farm (Farm Group / Non-Farm Group) and history of ever living on a farm (Table 5 a) are presented in the paper.</td>
</tr>
<tr>
<td>Comment 49, pg 85</td>
<td>But you are not testing the effects of poisoning, you use it as a confounder to correct for …???</td>
<td>Now on pg 86</td>
<td>The text in the last part of the 1st paragraph was changed as follows “The neurotoxic effect of pesticide exposure was found even when controlling for pesticide poisoning which have not previously been demonstrated with the Q16 questionnaire.”</td>
</tr>
</tbody>
</table>
Previous studies in Nicaragua and California have shown significantly higher positive symptoms responses in those that experienced poisoning compared to a non-poisoned group (Rosenstock et al 1991) Steenland et al 1994, Wesseling et al 2002). This is also the first study that has found an association between neurotoxicity and pesticide exposure only in women.

<table>
<thead>
<tr>
<th>Comment</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>50, pg 86</td>
<td>But you saw a significant difference between the farm and town group!!??</td>
</tr>
<tr>
<td>51, pg 86</td>
<td>Do you mean the town group? What are acute pesticides? Are these levels comparable to the low levels found in your study</td>
</tr>
<tr>
<td>52, pg 87</td>
<td>Like what? What could you have done better with a bigger budget</td>
</tr>
<tr>
<td>53, pg 87</td>
<td>Than what?</td>
</tr>
<tr>
<td>Comment 54, Examiners report</td>
<td>Discussion of the cross-sectional design of the study and comparing largely different groups (age, income and employment status)</td>
</tr>
</tbody>
</table>

The following sentences were added to the discussion section: paragraph 2 “A key limitation in this study is the cross-sectional design; consequently it cannot be established with certainty if the associations are the result of a temporal relationship between pesticide exposure and outcomes. A longitudinal design whereby pesticide exposure especially urinary pesticide metabolites and neurotoxic outcomes are measured repeatedly over time would be more powerful. With respect to the comparison of Q16 symptoms between the Farm Group and Town Group, the healthy worker commonly observed in cross-sectional studies may have resulted in farm workers affected by pesticides to move to towns and thereby reducing the level of neurotoxicity in the Farm Group. However, the study results show Q16 symptoms were significantly higher in the Farm Group (Table 5a) despite a possible health worker effect. Additionally, Q16 symptoms were significantly higher among women with a history of ever living and/or working on farm compared to those not (Table 5a). Furthermore sub-analyses excluding town women who had
previously lived or worked on farm from the analyses did not change the results found. Another important limitation in the study is the fact that age, income and employment status in the Farm Group and Town Group were different. These variables were not found to have strong associations with the Q16 symptoms in bivariate analysis and age and income were controlled for in multivariate analysis as they were included apriori. There might, however, have been residual confounding especially with income as the only indicator of socio-economic status.”

<table>
<thead>
<tr>
<th>Comment 55, Examiners Report</th>
<th>More structured literature review focussing solely focussing on pesticide exposure of women and neurologic symptoms of women is clearly needed. Addressing reproductive health effects and health effects of children are not relevant to this thesis.</th>
<th>Now on pg 39-60</th>
<th>The literature review in Part B as well as Part C has been revised as suggested by the reviewer.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment 56, Examiners Report</td>
<td>Occupational exposure is hardly addressed at all in the analyses.</td>
<td>Now on pg 69</td>
<td>Please refer to response to Comment 23.</td>
</tr>
<tr>
<td>Comment 57, Examiners Report</td>
<td>Doubts whether logistic regression analysis is correct. Contradictions between bivariate analyses and multivariate analyses.</td>
<td>Now on pg 82</td>
<td>Please refer to response to Comment 44.</td>
</tr>
<tr>
<td>Comment 58, Examiners Report</td>
<td>Why was pesticide poisoning not analysed as an exposure factor rather than as a confounder.</td>
<td>Now on pg 163-5</td>
<td>Pesticide poisoning was not analysed as an exposure factor because this has been studied extensively in the literature and the study focussed on effects after controlling for poisoning. Analysis was conducted excluding previous poisoning, but this did not have any effect on the study.</td>
</tr>
<tr>
<td>Comment, Examiners Report</td>
<td>Original dissertation</td>
<td>Corrected/Revised dissertation</td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------------------</td>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>Comment 59, Examiners Report</td>
<td>It would be insightful to show the distributions of the metabolites in each group graphically (e.g. as box plots)</td>
<td>Box plots of the distributions of the metabolites has been included in an additional appendix.</td>
<td></td>
</tr>
<tr>
<td>Comment 60, Examiners Report</td>
<td>A more critical assessment of the results compared to that of other studies is warranted in the discussion section of the manuscript</td>
<td>A more critical assessment of the results compared to that of other studies has been included in the discussion section.</td>
<td></td>
</tr>
</tbody>
</table>

Examiner 2 – (Give name of examiner if known)

<table>
<thead>
<tr>
<th>Original dissertation</th>
<th>Corrected/Revised dissertation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Comment 1, Examiners Report</td>
<td>The literature review would have been more illuminating if it were more on the pesticides tested and not generalise to all pesticides.</td>
</tr>
<tr>
<td>2 Comment 2, Examiners Report</td>
<td>Compare urinary levels of pesticides with recent exposures</td>
</tr>
<tr>
<td>3 Comment 3, Examiners Report</td>
<td>Implications of pesticide half lives and their effect on levels must be included in the discussion.</td>
</tr>
<tr>
<td>Comment 4, Examiners Report</td>
<td>The abstract needs to be revised to make it clearer. More results should be included.</td>
</tr>
<tr>
<td>Comment 5, Examiners Report</td>
<td>Table 5b appears unnecessary.</td>
</tr>
</tbody>
</table>

Student signature: _________________________

Date: _________________________
. logistic tired dmp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
ote: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used

Logistic regression Number of obs = 160
 LR chi2(8) = 17.05
 Prob > chi2 = 0.0295
Log likelihood = -100.56933 Pseudo R2 = 0.0782

--
tired | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
dmp_cr | .9994092 .0032436 -0.18 0.856 .9930722 1.005787
age | .9684146 .0172377 -1.80 0.071 .9352118 1.002796
levledu | 1.044191 .0711768 0.63 0.526 .9136047 1.193444
hous_inc | .9998267 .0000697 -2.49 0.013 .9996902 .9999633
drink | .4749821 .1935953 -1.83 0.068 .2136686 1.055878
smoke | 1.345191 .5337471 0.75 0.455 .6180772 2.92769
pest_pois | 1.981419 1.760936 0.77 0.442 .3471305 11.30993
lang12 | .6438085 .477134 -0.59 0.552 .1506334 2.751643
 drugs | (omitted)
 _cons | 11.6814 15.94855 1.80 0.072 .8041817 169.6819
--

. logistic hart_palp dmp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used

Logistic regression Number of obs = 160
 LR chi2(8) = 10.52
 Prob > chi2 = 0.2304
Log likelihood = -102.42211 Pseudo R2 = 0.0488

--
hart_palp | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
dmp_cr | .9956386 .0036047 -1.21 0.227 .9885999 1.002727
age | .9615507 .0177479 -2.12 0.034 .9273872 .9969272
levledu | .9769647 .0662232 -0.34 0.731 .8554222 1.115777
hous_inc | .9999363 .0000659 -0.97 0.334 .9998071 1.000066
drink | .6298993 .2478933 -1.17 0.240 .2912632 1.362249
smoke | .8728359 .3389064 -0.23 0.815 .4077809 1.884265
pest_pois | 3.020262 2.505184 1.33 0.183 .5943026 15.34905
lang12 | 1.636818 1.123830 0.72 0.473 .4261579 6.28681
 drugs | (omitted)
 _cons | 11.6814 15.94855 1.80 0.072 .8041817 169.6819
--
. logistic tingling dmp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used

Logistic regression Number of obs = 160
 LR chi2(8) = 9.39
 Prob > chi2 = 0.3102
Log likelihood = -100.07847 Pseudo R2 = 0.0448

--
tingling | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
dmp_cr | .9965023 .0034996 -1.00 0.318 .9896668 1.003385
age | .987508 .0177975 -0.70 0.485 .9532345 1.023014
levledu | 1.074313 .0769078 1.00 0.317 .9336732 1.236136
hous_inc | .9999827 .0000637 -0.27 0.786 .9998579 1.000108
drink | .6581469 .2633639 -1.05 0.296 .3004044 1.441914
smoke | .9155723 .3653272 -0.22 0.825 .4188421 2.001405
pest_pois | 2.858351 2.364232 1.27 0.204 .5650148 14.4601
lang12 | .4196463 .2855178 -1.28 0.202 .1105975 1.592288
drugs | 1 (omitted)
 _cons | 1.737909 2.349732 0.41 0.683 .1227902 24.59747
--

. logistic irritated dmp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used

Logistic regression Number of obs = 160
 LR chi2(8) = 6.44
 Prob > chi2 = 0.5977
Log likelihood = -103.59708 Pseudo R2 = 0.0302

--
irritated | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-----------+--
dmp_cr | .9971822 .0033328 -0.84 0.399 .9906714 1.003736
age | .9983126 .0173183 -0.10 0.922 .9649398 1.032844
levledu | .9569714 .0636128 -0.66 0.508 .840073 1.090137
hous_inc | .9999732 .0000632 -0.42 0.672 .9998493 1.000097
drink | .8821513 .3420242 -0.32 0.746 .4128821 1.886112
smoke | .5874192 .2277540 -1.37 0.170 .2747392 1.255962
pest_pois | 2.507793 2.066678 1.12 0.265 .4986716 12.61156
lang12 | .7040923 .4617478 -0.53 0.593 .1947182 2.545966
drugs | 1 (omitted)
 _cons | 2.30416 2.968101 0.65 0.517 .1845179 28.77311
--

. logistic depress dmp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
Logistic regression Number of obs = 162
 LR chi2(9) = 3.28
 Prob > chi2 = 0.9521
Log likelihood = -109.85811 Pseudo R2 = 0.0147

--
 depress | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 dmp_cr | 1.002609 .0029371 0.89 0.374 .9968683 1.008382
 age | .9996396 .0168741 -0.02 0.983 .967108 1.033265
 levledu | .9820903 .0638582 -0.28 0.781 .8645775 1.115575
 hous_inc | .9999401 .0000625 -0.96 0.338 .9998177 1.000063
 drink | .7590968 .2884107 -0.73 0.468 .3604891 1.598461
 smoke | 1.092828 .4125738 0.24 0.814 .5214337 2.290365
 pest_pois | 1.620492 1.319498 0.59 0.553 .3285105 7.993636
 lang12 | .7737878 .5078362 -0.39 0.696 .2137859 2.800688
 drugs | 1.178348 1.762643 0.11 0.913 .0628052 22.10812
 _cons | 1.477462 1.855967 0.31 0.756 .1259647 17.32941
--

. logistic pr_concen dmp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
Logistic regression Number of obs = 162
 LR chi2(9) = 7.48
 Prob > chi2 = 0.5876
Log likelihood = -87.905238 Pseudo R2 = 0.0408

--
 pr_concen | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 dmp_cr | 1.003778 .0031913 1.19 0.236 .9975423 1.010052
 age | .9669799 .0205785 -1.58 0.115 .9274772 1.008165
 levledu | .9995171 .0784232 -0.01 0.995 .8570458 1.165672
 hous_inc | .9999710 .0000725 -0.40 0.689 .9998288 1.000113
 drink | .7881968 .3515724 -0.53 0.594 .3288207 1.88934
 smoke | 1.636832 .7196314 1.12 0.262 .6914711 3.847663
 pest_pois | 1.498268 1.367343 0.44 0.658 .2504783 8.962086
 lang12 | 2.049337 1.836090 0.80 0.423 .3539851 11.86429
 drugs | 2.22638 3.391616 0.53 0.599 .1124341 44.08596
 _cons | .4473848 .6899715 -0.52 0.602 .0217736 9.192469
--

. logistic short_mem dmp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used
Logistic regression Number of obs = 160
 LR chi2(8) = 6.58
 Prob > chi2 = 0.5828
Log likelihood = -102.56135 Pseudo R2 = 0.0311

--
| Variable | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------|------------|-----------|------|------|---------------------|
| dmp_cr | 1.000709 | .0031825 | 0.22 | 0.824| .9944909 1.006966 |
| age | .9803461 | .0176814 | -1.10| 0.271| .9462965 1.015621 |
| levledu | 1.072287 | .0755665 | 0.99 | 0.322| .9339527 1.231111 |
| hous_inc | .9999199 | .0000668 | -1.20| 0.230| .999789 1.000051 |
| drink | .7589887 | .3004193 | -0.70| 0.486| .3493951 1.648746 |
| smoke | 1.168177 | .4577719 | 0.40 | 0.692| .541938 2.51807 |
| pest_pois | 2.661744 | 2.187669 | 1.19 | 0.234| .5315814 13.32793 |
| lang12 | 1.504862 | 1.031184 | 0.60 | 0.551| .3928467 5.76461 |
| drugs | 1 (omitted)| | | | |
| _cons | .6145163 | .8136728 | -0.37| 0.713| .0458637 8.233755 |

Logistic regression
Number of obs = 160
LR chi2(8) = 9.67
Prob > chi2 = 0.2888
Log likelihood = -80.470434
Pseudo R2 = 0.0567

| Variable | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------|------------|-----------|------|------|---------------------|
| dmp_cr | .997942 | .004148 | -0.50| 0.620| .9898451 1.006105 |
| age | .9616775 | .0221082 | -1.70| 0.089| .891908 1.006 |
| levledu | 1.055135 | .092315 | 0.61 | 0.540| .8888637 1.252508 |
| hous_inc | .9999496 | .0000805 | -0.63| 0.531| .9997917 1.000107 |
| drink | .7891342 | .3684949 | -0.51| 0.612| .3159896 1.970738 |
| smoke | 1.57139 | .739544 | 0.96 | 0.337| .6245519 3.95366 |
| pest_pois | 1.473725 | 1.373987 | 0.42 | 0.677| .2370403 9.16243 |
| lang12 | .368944 | .2666732 | -1.38| 0.168| .0895064 1.521196 |
| drugs | 1 (omitted)| | | | |
| _cons | .2113958 | 3.400929 | 0.47 | 0.642| .0902997 49.48877 |

Logistic regression
Number of obs = 160
LR chi2(8) = 7.57
Prob > chi2 = 0.4770
Log likelihood = -30.860775
Pseudo R2 = 0.1092

| Variable | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------|------------|-----------|------|------|---------------------|
| dmp_cr | 1.0008912 | .0056852 | 1.57 | 0.115| .99783 1.020116 |
| age | .9747042 | .0406124 | -0.61| 0.539| .8982688 1.057644 |
levledu | 1.123532 1.913711 0.68 0.494 0.8046379 1.568811
hous_inc | 0.9998224 0.001671 -1.06 0.288 0.9994949 1.00015
drink | 1.285418 1.201543 0.27 0.788 0.2057713 8.029784
smoke | 2.851127 2.6491 1.13 0.259 0.4614585 17.61583
pest_pois | 2.851893 3.695752 0.81 0.419 0.2249396 36.15768
lang12 | 8.366935 24.17418 0.74 0.462 0.2057713 2409.362
drugs | 1 (omitted)
_cons | 0.0028127 0.0108463 -1.52 0.128 1.47e-06 5.389854

logistic reading dmp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression

Number of obs = 162
LR chi2(9) = 7.07
Prob > chi2 = 0.6294
Log likelihood = -82.275204 Pseudo R2 = 0.0412

| reading | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------|------------|-----------|------|-------|----------------------|
| dmp_cr | 1.001956 | 0.0034076 | 0.57 | 0.566 | 0.9952993 1.008657 |
| age | 0.949237 | 0.0220071 | -2.25| 0.025 | 0.9070691 0.9933653 |
| levledu | 0.9201265 | 0.0738417 | -1.04| 0.300 | 0.7862076 1.076857 |
| hous_inc | 0.9999791 | 0.0000767 | -0.27| 0.786 | 0.9998287 1.00013 |
| drink | 0.7638852 | 0.3477434 | -0.59| 0.554 | 0.3129938 1.86432 |
| smoke | 0.8839617 | 0.3968123 | -0.27| 0.783 | 0.3667138 2.130785 |
| pest_pois | 0.8811789 | 1.007656 | -0.11| 0.912 | 0.0936889 8.287816 |
| lang12 | 0.9983451 | 0.7993881 | -0.00| 0.998 | 0.207832 4.795667 |
| drugs | 2.182979 | 3.28295 | 0.52 | 0.604 | 0.1145355 41.60629 |
| _cons | 4.509165 | 7.127702 | 0.95 | 0.341 | 0.2035118 99.90856 |

logistic fam_mem dmp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression

Number of obs = 162
LR chi2(9) = 10.81
Prob > chi2 = 0.2888
Log likelihood = -84.006979 Pseudo R2 = 0.0605

| fam_mem | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------|------------|-----------|------|-------|----------------------|
| dmp_cr | 0.996974 | 0.0040299 | -0.75| 0.453 | 0.9891066 1.004904 |
| age | 1.018893 | 0.0207553 | 0.92 | 0.358 | 0.9790147 1.060396 |
| levledu | 1.220087 | 0.080562 | 2.25 | 0.025 | 1.025663 1.451365 |
| hous_inc | 0.9998664 | 0.0000849 | -1.57| 0.116 | 0.9996999 1.000033 |
| drink | 0.6663702 | 0.3063327 | -0.88| 0.377 | 0.2706545 1.64065 |
| smoke | 2.062276 | 0.97868 | 1.53 | 0.127 | 0.8135759 5.227519 |
| pest_pois | 0.9106319 | 0.8347579 | -0.10| 0.919 | 0.1510301 5.490629 |
| lang12 | 0.753186 | 0.5561633 | -0.38| 0.701 | 0.1771589 3.20215 |
| drugs | 5.475342 | 8.399141 | 1.11 | 0.268 | 0.2708135 110.7004 |
| _cons | 0.054361 | 0.0851098 | -1.86| 0.063 | 0.002527 1.169401 |

Logistic regression

Number of obs = 162

LR chi2(9) = 20.27
Prob > chi2 = 0.0163

Log likelihood = -92.271632 Pseudo R2 = 0.0990

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------|------------|-----------|-------|------|----------------------|
| chest | .9968391 | .003829 | -0.82| 0.410| .9893626 1.004372 |
| dmp_cr | | | | | |
| age | .989076 | .0189896 | -0.57| 0.567| .9525486 1.027004 |
| levledu| 1.08662 | .0811041 | 1.11 | 0.266| .9387398 1.257797 |
| hous_inc| .9997263 | .0009049 | -2.88 | 0.004| .9995403 .9999124 |
| drink | 1.386896 | .5871781 | 0.77 | 0.440| .6048754 3.179962 |
| smoke | .6649762 | .2792158 | -0.97 | 0.331| .2920091 1.514313 |
| pest_pois| 5.089879 | 4.571155 | 1.81 | 0.070| .875496 29.59107 |
| lang12 | 1.158573 | .8251837 | 0.21 | 0.836| .2868531 4.679368 |
| drugs | 1.164263 | 1.770137 | 0.10 | 0.920| .0591412 22.91986 |
| _cons | .8017411 | 1.157096 | -0.15 | 0.878| .0473757 13.5679 |

Logistic regression

Number of obs = 160

LR chi2(8) = 13.62
Prob > chi2 = 0.0923

Log likelihood = -78.49718 Pseudo R2 = 0.0798

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------|------------|-----------|-------|------|----------------------|
| notes | .9968391 | .003829 | -0.82| 0.410| .9893626 1.004372 |
| dmp_cr | | | | | |
| age | .989076 | .0189896 | -0.57| 0.567| .9525486 1.027004 |
| levledu| 1.08662 | .0811041 | 1.11 | 0.266| .9387398 1.257797 |
| hous_inc| .9997263 | .0009049 | -2.88 | 0.004| .9995403 .9999124 |
| drink | 1.386896 | .5871781 | 0.77 | 0.440| .6048754 3.179962 |
| smoke | .6649762 | .2792158 | -0.97 | 0.331| .2920091 1.514313 |
| pest_pois| 8.919122 | 7.760794 | 2.51 | 0.012| 1.620565 49.08829 |
| lang12 | 1.164263 | 1.770137 | 0.10 | 0.920| .0591412 22.91986 |
| drugs | 1 (omitted)| | | | |
| _cons | .8017411 | 1.157096 | -0.15 | 0.878| .0473757 13.5679 |

Logistic regression

Number of obs = 155

LR chi2(8) = 3.65
Logistic regression Number of obs = 160
 LR chi2(8) = 6.90
 Prob > chi2 = 0.5475
Log likelihood = -94.288273 Pseudo R2 = 0.0353
--
q16_head | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
dmp_cr | .999052 .003184 -0.30 0.766 .992831 1.005312
 age | .989621 .018128 -0.57 0.569 .954722 1.025798
levledu | 1.0565 .074601 0.78 0.436 .919971 1.213336
hous_inc | .999874 .000065 -1.94 0.052 .999748 1.000001
 drink | 1.2278 .509567 0.49 0.621 .544355 2.769489
 smoke | 1.0258 .426491 0.06 0.951 .456649 2.309222
pest_pois | 2.3219 2.60891 0.75 0.453 .256722 21.00138
lang12 | 1.5577 1.07569 0.64 0.521 .402435 6.029607
 drugs | 1 (omitted)
 _cons | 2.0341 2.75315 0.52 0.600 .143304 28.8721
--

. logistic less_sex dmp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used

Logistic regression Number of obs = 160
 LR chi2(8) = 8.46
 Prob > chi2 = 0.3898
Log likelihood = -103.03303 Pseudo R2 = 0.0394
--
```
less_sex | Odds Ratio   Std. Err.      z    P>|z|   [95% Conf. Interval]
         +------------------------------------------------------
     dmp_cr |   .9929399   .0039203 -1.79  0.073  .985286   1.000653
       age |   1.002142  .0176624  0.12  0.903  .997697   1.006584
   levledu |   1.074021  .0735817  1.04  0.297  .939071   1.228374
  hous_inc |   .999916   .000066  -1.27  0.204  .999786   1.000045
      drink |   1.246853  .4935172  0.56  0.577  .573958   2.708504
      smoke |   1.063023  .4147327  0.16  0.876  .494824   2.283675
    pest_pois |   1.762409  1.445656  0.69  0.490  .353093   8.796785
     lang12 |   1.552782  1.076175  0.63  0.525  .399185   6.040133
         drugs |    1 (omitted)
      _cons |   .3251761  .4348127 -0.84  0.401  .023655   4.470047
------------------------------------------------------

. logistic q16_score dmp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
  note: pest_pois != 0 predicts success perfectly
       pest_pois dropped and 7 obs not used

  note: drugs != 0 predicts success perfectly
     drugs dropped and 2 obs not used

Logistic regression
     Number of obs =        153
                   LR chi2(7) =       5.68
                  Prob > chi2 = 0.5780
Log likelihood = -52.580074    Pseudo R2 = 0.0512

------------------------------------------------------
q16_score | Odds Ratio   Std. Err.      z    P>|z|   [95% Conf. Interval]
         +------------------------------------------------------
     dmp_cr |   1.003378   .0051623  0.66  0.512  .993310   1.013547
       age |   .9544364  .0243007 -1.83  0.067  .907976   1.003273
   levledu |   .9656486  .0979435 -0.34  0.730  .791559   1.178025
  hous_inc |   .9999034  .0000797 -1.21  0.226  .999747   1.000060
      drink |   .6348214  .3938882 -0.73  0.464  .188150   2.141891
      smoke |   1.109438  .6778448  0.17  0.865  .334927   3.674265
    pest_pois |    1 (omitted)
     lang12 |   1.189704  1.236063  0.17  0.867  .155263   9.116117
         drugs |    1 (omitted)
      _cons |   80.56078  163.684  2.16  0.031  1.501917  4321.17
------------------------------------------------------

. logistic q16_score50 dmp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
  note: pest_pois != 0 predicts success perfectly
         pest_pois dropped and 7 obs not used

  note: drugs != 0 predicts success perfectly
     drugs dropped and 2 obs not used

Logistic regression
     Number of obs =        153
                   LR chi2(7) =       6.89
                  Prob > chi2 = 0.4405
Log likelihood = -101.66059    Pseudo R2 = 0.0328
```
. logistic q16_score75 dmp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression Number of obs = 162
LR chi2(9) = 13.50
Prob > chi2 = 0.1411
Log likelihood = -83.793093 Pseudo R2 = 0.0746

--
q16_score75 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+---
 dmp_cr | 1.000803 .003641 0.22 0.825 .9936918 1.007964
 age | .9813106 .0209173 -0.89 0.376 .941158 1.023176
 levledu | 1.11092 .0954915 1.22 0.221 .9386761 1.314769
 hous_inc | .9998488 .00009 -1.68 0.093 .9996723 1.000025
 drink | 1.252558 .5785353 0.49 0.626 .5065733 3.097087
 smoke | 1.311436 .600925 0.59 0.554 .5342082 3.219466
 pest_pois | 3.921039 3.322226 1.61 0.107 .7450638 20.63521
 lang12 | .5224755 .3796597 -0.89 0.372 .125758 2.170682
 drugs | 2.037153 3.088126 0.47 0.639 .1043963 39.7523
 _cons | .5141825 .7973292 -0.43 0.668 .024614 10.74121
--

. logistic tired dmtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used

Logistic regression Number of obs = 160
LR chi2(8) = 17.32
Prob > chi2 = 0.0269
Log likelihood = -100.43703 Pseudo R2 = 0.0794

--
tired | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+---
 dmtp_cr | 1.001182 .0021672 0.55 0.585 .9969431 1.005438
 age | .9675488 .0172593 -1.85 0.064 .9343057 1.001975
 levledu | 1.043902 .0712333 0.63 0.529 .9132207 1.193283
--
hous_inc | .999821 .0000698 -2.56 0.010 .9996841 .9999579
drink | .4569583 .1879043 -1.90 0.057 .2041065 1.023049
smoke | 1.349314 .5347699 0.76 0.450 .6205244 2.934049
pest_pois | 1.991945 1.775198 -0.77 0.439 .3472934 11.42505
lang12 | .6245403 .4660822 -0.63 0.528 .1446523 2.69647
drugs | 1 (omitted)
_cons | 11.87137 16.20007 1.81 0.070 .8183175 172.2184

--
.logistic hart_palp dmtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used

Logistic regression Number of obs = 160
 LR chi2(8) = 9.07
 Prob > chi2 = 0.3361
Log likelihood = -103.14521 Pseudo R2 = 0.0421

__
hart_palp | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-----------+---
 dmtp_cr | .9991241 .0022861 -0.38 0.702 .9946535 1.003615
 age | .9617703 .0176956 -2.12 0.034 .9277056 .9970859
 levledu | .9813947 .0664955 -0.28 0.782 .8593491 1.120773
 hous_inc | .9999293 .0000655 -1.08 0.280 .9998009 1.000058
 drink | .6242005 .2467393 -1.19 0.233 .2876431 1.354548
 smoke | .890561 .3437554 -0.30 0.764 .4179275 1.897695
pest_pois | 3.160736 2.622843 -1.39 0.165 .6215039 16.07431
 lang12 | 1.735433 1.194398 0.80 0.423 .4503764 6.687138
 drugs | 1 (omitted)
 _cons | 3.447986 4.527163 0.94 0.346 .2629956 45.2046
__
. logistic irritated dmtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs ! = 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 160
LR chi2(8) = 5.92
Prob > chi2 = 0.6562
Log likelihood = -103.85852 Pseudo R2 = 0.0277

irritated | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
dmtp_cr | 1.001002 .002093 0.48 0.632 .9969082 1.005113
age | .9974505 .017275 -0.15 0.883 .9641603 1.03189
levledu | .9575181 .0636641 -0.65 0.514 .8405271 1.097073
hous_inc | .9999637 .0000634 -0.57 0.566 .9998394 1.000088
drink | .8395775 .328419 -0.45 0.655 .3900271 1.807285
smoke | .5927357 .229337 -1.35 0.176 .2776645 1.265324
pest_pois | 2.54543 2.094879 1.14 0.256 .5072543 12.77311
lang12 | .7017326 .4601115 -0.54 0.589 .1941138 2.536804
drugs | 1 (omitted)
_cons | 2.096153 2.675069 0.58 0.562 .1718449 25.56874

. logistic depress dmtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression Number of obs = 162
LR chi2(9) = 2.49
Prob > chi2 = 0.9812
Log likelihood = -110.25384 Pseudo R2 = 0.0112

depress | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
dmtp_cr | 1.000068 .0020551 0.03 0.973 .9960486 1.004104
age | 1.000299 .0168749 0.02 0.986 .9677656 1.033926
levledu | .9821246 .0636946 -0.28 0.778 .8648939 1.115245
hous_inc | .999484 .0000614 -0.85 0.397 .9998276 1.000682
drink | .7742091 .2963965 -0.67 0.504 .3655831 1.639572
smoke | 1.086011 .4089445 0.22 0.827 .5191679 2.271745
pest_pois | 1.571939 1.277054 0.56 0.578 .3198262 7.726054
lang12 | .7602157 .4981242 -0.41 0.683 .3098763 19.39237
drugs | 1.437441 2.115065 0.65 0.517 .0803752 25.70734
_cons | 1.594497 1.993047 0.37 0.709 .1376138 18.47505

. logistic pr_concen dmtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
Logistic regression
Number of obs = 162
LR chi2(9) = 6.28
Prob > chi2 = 0.7113
Log likelihood = -88.501875 Pseudo R2 = 0.0343

| pr_concen | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------|------------|-----------|-------|--------|---------------------|
| dmtp_cr | 1.000935 | .0023552 | 0.40 | 0.691 | .99633 1.005562 |
| age | .9685427 | .020413 | -1.52 | 0.129 | .9293491 1.009389 |
| levledu | .9986937 | .0778707 | -0.02 | 0.987 | .8571601 1.163597 |
| hous_inc | .9999807 | .0000711 | -0.27 | 0.786 | .9998414 1.00012 |
| drink | .7952436 | .3581522 | -0.51 | 0.611 | .3289624 1.922446 |
| smoke | 1.600425 | .7017033 | 1.07 | 0.283 | .6776846 3.779575 |
| pest_pois | 1.40989 | 1.280224 | 0.38 | 0.705 | .2378306 8.358008 |
| lang12 | 1.900935 | .1687107 | 0.72 | 0.469 | .3338213 10.82482 |
| drugs | 3.10082 | .4629575 | 0.76 | 0.448 | .1661954 57.85412 |
| _cons | .51012 | .7864778 | -0.44 | 0.662 | .0248503 10.4716 |

Logistic regression
Number of obs = 160
LR chi2(8) = 6.61
Prob > chi2 = 0.5792
Log likelihood = -102.54478 Pseudo R2 = 0.0312

| short_mem | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------|------------|-----------|-------|--------|---------------------|
| dmtp_cr | 1.000624 | .002163 | 0.29 | 0.773 | .9963934 1.004872 |
| age | .9802278 | .0176708 | -1.11 | 0.268 | .9461983 1.015481 |
| levledu | 1.071166 | .0754093 | 0.98 | 0.329 | .9331096 1.229648 |
| hous_inc | .9999203 | .0000664 | -1.20 | 0.230 | .9997902 1.00005 |
| drink | .7500252 | .3000255 | -0.72 | 0.472 | .5407674 2.512709 |
| smoke | 1.165672 | .4567994 | 0.39 | 0.696 | .5047674 2.512709 |
| pest_pois | 2.623458 | 2.154191 | 1.17 | 0.240 | .5247224 13.11652 |
| lang12 | 1.473609 | 1.010068 | 0.57 | 0.735 | .3845351 5.647138 |
| drugs | 1 (omitted)| | | | |
| _cons | .6399214 | .8431724 | -0.34 | 0.735 | .0483691 8.466145 |

Logistic regression
Number of obs = 160
LR chi2(8) = 10.68
Prob > chi2 = 0.2203
Log likelihood = -79.964912 Pseudo R2 = 0.0626

.L logistic short_mem dmtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

.Logistic regression
Number of obs = 160
LR chi2(8) = 6.61
Prob > chi2 = 0.5792
Log likelihood = -102.54478 Pseudo R2 = 0.0312

.Logistic regression
Number of obs = 160
LR chi2(8) = 10.68
Prob > chi2 = 0.2203
Log likelihood = -79.964912 Pseudo R2 = 0.0626
| perspire | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] |
|-------------+--|
dmtp_cr	1.002806 .0024237 1.16 0.246 .9980666 1.007567
age	0.9609802 .0219137 -1.75 0.081 .9189757 1.004905
levledu	1.057631 .0937178 0.63 0.527 .8890133 1.25823
hous_inc	0.9999372 .0000824 -0.76 0.445 .9997758 1.000099
drink	0.7133716 .3408599 -0.71 0.480 .2796396 1.819839
smoke	1.589904 .7537032 0.98 0.328 .6278469 4.026131
pest_pois	1.413158 1.342655 0.63 0.527 .8890133 1.25823
lang12	0.3614068 .2607534 -0.76 0.445 .2796396 1.819839
drugs	1 (omitted)
_cons	1.866678 2.966618 0.39 0.695 .0828509 42.05732

.logistic button dmtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression

| button | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] |
|-------------+--|
dmtp_cr	1.00311 .0036067 0.86 0.388 .9960661 1.010204
age	0.980657 .0399423 -0.48 0.632 .9054434 1.062181
levledu	1.106257 .1829878 -0.61 0.542 .7699398 1.52987
hous_inc	0.999851 .0001649 -0.90 0.366 .9995279 1.000174
drink	1.301341 1.255255 0.97 0.328 .2008799 29.7505
smoke	2.53738 2.375677 0.99 0.320 .4049762 15.89797
pest_pois	2.444643 3.116911 0.70 0.480 .2008799 29.7505
lang12	6.027506 15.50833 0.70 0.480 .1548908 331.7186
drugs	1 (omitted)
_cons	0.0048067 .0174508 -1.47 0.142 3.90e-06 5.924939

.logistic reading dmtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression

| reading | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] |
|-------------+--|
dmtp_cr	1.005925 .0023671 2.51 0.012 1.001296 1.010575
age	0.943051 .0222965 -2.48 0.013 .9003477 .9877797
levledu	0.9060327 .0752255 -1.19 0.235 .7699647 1.066147

Logistic regression

| button | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] |
|-------------+--|
dmtp_cr	1.00311 .0036067 0.86 0.388 .9960661 1.010204
age	0.980657 .0399423 -0.48 0.632 .9054434 1.062181
levledu	1.106257 .1829878 -0.61 0.542 .7699398 1.52987
hous_inc	0.999851 .0001649 -0.90 0.366 .9995279 1.000174
drink	1.301341 1.255255 0.97 0.328 .2008799 29.7505
smoke	2.53738 2.375677 0.99 0.320 .4049762 15.89797
pest_pois	2.444643 3.116911 0.70 0.480 .2008799 29.7505
lang12	6.027506 15.50833 0.70 0.480 .1548908 331.7186
drugs	1 (omitted)
_cons	0.0048067 .0174508 -1.47 0.142 3.90e-06 5.924939

.logistic reading dmtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression

| reading | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] |
|-------------+--|
dmtp_cr	1.005925 .0023671 2.51 0.012 1.001296 1.010575
age	0.943051 .0222965 -2.48 0.013 .9003477 .9877797
levledu	0.9060327 .0752255 -1.19 0.235 .7699647 1.066147
. logistic fam_mem dmtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression Number of obs = 162
LR chi2(9) = 11.45
Prob > chi2 = 0.2464
Log likelihood = -83.690016 Pseudo R2 = 0.0640

 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 fam_mem | .9968106 .0030833 -1.03 0.302 .9907857 1.002872
 dmtp_cr | 1.001168 .0023402 0.50 0.618 .9965916 1.005765
 age | 1.017952 .0208456 0.87 0.385 .9779041 1.059639
 levledu | 1.090058 .0816649 1.15 0.250 .9411944 1.262467
 hous_inc| .9998672 .0000838 -1.59 0.113 .999703 1.000031
 drink | .7090246 .326998 -0.75 0.456 .287139 1.750776
 smoke | 2.03405 .9582137 1.51 0.132 .8079264 5.120959
 pest_pois| .9959468 .0156895 1.51 0.132 .8079264 5.120959
 lang12 | .804145 .5985339 -0.29 0.770 .1869717 3.458541
 drugs | 3.585246 5.45286 0.84 0.401 .1819335 70.65215
 _cons | .0524652 .0815637 -1.90 0.058 .0024921 1.104513

--

. logistic chest dmtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression Number of obs = 162
LR chi2(9) = 19.80
Prob > chi2 = 0.0192
Log likelihood = -92.507256 Pseudo R2 = 0.0967

 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 chest | 1.001168 .0023402 0.50 0.618 .9965916 1.005765
 dmtp_cr | .9844446 .0188764 -0.61 0.543 .9521313 1.026143
 age | 1.090058 .0816649 1.15 0.250 .9411944 1.262467
 levledu | .9997132 .0000957 -3.00 0.003 .9995257 .9999008
 hous_inc| 1.314267 .560777 0.64 0.522 .5694939 3.033038
 drink | .6699191 .2809037 -0.96 0.339 .2945135 1.523841
 smoke | 5.25915 4.748987 1.84 0.066 .8959518 30.87069
 pest_pois| 1.180089 .8378786 0.23 0.816 .293461 4.745467
 lang12 | .9737159 1.441411 -0.02 0.986 .0535035 17.72077
 drugs | .6880886 .9756126 -0.26 0.792 .0427327 11.0797
 _cons | .0524652 .0815637 -1.90 0.058 .0024921 1.104513

--

. logistic notes dmtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts failure perfectly
drugs dropped and 2 obs not used

Logistic regression

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|------------|-----------|------|------|---------------------|
| notes | | | | | |
| dmtp_cr | 1.004386 | 0.0024821 | 1.77 | 0.077| 0.9995328 1.009263 |
| age | 0.9466483 | 0.0221346 | -2.34| 0.019| 0.9042444 0.9910408 |
| levledu | 0.9880828 | 0.0847299 | -0.14| 0.889| 0.8352207 1.168922 |
| hous_inc | 0.9998828 | 0.0009198 | -1.28| 0.202| 0.9997029 1.000063 |
| drink | 0.4531499 | 0.2198598 | -1.63| 0.103| 0.1750874 1.172813 |
| smoke | 0.8410973 | 0.3964753 | -0.37| 0.714| 0.5838935 2.118773 |
| pest_pois| 9.006858 | 7.978868 | 2.48 | 0.013| 1.586803 51.12386 |
| lang12 | 0.8576667 | 0.647502 | -0.20| 0.839| 0.1952979 3.766514 |
| drugs | 1 (omitted)| | | | |
| _cons | 4.578635 | 7.275017 | 0.96 | 0.338| 0.2033563 103.0895 |

. logistic chek_door dmtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: pest_pois != 0 predicts success perfectly
pest_pois dropped and 7 obs not used

Logistic regression

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|------------|-----------|------|------|---------------------|
| chek_door| | | | | |
| dmtp_cr | 1.000891 | 0.0021534 | -0.05| 0.962| 0.9956866 1.004128 |
| age | 0.8771466 | 0.0175206 | -1.29| 0.197| 0.9434031 1.012097 |
| levledu | 0.9758969 | 0.0657352 | -0.36| 0.717| 0.8552008 1.113627 |
| hous_inc | 0.9999596 | 0.000625 | -0.65| 0.518| 0.999837 1.000082 |
| drink | 1.252208 | 0.48644 | 0.58 | 0.563| 0.5848089 2.681262 |
| smoke | 0.8180316 | 0.312065 | -0.53| 0.599| 0.387303 1.727784 |
| pest_pois| 1 (omitted)| | | | |
| lang12 | 1.273639 | 0.8999122 | 0.34 | 0.732| 0.318871 5.087188 |
| drugs | 0.8621701 | 1.270545 | -0.10| 0.920| 0.0479968 15.48724 |
| _cons | 1.856415 | 2.466471 | 0.47 | 0.641| 0.1373255 25.09568 |

. logistic q16_head dmtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used
Logistic regression Number of obs = 160
LR chi2(8) = 7.29
Prob > chi2 = 0.5058
Log likelihood = -94.093782 Pseudo R2 = 0.0373
--
 q16_head | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 dmtp_cr | 1.001594 .0023638 0.68 0.500 .9969721 1.006238
 age | .9882579 .0182369 -0.64 0.522 .9531528 1.024656
 levledu | 1.055018 .0743596 0.76 0.447 .9188941 1.211306
 hous_inc | .9998681 .0000647 -2.04 0.041 .9997414 .9999949
 drink | 1.166517 .4881322 0.37 0.713 .5136932 2.64898
 smoke | 1.032901 .4271188 0.08 0.938 .4592777 2.322963
pest_pois | 2.329787 2.615438 0.75 0.451 .2580775 21.03208
 lang12 | 1.495745 1.044216 0.58 0.564 .3807262 5.876275
 drugs | 1 (omitted)
 _cons | 2.082369 2.822932 0.54 0.588 .1460963 29.68083
--

.logistic less_sex dmtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 160
LR chi2(8) = 4.66
Prob > chi2 = 0.7929
Log likelihood = -104.93187 Pseudo R2 = 0.0217
--
 less_sex | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 dmtp_cr | .9996797 .00212 -0.15 0.880 .9955332 1.003843
 age | 1.001401 .0174196 0.08 0.936 .967835 1.036132
 levledu | 1.079076 .0737813 1.11 0.266 .9437379 1.233822
 hous_inc | .9999034 .0000661 -1.46 0.144 .9997739 1.000033
 drink | 1.183116 .4660522 0.43 0.669 .5466666 2.560543
 smoke | 1.079803 .4158267 0.20 0.842 .5076344 2.296878
pest_pois | 1.874395 1.534507 0.77 0.443 .3767121 9.32637
 lang12 | 1.603094 1.098264 0.69 0.491 .4186098 6.139155
 drugs | 1 (omitted)
 _cons | 2.082369 2.822932 0.54 0.588 .1460963 29.68083
--

.logistic q16_score dmtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: pest_pois != 0 predicts success perfectly
pest_pois dropped and 7 obs not used

note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 153
LR chi2(7) = 5.73
Prob > chi2 = 0.5722
Log likelihood = -52.55597 Pseudo R2 = 0.0517

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|------------|-----------|------|------|-----------------------|
| q16_score | | | | | |
| dmtp_cr | 1.002355 | .0034239 | 0.69 | 0.491| 0.9956668 - 1.009088 |
| age | 0.9532578 | .0244154 | -1.87| 0.062| 0.9065858 - 1.002333 |
| levledu | 0.9666814 | .0974724 | -0.34| 0.737| 0.7933321 - 1.177909 |
| hous_inc | 0.999071 | .0000787 | -0.18| 0.846| 0.9997529 - 1.000061 |
| drink | 0.6110807 | .3792769 | -0.79| 0.427| 0.1810451 - 2.062577 |
| smoke | 1.124638 | .6819914 | 0.19 | 0.846| 0.3426383 - 3.691388 |
| pest_pois | 1.092806 | 1.164806 | 0.08 | 0.934| 0.1352882 - 8.827265 |
| lang12 | 0.7086894 | .5003698 | -0.49| 0.626| 0.1776092 - 3.549075 |
| drugs | 1.092806 | 1.164806 | 0.08 | 0.934| 0.1352882 - 8.827265 |
| _cons | 2.561978 | 3.435849 | 0.70 | 0.483| 0.184942 - 35.49075 |

.logistic q16_score50 dmtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: pest_pois != 0 predicts success perfectly
pest_pois dropped and 7 obs not used

note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression
Number of obs = 153
LR chi2(7) = 7.25
Prob > chi2 = 0.4036
Log likelihood = -101.48168 Pseudo R2 = 0.0345

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|------------|-----------|------|------|-----------------------|
| q16_score | | | | | |
| dmtp_cr | 1.001581 | .0021406 | 0.74 | 0.460| 0.997394 - 1.005785 |
| age | 0.9802168 | .0174907 | -1.12| 0.263| 0.9465282 - 1.015104 |
| levledu | 1.050291 | .0720123 | 0.72 | 0.474| 0.9182217 - 1.201355 |
| hous_inc | 0.9998918 | .0000669 | -1.62| 0.106| 0.9997607 - 1.00023 |
| drink | 0.7343125 | .2867239 | -0.79| 0.429| 0.3415994 - 1.578505 |
| smoke | 0.916197 | .3514207 | -0.23| 0.820| 0.4320143 - 1.94303 |
| pest_pois | 1.092806 | 1.164806 | 0.08 | 0.934| 0.1352882 - 8.827265 |
| lang12 | 0.7086894 | .5003698 | -0.49| 0.626| 0.1776092 - 3.549075 |
| drugs | 1.092806 | 1.164806 | 0.08 | 0.934| 0.1352882 - 8.827265 |
| _cons | 2.561978 | 3.435849 | 0.70 | 0.483| 0.184942 - 35.49075 |

.logistic q16_score75 dmtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
Logistic regression
Number of obs = 162
LR chi2(9) = 14.49
Prob > chi2 = 0.1060
Log likelihood = -83.301289 Pseudo R2 = 0.0800
| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------------|--------------|-----------|------|-------|----------------------|
| dmtp_cr | 1.002473 | .0023798 | 1.04 | 0.298 | 0.9978192 1.007148 |
| age | .9807217 | .0208106 | -0.92| 0.359 | .9407703 1.02237 |
| levledu | 1.110243 | .0960531 | 1.21 | 0.227 | .9370783 1.315406 |
| hous_inc | .9998406 | .0000915 | -1.74| 0.082 | .9996613 1.00002 |
| drink | 1.171955 | .5508215 | 0.34 | 0.736 | .466492 2.94427 |
| smoke | 1.302225 | .6008241 | 0.57 | 0.567 | .5271766 3.216738 |
| pest_pois | 3.854555 | 3.301346 | 1.58 | 0.115 | .719346 20.65431 |
| lang12 | .5030088 | .3665805 | -0.94| 0.346 | .1205704 2.098507 |
| drugs | 2.497215 | 3.729698 | 0.61 | 0.540 | .1337056 46.64039 |
| _cons | 12.31981 | 16.8596 | 1.84 | 0.067 | .842828 180.0815 |

. logistic tired dmtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
Note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression
Number of obs = 160
LR chi2(8) = 17.32
Prob > chi2 = 0.0269
Log likelihood = -100.43681
Pseudo R2 = 0.0794

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------------|--------------|-----------|------|-------|----------------------|
| dmtp_cr | .9988272 | .0021344 | -0.55| 0.583 | .9946525 1.003019 |
| age | .967614 | .192664 | -1.84| 0.065 | .9343575 1.002054 |
| levledu | 1.043531 | .0710612 | 0.63 | 0.531 | .9131485 1.192531 |
| hous_inc | .9998198 | .000007 | -1.85| 0.064 | .9996826 0.9999571 |
| drink | 1.371765 | .5464137 | 0.79 | 0.427 | 1.283784 2.994594 |
| smoke | 2.036749 | 1.817822 | 0.80 | 0.425 | .354185 11.71237 |
| pest_pois | 1.664626 | .4956918 | -0.55| 0.584 | .1540764 2.866953 |
| lang12 | 1.000221 | .0021357 | 1.04 | 0.300 | .9980341 1.006406 |

. logistic hart_palp dmtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
Note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression
Number of obs = 160
LR chi2(8) = 10.02
Prob > chi2 = 0.2637
Log likelihood = -102.67238
Pseudo R2 = 0.0465
. logistic tingling dmdtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 160
 LR chi2(8) = 8.36
 Prob > chi2 = 0.3995
Log likelihood = -100.59668 Pseudo R2 = 0.0399

--
tingling | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
dmdtp_cr | .9996206 .0021906 -0.17 0.863 .9953363 1.003923
age | .9871093 .0177438 -0.72 0.470 .9529376 1.022506
levledu | 1.07662 .0772357 1.03 0.303 .9354018 1.239159
hous_inc | .9999725 .0000638 -0.43 0.667 .9998475 1.000098
drink | .6437062 .2563948 -1.11 0.269 .29488 1.405174
smoke | .9320019 .3711009 -0.18 0.860 .4270598 2.033972
pest_pois | 2.948191 2.435865 1.31 0.191 .5838119 14.88807
lan12 | .4367986 .2975624 -1.22 0.224 .1149246 1.660158
drugs | 1 (omitted)
 _cons | 1.507661 2.025677 0.31 0.760 .1083025 20.9879
--

. logistic irritated dmdtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 160
 LR chi2(8) = 5.85
 Prob > chi2 = 0.6640
Log likelihood = -103.89374 Pseudo R2 = 0.0274

--
irritated | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
dmdtp_cr | 1.00084 .0021177 0.40 0.691 .9966984 1.005
age | .9986113 .0173073 -0.08 0.936 .9652594 1.033116
levledu | .9592238 .0637142 -0.63 0.531 .8421333 1.092595
hous_inc | .9999725 .0000638 -0.43 0.667 .9998475 1.000098
drink | .8676834 .33495 -0.37 0.713 .4071681 1.849051
 _cons | 2.388581 4.410129 0.54 0.588 .1163646 49.98022
--
. logistic depress dmdtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression Number of obs = 162
LR chi2(9) = 2.66
Prob > chi2 = 0.9761
Log likelihood = -110.16629 Pseudo R2 = 0.0119
--
 depress | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 dmdtp_cr | .9991247 .0020966 -0.42 0.676 .9950239 1.003242
 age | .9998429 .0168612 -0.01 0.993 .9673357 1.033443
 levledu | .9812635 .0636748 -0.29 0.771 .8640735 1.114347
 hous_inc | .9999449 .0000618 -0.89 0.373 .9998238 1.000066
 drink | .7723129 .2924357 -0.68 0.495 .3676939 1.622184
 smoke | 1.100431 .4159901 0.25 0.800 .5245511 2.308544
 pest_pois | 1.591751 1.294575 0.57 0.568 .323289 7.837173
 lang12 | .7792211 .5111027 -0.38 0.704 .2154492 2.81823
 drugs | 1.383517 2.032573 0.22 0.825 .0777061 24.63281
 _cons | 1.676501 2.104422 0.41 0.681 .1431978 19.62779
--

. logistic pr_concen dmdtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression Number of obs = 162
LR chi2(9) = 7.67
Prob > chi2 = 0.5672
Log likelihood = -87.806134 Pseudo R2 = 0.0419
--
 pr_concen | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-----------+--
 dmdtp_cr | .9968214 .0027274 -1.16 0.245 .9914901 1.002181
 age | .9675102 .0204902 -1.56 0.119 .9281723 1.008515
 levledu | .994448 .0777292 -0.07 0.944 .853229 1.159115
 hous_inc | .999725 .000072 -3.87 0.159 .9996774 1.000114
 drink | .7983214 .3568516 -0.68 0.495 .3324211 1.917198
 smoke | 1.671483 .7353756 1.17 0.243 .7056872 3.959054
 pest_pois | 1.477799 1.349088 0.43 0.669 .2469164 8.844648
 lang12 | 2.110405 1.875048 0.84 0.401 .3699069 12.04036
 drugs | 2.642773 3.934706 0.65 0.514 .1428052 48.90752
 _cons | .6019472 .9361122 -0.33 0.744 .0285641 12.68515
--

. logistic short_mem dmdtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used
Logistic regression Number of obs = 160
LR chi2(8) = 6.72
Prob > chi2 = 0.5667
Log likelihood = -102.48813 Pseudo R2 = 0.0318

+---+
| short_mem | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] |
|------------|--------------|-----------------|------|--------|---------------------------|
| dmdtp_cr | 1.000932 .002106 0.44 0.658 .9968125 1.005068 |
| age | .9809514 .0177307 -1.06 0.287 .9468082 1.016326 |
| levledu | 1.072923 .0756574 1.00 0.318 .9344283 1.231945 |
| hous_inc | .9999259 .0000661 -1.12 0.262 .9997964 1.000055 |
| drink | .7660594 .302604 -0.67 0.500 .3532044 1.661494 |
| smoke | 1.149339 .451738 0.35 0.723 .5319744 2.483166 |
| pest_pois | 2.611248 2.142672 1.17 0.242 .5228662 13.04084 |
| lang12 | 1.454614 .9988406 0.55 0.585 .3786629 5.587825 |
| drugs | 1 (omitted) |
| _cons | .5997955 .79482 -0.39 0.700 .0446717 8.053308 |
+---+

.logistic perspire dmdtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts failure perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 160
LR chi2(8) = 9.60
Prob > chi2 = 0.2942
Log likelihood = -80.505915 Pseudo R2 = 0.0563

+---+
| perspire | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] |
|------------|--------------|-----------------|------|--------|---------------------------|
| dmdtp_cr | .9989111 .0025642 -0.42 0.671 .9938979 1.00395 |
| age | .9613929 .0220414 -1.72 0.086 .9191487 1.005579 |
| levledu | 1.056809 .0926598 0.63 0.529 .8899467 1.254957 |
| hous_inc | .9999407 .0000813 -0.73 0.466 .9997813 1.0001 |
| drink | .7759969 .3622019 -0.54 0.587 .3108535 1.937154 |
| smoke | 1.609131 .7571761 1.01 0.312 .6398212 4.046914 |
| pest_pois | 1.501279 1.402405 0.43 0.664 .2406136 9.367052 |
| lang12 | .3900336 .2830256 -1.30 0.194 .0940659 1.617229 |
| drugs | 1 (omitted) |
| _cons | 1.973329 3.139823 0.43 0.669 .0872624 44.62434 |
+---+

.logistic button dmdtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts failure perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 160
LR chi2(8) = 6.69
Logistic Regression Output

Prob > chi2 = 0.5708
Log likelihood = -31.300135 Pseudo R2 = 0.0965

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------|------------|-----------|------|------|----------------------|
| button | | | | | |
| dmdtp_cr | 0.9937151 | 0.0067532 | -0.93| 0.354| 0.9805668 1.00704 |
| age | 0.9373298 | 0.040197 | -0.40| 0.688| 0.9080165 1.065754 |
| levledu | 1.106479 | 0.001647 | 0.62 | 0.538| 0.8018821 1.526777 |
| hous_inc| 0.9998366 | 0.0001647 | -0.99| 0.321| 0.999514 1.000159 |
| drink | 1.470658 | 1.396294 | 0.41 | 0.685| 0.2287449 9.45523 |
| smoke | 2.69781 | 2.498328 | 1.07 | 0.284| 0.4392884 16.56812 |
| pest_pois | 2.81383 | 3.53076 | 0.82 | 0.410| 0.2405583 32.91359 |
| lang12 | 8.378912 | 22.92395 | 0.78 | 0.437| 0.0392986 1786.481 |
| drugs | 1 (omitted)| | | | |
| _cons | 0.00442 | 0.0167003 | -1.43| 0.151| 2.69e-06 7.270201 |

Logistic regression, Number of obs = 162
LR chi2(9) = 6.77
Prob > chi2 = 0.6615
Log likelihood = -82.429385 Pseudo R2 = 0.0394

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------|------------|-----------|------|------|----------------------|
| reading | | | | | |
| dmdtp_cr | 0.9997408 | 0.0024863 | -0.10| 0.917| 0.9948796 1.004626 |
| age | 0.9496511 | 0.0220129 | -2.23| 0.026| 0.907472 0.9937908 |
| levledu | 0.9196756 | 0.0736039 | -1.05| 0.295| 0.78616 1.075867 |
| hous_inc| 0.9998366 | 0.0000761 | -0.22| 0.829| 0.9998344 1.000133 |
| drink | 0.77384 | 0.3518995 | -0.56| 0.573| 0.3173744 1.88682 |
| smoke | 0.8771501 | 0.3943945 | -0.29| 0.771| 0.363368 2.117391 |
| pest_pois | 0.8640073 | 0.986951 | -0.13| 0.898| 0.0920861 8.106632 |
| lang12 | 0.9829602 | 0.7852692 | -0.02| 0.983| 0.205365 4.704847 |
| drugs | 2.490443 | 3.729836 | 0.61 | 0.542| 0.1322714 46.89072 |
| _cons | 4.936632 | 7.830293 | 1.01 | 0.314| 0.2204388 110.5538 |

Logistic regression, Number of obs = 162
LR chi2(9) = 11.19
Prob > chi2 = 0.2630
Log likelihood = -83.818474 Pseudo R2 = 0.0626

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------|------------|-----------|------|------|----------------------|
| fam_mem | | | | | |
| dmdtp_cr | 1.002317 | 0.0023308 | 1.00 | 0.320| 0.9977595 1.006896 |
| age | 1.019252 | 0.0207294 | 0.94 | 0.348| 0.979422 1.060701 |
| levledu | 1.226355 | 0.1091818 | 2.29 | 0.022| 1.029993 1.460153 |
| hous_inc| 0.9998697 | 0.0000847 | -1.54| 0.124| 0.9997036 1.000036 |
. logistic chest dmdtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression Number of obs = 162
LR chi2(9) = 23.20
Prob > chi2 = 0.0058
Log likelihood = -90.806611 Pseudo R2 = 0.1133

 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
---+---
 dmdtp_cr | 1.004380 .0023679 1.85 0.064 .9997492 1.009031
 age | 0.991477 .0191619 -0.44 0.658 .9546226 1.029754
 levledu | 1.097180 .0832991 1.22 0.222 .9454833 1.273216
 hous_inc | 0.999735 .0000954 -2.77 0.006 .9995483 .9999224
 drink | 1.396365 .5952986 0.78 0.434 .6055004 3.220204
 smoke | 0.626450 .2672814 -1.10 0.273 .2714643 1.445641
 pest_pois| 5.231603 4.759360 1.82 0.069 .8795670 31.11721
 lang12 | 1.047352 .7448240 0.07 0.948 .2598729 4.221087
 drugs | 1.089137 1.612297 0.06 0.954 .0598428 19.82227
 _cons | 0.519411 .7469040 -0.46 0.649 .0310097 8.700107

. logistic notes dmdtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts failure perfectly
 drugs dropped and 2 obs not used

Logistic regression Number of obs = 160
LR chi2(8) = 13.90
Prob > chi2 = 0.0845
Log likelihood = -78.35844 Pseudo R2 = 0.0814

 notes | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
---------+---
 dmdtp_cr | 1.008552 .0026658 0.54 0.587 .9993409 1.003791
 age | 0.948727 .0222149 -2.25 0.025 .9061712 .9932826
 levledu | 0.991034 .0833908 -0.11 0.915 .8403569 1.168726
 hous_inc | 0.999897 .0000881 -1.17 0.240 .9997237 1.000069
 drink | 0.519636 .2432735 -1.40 0.162 .2075872 1.300765
 smoke | 0.866321 .4021170 -0.31 0.757 .3488031 2.151681
 pest_pois| 9.050379 7.933413 2.51 0.012 1.623744 50.44476
 lang12 | 0.961903 .7277476 -0.05 0.959 .2183418 4.237653
 drugs | (omitted)
 _cons | 4.438232 7.030289 0.94 0.347 .1990132 98.97786

. logistic chek_door dmdtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: pest_pois != 0 predicts success perfectly
pest_pois dropped and 7 obs not used

Logistic regression Number of obs = 155
 LR chi2(8) = 4.71
 Prob > chi2 = 0.7876
Log likelihood = -103.05572 Pseudo R2 = 0.0224

--
 chek_door | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 dmdtp_cr | .9972489 .0022918 -1.20 0.231 .9927671 1.001751
 age | .9750305 .0175848 -1.40 0.161 .941167 1.010112
 levledu | .9717223 .0657915 -0.42 0.672 .8509629 1.109619
 hous_inc_ | .9999507 .0000634 -0.78 0.436 .9998264 1.000075
 drink | 1.225081 .4734801 0.53 0.599 .5743612 2.613032
 smoke | .8482386 .3257358 -0.43 0.668 .3996174 1.800494
pest_pois | 1 (omitted)
 lang12 | 1.346575 .9479551 0.42 0.673 .338849 5.351248
 drugs | 1 (omitted)
 _cons | 2.285241 3.064349 0.62 0.538 .1650174 31.64711
--

. logistic q16_head dmdtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 160
 LR chi2(8) = 6.84
 Prob > chi2 = 0.5537
Log likelihood = -94.316976 Pseudo R2 = 0.0350

--
 q16_head | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 dmdtp_cr | .9995904 .0023247 -0.18 0.860 .9950458 1.004156
 age | .9891138 .0182127 -0.59 0.552 .9540552 1.025461
 levledu | 1.055963 .0746130 0.77 0.441 .9193983 1.212812
 hous_inc_ | .9998703 .0000647 -2.00 0.045 .9997435 .9999971
 drink | 1.216071 .5040198 0.47 0.637 .5397153 2.740014
 smoke | 1.034707 .4302682 0.08 0.935 .4579917 2.337639
pest_pois | 2.363604 2.654862 0.77 0.444 .2615072 21.36318
 lang12 | 1.582942 1.096922 0.66 0.507 .4070172 6.156264
 drugs | 1 (omitted)
 _cons | 2.030065 2.763478 0.52 0.603 .1408608 29.257
--

. logistic less_sex dmdtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used
Logistic regression

Number of obs = 160
LR chi2(8) = 7.51
Prob > chi2 = 0.4831

Log likelihood = -103.51031 Pseudo R2 = 0.0350

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------------|------------|-----------|-------|-------|---------------------|
| less_sex | | | | | |
| dmdtp_cr | 0.9961615 | 0.0024062 | -1.59 | 0.11 | 0.9914565 1.000889 |
| age | 0.999701 | 0.00174811 | -0.98 | 0.33 | 0.997521 1.000019 |
| levledu | 0.967648 | 0.074181 | 0.32 | 0.74 | 0.9404668 1.232136 |
| hous_inc | 0.99986 | 0.0000679 | -0.09 | 0.93 | 0.9997529 1.000009 |
| drink | 1.163813 | 0.4587408 | 0.04 | 0.96 | .5374826 2.520007 |
| smoke | 1.138119 | 0.4430038 | 0.33 | 0.74 | 0.5307185 2.440682 |
| pest_pois | 1.975598 | 1.627954 | 0.83 | 0.40 | 0.3928998 9.933797 |
| lang12 | 1.760839 | 1.2077 | 0.82 | 0.40 | 0.4591025 6.753514 |
| drugs | 1 (omitted)| | | | |
| _cons | 0.2996904 | 0.3934505 | -0.92 | 0.36 | 0.0228648 3.928063 |

. logistic q16_score dmdtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: pest_pois != 0 predicts success perfectly
pest_pois dropped and 7 obs not used

note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used

Logistic regression

Number of obs = 153
LR chi2(7) = 5.20
Prob > chi2 = 0.6362

Log likelihood = -52.820668 Pseudo R2 = 0.0469

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------------|------------|-----------|-------|-------|---------------------|
| q16_score | | | | | |
| dmdtp_cr | 0.9997982 | 0.0035639 | -0.06 | 0.95 | 0.9928374 1.006808 |
| age | 0.9554464 | 0.0243305 | -1.79 | 0.07 | 0.90893 1.004343 |
| levledu | 0.9680792 | 0.098802 | -0.32 | 0.75 | 0.7925696 1.182454 |
| hous_inc | 0.99991 | 0.0000799 | -1.13 | 0.26 | 0.9997533 1.000067 |
| drink | 1.163813 | 0.4587408 | 0.04 | 0.96 | .5374826 2.520007 |
| smoke | 1.138119 | 0.4430038 | 0.33 | 0.74 | 0.5307185 2.440682 |
| pest_pois | 1 (omitted)| | | | |
| lang12 | 1.211489 | 1.251131 | 0.19 | 0.85 | .1600535 9.170094 |
| drugs | 1 (omitted)| | | | |
| _cons | 83.52512 | 169.8704 | 2.18 | 0.03 | 1.551222 4.497.387 |

. logistic q16_score50 dmdtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: pest_pois != 0 predicts success perfectly
pest_pois dropped and 7 obs not used
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 153
LR chi2(7) = 6.71
Prob > chi2 = 0.4601
Log likelihood = -101.75211 Pseudo R2 = 0.0319

--
q16_score50 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
dmdtp_cr | .9999572 .0021273 -0.02 0.984 .9957964 1.004135
age | .9812507 .0175182 -1.06 0.289 .9475093 1.016194
levledu | 1.051668 .0719847 0.73 0.463 .9195363 1.202558
hous_inc | .9998967 .0000663 -1.56 0.119 .9997669 1.000027
drink | .7682609 .2957256 -0.68 0.493 .3612908 1.633656
smoke | .9132087 .3507159 -0.24 0.813 .4301975 1.938529
pest_pois | 1 (omitted)
lang12 | .7483356 .5269222 -0.41 0.681 .1882537 2.974741
drugs | 1 (omitted)
 _cons | 2.419927 3.25905 0.66 0.512 .1727594 33.89712
--

Logistic regression Number of obs = 162
LR chi2(9) = 13.46
Prob > chi2 = 0.1429
Log likelihood = -83.815763 Pseudo R2 = 0.0743

--
q16_score75 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
dmdtp_cr | 1.000121 .0023717 0.05 0.959 .9954839 1.004781
age | .9814905 .0209260 -0.88 0.381 .9413214 1.023374
levledu | 1.109932 .0951661 1.22 0.224 .9382396 1.313042
hous_inc | .9998519 .0000901 -1.64 0.100 .9996753 1.000028
drink | 1.25957 .5809036 0.50 0.617 .5100996 3.11021
smoke | 1.305305 .5995363 0.58 0.562 .5305775 3.211258
pest_pois | 3.879264 3.279812 1.60 0.109 .7397445 20.34309
lang12 | .5164191 .3768348 -0.91 0.365 .1235594 2.158385
drugs | 2.17663 3.241693 0.52 0.602 .1175101 40.31754
 _cons | 2.419927 3.25905 0.66 0.512 .1727594 33.89712
--

Logistic regression Number of obs = 160
LR chi2(8) = 17.64
Prob > chi2 = 0.0241
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used
Logistic regression Number of obs = 160
LR chi2(8) = 9.16
Prob > chi2 = 0.3289
Log likelihood = -103.10128 Pseudo R2 = 0.0425

hart_palp | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
dep_cr | 1.003836 .0078564 0.49 0.625 .9885554 1.019353
age | .9616368 .0176271 -2.13 0.033 .9277015 .9968133
levledu | .983645 .0669376 -0.24 0.809 .8608224 1.123992
hous_inc | .9999278 .0000657 -1.10 0.272 .9997989 1.000057
drink | .5887005 .2347343 -1.33 0.184 .2694588 1.286164
smoke | .9288852 .3677958 -0.19 0.852 .4274895 2.01836
pest_pois | 3.224858 2.678482 1.41 0.159 .6331768 16.42465
lang12 | 1.760341 1.204871 0.83 0.409 .460245 6.732933
drugs | 1 (omitted)
_cons | 3.100682 4.135111 0.85 0.396 .2271347 42.32831

Logistic regression Number of obs = 160
LR chi2(8) = 8.42
Prob > chi2 = 0.3934
Log likelihood = -100.56399 Pseudo R2 = 0.0402

tingling | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
Depressed: 1.002446 0.0078706 0.31 0.756 0.9871383 1.017992
Age: 0.9872211 0.0177356 -0.72 0.474 0.9530649 1.022601
Level of Education: 1.079124 0.0776111 1.06 0.290 0.9372441 1.242483
House Income: 0.9999746 0.0000633 -0.40 0.688 0.9998505 1.000099
Drinks: 0.628472 0.2556707 -1.14 0.254 0.2831431 1.394973
Smokes: 0.9514675 0.3863754 -0.12 0.902 0.4292744 2.108885
Pesticide: 3.005259 2.488725 1.33 0.184 0.5929007 15.23287
Language: 0.4495642 0.3083385 -1.17 0.244 0.1172157 1.724239

Logistic Regression
Number of obs = 160
LR chi2(8) = 5.73
Prob > chi2 = 0.6772
Log likelihood = -103.95238
Pseudo R2 = 0.0268

| Depressed | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------|------------|-----------|-----|-----|-----------------------|
| dep_cr | 1.0015 | 0.0076259 | 0.20| 0.844| 0.9866644 - 1.016559
| age | 0.998119 | 0.0172389 | -0.11| 0.913| 0.9648969 - 1.032485
| levledu | 0.9595235 | 0.0639252 | -0.62| 0.535| 0.8420678 - 1.093362
| hous_inc | 0.9999666 | 0.0000629 | -0.53| 0.595| 0.9998433 - 1.00009
| drink | 0.8503156 | 0.3353033 | -0.41| 0.681| 0.3925794 - 1.841759
| smoke | 0.6208262 | 0.2382967 | -1.28| 0.200| 0.277791 - 1.308187
| pest_pois | 2.605287 | 2.150405 | -0.46| 0.643| 0.2005671 - 2.695942
| lang12 | 0.7353349 | 0.4874223 | -0.46| 0.631| 0.5167417 - 1.315323
| drugs | 1 (omitted)| | | |
| _cons | 1.934966 | 2.516217 | 0.51| 0.612| 0.1512783 - 19.5342

Logistic Regression
Number of obs = 162
LR chi2(9) = 2.51
Prob > chi2 = 0.9807
Log likelihood = -110.24493
Pseudo R2 = 0.0112

| Depressed | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------|------------|-----------|-----|-----|-----------------------|
| dep_cr | 0.9990137 | 0.0071767 | -0.20| 0.844| 0.9850462 - 1.013179
| age | 1.000386 | 0.0168355 | 0.02| 0.982| 0.9679275 - 1.033933
| levledu | 0.9817055 | 0.0637549 | 0.28| 0.776| 0.8643659 - 1.114956
| hous_inc | 0.9999478 | 0.000612 | -0.85| 0.394| 0.9998279 - 1.000068
| drink | 0.7837949 | 0.3022464 | 0.63| 0.528| 0.3680974 - 1.668945
| smoke | 1.074796 | 0.4126248 | 0.19| 0.851| 0.5064555 - 2.280923
| _cons | 1.012533 | 0.0172389 | 0.01| 0.995| 0.9877064 - 1.03738

Note: drugs != 0 predicts success perfectly
Drugs dropped and 2 obs not used.
. logistic pr_concen dep_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------------------|------------|-----------|-------|-----|----------------------|
| pr_concen | 0.9943844 | 0.0093865 | -0.60 | 0.551 | 0.9761564 1.012953 |
| dep_cr | 0.9689345 | 0.0204654 | -1.49 | 0.135 | 0.929642 1.009888 |
| age | 0.9977345 | 0.0778623 | -0.03 | 0.977 | 0.856225 1.162631 |
| levledu | 0.9999818 | 0.0000703 | -0.26 | 0.796 | 0.999844 1.00012 |
| hous_inc | 0.8505888 | 0.3812745 | -0.36 | 0.718 | 0.353321 2.047712 |
| drink | 1.518219 | 0.6746793 | 0.94 | 0.347 | 0.635433 3.627427 |
| smoke | 1.367908 | 1.24535 | 0.34 | 0.731 | 0.229677 8.146949 |
| pest_pois | 1.929127 | 1.768654 | 0.72 | 0.474 | 0.319864 11.63471 |
| lang12 | 3.725931 | 5.862545 | 0.84 | 0.403 | 0.170575 81.38662 |
| drugs | 0.554356 | 0.8658404 | -0.38 | 0.706 | 0.02596 11.83771 |

. logistic short_mem dep_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

note: drugs != 0 predicts success perfectly

drugs dropped and 2 obs not used

Logistic regression

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------------------|------------|-----------|-------|-----|----------------------|
| short_mem | 0.9932056 | 0.0087761 | -0.77 | 0.440 | 0.976152 1.010556 |
| dep_cr | 0.9802862 | 0.0177316 | -1.10 | 0.271 | 0.946141 1.015663 |
| age | 1.066895 | 0.0754708 | 0.92 | 0.360 | 0.928771 1.22556 |
| levledu | 0.9999209 | 0.0000657 | -1.20 | 0.229 | 0.999792 1.00005 |
| hous_inc | 0.8042952 | 0.3227172 | -0.54 | 0.587 | 0.366339 1.765823 |
| drink | 1.093637 | 0.4369998 | 0.22 | 0.823 | 0.499749 2.393314 |
| smoke | 2.500869 | 2.0609 | 1.11 | 0.266 | 0.497323 12.57603 |
| pest_pois | 1.400137 | 0.985143 | 0.48 | 0.632 | 0.352583 5.560066 |
| lang12 | 0.7737834 | 1.03982 | -0.19 | 0.849 | 0.05556 10.77647 |
| drugs | 1 (omitted) | | | | |

. logistic perspire dep_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
Logistic regression

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------|------------|-----------|--------|--------|---------------------|
| dep_cr | .9851654 | .0130775 | -1.13 | 0.260 | .9598645 1.011133 |
| age | .9625925 | .0223011 | -1.65 | 0.100 | .9198606 1.00731 |
| levledu | 1.051893 | .0929681 | 0.57 | 0.567 | .8845872 1.250841 |
| hous_inc | .9999398 | .0000808 | -0.74 | 0.456 | .9997815 1.000098 |
| drink | .8757135 | .4184463 | -0.28 | 0.781 | .3432641 2.234064 |
| smoke | 1.435327 | .6842734 | 0.76 | 0.448 | .5638347 3.653845 |
| pest_pois | 1.283838 | 1.21783 | 0.26 | 0.792 | .2000195 8.240392 |
| lang12 | .297464 | .2318242 | -1.56 | 0.120 | .0645748 1.370269 |
| drugs | 1 (omitted)| | | | |
| _cons | 2.845292 | 4.64694 | 0.64 | 0.522 | .1158622 69.8734 |

Logistic regression

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------|------------|-----------|--------|--------|---------------------|
| dep_cr | .9725758 | .0356598 | -0.76 | 0.448 | .9051361 1.04504 |
| age | .9810872 | .0405496 | -0.46 | 0.644 | .9047453 1.063871 |
| levledu | 1.098084 | .1799952 | 0.57 | 0.568 | .796359 1.514128 |
| hous_inc | .9998602 | .0001631 | -0.86 | 0.391 | .9995406 1.00018 |
| drink | 1.613971 | 1.51218 | 0.51 | 0.609 | .2572637 10.12542 |
| smoke | 2.275144 | 2.0968 | 0.89 | 0.372 | .3737069 13.85117 |
| pest_pois | 2.230223 | 2.825557 | 0.63 | 0.527 | .1861777 26.71585 |
| lang12 | 13.41919 | 58.0867 | 0.60 | 0.549 | .0027745 64902.52 |
| drugs | 1 (omitted)| | | | |
| _cons | .0032006 | .0159601 | -1.15 | 0.249 | 1.82e-07 56.21292 |

Logistic regression

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------|------------|-----------|--------|--------|---------------------|
| dep_cr | .9951654 | .0130775 | -1.13 | 0.260 | .9598645 1.011133 |
| age | .9625925 | .0223011 | -1.65 | 0.100 | .9198606 1.00731 |
| levledu | 1.051893 | .0929681 | 0.57 | 0.567 | .8845872 1.250841 |
| hous_inc | .9999398 | .0000808 | -0.74 | 0.456 | .9997815 1.000098 |
| drink | .8757135 | .4184463 | -0.28 | 0.781 | .3432641 2.234064 |
| smoke | 1.435327 | .6842734 | 0.76 | 0.448 | .5638347 3.653845 |
| pest_pois | 1.283838 | 1.21783 | 0.26 | 0.792 | .2000195 8.240392 |
| lang12 | .297464 | .2318242 | -1.56 | 0.120 | .0645748 1.370269 |
| drugs | 1 (omitted)| | | | |
| _cons | 2.845292 | 4.64694 | 0.64 | 0.522 | .1158622 69.8734 |

Logistic regression

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------|------------|-----------|--------|--------|---------------------|
| dep_cr | .9725758 | .0356598 | -0.76 | 0.448 | .9051361 1.04504 |
| age | .9810872 | .0405496 | -0.46 | 0.644 | .9047453 1.063871 |
| levledu | 1.098084 | .1799952 | 0.57 | 0.568 | .796359 1.514128 |
| hous_inc | .9998602 | .0001631 | -0.86 | 0.391 | .9995406 1.00018 |
| drink | 1.613971 | 1.51218 | 0.51 | 0.609 | .2572637 10.12542 |
| smoke | 2.275144 | 2.0968 | 0.89 | 0.372 | .3737069 13.85117 |
| pest_pois | 2.230223 | 2.825557 | 0.63 | 0.527 | .1861777 26.71585 |
| lang12 | 13.41919 | 58.0867 | 0.60 | 0.549 | .0027745 64902.52 |
| drugs | 1 (omitted)| | | | |
| _cons | .0032006 | .0159601 | -1.15 | 0.249 | 1.82e-07 56.21292 |
Log likelihood = -81.493067 Pseudo R2 = 0.0503

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------------|--------------|-----------|-------|------|----------------------|
| reading | | | | | |
| dep_cr | .9864515 | .0107762 | -1.25 | 0.212| .965555 1.0078 |
| age | .9497433 | .0220883 | -2.22 | 0.027| .9074229 .9940375 |
| levledu | .914625 | .0740548 | -1.10 | 0.270| .7804112 1.071921 |
| hous_inc | .9999816 | .0000758 | -0.24 | 0.808| .999833 1.00013 |
| drink | .8587018 | .3974731 | -0.33 | 0.742| .3466099 2.127374 |
| smoke | .777785 | .3556362 | -0.55 | 0.583| .3174346 1.905745 |
| pest_pois | .7691987 | .883885 | -0.23 | 0.819| .0808955 7.313964 |
| lang12 | .8717688 | .7362173 | -0.16 | 0.871| .166553 4.562989 |
| drugs | 4.578994 | 8.138717 | 0.86 | 0.392| .1405536 149.1757 |
| _cons | 6.764733 | 10.92726 | 1.18 | 0.237| .2852864 160.4059 |

. logistic fam_mem dep_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression Number of obs = 162
LR chi2(9) = 10.54
Prob > chi2 = 0.3088
Log likelihood = -84.144963 Pseudo R2 = 0.0589

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------------|--------------|-----------|-------|------|----------------------|
| fam_mem | | | | | |
| dep_cr | .9945425 | .0097948 | -0.56 | 0.578| .9755291 1.013926 |
| age | 1.018973 | .0207667 | 0.92 | 0.356| .9530042 1.060498 |
| levledu | 1.222935 | .109022 | 2.26 | 0.024| 1.026882 1.456419 |
| hous_inc | .9998557 | .0000848 | -1.70 | 0.089| .9996895 1.000022 |
| drink | .6841678 | .3183782 | -0.82 | 0.415| .2748242 1.703218 |
| smoke | 1.989612 | .9486971 | 1.44 | 0.149| .7814373 5.065738 |
| pest_pois | .8823898 | .8139936 | -0.14 | 0.892| .1446897 5.381251 |
| lang12 | .7028365 | .5374096 | -0.46 | 0.645| .1570364 3.145634 |
| drugs | 5.496969 | 8.613129 | 1.09 | 0.277| .2549099 118.5386 |
| _cons | .0551743 | .086232 | -1.85 | 0.064| .0025787 1.18054 |

. logistic chest dep_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression Number of obs = 162
LR chi2(9) = 20.05
Prob > chi2 = 0.0176
Log likelihood = -92.384111 Pseudo R2 = 0.0979

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------------|--------------|-----------|-------|------|----------------------|
| chest | | | | | |
| dep_cr | .9944178 | .0081296 | -0.68 | 0.494| .978611 1.01048 |
| age | .9894707 | .0189572 | -0.55 | 0.581| .9530042 1.027333 |
| levledu | 1.087046 | .0815703 | 1.11 | 0.266| .9383718 1.259275 |
| hous_inc | .9997166 | .0000948 | -2.99 | 0.003| .9995308 .9999024 |
| drink | 1.437154 | .6202209 | 0.84 | 0.401| .6168183 3.348494 |
. logistic notes dep_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts failure perfectly
drugs dropped and 2 obs not used

Logistic regression
Number of obs = 160
LR chi2(8) = 14.29
Prob > chi2 = 0.0745
Log likelihood = -78.161009 Pseudo R2 = 0.0838

| notes | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|------------|-----------|-------|------|----------------------|
| dep_cr | 0.9909111 | 0.0114852 | -0.79 | 0.431 | 0.9686542 - 1.013679 |
| age | 0.949016 | 0.0223252 | -2.22 | 0.026 | 0.9062528 - 0.993797 |
| levledu | 0.9875082 | 0.083616 | -0.15 | 0.882 | 0.8365007 - 1.165776 |
| hous_inc | 0.9999006 | 0.0000871 | -0.14 | 0.88 | 0.99973 - 1.000071 |
| drink | 0.5618648 | 0.2668215 | -1.21 | 0.225 | 0.2215177 - 1.425132 |
| smoke | 0.7823559 | 0.3696792 | -0.52 | 0.603 | 0.3098805 - 1.425132 |
| pest_pois | 8.272401 | 7.246224 | 2.41 | 0.016 | 1.486005 - 46.05142 |
| lang12 | 1.082769 | 0.7939127 | 0.11 | 0.914 | 0.257285 - 4.556774 |
| drugs | 1 (omitted) | | | | |
| _cons | 5.317596 | 8.595639 | 1.03 | 0.301 | 0.2237633 - 126.3694 |

. logistic chek_door dep_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: pest_pois != 0 predicts success perfectly
pest_pois dropped and 7 obs not used

Logistic regression
Number of obs = 155
LR chi2(8) = 4.10
Prob > chi2 = 0.8479
Log likelihood = -103.36215 Pseudo R2 = 0.0195

| chek_door | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------|------------|-----------|-------|------|----------------------|
| dep_cr | 0.9928524 | 0.0075634 | -0.94 | 0.346 | 0.9781385 - 1.00788 |
| age | 0.9770003 | 0.017543 | -1.30 | 0.195 | 0.9432146 - 1.011996 |
| levledu | 0.9712847 | 0.0657517 | -0.43 | 0.667 | 0.8505971 - 1.109096 |
| hous_inc | 0.9999577 | 0.0000623 | -0.68 | 0.497 | 0.9998355 - 1.00008 |
| drink | 1.337011 | 0.5244383 | 0.74 | 0.459 | 0.6198034 - 2.884138 |
| smoke | 0.7608875 | 0.2966569 | -0.70 | 0.483 | 0.3543657 - 1.633764 |
| pest_pois | 1 (omitted) | | | | |
| lang12 | 1.154663 | 0.8371991 | 0.20 | 0.843 | 0.2787942 - 4.78219 |
| drugs | 1.168933 | 1.815991 | 0.10 | 0.920 | 0.0556429 - 24.5567 |
. logistic q16_head dep_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 160
LR chi2(8) = 6.83
Prob > chi2 = 0.5555
Log likelihood = -94.325007 Pseudo R2 = 0.0349
--
q16_head | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
dep_cr | .9990153 .0081073 -0.12 0.903 .983251 1.015032
age | .9894196 .018123 -0.58 0.561 .9545292 1.025585
levledu | 1.055919 .0747606 0.77 0.442 .9191033 1.213101
hous_inc | .9998715 .0000641 -2.00 0.045 .999746 1.000091
drink | 1.231881 .5214359 0.49 0.622 .5373636 2.824028
smoke | 1.016527 .4315342 0.04 0.969 .4423527 2.335982
pest_pois | 2.33074 2.623684 0.75 0.452 .25663 21.16803
lang12 | 1.545903 1.081917 0.62 0.534 .392157 6.09403
drugs | 1 (omitted)
_cons | 2.035956 2.806363 0.52 0.606 .1366065 30.34348
--

. logistic less_sex dep_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 160
LR chi2(8) = 5.88
Prob > chi2 = 0.6608
Log likelihood = -104.32388 Pseudo R2 = 0.0274
--
less_sex | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
dep_cr | 1.008527 .0077342 1.11 0.268 .9934814 1.0238
age | 1.001252 .0174337 0.07 0.943 .9676586 1.036011
levledu | 1.086539 .0749717 1.20 0.229 .9491 1.24388
hous_inc | .9999033 .0000663 -1.46 0.145 .999733 1.00033
drink | 1.079389 .4290685 0.19 0.848 .4952412 2.352554
smoke | 1.187401 .4709817 0.43 0.665 .5457185 2.583603
pest_pois | 2.026568 1.668243 0.86 0.391 .4037047 10.17323
lang12 | 1.796083 1.233379 0.85 0.394 .4675222 6.900026
drugs | 1 (omitted)
_cons | .1860154 .2484574 -1.26 0.208 .0135711 2.549668
--

. logistic q16_score dep_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

| _cons | 2.343374 3.172207 0.63 0.529 .1650352 33.27412

note: pest_pois != 0 predicts success perfectly
pest_pois dropped and 7 obs not used

note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 153
LR chi2(7) = 5.47
Prob > chi2 = 0.6033
Log likelihood = -52.68521 Pseudo R2 = 0.0493
--
q16_score | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
dep_cr | 1.00657 .0132538 0.50 0.619 .9809257 1.032885
age | .9555184 .0242357 -1.79 0.073 .9091786 1.00422
levledu | .9722359 .0999229 -0.27 0.784 .7948556 1.1892
hous_inc | .999912 .0000796 -1.11 0.269 .9997561 1.000068
drink | .6116158 .3856669 -0.78 0.436 .1771999 2.104851
smoke | 1.179153 .7287463 0.27 0.790 .3511611 3.959444
pest_pois | 1 (omitted)
lang12 | 1.432662 1.597643 0.32 0.747 .1610348 12.74581
drugs | 1 (omitted)
_cons | 62.86685 130.3188 2.00 0.046 1.081279 3655.154
--

. logistic q16_score dep_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: pest_pois != 0 predicts success perfectly
pest_pois dropped and 7 obs not used

note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 153
LR chi2(7) = 8.03
Prob > chi2 = 0.3296
Log likelihood = -101.08788 Pseudo R2 = 0.0382
--
q16_score50 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
dep_cr | .9907546 .0083159 -1.11 0.268 .9745892 1.007188
age | .9810362 .0175319 -1.07 0.284 .9472691 1.016007
levledu | 1.044025 .0721121 0.62 0.533 .9118377 1.195376
hous_inc | .9998948 .000066 -1.59 0.111 .9997655 1.000024
drink | .8376611 .3300222 -0.45 0.653 .3870005 1.813115
smoke | .8350036 .3274313 -0.46 0.646 .3871732 1.808824
pest_pois | 1 (omitted)
lang12 | 1.432662 1.597643 0.32 0.747 .1610348 12.74581
drugs | 1 (omitted)
_cons | 3.417363 4.749586 0.88 0.377 .2242121 52.08626

Logistic regression

Number of obs = 162
LR chi2(9) = 14.44
Prob > chi2 = 0.1075
Log likelihood = -83.324413 Pseudo R2 = 0.0797

q16_score75 Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
dep_cr | .9906171 .0099703 -0.94 0.349 .9712672 1.010353
age | .9831051 .0211008 -0.79 0.427 .9426062 1.025344
levledu | 1.108303 .0958098 1.19 0.234 .9355657 1.312933
hous_inc | .9998463 .00009 -1.71 0.088 .99967 1.000023
drink | 1.376842 .6503007 0.68 0.498 .5455696 3.474704
smoke | 1.223658 .5679867 0.43 0.664 .4926712 3.474704
pest_pois | 3.50943 2.997283 1.47 0.142 .6580434 18.7124
lang12 | .4355402 .3331125 -1.09 0.277 .097276 1.950066
drugs | 3.317485 5.307805 0.75 0.454 .1441884 76.3286
_cons | .6715225 1.050212 -0.25 0.799 .0313216 14.39717
-------------+--

Logistic regression

Number of obs = 160
LR chi2(8) = 17.82
Prob > chi2 = 0.0226
Log likelihood = -100.18576 Pseudo R2 = 0.0817

tired Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
--------+--
detp_cr | .99543 .0052035 -0.88 0.381 .9852834 1.005681
age | .9696042 .0173181 -1.73 0.084 .9362486 1.004148
levledu | 1.043363 .0713088 0.62 0.535 .9125567 1.192919
hous_inc | .999824 .0000692 -2.54 0.011 .9996884 0.999597
drink | 1.484747 .1977289 -1.78 0.076 .8179254 1.078259
smoke | 1.345939 .5352193 0.75 0.455 .6173632 2.934336
pest_pois | 1.865023 1.660701 -0.70 0.484 .3256386 10.68151
lang12 | .5838555 .4391284 -0.72 0.474 .1336906 2.549821
drugs | 1 (omitted)
_cons | 13.10626 18.01047 1.87 0.061 .8866815 193.727
--------+--

Logistic regression

Number of obs = 160
LR chi2(7) = 17.52
Prob > chi2 = 0.0229
Log likelihood = -100.18576 Pseudo R2 = 0.0817

hart_palp Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-----------+--
detp_cr | .99543 .0052035 -0.88 0.381 .9852834 1.005681
age | .9696042 .0173181 -1.73 0.084 .9362486 1.004148
levledu | 1.043363 .0713088 0.62 0.535 .9125567 1.192919
hous_inc | .999824 .0000692 -2.54 0.011 .9996884 0.999597
drink | 1.484747 .1977289 -1.78 0.076 .8179254 1.078259
smoke | 1.345939 .5352193 0.75 0.455 .6173632 2.934336
pest_pois | 1.865023 1.660701 -0.70 0.484 .3256386 10.68151
lang12 | .5838555 .4391284 -0.72 0.474 .1336906 2.549821
_cons | 13.10626 18.01047 1.87 0.061 .8866815 193.727
-----------+--

Logistic regression

Number of obs = 160
LR chi2(7) = 17.52
Prob > chi2 = 0.0229
Log likelihood = -100.18576 Pseudo R2 = 0.0817

hart_palp Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-----------+--
detp_cr | .99543 .0052035 -0.88 0.381 .9852834 1.005681
age | .9696042 .0173181 -1.73 0.084 .9362486 1.004148
levledu | 1.043363 .0713088 0.62 0.535 .9125567 1.192919
hous_inc | .999824 .0000692 -2.54 0.011 .9996884 0.999597
drink | 1.484747 .1977289 -1.78 0.076 .8179254 1.078259
smoke | 1.345939 .5352193 0.75 0.455 .6173632 2.934336
pest_pois | 1.865023 1.660701 -0.70 0.484 .3256386 10.68151
lang12 | .5838555 .4391284 -0.72 0.474 .1336906 2.549821
_cons | 13.10626 18.01047 1.87 0.061 .8866815 193.727
-----------+--
Logistic regression Number of obs = 160
LR chi2(8) = 9.07
Prob > chi2 = 0.3364
Log likelihood = -100.23992 Pseudo R2 = 0.0433

| Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------|-----------|------|------|----------------------|
| detp_cr | .9952911 | 0.0056567 | -0.83 | 0.406 | .9842657 1.00644 |
| age | .9884261 | 0.0178367 | -0.65 | 0.519 | .9540779 1.024011 |
| levledu | 1.075917 | 0.0773041 | 1.02 | 0.308 | .9345881 1.238617 |
| hous_inc | .9999726 | 0.000634 | -0.43 | 0.665 | .9998483 1.000097 |
| drink | .6564548 | .2616609 | -1.06 | 0.291 | .3005512 1.433809 |
| smoke | .9262806 | .3688777 | -0.19 | 0.848 | .4243889 2.021721 |
| pest_pois | 2.76551 | 2.293379 | 1.23 | 0.220 | .5443672 14.04943 |
| lang12 | .384514 | .269056 | -1.37 | 0.172 | .0975652 1.515407 |
| drugs | 1 (omitted) | | | | |
| _cons | 1.736332 | 2.361946 | 0.41 | 0.685 | .1207082 24.97635 |

Logistic regression Number of obs = 160
LR chi2(8) = 7.00
Prob > chi2 = 0.5361
Log likelihood = -103.31624 Pseudo R2 = 0.0328

| Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------|-----------|------|------|----------------------|
| detp_cr | .9950533 | 0.0055482 | -0.89 | 0.374 | .9842382 1.005987 |
| age | .9625083 | 0.0177625 | -2.07 | 0.038 | .9283166 .9979593 |
| levledu | .9792401 | 0.0665388 | -0.31 | 0.758 | .8571376 1.118736 |
| hous_inc | .9999261 | 0.0000655 | -1.13 | 0.259 | .9997978 1.000054 |
| drink | .6239503 | .2446108 | -1.20 | 0.229 | .2893668 1.3454 |
| smoke | .8804276 | .3408653 | -0.33 | 0.742 | .4122337 1.880372 |
| pest_pois | 2.932363 | 2.428847 | 1.30 | 0.194 | .5783302 14.86824 |
| lang12 | 1.529379 | 1.070769 | 0.61 | 0.544 | .3877578 6.032112 |
| drugs | 1 (omitted) | | | | |
| _cons | 4.119782 | 5.509155 | 1.06 | 0.290 | .299647 56.64201 |

Logistic regression Number of obs = 160
LR chi2(8) = 7.00
Prob > chi2 = 0.5361
Log likelihood = -103.31624 Pseudo R2 = 0.0328

| Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------|-----------|------|------|----------------------|
| detp_cr | .9950533 | 0.0055482 | -0.89 | 0.374 | .9842382 1.005987 |
| age | .9625083 | 0.0177625 | -2.07 | 0.038 | .9283166 .9979593 |
| levledu | .9792401 | 0.0665388 | -0.31 | 0.758 | .8571376 1.118736 |
| hous_inc | .9999261 | 0.0000655 | -1.13 | 0.259 | .9997978 1.000054 |
| drink | .6239503 | .2446108 | -1.20 | 0.229 | .2893668 1.3454 |
| smoke | .8804276 | .3408653 | -0.33 | 0.742 | .4122337 1.880372 |
| pest_pois | 2.932363 | 2.428847 | 1.30 | 0.194 | .5783302 14.86824 |
| lang12 | 1.529379 | 1.070769 | 0.61 | 0.544 | .3877578 6.032112 |
| drugs | 1 (omitted) | | | | |
| _cons | 4.119782 | 5.509155 | 1.06 | 0.290 | .299647 56.64201 |

Logistic regression Number of obs = 160
LR chi2(8) = 7.00
Prob > chi2 = 0.5361
Log likelihood = -103.31624 Pseudo R2 = 0.0328

| Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------|-----------|------|------|----------------------|
| detp_cr | .9950533 | 0.0055482 | -0.89 | 0.374 | .9842382 1.005987 |
| age | .9625083 | 0.0177625 | -2.07 | 0.038 | .9283166 .9979593 |
| levledu | .9792401 | 0.0665388 | -0.31 | 0.758 | .8571376 1.118736 |
| hous_inc | .9999261 | 0.0000655 | -1.13 | 0.259 | .9997978 1.000054 |
| drink | .6239503 | .2446108 | -1.20 | 0.229 | .2893668 1.3454 |
| smoke | .8804276 | .3408653 | -0.33 | 0.742 | .4122337 1.880372 |
| pest_pois | 2.932363 | 2.428847 | 1.30 | 0.194 | .5783302 14.86824 |
| lang12 | 1.529379 | 1.070769 | 0.61 | 0.544 | .3877578 6.032112 |
| drugs | 1 (omitted) | | | | |
| _cons | 4.119782 | 5.509155 | 1.06 | 0.290 | .299647 56.64201 |
irritated | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
detp_cr | .9939506 .0055252 -1.09 0.275 .9831802 1.004839
age | .9994518 .0174284 -0.03 0.975 .96587 1.034201
levledu | .9567218 .0637508 -0.66 0.507 .8395879 1.090198
hous_inc | .9999647 .000063 -0.56 0.575 .9998411 1.000088
drink | .8881142 .3437728 -0.31 0.759 .4158955 1.896502
smoke | .5881454 .2282883 -1.37 0.171 .2748472 1.258572
pest_pois | 2.37839 1.967688 1.05 0.295 .4699671 12.03645
lang12 | .6222437 .420775 -0.70 0.483 .1653329 2.341865
_drugs | 1 (omitted)
_cons | 2.521038 3.287565 0.71 0.478 .19569 32.47808

. logistic depress detp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
Logistic regression Number of obs = 162
LR chi2(9) = 3.97
Prob > chi2 = 0.9134
Log likelihood = -109.51381 Pseudo R2 = 0.0178
--

pr_concen | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
detp_cr | .9988802 .0056817 -1.17 0.243 .9840887 1.004067
age | 1.00226 .0170403 0.13 0.894 .9694118 1.036221
levledu | .982119 .0639746 -0.28 0.782 .8644053 1.115863
hous_inc | .9999471 .000063 -0.59 0.556 .9998411 1.000088
drink | 1.084708 .410234 0.21 0.830 .5168808 2.27633
smoke | 1.593872 .6970281 1.07 0.286 .6764078 3.755768
pest_pois | 1.407113 1.279085 0.38 0.707 .2369057 8.357619

. logistic pr_concen detp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
Logistic regression Number of obs = 162
LR chi2(9) = 6.17
Prob > chi2 = 0.7229
Log likelihood = -88.559128 Pseudo R2 = 0.0337
--
. logistic short_mem detp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used

Logistic regression Number of obs = 160
 LR chi2(8) = 9.59
 Prob > chi2 = 0.2952
 Log likelihood = -101.0564 Pseudo R2 = 0.0453

short_mem | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
detp_cr | .9897483 .0064052 -1.59 0.111 .9772736 1.002382
age | .9827916 .0179825 -0.95 0.343 .9481709 1.018676
levledu | 1.070982 .0760454 0.97 0.334 .9318417 1.230897
hous_inc | .9999202 .0000659 -1.21 0.226 .9997909 1.000049
drink | .7924221 .3146198 -0.59 0.558 .3639144 1.725496
smoke | 1.152992 .4555978 0.36 0.719 .5314702 2.501344
pest_pois | 2.345357 1.925956 1.04 0.299 .469052 11.72727
lang12 | 1.216851 .8705882 0.27 0.784 .2993991 4.945658
 drugs | 1 (omitted)
 _cons | .847082 1.15457 -0.12 0.903 .0585788 12.24927

. logistic perspire detp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts failure perfectly
 drugs dropped and 2 obs not used

Logistic regression Number of obs = 160
 LR chi2(8) = 10.94
 Prob > chi2 = 0.2053
 Log likelihood = -79.837378 Pseudo R2 = 0.0641

perspire | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-----------+--
detp_cr | .9912666 .0076967 -1.13 0.259 .9762955 1.006467
age | .9613372 .0223390 -1.62 0.105 .9203339 1.007931
levledu | 1.056828 .0930406 0.63 0.530 .889337 1.255862
hous_inc | .9999415 .0000806 -0.73 0.468 .9997835 1.0001
drink | .7977538 .3718436 -0.48 0.628 .3199725 1.988956
smoke | 1.579586 .7463632 0.97 0.333 .6256709 3.987868
pest_pois | 1.345941 1.274827 0.31 0.754 .2102804 8.614962
lang12 | .2962215 .2265880 -1.59 0.112 .0661494 1.326499
 drugs | 1 (omitted)
 _cons | 2.627521 4.30323 -0.59 0.555 .1060446 65.10345

logistic button detp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts failure perfectly
drugs dropped and 2 obs not used

logistic reading detp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

logistic fam_mem detp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
| fam_mem | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|------------|-----------|-----|------|------------------------|
| detp_cr | 0.99431 | 0.0066881 | -0.85| 0.396| 0.9812876 1.007505 |
| age | 1.020304 | 0.0209706 | 0.98| 0.328| 1.028937 1.459259 |
| levledu | 1.225351 | 0.1092216 | 2.28| 0.023| 1.092216 1.459259 |
| hous_inc | 0.9998576 | 0.0000844 | -1.69| 0.092| 0.996922 1.000023 |
| drink | 0.665154 | 0.3041926 | -0.89| 0.373| 0.271422 1.630044 |
| smoke | 2.086053 | 0.9895569 | 2.08| 0.023| 0.9895569 1.062245 |
| pest_pois| 0.8633907 | 0.7975312 | -0.16| 0.874| 0.1412328 5.278119 |
| lang12 | 0.6686385 | 0.5092148 | -0.53| 0.597| 0.1503195 2.974583 |
| drugs | 5.142442 | 7.787403 | 1.08| 0.280| 0.2643391 100.0409 |
| _cons | 0.0554737 | 0.0872131 | -1.84| 0.066| 0.0025461 1.208664 |

`. logistic chest detp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression

Number of obs = 162
LR chi2(9) = 20.84
Prob > chi2 = 0.0134

Log likelihood = -91.986704 Pseudo R2 = 0.1018

| chest | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|------------|-----------|-----|------|------------------------|
| detp_cr | 0.993225 | 0.0062646 | -1.08| 0.281| 0.9810222 1.00558 |
| age | 0.9903161 | 0.0191027 | -0.50| 0.614| 0.9535745 1.028473 |
| levledu| 1.088339 | 0.0817278 | 1.13| 0.260| 0.9393855 1.260911 |
| hous_inc | 0.9997161 | 0.000095 | -2.99| 0.003| 0.99953 0.9999022 |
| drink | 1.383156 | 0.5839321 | 0.77| 0.442| 0.6046669 3.163924 |
| smoke | 0.665823 | 0.2798575 | -2.99| 0.003| 0.99953 0.9999022 |
| pest_pois | 4.815282 | 4.332621 | 1.75| 0.081| 0.6046669 3.163924 |
| lang12 | 1.000998 | 0.7396015 | 0.00| 0.999| 0.0593251 20.87212 |
| drugs | 1.112762 | 1.664387 | 0.07| 0.943| 0.0593251 20.87212 |
| _cons | 0.8857067 | 1.295099 | -0.08| 0.934| 0.0593251 20.87212 |

`. logistic notes detp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

note: drugs != 0 predicts failure perfectly

Logistics dropped and 2 obs not used

Logistic regression

Number of obs = 160
LR chi2(8) = 13.86
Prob > chi2 = 0.0854

Log likelihood = -78.374769 Pseudo R2 = 0.0813

| notes | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|------------|-----------|-----|------|------------------------|
| detp_cr | 0.9964542 | 0.0069282 | -0.51| 0.609| 0.9829674 1.010126 |
| age | 0.949243 | 0.022344 | -2.20| 0.028| 0.9067253 0.9943434 |
| levledu| 0.9910586 | 0.0834886 | -0.11| 0.915| 0.8402191 1.168977 |
hous_inc | .9999008 .000087 -1.14 0.254 .9997303 1.000071
drink | .5311506 .247966 -1.36 0.175 .212734 1.326168
smoke | .836944 .3886407 -0.38 0.701 .3368489 2.079494
pest_pois | 8.529081 7.431604 2.46 0.014 1.546069 47.05174
lang12 | .8387474 .6523348 -0.23 0.821 .182646 3.851698
drugs | 1 (omitted)
_cons | 4.846877 7.860801 0.97 0.330 .2018165 116.4035

--
.logistic chek_door detp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: pest_pois != 0 predicts success perfectly
pest_pois dropped and 7 obs not used

Logistic regression Number of obs = 155
LR chi2(8) = 3.17
Prob > chi2 = 0.9231
Log likelihood = -103.82703 Pseudo R2 = 0.0150

--
 chek_door | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 detp_cr | .999844 .0047708 -0.03 0.974 .990537 1.009238
 age | .9771388 .017549 -1.29 0.198 .9433417 1.012147
 levledu | .9757607 .0656914 -0.36 0.716 .8551409 1.113394
 hous_inc | .9999593 .0000623 -0.65 0.514 .9998372 1.000082
 drink | 1.249856 .4812097 0.58 0.562 .5876744 2.658171
 smoke | .8182215 .3121202 -0.53 0.599 .3874093 1.728111
pest_pois | 1 (omitted)
 lang12 | 1.263979 .9011931 0.33 0.742 .3124996 5.112466
 drugs | .8711717 .0483607 -0.09 0.926 .483607 15.69334
 _cons | 1.871977 2.496316 0.47 0.638 .1371539 25.55014
--

.logistic q16_head detp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 160
LR chi2(8) = 6.82
Prob > chi2 = 0.5560
Log likelihood = -94.32758 Pseudo R2 = 0.0349

--
 q16_head | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 detp_cr | .9995132 .0047708 -0.03 0.974 .990537 1.009238
 age | .9771388 .017549 -1.29 0.198 .9433417 1.012147
 levledu | .9757607 .0656914 -0.36 0.716 .8551409 1.113394
 hous_inc | .9998717 .0000641 -2.00 0.045 .9997462 .9999973
 drink | 1.228253 .5081766 0.48 0.628 .5415558 2.761245
 smoke | 1.028318 .4258524 0.07 0.946 .4566921 2.315429
pest_pois | 2.332512 2.627395 0.75 0.452 .2564548 21.2147
--
lang12 | 1.550608 1.08473 0.63 0.531 .3935886 6.108876
drugs | 1 (omitted)
_cons | 1.994112 2.70374 0.51 0.611 .1398422 28.4355

.logistic less_sex detp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression
Number of obs = 160
LR chi2(8) = 5.26
Prob > chi2 = 0.7298
Log likelihood = -104.63488
Pseudo R2 = 0.0245

--
less_sex | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
detp_cr | .9960077 .0052321 -0.76 0.446 .9858055 1.006315
age | 1.002523 .0175323 0.14 0.885 .9687431 1.037482
levledu | 1.078325 .0738637 1.10 0.271 .9428523 1.233263
hous_inc | .9999025 .0000657 -1.48 0.138 .9997736 1.000031
drink | 1.196331 .4673382 0.46 0.646 .5563338 2.57257
smoke | 1.079835 .4165808 0.20 0.842 .5069665 2.30004
pest_pois | 1 (omitted)
lang12 | 1.466146 1.023554 0.55 0.584 .3731912 5.760004
_drugs | 1 (omitted)
_cons | .2767852 .3650986 -0.97 0.330 .0208617 3.672281
--

.logistic q16_score detp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: pest_pois != 0 predicts success perfectly
pest_pois dropped and 7 obs not used
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression
Number of obs = 153
LR chi2(7) = 5.23
Prob > chi2 = 0.6313
Log likelihood = -52.800781
Pseudo R2 = 0.0472

--
q16_score | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
detp_cr | .9986158 .0065725 -0.21 0.833 .9858166 1.011581
age | .9561864 .0242549 -1.77 0.077 .9098102 1.004927
levledu | .968482 .0987121 -0.31 0.753 .7931098 1.182632
hous_inc | .9999105 .0000795 -1.13 0.260 .9997546 1.000066
drink | .6582365 .4075654 -0.68 0.499 .1955856 2.215272
smoke | 1.126011 .6881335 0.19 0.846 .3399009 3.730209
pest_pois | 1 (omitted)
lang12 | 1.174207 1.211758 0.16 0.876 .1553539 8.874986
--
. logistic q16_score50 detp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
 note: pest_pois != 0 predicts success perfectly
 pest_pois dropped and 7 obs not used

note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used

Logistic regression Number of obs = 153
 LR chi2(7) = 9.25
 Prob > chi2 = 0.2355
 Log likelihood = -100.48224
 Pseudo R2 = 0.0440

 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 detp_cr | .9913503 .0057576 -1.50 0.135 .9801296 1.002699
 age | .9831328 .0176739 -0.95 0.344 .9490958 1.01839
 levledu | 1.048885 .0722338 0.69 0.488 .9164485 1.20046
 hous_inc | 1.000003 .0021072 -0.48 0.632 .9958384 1.004342
 drink | .9998952 .0000662 -1.58 0.113 .9997656 1.000025
 smoke | .906263 .3499616 -0.25 0.799 .4251626 1.931761
 pest_pois | 1 (omitted)
 lang12 | .5858319 .430764 -0.73 0.467 .1386379 2.475506
 drugs | 1 (omitted)
 _cons | 3.381257 4.664929 0.88 0.377 .2263204 50.51645
-------------+--

. logistic q16_score75 detp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression Number of obs = 162
 LR chi2(9) = 14.12
 Prob > chi2 = 0.1181
 Log likelihood = -83.484783
 Pseudo R2 = 0.0780

 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 detp_cr | .9948369 .0066424 -0.78 0.438 .9819028 1.007941
 age | .9828263 .0211247 -0.81 0.419 .9422827 1.025114
 levledu | 1.109293 .0954416 1.21 0.228 .9371529 1.313053
 hous_inc | 1.000003 .0066424 0.00 0.998 .9934042 1.006621
 drink | 1.277151 .5886715 0.53 0.596 .5174897 3.151973
 smoke | 1.310566 .6022169 0.59 0.556 .5325056 3.225475
 pest_pois | 3.638265 3.089676 1.52 0.128 .6887149 19.21981
 lang12 | .449871 .3404959 -1.06 0.289 .1020552 1.983082
 drugs | 2.534493 3.808764 0.62 0.536 .1332691 48.20061
 _cons | .6390872 1.008462 -0.28 0.777 .0289993 14.08424
-------------+--
. logistic tired dedtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 160
LR chi2(8) = 17.65
Prob > chi2 = 0.0240
Log likelihood = -100.27367 Pseudo R2 = 0.0809

--
tired | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
dedtp_cr | 1.004465 .0057329 0.78 0.435 .993291 1.015764
age | 0.9669707 .0173986 -1.87 0.062 .9334643 1.00168
levledu | 1.048998 .0717232 0.70 0.484 .917435 1.199427
hous_inc | 1.048998 .0717232 0.70 0.484 .917435 1.199427
drink | .9998265 .0000691 -2.51 0.012 .999691 .999962
smoke | 1.401046 .5604091 0.84 0.399 .6397018 3.068509
pest_pois | 2.133732 1.904236 0.85 0.396 .3710995 12.26844
lang12 | .6903715 .5150425 -0.50 0.619 .1599762 2.979274
drugs | 1 (omitted)
_cons | 10.01072 13.71901 1.68 0.093 .6822626 146.8856
--

. logistic hart_palp dedtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 160
LR chi2(8) = 9.21
Prob > chi2 = 0.3252
Log likelihood = -103.07887 Pseudo R2 = 0.0427

--
hart_palp | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
dedtp_cr | .9969471 .0057329 -0.52 0.600 .985616 1.008408
age | 0.9621953 .0177061 -2.09 0.036 .9281104 0.997532
levledu | 0.9787212 .0666801 -0.32 0.752 .8563805 1.118539
hous_inc | 0.9999261 .0000654 -1.13 0.259 .9997978 1.000054
drink | 0.6162339 .2412818 -1.24 0.216 .2860649 1.327478
smoke | 0.8638129 .3666801 -0.32 0.752 .5863805 1.118539
pest_pois | 2.996763 2.491366 1.32 0.187 .5874946 15.28625
lang12 | 1.641224 1.141323 0.71 0.476 .419985 6.413597
drugs | 1 (omitted)
_cons | 3.798225 5.039842 1.01 0.314 .2819728 51.16279
--

. logistic tingling dedtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used
Logistic regression Number of obs = 160
LR chi2(8) = 8.34
Prob > chi2 = 0.4013
Log likelihood = -100.60672 Pseudo R2 = 0.0398

--
ingling | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
dedtp_cr | 1.000582 .0057634 0.10 0.920 .989349 1.011942
age | .9871602 .0177748 -0.72 0.473 .952929 1.02262
levledu | 1.077502 .0772674 1.04 0.298 .9362214 1.240102
hous_inc | 1.0000634 .0000634 -0.41 0.684 .9998501 1.000098
drink | .6437023 .2564881 -1.11 0.269 .2947931 1.405571
smoke | .9323078 .3738152 -0.17 0.861 .424878 2.045759
pest_pois | 2.95613 2.448861 1.31 0.191 .5828911 14.99201
lang12 | .4363699 .2983878 -1.21 0.225 .1142371 1.666873
 drugs | 1 (omitted)
_cons | 1.447236 1.95037 0.27 0.784 .1031375 20.30778
--

.logistic irritated dedtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used

Logistic regression Number of obs = 160
LR chi2(8) = 6.22
Prob > chi2 = 0.6221
Log likelihood = -103.70639 Pseudo R2 = 0.0291

--
irritated | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
dedtp_cr | .9959273 .0056798 -0.72 0.474 .9848571 1.007122
age | .9991353 .0173569 -0.05 0.960 .965689 1.03374
levledu | .9553204 .0638131 -0.68 0.494 .8380905 1.088948
hous_inc | 1.0000634 .0000631 -0.58 0.565 .9998401 1.000087
drink | .8765794 .338872 -0.34 0.733 .4108941 1.870047
smoke | .5711224 .2227431 -1.44 0.151 .265921 1.226608
pest_pois | 2.422114 2.004567 1.07 0.285 .4783343 12.26472
lang12 | .6715966 .449198 -0.60 0.552 .1810429 2.491354
 drugs | 1 (omitted)
_cons | 2.33836 3.030144 0.66 0.512 .1844544 29.64378
--

.logistic depress dedtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression Number of obs = 162
LR chi2(9) = 2.70
Prob > chi2 = 0.9749
Log likelihood = -110.14601 Pseudo R2 = 0.0121

--
depress | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
dedtp_cr | .9975993 .0051778 -0.46 0.643 .9875025 1.007799
 age | 1.00111 .0169362 0.07 0.948 .9684598 1.034861
levledu | .9809326 .0637499 -0.30 0.767 .8636153 1.114187
hous_inc | .9999465 .0000613 -0.87 0.383 .9988264 1.000067
 drink | .7829771 .2966513 -0.65 0.518 .3726055 1.645314
 smoke | 1.062749 .4032877 0.16 0.873 .50515 2.235843
pest_pois | 1.516158 1.238023 0.51 0.610 .3059803 7.512692
lang12 | .7331289 .4857321 -0.47 0.639 .2000873 2.686217
drugs | 1.664872 2.515707 0.34 0.736 .0861333 32.18032
_cons | 1.703177 2.147279 0.42 0.673 .1439157 20.15632
--

. logistic pr_concen dedtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression Number of obs = 162
LR chi2(9) = 6.13
Prob > chi2 = 0.7269
Log likelihood = -88.578953 Pseudo R2 = 0.0334
--
pr_concen | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
dedtp_cr | .9999989 .0061803 -0.00 1.000 .9879587 1.012186
 age | .9688764 .0205379 -1.49 0.136 .9294475 1.009978
levledu | .9995676 .0777046 -0.01 0.996 .8583043 1.164081
hous_inc | .9998451 .0003216 -1.06 0.286 .9944364 1.005269
drink | .8179247 .3630824 -0.45 0.651 .3426566 1.952394
 smoke | 1.596784 .7058789 1.06 0.290 .671396 3.797788
pest_pois | 1.427605 1.298667 0.39 0.696 .2400407 8.490458
lang12 | 1.956253 .27058789 1.06 0.290 .671396 3.797788
drugs | 2.925289 1.7448858 0.70 0.484 .1449317 59.04379
_cons | .4994625 .7727107 -0.45 0.654 .0240781 10.36057
--

. logistic short_mem dedtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used

Logistic regression Number of obs = 160
LR chi2(8) = 7.34
Prob > chi2 = 0.5002
Log likelihood = -102.17923 Pseudo R2 = 0.0347
--
short_mem | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
dedtp_cr | .9945929 .0061844 -0.87 0.383 .9825454 1.006788
 age | .9815934 .0177768 -1.03 0.305 .9473626 1.017061
levledu | 1.068423 .0758785 0.93 0.351 .9297489 1.227781
hous_inc | .9999465 .0000613 -1.06 0.286 .9944364 1.005269
drink | .7732319 .3580399 -1.65 0.096 .3561802 1.67861
_cons | 1.703177 2.147279 0.42 0.673 .1439157 20.15632
--
| Variable | Estimate 1 | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------|------------|-----------|-------|------|---------------------|
| smoke | 1.106405 | .4374225 | 0.26 | 0.798| .5097859 |
| pest_pois | 2.462154 | 2.027301 | 1.09 | 0.274| .4902848 |
| lang12 | 1.391294 | .977013 | 0.47 | 0.638| .3512987 |
| drugs | 1 (omitted)| .7417829 | .993104| -0.22 | 0.823 |

Logistic regression
Number of obs = 160
LR chi2(8) = 9.61
Prob > chi2 = 0.2938
Log likelihood = -80.503489
Pseudo R2 = 0.0563

| Variable | Estimate 1 | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------|------------|-----------|-------|------|---------------------|
| smoke | 1.539953 | .729748 | 0.91 | 0.362| .6083353 |
| pest_pois | 1.426799 | 1.340688 | 0.38 | 0.705| .2262215 |
| lang12 | 23.54414 | 143.1657 | 0.47 | 0.642| .0891379 |
| drugs | 1 (omitted)| .7417829 | .993104| -0.22 | 0.823 |

Logistic regression
Number of obs = 160
LR chi2(8) = 7.04
Prob > chi2 = 0.5322
Log likelihood = -31.123179
Pseudo R2 = 0.1016
. logistic reading dedtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression Number of obs = 162
 LR chi2(9) = 7.20
 Prob > chi2 = 0.6166
Log likelihood = -82.213624 Pseudo R2 = 0.0419

--
 reading | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+---
 dedtp_cr | .9954725 .0070477 -0.64 0.521 .9817696 1.009367
 age | .9508934 .0220721 -2.17 0.030 .9086021 .995153
 levledu | .91857 .0738747 -1.06 0.291 .7846132 1.075397
 hous_inc | .9999828 .0000757 -0.23 0.820 .9998345 1.000131
 drink | .7903504 .3594721 -0.52 0.605 .3240939 1.927385
 smoke | .8366147 .3780433 -0.39 0.693 .345057 2.028431
 pest_pois| .815276 .9343788 -0.18 0.859 .0862486 7.706503
 lang12 | .9156197 .7522875 -0.11 0.915 .1829594 4.582217
 drugs | 3.338186 5.383542 0.75 0.455 .1415028 78.715
 _cons | 5.452753 8.722301 1.06 0.289 .2371493 125.3747
--

. logistic fam_mem dedtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression Number of obs = 162
 LR chi2(9) = 10.52
 Prob > chi2 = 0.3097
Log likelihood = -84.150963 Pseudo R2 = 0.0589

--
 fam_mem | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+---
 dedtp_cr | 1.003364 .0059151 0.57 0.569 .9918373 1.015024
 age | 1.01656 .020748 0.80 0.421 .976697 1.058049
 levledu | 1.221868 .1078126 2.27 0.023 1.027822 1.452549
 hous_inc | .9998603 .0000843 -1.66 0.098 .9996951 1.000026
 drink | .6475626 .2971024 -0.95 0.344 .2634812 1.591527
 smoke | 2.126954 1.016377 1.58 0.114 .8336938 5.426373
 pest_pois| .9863912 .9087159 -0.01 0.988 .1621351 6.000967
 lang12 | .8212362 .6045636 -0.27 0.789 .1904194 3.476091
 drugs | 3.471252 5.54372 0.78 0.436 .1517349 79.41216
 _cons | 5.452753 8.722301 1.06 0.289 .2371493 125.3747
--

. logistic chest dedtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression Number of obs = 162
 LR chi2(9) = 19.96
 Prob > chi2 = 0.0182
Log likelihood = -92.428868 Pseudo R2 = 0.0974

--
 chest | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+---
 dedtp_cr | 1.003364 .0059151 0.57 0.569 .9918373 1.015024
 age | 1.01656 .020748 0.80 0.421 .976697 1.058049
 levledu | 1.221868 .1078126 2.27 0.023 1.027822 1.452549
 hous_inc | .9998603 .0000843 -1.66 0.098 .9996951 1.000026
 drink | .6475626 .2971024 -0.95 0.344 .2634812 1.591527
 smoke | 2.126954 1.016377 1.58 0.114 .8336938 5.426373
 pest_pois| .9863912 .9087159 -0.01 0.988 .1621351 6.000967
 lang12 | .8212362 .6045636 -0.27 0.789 .1904194 3.476091
 drugs | 3.471252 5.54372 0.78 0.436 .1517349 79.41216
 _cons | 5.452753 8.722301 1.06 0.289 .2371493 125.3747
--
| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------------|--------------|----------------|------|---------|---------------------|
| chest | | | | | |
| dedtp_cr | .996284 | .0059756 | -0.62| 0.535 | .9846405 | 1.008065 |
| age | .9903295 | .0190348 | -0.51| 0.613 | .953716 | 1.028349 |
| levledu | 1.088832 | .0818316 | 1.13 | 0.257 | .9396984 | 1.261634 |
| hous_inc | .9997164 | .0000947 | -2.99| 0.003 | .9995308 | .9999021 |
| drink | 1.372149 | .5793777 | 0.75 | 0.454 | .99776 | 3.139161 |
| smoke | .6528769 | .2746877 | -1.01| 0.311 | .286221 | 1.489227 |
| pest_pois | 4.968369 | 4.498809 | 1.77 | 0.077 | .8422855 | 29.3068 |
| lang12 | 1.105204 | .80276 | 0.14 | 0.890 | .2661805 | 4.588903 |
| drugs | 1.164153 | 1.784923 | 0.10 | 0.921 | .0576654 | 23.50199 |
| _cons | .7594631 | 1.088549 | -0.19| 0.848 | .0457581 | 12.60508 |

```
 logistical notes dedtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts failure perfectly

drugs dropped and 2 obs not used

Logistic regression
Number of obs = 160
LR chi2(8)     = 13.72
Prob > chi2    = 0.0895
Log likelihood = -78.448062 Pseudo R2 = 0.0804
```

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------------|--------------|----------------|------|---------|---------------------|
| chek_door | | | | | |
| dedtp_cr | 1.002486 | .0067514 | 0.37 | 0.712 | .9893406 | 1.015806 |
| age | .9484855 | .223051 | -2.25| 0.025 | .9057604 | .9932259 |
| levledu | .9939657 | .0834098 | -0.07| 0.943 | .8432218 | 1.171658 |
| hous_inc | .9999033 | .0000867 | -1.12| 0.265 | .9997333 | 1.000073 |
| drink | .5200818 | .2434804 | -1.40| 0.153 | .2077662 | 1.301873 |
| smoke | .8718527 | .4097461 | -0.29| 0.770 | .3470583 | 2.1902 |
| pest_pois | 9.193928 | 8.050001 | 2.53 | 0.011 | 1.652753 | 51.14396 |
| lang12 | .9516076 | .7127365 | -0.07| 0.947 | .219242 | 4.1304 |
| drugs | 1 (omitted) | | | | |
| _cons | 3.859913 | 6.110898 | 0.85 | 0.394 | .1733728 | 85.9358 |

```
 logistical chek_door dedtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: pest_pois != 0 predicts success perfectly

pest_pois dropped and 7 obs not used

Logistic regression
Number of obs = 155
LR chi2(8)     = 3.18
Prob > chi2    = 0.9228
Log likelihood = -103.82496 Pseudo R2 = 0.0151
```

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------------|--------------|----------------|------|---------|---------------------|
| chek_door | | | | | |
| dedtp_cr | .9996219 | .0052482 | -0.07| 0.943 | .9893883 | 1.009961 |
. logistic q16_head dedtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used

Logistic regression
Number of obs = 160
LR chi2(8) = 6.98
Prob > chi2 = 0.5390
Log likelihood = -94.249371 Pseudo R2 = 0.0357

-------------+--
 q16_head | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 dedtp_cr | 1.002411 .006008 0.40 0.688 .9907045 1.014256
 age | 0.9888433 .0181958 -0.61 0.542 .9538156 1.025157
 levledu | 1.058692 .0750492 0.80 0.421 .9213597 1.216494
 hous_inc | 0.9998728 .0000643 -1.98 0.048 .9997468 .9999988
 drink | 1.208736 .5011895 0.46 0.648 .5362776 2.724414
 smoke | 1.051715 .4390063 0.12 0.904 .4640773 2.383451
pest_pois | 2.443079 2.754381 0.79 0.428 .2680859 22.26389
 lang12 | 1.622032 1.334782 0.80 0.421 .9213597 1.216494
 drugs | 1 (omitted)
 _cons | 1.827136 2.494903 0.44 0.659 .1257415 26.54991
-------------+--

. logistic less_sex dedtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used

Logistic regression
Number of obs = 160
LR chi2(8) = 5.50
Prob > chi2 = 0.7032
Log likelihood = -104.51417 Pseudo R2 = 0.0256

-------------+--
 less_sex | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 dedtp_cr | 1.005031 .006008 0.40 0.688 .9907045 1.014256
 age | 0.9888433 .0181958 -0.61 0.542 .9538156 1.025157
 levledu | 1.058692 .0750492 0.80 0.421 .9213597 1.216494
 hous_inc | 0.9998728 .0000643 -1.98 0.048 .9997468 .9999988
 drink | 1.157149 .4523105 0.37 0.709 .5378588 2.489487
 smoke | 1.051715 .4390063 0.12 0.904 .4640773 2.383451
pest_pois | 2.443079 2.754381 0.79 0.428 .2680859 22.26389
 lang12 | 1.622032 1.334782 0.80 0.421 .9213597 1.216494
 drugs | 1 (omitted)
 _cons | 1.827136 2.494903 0.44 0.659 .1257415 26.54991
-------------+--
| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------------|--------------|-----------|------|-------|---------------------|
| dedtp_cr | 1.003784 | .0089282 | 0.42 | 0.671 | .9864364 1.021436 |
| age | .9549448 | .0242062 | -1.82| 0.069 | .9086607 1.003586 |
| levledu | .9716222 | .1000649 | -0.28| 0.780 | .7940253 1.188942 |
| hous_inc | .9999131 | .0000797 | -1.09| 0.276 | .9997568 1.000069 |
| drink | .648486 | .3992702 | -0.70| 0.482 | .1940078 2.167614 |
| smoke | 1.144456 | .6980144 | 0.22 | 0.825 | .3462929 3.78229 |
| pest_pois | 1 | (omitted) | | | |
| lang12 | 1.290655 | 1.388578 | 0.24 | 0.813 | .156685 10.63147 |
| drugs | 1 | (omitted) | | | |
| _cons | 71.3987 | 146.6504 | 2.08 | 0.038 | 1.274538 3999.703 |

Logistic regression

Logistic regression

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------------|--------------|-----------|------|-------|---------------------|
| dedtp_cr | .9984792 | .0055521 | -0.27| 0.784 | .9876564 1.009421 |
| age | .9816949 | .0175118 | -1.04| 0.300 | .9479655 1.016624 |
| levledu | 1.050473 | .0720702 | 0.72 | 0.473 | .918303 1.201665 |
| smoke | 1.134539 | .4427293 | 0.32 | 0.746 | .528027 2.437712 |
| pest_pois | 2.012997 | 1.658025 | 0.85 | 0.396 | .400629 10.11448 |
| lang12 | 1.700403 | 1.15525 | 0.78 | 0.435 | .4490009 6.439563 |
| drugs | 1 | (omitted) | | | |
| _cons | .2133658 | .2804926 | -1.18| 0.240 | .0162229 2.806221 |

. logistic q16_score dedtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: pest_pois != 0 predicts success perfectly
pest_pois dropped and 7 obs not used

note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression

Logistic regression

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------------|--------------|-----------|------|-------|---------------------|
| dedtp_cr | .9984792 | .0055521 | -0.27| 0.784 | .9876564 1.009421 |
| age | .9816949 | .0175118 | -1.04| 0.300 | .9479655 1.016624 |
| levledu | 1.050473 | .0720702 | 0.72 | 0.473 | .918303 1.201665 |

. logistic q16_score50 dedtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: pest_pois != 0 predicts success perfectly
pest_pois dropped and 7 obs not used

note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression

Logistic regression

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------------|--------------|-----------|------|-------|---------------------|
| dedtp_cr | .9984792 | .0055521 | -0.27| 0.784 | .9876564 1.009421 |
| age | .9816949 | .0175118 | -1.04| 0.300 | .9479655 1.016624 |
| levledu | 1.050473 | .0720702 | 0.72 | 0.473 | .918303 1.201665 |
. logistic q16_score75 dedtp_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression Number of obs = 162
LR chi2(9) = 13.52
Prob > chi2 = 0.1405
Log likelihood = -83.785103 Pseudo R2 = 0.0747

--
q16_score75 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
dedtp_cr | .9983192 .0067162 -0.25 0.803 .9852421 1.01157
age | .9820445 .0210572 -0.85 0.398 .9416283 1.024195
levledu | 1.109454 .0953974 1.21 0.227 .9373852 1.313109
hous_inc | .999850 .0008955 -1.68 0.094 .9996745 1.000025
drink | 1.26661 .5846257 0.51 0.609 .5125734 3.129894
smoke | 1.290697 .5944526 0.55 0.580 .5233456 3.183169
pest_pois | 3.783545 3.220892 1.56 0.118 .7133131 20.06863
lang12 | .499377 .3714863 -0.93 0.351 .1162037 2.146036
drugs | 2.413231 3.733767 0.57 0.569 .1163093 50.07067
_cons | .5611598 .8745909 -0.37 0.711 .0264517 11.90473
--

. logistic tired cis_dcca_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used

Logistic regression Number of obs = 166
LR chi2(8) = 17.45
Prob > chi2 = 0.0258
Log likelihood = -104.87557 Pseudo R2 = 0.0768

--
tired | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
cis_dcca_cr | 1.218427 .3065378 0.79 0.432 .7441321 1.995028
age | .9717315 .0171032 -1.63 0.103 .9387814 1.005838
levledu | 1.077922 .0705271 1.14 0.252 .9480584 1.225278
hous_inc | .9998231 .0006687 -2.57 0.010 .9996884 1.000057
drink | .4794052 .1911741 -1.84 0.065 .2194149 1.047464
smoke | 1.388078 .5379746 0.85 0.397 .6494043 2.966964
pest_pois | 2.087682 1.861221 0.83 0.409 .3637449 11.98207
lang12 | .612862 .4543559 -0.37 0.711 .0264517 11.90473
drugs | 1 (omitted)
_cons | 6.458359 8.549281 1.41 0.159 .4823256 86.47767
--
Logistic Regression for hart_palp

Logistic regression

- Number of obs = 166
- LR chi2(8) = 9.59
- Prob > chi2 = 0.2951
- Log likelihood = -107.16435
- Pseudo R2 = 0.0428

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---|------------|-----------|-------|------|----------------------|
| hart_palp | | | | | |
| cis_dcca_cr | 1.025604 | .2519157 | 0.10 | 0.918 | .6337269 1.659807 |
| age | .9563059 | .0175062 | -2.44 | 0.015 | .9226026 .9912403 |
| levledu | .9579304 | .0620491 | -0.66 | 0.507 | .8437196 1.087601 |
| hous_inc | .9999403 | .0000645 | -0.93 | 0.355 | .9998138 1.000067 |
| drink | .6561314 | .2530681 | -1.09 | 0.275 | .3080951 1.397323 |
| smoke | .8066104 | .3047107 | -0.57 | 0.569 | .3846875 1.691296 |
| pest_pois | 3.294928 | 2.741805 | 1.43 | 0.152 | .6449658 16.83276 |
| lang12 | 1.673649 | 1.147353 | 0.75 | 0.453 | .4366483 6.415006 |
| drugs | 1 (omitted) | | | | |
| _cons | 5.015391 | 6.454213 | 1.25 | 0.210 | .4026331 62.47412 |

Note: drugs != 0 predicts success perfectly. Drugs dropped and 2 obs not used.

Logistic Regression for tingling

Logistic regression

- Number of obs = 166
- LR chi2(8) = 9.72
- Prob > chi2 = 0.2855
- Log likelihood = -103.74629
- Pseudo R2 = 0.0447

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---|------------|-----------|-------|------|----------------------|
| tingling | | | | | |
| cis_dcca_cr | .8097527 | .2090986 | -0.82 | 0.414 | .4881471 1.343242 |
| age | .9932574 | .0177345 | -0.38 | 0.705 | .9590996 1.028632 |
| levledu | 1.103446 | .0777656 | 1.40 | 0.162 | .9610864 1.266892 |
| hous_inc | .9999751 | .0000629 | 0.40 | 0.693 | .9998518 1.000098 |
| drink | .6684351 | .2638205 | -1.02 | 0.307 | .3083925 1.448821 |
| smoke | .9820431 | .3841924 | -0.05 | 0.963 | .4561698 2.114144 |
| pest_pois | 2.700861 | 2.224962 | 1.21 | 0.228 | .5373843 13.57437 |
| lang12 | .4491502 | .3040121 | -1.18 | 0.237 | .1191919 1.69253 |
| drugs | 1 (omitted) | | | | |
| _cons | 1.043511 | 1.376799 | 0.03 | 0.974 | .0786011 13.85367 |

Note: drugs != 0 predicts success perfectly. Drugs dropped and 2 obs not used.

Logistic Regression for irritated

Logistic regression

- Number of obs = 166
- LR chi2(8) = 9.72
- Prob > chi2 = 0.2855
- Log likelihood = -103.74629
- Pseudo R2 = 0.0447

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---|------------|-----------|-------|------|----------------------|
| irritated | | | | | |
| cis_dcca_cr | .8097527 | .2090986 | -0.82 | 0.414 | .4881471 1.343242 |
| age | .9932574 | .0177345 | -0.38 | 0.705 | .9590996 1.028632 |
| levledu | 1.103446 | .0777656 | 1.40 | 0.162 | .9610864 1.266892 |
| hous_inc | .9999751 | .0000629 | 0.40 | 0.693 | .9998518 1.000098 |
| drink | .6684351 | .2638205 | -1.02 | 0.307 | .3083925 1.448821 |
| smoke | .9820431 | .3841924 | -0.05 | 0.963 | .4561698 2.114144 |
| pest_pois | 2.700861 | 2.224962 | 1.21 | 0.228 | .5373843 13.57437 |
| lang12 | .4491502 | .3040121 | -1.18 | 0.237 | .1191919 1.69253 |
| drugs | 1 (omitted) | | | | |
| _cons | 1.043511 | 1.376799 | 0.03 | 0.974 | .0786011 13.85367 |

Note: drugs != 0 predicts success perfectly.
drugs dropped and 2 obs not used

Logistic regression

Number of obs = 166
LR chi2(8) = 4.85
Prob > chi2 = 0.7732

Log likelihood = -107.76909 Pseudo R2 = 0.0220

--
irritated | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
cis_dcca_cr | 1.025617 .2512701 0.10 0.918 .6345212 1.657771
age | 1.003037 .0171535 0.18 0.859 .9699738 1.037227
levledu | .9819715 .0628254 -0.28 0.776 .8662436 1.11316
hous_inc | .9999623 .0000629 -0.60 0.549 .9998391 1.000086
drink | .918386 .3511905 -0.22 0.824 .4340363 1.943231
smoke | .6390509 .2426281 -1.18 0.238 .3036409 1.344964
pest_pois | 2.466002 2.023795 1.10 0.271 .493663 12.31846
lang12 | .6923531 .4531151 -0.56 0.574 .1919787 2.496906
drugs | 1 (omitted)
_cons | 1.279013 1.595366 0.20 0.844 .1109521 14.74396
--

.logistic depress cis_dcca_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression

Number of obs = 168
LR chi2(9) = 2.35
Prob > chi2 = 0.9845

Log likelihood = -114.5082 Pseudo R2 = 0.0102

--
depress | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
cis_dcca_cr | 1.053476 .244469 0.22 0.822 .6684905 1.660175
age | 1.000081 .016663 0.00 0.996 .9679493 1.033279
levledu | .979338 .0608397 -0.34 0.737 .8670681 1.106145
hous_inc | .9999495 .0000608 -0.83 0.406 .9998302 1.000069
drink | .8103442 .3025774 -0.56 0.573 .389795 1.684623
smoke | 1.10777 .408487 0.28 0.781 .5377455 2.282035
pest_pois | 1.545626 1.253799 0.54 0.592 .31425 7.602104
lang12 | .7413372 .484299 -0.46 0.647 .2060364 2.667397
drugs | 1.385821 2.036786 0.22 0.824 .0777532 24.69996
_cons | 1.562645 1.904312 0.37 0.714 .1433992 17.02841
--

.logistic pr_concen cis_dcca_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression

Number of obs = 168
LR chi2(9) = 6.12
Prob > chi2 = 0.7283

Log likelihood = -92.497468 Pseudo R2 = 0.0320

--
pr_concen | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
. logistic short_mem cis_dcca_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
 note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used

Logistic regression
 Number of obs = 166
 LR chi2(8) = 7.20
 Prob > chi2 = 0.5148
Log likelihood = -106.08884 Pseudo R2 = 0.0328

short_mem | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
cis_dcca_cr | .9973786 .2467502 -0.01 0.992 .6141492 1.619743
 age | .9846808 .0175795 -0.86 0.387 .9508215 1.019746
 levledu | 1.099461 .075527 1.38 0.167 .9609634 1.257919
 hous_inc | .99992 .0000655 -1.22 0.222 .9997916 1.000048
 drink | .7676327 .3003218 -0.68 0.499 .3565635 1.652609
 smoke | 1.217712 .4697365 0.51 0.610 .5717297 2.593573
 pest_pois | 2.559133 2.102488 1.14 0.253 .5114201 12.80584
 lang12 | 1.503539 1.024937 0.60 0.550 .395244 5.719583
 drugs | 1 (omitted)
 _cons | .4229042 .5476167 -0.66 0.506 .0334214 5.351295
-------------+--

. logistic perspire cis_dcca_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
 note: drugs != 0 predicts failure perfectly
 drugs dropped and 2 obs not used

Logistic regression
 Number of obs = 166
 LR chi2(8) = 9.50
 Prob > chi2 = 0.3018
Log likelihood = -83.319892 Pseudo R2 = 0.0539

perspire | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
cis_dcca_cr | .9823046 .2864318 -0.06 0.951 .5546806 1.7396
 age | .9632572 .021803 -1.65 0.098 .9214581 1.006952
 levledu | 1.076439 .0915117 0.87 0.386 .9112252 1.271607
-------------+--
| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|--------------|-----------|--------|--------|-----------------------|
| button| | | | | |
| cis_dcca_cr | 3.031758 | 1.401977 | 2.40 | 0.016 | 1.224823 |
| age | .9679249 | .0415077 | -0.76 | 0.447 | .8898964 |
| levledu | 1.139837 | .0466846 | 0.76 | 0.448 | .8126721 |
| hous_inc | .9998562 | .0001637 | -0.88 | 0.380 | .9995355 |
| drink | 1.156767 | 0.112888 | 0.15 | 0.881 | .1714079 |
| smoke | 2.461147 | 2.348755 | 0.94 | 0.345 | .3791465 |
| pest_pois | 4.221417 | 5.639077 | 1.08 | 0.281 | .3078942 |
| lang12 | 6.294004 | 17.09934 | 0.68 | 0.498 | .0306431 |
| drugs | | | | | |
| _cons | .0021264 | .0079845 | -1.64 | 0.101 | 1.35e-06 |

Logistic regression

Number of obs = 166
LR chi2(8) = 11.42
Prob > chi2 = 0.1792
Log likelihood = -29.276414

Pseudo R2 = 0.1632

--------------------------+
 button | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
--------------------------+
 cis_dcca_cr | 1.565963 | .4263746 | 1.65 | 0.100 | .918374 |
 age | .9475827 | .0219819 | -2.32 | 0.020 | .9054638 |
 levledu | .9345311 | .0792966 | -0.87 | 0.386 | .8019244 |
 hous_inc | .9999803 | .000077 | -0.26 | 0.798 | .9998295 |
 drink | .7272616 | .3326962 | -0.71 | 0.481 | .2932084 |
 smoke | .8887993 | .4018593 | -0.26 | 0.794 | .3663901 |
 pest_pois | .972312 | 1.11929 | -0.02 | 0.981 | .1018436 |
 lang12 | .8584466 | .7121595 | -0.15 | 0.880 | .18304 |
 drugs | 2.153521 | 3.24027 | 0.51 | 0.610 | .1128232 |
 _cons | 3.387295 | 5.227927 | 0.79 | 0.429 | .1644806 |
. logistic fam_mem cis_dcca_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression Number of obs = 168
LR chi2(9) = 10.61
Prob > chi2 = 0.3031
Log likelihood = -85.724265 Pseudo R2 = 0.0583

--
fam_mem | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
cis_dcca_cr | 1.082833 .3010479 0.29 0.775 .6279303 1.867289
age | 1.017454 .0207351 0.85 0.396 .9776144 1.058916
levledu | 1.228023 .1080966 2.33 0.020 1.033427 1.459263
hous_inc | .9998621 .0000844 -1.63 0.102 .9996966 1.000028
drink | .6593946 .3024646 -0.91 0.364 .2683483 1.620287
smoke | 2.061216 .9681959 1.54 0.124 .8209117 5.175479
pest_pois | .9940608 .9126621 -0.01 0.995 .1644039 6.010544
lang12 | .7264569 .5340181 -0.43 0.664 .1719856 3.068511
drugs | 4.290503 6.579212 0.95 0.342 .2124442 86.65057
_cons | .0445573 .0684918 -2.02 0.043 .0021902 .9064696
--

. logistic chest cis_dcca_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression Number of obs = 168
LR chi2(9) = 20.15
Prob > chi2 = 0.0170
Log likelihood = -96.153364 Pseudo R2 = 0.0948

--
chest | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
cis_dcca_cr | .9554633 .2503081 -0.17 0.862 .5717681 1.596644
age | .9939612 .0188259 -0.32 0.749 .9577396 1.031553
levledu | 1.117341 .0817652 1.52 0.129 .9680466 1.28966
hous_inc | .999722 .0000927 -3.00 0.003 .9995402 1.00007
drink | 1.365048 .5684492 0.75 0.455 .603505 3.087559
smoke | .7110519 .2921318 -0.83 0.407 .3178262 1.59079
pest_pois | .9999037 .9999037 -0.02 0.980 .9999037 1.000000
lang12 | 1.214704 .8548195 0.28 0.778 .3058139 4.824848
drugs | .9643381 1.428179 -0.02 0.980 .0529182 17.57332
_cons | .4530499 .6317744 -0.57 0.570 .0294545 6.968506
--

. logistic notes cis_dcca_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts failure perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 166
LR chi2(8) = 16.18
Prob > chi2 = 0.0399
Log likelihood = -79.980636 Pseudo R² = 0.0919

| notes | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------+-------------+-------------+-----+-----+------------------------|
cis_dcca_cr	1.540087 .4431685	1.50 0.133	.8762083 2.706968
age	.9482782 .0219217	-2.30 0.022	.9062714 .9922321
levledu	1.018127 .0843077	0.22 0.828	.8655992 1.197532
hous_inc	.9998991 .0000862	-1.17 0.242	.9997301 1.000068
drink	.4645578 .2182454	-1.63 0.103	.1849917 1.166614
smoke	.8306001 .3841031	-0.40 0.688	.3355536 2.055995
pest_pois	10.32843 9.088695	2.65 0.008	1.840788 57.95154
lang12	.8958357 .6764728	-0.15 0.884	.2039201 3.93547
drugs	1 (omitted)		
_cons	2.61039 4.031652	0.62 0.534	.1264898 53.87102

Logistic regression
Number of obs = 161
LR chi2(8) = 3.18
Prob > chi2 = 0.9224
Log likelihood = -107.73056 Pseudo R² = 0.0146

| chek_door | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------+-------------+-------------+-----+-----+------------------------|
cis_dcca_cr	1.17045 .2778458	0.66 0.507	.7350069 1.863864
age	.9810677 .0173021	-1.08 0.278	.9477357 1.015572
levledu	1.007469 .06511	0.12 0.908	.8876076 1.143517
hous_inc	.9999522 .0000623	-0.77 0.443	.9998301 1.000074
drink	1.209811 .4594733	0.50 0.616	.5746989 2.5468
smoke	.8542528 .3199873	-0.42 0.674	.4099605 1.780044
pest_pois	1 (omitted)		
lang12	1.258395 .8821916	0.33 0.743	.3184831 4.972189
drugs	.8244731 1.215334	-0.13 0.896	.0458609 14.82211
_cons	1.087426 1.400251	0.07 0.948	.0871624 13.56658

Logistic regression
Number of obs = 166
LR chi2(8) = 6.79
Prob > chi2 = 0.5592
Log likelihood = -99.003445 Pseudo R² = 0.0332

| q16_head | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------+-------------+-------------+-----+-----+------------------------|

Logistic regression
Number of obs = 161
LR chi2(8) = 3.18
Prob > chi2 = 0.9224
Log likelihood = -107.73056 Pseudo R² = 0.0146

| chek_door | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------+-------------+-------------+-----+-----+------------------------|
cis_dcca_cr	1.17045 .2778458	0.66 0.507	.7350069 1.863864
age	.9810677 .0173021	-1.08 0.278	.9477357 1.015572
levledu	1.007469 .06511	0.12 0.908	.8876076 1.143517
hous_inc	.9999522 .0000623	-0.77 0.443	.9998301 1.000074
drink	1.209811 .4594733	0.50 0.616	.5746989 2.5468
smoke	.8542528 .3199873	-0.42 0.674	.4099605 1.780044
pest_pois	1 (omitted)		
lang12	1.258395 .8821916	0.33 0.743	.3184831 4.972189
drugs	.8244731 1.215334	-0.13 0.896	.0458609 14.82211
_cons	1.087426 1.400251	0.07 0.948	.0871624 13.56658

Logistic regression
Number of obs = 166
LR chi2(8) = 6.79
Prob > chi2 = 0.5592
Log likelihood = -99.003445 Pseudo R² = 0.0332

| q16_head | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------+-------------+-------------+-----+-----+------------------------|
. logistic less_sex cis_dcca_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 166
 LR chi2(8) = 5.02
 Prob > chi2 = 0.7558
Log likelihood = -109.45062 Pseudo R2 = 0.0224

 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
cis_dcca_cr | .8535008 .2090182 -0.65 0.518 .5281397 1.379301
age | 1.000473 .0171857 0.03 0.978 .9673505 1.03473
levledu | 1.075111 .0701978 1.11 0.267 .9459658 1.221888
hous_inc | 1.0999046 .000065 -1.47 0.142 .9997773 1.100032
drink | 1.082006 .4137856 0.21 0.837 .5113394 2.289549
smoke | 1.009768 .3792567 0.03 0.979 .4836381 2.108252
pest_pois | 1.856107 1.521687 0.75 0.451 .3721902 9.256381
lang12 | 1.750249 1.185434 0.83 0.409 .4640725 6.601062
drugs | 1 (omitted)
_cons | 1.700362 2.229374 0.40 0.686 .1301717 22.2109

. logistic q16_score cis_dcca_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: pest_pois != 0 predicts success perfectly
pest_pois dropped and 7 obs not used

Logistic regression Number of obs = 159
 LR chi2(7) = 6.05
 Prob > chi2 = 0.5337
Log likelihood = -53.128155 Pseudo R2 = 0.0539

 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
q16_score | 1.106672 .2903271 0.39 0.699 .6617784 1.850654
. logistic q16_score50 cis_dcca_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

note: pest_pois != 0 predicts success perfectly
pest_pois dropped and 7 obs not used

note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression
Number of obs = 159
LR chi2(7) = 7.14
Prob > chi2 = 0.4140
Log likelihood = -105.50024 Pseudo R2 = 0.0328

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------------|------------|-----------|-------|-----|----------------------|
| q16_score50 | | | | | |
| cis_dcca_cr | 1.057873 | 0.2576763 | 0.23 | 0.817| (.6562932 1.705174) |
| age | .9854969 | 0.0173678 | -0.83 | 0.407| (.9520379 1.020132) |
| levledu | 1.080475 | 0.0717481 | 1.17 | 0.244| (.9486177 1.23066) |
| hous_inc | .9998943 | 0.0000657 | -1.61 | 0.108| (.9997657 1.000023) |
| drink | .7725834 | 0.2942143 | -0.68 | 0.498| (.3662619 1.629667) |
| smoke | .9572328 | 0.0303977 | -0.12 | 0.908| (.4576575 2.00214) |
| pest_pois | (omitted) | | | | |
| lang12 | 1.14167 | 1.192699 | 0.13 | 0.899| (.1473308 8.846837) |
| drugs | (omitted) | | | | |
| _cons | 106.2102 | 215.9534 | 2.29 | 0.022| (1.974457 5713.267) |

. logistic q16_score75 cis_dcca_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression
Number of obs = 168
LR chi2(9) = 13.52
Prob > chi2 = 0.1404
Log likelihood = -86.597405 Pseudo R2 = 0.0724

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------------|------------|-----------|-------|-----|----------------------|
| q16_score75 | | | | | |
| cis_dcca_cr | 1.118445 | .3081595 | 0.41 | 0.685| (.6517595 1.919296) |
| age | .9813147 | .0206946 | -0.89 | 0.371| (.9415809 1.022725) |
| levledu | 1.125321 | .0940777 | 1.41 | 0.158| (.9552462 1.325676) |
| hous_inc | .9998586 | .0000873 | -1.62 | 0.105| (.9996875 1.00003) |
| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|------------|-----------|------|-----|---------------------|
| drink | 1.148741 | .523565 | 0.30 | 0.76 | 0.470183 |
| smoke | 1.258265 | .5668146 | 0.51 | 0.61 | 0.520390 |
| pest_pois | 4.207801 | 3.565662 | 1.70 | 0.09 | .799379 |
| lang12 | 0.5302386 | .3819899 | -0.88 | 0.37 | .129198 |
| drugs | 2.06436 | 3.097787 | 0.48 | 0.63 | .1090107 |
| _cons | 0.4427068 | .6676074 | -0.54 | 0.59 | .0230406 |

.logistic tired trans_dcca_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression
Number of obs = 166
LR chi2(8) = 18.56
Prob > chi2 = 0.0174
Log likelihood = -104.32139 Pseudo R2 = 0.0817

| tired | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|------------|-----------|------|-----|---------------------|
| trans_dcca_cr | 1.441773 | .423228 | 1.25 | 0.21 | .811015 |
| age | .97212 | .0170067 | -1.62 | 0.10 | .939352 |
| levledu | 1.079607 | .0709314 | 1.17 | 0.24 | .949163 |
| hous_inc | .9998725 | .000684 | -2.52 | 0.01 | .999634 |
| drink | .4632262 | .183581 | -1.92 | 0.05 | .211422 |
| smoke | 1.366345 | .5307481 | 0.80 | 0.42 | .638140 |
| pest_pois | 2.1729 | 1.941504 | 0.87 | 0.38 | .377123 |
| lang12 | .5997991 | .4460344 | -0.69 | 0.49 | .139642 |
| drugs | 1 (omitted) | | |
| _cons | 5.609762 | 7.48175 | 1.29 | 0.19 | .410861 |

.logistic hart_palp trans_dcca_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression
Number of obs = 166
LR chi2(8) = 9.97
Prob > chi2 = 0.2670
Log likelihood = -106.97303 Pseudo R2 = 0.0445

| hart_palp | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------|------------|-----------|------|-----|---------------------|
| trans_dcca_cr | 1.166506 | .2881109 | 0.62 | 0.53 | .718872 |
| age | .9560654 | .0174002 | -2.47 | 0.01 | .922562 |
| levledu | .9585205 | .0621592 | -0.65 | 0.51 | .844115 |
| hous_inc | .9999417 | .0000644 | -0.91 | 0.37 | .999815 |
| drink | .6397722 | .24794 | -1.15 | 0.24 | .293279 |
| smoke | 0.7973075 | 0.3020708 | -0.60 | 0.55 | .379434 |
| pest_pois | 3.402407 | 2.836673 | 1.47 | 0.14 | .663923 |
| lang12 | 1.653277 | 1.136346 | 0.73 | 0.46 | .4298235 |
. logistic tingling trans_dcca_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
 note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used

Logistic regression Number of obs = 166
 LR chi2(8) = 9.13
 Prob > chi2 = 0.3316
Log likelihood = -104.04081 Pseudo R2 = 0.0420

 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
---------+--
trans_dcca_cr | 0.924669 .240351 -0.30 0.763 .5555606 1.539009
 age | 0.991645 .017531 -0.47 0.635 .9578743 1.026606
levledu | 1.103199 .077564 1.40 0.162 .9611857 1.266193
 hous_inc | 0.999971 .000063 -0.58 0.564 .9998408 1.000087
 drink | 0.659831 .260805 -1.05 0.293 .3040783 1.431798
 smoke | 0.979031 .382492 -1.21 0.226 .4552457 2.105459
pest_pois | 2.766346 2.279121 1.24 0.217 .5503305 13.905591
 lang12 | 0.441414 .298612 -1.21 0.227 .1172237 1.662171
 drugs | 1 (omitted)
 _cons | 1.03907 1.37392 0.03 0.977 .0778282 13.872444

. logistic irritated trans_dcca_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
 note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used

Logistic regression Number of obs = 166
 LR chi2(8) = 5.29
 Prob > chi2 = 0.7259
Log likelihood = -107.54934 Pseudo R2 = 0.0240

 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
---------+--
trans_dcca_cr | 1.178976 .287951 0.67 0.500 .7304815 1.902835
 age | 1.002782 .017037 -0.16 0.870 .9699397 1.036736
levledu | 0.982219 .062946 -0.28 0.778 .8662815 1.113674
 hous_inc | 0.999639 .000268 -0.58 0.564 .9998408 1.000087
 drink | 0.89419 .343697 -0.29 0.771 .4209746 1.899345
 smoke | 0.629914 .240261 -1.21 0.226 .2982753 1.330286
pest_pois | 2.555158 2.100438 1.14 0.254 .5101495 12.797888
 lang12 | 0.441413 .298612 -1.21 0.227 .1172237 1.662171
 drugs | 1 (omitted)
 _cons | 1.18103 1.48039 0.13 0.894 .1012274 13.779211
Logistic regression

Number of obs = 168

LR chi2(9) = 2.48
Prob > chi2 = 0.9814

Log likelihood = -114.4456 Pseudo R2 = 0.0107

| Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------|-----------|------|------|-----------------------|
| depress | | | | |
| trans_dcca_cr | 1.104482 .262466 0.42 0.676 | .6932354 1.759691 |
| age | 1.000217 .0165382 0.01 0.990 | .9683228 1.033163 |
| levledu | .9794239 .0608666 -0.33 0.738 | .8671065 1.106229 |
| hous_inc | .9999511 .0000607 -0.81 0.420 | .9998321 1.00007 |
| drink | .8012412 .3002032 -0.59 0.554 | .3844513 1.66988 |
| smoke | 1.101526 .4068125 0.26 0.793 | .5341112 2.271738 |
| pest_pois | 1.565092 1.272821 0.55 0.582 | .3179034 7.705217 |
| lang12 | .7370108 .4815864 -0.47 0.640 | .3541112 2.271738 |
| drugs | 1.384621 2.032032 0.22 0.824 | .0781999 24.51634 |
| _cons | 1.503608 1.839606 0.33 0.739 | .1366856 16.54043 |

Logistic regression

Number of obs = 168

LR chi2(9) = 6.13
Prob > chi2 = 0.7270

Log likelihood = -92.490862 Pseudo R2 = 0.0321

| Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------|-----------|------|------|-----------------------|
| pr_concen | | | | |
| trans_dcca_cr | .9331534 .2536171 -0.25 0.799 | .5477838 1.589633 |
| age | .9747568 .0199211 -1.25 0.211 | .9364837 1.014594 |
| levledu | 1.034026 .0773088 0.45 0.654 | .8930822 1.197213 |
| hous_inc | .9999755 .0000696 -0.35 0.725 | .9998391 1.000112 |
| drink | .8222981 .360005 -0.45 0.655 | .3486344 1.939493 |
| smoke | 1.653872 .7090968 1.18 0.240 | .7146019 3.827714 |
| pest_pois | 1.32627 1.200942 0.31 0.755 | .2248361 7.823444 |
| lang12 | 2.043178 1.80317 0.81 0.418 | .3623213 11.52176 |
| drugs | 2.943505 4.367336 0.73 0.467 | .1606647 53.92736 |
| _cons | 3.131371 .4720952 -0.77 0.441 | .0163094 6.012183 |

Logistic regression

Number of obs = 166

LR chi2(8) = 7.48
Prob > chi2 = 0.4856

Log likelihood = -105.95006 Pseudo R2 = 0.0341
Logistic regression results

| Short_mem | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------|------------|-----------|------|-----|----------------------|
| trans_dcca_cr | 1.139054 | 0.2829835 | 0.52 | 0.600 | (0.6999618, 1.853594) |
| age | 0.984232 | 0.174398 | -0.90 | 0.370 | (0.9506374, 1.019014) |
| levlevelu | 1.100593 | 0.0757522 | 1.39 | 0.164 | (0.9616999, 1.259545) |
| hous_inc | 0.999204 | 0.000653 | -1.22 | 0.223 | (0.997924, 1.000049) |
| drink | 0.748442 | 0.293416 | -0.74 | 0.461 | (0.3462894, 1.617631) |
| smoke | 1.20606 | 0.466514 | 0.48 | 0.628 | (0.5650887, 2.574075) |
| pest_pois | 2.644857 | 2.174509 | 1.18 | 0.237 | (0.572972, 13.25044) |
| lang12 | 1.482009 | 1.101369 | 0.58 | 0.564 | (0.3890131, 5.645954) |
| drugs | 1 (omitted) | | | | |
| cons | 0.3921146 | 0.5099293 | -0.72 | 0.472 | (0.030652, 5.016104) |

Logistic regression

- **Number of obs**: 166
- **LR chi2(8)**: 9.64
- **Prob > chi2**: 0.2910
- **Log likelihood**: -83.249148
- **Pseudo R²**: 0.0547

Logistic regression results

| Perspire | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|------------|-----------|------|-----|----------------------|
| trans_dcca_cr | 1.110716 | 0.3030777 | 0.38 | 0.700 | (0.6506359, 1.896128) |
| age | 0.9629188 | 0.0216838 | -1.68 | 0.093 | (0.9213436, 1.060637) |
| levlevelu | 1.078123 | 0.0918989 | 0.88 | 0.378 | (0.912246, 1.274161) |
| hous_inc | 0.9999515 | 0.0000785 | -0.62 | 0.537 | (0.9997978, 1.000105) |
| drink | 0.7083158 | 0.3291098 | -0.74 | 0.458 | (0.2849227, 1.760868) |
| smoke | 1.539096 | 0.7127999 | 0.93 | 0.352 | (0.6209396, 3.814888) |
| pest_pois | 1.608278 | 1.498168 | 0.51 | 0.610 | (0.2590816, 9.983568) |
| lang12 | 0.3871511 | 0.2770875 | -1.33 | 0.185 | (0.0952068, 1.57432) |
| drugs | 1 (omitted) | | | | |
| cons | 1.412721 | 2.19984 | 0.22 | 0.824 | (0.066772, 29.88942) |

Logistic regression

- **Number of obs**: 166
- **LR chi2(8)**: 10.76
- **Prob > chi2**: 0.2160
- **Log likelihood**: -29.606857
- **Pseudo R²**: 0.1537

Logistic regression results

| Button | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------|------------|-----------|------|-----|----------------------|
| trans_dcca_cr | 2.46878 | 1.211268 | 1.84 | 0.065 | (0.9437435, 6.458191) |
| age | .978403 .041354 -0.52 0.605 .9006182 1.062906 |
| levledu | 1.122377 .1907339 0.68 0.497 .804429 1.565993 |
| hous_inc | .9998978 .0001597 -0.64 0.522 .9995849 1.000211 |
| drink | 1.08418 1.080891 0.08 0.935 .0382028 913.3569 |
| smoke | 2.35922 2.296725 0.88 0.378 .3500379 15.90091 |
| pest_pois | 4.038172 5.211726 1.08 0.279 .3218187 50.67088 |
| lang12 | 5.907014 15.19272 0.69 0.490 .0382028 913.3569 |
| drugs | 1 (omitted) |
| _cons | .0021423 .0078502 -1.68 0.093 1.63e-06 2.818042 |

```
logistic reading trans_dcca_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
```

Logistic regression
Number of obs = 168
LR chi2(9) = 9.51
Prob > chi2 = 0.3918
Log likelihood = -82.535833
Pseudo R2 = 0.0545

```
reading | Odds Ratio Std. Err. z  P>|z| [95% Conf. Interval]  
----------+--------------------------------------------------
trans_dcca_cr | 1.62823 .460218 1.72 0.085 .9356735 2.833396  
  age | .9498861 .0219513 -2.22 0.026 .9078222 .993899  
  levledu | .9335526 .073283 -0.88 0.381 .8004243 1.088823  
  hous_inc | .9999931 .0000759 -0.09 0.927 .9998443 1.000142  
  drink | .701359 .3256609 -0.76 0.445 .5822951 1.742519  
  smoke | .8689885 .3964165 0.31 0.758 .3556117 2.123499  
  pest_pois | .9967251 1.146919 -0.31 0.758 .3556117 2.123499  
  lang12 | .8788165 .3577261 0.58 0.559 .127858 44.79986  
  drugs | 2.393328 3.577261 0.58 0.559 .127858 44.79986  
  _cons | 2.965565 4.61138 0.70 0.484 .1407701 62.47477  

. logistic fam_mem trans_dcca_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
```

Logistic regression
Number of obs = 168
LR chi2(9) = 10.53
Prob > chi2 = 0.3091
Log likelihood = -85.764602
Pseudo R2 = 0.0579

```
fam_mem | Odds Ratio Std. Err. z  P>|z| [95% Conf. Interval]  
---------+--------------------------------------------------
trans_dcca_cr | 1.007536 .2778975 0.03 0.978 .5867904 1.729968  
  age | 1.018276 .0205826 0.90 0.370 .9787232 1.059427  
  levledu | 1.227963 1.081133 2.33 0.020 1.03334 1.459243  
  hous_inc | .999864 .0000842 -1.62 0.106 .999699 1.000029  
  drink | .6666857 .3073699 -0.88 0.379 .2700732 1.645737  
  smoke | .2071056 .9727892 1.55 0.121 .8248535 5.200045  
  pest_pois | .9773951 .8980437 -0.02 0.980 .1614265 5.917872  
  lang12 | .7335703 .593773 -0.42 0.673 .1736093 3.099635  
  drugs | 4.480231 6.79386 0.99 0.323 .2293672 87.5124  
  _cons | .0448737 .0694005 -2.01 0.045 .0021654 .9299039  
```
Logistic regression
Number of obs = 168
LR chi2(9) = 20.17
Prob > chi2 = 0.0169
Log likelihood = -96.144103 Pseudo R2 = 0.0949

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------------|------------|-----------|-------|-------|----------------------|
| chest | | | | | |
| trans_dcca_cr | 0.944655 | 0.2454298 | -0.22 | 0.826 | .5675341 1.571738 |
| age | 0.993067 | 0.186645 | -0.34 | 0.737 | .95779 1.03097 |
| levledu | 1.117062 | 0.0817187 | 1.51 | 0.130 | .9678489 1.289279 |
| hous_inc | 0.9997202 | 0.0000928 | -3.01 | 0.003 | .9995382 .9999021 |
| drink | 1.371698 | 0.5730436 | 0.76 | 0.449 | .6048654 3.110701 |
| smoke | 0.713174 | 0.0020038 | -1.04 | 0.300 | .999745 1.000079 |
| pest_pois | 5.009825 | 4.521372 | 1.79 | 0.074 | .8543037 29.37871 |
| lang12 | 1.215657 | 0.055794 | 0.28 | 0.781 | .306996 4.829329 |
| drugs | 1 (omitted)| | | | |
| _cons | 0.463846 | 0.650186 | -0.55 | 0.584 | .0297318 7.236472 |

Note: drugs != 0 predicts failure perfectly
drugs dropped and 2 obs not used

Logistic regression
Number of obs = 166
LR chi2(8) = 18.37
Prob > chi2 = 0.0186
Log likelihood = -78.886577 Pseudo R2 = 0.1043

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------------|------------|-----------|-------|-------|----------------------|
| notes | | | | | |
| trans_dcca_cr | 1.817552 | 0.5584115 | 1.94 | 0.052 | .9953363 3.318974 |
| age | 0.950053 | 0.0220028 | -2.21 | 0.027 | .9078924 .9941713 |
| levledu | 1.01928 | 0.085639 | 0.23 | 0.820 | .8645225 1.20174 |
| hous_inc | 0.999118 | 0.0000851 | -1.04 | 0.300 | .999745 1.000079 |
| drink | 0.4354025 | 0.2082856 | -1.74 | 0.082 | .1704894 1.111948 |
| smoke | 0.8117655 | 0.3818953 | -0.44 | 0.658 | .3228365 2.041167 |
| pest_pois | 10.99425 | 9.710468 | 2.71 | 0.007 | 1.946964 62.08311 |
| lang12 | 0.8786305 | 0.6665429 | -0.17 | 0.865 | .1986422 3.886343 |
| drugs | 1 (omitted)| | | | |
| _cons | 2.094645 | 3.28652 | 0.47 | 0.637 | .0967312 45.35804 |

Note: pest_pois != 0 predicts success perfectly
pest_pois dropped and 7 obs not used

Logistic regression
Number of obs = 161
LR chi2(8) = 4.73
Prob > chi2 = 0.7859
Log likelihood = -106.95641 Pseudo R2 = 0.0216

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|--------------|-----------|------|------|-----------------------|
| chek_door| | | | | |
| trans_dcca_cr | 1.426296 | .3761898 | 1.35 | 0.178 | .8505558 2.391755 |
| age | .9809445 | .0171904 | -1.10 | 0.272 | .9478239 1.015222 |
| levledu | 1.007834 | .0654311 | 0.12 | 0.904 | .8874153 1.144593 |
| hous_inc | .9999569 | .0000622 | -0.69 | 0.489 | .999835 1.000079 |
| drink | 1.162404 | .4448424 | 0.39 | 0.694 | .5490465 2.460962 |
| smoke | .8369293 | .3156045 | -0.47 | 0.637 | .3996706 1.75257 |
| pest_pois| | | | | |
| lang12 | 1.218468 | .8566384 | 0.28 | 0.779 | .3071716 4.833342 |
| drugs | .8041224 | 1.191178 | -0.15 | 0.883 | .0440965 14.66358 |
| _cons | .9595314 | 1.241612 | -0.03 | 0.975 | .0759667 12.11979 |

logistic q16 head trans_dcca_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 166
LR chi2(8) = 6.66
Prob > chi2 = 0.5742
Log likelihood = -99.071962 Pseudo R2 = 0.0325

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|--------------|-----------|------|------|-----------------------|
| q16_head | | | | | |
| trans_dcca_cr | 1.032484 | .283752 | 0.12 | 0.907 | .6024932 1.769353 |
| age | .9912289 | .0177166 | -0.49 | 0.622 | .9571062 1.026568 |
| levledu | 1.05749 | .0709993 | 0.83 | 0.405 | .9271014 1.206217 |
| hous_inc | .9998793 | .0000633 | -1.91 | 0.057 | .9997553 1.000003 |
| drink | 1.269255 | .5150932 | 0.59 | 0.557 | .5729431 2.811812 |
| smoke | 1.08698 | .4364546 | 0.21 | 0.835 | .4948105 2.387834 |
| pest_pois| 2.361987 | 2.65088 | 0.77 | 0.444 | .2617981 21.31025 |
| lang12 | 1.453212 | .998743 | 0.54 | 0.587 | .3778566 5.588957 |
| drugs | | | | | |
| _cons | 1.699582 | 2.232357 | 0.40 | 0.686 | .1295122 22.30352 |

logistic less_sex trans_dcca_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 166
LR chi2(8) = 4.87
Prob > chi2 = 0.7713
Log likelihood = -109.52329 Pseudo R2 = 0.0218
| variable | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------------|------------|-----------|-------|------|------------------------|
| less_sex | | | | | |
| trans_dcca_cr | .8780668 | .2195012 | -0.52 | 0.603 | [.5379503 1.43322] |
| age | .9994314 | .0170172 | -0.03 | 0.973 | [.9666287 1.033347] |
| levledu | 1.074783 | .0700717 | 1.11 | 0.269 | [.9458578 1.221282] |
| hous_inc | .9999008 | .000065 | -1.53 | 0.127 | [.9997733 1.000028] |
| drink | 1.083657 | .4152913 | 0.21 | 0.834 | [.5113106 2.296672] |
| smoke | 1.012511 | .3802025 | 0.03 | 0.974 | [.4850307 2.113634] |
| pest_pois | 1.862869 | 1.527961 | 0.76 | 0.448 | [.3732592 9.297242] |
| lang12 | 1.741456 | 1.179323 | 0.82 | 0.413 | [.4618218 6.566752] |
| drugs | 1 (omitted) | | | | |
| _cons | .3226293 | .4100949 | -0.89 | 0.373 | [.026714 3.896443] |

. logistic q16_score trans_dcca_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: pest_pois != 0 predicts success perfectly
pest_pois dropped and 7 obs not used

note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression
Number of obs = 159
LR chi2(7) = 6.00
Prob > chi2 = 0.5399
Log likelihood = -53.154686 Pseudo R2 = 0.0534

| variable | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------------|------------|-----------|-------|------|------------------------|
| q16_score | | | | | |
| trans_dcca_cr | 1.349607 | .6408476 | 0.63 | 0.528| [.532136 3.422882] |
| age | .9519091 | .243235 | -1.93 | 0.054| [.9054101 1.000796] |
| levledu | .9592575 | .096567 | -0.41 | 0.679| [.784919 1.168488] |
| hous_inc | .9999072 | .0000795 | -1.17 | 0.243| [.9997515 1.000063] |
| drink | .6047156 | .371384 | -0.81 | 0.416| [.1798505 2.03325] |
| smoke | 1.066882 | .6620741 | 0.15 | 0.878| [.33603 3.580487] |
| pest_pois | 1 (omitted) | | | | |
| lang12 | 1.151391 | 1.200756 | 0.14 | 0.892| [.149117 8.890347] |
| drugs | 1 (omitted) | | | | |
| _cons | 93.88723 | 189.2725 | 2.25 | 0.024| [1.8056 4881.928] |

. logistic q16_score50 trans_dcca_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: pest_pois != 0 predicts success perfectly
pest_pois dropped and 7 obs not used

note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression
Number of obs = 159
LR chi2(7) = 7.27
Prob > chi2 = 0.4015
Log likelihood = -105.43857 Pseudo R2 = 0.0333

qu16_score50 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
--------------+--
 trans_dcca_cr | 1.108439 .2730544 0.42 0.676 .6839519 1.796379
 age | .9856371 .0172262 -0.83 0.408 .952446 1.019985
 levledu | 1.080734 .0718367 1.17 0.243 .948723 1.231115
 hous_inc | .9998961 .0000654 -1.59 0.112 .999768 1.000024
 drink | .7639137 .2919371 -0.70 0.481 .3612013 1.61562
 smoke | .9522223 .3590356 -0.13 0.897 .4547709 1.993811
pest_pois | 1 (omitted)
 lang12 | .7354261 .5157098 -0.44 0.661 .1860557 2.906934
 drugs | 1 (omitted)
 _cons | 1.460634 1.916715 0.29 0.773 .1115715 19.12183

.logistic q16_score75 trans_dcca_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression Number of obs = 168
LR chi2(9) = 14.29
Prob > chi2 = 0.1124
Log likelihood = -86.213671 Pseudo R2 = 0.0765

qu16_score75 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
--------------+--
 trans_dcca_cr | 1.293897 .3496665 0.95 0.340 .7618483 2.19751
 age | .9815867 .0205518 -0.89 0.375 .9421213 1.022705
 levledu | 1.127705 .0948368 1.43 0.153 .9563385 1.329777
 hous_inc | .9998635 .0000866 -1.58 0.115 .9996938 1.000033
 drink | 1.1072 .5089469 0.22 0.825 .4497322 2.725826
 smoke | 1.233675 .5599242 0.46 0.644 .5068376 3.002845
pest_pois | 4.410741 3.748435 1.75 0.081 .8339203 23.32914
 lang12 | .5233804 .3780805 -0.90 0.370 .1270354 2.156304
 drugs | 2.03753 3.068715 0.47 0.637 .1064421 39.00271
 _cons | .3873993 .5880434 -0.62 0.532 .0197742 7.589614

.logistic tired cis_dbva_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
Note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 166
LR chi2(8) = 19.02
Prob > chi2 = 0.0148
Log likelihood = -104.09202 Pseudo R2 = 0.0837

tired | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
----------+--
 cis_dbva_cr | 1.910197 .8464948 1.46 0.144 .8014419 4.552858
 age | .9701222 .0171820 -1.71 0.087 .9370239 1.00439

levledu | 1.07894 .0711399 1.15 .249 .9481424 1.227782
hous Inc | .9998093 .0000708 -2.69 .007 .9996704 .9999481
drink | .4612597 .1850605 -1.93 .054 .2101057 1.012636
smoke | 1.400267 .5448158 0.87 .387 .6531691 3.001901
pest_pois | 2.179594 1.952709 0.87 .384 .376513 12.61744
lang12 | .6228262 .4634186 -0.64 .525 .1448852 2.677379
_drugs | 1 (omitted)
__cons | 6.530003 8.705537 1.41 .159 .4787686 89.06376
--
.l logistic hart_palp cis_dbva_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression
Number of obs = 166
LR chi2(8) = 9.67
Prob > chi2 = 0.2887
Log likelihood = -107.12212
Pseudo R2 = 0.0432

hart_palp | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
---------|-------------+----------------------
cis_dbva_cr | 1.141461 .4893464 .31 0.758 .492662 2.644678
age | .9559893 .0174577 -2.46 .014 .9223779 .9908256
levledu | .9581637 .062099 -0.66 .510 .8438649 1.087944
hous_inc | .9999379 .0000652 -0.95 .340 .9998101 1.000066
drink | .6501149 .2513812 -1.11 .265 .3046873 1.387158
smoke | .8070517 .3049333 -0.57 .570 .3848457 1.692451
pest_pois | 3.329257 .2772909 1.44 .149 .6507122 17.03357
lang12 | 1.681114 1.15323 .76 0.449 .4382077 6.449324
drugs | 1 (omitted)
__cons | 4.954096 6.367831 1.24 .213 .3988945 61.52771

.l logistic tingling cis_dbva_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression
Number of obs = 166
LR chi2(8) = 9.25
Prob > chi2 = 0.3220
Log likelihood = -103.98205
Pseudo R2 = 0.0426

tingling | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
---------|-------------+----------------------
cis_dbva_cr | .8161688 .3633814 -0.46 0.648 .3410366 1.953255
age | .9923203 .0176705 -0.43 0.665 .9582842 1.027565
levledu | 1.103202 .0775639 1.40 0.162 .961189 1.266197
hous_inc | .9999754 .0000633 -0.39 0.697 .9998513 1.000099
drink | .6633893 .2619116 -1.04 0.299 .3059899 1.438235
smoke | .9737586 .3801335 -0.07 0.946 .4530659 2.092865
. logistic irritated cis_dbva_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used

Logistic regression Number of obs = 166
 LR chi2(8) = 5.30
 Prob > chi2 = 0.7248
Log likelihood = -107.54407 Pseudo R2 = 0.0241

-------------+--
 irritated | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
cis_dbva_cr | 1.33511 .5671117 0.68 0.496 .5807029 3.069588
 age | 1.001936 .0171033 0.11 0.910 .9689692 1.036025
 levledu | .9819349 .0629272 -0.28 0.776 .8660311 1.113351
 hous_inc | .9999565 .0000638 -0.68 0.496 .9998315 1.000082
 drink | .895387 .3439252 -0.29 0.774 .421752 1.900921
 smoke | .6379432 .2427768 -1.18 0.238 .3025849 1.900921
 pest_pois | 2.544435 2.09188 1.14 0.256 .5079079 12.7467
 lang12 | .692113 .4528081 -0.56 0.574 .1919936 2.494981
 drugs | 1 (omitted)
 _cons | 1.254672 1.564544 0.18 0.856 .1089189 14.45296
-------------+--

. logistic depress cis_dbva_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression Number of obs = 168
 LR chi2(9) = 3.42
 Prob > chi2 = 0.9450
Log likelihood = -113.97322 Pseudo R2 = 0.0148

-------------+--
depress | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
cis_dbva_cr | 1.53786 .6265544 1.06 0.291 .6920232 3.417535
 age | 1.000406 .0166441 -0.10 0.924 .9663115 1.031567
 levledu | .9786674 .0610032 -0.35 0.729 .8661184 1.105842
 hous_inc | .999941 .0000626 -0.95 0.342 .9998195 1.000063
 drink | .7800555 .2929945 -0.66 0.508 .373601 1.628707
 smoke | 1.10843 .4101761 0.28 0.781 .536685 2.289268
 pest_pois | 1.614752 1.316501 0.59 0.557 .3268614 7.981548
 lang12 | 1.251945 1.851261 -0.15 0.879 .0690091 22.71244
 drugs | 1 (omitted)
 _cons | 1.543972 1.886341 0.36 0.722 .1408276 16.92743
-------------+--

. logistic pr_concen cis_dbva_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression Number of obs = 168
 LR chi2(9) = 3.42
 Prob > chi2 = 0.9450
Log likelihood = -113.97322 Pseudo R2 = 0.0148

-------------+--
pr_concen | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
cis_dbva_cr | 1.53786 .6265544 1.06 0.291 .6920232 3.417535
 age | 1.000406 .0166441 -0.10 0.924 .9663115 1.031567
 levledu | .9786674 .0610032 -0.35 0.729 .8661184 1.105842
 hous_inc | .999941 .0000626 -0.95 0.342 .9998195 1.000063
 drink | .7800555 .2929945 -0.66 0.508 .373601 1.628707
 smoke | 1.10843 .4101761 0.28 0.781 .536685 2.289268
 pest_pois | 1.614752 1.316501 0.59 0.557 .3268614 7.981548
 lang12 | 1.251945 1.851261 -0.15 0.879 .0690091 22.71244
 drugs | 1 (omitted)
 _cons | 1.543972 1.886341 0.36 0.722 .1408276 16.92743
-------------+--
Logistic regression Number of obs = 168
 LR chi2(9) = 6.84
 Prob > chi2 = 0.6538
Log likelihood = -92.135174 Pseudo R2 = 0.0358
--
pr_concen | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
cis_dbva_cr | 1.497177 .6810012 0.89 0.375 .6139008 3.651304
 age | .9723519 .0199133 -1.37 0.171 .9340955 1.012175
 levledu | 1.034437 .0777345 0.45 0.652 .8927686 1.198585
 hous_inc | .9999671 .0000711 -0.46 0.644 .9998279 1.000106
 drink | .774601 .3411941 -0.58 0.562 .3266955 1.836593
 smoke | 1.649333 .7110953 1.16 0.246 .7084679 3.839692
 pest_pois | 1.421885 1.290445 0.39 0.698 .2400762 8.42132
 lang12 | 2.034382 1.794822 0.80 0.421 .3609649 11.46569
 drugs | 2.560322 3.831059 0.63 0.530 .1363406 48.07993
 _cons | .2918206 .4360115 -0.82 0.410 .0156073 5.45636
--

.logistic short_mem cis_dbva_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 166
 LR chi2(8) = 7.69
 Prob > chi2 = 0.4644
Log likelihood = -105.84644 Pseudo R2 = 0.0350
--
short_mem | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
cis_dbva_cr | 1.349753 .5802095 0.70 0.485 .5812376 3.134402
 age | .9832447 .0175052 -0.95 0.343 .9495269 1.01816
 levledu | 1.100971 .0758587 1.40 0.163 .9618925 1.260158
 hous_inc | .9999126 .0000667 -1.31 0.190 .9997818 1.000043
 drink | .744173 .3927307 -0.58 0.562 .3442247 1.608814
 smoke | 1.217727 .47095 -0.51 0.611 .5706266 2.598651
 pest_pois | 2.664293 2.192892 1.19 0.234 .5308675 13.37143
 lang12 | 1.506145 1.02843 0.63 0.530 .1363406 48.07993
 drugs | 1 (omitted)
 _cons | .4062038 .5249109 -0.70 0.486 .0322694 5.113244
--

.logistic perspire cis_dbva_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts failure perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 166
 LR chi2(8) = 9.66
 Prob > chi2 = 0.2900
Log likelihood = -83.24222 Pseudo R2 = 0.0548

| predictor | Odds Ratio | Std. Err. | z | P>|z| | 95% Conf. Interval |
|-----------------|--------------|-----------|-------|--------|-------------------|
| perspire | | | | | |
| cis_dbva_cr | 1.224023 | 0.616835 | 0.40 | 0.688 | 0.4558622 |
| age | 0.962535 | 0.021658 | -1.70 | 0.090 | 0.9210084 |
| levledu | 1.078674 | 0.092028 | 0.89 | 0.375 | 0.9125762 |
| hous_inc | 0.9999463 | 0.0000796 | -0.67 | 0.500 | 0.9997903 |
| drink | 0.7095078 | 0.0329168 | -0.74 | 0.459 | 0.3857933 |
| smoke | 1.551353 | 0.7177946 | 0.95 | 0.343 | 0.6264247 |
| pest_pois | 1.603632 | 1.492498 | 0.51 | 0.612 | 0.2587574 |
| lang12 | 0.3919716 | 0.2805018 | -1.31 | 0.191 | 0.0964095 |
| drugs | | | | | |
| _cons | 1.443169 | 2.235094 | 0.24 | 0.813 | |

Logistic regression

Number of obs = 166
LR chi2(8) = 12.57
Prob > chi2 = 0.1276
Log likelihood = -28.700334 Pseudo R2 = 0.1796

| predictor | Odds Ratio | Std. Err. | z | P>|z| | 95% Conf. Interval |
|-----------------|--------------|-----------|-------|--------|-------------------|
| button | | | | | |
| cis_dbva_cr | 8.926605 | 7.52004 | 2.60 | 0.009 | 0.1192477 |
| age | 0.969257 | 0.040382 | -0.75 | 0.454 | 0.9325433 |
| levledu | 1.15692 | 0.20777 | 0.81 | 0.417 | 0.8136413 |
| hous_inc | 0.999815 | 0.000167 | -1.10 | 0.269 | 0.9994878 |
| drink | 0.9922198 | 0.9975614 | -0.01 | 0.994 | 0.1383006 |
| smoke | 2.678365 | 2.62278 | 1.01 | 0.314 | 0.3929467 |
| pest_pois | 4.431831 | 6.03144 | 1.09 | 0.274 | 0.307717 |
| lang12 | 7.34657 | 20.76409 | 0.71 | 0.480 | 0.0288588 |
| drugs | | | | | |
| _cons | 0.0018178 | 0.006953 | -1.65 | 0.099 | 1.01e-06 |

Logistic regression

Number of obs = 168
LR chi2(9) = 11.39
Prob > chi2 = 0.2502
Log likelihood = -81.596526 Pseudo R2 = 0.0652

| predictor | Odds Ratio | Std. Err. | z | P>|z| | 95% Conf. Interval |
|-----------------|--------------|-----------|-------|--------|-------------------|
| reading | | | | | |
| cis_dbva_cr | 2.953525 | 1.412177 | 2.27 | 0.024 | 1.1570522 |
| age | 0.9468271 | 0.0218153 | -2.37 | 0.018 | 0.905021 |
levledu | .9347367 .0739286 -0.85 0.394 .8005382 1.091495
hous_inc | .9999639 .0000795 -0.45 0.650 .9998081 1.00012
drink | .8972172 .4120818 -0.24 0.813 .2752676 1.726631
smoke | .8972172 .4120818 -0.24 0.813 .3647121 2.207217
pest_pois | .9999639 .0000795 -0.45 0.650 .9998081 1.00012
lang12 | .9385462 .7599198 -0.08 0.938 .1919804 4.588328
drugs | 2.012265 3.071337 0.46 0.647 .1010389 40.07574
_cons | 3.299086 5.094074 0.77 0.439 .1599797 68.03344
--
.logistic fam_mem cis_dbva_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
Logistic regression Number of obs = 168
LR chi2(9) = 11.11
Prob > chi2 = 0.2680
Log likelihood = -85.474591 Pseudo R2 = 0.0610
--
fam_mem | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
cis_dbva_cr | 1.453976 .7093802 0.77 0.443 .5588103 3.783118
age | 1.016325 .0206068 0.80 0.425 .9767283 1.057527
levledu | 1.229714 .1087318 2.34 0.019 1.034047 1.462405
hous_inc | .9998541 .0000856 -1.70 0.088 .9996863 1.000022
drink | .6377088 .2949488 -0.97 0.331 .2575909 1.578754
smoke | 2.076599 .9787202 1.55 0.121 .8244673 5.230362
pest_pois | 1.025026 .9408744 0.03 0.979 .1695955 3.086022
lang12 | .9999639 .0000795 -0.45 0.650 .9998081 1.00012
drugs | 4.019523 6.256823 0.89 0.371 .1901898 84.94969
_cons | .0435817 .0669118 -2.04 0.041 .00215 .8834287
--
.logistic chest cis_dbva_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
Logistic regression Number of obs = 168
LR chi2(9) = 20.18
Prob > chi2 = 0.0168
Log likelihood = -96.138013 Pseudo R2 = 0.0950
--
chest | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
cis_dbva_cr | 1.120511 .5151713 0.25 0.805 .4550555 2.759106
age | .9999639 .0000795 -0.45 0.650 .9568992 1.030352
levledu | 1.118005 .0818512 1.52 0.128 .968558 1.290511
hous_inc | .9997182 .0000932 -3.02 0.003 .9995355 .9999009
drink | 1.344008 .5605061 0.71 0.478 .5934935 3.0436
smoke | .7061546 .2900943 -0.85 0.397 .3156596 1.579722
pest_pois | 5.170376 4.670762 1.82 0.069 .8801814 30.37191
lang12 | 1.213648 .8556517 0.27 0.784 .3047716 4.832934
drugs | .9026984 1.341298 -0.07 0.945 .0490639 16.60822
_cons | .4418067 .6143228 -0.59 0.557 .0289504 6.742327
--
Logistic regression Number of obs = 166
LR chi2(8) = 18.12
Prob > chi2 = 0.0203
Log likelihood = -79.009501 Pseudo R2 = 0.1029
--
notes | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
cis_dbva_cr | 2.826513 1.432128 2.05 0.040 1.04705 7.630182
 age | .9480734 .021728 -2.33 0.020 .9064296 .9916304
levledu | 1.022757 .0858865 0.27 0.789 .8675456 1.205737
hous_inc | 1.000054 .0000009 0.00 0.998 .9999982 1.000001
 drink | .4422279 .2115131 -1.71 0.088 .1731909 1.12919
 smoke | .8484219 .3978266 -0.35 0.726 .3384401 2.126874
pest_pois | 10.85713 9.636752 2.69 0.007 1.906301 61.83561
 lang12 | .9502803 .7230289 -0.07 0.947 .2138985 4.221781
 drugs | 1 (omitted)
 _cons | 2.410661 3.722325 0.57 0.569 .1168928 49.71467
--

Logistic regression Number of obs = 161
LR chi2(8) = 3.82
Prob > chi2 = 0.8728
Log likelihood = -107.41111 Pseudo R2 = 0.0175
--
chek_door | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
cis_dbva_cr | 1.538875 .6397744 1.04 0.300 .6812766 3.476028
 age | .9802881 .0172638 -1.13 0.258 .947029 1.014715
levledu | 1.007089 .0652467 0.11 0.913 .8869942 1.143444
hous_inc | 1.000000 .0000000 0.00 0.999 .9999999 1.000000
 drink | 1.186157 .4525427 0.45 0.654 .5616373 2.505117
 smoke | .8567514 .3216847 -0.41 0.681 .410444 1.788363
pest_pois | 1 (omitted)
 lang12 | 1.282791 .8996054 0.36 0.723 .3245032 5.070992
 drugs | .7856648 1.162572 -0.16 0.871 .0432204 14.28189
 _cons | 1.093327 1.408446 0.07 0.945 .0875418 13.65478
--
Logistic regression Number of obs = 166
 LR chi2(8) = 6.65
 Prob > chi2 = 0.5748
Log likelihood = -99.074747 Pseudo R2 = 0.0325

--
 q16_head | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 cis_dbva_cr | 1.041401 .4698243 0.09 0.928 .4301319 2.521358
 age | .991143 .0178365 -0.49 0.621 .9567935 1.026726
 levledu | 1.057447 .0710091 0.83 0.406 .9270419 1.206197
 hous_inc | .9998783 .0000641 -1.90 0.058 .9997528 1.000004
 drink | 1.271176 .5157078 0.59 0.554 .5739562 2.815351
 smoke | 1.089281 .4371084 0.21 0.831 .4960987 2.391726
 pest_pois | 2.357675 2.64601 0.76 0.445 .2613267 21.27082
 lang12 | 1.458963 1.000762 0.55 0.582 .3803384 5.596523
 drugs | 1 (omitted)
 _cons | 1.720897 2.251486 0.41 0.678 .1324676 22.3563
--

logistic less_sex cis_dbva_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used

Logistic regression Number of obs = 166
 LR chi2(8) = 5.54
 Prob > chi2 = 0.6989
Log likelihood = -109.19008 Pseudo R2 = 0.0247

--
 less_sex | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 cis_dbva_cr | .6587733 .2856828 -0.96 0.336 .281582 1.541228
 age | 1.001006 .017223 0.06 0.953 .9678122 1.035338
 levledu | 1.07509 .0710497 1.11 0.267 .9459848 1.221816
 hous_inc | .9999107 .0000641 -1.37 0.170 .9997829 1.000038
 drink | 1.101869 .4223668 0.25 0.800 .5198144 2.335669
 smoke | 1.00463 .3773403 0.01 0.990 .4811646 2.09758
 pest_pois | 1.832306 1.502488 0.74 0.460 .3672973 9.140676
 lang12 | 1.717807 1.16223 0.80 0.424 .4561107 6.469612
 drugs | 1 (omitted)
 _cons | .3117562 .3960484 -0.92 0.359 .0258505 3.759777
--

logistic q16_score cis_dbva_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: pest_pois != 0 predicts success perfectly
 pest_pois dropped and 7 obs not used

note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used
Logistic regression

Number of obs = 159
LR chi2(7) = 5.87
Prob > chi2 = 0.5549
Log likelihood = -53.218386 Pseudo R2 = 0.0523

| q16_score | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------|--------------|-----------|------|-----|----------------------|
| cis_dbva_cr | 1.457624 | 1.005563 | 0.55 | 0.585 | .3770789 5.634546 |
| age | .9509539 | .0247703 | -1.93 | 0.054 | .9036234 1.000763 |
| levledu | .9580771 | .0967106 | -0.42 | 0.671 | .7861007 1.167677 |
| hous_inc | .9999007 | .0000798 | -1.24 | 0.214 | .9997442 1.000057 |
| drink | .6079208 | .3772472 | -0.80 | 0.423 | .1801487 2.051459 |
| smoke | 1.117036 | .6752404 | 0.18 | 0.855 | .3416035 3.652687 |
| pest_pois | 1 (omitted) | | | | |
| lang12 | 1.192978 | 1.240752 | 0.17 | 0.865 | .1553618 9.160533 |
| drugs | 1 (omitted) | | | | |
| _cons | 106.4175 | 216.0733 | 2.30 | 0.022 | 1.989329 5692.712 |

. logistic q16_score50 cis_dbva_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: pest_pois != 0 predicts success perfectly
pest_pois dropped and 7 obs not used

note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression

Number of obs = 159
LR chi2(7) = 8.17
Prob > chi2 = 0.3176
Log likelihood = -104.98606 Pseudo R2 = 0.0375

| q16_score50 | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------------|--------------|-----------|------|-----|----------------------|
| cis_dbva_cr | 1.556515 | .6634801 | 1.04 | 0.299 | .6750256 3.589108 |
| age | .9836708 | .0173574 | -0.93 | 0.351 | .9502325 1.018286 |
| levledu | 1.081187 | .0721422 | 1.17 | 0.242 | .9486469 1.232246 |
| hous_inc | .9998842 | .0000672 | -1.72 | 0.085 | .9997524 1.000016 |
| drink | .7438566 | .2852526 | -0.77 | 0.440 | .3508102 1.577271 |
| smoke | .9581144 | .3621386 | -0.11 | 0.910 | .4567606 2.009769 |
| pest_pois | 1 (omitted) | | | | |
| lang12 | 1.739236 | .5194029 | -0.43 | 0.667 | .1865138 2.929917 |
| drugs | 1 (omitted) | | | | |
| _cons | 1.502764 | 1.971164 | 0.31 | 0.756 | .1149148 19.65194 |

. logistic q16_score75 cis_dbva_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression

Number of obs = 168
LR chi2(9) = 15.59
Prob > chi2 = 0.0759
Log likelihood = -85.561325 Pseudo R2 = 0.0835
. logistic tired fpba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
 note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression
Number of obs = 166
LR chi2(8) = 17.48
Prob > chi2 = 0.0254
Log likelihood = -104.858
Pseudo R2 = 0.0770

tired | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-----+--
fpba_cr | 1.161488 .2188012 0.79 0.427 .8029071 1.680212
age | .9733688 .01694 -1.55 0.121 .9407269 1.007143
levledu | 1.082891 .0714132 1.21 0.227 .9515922 1.232307
hous_inc | .9998197 .0000694 -2.60 0.009 .9996838 .9999556
drink | .4756321 .1906688 -1.85 0.064 .2167934 1.043509
smoke | 1.416964 .550628 0.90 0.370 .6615832 3.034822
pest_pois | 2.093753 1.865252 0.83 0.407 .3652744 12.00139
lang12 | .6356612 .470796 -.61 0.544 .1488648 2.71431
drugs | 1 (omitted)
_cons | .4013536 .6045399 -0.61 0.544 .0209606 7.685136

. logistic hart_palp fpba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
 note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression
Number of obs = 166
LR chi2(8) = 9.78
Prob > chi2 = 0.2805
Log likelihood = -107.06688
Pseudo R2 = 0.0437

hart_palp | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
----------+--
. logistic tingling fpba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression
Number of obs = 166
LR chi2(8) = 11.22
Prob > chi2 = 0.1894
Log likelihood = -102.99302 Pseudo R2 = 0.0517

. logistic irritated fpba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression
Number of obs = 166
LR chi2(8) = 4.95
Prob > chi2 = 0.7629
Log likelihood = -107.72034 Pseudo R2 = 0.0225

. logistic depress fpba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
Logistic regression
 Number of obs = 168
 LR chi2(9) = 2.36
 Prob > chi2 = 0.9843
 Log likelihood = -114.50327 Pseudo R2 = 0.0102

 +--+
Odds Ratio Std. Err. z P>	z	[95% Conf. Interval]			
depress					
fpba_cr	.959	.165	-0.24	0.807	.6837316 1.344252
age	1.000	.017	0.04	0.970	.9687522 1.033554
levledu	.978	.061	-0.35	0.726	.8660481 1.105449
hous_inc	.999	.061	-0.79	0.432	.9998325 1.000072
drink	.823	.308	-0.52	0.604	.3964393 1.712313
smoke	1.108	.409	0.28	0.780	.5382483 2.283065
pest_pois	1.505	1.223	0.50	0.615	.3062109 7.398279
lang12	1.745	1.769	-0.44	0.660	.1472894 18.25029
drugs	3.172	4.744	0.77	0.440	.1691373 59.48685
_cons	1.640	2.016	-0.40	0.688	.0182131 7.116055
 +--+

. logistic pr_concen fpba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
Logistic regression
 Number of obs = 168
 LR chi2(9) = 6.89
 Prob > chi2 = 0.6483
 Log likelihood = -92.108654 Pseudo R2 = 0.0361

 +--+
Odds Ratio Std. Err. z P>	z	[95% Conf. Interval]			
pr_concen					
fpba_cr	.820	.187	-0.87	0.384	.524454 1.282325
age	1.000	.020	-1.25	0.212	.9362322 1.014743
levledu	1.031	.077	0.41	0.685	.8900075 1.193922
hous_inc	1.000	.000	-0.22	0.829	.9998476 1.000122
drink	.830	.363	-0.42	0.671	.3531825 1.954667
smoke	1.651	.701	1.17	0.243	.7110384 3.835253
pest_pois	1.269	1.150	0.26	0.793	.2143662 7.504745
lang12	1.992	1.769	0.78	0.438	.3496248 11.35333
drugs	3.172	4.744	0.77	0.440	.1691373 59.48685
_cons	3.600	5.481	-0.67	0.502	.0182131 7.116055
 +--+

. logistic short_mem fpba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
 note: drugs != 0 predicts success perfectly
Logistic regression

Number of obs = 166
LR chi2(8) = 8.77
Prob > chi2 = 0.3623
Log likelihood = -105.30715 Pseudo R2 = 0.0400

--
short_mem | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
fpba_cr | .7768187 .1658456 -1.18 0.237 .5112036 1.180444
age | .984749 .0175675 -0.86 0.389 .9509124 1.01979
levledu | 1.093497 .0754121 1.30 0.195 .9552462 1.251757
hous_inc | .9999313 .0000659 -1.04 0.297 .9998022 1.00006
drink | .7896482 .3094442 -0.60 0.547 .3663263 1.702155
smoke | 1.220782 .4743464 0.51 0.608 .5700273 2.614451
pest_pois | 2.379144 1.956375 1.05 0.292 .4747622 11.92245
lang12 | 1.465406 .9997134 0.56 0.575 .3848223 5.580274
drugs | 1 (omitted)
_cons | .5403475 .7107318 -0.47 0.640 .0410268 7.116699
--

Logistic regression

Number of obs = 166
LR chi2(8) = 11.14
Prob > chi2 = 0.1937
Log likelihood = -82.498256 Pseudo R2 = 0.0633

--
perspire | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-----------+--
fpba_cr | .7213432 .1971705 -1.20 0.232 .4221592 1.232559
age | .9621835 .0220217 -1.68 0.092 .9199755 1.006328
levledu | 1.069255 .0917417 0.79 0.432 .9046916 1.263754
hous_inc | .9999641 .0000793 -0.45 0.651 .9998088 1.00012
drink | .7359512 .3399654 -0.66 0.507 .2976082 1.819924
smoke | 1.578884 .7335475 0.98 0.326 .6351599 3.924799
pest_pois | 1.461447 1.359065 0.41 0.683 .2361633 9.043855
lang12 | 1.465406 .9997134 0.56 0.575 .3848223 5.580274
drugs | 1 (omitted)
_cons | .5403475 .7107318 -0.47 0.640 .0410268 7.116699
--

Logistic regression

Number of obs = 166
LR chi2(8) = 11.14
Prob > chi2 = 0.1937
Log likelihood = -82.498256 Pseudo R2 = 0.0633

--
perspire | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-----------+--
fpba_cr | .7213432 .1971705 -1.20 0.232 .4221592 1.232559
age | .9621835 .0220217 -1.68 0.092 .9199755 1.006328
levledu | 1.069255 .0917417 0.79 0.432 .9046916 1.263754
hous_inc | .9999641 .0000793 -0.45 0.651 .9998088 1.00012
drink | .7359512 .3399654 -0.66 0.507 .2976082 1.819924
smoke | 1.578884 .7335475 0.98 0.326 .6351599 3.924799
pest_pois | 1.461447 1.359065 0.41 0.683 .2361633 9.043855
lang12 | 1.465406 .9997134 0.56 0.575 .3848223 5.580274
drugs | 1 (omitted)
_cons | .5403475 .7107318 -0.47 0.640 .0410268 7.116699
--
LR chi2(8) = 7.17
Prob > chi2 = 0.5186
Log likelihood = -31.400439
Pseudo R2 = 0.1024

| button | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------|------------|-----------|-------|------|----------------------|
| fpba_cr| 1.473742 | .4106728 | 1.39 | 0.164| .8535441 2.544587 |
| age | .9826774 | .0402536 | -0.43 | 0.670| .9068659 1.064826 |
| levledu| 1.15038 | .0191447 | 0.84 | 0.401| .8294985 1.595391 |
| hous_inc| .9998529 | .0001599 | -0.92 | 0.358| .9995394 1.000166 |
| drink | 1.342675 | 1.260062 | 0.31 | 0.754| .2133744 8.448884 |
| smoke | 2.899005 | 2.70233 | 1.14 | 0.254| .4664392 18.01785 |
| pest_pois| 3.078641 | .0001599 | -0.88 | 0.381| .2491176 38.0464 |
| lang12 | 6.802142 | 18.72439 | 0.70 | 0.486| .0308693 1498.872 |

. logistic reading fpba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression
Number of obs = 168
LR chi2(9) = 6.41
Prob > chi2 = 0.6978
Log likelihood = -84.081929 Pseudo R2 = 0.0367

| reading | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------|------------|-----------|-------|------|----------------------|
| fpba_cr | 1.075299 | .2080143 | 0.38 | 0.707| .7359806 1.571059 |
| age | .9522915 | .0217742 | -2.14 | 0.033| .910557 .9959388 |
| levledu | .9372189 | .0727101 | -0.84 | 0.403| .8050154 1.091133 |
| hous_inc| .9998984 | .000076 | -0.20 | 0.839| .9998356 1.000134 |
| drink | .7619678 | .3466012 | -0.60 | 0.550| .3124246 1.858353 |
| smoke | .9119139 | .4068058 | -0.21 | 0.836| .3803924 2.186129 |
| pest_pois| .9154233 | 1.046823 | -0.08 | 0.938| .0973283 8.610033 |
| lang12 | .9404218 | .7467671 | -0.08 | 0.938| .1979614 4.467502 |
| drugs | 3.641239 | 3.927964 | 0.65 | 0.514| .1431954 48.71768 |
| _cons | 3.408421 | 5.322939 | 0.79 | 0.432| .1596724 72.7573 |

. logistic fam_mem fpba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression
Number of obs = 168
LR chi2(9) = 10.72
Prob > chi2 = 0.2952
Log likelihood = -85.670174 Pseudo R2 = 0.0589

| fam_mem | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------|------------|-----------|-------|------|----------------------|
| fpba_cr | .9020882 | .2182467 | -0.43 | 0.670| .5614532 1.449387 |
| age | 1.018453 | .0206254 | 0.90 | 0.367| .9788194 1.059691 |
| levledu | 1.225919 | 1.08075 | 2.31 | 0.021| .1031386 1.457143 |
| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------------|--------------|-----------|------|-------|---------------------|
| chest | .6236445 | .1614754 | -1.82| 0.068 | .3754414 1.035934 |
| fpba_cr | .9944058 | .0190448 | -0.29| 0.770 | .9577706 1.032442 |
| age | 1.109989 | .0821597 | 1.41 | 0.159 | .9600942 1.283285 |
| levledu | .9997355 | .0000953 | -2.78| 0.006 | .9995487 .9999223 |
| hous_inc | 1.413248 | .5957108 | 0.82 | 0.412 | .6186158 3.228613 |
| drink | .7125071 | .2978012 | -0.81| 0.417 | .3140646 1.616439 |
| smoke | 9.748839 | 8.501817 | 2.61 | 0.010 | 1.764545 53.86083 |
| pest_pois | .9484068 | .8708348 | -0.06| 0.954 | .1568247 5.735547 |
| lang12 | .7257855 | .5343044 | -0.44| 0.663 | .1714652 3.072138 |
| drugs | 4.729359 | 7.135095 | 1.03 | 0.303 | .2458161 90.99011 |
| _cons | .0494013 | .0768589 | -1.93| 0.053 | .0023412 1.042423 |

. logistic notes fpba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression

Number of obs = 166
LR chi2(8) = 14.72
Prob > chi2 = 0.0649
Log likelihood = -80.712141
Pseudo R2 = 0.0835

| notes | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|--------------|-----------|------|-------|---------------------|
| fpba_cr | 1.189484 | .2332685 | 0.88 | 0.376 | .8098982 1.746976 |
| age | .9519612 | .0218875 | -2.14| 0.032 | .9100147 .9958411 |
| levledu | 1.018667 | .0844879 | 0.22 | 0.824 | .8658321 1.198479 |
| hous_inc | .9999034 | .0000851 | -1.13| 0.257 | .9997366 1.00007 |
| drink | .7125071 | .2978012 | -0.81| 0.417 | .3140646 1.616439 |
| smoke | 9.748839 | 8.501817 | 2.61 | 0.009 | 1.764545 53.86083 |
| pest_pois | .9457265 | .7046071 | -0.07| 0.940 | .2195754 4.07331 |
| lang12 | .7257855 | .5343044 | -0.44| 0.663 | .1714652 3.072138 |
| drugs | 2.512542 | 3.94413 | 0.59 | 0.557 | .1158555 54.48912 |
| _cons | 1 (omitted) | | | | |
. logistic chek_door fpba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: pest_pois != 0 predicts success perfectly
pest_pois dropped and 7 obs not used

Logistic regression Number of obs = 161
LR chi2(8) = 2.98
Prob > chi2 = 0.9356
Log likelihood = -107.83156 Pseudo R2 = 0.0136

--
 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
--
 chek_door |
 fpba_cr | 1.088193 .1893995 0.49 0.627 .7736679 1.530584
 age | .9827226 .0171063 -1.00 0.317 .9497604 1.016829
 levledu | 1.01044 .0654847 0.16 0.873 .8899098 1.147296
 hous_inc | .9999515 .0000625 -0.78 0.438 .9998289 1.000074
 drink | 1.216989 .4621496 0.52 0.605 .5781551 2.561705
 smoke | .864711 .3236674 -0.39 0.698 .4152028 1.800867
 pest_pois | 1 (omitted)
 lang12 | 1.297123 .9058371 0.37 0.710 .3300275 5.098143
 drugs | 1 (omitted)
 _cons | 1.011488 1.313084 0.01 0.993 .0794248 12.88147
--

. logistic q16_head fpba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 166
LR chi2(8) = 6.67
Prob > chi2 = 0.5722
Log likelihood = -99.062936 Pseudo R2 = 0.0326

--
 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
--
 q16_head |
 fpba_cr | .9671438 .1803728 -0.18 0.858 .6710293 1.393929
 age | .9913678 .0176783 -0.49 0.627 .9573176 1.026629
 levledu | 1.05659 .0711421 0.82 0.414 .9259625 1.205644
 hous_inc | .9998806 .0000637 -1.88 0.061 .9997559 1.000005
 drink | 1.286932 .5217859 0.62 0.534 .581348 2.848884
 smoke | 1.086763 .4363991 0.21 0.836 .4946833 2.387494
 pest_pois | 2.317445 2.602327 0.75 0.454 .256549 20.93383
 lang12 | 1.459989 1.000396 0.55 0.581 .3811531 5.592419
 drugs | 1 (omitted)
 _cons | 1.778874 2.346502 0.44 0.662 .1340695 23.60262
--

. logistic less_sex fpba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
Logistic regression

Number of obs = 166
LR chi2(8) = 6.46
Prob > chi2 = 0.5954

Log likelihood = -108.72648 Pseudo R2 = 0.0289

| less_sex | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|------------|-----------|-----|-----|----------------------|
| fpba_cr | .7679614 | .1575383 | -1.29| 0.198| .5137187 1.148031 |
| age | .9992878 | .0171096 | -0.04| 0.967| .9663101 1.033391 |
| levledu | 1.068961 | .0699438 | 1.02 | 0.308| .9402998 1.215226 |
| hous_inc | .9999132 | .0000654 | -1.33| 0.185| .999785 1.000041 |
| drink | 1.099177 | .4216854 | 0.25 | 0.805| .5182209 2.331419 |
| smoke | .9983104 | .0000654 | -0.00| 0.996| .999785 1.000041 |
| pest_pois| 1.772169 | 1.454021 | 0.70 | 0.486| .3549074 8.84902 |
| lang12 | 1.681652 | 1.141949 | 0.77 | 0.444| .4443408 6.364382 |
| drugs | 1 (omitted)| | | | |
| _cons | .3853493 | .4939309 | -0.74| 0.457| .0312469 4.752289 |

Logistic regression

Number of obs = 159
LR chi2(7) = 5.64
Prob > chi2 = 0.5823

Log likelihood = -53.33545 Pseudo R2 = 0.0502

| q16_score | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------|------------|-----------|-----|-----|----------------------|
| fpba_cr | .9260534 | .2469895 | -0.29| 0.773| .5490482 1.56193 |
| age | .9541708 | .0239336 | -1.87| 0.061| .9083963 1.002252 |
| levledu | .9608859 | .0971467 | 0.39 | 0.693| .78816 1.171465 |
| hous_inc | .9999098 | .0000802 | -0.13| 0.996| .9997526 1.000067 |
| drink | .6527974 | .4065672 | 0.68 | 0.493| .1925944 2.212653 |
| smoke | 1.118745 | .6802992 | 0.18 | 0.854| .339721 3.684169 |
| pest_pois | 1 (omitted)| | | | |
| lang12 | 1.25481 | 1.294458 | 0.22 | 0.826| .1661428 9.477077 |
| drugs | 1 (omitted)| | | | |
| _cons | 101.0008 | 202.0924 | 2.31 | 0.021| 2.000579 5099.101 |

Logistic regression

Number of obs = 159
LR chi2(7) = 5.64
Prob > chi2 = 0.5823

Log likelihood = -53.33545 Pseudo R2 = 0.0502
Logistic regression

Number of obs = 159
LR chi2(7) = 8.26
Prob > chi2 = 0.3103

Log likelihood = -104.94299 Pseudo R2 = 0.0379

| q16_score50 | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------------|------------|-----------|-----|------|----------------------|
| fpba_cr | .8160017 | .1601273 | -1.04 | 0.300 | .5554645 1.198742 |
| age | .9861291 | .0172806 | -0.80 | 0.425 | .9528348 1.020587 |
| levledu | 1.074746 | .0715959 | 1.08 | 0.279 | .9431956 1.224644 |
| hous_inc | .9999047 | .0000658 | -1.45 | 0.147 | .9997757 1.000034 |
| drink | .8037861 | .3064159 | -0.57 | 0.567 | .3807581 1.696805 |
| smoke | .9547198 | .3614977 | -0.12 | 0.903 | .4545426 2.00529 |
| pest_pois | - | | | | 1 (omitted) |
| lang12 | .7436556 | .5197246 | -0.42 | 0.672 | .1890105 2.925889 |
| drugs | - | | | | 1 (omitted) |
| _cons | 1.857066 | 2.455283 | 0.47 | 0.640 | .1391322 24.78716 |

Logistic regression

Number of obs = 168
LR chi2(9) = 13.75
Prob > chi2 = 0.1316

Log likelihood = -86.483585 Pseudo R2 = 0.0736

| q16_score75 | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------------|------------|-----------|-----|------|----------------------|
| fpba_cr | .8691062 | .2024818 | -0.60 | 0.547 | .5505065 1.372092 |
| age | .9823022 | .0206995 | -0.85 | 0.397 | .9425584 1.023722 |
| levledu | 1.120365 | .0938292 | 1.36 | 0.175 | .9507638 1.320221 |
| hous_inc | .999867 | .000088 | -1.51 | 0.131 | .9996945 1.000039 |
| drink | 1.180205 | .536662 | 0.36 | 0.716 | .4840603 2.877499 |
| smoke | 1.272106 | .5737545 | 0.53 | 0.594 | .5255433 3.079204 |
| pest_pois | 3.916675 | 3.302903 | 1.62 | 0.105 | .7500768 20.4517 |
| lang12 | .5248527 | .3771069 | -0.90 | 0.370 | .1283656 2.145982 |
| drugs | 2.363362 | 3.516655 | 0.58 | 0.563 | .1279242 43.66243 |
| _cons | .5330587 | .8169333 | -0.41 | 0.681 | .0264409 10.74669 |

Logistic regression

Number of obs = 166
LR chi2(8) = 16.89
| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------|------------|-----------|------|------|----------------------|
| tired | 0.9976696 | 0.0096005 | -0.24| 0.808| 0.9790292 1.016665 |
| pba_cr | 0.9742195 | 0.0170582 | 1.49 | 0.136| 0.9413533 1.008233 |
| age | 1.076001 | 0.0705056 | 1.12 | 0.264| 0.9463181 1.223455 |
| levledu | 0.9998271 | 0.000682 | -2.54| 0.011| 0.9996934 0.9999608 |
| hous_inc| 0.494587 | 0.1959936 | 0.78 | 0.445| 0.2274735 1.075362 |
| drink | 1.394677 | 0.539934 | 1.12 | 0.264| 0.9463181 1.223455 |
| smoke | 1.965416 | 1.740524 | -2.54| 0.011| 0.9996934 0.9999608 |
| pest_pois| 1.6356921 | 0.4683206 | -0.61| 0.539| 0.1500232 2.693614 |
| drugs | 1.076001 | 0.0705056 | 1.12 | 0.264| 0.9463181 1.223455 |
| _cons | 6.665921 | 8.794152 | 1.44 | 0.150| 0.5022215 88.47592 |

Logistic regression

Number of obs = 166
LR chi2(8) = 9.61
Prob > chi2 = 0.2932
Log likelihood = -107.15168
Pseudo R2 = 0.0429

| hart_palp | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------|------------|-----------|------|------|----------------------|
| pba_cr | 1.001745 | 0.0090649 | 0.19 | 0.847| 0.9841345 1.01967 |
| age | 0.9560369 | 0.017583 | -2.44 | 0.015| 0.9221886 0.9911277 |
| levledu | 0.9584254 | 0.0621829 | -0.65| 0.513| 0.8439799 1.08839 |
| hous_inc | 0.9999412 | 0.000644 | -0.91| 0.361| 0.9998149 1.000067 |
| drink | 0.9584254 | 0.0621829 | -0.65| 0.513| 0.8439799 1.08839 |
| smoke | 0.9584254 | 0.0621829 | -0.65| 0.513| 0.8439799 1.08839 |
| pest_pois | 1.6356921 | 0.4683206 | -0.61| 0.539| 0.1500232 2.693614 |
| lang12 | 1.675501 | 1.147815 | 0.75 | 0.451| 0.4375446 6.41604 |
| drugs | 1.675501 | 1.147815 | 0.75 | 0.451| 0.4375446 6.41604 |
| _cons | 5.048407 | 6.491607 | 1.26 | 0.208| 0.4060859 62.76114 |

Logistic regression

Number of obs = 166
LR chi2(8) = 9.04
Prob > chi2 = 0.3389
Log likelihood = -104.08433
Pseudo R2 = 0.0416
Logistic Regression Results

Irritation

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---|------------|-----------|------|-------|----------------------|
| pba_cr | 1.000749 | 0.0099001 | 0.08 | 0.940 | 1.020342 |
| age | .9912586 | .0176181 | -0.49 | 0.621 | .9573222 1.026398 |
| levledu | 1.104143 | .0779139 | 1.40 | 0.160 | .9615248 1.267916 |
| hous_inc | .9999713 | .0000628 | -0.46 | 0.648 | .9998482 1.000094 |
| drink | .650189 | .2556379 | -1.09 | 0.274 | .3008629 1.405111 |
| smoke | .9752239 | .3815093 | -0.06 | 0.949 | .4530153 2.099403 |
| pest_pois | 2.823259 | 2.32305 | 1.26 | 0.207 | .5628079 14.16254 |
| lang12 | .4367813 | .2952951 | -1.23 | 0.220 | .1160891 1.643375 |
| drugs | 1 (omitted) | | | | |
| _cons | .9919276 | 1.305078 | -0.01 | 0.995 | .0752584 13.07389 |

Logistic regression

Logistic regression Number of obs = 166
LR chi2(8) = 4.94
Prob > chi2 = 0.7641
Log likelihood = -107.72611 Pseudo R2 = 0.0224

Depression

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---|------------|-----------|------|-------|----------------------|
| pba_cr | 0.997308 | 0.0087486 | -0.31 | 0.759 | 0.9803075 1.014603 |
| age | 1.004059 | 0.0172441 | 0.24 | 0.814 | .9708241 1.038432 |
| levledu | 0.9803938 | 0.0628853 | -0.31 | 0.758 | .8645736 1.111729 |
| hous_inc | 0.999962 | 0.0000628 | -0.60 | 0.545 | .999839 1.000085 |
| drink | 0.9232373 | 0.3512772 | -0.21 | 0.834 | .4379703 1.946176 |
| smoke | 0.6355188 | 0.2416465 | -1.19 | 0.233 | .3017974 1.338262 |
| pest_pois | 2.431324 | 1.992892 | 1.08 | 0.278 | .4876805 12.12133 |
| lang12 | 0.6975371 | 0.455982 | -0.55 | 0.582 | .1937021 2.511888 |
| drugs | 1 (omitted) | | | | |
| _cons | 1.292447 | 1.610352 | 0.21 | 0.837 | .112419 14.85887 |

Logistic regression

Logistic regression Number of obs = 168
LR chi2(9) = 2.83
Prob > chi2 = 0.9706
Log likelihood = -114.26935 Pseudo R2 = 0.0122

Conclusion

The logistic regression results for irritation and depression show that certain variables have a statistically significant effect on the outcomes. For irritation, the odds ratio for pba_cr is 1.000749, indicating a slight increase in the odds of irritation with pba_cr. However, none of the other variables except for and pistols (pest_pois) show a significant effect. For depression, the odds ratio for pba_cr is 0.997308, suggesting a slight decrease in the odds of depression with pba_cr. Similar to irritation, only pesticides (pest_pois) show a significant effect.
smoke | 1.094521 .4039998 0.24 0.807 .5309286 2.256378
pest_pois | 1.496096 1.214135 0.50 0.620 .3049149 7.340743
lang12 | .7537327 .491863 -0.43 0.665 .2097727 2.70823
drugs | 1.458638 2.13599 0.26 0.797 .0826935 25.72907
_cons | 1.599296 1.949593 0.39 0.700 .1466516 17.44097

--
.logistic pr_concen pba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
Logistic regression Number of obs = 168
LR chi2(9) = 7.65
Prob > chi2 = 0.5699
Log likelihood = -91.730608 Pseudo R2 = 0.0400
--
pr_concen | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
pba_cr | .9709882 .029054 -0.98 0.325 .9156809 1.029636
age | .9755072 .0200527 -1.21 0.228 .9369859 1.015612
levledu | 1.034944 .0772082 0.46 0.645 .894162 1.197892
hous_inc | .9999734 .0000699 -0.38 0.703 .999836 1.00011
drink | .825767 .3575329 -0.44 0.658 .3534372 1.929314
smoke | 1.647192 .7030085 1.17 0.242 .7136058 3.802159
pest_pois | 1.329019 1.200289 0.31 0.753 .2263484 7.803415
lang12 | 2.001253 1.761951 0.79 0.431 .3563558 11.23881
drugs | 3.146199 4.675005 0.77 0.440 .1709888 57.89018
_cons | .3440946 .5174721 -0.71 0.478 .0180545 6.55799
--

.logistic short_mem pba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used
Logistic regression Number of obs = 166
LR chi2(8) = 7.21
Prob > chi2 = 0.5142
Log likelihood = -106.0863 Pseudo R2 = 0.0329
--
short_mem | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
pba_cr | 1.000741 .0102028 -0.07 0.942 .9809425 1.02094
age | .9845183 .0175321 -0.88 0.381 .9507488 1.019487
levledu | 1.099806 .0757013 1.38 0.167 .9610072 1.258652
hous_inc | .9999201 .0000654 -1.22 0.222 .999792 1.000048
drink | .7668461 .2990234 -0.68 0.496 .357116 1.646749
smoke | 1.219036 .4705891 0.51 0.608 .572036 2.59782
pest_pois | 2.56629 2.10505 1.15 0.251 .514151 12.80915
lang12 | 1.502244 1.02339 0.60 0.550 .3952459 5.709706
drugs | 1 (omitted)
_cons | .4213934 .54546 -0.67 0.504 .0333331 5.327212
--
. logistic perspire pba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts failure perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 166
 LR chi2(8) = 10.42
 Prob > chi2 = 0.2370
 Log likelihood = -82.862098 Pseudo R2 = 0.0591

--
 perspire | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 pba_cr | 1.010895 .0100731 1.09 0.277 .9913436 1.030832
 age | .9608168 .0219025 -1.75 0.080 .9188336 1.004718
 levledu | 1.082138 .0931371 0.92 0.359 .914159 1.280984
 hous_inc | .9999537 .0000787 -0.59 0.556 .9997995 1.000108
 drink | .7118000 .3310349 -0.73 0.465 .2860829 1.771022
 smoke | 1.589399 .7411173 0.99 0.320 .6372764 3.964038
 pest_pois | 1.637233 1.52354 0.53 0.596 .264252 10.14385
 lang12 | .3842018 .2758744 -1.33 0.183 .0940498 1.569498
 drugs | 1 (omitted)
 _cons | 1.460395 2.283636 0.24 0.809 .0681454 31.29708
--

. logistic button pba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts failure perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 166
 LR chi2(8) = 7.13
 Prob > chi2 = 0.5230
 Log likelihood = -31.420658 Pseudo R2 = 0.1019

--
 button | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 pba_cr | 1.020041 .0133144 1.52 0.128 .9942757 1.046473
 age | .9752282 .0410625 -0.60 0.551 .8979786 1.059123
 levledu | 1.142134 .1907111 0.80 0.426 .8233516 1.584342
 hous_inc | .9998754 .0001616 -0.77 0.441 .9995588 1.000192
 drink | 1.445974 1.431004 0.37 0.709 .2078603 10.05888
 smoke | 2.803287 2.692179 1.07 0.283 .4267795 18.4133
 pest_pois | 2.963272 3.775246 0.85 0.394 .2439663 35.99259
 lang12 | 7.079193 20.45627 0.68 0.498 .0245654 2040.063
 drugs | 1 (omitted)
 _cons | .0028942 .0113162 -1.49 0.135 1.36e-06 6.160978
--

. logistic reading pba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression Number of obs = 168
 LR chi2(9) = 6.98
Prob > chi2 = 0.6387
Log likelihood = -83.796939
Pseudo R2 = 0.0400

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------------|------------|-----------|-----|------|----------------------|
| pba_cr | 1.008537 | .009373 | 0.91| 0.360| .9903329 1.027077 |
| age | .949166 | .022192 | -2.23| 0.026| .9066517 .9936738 |
| levledu | .9375937 | .0731424 | -0.83| 0.409| .8046588 1.09249 |
| hous_inc | .9999901 | .000758 | -0.13| 0.896| .9998416 1.000139 |
| drink | .7628056 | .3486468 | -0.59| 0.554| .3114332 1.86837 |
| smoke | .9247836 | .4153795 | -0.17| 0.862| .383452 2.23033 |
| pest_pois | .9277122 | 1.061465 | -0.07| 0.948| .0985121 8.736486 |
| lang12 | .9242997 | .7380013 | -0.10| 0.921| .1932753 4.420276 |
| drugs | 2.645616 | 3.956097 | 0.65 | 0.515| .1411532 49.58643 |
| _cons | 3.795146 | 5.923535 | 0.85 | 0.393| .1780973 80.87228 |

. logistic fam_mem pba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression
Number of obs = 168
LR chi2(9) = 10.55
Prob > chi2 = 0.3079
Log likelihood = -85.756629
Pseudo R2 = 0.0579

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------------|------------|-----------|-----|------|----------------------|
| pba_cr | .9982878 | .0136177 | -0.13| 0.900| .9719512 1.025338 |
| age | 1.018489 | .0206152 | 0.91 | 0.365| .9572753 1.030767 |
| levledu | 1.226785 | .1082582 | 2.32 | 0.021| 1.031939 1.458422 |
| hous_inc | .9998636 | .0000843 | -1.62| 0.105| .9996984 1.000029 |
| drink | .6689769 | .3050464 | -0.88| 0.378| .2736983 1.635122 |
| smoke | 2.065091 | .9698301 | 1.54 | 0.123| .8226003 5.184293 |
| pest_pois | .9715696 | .8906511 | -0.03| 0.975| .1611261 5.85844 |
| lang12 | .7357547 | .5404287 | -0.42| 0.676| .1743837 3.104275 |
| drugs | 4.504452 | 6.82153 | 0.99 | 0.320| .2315179 87.63939 |
| _cons | .045655 | .0703764 | -2.00| 0.045| .0022252 .9367023 |

. logistic chest pba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression
Number of obs = 168
LR chi2(9) = 20.12
Prob > chi2 = 0.0172
Log likelihood = -96.165302
Pseudo R2 = 0.0947

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------------|------------|-----------|-----|------|----------------------|
| pba_cr | 1.000809 | .0099698 | 0.08| 0.935| .9814578 1.020541 |
| age | .9933418 | .018744 | -0.35| 0.723| .9572753 1.030767 |
| levledu | 1.118187 | .0821428 | 1.52| 0.128| .9682431 1.291351 |
| hous_inc | .9997213 | .0000925 | -3.01| 0.003| .99954 0.999026 |
. logistic notes pba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts failure perfectly
 drugs dropped and 2 obs not used

Logistic regression Number of obs = 166
 LR chi2(8) = 14.00
 Prob > chi2 = 0.0818
 Log likelihood = -81.070712 Pseudo R2 = 0.0795

 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-----------------------------+---
 notes |---
 pba_cr | .9974167 .0157554 -0.16 0.870 .9670098 1.02878
 age | .9515852 .0220422 -2.14 0.032 .9093493 .9957828
 levledu | 1.010499 .0826468 0.13 0.898 .8608309 1.18619
 hous_inc | .9990888 .000085 -1.07 0.283 .9974237 1.000075
 drink | .4963157 .2292828 -1.52 0.129 .2006913 1.227403
 smoke | .8430278 .3847714 -0.37 0.708 .3446195 2.062262
 pest_pois | 9.124356 7.914997 2.55 0.011 1.666558 49.95557
 lang12 | .9280648 .6898609 -0.10 0.920 .2161984 3.983862
 drugs | 1.000000 .000000 0.00 1.000
 _cons | 3.258136 5.02739 0.77 0.444 .1583224 67.04956

. logistic chek_door pba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: pest_pois != 0 predicts success perfectly
 pest_pois dropped and 7 obs not used

Logistic regression Number of obs = 161
 LR chi2(8) = 2.80
 Prob > chi2 = 0.9460
 Log likelihood = -107.9195 Pseudo R2 = 0.0128

 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-----------------------------+---
 chek_door |---
 pba_cr | .9975892 .0099577 -0.24 0.809 .9782621 1.017298
 age | .9833612 .0172622 -0.96 0.339 .9501034 1.017783
 levledu | 1.007286 .0650865 0.11 0.911 .8874665 1.143283
 hous_inc | .9999547 .0000619 -0.73 0.464 .9998334 1.000076
 drink | 1.238934 .4677192 0.57 0.570 .5911596 2.596519
 smoke | .8577065 .320777 -0.41 0.682 .4120923 1.785184
 pest_pois | 1 (omitted)
 lang12 | 1.2966 .904829 0.37 0.710 .3302155 5.091137
 _cons |
drugs | .9084199 1.33049 -0.07 0.948 .0514754 16.03146
_cons | 1.101437 1.41849 0.08 0.940 .0882545 13.7462

--
.logistic q16_head pba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
 note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used

Logistic regression Number of obs = 166
 LR chi2(8) = 8.90
 Prob > chi2 = 0.3509
Log likelihood = -97.950219 Pseudo R2 = 0.0435
--
 q16_head | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------------+--
 pba_cr | .9832985 .0136903 -1.21 0.226 .9568288 1.0105
 age | .9948734 .0181462 -0.28 0.778 .9599357 1.031083
 levledu | 1.053846 .0720521 0.77 0.443 .9216802 1.204965
 hous_inc | .9998741 .0000637 -1.98 0.048 .9997493 .9999989
 drink | 1.297078 .5275539 0.64 0.522 .5844684 2.878531
 smoke | 1.057429 .4291631 0.14 0.891 .4772948 2.342696
 pest_pois | 2.229053 2.499467 0.71 0.475 .2475464 20.0717
 lang12 | 1.501058 1.029688 0.59 0.554 .3912867 5.758376
 drugs | 1 (omitted)
 _cons | 1.750379 2.304631 0.43 0.671 .1325562 23.1134
--

.logistic less_sex pba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
 note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used

Logistic regression Number of obs = 166
 LR chi2(8) = 5.31
 Prob > chi2 = 0.7239
Log likelihood = -109.30336 Pseudo R2 = 0.0237
--
 less_sex | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------------+--
 pba_cr | .9902179 .0136903 -0.72 0.469 .9641925 1.016946
 age | 1.000575 .0171666 0.03 0.973 .9674889 1.034794
 levledu | 1.07294 .070093 1.08 0.281 .9439916 1.219502
 hous_inc | .9998995 .0000637 -1.54 0.122 .999772 1.000027
 drink | 1.062922 .4036703 0.16 0.872 .5049364 2.237514
 smoke | .9910184 .3719151 -0.02 0.981 .4772948 2.237514
 pest_pois | 1.87794 1.53589 0.77 0.441 .3780236 9.3292
 lang12 | 1.726605 1.167103 0.81 0.419 .4590088 6.494789
 drugs | 1 (omitted)
 _cons | .3103703 .3915544 -0.93 0.354 .0261835 3.679019
--
. logistic q16_score pba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: pest_pois != 0 predicts success perfectly
pest_pois dropped and 7 obs not used
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 159
 LR chi2(7) = 8.87
 Prob > chi2 = 0.2622
Log likelihood = -51.719491 Pseudo R2 = 0.0790

 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
q16_score | 0.9805782 .0128345 -1.50 0.134 .9557429 1.006059
pba_cr | 0.9606202 .0250622 -1.54 0.124 .912734 1.011019
age | 0.9341009 .1022648 -0.62 0.533 .7537109 1.157665
levledu | 0.9999004 .0000798 -1.25 0.212 .999744 1.000057
hous_inc | 0.6266251 .4010143 -0.73 0.465 .1787615 2.196553
drink | 1.019491 .6417187 0.03 0.976 .2968892 3.50084
smoke | 1 (omitted)
pest_pois | 1 (omitted)
lang12 | 1.340298 1.393468 0.28 0.778 .1746755 10.2842
drugs | 1 (omitted)
_cons | 114.4458 237.3644 2.29 0.022 1.964174 6668.372
-------------+--

. logistic q16_score50 pba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: pest_pois != 0 predicts success perfectly
pest_pois dropped and 7 obs not used
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 159
 LR chi2(7) = 7.11
 Prob > chi2 = 0.4179
Log likelihood = -105.51947 Pseudo R2 = 0.0326

 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
q16_score50 | 0.9988424 .0096209 -0.12 0.904 .9801626 1.017878
pba_cr | 0.9863338 .0173453 -0.78 0.434 .9529169 1.020923
age | 1.079895 .0718299 1.16 0.248 .9479014 1.230268
levledu | 0.9998953 .0000654 -1.60 0.109 .9997671 1.000032
hous_inc | .7793968 .2954323 -0.66 0.511 .3707734 1.638358
drink | 0.9575402 .3605999 -0.12 0.908 .4577235 2.003138
smoke | 1 (omitted)
pest_pois | 1 (omitted)
lang12 | 0.7507159 0.5247418 -0.41 0.682 .1907636 2.954308
drugs | 1 (omitted)
_cons | 1.530572 2.000586 0.33 0.745 .1181034 19.8356
```
. logistic q16_score75 pba_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression                               Number of obs   =        168
LR chi2(9)      =      14.11
Prob > chi2     =     0.1186
Log likelihood = -86.304068                       Pseudo R2       =     0.0756

------------------------------------------------------------------------------
          | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
    pba_cr |   1.009392   .0098049     0.96   0.336     .9903568    1.028794
   age |   .9806407   .0207202    -0.93   0.355     .9408592    1.022104
  levledu |   1.131868   .0958967     1.46   0.144     .9586902    1.336328
   hous_inc |   .9998628   .0000873    -1.57   0.116     .9996918    1.000034
   drink |   1.161219    .531809     0.33   0.744      .473244    2.849331
  smoke |   1.290509   .5847071     0.56   0.574     .5310023    3.136358
  pest_pois |   4.226105   3.571217     1.71   0.088      .806572    22.14305
   lang12 |   .5297642   .3820064    -0.88   0.378     .1289115    2.177076
    drugs |   2.151179   3.192528     0.52   0.606     .1173337     39.4394
    _cons |   .4267296   .6507871    -0.56   0.577     .0214794    8.477813
------------------------------------------------------------------------------

. logistic tired tcpy_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression                               Number of obs   =        168
LR chi2(8)      =      17.18
Prob > chi2     =     0.0283
Log likelihood = -106.89351                       Pseudo R2       =     0.0744

------------------------------------------------------------------------------
    tired | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
   tcpy_cr |   1.005722   .0072768     0.79   0.430     .9915603    1.020086
   age |   .9682187   .0166342    -1.88   0.060     .9361591    1.001376
  levledu |   1.065443   .0694377     0.97   0.331     .9376825    1.210611
  hous_inc |   .9998785   .0000593    -2.05   0.041     .9997622    .9999948
    drink |   .4590112   .1808361    -2.97   0.003     .2120686    .9935053
    smoke |   1.352104   .5195276     0.79   0.432     .6367182    2.871261
   pest_pois |   2.306775   2.041809     0.94   0.345     .4069831    13.07477
  lang12 |   .5755125   .4211363    -0.76   0.448     .1371452    2.415066
    drugs |          1  (omitted)
    _cons |   7.802647  10.26565     1.56   0.118     .5920356    102.8338
------------------------------------------------------------------------------

. logistic hart_palp tcpy_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used
```
Logistic regression Number of obs = 168
 LR chi2(8) = 12.59
 Prob > chi2 = 0.1269
Log likelihood = -106.26808 Pseudo R2 = 0.0559
--
 hart_palp | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
--------------------+--
 tcpy_cr | 1.007874 .0094524 0.84 0.403 .989517 1.026572
 age | .9556311 .0174357 -2.49 0.013 .9220614 .9904228
 levledu | .9604941 .063062 -0.61 0.539 .8445169 1.092398
 hous_inc | .9999279 .000061 -1.18 0.237 .9998083 1.000047
 drink | .8437477 .3237809 -0.44 0.658 .3977145 1.790003
 smoke | .6861333 .2664608 -0.97 0.332 .3205113 1.468837
 pest_pois | 3.196172 2.639829 1.41 0.159 .6332765 16.13121
 lang12 | 1.626186 1.117383 0.71 0.479 .4229544 6.252398
 _cons | 4.624955 6.004609 1.18 0.238 .3630672 58.91528
--

. logistic tingling tcpy_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
 note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used
Logistic regression Number of obs = 168
 LR chi2(8) = 9.55
 Prob > chi2 = 0.2981
Log likelihood = -103.49258 Pseudo R2 = 0.0441
--
 tingling | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
--------------------+--
 tcpy_cr | .998170 .0047391 -0.39 0.700 .9889246 1.007502
 age | .9874341 .0175075 -0.71 0.476 .9537094 1.022351
 levledu | 1.086488 .0763592 1.18 0.238 .9466767 1.246947
 hous_inc | .9999526 .0000595 -0.80 0.425 .9998361 1.000069
 drink | .6949395 .2746901 -0.92 0.357 .320513 1.508006
 smoke | .920556 .3614132 -0.21 0.833 .4264479 1.987167
 pest_pois | 3.017784 2.483336 1.34 0.180 .601498 15.14057
 lang12 | .421584 .2871124 -1.27 0.205 .1109655 1.601696
 _cons | 1.378184 1.828265 0.24 0.809 .1023584 18.55627
--

. logistic irritated tcpy_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
 note: drugs != 0 predicts success perfectly
 drugs dropped and 2 obs not used
Logistic regression Number of obs = 168
 LR chi2(8) = 9.82
 Prob > chi2 = 0.2780
Log likelihood = -106.23312 Pseudo R2 = 0.0442
| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------------|------------|-----------|-------|-------|----------------------|
| irritated | | | | | |
| tcpy_cr | 1.021037 | .0126598 | 1.68 | 0.093 | .9965234 1.046154 |
| age | 1.002028 | .0171392 | 0.12 | 0.906 | .9689929 1.03619 |
| levledu | .9907941 | .0648735 | -0.14 | 0.888 | .871465 1.126463 |
| hous_inc | .9999692 | .0000581 | -0.53 | 0.597 | .9988553 1.000083 |
| drink | .9260327 | .3604848 | -0.20 | 0.844 | .4317892 1.986008 |
| smoke | .62429 | .4342835 | -1.21 | 0.226 | .2910626 1.339018 |
| pest_pois | 2.371667 | 1.957493 | 1.05 | 0.295 | .4704365 11.95656 |
| lang12 | .7081791 | .4680138 | -0.52 | 0.602 | .1939144 2.586283 |
| drugs | 1 (omitted)| | | | |
| _cons | .9605086 | 1.215263 | -0.03 | 0.975 | .0804519 11.46743 |

.logistic depress tcpy_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression

Number of obs = 170
LR chi2(9) = 4.25
Prob > chi2 = 0.8940
Log likelihood = -114.52929
Pseudo R2 = 0.0182

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------------|------------|-----------|-------|-------|----------------------|
| depress | | | | | |
| tcpy_cr | 1.006594 | .0079362 | 0.83 | 0.405 | .9911587 1.022269 |
| age | .9992147 | .0164227 | -0.05 | 0.962 | .9675396 1.031927 |
| levledu | .9895067 | .0618616 | -0.17 | 0.866 | .8753942 1.118494 |
| hous_inc | .9999494 | .000057 | -0.89 | 0.375 | .9998376 1.000061 |
| drink | .854946 | .3191978 | -0.42 | 0.675 | .4112812 1.777209 |
| smoke | 1.169569 | .4342838 | 0.42 | 0.673 | .5648828 2.421551 |
| pest_pois | 1.530266 | 1.240352 | 0.52 | 0.600 | .3124846 7.493857 |
| lang12 | .7134301 | .4672612 | -0.52 | 0.606 | .1976318 2.575408 |
| drugs | 1.478567 | 2.166366 | 0.27 | 0.790 | .0836909 26.12186 |
| _cons | 1.341115 | 1.643372 | 0.24 | 0.811 | .121457 14.80845 |

.logistic pr_concen tcpy_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Logistic regression

Number of obs = 170
LR chi2(9) = 15.20
Prob > chi2 = 0.0857
Log likelihood = -86.315821
Pseudo R2 = 0.0809

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------------|------------|-----------|-------|-------|----------------------|
| pr_concen | | | | | |
| tcpy_cr | .9285615 | .0325677 | -2.11 | 0.035 | .8668745 0.9946382 |
| age | .9662309 | .0207348 | -1.60 | 0.109 | .9264342 1.007737 |
| levledu | 1.024999 | .0618616 | 0.32 | 0.748 | .8817167 1.191564 |
| hous_inc | .9999494 | .000057 | -0.89 | 0.375 | .9998376 1.000061 |
| drink | .8642976 | .3833358 | -0.33 | 0.742 | .3623564 2.061535 |
| smoke | 1.79447 | .7519086 | 1.32 | 0.185 | .7556082 4.261629 |
logistic short_mem tcpy_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Note: 1 failure and 0 successes completely determined.

logistic short_mem tcpy_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|------------|-----------|------|------|----------------------|
| short_mem | | | | | |
| tcpy_cr | 0.9989658 | 0.0039251 | -0.26| 0.792| 0.9913024 1.006688 |
| age | 0.9843647 | 0.0171379 | -0.91| 0.365| 0.9513416 1.018534 |
| levledu | 1.092376 | 0.0743472 | 1.30 | 0.194| 0.9559586 1.248259 |
| hous_inc | 0.999959 | 0.0000569 | -0.72| 0.472| 0.9998474 1.000071 |
| drink | 0.7498882 | 0.290149 | -0.74| 0.457| 0.3512748 1.600833 |
| smoke | 1.14596 | 0.4381692 | 0.36 | 0.722| 0.5416316 2.42457 |
| pest_pois| 2.720187 | 2.224894 | 1.22 | 0.221| 0.5475 13.51491 |
| lang12 | 1.449634 | 0.9790901 | 0.55 | 0.582| 0.3857914 5.447085 |
| drugs | 1 (omitted)| | | | |
| _cons | 0.4377304 | 0.5622101 | -0.64| 0.520| 0.0353138 5.425863 |

logistic perspire tcpy_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

Note: drugs != 0 predicts failure perfectly

drugs dropped and 2 obs not used

logistic perspire tcpy_cr age levledu hous_inc drink smoke pest_pois lang12 drugs

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|------------|-----------|------|------|----------------------|
| perspire | | | | | |
| tcpy_cr | 0.999747 | 0.0047599 | -0.05| 0.958| 0.9904611 1.00912 |
| age | 0.9657398 | 0.0171379 | -1.56| 0.120| 0.9242451 1.009097 |
| levledu | 1.10027 | 0.0950049 | 1.11 | 0.268| 0.9289679 1.301361 |
| hous_inc | 0.9999406 | 0.0000742 | -0.80| 0.424| 0.9997951 1.000086 |
| drink | 0.8248679 | 0.382962 | -0.41| 0.678| 0.3320446 2.049144 |
| smoke | 1.762119 | 0.8230713 | 1.21 | 0.225| 0.7054168 4.401741 |
| pest_pois| 1.424207 | 1.324895 | 0.38 | 0.704| 0.2299995 8.818996 |
| lang12 | 0.3676273 | 0.2648877 | -1.39| 0.165| 0.0895548 1.509131 |
| drugs | 1 (omitted)| | | | |
. logistic button tcpy_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts failure perfectly
drugs dropped and 2 obs not used

Logistic regression
Number of obs = 168
LR chi2(8) = 5.81
Prob > chi2 = 0.6686
Log likelihood = -32.190471 Pseudo R2 = 0.0828

button | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
tcpy_cr | .9996876 .0092456 -0.03 0.973 .9817297 1.017974
age | .9803861 .040298 -0.48 0.630 .9045012 1.062638
levledu | 1.111829 .174174 0.68 0.499 .8178858 1.511414
hous_inc | .9998566 .0001607 -0.89 0.372 .9995417 1.000172
drink | 1.495792 1.412808 0.43 0.670 .2349053 9.524657
smoke | 2.542307 2.335547 1.02 0.310 .4200034 15.38874
pest_pois | 2.640469 3.33433 0.77 0.442 .2222923 31.37334
lang12 | 7.611927 21.97956 0.70 0.482 .0265238 2184.504
_drugs | 1 (omitted)
_cons | .0038539 .0147323 -1.45 0.146 2.15e-06 6.915042

Logistic regression
Number of obs = 170
LR chi2(9) = 7.55
Prob > chi2 = 0.5802
Log likelihood = -83.994278 Pseudo R2 = 0.0430

reading | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
tcpy_cr | .9932751 .0125894 -0.53 0.594 .9689044 1.018259
age | .9509095 .021632 -2.21 0.027 .9094427 0.9942671
levledu | .9345653 .072243 -0.88 0.381 .8031761 1.087448
hous_inc | .9999627 .000072 -0.52 0.605 .9998217 1.000104
drink | .8119741 .3692664 -0.46 0.647 .3329937 1.979923
smoke | .8780615 .3942289 -0.29 0.772 .3642131 2.116871
pest_pois | .8924757 1.019282 -0.10 0.921 .0951597 8.370273
lang12 | .9813096 .7879444 -0.02 0.981 .2033914 4.734559
_drugs | 2.475867 3.686262 0.61 0.543 .1337804 45.82073
_cons | 4.285943 6.653281 0.94 0.348 .2044957 89.82734

Logistic regression
Number of obs = 170
LR chi2(9) = 13.12
| fam_mem | Odds Ratio | Std. Err. | z | P>|z| | 95% Conf. Interval |
|---------|--------------|-----------|------|-----|-------------------|
| tcpy_cr | 0.9910274 | 0.0134395 | -0.66| 0.506 | 0.9650334 - 1.017722 |
| age | 1.020227 | 0.0204935 | 1.00 | 0.319 | 0.9808411 - 1.061195 |
| levledu | 1.266342 | 0.1133784 | 2.64 | 0.008 | 1.06253 - 1.509249 |
| hous_inc| 0.9998543 | 0.0008111 | -1.80| 0.072 | 0.9996953 - 1.000013 |
| drink | 0.7077854 | 0.3236034 | -0.76| 0.450 | 0.288867 - 1.734106 |
| smoke | 0.9998543 | 0.0187057 | -0.57| 0.566 | 0.9532238 - 1.026565 |
| pest_pois| 1.098901 | 0.0806181 | 1.29 | 0.199 | 0.9517268 - 1.268834 |
| lang12 | 0.9259793 | 0.2815421 | 0.95 | 0.348 | 0.514404 - 16.66857 |
| drugs | 4.225272 | 6.437515 | 0.95 | 0.344 | 0.2132977 - 83.69957 |

Logistic regression
Number of obs = 170
LR chi2(9) = 21.79
Prob > chi2 = 0.0096
Log likelihood = -94.591306
Pseudo R2 = 0.1033

| notes | Odds Ratio | Std. Err. | z | P>|z| | 95% Conf. Interval |
|-------|--------------|-----------|------|-----|-------------------|
| tcpy_cr | 0.9992366 | 0.0044312 | -0.17| 0.863 | 0.9905892 - 1.00796 |

Logistic regression
Number of obs = 168
LR chi2(8) = 14.50
Prob > chi2 = 0.0695
Log likelihood = -80.037491
Pseudo R2 = 0.0831
. logistic chek_door tcpy_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: pest_pois != 0 predicts success perfectly
pest_pois dropped and 7 obs not used

Logistic regression Number of obs = 163
LR chi2(8) = 6.52
Prob > chi2 = 0.5887
Log likelihood = -106.75476 Pseudo R2 = 0.0297
--
chek_door | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
tcpy_cr | .9856967 .0134231 -1.06 0.290 .9597359 1.01236
age | .979811 .0171618 -1.16 0.244 .9467453 1.014032
levledu | 1.008734 .0656222 0.13 0.894 .8879783 1.14591
hous_inc | .9999413 .0000587 -2.15 0.031 .9997561 .9999886
drink | 1.372912 .5253957 0.83 0.408 .6484837 2.906609
smoke | .874448 .332503 -0.35 0.724 .4150212 1.842458
pest_pois | 1 (omitted)
lang12 | 1.244082 .8821435 0.31 0.758 .309946 4.99358
drugs | .8388884 1.229171 -0.12 0.905 .0474779 14.82235
_cons | 1.380073 1.798877 0.25 0.805 .1072483 17.75879
--

. logistic q16_head tcpy_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used

Logistic regression Number of obs = 168
LR chi2(8) = 8.87
Prob > chi2 = 0.3537
Log likelihood = -100.29984 Pseudo R2 = 0.0423
--
q16_head | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
----------+--
tcpy_cr | 1.011388 .0147476 0.78 0.437 .9828924 1.04071
age | .9935797 .0175399 -0.36 0.715 .9597908 1.028559
levledu | 1.039057 .0698833 0.57 0.569 .9107317 1.185463
hous_inc | .9999413 .0000587 -2.15 0.031 .9997561 .9999886
drink | 1.211109 .4858841 0.48 0.633 .5516836 2.658742

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>smoke</td>
<td>1.090958</td>
<td>.4358947</td>
<td>0.22</td>
<td>0.828</td>
<td>.4985501</td>
<td>2.387303</td>
</tr>
<tr>
<td>pest_pois</td>
<td>2.264287</td>
<td>2.538159</td>
<td>0.73</td>
<td>0.466</td>
<td>.2516372</td>
<td>20.37456</td>
</tr>
<tr>
<td>lang12</td>
<td>1.466982</td>
<td>1.004037</td>
<td>0.56</td>
<td>0.576</td>
<td>.3835678</td>
<td>5.610574</td>
</tr>
<tr>
<td>drugs</td>
<td>1 (omitted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_cons</td>
<td>1.696715</td>
<td>2.225039</td>
<td>0.40</td>
<td>0.687</td>
<td>.1298254</td>
<td>22.17472</td>
</tr>
</tbody>
</table>

```
.logistic less_sex tcpy_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used
Logistic regression
Number of obs = 168
LR chi2(8) = 5.22
Prob > chi2 = 0.7337
Log likelihood = -110.37362 Pseudo R2 = 0.0231

<table>
<thead>
<tr>
<th>less_sex</th>
<th>Odds Ratio</th>
<th>Std. Err.</th>
<th>z</th>
<th>P&gt;z</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcpy_cr</td>
<td>.9980065</td>
<td>.0040052</td>
<td>-0.50</td>
<td>0.619</td>
<td>.9901873 1.005887</td>
</tr>
<tr>
<td>age</td>
<td>1.000527</td>
<td>.0168588</td>
<td>0.03</td>
<td>0.975</td>
<td>.9680244 1.034122</td>
</tr>
<tr>
<td>levledu</td>
<td>1.067456</td>
<td>.0691772</td>
<td>1.01</td>
<td>0.314</td>
<td>.9401283 1.212028</td>
</tr>
<tr>
<td>hous_inc</td>
<td>.9998941</td>
<td>.000622</td>
<td>-1.70</td>
<td>0.089</td>
<td>.9997722 1.000016</td>
</tr>
<tr>
<td>drink</td>
<td>1.079739</td>
<td>.410873</td>
<td>0.20</td>
<td>0.840</td>
<td>.5121663 2.276284</td>
</tr>
<tr>
<td>smoke</td>
<td>1.091465</td>
<td>.4089856</td>
<td>0.23</td>
<td>0.815</td>
<td>.5236654 2.274918</td>
</tr>
<tr>
<td>pest_pois</td>
<td>1.829334</td>
<td>1.492901</td>
<td>0.74</td>
<td>0.459</td>
<td>.3695184 9.056286</td>
</tr>
<tr>
<td>lang12</td>
<td>1.653009</td>
<td>1.124752</td>
<td>0.74</td>
<td>0.460</td>
<td>.4356069 6.272719</td>
</tr>
<tr>
<td>drugs</td>
<td>1 (omitted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_cons</td>
<td>.3095574</td>
<td>.3910327</td>
<td>-0.93</td>
<td>0.353</td>
<td>.0260318 3.681106</td>
</tr>
</tbody>
</table>
```

```
.logistic q16_score tcpy_cr age levledu hous_inc drink smoke pest_pois lang12 drugs
note: pest_pois != 0 predicts success perfectly
pest_pois dropped and 7 obs not used
note: drugs != 0 predicts success perfectly
drugs dropped and 2 obs not used
Logistic regression
Number of obs = 161
LR chi2(7) = 5.16
Prob > chi2 = 0.6405
Log likelihood = -53.812917 Pseudo R2 = 0.0457

<table>
<thead>
<tr>
<th>q16_score</th>
<th>Odds Ratio</th>
<th>Std. Err.</th>
<th>z</th>
<th>P&gt;z</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcpy_cr</td>
<td>1.003241</td>
<td>.0040052</td>
<td>-0.50</td>
<td>0.619</td>
<td>.9901873 1.005887</td>
</tr>
<tr>
<td>age</td>
<td>1.000527</td>
<td>.0168588</td>
<td>0.03</td>
<td>0.975</td>
<td>.9680244 1.034122</td>
</tr>
<tr>
<td>levledu</td>
<td>1.061470</td>
<td>.0965922</td>
<td>0.39</td>
<td>0.696</td>
<td>.7896262 1.170712</td>
</tr>
<tr>
<td>hous_inc</td>
<td>.9999288</td>
<td>.000752</td>
<td>-0.95</td>
<td>0.344</td>
<td>.9997814 1.000076</td>
</tr>
<tr>
<td>drink</td>
<td>1.0731381</td>
<td>.515374</td>
<td>-0.91</td>
<td>0.364</td>
<td>.1722543 1.90699</td>
</tr>
<tr>
<td>smoke</td>
<td>1.175049</td>
<td>.7083478</td>
<td>0.27</td>
<td>0.789</td>
<td>.3605215 3.829841</td>
</tr>
</tbody>
</table>
```
Logistic Regression Results

Model 1: q16_score50

| Variable | Coefficient | Std. Error | z | P>|z| | 95% Conf. Interval |
|-------------|-------------|------------|------|------|---------------------|
| tcpy_cr | .9976842 | .0041917 | -0.55| 0.581| .9895024 - 1.005934 |
| age | .9838537 | .0171127 | -0.94| 0.349| .9508786 - 1.017972 |
| levledu | 1.082115 | .072182 | 1.18 | 0.237| .9494983 - 1.233253 |
| hous_inc | .9998886 | .0000619 | -1.80| 0.072| .9997673 - 1.00001 |
| drink | .8495923 | .0000169 | 1.18 | 0.237| .9494983 - 1.233253 |
| smoke | .9615369 | .072182 | 1.18 | 0.237| .9494983 - 1.233253 |
| pest_pois | 1 (omitted) | | | | |
| lang12 | .7252813 | .5094813 | -0.46| 0.647| .1830506 - 2.873703 |
| drugs | 1 (omitted) | | | | |
| _cons | 1.634429 | 2.149898 | 0.37 | 0.709| .1240826 - 21.52885 |

Model 2: q16_score75

| Variable | Coefficient | Std. Error | z | P>|z| | 95% Conf. Interval |
|-------------|-------------|------------|------|------|---------------------|
| tcpy_cr | .9967299 | .0041917 | -0.55| 0.581| .9895024 - 1.005934 |
| age | .9838537 | .0207728 | -0.88| 0.377| .9415983 - 1.02305 |
| levledu | 1.116841 | .0934904 | 1.32 | 0.187| .9478459 - 1.315968 |
| hous_inc | .9998839 | .000891 | -1.81| 0.069| .9996631 - 1.000013 |
| drink | 1.315762 | .609745 | 0.59 | 0.554| .5305388 - 3.263155 |
| smoke | 1.311092 | .599632 | 0.59 | 0.554| .5349499 - 3.213313 |
| pest_pois | 4.025098 | 3.406057 | 1.15 | 0.100| .766453 - 21.13817 |
| lang12 | 2.170693 | 3.225023 | 0.52 | 0.602| .1180208 - 39.92438 |
| drugs | 2.523199 | 2.797262 | 0.43 | 0.671| .026399 - 10.36922 |
| _cons | 1.634429 | 2.149898 | 0.37 | 0.709| .1240826 - 21.52885 |

Note:
- Pest_pois != 0 predicts success perfectly
- Drugs != 0 predicts success perfectly
- Drugs dropped and 2 obs not used
- Pest_pois dropped and 7 obs not used
end of do-file

exit, clear