MOBILE PHONE TEXT MESSAGING FOR IMPROVING THE UPTAKE OF VACCINATIONS: A SYSTEMATIC REVIEW

Robyn Kalan
(BLGROB001)

DISSERTATION in PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE MASTERS OF PUBLIC HEALTH FACULTY OF HEALTH SCIENCES UNIVERSITY OF CAPE TOWN

Supervisors:
Dr Mark E Engel
Prof Charles Wiysonge

Department of Medicine
University of Cape Town
February 2014
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
DECLARATION

I, Robyn Kalan, hereby declare that the work on which this dissertation is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university.

I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever.

Signature: Kalan

Date: 31/10/2014
Acknowledgements

1. Dr Mark Engel (Supervisor): Thank you for persevering, this would not have been possible without your guidance, encouragement and insight
2. Prof Charles Wiysonge (Co-supervisor): for the birth of the topic, his support, insight and recommendations to this thesis
3. Dylan Barth, for all the encouragement and help with data extraction.
4. SSM students (F Ebrahim, K Allie, T Ramafuthole) who assisted with protocol development and literature review
5. I would like to acknowledge my husband Craig for encouraging and supporting me with love, our 4 kids (Isabella, Joshua, Rebekah and Samuel) for their patience and hugs and my parents, Daniel and Venetia for their support, prayers and love.
6. Most importantly I would like to acknowledge my Gracious Saviour with whom all things are possible
MOBILE PHONE TEXT MESSAGING FOR IMPROVING THE UPTAKE OF VACCINATIONS: A SYSTEMATIC REVIEW
Abstract
The research undertaken for this MPH dissertation examines the effectiveness of SMS as an intervention to promote vaccination.

Part A is the research protocol, which outlines the background and the process of this research. This study utilizes systematic review methods based on those of the Cochrane Collaboration to synthesize the best current evidence from articles archived in various bibliographic databases and clinical trial registers.

Part B presents the entire research project in a format suitable for journal submission. The background of this research project is summarised and the results are presented and discussed.
PART A: PROTOCOL
Contents
Abstract .. 3
Methods/Design: ... 3
Discussion: .. 4
Background ... 5
Methods .. 7
Criteria for considering studies for this review .. 7
Type of studies .. 7
Types of participants .. 7
Types of interventions .. 8
Types of outcome measures ... 8
Search methods for identification of studies .. 9
Database ... 9
Conference proceedings .. 9
Searching other sources .. 10
Reference lists .. 10
Data collection and analysis ... 10
Selection of studies ... 10
Data extraction and management .. 11
Assessment of risk of bias in included studies ... 11
Measures of treatment effect ... 11
Dealing with missing data .. 12
Data synthesis, assessment/investigation of heterogeneity .. 13
Subgroup analyses ... 14
Presenting and reporting of results ... 14
Ethics ... 14
Discussion ... 15
Expected significance of the study .. 15
Abbreviations .. 16
Competing interests .. 16
Author’s contributions ... 16
Acknowledgements ... 16
Supervisor information ... 16
References .. 17
Appendix 1: Search strategy .. 19
Appendix 2: Data Extraction Form ... 20
Abstract

Background: Low vaccine coverage is a major public health concern, the consequences of which contribute to around 1.5 million child deaths from vaccine-preventable diseases. Thus, innovative strategies to rapidly increase coverage and recall rates for vaccinations are urgently required. Mobile phone text messaging (or short messaging service, SMS) has the potential to help increase vaccination coverage and therefore we propose to conduct a review of the current best evidence for the use of SMS as an intervention to promote vaccination coverage.

Methods/Design:
This article describes the protocol for a systematic review of the effectiveness of SMS in improving the uptake of vaccination. Primary and secondary outcomes of interest are pre-specified. We will preferably include randomized controlled trials (RCTs). However, non-randomized studies (NRS) will be considered if there is an inadequate number of RCTs. We will search several bibliographic databases (for example PubMed, EMBASE, CINAHL, CENTRAL, Science Citation Index, Africa-Wide Information, and WHOLIS electronic databases and search sources for grey literature. Following data extraction and assessment of risk of bias, we will meta-analyze studies and conduct sub-group analyses, according to intervention subtypes. We will assess clinical heterogeneity and statistical heterogeneity. For outcomes without quantitative data, a descriptive analysis will be used.
Discussion:

Our results can be used by researchers and policy-makers to help inform them of the efficacy of mobile phone text messaging interventions to promote increased vaccination coverage.

Keywords: Vaccine coverage, vaccination, Mobile text messaging, short messaging service, SMS
Background

Vaccinations, when given at the most sensitive developmental years of childhood, help to promote comprehensive and capable immunity, enabling children to fight off certain diseases (Garde, 2010, Multiple Authors., 2009). In addition, vaccinations are widely regarded as one of the most cost-effective public health interventions that help to reduce global child morbidity and mortality (Machingaidze et al., 2013, Bloom, 2011). Low coverage of vaccinations is a major public health concern. In Africa alone, more than seven million children did not receive the full spectrum of vaccinations recommended before reaching one year of age in 2009 (Stockwell et al., 2012). It is also estimated that 1.5 million children died globally from vaccine-preventable diseases where World Health Organization (WHO) pre-qualified vaccines were available (World Health Organisation and UNICEF: Global Immunization Data).

The Global Vaccine Action plan (GVAP) is the most recently launched global effort by the WHO to help increase vaccination coverage. The GVAP has set a target that by 2020 vaccination coverage for populations should reach 90% national vaccination coverage and at least 80% at district levels utilizing national vaccination programmes (WHO Global Vaccination Action Plan). It is guided by six principles: country ownership, shared responsibility and partnership, equity, integration, sustainability, and innovation (Decade of Vaccines (DoV) Collaboration: Draft global vaccine action plan.)

A variety of factors impact achieving low coverage rates; challenges such as immunisation awareness, demand for immunisation, level of trust in the health system, adequate human
resources, access, timeliness of vaccinations, service delivery, poor infrastructure and vaccination monitoring (Machingaidze et al., 2013). Vaccination coverage seems to be lower in low-income households, where limited access to health education, contributes to poor health-seeking behaviour along with an inability to improve general wellbeing (Garde, 2010, Multiple Authors., 2009, Kaewkungwal et al., 2010). Uneducated adults as well as parents of children who require vaccinations may be less likely to understand the importance of vaccinating to prevent potentially harmful diseases. In light of these obstacles to vaccination coverage, the strategy to improve vaccination coverage needs to be innovative as alluded to in the GVAP, well thought out and able to penetrate low income households effectively.

Globally, mobile phone use is rapidly increasing, with an estimated six billion mobile phone users worldwide at the end of 2011 (Nglazi et al., 2013). In particular, mobile phone text messaging has gained popularity among people living in low- and middle-income countries and may be the key to penetrating hard to reach areas in the developing world. Text messaging has proven to be a cost effective method of relaying health information and reminders than the more traditional methods such as face to face, phone calls, pamphlets, mail and email (Stockwell et al., 2012). As immunisation usually requires multiple consecutive monthly visits after the first vaccine dose in order to complete the schedule, short messaging service (SMS) can be used as reminder for an upcoming visit and recall when a visit has been missed (Garde, 2010). In addition, an SMS intervention, also known as mobile phone text messaging, can be delivered alone or bundled with other interventions (Mohammed et al., 2012). Diseases that have used mobile technology successfully include HIV where a 90% adherence was observed among text message recipients compared with a
40% adherence in the control group (Pop-Eleches et al., 2011). Similarly, SMS interventions have been shown to improve self-management interventions for chronic conditions including behaviour modification smoking quit rates (Jones et al., 2014)

We therefore propose to conduct a systematic review of the current best evidence for the use of mobile phone text messaging to improve vaccination coverage.

Methods

The review protocol has not been registered in any prospective registers of systematic reviews.

Criteria for considering studies for this review

Type of studies

We will include randomized controlled trials (RCTs), interrupted time series and controlled before and after studies (CBA).

Types of participants

Participants will be adults, children or their caregivers of those receiving vaccinations, in community-based settings.
Types of interventions

We will include interventions in which mobile phone text messages are used to promote uptake of vaccinations. The text messaging needs to be delivered to a person needing a vaccination, or in the case of an infant or child, to a caregiver. Eligible studies will be those that compare SMS to no intervention, or to other interventions for increasing vaccination coverage. If we find less than ten studies that include only SMS as the intervention, we will include studies in which (1) mobile phone voice speaking or voice messaging are interventions including interactive voice response known as IVR; (2) studies in which the use of a beeper or pager is the intervention; (3) studies in which the use of multimedia messaging service is the intervention; (4) studies in which text messages are bundled with other interventions. In such circumstances, we will stratify the analysis by type of intervention.

Types of outcome measures

Results must include quantitative data for outcomes measured.

Primary outcomes:

The primary outcome is vaccination coverage, irrespective of disease.

Secondary outcomes:

Secondary outcomes are the recall rate in persons who had previously missed their vaccinations.
Search methods for identification of studies

A comprehensive and exhaustive search will be performed by RK with the help of the University of Cape Town librarian, to identify all relevant studies available by 30 June 2013, regardless of language or publication status. We will search both peer-reviewed journal articles and grey literature (unpublished, internal or non-reviewed papers and reports).

Database

We will search the following electronic databases: PubMed; EMBASE; Cochrane Central Register of Controlled Trials (CENTRAL); ISI Web of Science (Science Citation Index); Africa-Wide Information, Cumulative Index of Nursing and Allied Health (CINAHL), and WHO library databases (WHOLIS). We will use both text words and medical subject heading (MeSH) terms; for example vaccination*, immunization*, immunisation*, "Immunization"(MeSH), "Vaccination"(MeSH), "Immunization, Secondary"(MeSH) OR "Immunization Programs"(MeSH), "Immunization Schedule"(MeSH), "Mass Vaccination"(MeSH), mobile phone, text messaging, text*, SMS, reminder*, recall, telemedicine, mHealth, and eHealth. These terms will be used in varying combinations. The literature search strategy will be adapted to suit each database. Table 1 shows the main search strategy we will use.

Conference proceedings

We will search the following conference proceedings for relevant abstracts: Vaccine and International Society for Vaccines Congress, International African Vaccinology Conference, Annual Vaccines Congress, Annual Conference on Vaccine Research, World Congress on

Searching other sources

For ongoing studies, we will search the WHO International Clinical trials Registry Platform, Clinicaltrials.gov, Pan African Clinical Trials Registry (PACTR), and contact individual researchers working in the field as well as the following organizations: WHO, Global Alliance for Vaccines and Immunisation, Centers for Disease Control and Prevention, and mHealth Alliance. We will also search the website of mHealth Alliance and mHealth in the Low Resource Settings resources database [20] for eligible studies.

Reference lists

We will obtain reference lists of relevant studies identified and the full-text articles reviewed for inclusion in the review will be checked for additional information.

Data collection and analysis

The methods for data collection and analysis will be based on the Cochrane Handbook of Systematic Reviews for Interventions (Higgins et al., 2009).

Selection of studies

We will construct a screening guide to ensure that the inclusion criteria are adhered to and consistently applied by all review authors. Two review authors (RK and ME), working
independently, will screen the titles and abstracts of all studies identified through the literature searches for eligibility. RK will obtain the full text of studies deemed potentially eligible. The two authors (RK and ME) will independently assess the full text of each article for eligibility, and compare their results and resolve discrepancies by discussion and consensus, consulting a third author (CW) to resolve any persistent disagreements. For all studies excluded by the assessors we will describe the reasons for exclusion.

Data extraction and management

References will be managed using Thomson ISI Research-Soft Endnote 9.0 (Thomson). Two authors will independently extract descriptive and outcome data for each included article using a standardized data collection form, resolving any discrepancies by discussion and consensus; failing which, a third author (CW) will arbitrate. RK will enter the final data into the Cochrane Collaboration Review Manager Version 5.1 statistical software (http://ims.cochrane.org/RevMan). CW will crosscheck the data entered to ensure that there are no data entry errors.

Assessment of risk of bias in included studies

Two authors will independently assess the risk of bias in the included studies. Separate criteria will be used to assess RCTs and non-randomized studies. The criteria used to assess the risk of bias of in RCTs will be random sequence generation; allocation concealment; blinding of participants, study personnel; blinding of outcome assessors; incomplete outcome data; selective outcome reporting; other sources of bias, and overall risk of bias, in accordance with the methods used by the Cochrane Collaboration (Higgins et al.) as well as the Cochrane Consumers and Communication Review Group (Ryan R, 2011). The criteria
used for risk of bias assessment for non-randomized studies will include selection bias (with regard to comparability of groups, confounding and adjustment); performance bias (in terms of the fidelity of the interventions, and quality of the information regarding who received which interventions, including blinding of study subjects and healthcare providers); detection bias (regarding unbiased and correct assessment of outcomes, including blinding of assessors); attrition bias (with regard to completeness of sample, follow-up and data); and reporting bias (with regard to publication biases and selective reporting of results) (Higgins et al., 2009). Studies will be scored as having low, high or unclear risk of bias. The two authors will resolve disagreements in the assessment of risk of bias by discussion and consensus, consulting a third author to resolve any persistent disagreements.

Measures of treatment effect

Data analysis will be conducted using the Cochrane Collaboration Review Manager Version 5.1 statistical software (http://ims.cochrane.org/RevMan). The outcomes of interest will be either dichotomous or continuous. We will calculate risk ratios and their corresponding 95% confidence intervals or p-values for dichotomous outcomes, and mean differences for continuous outcomes.

Dealing with missing data

In cases of missing or incomplete information presented in the included studies, we shall contact authors for further information.
Data synthesis, assessment/investigation of heterogeneity

We will assess clinical heterogeneity by examining types of participants, interventions, and outcomes in each study. Statistical heterogeneity in each meta-analysis will be assessed using the chi-square test and quantified using the I-squared statistic. If studies are sufficiently homogenous (in terms of study populations, interventions, and outcomes), then we will pool the data across studies and estimate summary effect sizes using a fixed-effects model; otherwise, we will use the random-effects model. We will perform subgroup analyses by intervention subtypes: long versus short messages; daily versus weekly messages; short weekly messages versus long weekly messages; short daily messages versus long daily messages; and two-way interactive communication versus one-way communication (Horvath et al., 2012) (Thirumurthy and Lester, 2012, Pop-Eleches et al., 2011). We will also stratify analysis by study design (randomized controlled separate from non-randomized studies) and intervention type (multiple interventions involving text messaging separate from text messaging alone). Finally, we will use the grading of recommendations assessment, development, and evaluation (GRADE) approach (Balshem et al., 2011) to assess the quality of evidence for the effectiveness of the SMS intervention.

This method results in an assessment of the quality of the body of evidence as high, moderate, low, or very low. Evidence is considered of high quality if ‘further research is very unlikely to change our confidence in the estimate of effect’; and moderate quality if ‘further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate’. Low quality evidence implies that ‘further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate’, and very low quality that ‘we have very little confidence in the effect estimate’.
Subgroup analyses

Several subgroup analyses will be performed: first to determine whether the study design (RCT versus nonrandomized study) could influence the results of the meta-analysis; second, to evaluate whether the model of the statistical method (random-effects vs fixed-effects model) could change the results, and third, to determine the impact of excluding studies with a high risk bias on the results, with emphasis on allocation concealment, blinded outcome assessment, and losses to follow-up (with a cut off of 25% loss to follow-up).

Presenting and reporting of results

Findings in our systematic review will be presented in several ways. Flow diagrams will be used to summarise the study selection process. Funnel plots will be used to assess publication bias if we identify 10 or more eligible studies. The kappa statistic (Landis and Koch, 1977) will be used to assess agreements between the full-text screening, data extraction and risk of bias assessment by the two authors (RK and ME). GRADE summary of tables of findings, risk of bias tables or graphs, and forest plots will also be used where appropriate. The reporting of outcomes without quantitative data will be descriptive. Lastly, we will provide a list of excluded studies with reasons for exclusion.

Ethics

Systematic reviews draw on publicly available data and do not directly involve human subjects, and therefore do not require formal ethical review (Emanuel et al., 2004). The study protocol will be reviewed by supervisors with expertise in methodology (systematic...
review) and submitted to the University of Cape Town Departmental Research Committee for approval.

Discussion

Expected significance of the study

The findings of this systematic review will have implications for policy, practice and research. We will discussed the relevance of our findings to childhood immunisation programmes in Africa in the decade of vaccines with emphasis on applicability, effects on equity, cost implications, and monitoring and evaluation.

Our systematic review will provide evidence of whether policy-makers can adopt mobile phone text messaging alone or in combination with other interventions in efforts to improve uptake of vaccines in national immunisation programmes. It will also inform clinic or hospital managers of how best to use the intervention to improve vaccination coverage. The systematic review may also identify specific considerations that would needs to be taken into account for future studies, such as study location, content and timing of messages, whether or not parents or caregivers replied to text messages, how text messages were sent (automated versus manual), indicators for immunisation programmes, variety of text messages sent (inclusion of jokes or lifestyle tips), duration of the study, whether or not participants were provided with the mobile handsets, and sample size (Karanja et al., 2011).
Abbreviations

WHO: World Health Organization; GVAP: Global Vaccine Action plan; SMS: Short messaging service; RCT: Randomized Controlled Trials; CBA: Controlled Before and After study; MeSH: medical subject heading.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

CW conceived of the review. All authors developed the design of the protocol and will be involved in data acquisition. RK undertook the drafting of the manuscript. RK and ME will analyze the data and participate in the interpretation of the results. All authors have given their approval for publication.

Acknowledgements

We did not receive any dedicated funding for this manuscript.

Supervisor information

Mark E Engel, BSC (MED) Hons, MPH (Epidemiology), PhD - Senior researcher, UCT
Charles Wisysonge, MBChB, PhD - senior researcher, UCT.
References

KARANJA, S., MBUAGBAW, L., RITVO, P., LAW, J., KYOBUTUNGI, C., REID, G., RAM, R., ESTAMBALE, B. & LESTER, R. 2011. A workshop report on HIV mHealth synergy and strategy meeting to review emerging evidence-based mHealth interventions and develop a framework for scale-up of these interventions. The Pan African medical journal, 10, 37.

WHO GLOBAL VACCINATION ACTION PLAN

Appendix 1: Search strategy

Table 1. PubMed search strategy, modified as needed for use in other databases

<table>
<thead>
<tr>
<th>Search</th>
<th>PubMed</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>(immunization[Mesh]) OR (immunis* OR immuniz* OR vaccin*)</td>
</tr>
<tr>
<td>#2</td>
<td>(adolescents OR children OR teenagers OR adults)</td>
</tr>
<tr>
<td>#3</td>
<td>"SMS" OR cellphone OR "mobile phone" OR "text messaging" OR "short message service" OR "text reminder"</td>
</tr>
<tr>
<td>#4</td>
<td>#1 AND #2</td>
</tr>
<tr>
<td>#5</td>
<td>#3 AND #4</td>
</tr>
</tbody>
</table>

MeSH, medical subject heading
Appendix 2: Data Extraction Form
Data Extraction Form

Reviewer ID:

Study ID:

Full Article Title:

Citation:

Language of Publication:

Type of study

<table>
<thead>
<tr>
<th>Type of study</th>
<th>yes</th>
<th>unclear</th>
<th>If no, exclude</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quasi-randomised trials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross-over study</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trial Intervention:

- **Was the intervention a short message service (sms) to remind participants of the first dose of vaccination?**

<table>
<thead>
<tr>
<th>type</th>
<th>answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>unclear</td>
<td></td>
</tr>
<tr>
<td>If no, exclude</td>
<td></td>
</tr>
</tbody>
</table>

- **Was there a control or comparison group that did not receive the same intervention?**

<table>
<thead>
<tr>
<th>type</th>
<th>answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>unclear</td>
<td></td>
</tr>
<tr>
<td>If no, exclude</td>
<td></td>
</tr>
</tbody>
</table>

- **Was there a secondary message (sms) sent to remind participants to come back if first visit was missed to assess recall rate?**

<table>
<thead>
<tr>
<th>type</th>
<th>answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>unclear</td>
<td></td>
</tr>
</tbody>
</table>

Tick as appropriate:

<table>
<thead>
<tr>
<th>type</th>
<th>answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>include</td>
<td></td>
</tr>
</tbody>
</table>
Reasons for exclusion:

<table>
<thead>
<tr>
<th>Reason for Exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclude</td>
</tr>
<tr>
<td>Uncertain—requires full text article</td>
</tr>
<tr>
<td>Pending—study still in progress</td>
</tr>
</tbody>
</table>

TRIAL CHARACTERISTICS

Study design:

Randomization method:

Allocation concealment:

Duration of trial:

Duration of follow up:

Loss to follow up

<table>
<thead>
<tr>
<th></th>
<th>Intervention</th>
<th>Control</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number randomized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number available at follow up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number Loss to follow up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number included in the analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Was analysis done as intention to treat

<table>
<thead>
<tr>
<th></th>
<th>Yes □</th>
<th>No □</th>
<th>Unclear □</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Were all the randomised participants included in the analysis?)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PARTICIPANT CHARACTERISTICS

Country and setting: __

Developing country: Yes ___ No ___

Disease:

Vaccination Schedule:

Number of persons in trial

<table>
<thead>
<tr>
<th></th>
<th>Intervention</th>
<th>Control</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of Total</td>
<td></td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

Gender

<table>
<thead>
<tr>
<th></th>
<th>Intervention</th>
<th>Control</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Age

<table>
<thead>
<tr>
<th></th>
<th>Intervention</th>
<th>Control</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td><13 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>13 years</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INTERVENTION CHARACTERISTICS

Intervention: sms reminder

<table>
<thead>
<tr>
<th>SMS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Details of the sms</td>
<td></td>
</tr>
</tbody>
</table>

Recall sms sent for unvaccinated participants

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Other remarks</td>
<td></td>
</tr>
</tbody>
</table>

Control –usual care

<table>
<thead>
<tr>
<th>sms</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td></td>
</tr>
</tbody>
</table>

Recall sms sent for unvaccinated participants

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Other remarks</td>
<td></td>
</tr>
</tbody>
</table>
OUTCOMES

1. Outcomes measured:

2. Primary outcomes: receipt of one or more vaccination within the specified period

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>F</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number SMSs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undeliverable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incorrect number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Declined</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (per protocol)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VACCINATION COVERAGE

Authors' definition of coverage:

Primary Outcome

<table>
<thead>
<tr>
<th></th>
<th>Intervention</th>
<th>%</th>
<th>Control</th>
<th>%</th>
<th>Difference</th>
<th>RRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total SMSs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number vaccinated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Age-group Breakdown

<table>
<thead>
<tr>
<th></th>
<th>Intervention</th>
<th>%</th>
<th>Control</th>
<th>%</th>
<th>Difference</th>
<th>RRR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Secondary Outcome

<table>
<thead>
<tr>
<th></th>
<th>Intervention</th>
<th>%</th>
<th>Control</th>
<th>%</th>
<th>Difference</th>
<th>RRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total SMSs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recall Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Age-group Breakdown

<table>
<thead>
<tr>
<th></th>
<th>Intervention</th>
<th>%</th>
<th>Control</th>
<th>%</th>
<th>Difference</th>
<th>RRR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part B: Journal Manuscript
Mobile phone text messaging for improving the uptake of vaccinations: a systematic review

Robyn Kalan, University of Cape Town, robyn.kalan@gmail.com
Mark E Engel, University of Cape Town, mark.engel@uct.ac.za
Dylan D Barth, University of Cape Town, dylan.barth@uct.ac.za
Charles Wiysonge, University of Stellenbosch, wiysonge@yahoo.com
Contents

Abstract ... 7

1. Background .. 9

2. Methods .. 12

 2.1 Criteria for considering studies for this review ... 12

 2.1.1 Type of studies .. 12

 2.1.2 Type of participants ... 12

 2.1.3 Types of interventions .. 12

 2.1.4 Types of outcome measures ... 13

 2.1.5 Search methods for the identification of studies ... 13

 2.2 Study Selection ... 15

 2.3 Data extraction ... 15

 2.4 Data analysis ... 16

 2.5 Role of the Funding Source ... 17

 2.6 Ethics .. 17

3 Results ... 18

 3.1 Study flow and description of studies .. 18

 3.2 Assessment of Risk of Bias in included studies .. 24

 3.3 Quantitative Data Synthesis ... 26

 3.3.1 Uptake of vaccination in all included studies(Figure 3) .. 26

 3.3.2 Type of vaccination (Figure 4) .. 27

 3.3.3 Multiple visit vaccinations (Figure 5) .. 28

 3.3.4 Type of study design (Figure 6) ... 29

 3.3.5 Age categories (Figure 7) ... 30

 3.3.6 Blinding (Figure 8) .. 31

 3.3.7 Method for assessing Outcomes (Figure 9) .. 32

 3.3.8 Country setting (Figure 10) ... 33

 3.3.9 Summary of Subgroup analysis .. 33

4. Discussion .. 34

 4.1 Summary of findings .. 34

 4.2 Quality of the evidence .. 34

 4.3 Strengths and Limitations .. 35
4.4 Comparison with existing literature ... 36
4.5 Implications for Practice .. 37
4.6 Implications for Research ... 38
5. Conclusion .. 39
6. References ... 40
Appendix 1: Detailed Characteristics of Included studies... 43
Appendix 2: BMC Medicine: Authors’ Instructions... 55
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Search Strategy</td>
<td>14</td>
</tr>
<tr>
<td>Table 2</td>
<td>Characteristics of Included Studies</td>
<td>20</td>
</tr>
<tr>
<td>Table 3</td>
<td>Characteristics of Excluded studies</td>
<td>21</td>
</tr>
<tr>
<td>Table 4</td>
<td>NIH Clinical Trials Register</td>
<td>22</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Flowchart for the identification of articles</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Risk of bias summary</td>
<td>25</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Vaccination uptake</td>
<td>26</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Type of vaccination</td>
<td>27</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Multiple visit vaccinations</td>
<td>28</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Type of study design</td>
<td>29</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Age categories</td>
<td>30</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Blinding</td>
<td>31</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Method for assessing Outcomes</td>
<td>32</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Country setting</td>
<td>33</td>
</tr>
</tbody>
</table>
List of Abbreviations

CENTRAL: Cochrane Central Register of Controlled Trials
CI: confidence intervals
GRADE: Grading of recommendations, assessment, development and evaluation
GVAP: Global Vaccine Action Plan
Hib: *Haemophilus Influenzae B*
HPV: Human Papilloma Virus
ITT: intention-to treat
MCV4: meningococcal virus
MesH: Medical subject headings
RCT: Randomised Controlled trial
RR: Risk Ratio
SIM: subscriber identity module
SOC: Standard of care
SMS: short message service
Tdap: tetanus/diptheria/acellular pertussis
WHO: World Health Organisation
Abstract

Background: Low vaccine coverage is a major public health concern, the consequences of which contribute to around 1.5 million child deaths from vaccine-preventable diseases. Thus, innovative strategies to rapidly increase coverage and recall rates for vaccinations are urgently required. Mobile text messaging (or short messaging service, SMS) has the potential to help increase vaccination coverage and therefore, we propose to conduct a review of the current best evidence for the use of SMS as an intervention to promote vaccination coverage.

Methods: This is a systematic review of the effectiveness of SMS in improving the uptake of vaccination. We searched several bibliographic databases (Pubmed, Web of Knowledge and Scopus) and the clinical trials register available by November 2013, regardless of language or publication status. Two authors independently screened eligible studies and assessed risk of bias in included studies, resolving discrepancies by discussion and consensus.

Results: Six studies comprising seven populations with a total of 12,484 participants were analysed to investigate the effects of SMS as an intervention to promote vaccination among adults, adolescents and parents or caregivers of children. Compared with participants receiving usual standard of care, participants receiving text messages were 25% more likely to comply with vaccination (risk ratio [RR] 1.25, 95% confidence intervals [CI] 1.07, 1.46). This finding was consistent for vaccinations requiring multiple visits (RR=1.38, [95% CI 1.21, 1.58]) as well as across all age categories (Non-adult vs Adult: RR=1.29, [95% CI 1.04; 1.60] vs RR=1.26, [95% CI 1.08, 1.48]). Furthermore, country setting did not affect the positive findings. Where studies looked at influenza only, we found the effect was significant in
favour of the text message intervention (RR 1.17, [95% CI, 1.03; 1.33]) compared with diseases other than influenza where the evidence indicates 62% increased likelihood of vaccination uptake due to SMS; however, the result was not statistically significant (RR=1.62, [95% CI, 0.84; 3.10]). The quality of evidence in this systematic review was rated as moderate using the GRADE approach. Sensitivity analyses revealed that heterogeneity generally had a negligible effect on the findings.

Discussion/Conclusion: There is moderate quality evidence a text message intervention is effective in increasing vaccination coverage. However, there is insufficient evidence to support its use for non-influenza vaccines. Furthermore there is a dearth of evidence emanating from low- and middle-income countries.

Keywords: Vaccine coverage, vaccination, Mobile text messaging, SMS, short messaging service
1. Background

Vaccinations, when given at the most sensitive developmental years of childhood, help to promote comprehensive and capable immunity, enabling children to fight off certain diseases [1, 2]. In addition, vaccinations are widely regarded as one of the most cost-effective public health interventions that help to reduce global child morbidity and mortality [3, 4]. Low coverage of vaccinations is a major public health concern. In Africa alone, more than seven million children did not receive the full spectrum of vaccinations recommended before reaching one year of age in 2009 [5]. It is also estimated that 1.5 million children died globally from vaccine-preventable diseases where World Health Organization (WHO) pre-qualified vaccines were available [6].

The Global Vaccine Action plan (GVAP) is the most recently launched global effort by the WHO to help increase vaccination coverage. The GVAP has set a target that by 2020 vaccination coverage for populations should reach 90% national vaccination coverage and at least 80% at district levels utilizing national vaccination programmes [7]. It is guided by six principles: country ownership, shared responsibility and partnership, equity, integration, sustainability, and innovation [8].

A variety of factors impact achieving low coverage rates; challenges such as immunisation awareness, demand for immunisation, level of trust in the health system, adequate human resources, access, timeliness of vaccinations, service delivery, poor infrastructure and vaccination monitoring [3]. Vaccination coverage seems to be lower in low-income households, where limited access to health education, contributes to poor health-seeking
behaviour along with an inability to improve general wellbeing [1, 2, 9]. Uneducated parents therefore are less likely to understand the importance of vaccinating to prevent potentially harmful diseases. In light of these obstacles to vaccination coverage, the strategy to improve vaccination coverage needs to be innovative as alluded to in the GVAP, well thought out and able to penetrate low income households effectively.

Globally, mobile phone use is rapidly increasing, with an estimated 6.6 billion mobile phone subscriptions end of 2012 [10]. In addition, the number of unique mobile phone subscribers at the end of 2012 was estimated to be 3.2 billion, with an average of 1.85 SIM cards per individual and mobile operators are including inactive SIM cards in their reported global mobile phone subscription totals [11]. However, the number of mobile phone users has continued to increase and is spreading to the most remote areas in the world.

In particular, mobile phone text messaging has gained popularity among people living in low- and middle-income countries and may be the key to penetrating hard to reach areas in the developing world. Text messaging has proven to be a cost effective method of relaying health information and reminders than the more traditional methods such as face to face, phone calls, pamphlets, mail and email [5]. As immunisation usually requires multiple consecutive monthly visits after the first vaccine dose in order to complete the schedule, short messaging service (SMS) can be used as a reminder for an upcoming visit and recall when a visit has been missed [1]. In addition, an SMS intervention, also known as mobile phone text messaging, can be delivered alone or bundled with other interventions [12]. Diseases that have used mobile technology successfully include HIV where a 90% adherence
to uptake of anti-retroviral medication was observed among text message recipients compared with a 40% adherence in the control group [13].

An earlier systematic review looked at the role of SMS as an intervention for promoting adherence to anti-tuberculosis treatment and found that in two of the studies, an SMS intervention significantly improved the adherence to tuberculosis treatment. The remaining studies reported no evidence for a significant effect in favour of an SMS intervention. Furthermore, the authors of this review were concerned with the lack of high quality data and rated the current evidence as reported in this review, as being of low quality. [14]

In another review, SMS was reported to significantly improve adherence to appointments and antiretroviral therapy, short-term smoking quit rates, and selected clinical and behavioral outcomes. [15] There is also some indication that SMS interventions could change behavior in weight loss reduction, although results were not significant.[16] SMS interventions have been successful in optimizing clinic time and at improving the relationship between post-operative patients in reducing clinic visits and drainage time of wounds. [17] SMS has also had a beneficial effect in diabetes patients where it was shown to have better health outcomes and significant improvement in the SMS group in relation to blood results analyzing HbA1c and plasma lipids. [18]

In order to understand the evidence available where a text message intervention was used to increase the uptake of vaccinations, we conducted a systematic review of the current best evidence for the use of mobile phone text messaging to improve vaccination coverage.
2. Methods

The methods for this review is largely based on the Cochrane Handbook of Systematic Reviews for Interventions [19].

2.1 Criteria for considering studies for this review

2.1.1 Type of studies

We included all randomized controlled trials and non-randomized controls if a comparison group was included in the study, which assessed using a text message intervention to promote the uptake of a vaccine as a primary or secondary outcome.

2.1.2 Type of participants

Participants were children or caregivers, adolescents, adults including pregnant women that were drawn from a community-based setting.

2.1.3 Types of interventions

Text messages that delivered a reminder to be vaccinated, educational informational or information regarding the vaccine availability and clinic details were considered as a valid text message intervention. We excluded studies where a comparison group did not form part of the analysis. Some studies compared the intervention to usual care and others offered both the control and intervention group a text message; one with only educational
information and the other both educational information and vaccination reminders and clinic availability respectively.

2.1.4 Types of outcome measures

The primary outcome for this review was uptake of vaccination. For the secondary outcome, we considered recall rate in persons who had previously missed their vaccinations.

2.1.5 Search methods for the identification of studies

We developed a highly sensitive search strategy combining key terms that may indicate uptake of vaccination via an text message intervention (eg. text message, sms, cell, mobile, vaccination and phone) with the MeSH headings “vaccinat*” and “text message or sms” and search terms for all existing randomized and non-randomised trials. Two investigators searched independently (RK and DB), in duplicate the following databases (from inception to October 2013.): MEDLINE via PubMed, EMBASE, Scopus, Web of Knowledge, and Cochrane CENTRAL. We also conducted a search within clinical trials.gov to ascertain if any ongoing studies have been completed before conclusion of this systematic review [20]. The search strategy used for searching the PubMed database is detailed in Table 1.
Table 1. PubMed search strategy, modified as needed for use in other databases

<table>
<thead>
<tr>
<th>Search</th>
<th>PubMed</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>(immunization[Mesh]) OR (immunis* OR immuniz* OR vaccin*)</td>
</tr>
<tr>
<td>#2</td>
<td>(adolescents OR children OR teenagers OR adults)</td>
</tr>
<tr>
<td>#3</td>
<td>"SMS" OR cellphone OR "mobile phone" OR "text messaging" OR "short message service" OR "text reminder"</td>
</tr>
<tr>
<td>#4</td>
<td>#1 AND #2</td>
</tr>
<tr>
<td>#5</td>
<td>#3 AND #4</td>
</tr>
</tbody>
</table>

MeSH, medical subject heading
2.2 Study Selection

Using a predefined protocol (available from corresponding author on request), two investigators (RK, DB) worked independently for 1 month, in duplicate, screening all abstracts and obtaining the full text articles that indicated that a text message intervention was used to improve the uptake of a vaccination. After obtaining full reports of the candidate studies (either in full peer-reviewed publication, conference abstract or non peer-reviewed article) the same reviewers independently assessed eligibility. Reviewers were not blinded to study authors, study conclusions and outcomes as blinding has been shown to have little effect on systematic review results [21].

To obtain full information regarding conference abstracts and registered trials, we attempted contact with all study authors for full information through email and telephone communication. After all potentially relevant full-text articles and abstracts were identified, we consulted as a team of (RK, DB) to achieve consensus regarding eligibility and consulted an arbitrator (ME) for adjudication.

2.3 Data extraction

During November 2013, RK and DB independently extracted data in duplicate, using a standardized pre-piloted form. Data collected included information about the study setting, study populations, sample size, and methods of vaccination uptake as a result of a text message intervention. We considered different measures of vaccination uptake as the primary outcome. Five studies measured the outcome using online vaccination records and one study used self-reporting as the measure. Our primary endpoint was the number of
individuals in the exposure and control groups achieving vaccination uptake at the study endpoint. We entered the data into an electronic database such that duplicate entries existed for each study; when the two entries did not match, we reached consensus through discussion. We considered study quality according to reporting of randomization method, adjustment of experimental confounders, allocation concealment, blinding of analysts, objectivity of outcome measures, use of intention-to-treat analysis and loss to follow-up larger than 20%.

2.4 Data analysis

RK and ME conducted all statistical analyses. We calculated the Relative Risk (RR) and appropriate 95% Confidence Intervals (CIs) of the primary outcomes according to the number of events reported in the original studies or sub studies as intent-to-treat analyses. Where studies did not report intent-to-treat, we analysed outcomes as all-patients randomized.

We pooled studies as an analysis of vaccination uptake using the random effects method, which recognizes and anchors studies as a sample of all potential studies, and incorporates an additional between-study component to the estimate of variability [22]. We calculated the I^2 statistic for each analysis as a measure of the proportion of the overall variation that is attributable to between-study heterogeneity [23], and calculated the appropriate I^2 confidence intervals. We imputed the experimental and control event rates from our meta-analysis and applied a 95% power at the 5% significance level. All outcomes are reported as intention-to-treat. Forest plots are displayed for each vaccination uptake analysis, showing
individual study proportions with 95% CIs, and the overall. All p-values are exact and 2-sided. We considered a p-value <0.05 to be significant. Analyses were conducted using Revman 5.1 statistical software (http://ims.cochrane.org/RevMan). Subgroup analyses were performed to evaluate the effect of study design and conduct, type of intervention and participants as well as method of confirmation of vaccination uptake.

2.5 Role of the Funding Source

We did not receive funding for this study.

2.6 Ethics

Systematic reviews draw on publicly available data and do not directly involve human subjects, and therefore do not require formal ethical review [24]. The study protocol was reviewed by supervisors with expertise in the systematic review method and submitted to the University of Cape Town Departmental Research Committee for approval.
3 Results

3.1 Study flow and description of studies

A flow diagram of studies included in the analysis is detailed in Figure 1. From the initial search, we identified 348 titles from the various databases. After removing duplicates and examining titles, 76 articles were included. Of these, 10 studies were deemed as being potentially relevant with perfect agreement between reviewers. Following a review of the abstracts, six articles remained eligible for inclusion. All full text papers and abstracts were published in English. Five studies were conducted within the USA while the remaining study was conducted in China. (Table 2 summarizes the characteristics of the six included studies). Detailed information on included studies are provided in Appendix 1.

Four studies were excluded for the following reasons: no comparison group [25], an earlier version of an already included study [26], non-community setting [27] and, conference presentation lacking sufficient detail [28]. (Details are provided in Table 3, “Table of Excluded Studies”).

Of the 15 trials rendered by a search in ClinicalTrials.gov [20], 13 matched our inclusion criteria. From these, two had already been included as published articles [29, 30], (See Table 4: NIH Clinical trials Register).
Figure 1. Flowchart for the identification of articles
Table 2: Characteristics of Included Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Setting, Country</th>
<th>Age Range of those receiving vaccinations</th>
<th>% male</th>
<th>No of participants</th>
<th>Disease</th>
<th>Intervention / Control</th>
<th>Primary Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahlers-Schmidt, 2012</td>
<td>Academic Centres, USA</td>
<td>2-6 months</td>
<td>83.33%</td>
<td>90</td>
<td>2, 4, 6 month infant vaccines</td>
<td>SMS / SOC</td>
<td>Receipt of vaccine</td>
</tr>
<tr>
<td>Chai, 2013</td>
<td>Clinic population, China</td>
<td>18->60 yrs</td>
<td>48%</td>
<td>1998</td>
<td>H1N1 influenza</td>
<td>SMS / SOC</td>
<td>Receipt of vaccine</td>
</tr>
<tr>
<td>Kharbanda, 2011</td>
<td>Clinic population, USA</td>
<td>9-20 yrs</td>
<td>Only female</td>
<td>1512</td>
<td>HPV</td>
<td>SMS / SOC</td>
<td>Receipt of vaccine</td>
</tr>
<tr>
<td>Moniz, 2013</td>
<td>Medical centres, USA</td>
<td>14-50 yrs</td>
<td>Only female</td>
<td>216</td>
<td>Influenza</td>
<td>SMS / SOC</td>
<td>Receipt of vaccine</td>
</tr>
<tr>
<td>Stockwell b (adolescents), 2012</td>
<td>Clinic population, USA</td>
<td>11-18 yrs</td>
<td>42%</td>
<td>361</td>
<td>MCV4/Tdap</td>
<td>SMS / SOC</td>
<td>Receipt of vaccine</td>
</tr>
<tr>
<td>Stockwell b (paediatric), 2012</td>
<td>Clinic population, USA</td>
<td>7-22 months</td>
<td>50%</td>
<td>174</td>
<td>Hib</td>
<td>SMS / SOC</td>
<td>Receipt of vaccine</td>
</tr>
<tr>
<td>Stockwell(a), 2012</td>
<td>hospital population, USA</td>
<td>6 months-18 yrs</td>
<td>49%</td>
<td>9213</td>
<td>influenza</td>
<td>SMS / SOC</td>
<td>Receipt of vaccine</td>
</tr>
</tbody>
</table>

N, number; SMS, short message service; SOC, standard of care; yrs, years; HPV, human papilloma virus; Hib, Hemophilus Influenzae
TABLE 3: Characteristics of Excluded studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vilella, 2004</td>
<td>non-community based setting</td>
</tr>
<tr>
<td>Wakadha, 2013</td>
<td>no comparison group</td>
</tr>
<tr>
<td>Kharbanda, 2011</td>
<td>early version of the same study</td>
</tr>
<tr>
<td>Russel 2012</td>
<td>conference presentation with limited data</td>
</tr>
</tbody>
</table>

Participants within studies were exclusively adults [31, 32], adolescents [26] and infants [29] while two studies included both infants and adolescents [30, 33]. One study, however, [33] analysed adolescent and paediatric populations separately. Therefore, from the six studies, 7 populations are analysed. Kharbanda et al had two control groups, an “opt-out” and a historical control group comprising 308 and 1080 participants respectively [26].

Vaccinations included those against human papilloma virus [26], influenza [30-33], meningococcal (MCV4) or tetanus/diptheria/acellular pertussis (Tdap) [33]. One study comprised routine infant immunisations [29]. Two studies [26, 33] incorporated follow-up doses for completion of the vaccination schedule; the first vaccination uptake data from these studies were pooled with those from the rest of the studies. One study relied on self-reported data, [31] while the rest used online vaccination records to verify vaccination uptake.
<table>
<thead>
<tr>
<th>Title</th>
<th>Trial number</th>
<th>Status</th>
<th>Include/exclude</th>
<th>If published, citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text Message Reminder-Recalls For Early Childhood Vaccination</td>
<td>NCT00076804</td>
<td>Active, not recruiting</td>
<td>Exclude</td>
<td></td>
</tr>
<tr>
<td>Adult Influenza Vaccination Text Message Reminders</td>
<td>NCT01942824</td>
<td>Not yet recruiting</td>
<td>Exclude</td>
<td></td>
</tr>
<tr>
<td>Pilot Text Message for Influenza Vaccination</td>
<td>NCT01761734</td>
<td>Active, not recruiting</td>
<td>Exclude</td>
<td></td>
</tr>
<tr>
<td>Effectiveness of SMS (Short Message Service) Text Messaging in Increasing Adherence to Gardasil</td>
<td>NCT01276184</td>
<td>Unknown</td>
<td>Exclude</td>
<td></td>
</tr>
<tr>
<td>Vaccine Health Literacy Related Text Message Reminders to Increase Receipt of Second Dose of Influenza Vaccine for Young, Low Income, Urban Children</td>
<td>NCT01662583</td>
<td>Completed</td>
<td>Exclude: information not yet supplied</td>
<td></td>
</tr>
<tr>
<td>Adolescent Vaccination in the Medical Home: Established and Innovative Strategies</td>
<td>NCT01577979</td>
<td>Enrolling by invitation</td>
<td>Exclude</td>
<td></td>
</tr>
<tr>
<td>Influenza and Text Messaging in Pregnancy</td>
<td>NCT01248520</td>
<td>Active, not recruiting</td>
<td>Exclude</td>
<td></td>
</tr>
<tr>
<td>PregText: Feasibility of Monitoring Influenza Vaccine Safety in Pregnant Women Using Text Messaging</td>
<td>NCT01974050</td>
<td>Not yet recruiting</td>
<td>Exclude</td>
<td></td>
</tr>
<tr>
<td>Study Description</td>
<td>NCT Number</td>
<td>Status</td>
<td>Include/Exclude</td>
<td>Reference</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Text Messaging Reminders for Influenza Vaccine in Primary Care</td>
<td>NCT01892631</td>
<td>Not yet recruiting</td>
<td>Exclude</td>
<td></td>
</tr>
<tr>
<td>Text Reminders for Immunization Compliance in Kids (TRICKS) Pilot Study</td>
<td>NCT00367172</td>
<td>Completed</td>
<td>Include</td>
<td>Ahlers-Schmidt, Vaccine, 2012</td>
</tr>
<tr>
<td>Text Reminders to Immunize in a Managed Care Organization</td>
<td>NCT01806714</td>
<td>Recruiting</td>
<td>Exclude</td>
<td></td>
</tr>
<tr>
<td>The Efficacy of Reminders to Complete HPV Series</td>
<td>NCT01731496</td>
<td>Recruiting</td>
<td>Exclude</td>
<td></td>
</tr>
<tr>
<td>Real-time Influenza Vaccine Surveillance</td>
<td>NCT01233388</td>
<td>Completed</td>
<td>Exclude</td>
<td></td>
</tr>
<tr>
<td>Human Papilloma Viruses (HPV) Vaccine Adherence Community Clinic Study</td>
<td>NCT01908517</td>
<td>Not yet recruiting</td>
<td>Exclude</td>
<td></td>
</tr>
</tbody>
</table>
The SMS interventions comprised reminders of appointment dates [26, 29, 30, 33], (adolescent and paediatrics) or indications of the availability of the vaccine at a local clinic [30-33]. Three studies incorporated an additional educational component within the SMS [30-32]. None of the studies analysed the results for recall rates and thus, we were unable to provide results for our secondary outcome.

3.2 Assessment of Risk of Bias in included studies

Five studies were randomised controlled trials (RCTs) and reported the randomisation method; allocation concealment was unclear across all but one study [32]. The remaining study incorporated non-randomised enrolment of clinic attendees [26]. Three studies reported blinding of study analysts or the researchers [30-32], while the remainder provided insufficient detail as regards blinding. Despite statements to the contrary, only two studies reported intention-to-treat analyses [26, 33]. All the studies provided reasons for loss-to-follow up which included: disconnected/wrong number, relocation, excluded from analysis as participants were vaccinated prior to randomisation, did not receive text messages, terminated pregnancies, did not respond to post-SMS messaging survey. The Cochrane Collaboration tool for assessing study quality is presented in Figure 2.
Figure 2: Risk of bias summary

![Risk of bias summary table]

<table>
<thead>
<tr>
<th>Study</th>
<th>Allocation concealment (selection bias)</th>
<th>Blinding of participants and personnel (performance bias)</th>
<th>Blinding of outcome assessment (detection bias)</th>
<th>Incomplete outcome data (attrition bias)</th>
<th>Selective reporting (reporting bias)</th>
<th>Other bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahlers-Schmidt 2012</td>
<td>green (0)</td>
<td>green (0)</td>
<td>green (0)</td>
<td>green (0)</td>
<td>green (0)</td>
<td>green (0)</td>
</tr>
<tr>
<td>Chai 2013</td>
<td>green (0)</td>
<td>green (0)</td>
<td>green (0)</td>
<td>green (0)</td>
<td>green (0)</td>
<td>green (0)</td>
</tr>
<tr>
<td>Kharbanda 2011</td>
<td>red (7)</td>
<td>green (0)</td>
<td>green (0)</td>
<td>green (0)</td>
<td>green (0)</td>
<td>green (0)</td>
</tr>
<tr>
<td>Moniz 2013</td>
<td>green (0)</td>
<td>green (0)</td>
<td>red (7)</td>
<td>green (0)</td>
<td>green (0)</td>
<td>green (0)</td>
</tr>
<tr>
<td>Stockwell 2012a</td>
<td>green (0)</td>
<td>green (0)</td>
<td>green (0)</td>
<td>green (0)</td>
<td>green (0)</td>
<td>green (0)</td>
</tr>
<tr>
<td>Stockwell 2012b (Adolesc)</td>
<td>green (0)</td>
<td>green (0)</td>
<td>green (0)</td>
<td>green (0)</td>
<td>green (0)</td>
<td>green (0)</td>
</tr>
<tr>
<td>Stockwell 2012b (Paed)</td>
<td>green (0)</td>
<td>green (0)</td>
<td>green (0)</td>
<td>green (0)</td>
<td>green (0)</td>
<td>green (0)</td>
</tr>
</tbody>
</table>
3.3 Quantitative Data Synthesis

3.3.1 Uptake of vaccination in all included studies (Figure 3)

When we pooled all the studies that reported our primary outcome of vaccination uptake (n=12484) as an analysis of text message intervention compared with usual care, we found a significant effect for vaccination uptake (risk ratio (RR)=1.25 [95% confidence interval (CI), 1.07; 1.46]). Substantial heterogeneity was also detected (p = 0.03, $I^2 = 75\%$). Because of this, the result of this analysis should be interpreted with caution and not be considered a definitive statement.

One study presented an additional analysis using a historical control cohort [26]. We excluded this scenario from the analysis above, given the likelihood of selection bias; nevertheless, including the historical cohort provided similar results with a pooled significant effect favouring SMS (RR=1.28 [95% CI, 1.10; 1.48]). Heterogeneity remained significantly high [$I^2 = 77\%$].
3.3.2 Type of vaccination (Figure 4)

The overall significant effect of SMS messages favouring the uptake of vaccination was consistent when conducting a subgroup analysis of the four studies of influenza vaccines comprising adults and paediatric communities: participants receiving SMS messages were more likely to take up the vaccination; this was a significant effect (RR=1.17 p=0.02 [95% CI, 1.03; 1.33]); mild heterogeneity [I² = 39% p=0.01]. In studies reporting vaccination for other diseases the results were heterogenous and insignificant (RR=1.62 [95% CI, 0.84; 3.10]).
3.3.3 Multiple visit vaccinations (Figure 5)

“Two studies required patients to have triple doses within the vaccine schedule. Overall, significant heterogeneity was evident \([I^2=92\%]\)”

![Figure 5: Multiple visit vaccinations](image)
3.3.4 Type of study design (Figure 6)

Five of the studies included were RCTs, and showed significant heterogeneity across the studies [$I^2 = 69\%$]. Only one study was a non RCT and showed a significant effect (RR=1.54, [95% CI, 1.23; 1.92]).

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>SMS</th>
<th>Control</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Weight</td>
</tr>
<tr>
<td>1.6.1 RCT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Athlers-Schmitt 2012</td>
<td>45</td>
<td>50</td>
<td>36</td>
</tr>
<tr>
<td>Chai 2013</td>
<td>234</td>
<td>999</td>
<td>181</td>
</tr>
<tr>
<td>Monz 2013</td>
<td>34</td>
<td>108</td>
<td>31</td>
</tr>
<tr>
<td>Stockwell 2012a</td>
<td>1651</td>
<td>4607</td>
<td>1509 4606</td>
</tr>
<tr>
<td>Stockwell 2012b (Adolesc)</td>
<td>50</td>
<td>195</td>
<td>7</td>
</tr>
<tr>
<td>Stockwell 2012b (Ped)</td>
<td>18</td>
<td>67</td>
<td>10</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>6046</td>
<td>6006</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

| Total events | 2014 | 1774 |

Heterogeneity: Tau^2 = 0.02; Chi^2 = 16.35, df = 5 (P = 0.006); I^2 = 69%
Test for overall effect: Z = 2.12 (P = 0.03)

1.6.2 Non RCT

| Kharbanda 2011 | 67 | 124 | 108 308 | 100.0% | 1.54 [1.23, 1.92] |
| Total events | 67 | 108 |

Heterogeneity: Not applicable
Test for overall effect: Z = 3.81 (P = 0.0001)

Test for subgroup differences: Chi^2 = 3.66, df = 1 (P = 0.06); I^2 = 72.6%

Figure 6: Type of study design
3.3.5. Age categories (Figure 7)

Two studies consisted only of adults receiving vaccines which, when pooled, showed a significant effect for the intervention (RR= 1.26 [95% CI, 1.08; 1.48]) with no heterogeneity [I² = 0%]. The remaining five populations comprised parents and caregivers of infants and adolescents showed significant heterogeneity was present [I² = 81%], therefore the results could not be pooled.

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Events</th>
<th>Control</th>
<th>Risk Ratio</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Weight</td>
<td>M-H, Random, 95% CI</td>
</tr>
<tr>
<td>1.3.1 Adult</td>
<td>234</td>
<td>999</td>
<td>84.7%</td>
<td>1.29 [1.09, 1.54]</td>
</tr>
<tr>
<td>Chi 2013</td>
<td>181</td>
<td>999</td>
<td>84.7%</td>
<td>1.29 [1.09, 1.54]</td>
</tr>
<tr>
<td>Mann 2013</td>
<td>34</td>
<td>108</td>
<td>15.3%</td>
<td>1.10 [0.73, 1.65]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>1107</td>
<td>1107</td>
<td>100.0%</td>
<td>1.26 [1.08, 1.48]</td>
</tr>
<tr>
<td>Total events</td>
<td>268</td>
<td>212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau² = 0.00; Chi² = 0.53, df = 1 (P = 0.47); I² = 0%</td>
<td>Test for overall effect: Z = 2.85 (P = 0.004)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.8.2 Parents of children and adolescents

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Events</th>
<th>Control</th>
<th>Risk Ratio</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Weight</td>
<td>M-H, Random, 95% CI</td>
</tr>
<tr>
<td>Ahlers-Schmidt 2012</td>
<td>150</td>
<td>50</td>
<td>29.5%</td>
<td>1.00 [0.87, 1.15]</td>
</tr>
<tr>
<td>Kharbanda 2011</td>
<td>64</td>
<td>124</td>
<td>24.7%</td>
<td>1.54 [1.23, 1.92]</td>
</tr>
<tr>
<td>Stockwell 2012a</td>
<td>1593</td>
<td>4607</td>
<td>32.9%</td>
<td>1.10 [1.03, 1.16]</td>
</tr>
<tr>
<td>Stockwell 2012b (Adolesc)</td>
<td>190</td>
<td>195</td>
<td>5.9%</td>
<td>1.65 [1.65, 8.09]</td>
</tr>
<tr>
<td>Stockwell 2012b (Ped)</td>
<td>18</td>
<td>87</td>
<td>7.1%</td>
<td>1.80 [0.88, 3.67]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>5063</td>
<td>5297</td>
<td>100.0%</td>
<td>1.29 [1.04, 1.60]</td>
</tr>
<tr>
<td>Total events</td>
<td>1811</td>
<td>1670</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau² = 0.04; Chi² = 21.42, df = 4 (P = 0.0003); I² = 81%</td>
<td>Test for overall effect: Z = 2.34 (P = 0.02)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test for subgroup differences: Chi² = 0.33, df = 1 (P = 0.87); I² = 0%

Figure 7: Age categories
3.3.6 Blinding (Figure 8)

For interest, we considered the effect of blinding on outcome. Three studies reported on their blinding method: where blinding was reported, we found a significant pooled effect (RR=1.15 [95% CI, 1.02; 1.29], I² = 38%). In contrast, in the four populations where blinding was not reported, no significant effect for SMS was apparent (RR=1.65[0.93; 2.92]) with significant heterogeneity being present (I²=92%).

Figure 8: Blinding
3.3.7 Method for assessing Outcomes (Figure 9)

In the five studies where objective assessment (e.g. online verification) of vaccination uptake was used, the pooled estimate showed significant heterogeneity between studies \(I^2 = 77\%\). One study employing self-reporting to obtain participants’ data, showed a significant effect \((RR=1.29, [95\% CI, 1.09; 1.54])\). There was no significant difference between the subgroups \((I^2=0\%)\).

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>SMS</th>
<th>Control</th>
<th>Risk Ratio (M-H, Random, 95% CI)</th>
<th>Risk Ratio (M-H, Random, 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aithers-Schmidt 2012</td>
<td>45</td>
<td>50</td>
<td>1.00 [0.87, 1.15]</td>
<td></td>
</tr>
<tr>
<td>Kharchandha 2011</td>
<td>67</td>
<td>124</td>
<td>1.54 [1.23, 1.92]</td>
<td></td>
</tr>
<tr>
<td>Moriz 2013</td>
<td>34</td>
<td>108</td>
<td>1.10 [0.73, 1.65]</td>
<td></td>
</tr>
<tr>
<td>Stockwell 2012b (Adoles)</td>
<td>165</td>
<td>4607</td>
<td>1.10 [1.03, 1.16]</td>
<td></td>
</tr>
<tr>
<td>Stockwell 2012b (Paed)</td>
<td>50</td>
<td>195</td>
<td>3.85 [1.65, 8.00]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>5171</td>
<td>5315</td>
<td>1.25 [1.04, 1.51]</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>1847</td>
<td>1701</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: \(I^2 = 0.03\); \(\chi^2 = 21.41, df = 5 \ (P = 0.0007); I^2 = 77\%\).
Test for overall effect: \(Z = 2.94 \ (P = 0.002)\).

1.10.2 Self-reported outcome

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Events Total</th>
<th>Risk Ratio (M-H, Random, 95% CI)</th>
<th>Risk Ratio (M-H, Random, 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chai 2013</td>
<td>234 999 181</td>
<td>1.29 [1.09, 1.54]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>999 999 181</td>
<td>1.29 [1.09, 1.54]</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>234 181</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Not applicable.
Test for overall effect: \(Z = 2.91 \ (P = 0.004)\).

Test for subgroup differences: \(\chi^2 = 0.06, df = 1 \ (P = 0.81); I^2 = 0\%\).

Figure 9: Method for Assessing Outcomes
3.3.8 Country setting (Figure 10)

Five studies were conducted in the USA which, when pooled, showed significant heterogeneity between the studies ($I^2 = 77\%$). Similarly, the single study conducted in a developing country setting, viz. China, also found a significant effect for SMSs promoting vaccine uptake (RR=1.29, [95% CI, 1.09; 1.54]).

![Figure 10: Country setting](image)

3.3.9 Summary of Subgroup analysis

We did not find any important changes in our estimates when we investigated the effect of study design and method of assessment of outcomes. However, the quantitative effect amongst studies not reporting blinding yielded a non-significant estimate (RR=1.65 [95% CI, 0.93; 2.92]) with significant heterogeneity ($I^2 = 92\%$). In addition, we did not find any changes in our overall estimate when using the fixed-effects method (data not shown).
4. Discussion

4.1 Summary of findings

In this review, six studies comprising seven populations with a total of 12,484 participants were analysed to investigate the effects of SMS as an intervention to promote vaccination among adults, adolescents and parents or caregivers of children. Overall, studies showed heterogeneity, thus not making it possible to compare usual standard of care with text messaging for compliance with vaccination schedules. However, when considering adults only (n=2 studies), SMS significantly improved vaccination uptake by 26% (RR=1.26, [95%CI, 1.08;1.48], p=0.004). Among the studies on influenza (n=4), there was a significant effect (RR=1.17, [95%CI, 1.03;1.33], p=0.02). Concerning type of disease, however, the evidence for SMS interventions resulting in a 62% increased likelihood of vaccination for diseases other than influenza, was not statistically significant.

4.2 Quality of the evidence

We used the GRADE approach to assess the level of confidence to be placed on the evidence for the effects of SMS on vaccination coverage [34] . This method results in an assessment of the quality of a body of evidence as high, moderate, low, or very low. In five of the six included studies the method of allocation concealment was unclear. This led us to downgrade the quality of the evidence from high to moderate. Moderate quality evidence implies the pooled effect estimate found in this review provides a good indication of the likely effect of SMS on vaccination coverage. Although moderate quality evidence provides a good basis for making a decision about whether to implement an intervention, monitoring of the impact is likely to be needed and impact evaluation may be warranted if it is implemented.
4.3 Strengths and Limitations

The main strength of this review lies in our adherence to international standardised guidelines on the conduct and reporting of systematic reviews [19]. Five of the included studies were RCTs and the remainder, a site-based intervention study [26]. The data were all published data in peer-reviewed journals and did not appear to have selective reporting biases. The majority of the studies also obtained their data from online vaccination records providing us with very high quality objective data. Although conducted predominantly in the USA, most of the settings were community-based clinics serving the lower socio-economic areas; thus it is reasonable to generalize the findings from this review to communities within countries.

Our review should be evaluated with the following limitations in mind. First, although our review drew from an extensive search and was not limited by language, conference proceedings were not searched. Therefore, it is possible that additional information from conference proceedings not leading to publication was missed. Second, we were only able to find a single study emanating from a resource-limited country. Thus, more studies are required from such areas in order to increase the evidence. It is unclear how representative the participants recruited in the studies were compared with those worldwide receiving vaccinations. A third limitation relates to the moderate quality of the data. We were unable to identify adequate allocation concealment in five of the studies, while one study was unclear regarding random sequence generation. Furthermore, two studies did not provide complete outcome data, thus increasing attrition bias and one study employed selective reporting, and therefore increasing the risk of reporting bias. More high quality data would
aid in strengthening recommendations for successful use of an SMS intervention to improve vaccination coverage.

4.4 Comparison with existing literature

To our knowledge this is the first systematic review of SMS interventions for improving immunisation coverage. The evidence provided for the success of text messaging in achieving desired outcomes is in keeping with those present in another review comprising two studies that assessed the effects of text messaging in promoting adherence to antiretroviral therapy (ARV) in HIV patients [36]. Text messaging was also shown to be effective in 71% of studies involving non-vaccination related conditions.[37] Similarly, SMS interventions have been shown to promote medication adherence in HIV, contraception and smoking cessation. [38] A review looking at interventions to increase influenza vaccination among healthcare workers in hospitals found that a reminder via SMS as part of an intervention programme increased vaccination uptake. [39] However, a single RCT published more recently, provided contrasting results, concluding that an SMS intervention did not significantly improve ARV adherence with participants withdrawing from the study for privacy reasons; thus, the authors speculate that the reason for this ineffectiveness may include the stigmatization associated with HIV [40].

Stockwell MS, 2013, presented a literature review of a broad range of health information technologies to improve vaccine communication and coverage and suggested that SMS is effective in improving vaccination uptake for a number of reasons: (1) SMS is able to penetrate large populations, (2) cost-effectiveness given the relatively low cost, (3) less
human resource intensive as it can be set up electronically, (4) reaches the specific patient for which it is intended. [41]

4.5 Implications for Practice

The evidence presented in this review shows promise for the employment of SMS interventions to promote the uptake of vaccination. However, the moderate quality of the evidence implies that monitoring of the impact is likely to be needed and impact evaluation may be warranted if SMS interventions are implemented to improve uptake of vaccination services. Also, the specific contribution of educational messages combined with SMS reminders needs further evaluation. Furthermore, when text messaging interventions are to be introduced in resource-limited settings, it is imperative to consider the potential barriers of low-literacy levels, language barriers, lack of access to the owner of a mobile phone given that sharing of mobile phones is common in many places, restrictions on the content of text messages, issues such as habituation and the ignoring of messages when text messages are delivered too frequently, privacy and disclosure issues, poor mobile phone service provision, the inability of mobile phone users to charge their phones due to lack of electricity, the inability to buy pre-paid phone cards and, the high incidence of mobile phone theft and phone number changes in some parts of the world [14].
4.6 Implications for Research

Current evidence is of moderate quality. This implies that the likelihood that further research will find the effect to be substantially different is moderate. Therefore more research is needed from low and middle-income countries, especially for non-influenza vaccines.
5. Conclusion

The findings of this systematic review indicate that SMS interventions present a promising method of promoting the uptake of vaccination. The results of this systematic review highlight the need for further research within developing countries, especially given the rise of mobile phone usage in Africa and other developing nations[10].
6. References

Appendix 1: Detailed Characteristics of Included studies
1. Stockwell 2012 B

Adolescents

Methods: Randomised controlled trial

Participants: Parents or guardians from a low-income minority population from community-based clinics affiliated to the academic centre in New York City were eligible to participate in the study if:

(1) They had an 11- to 18-year-old child with any visit (including sick visits) at a study site within the previous 12 months.

(2) The patient was in need of either or both MCV4 and Tdap, or

(3) A cell phone number was recorded in the registration system. Parents of patients who had not received the Tdap vaccine but had received another tetanus-containing vaccine within the previous 2 years were excluded from study.

Intervention: The purpose was to assess the effect of text messaging on receipt of 1 or both of 2 routinely recommended adolescent vaccines:

1. MCV4 (meningococcal) and

2. Tdap (tetanus--- diphtheria---acellular pertussis).

Outcomes: Primary outcome was the uptake of the Meningococcal (MCV4) and Tetanus, diphtheria and acellular pertussis (Tdap).

Results:

At 4 weeks

Relative risk 3.6484

95 % CI 1.6455 to 8.0891

z statistic 3.186

P = 0.0014

At 12 weeks

Relative risk 1.9246

95 % CI 1.2333 to 3.0035
z statistic 2.884

P = 0.0039

At 24 weeks

Relative risk 2.0147

95% CI 1.3871 to 2.9263

z statistic 3.678

P = 0.0002

P = 0.10

<table>
<thead>
<tr>
<th>Bias</th>
<th>Author’s Judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>A computer algorithm was used to automatically select a random sample of patients</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>The intervention patients were matched by gender and age to randomly selected eligible patients from the control sites. Further detail not provided</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>No blinding, but outcome and outcome measurement unlikely to be influenced by lack of blinding</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>No blinding, but outcome and outcome measurement unlikely to be influenced by lack of blinding</td>
</tr>
<tr>
<td>Incomplete data (attrition bias)</td>
<td>Low risk</td>
<td>All patients and outcomes are accounted for</td>
</tr>
<tr>
<td>Selective reporting</td>
<td>Low risk</td>
<td>Appears to be no evidence of selective reporting. Article has been peer reviewed and published in the Am J Pub Health</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td></td>
</tr>
</tbody>
</table>
2. Stockwell 2012 B

Paediatrics

Methods: Randomised controlled trial

Participants: Eligible families from a low-income minority population from community-based clinics affiliated to the academic centre in New York City had:

1. A child aged 7 to 22 months lacking 1Hib dose needed to complete his or her primary series,
2. A visit for that child in the past 12 months at 1 of 4 paediatric clinical sites, and
3. A cell phone number recorded in the clinic registration system.

Intervention: Conducted from May to June 2009, Text4Health---Peds was a quality initiative to mobilize parents to attend special Hib immunization recall sessions for children overdue for primary vaccination because of the national shortage that occurred in response to a voluntary recall.

Outcomes: Uptake of a Hib vaccine.

Results

<table>
<thead>
<tr>
<th>Relative risk</th>
<th>1.8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% CI</td>
<td>0.8818 to 3.6745</td>
</tr>
<tr>
<td>z statistic</td>
<td>1.614</td>
</tr>
<tr>
<td>P</td>
<td>0.1064</td>
</tr>
<tr>
<td>Bias</td>
<td>Author’s Judgement</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Random sequence generation</td>
<td>Low risk</td>
</tr>
<tr>
<td>Allocation concealment</td>
<td>Unclear risk</td>
</tr>
<tr>
<td>Blinding of participants and</td>
<td>Low risk</td>
</tr>
<tr>
<td>personnel</td>
<td></td>
</tr>
<tr>
<td>Blinding of outcome assessment</td>
<td>Low risk</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Incomplete data</td>
<td>Low risk</td>
</tr>
<tr>
<td>Selective reporting</td>
<td>Low risk</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
</tr>
</tbody>
</table>
3. Kharbanda 2011

Methods: Site Based Intervention study (non-randomised study)

Participants: Adolescent girls (9-20 years) from 9 paediatric clinical sites located in New York City (5 were hospital-affiliated academic practices primarily serving publicly insured youth and the other 4 were private practices)

Interventions: 3 weekly text message reminders of next vaccine dose for either HPV1 or HPV2

Controls: 2 control groups:

1. Opt-out- adolescent girls who had received an enrolment card during the intervention period but did not sign up

2. Historical control – adolescent girls who had received the HPV1 or HPV2 vaccine during the control period, prior to the start of the intervention.

Outcomes: Primary outcome: proportion of adolescent girls who received their next vaccination on time (<92 days between HPV1 and HPV2 & 154 days between HPV2 and HPV 3).

Results:

Intervention versus opt-out control

Relative risk 1.5409

95 % CI 1.2337 to 1.9247

z statistic 3.811

P = 0.0001

Intervention versus historical control

Relative risk 1.4198

95 % CI 1.1868 to 1.6986

z statistic 3.832

P = 0.0001
Notes

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Author’s Judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Moderate risk</td>
<td>Adolescents without a parent could self-select to participate in the study and those who could sign up via mobile phone were eligible</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Unclear</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>No blinding</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>No blinding</td>
</tr>
<tr>
<td>Incomplete data (attrition bias)</td>
<td>Low risk</td>
<td>All participants who enrolled were included in the analysis</td>
</tr>
<tr>
<td>Selective reporting</td>
<td>Low risk</td>
<td>No evidence to support this</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td></td>
</tr>
</tbody>
</table>
4. Ahlers-Schmidt 2012

Methods: Randomized Controlled Trial

Participants: Parents of newborns being discharged from a local hospital who intended to seek child health care at the University-sponsored paediatric resident and faculty clinic in a Midwestern metropolitan area in Kansas.

Interventions: 3 text messages, 7 days prior to 2, 4, 6 month vaccinations to remind parents that the vaccination was due

Outcomes: Receipt of immunizations due at 2, 4, 6 months of age.

2 month immunization received
Relative risk 1.0000
95 % CI 0.8706 to 1.1487
z statistic 0.000
P = 1.0000

4 month immunization received
Relative risk 0.9412
95 % CI 0.7782 to 1.1383
z statistic 0.625
P = 0.5320

6 month immunization received
Relative risk 0.8258
95 % CI 0.6325 to 1.0782
z statistic 1.407
P = 0.1595
Notes

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Author’s Judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>A computer generated randomisation scheme was used</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Not detailed</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>No blinding</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>No blinding</td>
</tr>
<tr>
<td>Incomplete data (attrition bias)</td>
<td>Moderate risk</td>
<td>Per protocol analysis and intention to treat analysis completed (2 participants were excluded from the intervention randomisation group)</td>
</tr>
<tr>
<td>Selective reporting</td>
<td>Low risk</td>
<td>No evidence of self-reporting. Outcome was measured from a clinical database</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td></td>
</tr>
</tbody>
</table>
5. Moniz 2013

Methods: Randomised controlled trial

Participants: Women aged 14–50 years who were pregnant at less than 28 weeks of gestation recruited from the Pittsburgh Medical Centre, Pittsburgh, USA. There 108 participants in the intervention group and 108 in the control group.

Intervention: 12 Weekly text messages encouraging general pregnancy health (n = 108) or general pregnancy health + influenza vaccination (n=108). Duration: 2 consecutive influenza seasons from 2010 – 2012.

Outcomes: Primary outcome was the uptake of the influenza vaccination.

Results

Relative risk 1.0968

95% CI 0.7300 to 1.6479

z statistic 0.445

P = 0.6565

Notes

<table>
<thead>
<tr>
<th>Risk of bias</th>
<th>Author’s Judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Utilised equal frequency using a permuted block design</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Participant’s names were placed in opaque envelopes</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>Health care providers were blinded</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>Record review researchers were blinded</td>
</tr>
<tr>
<td>Incomplete data (attrition bias)</td>
<td>Moderate risk</td>
<td>Per protocol analysis done not intention-to-treat</td>
</tr>
<tr>
<td>Selective reporting</td>
<td>Low risk</td>
<td>Outcome based on clinical records</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td></td>
</tr>
</tbody>
</table>
6. Chai 2013

Methods: Single blinded Randomised controlled trial

Participants: Jan 2010 – 2011, 1998 participants, permanent residents in Shanghai, China aged between 18–65 years. Sms n = 999. Control n = 999.

Intervention: During February 1–10, 2010, one SMS message was sent to each participant each morning for a total of ten different messages on 10 days. During the subsequent 10 days, the same ten messages were sent again to each participant, one daily, to reinforce the messages.

Outcomes: Self-reported H1N1 vaccination uptake.

Results

Relative risk 1.2928
95 % CI 1.0874 to 1.5371
z statistic 2.909
P = 0.0036

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of bias</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bias</th>
<th>Author's Judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation(selection bias)</td>
<td>Low risk</td>
<td>Randomised cluster method utilised</td>
</tr>
<tr>
<td>Allocation concealment(selection bias)</td>
<td>Low risk</td>
<td>unclear</td>
</tr>
<tr>
<td>Blinding of participants and personnel(performance bias)</td>
<td>Low risk</td>
<td>Single blinding reported</td>
</tr>
<tr>
<td>Blinding of outcome assessment(detection bias)</td>
<td>Low risk</td>
<td>Single blinding reported</td>
</tr>
<tr>
<td>Incomplete data(attrition bias)</td>
<td>Low risk</td>
<td>All patients were accounted for but analysis was per protocol not intention-to-treat.</td>
</tr>
<tr>
<td>Selective reporting</td>
<td>Moderate risk</td>
<td>Patients were required to self-report receipt of the vaccine</td>
</tr>
<tr>
<td>Other bias</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 53
7. Stockwell 2012 A

Methods: Randomised controlled trial

Participants: 9213 participants in an urban low-income paediatric and adolescent population recruited from community-based clinics in New York City.

Interventions: During the influenza season (2010-2011), 9213 were randomised to SMS (n=4607) or usual care (n=4606). Messages were sent 5 weekly, 3 were about educational information and 2 about dates for the immunization clinics.

Controls: n=4606

Outcomes: Primary outcome was receipt of an influenza vaccine dose recorded in the immunization registry via an electronic health record by March 31, 2011.

Results

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative risk</td>
<td>1.0952</td>
</tr>
<tr>
<td>95% CI</td>
<td>1.0349 to 1.1589</td>
</tr>
<tr>
<td>z statistic</td>
<td>3.150</td>
</tr>
<tr>
<td>P</td>
<td>0.0016</td>
</tr>
</tbody>
</table>

Notes

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Author’s Judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation(selection bias)</td>
<td>Low risk</td>
<td>Permutated block design was utilised, stratified by age and clinic site</td>
</tr>
<tr>
<td>Allocation concealment(selection bias)</td>
<td>Unclear risk</td>
<td>Unclear</td>
</tr>
<tr>
<td>Blinding of participants and personnel(assessment bias)</td>
<td>Unclear risk</td>
<td>Unclear</td>
</tr>
<tr>
<td>Blinding of outcome assessment(detection bias)</td>
<td>Low risk</td>
<td>Reported that study analysts were blinded to individual group assignment</td>
</tr>
<tr>
<td>Incomplete data(attrition bias)</td>
<td>Low risk</td>
<td>All participants were accounted for but per protocol analysis was done and not intention to treat</td>
</tr>
<tr>
<td>Selective reporting</td>
<td>Low risk</td>
<td>Outcomes were not assessed using self-reporting but online vaccination records</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2: BMC Medicine: Authors’ Instructions
Instructions for authors

BMC Medicine

Research articles

Submission process

Manuscripts must be submitted by one of the authors of the manuscript, and should not be submitted by anyone on their behalf. The submitting author takes responsibility for the article during submission and peer review.

Please note that *BMC Medicine* levies an article-processing charge on all accepted Research articles; if the submitting author's institution is a BioMed Central member the cost of the article-processing charge may be covered by the membership (see About page for detail). Please note that the membership is only automatically recognised on submission if the submitting author is based at the member institution.

To facilitate rapid publication and to minimize administrative costs, *BMC Medicine* prefers online submission.

Files can be submitted as a batch, or one by one. The submission process can be interrupted at any time; when users return to the site, they can carry on where they left off.

See below for examples of word processor and graphics file formats that can be accepted for the main manuscript document by the online submission system. Additional files of any type, such as movies, animations, or original data files, can also be submitted as part of the manuscript.

During submission you will be asked to provide a cover letter. Use this to explain why your manuscript should be published in the journal, to elaborate on any issues relating to our editorial policies in the 'About BMC Medicine' page, and to declare any potential competing interests. You will be also asked to provide the contact details (including email addresses) of potential peer reviewers for your manuscript. These should be experts in their field, who will be able to provide an objective assessment of the manuscript. Any suggested peer reviewers should not have published with any of the authors of the manuscript within the past five years, should not be current collaborators, and should not be members of the same research institution. Suggested reviewers will be considered alongside potential reviewers recommended by the editorial team and/or by Editorial Board members or other advisers.

Assistance with the process of manuscript preparation and submission is available from BioMed Central customer support team.

We also provide a collection of links to useful tools and resources for scientific authors on our Useful Tools page.
File formats

The following word processor file formats are acceptable for the main manuscript document:

- Microsoft word (DOC, DOCX)
- Rich text format (RTF)
- Portable document format (PDF)
- TeX/LaTeX (use BioMed Central’s TeX template)
- DeVice Independent format (DVI)

TeX/LaTeX users: Please use BioMed Central’s TeX template and BibTeX stylefile if you use TeX format. During the TeX submission process, please submit your TeX file as the main manuscript file and your bib/bbl file as a dependent file. Please also convert your TeX file into a PDF and submit this PDF as an additional file with the name 'Reference PDF'. This PDF will be used by internal staff as a reference point to check the layout of the article as the author intended. Please also note that all figures must be coded at the end of the TeX file and not inline.

If you have used another template for your manuscript, or if you do not wish to use BibTeX, then please submit your manuscript as a DVI file. We do not recommend converting to RTF.

For all TeX submissions, all relevant editable source must be submitted during the submission process. Failing to submit these source files will cause unnecessary delays in the publication procedures.

Publishing Datasets

Through a special arrangement with LabArchives, LLC, authors submitting manuscripts to BMC Medicine can obtain a complimentary subscription to LabArchives with an allotment of 100MB of storage. LabArchives is an Electronic Laboratory Notebook which will enable scientists to share and publish data files in situ; you can then link your paper to these data. Data files linked to published articles are assigned digital object identifiers (DOIs) and will remain available in perpetuity. Use of LabArchives or similar data publishing services does not replace preexisting data deposition requirements, such as for nucleic acid sequences, protein sequences and atomic coordinates.

Instructions on assigning DOIs to datasets, so they can be permanently linked to publications, can be found on the LabArchives website. Use of LabArchives’ software has no influence on the editorial decision to accept or reject a manuscript.

Authors linking datasets to their publications should include an Availability of supporting data section in their manuscript and cite the dataset in their reference list.

Preparing main manuscript text

General guidelines of the journal’s style and language are given below.
Overview of manuscript sections for Research articles

Manuscripts for Research articles submitted to *BMC Medicine* should be divided into the following sections (in this order):

- Title page
- Abstract
- Keywords
- Background
- Methods
- Results and discussion
- Conclusions
- List of abbreviations used (if any)
- Competing interests
- Authors' contributions
- Authors' information
- Acknowledgements
- Endnotes
- References
- Illustrations and figures (if any)
- Tables and captions
- Preparing additional files

The Accession Numbers of any nucleic acid sequences, protein sequences or atomic coordinates cited in the manuscript should be provided, in square brackets and include the corresponding database name; for example, [EMBL:AB026295, EMBL:AC137000, DDBJ:AE000812, GenBank:U49845, PDB:1BFM, Swiss-Prot:Q96KQ7, PIR:S66116].

The databases for which we can provide direct links are: EMBL Nucleotide Sequence Database (EMBL), DNA Data Bank of Japan (DDBJ), GenBank at the NCBI (GenBank), Protein Data Bank (PDB), Protein Information Resource (PIR) and the Swiss-Prot Protein Database (Swiss-Prot).

You can download a template (Mac and Windows compatible; Microsoft Word 98/2000) for your article.

For reporting standards please see the information in the About section.

Title page

The title page should:

- provide the title of the article
- list the full names, institutional addresses and email addresses for all authors
- indicate the corresponding author
Please note:

- the title should include the study design, for example "A versus B in the treatment of C: a randomized controlled trial X is a risk factor for Y: a case control study"
- abbreviations within the title should be avoided

Abstract

The Abstract of the manuscript should not exceed 350 words and must be structured into separate sections: **Background**, the context and purpose of the study; **Methods**, how the study was performed and statistical tests used; **Results**, the main findings; **Conclusions**, brief summary and potential implications. Please minimize the use of abbreviations and do not cite references in the abstract. **Systematic review registration**, if your reports the results of a controlled health care intervention, please list your registry, along with the unique identifying number (e.g. **Systematic review registration**: PROSPERO CRD0123456789). Please note that there should be no space between the letters and numbers of your registration number.

Keywords

Three to ten keywords representing the main content of the article.

Background

The Background section should be written in a way that is accessible to researchers without specialist knowledge in that area and must clearly state - and, if helpful, illustrate - the background to the research and its aims. Reports of clinical research should, where appropriate, include a summary of a search of the literature to indicate why this study was necessary and what it aimed to contribute to the field. The section should end with a brief statement of what is being reported in the article.

Methods

The methods section should include the design of the study, the setting, the type of participants or materials involved, a clear description of all interventions and comparisons, and the type of analysis used, including a power calculation if appropriate. Generic drug names should generally be used. When proprietary brands are used in research, include the brand names in parentheses in the Methods section.

For studies involving human participants a statement detailing ethical approval and consent should be included in the methods section. For further details of the journal's editorial policies and ethical guidelines see 'About this journal'.

For further details of the journal's data-release policy, see the policy section in 'About this journal'.
Results and discussion

The Results and discussion may be combined into a single section or presented separately. Results of statistical analysis should include, where appropriate, relative and absolute risks or risk reductions, and confidence intervals. The Results and discussion sections may also be broken into subsections with short, informative headings.

Conclusions

This should state clearly the main conclusions of the research and give a clear explanation of their importance and relevance. Summary illustrations may be included.

List of abbreviations

If abbreviations are used in the text they should be defined in the text at first use, and a list of abbreviations can be provided, which should precede the competing interests and authors’ contributions.

Competing interests

A competing interest exists when your interpretation of data or presentation of information may be influenced by your personal or financial relationship with other people or organizations. Authors must disclose any financial competing interests; they should also reveal any non-financial competing interests that may cause them embarrassment were they to become public after the publication of the manuscript.

Authors are required to complete a declaration of competing interests. All competing interests that are declared will be listed at the end of published articles. Where an author gives no competing interests, the listing will read 'The author(s) declare that they have no competing interests'.

When completing your declaration, please consider the following questions:

Financial competing interests

- In the past five years have you received reimbursements, fees, funding, or salary from an organization that may in any way gain or lose financially from the publication of this manuscript, either now or in the future? Is such an organization financing this manuscript (including the article-processing charge)? If so, please specify.
- Do you hold any stocks or shares in an organization that may in any way gain or lose financially from the publication of this manuscript, either now or in the future? If so, please specify.
- Do you hold or are you currently applying for any patents relating to the content of the manuscript? Have you received reimbursements, fees, funding, or salary from an organization that holds or has applied for patents relating to the content of the manuscript? If so, please specify.
- Do you have any other financial competing interests? If so, please specify.
Non-financial competing interests

Are there any non-financial competing interests (political, personal, religious, ideological, academic, intellectual, commercial or any other) to declare in relation to this manuscript? If so, please specify.

If you are unsure as to whether you, or one your co-authors, has a competing interest please discuss it with the editorial office.

Authors’ contributions

In order to give appropriate credit to each author of a paper, the individual contributions of authors to the manuscript should be specified in this section.

According to ICMJE guidelines, An ‘author’ is generally considered to be someone who has made substantive intellectual contributions to a published study. To qualify as an author one should 1) have made substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data; 2) have been involved in drafting the manuscript or revising it critically for important intellectual content; 3) have given final approval of the version to be published; and 4) agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Each author should have participated sufficiently in the work to take public responsibility for appropriate portions of the content. Acquisition of funding, collection of data, or general supervision of the research group, alone, does not justify authorship.

We suggest the following kind of format (please use initials to refer to each author’s contribution): AB carried out the molecular genetic studies, participated in the sequence alignment and drafted the manuscript. JY carried out the immunoassays. MT participated in the sequence alignment. ES participated in the design of the study and performed the statistical analysis. FG conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

All contributors who do not meet the criteria for authorship should be listed in an acknowledgements section. Examples of those who might be acknowledged include a person who provided purely technical help, writing assistance, or a department chair who provided only general support.

Authors’ information

You may choose to use this section to include any relevant information about the author(s) that may aid the reader’s interpretation of the article, and understand the standpoint of the author(s). This may include details about the authors’ qualifications, current positions they hold at institutions or societies, or any other relevant background information. Please refer to authors using their initials. Note this section should not be used to describe any competing interests.
Acknowledgements

Please acknowledge anyone who contributed towards the article by making substantial contributions to conception, design, acquisition of data, or analysis and interpretation of data, or who was involved in drafting the manuscript or revising it critically for important intellectual content, but who does not meet the criteria for authorship. Please also include the source(s) of funding for each author, and for the manuscript preparation. Authors must describe the role of the funding body, if any, in design, in the collection, analysis, and interpretation of data; in the writing of the manuscript; and in the decision to submit the manuscript for publication. Please also acknowledge anyone who contributed materials essential for the study. If a language editor has made significant revision of the manuscript, we recommend that you acknowledge the editor by name, where possible.

The role of a scientific (medical) writer must be included in the acknowledgements section, including their source(s) of funding. We suggest wording such as 'We thank Jane Doe who provided medical writing services on behalf of XYZ Pharmaceuticals Ltd.'

Authors should obtain permission to acknowledge from all those mentioned in the Acknowledgements section.

Endnotes

Endnotes should be designated within the text using a superscript lowercase letter and all notes (along with their corresponding letter) should be included in the Endnotes section. Please format this section in a paragraph rather than a list.

References

All references, including URLs, must be numbered consecutively, in square brackets, in the order in which they are cited in the text, followed by any in tables or legends. Each reference must have an individual reference number. If automatic numbering systems are used, the reference numbers must be finalized and the bibliography must be fully formatted before submission.

Only articles, datasets, clinical trial registration records and abstracts that have been published or are in press, or are available through public e-print/preprint servers, may be cited; unpublished abstracts, unpublished data and personal communications should not be included in the reference list, but may be included in the text and referred to as "unpublished observations" or "personal communications" giving the names of the involved researchers. Obtaining permission to quote personal communications and unpublished data from the cited colleagues is the responsibility of the author. Footnotes are not allowed, but endnotes are permitted. Journal abbreviations follow Index Medicus/MEDLINE. Citations in the reference list should include all named authors, up to the first 30 before adding 'et al.'...

Any in press articles cited within the references and necessary for the reviewers' assessment of the manuscript should be made available if requested by the editorial office.

Style files are available for use with popular bibliographic management software:
Examples of the *BMC Medicine* reference style are shown below. Please ensure that the reference style is followed precisely; if the references are not in the correct style they may have to be retyped and carefully proofread.

All web links and URLs, including links to the authors' own websites, should be given a reference number and included in the reference list rather than within the text of the manuscript. They should be provided in full, including both the title of the site and the URL, in the following format: The Mouse Tumor Biology Database [http://tumor.informatics.jax.org/mtbwi/index.do]. If an author or group of authors can clearly be associated with a web link, such as for weblogs, then they should be included in the reference.

Examples of the *BMC Medicine* reference style

Article within a journal

Article within a journal supplement

In press article
Kharitonov SA, Barnes PJ: **Clinical aspects of exhaled nitric oxide.** *Eur Respir J*, in press.

Published abstract

Article within conference proceedings

Book chapter, or article within a book
Whole issue of journal

Whole conference proceedings

Complete book

Monograph or book in a series

Book with institutional author

PhD thesis

Link / URL
The Mouse Tumor Biology Database [http://tumor.informatics.jax.org/mtbwi/index.do]

Link / URL with author(s)

Dataset with persistent identifier
Zheng, L-Y; Guo, X-S; He, B; Sun, L-J; Peng, Y; Dong, S-S; Liu, T-F; Jiang, S; Ramachandran, S; Liu, C-M; Jing, H-C (2011): *Genome data from sweet and grain sorghum (Sorghum bicolor)*. *GigaScience*. http://dx.doi.org/10.5524/100012.

Clinical trial registration record with persistent identifier

Preparing illustrations and figures

Illustrations should be provided as separate files, not embedded in the text file. Each figure should include a single illustration and should fit on a single page in portrait format. If a figure consists of separate parts, it is important that a single composite illustration file be submitted which contains all parts of the figure. There is no charge for the use of color figures.
Please read our figure preparation guidelines for detailed instructions on maximising the quality of your figures.

Formats

The following file formats can be accepted:

- PDF (preferred format for diagrams)
- DOCX/DOC (single page only)
- PPTX/PPT (single slide only)
- EPS
- PNG (preferred format for photos or images)
- TIFF
- JPEG
- BMP

Figure legends

The legends should be included in the main manuscript text file at the end of the document, rather than being a part of the figure file. For each figure, the following information should be provided: Figure number (in sequence, using Arabic numerals - i.e. Figure 1, 2, 3 etc); short title of figure (maximum 15 words); detailed legend, up to 300 words.

Please note that it is the responsibility of the author(s) to obtain permission from the copyright holder to reproduce figures or tables that have previously been published elsewhere.

Preparing a personal cover page

If you wish to do so, you may submit an image which, in the event of publication, will be used to create a cover page for the PDF version of your article. The cover page will also display the journal logo, article title and citation details. The image may either be a figure from your manuscript or another relevant image. You must have permission from the copyright to reproduce the image. Images that do not meet our requirements will not be used.

Images must be 300dpi and 155mm square (1831 x 1831 pixels for a raster image).

Allowable formats - EPS, PDF (for line drawings), PNG, TIFF (for photographs and screen dumps), JPEG, BMP, DOC, PPT, CDX, TGF (ISIS/Draw).

Preparing tables

Each table should be numbered and cited in sequence using Arabic numerals (i.e. Table 1, 2, 3 etc.). Tables should also have a title (above the table) that summarizes the whole table; it should be no longer than 15 words. Detailed legends may then follow, but they should be concise. Tables should always be cited in text in consecutive numerical order.
Smaller tables considered to be integral to the manuscript can be pasted into the end of the document text file, in A4 portrait or landscape format. These will be typeset and displayed in the final published form of the article. Such tables should be formatted using the 'Table object' in a word processing program to ensure that columns of data are kept aligned when the file is sent electronically for review; this will not always be the case if columns are generated by simply using tabs to separate text. Columns and rows of data should be made visibly distinct by ensuring that the borders of each cell display as black lines. Commas should not be used to indicate numerical values. Color and shading may not be used; parts of the table can be highlighted using symbols or bold text, the meaning of which should be explained in a table legend. Tables should not be embedded as figures or spreadsheet files.

Larger datasets or tables too wide for a portrait page can be uploaded separately as additional files. Additional files will not be displayed in the final, laid-out PDF of the article, but a link will be provided to the files as supplied by the author.

Tabular data provided as additional files can be uploaded as an Excel spreadsheet (.xls) or comma separated values (.csv). As with all files, please use the standard file extensions.

Preparing additional files

Although *BMC Medicine* does not restrict the length and quantity of data included in an article, we encourage authors to provide datasets, tables, movies, or other information as additional files.

Please note: All Additional files **will be published** along with the article. Do not include files such as patient consent forms, certificates of language editing, or revised versions of the main manuscript document with tracked changes. Such files should be sent by email to bmcmedicineditorial@biomedcentral.com, quoting the Manuscript ID number.

Results that would otherwise be indicated as "data not shown" can and should be included as additional files. Since many weblinks and URLs rapidly become broken, *BMC Medicine* requires that supporting data are included as additional files, or deposited in a recognized repository. Please do not link to data on a personal/departmental website. The maximum file size for additional files is 20 MB each, and files will be virus-scanned on submission.

Additional files can be in any format, and will be downloadable from the final published article as supplied by the author. We recommend CSV rather than PDF for tabular data.

Certain supported files formats are recognized and can be displayed to the user in the browser. These include most movie formats (for users with the Quicktime plugin), mini-websites prepared according to our guidelines, chemical structure files (MOL, PDB), geographic data files (KML).

If additional material is provided, please list the following information in a separate section of the manuscript text:

- File name (e.g. Additional file 1)
• File format including the correct file extension for example .pdf, .xls, .txt, .pptx (including name and a URL of an appropriate viewer if format is unusual)
• Title of data
• Description of data

Additional files should be named "Additional file 1" and so on and should be referenced explicitly by file name within the body of the article, e.g. 'An additional movie file shows this in more detail [see Additional file 1]'.

Additional file formats

Ideally, file formats for additional files should not be platform-specific, and should be viewable using free or widely available tools. The following are examples of suitable formats.

• Additional documentation
 o PDF (Adobe Acrobat)
• Animations
 o SWF (Shockwave Flash)
• Movies
 o MP4 (MPEG 4)
 o MOV (Quicktime)
• Tabular data
 o XLS, XLSX (Excel Spreadsheet)
 o CSV (Comma separated values)

As with figure files, files should be given the standard file extensions.

Mini-websites

Small self-contained websites can be submitted as additional files, in such a way that they will be browsable from within the full text HTML version of the article. In order to do this, please follow these instructions:

1. Create a folder containing a starting file called index.html (or index.htm) in the root.
2. Put all files necessary for viewing the mini-website within the folder, or sub-folders.
3. Ensure that all links are relative (ie "images/picture.jpg" rather than "/images/picture.jpg" or "http://yourdomain.net/images/picture.jpg" or "C:\Documents and Settings\username\My Documents\mini-website\images\picture.jpg") and no link is longer than 255 characters.
4. Access the index.html file and browse around the mini-website, to ensure that the most commonly used browsers (Internet Explorer and Firefox) are able to view all parts of the mini-website without problems, it is ideal to check this on a different machine.
5. Compress the folder into a ZIP, check the file size is under 20 MB, ensure that index.html is in the root of the ZIP, and that the file has .zip extension, then submit as an additional file with your article.
Style and language

General

Currently, *BMC Medicine* can only accept manuscripts written in English. Spelling should be US English or British English, but not a mixture.

There is no explicit limit on the length of articles submitted, but authors are encouraged to be concise. There is also no restriction on the number of figures, tables or additional files that can be included with each article online. Figures and tables should be numbered in the order in which they are referred to in the text. Authors should include all relevant supporting data with each article.

Language editing

For authors who wish to have the language in their manuscript edited by a native-English speaker with scientific expertise, BioMed Central recommends Edanz. BioMed Central has arranged a 10% discount to the fee charged to BioMed Central authors by Edanz. Use of an editing service is neither a requirement nor a guarantee of acceptance for publication. Please contact Edanz directly to make arrangements for editing, and for pricing and payment details.

Help and advice on scientific writing

The abstract is one of the most important parts of a manuscript. For guidance, please visit our page on Writing titles and abstracts for scientific articles.

Tim Albert has produced for BioMed Central a list of tips for writing a scientific manuscript. American Scientist also provides a list of resources for science writing. For more detailed guidance on preparing a manuscript and writing in English, please visit the BioMed Central author academy.

Abbreviations

Abbreviations should be used as sparingly as possible. They should be defined when first used and a list of abbreviations can be provided following the main manuscript text.

Typography

- Please use double line spacing.
- Type the text unjustified, without hyphenating words at line breaks.
- Use hard returns only to end headings and paragraphs, not to rearrange lines.
- Capitalize only the first word, and proper nouns, in the title.
- All pages should be numbered.
- Use the *BMC Medicine* reference format.
- Footnotes are not allowed, but endnotes are permitted.
- Please do not format the text in multiple columns.
• Greek and other special characters may be included. If you are unable to reproduce a particular special character, please type out the name of the symbol in full. Please ensure that all special characters used are embedded in the text, otherwise they will be lost during conversion to PDF.

Units

SI units should be used throughout (liter and molar are permitted, however).