The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
What Advertisers Want

A Hedonic Analysis of Advertising Rates in South African Consumer Magazines

by

Nicolas Sjoerd Pietersma (PTRAN009)

Minor dissertation submitted in partial fulfillment of the requirements for the award of the
Degree of Master of Philosophy (Politics, Philosophy and Economics)

School of Economics
University of Cape Town
2005

Abstract
This article explores the role of circulation, readership and reader demographics in the
determination of advertising rates in South African consumer magazines. The study uses
panel data collected between 2000 and 2003 to quantify the relationships by assigning
implicit prices to various magazine characteristics. Furthermore, a synopsis of the
structure of the magazine industry in South Africa is developed using cluster-analytic
techniques. The analysis lends some statistical credence to some widely held beliefs in
the publishing industry; namely that advertisers value the young, the educated and the
affluent as audiences. The role of race and gender in the determination of magazine
advertising rates is also explored.
Declaration

This work has not been previously submitted in whole or in part, for the award of any degree. It is my own work. Each significant contribution to, and quotation in this dissertation from the work or works of other people has been attributed and has been cited and referenced.

Signature:

Date: 13 September 2005.
Contents

1. Introduction .. 1
2. The Determination of Advertising Rates and Implicit Prices 3
4. Literature Review ... 11
5. Sample and Variables ... 16
6. Regression Methodology .. 21
7. Regression Results ... 25
8. Discussion of Results ... 28
9. Race, Language and Gender 35
10. Conclusion .. 38
11. Appendix .. 39
12. References .. 48
Tables
1. Variables Used in the Empirical Analysis 18
2. Regression Results: Pooled Ordinary Least Squares and Group Means 25
3. Regression Results: 2000 to 2003 Cross Sections 26
4. Regression results: Random Effects Models 27
5. Implied Percentage Effects on Advertising Rates 32
6. Implied Percentage Effects from Parsimonious Estimator 32

Figures
1. Cluster Analysis/ Tree Diagram for 44 Cases 8
2. Scatter gram of Cost Per Thousand and Circulation 14
3. Circulation Against Advertising Rates 20
4. Surface Plot of Advertising Rates, Circulation And Income 29
5. Surface Plot of Advertising Rates, Circulation And Income: DWLS 30

Appendices
1. List of Magazines Included In The Sample 39
2. Technical Details of the Cluster Analysis 42
3. Correlation Matrix of Dependent Variables 45
4. Analysis of Panel 46
5. Descriptive Statistics of Data 47

The author wishes to thank Corne Van Walbeek, Evan Bletcher and Izak Odendaal for their helpful comments on the early drafts of this paper. Further, the author wishes to thank Johannes Fedderke, Nathaniel Beck and Martin Koschat for their time and their correspondence, between them answering a great many tiresome questions about matters discussed in this paper. The usual disclaimer applies - any omissions or inaccuracies in this paper should be attributed to the author and the author alone.
Introduction

The magazine publishing industry provides an engaging subject for the curious economist. Magazine publishers sell a peculiar product; one which generates two separate, but related, streams of revenue – advertising and sales. The magazine publisher, in effect, sells their one set of customers (readers) to their other set of customers (advertisers). As a result, the publisher’s pricing decisions take on an additional level of complexity. Consider the following scenario; a hypothetical increase in the cover price of a magazine results in a net increase in sales revenue. Ordinarily this would be a desirable state of affairs for the firm. But, if the law of demand holds, circulation will fall. And this, in turn, may result in a decrease in advertising revenue that outweighs any increases in sales revenue. Considerations are introduced here that are absent from the analysis of most consumer goods. Magazines would be poor candidates for the role of 'textbook widget'. In order to understand the driving forces behind the magazine publishing industry an important question needs to be addressed: What determines the value of a page of advertising?

This, for the most part, is the question this paper will try to answer. Advertising space is not a homogeneous commodity. Its value is determined by not only the size of the publication’s readership but also by the characteristics of its readership. The folk wisdom of the industry is that advertisers value publications with young, affluent and educated readers – a set of beliefs that has been repeatedly confirmed in academic and industry studies (Koschat and Putsis, 2002; Thompson, 1989). Studies focusing on the relationship between circulation and advertising rates generally suggest that the advertising rate increases as the circulation increases, but, at a decreasing rate (Hall, 1976; Krishnan and Soley, 1987, Kalita and Docoff, 1999). The results presented in this paper come to similar conclusions for the South African magazine publishing industry over our sample period 1999 to 2003.

A page of advertising in a consumer magazine can be viewed as a bundle of goods for which no explicit market exists. One cannot directly buy the attention of 100 000 affluent, educated males between the age of 32 and 45. Instead, one buys a page of advertising in a business magazine. The extent to which you get what you are looking for, as an advertiser, depends on how close your match is. By observing the price of a page of advertising space (advertising rates), and the quantities of various characteristics associated with each observation, we can assign an implicit price, also known as a shadow price, to these pseudo-traded 'goods'. This form of analysis, known as hedonic pricing is an established pricing technique and is frequently used to evaluate markets characterized by high degrees of product differentiation – such as real estate, motor vehicles and consumer electronics (Rosen, 1974).1

While the main objective of this research is to attempt to determine the relationship between the price of advertising and the characteristics of readers, it is also interesting to pay some attention to issues of broader social relevance. For example, do black audiences trade at a discount? Does the behaviour of advertisers suggest that their decisions are motivated by anything other than the desire to maximize profits?

1'Hedonic' analysis may be used to refer to the broad set of methodologies that are used to evaluate product characteristics. In practice, the term is frequently used without direct reference to ‘utility bearing attributes’ (as the name might imply) (Rosen, 1974). The term 'conjoint' analysis avoids the misplaced reference to utility bearing attributes, but will not be used as it is somewhat arcane.
In August 2000 the South African Human Rights Commission published a document entitled "Faultlines: Inquiry Into Racism In The Media" - the product of a protracted and controversial investigation. The scope of the investigation was extensive and inevitably covered polemical territory that pitted the ideals of journalistic independence against the transformation objectives of the post-apartheid South African government. Among the issues given some consideration was the over-representation of whites in terms of media ownership and in senior editorial positions, as well as the asserted failure of the media establishment to give a voice to the interests and world view of black South Africans. It was also argued that the media's treatment of corruption and crime perpetuates racial stereotypes and is, to some extent, informed by sub-textual assumptions of black deficiency.

While most of these debates fall outside of the scope of this paper, one particular issue was raised that can be addressed by the research presented here - that of the inability of black media outlets to raise advertising revenues commensurate with the size of their audiences - a phenomenon attributed to the racist assumptions of advertisers and advertising agencies. In brief it was suggested in the report that "...advertising agencies operate on the basis of historic links, jobs-for-pals, ignorance of the market or out of sheer prejudice." (2000). Phil Molefe, former executive editor of the SABC, noted that the media industry mirrors the belief of advertisers that white audiences have the strongest spending power in the country. The neglect of black audiences by advertisers is said to be prejudicial to black media outlets and has the further effect of undermining the authority of black editors.

Although the issue issue of race related differences in advertising revenues was raised in the SAHRC report, no recommendations were ultimately made and no findings reported. One gets the distinct impression that the issue is still something of a moot point. While it can easily be demonstrated that publications with black readers do indeed battle to generate the kind of advertising revenues that similarly sized publications with white readers get, the findings presented in this paper suggests that the proportion of black readers, separate from income and educational differentials, is not a negative and statistically significant predictor of the discrepancies.
The Determination of Advertising Rates and Implicit Prices

Demand for advertising, we assume, is derived from the profit maximizing goals of firms. For the sake of simplicity, we can assume that firms advertise in order to enhance sales. The rational firm would advertise until such a time as the advertising adds as much to the present value of total revenue as it does to the present value of total costs (including costs incurred as a direct result of supplying additional quantities of advertised goods). Assuming that the marginal effectiveness of advertising is eventually decreasing, then there must be some optimal level of advertising for the individual business to purchase.

This tidy sounding decision rule masks a considerable degree of uncertainty in the real world. In reality the effectiveness of any given advertising campaign is hard to predict. Firms are more likely to use a set of heuristics to guide their advertising expenditure decisions than some explicit optimization procedure. No firm knows with certainty whether the advertisement that it commissions will be successful, and even if it is, it is hard to gauge the value of things like 'brand awareness' in terms of long-run sales. What the advertiser does know with some certainty is that some audiences are more valuable than others. The reasons may be straightforward. For example, wealthy households have more disposable income and may be more likely to purchase an advertised product. Larger audiences are better than smaller ones because there are more potential buyers. But there are also more indirect explanations. For example, young adults may not be wealthy but they are trend setters. Similarly, teenagers and the middle-aged may be more comfortable using a product that is seen to be 'for' young adults than one which is seen to be for their own age groups. All these considerations will determine the advertiser's willingness to pay for advertising space in a given magazine. Following this reasoning we can argue that that the price of advertising space is a function of the vector of characteristics that defines a magazine and that both buyers and sellers of advertising space take this information into account when making their decisions.

The decentralised decisions of many buyers and sellers are expected to convey information about the value of underlying characteristics through the price signaling system (Rosen 1974; Lancaster 1966). Arguably, a magazine that cannot find buyers for its advertising space is considered overpriced (given the 'bundle' of readers they have on offer) and will find themselves inclined to lower their price until such a time as they are competitive. The effects of the downward pressure on the price of their advertising space can be viewed not only as a correction in the rates of one magazine title but also as an incremental adjustment in the implicit price of the attributes that characterize that particular magazine.

Consider the following example: a hypothetical decrease in demand for advertising in Your Family, despite healthy circulation, may tell us something about how advertiser preferences are changing with regards to English speaking mothers with a particular educational and socioeconomic profile. The intuitive expectation is that the decrease in

2 One could also argue that advertising enhances sales revenues by increasing the willingness of consumers to buy a product at a higher price. This may be particularly true of status goods.

3 Admittedly, some advertisers fit the model of calculating profit maximizer quite poorly. For example, despite the fact that South African consumers usually have no choice but to buy their electricity from their local municipality, Eskom is one of the ten largest advertising spenders (Ad Focus, 2004). The only explanation is that advertising, in this case, is part of a broader public relations exercise, or, that it is irrational.
demand for this bundle of underlying characteristics tends to result in a decrease in their collective price, and by extension, their individual shadow prices. Because this adjustment in shadow price takes place for a whole clutch of characteristics simultaneously and in the same direction, it would be unlikely that we could say that this event has caused all shadow prices to necessarily move in the 'right' direction, in other words, towards the 'true' market valuation of any individual attribute. This should not, however, be taken to imply that shadow prices are individually unresponsive to market forces.

If a characteristic is fundamentally undervalued or overvalued at any given time, this would place a dispersed corrective pressure on the price of all actively traded goods that bear said characteristic. In our study this relates to advertising in the cross-section of consumer magazines, but no doubt such effects are felt in broader substitutes such as radio and television. To illustrate; if advertiser preferences in audiences shifted away from singles and towards families (ceteris paribus), this would result in an increase in demand for advertising in titles such as Joy, Living and Loving, You, Garden and Home, Woman's Value etcetera. There would also be a decrease in demand for advertising in titles such as Elle, Men's Health, Sports Illustrated and Cosmopolitan. The net effect of the pressure on the price of all of these individual readership 'bundles' would be an adjustment in the underlying price of magazine advertising to a family-orientated audiences.

Implicit prices play the same coordinating role in the markets for characteristics as explicit prices play in a market for goods. Information is conveyed from advertisers to publishers about the desirability of different types of audiences through demand conditions. Information is conveyed from publishers to advertisers about the costs and availability of advertising to some kind of an audience through the supply side. Thus far our discussion has focused on advertiser demand, but the question of supply also deserves some attention.

What factors determine whether or not a publisher is willing and able to change the amount of advertising that they supply? While it is certainly the case that 'cost conditions' matter (with regard to things like the price of paper, staff and printing) one could argue that the 'supply' of advertising has more to do with an editor's ability to get people to read his magazine. It needs to be made clear that the supply of advertising is not analogous to how many advertisements can be printed.

If we assume that the quantity of advertising supplied can be defined as the number of pages of advertising sold, multiplied by the number of readers, then there are only two ways for a magazine to increase advertising output. The first is to sell more pages of ads and the second is to increase circulation (or readership). Selling more pages of ads will often be associated with an increase in the number of editorial pages, as most magazines target some advertising to editorial ratio⁴. Costs are increased as printing expenditure

⁴ Some magazines may not target the advertising to editorial ratio explicitly, although it is considered best practice – and for good reason. Research by Ha and Litman (1997) suggests that 'advertising clutter' (defined as a quantity of advertising that exceeds the average proportion of advertising in a medium) can have a detrimental effect on sales and to a lesser extent advertising revenue. An audience's tolerance for advertising is also known to differ across genre and across individuals (Ha and Litman, 1996). Accepted wisdom has it that the 'golden ratio' is higher in women's magazines than news magazines (Koschat and Putts, 2000).
increases and as the magazine is forced to source more editorial material; implying the usual relationship between costs and output. More importantly though, there is a logical limit to how lengthy a magazine can get. Once this limit is reached, the publisher can only sell more advertising by increasing circulation. But how does the publisher do this? He can offer trial subscriptions, lower the cover price, or attempt to improve the marketability of editorial content, or even advertise the magazine title elsewhere. None of these approaches offers a deterministic solution.

To complicate matters further, editors of upmarket magazines may find themselves in a bind should they attempt to dramatically increase circulation. The preferred editorial content of the mass-reader does not make for a very impressive readership profile from the point of view of advertisers (Thompson, 1989). Should the editor be successful in increasing readership, whether through pricing or content adjustments, she runs the risk of diluting her advertiser critical audience. This point can be illustrated anecdotally by the case of *House and Garden* between 1983 and 1985 (US edition). During this period circulation was scaled back from 1 000 000 to 500 000 copies, resulting in a significant increase in the average household income of the readership. The final result was that advertising revenues increased by some 75% (Krishnan and Soley, 1987).

In the short run the magazine publisher takes the size of his audience, and hence supply of advertising, as a largely given. If this is the case any short run changes in advertising rates can be attributed to demand fluctuations. In the long run we may argue that sustained “high” prices for advertising to a particular type of audience will result in a proliferation of new titles in genre’s that serve this demographic, resulting in increased competitiveness within the genre and downward pressure on price.

5 Studies based on cross sectional regressions of magazine’s sales against their cover price provide very nice ‘evidence’ that the law of demand holds for magazines (Krishnan and Soley, 1987). One should be careful about drawing causal conclusions from this kind of analysis. Mass market magazines (*You, Bona, Huisgenoot*) achieve the circulation that they do not only because the price is right but also because the editorial content appeals to mass market sensibilities and tastes. It is not clear that South African business magazines, fishing magazines and gun-enthusiast magazines could achieve similar levels of readership even if they were given away. One should also consider the supply side – mass market magazines may simply have better rates because of economies of scale.
Market Structure of the Magazine Publishing Industry in South Africa

Readers familiar with the South African magazine publishing industry may be skeptical with some of these assertions. After all, it may sound like this is telling a 'just so' story about how the price of advertising space is determined. To a certain extent, this skepticism is warranted and deserves to be addressed. The four largest South African magazine publishing houses (Media24, Johnnic Communications, Caxton and Ramsay Son and Parker) control well over 80% of the market for consumer magazines – suggesting a significant degree of market power. Whether or not this tells us anything depends on whether strategic pricing and content decisions are made at the group level or the magazine level. If rate setting decisions are made at the level of the magazine (Heat) rather than the publisher (Media24), one may be tempted to argue that there are a large number of pseudo-firms in the market and that the market is likely to be fairly competitive. Although this line of thought reaches a desirable conclusion (that the market for advertising in magazines is competitive and that advertising rates are likely to be market determined), it is not a particularly strong argument. Each major publishing house carries a diversified portfolio of titles and can place advertising to suit just about any demographic requirements. The result is that the same few publishing houses end up fighting for market share on multiple battlefronts.

At the same time, we note that genre overlap between titles owned by a single publisher is relatively rare. While there is some competition between magazines owned by a single firm, this is comparatively low. If we adjust our focus to the level of the genre (i.e. car magazines, home décor magazines), we find a similar scenario to the industry as a whole – a small number of publishers account for the majority of the market. Regardless of what level we think pricing decisions are made at we come to the same conclusion; this is a highly concentrated industry. However, by focusing on concentration (at any level) as the sole determinant of market power one can easily underestimate the competitiveness of the South African magazine publishing industry. One needs to take the following two factors into account.

Firstly, it is unlikely that any publisher can corner the advertising market over a particular demographic profile, especially if one considers 'near substitutes'. Besides magazines the advertiser can make use of newspapers, freesheets, radio, television, cinema, Internet, and outdoor advertising, not to mention sponsorship of events, promotional goods and activities, product placement, 'guerrilla marketing', 'viral marketing' and a variety of other so-called 'below the line' advertising activities. Whatever your desired audience, there will always be multiple entry points. When we turn our attention to the econometric relationship between audience characteristics and the price of advertising space this will be an important thing to bear in mind.

6 The impression the author gained while trying to source data from South African publishing houses is that they are characterized by quite varied degrees of administrative centralization.

7 Media24 own both Men's Health and FHM. Whether these magazines belong in the same category depends on who you speak to. Whether they can serve as substitutes for advertising depends largely on the nature of the product being advertised and on how tightly focused the prospective advertiser's marketing campaign is.

8 Ever since formal advertising of tobacco has been effectively banned in South Africa, brands such as Lucky Strike and Camel have set the trend in 'below the line' methods with heavily branded parties. Lucky Strike have exploited the power of 'word of mouth' by surprising revelers with high profile 'mystery' musicians.
The value of a characteristic in consumer magazines will be closely connected to the value of the corresponding characteristic in other mediums (radio, TV etc.). The 'market for attributes' is arguably not bound by any one medium, and as such its competitiveness is vastly underestimated if one focuses only on magazines.

The second point is that the magazine publishing industry has become increasingly contestable in the era of cheap processing power and desktop publishing (Sumner, 2001). Arguably this has been the major factor fueling a multiplication of titles available in South Africa, as it has in the US and elsewhere. Small magazines have shown themselves to have viable business models, especially when they service a niche audience and/or syndicate with foreign magazine titles. Seeing as magazines are able to outsource printing, this leaves relatively few barriers to entry. Theoretically we may argue that if major publishers use their predominance to sustain high advertising rates, they will both trigger new entrants into their markets and encourage the growth of existing small publications. By this reasoning the ease of entry into magazine publishing is likely to generate greater competitiveness, even when industry concentration ratios are relatively high.

Naturally, the market for advertising space in magazines is neither perfectly competitive nor typically oligopolistic. The reality is somewhere in between these two extremes. The fact that the industry is characterized by relatively low barriers to entry and that it sells a naturally differentiated product makes it a good candidate for the broad category of monopolistic competition (Thompson, 1989). Unfortunately for the economic theorist, few industries fit any market structure idealization perfectly. The purpose of this discussion is to argue the case that the market determines the price of advertising space and by extension of the implicit price of audience characteristics. We replace our concept of a 'price taker' with that of a 'price-schedule-taker' (Palmquist, 1984). The firm wishing to advertise can influence the marginal price paid for a page of advertising by varying the quantities of some characteristic purchased, but it cannot influence the overall price schedule.

That, at least is the theory. In reality the price schedule is not smooth and continuous, but rather 'lumpy'. Advertisers with a certain audience in mind will have to find the 'closest fit' when they choose a publication to advertise in. Magazines differ by audience character and content and as such can never be perfect substitutes. But, the competitive distance between magazines is not beyond quantitative analysis. It is intuitively clear that *Financial Mail* and *Finance Week* compete directly with one another, and that *Golf Digest* may reach a similar audience albeit at a greater distance. But is there any way measure and use this concept of competitive distance? Is there a shorthand way of capturing the degree of substitutability between any two magazines? While these are issues that are no-doubt usually dealt with qualitatively in the boardroom, cluster analytic techniques can provide useful quantitative insights into these questions as well as a handy snapshot of the South African magazine publishing industry.

Using statistical information on age, income, education and gender we are able to

9 The theory of contestability holds that the threat of competition by potential entrants can discipline firms to price their product such that they earn only normal returns, regardless of the state of concentration in the industry (Baumol, 1982).
10 For more information see the Statistica Electronic Manuel (2004) or
calculate Euclidean distance measures between any two titles in four dimensional space (the technical details are included in Appendix 2). These distance measures can in turn be used to categorize magazine titles into various clusters and sub-clusters on the basis of differences in audience profiles, which have been reduced to a single quantifiable distance measure. Similarly, the distance measure can tell us how different any two titles are in terms of their audience profile, and hence the degree of substitutability between any two titles from an advertiser's perspective. A kind of family tree, or dendogram, of magazines (based on age, income, gender and education) is presented below. Some titles have been excluded in order to make the diagram slightly more tractable.

Figure 1

Cluster Analysis/ Tree Diagram for 44 Cases

Method: Weighted Pair-Group Average

Distance Measure: Unweighted Euclidean

11 We are assuming away any thematic link between the magazine and the advert. Obviously, a golf equipment retailer would want to advertise in a golf-enthusiast magazine, but more generic advertisements (for cell-phone packages for example) could be placed in any magazine with readers of an appropriate socioeconomic and demographic profile.
This procedure is remarkable in that it generates a convincing visual synopsis of the market using thematically blind algorithmic procedures.

A few words on the interpretation of this snapshot of the market structure are appropriate. At a linkage distance\(^{12}\) of zero all magazine titles fall into their own cluster. As the linkage distance is increased to about 0.1 or 0.2 we find that 'obvious' substitutes are joined together to form the first few dyadic clusters (Finance Week and Financial Mail, Bona and Drum, Compah Golfer and Golf Digest, Cosmopolitan and Marie Claire, Rooi Rose and Sarie etc.). At a slightly higher linkage distance we find super-clusters of magazine titles that serve more broadly similar audiences. A linkage distance of about 0.3 gives us clusters such as the one with Fair Lady, S.A Food and Home, Living and Loving, Joy, Rooi Rose and Sarie. A linkage distance of 0.4 gives us Bike Magazine, Car, Man Magnum and Topcar. As the linkage distance increases we find that the clusters begin to get larger in members and fewer in number, and that the similarities across the audiences become more tenuous. At the other extreme we see that at a linkage distance of about one all magazines fall into a single mega-cluster.

The tree diagram is useful for understanding how an advertiser with a specific type of audience in mind could go about evaluating potential substitutes. Assume an advertiser believes the audience offered by Conde Nast House and Garden best fits the profile of her target market. It is likely that she will also consider the price of advertising in Gardening S.A as it is the closest substitute. Looking further afield, she may consider the advertising rate of magazines such as House and Leisure or Fineste, which fall into the same broader cluster as her first choice. This process also gives us an insight into the specific nature of the competitive pressures that a magazine may face. Assuming language is not an issue to advertisers, Farmer's Weekly competes closely with Landbouweekblad, but the nearest substitutes after that are 'long shots', so to speak. They have a kind of duopoly within a relatively sheltered corner of the market. It is only at a comparatively high linkage distance of about 0.5 that these agricultural magazines join the same cluster as Financial Mail, Getaway and Golf Digest.

Cluster analysis is not an exact science, but following a given algorithm with a given dataset will always yield a predictable and deterministic result. There are a variety of different ways of defining 'distance', as well as a number of different decision rules that can be used to decide when a new cluster should be formed (See Appendix 2 for discussion). The technique used in the application of cluster analysis and the construction of tree diagrams such as the one presented above will have a significant impact on the outcome of the analysis. Similarly, cluster analysis is dependent on what information is used to calculate the distance measure. For example, in the tree diagram presented above, the nearest relative to Cosmopolitan is the Marie Claire, followed by the Elle. If age is excluded, and the distance measure is based only on income, education and gender, then Cosmopolitan is most closely related to Elle, and more distantly related to Marie Claire. There is no saying which one is "right" but most would agree that Cosmopolitan and Marie Claire are in more direct competition. On the other hand the exclusion of age from the distance measure results in a more 'sensible' positioning of the Bona, Drum, True Love trio with regards to the super-cluster they fall under. (See Appendix 2). Similarly, it may seem counter-intuitive that Man Magnum is closer to Car than Drive or Topcar, but the analysis is

12 The predefined Euclidean distance between two clusters at which point the clusters are joined into one larger cluster.
based purely on demographic and socioeconomic variables, not the subject matter of magazine. There is no guarantee that all examples of a given genre will necessarily clump together.

Despite the 'imperfections' of cluster analysis, it is nonetheless very useful to be able to use a quantitative approach to what is usually understood to be a qualitative problem. These approaches could, for example, be used to generate a measure of the competitive pressure a magazine faces.

The regression analysis presented in this paper makes no attempt to estimate the underlying demand and supply equations. We do not know with certainty the exact nature of the generative mechanisms that determine the price of advertising space because we focus only on the reduced form estimation. In doing so, this paper is not out of line with the majority of hedonic pricing models used in the property evaluation industry, environmental impact studies and product feature analysis (Palmquist, 1984; Triplett, 1967; Chay and Greenstone, 1998). If our assumption that shadow prices are determined competitively is believable, then this makes the task of interpreting regression coefficients a little easier. All prices, including implicit prices, are determined by both scarcity and desirability factors.

By the reasoning of Koschat and Putsis (2000), the only researchers 14 who have used hedonic methods in a similar manner to this study, the supply of readers in a demographic segment can be assumed to fixed in the short run. Furthermore, they argue that the number of pages of advertising available in a magazine is fixed by publisher mandate. As such they argue that "the imputed price of an attribute can be interpreted as solely reflecting consumer demand for that attribute". This sounds intuitively appealing, but without a study of the underlying demand and supply equations it falls short of a scientifically defensible statement.

13 For example, a Herfindahl measure based on the market share of magazines within a predefined Euclidean distance of the magazine of interest. This exercise is not covered in this paper.
14 To the knowledge of the author.
Literature Review

By the standards of a developing country, South Africa has an advanced media-intelligence gathering industry. The 'Audit Bureau of Circulation' (ABC) report provides information on circulation, subscriptions and cover price. AC Nielson, a global company with a strong South African operation, keeps track of advertising expenditure on various product categories and for various media outlets. Using the 'All Media and Products Survey' (AMPS) one can explore not only routine subject matter concerning readership characteristics such as income and education, but even questions of a downright trivial nature (for example, the prevalence of cat-ownership among readers of motor enthusiast magazines). Given the wealth of socioeconomic data available, it is surprising that so little has been written about the economics of the media and advertising in South Africa. In fact, the use of multiple regression hedonic pricing techniques in the study of advertising is surprisingly uncommon.

A paper entitled "Who Wants You When You're Old and Poor: Exploring The Economics of Media Pricing", by Martin Koschat and William Putsis (2000) forms the template for this study. Koschat and Putsis generate three main insights. Firstly, magazines with a young and affluent readership command an advertising rate premium over otherwise similar publications. Secondly, they argue that this premium is unjustified if one looks at the portion of national expenditure accounted for by this target audience. Thirdly, somewhat speculatively, they argue that the premium earned by magazines with young and affluent readers is likely to bias the content of the public media towards the interests and mindset of the young and well-off. It is suggested that this would have a subtle and unwelcome effect on journalistic integrity and, more broadly, public discourse.

Koschat and Putsis used a straightforward cross-sectional model. They regressed the price of a full-colour page of advertising against a number of quantifiable magazine characteristics using ordinary least squares estimation techniques and a logarithmic transformation of all variables. The estimated coefficients of the explanatory variables can be used to calculate the shadow price of the characteristic, which gives us an insight into the desirability of the characteristic (from the demand side) and the cost of provision of the characteristic (from the supply side). In the words of the authors "these implicit or shadow prices can be thought of as a description of a competitive equilibrium in a plane on several dimensions on which buyers and sellers locate" (Koschat and Putsis, 2000).

Their demographic data was taken from the year 1990 and their rates data was taken from 1991. Their sample included 101 magazines and sample selection was largely determined by the availability of data from various media monitoring agencies – a "sampling methodology" also used in this study.

15 Published by Print Media South Africa
16 Published by the South African Advertising Research Foundation (SAARF).
17 Like the author of this paper, Koschat and Putsis noted expressed surprise that they could find no published studies that quantify the relationship between reader demographics and the price of advertising space.
18 Intuitively, one might argue that it is more costly to produce a 'highbrow' general interest magazine than a 'lowbrow' general interest magazine because it becomes necessary to hire more educated (costly) journalists.
Koschat and Putsis found the following variables to be significant at the 5% level:

- Circulation
- Readers per copy
- Percentage of readers aged 29 – 39
- Percentage of readers with household income of over $56 000
- Percentage female readers
- Percentage female readers squared

Other than the percentage of female readers, all these variables had positive coefficients when regressed against price. As will be discussed later, the models presented in this paper come to similar conclusions about the role of circulation, readers per copy and income. This paper also comes to the same conclusion about the role of youth, albeit with some qualifications. As far as gender is concerned, this paper draws different conclusions to Koschat and Putsis. The differences may be attributed to the the South African market or to differences in methodology that will be discussed later.

The results presented Koschat and Putsis (2000) are intuitive and unsurprising. What is interesting is the contention that the difference in the price of reaching high value segments, when compared to that of low value segments, does not seem to be justified by purchasing power differences. Koschat and Putsis point out, for example, that readers in the top income category are priced at about 6.2 times that of other categories, while the per capita consumption of the top income category is only about 2.7 times the lowest income category in their study. One also cannot point towards the scarcity of young/affluent readers, as these groups actually represent a disproportionately large portion of total magazine readers. The magnitude of the premium leads Koschat and Putsis (2000) to conclude that narrow economic explanations, focusing on either the purchasing power or the scarcity of young and affluent readers, are insufficient. It is argued that a combination of factors needs to be taken into account: including potential biases in the advertising industry, a desire to tap into opinion leaders and a higher responsiveness to advertising among the young.

Another explanation that comes to mind relates to the kinds of products that the young and affluent consume. Poor families and older people tend to spend a large portion of their income on necessities – mature products that one would expect to be quite unresponsive to advertising. Necessities are often 'dog products' in the language of product life cycle theory – basic foodstuffs, basic toiletries and the like. These products tend to be characterised by price competition and relatively low profit potential. Affluent households, on the other hand, spend a greater portion of their income on luxury goods and services – iPods, designer clothing, movie tickets, etc.

Consumers have considerable discretionary power in the market for luxury goods. In this context advertising becomes an important tool for convincing the market to buy your

19 Instead of using the fraction of readers in the highest income category, the research presented in this paper uses the median income category. Instead of using the fraction of readers in a given age bracket, this paper has used the percentage of readers under the age of 28 as an indication of the number of young adult readers. Finally, the models presented in this paper include more explanatory variables and sometimes use different estimation techniques. As such, direct comparisons should be treated with some caution.

20 Advertising copywriters, journalists and editors are for the most part middle-class and degree. It would not be surprising if the universe of their imagination reflects their own life experience.
product, in particular, rather than some equally frivolous diversion. Furthermore, the young and affluent tend to buy products in the 'growth' stage of the product life cycle — which is usually characterized by heavy brand differentiation, patent protection and relatively benign competitive circumstances. These arguments all go some way toward explaining the oversize premium placed on young and affluent readers.

There are a number of other papers and studies in media economics that identify high value audience segments (Reddaway, 1963; Goetler, 1999; Kalita and Ducoffe, 1995). One such study is *Circulation Versus Advertiser Appeal In the Newspaper Industry* by R.S. Thompson (1989). This study focuses on the trade-off between the circulation of a publication and desirability of an audience to advertisers. Thompson argues that the market makes a distinction between 'quality' papers (such as the *Financial Times*) and 'popular' papers (such as the *Sun*). He refers to a previous study, by Mander (1978), that noted the fact that papers with both a low circulation as well as a low 'quality' reader profile are most likely to fail. More formally, Thompson used three-stage least squares to estimate a system of equations with circulation, cover price and the advertising rate as dependent variables. His study is notable for two reasons. Firstly, it confirms that there is a circulation versus advertiser appeal trade-off, even when potential endogeneity problems are taken into account. Secondly, it was found that advertising rates vary positively with both circulation and the ABC reader quality measure. Part of the newspaper publisher's profit maximization problem is therefore to decide whether to move upmarket (and lose sales revenue) or to move downmarket (and lose advertising revenue).

Krishan and Soley (1987) also stressed the importance of targeting circulation, rather than simply building it. Their study examined the relationship between circulation, advertising rates and cost-per-thousand (CPM). One important observation in this paper is that advertising rates tend to increase at a decreasing rate as circulation increases, or alternatively put, CPM's fall as circulation increases. Another finding is that there seems to be a positive relationship between the thickness of a publication and the circulation. This introduces an interesting dynamic, albeit one that will not be explored in this study. If cost increases start to catch up with gains in total revenue, it is argued that a publication can actually self-destruct by allowing circulation to increase unchecked. An early identification of this dynamic is found in a paper by Hall (1976) in which he analyses the 'rise and fall' of the *Saturday Evening Post*. During the 1960's three major publications (*Life, Look* and the *Saturday Evening Post*) entered a period of financial crisis despite the fact that they were enjoying a period of high circulation and revenues. Hall used the *Saturday Evening Post* as a case study to document a kind of systemic implosion that may occur following a circulation war between a publication and its competitors. The problem started when the paper entered into a period of "forced growth" wherein subscription rates were dropped and there was a sharp increase in promotional expenditure. This tactic worked to secure growth. However, increases in circulation were not great enough to offset the lower subscription prices, and so there was a wrongheaded attempt to compensate by increasing advertising rates. The problem was that increases in

21 The measure used to distinguish high from low 'quality' readerships is the ABC social categorization as measured by the Joint Industry Committee for National Readership Surveys. This is loosely equivalent the the Living Standards Measure produced by the South African Advertising Research Foundation.

22 Advertising cost, per page of advertising, for every thousand magazines sold.
advertising rates outstripped increases in circulation, meaning that CPM's actually rose over this period of circulation growth. This is where the rot set in. Firstly, it is one's intuitive expectation that CPM should decline as circulation increases, not rise. From the supply side, the average cost of production of a newspaper should fall as circulation increases. So called "first copy" costs are fixed, so as one's print run gets progressively larger average costs of production should fall. Naturally some of the benefits of these falling costs would be passed on to advertisers in any relatively competitive market - hence falling CPM's. From the demand side we have already noted that high circulation publications frequently suffer from a dilution of their 'quality' readership pool. And of course, the empirical evidence presented by Krishnan and Soley (1987) and in this paper suggest that CPM's generally fall as circulation increases. The point can be clearly illustrated using the cross section of South African magazines used in this study. Krishnan et al (1987) present a similar graph based on their US dataset.

Figure 2
SCATTERGRAM OF COST PER THOUSAND AND CIRCULATION (SA){\(^{24}\)}

![Scattergram of Cost Per Thousand and Circulation (SA)](image)

The Post's decision to raise CPM's as their circulation was climbing was a disastrous attempt to swim upstream and it set in motion a series of events that eventually led to the demise of the paper. As a result of the increase in CPM's the number of pages of advertising the paper was able to sell declined. As the Post kept the ad-to-editorial ratio within a certain range this failure to sell advertising resulted in a thinner paper. The thinner paper in turn precipitated a drop in readership that further exacerbated the

23 First copy costs refer to editorial costs, administrative costs and all the cost we would expect to incur if we had to produce a hypothetical paper with a circulation equal to one.

24 Data sourced from ABC report and Media Manager. Circulation measured in thousands.
uncompetitiveness of the publication in terms of CPM's. By this stage the publication was in a bind that it was not financially strong enough to get itself out off. From then onwards the paper was in terminal decline.

Hall's conclusion was that circulation and CPM's need to be monitored carefully lest various organic feedback processes conspire to bring the publication to ruin. The lesson from Hall's case study that the author of this paper would like to emphasise is much simpler. When the Post increased advertising rates faster than their circulation was increasing, in some sense this represented an attempt to second guess the market on what the “right” advertising rate should be. It was essentially an attempt to cross-subsidise circulation growth by charging advertisers higher prices – something that could only be done in a relatively uncompetitive market. The disastrous outcome is rather reassuring for the hedonic pricing method used in this paper, which relies on the assumption that the shadow prices of characteristics are competitively determined.
Sample and Variables
A panel of 55 cross sectional units over 4 time periods was chosen as the best compromise between 'longer' and 'flatter' alternatives. As has been mentioned before the sample selection process was somewhat opportunistic – a magazine was included if commercial data on both demographics and circulation were available over the entire sample period. The good news is that all the agencies had data on all the largest and most established magazines – so while the sample is rather humble in terms of the number of titles, it does cover about 87% of the total readership reported by the South African Advertising Research Foundation in their AMPS survey25. The 55 titles in this study do not compare very favourably with the 100 odd titles in both Koschat and Putis (2000) and Krishnan and Soley (1987), but the 4 time periods do help generate some consolatory degrees of freedom.

Nevertheless, the dimensions of this panel create some problems. Having only 4 time periods is quite limiting in terms of the choice of panel modeling techniques available. Seemingly unrelated regression models, as well as so called time-series cross section models such as the Parks-Kmenta method are inappropriate when panel data has few observations across time – as is, arguably, the fixed effects model. Secondly, it becomes difficult to comment on explanatory variables that only vary over time – such as consumer confidence, the business cycle, the prevalence of Internet connections and the interest rate. All of these factors could reasonably be expected to influence the pricing behaviour of magazines, but to demonstrate this with only 4 annual time periods is problematic. Besides the less than ideal number of time periods, the lack of data on certain important magazine features (such as ad-to-editorial ratio's) also posed difficulties.

The original intention of this paper was to explain how every last aspect of a magazine's character, down to the finest minutia, would influence the price of advertising. It was hoped that this study would authoritatively demonstrated how everything from the glossiness of the paper to the macroeconomic environment plays a role in the determination of rates. This explanatory hubris was somewhat detailed by the realities of data availability. Information on many important explanatory variables is simply not available.

Donald Rumsfeld, the current American secretary of defense, once said of a military advance that there are “known unknowns” and that there are “unknown unknowns”. This slightly odd way of putting things captures the dilemma facing this research project. We are able to identify the 'known unknowns' by looking at similar studies to this one, only less hindered by our particular data constraints. From these other studies, mostly based on US and UK data, we know that factors such as 'advertising clutter' do play a significant role in determining the rates a firm can charge for advertising in one of its magazines (Ha and Litman, 1997). We also know that there is a pro-cyclical and lagged relationship between advertising expenditure and the business cycle, one which presumably has some influence on the price of advertising space in magazines (Ashley, Granger and Schmalensee, 1980; Ostheimer, 1980).

25 This figure excludes TV Guides (such as TV Plus), magazines that come bundled with a newspaper (Sunday Times Inside) as well as store catalogue magazines (Edgars Club Magazine). The coverage by year is 93% for 2000, 87% for 2001, 86% for 2002 and 84% for 2003.
From economic theory we could argue that the demand for advertising should be negatively associated with the real interest rate (as the interest rate rises, ad campaigns with relatively lower expected rates of return are dropped in favour of financial investments such as bonds, putting downwards pressure on demand for advertising space). Another plausible consideration is that as the number of people with Internet connections increases, print media faces major competition from on-line advertising, and this is expected to put some downward pressure on advertising rates. An alternative thesis on the effect of growing Internet use is that with the abundance of free 'editorial' content on-line, consumers are be less willing to pay for editorial content and advertisers have found themselves picking up a greater portion of the costs of the magazine (Sumner, 2001). Issues such as these should ideally be addressed using either time-series analysis or a far longer panel.

Perhaps most damaging of all our unknowns is that advertising space in magazines usually trades at a discount to the publicized rate. If the discount was constant this would be a rather benign problem, but as it stands the discount tends to vary according to the fortunes of the magazine and the bargaining power of the advertiser (usually large companies get better rates). If private sector media research companies could keep track of the discounts, no doubt they would. The reality is that these arrangements are sensitive, and as such, are concluded behind closed doors.

When it comes to identifying 'incorrectly' priced advertising space, these missing variables serve to increase our zone of ignorance and reduce the explanatory power of the multiple regression models used to decompose the price of advertising into implicit prices for characteristics. However, the variables that were available proved to have significant explanatory power in their own right and largely confirmed both the results of previous studies and intuitive expectations regarding the signs of their coefficients. The role of race in the determination of the price of advertising space will be discussed at a later stage.

The variables in Table 1 were regressed, in various permutations, against the price of a full colour full page advertisement. All of these variables were significant at the 10% level for a pooled ordinary least squares regression – but as will be discussed later, some were found to be insignificant using certain alternative regression techniques, and some were found to be significant in all regressions.

Data on the dependent variable was provided courtesy of Media Manager26. All monetary variables are adjusted for inflation to constant 2000 rands. Readers per copy is the SAARF AMPS readership figure27 divided by the ABC circulation figure. Affordability refers to the number of magazines that could be purchased with one month's income, for the median income household of a particular magazine. The Afrikaans dummy variable is a categorical variable based on the language the magazine is written in. The so called 'gender homogeneity' is the squared percentage of male readers plus the squared percentage of female readers. The annual figures used in this study are based on an

26 Special thanks should go to Mr. Mike Leahy of the "Media Inflation Watch" project at Media Manager.
27 The readership is the total number of readers of a publication as estimated by survey methods – including readers who have not bought their own copy of the magazine. Circulation is based on audited sales figures.
average of the biannual figures reported for any given year by the ABC and AMPS. Linear interpolation was occasionally used to fill in missing data.28

<table>
<thead>
<tr>
<th>Table 1</th>
<th>VARIABLES USED IN THE EMPIRICAL ANALYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulation</td>
<td>ABC</td>
</tr>
<tr>
<td>Circulation^2</td>
<td>ABC</td>
</tr>
<tr>
<td>Circulation^3</td>
<td>ABC</td>
</tr>
<tr>
<td>Readers per copy</td>
<td>ABC and AMPS</td>
</tr>
<tr>
<td>Median household income</td>
<td>AMPS</td>
</tr>
<tr>
<td>Median household income squared</td>
<td>AMPS</td>
</tr>
<tr>
<td>Percentage of readers with university education</td>
<td>AMPS</td>
</tr>
<tr>
<td>Affordability</td>
<td>ABC and AMPS</td>
</tr>
<tr>
<td>Afrikaans dummy variable</td>
<td>Generated</td>
</tr>
<tr>
<td>Percentage of black readers</td>
<td>AMPS</td>
</tr>
<tr>
<td>Percentage of readers under the age of 29</td>
<td>AMPS</td>
</tr>
<tr>
<td>Percentage of female readers</td>
<td>AMPS</td>
</tr>
<tr>
<td>Gender homogeneity</td>
<td>AMPS</td>
</tr>
<tr>
<td>Weekly publication dummy variable</td>
<td>AMPS</td>
</tr>
<tr>
<td>Constant</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

The median of income,29 rather than the average, was chosen as the appropriate measure of central tendency. This is largely because of the way that SAARF reports on income. They divide the readership of magazines into household income bands and then report on the number of readers falling into each band. The top band is open ended, "R16 000 and above" for example. This makes it impossible to calculate a reliable estimate of average income because we have no idea just how far above the top category some readers are. For some magazines, especially those with bloated top categories, this introduces a serious bias. Secondly, the number of bands changed over the sample period – shifting the top income category around. In light of this, using the midpoint of the median band is the best approximation of income.

Another issue with the data that is important to flag concerns the 'percentage of readers under 29' variable. SAARF only report on readers aged between 16 and upwards in their AMPS data. As such, this variable is likely to underestimate the percentage of young readers a magazine enjoys, and this bias is likely to be more pronounced in magazines aimed at young readers.

28 The only adjustment large enough to deserve special mention concerns the figures for the racial breakdown of magazine readership for June 2001, which were taken to be the average of the figures for December 2000 and December 2001.

29 Please note, when interpreting graphs and regression results, that income and circulation are both measured in thousands.
Other explanatory variables were considered, such as the sales-growth and cover price of the magazine, but preliminary regressions suggested that they were not particularly enlightening. The LSM measure taken from AMPs data, has a statistically significant relationships with the dependent variable in its own right. However, combined with the income and education measures in a multiple regression framework, it proved to have no further explanatory value.

The theoretical justification for including most of the above mentioned variables has largely been covered in preceding sections. Some commentary, however, is still necessary. The affordability variable is examined because it may tell us more about the perceived quality of a magazine than price, which does not take the relative income of the audience into account. The affordability of a magazine, through crude self-selection, also gives us more insight into the kind of disposable income an audience might have. After all, two households with very similar monthly incomes may have vastly different propensities to consume non-essential goods – be it through existing wealth differences or perhaps different attitudes towards saving.

The 'gender homogeneity' variable is essentially a Herfindahl concentration measure used to gauge the extent to which a magazine targets one gender, without actually reflecting what that gender is. So for example, the gender homogeneity of Bike SA or Your Baby is expected to be higher than that of Gardening SA or You. The hypothesis is that a magazine that targets one gender closely may be able to charge a premium over more generic publications.30

It is worth noting that whether the 'percentage male' and its square, or 'percentage female' and its square, is included as an explanatory variable for advertising rates, one always gets the same result out of the estimated regression - the first difference is always significant and negative, and the second difference is always significant and positive. This makes it hard to comment on the role of gender in the determination of advertising rates, as Koschat and Putsis (2000) did. The problem is, by including the square of the percentage of female readers, one may be saying more about the returns to targeting one gender aggressively than the returns to female readership per say. In order to avoid this problem one should either model the role of the percentage of female readers as a linear explanatory variable, or one should take explicit measure of the role of the 'gender homogeneity' of an audience. This study takes the later path.

The only variable that requires further commentary is the "weekly publication" dummy variable. There is no clear a priori expectation about the sign of a weekly magazine but it was frequently found to be significant in preliminary regressions and so has been included. Perhaps it is because most weekly magazines are considered 'established' and have a reliably large readership. Dropping frequency from weekly to fortnightly, or from fortnightly to monthly, is often the first thing a magazine does when it is in financial distress.

A graphical analysis provides some justification for the inclusion of the square and the cube of circulation (see below). The solid fitted line below is consistent with a positive first difference of rates with respect to circulation, a negative second difference, and a

30 See Audience Characteristics and Bundling: A Hedonic Analysis of Magazine Advertising Rates, by Koschat and Putsis (2002) for a fuller explication of this idea.
positive third difference. In fact, this has been true of the estimated functions of all permutations of the hedonic price model presented in this paper. Note that advertising rates increase at a decreasing rate within the range of most of the sample. This largely confirms our intuitive expectations as well as the outcomes of previous studies as discussed in the literature review. Beyond a certain size, however, instead of rates increasing at a decreasing rate, they increase at an increasing rate. It is hard to explain this outcome — but as will be seen it is quite robust even when other variables are taken into account in the multiple regression framework.

One possible explanation is that the shape of the fitted line is merely the product of a small number of outliers. Specifically, we may argue that the 4 observations of “Huisgenoot” magazine between 2000 and 2003, on the upper right, are single-handedly responsible for the cubic functional form. This argument, however, does not seem to be valid on examination of the evidence. As can be seen above, a regression line that excludes “Huisgenoot” from the sample (shown as a dotted line) has a very similar shape to one that includes “Huisgenoot” in the sample. It is possible to argue that the somewhat unique market penetration of super-large magazines such as the “Huisgenoot” and “You” affords them some measure of monopoly power. A more empirical consolation would be remind ourselves that 80% of the sample lies below the inflection point of the fitted line.

Figure 3

Circulation Against Advertising Rates - Fitted With Cubic Line

31 Regression fitted using OLS. The formula for the fitted line is given as: $Y = 7553.13 + 210.40X - 1.0925X^2 + 0.002X^3$. Coefficients significant at the 5% level.
Regression Methodology

Serious problems can be identified for every conceivable panel multiple regression approach to modeling the determinants of the advertising rate (with this particular dataset). Dimensions of N=55 and T=4 are less than ideal and are likely to make most panel techniques inappropriate. As such a series of informative yet imperfect regression results will be presented with a brief discussion of the statistical problems. The regression results presented in this paper include the pooled ordinary least squares and group means estimators, cross sectional ordinary least squares for each year in the sample, followed by a presentation of some one- and two-way random effects estimators.

In order to legitimately pool all 220 observations and use straightforward ordinary least squares the model's residuals need to satisfy certain conditions for normality. Firstly there must be no spatial correlation between the residuals of cross sectional units. This implies that there is no relationship between the residuals of any two cross sectional observations over time. In other words, if demand for Car and Drive move together for common reasons, that are not captured by the independent variables, then the consistency of the model is called into question. A negative spatial correlation is just as problematic, if surges in demand for advertising in Car magazine's is routinely made at the expense of Drive, and visa versa, we expect a negative correlation to exist in their residuals. Again, this would be problematic. Secondly, there should be no autocorrelation. Within group autocorrelation is particularly problematic in this kind of panel in that if the predicted value falls short of, or exceeds, the actual value in the first period then it is quite likely that similar predictive errors will occur in other periods. This problem can be partly addressed within the OLS framework by using standard autocorrelation remedies, such as the Prais-Winsten transformation, on a group by group basis (see results section). Thirdly there should be no groupwise heteroskedasticity. This implies that the variance of the residuals does not differ systematically from one cross sectional observation to another.

If these conditions hold the residuals are said to be spherical and we can use pooled ordinary least squares (Beck and Katz, 1995). Our intuitive expectation, unfortunately, is that the residual element generated by a dataset of this nature would be non-spherical. Furthermore, by using pooled OLS we are assuming two important things. Firstly, that there is no unobserved heterogeneity. This means that there should be no systematic differences between cross sectional units that influence the dependent variables, other than those accounted for by independent variables. Secondly, using OLS assumes some degree of structural homogeneity - that relationships across all cross sectional units, and all time periods, can be described by the same equation. If some relationship changes over time, or if some relationship holds for some magazines but not others, then we cannot present a single equation that expresses the 'true' nature of these relationships across time and space.

It is clear that all of these conditions do not hold for the sample at hand. The group effects explain some 72% of the variation in the residuals from the pooled classical regression model – an indication that we cannot afford to ignore them. Furthermore, the Baltagi-Li Lagrange multiplier statistic, which is traditionally used to test whether an effects model is more appropriate than the pooled classical linear regression model,

32 Also known as between effects estimator.
returns a score of 129.5233. This score is associated with a negligible possibility (less than 0.001\%) of an incorrect rejection of the null hypothesis and suggests that an 'effects' model should be used.

As such regression results produced by the OLS model should be treated with some caution, but they are presented nonetheless, even if only as a means of exploring the data. The most common techniques used to address these problems are of course the fixed and the random effects models (Baltagi, 1995). The fixed effects model uses dummy variables to tag the cross sectional observations34 – thus accounting for any group specific effects that are not captured by the independent variables (in other words, the dummy variables capture unobserved heterogeneity). This method calculates coefficients mathematically equivalent to the “within group” estimator. The within group estimator extracts the group means from the dependent and independent variables, respectively, and then calculates beta coefficients based on the remaining variation (which is longitudinal or “within group”). In other words:

$$ (Y_{it} - \bar{Y}_i) = \alpha + \beta_j (X_{jit} - \bar{X}_{ji}) + e_{it} $$

This solves the problem of unmodelled group heterogeneity and helps normalize the residuals, thus giving us consistent estimates (Baltagi, 1995). For the purposes of this research, however, the fixed effects approach is not appropriate. Preliminary fixed effects regressions were littered with insignificant t-statistics and unintuitive signs. Three core reasons are offered for this.

Firstly, the inclusion of dummy variables for Afrikaans publications, and for weekly publications, becomes impossible. This is because the dummy variables used in the fixed effects method are perfectly collinear with the categorical dummy variables intended to mark magazine features (Afrikaans in this case) – as such, ordinary least squares calculations yield a near singular matrix and coefficients cannot be calculated. Secondly, the fixed effects approach is not appropriate for large N small T type panels, especially when there is very little within group variation over the sample period. The reason for this is that the fixed effects model effectively “wipes out” between group variation, and the estimated coefficients are then based only on within group variation35. For many variables in this sample, there would be little variation left at all! The gender breakdown of \textit{Bike SA} does not change more than one or two percent during the sample period – and the same can be said of the racial breakdown of \textit{Bona} as well as the percentage of \textit{House and Leisure} readers under the age of 29. This problem, of low within group variation, is exacerbated by the fact that there are only 4 years in the sample period, and hence there is not much time for the dependent and independent variables to change. Such stable independent variables would also be highly collinear with effects. The third objection is something of a more philosophical nature – it has been said (Beck, 2001) that no “model” should have a proper name in it, and it seems that this is particularly

33 The Baltagi-Li LM statistics is 130.62 for the two-way regressions, which include both group and period effects. Again, this suggests a less than 0.001\% chance of an incorrect rejection of the null. For the parsimonious specification, which will be discussed later, the corresponding figures are 216.61 for the one-way model and 199.92 for the two-way model. This suggests that regardless of how one 'cuts' the data, an effects model is appropriate.

34 This method is also known as the least squares dummy variable method (LSDV).

35 All between group variation is captured in the dummy variables.
true of this dataset. The 55 odd “proper names” in a fixed effects analysis of this panel consume a large number of degrees of freedom and explain some 97.68% of the variation in their own right, leaving relatively little for independent variables that we are in fact interested in to “explain”.

The random effects model is a kind of compromise. Instead of transforming the data so as to extract the group means (which deals with the problem of unmodelled heterogeneity but also destroys useful information contained in the between group variation), we transform the data so as to remove only a portion of the group means. This is know as the Fuller-Battese transformation (Baltagi, 1995). The random effects model is a weighted average of the between and the within effects, with weighting determined by the amount of variance accounted for in the residuals as a result of group effects. As such:

\[
(Y_{it} - \theta \bar{Y}_i) = \alpha + \beta_j (X_{jit} - \theta \bar{X}_{ji}) + e_{it}
\]

Because the random effects model does not extract all between group variation it is more efficient than the fixed effects model, can deal with dummy variables, and also works well with comparatively shorter panels. It is also possible to compute “two-way” random effects models which account for time period effects in a similar manner to group effects. The results of two-way random effects models will be presented but the technical details of the two-way method do not warrant further explanation in this paper other than to say that two-way models control for time heterogeneity as well as group.

By comparison to pooled OLS, the random effects model should go some way towards normalizing the residuals and providing a more consistent estimator. The random effects model, unfortunately, is not without its own problems. Because group effects have not been included as explicit independent variables, as they are in the fixed effects model, the group effects form a component of the residuals, such that:

\[
e_{it} = u_i + u_i
\]

As has been mentioned before, the random effects model is a weighted average of the within and between effects estimate. The weighting is determined by \(\theta \), which is the estimated variation in the residual element accounted for by group effects (\(u_i \)). If group effects do not account for residual variance at all then \(\theta \) is equal to zero and the random effects model is equivalent to pooled ordinary least squares. If group effects account for all the variation in the residuals, then \(\theta \) is set to one, and the random effects model is the same as the fixed effects (within) model.

The fact that group effects are a component of the residual element can be problematic. If it were the case that group effects can be assumed to be random, then the model is consistent. This would be the case if the group effects are the identities of people talking part in a survey, where thousands upon thousands of people are included in the sample. Unfortunately, the specific identity of Huisgenoot cannot be assumed to be random and structurally irrelevant in the sense that the identity of John Sullivan Doe from 14 York

36 A number of approaches can be used to estimate the group effects component of residuals. The models presented in this paper use Nerlove’s approach, which bases the estimated group effects
Street can.

If there is a relationship between the independent variables and the (unmodelled) effects it would imply a relationship between the independent variables and the residual element, in violation of the Gauss-Markov assumptions of the classical linear regression model. If this is indeed the case the model may be also biased and inconsistent (Baltagi, 1995). Because the fixed effects approach models group effects as an explicit explanatory variable it is not prone to this problem. The generally accepted statistical test used to determine whether it is more appropriate to use the random effects model or fixed effects model is the Hausman test. This is essentially tests the null hypothesis that the estimated coefficients from the random effects model (which is efficient but potentially biased and inconsistent) are not significantly different from the fixed effects model, which we know to be consistent (albeit inefficient). The reasoning is that if the estimated coefficients are not statistically different, then it is certainly appropriate to use the more efficient of the two models – which is the random effects model.

This paper presents the results from 4 random effects regressions – full one-way and two-way random effects regressions as well as parsimonious37 regressions that include only significant variables. For the 'full' models it is impossible to compute the Hausman statistic for algebraic reasons38. For the so-called parsimonious models the Hausman statistics are 41.19 (one-way) and 61.74 (two-way). These test statistics imply that one can reject the null hypothesis with over 99.9% certainty, and are therefore suggestive of the fixed effects model.

However, rejection of the null hypothesis in the Hausman test does not automatically rule out the use of the random effects model (Beck, 2001), it simply means that we cannot categorically exclude the possibility of biased and inconsistent results. All the Hausman test does is test whether estimated coefficients between the fixed and random effects models are different. It does not test for inconsistency itself. To "pass" the Hausman test is a sufficient but not necessary justification for using the random effects model over the fixed effects model. If estimated coefficients differ between the random and the fixed effects model this can very plausibly be attributed to the fact that the random effects model makes use of between group variation while the fixed effects model does not. Intuitively speaking, it should not come as a surprise that using different information in a statistical model may yield different results. Thus the random effects estimators are, despite some statistical misgivings, presented alongside the group means, cross-sectional and pooled OLS regressions. From this spread of results we derive our conclusions.

Lastly, as has been mentioned before, other panel methods such as the Zellner approach and the Parks-Kmenta method are not appropriate, or even possible, as these techniques are designed for much longer panels (Beck and Katz, 1995). The results of the various regressions are now presented along with a discussion of what conclusions we can can draw from the data. Tables include estimated coefficients, probabilities and t-statistics.

37 A stepwise process was used to select variables in the parsimonious regression – the most 'insignificant' variables were excluded, and the model re-estimated, until such a time as only variables significant at the 5% level remained.

38 Because the number of variables makes the necessary coefficient covariance matrix inversion impossible.
Table 2
REGRESSION RESULTS: POOLED ORDINARY LEAST SQUARES AND GROUP MEANS

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pooled OLS N=226</th>
<th>Pooled OLS (Pratt-Winsten) N=165</th>
<th>Group Means Regression N=55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulation</td>
<td>25.45 0.37</td>
<td>25.16 0.38</td>
<td>20.36 0.43</td>
</tr>
<tr>
<td>Circulation²</td>
<td>1.24</td>
<td>1.25</td>
<td>-1.41</td>
</tr>
<tr>
<td>Readers Per Copy</td>
<td>184.38</td>
<td>131.96</td>
<td>277.58</td>
</tr>
<tr>
<td>Median Income</td>
<td>4926.02</td>
<td>2951.73</td>
<td>7416.96</td>
</tr>
<tr>
<td>Median Income²</td>
<td>301.36</td>
<td>105.38</td>
<td>400.97</td>
</tr>
<tr>
<td>Readers with University Education (%)</td>
<td>0.0000</td>
<td>0.0195</td>
<td>0.0227</td>
</tr>
<tr>
<td>Affordability of Magazine</td>
<td>-0.58</td>
<td>9.02</td>
<td>10.09</td>
</tr>
<tr>
<td>Airports Dummy Variable</td>
<td>2548.44</td>
<td>-17.33</td>
<td>2599.83</td>
</tr>
<tr>
<td>Black Readers (%)</td>
<td>174.56</td>
<td>82.83</td>
<td>192.09</td>
</tr>
<tr>
<td>Readers Under 29 (%)</td>
<td>62.60</td>
<td>30.20</td>
<td>66.35</td>
</tr>
<tr>
<td>Weekly Dummy Variable</td>
<td>2453.12</td>
<td>-4224.70</td>
<td>2452.03</td>
</tr>
<tr>
<td>Female Readers (%)</td>
<td>27.18</td>
<td>21.86</td>
<td>25.27</td>
</tr>
<tr>
<td>Gender Homogeneity</td>
<td>0.83</td>
<td>0.56</td>
<td>0.90</td>
</tr>
<tr>
<td>Constant</td>
<td>-3444.70.05</td>
<td>-14722.92</td>
<td>-42810.83</td>
</tr>
<tr>
<td>R²</td>
<td>0.08</td>
<td>0.20</td>
<td>0.44</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.08</td>
<td>0.20</td>
<td>0.44</td>
</tr>
</tbody>
</table>

39 Rho=0.5462
<table>
<thead>
<tr>
<th>Variable</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulation</td>
<td>254.80</td>
<td>259.90</td>
<td>260.03</td>
<td>312.63</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.020</td>
<td>0.009</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>5.94</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>1.26</td>
<td>-1.47</td>
<td>-1.28</td>
<td>-1.87</td>
</tr>
<tr>
<td></td>
<td>0.001</td>
<td>-4.28</td>
<td>-0.03</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.043</td>
<td>-3.82</td>
<td>-3.99</td>
</tr>
<tr>
<td>Circulation²</td>
<td>0.002</td>
<td>0.002</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>0.002</td>
<td>0.018</td>
<td>0.008</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>3.63</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>2.88</td>
<td>0.000</td>
</tr>
<tr>
<td>Readers Per Copy</td>
<td>159.55</td>
<td>150.72</td>
<td>126.37</td>
<td>157.84</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>0.87</td>
<td>0.926</td>
<td>0.913</td>
</tr>
<tr>
<td></td>
<td>0.335</td>
<td>0.20</td>
<td>0.013</td>
<td>0.341</td>
</tr>
<tr>
<td>Median Income</td>
<td>419.12</td>
<td>846.86</td>
<td>5358.94</td>
<td>7267.45</td>
</tr>
<tr>
<td></td>
<td>0.335</td>
<td>2.20</td>
<td>0.013</td>
<td>3.41</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>4.81</td>
<td>0.000</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Median Income²</td>
<td>273.26</td>
<td>344.86</td>
<td>281.41</td>
<td>337.94</td>
</tr>
<tr>
<td></td>
<td>0.018</td>
<td>2.35</td>
<td>0.025</td>
<td>3.25</td>
</tr>
<tr>
<td></td>
<td>1.011</td>
<td>-1.68</td>
<td>0.092</td>
<td>-2.44</td>
</tr>
<tr>
<td>Readers with University Education (%)</td>
<td>731.46</td>
<td>415.64</td>
<td>391.72</td>
<td>229.87</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>4.81</td>
<td>0.000</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Affordability of Magazine</td>
<td>-6.53</td>
<td>2.36</td>
<td>4.83</td>
<td>-1.32</td>
</tr>
<tr>
<td></td>
<td>-0.741</td>
<td>-1.83</td>
<td>-0.05</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.342</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>African Dummy Variable</td>
<td>171.38</td>
<td>331.70</td>
<td>260.26</td>
<td>2475.99</td>
</tr>
<tr>
<td></td>
<td>0.357</td>
<td>0.95</td>
<td>0.133</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td>0.920</td>
<td>0.10</td>
<td>0.793</td>
<td>1.32</td>
</tr>
<tr>
<td>Black Readers (%)</td>
<td>125.93</td>
<td>232.82</td>
<td>127.56</td>
<td>215.68</td>
</tr>
<tr>
<td></td>
<td>0.017</td>
<td>2.48</td>
<td>0.006</td>
<td>2.05</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Readers Under 29 (%)</td>
<td>51.85</td>
<td>130.47</td>
<td>54.32</td>
<td>66.64</td>
</tr>
<tr>
<td></td>
<td>0.333</td>
<td>1.53</td>
<td>0.342</td>
<td>2.19</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Weekly Dummy Variable</td>
<td>172.04</td>
<td>-13.32</td>
<td>1258.40</td>
<td>6720.85</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>-0.42</td>
<td>0.000</td>
<td>-0.00</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Female Readers (%)</td>
<td>18.02</td>
<td>11.19</td>
<td>23.46</td>
<td>36.69</td>
</tr>
<tr>
<td></td>
<td>0.482</td>
<td>-0.76</td>
<td>0.193</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>0.368</td>
<td>0.92</td>
<td>0.048</td>
<td>2.04</td>
</tr>
<tr>
<td>Gender Homogeneity</td>
<td>1.32</td>
<td>0.02</td>
<td>6.70</td>
<td>1.56</td>
</tr>
<tr>
<td></td>
<td>0.043</td>
<td>2.09</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Constant</td>
<td>-26892.30</td>
<td>-50999.91</td>
<td>25800.69</td>
<td>-45012.04</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>-2.54</td>
<td>0.000</td>
<td>-3.65</td>
</tr>
<tr>
<td></td>
<td>0.052</td>
<td>-1.99</td>
<td>0.000</td>
<td>-3.99</td>
</tr>
<tr>
<td>R²</td>
<td>857.8</td>
<td>8324</td>
<td>8188</td>
<td>8549</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>808.0</td>
<td>7737</td>
<td>7486</td>
<td>8029</td>
</tr>
</tbody>
</table>
Table 4

REGRESSION RESULTS: RANDOM EFFECTS MODELS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulation</td>
<td>157.79</td>
<td>167.25</td>
<td>146.29</td>
<td>150.95</td>
</tr>
<tr>
<td></td>
<td>0.0006</td>
<td>6.42</td>
<td>0.0000</td>
<td>5.35</td>
</tr>
<tr>
<td>Circulation²</td>
<td>0.001</td>
<td>-0.67</td>
<td>-0.55</td>
<td>0.39</td>
</tr>
<tr>
<td>Circulation³</td>
<td>0.0009</td>
<td>-3.98</td>
<td>0.0000</td>
<td>-3.44</td>
</tr>
<tr>
<td></td>
<td>0.004</td>
<td>5.53</td>
<td>0.0000</td>
<td>4.40</td>
</tr>
<tr>
<td>Readers Per Copy</td>
<td>0.85</td>
<td>42.61</td>
<td>103.97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.037</td>
<td>2.14</td>
<td>0.3703</td>
<td>0.88</td>
</tr>
<tr>
<td>Median Income</td>
<td>877.14</td>
<td>1055.74</td>
<td>479.92</td>
<td>604.56</td>
</tr>
<tr>
<td></td>
<td>0.2442</td>
<td>1.19</td>
<td>0.1392</td>
<td>0.148</td>
</tr>
<tr>
<td>Median Income²</td>
<td>21.86</td>
<td>-2.47</td>
<td>-5897</td>
<td>-0.55</td>
</tr>
<tr>
<td></td>
<td>0.0500</td>
<td>1.84</td>
<td>0.0360</td>
<td>2.17</td>
</tr>
<tr>
<td>Readers with University Education (%)</td>
<td>85.11</td>
<td>105.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0582</td>
<td>1.84</td>
<td>0.0360</td>
<td>2.17</td>
</tr>
<tr>
<td>Affordability of Magazine</td>
<td>-1.06</td>
<td>-4.12</td>
<td>-3.51</td>
<td>-3.63</td>
</tr>
<tr>
<td></td>
<td>0.037</td>
<td>2.90</td>
<td>0.0031</td>
<td>2.95</td>
</tr>
<tr>
<td>Afrikaans Dummy Variable</td>
<td>-1.639.95</td>
<td>-1.449.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.2246</td>
<td>1.21</td>
<td>0.2094</td>
<td>1.25</td>
</tr>
<tr>
<td>Black Readers (%)</td>
<td>22.37</td>
<td>42.93</td>
<td>39.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3552</td>
<td>0.96</td>
<td>0.0519</td>
<td>1.94</td>
</tr>
<tr>
<td>Readers Under 20 (%)</td>
<td>16.41</td>
<td>23.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.9465</td>
<td>0.67</td>
<td>0.2362</td>
<td>1.19</td>
</tr>
<tr>
<td>Affordability of Magazine</td>
<td>-1.06</td>
<td>-4.12</td>
<td>-3.51</td>
<td>-3.63</td>
</tr>
<tr>
<td></td>
<td>0.037</td>
<td>2.90</td>
<td>0.0031</td>
<td>2.95</td>
</tr>
<tr>
<td>Female Readers (%)</td>
<td>17.07</td>
<td>20.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3112</td>
<td>1.01</td>
<td>1.791</td>
<td>1.54</td>
</tr>
<tr>
<td>Gender Homogeneity</td>
<td>0.38</td>
<td>0.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0959</td>
<td>1.66</td>
<td>0.0493</td>
<td>1.96</td>
</tr>
<tr>
<td>Constant</td>
<td>-1271.57</td>
<td>-3840.05</td>
<td>6709.04</td>
<td>2163.39</td>
</tr>
<tr>
<td></td>
<td>78.64</td>
<td>0.30</td>
<td>34.18</td>
<td>-0.99</td>
</tr>
</tbody>
</table>

Note: The constant is equal to 0.85, 0.89, 0.91 and 0.88, respectively. The corresponding figure for the time dimension of the random effects model is 0.67 and 0.57 respectively.
Discussion of Results

In terms of the variables analyzed it is clear that some relationships remain stable and significant regardless of how one cuts the data, while others are significant in some regression analyses but not others. The strength of the conclusions we draw should be informed by the extent to which a variable is significant across models. All predictors were significant at the 5% level in the pooled OLS regression and at least one of the cross-sectional regressions — indeed this was the criterion upon which they were judged for inclusion in the study.

The strongest predictor of advertising rates was doubtless circulation. Circulation, circulation squared and circulation cubed were statistically significant predictors of advertising rates at the 5% level for all 11 regression results presented in this paper. Furthermore, there was no sign reversal across the various specifications. The magnitudes of the coefficients estimated are also very stable in comparison to some of the other independent variables. Insofar as the first and second difference of circulation with respect to the advertising rate is concerned, our intuitive expectation, and the results of previous studies, seem to be largely confirmed for our South African dataset.

Advertising rates increase at a decreasing rate as circulation increases — at least for most of the sample. As for the positive third difference, there is no obvious a priori reason to have expected such a strong result and we may be inclined to dismiss it as an idiosyncrasy of the South African market. It will be interesting to see if this cubic relationship reflects the magazine industries of other countries. Nonetheless, the finding was robust.

Although one cannot make direct comparisons, it is worth noting that the magnitude of the coefficient to circulation estimated in the above regressions is broadly comparable to that estimated by Koschat and Purvis (2000). While their estimate suggests that a 10% increase in circulation would result in about a 7.7% increase in advertising rates, the regressions presented above suggest a figure of between 3.4% and 5.4% (percentages calculated from the mean see table below). Of course direct comparisons are dangerous — Koschat and Purvis use a different set of regressions, a different sample and model the problem in the log-log form, but it is reassuring to see that the estimates are at least comparable. For example, when examining the effect of a 10% increase in circulation from the mean, all estimates suggest that increases in advertising rates do not keep up with increases in circulation.

We also note that circulation proved to be a better predictor of advertising rates than readership — perhaps because of the greater faith placed in circulation figures by advertisers, perhaps because the people who actually buy the magazine are better targets than those who happen to pick up someone else's copy. Still the collection of readership figures is useful — information on readership was useful in the construction of the readers per copy variable, which as we will discuss later is quite informative.

Household income is clearly an important predictor of advertising rates. Unsurprisingly there is a high degree of multicollinearity between income on the one hand and education, race, readers per copy and affordability on the other. Nevertheless, income is positive and significant at the 5% level for all regressions except for the two full random effects models. The fact that income is not significant at the 5% in the full random effects model is a direct consequence of the fact that it was modeled quadratically. It is
instructive to note that when the squared term is dropped in the 'parsimonious' model, income is significant even at the 1% level. Income squared is negative and significant at the 5% level in most cases with the exception of the cross-sectional regression in 2002, the autocorrelation corrected OLS regression and the 'full' random effects models. This suggests that advertising rates increase as income increases, but at a decreasing rate. It is also instructive to note that there are no sign reversals for income across the specifications and that income is one of the variables that is retained in the parsimonious specification. By taking only income and circulation into account we can explain a large portion of the variation in the dependent variable. Pictured below are two three dimensional graphs – one based on the estimated coefficients of the group means regressions and one based on distance weighted ordinary least squares

Figure 4
SURFACE PLOT OF ADVERTISING RATES, CIRCULATION AND INCOME
FROM GROUP MEANS REGRESSION

41 The influence of any given data point on some estimated portion of the plane decreases as its distance from said estimated portion of the plane increases.
These two graphs are not strictly comparable. The first graph is different from the second in two ways. Firstly, the relationship between advertising rates, circulation and income is taken directly from the group means regressions presented earlier in this section - as such this graph 'controls' for education, affordability, readers per copy and all the other variables. Secondly, a single equation can describe the shape of the surface. By contrast the second graph does not control for confounding factors and the distance weighted least squares method allows for different structural relationships to hold in different parts of the plane - the estimated relationship being more heavily influenced by observations in the immediate vicinity.

Nevertheless, both graphs tell us broadly the same thing - that advertising rates increase as income and circulation increase. For any given rate an advertiser will need to decide what the optimal combination of circulation and income is. This may boil down to a choice between higher circulation low income magazine vs. higher income low circulation magazine. Of course, advertisers bear the nature of their product in mind when making this kind of strategic decision. As has been mentioned before, trading off characteristics like this is in reality a far 'lumpier' process than would be suggested by the smooth surface planes pictured above.

Readers per copy is significant at the 10% level for 6 of the 11 specifications: the pooled OLS, the autocorrelation corrected pooled OLS and the group means regressions as well as the one-way random effects. It is also included in the parsimonious one-way random effects models and is significant at the 5% level. The estimated coefficient to readers per
copy is positive, in line with our expectations and there are no examples of sign reversal in the 11 models presented in this paper. Based on this we could argue that there is sufficient statistical evidence to suggest that the more hands a magazine passes through the better this is for advertising. This is by no means surprising.

In order to facilitate interpretation of the regression results it is sometimes useful to examine what the implied relationship between dependent and independent variables is in terms of percentages. The implied change in advertising rates for a ten percent change in the independent variable is presented on the following page for the pooled OLS, the group means regression and the four random effects models. In the case of a dummy independent variable a straightforward percentage effect is calculated.

It is interesting to note that while a 10% increase in circulation can be expected to result in an increase in advertising rates of between 3.41% and 5.03%, a 10% increase in the readers per copy can only be expected to increase advertising rates by between 0.55% and 1.63%. While we can say with some certainty that more readers per copy is associated with higher advertising rates, the value of the secondary reader is much lower than that of the person who purchases the magazine. The ‘first’ reader is more than six times as valuable to the advertiser than subsequent readers - if we go by the estimate of the fully specified one way random effects model. This is perhaps because the advertising industry puts more faith in circulation figures than in readership figures, but the more likely explanation is that a person who is willing to pay for a magazine is also more likely to be willing to pay for products advertised in the magazine.

Similarly, a person who actually buys a magazine is likely to fit the profile of the target market for a magazine more closely than someone who happens to flip through a magazine afterwards. Many readers may be of the ‘waiting room’ variety - people who would never think of seeking out a given magazine title, are as uninterested in the content as they are in the products typically advertised in the magazine, but who nonetheless read them to stave off boredom or to pass time. Readers with some sense of dedication to the subject matter of a magazine are likely to make a better audience for the purposes of advertising.
Table 5
IMPLIED PERCENTAGE EFFECT ON ADVERTISING RATES
POSITIVE DUMMY OR TEN PERCENT CHANGE

<table>
<thead>
<tr>
<th></th>
<th>Pooled</th>
<th>Group Means</th>
<th>One-Way Random Effects</th>
<th>Two-Way Random Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulation</td>
<td>5.02%</td>
<td>5.43%</td>
<td>3.53%</td>
<td>3.82%</td>
</tr>
<tr>
<td>Readers Per Copy</td>
<td>1.08%</td>
<td>1.63%</td>
<td>0.55%</td>
<td>0.25%</td>
</tr>
<tr>
<td>Income</td>
<td>14.96%</td>
<td>7.58%</td>
<td>2.43%</td>
<td>3.02%</td>
</tr>
<tr>
<td>University (%)</td>
<td>24.38%</td>
<td>32.00%</td>
<td>5.55%</td>
<td>7.69%</td>
</tr>
<tr>
<td>Affordability</td>
<td>-3.42%</td>
<td>-3.55%</td>
<td>1.48%</td>
<td>1.45%</td>
</tr>
<tr>
<td>Afrikaans Dummy</td>
<td>13.01%</td>
<td>16.76%</td>
<td>10.57%</td>
<td>9.34%</td>
</tr>
<tr>
<td>Black Readers (%)</td>
<td>11.07%</td>
<td>12.45%</td>
<td>1.41%</td>
<td>2.77%</td>
</tr>
<tr>
<td>Less Than 29 (%)</td>
<td>4.04%</td>
<td>4.28%</td>
<td>1.03%</td>
<td>1.65%</td>
</tr>
<tr>
<td>Weekly Dummy</td>
<td>15.70%</td>
<td>15.81%</td>
<td>15.30%</td>
<td>14.07%</td>
</tr>
<tr>
<td>Female Readers (%)</td>
<td>1.75%</td>
<td>1.63%</td>
<td>1.14%</td>
<td>1.34%</td>
</tr>
<tr>
<td>Gender Homogeneity (%)</td>
<td>3.23%</td>
<td>3.45%</td>
<td>2.23%</td>
<td>2.45%</td>
</tr>
</tbody>
</table>

Table 6
IMPLIED PERCENTAGE EFFECT FROM “PARSIMONIOUS” ESTIMATOR
POSITIVE DUMMY OR TEN PERCENT CHANGE

<table>
<thead>
<tr>
<th></th>
<th>One-Way Random Effects</th>
<th>Two-Way Random Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulation</td>
<td>3.43%</td>
<td>3.48%</td>
</tr>
<tr>
<td>Readers Per Copy</td>
<td>0.61%</td>
<td>N/A</td>
</tr>
<tr>
<td>Income</td>
<td>2.02%</td>
<td>2.54%</td>
</tr>
<tr>
<td>Affordability</td>
<td>1.27%</td>
<td>1.29%</td>
</tr>
<tr>
<td>Black Readers (%)</td>
<td>N/A</td>
<td>2.53%</td>
</tr>
<tr>
<td>Weekly Dummy</td>
<td>12.94%</td>
<td>13.21%</td>
</tr>
</tbody>
</table>

Education is a positive determinant of advertising rates. It was found that the percentage of degreed readers was a significant predictor of advertising rates for 8 out of 9 regressions at the 10% level and 6 out of 9 regressions at the 5% level. The fact that education is a significant predictor of advertising rates at the 10% level in the one- and two-way random effects model, and that there are no instances of sign reversal, suggests that one is quite safe in arguing that advertisers are willing to pay more for an educated reader.

42 Coefficients that are insignificant at the 10% level are highlighted in gray. The percentage change of a variable is calculated from the mean.
43 All estimated coefficients significant at the 5% level.
44 This excludes the parsimonious specification.
audience. While it is easy to argue that education is an important determinant of the value of an advertising to an audience, quantifying its impact is more difficult. The estimated impact on advertising rates of an increase in the percentage of degree readers is six times greater in the group means regression than in the random effects regression. While the estimated impact of a ten percent increase in circulation ranged only from 3.41% to 5.03%, the comparable figures for education would range from 5% to 32%. This kind of variability, and multicollinearity with other indicators of affluence, makes it hard to quantify the exact impact of education. Nevertheless, it is probably not useful to interpret the education coefficient in a narrow "X more university graduates increases rates by y" manner in the first place. The variable is intended to proxy general levels of education, and as far as this purpose is concerned, it shows that education is probably important.

This may be attributed to factors beyond educated readers firsthand purchasing power—they are more likely to be early adopters, opinion formers and trend-setters for the rest of the market.

Perhaps the most unexpectedly "reliable" independent variable is affordability—defined as the number of magazines that could be purchased with one month's salary, or in other words, the median household income of readers divided by the cover price. Greater affordability was found to negatively impact on the advertising rate. It is worth noting that price itself was not a particularly promising predictor of advertising rates in preliminary regressions. As far as statistical results are concerned affordability was found to be a significant, and negative predictor of advertising rates in every regression with the exception of the 2001 cross-sectional analysis. The magnitudes were also relatively stable. The random effects regressions suggested that a 10% increase in affordability will be associated with about a 1.25% to 1.45% decrease in advertising rates, and the figure was about 3.53% for the group means regression. The evidence to suggest that greater affordability has a negative impact on the advertising rate is compelling in its consistency across various models.

The inclusion of affordability in this study was not based on any prior notions about how it should impact on the advertising rate. Yet the result is not baffling. A number of possible explanations suggest themselves. Household income is not a perfect measure of the purchasing power of readers. It does not measure the purchasing power of individuals within a household, nor does it tell us how many dependents a household supports. Affordability and education are the kind of variables that may fill in some of these gaps. Affordability gives us some insight into accumulated wealth, as well as serving as a direct measure of the reader's propensity to consume non-essential goods. Furthermore, unaffordable magazines are themselves likely to be considered luxury, or "classy" goods and are likely to have some inherent appeal as an advertising medium. There may also be some supply side factors at play. High circulation magazines benefit from economies of scale, which may result in lower cover prices and may therefore make for a more affordable magazine. As we know, high circulation magazines are also often seen as having less desirable audiences in the familiar quantity-quality trade off.

While affordability was found to be an unexpectedly reliable predictor of advertising rates, the percentage of readers under 29 years of age was unexpectedly "lukewarm". Only in the pooled OLS regression, and in the cross-sectional regression of 2001, was
the variable found to be significant at the 10% level - as as we have discussed, confidence may be overestimated in the pooled OLS regression. The percentage of readers under 29 variable was not prone to sign reversals in different specifications of the model. While there is enough evidence to suggest that a young readership is probably a good thing, in this case we need to reserve judgment about the strength and consistency of this effect. Based on the studies discussed in the literature review, it is surprising that the result was not stronger.

There is evidence that weeklies receive a premium over the rest of the sample. In the group means regression, and most of the cross-sectional regressions, the weekly frequency dummy variable was found to be insignificant. However, in the random effects models and the pooled OLS the weekly dummy was found to be significant and the estimated strength of the effect stable. Cross sectional analysis was prone to sign reversals from the predominantly positive norm over the different years, but these cases were never statistically significant.

Some caution should be exercised in interpreting the evidence that weeklies enjoy a premium. It seems intuitively unlikely that being a weekly publication would causally influences advertising rates. Rather, as has been discussed before, weekly publications are by and large established publications, and frequency is some indicator of the health of a publication. When magazines falter, it is common to see them decrease frequency from weekly to fortnightly, or from fortnightly to monthly. It is equally common to see a magazine showing healthy growth step up the frequency. By way of subject matter, the business magazines are more likely to be weekly publications because they disseminate news of a more timely nature. It is possible that these factors have something to do with this result.
Race, Language and Gender

Contrary to the assertions of the panel consulted in the Human Rights Commission’s Inquiry into Racism in The Media, it does not seem to be the case that advertisers are somehow racially biased against black audiences. In fact, the regression analysis suggests that if anything the proportion of black readers is a positively related to advertising rates. There are no instances of sign reversal and it is only in the one-way random effects model that race is an altogether insignificant independent variable. As far as the parsimonious specification of the random effects models is concerned, the proportion of black readers was included as a positive predictor of advertising rates only in the two-way specification. The estimated coefficient in the random effects models were smaller than the pooled, group means and cross-sectional estimates.

While the statistical results suggesting that black readers are not discounted, the results raise an equally interesting question – how come, once all other information is taken into account, black readers seem to fetch a premium? The a priori expectation was that race would be an entirely insignificant predictor of advertising rates. The fact that the estimated coefficient is significant, and positive, could perhaps be attributed to imperfect information or a legitimate bias in the market, amongst other things. From a social and ethical point of view, this outcome is benign. The concern expressed in the Inquiry Into Racism in The Media (2000) was that an historically downtrodden population group continue to be marginalized despite breaking into the middle class in ever greater numbers and enjoying newfound purchasing power. That there might be some sort of reverse racism against population groups that are comparatively well-off is of only academic interest.

The prima facie evidence of a racial bias in the market, that 'black' magazines with high circulations fail to secure high advertising rates, is explained fully by the inclusion of socioeconomic indicators such as income and education. There are of course number of disclaimers to be made. As was mentioned earlier, it is hard to get good information on what kind of discounts magazines offer on their advertising space. It may indeed be the case that magazines with majority black readership need to give greater discounts to coax advertisers into their pages. Similarly, this study has looked only at advertising rates, not at the volume of advertising sold. And finally, the conclusion that black audiences do not trade at a discount is only true to the extent that magazines are representatives of what is happening in other parts of the media – such as radio, newspapers and TV.

The political lesson to be learned from this is simple – it is probably not useful to blame advertisers and the media industry for racism when the seeming bias in the market is explained by the economic fundamentals. If you want to fix the apparent bias in the media industry you need to address the pervasive inequalities of opportunity and income that beset the entire South African economy. The Human Rights Commission’s inquiry fell short in that it did not lay the blame for the apparent racism at the foot of economic inequalities created by half a century of apartheid policy, and it was perhaps too quick to finger advertisers and editors as the contemporary architects of the bias. Or alternatively put, the inquiry placed too great an explanatory burden on agency to the neglect of more deterministic factors.

As far as language is concerned, the evidence to suggest that it is a reliable determinant of advertising rates is unconvincing. While the Afrikaans dummy was positively related to
rates and significant in the pooled OLS regression, it was insignificant elsewhere. In the
cross-sectional models the Afrikaans dummy had insignificant t-statistics and a negative
sign. Knowing this, it is hard to tell what direction the effect of the Afrikaans dummy
was, much less the magnitude. The results with respect to the role of Afrikaans in
determining the advertising rates of magazines are inconclusive.

Finally, what role does the gender profile of a magazine play? Firstly, we see that the
percentage of female readers seems to be positively associated with advertising rates. The
strength of this result is, however, not large. It is significant at the 10% level only for the
cross sectional regression of 2003 and for the pooled OLS regression. However, unlike
the Afrikaans language dummy, there are no sign reversals and the magnitude of
estimated coefficients remain relatively stable across the differently specified models. It is
interesting to note that the result with regard to gender differ from those reported in
Koschat and Putsis' 2000 paper, which reported a negative relationship between the
percentage of female readers and advertising rates. This discrepancy is probably owing to
the fact that a gender homogeneity measure was used as an explanatory variable and the
fact that the models presented in this paper do not use the square of the percentage of
female readers as an explanatory variable. Alternatively the result may be explained by
differences between the American and the South African markets.

It seems that magazines that target a gender aggressively, such as Your Family does for
women or Car does for men, earn a premium over magazines with a more balanced
gender profile. The gender homogeneity variable is significant under the "full" random
effects regressions as well as the pooled OLS regressions and two of the four cross
sectional regressions. There is one instance of sign reversal in the cross sectional
regression for 2001 — where this variable is associated with a highly insignificant t-
statistic. Still, the evidence is strong enough for us to argue that a relationship exists. A
general principle in advertising is that advertisers should be willing to pay more for an
audience that better fits their intended target market — this principal finds a particularly
clear application when it comes to gender. A magazine that appeals specifically to one
gender is likely to be a desirable place to advertise products with gender specific appeal
(lipstick, power tools).

This outcome provides some support for the hypothesis explored in the paper Audience
Characteristics and Bundling: A Hedonic Analysis of Magazine Advertising Rates by Koschat and
Putris (2002). In this paper they argued that if publishers were able to break their
readership base down to its demographic components and publish special editions
targeted at these components they would be able to earn a significant 'unbundling'
premium. According to Koschat and Putris, if publishers could separate readers out by
gender, in particular, they could generate an average advertising rate premium of about
21.1%.

Their method was to use the results from their hedonic analysis to calculate the
advertising rate of a two hypothetical magazines with gender homogeneous audiences.
The total circulation of each hypothetical magazine was equal to the number of male or
female readers for the original (non-hypothetical) subject magazine. The premium that
these magazines earn is then broken down into that which is explained by targeting a

45. Obviously, this estimate is based on their sample of 101 US magazines.
single gender and that which is explained by circulation effects. The results presented earlier in this paper argue for same conclusion as the one reached in Koschat et al (2002), that advertisers are willing to pay a premium for a more homogeneous audience. This paper, however, uses an entirely different approach to Koschat and Putis by modeling gender homogeneity as an explicit independent variable via the Herfindahl type measure.

Despite the differences in methodology there is an impressive degree of consistency between the estimated size of the gender homogeneity effect in Koschat et al and the estimate presented here. While Koschat et al estimated that, on average, the premium generated unbundling from would be about 21.1%, the estimate based on the results presented in this paper is 22.2% from the pooled OLS regression, 15.4% from the one-way random effects model and 16.9% from the two-way random effects model.

46 Because advertising rates increase at a decreasing rate as circulation increases we need to account for the premium that one would generate simply from taking a magazine and splitting its circulation into two, without changing any other characteristics.

47 Based on the estimated impact of a 4085 unit increase in the gender homogeneity variable. This figure is based on the difference between the average magazine gender homogeneity score (5914) and the score of a perfectly homogeneous magazine (10 000). Percentage calculated from the mean.
Conclusion: Key Findings and Advancements

This paper has examined the determinants of advertising rates in the South African magazine publishing industry using established hedonic pricing methods. In doing so, it generates insights into the implicit prices of magazine characteristics and into “what advertisers want”. Studies applying hedonic pricing methods to magazine advertising rates are surprisingly rare internationally, and are non-existent for the South African market.

While the discussion of the determination of implicit prices is nothing original, the use of Euclidean distance measures and cluster analytic techniques to describe the South African magazine market is novel. Although one can be sure that advertisers and publishers do not need quantitative assistance to identify competitor magazine titles, Euclidean distance measures could in theory provide some insight into the substitutability of magazines for the purposes of advertising.

It was found that a cubic and highly significant relationship exists between advertising rates and circulation. For most magazines in the sample, advertising rates increase at a decreasing rate as circulation increases — this is in line with prior expectations and comparable studies. Unsurprisingly, it was found that more affluent readers, as measured by median household income, command an advertising premium. It was also found that advertising rates are higher for less affordable magazines, all other things held equal. The evidence that these factors influence advertising rates is very convincing.

It was also argued that young and educated audiences are seen as desirable by advertisers and that advertising in weekly magazines seems to command a premium. It would be difficult to argue convincingly that being an Afrikaans-language magazine makes any difference at all. The proportion of female readers may positively influence the advertising rate, but the evidence for this was shaky.

Slightly more convincing was the evidence that magazines with gender homogeneous audiences earn a premium over their more gender balanced counterparts. It was estimated that the average magazine could earn a premium of between 15% and 22% by unbundling its male and female readerships — which was broadly consistent with the estimate produced by Koschat and Putsis in their study.

Another interesting interpretation of the results is that while having more readers per copy is certainly associated with higher advertising rates, the magnitudes suggest that the advertisers pay more for the ‘first’ reader. The implicit price difference may be up to six-fold by one estimate.

Lastly, it was argued that the proportion of black readers does not result in an advertising rate discount. In fact, all statistical evidence suggests that once income, education and other potentially confounding variables are taken into account, black readers may even command a small premium. It is hoped that this result will inform a more market friendly discourse when the issue of racism in the media re-enters the public debate, which no doubt, it will.
Appendix 1

List Of Magazines Included In The Sample With Average Statistics for Sample Period

<table>
<thead>
<tr>
<th>Title</th>
<th>Circulation (000)</th>
<th>Median Household Income (R000)</th>
<th>Percentage of Female Readers</th>
<th>Percentage of Black Readers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Talk</td>
<td>14.5</td>
<td>6.0</td>
<td>52</td>
<td>28</td>
</tr>
<tr>
<td>Bike SA Magazine</td>
<td>35.8</td>
<td>8.0</td>
<td>19</td>
<td>7</td>
</tr>
<tr>
<td>Bonia</td>
<td>139.7</td>
<td>1.3</td>
<td>57</td>
<td>98</td>
</tr>
<tr>
<td>Car</td>
<td>108.3</td>
<td>7.4</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>Caravan & Outdoor Life</td>
<td>17.6</td>
<td>9.2</td>
<td>34</td>
<td>14</td>
</tr>
<tr>
<td>Complex Golfer</td>
<td>22.2</td>
<td>8.8</td>
<td>21</td>
<td>28</td>
</tr>
<tr>
<td>Conde Nast House & Garden</td>
<td>42.7</td>
<td>7.4</td>
<td>60</td>
<td>24</td>
</tr>
<tr>
<td>Cosmopolitan</td>
<td>16.4</td>
<td>6.7</td>
<td>65</td>
<td>30</td>
</tr>
<tr>
<td>Country Life</td>
<td>33.8</td>
<td>8.5</td>
<td>57</td>
<td>17</td>
</tr>
<tr>
<td>Drive</td>
<td>15.9</td>
<td>6.1</td>
<td>16</td>
<td>33</td>
</tr>
<tr>
<td>Drum</td>
<td>109.4</td>
<td>2.1</td>
<td>56</td>
<td>95</td>
</tr>
<tr>
<td>Hills</td>
<td>44.7</td>
<td>6.6</td>
<td>74</td>
<td>33</td>
</tr>
<tr>
<td>Enterprise</td>
<td>21.6</td>
<td>4.6</td>
<td>41</td>
<td>77</td>
</tr>
<tr>
<td>Essentials</td>
<td>85.6</td>
<td>7.9</td>
<td>81</td>
<td>13</td>
</tr>
<tr>
<td>Fair Lady</td>
<td>94.2</td>
<td>5.6</td>
<td>76</td>
<td>34</td>
</tr>
<tr>
<td>Farmers Weekly</td>
<td>11.6</td>
<td>6.3</td>
<td>34</td>
<td>26</td>
</tr>
<tr>
<td>Femina</td>
<td>68.0</td>
<td>6.3</td>
<td>80</td>
<td>28</td>
</tr>
<tr>
<td>Finance Week</td>
<td>16.0</td>
<td>8.9</td>
<td>33</td>
<td>56</td>
</tr>
<tr>
<td>Financial Mail</td>
<td>40.1</td>
<td>9.3</td>
<td>30</td>
<td>42</td>
</tr>
<tr>
<td>Financiers Line</td>
<td>17.2</td>
<td>10.1</td>
<td>34</td>
<td>9</td>
</tr>
<tr>
<td>Finesse</td>
<td>66.5</td>
<td>7.3</td>
<td>76</td>
<td>6</td>
</tr>
<tr>
<td>Gardening SA</td>
<td>41.8</td>
<td>7.3</td>
<td>57</td>
<td>22</td>
</tr>
<tr>
<td>Getaway</td>
<td>98.1</td>
<td>9.7</td>
<td>44</td>
<td>10</td>
</tr>
<tr>
<td>Gold Digest</td>
<td>16.5</td>
<td>8.5</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>House & Leisure</td>
<td>36.5</td>
<td>8.3</td>
<td>63</td>
<td>26</td>
</tr>
<tr>
<td>Huisgenoot</td>
<td>369.7</td>
<td>5.1</td>
<td>56</td>
<td>7</td>
</tr>
<tr>
<td>Joy</td>
<td>17.2</td>
<td>5.8</td>
<td>61</td>
<td>27</td>
</tr>
<tr>
<td>Kickoff</td>
<td>38.7</td>
<td>1.6</td>
<td>17</td>
<td>94</td>
</tr>
<tr>
<td>Langhorne Weekblad</td>
<td>43.0</td>
<td>6.5</td>
<td>56</td>
<td>9</td>
</tr>
<tr>
<td>Living & Loving</td>
<td>46.4</td>
<td>4.7</td>
<td>78</td>
<td>42</td>
</tr>
<tr>
<td>Longevity</td>
<td>29.0</td>
<td>9.1</td>
<td>70</td>
<td>18</td>
</tr>
<tr>
<td>Man Magnum</td>
<td>26.7</td>
<td>7.4</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>Marie Claire</td>
<td>62.7</td>
<td>6.9</td>
<td>78</td>
<td>25</td>
</tr>
<tr>
<td>Mens Health</td>
<td>78.1</td>
<td>7.3</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>PC Format</td>
<td>17.7</td>
<td>8.8</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>People</td>
<td>97.6</td>
<td>5.5</td>
<td>58</td>
<td>33</td>
</tr>
<tr>
<td>Readers Digest</td>
<td>159.2</td>
<td>4.6</td>
<td>51</td>
<td>41</td>
</tr>
<tr>
<td>Title</td>
<td>Circulation (000)</td>
<td>Median Household Income (R000)</td>
<td>Percentage of Female Readers</td>
<td>Percentage of Black Readers</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------</td>
<td>--------------------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Root Rose</td>
<td>149.1</td>
<td>5.6</td>
<td>72</td>
<td>9</td>
</tr>
<tr>
<td>Runners World</td>
<td>16.2</td>
<td>7.7</td>
<td>31</td>
<td>27</td>
</tr>
<tr>
<td>S.A. Food & Home</td>
<td>23.6</td>
<td>5.3</td>
<td>65</td>
<td>44</td>
</tr>
<tr>
<td>S.A. Garden & Home</td>
<td>92.8</td>
<td>8.5</td>
<td>64</td>
<td>17</td>
</tr>
<tr>
<td>S.A. Sports Illustrated</td>
<td>41.2</td>
<td>4.9</td>
<td>23</td>
<td>41</td>
</tr>
<tr>
<td>Satle</td>
<td>146.8</td>
<td>5.6</td>
<td>72</td>
<td>10</td>
</tr>
<tr>
<td>St.</td>
<td>20.7</td>
<td>7.3</td>
<td>36</td>
<td>21</td>
</tr>
<tr>
<td>Style</td>
<td>23.4</td>
<td>4.9</td>
<td>62</td>
<td>42</td>
</tr>
<tr>
<td>Stywe Lyne</td>
<td>35.2</td>
<td>8.0</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>Toppear</td>
<td>34.6</td>
<td>7.6</td>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>True Love</td>
<td>123.4</td>
<td>2.2</td>
<td>62</td>
<td>95</td>
</tr>
<tr>
<td>Vroueekur</td>
<td>61.0</td>
<td>5.4</td>
<td>72</td>
<td>3</td>
</tr>
<tr>
<td>Wire</td>
<td>19.9</td>
<td>8.5</td>
<td>37</td>
<td>26</td>
</tr>
<tr>
<td>Woman's Value</td>
<td>125.8</td>
<td>6.4</td>
<td>83</td>
<td>17</td>
</tr>
<tr>
<td>Y Mag</td>
<td>12.1</td>
<td>3.3</td>
<td>37</td>
<td>81</td>
</tr>
<tr>
<td>You</td>
<td>234.2</td>
<td>5.9</td>
<td>60</td>
<td>35</td>
</tr>
<tr>
<td>Your Baby</td>
<td>24.9</td>
<td>4.7</td>
<td>80</td>
<td>47</td>
</tr>
<tr>
<td>Your Family</td>
<td>80.1</td>
<td>6.0</td>
<td>78</td>
<td>24</td>
</tr>
</tbody>
</table>
Appendix 2
Technical Details of Cluster Analysis and Alternative Tree Diagrams

The first step in constructing a tree diagram or assigning magazines to clusters is the construction of a measure of distance between individual titles, and later, between clusters. The purpose of a distance measure is to distill information on a number of variables down to a single measure of difference. This measure is obviously sensitive to the constructive methods used and so it is important to be clear about exactly what steps are taken.

The formula used to calculate the distance between magazines is essentially an N-dimensional extension of Pythagoras' theorem, such that:

\[D(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \]

Where \(i \) refers to the variable, \(n \) refers to the number of variables used, and \(x \) and \(y \) refer to the score, on the relevant variable, of the magazine titles. This measure is known as Euclidean distance. There are other measures of distance\(^48\) but the Euclidean approach is most common (Statistica Electronic Manuel, 2004).

The variables (dimensions) used to calculate the distance between titles in the graph presented in the main body are age, income, education and the gender breakdown of readers. More specifically, the percentage of readers under the age of 29, the median income of households of readers, the percentage of university graduates among readers and the percentage of female readers. These variables are given equal weight, though this is a matter of specification, not necessity. Finally, the Euclidean measure of distance is sensitive to scale, which is an undesirable property in that titles might cluster together differently depending on whether the unit of measurement for household income is rands or thousands of rands. To circumvent this difficulty all variables were converted to percentile ranks. This adjustment was largely successful, however it must be noted that it makes the distance measure sensitive to sample inclusion.

The result of this effort is a table, 55 by 55, of the distances between any two magazines. The distance measure has no interpretable meaning, but can readily be used for comparative purposes. A table of selected magazines and their Euclidean distances has been included for illustrative purposes. As can be seen on the table below Finance Week is closer to Financial Mail than it is to Cosmopolitan (0.08 vs. 0.88), but it is closer to Cosmopolitan than it is to Bona (1.41). It is these bilateral Euclidean distances measures that are then used to place the magazines in clusters.

Once one starts putting magazines into clusters, it becomes necessary to address how to define the distance between clusters and when to amalgamate clusters. The method used

\(^{48}\) Including so-called city-block distance (which is merely an average distance across variables), Chebychev distance, power distance and percentage disagreement.
in this paper is to take the distance between two clusters to be the average distance of all individual pairs between two clusters, weighted to take the difference in cluster size into account. As one progressively increases the linkage distance\(^\text{49}\) more clusters join together until eventually there is only one 'megacluster'.

\[
\text{Table of Selected Euclidean Distances}
\]

<table>
<thead>
<tr>
<th></th>
<th>Bone</th>
<th>Drum</th>
<th>Elle</th>
<th>Fair Lady</th>
<th>Feminine</th>
<th>Finance</th>
<th>Finance Week</th>
<th>Financial Mail</th>
<th>Cosmopolitan</th>
<th>Marie Claire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone</td>
<td>0</td>
<td>0.13</td>
<td>0.74</td>
<td>0.69</td>
<td>0.94</td>
<td>1.11</td>
<td>1.42</td>
<td>0.73</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>Drum</td>
<td>0.13</td>
<td>0</td>
<td>0.69</td>
<td>0.72</td>
<td>0.95</td>
<td>1.4</td>
<td>1.45</td>
<td>0.67</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>Elle</td>
<td>0.74</td>
<td>0.69</td>
<td>0</td>
<td>0.46</td>
<td>0.48</td>
<td>1.06</td>
<td>1.11</td>
<td>0.21</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>Fair Lady</td>
<td>0.69</td>
<td>0.72</td>
<td>0.46</td>
<td>0.02</td>
<td>0.28</td>
<td>0.98</td>
<td>1.05</td>
<td>0.35</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>Feminine</td>
<td>0.94</td>
<td>0.95</td>
<td>0.48</td>
<td>0.28</td>
<td>0</td>
<td>0.85</td>
<td>0.91</td>
<td>0.36</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Finance</td>
<td>1.47</td>
<td>1.4</td>
<td>1.06</td>
<td>0.58</td>
<td>0.85</td>
<td>0</td>
<td>0.91</td>
<td>0.68</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>Finance Week</td>
<td>1.47</td>
<td>1.45</td>
<td>1.11</td>
<td>1.05</td>
<td>0.91</td>
<td>0.98</td>
<td>0</td>
<td>0.93</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>Financial Mail</td>
<td>0.73</td>
<td>0.7</td>
<td>0.21</td>
<td>0.36</td>
<td>0.36</td>
<td>0.88</td>
<td>0.93</td>
<td>0</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>Cosmopolitan</td>
<td>0.84</td>
<td>0.82</td>
<td>0.21</td>
<td>0.36</td>
<td>0.29</td>
<td>0.96</td>
<td>1.01</td>
<td>0.19</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

By noting the point at which specific clusters join, we can construct a tree diagram similar to the ones included in the text and presented below. Clusters that only amalgamate at relatively high linkage distances are assumed to be relatively different - more distant relatives to use the family analogy. Alternative amalgamation rules can be used. The distance between clusters, for example can be calculated on the basis of a hypothetical representative member, or centroid. The centroid is simply an average point in multidimensional space (Statistics Electronic Manual, 2004). Because the centroid of a cluster changes as clusters are joined together, amalgamation is based on joining clusters with the closest centroids one at a time rather than an absolute linkage distance (which would be non-monotonic).

As can be seen below, the centroid approach gives us a snapshot of the market that is similar in many ways to the weighted pair-group method, but is perhaps more intuitively convincing when it comes to the treatment of higher level clusters. At lower levels of amalgamation however, the picture is almost identical to the pair-group method. Finally, a cluster analysis is included that follows the same construction methods as the figure presented in the text, but which excludes age in the calculation of the distance measure. As can be seen there are slight differences. Again, the clustering at higher levels is perhaps more convincing than the figure presented in the main body of this text. The discrepancies that result from using different amalgamation rules and distance measures are not catastrophic.

\(^{49}\) The predefined Euclidean distance between two clusters at which point the clusters are joined into one larger cluster.
What is perhaps most surprising is the relative stability of the picture that emerges despite using different inputs and constructive techniques. This is reassuring.

Tree Diagram Constructed Using Centroid Method

Cluster Analysis Tree Diagram for 44 Cases

Amalgamation Method: Weighted Centroid

Distance Measure: Euclidean

Order of Amalgamation
Cluster Analysis Tree Diagram for 44 Cases

Amalgamation Method: Weighted Pair-Group Average

Distance Measure: Euclidean

Linkage Distance
Correlation Matrix of Dependent Variables

<table>
<thead>
<tr>
<th></th>
<th>CIRCULATION</th>
<th>UNIVERSITY GRADUATES</th>
<th>FEMALE READER</th>
<th>BLACK READER</th>
<th>AFRICANS</th>
<th>WHITE DUMMY</th>
<th>INCOME</th>
<th>READERS PER COPY</th>
<th>AFFORDABILITY</th>
<th>READER'S UNDER 25</th>
<th>GENDER FEMALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIRCULATION</td>
<td>1.00</td>
<td>0.38</td>
<td>0.52</td>
<td>0.29</td>
<td>0.86</td>
<td>0.85</td>
<td>0.67</td>
<td>0.40</td>
<td>0.11</td>
<td>0.23</td>
<td>0.19</td>
</tr>
<tr>
<td>UNIVERSITY GRADUATES</td>
<td>0.38</td>
<td>1.00</td>
<td>0.05</td>
<td>0.37</td>
<td>0.31</td>
<td>0.35</td>
<td>0.40</td>
<td>0.49</td>
<td>0.14</td>
<td>0.14</td>
<td>0.56</td>
</tr>
<tr>
<td>FEMALE READER</td>
<td>0.52</td>
<td>0.05</td>
<td>1.00</td>
<td>0.58</td>
<td>0.51</td>
<td>0.61</td>
<td>0.40</td>
<td>0.40</td>
<td>0.24</td>
<td>0.16</td>
<td>0.23</td>
</tr>
<tr>
<td>BLACK READER</td>
<td>0.29</td>
<td>0.37</td>
<td>0.58</td>
<td>1.00</td>
<td>0.54</td>
<td>0.78</td>
<td>0.73</td>
<td>0.64</td>
<td>0.76</td>
<td>0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>AFRICANS</td>
<td>0.86</td>
<td>0.31</td>
<td>0.51</td>
<td>0.54</td>
<td>1.00</td>
<td>0.50</td>
<td>0.60</td>
<td>0.66</td>
<td>0.42</td>
<td>0.22</td>
<td>0.20</td>
</tr>
<tr>
<td>WHITE DUMMY</td>
<td>0.84</td>
<td>0.35</td>
<td>0.61</td>
<td>0.78</td>
<td>0.50</td>
<td>1.00</td>
<td>0.56</td>
<td>0.50</td>
<td>0.22</td>
<td>0.23</td>
<td>0.44</td>
</tr>
<tr>
<td>INCOME</td>
<td>0.50</td>
<td>0.40</td>
<td>0.73</td>
<td>0.78</td>
<td>0.61</td>
<td>0.76</td>
<td>1.00</td>
<td>0.62</td>
<td>0.45</td>
<td>0.52</td>
<td>0.48</td>
</tr>
<tr>
<td>READERS PER COPY</td>
<td>0.40</td>
<td>0.11</td>
<td>0.27</td>
<td>0.22</td>
<td>0.50</td>
<td>0.66</td>
<td>0.50</td>
<td>1.00</td>
<td>0.40</td>
<td>0.20</td>
<td>0.05</td>
</tr>
<tr>
<td>AFFORDABILITY</td>
<td>0.40</td>
<td>0.16</td>
<td>0.33</td>
<td>0.42</td>
<td>0.66</td>
<td>0.56</td>
<td>0.50</td>
<td>0.45</td>
<td>1.00</td>
<td>0.62</td>
<td>0.22</td>
</tr>
<tr>
<td>READER'S UNDER 25</td>
<td>0.49</td>
<td>0.23</td>
<td>0.22</td>
<td>0.42</td>
<td>0.56</td>
<td>0.66</td>
<td>0.50</td>
<td>0.20</td>
<td>0.52</td>
<td>1.00</td>
<td>0.13</td>
</tr>
<tr>
<td>GENDER FEMALE</td>
<td>0.16</td>
<td>0.18</td>
<td>0.28</td>
<td>0.11</td>
<td>0.20</td>
<td>0.11</td>
<td>0.23</td>
<td>0.05</td>
<td>0.13</td>
<td>1.00</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Appendix 1

Analysis of Panel

<table>
<thead>
<tr>
<th>Source</th>
<th>Variation</th>
<th>Degrees of Freedom</th>
<th>Mean Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between</td>
<td>8.80040E+009</td>
<td>54</td>
<td>1.62970E+008</td>
</tr>
<tr>
<td>Residual</td>
<td>2.08907E+008</td>
<td>165</td>
<td>1.26610E+006</td>
</tr>
<tr>
<td>Total</td>
<td>1.00931E+009</td>
<td>219</td>
<td>4.41384E+007</td>
</tr>
</tbody>
</table>

Test Statistics for the Classical Model

<table>
<thead>
<tr>
<th>No.</th>
<th>Model</th>
<th>Log-Likelihood</th>
<th>Sum of Squares</th>
<th>R-Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Constant only</td>
<td>-2240.24</td>
<td>.900930D+010</td>
<td>.0000</td>
</tr>
<tr>
<td>(2)</td>
<td>Group effects only</td>
<td>-1826.18</td>
<td>.208907D+009</td>
<td>.9768</td>
</tr>
<tr>
<td>(3)</td>
<td>Ind. variables only</td>
<td>-2064.25</td>
<td>.181920D+010</td>
<td>.7980</td>
</tr>
<tr>
<td>(4)</td>
<td>Group and Ind. Variables</td>
<td>-1814.60</td>
<td>.187010D+009</td>
<td>.9792</td>
</tr>
</tbody>
</table>

Hypothesis Tests

<table>
<thead>
<tr>
<th>Model</th>
<th>Likelihood Ratio Test P-Value</th>
<th>F-Test P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) vs. (1)</td>
<td>.0000</td>
<td>.0000</td>
</tr>
<tr>
<td>(3) vs. (1)</td>
<td>.0000</td>
<td>.0000</td>
</tr>
<tr>
<td>(4) vs. (1)</td>
<td>.0000</td>
<td>.0000</td>
</tr>
<tr>
<td>(4) vs. (2)</td>
<td>.0414</td>
<td>.2569</td>
</tr>
<tr>
<td>(4) vs. (3)</td>
<td>.0000</td>
<td>.0000</td>
</tr>
</tbody>
</table>
Appendix 5

Descriptive Statistics of Data

<table>
<thead>
<tr>
<th></th>
<th>Valid N</th>
<th>Mean</th>
<th>Median</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Std.Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIRCULATION (1990)</td>
<td>230</td>
<td>64.53</td>
<td>41.08</td>
<td>10.03</td>
<td>295.37</td>
<td>63.87</td>
</tr>
<tr>
<td>UNIVERSITY</td>
<td>230</td>
<td>11.9</td>
<td>8.88</td>
<td>0.98</td>
<td>29.17</td>
<td>5.6</td>
</tr>
<tr>
<td>FEMALE</td>
<td>230</td>
<td>30.1</td>
<td>26.01</td>
<td>13.04</td>
<td>84.08</td>
<td>21.44</td>
</tr>
<tr>
<td>BLACK</td>
<td>230</td>
<td>31.31</td>
<td>26.5</td>
<td>1.64</td>
<td>88.46</td>
<td>23.6</td>
</tr>
<tr>
<td>AFRICANS</td>
<td>220</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.35</td>
</tr>
<tr>
<td>WEEKDAYS</td>
<td>220</td>
<td>0.18</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.38</td>
</tr>
<tr>
<td>ADVERTISING RATE</td>
<td>220</td>
<td>15.66</td>
<td>13.90</td>
<td>40.02</td>
<td>374.09</td>
<td>64.13</td>
</tr>
<tr>
<td>MONTHLY MEDIAN INCOME (R000)</td>
<td>220</td>
<td>6.52</td>
<td>6.54</td>
<td>1.22</td>
<td>10.03</td>
<td>2.1</td>
</tr>
<tr>
<td>READERS PER COPY</td>
<td>229</td>
<td>0.1</td>
<td>0.1</td>
<td>2.72</td>
<td>40.64</td>
<td>5.81</td>
</tr>
<tr>
<td>AFFORD. ABILITY</td>
<td>229</td>
<td>532</td>
<td>536</td>
<td>186</td>
<td>1724</td>
<td>213</td>
</tr>
<tr>
<td>GENDER HOMOGENEITY</td>
<td>229</td>
<td>59.14</td>
<td>57.22</td>
<td>50.96</td>
<td>77.32</td>
<td>7.60</td>
</tr>
</tbody>
</table>
References

of Chicago Press.

www.statsoft.com

