The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
EMPIRICAL EVALUATION OF THE EFFECTIVENESS OF
SOUTH AFRICA’S MARINE PROTECTED AREA NETWORK
IN REPRESENTING FISH COMMUNITIES

by

Sofía Solano Fernández

Supervisor: A/Prof. Colin Attwood

DST/NRF Centre of Excellence at the
Percy FitzPatrick Institute of African Ornithology
University of Cape Town
Rondebosch,
South Africa 7701

Submitted in partial fulfilment of the requirements for the degree of
Master of Science in Conservation Biology

February 2011
I know the meaning of plagiarism and declare that all the work in the dissertation, save for that which is properly acknowledged, is my own.

Table of Contents

Acknowledgements .. 4
Abstract ... 5

Chapter I:
General introduction to marine conservation planning in South Africa 6

Chapter II:
Empirical evaluation of the effectiveness of South Africa’s Marine Protected Area network in representing fish communities

Introduction ... 15
Methods .. 18
Results .. 26
Discussion ... 46

Chapter III: Synthesis and Conclusions 53
Appendices ... 55
References .. 60
ACKNOWLEDGEMENTS

I am extremely thankful to my supervisor A/Prof. Colin Attwood for his incredible patience, guidance and advice, particularly for sharing his passion for marine conservation with me.

I am grateful to the Consejo Nacional de Ciencia y Tecnología (CONICIT) in Costa Rica, for funding part of my Masters degree at the University of Cape Town.

I would like to thank the many data providers, without their data this study would not have been possible. I also want to thank Sean Fennessy (ORI), Bruce Mann (ORI) Micheal Schleyer (ORI), Camilla Floros (ORI), Malcolm Smale (Bayworld, PE Museum), Albrecht Götz (SAEON), Steve Lamberth (DAFF), Barry Clark (Anchor Environmental) and Russel Chalmers (DIFS, Rhodes University) for making their data available.

I would also like to thank my family for their emotional and economic support throughout my studies, and for their love and encouragement despite the distance.

I would like to give special thanks to Rheinhardt Scholtz and his family for helping me in every possible way throughout this Masters. I am also grateful to all my friends in Costa Rica, as well as my fellow CB classmates who became my family here in South Africa.

Last but not least, I would like to thank my course lecturers and the staff at the Percy FitzPatrick Institute, especially Margaret Koopman for her assistance.
ABSTRACT

The World Summit 2002 on Sustainable Development (WSSD) as well as the IUCN’s fifth World Parks Congress recommended the establishment of a representative network of marine protected areas by 2012. South Africa as a signatory Party is expected to comply with these recommendations. Previous studies have assessed the representation of fish species throughout South Africa’s MPA network. However, none of these studies considered quantitative survey data. In this study, fish community structure as sampled by shore angling, trawling, boat-based line-fishing and seine netting (in estuaries), was compared across the EEZ of South Africa, including sites in designated MPAs. Multivariate statistics were used to assess the extent to which MPAs represent the full range of fish communities in South African waters. Results show there is an increase in fish diversity from west to east along the South African coast. Three major biogeographic zones were described based on fish communities; the West Coast, South Coast together with the East Coast and the north East Coast. South African MPAs currently collectively represent less than 50 percent of the fish community structure as measured by fourth root transformed Bray-Curtis similarity. The percentage of representativeness in MPAs of the fish communities sampled by each fishing technique was as follows: 44 percent of the communities sampled by shore angling, 41 percent of the communities sampled by boat based line-fishing, nine percent of estuarine communities sampled by seine netting and four percent of the communities sampled by trawling. The West Coast fish communities had the lowest level of representation in MPAs. Estuarine protection is also very low in South Africa. Testing for representativeness through quantitative, multi-gear data seems be more appropriate, since that it is based on discrete sampling methods, it allows for repetition and it gives a quantitative measure to representativity.
CHAPTER I

General introduction to marine conservation planning in South Africa

A review of the state of the marine fishery resources by the Fisheries and Aquaculture Department of the Food and Agriculture Organization of the United Nations (FAO) in 2007 estimated that 19 percent of the world’s fish stocks were overexploited and nine percent were depleted or in the process of recovery from depletion; 52 percent were fully exploited, thus close to their maximum sustainable limits. According to the FAO at least 548 marine species groups are exploited globally (FAO 2005). In 2006, global marine capture (includes all fishing types) was 81.9 million tons, in addition marine aquaculture production added up to 20.1 million tons (FAO 2008). The review concluded that of the world’s fish stocks, for which information was available, 80 percent were fully exploited or overexploited (FAO 2008). It is clear that over-exploitation has become the greatest threat to the oceans’ ecosystems and it has been recognized by many authors as a major issue which has to be dealt with as soon as possible (Attwood et al. 1997a; Attwood et al. 1997b; Crain et al. 2009; Dee Boersma & Parrish 1999; Hockey & Branch 1997; Jackson et al. 2001; Pauly et al. 2002; Rosenberg 2003; Sumaila et al. 2000).

There is a high degree of trophic connectivity between organisms in the marine environment. Most fisheries target larger individuals due to their economic value, thus removing high trophic level organisms, consequently altering the structure of the food web, causing increases of some species and potential decline in others (Bascompte et al. 2005; Law 2000). Removing a large amount of top predators from the food chain is not the only alteration that fishing causes to the oceans’ ecosystems, there is also habitat transformation that accompanies certain fishing practices, which changes the ecosystems’ structure and functioning (Auster et al. 1996; Collie et al. 2000; Crain et al. 2009; Pauly et al. 2002). The
various kinds of fishing techniques have different effects on the ecosystems, some more
damaging than others, but all of them one way or another modify natural ecosystems
(Auster et al. 1996; Collie et al. 2000; Dee Boersma & Parrish 1999; Kura et al. 2004;
Sumaila et al. 2000). For example, bottom trawling has been reported to have negative
effects on benthic communities, such as decreasing diversity, density and abundance of
benthic fauna, changing the physical habitat structure, usually by reducing complexity, as
well as causing changes in community composition (Jennings et al. 2001; Thrush & Dayton
2002; Watling & Norse 1998). Fishing can also have an impact on the evolution of
phenotypic traits, such as growth and maturation in fish, due to directional selection (Law
2000).

Fishing however, is not the only threat. Coastal development also poses a great threat to the
world’s oceans; with coastal populations growing, the pressure on the marine environment
increases (Crain et al. 2009; Griffis & Kimball 1996). Draining of coastal wetlands,
exploitation and destruction of mangroves, pollution, and in general habitat loss or
degradation have put many coastal ecosystems in great danger (Crain et al. 2009; Whitfield
1999). High levels of tourism can also deteriorate the ecosystems, for example intensive
diving and its related activities has been shown to have significant ecological impacts on
coral reefs (Harriott et al. 1997; Zakai & Chadwick-Furman 2002). In addition, as
development continues, pollution becomes harder to control. There are many point sources
of pollution, which deposit chemical and biological pollutants into the ocean. A few
examples are sewage waste, heavy metals, chemicals used for agriculture and oils (Dee
Boersma & Parrish 1999; Williams 1996). The worlds’ oceans are also affected by regional
and global pollutants which are very difficult to control due to their distant origin (Dee
Boersma & Parrish 1999). Various mining practices have been found to have a large impact
on the marine environments, causing deterioration of the environment, as well as mortality
of sensitive species and other ecological effects (Castilla & Nealler 1978; Correa et al. 1999).

Marine alien invasive species can also be added to the factors that place the marine ecosystems at high risk (Molnar et al. 2008). They can compete with local communities, or potentially introduce diseases, thus diminishing the resilience of those local communities, making them more susceptible to other environmental disturbance (Bax et al. 2003). With an increasing amount of trade and tourism around the globe, the number of alien species that can potentially be introduced, for example via ship ballast water, is growing, and so does the risk of them establishing and altering the natural functioning of the ecosystems (Bax et al. 2003). In addition, aquaculture practices places marine ecosystems under immense pressure. It has been shown that organic matter from aquaculture farms can alter the conditions on the sea bed, such as the oxygen and nutrient availability, causing a decrease in benthic diversity. The creation of fish-farms has also resulted in destruction of important coastal habitats (Tovar et al. 2000; Wu 1995; Wu et al. 1994).

One approach to marine conservation that has grown in popularity is the creation of Marine Protected Areas (MPAs). The use of MPAs has been recommended by several conservation organizations as a conservation and management tool for marine ecosystems. The International Union for Conservation of Nature (IUCN) defines an MPA as ‘any area of intertidal or sub tidal terrain, together with its overlying water and associated flora, fauna, historical, and cultural features, which has been reserved by law or other effective means to protect part or all of the enclosed environment’ (Kelleher & Kenchington 1992). There is a high degree of variation among MPAs, they can differ in the types and levels of protection, management goals and objectives, size and public support, among many others (Lubchenco et al. 2003; Palumbi 2001). Palumbi (2001) recognizes three broad kinds of MPAs: those designed to enhance fisheries, those that focus on maintaining biological diversity within the
marine ecosystems, and “special-feature” MPAs, which aim to conserve specific areas important for certain life history stages or for cultural reasons. MPAs can be categorized according to the IUCN’s categories described in the *Guidelines for Protected Area Management Categories* (IUCN 1994) (Table 1). Not every MPA fits exactly within a category, however, the categories can be applied generally and can help clarify the objectives of the MPAs (Dudley 2008; Kelleher & Recchia 1998).

According to Hockey and Branch (1997), MPAs have three main functions: protection of the ecosystems, fisheries management, in order to improve stock status in adjacent areas, and utilization by humans which do not compromise the conservation objectives. Kelleher (1999) recognizes two main reasons to declare an MPA: for the protection of habitat and biodiversity and to sustain viable fisheries. Attwood *et al.* (1997a) argue that MPAs are key for the preservation of diverse and functional ecosystems, by excluding development from representative areas and by managing the utilization of sensitive habitats. However, as Kelleher (1999) and Lubchenco et. al. (2003) stress, MPAs should be used in conjunction with integrated management regimes, in order to successfully conserve the marine ecosystems.

There are approximately 5 000 MPAs around the world, covering about 2.58 million km² of the world’s oceans, which amounts to 0.717 percent of the oceans. The number of MPAs continues to grow around the globe. However, only 0.08 percent of the world’s ocean area is within ‘no-take’ areas. In addition, the existing MPAs are not evenly distributed across regions and their distribution is biased towards coastal areas (Laffoley et al. 2008; Spalding et al. 2008; Wood et al. 2008). Spalding et al. (2008) found that more than half of the world’s 232 ocean ecoregions (according to the biogeographic classification for the world’s coastal and shelf areas by Spalding *et al.* (2007)), contain less than 1 percent of their area under protection with MPAs.
The South African network of MPAs consists of 22 gazetted MPAs with different types of management including ‘no-take’ areas, as well as areas in which certain kinds of extraction and uses are permitted (Lombard et al. 2004). The marine component of the National Spatial Biodiversity Assessment by Lombard et al. (2004) presented a spatial evaluation of the existing MPAs in South Africa. The results showed that of the total surface area within the exclusive economic zone (EEZ), which covers an area of 1,071,883 km2, only 0.16 percent falls into ‘no take’ MPAs, 0.23 percent is under other types of MPAs and 98.65 percent is not under protection by an MPA. The South African coastline is 3,650 km long, of which 23 percent is under MPAs; however, only nine percent of this is ‘no-take’ MPAs (Lombard et al. 2004).

At the Conference of the Parties to The Convention on Biological Diversity’s (CBD) sixth meeting in April 2002 in The Hague, Netherlands, of which South Africa is a signatory Party, a target was set to have “at least 10 per cent of each of the world’s ecological regions effectively conserved”, in order to achieve the objective to reduce the rate of biodiversity loss by 2010. This suggests an increase in ecological regions represented in protected areas, as well as improving the effectiveness of existing protected areas (CBD 2002). The World Summit on Sustainable Development (WSSD), convened by the United Nations (UN) in Johannesburg, South Africa, in August-September 2002, recognized the need to promote conservation and management of the ocean’s biodiversity and to maintain their productivity. In order to achieve this, they recommend the “establishment of marine protected areas consistent with international law and based on scientific information, including representative networks by 2012” (UN 2002). In addition, the IUCN’s fifth World Parks Congress held in Durban, South Africa, in September 2003, as part of the recommendations, following the targets set by the WSSD, called for the establishment by 2012 of “a global system of effectively managed, representative networks of marine and coastal protected
areas, consistent with international law and based on scientific information... these networks should be extensive and include strictly protected areas that amount to at least 20-30 percent of each habitat” (IUCN 2003). South Africa is expected to comply with these recommendations, thus there is a need to monitor and evaluate the effectiveness of the MPA network in terms of conserving the country’s marine biodiversity, as well as looking at future directions to achieve those targets.

South Africa’s national legislation follows the international agreements for which the country is a signatory party. Chapter one of the National Environmental Management: Biodiversity Act 57 of 2003, which applies to the sea as well by the Protected Areas Amendment’s insertion of section 14 in Act 57 of 2003, has as an objective ‘to provide for a representative network of protected areas in state land, private land and communal land’. Additionally, the National Environmental Management: Biodiversity Act 10 of 2004 calls for the development of a National Biodiversity Framework, which must ‘identify priority areas for conservation action and the establishment of protected areas’.

The term representative is used in most of the agreements mentioned before; however, no clear definition is given for its use in official documents. What is really meant by representative networks, and how do we assess if they are in fact representative? According to the Conference of the Parties to the Convention on Biological Diversity’s ninth meeting, ‘representativeness is captured in a network when it consists of areas representing the different biogeographical subdivisions of the global oceans and regional seas that reasonably reflect the full range of ecosystems, including the biotic and habitat diversity of those marine ecosystems’ (CBD 2008). However, in practice things are not that simple. There is a lack of practical ways of measuring the ecosystem, biotic and habitat diversity outside and within MPAs. Thus, the problem remains as to how we measure representativity in an MPA network, in order to meet the conservation targets. Should we measure the amount of
bioregions present in MPAs? Or should we look at the different habitats they protect? Or should we be looking at species composition in our MPA networks?

There have been several approaches to address the issue of measuring representativity and assessing the state of South Africa’s MPA network. According to a survey by Attwood et al. (1997b), fish species, including economically and ecologically important species, were well represented in South Africa’s MPAs. However, in many cases the populations were in critical state according to the managers, which suggested poor or ineffective protection. The authors mention as an important finding that the knowledge of biota in MPAs at the time was poor. The survey was based on expert opinion, not on a set of comprehensive field surveys, thus, the authors considered the species information to be only a “rough guide”.

Hockey and Branch (1997) defined the objectives to be achieved by MPAs in South Africa, and they also described a methodology, which they named COMPARE (Criteria and Objectives for Marine Protected Area Evaluation), to be applied to South Africa’s existing and proposed MPAs. This methodology was designed to evaluate and determine how well, and if, MPAs are achieving or could potentially achieve their objectives (Hockey & Branch 1997).

Turpie et al. (2000) used existing fish distribution data in an approach to identify and select priority areas for conservation of South Africa’s coastal fish diversity. Using fish distribution ranges they included presence/absence data of 1239 fish species in 50-52 km long sections around the South African coastline. The study examined and compared different approaches to select MPAs in South Africa in order to conserve coastal fish diversity. While discussing the ‘complementing existing protected areas’ approach, the authors suggest that South Africa’s coastal fish diversity is not fully represented in the existing MPAs. In this regard, the report concludes that to achieve full representation of fish species, conservation actions needed to be applied in several areas such as Port Elizabeth,
the Transkei and the west coast of South Africa (Turpie et al. 2000). However, the
distribution data used from Smith and Heemstra (1986) is unclear regarding the collection of
the records, sources and assumptions. Due to the fact that the data were not obtained
through surveys, it is biased against the absent species. Finally big assumptions were made
regarding the presence and abundance of fish species along the entire distribution range. As
part of their conclusions, Turpie et al. (2002) state that ‘ground-truthing’ is required to make
sure the protected areas can achieve their objectives and conserve the species that they are
theoretically supposed to protect”.

The marine component of the National Spatial Biodiversity Assessment prepared by
Lombard et al. (2004) included Turpie et al.’s (2000) fish distribution data for their species
analyses, in order to perform gap analyses and to report their conservation status. The
results, which should be considered as preliminary according to the authors, showed that 98
percent of the fish species that were included in the analyses fell within MPAs. However, as
mentioned in the report, these results do not suggest that those fish species are adequately
protected or that they are in viable populations. In the assessment, South Africa’s EEZ was
divided into bioregions based on large-scale biological variability and habitat differences, as
well as biogeography, and it was found that the existing MPAs are not well distributed
among bioregions. The authors concluded that South Africa’s marine biodiversity is not
fully represented in its MPA network (Lombard et al. 2004). Regarding fish species, this
assessment has similar limitations as Turpie et al. (2000), since many assumptions had to be
made concerning fish distributions and open ocean fish species were not considered. Thus,
there is a need for actual survey data analyses to confirm that the fish species are indeed
present and represented in South Africa’s MPAs (Lombard et al. 2004).

In order to evaluate how representative South Africa’s MPA network is and how, or if, the
global targets are being met, every aspect needs to be considered; including habitats and
bioregions, as well as species and communities. Previous studies have assessed the presence of fish species and their representation throughout South Africa’s MPA network; however, none of these studies considered actual survey data. No one survey can accurately measure the entire species composition in a particular part of the ocean. Different kinds of fishing gear and techniques target specific areas and fish sizes, thus generally catching different species of fish. Among the fishing gears utilized in South Africa, for which survey data exist, are trawling, shore angling, boat based line-fishing, and seine netting. Existing quantitative data sets of fish species can be from scientific or monitoring surveys, as well as from commercial fishing. In this study we aim to look at the value of multigear quantitative data sets of fish abundance to examine how well South Africa’s fish communities are represented in its MPA network.

Table 1. IUCN protected area management categories (IUCN 1994).

<table>
<thead>
<tr>
<th>Category I A: Strict Nature Reserve</th>
<th>protected area managed mainly for science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category I B: Wilderness Area</td>
<td>protected area managed mainly for wilderness protection</td>
</tr>
<tr>
<td>Category II: National Park</td>
<td>protected area managed mainly for ecosystem protection and recreation</td>
</tr>
<tr>
<td>Category III: Natural Monument</td>
<td>Protected area managed mainly for conservation of specific natural features</td>
</tr>
<tr>
<td>Category IV: Habitat/Species Management Area</td>
<td>Protected area managed mainly for conservation through management intervention</td>
</tr>
<tr>
<td>Category V: Protected Landscape/Seascape</td>
<td>Protected area managed mainly for landscape/seascape conservation and recreation</td>
</tr>
<tr>
<td>Category VI: Managed Resource Protected Area</td>
<td>Protected area managed mainly for the sustainable use of natural ecosystems</td>
</tr>
</tbody>
</table>
CHAPTER II

Empirical evaluation of the effectiveness of South Africa’s Marine Protected Area network in representing fish communities

INTRODUCTION

Threats such as over-exploitation, coastal development, pollution, mining, marine alien invasive species and aquaculture are placing the world’s oceans at great risk (Auster et al. 1996; Bascompte et al. 2005; Bax et al. 2003; Collie et al. 2000; Correa et al. 1999; Dee Boersma & Parrish 1999; Kura et al. 2004; Law 2000; Molnar et al. 2008; Sumaila et al. 2000; Tovar et al. 2000; Whitfield 1999; Williams 1996; Wu 1995; Wu et al. 1994). According to the Food and Agriculture Organization (FAO) eighty percent of the world’s fish stocks are fully exploited or overexploited (FAO 2008). These issues have been addressed by many researchers in search for possible solutions (Attwood et al. 1997a; Attwood et al. 1997b; Crain et al. 2009; FAO 2008; Hockey & Branch 1997; Lombard et al. 2004; Pauly et al. 2002).

One recommended approach to marine conservation and management has been the implementation of Marine Protected Areas (MPAs). An MPA is defined by the International Union for Conservation of Nature (IUCN) as ‘any area of intertidal or sub tidal terrain, together with its overlying water and associated flora, fauna, historical, and cultural features, which has been reserved by law or other effective means to protect part or all of the enclosed environment’ (Kelleher & Kenchington 1992). Among others, MPAs can differ in their levels of protection, objectives, size and management (Lubchenco et al. 2003; Palumbi 2001). MPAs have been designed mainly for the protection of marine ecosystems; however, some have also been implemented for fisheries management (Attwood et al. 1997a; Hockey & Branch 1997; Kelleher 1999). Nevertheless, in order to conserve marine biodiversity
successfully, MPAs should be part of an integrated management approach (Kelleher 1999; Lubchenco et al. 2003).

South Africa’s MPA network consists of 22 Gazetted MPAs which includes ‘no-take’ areas, as well as areas that allow certain kinds of extraction (fig 1). These MPAs cover 0.35 percent of the 1 071 883 km2 of exclusive economic zone (EEZ), and 0.23 percent of the 3 650 km long coastline. Conversely, 98.65 percent of the EEZ and 77 percent of the coastline remains unprotected (Lombard et al. 2004). Whereas there is broad agreement that protection should be extended to more areas, the location of new protected areas is contentious.

International conventions, to which South Africa is a signatory Party, have set several targets to increase the protection of marine ecosystems. The World Summit 2002 on Sustainable Development (WSSD) as well as the IUCN’s fifth World Parks Congress, recommended the establishment by 2012 of a representative network of marine protected areas, which should be consistent with international law and based on scientific information (IUCN 2003; UN 2002). ‘Representativeness is captured in a network when it consists of areas representing the different biogeographical subdivisions of the global oceans and regional seas that reasonably reflect the full range of ecosystems, including the biotic and habitat diversity of those marine ecosystems’ according to the Conference of the Parties to the Convention on Biological Diversity’s ninth meeting (CBD 2008). In addition, South Africa’s national legislation through chapter one of the National Environmental Management: Biodiversity Act 57 of 2003, which applies to the sea as well by the Protected Areas Amendment’s insertion of section 14 in Act 57 of 2003, provides for ‘a representative network of protected areas in state land, private land and communal land’. Furthermore the National Environmental Management: Biodiversity Act 10 of 2004 calls for the identification of priority areas for conservation action and the establishment of protected
areas. The problem lies in how to measure representativity in an MPA network, as well as which features should be measured in order to meet the conservation targets.

One of the recent approaches to measure representativity and identify priority areas for conservation of marine biodiversity in South Africa, is the study by Turpie et al. (2000). The data source for this study was the comprehensive book on Southern Africa’s marine fishes, Smith’s sea fishes (Smith & Heemstra 1986). This book lists the end points of distribution of each species. This information in turn was derived from a variety of sources accumulated over long periods by several specialists. Turpie et al. (2000) used the fish distribution data as presence/absence of the species in 50-52 km long sections around the South African coastline, and compared different approaches for MPA selection for the conservation of coastal fish diversity.

A more recent approach to measure representativity in South Africa’s MPA network was the marine component of the National Spatial Biodiversity Assessment prepared by Lombard et al. (2004). The same fish species distribution data as Turpie et al.’s (2000) study used was included in this study; but it was augmented by several other sources of biological and geological information. Lombard et al.’s (2004) analysis provided a solution of MPAs on presence/absence data as well as broad habitat and biogeographic zonation. Neither study was based on community structure data, as such information was neither widely available nor standardised (Lombard et al. 2004; Turpie et al. 2000).

The objectives of this research were to identify the different fish communities in South Africa as measured by the relative abundance of each species. Given that marine fish are widely distributed by marine currents during the egg and larval stages, fish may settle and be detected in marginal or sub-optimal habitats. Whereas, the use of actual frequencies should give a better indication of community types.
The problem encountered in measuring community structure among fish species is that no method gives an accurate representation. All of the sampling methods are biased. In this study I examine community structure as sampled by shore-angling, trawling, boat-based line-fishing and seine-netting (in estuaries) and measure the similarities in community structures among areas throughout South Africa’s EEZ. In addition the study intended to examine fish communities in MPAs, in order to assess the extent to which they represent the full range of fish communities in South African waters. Finally this study aimed to look at the value of multigear quantitative data sets of fish abundance for MPA network representativity evaluations.

METHODS

Data sources

Species composition data from different sites around exclusive economic zone (EEZ) of South Africa were used for this study. These data were collected through different types of fishing techniques. Four different fishing methods were used, namely, shore-angling, boat-based line-fishing, seine-netting (for estuaries) and trawling. Data were obtained from surveys of recreational and commercial fishing records, and scientific surveys (fisheries independent data). A brief description of the data’s source, area, methods of collection, fishing type and sample size per area is given in table 2. The MPAs for which data were available per sampling method are presented in table 3, as well as the total area protected by each MPA.
Figure 1. Map showing the location of South Africa’s MPAs.
<table>
<thead>
<tr>
<th>Source</th>
<th>Year</th>
<th>Description</th>
<th>Area</th>
<th>Sample size (N)*</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Götz A unpublished data (SAEON)</td>
<td>2006-2008</td>
<td>Boat-based line-fishing survey</td>
<td>Woody Cape</td>
<td>1235</td>
<td>Standardised angling survey</td>
</tr>
<tr>
<td>(Mann et al. 2006)</td>
<td>2006-2008</td>
<td>Boat-based line-fishing survey</td>
<td>Mtentu</td>
<td>596</td>
<td>Standardised angling survey</td>
</tr>
<tr>
<td>(Mann et al. 2006)</td>
<td>2006-2008</td>
<td>Boat-based line-fishing survey</td>
<td>Mkambati</td>
<td>395</td>
<td>Standardised angling survey</td>
</tr>
<tr>
<td>(Mann et al. 2006)</td>
<td>2006-2008</td>
<td>Boat-based line-fishing survey</td>
<td>Casino</td>
<td>260</td>
<td>Standardised angling survey</td>
</tr>
<tr>
<td>NMLS*</td>
<td>2000-2008</td>
<td>Boat-based line-fishing commercial</td>
<td>Bettys Bay</td>
<td>354 799</td>
<td>Commercial catch return</td>
</tr>
<tr>
<td>NMLS</td>
<td>2000-2008</td>
<td>Boat-based line-fishing commercial</td>
<td>Western Cape</td>
<td>9 608 722</td>
<td>Commercial catch return</td>
</tr>
<tr>
<td>NMLS</td>
<td>2000-2008</td>
<td>Boat-based line-fishing commercial</td>
<td>Southern Cape</td>
<td>170 780</td>
<td>Commercial catch return</td>
</tr>
<tr>
<td>NMLS</td>
<td>2000-2008</td>
<td>Boat-based line-fishing commercial</td>
<td>KwaZulu Natal</td>
<td>755 251</td>
<td>Commercial catch return</td>
</tr>
<tr>
<td>(Fennessy et al. 2003)</td>
<td>1997-1999</td>
<td>Boat-based line-fishing survey</td>
<td>Northern Transkei (recreational and commercial)</td>
<td>7 783</td>
<td>Access point survey and Roving creel survey</td>
</tr>
<tr>
<td>(Fennessy et al. 2003)</td>
<td>1997-1999</td>
<td>Boat-based line-fishing survey</td>
<td>Southern Transkei (recreational and commercial)</td>
<td>739</td>
<td>Access point survey and Roving creel survey</td>
</tr>
<tr>
<td>NMLS</td>
<td>2000-2008</td>
<td>Boat-based line-fishing commercial</td>
<td>Struisbaai</td>
<td>11 281 450</td>
<td>Commercial catch return</td>
</tr>
<tr>
<td>(Harrison et al. 2000)</td>
<td>1993-1999</td>
<td>CSIR estuarine survey</td>
<td>South Africa</td>
<td>274 492</td>
<td>Seine net surveys</td>
</tr>
<tr>
<td>Attwood unpublished survey data</td>
<td>2005-2008</td>
<td>Shore-angling recreational fishing</td>
<td>Langebaan</td>
<td>2 461</td>
<td>Roving creel survey</td>
</tr>
<tr>
<td>(Hutchings et al. 2008)</td>
<td>2002-2005</td>
<td>Shore-angling recreational fishing</td>
<td>Berg River</td>
<td>2 839</td>
<td>Roving creel survey</td>
</tr>
<tr>
<td>Lamberth, S unpublished data</td>
<td>2004-2005</td>
<td>Shore-angling recreational fishing</td>
<td>Breeder River</td>
<td>575</td>
<td>Roving creel survey</td>
</tr>
<tr>
<td>(Pradervand et al. 2003)</td>
<td>2000</td>
<td>Shore-angling recreational fishing</td>
<td>Durban Bay</td>
<td>740</td>
<td>Roving creel survey</td>
</tr>
<tr>
<td>(Pradervand et al. 2003)</td>
<td>2000</td>
<td>Shore-angling recreational fishing</td>
<td>Mgeni River</td>
<td>255</td>
<td>Roving creel survey</td>
</tr>
<tr>
<td>Source</td>
<td>Year</td>
<td>Description</td>
<td>Area</td>
<td>Sample size (N)*</td>
<td>Methods</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>--</td>
<td>-------------------</td>
<td>------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>(Brouwer et al. 1997)</td>
<td>1994-1996</td>
<td>Shore-angling recreational fishing</td>
<td>South Coast</td>
<td>94</td>
<td>Roving creel survey</td>
</tr>
<tr>
<td>(Brouwer et al. 1997)</td>
<td>1994-1996</td>
<td>Shore-angling recreational fishing</td>
<td>West Coast</td>
<td>100</td>
<td>Roving creel survey</td>
</tr>
<tr>
<td>(Mann et al. 2002)</td>
<td>1986-1999</td>
<td>Shore-angling recreational fishing</td>
<td>St Lucia estuary</td>
<td>163 089</td>
<td>Commercial catch return</td>
</tr>
<tr>
<td>(Beckley et al. 2008)</td>
<td>2001-2002</td>
<td>Shore-angling recreational fishing</td>
<td>Richards Bay</td>
<td>1 298</td>
<td>Roving creel survey</td>
</tr>
<tr>
<td>Tintlet, S. 2005-2008</td>
<td></td>
<td>Shore-angling recreational fishing</td>
<td>Table Mountain</td>
<td>294</td>
<td>Roving creel survey</td>
</tr>
<tr>
<td>(Mann et al. 2003)</td>
<td>1997-1998</td>
<td>Shore-angling recreational fishing</td>
<td>TransKei</td>
<td>657</td>
<td>Roving creel survey</td>
</tr>
<tr>
<td>(Coetzee et al. 1989)</td>
<td>1978-1982</td>
<td>Shore-angling recreational fishing</td>
<td>East Coast</td>
<td>4 381</td>
<td>Roving creel survey</td>
</tr>
<tr>
<td>Mann, B. Q. unpublished data (ORI°)</td>
<td></td>
<td>Shore-angling survey</td>
<td>St Lucia</td>
<td>6 279</td>
<td>Standardised angling survey</td>
</tr>
<tr>
<td>Mann, B. Q. unpublished data</td>
<td></td>
<td>Shore-angling survey</td>
<td>Pondoland</td>
<td>1 486</td>
<td>Standardised angling survey</td>
</tr>
<tr>
<td>(Bennett & Attwood 1993)</td>
<td></td>
<td>Shore-angling survey</td>
<td>De Hoop</td>
<td>55 662</td>
<td>Standardised angling survey</td>
</tr>
<tr>
<td>(Pradervand & Hiseman 2006)</td>
<td>1993-2003</td>
<td>Shore-angling survey</td>
<td>Goukamma</td>
<td>5 644</td>
<td>Roving creel survey</td>
</tr>
<tr>
<td>Götz A unpublished data (SAEON)</td>
<td>1998-2005</td>
<td>Shore-angling survey</td>
<td>Tsitsikama</td>
<td>10 042</td>
<td>Standardised angling survey</td>
</tr>
<tr>
<td>Götz A unpublished data (SAEON)</td>
<td>2006-2008</td>
<td>Shore-angling survey</td>
<td>Woody Cape</td>
<td>1142</td>
<td>Standardised angling survey</td>
</tr>
<tr>
<td>(Clarke & Buxton 1989)</td>
<td>1985-1986</td>
<td>Shore-angling survey</td>
<td>Port Elizabeth</td>
<td>1187</td>
<td>Roving creel survey</td>
</tr>
<tr>
<td>(Wallace et al. 1984)</td>
<td>1980</td>
<td>Trawl survey</td>
<td>Cape South Coast</td>
<td>113 181</td>
<td>Inshore trawl survey</td>
</tr>
<tr>
<td>DAFF South Coast Trawl Survey</td>
<td>1987-2007</td>
<td>Trawl survey</td>
<td>South Coast inshore</td>
<td>2 330 129</td>
<td>Inshore trawl survey</td>
</tr>
<tr>
<td>Offshore resources observer program</td>
<td>2002-2006</td>
<td>Trawl commercial observer</td>
<td>West Coast/South Coast offshore</td>
<td>2 334 198</td>
<td>Ship based observer data</td>
</tr>
<tr>
<td>DAFF, South Coast Trawl Survey</td>
<td>1987-2007</td>
<td>Trawl survey</td>
<td>Tsitsikama</td>
<td>5 405</td>
<td>Inshore trawl survey</td>
</tr>
<tr>
<td>DAFF, South Coast Trawl Survey</td>
<td>1987-2007</td>
<td>Trawl survey</td>
<td>De Hoop</td>
<td>28 772</td>
<td>Inshore trawl survey</td>
</tr>
<tr>
<td>ORI</td>
<td>2003-2006</td>
<td>Trawl commercial observer</td>
<td>KwaZulu Natal</td>
<td>930 590</td>
<td>Prawn trawl survey</td>
</tr>
</tbody>
</table>

* When the sample size was obtained by weight, the assumption of one kilogram per fish was made.
† Department of Agriculture Forestry and Fisheries
‡ South African Environmental Observation Network
∆ National Marine Line-fish System
° Oceanographic Research institute
□ Council for Scientific and Industrial Research
Table 3. List of MPAs for which data were available for each sampling method.

<table>
<thead>
<tr>
<th>MPA</th>
<th>Area (Km²)</th>
<th>Shore-angling</th>
<th>Boat-based line-fishing</th>
<th>Trawling</th>
<th>Estuarine seine-netting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langebaan Lagoon</td>
<td>47.16</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table Mountain National Park</td>
<td>953.2</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betty's Bay</td>
<td>12.1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>De Hoop</td>
<td>288.9</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stilbaai</td>
<td>33.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goukamma</td>
<td>33.97</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tsitsikama National Park</td>
<td>323</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Bird Island</td>
<td>70.38</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Pondoland</td>
<td>1 238</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>St Lucia</td>
<td>414</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East London closed areas*</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

* Only shore-angling is allowed in these areas, however these sites are not declared MPAs. The areas extend three nautical miles seawards from the high-water mark and are located: between Nahoon Point and Gonubie Point, between Christmas Rock and Gxulu River and between Nyara River and Great Kei River (fig 1).

Shore-angling

Shore-angling involves the capture of fish from a shore stance with a rod and reel. A baited hook on a single line is cast into the surf or estuary. Shore-angling is practiced by recreational and subsistence fishers. Shore-angling recreational fishing data are usually collected through interviews with the fishermen and either by access point surveys or roving creel census (Pollock et al. 1994). Data are also collected by scientists through standardized shore-angling surveys. Shore-angling data were obtained at 29 sites (Appendix 1).

Boat-based line-fishing

Boat-based line-fishing is a technique in which a single line with a baited hook, usually hand held or operated by means of a rod and reel is used to catch fish. It can be used from a moving or stationary boat. This technique is used by commercial or recreational fishers who operate mostly in coastal waters. Two sets of data are available. The first constitutes line-fishing surveys and surveys of fishermen’s catches. The second constitutes the monthly
records submitted by commercial skippers, and stored in the National Marine Line-fish System (NMLS).

These two data sets were analysed separately. The NMLS data has records for the entire South African coast. For this study the coast was divided in 100 km-blocks. The blocks that had MPAs within those 100 km were considered as having communities partly protected. The location of line-fishing surveys and NMLS data are listed in appendices 2 and 3 respectively.

Seine-netting

Seine-netting is practiced with a fishing net called a seine net, which is a net used to surround and catch fish. This method is effective for catching shallow water fishes. In this study a single data set of estuarine seine-netting surveys was used (Harrison 2003). There were a large number of estuaries included in the analyses (217) from around the coast of South Africa (Appendix 4).

Trawling

Trawlers drag a net held open by doors along the sea bottom. It is a fairly indiscriminate method of capturing fish and, despite environmental concerns associated with this fishing method, can provide a useful record of fish fauna in environments otherwise difficult to sample. Catch composition data from commercial trawling are obtained by observers, who record catch information from the boats. Scientific data are also collected in standardised random-stratified trawl surveys.

Commercial offshore trawling data were obtained from the South and West Coast by ship based observers and grouped by grid cell. Shallow and deep water trawling data from KwaZulu Natal were also obtained by ship based observers and grouped by grid cell as well. Survey inshore trawling data were obtained from De Hoop MPA and Tsitsikama National Park MPA. These data were aggregated in 20° x 20° blocks. Shallow inshore trawling
surveys were also conducted along the Cape South Coast (Wallace et al. 1984) and these stations were grouped into longitudinal degrees (22° to 26° E). Longitudinal degrees 23° E and 26° E were considered as partially protected due to the fact that within those degrees lie the Goukamma and Robberg MPAs, as well as the MPAs located in Algoa Bay.

Preliminary tests

General approach

The statistical package PRIMER (Plymouth Routines in Marine Ecological Research) (Clarke & Gorley 2006) was used to test for similarity between fish communities in different areas along the South African coast to measure the extent to which fish communities in MPAs collectively represent all fish communities. Multi-gear data were used in an attempt to reduce the error due to sampling bias. However, there were several other possible sources of error, namely sampling error, temporal variation and the effects of fishing.

Sampling error

In order to test for the effects of sampling error on diversity and similarity a hypothetical community was modelled. Samples of 500 fish were drawn from the community. The fish community estimated by various numbers of samples (one to ten) was then compared with the fish community estimated by an infinitely large sample size (i.e. assuming the entire area was completely sampled by that method) in a cumulative curve.

Temporal variation

Dissimilarity caused by temporal variation, was tested with shore angling data from 1989 to 2005 from De Hoop MPA. After standardisation and fourth root transformation was performed, the Bray-Curtis similarity index, among species composition per year, was used to perform a group average hierarchical clustering analysis. Sample size was on average 3000
fish per year, however it ranged from 232 to 5 140 individuals per year, implying that the observed variation was a combination of sampling error and temporal variation.

Effects of fishing

The effect of fishing on similarity among communities was tested through a group average hierarchical clustering analysis of the Bray-Curtis similarity index of the species composition from five hypothetical communities. Three of the hypothetical communities were composed of the same primal community; however to represent the effects of exploitation, one of them was left unexploited, one of them had 50 percent of its species being exploited (the abundance of 50 percent of the species was reduced to half) and the third one had 50 percent of its species being reduced to 10 percent, thus representing an overexploited community. The other two communities had 41 percent and 23 percent of the species of the original unexploited community respectively; these communities were modelled to represent geographic differences.

Data analysis

Multivariate analysis of species composition data was used to examine fish community structure and diversity along the South African coast. The analyses were performed for each fishing technique independently.

The Shannon-Wiener diversity index was calculated for each site and compared among sites. The total number of species sampled, as well as the percentage of those species that are represented in MPAs, was calculated for each sampling method (fishing technique). In addition, as a measure of redundancy, the number of MPAs in which each species was present was calculated for each sampling method. The species composition data were first standardised to get a percentage of the total abundance for each species at every site. A fourth root transformation was performed in order to down-weight the common, highly abundant,
species and allowing for the rare, less abundant, species to influence the analysis (Clarke & Warwick 2001). The Bray-Curtis similarity index was used to perform a group average hierarchical clustering analysis, in order to identify groups of areas with similar community assemblages and assess representativity. In addition, a two dimension non-metric multidimensional scaling (MDS) ordination technique was used to display community similarities among sites in a two-dimensional space.

RESULTS

Preliminary analysis

Sampling error

Results from the preliminary analysis show that as the number of samples (of n=500 fish) increases initially the cumulative number of species as well as the cumulative similarity to the completely sampled community increases. However, the line reaches a plateau at around seven samples, after which the cumulative similarity to the completely sampled community does not increase substantially with an increase in the number of samples (fig. 2). A sampling effort of 5000 fish will result in approximately 15 percent dissimilarity from the completely sampled community simply due to sampling error.
Figure 2. Cumulative curve showing the cumulative number of species and the cumulative similarity to the completely sampled community per sample. Each sample draws 500 fish.

Temporal variation

Figure 3 shows the results for the cluster analysis for the De Hoop MPA angling survey data. The group average similarity across all years was 78 percent. None of the years have community samples which were more than 90 percent similar. Annual variation and sampling error together can account for approximately 20 percent dissimilarity among fish communities in this example, which was taken as typical of fish sampling for the purpose of this study.
Figure 3. Dendrogram showing similarities between the community samples obtained on each sampling year for the De Hoop MPA angling survey data.

Effects of fishing

The results for the cluster analysis performed for the five hypothetical communities modelled are shown in figure 4. The exploited community is 95 percent similar to the unexploited community. The overexploited community is 90 percent similar to the unexploited and the exploited communities. The three biogeographically separate communities are less than 50 percent similar to the other two communities which represents the difference attributed to different, but overlapping, species assemblages. Five to ten percent dissimilarity can be caused by the effects of fishing alone, which is small relative to the effects of changing species assemblages.
Figure 4. Dendrogram showing similarities between five hypothetical communities. A (unexploited) represents an unexploited fish community, A (b=0.5) has 50 percent of the species reduced to half the unexploited abundance in A to simulate the effects of fishing at maximum sustainable yield, and A (b=0.1) has 90 percent of the species in A’s abundance reduced to 10 percent of the unexploited abundance in A to simulate over-fishing. B and C represent hypothetical fish communities with different but overlapping species assemblages.

No attempt was made to assess the cumulative impact of all three sources of error as they are unlikely to be purely additive. This analysis serves only as a rough guide to the magnitude of errors that could be obtained. On the basis of these results it can be expected that no more than 70 to 75 percent similarity between MPAs and exploited areas can be expected from conventional surveys which might cover different time periods.

Cut off points were drawn on the cluster analyses at 70 percent and also at the highest level of similarity at which there was full representativity (i.e. all the groups formed had an MPA within them). Seventy percent was chosen to show the representation of fish communities at a reasonable level of similarity measured by conventional surveys, following results from the preliminary analysis.
Shore-angling sampling method

A total of 208 fish species were recorded from the 29 areas sampled on the littoral zone. The average number of species recorded per site was 31 with a standard deviation of ± 18 species, however the number of species recorded per site ranged between a minimum of 8 and a maximum of 77 species. An increasing trend in diversity was found from west to east along the coast of South Africa (fig 5). Of the total number of species recorded 158 were present in MPAs, which accounts for 75.96 percent of the total species sampled. However, of the 208 species only 91 were recorded in “no-take” MPAs, which accounts for 43.75 percent of the total number of species. The redundancy in the MPA network is measured by the number of MPAs which include each species. *Pomatomus saltatrix* and *Diplodus sargus* are the most widespread species, occurring in seven MPAs. Of the 91 species recorded in “no-take” MPAs, almost half (41 species) occur in only one MPA. A total of 50 species were not recorded in any “no-take” MPA (fig 6).

Figure 5. Shannon-Wiener diversity index for the shore-angling sampled sites arranged from west to east along the South African coast (see appendix 1 for site key).
Figure 6. Histogram showing the number of fish species represented in the given number of “no-take” MPAs based on shore-angling samples.

Two distinct groups form along the lines of sea shore and estuarine habitat (fig 7). Three major groups form among the estuarine habitats, showing differences between fish communities from sites on the west coast (from the Namibian border to the Cape Peninsula), the south coast (from Cape Peninsula to Cape Agulhas) together with the east coast (from Cape Agulhas to Durban) and the north-east coast (from Durban to the Moçambican border). The sea shore habitat sites form similar groups, differentiating between the west, south and east and north-east coasts. According to the cluster analysis, at 70 percent similarity there are 23 clusters of fish communities. Of the 23, 10 have a MPA, of which only five are “no-take” MPAs. The remaining 13 groups of sites at the 70 percent similarity level have no form of protection. Forty four percent is the highest similarity level at which all groups have an MPA (fig 8).
Figure 7. Two-dimensional MDS plot showing similarities between fish communities in the different shore-angling sites along the South African coast. Protection factors: no = data obtained from a site not protected by MPA, yes = data obtained from a site in a “no-take” MPA, both = data obtained from a site in an MPA where certain kinds of fishing are allowed. Estuary/Shore factor: estuary = data obtained from an estuary, shore = data obtained from shore angling along the coast. The line marks the division between estuary and shore habitat. The circles represent the three major zones with similar fish communities identified (see appendix 1 for site key).

Figure 8. Dendrogram showing similarities between fish communities in the different shore-angling sites along the South African coast. Cut off points were drawn at 70 and 44 percent similarity. Protection factors: no = data obtained from a site not protected by MPA, yes = data obtained from a site in a “no-take” MPA, both = data obtained from a site in an MPA where certain kinds of fishing are allowed. Estuary/Shore factor: estuary = data obtained from an estuary, shore = data obtained from the shore along the coast (see appendix 1 for site key).
Boat-based line-fishing sampling method

A total of 197 fish species were recorded from the 26 sites sampled on the continental shelf. On average 34 species were recorded per site with a standard deviation of ± 24 species, however the number of species recorded ranged between 12 and 122 species per site. There was an increasing trend in diversity found from west to east along the coast of South Africa. However there is a slight decrease in diversity around the Tsitsikama National Park and Woody Cape, Cape Padrone and Bird Island MPAs, after which diversity keeps increasing along the East Coast (fig 9). Fourty-five percent (89 species) of the total number of species recorded were present in MPAs. However, of the 197 species only 78 were recorded in “no-take” MPAs, which amounts to 39.59 percent of the total number of species. The number of MPAs which include each species measures the redundancy in the MPA network. The species that were represented in the highest number of MPAs were *Boopsoidea inornata*, *Cymatoceps nasutus*, *Diplodus sargus* and *Mustelus mustelus*, which occurred in eight MPAs. A total of 119 species from the continental shelf were not recorded on any “no-take” MPA, 28 were recorded in only one MPA (fig 10).
Figure 9. Shannon-Wiener diversity index for boat-based line-fishing sampled sites organized from west to east along the South African coast (see appendix 2 for site key).

Figure 10. Histogram showing the number of fish species represented in the given number of “no-take” MPAs based on boat-based line-fishing samples.

Six groups of sites form among the 21 samples conforming to the different geographic zones, the west coast, south coast, east coast and north east coast. West Coast National Park and KwaZulu Natal separate from the rest of the sites (fig 11). At 70 percent similarity, there are 21 clusters of fish communities. Of the 21, 11 have an MPA, however only nine clusters have
a “no-take” MPA. There are 10 groups of sites with similar communities that have no form of protection at this level of similarity. Above 41 percent similarity not all the communities are represented in MPAs (fig 12).

Figure 11. Two-dimensional MDS plot showing similarities between fish communities in the different boat-based line-fishing sites along the South African coast. Protection factors: no = data obtained from a site not protected by MPA, yes = data obtained from a site in a “no-take” MPA, both = data obtained from a site in an MPA where certain kinds of fishing are allowed. The circles represent the major zones with similar fish communities identified (see appendix 2 for site key).
Figure 12. Dendrogram showing similarities between fish communities in the different boat based line-fishing sites along the South African coast. Cut off points were drawn at 70 and 41 percent similarity. Protection factors: no = data obtained from a site not protected by MPA, yes = data obtained from a site in a “no-take” MPA, both = data obtained from a site in an MPA where certain kinds of fishing are allowed (see appendix 2 for site key).

NMLS boat-based line-fishing catch return data

A total of 24 100 km-blocks were analysed from the NMLS data, of which fourteen had an MPA. A total sample of 330 742 968 kg of fish were obtained from around the coast of South Africa. In total there were 169 fish species from the continental shelf recorded. On average 58 species were recorded per site with a standard deviation of ± 20 species, however the number of species ranged between 20 and 99 species per site. Diversity initially increased from west to east along the South African coast. However there is a marked decrease in diversity around the Knysna area (blocks 50 to 46) (fig 13) after which it increases again. One hundred and sixty species were recorded in blocks which had MPAs, which represents 94.67 percent of the total number of species. The number of MPAs in which a species is represented measures the redundancy of the MPA network. Argyrosomus inodorus,
Atractoscion aequidens, Chrysoblephus gibbiceps, Epinephelus marginatus, Petrus rupestris and Scomber japonicus were the species that were represented in the highest number of 100 km blocks with a MPA (14). Forty five species were represented in one MPA, and only nine species were not represented on any 100 km blocks with an MPA (fig 14).

Figure 13. Shannon-Wiener diversity index for boat-based line-fishing NMLS sampled 100 km blocks organized from west to east along the South African coast (see appendix 3 for site key).

Figure 14. Histogram showing the number of fish species represented in the given number of 100 km blocks with MPAs based on NMLS catch return data.
Five general groups form, corresponding to the north-west, south-west, south-east, east and north-east areas of the coast of South Africa (fig 15). At 70 percent similarity, 13 groups of blocks with similar fish communities form. Of the 13 groups, 10 have a MPA within the 100 kilometers block. There are 3 groups of sites with similar communities that have no form of protection. Forty eight percent is the highest similarity at which all the groups have 100 km blocks with MPAs within them (fig 16).

Figure 15. Two-dimensional MDS plot showing similarities between fish communities in the different NMLS boat-based line-fishing 100 km blocks along the South African coast. Protection factors: no = no MPAs within 100 km long block along the coast, yes = There is an MPA within the 100 km long block along the coast. The circles represent the major zones with similar fish communities identified (see appendix 3 for site key).
Figure 16. Dendrogram showing similarities between fish communities in the different NMLS boat-based line-fishing 100 km blocks along the South African coast. Cut off points were drawn at 70 and 48 percent similarity. Protection factors: no = no MPAs within 100 km long block along the coast, yes = There is an MPA within the 100 km long block along the coast (see appendix 3 for site key).

Estuarine seine-netting

In total 274 492 individuals were sampled from 145 fish species in the 217 estuaries sampled. The average number of species recorded per estuary was 17 with a standard deviation of ± 11 species, however the number of species recorded per site ranged from 1 and 58 species. A consistent trend in diversity was found from west to east along the coast of South Africa (fig 17). Of the total number of estuarine associated species recorded 56 were present in MPAs, which accounts for 38.62 percent of the total number of species recorded. Conversely, 89 species were not represented in MPAs. The greatest redundancy in protection was for *Liza richardsonii*, which was found in all 11 MPAs. Sixteen species were found in only one MPA (fig 18).
Figure 17. Shannon-Wiener diversity index for estuarine fish sampled by seine-netting. Sites from west to east along the South African coast (see appendix 4 for a list of estuaries sampled).

Figure 18. Frequency histogram showing the number of fish species represented in the given number of MPAs based on estuarine seine-netting samples.

There is no clear differentiation of sites on the basis of estuarine associated fish community structure (fig 19). At 70 percent similarity, there are 121 clusters of fish communities, of
which 25 have an MPA or some level of environmental protection. However, only 13 groups have a “no-take” MPA. There are 108 groups of sites with similar communities that have no form of protection at this level of similarity. Only at nine percent similarity do all the groups have protection, above that similarity level there are groups of communities that are not represented in MPAs (fig 20).

Figure 19. Two-dimensional MDS plot showing similarities between fish communities in the different seine-netting sampled sites along the South African coast. Protection factors: no = data obtained from a site not protected by MPA, yes = data obtained from a site in a “no-take” MPA, partial = data obtained from a site where there is environmental protection but fishing is allowed (see appendix 4 for information on the protection level of each estuary).
Figure 20. Dendrogram showing similarities between fish communities in the different seine-netting sampled estuaries along the South African coast. Cut off points were drawn at 70 and 9 percent similarity. Protection factors: no = data obtained from a site not protected by MPA, yes = data obtained from a site in a “no-take” MPA, partial = data obtained from a site where there is environmental protection but fishing is allowed.
Trawling sampling method

In total 446 fish species were recorded from the 269 sites sampled. On average 32 species were recorded per site with a standard deviation of ± 28 species, and the number of species recorded ranged between 1 and 113 species per site. There is an increasing trend in diversity along a longitudinal gradient (fig 21). Of the total number of species recorded, 138 were present in MPAs, which accounts for 30.94 percent. However, of the 446 species only 95 were recorded in “no-take” MPAs, which makes up 21.30 percent of the total number of species. A total of 308 species were not recorded in any MPA. Of the 95 species recorded in “no-take” MPAs, 56 species were recorded in one “no-take” MPA, and, 39 species were represented in two “no-take” MPAs.

There is a distinction between offshore deep water fish communities, inshore fish communities, and shallow inshore fish communities (fig 22). At 70 percent similarity, there are 80 clusters of fish communities. Of the 80 clusters, four have an MPA site in them, however only two groups have a “no-take” MPA. There are 79 groups of sites with similar communities that have no form of protection at this level of similarity. Only at four percent similarity do all the groups have an MPA. Above that similarity level there are groups of communities that are not represented in MPAs (fig 23).
Figure 21. Shannon-Wiener diversity index for trawling sampled sites organized from west to east along a longitudinal gradient on the South African coast.

Figure 22. Two-dimensional MDS plot showing similarities between fish communities in the different trawling sites along the South African coast. Protection factors: no = data obtained from a site not protected by MPA, yes = data obtained from a site in a “no-take” MPA, partial = data obtained from an site where there is an MPA within the longitudinal degree.
Figure 23. Dendrogram showing similarities between fish communities in the different trawling sampled sites along the South African coast. Cut off points were drawn at 70 and 4 percent similarity. Protection factors: no = data obtained from a site not protected by MPA, yes = data obtained from a site in a "no-take" MPA, partial = data obtained from a site where there is an MPA within the longitudinal degree.
DISCUSSION

Trends in diversity

Turpie et al. (2000) found an increase in species richness in coastal fish from the west to the north east along the South African coast. The same pattern has been shown for estuarine fish species in South Africa (Harrison 2002; Maree et al. 2000; Whitfield 1999). The increase in diversity along the longitudinal gradient on the coast of South Africa can be due to several influential factors such as sea temperature, productivity and habitat diversity; as well as the fact that the Indo-Pacific ocean is known to have a higher number of fish species than the Atlantic ocean (Lombard et al. 2004; McQuaid & Branch 1984; Turpie et al. 2000; Williams et al. 2001). Sea temperatures differ between the west and east coast of South Africa, with a decline in temperature from the north-east Coast to the south and west coast (Isaac 1937; Whitfield 1999). The Benguela current drifting northwards along the west coast is formed by cold productive waters brought to the surface by upwelling systems inshore (Branch et al. 2002; Isaac 1937; Lombard et al. 2004). On the opposite coast, the Agulhas current flows southwards along the east coast bringing warm, nutrient-poor waters from the subtropics (Branch et al. 2002; Isaac 1937). Intermediate temperatures and productivity occur in the region around the Agulhas bank in the South Coast where some upwelling take place (Lombard et al. 2004).

Changes in ocean temperatures affect the availability of nutrients for primary production, which may cause an inverse relationship between sea temperature and productivity (Behrenfeld et al. 2006). Previous studies have shown that there is an association between high fish diversity and low productivity and vice versa, as well as a relationship between species richness and water temperature (Maree et al. 2000; Rosenzweig 1992; Williams et al. 2001). This may explain why the fish species diversity that was found in this study increases
from the high productivity cold waters of the West Coast to the warm low productivity waters of the north East Coast. In addition, as found by Tupie et al. (2000), the number of tropical species from the Indo-Pacific and western Indian oceans decreases from the north East Coast southwards. The decreasing diversity around the Knysna area obtained from NMLS catch return data could be due to cold water associated with wind induced upwelling at capes between Knysna and Port Elizabeth (Hutchings et al. 2002). Yemane et al. (2010), in their study on demersal fish off the South Coast of South Africa (from 20°E to 27°E), found that diversity remained constant between degrees 20° to 24°. The lowest diversity was at 24°, after which demersal fish diversity slightly increased along the longitudinal gradient (Yemane et al. 2010).

The different results obtained from the commercial NMLS and the survey boat-based line-fishing data, could be explained by the way in which these data are collected. The commercial data obtained from catch return information is not as accurate and detailed as the data obtained from scientific surveys. Commercial fishers target several economically important species and in some cases may discard unwanted species. However, these commercial data can provide us with important information on the abundance and diversity of fish species around the entire coast. The number of species protected and sites of potential protection based on the NMLS data should not be considered as actual protection of those fish communities, since that data were not obtained from the MPAs, but rather in the immediate vicinity.

The number of fish taxa occupying estuaries is generally low, due to the unstable conditions and the high level of adaptation needed to survive in such environments (Whitfield 1994). Only 10 percent of the fish families described around the world are part of the estuarine ichthyofauna (Whitfield 1999). This may provide evidence of why in this study the estuaries had the lowest mean number of species per site, as well as the lowest total number of species.
Redundancy

According to the Convention on Biological Diversity replication of ecological features means that ‘more than one site shall contain examples of a given feature in the given biogeographic area. The term “features” means “species, habitats and ecological processes” that naturally occur in the given biogeographic area’ (CBD 2008). It is important to have replication of ecological features, or redundancy, in MPA networks in order to account for potential catastrophes or variability that can place these features at risk (CBD 2008). The South African MPA network has a low level of redundancy regarding fish communities, the majority of the species are only represented in one MPA or not represented at all, and if a stochastic event should occur those fish populations could be drastically affected.

Biogeography

Lombard et al. (2004) described five inshore biogeographic regions as well as four offshore bioregions along South Africa’s EEZ based on an integration of existing biogeographic studies and expert opinion. The inshore bioregions are Namaqua, south-western Cape, Agulhas, Natal and Delagoa (Lombard et al. 2004). Branch et al (2002) recognized three broader marine biogeographic provinces around the coast of South Africa, the cold temperate Namaqua Province from the Namibian border to Cape Point, the warm temperate Agulhas Province from Cape Point to northern Transkei, and the subtropical Natal Province from northern Transkei to southern Moçambique. These broad biogeographic regions coincide with the three major zones with similar coastal fish communities identified in this study, based on shore-angling and boat-based line-fishing data. These zones were also identified by other studies on South African marine fauna, although the boundaries and names of these broad biogeographic zones differ among studies (Emanuel et al. 1992; Harrison 2002; Prochazka 1994; Turpie et al. 2000).
Different fauna inhabit the areas south east and north west from Cape Point (Branch et al. 2002). A potential reason for the marked boundary found between coastal fish communities in the west coast and south-east coast around the Cape Peninsula may be that the area between the Cape Peninsula and Cape Agulhas is not influenced directly by the Agulhas or the Benguela currents. Instead this area is influenced by each of the currents at different times of the year; the sea temperature is higher in the area between the Cape Peninsula and Cape Agulhas than west of the Cape Peninsula (Griffiths et al. 2010; Isaac 1937).

The Cape Peninsula has also been found to be a boundary in other biogeographical studies of marine fauna. Emanuel et al. (1992) in their study on marine invertebrates found the boundary between the cool temperate south-west coast and the warm temperate south coast communities to be located around Cape Point. The study mentioned above also found a boundary between the two sub-provinces within the subtropical east coast to be close to Durban. This coincides as well with the second boundary found by this study between the south-east coast and the north-east coast. In addition, a study by Prochazka (1994) on the biogeography of intertidal fish species, found that the West Coast’s limit was at Koppie Alleen. However the same study also found that the sites Koppie Alleen and False Bay appeared to be a transition zone for intertidal fish communities, and that sites between Lüderitz and the west coast of the Cape Peninsula clustered tightly together. Prochazka (1994) also found the boundary described by intertidal fish communities between the two east coast provinces to be somewhere close to Durban. The boundaries described by the fish communities included in this study are also in agreement with the boundaries found by Turpie et al. (2000) for coastal fish communities.
Representativity

The representation of fish communities from the west coast of South Africa is the lowest in the MPA network. Similar results were found for marine invertebrates in Emanuel et al.’s (1992) study; the study concluded that the area between the Groen and the Spoeg rivers on the west coast has a high priority for conservation action. This, due to its representativeness of one of the major biogeographic provinces described by the authors (the Namaqua province), as well as the lack of overall protection for this region and its close to pristine state (Emanuel et al. 1992).

According to Lombard et al. (2004), the west coast biozones have the least amount of protection and experience the highest levels of threat. Thus, there is an urgent need of protection in this area. There is a proposed MPA in Namaqualand, which would cover 9 980 km² (Lombard et al. 2004); this MPA could greatly improve the representation of these communities in the MPA network.

In the marine component of the National Spatial Biodiversity Assessment by Lombard et al. (2004), the entire east coast was described as having a low priority status for conservation intervention, based on levels of threat and protection. In addition, the southern part of the east coast was found to have the lowest priority status. This coincides with this study’s findings, which indicate that the fish communities from the south-east coast are of those that have the highest representation in South Africa’s MPA network. Also, a larger portion of the coastline is protected in the east coast than in the west coast, hence the greater representation in MPAs of fish communities in the east coast.

Turpie (2004), as part of the estuarine component for the NSBA, describes the overall protection status of South Africa’s estuaries to be very low. Tsitsikama National Park is the only area in which the estuaries enjoy complete protection against exploitation, i.e. any kind
of fishing or extraction is entirely banned (Turpie 2004). Of the 258 South African estuaries, which were included on the NSBA, 41 form part of protected areas, however of those 258 only 14 were found to have a high level of protection, which accounts to only 5.4 percent of the total number of estuaries (Turpie et al. 2002). Additionally, Turpie et al. (2002) found that 33 estuaries were under some kind of protection at the time, however they did not entirely represent estuarine biodiversity in South Africa. This coincides with the very low representation of estuarine fish communities in MPAs found in this study. Estuaries function as vital nursery and feeding grounds for many estuarine-associated fish species (Harrison 2002). Therefore, their protection is key for the conservation of marine fish communities and estuarine ecosystem functioning. Whitfield (1997) highlighted the need for conservation action in South African estuaries, starting from adequate river catchment management, as well as habitat restoration in some cases.

Currently there is no MPAs in offshore bioregions of South Africa’s EEZ (Lombard et al. 2004). There are only a few MPAs in trawlable grounds in South Africa, namely Tsitsikama, De Hoop, Pondoland and Bird Island (C. Attwood, pers. comm.). The two MPAs with trawlable grounds for which data were available, Tsitsikama and De Hoop MPAs, do not fully represent the offshore fish communities. There is a need for MPAs that extend offshore if we aim to represent South Africa’s marine biodiversity (Lombard et al. 2004). Regarding offshore habitats, South Africa is far from meeting the conservation target of protecting more than 20 percent of each habitat (Lombard et al. 2004).

Currently, regarding all marine fish communities, based on this study South Africa’s MPA network is at approximately 40 percent representativity for fish communities inhabiting the coastal shelf and the littoral, and less than 5 percent representativity for demersal fishes. However, there is no stipulation on how much of these communities should be represented in the MPA network. If we aim to represent all the fish communities present in South African
waters in the MPA network, more and larger protected areas need to be declared and properly enforced. These should be based on gap analyses such as the NSBA, in order to place them in areas where they would increase the representation of marine biodiversity in the MPA network.

Method

This method to test for representativeness through quantitative data is advantageous over presence/absence records, since it is based on discrete sampling methods. It allows for repetition and provides a quantitative measure to representativity. Edgar et al. (1997) stress that ‘a biological survey program is unavoidable when formulating an integrated MPA design’. The incorporation of various fishing techniques for monitoring programs has been recognized as a more effective practice (Coates et al. 2007; Lapointe et al. 2006). According to Tremain & Adams (1995) and Shoup et al. (2003) multigear collection methods are essential for an effective definition of fish diversity. Having a quantitative value for representativity of fish communities in South Africa’s MPA network can help policy makers evaluate whether targets are being met, and where conservation action, in terms of fish species protection, needs to be focused.
CHAPTER III
SYNTHESIS AND CONCLUSIONS

This study aimed to identify similar fish communities along the South African coast. This was performed using long term data sets of shore angling, trawling, boat based line-fishing and seine netting (in estuaries) sampling methods. In addition, comparisons were made between communities within and outside MPAs. This study also assessed the value of multigear quantitative data sets of fish abundance for MPA network representativity evaluations.

Three major biogeographic zones were described regarding fish communities; the west coast, the south coast in a group together with the east coast, and the north-east coast. A distinction was found between estuarine and shore habitat sampled by shore angling. In addition, shallow water, inshore and offshore fish communities sampled by trawling also separated into different groups.

Low representativeness in MPAs was evident for the west coast fish communities, as well as for estuarine and offshore fish communities. The south-east coast is the area in which fish communities are best represented. The percentage of representativity in MPAs of the fish communities sampled by each fishing technique was as follows: 44 percent of the communities sampled by shore angling, 41 percent of the communities sampled by boat based line-fishing, nine percent of estuarine communities sampled by seine netting and four percent of the communities sampled by trawling. If South Africa desires a higher percentage of fish communities represented within its MPA network, there would need to be more and larger protected areas declared. These potential MPAs should be located based on gap analyses (such as the NSBA) so that they represent complementary areas in which biodiversity representation is low.
This study used a quantitative, multi-gear method of evaluating the representativity of an MPA network, which is advantageous over a simple presence/absence approach, as it provides a quantitative measure of representativity, is based on discrete sampling methods and also allows for repetition. This study included data on 10 of the major MPAs (out of 22 declared MPAs). Survey data for more MPAs would improve the coverage of the study and can potentially improve the overall results.

With a quantitative value for fish community representation in South Africa’s MPA network, policy makers can evaluate whether targets are being met. This assessment can assist in the identification of potential MPA target areas by identifying areas for which priority conservation action is needed in terms of fish species protection.
Appendix 1. Map showing the sites where shore angling data was collected. Green means the data were collected from “no-take” areas in MPAs; orange means the data were collected from MPAs were some type of fishing is allowed, and black means data were collected from areas with no MPAs.
Appendix 2. Map showing the sites where boat-based line-fishing data were collected. Green means the data were collected from “no-take” areas in MPAs; orange means the data were collected from MPAs where some type of fishing is allowed, and black means data were collected from areas with no MPAs.
Appendix 3. Map showing the approximate location of 100 km long blocks where NMLS data were collected.
Appendix 4. Estuaries included in the analyses and the level of protection assigned.

<table>
<thead>
<tr>
<th>No.</th>
<th>Estuary</th>
<th>Protection</th>
<th>No.</th>
<th>Estuary</th>
<th>Protection</th>
<th>No.</th>
<th>Estuary</th>
<th>Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Orange</td>
<td>partial</td>
<td>34</td>
<td>Duiwenhoks</td>
<td>No</td>
<td>67</td>
<td>Seekoe</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Spoeg</td>
<td>No</td>
<td>35</td>
<td>Goutkou</td>
<td>Yes</td>
<td>68</td>
<td>Kabeljous</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Olifants</td>
<td>No</td>
<td>36</td>
<td>Gouritz</td>
<td>No</td>
<td>69</td>
<td>Gamtoos</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Jakkals</td>
<td>No</td>
<td>37</td>
<td>Blinde</td>
<td>No</td>
<td>70</td>
<td>Van Stadens</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>Verlore</td>
<td>No</td>
<td>38</td>
<td>Hartenbos</td>
<td>No</td>
<td>71</td>
<td>Maitland</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>Berg</td>
<td>No</td>
<td>39</td>
<td>Klein Brak</td>
<td>No</td>
<td>72</td>
<td>Bakens</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Modder</td>
<td>No</td>
<td>40</td>
<td>Groot Brak</td>
<td>No</td>
<td>73</td>
<td>Swartkops</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>Sout (S)</td>
<td>No</td>
<td>41</td>
<td>Maalgate</td>
<td>No</td>
<td>74</td>
<td>Koega</td>
<td>No</td>
</tr>
<tr>
<td>9</td>
<td>Diep</td>
<td>No</td>
<td>42</td>
<td>Gwaing</td>
<td>No</td>
<td>75</td>
<td>Sundays</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>Sout R.</td>
<td>No</td>
<td>43</td>
<td>Meul</td>
<td>No</td>
<td>76</td>
<td>Boknes</td>
<td>No</td>
</tr>
<tr>
<td>11</td>
<td>Houtbaai</td>
<td>No</td>
<td>44</td>
<td>Kaaimans</td>
<td>No</td>
<td>77</td>
<td>Bushmans</td>
<td>No</td>
</tr>
<tr>
<td>12</td>
<td>Wildevoel</td>
<td>No</td>
<td>45</td>
<td>Touw</td>
<td>partial</td>
<td>78</td>
<td>Karioe</td>
<td>No</td>
</tr>
<tr>
<td>13</td>
<td>Schuster</td>
<td>Yes</td>
<td>46</td>
<td>Swartvei</td>
<td>partial</td>
<td>79</td>
<td>Kasuka</td>
<td>No</td>
</tr>
<tr>
<td>14</td>
<td>Krom</td>
<td>No</td>
<td>47</td>
<td>Goukamma</td>
<td>partial</td>
<td>80</td>
<td>Kowie</td>
<td>No</td>
</tr>
<tr>
<td>15</td>
<td>Booiskraal</td>
<td>No</td>
<td>48</td>
<td>Knysna</td>
<td>partial</td>
<td>81</td>
<td>Rufane</td>
<td>No</td>
</tr>
<tr>
<td>16</td>
<td>Silwermyln</td>
<td>No</td>
<td>49</td>
<td>Noetsie</td>
<td>No</td>
<td>82</td>
<td>Riet</td>
<td>Yes</td>
</tr>
<tr>
<td>17</td>
<td>Sand</td>
<td>No</td>
<td>50</td>
<td>Piesang</td>
<td>No</td>
<td>83</td>
<td>Wes-Kleinemond</td>
<td>No</td>
</tr>
<tr>
<td>18</td>
<td>Eerste</td>
<td>No</td>
<td>51</td>
<td>Keurbooms</td>
<td>partial</td>
<td>84</td>
<td>Oos-Kleinemond</td>
<td>No</td>
</tr>
<tr>
<td>19</td>
<td>Lourens</td>
<td>No</td>
<td>52</td>
<td>Matjes</td>
<td>No</td>
<td>85</td>
<td>Great Fish</td>
<td>No</td>
</tr>
<tr>
<td>20</td>
<td>Sir Lowry's</td>
<td>No</td>
<td>53</td>
<td>Sout</td>
<td>No</td>
<td>86</td>
<td>Old Woman's</td>
<td>No</td>
</tr>
<tr>
<td>21</td>
<td>Steenbras</td>
<td>No</td>
<td>54</td>
<td>Groot (W)</td>
<td>Yes</td>
<td>87</td>
<td>Thatshana</td>
<td>No</td>
</tr>
<tr>
<td>22</td>
<td>Rooiels</td>
<td>No</td>
<td>55</td>
<td>Bloukrans</td>
<td>Yes</td>
<td>88</td>
<td>Mpekweni</td>
<td>No</td>
</tr>
<tr>
<td>23</td>
<td>Buffels (O)</td>
<td>No</td>
<td>56</td>
<td>Lottering</td>
<td>Yes</td>
<td>89</td>
<td>Mtati</td>
<td>No</td>
</tr>
<tr>
<td>24</td>
<td>Palmiet</td>
<td>partial</td>
<td>57</td>
<td>Elandsbos</td>
<td>Yes</td>
<td>90</td>
<td>Mgwalana</td>
<td>No</td>
</tr>
<tr>
<td>25</td>
<td>Kleinmond</td>
<td>No</td>
<td>58</td>
<td>Storms</td>
<td>Yes</td>
<td>91</td>
<td>Bira</td>
<td>No</td>
</tr>
<tr>
<td>26</td>
<td>Bot</td>
<td>No</td>
<td>59</td>
<td>Elands</td>
<td>Yes</td>
<td>92</td>
<td>Gqutywa</td>
<td>No</td>
</tr>
<tr>
<td>27</td>
<td>Onrus</td>
<td>No</td>
<td>60</td>
<td>Groot (O)</td>
<td>Yes</td>
<td>93</td>
<td>Ngculura</td>
<td>No</td>
</tr>
<tr>
<td>28</td>
<td>Klein</td>
<td>No</td>
<td>61</td>
<td>Boskloof</td>
<td>No</td>
<td>94</td>
<td>Mtana</td>
<td>No</td>
</tr>
<tr>
<td>29</td>
<td>Uilkraals</td>
<td>No</td>
<td>62</td>
<td>Kaapsedrif</td>
<td>No</td>
<td>95</td>
<td>Keiskamma</td>
<td>No</td>
</tr>
<tr>
<td>30</td>
<td>Ratel</td>
<td>No</td>
<td>63</td>
<td>Tsitsikamma</td>
<td>No</td>
<td>96</td>
<td>Ngqinisa</td>
<td>No</td>
</tr>
<tr>
<td>31</td>
<td>Heuningnes</td>
<td>partial</td>
<td>64</td>
<td>Klipdrif (O)</td>
<td>No</td>
<td>97</td>
<td>Kiwane</td>
<td>No</td>
</tr>
<tr>
<td>32</td>
<td>Klipdrifstfontein</td>
<td>No</td>
<td>65</td>
<td>Slang</td>
<td>No</td>
<td>98</td>
<td>Tyolomnqa</td>
<td>No</td>
</tr>
<tr>
<td>33</td>
<td>Bree</td>
<td>No</td>
<td>66</td>
<td>Kromme</td>
<td>No</td>
<td>99</td>
<td>Shelbertsstroom</td>
<td>No</td>
</tr>
</tbody>
</table>
Appendix 4 (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Estuary</th>
<th>Protection</th>
<th>No.</th>
<th>Estuary</th>
<th>Protection</th>
<th>No.</th>
<th>Estuary</th>
<th>Protection</th>
<th>No.</th>
<th>Estuary</th>
<th>Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>133</td>
<td>Kobonqaba</td>
<td>No</td>
<td>156</td>
<td>Sinangwana</td>
<td>No</td>
<td>179</td>
<td>Mbizana</td>
<td>No</td>
<td>202</td>
<td>Sipingo</td>
<td>No</td>
</tr>
<tr>
<td>134</td>
<td>Ngqusi/Inxaxo</td>
<td>No</td>
<td>157</td>
<td>Mngazana</td>
<td>No</td>
<td>180</td>
<td>Mvutshini</td>
<td>No</td>
<td>203</td>
<td>Mgeni</td>
<td>No</td>
</tr>
<tr>
<td>135</td>
<td>Cebe</td>
<td>partial</td>
<td>158</td>
<td>Mngazi</td>
<td>No</td>
<td>181</td>
<td>Bilahlolo</td>
<td>No</td>
<td>204</td>
<td>Mhlanga</td>
<td>No</td>
</tr>
<tr>
<td>136</td>
<td>Zalu</td>
<td>No</td>
<td>159</td>
<td>Gxwleni</td>
<td>No</td>
<td>182</td>
<td>Kongweni</td>
<td>No</td>
<td>205</td>
<td>Mdloti</td>
<td>No</td>
</tr>
<tr>
<td>137</td>
<td>Ngqwara</td>
<td>No</td>
<td>160</td>
<td>Bulolo</td>
<td>No</td>
<td>183</td>
<td>Mhlangeni</td>
<td>No</td>
<td>206</td>
<td>Mhlali</td>
<td>No</td>
</tr>
<tr>
<td>138</td>
<td>Qora</td>
<td>No</td>
<td>161</td>
<td>Mtumbane</td>
<td>No</td>
<td>184</td>
<td>Zotsha</td>
<td>No</td>
<td>207</td>
<td>Mvoti</td>
<td>No</td>
</tr>
<tr>
<td>139</td>
<td>Jujura</td>
<td>No</td>
<td>162</td>
<td>Mzimvubu</td>
<td>No</td>
<td>185</td>
<td>Mzimkulu</td>
<td>No</td>
<td>208</td>
<td>Mdlotane</td>
<td>No</td>
</tr>
<tr>
<td>140</td>
<td>Ngadla</td>
<td>No</td>
<td>163</td>
<td>Nlupeni</td>
<td>partial</td>
<td>186</td>
<td>Mtentweni</td>
<td>No</td>
<td>209</td>
<td>Zinkwasi</td>
<td>No</td>
</tr>
<tr>
<td>141</td>
<td>Shixini</td>
<td>No</td>
<td>164</td>
<td>Mntafufu</td>
<td>partial</td>
<td>187</td>
<td>Mhlangamkulu</td>
<td>No</td>
<td>210</td>
<td>Tugela</td>
<td>No</td>
</tr>
<tr>
<td>142</td>
<td>Mbasse</td>
<td>Yes</td>
<td>165</td>
<td>Msikaba</td>
<td>Yes</td>
<td>188</td>
<td>Damba</td>
<td>No</td>
<td>211</td>
<td>Matigulu</td>
<td>No</td>
</tr>
<tr>
<td>143</td>
<td>Ku-Mpenzu</td>
<td>No</td>
<td>166</td>
<td>Butsha</td>
<td>partial</td>
<td>189</td>
<td>Intshambili</td>
<td>No</td>
<td>212</td>
<td>Siyai</td>
<td>No</td>
</tr>
<tr>
<td>144</td>
<td>Ku-Bhula</td>
<td>No</td>
<td>167</td>
<td>Mgwegwe</td>
<td>partial</td>
<td>190</td>
<td>Mhlabatshane</td>
<td>No</td>
<td>213</td>
<td>Mlalazi</td>
<td>No</td>
</tr>
<tr>
<td>145</td>
<td>Kwa-Suku</td>
<td>No</td>
<td>168</td>
<td>Mgweyana</td>
<td>partial</td>
<td>191</td>
<td>Fafa</td>
<td>No</td>
<td>214</td>
<td>Mfolozi</td>
<td>No</td>
</tr>
<tr>
<td>146</td>
<td>Ntlonanye</td>
<td>No</td>
<td>169</td>
<td>Mtentu</td>
<td>Yes</td>
<td>192</td>
<td>Sezela</td>
<td>No</td>
<td>215</td>
<td>St Lucia</td>
<td>Partial</td>
</tr>
<tr>
<td>147</td>
<td>Nkanya</td>
<td>No</td>
<td>170</td>
<td>Mzamba</td>
<td>No</td>
<td>193</td>
<td>Mkumbane</td>
<td>No</td>
<td>216</td>
<td>Mgobezeleli</td>
<td>Partial</td>
</tr>
<tr>
<td>148</td>
<td>Sundwana</td>
<td>No</td>
<td>171</td>
<td>Mtentwana</td>
<td>No</td>
<td>194</td>
<td>Mzimayi</td>
<td>No</td>
<td>217</td>
<td>Kosi</td>
<td>Partial</td>
</tr>
<tr>
<td>149</td>
<td>Xora</td>
<td>No</td>
<td>172</td>
<td>Mtamvuna</td>
<td>No</td>
<td>195</td>
<td>Mpambanyoni</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Nenga</td>
<td>No</td>
<td>173</td>
<td>Sandlumlu</td>
<td>No</td>
<td>196</td>
<td>Mahlongwa</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>Mapuzi</td>
<td>No</td>
<td>174</td>
<td>Tongazi</td>
<td>No</td>
<td>197</td>
<td>Mkomazi</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>Mtata</td>
<td>No</td>
<td>175</td>
<td>Kandandlovu</td>
<td>No</td>
<td>198</td>
<td>Lovu</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>Thsani</td>
<td>No</td>
<td>176</td>
<td>Mpenjati</td>
<td>No</td>
<td>199</td>
<td>L.Manzimtoti</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>Mdumbi</td>
<td>No</td>
<td>177</td>
<td>Umhlangankulu</td>
<td>No</td>
<td>200</td>
<td>Manzimtoti</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>Mpande</td>
<td>No</td>
<td>178</td>
<td>Kaba</td>
<td>No</td>
<td>201</td>
<td>Mbokodweni</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

