The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
Field evaluation of the PIMA™ Point-of-Care CD4 machine
in a mobile clinic, South Africa

By

Student: Nienke Nicoline Georgine van Schaïk
VSCNIC003

SUBMITTED TO THE UNIVERSITY OF CAPE TOWN

In partial fulfillment of the requirements for the degree

Masters in Public Health

Faculty of Health Sciences

UNIVERSITY OF CAPE TOWN

Date of submission: 14 February 2011

Supervisors:

Associate Professor Landon Myer, School of Public Health & Family Medicine, University of Cape Town

Associate Professor Linda-Gail Bekker, Department of Medicine, University of Cape Town
DECLARATION

I, Nienke van Schaik, hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work or any part of it has been, is being, or is to be submitted for another degree in this or any other university.

I empower the university to reproduce the purpose of research either the whole or any portion of the contents in any manner whatsoever.

Signature: ...

Date: ..
ACKNOWLEDGEMENTS

Landon Myer: My Supervisor: Your guidance and support has been incredible. Thank you for teaching me to structure my thoughts and focus on the relevant issues. More cake and less icing for that reader in Timbuktu!

Linda-Gail Bekker: My Co-supervisor: It has been a privilege to work with such an inspirational leader in the HIV field. Thank you for having the confidence in me to manage the Tutu Tester and for your ongoing support. May this be the first of many publications on the use of point-of-care technology on the Tutu Tester.

Katharina Kranzer: My mentor, colleague and friend. I could not have done this without you!

Elizabeth Thebus, Nikki Davies and Eudoxia Raditlhalo: My dedicated team of nurses who performed all the PIMA™ CD4 counts

Shandré Malan: My data capturer who entered the data timeously and accurately

The Tutu Tester counsellors, educators and driver: without your important contribution there would be no Tutu Tester
ABSTRACT

Introduction

Universal access to CD4 counts could be improved through easy-to-use point-of-care CD4 systems such as the PIMA™ Analyzer (PIMA™). Validation studies performed in a laboratory and stationary clinic showed promising results. This aim of this thesis was to validate the PIMA™ in a mobile clinic in South Africa in 2010 and to review current literature regarding CD4 technology, with a focus on point-of-care technology in the HIV infected individual.

Methods

Consecutive HIV-positive individuals (both on ART and not on ART) had a capillary and/or venous sample analyzed using the PIMA™ and a venous sample analyzed externally (Beckman Coulter EPICS XL-MCL flow cytometer (XL-MCL)). Linear regression and Bland-Altman was used to assess PIMA™ performance. The impact of operator, machine, training and time delay to laboratory were evaluated.

Results

The median laboratory CD4 in the 349 participants was 405 cells/µl (IQR 277 – 600) with CD4 <=200, 201-350 and > 350 cells/µl being 11%, 29% and 60% respectively. The mean difference between PIMA™ and XL-MCL CD4 counts was -4.5 cells/µl (95%CI -12.4; 3.40) for venous samples (n=325) and 29.7 cells/µl (95%CI 16.93; 42.49) for capillary samples (n=167). Regression coefficients were 0.999 (R²=0.909) and 1.006 (R²=0.882) respectively.

Misclassification using a 200 cells/µl cutoff was < 3.1% but ±10% with a 350 cells/µl cutoff for both.

Multivariable regression analysis, adjusting for operator and training, showed machine used and delay to be significant for venous but not capillary samples.
Conclusion

The PIMA™ performance in a mobile clinic compared favourably with previous studies, identifying most individuals with CD4 counts < 200 cells/µl. Capillary PIMA™ samples gave less reliable estimates than venous samples. Machine variability needs further investigation.
Table of Contents

PART A: PROTOCOL .. 1

SCHEMA .. 3

PART I - INTRODUCTION .. 4

1.1 Background ... 4

1.2 Aims and Objectives .. 6

PART II - METHODS .. 7

2.1 Study design .. 7

2.2 Study setting .. 7

2.3 Subjects ... 8

2.3.1 Study population .. 8

2.3.2 Sampling strategy and size .. 9

2.4 Study procedures .. 9

2.5 Data Collection ... 11

2.6 Data management .. 11

2.7 Staff training ... 12

2.8 Biohazard containment .. 12

PART III – DATA ANALYSIS ... 13

PART IV - ETHICS AND COMMUNICATION ... 14

4.1 Ethical Considerations ... 14

4.2 Dissemination of results .. 15

PART V - LOGISTICS .. 16

PART VI - BUDGET .. 16

PART VII – BIBLIOGRAPHY ... 17

PART B: LITERATURE REVIEW ... 1

References ... 14

PART C: MANUSCRIPT .. 1

Abstract .. 4

Introduction .. 6

Methods .. 7

Results .. 11
PART A: PROTOCOL
Field evaluation of the PIMA™ Point-of-care CD4 machine in a mobile clinic, South Africa

Principal Investigator:
Nienke van Schaik, MBChB

Co-Investigators:
Linda-Gail Bekker, MBChB, FCP, PhD
Katharina Kranzer, MBBS, MRCP, MSc, MSc

\(^a\) Desmond Tutu HIV Foundation, Department of Medicine, Faculty of Health Sciences, University of Cape Town, SA
\(^b\) Clinical Research Unit, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK

Correspondence
Dr. Nienke van Schaik
Desmond Tutu HIV Foundation
Faculty of Health Sciences
University of Cape Town
Anzio Road, Observatory 7925
Cape Town, South Africa
Tel +27 216336599
Fax +27 216330182
E-mail: nienke.vanschaik@hiv-research.org.za
Field evaluation of the PIMA™ Point-of-care CD4 machine in a mobile clinic, South Africa

Design: This study is a cross-sectional study to compare the PIMA™ to the Beckman Coulter Epics XL-MCL in assessing CD4 counts obtained from HIV-infected patients in a mobile clinic setting using both venous and capillary samples.

Duration: Total study duration of approximately 11 months

Sample Size: A minimum of 165 venous and 165 capillary PIMA™ samples

Study participants: Study participants will consist of HIV positive individuals (newly diagnosed, known positive not on ART and known positive on ART) identified in the mobile clinic who consent to having both PIMA™ and laboratory CD4 counts done.

Primary Study Objectives: 1. To assess the agreement between the CD4 count obtained when venous or capillary blood was analyzed by the PIMA™ Analyzer on a mobile clinic and the same sample analyzed by a Beckman Coulter EPICS XL-MCL™
2. To assess the agreement between capillary and venous samples using the same individual, same operator and same machine.
PART I - INTRODUCTION

1.1 Background

Point-of-care CD4 testing has recently become available in South Africa. Same day, on site availability of CD4 count results enables appropriate post-test counseling and, when indicated, immediate referral for antiretroviral treatment. This is particularly important in a mobile clinic where it is difficult to retrospectively contact clients with their laboratory CD4 result.

The PIMA™ Analyser, the latest point-of-care CD4 machine, is being used by the Desmond Tutu HIV Foundation in a mobile clinic setting on the Tutu Tester. It enables the determination of absolute counts of CD4 T-lymphocytes in whole blood without prior sample preparation\(^1\) and is suitable for both finger-prick blood samples as well as venous blood samples. Full details are described elsewhere.\(^1,2\) In-laboratory validation by Glencross et al. showed good correlation using venous samples between the PIMA™ CD4 results and results determined by flow cytometry (Slope=0.96, R²= 0.98) on a Beckman Coulter XL. An overall bias of -12.02 cells/µl (± 38.65) was noted, with a slight under-estimation of absolute CD4 counts by the PIMA™ instrument.\(^3\) Excellent correlation of 165 PIMA™ capillary samples was found when compared to same day laboratory processing of specimens on a Becton Dickinson FACSCalibur in Zimbabwe. The overall bias was +7.6 cells/µl (95%CI: -6.5 to +21.8; P=0.72).\(^1\) Greater bias was however found when the PIMA™ was evaluated in 2 other clinics in South Africa (D. Glencross[debbie.glencross@nhls.ac.za, Lecture, August 4, 2010]).

The latter fact, together with our negative experience with another point-of-care CD4 technology, the Pointcare NOW machine, has resulted in our decision to do an evaluation of the PIMA™ on our mobile clinic. In addition we feel that a validation in a mobile clinic is important in that the setting can be far from ideal: the machines are transported over large distances daily, operated on battery
power and used in varying environmental temperatures and conditions. It is likely that similar conditions will be encountered at sites where the PIMA™ will be most useful.

During the first month of using the machine all clients testing at the mobile clinic had both a laboratory and PIMA™ CD4 count done. Preliminary findings comparing PIMA™ results with CD4 count results determined on a Beckman Coulter Epics XL-MCL (XL-MCL) (Togatainer, Toga laboratories, Gugulethu) (n=63) showed good correlation (Slope=0. 91, R2= 0.90) (Figure 1).

Figure 1: Comparison of point-of-care CD4 count results using the PIMA™ system with laboratory CD4 count results performed on the Beckman Coulter EPICS XL-MCL.

Staff also performed both dual capillary and venous samples on a small number of patients (n=12) to ascertain whether these methods give different results. A mean difference of 31.09 cells/µl (CI -16.42; 80.24) was found between capillary
and venous samples. This finding warrants further investigation. Ethical approval for this will be obtained as a sub-study on: Cross-Sectional Survey of HIV infection and CD4 counts in Masiphumelele township (REC REF 262/2010).

1.2 Aims and Objectives

Aim:

To perform a field evaluation of the PIMA™ CD4 Analyzer in a mobile clinic setting in South Africa

Primary Objectives:

1. To assess the agreement between the CD4 count obtained when venous or capillary blood was analyzed by the PIMA™ Analyzer on a mobile clinic and the same sample analyzed by a Beckman Coulter EPICS XL-MCL™

2. To assess the agreement between capillary and venous samples using the same individual, same operator and same machine

Secondary Objectives:

1. To assess factors associated with greater or lesser agreement: machine, user and the impact of training sessions

2. To calculate misclassification around the current CD4 based cutoffs of 200 and 350 cells/µl as used in South Africa
PART II - METHODS

2.1 Study design

Cross-sectional study

2.2 Study setting

The Tutu Tester is a nurse run, counsellor supported mobile screening clinic run by the Desmond Tutu HIV Foundation. It is a fully mobile vehicle with 3 rooms and also has tents which can be pitched to provide additional space. It operates 5 days a week mainly in underserviced peri-urban areas in greater Cape Town and rotates through sites such as township shopping centres, taxi ranks and stations, as well as on the road side. This service is not formally advertised and hence attracts ambulatory clients who spontaneously access HIV testing. This client initiated HIV testing is offered in combination with screening for other chronic conditions such as hypertension, diabetes and obesity in an attempt to normalize testing and is performed according to the latest Western Cape HIV testing guidelines⁴.

Medical history, physical examination findings and risk reduction information is recorded on a client form (Appendix 1)

The standard of care for all Tutu tester clients is that if they test positive on their first HIV test, staff will obtain a second blood sample (either capillary, venous or both if necessary) and perform a confirmatory HIV test, syphilis test and a CD4 count. The latter is either a PIMA™ Point-of-care CD4 count (Alere, Waltham, USA) and/or laboratory CD4 performed at the Togatainer (TOGA Laboratories, Gugulethu). Clinical staging is performed and a pregnancy test is done if the client is female.
2.3 Subjects

2.3.1 Study population

Study participants will consist of HIV positive individuals (newly diagnosed, known positive not on ART and known positive on ART) identified in the mobile clinic that consent to having both PIMA™ and laboratory CD4 counts done. They include:

1. Those from the preliminary field study
2. All HIV positive individuals who consent to taking part in the “Active Tuberculosis Case Finding in individuals accessing a mobile voluntary counselling and testing service” (REC REF: 507/2008) (Appendix 2). They will have a PIMA™ CD4 count done on the Tutu Tester as well as a laboratory CD4 count as part of study procedures.
3. Those who consent to taking part in the Cross-Sectional Survey of HIV infection and CD4 counts in Masiphumelele township (REC REF 262/2010) and give additional consent for providing both venous and capillary PIMA™ samples (Appendix 3: sub-study 2)

Inclusion criteria:

1. HIV–infected individuals
2. Age 18 years and older
3. Able and willing to provide the relevant informed consent

Exclusion criteria:

1. Individuals with indeterminate HIV results at the time of testing and who had CD4 counts done but are PCR negative
2. Age less than 18 years old
3. Unable to provide informed consent
2.3.2 Sampling strategy and size

Consecutive sampling will be used to select patients.

Our sample size calculation is based on the initial NHLS data for 50 patients with venous PIMA samples where the mean difference was -12.02 (+-38.65) cells/µl between PIMA and laboratory samples. Our hypothesis is that our mean difference will be 0. The estimated sample size for a one-sample comparison of mean to the hypothesized value of 0 is 109 using a power of 0.90 and a significance level of 0.05.

However a target size of 165 samples will be set for both the venous and capillary arms so that our sample is at least as large as the literature currently published\(^1\).

For the dual venous and capillary PIMA sample group we will however aim to get a sample size of 109 to limit study costs.

2.4 Study procedures

PIMA™ CD4 testing

All staff operating the PIMA™ CD4 Analyzer will be trained by an Alere Healthcare representative on the use of the PIMA™ device and the correct sample collection techniques.

Materials will be stored and daily controls will be run according to the manufacturer’s instructions\(^2,5,6\). The required 25µl of blood will be collected into a PIMA™ cartridge from either a finger prick or venous sample or both. The cartridge will capped and then inserted immediately into the Analyzer.

Nurses will to use a 1.8mm blade lancet for the capillary samples. Venous blood will be collected by phlebotomy in a 4ml EDTA tube and transferred to a PIMA™ cassette by means of a pipette. The sample will be run on the PIMA™ Analyzer available for use on the mobile clinic.
The nurse will document if the sample is venous or capillary. The time, date, operator and machine number are all reflected on the result printout.

Where dual samples are taken, the nursing will first do a PIMA™ CD4 test using capillary blood and then using the venous sample. The nurse who takes the venous samples must be responsible for transferring the venous blood to the PIMA™ cartridge. The samples must be run on the same machine.

Laboratory testing

Venous blood collected in a 4ml EDTA tube will be kept at room temperature and transported to the Togatainer on the next working day. The specimens will be analyzed using their standardized protocols on a Beckman Coulter EPICS XL-MCL™ (XL-MCL) flow cytometer. Both internal and external quality control procedures are in place at the laboratory. Laboratory staff will be blinded to the PIMA™ results.

Results stating the date of receipt at the laboratory and the CD4+ T-lymphocytes and %CD4 (percentage of total lymphocytes) will be emailed to the investigator.

CD4 results

All HIV positive clients will be given their PIMA™ results at the time of their Tutu Tester visit and encouraged to attend clinics for either comprehensive HIV care (PIMA™ CD4 count > 201 cells/µl) or to start ART if eligible (PIMA™ CD4 count ≤ 200 cells/µl or WHO stage 4). Where dual samples were taken clients will be asked to wait for, and receive, their capillary result. Waiting for the venous PIMA™ result will be optional.

The client will be contacted by telephone with their laboratory CD4 result (usually within 72 hours) and, where applicable, their venous PIMA™ CD4 count result if permission to do this was given (see section 2.5 Data collection). Alternatively they can collect their result from the Tutu Tester.
The PIMA™ and laboratory results could differ in a way that would result in a change of the client’s management. If we are unable to contact the client telephonically, a home visit will be attempted if permission was given to do so, to give the client their result. An additional sample for laboratory CD4 testing will be taken where possible to assist in the further management of the client.

2.5 Data Collection

Routine data is collected on all Tutu Tester clients (Appendix 1). CD4 results will be recorded on the study specific data collection form (Appendix 4).

HIV positive clients will be requested to give their name and surname and contact details (see attached client details form- appendix 5). This specifies if, and how, we can contact the client in order to provide them with their laboratory CD4 count result. The client is asked to verify that the details are correct by signing the form.

2.6 Data management

All forms are returned to the Tutu Tester office in the evening and locked in the data room. Forms, together with laboratory results, belonging to HIV positive clients are kept in a locked cupboard in the data room with only relevant staff members having access to the files. All Tutu Tester staff is required to sign a confidentiality agreement when they start working on the project.

Data is entered anonymously into an Access database designed for the study. Data entry is performed by designated staff members of the Desmond Tutu HIV Foundation. The database is password protected with only limited designated staff having access to them. The database is stored on a data server located at the DTHC which is backed up daily. Queries are run for inconsistencies and data is corrected continuously.
Data required for the purpose of this analysis will be obtained by running a query on the database.

2.7 Staff training

All nursing staff are trained in the correct methodology for rapid HIV testing, the use of the PIMA™ Analyzer and Good Clinical Practice.

2.8 Biohazard containment

Study staff will follow universal precautions when handling the specimens. This includes wearing of gloves.
PART III – DATA ANALYSIS

Statistical analysis will be performed using STATA (Version 11.0, College Station, Texas, USA).

Data will be explored via simple proportions, medians, means, cross-tabulations and chi square tests. A Wilcoxon Signed Rank test will be used to calculate differences in median results between PIMA™ CD4 and laboratory CD4 results.

The sensitivity and specificity for the PIMA™ CD4 results, as well as Kappa statistics, will be calculated using laboratory cut-offs of 200 and 350 cells/µl.

The data will be analyzed using scatter plots and the correlation co-efficient will be calculated. We will then perform a linear regression analysis and attempt to predict factors impacting on the performance of the PIMA™. The factors of interest are operator, machine and training.

Bland-Altman analysis will be done to determine the systematic bias of the PIMA™ relative to the XL-MCL.
PART IV - ETHICS AND COMMUNICATION

4.1 Ethical Considerations

Ethics has already been obtained for reporting of programmatic data from the Tutu Tester (Appendix 6).

All the procedures described here will be reviewed and approved by the University of Cape Town Research Ethics Committee. This study also adheres to the declaration of Helsinki 2008.

a. Participant Withdrawal

Study participation may be discontinued for either of the following reasons:

- The participant withdraws her consent. Participants may withdraw from study participation at any time, for any reason. This will in no way alter their treatment at the Tutu Tester.
- The nurse determines it to be in the best interest of the subject for a medical reason or the study for a technical reason.

b. Informed Consent

Informed consent will be obtained from all study participants. This will be verbal in routine Tutu Tester clients as well as for patients taking part in the active TB case finding study. Written consent will be obtained by one of the Tutu Tester nurses where both a venous PIMA™ and capillary PIMA™ and laboratory sample are required (Appendix 7). The rationale of the study, procedural details and investigational goals will be explained to each participant together with potential risks and benefits via the informed consent form.

Consent forms will be available in English and Xhosa. All translations will be checked to verify content.
c. **Risks and Discomforts**

- Capillary and Venous blood samples are invasive and might cause some discomfort. All nurses are trained in finger-prick sampling and venous blood sampling. This study will in no way alter the clinical management of participating patients.

d. **Benefits**

- The direct benefit to the participant for taking part in this study is that they will be able to obtain have confirmation of their CD4 count both immediately and with a follow-up telephone call for their laboratory result.
- An indirect benefit would be the opportunity to help researchers find out if there is better correlation with one method versus the other to determine best practice on the Tutu Tester.

e. **Confidentiality**

Every effort will be put in place to maintain participant’s confidentiality. The staff will conduct follow-ups in accordance with the Tutu Tester SOP for follow-ups. Confidential data will be managed as discussed in section 2.5 above.

4.2 Dissemination of results

An abstract will be submitted in October 2010 for the CROI conference in February 2011. A manuscript entitled: “Field evaluation of the PIMA™ Point-of-care Cd4 machine in a mobile clinic, South Africa” will be completed by Month 11. Results and feedback will also be made available to Alere Healthcare on an ongoing basis as well as to our funders.
PART V - LOGISTICS

<table>
<thead>
<tr>
<th>Month</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar 2010</td>
<td></td>
</tr>
<tr>
<td>April 2010</td>
<td></td>
</tr>
<tr>
<td>May 2010</td>
<td></td>
</tr>
<tr>
<td>June 2010</td>
<td></td>
</tr>
<tr>
<td>July 2010</td>
<td></td>
</tr>
<tr>
<td>Aug 2010</td>
<td></td>
</tr>
<tr>
<td>Sep 2010</td>
<td></td>
</tr>
<tr>
<td>Oct 2010</td>
<td></td>
</tr>
<tr>
<td>Nov 2010</td>
<td></td>
</tr>
<tr>
<td>Dec 2010</td>
<td></td>
</tr>
<tr>
<td>Jan 2011</td>
<td></td>
</tr>
</tbody>
</table>

1) Data collection & entry

- Routine Tutu Tester Clients
- Active TB Case Finding study
- Dual samples from Cross-Sectional Survey

2) Data analysis

3) Manuscripts

- CROI abstract
- Manuscript

PART VI - BUDGET

The cost of the PIMA™ CD4 and laboratory tests will be covered as Tutu Tester operating costs.
PART VII – BIBLIOGRAPHY

2. PIMA CD4 cartridge guide (product insert).

5. PIMA Bead Standard User Guide.

6. PIMA Analyzer User Guide. 2009;
PART B: LITERATURE REVIEW
Background

South Africa continues to be home to the world’s largest population of people living with Human Immunodeficiency virus (HIV)1,2,3. Despite having more than 971 000 people on antiretroviral therapy (ART) in October 20094, the ART coverage in this large, continually expanding programme is still incomplete and was estimated to be only around 28-40% in 20085,6.

Studies from South Africa have show that only 55-90% of individuals have their CD4 count done after testing HIV positive despite the time frames being generous in these studies and ranging from two to six months7-9. Furthermore only 46-65% of individuals receive their CD4 count results7-10.

This is concerning as the enumeration of absolute numbers of CD4-positive T-lymphocytes plays an essential part in the monitoring of those with HIV: determining when ART is needed, monitoring the effectiveness of ART and indicating possible treatment failure. Moreover the current South African treatment initiation guidelines11 are CD4 based.

This high attrition rate between being tested and receiving a CD4 count result means that individuals eligible for ART either have lengthy delays before ART initiation or are lost to care. If insufficient emphasis was placed by health-care workers on the importance of knowing the CD4 count or the benefit of remaining in care despite feeling otherwise well, individuals may not understand the importance of returning for their result. Long waiting times due to high caseload may also be a reason why individuals fail to return for their results and subsequent appointments10.

Reductions in treatment delays would improve morbidity and mortality12-15, including reducing HIV-associated Tuberculosis (TB)16 and reducing transmission of HIV from mother to child17,18. In this light the latest WHO guidelines2
recommend earlier diagnosis through expanded testing programmes and ART initiation for all HIV-infected individuals with a CD4 count of ≤350 cells/µl. The guidelines reiterate that the lack of laboratory monitoring should not be a barrier to initiating ART and those with WHO clinical stage 3 or 4 should be initiated on ART if CD4 testing is not available. The WHO guidelines also encourage CD4 testing in those with WHO clinical stage 1 and 2 to timeously identify those needing ART².

Furthermore a recent cost-effectiveness analysis ¹⁹ recommended that countries with very limited resources and still only one line of ART available should prioritize access to CD4 count monitoring and ART initiation at CD4 ≤ 350 cells/µl to offer the best survival outcomes.

The anticipated escalation in numbers of people in South Africa requiring CD4 counts as more individuals are found to be HIV-positive following the launch of the National HIV testing campaign, and current up scaling of the ART programme, may overburden the current National Health Laboratory Services (NHLS). Alternative reliable methods of performing CD4 counts need to be evaluated to improve access to, and reduce overall costs of performing CD4 assays especially in more outlying or lower burden areas. ²⁰

The objective of this literature review is to ascertain methods in which the ever growing need for CD4 counts for HIV-infected individuals can be addressed with a special focus on the benefits of point-of-care technology.

Literature search strategy: inclusion and exclusion criteria

A computerized search of electronic databases was performed to find available literature on Point-of -Care CD4 technology.

The search terms used for Medline were: (CD4 Lymphocyte Count [MESH] or CD4-positive T-lymphocytes [MESH]) AND (Point-of-care systems [MESH] or POC (text term) or point*of*care (text term)). This search was combined with a
search using: (CD4 Lymphocyte Count [MESH] or CD4-positive T-lymphocytes [MESH]) AND (HIV infections [MESH]) AND (Flow cytometry [MESH] or image cytometry [MESH] or flow cytometry (text term)). The search was restricted to humans and papers published in the last 10 years (2001 through to January 2011) as point-of-care technology is a new development in this field. Only papers published in English were reviewed. The 572 citations were screened by title to capture potentially suitable publications. The abstracts of the suitable papers were then reviewed and the full text of suitable original papers and scientific letters was then obtained.

Reference lists of primary studies, reviews and editorials identified by the above methods were searched for additional articles. Experts in the field were contacted for additional literature, including abstracts from conferences. The manufacturers of the PIMA™ machine were able to provide additional evaluations of the machine but unfortunately none of these have been published to date and so were not used.

The current situation

Universal access to CD4 count monitoring, in South Africa and other resource-limited countries, is hindered by centralized laboratory services, the challenges of transporting samples to these laboratories, cost and delays in receiving results\(^\text{21}\).

Options to meet the need for improved access to CD4 count monitoring include finding alternatives to CD4 counts, decentralizing or addressing challenges faced by laboratories and point-of-care CD4 counts. These will be discussed in detail below.

Various studies have evaluated alternative methods to CD4 counts using laboratory measures which may be more readily available including total lymphocyte counts (TLC)\(^\text{22}\); combining clinical staging with TLC, or combining TLC with haemoglobin levels, platelet counts and body mass index\(^\text{22-27}\). These have given conflicting results and are no longer recommended\(^\text{2,28}\).
Clinical assessments alone may miss individuals who appear clinically well yet are severely immune-compromised. Relying solely on clinical staging according to WHO criteria requires that patients be seen by clinicians or experienced and trained nursing staff. Access to this cadre of healthcare personnel is often an issue in exactly those areas where access to CD4 counts is also lacking. POC CD4 counts would enable task shifting for HIV care and treatment to less skilled nurses and potential other health workers.

Currently flow cytometry remains the accepted gold standard for performing CD4 counts. It is an established laboratory technique that was available even prior to the HIV epidemic to confirm and monitor immune suppression. Flow cytometry simultaneously measures and analyses multiple physical characteristics of cells as they flow in a fluid stream through a light beam measuring the cell’s relative size, granularity and fluorescence intensity. Lasers are used to excite fluorescent antibody probes specific for CD4 T-lymphocytes. A simplified single platform (SP) PanLeucogated (PLG) CD4 methodology is now most commonly used in South Africa.

Most commercially available flow cytometers have automated procedures allowing many specimens to be tested simultaneously. The high output flow cytometers, performing from 250 to 350 samples per day, include the FACSCalibur (Becton Dickinson, Franklin Lakes, NJ), EPICS XL-MCL (Beckman Coulter, Brea, CA) and Cyflow SL-3 (Partec, Münster, Germany). Low-intermediate throughput machines can perform 30 – 100 tests per day and includes the FACSCount (Becton Dickinson, Franklin Lakes, NJ), Cyflow Counter (Partec, Münster, Germany), Easycyte (Millipore, Billerica, MA) (previously EasyCD4, Guava Technologies, Hayward, CA) and PointCare Now (PointCare Technologies, Malborough, MA).

In addition non-flow cytometry techniques can be employed in laboratories. Existing non-flow cytometry techniques are typically manual or semi-manual assays and perform less than 50 tests per day. Manual magnetic isolation of
cells is done on a haematology analyzer with Sysmex Dynabeads (Sysmex)\(^{44}\) or using a microscope count with Dynabeads (Invitrogen, previously Dynal SA)\(^{45}\). Manual antibody-based identification of cells and microscope counts is done with Coulter® Manual CD4 count kit (previously Cytosphere) (Beckman-Coulter)\(^{46}\).

For all the above-mentioned laboratory-based CD4 testing techniques venous samples need to be obtained by phlebotomy. This requires the attending health care provider to have the necessary skills to do so which remains a limiting factor in many health care facilities.

Further issues with laboratory testing include:

- Delays in samples reaching the laboratory causes sample aging. Aging of blood samples collected in a K2EDTA tube causes changes in all white blood cells which affect the light scatter properties of the cells. This makes distinguishing monocytes from lymphocytes difficult in routine flow cytometry. Automated gating algorithms usually fail to identify the relevant populations and the technologist thus has to manually gate these samples. This can be challenging and, if monocytes are counted as T-helper cells, it could lead to an overestimation of the CD4 count (W.Pretorius [willem.pretorius@alere.com], email, May 16, 2011).

Another factor that could influence the CD4 count in aged specimens is ongoing spontaneous apoptosis which appears to occur more in samples from patients with low CD4 Counts\(^{47}\).

Unsatisfactory storage conditions of samples (temperatures more than 25 degrees Celsius), especially when transporting specimens from remote areas to a central laboratory, can also accelerate these changes. Because there are multiple factors at play it is difficult to predict if aged specimens will over or underestimate the CD4 count. In order to get accurate CD4 counts specimens should be analysed no later than 48 hours after the specimen was collected.
• Adequate human resources are often lacking in resource-limited settings\cite{31,32} yet skilled and trained personnel are required to operate the machines available in the laboratories.

• Incorrect pipetting techniques cause errors in absolute cell counting especially when sample preparation is required. Cap piercing technology is not employed by all machines\cite{20}.

• Flow cytometers such as FACSCount require liquid format reagents\cite{48}. Cold-chain transportation and refrigeration are needed to maintain reagent integrity. Whilst this is not an issue in developed countries, resource-limited rural settings are faced with unreliable cold-chain transportation and inconsistent power supplies. Maintaining a cold chain adds additional cost to an already expensive test especially for remote laboratories with low patient flow.

• A lack of maintenance of the machines and hence non-functioning machines as well as procurement issues for reagents\cite{30} are of concern especially for dedicated flow cytometers at remote sites.

Solutions

Suggestions for improving access to CD4 count results include:

• Reduced turnaround times for results by increasing laboratory capacity

• Making CD4 count results more broadly available such that results could be accessed at clinic-level rather than at hospital level where the patient may have been seen initially\cite{10}. This would mean that patients would not need to make costly trips to obtain their results\cite{30}.

Suggestions for prolonging sample stability include:

• Transfix, a blood stabilizing compound \cite{49}

• BD CD4 stabilization tubes (ST [Vacutainer CD4 stabilization blood collection tubes; Becton Dickinson Vacutainer Systems, Franklin Lakes, NJ]). \cite{50}
Suggestions for maintaining reagent integrity:
Liquid reagents in remote laboratories could be replaced with dried reagent kits such as Rea T Count (Reametrix, Bangalore, India). It was found to be a suitable replacement for liquid reagents normally used with the FACSCount if adequate mixing of the dry reagent occurs.

Researchers worldwide are thus striving towards developing a point-of-care (POC) method for performing CD4 counts.

Point-of-care testing
POC testing has been defined as “any investigation carried out in a clinical setting or a patient’s home for which the result is available without reference to a laboratory and perhaps rapidly enough to affect immediate patient management”.

The ideal characteristics of a universal POC CD4 test for low-income countries are: (i) It should be simple to use so that it can be performed with minimal training. This could allow for task-shifting to less skilled health personnel. (ii) It should be able to be performed using non-venous blood: This means that phlebotomy skills are not required to perform the test. (iii) The result should be easy to read and interpret. (iv) Any equipment required should be robust so that it can withstand a wide array of environmental conditions such as hot, dry, dusty or humid climates. (v) It should be reliable and give precise and reproducible results. This reduces the need to repeat tests and decreases the cost per patient. (vi) The test kit or reagents should not be cold chain dependent and should be able to withstand hot climates of up to 40°C. (vii) The test kits should have a long shelf life of up to 15 months (viii) Processing of the test should be short; about 10 minutes has been recommended. (ix) It should be affordable; a cost of $1-2 would be acceptable to most low-income countries. (x) Bio-hazardous waste generated should be minimal. (xi) There should be some form of quality control and ideally the test should be suitable for
an external quality assurance programme30,34,38,52 such as QASI and AFREQAS. (xii) The maintenance for any machinery should be minimal as access to routine technological maintenance can be difficult38,52,53. In addition replacement units should be readily available38. (xiii) It should also not rely on basic services such as a consistent electricity supply20,52,53 or clean water20. The availability of point-of-care (POC) CD4 technology with characteristics such as those described above should increase the number of CD4 counts done as well as the number of individuals receiving their results, especially in mobile clinic settings or when transport costs and access to health care facilities (both through user fees and availability of staff) are barriers to returning to the facility.30,54,55 When POC HIV testing was newly introduced, it was shown that 99\% of individuals testing at mobile clinics in Zimbabwe chose same day HIV results over receiving their results at a future date at their local clinic.56 The uptake of POC CD4 is unlikely to be less than this.

Ideally one would offer HIV testing in combination with POC CD4 testing30. This would enable directed post-test counseling, based on the CD4 result, and would enable immediate referral for ART initiation. POC CD4 testing could potentially increase both the number of individuals remaining in HIV wellness programmes as well as the number of people initiating ART.

Concerns regarding POC CD4 testing

Concerns around providing POC CD4 tests include:

- The task of performing the POC CD4 test may become the responsibility of the nursing staff who typically already face high patient volumes and high workloads.38 This change in job description may lead to low levels of motivation38 and the increased level of responsibility may require a suitable salary increase32.
- Strict quality control procedures need to be in place to ensure that test are being performed correctly such that results produced are accurate.
• True POC testing does not offer economy of scale. Consumable and labour costs, which make up the bulk of the overall cost of performing a POC test do not change regardless of how many tests are performed37,38. This is in contrast to laboratory testing, where the most significant cost is the fixed cost of running the equipment whilst the cost of consumables remains insignificant37

• Tests may be done unnecessarily due to the ease of having the test results available during the time-frame of the consultation.

Current options for CD4 testing in mobile clinics in South Africa

Although several such innovative means of assessing CD4 counts using non-flow cytometry have been published over the past few years, they have either not been commercialized or not been rolled out on a large scale21,35,57-67.

Three options were considered for use in our mobile clinic which is in a primary care setting and where nurses, rather than laboratory technicians, perform the CD4 counts. They were the Easycyte (Millipore, Billerica, MA) (previously EasyCD4, Guava Technologies, Hayward, CA)42, the PointCare Now (PointCare Technologies, Malborough, MA)43 and the PIMA™ Analyser (Alere, Waltham, USA).

The Guava Easy CD4 uses microcapillary single flow cytometry. This eliminates the need for sheath fluid and thus requires smaller samples and fewer reagents, with minimal waste. Several evaluations have found that it compares well with flow cytometry both in laboratory and clinical settings52,68-70. Although it is compact and ideally sized for small laboratories, it is not suitable for our mobile clinic setting. The sample requires pipetting and further preparation by a dedicated nurse, detracting from patient care. Furthermore the knocks sustained when driving the mobile as well as the vibrations as people step on and off the mobile are likely to cause misalignment of the laser technology53.
No published literature is available on the Pointcare NOW43. This compact and portable modified flow cytometer uses heat-stable colloidal gold-labelled reagents instead of monoclonal antibodies and fluorescence. This eliminates the need for fluorescence signal filter detectors20 and should make it less likely to have optical alignment problems. Unpublished data from our mobile clinic however showed that results were poor and use of the machine was discontinued.

The PIMA™ Analyser (ALERE, Waltham, USA) is the only commercially available true POC CD4 machine in South Africa. It is suitable for performing POC CD4 counts using both finger-prick (capillary) and venous blood samples. CD4-lymphocytes are labeled with fluorescing monoclonal antibody labels which are detected using image cytometry71,72. It can be readily transported to site in the carrier bag provided, can be battery operated and has no liquid bio-hazardous waste. In addition it is easy to operate, requires no specific technical skills to do so and requires little maintenance. The cartridges are also heat stable.

Recent evaluations show good correlation between PIMA™ CD4 results and laboratory CD4 counts73-75. In-laboratory validation75 at the National Health Laboratory Service (NHLS) in Johannesburg between PIMA™ CD4 results from venous samples and results determined by flow cytometry based PLG/CD4 showed a slight under-estimation of absolute CD4 counts by the PIMA™ Analyzer (Table 1). Capillary samples run on the PIMA™ Analyzer in Zimbabwe showed a slight over-estimation of absolute CD4 counts when compared to same day laboratory processing of venous blood specimens from the same individual73 (Table 1).
Table 1. Comparison of CD4 results from evaluations of the PIMA™ Analyzer

<table>
<thead>
<tr>
<th>N</th>
<th>PIMA sample type</th>
<th>Laboratory CD4 range</th>
<th>Bias</th>
<th>Slope</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Venous</td>
<td>3 - 1332</td>
<td>-16.86 ± 36.7</td>
<td>0.913 ± 0.013</td>
<td>0.981</td>
</tr>
<tr>
<td>165</td>
<td>Capillary</td>
<td>1 - 1297</td>
<td>+7.6 (CI -6.6 ; 21.8)</td>
<td>Not done</td>
<td>Not done</td>
</tr>
</tbody>
</table>

Variability of CD4 counts results

Various techniques for determining CD4 counts are currently available as described above, however they vary in accuracy and reproducibility as no definitive “gold standard” for CD4 counts exists. In addition physiological intra-subject factors can lead to variability in CD4 count measurements. CD4 counts vary by time of day, as well as by season, and may also be influenced by acute and chronic infections. The CD4 count can drop temporarily during pregnancy, infections (e.g. Tuberculosis) and during other systemic conditions. Treatment with corticosteroids can also cause a significant drop in the CD4 count.

Typically the CD4 cell count decreases progressively over time and decreases by 50-75 cells/µl per year in the absence of ARVs. The CD4 rises after ART initiation: typically by 50 cells/µl in the first weeks, and then 50-100 cells/µl if there is good viral suppression.
Opportunistic infections and well as the risk of developing immune reconstitution syndrome become more common with declining CD4 counts but are uncommon with CD4 counts over 500 cells/µl and most common below 200, with those below 100 and below 50 at increasing risk78. Variations in CD4 count in those with counts greater than 500 have less clinical impact. However, the lower the CD4 count, the more important it is for the CD4 count to be accurate, regardless of the technology used.

Identification of gaps for further research

To date there is a paucity of data from sites such as mobile clinics where the PIMA™ CD4 analyzer is most likely to be used with the greatest benefit. Mobile clinics are different to standard laboratory environments and can be far from ideal: the machines are transported over large distances daily, operated on battery power and used in varying temperatures and conditions. It is also unclear as to which method of blood collection for CD4 counts is most suitable as there is no data comparing venous to capillary PIMA™ samples taken from the same individual.
References

39. BD Biosciences Instruments and Software.

40. Beckman Coulter Flow Cytometers.

41. Partec instrumentation.
42. Millipore-Instruments-Flow cytometry.

43. Pointcare Diagnostics for the people.

45. Invitrogen Life Science Dynabeads®

46. Clinical Flow Cytometry COULTER® Manual CD4 Count Kit

50. Shott JP, Iga B, Makumbi F, et al. CD4 stabilization tubes provide improved accuracy of absolute CD4 T-cell counts compared to standard k3

55. ART-CC. Mortality of HIV-1-infected patients in the first year of antiretroviral therapy: comparison between low-income and high-income countries. The Lancet. 2006;367(9513):817-824.

76. Malone JL, Simms TE, Gray GC, et al. Sources of variability in repeated T-helper lymphocyte counts from human immunodeficiency virus type 1-infected

PART C: MANUSCRIPT

This will be formatted for submission to JAIDS. Instructions for authors are available in Appendix 8. The Authorship Responsibility, Financial Disclosure, and Copyright Transfer form is also included.

Supplementary figures and tables are in Appendix 9.

The machines were donated by Alere Healthcare, but Alere had no part in design, conduct or analysis of the study.
Full title:

Field evaluation of the PIMA™ Analyzer Point-of-care CD4 machine in a mobile clinic, South Africa

Running head:

Field evaluation of the PIMA™ Analyzer

Authors:

VAN SCHAIK, Nienke; MBChB

MYER, Landon, MBChB PhD

KRANZER, Katharina; MBBS, MRCP(UK) MSc MSc

BEKKER, Linda-Gail; MBChB, FCP(SA), PhD

Institution:

1. Desmond Tutu HIV Centre, Institute of Infectious Diseases & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa

2. London School of Hygiene and Tropical Medicine, London, United Kingdom

3. School of Public Health and Family Medicine, University of Cape Town, South Africa
Corresponding author and requests for reprints:

Dr Nienke van Schaik

Desmond Tutu HIV Foundation, PO Box 13801, Mowbray, 7705, South Africa

Tutu.tester@hiv-research.org.za

Meetings at which part of the data were presented:

18th Conference on Retroviruses and Opportunistic Infections, Boston,
27February 2011- 02 March 2011(Abstract V144)

Sources of funding:

United States Agency for International Development (USAID): ANOVA funded USAID programme
Agence Française de Développement (AFD)

Abstract word count: 250

Text word count: 3551

Tables: 5

References: 30
Abstract

Introduction

Universal access to CD4 counts could be improved through easy-to-use point-of-care CD4 systems such as the PIMA™ Analyzer (PIMA™). Validation studies performed in a laboratory and stationary clinic showed promising results. This study aimed to validate the PIMA™ in a mobile clinic in South Africa in 2010.

Methods

Consecutive HIV-positive individuals (both on ART and not on ART) had a capillary and/or venous sample analyzed using the PIMA™ and a venous sample analyzed externally (Beckman Coulter EPICS XL-MCL flow cytometer (XL-MCL)). Linear regression and Bland-Altman was used to assess PIMA™ performance. The impact of operator, machine, training and time delay to laboratory were evaluated.

Results

The median laboratory CD4 in the 349 participants was 405 cells/µl (IQR 277 – 600) with CD4 <=200, 201-350 and > 350 cells/µl being 11%, 29% and 60% respectively. The mean difference between PIMA™ and XL-MCL CD4 counts was -4.5 cells/µl (95%CI -12.4; 3.40) for venous samples (n=325) and 29.7 cells/µl (95%CI 16.93; 42.49) for capillary samples (n=167). Regression coefficients were 0.999 (R^2=0.909) and 1.006 (R^2=0.882) respectively.

Misclassification using a 200 cells/µl cutoff was < 3.1% but ±10% with a 350 cells/µl cutoff for both.

Multivariable regression analysis, adjusting for operator and training, showed machine used and delay to be significant for venous but not capillary samples.
Conclusion

The PIMA™ performance in a mobile clinic compared favourably with previous studies, identifying most individuals with CD4 counts < 200 cells/µl. Capillary PIMA™ samples gave less reliable estimates than venous samples. Machine variability needs further investigation.

Key words: CD4 lymphocyte count, point-of-care, mobile clinic, HIV, PIMA™
Introduction

South Africa is home to the world’s largest population of people living with Human Immunodeficiency virus (HIV)1,2,3. Despite having more than 971 000 people on antiretroviral therapy (ART) in 20094, the programme must grow significantly to meet demand for ART5,6.

The majority of treatment initiation guidelines, including the current WHO guidelines2, are CD4 based. A recent cost-effectiveness analysis7 recommended that resource-limited countries with only one line of ART available should prioritize access to CD4 count monitoring and ART initiation at CD4 \(\leq 350\) cells/µl to offer the best survival outcomes. However, universal access to CD4 count monitoring is hindered by centralized laboratory services, the challenges of transporting samples to these laboratories, cost and delays in receiving results. Recent studies in settings that rely on laboratory-based CD4 enumeration have shown that only 55-90% of individuals have a CD4 count within 2 to 6 months of testing HIV positive, and of those only 46-65% will return to receive their CD4 count result.8-10 Individuals who are potentially eligible for ART are thus lost to care.

The availability of point-of-care (POC) CD4 technology should increase the number of CD4 counts done and the number of individuals receiving their results. POC CD4 counts may be especially valuable in mobile clinics or when transport costs and access to health care facilities (both through user fees and availability of staff) are barriers to returning to the facility11,12. For HIV testing services, the immediate availability of CD4 count results enables appropriate post-test counselling for HIV-infected clients and, when indicated, immediate referral for ART. This reduction in treatment delays would improve morbidity and mortality13-15 and decrease transmission of HIV from mother to child16,17. The PIMA™ Analyser (PIMA™) (Alere, Waltham, USA) is one of the few commercially available POC CD4 machines. Recent evaluations show good
correlation between PIMA™ CD4 results and laboratory CD4 counts18-20. To date there is a paucity of data from sites such as mobile clinics where the PIMA™ is most likely to be used with the greatest benefit. In addition, there are no published data comparing the two possible PIMA™ blood collection techniques (venous and capillary) on samples taken from the same individual.

We evaluated the PIMA™ by assessing CD4 counts obtained from HIV-infected patients attending a mobile clinic and determining factors which may impact on the performance of the PIMA™.

\textbf{Methods}

This cross-sectional study comparing PIMA™ and laboratory CD4 results was done in a primary care setting in Cape Town, South Africa, on samples obtained from patients who accessed a nurse-run, counsellor supported mobile clinic between March and November 2010. A CD4 count (PIMA™ and/or laboratory) was done as part of routine care for HIV infected individuals. Clients were referred for either ART or HIV care based on their CD4 result and clinical staging findings.

Study participants consisted of consecutive HIV positive individuals (newly diagnosed, known positive not on ART and known positive on ART) identified in the mobile clinic who consented to having both PIMA™ and laboratory CD4 counts done. A subset of individuals consented to having both capillary and venous PIMA™ CD4 counts and a laboratory CD4 count performed.
PIMA™ CD4 testing

The PIMA™ CD4 test enables the determination of absolute counts of CD4 T-lymphocytes in whole blood without prior sample preparation. Full details are described elsewhere\(^{18}\).

The PIMA™ is particularly suitable for mobile clinic settings as it can be readily transported to site in the carrier bag provided, can be battery operated and has no liquid bio-hazardous waste. In addition it is easy to operate, requires no specific technical skills to do so and requires minimal maintenance. The cartridges are heat stable and the cost per test (excluding the price of the machine) is no more expensive than a laboratory CD4 count.

Nine different PIMA™ machines were used over the course of the study. The manufacturer’s instructions were followed for installation, operation, storage of test materials and running of daily controls. Three training sessions for operators were held: one before the study commenced (March 2010) and two additional refresher trainings (July and October 2010). The sessions were conducted by trained Alere Healthcare representatives and included instruction on the use of the PIMA™ device and the correct sample collection techniques.

The required 25µl of blood was collected into a PIMA™ cartridge from a finger prick and/or venous sample. Nurses were asked to use a 1.8mm blade lancet for the capillary samples. Venous blood was collected by phlebotomy in a 4ml EDTA tube and transferred to a PIMA™ cassette by means of a plastic non-calibrated pipette or an EDTA-filled capillary tube. Nurses self-selected the method in which the sample would be collected unless the individual had consented to both.
Laboratory testing

Venous blood collected in a 4ml EDTA tube was kept at room temperature and transported to a reference laboratory (Togatainer Gugulethu, Toga, Johannesburg, South Africa), usually the next working day. Specimens were analyzed using standardized protocols on a Beckman Coulter EPICS XL-MCL™ (XL-MCL) flow cytometer (Beckman-Coulter, Miami, FL). Both internal and external (AFREQAS through the NHLS) quality control procedures are in place at the laboratory. The laboratory personnel were blinded to the PIMA™ results.

Data analysis

Each PIMA™ sample was classified as being either “venous” or “capillary”, although some patients had “both”; in these cases, both a venous and capillary specimen were taken from the same individual, collected by the same operator and analyzed on the same machine. The time, date, operator and machine number were reflected on the PIMA™ result printout.

The variable, training, indicates the number of training sessions attended by the operator at the time of performing each PIMA™ test.

The number of days taken for the sample to reach the laboratory (days to lab) was calculated. A specimen was classified as delayed if “days to lab” was more than one day. We intentionally included all samples in our analysis as delays in reaching a laboratory are not an uncommon occurrence in Sub-Saharan Africa but repeated our analysis using only those XL-MCL specimens processed at the laboratory within one day.

The XL-MCL CD4 results, the “gold standard” were stratified into three groups(CD4 group) for further analysis in keeping with current cut-offs for ART initiation: XL-MCL CD4 count ≤200; 201 - 350 cells and >350 cells/µl.
Statistical analysis:

Statistical analysis used STATA® Version 11 (StataCorp, College Station, USA). Data were explored via simple proportions, medians, means, cross-tabulations and chi square tests. A Wilcoxon Signed Rank test was used to calculate differences in median results. The sensitivity and specificity for the PIMA™ CD4 results, as well as Kappa statistics, were calculated using laboratory cut-offs of 200 and 350 cells/µl. Bland-Altman tests were used to determine the systematic bias of the PIMA™ relative to the XL-MCL.

Linear regression analysis was used to identify factors impacting on the performance of the PIMA™ for both venous and capillary samples. All models were adjusted for the corresponding laboratory XL-MCL value. We modeled individual predictors (delay, operator, machine and training) separately. All predictors were then included in a single multivariable model.

The reference group for “machine” consisted of all those machines on which there was a non-significant mean difference (i.e. the CI included 0) between the PIMA™ and XL-MCL CD4 values. This was done as statistical power was less if all machines were included individually. The composition of the reference group varied between venous and capillary samples.

The reference operator was the nurse who had the least significant mean difference between the PIMA™ and the XL-MCL results. The reference operator was not the same for venous and capillary samples.
Ethics

Informed consent was obtained from all study participants. Data collection and analysis was approved by the University of Cape Town Research Ethics Committee. This study also adheres to the declaration of Helsinki 2008.

The machines were donated by Alere Healthcare, but Alere had no part in design, conduct or analysis of the study.

Results

Overall 349 HIV-infected individuals, seen between March and November 2010, had PIMA™ and laboratory CD4 results available. A total of 325 venous PIMA™ and 167 capillary PIMA™ samples were analyzed as 138 participants had dual venous and capillary PIMA™ specimens taken (Figure 1, Appendix 9), 182 had only venous PIMA™ and 24 only capillary PIMA™ samples.

The majority (88%) of the 349 study participants were black South African, female (63%) and not yet taking ART (82%). The median age was 33 years (IQR 27-40) (Table 1). The median laboratory CD4 was 405 cells/µl (IQR 277-600) (Table 2) with CD4 ≤200, 201-350 and > 350 cells/µl being 11%, 29% and 60% respectively.

Overall 270 samples (77%) were processed at the laboratory within one day whilst the remaining 79 were processed 2-3 days after the sample was taken (delayed). The numbers of samples performed by each user and on each machine was not consistent, neither was the number of training sessions received by the operators (range 0-3) (Table 1).
Venous samples

The median venous PIMA™ CD4 result (n=325) of 393 cells/µl (IQR 264-587) did not differ significantly from the corresponding median laboratory CD4 count of 409 cells/µl (IQR 277-609) (p=0.11) (Table 2). The Spearman rank correlation co-efficient was 0.96 (p<0.0001). Our regression analysis using the gold standard revealed a regression coefficient of 0.999 (95%CI 0.964-1.034) (Table 3) (Figure 2A; appendix 9). Ninety-one percent of the variation in the PIMA™ result was explained by the laboratory result (R-square 0.909). Results were similar when excluding delayed specimens (Table 3).

The mean difference (Bland Altman) between PIMA™ CD4 counts and gold standard XL-MCL CD4 counts was -4.5 cells/µl (CI -12.5 to 3.4), and -11.4 cells/µl (CI -20.2 ; -2.6) when excluding delayed specimens (Table 3)(Also see Figure 2B in appendix 9).

The sensitivity of the PIMA™ in detecting CD4 counts ≤200 cells/µl and CD4 counts ≤350 cells/µl was 89% (95%CI 75-97) (Table 4) and 89% (95%CI 82-94) respectively. The specificity was 98% (95%CI 96-99) for CD4 counts> 200 cells/µl and 90% (CI 85 - 94) for >350 cells/µl.

In total ten samples (3.1%; CI 1.5 – 5.6) were misclassified around the threshold of 200 cells/µl; four samples above and six samples below the threshold. Those individuals misclassified above the threshold would potentially have been excluded from ART therapy and those below the threshold would have been given ART prematurely.

The overall misclassification was higher around the 350 cells/µl threshold at 10.5% (CI 7.4-14.3) with the misclassification of 14 samples above and 20 samples below the threshold.
Capillary samples

The median capillary PIMA™ CD4 result (n=167) of 429 cells/µl (IQR 296-596) differed significantly from the corresponding median laboratory CD4 count of 398 (IQR 269-572) (p<0.0001) (Table 2). The Spearman rank correlation co-efficient was 0.93 (p<0.0001). The R-square is 0.88 (Table 3) (Figure 2B in appendix 9). The mean difference was 29.7 cells/µl (95%CI 16.9 to 42.5) when compared to the gold standard, and 26.7 (CI 13.5 to 40.4) when delayed samples were excluded (Table 3) (Figure 2B, appendix 9).

The sensitivity of the PIMA™ in detecting CD4 counts≤200 cells/µl and ≤350 cells/µl for capillary samples was 81% (95%CI 54-96) and 85% (95%CI 74-92) (Table 4) respectively. The specificity was 99% (95%CI 95-100) for CD4 counts>200 cells/µl and 93% (95%CI 86-97) for CD4 counts >350 cells/µl.

In a similar pattern to the venous samples, 3.0% (CI 1.0 – 6.8) of capillary samples were misclassified around the threshold of 200 and 10.8% (CI 6.5 – 16.5) around the threshold of 350. With capillary samples however, there were more misclassifications above the thresholds than below thus more individuals would potentially have been excluded from ART therapy than would have been started on treatment prematurely.

Comparison of venous versus capillary PIMA™ samples

A comparison was done between CD4 count results obtained when both venous and capillary PIMA™ samples from the same individual by the same operator were run on the same machine (n=138). There was a significant difference between the venous median CD4 of 406.5 cells/ µl (IQR 262-593) and the capillary median CD4 of 436.5 cells/ µl (IQR 299-618) (p=0.0002) in this group with a mean difference of 26.1 cells/ µl . As before, the results were similar when excluding all delayed samples.
The Kappa statistic using a cut-off of 200 cells/µl was 0.76 and using a cut-off of 350 cells/µl was 0.82

Regression Analysis

All linear regression models included the XL-MCL value. In the regression analysis of venous samples, operator, machine and training and delay all significantly influenced (p<0.05) the performance of the PIMA™ Analyzer (Panel I, Table 5). In the multivariable analysis (Panel II, Table 5), machine had the biggest effect estimate and delay remained significant (p=0.010). Operator was borderline significant (p=0.086).

In the regression analysis of the capillary PIMA™ samples (Panel III, Table 5) only machine and training were significant (p<0.05). Delay was however not significant. In the multivariable analysis (Panel IV, Table 5) the machines were no longer of significance but training neared significance (p=0.058).

Furthermore neither CD4 strata nor the presence/absence of ART contributed significantly to the model.

When doing a more rigorous analysis using only samples reaching the laboratory within one day (results not shown), machine remained a significant variable for venous samples. For capillary samples, none of the variables of interest were significant in this analysis.
Discussion

These data suggest that the PIMA™ performed well when used on a mobile clinic. The CD4 count estimates were more reliable with venous than capillary samples. There was an underestimation of CD4 counts using venous samples and an overestimation when using capillary samples which is consistent with previous studies,18,19,22 and was also consistent when comparing PIMA-based CD4 estimates using both venous and capillary samples from the same individual.

Although approximately 10% of CD4 results were misclassified using a threshold of 350 cells/µl, this was reduced to 3% when using a threshold of 200 cells/µl for both capillary and venous samples. These low misclassification rates would enable the mobile clinic staff to accurately and urgently refer individuals eligible for ART, as per the current South African guidelines. We could be referring individuals for ART prematurely, more so for venous than capillary results, but this is less serious than missing individuals who require ART.

Our field evaluation reinforces previous findings from both laboratory19,20 and facility based studies18 that POC CD4 testing, using the PIMA™ Analyzer, may be an acceptable alternative to laboratory based CD4 testing when absolute CD4 T-lymphocytes counts are required. Although several other innovative means of assessing CD4 counts have been published over the past few years, they have either not been commercialized, not been rolled out on a large scale or are have intricate components or operating requirements making them less suitable for a nurse-run mobile clinic such as ours21,23-28. The latter can be far from ideal: the machines are transported over large distances daily, operated on battery power and used in varying environmental temperatures and conditions. Despite this the machine performed well.
Our sensitivity may have improved if our sample size was larger and included more individuals with CD4 counts below 200 cells/µl. Our previous study showed that individuals accessing this mobile clinic were healthier than those accessing hospitals and clinics29. Our median CD4 counts were higher than these previous evaluations18-20 with the majority (60%) of our XL-MCL CD4 counts being over 350 cells/µl compared to 40\%20 and 20\%18. This may have led to a larger bias as typically the reliability of the CD4 estimate decreases as the CD4 count increases. However the clinical implications of a variation in CD4 cells at higher CD4 counts is less.

The PIMA™ machine used appeared to affect the test performance as machine remained significant in the multivariable analysis for venous samples. Some variation was noted amongst the operators, but after adjusting for the machine used and amount of training received, this was not statistically significant.

Training was significant in the multivariable model for capillary samples. Paradoxically, it appears that the more training received the greater the deviation from the laboratory result. Although it is unlikely that additional training results in poorer performance, the possibility of user fatigue (where operators using the machine for longer periods may be less likely to adhere to protocols) needs to be considered. In addition, training could be a proxy for calendar effect and needs to be understood better. We could have restricted the analysis to only the 2 operators who had undergone all three training sessions but this would have significantly reduced the power of the study.

Our study is subject to several limitations. Firstly our study is a field evaluation and the rigor normally associated with a research setting in terms of methodology is lacking. The exact time delays between sample collection, sample processing on the PIMA™ and sample processing at the laboratory were not calculated. The room temperature was also not recorded. The number of specimens performed on each machine and each user was not consistent. In addition the number of
training sessions attended by each user varied. This was however adjusted for in our multivariable analysis. The effects may also have been more apparent if the sample size was bigger for capillary samples and samples where the XL-MCL result was less than 200.

Secondly the study was run from March to November which are typically the cooler months in Cape Town. The impact of ambient temperature on machine performance has not been sufficiently evaluated.

Thirdly, poorly collected specimens can adversely affect the quality of CD4 enumeration. The collection of venous blood into an EDTA tube using a BD Vacutainer® system (Becton, Dickinson and Company, Franklin Lakes, NJ) and transfer of the sample with a pipette could have caused shearing, deterioration or loss of cells. Furthermore the blood-to-additive ratio may be altered through the additional use of EDTA-filled capillary tubes contributing to the slight underestimation of CD4 counts seen for venous samples.

Collection of the capillary samples also requires a well-trained individual. Despite the nurses being highly experienced and trained in finger-prick blood collection, the collection of blood into the PIMA™ cartridge was challenging initially. Insufficient volume or the presence of air bubbles in the sample adversely affects the accuracy of the PIMA™ result. If the PIMA™ is to be used by inexperienced or careless operators, the overall performance of the PIMA™ may not be as good as reported in our study or previous studies.

Fourthly, our nurses were not blinded to the PIMA™ results which may have been important when performing dual samples. This may have resulted in repeat specimens being performed.

Lastly, we had an imperfect gold standard. A universally accepted gold standard for CD4 counts does not exist but flow cytometers such as the FACScount and Beckman Coulter CD4 counts are often used. The gold standard in this study is
further influenced by a delay in reaching the laboratory which was found to be significant in our study. Delays in our study typically occurred because the reference laboratory does not provide an after-hours or weekend service. Both other evaluations18,19 used same day laboratory specimen processing. Whilst this gives a more accurate comparison, this does not take into account the fact that blood samples from most testing sites where POC would be most useful, could take days to reach the laboratory. Clinicians wanting to perform their own validations, especially at rural sites, should bear this in mind.

For accurate results, specimens must be analysed no later than 48 hours after collection as delays result in sample aging. This could induce apoptosis of cells resulting in an underestimation of CD4 counts. However aging can cause changed cell morphology altering light scatter properties. Distinguishing between monocytes & lymphocytes thus becomes difficult. Automated gating algorithms may fail to identify the relevant populations and manual gating may need to be performed. If monocytes are counted as T-helper cells it could lead to an increased CD4 count (W. Pretorius [willem.pretorius@alere.com], email, May 16, 2011). The latter could be a reason for finding that delay had a positive effect size for both venous and capillary samples in our study.

The potential advantages of giving CD4 results to the individual during the timeframe of their initial consultation are considerable. We were able to give 99% (n=346) of patients their PIMATM result during their visit. This is a significant improvement over the 46-65% of individuals who return to their health care facility to receive their CD4 count result.8-10

Future research may examine whether the use of POC CD4 results in improved referrals to care. An evaluation of the linkage-to-care of these individuals is warranted to assess the cost-effectiveness of POC CD4 counts.

Pregnant patients and those with TB, where a cutoff of 350 applies, may need confirmatory CD4 count testing at their referral site due to the 10%
misclassification at this level. Further validation studies of the PIMA in these two populations may need to be done.

The significant variability between machines needs to be further explored.

Conclusion

Our field evaluation reinforces previous findings that the PIMA™ Analyzer may be an acceptable alternative to laboratory based CD4 testing for absolute CD4 T-lymphocytes counts. Misclassification rates are low when using a CD4 cutoff of < 200 cells/µl enabling accurate identification of individuals requiring ART. In our evaluation venous samples underestimated and capillary samples overestimated the XL-MCL CD4 result. Operator, machine and training appeared to influence the performance of the PIMA™ and this finding needs to be further evaluated.

Acknowledgments

The authors thank the Tutu Tester staff for assisting with conducting the study. A special thank you to the nurses: Liz, Nikki and Eudoxia as well as Shandré who captured all our data. The authors are also grateful for the excellent technical support provided by Alere Healthcare and the dedication of the staff at the Togatainer in Gugulethu.
Bibliography

<table>
<thead>
<tr>
<th>Variables</th>
<th>Total N=349</th>
<th>Venous PIMA N=325</th>
<th>Capillary PIMA N=167</th>
<th>Both N=138</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>median IQR (range)</td>
<td>mean sd</td>
<td>mean sd</td>
<td>mean sd</td>
</tr>
<tr>
<td>age</td>
<td>33 27-40 (16-72)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>HIV</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
</tr>
<tr>
<td>newly diagnosed</td>
<td>183 52.4</td>
<td>173 53.2</td>
<td>76 45.5</td>
<td>64 46.4</td>
</tr>
<tr>
<td>known not on ART</td>
<td>102 29.2</td>
<td>91 28.0</td>
<td>50 29.9</td>
<td>37 26.8</td>
</tr>
<tr>
<td>known on ART</td>
<td>64 18.3</td>
<td>61 18.8</td>
<td>41 24.6</td>
<td>37 26.8</td>
</tr>
<tr>
<td>gender</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
</tr>
<tr>
<td>male</td>
<td>129 37.0</td>
<td>124 38.1</td>
<td>51 30.5</td>
<td>44 31.9</td>
</tr>
<tr>
<td>female</td>
<td>220 63.0</td>
<td>201 61.9</td>
<td>116 69.5</td>
<td>94 68.2</td>
</tr>
<tr>
<td>LAB CD4 (cell/µl)</td>
<td><=200 N %</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
</tr>
<tr>
<td></td>
<td>38 10.9</td>
<td>38 11.7</td>
<td>16 9.6</td>
<td>15 10.9</td>
</tr>
<tr>
<td></td>
<td>201-350</td>
<td>103 29.5</td>
<td>91 28.0</td>
<td>55 32.9</td>
</tr>
<tr>
<td></td>
<td>> 350</td>
<td>208 59.6</td>
<td>196 60.3</td>
<td>96 57.5</td>
</tr>
<tr>
<td>days to lab</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
</tr>
<tr>
<td>0</td>
<td>8 2.3</td>
<td>8 2.5</td>
<td>8 4.8</td>
<td>8 5.8</td>
</tr>
<tr>
<td>1</td>
<td>262 75.1</td>
<td>239 73.5</td>
<td>127 76.1</td>
<td>101 73.2</td>
</tr>
<tr>
<td>2</td>
<td>51 14.6</td>
<td>50 15.4</td>
<td>19 11.4</td>
<td>16 11.6</td>
</tr>
<tr>
<td>3</td>
<td>28 8.0</td>
<td>28 8.6</td>
<td>13 7.8</td>
<td>13 9.4</td>
</tr>
<tr>
<td>delay</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
</tr>
<tr>
<td>yes</td>
<td>79 22.6</td>
<td>78 24.0</td>
<td>32 19.2</td>
<td>29 21.01</td>
</tr>
<tr>
<td>no</td>
<td>270 77.4</td>
<td>247 76.0</td>
<td>135 80.8</td>
<td>109 78.99</td>
</tr>
<tr>
<td>operator</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
</tr>
<tr>
<td>operator A</td>
<td>69 21.2</td>
<td>40 24.0</td>
<td>33 23.9</td>
<td></td>
</tr>
<tr>
<td>operator B</td>
<td>37 11.4</td>
<td>3 1.8</td>
<td>3 2.2</td>
<td></td>
</tr>
<tr>
<td>operator C</td>
<td>69 21.2</td>
<td>52 31.1</td>
<td>51 37.0</td>
<td></td>
</tr>
<tr>
<td>operator D</td>
<td>150 46.2</td>
<td>72 43.1</td>
<td>51 37.0</td>
<td></td>
</tr>
<tr>
<td>machine</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
</tr>
<tr>
<td>A</td>
<td>72 22.2</td>
<td>60 35.9</td>
<td>47 34.1</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>24 7.4</td>
<td>23 13.8</td>
<td>22 15.9</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4 1.2</td>
<td>6 3.6</td>
<td>4 2.9</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>19 5.8</td>
<td>5 3.0</td>
<td>4 2.9</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>127 39.1</td>
<td>49 29.3</td>
<td>40 29.0</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>50 15.4</td>
<td>10 6.0</td>
<td>8 5.8</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>13 4.0</td>
<td>1 0.6</td>
<td>1 0.7</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>15 4.6</td>
<td>13 7.8</td>
<td>12 8.7</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1 0.3</td>
<td>0 0.0</td>
<td>0 0.0</td>
<td></td>
</tr>
<tr>
<td>Number of training sessions</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
</tr>
<tr>
<td>1</td>
<td>189 59.2</td>
<td>41 24.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>95 29.2</td>
<td>87 52.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>41 12.6</td>
<td>39 23.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variables</td>
<td>N</td>
<td>mean</td>
<td>sd</td>
<td>median</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory CD4</td>
<td>349</td>
<td>448.7</td>
<td>232.6</td>
<td>405</td>
</tr>
<tr>
<td>Venous sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIMA CD4</td>
<td>325</td>
<td>443.8</td>
<td>240.7</td>
<td>393</td>
</tr>
<tr>
<td>Laboratory CD4</td>
<td></td>
<td>448.3</td>
<td>229.6</td>
<td>409</td>
</tr>
<tr>
<td>Capillary sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIMA CD4</td>
<td>167</td>
<td>466.6</td>
<td>227.3</td>
<td>429</td>
</tr>
<tr>
<td>Laboratory CD4</td>
<td></td>
<td>436.9</td>
<td>243.6</td>
<td>398</td>
</tr>
</tbody>
</table>
Table 3. Summary of Bland-Altman and Regression results

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean PIMA</th>
<th>Mean XL-MCL</th>
<th>Mean diff</th>
<th>CI</th>
<th>Limits of agreement</th>
<th>Regression Coefficient</th>
<th>CI</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold standard (all samples)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venous PIMA™ samples</td>
<td>325</td>
<td>443.8</td>
<td>448.3</td>
<td>-4.5</td>
<td>-12.5 ; 3.4</td>
<td>-150.1 ; 141.0</td>
<td>0.999</td>
<td>0.964 ; 1.034</td>
<td>0.909</td>
</tr>
<tr>
<td>Capillary PIMA™ samples</td>
<td>167</td>
<td>466.6</td>
<td>436.9</td>
<td>29.7</td>
<td>16.9 ; 42.5</td>
<td>-137.6 ; 197.0</td>
<td>1.006</td>
<td>0.950 ; 1.063</td>
<td>0.882</td>
</tr>
<tr>
<td>Both subset (venous versus capillary)</td>
<td>138</td>
<td>-</td>
<td>-</td>
<td>26.1</td>
<td>9.9 ; 42.4</td>
<td>-166.4 ; 218.6</td>
<td>0.915</td>
<td>0.847 ; 0.984</td>
<td>0.837</td>
</tr>
<tr>
<td>Delayed samples excluded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venous PIMA™ samples</td>
<td>247</td>
<td>429.8</td>
<td>441.2</td>
<td>-11.4</td>
<td>-20.2 ; -2.6</td>
<td>-152.5 ; 129.7</td>
<td>1.006</td>
<td>0.967 ; 1.045</td>
<td>0.913</td>
</tr>
<tr>
<td>Capillary PIMA™ samples</td>
<td>135</td>
<td>462.5</td>
<td>435.5</td>
<td>27.0</td>
<td>13.5 ; 40.4</td>
<td>-131.4 ; 185.3</td>
<td>1.015</td>
<td>0.957 ; 1.073</td>
<td>0.900</td>
</tr>
<tr>
<td>Both subset (venous versus capillary)</td>
<td>109</td>
<td>-</td>
<td>-</td>
<td>29.5</td>
<td>11.8 ; 47.3</td>
<td>-157.4 ; 216.4</td>
<td>0.927</td>
<td>0.852 ; 1.001</td>
<td>0.851</td>
</tr>
</tbody>
</table>
Table 4. Misclassification of ART eligibility using PIMA™ based on CD4 thresholds of 200 cells/µl and 350 cells/µl

<table>
<thead>
<tr>
<th></th>
<th>Lab <=200</th>
<th>Lab 201-350</th>
<th>Lab > 350</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>VENOUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIMA <= 200</td>
<td>34 (89%)</td>
<td>4 (4%)</td>
<td>2 (1%)</td>
<td>40</td>
</tr>
<tr>
<td>PIMA 201 - 350</td>
<td>4 (11%)</td>
<td>73 (80%)</td>
<td>18 (9%)</td>
<td>95</td>
</tr>
<tr>
<td>PIMA> 350</td>
<td>0 (0%)</td>
<td>14 (15%)</td>
<td>176 (90%)</td>
<td>190</td>
</tr>
<tr>
<td>Total</td>
<td>38</td>
<td>91¥</td>
<td>196</td>
<td>325</td>
</tr>
</tbody>
</table>

CAPILLARY				
PIMA <= 200	13 (81%)	2 (4%)	0 (0%)	15
PIMA 201 - 350	3 (19%)	42 (76%)	7 (7%)	52
PIMA> 350	0 (0%)	11 (20%)	89 (93%)	100
Total	16	55	96	167

¥ Due to rounding differences this adds up to 99%
Table 5. Linear regression models predicting PIMA™ results according to selected covariates.

(Note that all models include XL-MCL CD4 values from the reference laboratory).

<table>
<thead>
<tr>
<th></th>
<th>Venous samples (n=325)</th>
<th>Capillary samples (n=167)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel I</td>
<td>Panel II</td>
<td>Panel III</td>
</tr>
<tr>
<td>Operator A</td>
<td>ref</td>
<td>Operator A</td>
</tr>
<tr>
<td>Operator B</td>
<td>-21.4</td>
<td>-12.2</td>
</tr>
<tr>
<td>Operator C</td>
<td>10.8</td>
<td>-26.3</td>
</tr>
<tr>
<td>Operator D</td>
<td>-24.9</td>
<td>-39.9</td>
</tr>
<tr>
<td>Ref. group</td>
<td>ref</td>
<td>Ref. group</td>
</tr>
<tr>
<td>machine A</td>
<td>34.0</td>
<td>28.3</td>
</tr>
<tr>
<td>machine B</td>
<td>34.0</td>
<td>26.9</td>
</tr>
<tr>
<td>machine C</td>
<td>81.3</td>
<td>65.0</td>
</tr>
<tr>
<td>machine D</td>
<td>-46.8</td>
<td>-29.1</td>
</tr>
<tr>
<td>Delay</td>
<td>28.7</td>
<td>24.4</td>
</tr>
<tr>
<td>Training</td>
<td>21.4</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Panels I and III show the associations between individual predictors, modeled separately, and PIMA™ values (for venous and capillary values respectively). Panels II and IV show the associations when all predictors shown are included in a single multivariable model. Note that all models are adjusted for the corresponding XL-MCL values.
PART D: APPENDICES
Appendix 1: Client form (version 26 Jan 2010)
Data ___________ (for office use only)

DATE: ___________ Client initials: __ __ __
DD-MM-YYYY

DATE OF BIRTH: ___________ GENDER: □ Male □ Female
DD-MM-YYYY

RACE: □ Black SA □ Coloured □ Asian □ White □ Other ____________________
□ Black non SA

Tested before on our mobile clinic? □ No □ Yes (add details) date: __________ where______________

Weight: ___________ Height: ___________ BMI = ___________

Waist circumference: ___________

Pretest counselling session needed? □ Yes □ No Couple counselling □ Yes □ No

NURSE: ____________________________

HAVE YOU EVER HAD A HIV TEST?
□ No / never
□ < 3 months ago
□ 3-6 months ago
□ 6-12 months ago
□ More than a year ago - Which year? __________

Most recent HIV Result: □ NEG □ POS Are you on ART? □ yes □ no □ defaulted
Are you still on treatment? □ No □ yes

When was your last CD4? __________ (month / year)

What was your last CD4? __________

MEDICAL HISTORY:

Have you ever had your Blood pressure checked: □ No □ yes □ unsure

If yes, Were you put on treatment? □ No □ yes Are you still on treatment? □ No □ yes

Have you ever had our glucose (diabetes) checked: □ No □ yes □ unsure

If yes, Were you put on treatment? □ No □ yes Are you still on treatment? □ No □ yes

Have you ever had a sexually transmitted Infection before? □ No □ yes □ unsure

Version JAN 2010
Ever had a Pap smear?

- Not applicable (male)
- Yes
 - 5 years ago
 - 5-10 years ago
 - > 10 years ago (refer)

Results:
- Normal
- Abnormal
- Didn’t get results

- No (refer if > 30 years old)
- too young (< 30)

Have you ever had Tuberculosis?

- No
- Yes

If yes, are you currently on treatment?
- No
- Yes

If yes, did you complete TB treatment?
- No
- Yes

(if treatment not completed discuss and refer if necessary - especially if a recent defaulter)

Obtained verbal consent for HIV test?

- Yes
- No

Couple testing:

- Yes
- No

<table>
<thead>
<tr>
<th>Bioline HIV result</th>
<th>Abbott Determine HIV result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Negative</td>
<td>Known pos</td>
</tr>
<tr>
<td>Known pos</td>
<td>Positive</td>
</tr>
<tr>
<td>Not done</td>
<td>Negative</td>
</tr>
<tr>
<td>Not applicable</td>
<td>Not done</td>
</tr>
</tbody>
</table>

Overall HIV Result:

- Negative
- Newly diagnosed HIV Positive *****
- Known HIV Positive - on ART ***
- Known HIV Positive - not on ART *
- Indeterminate
- Refused test
- Not tested other reason

<table>
<thead>
<tr>
<th>Blood pressure: _ _ / _ _</th>
<th>If > 140 / 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>new diagnosis</td>
<td>on treatment</td>
</tr>
<tr>
<td>defaulted treatment</td>
<td></td>
</tr>
</tbody>
</table>

DIABETES RISK SCORE

<table>
<thead>
<tr>
<th>Glucose: _ _ : _</th>
<th>If > 7.0: (please circle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>Fasting</td>
</tr>
</tbody>
</table>

If > 11.0 or > 7 (fasting) - new diagnosis on treatment defaulted treatment
Client Number:___________

TB symptoms? □ No □ Yes (refer)

STI symptoms? □ no □ yes (refer)

Needs a pap smear? □ Not applicable / male □ Yes(ref) □ No □ too young (< 30)

CNP: _______________________

If HIV Positive:

Blood taken for a CD4 count? □ yes* □ POINT OF CARE CD4 ______________
 □ LAB CD4
 □ no ____________________________
 □ n/a - on HAART (and regularly monitored)
 □ n/a - last CD4 was > 350 (done less than 6 months ago)
 □ n/a - last CD4 was >200 and <350 (done less than 3 months ago)
 □ refused

* take blood for CD4 if they are part of the TB study

Syphilis screen: □ negative □ positive □ not done □ n/a

Pregnancy test: □ negative □ positive □ not applicable □ not done

Clinical Stage: □ 1 □ 2 □ 3 □ 4 □ on ART □ not done

Overall assessment: □ on ART □ Green □ Yellow □ Red □ Referred for ARVs? □ no □ yes

Active STI screen: □ no □ yes □ not done

For patients with STIs:

Syphilis screen: □ negative □ positive □ not done □ not applicable

STI treatment: □ no □ yes - code ___________
CONDOM DEMONSTRATION (Must be done! If not done by nurse MUST be done by counsellor)

Did patient demonstrate how they use condoms? □ no □ yes (initials of person observing:________
If no, document why not:__

COUNSELLOR: ___

Have you had a sexual partner in the past 3 months?

□ yes
□ not yet sexually active
□ not sexually active for > 1 year
□ last partner 3 - 6 months ago
□ last partner 6 - 12 months ago

Sexual orientation
□ Straight (heterosexual)
□ Homosexual / lesbian
□ Bisexual

If HIV NEGATIVE:

HIV Result given to patient? □ yes □ no
Total Risk factors (0-10): _______ □ not done
Overall Risk assessment: □ low □ @ risk □ high
Next test date: □ 3 months □ 12 months □ before sexually active (again)

If HIV POSITIVE:

HIV Result given to patient? □ yes □ no
Post test counselling done: □ yes □ no □ n/a
Risk reduction done: □ yes □ no
“Road to HIV health” card given and explained? □ yes □ no
Any other information..

TB testing: SPUTUM sent to the lab today? □ yes □ no □ unable □ refused

Version JAN 2010
RISK FACTORS:

<table>
<thead>
<tr>
<th></th>
<th>low risk</th>
<th>@ risk</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Have all your current sexual partners tested for HIV? (unknown partner status)</td>
<td>n/a</td>
<td>yes</td>
<td>No / don’t know (1 point)</td>
</tr>
<tr>
<td>2. Are any of your sexual partners HIV positive? (discordancy)</td>
<td>n/a</td>
<td>no</td>
<td>Yes / Don’t know (1 point)</td>
</tr>
<tr>
<td>3. Did you use condoms every time you had sex in the past 3 months? (unprotected sex)</td>
<td>n/a</td>
<td>yes</td>
<td>No (1 point)</td>
</tr>
<tr>
<td>4. Have you had more than one sexual partner in the past 3 months or is your partner having other partners? (multiple partners)</td>
<td>n/a</td>
<td>no</td>
<td>Yes (1 point)</td>
</tr>
<tr>
<td>5. Is your partner more than 10 years older/ younger than you (intergenerational sex)</td>
<td>n/a</td>
<td>no</td>
<td>Yes (1 point)</td>
</tr>
<tr>
<td>6. Did you have anal sex with someone in the past 6 months?</td>
<td>n/a</td>
<td>no</td>
<td>Yes (1 point)</td>
</tr>
<tr>
<td>7. Did you have sex with someone for food, airtime, clothes, money, etc. in the past 6 months? (transactional sex)</td>
<td>n/a</td>
<td>no</td>
<td>Yes (1 point)</td>
</tr>
<tr>
<td>8. Have you or your partner had a STI in the past 6 months?</td>
<td>n/a</td>
<td>no</td>
<td>Yes (1 point)</td>
</tr>
<tr>
<td>9. Have you injected drugs/ had a tattoo/ needed blood products in the past 6 months?</td>
<td>n/a</td>
<td>no</td>
<td>Yes (2 points)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
</tr>
</tbody>
</table>

0 = low risk = test yearly unless in window period
1 = @ risk = test in 3 months - 12 months (depending on risk factor and if in window period)
2 or more = high risk= test in 3 months time

Is there a risk factor which can be addressed? □ No □ Yes

<table>
<thead>
<tr>
<th>Behaviour</th>
<th>Costs</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

My specific goal is to: __

Version JAN 2010
Appendix 2: Ethical approval: Active Tuberculosis Case Finding
4 February 2009

REC REF: 507/2008

Dr K Kranzer
Desmond Tutu
HIV Foundation
IIMMM
Medical School

Dear Dr Kranzer

PROJECT TITLE: ACTIVE TUBERCULOSIS CASE FINDING IN INDIVIDUALS ACCESSING A MOBILE VOLUNTARY COUNSELLING AND TESTING SERVICE.

Thank you for submitting your study to the Research Ethics Committee for review.

It is a pleasure to inform you that the Ethics Committee has formally approved the above-mentioned study.

Approval is granted for one year till the 8th February 2010.

Please submit an annual progress report if the research continues beyond the expiry date. Please submit a brief summary of findings if you complete the study within the approval period so that we can close our file.

Please note that the ongoing ethical conduct of the study remains the responsibility of the principal investigator.

Please quote the REC. REF in all your correspondence.

Yours sincerely

PROFESSOR M BLOCKMAN
CHAIRPERSON, HSF HUMAN ETHICS

Federal Wide Assurance Number: FWA00001637.
Institutional Review Board (IRB) number: IRB00001938
This serves to confirm that the University of Cape Town Research Ethics Committee complies to the Ethics Standards for Clinical Research with a new drug in patients, based on the Medical Research Council (MRC-SA), Food and Drug Administration (FDA-USA), International Convention on Harmonisation Good Clinical Practice (ICH GCP) and Declaration of Helsinki guidelines.

The Research Ethics Committee granting this approval is in compliance with the ICH Harmonised Tripartite Guidelines E6: Note for Guidance on Good Clinical Practice (CPMP/ICH/135/95) and FDA Code Federal Regulation Part 50, 56 and 312.
Appendix 3: Ethical approval Cross-sectional survey
13 September 2010

HREC REF: 262/2010

Dr K Kranzer
Desmond Tutu HIV Foundation
IIDMM Medical School

Dear Dr Kranzer

PROJECT TITLE: CROSS-SECTIONAL SURVEY OF HIV INFECTION AND CD4 COUNTS IN MASIPHUMELELE TOWNSHIP

Thank you for your letter to the Faculty of Health Sciences Research Ethics Committee dated 31st August 2010.

It is a pleasure to inform you that the Ethics Committee has approved the following documentation with reference to the above-mentioned study:-

- CD-4 Survey Sub-study 1, Version 1.0
- CD-4 survey Sub-study 2, Version 1.0
- Adult informed consent form. Cross-sectional survey version 3.0

Please note that the ongoing ethical conduct of the study remains the responsibility of the principal investigator.

Please quote the REC. REF in all your correspondence.

Yours sincerely

PROFESSOR M BLOCKMAN
CHAIRPERSON, HSF HUMAN ETHICS
Appendix 4: Data collection form for PIMA™ results
TUTU tester PIMA study: capillary versus venous blood

Tutu Tester number

Date of test

<table>
<thead>
<tr>
<th>Capillary blood</th>
<th>Venous blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>If no print out available, please fill in by hand:</td>
<td>If no print out available, please fill in by hand:</td>
</tr>
<tr>
<td>CD4 result</td>
<td>CD4 result</td>
</tr>
<tr>
<td>PIMA machine</td>
<td>PIMA machine</td>
</tr>
<tr>
<td>Operator</td>
<td>Operator</td>
</tr>
</tbody>
</table>

Toga lab result

Entered by: ___________________ Date: _____________________

Entered by: ___________________ Date: _____________________
Appendix 5: Client details sheet
Client number #: __________________________

Participant Name: __________________________

Other Names: __________________________

Personal Cell No: __________________________

May we sms you? Yes / No
Language: English / Afrikaans / Xhosa
Messages: Bland / HIV-specific

OK to leave a voicemail message? Yes / No
If so, who shall we say is calling? __________________________

OK to leave a message if someone else answers your phone? Yes / No
If so, who shall we say is calling? __________________________

Home Tel: __________________________

OK to leave Message Y/N: _____
If so, who shall we say is calling? __________________________

Work No: __________________________

OK to leave Message Y/N: _____
If so, who shall we say is calling? __________________________

Home address: __________________________
Postal address (if different): __________________________

May we come to your home? Y/N ___________
If yes, with whom do you live?
Formal or Informal Dwelling: __________________________
Nearest landmark (e.g. next to church): __________________________

Clinic you are most likely to use: __________________________

Nearest Hospital: __________________________

Clinic folder # (if known): ________________
Hospital folder # (if known): __________________________

Client Signature: __________________________ Date: __________________________

Staff Signature: __________________________ Date: __________________________

Protection of Confidentiality
Note: When we leave phone messages, we will never reveal information without your prior approval.
Appendix 6: Ethical approval for reporting of programmatic data from Tutu
Tester
03 June 2010

Prof LG Bekker
Desmond Tutu HIV Centre
IIDMM
Medical School

Dear Prof Bekker

RE: PERMISSION TO REPORT PROGRAMMATIC DATA

Thank you for your letter to the Health Science Faculty Human Research Ethics Committee dated 28 May 2010.

1. Permission is granted to publish the data anonymously collected in the Tutu Tester.
2. Do the researchers feel it is worthwhile establishing a data registry with a formal HREC REF number for these data? The protocol application would include the information already described in this letter and would need an application form.

Please note that the ongoing ethical conduct of the study remains the responsibility of the principal investigator.

Please quote the REC. REF in all your correspondence.

Yours sincerely

PROFESSOR M BLOCKMAN
CHAIRPERSON, HSF HUMAN ETHICS
Appendix 7: Cross-sectional Survey Consent form
INTRODUCTION

You are being invited to take part in this research study because you are a resident of Masiphumelele. The doctor in charge of this study at Masiphumelele is: Dr. K Kranzer. Before you decide if you want to be a part of this study, we want you to know about the study.

This is a consent form. It gives you information about this study. The research staff will talk with you about this information. You are free to ask questions about this study and discuss any worries you may have with the research staff. If you agree to take part in this study, you will be asked to sign this consent form. You will be given a copy of the form to keep.

WHY IS THIS STUDY BEING DONE?

We want to know how many people are infected with HIV in Masiphumelele and we want to know how many people need antiretroviral treatment (treatment of HIV).

This is a non-interventional study. This means that you will not be provided with treatment on this study.

We also want to know if we get better (more accurate) CD4 counts if we take blood from your finger than if we take blood from your arm to do a CD4 count on the PIMA Analyzer. This is a machine which can do your CD4 count immediately rather than sending it to the laboratory.

In the future we may want to do a “viral load” (counting how much virus there is) on the blood of those testing positive. We will ask if we can freeze your blood sample in the mean time.

WHO CAN TAKE PART IN THE STUDY?

We have randomly chosen 1300 people living in Masiphumelele. “Random” means that these people were chosen out of a hat. This means we do not know anything about them, if they have HIV or if they take antiretroviral therapy or not. All randomly chosen people 15 years and older, who have lived in Masiphumelele for longer than one week, can be screened to take part in the study. The whole study will take about four months to complete.

Anyone testing HIV positive can give permission for more than one CD4 count to be done and can give permission to have their blood stored.

WHAT DO I HAVE TO DO IF I TAKE PART?

You have been visited at your home. At this visit a study staff member explained the study to you and answered any questions you may have had about the study. If you are interested in taking part, the field worker will invite you to attend the TUTU tester, a mobile HIV testing service, any time it is parked on Xhosa square.

When you arrive at the TUTU tester you will be offered a choice:

1. You can register as a client of the TUTU tester and undergo HIV testing and counselling and screening for other chronic diseases. You will be informed about your HIV-test result and you will be given post-test counselling.
Adult informed consent form

If you test HIV-positive, we will take blood from your arm (venous sample) for a CD4 count. As part of a sub-study we would like to ask if we can do an additional finger prick and do a CD4 count using this blood. We would also like to take an extra tube of blood to do a CD4 count at the TOGA laboratory. You will get this result if you give us your telephone number or you can come back to the TUTU TESTER and we will give it to you.

2. You can to register as a client of the TUTU tester and undergo screening for chronic diseases and to provide a venous blood sample. An HIV test will be done on the blood, but your name will not be written on the specimen. In this way, we will be able to see how many people have HIV, but we will not know your individual HIV status. We will not know if YOU are HIV positive or negative. A CD4 count test will be done on your blood sample if it is HIV positive. You will not know your HIV-test result.

3. You can to provide a venous blood sample. An HIV test will be done on the blood, but your name will not be written on the specimen. In this way, we will be able to see how many people have HIV, but we will not know your individual HIV status. We will not know if YOU are HIV positive or negative. A CD4 count test will be done on your blood sample if it is HIV positive. You will not know your HIV-test result.

We will also ask you some questions about your age and if you are taking antiretroviral therapy.

We would also like to obtain your consent to store your blood sample once we have done a CD4 count on it. Your blood sample will be labelled only with your study number and stored in a freezer specially designed for storing blood samples. We would like to do a "viral load" test on your blood in the future. This test will determine how much virus there is in your blood. You will not receive these results.

WHAT ARE THE RISKS OF TAKING PART IN THE STUDY?

There are no significant risks to participating in this study.

WHAT ARE THE BENEFITS OF TAKING PART IN THE STUDY?

If you undergo HIV testing and counselling and you are found to have HIV we will refer you to Masiphumelele clinic where treatment is available free of charge. If you chose not to be registered as Tutu tester client we will not give you your HIV-test result and there will be no further action.

WHAT ABOUT CONFIDENTIALITY?

The study team will keep your personal information confidential. You will be given a study number. The questionnaire and blood specimens will be labelled with this study number and NOT with your name. All information will be kept in a locked cupboard. We will make every attempt to ensure confidentiality. Any publication of this study will not use your name or identify you personally.

If your blood is sent to the laboratory and you have asked us to give you your results, your contact information will be kept in a locked cupboard. This information is only available to study staff.

WHAT ARE THE COSTS TO ME?

There are no costs to you if you are involved in this study.

WILL I RECEIVE ANY PAYMENT?

You will not be paid for taking part in this study. However you will receive a 70R gift voucher to compensate your time.
WHAT ARE MY RIGHTS AS A RESEARCH SUBJECT?

Taking part in this study is completely voluntary. You may choose not to take part in this study. You will not be giving up any of your legal rights by signing this consent form.

IN VOLUNTARY WITHDRAWAL OR EARLY WITHDRAWAL

If at any time during the study you refuse to complete one of the study procedures or the study team deems it unsafe to proceed, you will be withdrawn from the study. You may also decide at any point that you no longer wish to participate in the study and may then withdraw from the study by informing the study staff about your decision.

In either event, you will be free to withdraw from the study with no further obligations.

CAN I REFUSE TO TAKE PART IN THE STUDY?

Yes, you may refuse to take part in the study. If you decide not to take part in the study, this will not affect any medical care or treatment you may require now or in the future.

WHAT DO I DO IF I HAVE QUESTIONS OR PROBLEMS?

If you have any questions about this study or a research related injury, you may contact:

Dr Katharina Kranzer at (021) 633 6599

This study has been approved by the Human Research Ethics Committee of the University of Cape Town and the Ethics Committee of the London School of Hygiene and Tropical Medicine.
SIGNATURE PAGE

If you have read this consent form (or have had it explained to you), all your questions have been answered, and you agree to take part in this study, please indicate which study you agree to take part in and sign your name below. If you are unable to sign, you can make a thumb print in the designated space.

I agree to take part in the CD4 count survey □ yes □ no

□ I will test as a TUTU tester client and receive my HIV result
□ I will test as a TUTU tester client but do not want to receive my HIV result
□ I will give venous blood but do not want to receive my HIV result

I agree to have my blood stored for viral load testing in the future if I test HIV positive
□ yes □ no

For TUTU tester clients receiving HIV test results only:
I agree to give an extra venous sample and a fingerpick sample for CD4 count testing if I test HIV positive
□ yes □ no

Participant’s Name (Print) Participant’s Signature Date

Study Staff Conducting Consent Discussion (Print) Study Staff’s Signature Date

Witness’ Name (Print) Witness’ Signature Date
(As appropriate)
Appendix 8: Instructions for authors (JAIDS) including Authorship, Responsibility, Financial Disclosure and Copyright Transfer
Instructions for Authors

SCOPE

JAIDS: Journal of Acquired Immune Deficiency Syndromes is a peer-reviewed, multidisciplinary journal directed to an audience of physicians and researchers. The journal publishes original work in the form of Original Articles, Implementation and Operational Research*, Rapid Communications, Critical Reviews, Brief Reports, and Letters to the Editor*. JAIDS does not publish case reports. (*published online only)

MANUSCRIPT SUBMISSION

A submitted manuscript must be an original contribution not previously published (except as an abstract or preliminary report), must not be under consideration for publication elsewhere, and, if accepted, must not be published elsewhere in similar form, in any language, without the consent of Lippincott Williams & Wilkins. Each person listed as an author is expected to have participated in the study to a significant extent. Although the editors and referees make every effort to ensure the validity of published manuscripts, the final responsibility rests with the authors, not with the journal, its editors, or the publisher.

All submissions will be rigorously peer-reviewed by members of the Editorial Board and by other specially qualified individuals as well. In the interests of rapid reviewing of contributions, only one of the Editors-in-Chief will, in general, make the final determination as to the acceptability of a submission, after collecting the referee’s comments. Contributors are required to recommend specific names of reviewers from the Editorial Board, as well as other individuals they deem especially well qualified. However, the Editors-in-Chief will not be bound to follow such suggestions.

In general, the instructions for preparation of manuscripts should follow the International Committee of Medical Journal Editors (ICMJE) Uniform Requirements for Manuscripts Submitted to Biomedical Journals. In case of questions, please feel free to contact the Editorial Office of any one of the Editors-in-Chief.

Authors must submit their manuscripts to the relevant section through the Web-based tracking system: Basic and Translational Science (http://jaids-basicscience.edmgr.com), Clinical Science (http://jaids-clinical.edmgr.com), or Epidemiology and Prevention (http://jaids-epidemiology.edmgr.com). The site contains instructions and advice on how to use the system, guidance on the creation/scanning and saving of electronic art, and supporting documentation. In addition to allowing authors to submit manuscripts on the Web, the site allows authors to follow the progression of their manuscript through the peer review process. Authors should not send hard copies of the manuscript or artwork to the editorial office. Address all inquiries regarding manuscripts not yet accepted or published to the Journal’s editorial office. The editorial office will acknowledge receipt of your manuscript via e-mail.

Editorial Office Addresses

Basic and Translational Science
David D. Ho, MD
The Aaron Diamond AIDS Research Center
455 First Avenue
New York, NY 10016
917-797-6056
dgottwal@adarc.org

Clinical Science
Paul A. Volberding, MD
San Francisco VA Medical Center
4150 Clement Street
VAMC 111
San Francisco, CA 94121
(415) 379-5546
Fax: (415) 750-2182
jaids@chi.ucsf.edu

Epidemiology and Prevention
William A. Blattner, MD
Institute of Human Virology

725 W. Lombard Street, S419
Baltimore, MD 21201
(410) 706-1292
Fax: (410) 706-1731
cedelen@ihv.umaryland.edu

Authorship

An author is considered to be someone who has made substantive contributions to a published study. Each author should have participated sufficiently in the work to take public responsibility for appropriate portions of the content. More specifically, authorship credit requires a) substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data; b) drafting the paper or revising it critically for important intellectual content; and c) final approval of the version to be published. Contributors must meet conditions for a, b, and c—all 3—to be eligible for authorship. All persons listed as authors must meet the 3 criteria above, and all persons who meet the above criteria must be listed as authors. Please note that acquisition of funding, collection of data, or general supervision of a research group, alone, does not justify authorship.

For large, multicenter group studies, individuals who accept direct responsibility for the manuscript must be identified. Those individuals will be required to complete the JAIDS Copyright Transfer Agreement.

Contributors who do not meet the criteria for authorship should be listed in the acknowledgments section. Persons providing technical help, writing assistance, or a department chair providing general support are examples of persons who should not be included as authors, but who should be listed in the Acknowledgments section.

Conflict of Interest Declaration

Authors must disclose all financial and personal relationships that might bias their work. Conflicts of interest must be detailed in the online submission process as well as on the title page of the manuscript.
Conflicts that are determined to be substantial may be printed in the journal in a footnote on the first page of the article.

Studies funded by an agency with a proprietary or financial interest in the outcome must include a statement with information about the sponsor(s) involvement. Authors involved in such a study must state whether they had full access to all of the data and take full responsibility for the accuracy of the data analysis.

Copyright

All authors must complete and sign a copy of the journal’s Copyright Transfer Agreement and submit it when submitting the original manuscript online.

Compliance with NIH and Other Research Funding Agency

Accessibility Requirements

A number of research funding agencies now require or request authors to submit the post-print (the article after peer review and acceptance but not the final published article) to a repository that is accessible online by all without charge. As a service to our authors, LWW will identify to the National Library of Medicine (NLM) articles that require deposit and will transmit the post-print of an article based on research funded in whole or in part by the National Institutes of Health, Wellcome Trust, Howard Hughes Medical Institute, or other funding agencies to PubMed Central. The Copyright Transfer Agreement provides the mechanism.

Patient Anonymity and Informed Consent

It is the author’s responsibility to ensure that a patient’s anonymity be carefully protected and to verify that any experimental investigation with human subjects reported in the manuscript was performed with informed consent and following all the guidelines for experimental investigation with human subjects required by the institution(s) with which all the authors are affiliated. Authors should mask patients’ eyes and remove patients’ names from figures unless they obtain written consent from the patients and submit written consent with the manuscript.

Protection of Human Subjects and Animals in Research

When reporting experiments involving human subjects, authors should indicate whether the procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000.

For research involving animals, authors should indicate whether the procedures followed were in accordance with the standards set forth in the Guide for the Care and Use of Laboratory Animals (published by the National Academy of Science, National Academy Press, Washington, D.C.).

Permissions

Authors must submit written permission from the copyright owner (usually the publisher) to use direct quotations, tables, or illustrations that have appeared in copyrighted form elsewhere, along with complete details about the source. Any permissions fees that might be required by the copyright owner are the responsibility of the authors requesting use of the borrowed material, not the responsibility of Lippincott Williams & Wilkins.

PREPARATION OF MANUSCRIPT

Manuscripts that do not adhere to the following instructions will be returned to the corresponding author for technical revision before undergoing peer review.

ARTICLE LIMITATIONS – BEGINNING WITH JULY 15, 2010 SUBMISSIONS:

<table>
<thead>
<tr>
<th>Article type</th>
<th>Limitations</th>
<th>Abstracts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Articles (including Implementation and Operational Research)</td>
<td>3500 words + 5 figures/tables – if more then use Supplemental Digital Content</td>
<td>Structured, 250 words</td>
</tr>
<tr>
<td>Rapid Communications</td>
<td>2000 words + 2 figures/tables</td>
<td>Unstructured, 150 words</td>
</tr>
<tr>
<td>Critical Reviews</td>
<td>3000 words + 2 figures/tables</td>
<td>Unstructured; 150 words</td>
</tr>
<tr>
<td>Brief Reports</td>
<td>2000 words + 2 figures/tables</td>
<td>Unstructured; 100 words</td>
</tr>
<tr>
<td>Letter to the Editor</td>
<td>1500 words; 1 figure/table</td>
<td>Publish ‘online only’</td>
</tr>
</tbody>
</table>

Table and Figure files, which may lose formatting when converted to PDF, but will remain intact in their original file format.

Online Submission

Manuscript files must be uploaded into the Editorial Manager online interface. Most word-processing file formats are acceptable. Editorial Manager will then create PDF files of the authors’ submission, and the author must view and approve the files before they will be submitted to the editorial office. Please be sure that the manuscript file contains complete text for your submission (title page and abstract), as this is the file that will be downloaded by the reviewers and publisher. Please see the sections below for instructions regarding Figure and Table files.

Once the paper has been accepted for publication, and final versions of the manuscript, figures, and table files have been uploaded to the Editorial Manager interface, PDF files will not be used for typesetting. This is important to note for Table and Figure files, which may lose formatting when converted to PDF, but will remain intact in their original file format.

Title Page

A title page must be included in the manuscript file. Include on the title page: a) complete manuscript title; b) authors’ full names, academic degrees, and affiliations; c) name and address for correspondence, including fax number, telephone number, and e-mail address; d) address for reprints if different from that of corresponding author; e) meetings at which parts of the data were presented (including title of conference, city, and date); f) sources of support; and g) a running head of no more than 40 characters.

The title page must also include disclosure of funding received for this work from any of the following organizations: National Institutes of Health (NIH);
Abstract and Key Words

The abstract should be structured and limited to 250 words depending on article type. It must be factual and comprehensive. Limit the use of abbreviations and acronyms, and avoid general statements (e.g., “the significance of the results is discussed”). List 3 to 6 key words or phrases.

Text

Organize the manuscript file into sections with appropriate section headings. The sequence should be as follows: title page, abstract/key word page, introduction, methods, results, discussions, acknowledgments, references, tables, figures, and figure captions.

Authors should type, whenever possible, all mathematical and chemical symbols, equations, and formulas, and identify all unusual symbols the first time they are used. Define abbreviations at first mention in text and in each table and figure. If a brand name is cited, supply the manufacturer’s name and address (city and state/country).

Abbreviations

For a list of standard abbreviations, consult the Council of Biology Editors Style Guide (available from the Council of Science Editors, 9650 Rockville Pike, Bethesda, MD 20814) or other standard sources. Write out the full term for each abbreviation at its first use unless it is a standard unit of measure.

References

The authors are responsible for the accuracy of the references. Key the references (double-spaced) at the end of the manuscript. (If using End Note, set the style output to JAMA.) Cite references in text in order of appearance. Cite unpublished data, such as papers submitted but not yet accepted for publication, or personal communications, in parentheses in the text. If there are more than 3 authors, list only the first 3 authors and then use et al. Refer to the List of Journals Indexed in Index Medicus for abbreviations of journal names. Sample references are given below:

Journal Article

Book Chapter

Entire Book

Software

Online Journals

Database

World Wide Web

Paper Presented at a Conference

Figures

Cite figures consecutively in the text, and number them in the order in which they are discussed. Submit all artwork in camera-ready form through Editorial Manager; illustrations should be glossy prints or high-quality, laser-printed illustrations. Photocopies are unacceptable. Authors must submit figures as separate electronic files. High-quality hard copies may be requested once the manuscript has been accepted for publication. Lettering should be large enough that it will remain legible after figure reduction; typewritten or unprofessional lettering is unacceptable. Figure parts (A, B, C) may be left unlabeled (but clearly marked on back) for professional placement by the journal’s printer.

Figure Legends

Legends must be submitted for all figures. They should be included in the manuscript file, should be brief and specific, and should appear on a separate manuscript page after the references. Use scale markers in the image for electron micrographs, and indicate the type of stain used.

Color Figures

The journal accepts for publication color figures that will enhance an article. Authors who submit color figures will receive an estimate of the cost for color reproduction. If they decide not to pay for color reproduction, they can request that the figures be converted to black and white at no charge.

Digital Figures

Electronic art should be created/scanned and saved and submitted as either a TIFF (tagged image file format), an EPS (encapsulated postscript) file, or a PPT (Power Point) file. Line art must have a resolution of at least 1200 dpi (dots per inch), and electronic photographs—radio-grams, CT scans, and so on—and scanned images must have a resolution of at least 300 dpi. If fonts are used in the artwork, they must be converted to paths or outlines or they must be embedded in the files. Color images must be created/scanned and submitted as CMYK files. Files should be submitted electronically through the Editorial Manager interface. Please note that artwork generated from office suite programs such as Corel Draw and MS Word and artwork downloaded from the Internet (JPEG or GIF files) cannot be used. PDF files will also not be accepted.
Supplemental Digital Content (SDC)

Authors may submit SDC via Editorial Manager to LWW journals that enhance their article's text to be considered for online posting. SDC may include standard media such as text documents, graphs, audio, video, etc. On the Attach Files page of the submission process, please select Supplemental Audio, Video, or Data for your uploaded file as the Submission Item. If an article with SDC is accepted, our production staff will create a URL with the SDC file. The URL will be placed in the call-out within the article. SDC files are not copy-edited by LWW staff, they will be presented digitally as submitted. For a list of all available file types and detailed instructions, please visit http://links.lww.com/A142.

SDC Call-outs

Supplemental Digital Content must be cited consecutively in the text of the submitted manuscript. Citations should include the type of material submitted (Audio, Figure, Table, etc.), be clearly labeled as “Supplemental Digital Content,” include the sequential list number, and provide a description of the supplemental content. All descriptive text should be included in the call-out as it will not appear elsewhere in the article.

Example:

We performed many tests on the degrees of flexibility in the elbow (see Video, Supplemental Digital Content 1, which demonstrates elbow flexibility) and found our results inconclusive.

List of Supplemental Digital Content

A listing of Supplemental Digital Content must be submitted at the end of the manuscript file. Include the SDC number and file type of the Supplemental Digital Content. This text will be removed by our production staff and not be published.

Example:

Supplemental Digital Content 1. wmv

SDC File Requirements

All acceptable file types are permissible up to 10 MBs. For audio or video files greater than 10 MBs, authors should first query the journal office for approval. For a list of all available file types and detailed instructions, please visit http://links.lww.com/A142. Please do not submit pdfs.

Tables

Create tables using the table creating and editing feature of your word-processing software (eg, Word, Word-Perfect). Do not use Excel or comparable spreadsheet programs. Group all tables together and upload them in a separate file. Cite tables consecutively in the text, and number them in that order. Key each on a separate sheet, and include the title column, appropriate column heads, and explanatory legends (including definitions of any abbreviations used). Do not embed tables within the body of the manuscript. They should be self-explanatory and should supplement, rather than duplicate, the material in the text.

Style

Pattern manuscript style after the American Medical Association Manual of Style (9th edition). Stedman’s Medical Dictionary (28th edition) and Merriam-Webster’s Collegiate Dictionary (11th edition) should be used as standard references. Refer to drugs and therapeutic agents by their accepted generic or chemical names, and do not abbreviate them. Use code numbers only when a generic name is not yet available. In that case, supply the chemical name and a figure giving the chemical structure of the drug. Capitalize the trade names of drugs and place then in parentheses after the generic names. To comply with trademark law, include the name and location (city and state in USA; country and city outside USA) of the manufacturer of any drug, supply, or equipment mentioned in the manuscript. Use the metric system to express units of measure and degrees Celsius to express temperatures, and use SI units rather than conventional units.

Obligation to Register Clinical Trials

JAIDS has adopted the standards of the International Committee of Medical Journal Editors with regard to the registration of clinical trials. As a condition of consideration for publication, data from research projects “prospectively assigning human subjects to intervention or concurrent comparison or control groups to study the cause-and-effect relationship between a medical intervention and a health outcome” must be registered in a public trials registry. The Protocol Registration System (http://prsinfo.clinicaltrials.gov/) offered through the U.S. National Institutes of Health is one such registry.

GenBank Accession Numbers

When manuscripts include or describe original nucleotide or amino acid sequence data, the sequence must be submitted to the GenBank/EMBL/DDBJ sequence database and an accession number obtained from them. This accession number must be returned to the journal, where it will be placed after the Key Words on the title page in the printed article. URLs for the 3 members of the International Nucleotide Sequence Database Collaboration (GenBank/EMBL/DDBJ) are as follows (respectively): http://www.ncbi.nlm.nih.gov/BankIt/, http://www.ebi.ac.uk/embl/, http://www.ddbj.nig.ac.jp/.

ARTICLE TYPES

Original Articles

The above guidelines apply to the original article format. Articles should be limited to 3500 words + 5 figures/tables. If additional space is needed, then use Supplemental Digital Content options. There should be a structured abstract of 250 words or less.

Implementation and Operational Research (NEW ARTICLE TYPE)

JAIDS is now accepting manuscripts for a new focus area of interest: Implementation and Operational Research. In the context of HIV/AIDS with advances in HIV therapy and care, expansion of global access to treatment, care and prevention Implementation and Operational Research, while having particular relevance to global health is an important domestic focus as well. However the lessons learned through this research discipline are particularly relevant to guiding best practices in low-resource settings as antiretroviral drug access is expanded. Articles that encompass the translation of knowledge, practices, and technologies into clinical care of adult and pediatric patients with HIV/AIDS and their evidence-based effectiveness in “real world settings” are of particular interest.
All manuscripts should be submitted through one of the existing three sections: Basic and Translational Science, Clinical Science, or Epidemiology and Prevention using the article type Implementation and Operational Research. Structure of article is the same as Original Article.

If accepted for publication, articles are published ONLINE ONLY with titles appearing in the print and online edition table of contents.

Rapid Communications

Articles accepted as Rapid Communications will normally be published within 8 weeks of acceptance. When submitting a paper for consideration as a Rapid Communication, please adhere to the following guidelines:

- Submit your paper to Editorial Manager and designate the article type as “Rapid Communication.” Please indicate to the Editor in a cover letter file why the paper merits special attention.
- The paper should not exceed 2000 words and 2 figures/tables.
- The paper should include an unstructured abstract (150 words or less), key words, methods, results, discussion, and reference sections.
- The title page should include the corresponding author’s telephone and fax numbers and e-mail address.
- Authors will receive proofs of their article for review by e-mail and will be expected to return corrections by fax within 24 hours of receipt. Changes received after this deadline will not be accepted.

Papers that are not accepted as Rapid Communications may be considered as full-length articles.

Critical Reviews

Papers reviewing the literature on a particularly timely and interesting topic will be considered for publication in JAIDS. Authors are encouraged to keep review articles to less than 3000 words and 2 figures/tables with an unstructured abstract of 150 words or less. In general, review articles written as work-for-hire by industry employees will not be considered for publication. All funding, writing assistance, and other relationships to possibly conflicted sources must be fully disclosed at the time of submission.

Brief Reports

Brief Reports are short versions of clinical studies. They represent observations that are preliminary, speak for themselves, or offer new insight into a recognized condition. Submissions should not exceed 2000 words + 2 figures/tables with an unstructured abstract of 100 words or less.

Letters to the Editor

Letters to the Editor can provide additional comment on an article published in JAIDS, or can be a very concise report on study findings. Letters should be no more than 1500 words and 1 figure/table. Beginning with July 15, 2010 submissions, Letters to the Editor will be published ONLINE ONLY. Title will appear in print and online edition table of contents.

Page Proofs and Corrections

PDF files of the copyedited, typeset pages and support documents (eg, reprint order form) will be sent to the corresponding author via e-mail. Complete instructions will be provided with the e-mail for downloading and printing the files and for faxing the corrected pages to the publisher. It is the author’s responsibility to ensure that there are no errors in the proofs. Changes that have been made to conform to journal style should be allowed to stand if they do not alter the authors’ meaning. Only critical changes improving the accuracy of the content will be made. Changes that are stylistic or are a reworking of previously accepted material will not be allowed. The publisher reserves the right to deny any changes that do not affect the accuracy of the content. Authors may be charged for alterations to the proofs beyond those required to correct errors or to answer queries. Proofs must be checked carefully and corrections faxed within 24 to 48 hours of receipt, as requested in the cover letter accompanying the page proofs.

Reprints

Reprint orders should be submitted to the Reprints Department (1-800-341-2258 or reprintgroup@LWW.com). Payment for reprints or a purchase order number must accompany your order form. Orders without these cannot be fulfilled. More information can be obtained at http://www.lww.com/periodicals/author-reprints/
Journal of AIDS
Authorship Responsibility, Financial Disclosure, and Copyright Transfer

Manuscript Title: including all accompanying digital supplementary content, if any (the “Work”)

Each author must read and sign the following statements; if necessary, photocopy this document and distribute to coauthors for their original ink signatures. Completed forms must be submitted to the Editorial Office with the Work. In the event an author is unable to supply their ink signature at the time of submission, the Corresponding Author should indicate in the Cover Letter that the missing signature(s) will be forthcoming and subsequently submit them via email directly and collectively to the Editorial Office: Basic and Translational Science articles: c/o Denise Gottwald, DGottwal@adarc.org. Clinical Science articles: c/o Terry O’Donnell, jaid@chi.ucsf.edu. Epidemiology and Prevention articles: c/o Claire Edelen, CEdelen@som.umaryland.edu.

CONDITIONS OF SUBMISSION

RETAINED RIGHTS: Except for copyright, other proprietary rights related to the Work (e.g., patent or other rights to any process or procedure) shall be retained by the authors. To reproduce any text, figures, tables, or illustrations from this Work in future works of their own, the authors must obtain written permission from Lippincott Williams & Wilkins (LWW); such permission cannot be unreasonably withheld by LWW.

ORIGINALITY: Each author warrants that his or her submission to the Work is original and that he or she has full power to enter into this agreement. Neither this Work nor a similar work has been published nor shall be submitted for publication elsewhere while under consideration by this Publication.

AUTHORSHIP RESPONSIBILITY: Each author warrants that he or she has participated sufficiently in the intellectual content, the analysis of data, if applicable, and the writing of the Work to take public responsibility for it. Each has reviewed the final version of the Work, believes it represents valid work, and approves it for publication. Moreover, should the editors of the Publication request the data upon which the work is based, they shall produce it.

DISCLAIMER: Each author warrants that this Work shall not violate any trademark registrations nor the right of privacy of any person, contains no libelous, obscene, or other unlawful matter, and does not infringe upon the statutory or common law copyright or any other right of any person or party. If excerpts (e.g., text, figures, tables, illustrations, or audio/video files) from copyrighted works are included, a written release will be secured by the authors prior to submission, and credit to the original publication will be properly acknowledged. Each author further warrants that he or she has obtained, prior to submission, written releases from patients whose names or likenesses are submitted as part of the Work. Should LWW request copies of such written releases, authors shall provide them to LWW in a timely manner.

PREPRINTS: Upon acceptance of the article for publication, each author warrants that he/she will promptly remove any prior versions of this work (normally a preprint) that may have been posted to an electronic server.

TRANSFER OF COPYRIGHT

AUTHORS’ OWN WORK: In consideration of LWW’s publication of the Work, the authors hereby transfer, assign, and otherwise convey all copyright ownership worldwide, in all languages, and in all forms of media now or hereafter known, including electronic media such as CD-ROM, Internet, and Intranet, to LWW. If LWW should decide for any reason not to publish an author’s submission to the Work, LWW shall give prompt notice of its decision to the corresponding author, this agreement shall terminate, and neither the author nor LWW shall be under any further liability or obligation. Each author grants LWW the rights to use his or her name and biographical data (including professional affiliation) in the Work and in its or the Publication’s promotion.

WORK MADE FOR HIRE: If this Work or any element thereof has been commissioned by another person or organization, or if it has been written as part of the duties of an employee, an authorized representative of the commissioning organization or employer must also sign this form stating his or her title in the organization.

GOVERNMENT EMPLOYEES: If the Work or a portion of it has been created in the course of any author’s employment by the United States Government, check the “Government” box at the end of this form. A work prepared by a government employee as part of his or her official duties is called a “work of the U.S. Government” and is not subject to copyright. If it is not prepared as part of the employee’s official duties, it may be subject to copyright.

FINANCIAL DISCLOSURE: Each author warrants that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the
Work, except as disclosed on a separate attachment. All funding sources supporting the Work and all institutional or corporate affiliations of the authors are acknowledged in a footnote in the Work.

INSTITUTIONAL REVIEW BOARD/ANIMAL CARE COMMITTEE APPROVAL: Each author warrants that his or her institution has approved the protocol for any investigation involving humans or animals and that all experimentation was conducted in conformity with ethical and humane principles of research.

AUTHOR(S) POSTING OF ARTICLES TO AN INSTITUTIONAL REPOSITORY

Journal of AIDS will permit the author(s) to deposit for display a “post-print” (the final manuscript after peer-review and acceptance for publication but prior to the publisher’s copyediting, design, formatting, and other services) 12 months after publication of the final article on his/her personal web site, university’s institutional repository or employer’s intranet, subject to the following:

• You may only deposit the post-print.
• You may not update the post-print text or replace it with a proof or with the final published version.
• You may not include the post-print or any other version of the article in any commercial site or in any repository owned or operated by any third party. For authors of articles based on research funded by NIH, Wellcome Trust, HHMI, or other funding agency, see below for the services that LWW will provide on your behalf to comply with “Public Access Policy” guidelines.
• You may not display the post-print until twelve months after publication of the final article.
• You must attach the following notice to the post-print: “This is a non-final version of an article published in final form in [provide complete journal citation].”
• You shall provide a link in the post-print to the [name journal]’s website.

“PUBLIC ACCESS POLICY” FUNDING DISCLOSURE

Please disclose below if you have received funding for research on which your article is based from any of the following organizations:

☐ National Institutes of Health (NIH)
☐ Wellcome Trust
☐ Howard Hughes Medical Institute (HHMI)
☐ Other: Please List __

COMPLIANCE WITH NIH AND OTHER RESEARCH FUNDING AGENCY ACCESSIBILITY REQUIREMENTS

A number of research funding agencies now require or request authors to submit the post-print (the article after peer review and acceptance but not the final published article) to a repository that is accessible online by all without charge. Within medical research, three funding agencies in particular have announced such policies:

• The U.S. National Institutes of Health (NIH) requires authors to deposit post-prints based on NIH-funded research in its repository PubMed Central (PMC) within twelve months after publication of the final article in the journal.
• The Howard Hughes Medical Institute (HHMI) requires as a condition of research grants, deposit in PMC, but in its case within six months after publication of the final article.
• The Wellcome Trust requires, as a condition of research grants, deposit in UK PubMed Central within six months after publication of the final article.

As a service to our authors, LWW will identify to National Library of Medicine (NLM) articles that require deposit. This Copyright Transfer Agreement provides the mechanism for identifying such articles. LWW will transmit the post-print of an article based on research funded in whole or in part by one or more of these three agencies to Pub Med Central.

Upon NIH request, it remains the legal responsibility of the author(s) to confirm with NIH the provenance of their manuscript for purposes of deposit.
Author(s) will not deposit their articles themselves.

Author(s) will not alter the post-print already transmitted to NIH.

Author(s) will not authorize the display of the post-print prior to:
(a) 12 months following publication of the final article, in the case of NIH,
(b) 6 months following publication of the final article, in the case of Wellcome Trust and HHMI

<table>
<thead>
<tr>
<th>Signature</th>
<th>Printed Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] Author's Own Work</td>
<td>[] Work for Hire</td>
<td>[] Government</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature</th>
<th>Printed Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] Author's Own Work</td>
<td>[] Work for Hire</td>
<td>[] Government</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature</th>
<th>Printed Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] Author's Own Work</td>
<td>[] Work for Hire</td>
<td>[] Government</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature</th>
<th>Printed Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] Author's Own Work</td>
<td>[] Work for Hire</td>
<td>[] Government</td>
</tr>
</tbody>
</table>
Appendix 9: Supplementary figures and tables
Figure 1. Flow diagram of study participants.

- 349 individuals
 - Venous only (n=182)
 - Capillary only (n=24)
 - Dual Venous and capillary (n=143)
 - Not performed by the same operator on the same machine (n=5)
 - Both (n=138)

Venous samples (A+C)=325
Capillary samples (B+C) = 167
Both=138
Figure 2 A. Scatter plots with regression slopes for venous and capillary samples

VENOUS SAMPLES

CAPILLARY SAMPLES

$R^2 = 0.909$

$R^2 = 0.882$
Figure 2B. Bland Altman Plots

Venous samples

Capillary samples