The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
INVESTIGATION OF CLASS 3 AND CLASS 4 (DOORNSPRUIT) HOMESTEADS IN THE NORTH WEST PROVINCE, SOUTH AFRICA

Frans Jacobus Kruger

Thesis presented for the degree of Master of Philosophy
In the Department of Archaeology
Faculty of Science
University of Cape Town
October 2010
ABSTRACT

In this research I investigate Class 3 and Class 4 (Doornspruit) homesteads in the Bankeveld in order to establish their temporal and spatial distribution. Although the research area does fall within a cultural matrix historically dominated by Sotho/Tswana speakers, the cultural homogeneity portrayed in the oral texts is breaking down. Of direct relevance to this work is the argument put forth by Huffman (2004, 2007a, and 2007b) that at least four movements of Nguni-speakers took place across the Vaal River from present-day KwaZulu-Natal during the Late Iron Age. These are broadly relevant to this research and specifically the most recent movement of Mzilikazi’s Khumalo. It is around this issue of Nguni identity and their homesteads that this research contributes.

This research focuses upon the Nguni of the Bankeveld for the period dating within the last 200 years and therefore a multi-evidence approach is warranted. This research therefore falls generally within the ambit of historical archaeology. The temporal location of this research creates the opportunity to explore the relationship between material remains on the one hand and the oral and written texts on the other hand.
DECLARATION

I hereby:

(a) grant the University free license to reproduce this thesis in whole or in part, for the purpose of research;

(b) declare that:

(i) the above thesis is my own unaided work, both in conception and execution, and that apart from the normal guidance of my supervisor, I have received no assistance apart from that stated below;

(ii) except as stated below, neither the substance or any part of the thesis has been submitted in the past, or is being, or is to be submitted for a degree at this University or any other University.

(iii) I am now presenting the thesis for examination for the Degree of M.Phil.

Frans Jacobus Kruger

_______________ day of _________________ , 2010
ACKNOWLEDGEMENTS

Acknowledgement is made to the South African National Research Foundation (NRF) for the bursary I enjoyed;

I would like to thank my supervisor, Dr. Simon Hall, for the insights and guidance he provided;

My family for supporting me throughout my studies;

Marguerite Müller for her love and understanding;

And David Mashaba for his help during the archaeological excavations.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>CHAPTER 1: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Description of the research aims</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 2: The research area</td>
<td>9</td>
</tr>
<tr>
<td>Description of the research area</td>
<td>9</td>
</tr>
<tr>
<td>CHAPTER 3: Nguni archaeology in the trans-Vaal</td>
<td>21</td>
</tr>
<tr>
<td>Introduction</td>
<td>21</td>
</tr>
<tr>
<td>Pre-mfecane diasporas</td>
<td>21</td>
</tr>
<tr>
<td>The Ntsuanatsatsi phase</td>
<td>27</td>
</tr>
<tr>
<td>The Waterberg homesteads</td>
<td>40</td>
</tr>
<tr>
<td>The Badfontein homesteads</td>
<td>42</td>
</tr>
<tr>
<td>The mfecane/difaqane period</td>
<td>46</td>
</tr>
<tr>
<td>The internal frontier model and identity construction</td>
<td>50</td>
</tr>
<tr>
<td>CHAPTER 4: Aerial photograph survey</td>
<td>55</td>
</tr>
<tr>
<td>Methodology</td>
<td>55</td>
</tr>
<tr>
<td>Results</td>
<td>59</td>
</tr>
</tbody>
</table>
CHAPTER 5: Class 3 and Doornspruit cluster and homestead organization 71

Introduction 71

Homestead Cluster KS-105 to KS-119 71

Homestead Cluster KS-001, KS-002, KS-014 and KS-015 84

Homestead Cluster KS-023 to KS-026 88

Homestead Cluster KS-046 to KS-047 92

Homestead Cluster KS-028 to KS-032 94

Homestead Cluster KS-145 to KS-150 97

Discussion of homestead distribution and organization 104

iButho, umuzi, and ikhanda 110

CHAPTER 6: Archaeological excavations 114

Methodology 114

Excavations at KS-147b 114

Midden 1 116

Enclosure 1 116

Sel 1 120

Entrance into Sel 2 124

Excavations at KS-146, Trench 1 127

Surface collections and observations at KS-145 to KS-150 131

Discussion of excavation results 132

Faunal remains 133

Stone and ochre finds 133
Ceramic analysis 135

CHAPTER 7: Homestead organization 144

Discussion 144

CHAPTER 8: Conclusion 168

Concluding remarks 168

BIBLIOGRAPHY 177
LIST OF FIGURES

Figure 1: Mason’s classification of homestead types of the Late Iron Age in the western trans-Vaal (after Mason 1986: 338) 5
Figure 2: Map of the research area 10
Figure 3: Topographic map showing three distinct east-west lying zones in the research area 12
Figure 4: Map showing the dominant geology of the research area (after Anderson 2009) 14
Figure 5: Map showing the dominant soil types of the research area (after Anderson 2009) 15
Figure 6: Map showing the dominant vegetation in the research area (after Anderson 2009) 17
Figure 7: Location of the major divisions of the Nguni language family in relation to the Interlacustrine Bantu (after Huffman 2004: 80) 24
Figure 8: Type N homestead (after Maggs 1976b) 32
Figure 9: Type Z homestead (after Maggs 1976b) 33
Figure 10: Type V homestead (after Maggs 1976b) 37
Figure 11: Melora walling at Buffelsfontein in the Waterburg (after Huffman 2004) 42
Figure 12: Badfontein type homesteads in Mpumalanga (after Collett 1982 and Maggs 2007) 44
Figure 13: Examples of Class 3 and Doornspruit (Class 4) settlement types (after Mason 1986 and Jones 1935) 55

Figure 14: Example of site record form used during the aerial photograph survey 58

Figure 15: Map indicating homesteads identified in the research area 62

Figure 16: Topographic distribution of homesteads (n=154) 63

Figure 17: Relationship between cluster size and distance to the next homestead (n=154) 66

Figure 18: Relationship between cluster size and distance to the next homestead, excluding the Lowveld settlements (n=130) 67

Figure 19: Relationship between cluster size and distance to the next homestead in the Highveld (n=67) 67

Figure 20: Relationship between cluster size and distance to the next homestead in the Bankeveld (n=63) 68

Figure 21: Homestead location in relation to natural ecology (n=154) 69

Figure 22: Composite map including profile, drawing and topography of homestead cluster KS-105 to KS-119 73

Figure 23: Homestead organization of KS-112 78

Figure 24: Homestead organization of KS-113 81

Figure 25: Homestead organization of KS-117 83

Figure 26: Composite map including profile, drawing and topography of homestead cluster KS-001, KS-002, KS-014 and KS-015 85
Figure 27: Composite map including profile, drawing and topography of homestead cluster KS-023 to KS-026

Figure 28: Composite map including profile, drawing and topography of homestead cluster KS-046 and KS-047

Figure 29: Composite map including profile, drawing and topography of homestead cluster KS-028 to KS-032

Figure 30: Composite map including profile, drawing and topography of homestead cluster KS-145 to KS-150

Figure 31: Homestead organization of KS-145

Figure 32: Homestead organization of KS-146

Figure 33: Comparison between the external diameters of homesteads (n=29) and cluster size

Figure 34: Relationship between external diameter and surface area of the central secondary enclosure (n=29)

Figure 35: Relationship between homestead size and height above sea level (n=29)

Figure 36: Relationship between central enclosure diameter and height above sea level for KS-105 to KS-117 (n=12)

Figure 37: Location of areas excavated in KS-147b

Figure 38: Photograph showing the technique used in the construction of walling at homesteads KS-145 to KS-150

Figure 39: Enclosure 1, KS-147b, before excavations
Figure 40: After excavations in Enclosure 1, KS-147b 119

Figure 41: Base of the perimeter walling of Enclosure 1 in Encl 1d, KS-147b 120

Figure 42: Sel 1, KS-147b, before excavations 122

Figure 43: Base of the perimeter walling of Sel 1 in Sel 1a, KS-147b 123

Figure 44: After excavations in Sel 1, KS-147b 124

Figure 45: Sel 2, KS-147b, and associated features 125

Figure 46: Entrance into Sel 2 as viewed from outside homestead KS-147b 127

Figure 47: Location of area excavated in KS-146 128

Figure 48: Location of trench excavation in KS-146 129

Figure 49: After excavations of Trench 1, KS-146 130

Figure 50: Base of the primary walling of Enclosure 4 in Trench 1, KS-146 130

Figure 51: Hornfels stone scrapers from Sel 1, KS-146b 134

Figure 52: Ceramic rim pieces excavated from Enclosure 1C and Sel 1D, KS-147b 136

Figure 53: Decoration on a piece of ceramic from KS-112 143

Figure 54: Proposed homestead plan of Mgungundlovu (after Plug and Roodt 1990) 154

Figure 55: Doornspruit type umuzi homestead, NS007, in the Rustenburg area (after Pistorius 1997b) 155

Figure 56: Doornspruit type ikhanda homestead, NS008, in the Rustenburg area (after Pistorius 1997b) 156
Figure 57: Nqabeni, a Type B homestead, in the upper White Mfolozi area, KwaZulu-Natal (after Hall and Maggs 1979)
LIST OF TABLES

Table 1: Nguni (Blackburn) ceramic sequence (after Huffman 2007a) 27
Table 2: Proposed relationship of stonewalling types following the Central Cattle Pattern (after Huffman 2007a) 34
Table 3: Range of longitudes and latitudes for the area covered by this study 57
Table 4: Relative scale used to identify the number of homesteads in a cluster 60
Table 5: Homestead and cluster distribution for the three ecological zones 64
Table 6: Average homestead cluster size for the three ecological zones 65
Table 7: Excavated ceramics from KS-146b and KS-147 (n=53) 136
Table 8: Ceramics collected during surface investigation of KS-145 to KS-150 (n=34) 137
Table 9: Ceramics collected during surface investigation of the Class 3 homestead cluster of KS-105 to KS-119 (n=8) 142
CHAPTER 1

INTRODUCTION

Description of the research aims

This research focuses upon Nguni-speakers of the central Bankeveld for the period dating within the last 200 years and, as outline above, therefore a multi-evidence approach is warranted. This research, therefore, falls generally within the ambit of historical archaeology (see Reid and Lane 2004; Robertshaw 2004). It combines ethnography,

1 The Bankeveld is a narrow strip of land that is situated between the northern Bushveld and the southern grassveld of South African. This area can be divided into the eastern, central and western Bankeveld. The central Bankeveld can be roughly demarcated as the area situated between Bronkhorstspruit in the east to the Pilanesberg in the west, and Krugersdorp in the south to the Pienaars River in the north (see Pistorius 2007 and Horn 1996).
archaeology and the careful use of the relevant oral histories. Such an approach gives one the opportunity to interpret the last 500 years of southern African history within ‘synergistic research frameworks’ (Anderson 2009: 25)\(^2\). Using multiple sources for investigating the last 200 years is not new, as the work of Pistorius (1992, 1994), for example, at Molokwane, near Rustenburg, shows. There is a difference, however, between Pistorius’ research and that proposed by the members of the Five Hundred Year initiative (FYI). One important difference lies in the use of oral histories. In previous research, oral histories have been interpreted fairly literally, whereas it is now accepted that the cultural and political identities portrayed in in the oral histories are more complex. The colonial context in which collection of the oral histories was done, constructed and equated the various groups studied with a political identity (see Boeyens and Hall 2009). This encouraged a view of political and cultural ‘tribes’ that remained singular identities over long periods of time. Archeology provides the potential to test these assumptions.

The chronological focus of this research thus creates the opportunity to explore the relationship between material remains on the one hand and the oral texts and travel

\(^2\) Using multiple sources for investigating the last 200 years is not new, as the work of Pistorius (1992, 1994), for example, at Molokwane, near Rustenburg, shows. There is a difference, however, in between Pistorius’ research and that proposed by the members of the Five Hundred Year initiative (FYI). One important difference lies in the use of oral histories. In previous research, oral histories have been interpreted fairly literally, whereas it is now accepted that the cultural and political identities portrayed in the oral histories are more complex. The colonial context in which collection of the oral histories was done, constructed and equated the various groups studied with a political identity (see Boeyens and Hall 2009). This approach is also encouraged by the Five Hundred Years Initiative, a research group centred at the University of the Witwatersrand (Swanepoel et al. 2008).
accounts on the other hand. For although archaeological evidence tends to translate into
general perspectives on the past, the specific physical and temporal location of material
remains under consideration here can be related to particular historical events. Consequently, by making use of the relevant texts the possibility of generating a
historical interpretation, that is more detailed and addresses specific contexts, is created (Hall et al 2007). This opportunity also requires a commensurate shift in the scale of our
analysis and interpretation, with a move away from structural, normative models to one
replaced by more context-specific interpretations.

Although the research area does fall within a cultural matrix historically dominated by
Sotho/Tswana speakers, this cultural homogeneity is breaking down through closer
reading of the oral texts and variability in the archaeology, particularly in the spatial
organization of settlements. Of direct relevance to this work is the synthesis put forth by
Huffman (2004, 2007a, 2007b) that identifies at least four movements of Nguni-speakers
during the LIA from present-day KwaZulu-Natal westwards across the escarpment. These
movements are broadly relevant to this research, and the most recent movement of
Mzilikazi’s Khumalo in the early 19th century provides the specific focus. It is around the
issues of the stonewall homesteads and Nguni identity that this research contributes.

Mason (1968) first described and classified the stonewalled homesteads in the southern
and western trans-Vaal based on an aerial photographic survey. In 1986 he reclassified
these homesteads, taking into consideration new understandings of the relationship between socio-political identity and its expression in different homestead layouts and spatial organization. Two of Mason’s types (1986), labeled Class 3 and Doornspruit, are directly relevant to this thesis because he was explicit about linking them with broad historic identities. Rather than, however, attributing an Nguni identity, as is argued here, he assumed that Class 3 and Doornspruit homesteads were those of Sotho/Tswana speakers.

The details of Mason’s interpretation focus on homestead layout and material culture. Class 3 homesteads are described as having “… a large blank elliptical or circular interior space surrounded by a boundary wall constructed by placing small circular stone walls edge to edge” (Mason 1986: 336). Based on the thin midden deposits and the absence of decorated ceramics associated with these homesteads, he provisionally classified them as being cattle stations for nearby Class 6 homesteads (Fig. 1). These Class 6 homesteads, as represented by the 18th century homestead of Olifantspoort 20/71, are situated in the bush and savanna part of the Bankeveld. In contrast, the Class 3 homesteads are “… clustered on the Boons area ‘Grassveld-Bankeveld’ contact south of the Olifantspoort” (Mason 1986: 336). Mason (1986) linked Class 6 homesteads with the Hurutshe/Kwena Sotho/Tswana speakers. From this it follows that if Class 3 homesteads functioned as cattle stations for the inhabitants of Class 6 homesteads, they also could have been linked to the Hurutshe/Kwena Sotho/Tswana speakers.
In a paradigm that viewed the region in terms of a homogenous Sotho/Tswana cultural landscape this association would seem logical, as the locality of Class 3 homesteads on the ‘Grassveld-Bankeveld’ contact zone would have been sensible in ecological terms. The grassland of the Highveld would have offered seasonal summer grazing for livestock, while pastures in the Bankeveld would have been preferred during the winter months.

Recent research (Hall et al 2007; Huffman 2004, 2007a; Pistorius 1997a, 1997b, 1998)
on the presence of Nguni-speakers across the Vaal River during the last 500 years, oblige us to consider that the ecological and functional framework which Mason employed to interpret the distribution of Class 3 homesteads does not present the complete picture.

Huffman (2004, 2007a) and Pistorius (1997a, 1997b, 1998) have argued that Doornspruit homesteads should be linked with Nguni, rather than Sotho/Tswana speakers. Pistorius (1997a) linked Doornspruit homesteads near Rustenburg with the 19th century Khumalo (Matabele) under the leadership of Mzilikazi. According to Pistorius, Doornspruit type homesteads were based on Zulu military centres such as Mgungundlovu (Parkington & Cronin 1979; Roodt 1992). Subsequently, Huffman (2004, 2007a, 2007b) suggested that Doornspruit type homesteads represent ‘Ngunised’ Sotho that date to the mfecane and the appearance of Mzilikazi’s Khumalo across the Vaal River.

While the functional link between Class 6 and Class 3 homesteads and Sotho/Tswana speakers (Mason 1986) has been undermined, their temporal and spatial relationships need to be assessed in more detail and this is the task of this thesis. If Class 3 homesteads are linked to Nguni-speakers, their locality on the landscape, however, do not necessarily negate the importance the ecology may have played in the selection of suitable locations for homestead construction.

As for the Doornspruit homesteads, Mason (1986: 337) (Fig. 1) argued that they were probably related to Type V homesteads described by Maggs (1976a). Doornspruit
homesteads were described by Mason (1986: 337) as having “... roughly circular to elliptical boundary walls immediately adjacent to an interior zone of smaller roughly circular structures, each roughly circular structure being related to an embayment and often connected to the outer wall”. In describing two Doornspruit homesteads at Olifantspoort, Mason argues, on the absence of surface ceramics and thin middens, that Doornspruit homesteads probably post-dated Olifantspoort 20/71. This would imply a post-18th date for Doornspruit homesteads.

In this thesis I modify Mason’s ideas in order to contribute to our understanding of the presence of Nguni people during the LIA in the trans-Vaal by investigating the detail of Class 3 and Doornspruit in the central Bankeveld and surrounding areas. This is based on homestead distribution and layout, and archaeological excavations. By following a multi-disciplinary approach using preserved behaviour (archaeological material), the written and spoken word (written and oral histories), and observed behaviour (ethnography) (Hall 1995), I situate Class 3 and Doornspruit homesteads in the chronological framework of the Nguni migrations into the trans-Vaal.

In the next chapter I provide a brief description of the research area. Chapter 3 will review the relevant historical and archaeological work that has been conducted pertaining to the research area. Chapter 4 will be concerned with the description of the aerial photograph survey undertaken of the research area whilst the results of the aerial
photograph survey will be discussed in Chapter 5. In Chapter 6 I provide a description of the archaeological excavations that were conducted at a Doornspruit type homestead situated to the north of Boons. This will be followed with an interpretation of the homestead layout and organization based on the excavation results in Chapter 7. In Chapter 8, I draw some conclusions and suggest possible avenues for future research.
CHAPTER 2
THE RESEARCH AREA

Description of the research area

There is a high density of Iron Age sites in the central Bankeveld and adjacent regions and this attests to the ecological diversity within this area (see Mason 1968). This area provides a rich setting for agropastoral production compared to the zones immediately to the north and south. The agricultural potential of the region was also appreciated by 19th-century Boer farmers in the Rustenburg region (Bergh 2005; Hall et al 2007). The influence of the ecological zones on settlement locality suggested by Mason (1986) is thus still relevant, but this must be placed within its historic and cultural setting and not only within the functional framework he proposed. In turning my attention to the description of the environment of the research area, I outline the ecological structure that may have influenced specific settlement choices.

The research area (25°13’00”S to 26°00’35”S and 26°45’40”E to 27°25’00”E) is situated in the North West Province, stretching roughly from Mathopestad in the south to the Matlapeng hills west of Pilanesberg in the north, and the Mmatau settlement in the west to the Motanyane hills to the east of Bospoortdam (Fig. 2). This area resides within the central Bankeveld that forms an east-west strip of land between the lower-lying Bushveld to the north and the centrally located Highveld to the south.
Figure 2: Map of research area
The research area includes three ecological zones lying parallel to one another on an east-west axis. This zonation gives rise to high ecological diversity and is what made the area continually attractive to farmers and is important when considering settlement distribution (Fig. 3). These zones comprise the grassveld of the Highveld to the south (>1500m. above sea level), the Bushveld plains to the north of the Magaliesberg (<1200m. above sea level), and the central Bankeveld that consists of ridges and valleys (1200 to 1500m. above sea level) (Horn 1996; Liebenberg et al 1976; Pistorius 1997a).
Figure 3: Topographic map showing three distinct east-west lying zones in the research area.
The three zones are underlain by three distinctive geological regions. These are the predominantly meta-argillaceous rocks (slate and hornfell) to the south of the Magaliesberg; the predominantly meta-arenaceous rocks of the Magaliesberg; and ultramafic/mafic intrusive rocks (dolerite, diabase, gabbro, norite, carbonatite, anorthosite and pyroxenite) north of the Magaliesberg (Fig. 4). Importantly, the geology of the central zone consists of younger volcanic magma that penetrated the older grabbo layers and formed the chains of granite hills that stretches from the Pilanesberg to Onderstepoort near Pretoria (Ecological and Environmental Consultants 2003; Horn 1996; Pistorius 1997a). Due to this geology the soils in the research area comprise a mix that includes deep well-drained red loams and dense black turf soils that are particularly prevalent in the Brits area (Fig. 5). This variety of soils was important for subsistence farmers. The red loams that drain well are good for cereal production if rainfall is high. In anticipation of drought the risk of crop failure would have been reduced by cultivating the moisture retaining turf (Hall et al 2007).
Figure 4: Map showing the dominant geology of the research area (after Anderson 2009)
Figure 5: Map showing the dominant soil types of the research area (after Anderson 2009)
Different vegetation types also occur in the three zones, compromising a rich mix of trees, herbaceous plants and grass, especially in the Bankeveld (Fig. 6). Here woody species such as Red Bush willow (*Cobretum apiculatum*), Common hook-thorn (*Acacia caffra*), Sicklebush (*Dichrostachys cinerea*), Live-long (*Lannea discolor*), Marula (*Sclerocarrya birrea*) and various *Grewia* species are common. The Bushveld is located on the plains to the north of the Magaliesberg and in contrast to the Bankeveld, ecological diversity is lower. The Bushveld is dominated by various Acacia species as well as Buffalo Thorn (*Ziziphus mucronata*), Sicklebush (*Dichrostachys cinerea*) and Wild Raisin (*Grewia flava*). Grasses, such as *Cymbopogon plurinodus*, *Digitaria Eriantha* and *Schmidtia pappophoroides*, provide perennial nutritious, primary sweet grazing (Acocks 1975; Anderson 2009). To the south of the Magaliesberg, the boundary with the rolling grassland plains of the Highveld is sharp. Here the sandy soils of the northern Highveld support predominantly sour grassland with species such as *Digitaria tricholaenoidesi*, *Cymbopogon plurinodis* and *Setaria flabelatta*, providing good spring and summer grazing. The Highveld is almost devoid of trees (Acocks 1975; Anderson 2009; Ecological and Environmental Consultants 2003; Hall et al 2007; Horn 1996; Mucina and Rutherford 2006; Pistorius 1997a) (Fig. 6). In contrast to the good spring and summer grazing offered by the sour grassland of the Highveld, the sweet grasses of the Bankeveld and Bushveld provide nutritious winter grazing.
Figure 6: Map showing the dominant vegetation in the research area (after Anderson 2009)
Temperature has an important influence on the different agricultural potentials across these zones. The Highveld zone is between 2 – 4°C colder than the Bushveld to the north of the Magaliesberg, with microclimatic differences occurring in the ridges and valleys of the central Bankeveld. In the Rustenburg area the summer temperature typically ranges between 16°C and 31°C with a daily average of 23°C. During the winter months the temperature ranges between 3°C and 24°C with an average of 12°C. Rain occurs mainly in the summer months in the form of thunderstorms. Annual rainfall ranges between 450mm and 750mm (Horn 1996). According to Huffman (1996a) sorghum and millet, the primary cereals cultivated before the introduction of maize, requires minimum annual rainfall of about 500mm and nighttime temperatures that do not drop below 15°C. The average annual rainfall and minimum summer temperatures in the research area would thus have been sufficient for successful cereal production.

The research area is also served by significant rivers within the catchment of the Crocodile River into which the Koster, Selons, Elands, and Hex Rivers drain (Horn 1996; Liebenberg et al 1976; Pistorius 1997a).

As is evident from the above description, the hills of the Magaliesberg and the Pilanesberg in the central Bankeveld offer a rich mix of woody, herbaceous and grass layers. This area would have provided good grazing for livestock during the winter months when nutritional value of the sour grasses of the Highveld would have been inadequate. In comparison to the Bankeveld, the plant biomass and productivity on the
dense turf soils to the north of the Magaliesberg in the Sandy Bushveld and Dwaalboom Thornveld are low (Hall et al. 2007; Mucina and Rutherford 2006). Sorghum and millet farmers would, however, have selected a range of soils to decrease risk during the agricultural cycle. Whereas the deep well-drained red loams of the hills of the Magaliesberg and the Pilanesberg would have been favoured when adequate seasonal rainfall was experienced, the dense turf soils of the Sandy Bushveld and Dwaalboom would have been preferred if rainfall was low because of their higher retention of moisture (Hall et al. 2007). The boundary between the ecologically diverse central Bankeveld and sour grassland of the Highveld is sharp. Whereas the grassland of the Highveld would have offered seasonal summer grazing, the potential for cereal agriculture would have been limited (Hall et al. 2007).

The quality, in particular, of the Bankeveld for farming is underpinned by the high density of Late Iron Age sites found there. This is exemplified by the location of two of the largest eighteenth and early nineteenth century Tswana towns and a considerable number of smaller settlements. These are Molokwane and Boitsemagano that are located in the upper reaches of the Selons River where all of these biophysical factors are optimal (Figs. 5 & 6). The choice of settlement locations in this case took advantage of the rich soils along the banks of the Selons River, as well as the broken terrain on either side that offered grazing as well as wood. Additionally, the summer grazing provided by the Highveld is only a short distance to the south.
As emphasised, this area is agriculturally rich for farming and the settlement densities attest to this. Oral histories indicate that there was a continuous convergence by a number of lineages into this region (Hall et al 2007) and that increasingly from the seventeenth century farmers jostled for prime agricultural positions.

Having established the ecological structure that is relevant to the distribution of settlements, I now turn to the oral and written records that provide some glimpses into the histories of the groups resident in this region. In particular, I focus on the Nguni-speakers in the trans-Vaal in order to establish a context against which Class 3 and Doornspruit settlements can be interpreted.
CHAPTER 3
NGUNI ARCHAEOLOGY IN THE TRANS-VAAL

Introduction

It has long been known that while Nguni-speakers traditionally reside in KwaZulu-Natal the Nguni have not been ‘locked’ timelessly into that area (see for example Hammond-Tooke 1974; Schapera 1937, 1953). A combination of ethnographic, oral, and archaeological evidence indicates that the boundary between Nguni-speakers and Sotho/Tswana-speakers to the west of the escarpment has been extremely fluid and not fixed. In the following chapter I examine the evidence for this fluidity and outline its broad history. I then briefly discuss the work of Kopytoff (1987) on the dynamics of internal African frontiers. One outcome is to suggest that while the historic scale that precipitated the establishment of the Ndebele State in the mfecane of the early nineteenth century was unprecedented, the principles used in establishing a new political order elsewhere was not unique. Movement in the cause of establishing new political and cultural identities has long been a common strategy in sub-Saharan Africa.

Pre-mfecane diasporas

Recently Huffman (2007a) proposed four distinct movements of Nguni-speaking peoples from the mid 15th century onwards out of KwaZulu-Natal onto the central plateau and north across the Vaal River. Previously it was thought that only three such movements occurred (Huffman 2004), based on archaeological work done by Aukema (Aukema in

Most historical research on the Nguni presence to the north of the Vaal River is based on the historical accounts of the first Europeans who came into contact with the trans-Vaal Nguni communities during the colonial period (Burrow 1971; Harris 1963; Kirby 1940; Moffat 1842; Wallis 1945). It should be stressed that most of the historical research has focused on the last major Nguni movement into the trans-Vaal, that of Mzilikazi’s Khumalo during the 1820’s and 1830’s. For an understanding of the earlier Nguni movements we have to rely on a combination of archaeological evidence and oral history.

Both the archaeological and oral sources, however, do present problems. Nguni archaeology is difficult to study, as thatch beehive huts do not preserve well, ceramics are seldom decorated and comparatively sparse, and Nguni people made extensive use of organic materials for making their material culture (Huffman 2004). When making use of the oral histories it should be kept in mind that the end of the 18th and beginning of the 19th centuries in KwaZulu-Natal was a period of immense social and political change and
re-alignment which culminated in the formation of a Zulu state under Shaka. The ensuing wars and the consolidation of the Zulu state effectively expunged much of the pre-Shakan Nguni oral histories (Hall 1984, Huffman 2004). Consequently, care should be taken when using Nguni oral histories not to create a synchronic ‘ethnographic present’ view of a fixed Nguni identity. The archaeological record, however, has the power to interrogate a view of a fixed Nguni identity.

In the following section I will review the evidence of the Nguni movements into the trans-Vaal, and the various ways a Nguni presence and identity were expressed on the landscape. The primary focus of this chapter is to provide an outline of Nguni incursions across the Vaal River, with an emphasis on the establishment of the Ndebele State under Mzilikazi during the 19th century. It is against this historical context that Mason’s Class 3 and Doornspruit type homesteads can be further assessed and interpreted.

Before continuing with a discussion of their presence across the Vaal River, it is necessary to consider ideas about Nguni-speakers original origins. This is pertinent for and understanding of the nature of Nguni material culture and their general settlement preferences and homestead patterns. Based on linguistic and anthropological evidence, Huffman (2004), and Hammond-Tooke (2004), argue that the closest cultural and linguistic correlates of the Nguni are with the Interlacustrine Bantu of East Africa. What is important from this suggestion for understanding the character of Nguni social and
material culture is that this area falls within a cultural matrix in which there is a powerful pastoralist presence (Fig. 7). As with other groups within the Interlacustrine Bantu, a dichotomy exists between cattle pastoralism and agropastoralism.

Figure 7: Location of the major divisions of the Nguni language family in relation to the Interlacustrine Bantu (after Huffman 2004: 80).
Within Nguni society there is a clear division of labour, expressed through gender, between men and cattle; and women and agriculture (Huffman 2004). However, although this is present among all southeastern Bantu-speaking societies, the emphasis on the male=cattle component of this dichotomy is highly marked within Nguni society. According to Hammond-Tooke (cited in Huffman 2004), although the Nguni are agropastoralists, the emphasis on men and cattle, on the one hand, and women and agriculture, on the other, creates an extremely strong patrilineal pastoral ‘arrogance’. Nguni origins in East Africa explains the high profile of cattle pastoralism in contrast to the (no less important) role of cereal, but which, by contrast, is muted.

The centrality of cattle and pastoralism is also strongly expressed in material culture and homestead location. Unlike other agropastoralists in southern Africa, Nguni homesteads are often found in higher altitude grassland areas that provide access to both sourveld summer grazing and sweetveld winter grazing (Hall 1981; Hall and Mack 1983). As Maggs (1980) argues, this homestead preference is rooted in a strong pastoralist ideology. By way of a contrast, this cultural preference to habitat and landscape is markedly different to the homestead preferences of Early Iron Age farmers in KwaZulu-Natal and elsewhere. Here, the homestead preference was for lower altitude savanna habitats that were frost free and frequently on the banks of major drainages, such as the Thukela River.

Furthermore, Nguni beehive huts is a premier material expression and symbol of
pastoralist people (Huffman 2004). Additionally, material culture, such as wooden milk pails, male meat platters, male headrests representing bulls and woven beer baskets all emphasize male dominance. With these social, economic and material factors in mind, I now turn my attention to archaeological evidence for the presence of Nguni-speakers west of the escarpment and across the Vaal River. This considers both the ceramic and settlement sequence and homestead layout.

The Nguni ceramic sequence can be divided into four phases over the last 1000 years (Table 1). These are called Blackburn (AD 1050 – 1500), Moor Park (AD 1350 – 1700), Ntsuanatsatsi (AD 1450 – 1600), and Nqabeni (AD 1700 – 1850). It is within these periods that Nguni movements can be identified.

Blackburn ceramics mark the first incursion of Nguni-speakers into KwaZulu-Natal. The stylistic break with Ntshekane, the terminal EIA phase is extreme and absolute and can only be explained by the arrival of ancestral Nguni-speakers. Blackburn ceramics are sparsely decorated, but the decoration that does occur includes rim-notching, appliqué bumps, incised parallel lines and oblique panels of punctates and stamping. Blackburn ceramics have been recorded on both the south and north coast of KwaZulu-Natal (Huffman 2004, 2007a).
Table 1: Nguni (Blackburn) ceramic sequence (after Huffman 2007a).

<table>
<thead>
<tr>
<th>BaFokeng Cluster</th>
<th>Northern Nguni</th>
<th>Southern Nguni</th>
</tr>
</thead>
<tbody>
<tr>
<td>1840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>Waterberg</td>
<td></td>
</tr>
<tr>
<td>1750</td>
<td>Makgwareng</td>
<td>Nqabeni</td>
</tr>
<tr>
<td>1700</td>
<td>Uitkomst</td>
<td>Umgazana</td>
</tr>
<tr>
<td>1650</td>
<td>Rooiberg</td>
<td>?</td>
</tr>
<tr>
<td>1600</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>1550</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>1500</td>
<td>Ntsuanatsatsi</td>
<td>?</td>
</tr>
<tr>
<td>1450</td>
<td>Moor Park</td>
<td>Ntsuanatsatsi</td>
</tr>
<tr>
<td>1400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Blackburn (AD 1050 – 1500)

The Ntsuanatsatsi phase

It has recently been argued by Huffman (2007a, 2007b) that Ntsuanatsatsi ceramics are derived from Blackburn ceramics, although Maggs (1976) highlighted this possibility in earlier work. According to Huffman (2007b), ceramic types with stamped lines in the neck position and stamped chevrons on the shoulder position occur in northern KwaZulu-Natal prior to their appearance at Ntsuanatsatsi. Furthermore, all the stylistic types that occur in Ntsuanatsatsi ceramic phase have equivalents in the Blackburn phase. The earlier Blackburn ceramic phase however has more variation. This would mean that the first people that moved out of KwaZulu-Natal were Nguni-speakers who made Ntsuanatsatsi
ceramics and settled in the area around Ntsuanatsatsi in the Free State (Huffman 2007a). These people introduced the use of stonewalling that originated amongst Nguni-speakers, first to the Free State, and later, across the Vaal River to the north (Huffman 2007a).

The origins of these people and the link to the label Fokeng are currently under debate (Hall et al 2007, Huffman 2004, 2007a). Huffman (2007a) has attempted to account for the wide distribution and co-residence of the Fokeng with the Kwenaland Kgatla as suggested by Legassick (1969) by pointing out that based on archaeological and oral evidence, a Fokeng identity can be linked to the first inland movement of Mbo Nguni. It is thought that this inland movement out of present-day KwaZulu-Natal occurred between about AD 1450 and 1500. Based on oral histories, Breutz (1953) maintains that a relationship between the Kwenaland Fokeng cannot be proved although some oral records link the Fokeng with this western Tswana group. Hall et al (2007: 4) suggest that “the ethnonym Fokeng is of value only as a general cultural label with little long-term historical specificity. The historic Fokeng (referring to the present-day Rustenburg area) may then represent a disjunct fragment of a previously wider identity that, through a process of assimilation, was reduced and geographically compressed by western Tswana communities into their historic distribution”.

From this brief description it becomes evident that the term ‘Fokeng’ does not necessarily describe a distinct group, but rather it serves to describe a broad category of people. As is
the case for the Bokoni in the eastern trans-Vaal (Delius and Schoeman 2007, 2008; see also Wright 2010), it is important not to think of the Fokeng as a homogenous group with a common identity but to recognize that distinct groups may have come to stand for a political unit in the recent oral histories of the Magaliesberg. In order to further investigate the possible origins and identity of the Fokeng, it is also relevant to turn to the evidence of homestead layout.

It is argued that homestead organization is important for the recognition of Nguni-speakers. According to Huffman (1982) homestead organization among southern Bantu-speakers can be explained in terms of an ethnographically derived spatial model referred to as the Central Cattle Pattern (CCP). The CCP is a spatial expression of a patrilineal worldview and as the name implies, cattle are an important resource because they provides a means to accessing and controlling power, success and status within a society. The social underpinnings of the CCP comprise several interconnected concepts such as the spiritual role of ancestors and the importance of cattle and bridewealth (lobola) transacted through cattle.

There are two main spatial forms of the CCP. These are firstly, a central cattle byre that contains grain storage pits and elite burials. There is a male court either next to the byre or in the byre itself. Secondly, there is an outer domestic arc of households with the first wife’s household positioned upslope from the byre, and this position is conceptual; at the
back and sacred. All other households are arranged either to the left or the right according to seniority. Women, children and low status burials are found in the outer zone and each household has privately owned granaries. Within each house there is a central fireplace with a left/right division for female/male and a back/front division for sacred/secular distinction. This back/front division also works at the level of each household, and as indicated above, also at the level of the homestead.

Huffman (2007a) argues for the existence of two variations of settlement layout that follows the CCP. In the one variation the centre/side axis is emphasized. The centre/side axis is expressed as concentric rings: the inner circle around the kraal, associated with the men’s court, and the outer domestic circle of houses, cereal storage and food preparation. This spatial expression is linked both to Sotho/Tswana and Nguni-speakers. In contrast, there is a second variation, where the emphasis is placed on the front/back axis, that is associated with Nguni-speakers.

Because the CCP is based on the premise that “settlement pattern is a visual manifestation of the traditional spiritual and social order” (Mack et al 1991: 127), the CCP is an idealized model that is concerned with settlement organization at the level of cultural norms and is not intended to operate at the level of the daily behaviour and dynamics within a society (Huffman 1996b). A number of researchers (see for example Lane 1994/1995, 1998) have highlighted shortcomings inherent in the CCP to do with
behavioural scale. Variation exists within these basic layouts, but I will not take up this discussion here.

The first stone wall homesteads that give us the first clear picture of the broad variation occur around Ntsuanatsatsi and are referred to as Type N settlements (Maggs 1976a, 1976b) (Fig. 8). These homesteads are usually dispersed and spread across the landscape. A homestead of a senior chief may have been present within a larger cluster of homesteads. Based on dates obtained from these Fokeng stonewalled sites, it is evident that this movement of people out of KwaZulu-Natal onto the Highveld took place between the 15th and 17th centuries (Huffman 2007a). It should be noted that Type N predates any recorded Sotho/Tswana stonewalled homesteads to the north of the Vaal River even though the interpretation of some of the earlier radiocarbon dates associated with these homesteads have been questioned (Hall et al 2007).

The Fokeng, with their Type N homesteads and Ntsuanatsatsi ceramics, spread north across the Vaal River into the hilly areas of Gauteng between the 15th and 17th centuries. Mason (1986) and Taylor (1979a) have referred to these homesteads as Class 1 and Group I respectively, but Huffman (2007a) has proposed retention of the term Type N to refer to these homesteads. It is at this time that the Fokeng introduced the use of stonewalling to the Sotho/Tswana. The Western Sotho/Tswana, such as the Hurutshe and Kwena, built Molokwane type stonewalled homesteads (Boeyens 2000; Huffman 1986,
2007a; Mason 1986; Pistorius 1992; Taylor 1979) dating from the 18th century and extending from Gauteng to the west of Zeerust. In turn, the Southwestern Sotho/Tswana built related Type Z stonewalled homesteads (Maggs 1976b) (Fig. 9). Both Molokwane and Type Z stonewalled homesteads emphasize a centre/side axis within the broader CCP model.

Figure 8: Type N homestead (after Maggs 1976b).
Interaction between the Fokeng and the people living north of the Vaal River led to a change in stonewalling from Type N to Klipriviersberg (Table 2) among the Fokeng. Mason (1986) called these homesteads Class 2 and 5 while Taylor (1979) referred to them as Group III.
Table 2: Proposed relationship between stonewalling types following the Central Cattle Pattern (after Huffman 2007a).
Examples of Mason’s Class 2 include Waterval 11/65 at Northcliff and Klipriviersberg 18/69, while Class 5 homesteads are represented by Klipriviersberg 5/65 (Mason 1986). In comparison to Type N homesteads, Klipriviersberg homesteads occur more frequently together in clusters. Klipriviersberg homesteads are characterized by scalloped outer walls that mark the back courtyards, and straight walls that separate the individual households within the residential zone, beehive houses that sometimes had sliding doors and small stock enclosures behind the back courtyards (Huffman 2007a).

The ceramics associated with Klipriviersberg sites also changed, indicating a merger between Ntsuanatsatsi and Olifantspoort ceramics. Olifantspoort facies ceramics, which form part of the Moloko ceramic cluster, are associated with the south-western Sotho/Tswana (Evers 1983; Hall et al 2007; Huffman 2007a). The new ceramic style from the merger between Ntsuanatsatsi and Olifantspoort ceramics is known as Uitkomst (Mason 1986). Klipriviersberg walling and Uitkomst ceramics date to between the 17th and 19th centuries and probably ended when Mzilikazi entered the area around Gauteng in 1823 (Huffman 2007a; Rasmussen 1978). In the Rustenburg area the Fokeng may have occupied Klipriviersberg homesteads after the incursion of Mzilikazi’s Ndebele, as the Fokeng and Mzilikazi’s Ndebele had positive interaction in the area (Huffman 2007a; Pistorius 1997b). It would be tempting to suggest that the Nguni origins of the Fokeng facilitated this positive interaction, but more research is needed to confirm this. Ntsuanatsatsi/ Uitkomst ceramics also spread north to the Waterberg were it is found
intermixed with Madikwe ceramics. The Madikwe ceramic facies are associated with the western Sotho/Tswana Hurutshe and Kwena and have been found from the Makapansgat area west into Botswana. It is thought that Madikwe ceramics develops into Mason’s Buispoort ceramics (Huffman 2007b). The interaction between the producers of Ntsuanatsatsi/ Uitkomst ceramics and Madikwe ceramics led to Rooiberg ceramics that date to the 17th and 18th centuries (Hall 1985).

In the 17th and 18th centuries on the Highveld to the south of the Vaal River, Type N homesteads and Ntsuanatsatsi ceramics developed into Type V homesteads (Fig. 10 and Table 2) and Makgwareng ceramics respectively. Based on the archaeological evidence, as expressed in the appearance of Uitkomst ceramics, Huffman (2007a) argues for a merger between the Fokeng and the Kwena north of the Vaal River during the 18th century. This is in contrast to Legassick’s (1969) suggestion for an earlier merger between the Fokeng and Kwena at AD 1550 – 1650 to the south of the Vaal River. The differing arguments presented by Huffman (2007a) and Legassick (1969) can partly be explained by their use and interpretation of different sources. Legassick’s assertion is based mainly on his interpretation of oral records, whilst Huffman relies more on the archaeological record. In this case, it seems as if the archaeology exerts some control over the oral records.
The synthesis provided by Huffman (2007a, 2007b) of early Fokeng identity and the spread of stonewalling north across the Vaal River is still under debate. Huffman argues that the presence of Uitkomst ceramics (Fokeng), occurring stratigraphically underneath the main stonewalling and western-Tswana associated Buispoort ceramics at Mmakgame, a pre-Kaditshwene capital of the Hurutshe, can be associated with the earlier radiocarbon date of AD 1645 ± 10 (GrN-5317). According to Hall et al. (2007) this interpretation is problematic for various reasons. Firstly, the stratigraphic sequence at Mmakgame is not
apparent from Mason’s (1986) descriptions. Secondly, the radiocarbon date used by Huffman (2007a, 2007b) is based on a misinterpretation of an already calibrated radiocarbon date of AD 1747 ±44 (Vogel 1971). Uitkomst ceramics have also been identified in the main court midden at Kaditshwene, the historic Hurutshe capital that was occupied between about AD 1790 and 1823. Furthermore, comb-stamped Uitkomst ceramics have also been identified at Marothodi, the 19th century capital of the Tlokwa which is contemporary with Buisport ceramics and Molokwane type walling, such as Molokwane itself (Anderson 2009). Although the presence of comb stamped ceramics at these sites does not negate the earlier Uitkomst presence, it does mean that the style continued and seems to have been contemporary with Buispoort ceramics.

The discussion highlights the significance of a relatively early presence of Nguni or Nguni influenced people in the Magaliesberg region. Two groups with possible importance in the further discussion of the possible Nguni roots of the Fokeng are the BaPo and Thlako. Oral records (Van Warmelo 1930) suggest that both the BaPo and the Thlako were Nguni groups from KwaZulu-Natal that moved to the north of the Vaal River and were subsequently ‘Sotho-ised’. According to Van Warmelo (1930) BaPo is the Sotho cognate of Mbo, while Thlako is the cognate of Hlangu. Huffman (2007a) argues that the BaPo living in the Rustenburg and Pretoria areas came from the Fokeng cluster. Klipriviersberg walling and Uitkomst ceramics have been found in the area around Wolhuterskop (Huffman 2007b), a historical capital of the BaPo (Breutz 1953). It
is known that the BaPo had a secondary dispersal point in the present-day Pretoria area from where they settled between the Sterkstroom River in the west and the Crocodile River in the east. Some of the homesteads that are named include Mokolokwe and Thobong (Wolhuterskop). Although there is some archaeological evidence that confirms the oral histories of this group, and their Nguni origins (Huffman 2007b, Breutz 1953), a more systematic description of their ceramics and homestead layout throughout the sequence is needed (Hall et al 2007). Hall et al (2007) have also suggested that the Tlhako is a westward continuity of the BaPo and Ndzundza Ndebele who are thought to have moved from the Pretoria area to the west of the Tlokwa. Oral histories collected by Breutz (1953) place their homesteads between Tholwane River, the Matlapengsberg, Mabies Kraal and Pilwe Hill during the 17th century.

In order to firmly establish Nguni roots for the Fokeng and associated material culture, a more precisely dated archaeological sequence is needed. Once this is achieved researchers can assess the relationships between the archaeological identities of the primary western Tswana lineages and Uitkomst (Fokeng) homesteads and ceramics.

In contrast, therefore, to the long held view of a homogenous landscape dominated by the Sotho/Tswana in the Magaliesberg area, a new picture is emerging based on the reassessment of the archaeological and oral records. At present it seems as if there was continuity in Nguni/Fokeng (Uitkomst) stylistic expression that was contemporary with
Sotho/Tswana (Buispoort) stylistic expression. The Magaliesberg area was a complex landscape as attested to by the multiple identities expressed in the archaeological record. This is important because it emphasizes the more fluid nature of the geographic spread of Nguni and more specifically, underpin precedents for, and possibly the basis for the later incursions of Mzilikazi’s Ndebele into the Magaliesberg area.

The Waterberg homesteads

Elsewhere a second movement of Nguni people north across the Vaal River can be identified by the presence of Melora walling in the Waterberg (present-day Limpopo Province), which is derived from Moor Park walling, (Aukema in Huffman 1990; Hall 1985; Huffman 2004, 2007a, 2007b). As opposed to Type N walling, that of Moor Park seems to emphasize a front/back axis. Moor Park walling, found in the KwaZulu-Natal Midlands, is the earliest walling type in southern Africa that is associated with the Central Cattle Pattern and dates from the 14th to 16th centuries. Homesteads with Moor Park walling are found on the spurs of hills with a perimeter wall enclosing the front two-thirds of the homestead. The cattle kraals were located in the front of the homestead with the residential zone behind it. Platforms were built to support the beehive huts (Huffman 2004, 2007a).

So far nothing has been said about the mechanisms that underpin these movements. It has been suggested that the cool and dry climatic conditions in southern Africa around AD
1600 (Huffman 1996a, 2004; Tyson et al 2000) encouraged widespread ‘diasporas’ and probably led to Nguni people moving onto the interior plateau and settling in the Waterberg area. During the 17th centuries the Ndebele (Nguni) built Melora stonewalled homesteads in the Waterberg that were based on Moor Park walling (Aukema in Huffman 1990; Hall et al 2008). These homesteads seem to have been located for defensive purposes, built as they are on hills and spurs with the walls constructed along cliff and spur edges. Additionally at Buffelsfontein, and elsewhere small terrace platforms for beehive huts were found behind kraals, middens and a court (Aukema in Huffman 1990, Huffman 2004, 2007a) (Fig. 11). It is possible that some of the people who occupied Melora homesteads also moved east to the area around Polokwane, as attested to by a homestead on Bambo Hill (Huffman 2007b). The stonewalled site of Mmatshetshele Hill further to the south in the Magaliesberg may be a variant of the front/back Melora homesteads found in the Waterberg (Huffman 2007b). This is not an early 19th century mfecane Sotho/Tswana refuge site as suggested by Pistorius (2001) but would have been built by Nguni speakers in the 17th century (Huffman 2007a). This still further, contributes to more diversity in identities on this landscape.
Figure 11: Melora walling at Buffelsfontein in the Waterberg (after Huffman 2004).

The Badfontein homesteads

The third set of movements of Nguni across the Vaal River consisted of various small, uncoordinated incursions. Of these, Nguni groups that retained their language are
referred to as Ndebele, and those who adopted the Sotho/Tswana language and customs are referred to as Bokoni. The meaning of the term Bokoni is currently being debated, and some have even argued that its origin has nothing to do with being Nguni (Makhura 2007). For the purpose of this review I will retain the use of the term Bokoni to refer to ‘Sotho-ised’ Nguni. As with the term Fokeng, it is important not to think of the Bokoni as referring to a homogenous group with a common identity, but to recognize that a variety of people may have followed different routes into the Mpumalanga region (Delius and Schoeman 2007; see also Mönnig 1967).

Of relevance here are the Badfontein stonewalled homesteads described by Evers (1975), Marker and Evers (1976), Mason (1962), Maggs (1995, 2007), and Collett (1979, 1982), and which have been associated with the Bokoni (Delius and Schoeman 2007, Huffman 2004, 2007a; Schoeman 1997, 1998a, 1998b). Like the Ntsuanatsatsi homesteads, these homesteads emphasize the centre/side axis: the inner circle comprised the cattle kraal, an associated men’s court, with the households in the outer circle (Fig. 12).

These homesteads are found along the Mpumalanga escarpment and are associated with extensive agricultural terraces, cattle lanes (Collett 1979, 1982; Delius and Schoeman 2007; Huffman 2004, 2007b; Maggs 2007; Marker and Evers 1976), and rock engravings depicting homestead plans (Maggs 1995). It has recently been suggested that one of the key factors for the selection of sites to build these homesteads were their proximity to
water (Coetzee 2005). Based on oral records (Hunt in Huffman 2007a; Merensky in Delius and Schoeman 2007), Huffman (2004, 2007b) argues that Nguni left northern KwaZulu-Natal from as early as AD 1550 or AD 1600 to settle in the escarpment area of Mpumalanga and the Badfontein homesteads may be linked to this movement.

Figure 12: Badfontein type homesteads in Mpumalanga (after Collett 1982 and Maggs 2007).
Some time after these Nguni (Bokoni) left KwaZulu-Natal for the escarpment of Mpumalanga, other Nguni groups moved north across the Vaal River. Today these groups are known as the North and South Ndebele. Huffman (2004, 2007a) argues for a migration date of about AD 1630 – 1670 based on initiation cycles (Jackson 1982; Van Warmelo 1930). The cool and dry climatic conditions that were experienced in southern Africa at around AD 1700 (Tyson et al 2000) are again suggested as a cause for movement. According to oral histories, the Ndebele that live to the north of the Springbok Flats generally claim Langa as their ancestral leader, while those to the south generally claim Musi as their ancestral leader and include the Manala and Ndzundza Ndebele that settled in the area around Pretoria (Van Warmelo 1935; Huffman 2004, 2007a). Huffman argues that the capital of the Ndzundza Ndebele at KwaMaza is a variant of Moor Park walling, with a back/front emphasis, based on the work by Schoeman (1997) at this homestead. Some Musi Ndebele groups, such as the Sebietela and Moletlane, settled to the north of the Springbok Flats and became ‘Sotho-ised’, while the Kekana that live in the same area retained their language (Huffman 2004, 2007a; Van Warmelo 1944).

Some Langa Ndebele also left KwaZulu-Natal during this time and settled to the east in the Lowveld and plateau of Limpopo and Mpumalanga. These groups included the Ledwaba, Matala, Mphahlele, and Kgaga. Many of these groups adopted the Sotho/Tswana language and customs, while the Zimbabwe Culture and the Lovedu influenced
other groups (Huffman 2004, 2007a; Loubser 1994).

For this third set of movements, Huffman (2004, 2007a) makes a distinction between the Ndebele that claimed Langa as a legendary leader, and those that claimed Musi as their legendary leader. He further argues that two distinct routes out of KwaZulu-Natal were taken by these groups. The Musi Ndebele followed the valleys past Newcastle to the plateau and then turned west towards the area around present-day Pretoria. Based on the occurrence of Moor Park walling (back/front emphasis) among these groups, he suggests that their original homeland must have been in the Escourt Midlands. In contrast, the Langa Ndebele probably came from northern KwaZulu-Natal and followed a route north through Swaziland and the Mpumalanga lowveld.

The mfecane / difaqane period

Lastly, I turn to the events of the early 19th century for which there is considerably more historical detail. During the early nineteenth century the southern Africa landscape was marked by socio-political change and associated demographic turmoil and violence. On the east coast this was a result of factors governed by the physical environment and local patterns of economical and political organization, and importantly, with the encroaching mercantile interests of European traders (Eldredge 1992). The increasing inequalities between and within societies together with several environmental crises transformed competition over natural resources and trade (Eldredge 1992; Omer-Cooper 1993; Peires
The polities of the Mthethwa, Ndwandwe and Ngwane, were the first to assert their power over neighbouring groups on the east coast (Peires 1993; Wright 1991), which encouraged other groups such as the Qwabe and Cele to start building similar enlarged political units (Omer-Cooper 1993; Wright 1991). The result of the rivalry between Zwide’s Ndwandwe and Dingiswayo’s Mthethwa was that the Ngwane and Hlubi were driven from KwaZulu-Natal (Wright 1991). During the reign of Mzilikazi’s father, Matshabane, the Khumalo were associated with the Ndwandwe. It is also thought that Zwide, the chief of the Ndwandwe, installed Mzilikazi as the chief of the Khumalo after the death Matshabane (Rasmussen 1978). Sometime before 1821 Mzilikazi and the Khumalo changed alliances and became a vassal chiefdom of the Zulu. The move of the Khumalo out of northern KwaZulu-Natal was the result of an attack and defeat by the Zulu precipitated by the refusal of Mzilikazi to hand over cattle to Shaka that were captured during a raid (Hughes and van Velsen 1954; Mazarire 2003; Rasmussen 1978). Cobbing (1990) asserts that the Khumalo fled due to conflict with the slave-trading Ndwandwe. Harries (1981) has shown, however, that the boom in the illicit slave export from Delagoa Bay and Inhambane occurred only after 1823.

Whatever the case, Rasmussen (1977, 1978) argues that Mzilikazi’s Khumalo left KwaZulu-Natal at around 1820 or 1821. It is thought that the group of Khumalo that left
northern KwaZulu-Natal numbered only around 500 people (Rasmussen 1978). As soon as the Khumalo left northern KwaZulu-Natal, however, they started recruiting new Nguni and Sotho/Tswana adherents, by force and voluntarily (Horn 1996; Lindgren 2001, Lye 1969, Rasmussen 1978)\(^3\). Whilst in present-day Mpumalanga, Mzilikazi’s Ndebele attacked the Pedi, but Delius (1983) and Delius and Schoeman (2007) have argued that it was Zwide’s Ndwandwe who were the aggressors. Mzilikazi’s Ndebele also attacked the Ndzundza and Manala Ndebele, the Bokoni, and the Msene (Van Vuuren 1992). From around 1823 to 1827 Mzilikazi’s Ndebele first settled in the area around the confluence of the Vaal and Suikerbosrand Rivers before moving westwards to the area around the confluence of the Vaal and Mooi Rivers. During their stay along the Vaal River they captured refugees from the battle at Dithakong (AD 1823), and attacked the Ngwaketse (AD 1825), Taung (AD 1826), Rolong (AD 1826), and Fokeng (AD 1826) (Rasmussen 1978). During the winter of 1827 Mzilikazi’s Ndebele migrated to the northern slopes of the Magaliesberg. Rasmussen (1978) cites conflict with the Griqua and Korana, the exhaustion of resources and a renewed threat by the Zulu to the east as reasons that led to this migration.

The Sotho/Tswana communities in the Magaliesberg and wider areas into which Mzilikazi moved from the mid-1820s, had also undergone significant political shifts during the second half of the 18\(^{th}\) century. The expanding colonial frontier of the Cape

\(^3\) For the period before they left KwaZulu-Natal, I refer to the followers of Mzilikazi as the Khumalo. However, I refer to the same people as Ndebele as soon as the left KwaZulu-Natal and started recruiting Nguni and Sotho/Tswana adherents.
Colony to the south also contributed to a process of escalating turmoil and violence. Parsons (1995) and Manson (1995) have suggested that the Sotho/Tswana started competing for control of the trade centred on the east coast by AD 1750. It was probably during this time at about AD 1750-1800 that Sotho/Tswana aggregated into the large towns that continued into the historic period (Boeyens 2003, Huffman 2004, 2007a). Molokwane, occupied by the Modimosana Mmatau Kwena, for example, was the largest stone-wall town in the Magaliesberg region and was home to about 12000 people. The size of Molokwane and the rapid growth of the chief’s homestead (kgosing) within this aggregation may be linked to the political success of Kgaswane who ruled between about 1770 and 1828 (Hall et al 2007). It is also known that armed Korana and Griqua raided for cattle and slaves across the Vaal River during this time, although the extent of this is under debate (Cobbing 1988; Eldregde 1992; Legassick 1988; Omer-Cooper 1993).

It was into this ferment that Mzilikazi’s Ndebele asserted their control of the area between the Apies River in the east and the Magaliesberg in the west (Pistorius 1997a; Rasmussen 1978), within two years Molokwane collapsed and there was some resistance by the Kgatla of Motsepe and the Fokeng of Noge. Other groups, such as the Po, Kgatla Kgafela and Hwaduba, were scattered (Breutz 1953; Pistorius 1997a; Rasmussen 1978; Van Warmelo 1944). Between 1827 and 1832 Mzilikazi’s Ndebele were visited by the missionaries Moffat, Archbell and Pellisier, the traders Schoon and McLuckie, and colonial hunters from the Eastern Cape (Moffat 1842; Pistorius 1997a; Rasmussen 1978;
Visagie 1992; Wallis 1945).

Attacks by the Griqua-Korana-Taung continued, however, under the command of Jan Bloem and Molitsane in 1827, the Griqua-Korana under command of Gert Hooymans in 1831, and the Zulu in 1832. This forced Mzilikazi’s Ndebele to once again move westwards (Rasmussen 1978). The majority of the population settled in the Mosega Basin in homesteads such as Mosega and Kapain, although homesteads under Ndebele control at this time may still have been situated as far east as present-day Rustenburg (Moffat 1842; Pistorius 1997a; Rasmussen 1978). Various attacks by the Griqua, Korana, Zulu and Trekgers in 1837 led to the Ndebele moving north across the Limpopo River to finally settle in present-day Matabeleland in Zimbabwe (Rasmussen 1978). Even after the severe losses they suffered during the conflict in 1837, it is estimated that approximately 15 000 Ndebele migrated north across the Limpopo River (Rasmussen 1975, 1977). This is a considerably larger number of people that had originally fled from northern KwaZulu-Natal.

The internal frontier model and identity construction

In light of the evidence for the presence of Nguni-speakers across the Vaal River during the last 500 years, Hall et al (2007) have argued that not one lineage can be identified as having been classically Sotho/Tswana or Nguni. While this may be overstated, it does highlight the need to closely consider the earlier history outlined here as an essential
precursor for a comparison with how identities were solidified, constructed or created
during the 19th and 20th centuries and then uncritically projected back in time. In light of
the historical outline of Nguni diasporas, there is some variability in the outcomes that
emphasize both continuities and change. The historical ambiguity of groups such as the
Fokeng, Bokoni, and Tlokwa, that combine both Tswana and Nguni attributes, should be
expected. These are an index of the fluidity of identity, but also underpin continuities.
On the basis of this historical evidence there would appear to be less ambiguity about
Mzilikazi and Ndebele identity. Despite the fact that the Ndebele accumulated people
both before and during their ascendancy in the Rustenburg area, the cultural structures
that were at the core of the Ndebele state appear to be relatively undiluted from those that
were brought from their point of origin in present-day KwaZulu-Natal. This is an image
that comes across strongly in the oral and written texts but is one that needs to be
interrogated independently. Consequently, in order to frame this interrogation of the
archaeology of settlement distribution, settlement layout and other aspects of material
that relate to identity, I discuss certain aspects of Kopytoff’s (1987) Internal African
Frontier model. This provides some consistently applied principles around which African
identities may or may not be changed or constructed in the context of movement within
internal frontiers that are continually played out when people move into areas that are
already occupied.
In this framework, the frontier can be viewed as an institutional vacuum, as it is a political definition of a geographical space that arises from subjective definitions of reality. Intruding societies, may define those already there as lacking legitimate political institutions, and thus open to legitimate intrusion and potential domination. In the process of establishing themselves, newcomers had to assert exclusiveness as ‘firstcomers’ (Kopytoff 1987), but at the same time, had to draw adherents from the local population to expand their numbers. This may be done through military superiority and/or organizational and political skills, or a combination of both. The ‘collection’ of people, is critical in order for newcomers to successfully assert themselves.

The principle of precedence is intimately interwoven with the legitimacy of authority. In order to claim legitimacy in an already populated frontier, the intruding society could either displace the other groups, or acknowledge their existence but ‘tame’ them structurally, and eventually redefine them as kin. ‘Firstcomers’ and ‘lastcomers’ are thus not an absolute fact of chronology. In an internal frontier, where the resident population outnumbers the intruders, their exclusion from the political and social institutions is unrealistic. Frequently, the distinction between the groups may become an integral part of the political system (Kopytoff 1987). Frequently, actual firstcomers, because of their longer residence, take on ritual functions. This is an acknowledgement that they and their ancestors ‘know the place’ and issues to do with the fertility of the landscape, such as rainmaking, for example, are best left in their hands. Despite this accommodation, the
ultimate relationship between firstcomers and newcomers, who redefine their genealogical primacy, is often hierarchical, and the original occupants are pushed downwards within this hierarchy (see Loubser 1991; also see Hamilton and Wright 1990).

The outcomes and particular structures within internal frontiers can vary depending on specific circumstances and these were played out in various ways over the five hundred year history of repeated Nguni diasporas away from their cultural heartland. It is within the contextual application of the principles outlined by Kopytoff that some Nguni groups that settled to the north of the Vaal River become ‘Sotho-ised’ while other Nguni groups asserted more cultural independence and political dominance.

In order to illustrate Kopytoff’s model, I will look at the social stratification based on kinship among Mzilikazi’s Ndebele from circa 1821.

Hughes and Van Velsen (1954) have shown that the Ndebele society are divided into three broad categories based on ‘firstcomers’ and ‘lastcomers’ within the political entity that would become the Ndebele state in Matabeleland. The original Nguni that left KwaZulu-Natal mostly constitute the ruling elite, and are known as the Zansi. The Sotho/Tswana and other groups incorporated between 1821 and 1837 are known as the Enhla, whilst the Hole is composed of the Kalanga, Rozvi, and other Shona groups
(Lindgren 2005; Mazarire 2003). These categories were not however rigid and fixed, as intermarriage between the different categories was permissible (Cobbing 1974). The Ndebele were a heterogeneous and highly stratified although they were bound together in a state with Nguni leadership, language, and customs as the norm (Lindgren 2005).
CHAPTER 4
AERIAL PHOTOGRAPH SURVEY

Methodology

In order to establish the distribution of Class 3 and Doornspruit stonewalled homesteads in the research area, I conducted a survey using 1:20000 aerial photographs and satellite images taken by Landsat 7. The research area comprised 5141 km² and is covered by aerial photographs from Trigometrical Survey, Job 1006. These included photographs of strips 19 – 42 that were taken between 5 September and 21 October 1994. I used the homesteads descriptions as defined by Mason (1986) as the reference for identifying Class 3 and Doornspruit homesteads (Fig. 13).

Figure 13: Examples of Class 3 and Doornspruit (Class 4) settlement types (after Mason 1986 and Jones 1935).
According to Mason (1986: 336), Class 3 homesteads can be defined as homesteads with “… a large blank elliptical or circular interior space surrounded by a boundary wall constructed by placing small circular stonewalls edge to edge”. In Maggs’ terms (1976a) a central secondary enclosure is created by a surrounding ring of primary enclosures. Doornspruit homesteads “… have roughly circular to elliptical boundary walls immediately adjacent to an interior zone of smaller roughly circular structures, each roughly circular structure related to an embayment and often connected to the outer wall” (Mason 1986: 337).

After georeferencing the aerial photographs using Global Mapper v.6.5, I super-imposed them onto 1:50 000 and 1:250 000 topographic maps covering the research area (Table 3) in order to establish their correct position on the landscape. Longitude and latitude coordinates, as taken from the georeferenced maps, were provided for the identified homesteads. A homestead is defined as a single settlement unit as shown in Figure 13. After identifying a homestead, I recorded the related information on a site record form and established a database of all the Class 3 and Doornspruit homesteads in the research area (Fig. 14). As much information as could be gained from the survey was recorded. This included homestead location; the size of homesteads; the number of homesteads occurring together in a cluster (cluster size); the availability of ecological resources; and the distance between homestead clusters. When recording individual homesteads I took care to note, when visible, the homestead entrance, entrances into enclosures within the
homestead, and the entrances in relation to the immediate topography. Electronic data provided by the Department of Land Affairs: Surveys and Mapping, was also employed^4.

Table 3: Range of longitudes and latitudes for the area covered by this study

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>26°00'35.00" S</td>
<td>26°45'40.00" E</td>
</tr>
<tr>
<td>26°00'35.00" S</td>
<td>27°25'22.31" E</td>
</tr>
<tr>
<td>25°23'01.74" S</td>
<td>27°25'22.31" E</td>
</tr>
<tr>
<td>25°23'01.74" S</td>
<td>26°58'50.34" E</td>
</tr>
<tr>
<td>25°17'33.20" S</td>
<td>26°58'50.34" E</td>
</tr>
<tr>
<td>25°17'33.20" S</td>
<td>26°56'17.02" E</td>
</tr>
<tr>
<td>25°15'54.58" S</td>
<td>26°56'17.02" E</td>
</tr>
<tr>
<td>25°15'54.58" S</td>
<td>26°57'22.16" E</td>
</tr>
<tr>
<td>25°13'28.60" S</td>
<td>26°57'22.16" E</td>
</tr>
<tr>
<td>25°13'28.60" S</td>
<td>26°40'56.29" E</td>
</tr>
<tr>
<td>25°21'41.15" S</td>
<td>26°40'56.29" E</td>
</tr>
<tr>
<td>25°21'41.15" S</td>
<td>26°45'40.00" E</td>
</tr>
</tbody>
</table>

^4 Computer files (*.dbf; *.shx; *.shp) containing topographic and ecological information pertaining to 1:50 000 topographic maps of South Africa.
Figure 14: Example of site record form used during the aerial photograph survey.

<table>
<thead>
<tr>
<th>Record Number</th>
<th>Estimated Coordinates</th>
<th>Site Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>25°53’14”S; 26°49’31”E</td>
<td>KS-047</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aerial Photograph</th>
<th>1:50 000 Topographic Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>2063</td>
<td>2526 DD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Job</th>
<th>Strip</th>
<th>Date</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>1006E</td>
<td>39</td>
<td>27/11/1994</td>
<td>1:20 000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visibility Rating</th>
<th>Site Confidence</th>
<th>Class Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Notes: One of 2 similar homesteads situated on higher ground overlooking the Elands River. A possible entrance faces uphill towards northeast east. Faint walling possibly visible to the southeast. Stone robbing might have occurred. Farm – Roerfontein 465JP.

Class: 3
Above sea level: 1520 – 1540m.
Date: 15/03/2004.
It was recognized that the remote survey conducted had limitations. Vegetation cover, for example, does limit visibility and this was a factor in identifying and recording homesteads and detail within homesteads. To compensate for these limitations I conducted ground surveys of selected Class 3 and Doornspruit homesteads. During these surveys I attempted to clarify details that might not have been visible on the aerial photographs. These included the position of entrances, the methods used in the construction of walling, the general slope of the area, visible surface material such as ceramics, the location of middens, the positioning of cattle and small-stock byres in the homestead, and the location of possible huts.

Results

During the survey, 154 homesteads were identified. Of these, the majority (148) are Class 3 homesteads and six are Doornspruit homesteads. The majority of the homesteads identified occur in close proximity to one another, forming clusters on the landscape. The cluster sizes range between single isolated homesteads to one instance where at least eighteen homesteads occur together. For Class 3, 132 homesteads occur in twenty-four clusters of various sizes. The six Doornspruit homesteads identified all form part of one homestead cluster. For the purpose of analysis I assigned an arbitrary scale to represent the number of homesteads occurring in a cluster (Table 4).

Sixteen Class 3 homesteads were identified that occur in isolation with no other
homestead in close proximity. No Doornspruit homesteads occur by themselves.

Table 4: Relative scale used to identify the number of homesteads in a cluster.

<table>
<thead>
<tr>
<th>SCALE</th>
<th>NUMBER OF HOMESTEADS IN CLUSTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2 – 4</td>
</tr>
<tr>
<td>2</td>
<td>5 – 7</td>
</tr>
<tr>
<td>3</td>
<td>8 – 10</td>
</tr>
<tr>
<td>1</td>
<td>11 – 13</td>
</tr>
<tr>
<td>5</td>
<td>14 – 16</td>
</tr>
<tr>
<td>6</td>
<td>17 – 19</td>
</tr>
</tbody>
</table>

Type 3 homesteads were identified in all three ecological zones, the Highveld, the Lowveld and the Bankeveld. In comparison, Doornspruit homesteads were only identified on the Highveld. The majority of the homesteads are found on the Highveld (43%), followed by the Bankeveld (41%), and the Lowveld (16%) (Fig.15). It should be noted, however, that although 16% of the identified homesteads are situated in the Lowveld, this percentage is derived from only two clusters. One of these clusters consists of eighteen homesteads, and the other of six homesteads. Throughout the Highveld and the Bankeveld a greater variety in cluster size is present. All the homesteads identified on the Highveld are located very close to, or within the contact zone between the Highveld and the Bankeveld. This is also true for the six Doornspruit type homesteads that were
identified. Sixty-six point seven percent (66.7%) of the homesteads in the Bankeveld are located between 1380 and 1500 meters above sea level (m.a.s.l.), with the remainder of them located between 1380 and 1200 m.a.s.l. (Fig. 16). It seems that there was thus a preference for locating homestead clusters close to the transition zone between the Highveld and the Bankeveld. The location of homesteads and clusters on the Highveld does suggest an orientation towards open, grassland conditions, that may in turn, relate to grazing potentials. Equally, however, the proximity to the Bankeveld edge could indicate that these homesteads are within a practical distance for collecting wood and herding cattle in the sweeter vegetation of this zone. The location of the other homestead clusters were probably determined by the micro ecologies5 present in the Bankeveld and the Lowveld.

5 Bredenkamp & Brown (2003) describe the Bankenveld vegetation as a mosaic of grassland and woodlands that is controlled by microclimatic conditions and exist in the topographically heterogeneous landscape in the transition zone between the grassland biomes of the Highveld and the Savanna biomes of the Lowveld.
Figure 15: Map indicating homesteads identified in the research area.
It appears that larger clusters occur on the Highveld. Here, clusters include two, three, four, five, six, twelve, and fifteen homesteads. In the Bankeveld, clusters size range from three to seven homesteads. Five single homesteads occur on the Highveld and eleven in the Bankeveld (Table 5).

The average (mean) size for the clusters occurring on the Highveld is four (rounded up/down) homesteads when the individual homesteads are included in the calculation, and six homesteads per cluster when the single occurring homesteads are excluded. In the Bankeveld, the respective average cluster size is three homesteads, including single homesteads, and four homesteads, excluding single homesteads. In the Lowveld zone the
average rises sharply to twelve homesteads in a cluster. This is due to only two clusters occurring in this area and the fact that one of these clusters has eighteen homesteads. It may, however, be significant that the largest cluster is found in the Lowveld. When all homesteads from the three zones are combined the average size of a cluster is three homesteads, when the single homesteads are included, and six homesteads when the single homesteads are excluded.

Table 5: Homestead and cluster distribution for the three ecological zones.

<table>
<thead>
<tr>
<th>Cluster Size</th>
<th>Highveld (> 1500m.)</th>
<th>Bankeveld (1500 – 1200m.)</th>
<th>Lowveld (< 1200m.)</th>
<th>Total</th>
<th># of homesteads</th>
<th># of clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>11</td>
<td></td>
<td></td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>12</td>
<td>4</td>
<td></td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>12</td>
<td>3</td>
<td></td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>15</td>
<td>3</td>
<td></td>
<td>30</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td></td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>1</td>
<td></td>
<td></td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>1</td>
<td></td>
<td></td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>67</td>
<td>63</td>
<td>12</td>
<td>24</td>
<td>154</td>
<td>25</td>
</tr>
</tbody>
</table>

* Doornspruit type settlements
When the Class 3 homesteads that are located in the Lowveld are excluded from the statistical analysis, the average cluster size (including single homesteads) is three homesteads per cluster, and five homesteads per cluster when excluding the single homesteads. What is evident is that apart from the sixteen single homesteads, all the other homesteads tend to occur in clusters of between four and six homesteads. No significant difference in average cluster size is evident between the Highveld and the Bankeveld homestead clusters (Table 6).

<table>
<thead>
<tr>
<th>Size</th>
<th>Including single homesteads</th>
<th>Excluding single homesteads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highveld</td>
<td>4.1875</td>
<td>5.63</td>
</tr>
<tr>
<td>Bankeveld</td>
<td>4.33</td>
<td>5.94</td>
</tr>
<tr>
<td>Lowveld</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 6: Average homestead cluster size for the three ecological zones.

It is evident from Figure 15 that individual homesteads and clusters are relatively dispersed across this landscape. Most homestead clusters occur within an easy walking distance from one another. The average (mean) distance between homestead clusters ranges between 5.5km and 6.5km for all of the three zones. The only exception to this is the distance between homesteads located in the Lowveld. The distances in this case are 21.25km and 23.5km respectively. Issues of visibility and sampling may cast doubt on the significance of this seeming distinction compared to the Bankeveld and Highveld. In both the Bankeveld and the Highveld the homestead clusters are approximately 6km from one another. On the Highveld the average distance between homesteads is 5.73 km, while
in the Bankeveld it is 6.04km. In general the homesteads and clusters are spread fairly evenly across the landscape. Furthermore, there seems to be no correlation between cluster size and the distance to the next group of homesteads. An upward trend in cluster size does not correlate in an increase in the distance to the next group of homesteads. This also holds true if the two Lowveld clusters are excluded (Figs. 17 to 20).

Figure 17: Relationship between cluster size and distance to the next homestead (n=154).
Figure 18: Relationship between cluster size and distance to the next homestead, excluding the Lowveld settlements (n=130).

Figure 19: Relationship between cluster size and distance to the next homestead in the Highveld (n=67).
As indicated above, the homesteads and clusters on the Highveld are mostly situated within grassland, although some of the homesteads do occur in the contact area with the Bankeveld in a more savanna-like habitat. Consequently, most of the identified homesteads were situated in fairly open veld (48.67%), and only a small number of homesteads were located on hilltops (8%). On average there seems to be a hint that homestead clusters are located closer to one another on the Highveld, in comparison to the Bankeveld (Figs. 19 and 20). A possible explanation for this may be the lack of ecological variability in the Highveld in contrast to the higher ecological variability in the Bankeveld.
In most cases, homesteads are found in close proximity to a river or stream (74%), or a pan or natural fountain (19.3%). Even for those homesteads that were built on the scarp edges of hillsides (24.67%), the prime consideration still seems to be proximity to water resources, rather than choosing the location for only defensive purposes. In all, it seems as if security, as expressed in the positioning of homestead on hilltops, was not an overriding concern for the builders of these homesteads. Many of the homesteads occur close to present-day wood sources (57.3%). Over the past 50 years however, bush cover has increased dramatically and it would be difficult to say for certain what timber resources would have been available to the occupants of these homesteads (Fig. 21).

Figure 21: Homestead location in relation to physical features and natural ecology (n=154).
Having identified and quantified Type 3 and Doornspruit homesteads within the research area in relation to the physical and ecological landscape, I will now turn my attention to specific examples of Class 3 and Doornspruit type homestead clusters.
CHAPTER 5
CLASS 3 AND DOORNSPRUIT CLUSTER AND HOMESTEAD
ORGANIZATION

Introduction
I now turn from the general distribution of Class 3 and Doornspruit homesteads and clusters and focus on selected examples in order to highlight the details of homestead organization and the significance of this to the general patterns outlined. One outcome of this discussion will be to introduce ethnographic and historical evidence in order to make a comparison with Cobbing’s (1974, 1976) analysis of homestead distribution among the Ndebele under the Khumalo. One of the issues is the assumption that large homestead clusters, and large individual homesteads may have been at the top of local political hierarchies. Consequently, I provide detail of selected homesteads and clusters to see whether large homestead clusters commanded especially good local ecological conditions.

Homestead Cluster KS-105 to KS-119
The homestead cluster on the farm Leliefontein 138JP6 consists of fifteen homesteads (Fig. 22). All the homesteads stretch linearly along the top of the southwestern edge of a small hill and despite some distance separating some of the homesteads, they clearly

6 The farm numbers provided refer to the old system and have not been converted to the new farm numbers.
belong to a single cluster. Two pans occur in close vicinity of these homesteads. One is a non-perennial pan, approximately 300m to the south, and the other is a larger perennial pan approximately 500m to the north of KS-119. A fresh water fountain is also located about two kilometers from the cluster in a westerly direction7.

Seven of the homesteads in this cluster are located between 1540 and 1560 m.a.s.l., while the other eight homesteads are located just over 1560 m.a.s.l. To the north and northeast of these homesteads there are sandy soils on top of the hill, but in the valley below the hill, the soil is a deep red loam and more fertile and there is a good view over the valley from the homesteads located on the scarp edge of the hill. It is reasonable to suggest that cereals were probably cultivated in these fertile red loams.

7 Personal communication with the present owner of the farm Leliefontein 138JP, Mr. van der Westhuyzen, on which the homesteads KS-105 to KS-119 are located.
Figure 22: Composite map including profile, drawing and topography of homestead cluster KS-105 to KS-119.
KS-105 is the smallest of all the homesteads in this cluster. It is also located at the most eastern end of the cluster (Fig. 22). KS-105 consists of only one primary enclosure and one larger secondary enclosure. The diameter of this homestead is 27m, with that of the larger secondary enclosure being, 16.8m and covering a surface area of 171 square meters (m²). Two possible entrances were recorded at this homestead, one in the primary enclosure facing upslope, and the one in the secondary enclosure facing downslope.

KS-106 is located approximately 400m west of KS-105. This homestead consists of twenty linked and adjacent primary enclosures that define a large central secondary enclosure. Two of the primary enclosures at the eastern part of the homestead are much larger than the others. The presence of extensive vegetation cover makes the identification of much of the homestead stonewalling difficult, but a estimate for the homestead diameter is 95.5m. The centrally located secondary enclosure’s diameter measured 47.8m across and covers some 1297 m². A possible entrance into the secondary enclosure was identified in the southeastern part of the homestead. Secondary walling seems to form a passageway into the secondary enclosure at this entrance.

Despite the dense vegetation cover at the next homestead in this cluster (KS-107), much of the stonewalling could be identified (Fig.22). This homestead is located approximately 400m to 500m upslope and to the northwest of KS-106. The perimeter comprises at least thirty small primary enclosures, with a possible entrance into the large
centrally located secondary enclosure upslope in the northern part of the homestead. The central secondary enclosure measured 42m across and covers an area of 1454 m². The external diameter of this homestead is less than that of KS-106 at 76.6m.

KS-108 is a small homestead that occurs in close proximity to KS-109, KS-110 and KS-111 (Fig, 22). Five primary enclosures are present at the northern end of the homestead with a possible entrance located between them. The rest of this homestead consists of walling forming a secondary enclosure that covers 270 m² and measured 19.5m at its widest extent. The overall diameter of KS-108 has been measured at between 29 and 30m.

KS-109 does not seem to follow the typical layout associated with Class 3 homesteads. At least two large secondary enclosures might be present at this homestead (Fig. 22). Each of the possible centrally located secondary enclosures is defined by a number of smaller primary enclosures of which at least fifteen were identified. The primary enclosures all seem to be located at the northern perimeter of this homestead. No measurements could be taken at this homestead.

KS-110 is situated just up slope of KS-109. This homestead has a similar arrangement to KS-108. Six small primary enclosures were identified. Unlike KS-108, however, these enclosures are not restricted to one part of the homestead perimeter, but are arranged in a
rough oval shape and are linked by walling to form define the larger secondary enclosure. The secondary enclosure is 25.7m across and covers some 277 m². The homestead diameter is 39.4m. A possible entrance was identified in the northern part of the homestead, located between two primary enclosures.

KS-111 is located a little down slope of KS-110 (Fig. 22). Two secondary central enclosures are formed by at least twenty four small primary enclosures. It seems that a wall may have been added in order to subdivide the original single large secondary enclosure into two sections. Alternatively, the southern part of the homestead was built later as an addition to the northern part of the homestead. As is the case with KS-109, this homestead is located right on the scarp edge between boulders. The homestead has a diameter of 82.3m. The northern secondary enclosure measures 23.8m and the southern secondary enclosure measures 26.6m. The area covered by these two enclosures is 448 and 375 m² respectively.

By far the largest of the homesteads in this cluster is KS-112 and is a good example if a Type 3 homestead. It was particularly clear on the aerial photo and a a detailed outline of this homestead is given in Figure 23. This homestead is 116m across at its widest extent, with a central secondary enclosure diameter of 89m that covers an area of 3478 m². The oval perimeter of KS-112 is formed by at least thirty nine primary enclosures. A definite entrance into the secondary enclosure has been identified in the north-eastern part of the
homestead. This entrance faces slightly up slope. Two other entrances into the central enclosure, both facing down slope, have also been identified in the western and southern part of the homestead.

Ashy deposits were identified at the southern end of the homestead in both primary enclosures and in the secondary enclosure. At least four entrances were identified leading directly from the large central secondary enclosure into smaller primary enclosures (Fig. 23). Based on the ground survey no hut foundations were identified within the primary enclosures. During surface investigations only one piece of decorated ceramic was found and in two cases, ceramics with red ochre burnish.

A characteristic organizational detail, that is visible at many of the Type 3 homesteads is more distinct at KS-112. The majority of primary enclosures are doubled/paired in a front/back pattern (Fig. 23). While this is the dominant pattern, in others multiple primary enclosures are placed more adjacent to each other. These paired primary enclosures must represent the domain of individual households, In some the location of entrances from both front and back enclosures into the secondary central enclosures can be identified. It is necessary to address this organizational detail in relation to the large secondary enclosures.
Figure 23: Homestead organization of KS-112.
The large central secondary enclosure must be for livestock and in particular, for cattle. It would have also, therefore, been associated with men. In contrast, the encircling primary enclosures of individual households would have been associated with women. If individual households owned small-stock, as suggested by Huffman (2007b) for Klipriviersberg settlements, these would also have been associated with women and perhaps kept in one of the primary enclosures. In this scenario, the presence of entrances from primary enclosures, either as domestic space or as small stock enclosures, directly into the central enclosure may be seen as problematic in terms of the relatively unrestricted access between the male and female domains. Furthermore, there is no obvious access from the back of primary enclosures into the open areas beyond the homestead. People would have had to come forward into the secondary enclosure in order to leave the homestead.

In the case of KS-112, the size of the central secondary enclosure is large and it may not have been used as a single space for cattle. Alternatively, this problem could have been addressed if the cattle were kept in smaller brush enclosures within the central secondary enclosure. Contact between cattle, on the one hand, and women and small stock on the other, would thus have been avoided. The presence of entrances from the primary enclosures into the secondary enclosure suggests that cattle were kept in smaller organic enclosures within the secondary enclosure. I return to this issue below.
KS-113 is a small homestead following the same organizational pattern as KS-108 and KS-110. A chain of eight small primary enclosures enclose a centrally located secondary enclosure that measures 32.5m and covers 382 m². The diameter of this homestead measures 40.2m (Fig. 24). Two entrances lead into the secondary enclosure from the outside, and an internal entrance leading from a primary enclosure into the secondary enclosure, was also identified. In light of the preliminary discussion for the organization of KS-112, the clustering of primary enclosures towards one end of KS-113, and other homesteads, may also be to separate household space from cattle. In this case cattle may have been kept more in the south west ‘front’ section of the homestead.

Slightly down slope is KS-114. At least six primary enclosures have been identified. A small ashy deposit is situated next to one of the homestead entrances. This homestead is similar to KS-108 because the primary enclosures are all clustered on the north-eastern section of the homestead and the issue raised for KS-113 may also be significant here. A continuous wall completes the secondary enclosure. An entrance facing KS-115 has been identified (Fig. 22). The measurements for this homestead are 48.4m for the diameter, and 28.3m for the secondary enclosure that covers 410 m².
Homestead KS-115 follows the same arrangement of stonewalling as KS-109 and KS-111, comprising of three secondary enclosures that are associated with different smaller primary enclosures (Fig. 22). All told, twenty-nine primary enclosures were identified. As is the case with KS-111, this type of stonewalling does not strictly follow typical Class 3, but is a variation thereof. Due to bad preservation, the internal diameters of the secondary enclosures could not be determined. The overall homestead diameter

Figure 24: Homestead organization of KS-113.
was, however, measured at 99.5m at its widest extent.

KS-116 again follows the same pattern as KS-108, with the majority of primary enclosures (nine) situated at the northern end of the homestead (Fig. 22). In this case, one solitary primary enclosure is located at the southern end of the homestead below the large secondary enclosure (see also KS-113, Fig. 24). This homestead measured 51.6m across, with the secondary enclosure measuring 30.8m across and covering 466 m².

Ten primary enclosures are present at KS-117 (Fig. 25). A homestead entrance into the secondary enclosure across a natural rock outcrop is present in the southeastern part of the homestead. A possible entrance has also been identified in the western section of the homestead. It may again be significant that primary enclosures that may be of the paired type cluster at the north west section of the homestead, while none of this type appear to be among the primary enclosures around the main south east entrance to this homestead.
Figure 25: Homestead organization of KS-117.

Ten primary enclosures at KS-118 and eight primary enclosures at KS-119 are still
visible, although much of the walling at these homesteads has disappeared. A scatter of Later Stone Age stone tools was identified adjacent to the perimeter walling of KS-118. This material however seemed to have been washed into this area by rainwater and is not \textit{in situ}.

\textbf{Homestead cluster KS-001, KS-002, KS-014 and KS-015}

KS-001, KS-002, KS-014 and KS-015 are all Class 3 type homesteads and are located on the Highveld (see Fig. 15). This homestead cluster stretches close to, and along, the hill’s edge in a linear fashion over a distance of approximately 1.8km. Despite the distances between homesteads, they all take advantage of the same scarp edge, and for this reason they are lumped as a cluster of four homesteads (Fig. 26) (KS-001, KS-002, KS-014 and KS-015). This cluster can be found on topographic map 2526DD and aerial photographs 21052 and 21058 of Trigometrical Survey Job 1006. The homesteads occur on the farms Rhenosterfontein 494JP and farm \textit{Kafferskraal} 493JP in association with a low lying hill. Two of these homesteads (KS-001 and KS-002) are marked as ‘kraal’ on the topographic map. KS-001 is located high up on the hill’s northwest-facing slope, while the other homesteads in this cluster are situated above the south-facing slope of the hill. KS-001 is situated between 1580 and 1600 m.a.s.l., while the remainder is situated between 1600 and 1620 m.a.s.l.
Figure 26: Composite map including profile, drawing and topography of homestead cluster KS-001, KS-002, KS-014 and KS-015.

The topography of the surrounding area consists of small hills and lower lying areas, and from the hills’ vantage point all of the surrounding area would be visible. Much of the
lower lying areas are inundated during the rainy months to form non-perennial pans. Two of these pans are, however, perennial, and would have provided a constant water supply to both people and livestock throughout the year. The closest of these pans is approximately 3.5km from the homesteads. Much of the area to the south and east has also been turned into agricultural fields (Fig. 26).

KS-001 consists of at least thirteen small primary enclosures. The external diameter of KS-001 is 103m at its widest extent. The internal diameter of the centrally located secondary enclosure is 73m, and it has a surface area of 1410 m². A cluster of primary enclosures to the north west is separated from a cluster to the south east by a length of walling. The combination of primary enclosures and this walling enclose a large oval-shaped centrally located secondary enclosure (Fig. 26). Part of the walling in the southern part of the homestead has been removed, but enough of it remains to indicate that the homestead would have had small primary enclosures all around the large secondary enclosure. The wall separating the primary enclosures clusters may be significant in separating different family units within the homestead.

KS-002 is located approximately 800 meters from KS-001. This homestead’s external measurement is 63m across. Unlike KS-001, there might be two secondary central enclosures present at this homestead. The diameter of the largest is 23m, with the diameter of the smaller one being 11m. At least fifteen small primary enclosures are
visible. A possible entrance has been identified facing up-slope in a northeasterly
direction. Access to this settlement would thus have been from the gentler slope and not
from the scarp edge.

Approximately 700m further to the east is KS-014. Wall preservation at this homestead
is not good compared to the other homesteads in this cluster. A possible six small
primary enclosures have been identified, again being linked by walling to form a
centrally located secondary enclosure (Fig. 26). The external diameter of KS-014 has
been measured at 74m. The large centrally located secondary enclosure measured 44m
across and covers 1206 m².

The homestead organization of KS-015 seems to be similar to that of KS-002. Fourteen
smaller primary enclosures have been identified, but as with KS-002, two central
secondary enclosures also might be present at the homestead, the largest of which has a
diameter of 35m and covers an area of 568 m². The smaller of the two enclosures covers
an area of 150 m² and measured 16m across. Although preservation of the stonewalling
at the homestead is fairly good, no clear entrances were observed. KS-015 is located on a
gentler slope compared to the other homesteads in the cluster. Of the homesteads in this
cluster, KS-001 and KS-014, have larger secondary central enclosures, but more complex
walling is present at KS-002 and KS-015.
Homestead cluster KS-023 to KS-026

The next homestead cluster is located about 2.5km in a northwesterly direction, high up against the slope of another hill (Fig. 27, also see Fig. 15). As in the case of homestead cluster KS-001, KS-002, KS-014 and KS-015, this homestead cluster similarly consists of Class 3 homesteads and is located on the Highveld. However, in contrast to the homestead cluster KS-001, KS-002, KS-014 and KS-015, cluster KS-023 to KS-026 is not arranged in a linear fashion along the scarp edge of a hill. The rounded topography of the hill on which this homestead cluster is built is the main reason for this clusters’ non-linear arrangement. Homestead cluster KS-023 to KS-026 consists of four separate homesteads and is located on the farm Kafferskraal 493JP. KS-023 and KS-024 are marked as ‘kraal’ on the topographic map 2526DD. This cluster can be seen on aerial photograph 35132 of Trigometrical Survey Job 1006.

The cluster is located approximately 500m from the aforementioned two perennial pans. All the homesteads are located high up on the slope of the hill’s northern end. There has been destructive stone robbing at all of these homesteads, and in the case of KS-023 and KS-026, these stones were used to build rectangular kraals within the homesteads themselves (Fig 27). Furthermore, at the foot of the hill below this cluster there are also numerous historic kraals. The possibility that some of these might have been built on the site of a previous LIA homesteads could be likely, but due to livestock activity and disturbance no pre-colonial stone structures were identified in this area.
Figure 27: Composite map including profile, drawing and topography of homestead cluster KS-023 to KS-026.
Twenty-seven small primary enclosures are present at KS-023, and when combined with straight walling, enclosed a large central enclosure. At its widest point this homestead measured 111m. The internal diameter of the central enclosure could not be determined due to the stone removal and very little is left of the stonewalling in the southern and western parts of the homestead. As with the other homesteads in this cluster, KS-023 is located between 1540m and 1560m above sea level (Fig. 27).

KS-024 consists of nineteen small primary enclosures that together with linking walls enclose a very distinct large central secondary enclosure, which has a diameter of 52m and covers an area of 1827 m². The external diameter of this homestead is 85m at its widest point. No homestead entrance can be detected, but entrances leading from the primary enclosures into the secondary enclosure, and between primary enclosures, have been identified.

In comparison to KS-023 and KS-024, KS-025 is a fairly small homestead. Although the visibility of stonewalling due to robbing is low, nine primary enclosures, around the secondary enclosure, can be seen. The fourth homestead identified in this cluster is KS-026. As with KS-023, much of the stonewalling of this homestead has also disappeared due to stone robbing. Only six primary enclosures could be identified at this homestead, of which one on the western side of the homestead is relatively large in comparison to the others. The central enclosure is obscured due to the construction of
historic stone kraals within it. No measurements of the central secondary enclosures or homestead diameter could be taken due to the bad preservation of the stonewalling.

The homestead clusters discussed thus far are situated about 15km from the contact zone between the Highveld and the Bankeveld, and the winter grazing the latter provides. If the inhabitants of these homesteads did not move livestock away during the winter months for grazing, ecological variability in the approximate area could have been utilized. The perennial pans in the vicinity would also have provided much needed water during the dry months.

In this area there seems to be no indication that proximity to non-perennial and perennial pans encouraged larger homestead clusters. Although homestead cluster KS-105 to KS-119 is much larger than the average homestead cluster size identified during the aerial survey, homestead clusters KS-001, KS-002, KS-014 and KS-015 and KS-023 to KS-026 are of average size when single homesteads are included (the average homestead clusters size in the Highveld is 4.1875). When single homesteads are excluded from the calculation, the latter two homestead clusters are smaller than the average homestead cluster size of 5.63 in the Highveld (see Table 6). If political influence was expressed in terms of homestead cluster size, it does not seem as if access to the pans was driven by a political hierarchical order.
Homestead cluster KS-046 and KS-047

Although these homesteads occur within the Highveld on the farm Roerfontein 465JP (aerial photograph 4063 of Trigometrical Survey Job 1006), and are located on a hill’s edge next to a river valley formed by the Elands River, they are less than one kilometer from the lower lying Bankeveld (Fig. 28, also see Fig. 15). They have been chosen for description because of this location and in light of the issues mentioned at the start of this chapter.

KS-046 and KS-047, is one of two clusters consisting of only two homesteads. Both homesteads are between 1520m and 1540m above sea level and located on the southwestern-facing slope of the hill (Fig 28). Several separate channels of the Elands River flows within 300m to 400m from these homesteads. The topography of the area is similar to that of homesteads clusters KS-023 to KS-26 and KS-001, KS-002, KS-014 and KS-015, comprising gentle sloping hills with associated lower lying valleys (Fig. 28). KS-046 and KS-047 are located about 590m from one another. KS-046 is a large example of a Class 3 homestead with an external diameter of approximately 122m. The central enclosure has a diameter of 90m and covers an area of 3585 m². Robbing has again reduced the visibility of stonewalling at this homestead, but seven small primary enclosures could still be identified. Vegetation cover hampers the identification of stonewalling at the southwestern end of the homestead. KS-047 is much smaller that KS-046, but nine small primary enclosures are still visible. The external diameter is
almost half of KS-046 at 74m. The large centrally located secondary enclosure measured 60m in diameter and covers an area of 982 m².

Figure 28: Composite map including profile, drawing and topography of homestead cluster KS-046 and KS-047.
As in the case of KS-046, a minimum of stonewalling is present due to possible stone robbing. A faint outline of a secondary homestead attached to the southeastern part of KS-047 is visible, but very little stone was used in the construction of this part of the homestead. No definite homestead or enclosure entrances were identified during the remote investigation of these homesteads.

Homestead cluster KS-028 to KS-032

The homestead cluster KS-028 to KS-032, located between present-day agricultural fields, is on the farm Rietfontein 372JQ and can be found close to Trigometrical beacon 396. This homestead cluster is located south-east of KS-046 and KS-047 on the Highveld (see Fig. 15). Just as present-day farmers recognize and utilize the better agricultural areas and soils, the builders of this homestead cluster would have done the same. This homestead cluster can be found on aerial photograph 35142. KS-028 and KS-029 are situated higher up on the hill slope at about 1580 m.a.s.l., with the remainder of the homesteads lower down between 1560 and 1570 m.a.s.l. (Fig. 29). All the homesteads in this cluster are on the south-facing slope of the hill, overlooking a stream that is about 500m from KS-030 and KS-032.

KS-028 consists of twenty three small primary enclosures around a larger secondary enclosure in the centre of the homestead. The external diameter and central secondary enclosure measurements are 92m and 56m respectively. The central secondary enclosure
covers an area of 2440 m². A possible homestead entrance into the central secondary enclosure has been identified in the northeastern part of the homestead. It seems as though walling forms a short passageway into this entrance. A large part of the southwestern part of the homestead is covered by vegetation that hampers the identification of stonewalling in this area.

Located about 500m to the east of KS-028, is KS-029. The external diameter of this homestead is 107m, and the internal diameter of the secondary enclosure is 70m, covering 2909 m². This homestead comprises of at least eleven small primary enclosures, two of which are located in the northeastern part of the homestead, and are much larger than the others. The largest of these primary enclosures measured 26m across and covered an area of 365 m². No definite entrances could be identified. Both KS-028 and KS-029 are situated approximately 1km from the aforementioned stream.

The remaining three homesteads in this cluster are all smaller than KS-028 and KS-029. KS-030 is a small homestead, consisting of at least eight small primary enclosures. The external diameter of this homestead measured 44m. The secondary central enclosure measures 29m across and covers 452 m².
Figure 29: Composite map including profile, drawing and topography of homestead cluster KS-028 to KS-032.
About 300m to the east of this homestead is KS-031 and KS-032. These two homesteads are located close to one another. Whether KS-031 and KS-032 forms one homestead or two separate homesteads, is not clear. As such they are tentatively classified as representing two separate homesteads. Strictly speaking, the stonewalling at KS-031 cannot be assigned to Class 3, because a wall divides the central secondary enclosure into two sections. The northerly of these central enclosures is smaller, with the majority of the primary enclosures (six) situated at its northern end. This enclosure measured 21m across and covers an area of 292 m². A definite entrance into the homestead through the southern central secondary enclosure has been identified. Again, the location of primary enclosures at one end of the homestead may be significant in relation to the specific location of cattle. Only four small primary enclosures can be identified with this southern central enclosure, while the rest of it consists of short lengths of walling. The maximum extent of this enclosure is 44m at its widest and covers 649 m². The external diameter for KS-031 is 59m. The majority of stonewalling has been removed from KS-032. As little of this homestead’s walling remains, not much information could be gleaned from it.

Homestead cluster KS-145 to KS-150

The only Doornspruit type homesteads identified are located on the farm Zandfontein 380JQ, and appear on the aerial photograph 35022 of Trigometrical Survey Job 1006. This homestead cluster is located to the east of homestead cluster KS-028 to KS-032.
close to the Highveld-Bankeveld contact zone (see Fig. 15). At least six homesteads are present in this cluster, but bad preservation of the stonewalling and dense vegetation cover over a large part of this cluster prevents precise identification of the exact number of homesteads. It is significant, that compared to the class 3 homesteads and clusters so far described, the homesteads in this Doornspruit cluster were built much closer to each other. Apart from KS-145, the homesteads run together in a continuous string.

KS-145 to KS-150 is situated in the contact zone between the Highveld and the Bankeveld, with grass-covered hills to the south, and the wooded valleys of the Bankeveld to the north. The homesteads all follow a ridge above a river valley along which a non-perennial stream flows (Fig. 30). A fountain that flows throughout the year is situated about 500m higher up in the same river valley. The lower lying areas, to the northeast of these homesteads, also tend to form vleilands during very wet periods. KS-145 and KS-146 are located between 1580 and 1600 m.a.s.l., and KS-147 to KS-150 are located between 1560 and 1580 m.a.s.l..

8 Personal communication with the owner, Rod Mellet, presently living on the farm Zandfontein.
Figure 30: Composite map including profile, drawing and topography of homestead cluster KS-145 to KS-150.
KS-145 is the clearest example of a Doornspruit type homestead in this cluster. Circular primary enclosures are connected by walling to enclose a large oval-shaped centrally located secondary enclosure. Walling that forms shallow embayments abuts the primary enclosures to form the perimeter walling of the homestead (Fig. 31). Eleven primary enclosures were identified, with a single isolated primary enclosure located outside the perimeter walling of the homestead to the east. This enclosure was investigated for any metal smelting and forging evidence because iron smelting furnaces tend to be located on the outer edges of the settlement or the open spaces between groups of homesteads during the LIA (see Anderson 2009). However, no evidence of metal smelting or forging was identified in or around this enclosure. An entrance into the central secondary enclosure is present in the southwestern part of the homestead. This entrance might have been paved with stones.

Various entrances have been identified. While some entrances to the back embayments are from the primary enclosures, others lead directly from the secondary central enclosure into the back embayments. This homestead measured 73.7m at its widest extent, with the large secondary enclosure measuring 47.1m and covering an area of 1450 m².
KS-146 is located about 100m downslope from KS-145. This is the biggest homestead in the cluster, having an external diameter of 118m and a diameter of 83.4m for the internal secondary enclosure. This enclosure covered an area of 3363 m². At least sixteen
primary enclosures are present in this homestead, together with walling forming embayments. It is clearer in this homestead, that a back embayment can be associated with between one and three primary enclosures (Fig. 32). It is also evident from KS-145 and 146 that the double or paired primary enclosures that are a feature of class 3 settlements, do not occur in these Doornspruit examples. Instead, the arching embayment may be seen as the back enclosure equivalent.

No entrance could be unequivocally identified, but the walling in the northeastern part of the homestead was unclear, and consequently, could not be mapped. Various entrances between primary enclosures and the large central secondary enclosure were noted.

Homestead KS-147a abuts against the northwestern part of KS-146 and the homestead layout is very similar to that found at KS-145 and KS-146. A large section at the northwestern end of this homestead was unclear and could not be mapped. Based on the visible stonewalling, this was also a fairly large homestead, with an external diameter of 83.1m and a central secondary enclosure that covered 2346 m² with a diameter measuring 60.5m. Fifteen primary enclosures have been observed, some with visible entrances into the central secondary enclosure.
KS-147b is a small homestead in comparison to the other homesteads in this cluster. Only five definite primary enclosures could be identified because of the extensive
vegetation cover that occurs in the western part of the homestead. Two entrances leading into the central enclosure have been observed. Both of these are located in the northern part of the homestead. Six entrances between the primary enclosures and central secondary enclosures were also identified. This homestead has an external diameter of 54.7m. The large central secondary enclosure has a diameter of 26.3m and covers an area of 599 m².

The remaining homesteads in this clusters’ Stonewalling are poorly defined, with the consequence that very little can be seen of their layout. KS-148 and KS-149 make use of the natural rock outcroppings associated with the ridge of the river valley, with Stonewalling filling gaps between these outcrops. KS-150 is located at the north western end of the cluster further away from the ridge edge. Natural rock outcroppings were also included during this homesteads’ construction.

Discussion of homestead distribution and organization

Taking the descriptions above into consideration, some general points can be made about the inter- and intra-homestead cluster distribution of Class 3, and to a lesser degree, Doornspruit type homesteads. As indicated at the start of this chapter, one focus is to examine whether, over the sample area under consideration, cluster sizes and sizes of homesteads within a cluster are an expression of a political hierarchy. Furthermore, how might any identifiable hierarchy fit within the little that is known about the organization
of the Ndebele state. I return to the actual organization of class 3 and Doornspruit settlements in the concluding sections of this thesis after I have considered some excavation data provided in Chapter 6. This is because settlement organization is relevant to issues of identity.

There seems to be no correlation between cluster size and the size of homesteads that occur within it. Even if a cluster is small, consisting of two to four homesteads, for example, this does not preclude the occurrence of a large homestead within it. Homestead KS-046, with an external diameter of 122m, serves as an example. The opposite also seems to hold true. Small homesteads do occur in large clusters. KS-105 (external diameter of 27.1m), KS-108 (external diameter of 29.4m) and KS-110 (external diameter of 39.4m) occur in a cluster that consists of fifteen homesteads (Fig. 33).

As could be expected a direct correlation exists between the external diameter of a homestead and the area covered by the central secondary enclosure (Fig. 34). Large homesteads have large secondary enclosures. While these homesteads probably kept a large number of cattle, this should not be assumed however, for cattle could have been kept in smaller brush and wood enclosures, as has been argued using homestead KS-112 as an example. Without direct evidence for this, however, the implication that large homesteads within a cluster with more primary enclosures does represent larger group of people is still reasonable. Within a cluster, such homesteads may have been where local
In some Class 3 homestead clusters, however, there are homesteads that do not strictly follow the same organization of a typical Class 3 type homestead. Homesteads that have two or three centrally located secondary enclosures include KS-111, KS-029 and KS-031. These variants to typical Class 3 settlements may reflect family or kinship distinctions within a homestead and may be later additions or modifications to existing homesteads as these relationships changed. The large homesteads within clusters do tend to be more typical of the Class 3 type, and this could reflect the stability of senior men and their families.

Figure 33: Comparison between the external diameters of homesteads (n=29) and cluster size. Different colour bars represent different homestead clusters.
There is no relationship between homestead size (in diameter) and height above sea level of the homesteads within a cluster. The principle expressed in the ethnographies (e.g. Kuper 1980) that political power and status within or between homesteads are reflected in terms of height, does not seem to apply. The largest homesteads in a cluster, in both external diameter and diameter of the secondary central enclosure, are not necessarily the highest located homestead in the cluster (Fig. 35). In many of the cases the smaller homesteads were placed on higher ground relative to the other homesteads in the same cluster. Examples occur in cluster KS-001, KS-002, KS-014 and KS-015, where the largest homestead was built on lower ground in comparison to the other homesteads in
this cluster. Likewise, the second highest homestead in the cluster KS-145 to KS-146 is the largest. In the large cluster of KS-105 to KS-119, by far the largest homestead, KS-112, is only located the fifth highest in comparison to the other homesteads present in the cluster (Fig. 36).

Figure 35: Relationship between homestead size and height above sea level (n=29).
If large homesteads within a cluster are the residences of senior people then height does not reflect that status. Is there another variable that may serve as an indicator? In homestead clusters that follow a linear arrangement, the position of a homestead in relation to others in the same cluster may be indicative of political power and status. The central position of KS-112 in relation to the other homesteads in the cluster KS-105 to KS-119 may rather reflect political power and status. This principle would not necessarily hold true for homestead clusters that are not arranged in a linear fashion.

On the basis of the settlement descriptions given and then interpreting this data with the
help of some general principles to do with seniority and status, it would appear that while large homesteads may very well have been senior within a cluster, there is very little to suggest that this seniority extended more regionally beyond the scale of clusters. On the basis of homestead and cluster size, there is little to suggest a hierarchy that is regional.

ibutho, umuzi, and ikhanda

In order to further interpret the results of the aerial photograph survey, the model for regional homestead distribution among Mzilikazi’s Ndebele proposed by Cobbing (1974, 1976) is helpful. Cobbing (1974, 1976) has successfully debunked the traditional held view that the root of Mzilikazi’s Ndebele social and political organization lay in the ‘regimental system’. This system was apparently highly centralized and consisted of a royal capital that was surrounded by a relatively small number of regimental towns. In contrast to this, pre-colonial Ndebele homesteads were small-scale, having less than 100 inhabitants. This is attested to by the observation of Moffat in 1829, and later observations of the missionaries Venables and Lindley in the Mosega basin (Kirby 1940; Kotze 1950, Rasmussen 1978).

Not only were Ndebele villages moved physically across the landscape from time to time, but were simultaneously in a state of evolution as expressed by the presence of residential (singular: *umuzi*, plural: *imizi*), and military (singular: *ikhanda*, plural: *amakhanda*) homesteads within the same village.
The *ikhanda* is inextricably linked with the concept of the regiment or *ibutho*. To illustrate this, the concept of ‘regiment’ (*ibutho*) and its relationship to *umuzi* and *ikhanda* is important. While the *imizi* contained men, women and children, and were concerned with non-military activity, *ibutho* expressed a specifically masculine and military concept. *Ibutho* also expressed three different but related ideas. Firstly, it defined men called together for a military purpose from a given group of *imizi* that were spatially linked. In this sense *ibutho* reflected a group of men that were probably related to each other and who came from the same geographical area. Secondly, it referred to an actual group of men from *imizi*, assembled for a military purpose that could return to their homes after their military operation was completed. Thirdly, an *ibutho* consisted of young men (*amajaha*) living together in a separate and temporary homestead. In this case the *ibutho* could transform itself over a number of years into a cluster of *imizi* (Omer-Cooper 1966), thus changing its military and masculine character to a non-military and residential one. Accordingly, this helps to explain the continuation of homesteads and the disappearance of age-set units over time, as well as the internal homestead proliferation of the Ndebele state (Cobbing 1974; Pistorius 1997b).

What is evident is that the Ndebele State was not highly centralized with a few outlying regimental towns. Instead the state, or *ilizwe*, was divided into sub-divisions or chieftaincies called *izigaba* (singular: *isigaba*), administered by a major chief or *induna enkulu*. Each *isigaba* was further divided into smaller sub-divisions called *izigatshana*.
under the head of minor chiefs or izinduna. Within these izigatshana were numerous villages (imizana), consisting of less than 100 people, and private villages (imizi yamathanga) consisting of one or a few families. The izigaba were administered along the same lines as the wider state, with each induna enkulu commanding the allegiance of the people within it. Thus although all Ndebele owned allegiance to the king, their first allegiance would have been to the induna enkulu of their isigaba (Cobbing 1974, 1976).

If the settlement data generated as part of this study is compared to Cobbing and Pistorius’s discussion of umuzi and ikhanda, it becomes apparent that no explicit examples of amakhanda were identified. All the homesteads that were identified were either Class 3 or Doornspruit imizi homesteads. However, as the majority of settlements identified during the present study have large central secondary enclosures, the implication is that they were probably built with cattle in mind. The presence of walling separating central secondary enclosures may be interpreted in terms of kin relations within homesteads. In some of the homesteads described, the walling separating different primary enclosure clusters may indicate different families, and certainly, the homesteads where secondary enclosures have been subdivided, may also indicate the evolution of more complex family structures within a homestead. The presence of large secondary enclosures would also mean that the concept of male/masculine was still perceived as an integral part of these homesteads although it was not expressed in the form of
amakhanda. This would furthermore suggest that the decentralized aspect of Cobbing’s settlement ideas hold true, but on what might be seen as the periphery of the Ndebele state, all of the settlements are unequivocally domestic in nature.
CHAPTER 6
ARCHAEOLOGICAL EXCAVATIONS

Methodology

Excavations were conducted at Doornspruit type homesteads KS-145 to KS-150, on the farm Zandfontein 380JQ. This cluster was described in Chapter 5 and (see Fig. 30). The purpose of the excavations was to elaborate understanding of the homestead organization and to compare these results to the interpretation provided by Pistorius (1997a & 1997b) for a Doornspruit site near Rustenburg. Secondly, I wanted to assess the validity of assigning this type of homestead to the Ndebele associated with Mzilikazi, by making use of the data generated by the excavations. Thirdly, the excavations focused on examining the possible relationship between Doornspruit type homesteads and Class 3 homesteads. In the homestead cluster of KS-145 to KS-150, I chose to conduct excavations at KS-147b and KS-146 (Figs. 37 and 47).

Excavations at KS-147b

The areas excavated at KS-147b were a midden area (Midden 1) just to the south of the perimeter walling, a small primary enclosure (Enclosure 1), and a larger secondary enclosure that was formed by the back walling of Enclosure 1 and walling that formed a back embayment (Sel 1) which formed part of the homestead perimeter (Fig. 37). All excavations were vertically controlled using spits of 0.05m and done in accordance with
accepted archaeological field practices.
Midden 1

Four square meters were excavated in a shallow ashy deposit outside the perimeter walling of KS-146b. Surface observations indicated the presence of grey and white brown soil in this area. The soil colour changed to light brown at the depth of 0.1m and to dark brown at the depth of 0.15m. Apart from one quartzite stone flake, no other cultural material was found in this deposit.

Enclosure 1

This small primary enclosure was excavated in order to establish whether there was any evidence for features, especially hut remains, in order to explicitly refine the interpretation that they were part of domestic space. Enclosure 1 measured 6.5 meters at its widest extent. The primary enclosure was constructed by placing a double row of foundation stones parallel to one another and filling the area between them with smaller stones and rubble. All the walls in this homestead cluster were constructed using the same technique (Fig. 38).

There is an entrance leading into the primary enclosure from the central enclosure to the southwest. This entrance was formed by two large boulders that were placed at the end of the walling to form an entrance approximately 0.70m wide. No material culture was visible on the surface of this enclosure. Excavations were conducted through the middle of the primary enclosure and extended up to the enclosure’s eastern wall (Fig. 39). The
primary focus of excavations in this enclosure was on a soil mound just off the centre, that measured approximately 1.50 x 1.55m.

Figure 38: Photograph showing the technique used in the construction of walling at homesteads KS-145 to KS-150.

The surface colour of the soil inside the enclosure was a light brown with patches of soft grayish-white soil intermixed with livestock dung. Excavations were conducted in 1b, in a 2m x 2m square after which 1c and 1d were added to the excavation (Fig. 39). All excavations in Enclosure 1 were carried out until bedrock was found at between 0.06m and 0.25m below the current surface. The bedrock probably formed part of the same
bank of natural rock that outcrops just to the south of this enclosure.

Figure 39: Enclosure 1, KS-147b, before excavations.

Archaeological materials in 1b consisted of 4 bone fragments (including a rib fragment and tooth fragment), that cannot be assigned to a species, 1 milky quartz stone flake and 9
pieces of pottery. The pottery pieces were all plain and adiagnostic. Archaeological materials that were found in 1c consisted of 7 non-diagnostic pottery sherds, and 2 stone flakes. One LSA stone flake was found in 1d. Excavations in 1d indicated that the enclosure walling was built directly on top of bedrock (Figs. 40 and 41).

Figure 40: After excavations in Enclosure 1, KS-147b.
Excavations were conducted in the northern part of this enclosure in order to shed light on its function (Fig. 37). The walling that defines the northern and southern part of this back embayment creates a narrow ‘walkway’ with the back wall of Enclosure 1 of between 0.7m and 1.0m wide. The northern and southern parts of this embayment is approximately 4m x 5.5m and 3m x 4.5 meters respectively. A possible entrance into Sel 1 from the large central enclosure was identified in the northern ‘lobe’, but due to the bad preservation of the stonewalling in this area, this feature is only tentatively classified as an entrance.
A grid of 4 square meters was laid out in the northern lobe of Sel 1. Four bone fragments were found on the surface (Fig. 42). The surface soil in this area consisted of a fine grey-brown soil.

Sel 1a was excavated in order to establish the stratigraphic relationship between the base of the stonewalling, deposit and any occupation surfaces (Fig. 43). None were found and the soil was shallow. The base of the wall lay directly on bedrock in this area at depths varying between 0.04m and 0.12m in this square. Five pieces of non-diagnostic pottery, 1 piece of ochre and a large stone scraper was excavated from this square.
Figure 42: Sel 1, KS-147b, before excavations
Over much of Sel 1b bedrock was exposed between 0.06m and 0.10m beneath the surface. Only one piece of non-diagnostic pottery was found in this square. From Sel 1c, 3 pieces of ochre, 1 bone fragment, 1 large stone scraper, 14 pieces of non-diagnostic pottery and 3 pieces of charcoal were excavated. The charcoal pieces came from between stones that may have been *in situ*, on what could have been a living floor during the period of occupation (Fig. 44). In Sel 1d 15 pieces of pottery that included three rim pieces, and 1 piece of ochre was found.
Entrance into Sel 2

Sel 2 and its associated primary enclosures, Enclosure 2 and 3, are located in the northern part of the homestead (Fig. 37). An entrance leading from the Sel 2 back embayment into Enclosure 2 has been identified (Fig. 45). No entrances between the back embayment and Enclosure 3 could be identified, nor entrances into the central secondary enclosure from the back embayment, and Enclosures 2 and 3. In the western part of Sel 2, there is a
small enclosure with a visible entrance.

An interesting feature of this part of the homestead is a small entrance into Sel 2 from outside the north eastern edge of Sel 2 (Fig. 45).

Figure 45: Sel 2, KS-147b, and associated features.
This is a low, compact entrance that is clearly capped by a flat lintel stone. The measurement from the lintel stone to the soil surface is approximately 0.70m on the inside of Sel 2 and approximately 0.57m on the outside of the enclosure. The width of the entrance measured approximately 0.51m on the inside of Sel 2 and 0.82m on the outside (Fig. 46). Similar entrances have been described by Maggs (1976:55) for corbelled huts on the Type V of Makgwareng. This entrance gives direct access from outside the settlement into the back embayment. The low doorway indicates that it was not for people but for small livestock (sheep or goat). The entrance into Enclosure 2 may indicate that smallstock were also kept there. Whatever the case, this feature indicates that small stock were kept within some of the primary enclosures that formed the outer domestic circle of Doornspruit settlements, and most probably Class 3 settlements, as well. This small stock function, associated with huts and women, is distinct from the central enclosures for cattle.
Excavations at KS-146, Trench 1

This Doornspruit homestead has been described in Chapter 5. The central enclosure of this homestead contained a good dung deposit but little else in the primary enclosures of excavation potential. In KS-146 excavation was limited to Trench 1 in order to establish the relationship between the associated dung deposits and the walling of an adjacent small primary enclosure (Fig. 47). A grid of 1m x 3m was laid out in the central enclosure abutting enclosure 4 and at right angles to it (Fig. 48).
Figure 47: Location of area excavated in KS-146.
The dung lies between 0.015m and 0.10m below the current soil surface. After exposure in Trench 1a, excavations were carried out in 1b and 1c down to bedrock (Fig. 49). The dung is shallow and in 1b and 1c bedrock was exposed at 0.12m and 0.15m. This trench showed that the base of the dung and the wall both lay on bedrock and therefore both are contemporary (Fig. 50). Archaeological materials from Trench 1 consisted of 2 non-diagnostic pottery pieces; 2 stone flakes; and 4 bone fragments. The bone cannot be identified to species but included one fragment from a bovid long bone.
Figure 49: Excavations of Trench 1, KS-146

Figure 50: Base of the primary walling of Enclosure 4 in Trench 1, KS-146.
Surface collections and observations at KS-145 to KS-150

The paucity of material from these excavations was marginally supplemented by the collection of surface material from these homesteads. Furthermore, part of the focus of the surface investigations was to identify any intact features in the primary enclosures that would shed more detailed light on their organization.

During surface investigation of the homesteads in the KS-145 to KS-150 cluster, thirty-five potsherds were found. None were diagnostic. One large stone scraper was also identified in a small primary enclosure of KS-145. Interestingly, no lower grindstones were found anywhere in the homestead or in the surrounding area. Only one upper grindstone was found lying in the veld approximately 50m to the east of KS-146. The reason for the lack of upper and lower grindstones at these homesteads are not clear, for it is well documented that Mzilikazi’s Ndebele grew grains such as maize, sorghum and millet (Burrow 1971; Kirby 1940a, 1940b; Rasmussen 1978). This absence should, however, not be over interpreted. The exposed and shallow soils over these sites means that grindstones are highly visible and they could have been removed and recently ‘robbed’

Very few midden areas were identified, and the few that were identified were thin and devoid of material. The ceramics that were found during surface investigations at this homestead cluster were generally not associated with midden areas; but were found in the
back embayments that are associated with small primary enclosures. In one such case, seventeen pottery pieces were found in a 1m x 1m area in such a secondary enclosure.

Only one possible hut foundation was identified and was found in an embayment in the southern part of KS-145. This comprised of flat concentrically arranged stones that appear to slant towards the centre. This is similar to hut foundations identified as the remains of beehive huts by Aukema (1990) in the Waterberg. The upright placed stones also conform to Smith’s account of Ndebele dwellings that he observed while traveling in the interior in 1835 and 1836. According to Smith (Pistorius 1997b; see also Lye 1975), these huts were constructed by making a framework using flexible branches, interwoven with slender twigs on an oval ground plan. The branches would then be thatched with grass that was tied to the framework with strips of bark after which it was smeared with dung on the inside and outside of the hut. A hut floor would be made with dung and clay with a centrally located hearth. At KS-145, and indeed over all the homesteads visited, there was no evidence for burnt structures and consequently, it is not surprising that neither hut floors or hearths survive.

Discussion of excavation results

The amount of material recovered from the excavations is disappointing and there is not much that can be elaborated from it. I address a few issues in this concluding section. I leave a discussion of the ceramics to the end because it touches upon issues of identity
that link with the general discussion of settlement organization and identity that is the focus of Chapter 7.

Faunal remains

None of the excavated bone fragments can be assigned to species. In total, 13 fragments of bone were recovered during excavations. Of these 4 fragments were excavated from Enclosure 1, KS-147b. One of these fragments seems to be a fragment of a rib from a large animal and 1 tooth fragment seems to be from a goat or sheep. Five bone fragments were excavated from Sel 1, KS-147b, of which 1 fragment shows burn damage. Four bone fragments were excavated from Trench 1, KS-146. One of these fragments probably came from the shaft of a long bone such as the tibia, femur or humerus. Given the extent of the central secondary enclosures that, as discussed below, were for livestock, the low visibility of bone in the excavations is curious. While middens are shallow to non-existent, the low visibility of bone may also be the product of ritual reduction of bone to ash that was then returned to the cattle enclosure. This may have been practice that was specific to Nguni people in general (see Huffman 1993).

Stone and ochre finds

None of the stone that was excavated from Enclosure 1, KS-147b, was retouched and consisted of 4 flakes and 1 piece of milky quart. Two of the stone flakes were made from a fine-grained stone that has not been identified in the surrounding area. Two large
scrapers made from hornfels were found in Sel 1 (Fig. 53). These stone tools are similar to the large kidney-shaped scrapers found at Olifantspoort (Mason 1969, 1986), and would have been used during hide preparation and woodworking.

Figure 51: Hornfels stone scrapers from Sel 1, KS-146b.
The two pieces of ochre that were found during the excavations came from Sel 1. These would probably have also been used for hide preparation and preservation, or body and pot decoration.

Ceramic analysis

As indicated above few ceramic pieces were recovered from the excavations and surveys that were conducted at the Doornspruit homesteads of KS-145 to KS-150. This paucity stands in stark contrast to the large amount of ceramics usually associated with the homesteads of the Sotho/ Tswana-speakers that occur in the research area. After basic quantification, there is little to discuss concerning pot profiles and decoration, and the issue turns back to why there is such a low occurrence of pottery at these Doornspruit homesteads.

A total of 87 sherds were recovered from the KS-145 to KS-150 cluster. Of these, 53 came from the excavations and 34 pieces from the surface investigations. Only 3 excavated pieces were diagnostic and all of these were plain rims. Two of these rims probably come from the same open bowl (Fig. 51). The rest of the pieces were all body sherds. Fourteen sherds from the excavation have burn damage, possibly from being used as cooking vessels on an open fire. Of the surface ceramics, 2 show burn damage but this may be from recent veld fires. Burnish was present on 6 pieces (Tables 7 and 8).
Figure 52: Ceramic rim pieces excavated from Enclosure 1C and Sel 1D, KS-147b.

Table 7: Excavated ceramics from KS-146b and KS-147 (n=53)

<table>
<thead>
<tr>
<th>Mica inclusion</th>
<th>Red Burnish</th>
<th>Black Burnish</th>
<th>Rim (diagnostic)</th>
<th>Burn damage</th>
<th>Non-diagnostic</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>14</td>
<td>50</td>
</tr>
<tr>
<td>54.7%</td>
<td>5.6%</td>
<td>1.9%</td>
<td>5.6%</td>
<td>26.4%</td>
<td>94.3%</td>
</tr>
</tbody>
</table>
Table 8: Ceramics collected during surface investigation of KS-145 to KS-150 (n=34)

<table>
<thead>
<tr>
<th>Mica inclusion</th>
<th>Red Burnish</th>
<th>Black Burnish</th>
<th>Vessel neck (?)</th>
<th>Burn damage</th>
<th>Non-diagnostic</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>8.8%</td>
<td>5.8%</td>
<td>0%</td>
<td>5.8%</td>
<td>5.8%</td>
<td>94.1%</td>
</tr>
</tbody>
</table>

The low number of ceramic pieces and the absence of decoration from the excavations and surface investigations most probably reflect that these homesteads were associated with Nguni peoples. Nguni people are known to have made extensive use of vessels made from materials such as wood and grass. This is especially true for milk pails and meat platters that are associated with men (Huffman 2004). It is also believed that Northern Nguni men only started using ceramic pots to drink beer from in the nineteenth century (Jolles in Huffman 2004). The use of both ceramic and wooden vessels (large calabashes) are attested to in some historical documents (see Burrow 1971; Kirby 1940a).

The absence of decoration on the ceramics from KS-145 to KS-150 can also be expected, because in general, Nguni ceramics are seldom decorated (Huffman 2004, 2007a). Decoration, for example, is also completely absent on ceramics from Nguni sites in the Waterberg, where the ceramic assemblage is characterized by undecorated globular pots (Aukema in Huffman 1990).

In the absence of any stylistic features, I also examined the fabric of the pottery.
Interestingly, there are muscovite (mica) inclusions in a significant number of the sherds recovered. As is evident from the Tables 7 and 8, 29 (54.7%) ceramic pieces from the excavations and 3 (8.8%) pieces from the surface collection have muscovite/mica inclusions, that was added as a temper (Drake Rosenstein 2002). These inclusions are highly visible in ceramics and give a white glittery sheen to the ceramics. This technological trait is associated with Buispoort ceramics as found at the stonewalled sites of Olifantspoort, Molokwane, Kaditshwene and Mmakgame, for example, and are associated with western Tswana such as the Hurutshe and the Kwena (Drake Rosenstein 2002; Hall et al 2007). Buispoort is the terminal facies of the Moloko ceramic tradition and dates from the 18th century and onwards (Huffman 2002, 2007b). This tempering inclusion was a deliberate innovation in this later phase because it is absent from ceramics associated with earlier Madikwe and Olifantspoort phases dating to the early 16th to mid 17th centuries (Anderson 2009; Drake Rosenstein 2002; Hall et al 2007).

Furthermore, despite extensive work at Marothodi, no mica inclusions have been identified in the ceramic assemblages of the Tlokwa. Marothodi was a contemporary settlement with Molokwane and the later phase at Olifantsport (Anderson 2009; Hall et al 2007). This absence of mica tempering at Marothodi is made even more significant because Tlokwa ceramics are decorated with comb stamping and this stylistic attribute is absent in Buisport ceramics, and consequently, Tlokwa ceramic style is a continuation of the Uitkomst phase, which broadly points to their Fokeng/Nguni identity.
A functional interpretation of mica tempering focuses upon the possible thermodynamic and structural properties mica may give to pottery. This may have facilitated greater efficiency in the manufacture and use of pottery in the large aggregated towns that began to form in the 18th century when extremely large quantities of ceramics were made. This could have been critical for the sustainability of resources such as wood during this time. The inclusion of mica might have been one strategy that ensured the sustainability of fuel. Whatever the case, the inclusion of mica is an attribute only of Buisport ceramics that is clearly associated with a general Tswana identity.

If the inclusion of mica in ceramics was deliberate and only occurred from the later 18th among western Tswana people, this indicates that the Doornspruit homesteads can be dated to the same time period. This would strengthen Pistorius’ (1997a and 1997b) argument that Doornspruit type homesteads date to the Ndebele under Mzilikazi.

The question then arises, however, as to why ceramics with muscovite mica inclusions occur in these homesteads, and who made them? As indicated, work by Anderson (2009) at the late 18th early 19th century Tlokwa capital of Marothodi, shows that the Tlokwa did not include muscovite mica in their ceramics. Based on this evidence it can be argued that if the Tlokwa, a group with Nguni roots (Anderson 2009; Boeyens and Hall 2009; Huffman 2004, 2007b), did not include muscovite mica in their ceramics, then this is not an Nguni attribute. Two possibilities exist for the presence of muscovite mica ceramics at
the KS-145 to KS-150 homestead cluster.

The first possibility is that ceramics were produced by Sotho/Tswana potters elsewhere and traded into KS-145 to KS-150. More interesting is the possibility that the presence of muscovite mica can be ascribed to the fact that the Ndebele augmented their numbers through taking in refugee groups and assimilating subjugated people into their social structures. Once the Ndebele polity was established Sotho/Tswana women would also have married in. As women were responsible for the production of pottery in Iron Age communities, we can safely assume that this was also the case at Doornspruit homesteads such as KS-145 to KS-150.

It has been argued that the Khumalo chiefdom probably consisted of about 500 people before they left their homeland in Northern KwaZulu-Natal during the early 1820’s, but that only about 300, mostly men, left with Mzilikazi after an attack by Shaka (Bryant 1929; Fynn 1965; Rasmussen 1978). By 1829 the number of people under Mzilikazi in the Rustenburg area realistically are thought to have numbered about 20 000 rather than the 60 000 to 80 000 estimated by the Methodist missionary Archbell (Rasmussen 1978). Clearly, Mzilikazi accumulated a significant number of people to the Khumalo clan from about 1822. During military campaigns and the subjugation of the local population in the areas where Mzilikazi’s Ndebele were active, both men and women were taken captive. Women from Sotho/Tswana and Nguni descent were thus regularly introduced into
Ndebele society (Etherington 2001; Rasmussen 1978).

Women who were incorporated into Ndebele society, but who originally came from western Tswana groups, may thus have introduced the use of muscovite mica inclusions in ceramics to the Ndebele society. Both Hall and Mack (1983) and Schoeman (1997) have suggested how women used ceramic style to define their identity within a context of regional politics. Based on this it can be argued that, although overt and explicit Tswana style (Buispoort decoration) is absent from these ceramics, the inclusion of mica tempering may have been a way for Sotho/Tswana women to express in a very subtle way their prior identity. This emphasizes technology as style. The use of Buispoort decoration would have functioned as a much more visible sign of affiliation and/or gender dynamics in the case of Sotho/Tswana women who were incorporated into Ndebele society. However, given the nature of the Ndebele polity such a visible, outward expression, may have been suppressed, but the less overt mechanical and technological learned habits of manufacture may well have persisted. With sufficient samples from these sites, these ideas could be tested through a finer grained study of the technology of ceramic manufacture.

So far the discussion has dealt with ceramics from Doornspruit type sites. A comparison of the ceramics from KS-145 to KS-150 with that from the Class 3 type homestead cluster on the farm Leliefontein was also done. Very few sherds were found during the
survey of the Class 3 homesteads on Leliefontein (Table 9), and this is consistent with what has been found at the Doornspruit sites. Three of these have muscovite mica inclusions, 2 pieces have a red ochre burnish, and 1 piece is decorated. The decoration was possibly done using a fingernail printing on the body of the vessel (Fig. 52). Although the ceramic sample from the Leliefontein homesteads is very small, the presence of mica inclusion may also be significant in light of the discussion of Doornspruit ceramics, and consequently, a date between the late 18th and early 19th centuries for these homesteads may also be inferred.

Table 9: Ceramics collected during surface investigation of the Class 3 homestead cluster of KS-105 to KS-119 (n=8).

<table>
<thead>
<tr>
<th>Mica inclusion</th>
<th>Red burnish</th>
<th>Decoration</th>
<th>Non-diagnostic</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>37.5%</td>
<td>25%</td>
<td>12.5%</td>
<td>87.5%</td>
</tr>
</tbody>
</table>
The issue of identity discussed in the ceramics emphasizes a mix of Nguni or Ndebele with Tswana-speakers and others, but in which Ndebele cultural expression is dominant. In the next chapter I return to settlement organization in relation to its detail and how the spatial layout of Class 3 and Doornspruit settlements may be another material expression of interacting cultural elements.
CHAPTER 7

HOMESTEAD ORGANIZATION

Based on the data generated in the detailed descriptions of selected Class 3 and Doornspruit settlements and the archaeological excavations, I now move on to make some general points about their organization. In doing this I also include the available historical documents about Mzilikazi’s Ndebele.

Discussion

The activity areas in the homesteads that can be identified with some certainty are the central cattle kraal, small stock enclosures and domestic areas. The cattle kraals were located in the large central secondary enclosures in Class 3 and Doornspruit homesteads. This is attested by the preservation of dung in some of these areas. Furthermore, I have shown that the dung deposits in the large secondary central enclosures at KS-145 to KS-150 does not underlie the primary walling that encloses this space, and therefore, the walls and the dung clearly go together. Due to the extensive size of some of these central enclosures, it is possible that it was subdivided, and that the cattle would have been kept in smaller wooden or brush stockades located in the large secondary central enclosure (Huffman 2004). As the need arose, due to livestock health or perhaps changes in the social make-up of the homestead, these stockades would have been moved around within the secondary enclosure. At present, no surface evidence has been observed to indicate
the presence of such subdivisions, but the variability in the depth of the dung deposits throughout the large central secondary enclosure of KS-146 would have made the construction of structures a distinct possibility.

Early European observations can be added to this speculative discussion concerning the organization of the cattle enclosure. During a visit to Mzilikazi, Moffat (1945) estimated that one Ndebele homestead housed 6000 cattle. Additionally, in 1829 the traders Schoon and McLuckie visited an Ndebele homestead in the Bankeveld where they estimated the cattle to number 3000 (Pistorius 1997a; Rasmussen 1978). These numbers are difficult to interpret. Clearly these numbers are far too high for a single homestead and this holds true for even the largest homesteads identified during the research. It may be that by ‘homestead’, these observations applied to a cluster of homesteads. Even if these cattle were housed in five or six homesteads, however, the sheer number of cattle would have made the construction of a wooden stockade enclosure impractical. The numbers of cattle mentioned by these early travelers need to be questioned and there may be deliberate exaggeration by them. The number of cattle could not be possible based on the size of secondary enclosures. As suggested in Chapter 5, the presence of entrances leading from the central secondary enclosure into the encircling primary enclosures, may strengthen this argument for organic kraal subdivisions. This is based on the idea that it seems improbable, based on the ethnography, that people could move directly from the domestic domain and into the central cattle enclosure. Based on current evidence, I would
argue that the cattle were kept in wooden or brush stockades within the central secondary enclosures.

The entrances into the large central secondary enclosures from outside the settlements have not been consistently identified due to variability in the preservation of the walling. Those that have been unequivocally identified as entrances would clearly have been large enough to allow cattle to pass through them (see for example Figs. 23 and 31). The presence of stone paving has been noted at one of these entrances (Fig. 31). What the exact function of this was is not clear at present. Similar stone paving was noted by Hall and Maggs (1979) at all the entrances of the Nqabeni homestead and were interpreted as stopping rainwater from running into the enclosures as well as to pave the ground. Pistorius (1997b) does not mention any evidence for stone paving at the Doornspruit homesteads near Rustenburg.

Among Nguni-speakers, the central cattle enclosure was also used to store cereal. According to Burrow (1971), the central secondary enclosure not only held the cattle, but was also the location of subterranean grain storage pits. Krige (1936) also mentioned the practice of storing grain in specially prepared pits in the centrally located kraal among the Nguni of KwaZulu-Natal. At the military town of Mgungundlovu, however, no grain storage pits have been identified in the central kraal area (Parkington and Cronin 1979; Plug and Roodt 1990). The presence and location of grain storage pits have however not
been established at KS-145 to KS-150, nor does Pistorius (1997a, 1997b) mention the presence of grain storage pits in the central enclosure for the Doornspruit homesteads in the vicinity of Rustenburg. The absence of storage pits is not surprising given the absence of any deposit or the shallowness of the deposit in the central enclosures on all the settlements visited on the ground, and also based on the excavations at KS-146.

While the identification of the encircling primary enclosures as the domestic domain is secure, the detailed interpretation of possible enclosure function and layout of the primary enclosures is more circumspect. The function of some of the primary enclosures with entrances directly into the central cattle enclosure may be indicated by early traveler observations. Moffat states that calves were kept in an area that adjoined the main cattle enclosure. While visiting Mzilikazi on 1 July 1835, he noted that at “a comparatively insignificant cattle outpost”9 (Kirby 1940a: 13) he went into the central cattle kraal to attend a public meeting when he witnessed that,

“The doctors, or perhaps more properly sorcerers, were busy preparing something in an adjoining calf kraal, …” (Kirby 1940a: 24).

Burrow also mentions a separate area that was used to hold calves and sheep. He does not, however, specify the exact location of these areas in the homestead, but it seems

9 From his other writings (see for example Kirby 1940 and Moffat 1842) it becomes clear that Moffat viewed most of Mzilikazi’s Ndebele settlements as insignificant compared to that of the Sotho/Tswana-speakers with which he was more familiar. The cattle outpost he is referring to here may thus in fact be a homestead.
likely that they could be the inner circle of primary enclosures. Burrow states that,

“… in the centre is a large space for cows and oxen as the case may be, and
from this are smaller places for the calves or sheep, …” (Burrow 1971: 70).

Based on the above accounts we are able to infer that the calves or sheep were kept and weaned in a small area or areas that adjoined the central cattle enclosure. If this is the case then those primary enclosures that are directly linked by an entrance to the cattle kraal may be explained in this way, and, therefore, although in the domestic circle, may not functionally be part of it. Following Ley (1975), Pistorius (1997b) suggests that smaller beehive structures would have been located in between the residential huts, and that these were used to house the calves and goats. No supporting evidence could, however, be found during the research to corroborate this.

Based on organization and excavations (example Sel 1, KS-147b), there is little doubt that the primary enclosures, together with the enclosures formed by embayments were part of the domestic ring. More specifically on the basis of work conducted in one of the small primary enclosures of KS-147b, I also suggest that it functioned as a small stock enclosure for sheep and/ or goats. This association between small stock, domestic space and women has been noted (Huffman 2007a: 38). Dung deposits were found in this area, and only minimal amounts of material culture that is in keeping with the enclosure functioning as a small stock kraal. Only 16 sherds, for example, were excavated and

148
while there is generally a paucity of material, these might have been from discard after use, rather than marking a primary area of domestic use. The width of the entrance leading from the large central secondary enclosure into the primary enclosure was approximately 0.70m. This would have been big enough for sheep or calves to pass through, but not full-grown cattle, and would thus further strengthen the argument that some of these smaller primary enclosures were for small stock enclosures. If small-stock were taken through these entrances, they may have mixed with cattle in the central enclosure. Conceptually, this might have been a problem and does perhaps support the argument that cattle were kept in sub-enclosures within the central kraal.

In contrast, the small, lintel entrance was found in Sel 2 of KS-147b, that could be used only from outside the settlement. If small stock were kept in some of the small primary enclosures then some of these can be linked to individual households. Some of the small stock, therefore, belonged and was managed within the space of households. Furthermore, the presence of this entrance means that small stock moved directly from their holding pen to graze outside the homestead. This is supported by the fact that small stock are usually associated with women and the domestic domain (see Huffman 2007a: 38). Ideally, cattle and small stock, therefore, are not mixed and the way they are managed in a settlement (separated) could be indicated by such entrances as found in Sel 2 of KS-147b.
This spatial management of livestock is entirely consistent with ethnographic examples that underpin the physical and conceptual centrality of cattle. The assumption is that cattle were in the possession of senior men in these homesteads. In most of the historical texts on Mzilikazi’s Ndebele, however, the ownership of all cattle are assumed to reside with Mzilikazi. The only account that differs from this is recorded in the diary of Robert Moffat when he visited Mzilikazi in 1835.

“After sun set we came to a very considerable village of a chief, a doctor, who had a good many cattle, his own property.” (Kirby 1940a: 26).

If cattle, which were central to social, economic, and political life, could be privately owned as the account of Moffat suggests, there is no question that small-stock, as indicated, were owned and managed at the scale of individual households. We know that Mzilikazi’s Ndebele had both sheep and goats (Burrow 1971; Kirby 1940a, 1940b). I would tentatively suggest that the question of ownership was expressed in the positioning of entrances leading from the small primary enclosures. Those primary enclosures that had entrances that led into the large secondary central enclosure may have been used to hold livestock, such as calves, that were either communally owned, or indirectly owned by Mzilikazi. In contrast to this, primary enclosure entrances that led into a back embayment may have been the possession of a specific family. To assess the validity of this, we need more feature detail concerning the organization of domestic space, and specifically, for example, more secure data on the location of huts.
As indicated, a significant feature of the domestic ring in Doornspruit settlements are the relatively long, but shallow back embayments that mark the perimeter of the homestead. From the very first description of Doornspruit settlements (Jones 1935) these long scalloped walls were highlighted. It has been suggested that this feature comes from Sotho/Tswana settlement organization. Mzilikazi’s Ndebele incorporated many people, including Sotho/Tswana, during the time they spent in the trans-Vaal and so this is logical (Huffman 2004, 2007a). This feature is absent in Class 3 settlements, and I return to this difference in the concluding discussion of this chapter below.

A single back embayment, however, does not necessarily correlate with a single primary enclosure. The number of primary enclosures that are associated with an embayment range between one and three. In cases where several primary enclosures are associated with a single back embayment, this could be a marker of close kin affiliation. Not all of the entrances of these primary enclosures lead into the large central secondary enclosure (see Fig. 45 of Sel 2, KS-147b). Based on the ethnography, archaeological data generated from surface observations and data generated by the excavations at KS-145 to KS-150, I would suggest that these embayment are unquestionably integral to domestic activities.

A circle of upright standing stones in one of these embayments are the foundation stones of a probable beehive hut. Based on the possible location of the hut relative to the embayment, it would be reasonable to assume that the area to the front of the hut was
associated with everyday activities (public space), while the area behind the hut would have been reserved for the family (private space). That these areas functioned as domestic spaces is also supported by the material excavated in Sel 1, KS-147b and the ceramic scatter in an embayment in KS-146. The relatively high occurrence of ceramic pieces in these areas, compared to the other areas in the homestead, suggests that they were areas where ceramics were more extensively used and that these areas functioned as domestic spaces. As indicated above, if these are individual households of a specific family group, the small stock that was kept in primary enclosures leading into these areas would probably have been in the possession of such a family group.

Having discussed the Doornspruit settlement investigated here, it is necessary to compare the organization of KS-145 to KS-150 with the Doornspruit type homesteads near Rustenburg described by Pistorius (1997a, 1997b). Pistorius (1997a, 1997b) argued that the Ndebele of Mzilikazi built Doornspruit type homesteads based on the plans of Zulu military kraals, such as Mgungundlovu (Parkington and Cronin 1979).

The sites identified by Pistorius (1997a, 1997b) consisted of homesteads, military kraals and guard posts. All the homesteads had stonewalling that was low and insubstantial and household remains such as ceramics, hut floors and middens were totally absent from the site. The cluster identified consisted of nine homesteads, four of which were probably residential units, at least one was a military kraal, and two functioned as guard posts.
Three of the identified homesteads also had evidence for iron smelting and forging within them. For his interpretation of one of the residential units, Pistorius draws on Nguni homestead patterns as found at Mgungundlovu, the royal residence of Dingane between 1829 and 1838 (Parkington and Cronin 1979; Plug and Roodt 1990; Roodt 1992b) (Fig. 54). For his analysis of other settlements, Pistorius made use of Cobbing’s (1974, 1976) research of the Matabele in Zimbabwe.

At site NS007, a probable residential unit, walls were constructed of double, parallel rows of stone that were filled with smaller stones. The internal organization is not clear but several features in the homestead correspond with Nguni homestead features found at Mgungundlovu. One is an outer wall, which is poorly preserved and which served as an outer boundary that together with an inner wall, provided a circular zone within which beehive dwellings were constructed. This outer domestic zone encircled an inner enclosure that was used to house the cattle.

Although quarrying has destroyed part of the homestead, it is suggested that the main entrance would have been on the lower slope opposite the high-status dwellings (Fig. 55). NS002 is a smaller homestead and has been interpreted as an umuzi yamathanga, which is a residential unit of a senior male and his family (Pistorius 1997b).
Figure 54: Proposed homestead plan of Mgungundlovu (after Plug and Roodt 1990).
Figure 55: Doornspruit type umuzi homestead, NS007, in the Rustenburg area (after Pistorius 1997b).
Site NS008, situated high up against the foothills of the Magaliesberg, was identified as a military kraal based on its location, lay-out and associated archaeological materials. A large number of whetting stones, stone piles and the presence of iron forging activities were identified. The absence of household remains was also used to identify this site as a military kraal (Fig. 56).

Figure 56: Doornspruit type *ikhanda* homestead, NS008, in the Rustenburg area (after Pistorius 1997b).
Homesteads NS006 and NS009 were classified as guard and cattle posts based on their location on the escarpment of the foothills. Neither of these sites had any archaeological deposits. Three sites were identified as being used for smelting and forging iron. In one of the sites (NS006) two reduction furnaces were excavated that are similar to furnaces excavated in KwaZulu-Natal (Pistorius 1997b).

What is clear from this summary as that in the Doornspruit clusters identified in this thesis, only homesteads (umuzi) are evident. There are no sites that are similar in any way to the military kraal and guard posts identified by Pistorius. This difference perhaps should not be over-interpreted because of the small number of Doornspruit sites identified here. It may be more significant that in the larger Class 3 sample, there was also no variability in site organization that is similar to the range described by Pistorius.

Although homesteads organization associated with the 19th century Zulu state, such as Mgungundlovu, can be used to further our interpretation of settlement organisation, it should not be over emphasized. The end of the 18th and beginning of the 19th centuries were characterized by immense social and political change in KwaZulu-Natal, with its culmination in the formation of a Zulu state under Shaka. The formation of this Zulu state involved social and political change, which would have been reflected in the way society organized itself, and the way in which settlements were organized. The ensuing wars and the consolidation of the Zulu state also led to a general break in the oral
histories of the pre-Shakan chieftaincies (Hall 1984). For this reason, the identity of ‘Zuluness’ should be critically approached, as well as the Zulu ethnography and the way in which it is used by archaeologists. The use of the Zulu ethnography to interpret settlements associated with the Ndebele polity should thus be done with caution as the organization of these Ndebele settlements may reflect those of pre-Shakan chieftaincies. Consequently, it is appropriate to look at the archaeology of settlements that unequivocally pre-date the establishment of the Zulu State under Shaka. In this regard it is worth mentioning the work carried out by Hall and Maggs (1979) at Nqabeni, together with that done by Hall and Mack (1983) on the economic system of the Buthelezi chieftaincy during the 18th century.

Nqabeni is one of many stonewalled homesteads, classified as Type B, that occur in the higher-lying area between the White Mfolozi and Mzinyathi Rivers in the Northern Nguni heartland (Hall and Maggs 1979). Type B homesteads are located on the higher peripheral part of the upland along watersheds close to the fertile soils of weathered dolerite (Hall 1981), and occur in clusters of five or six homesteads (Hall 1984). Based on oral histories, most Type B homesteads coincide with the boundaries of the Khumalo chieftaincy, whilst a minority were located in the Buthelezi chieftaincy to its east. Both these chieftaincies were incorporated into the Zulu state by Shaka, and consequently, these homesteads probably date to the late 18th and early 19th centuries (Hall and Mack 1983; Hall and Maggs 1979). The identification of Nqabeni and Type B homesteads is
pertinent to this study for two reasons. It firstly highlights the dangers of applying the ethnography of the Nguni, in particular the Zulu, uncritically unto an archaeological context. Famous homesteads, such as the royal *imizi* at Mgungundlovu, were an historical phenomenon rooted in the 19th century, related to the Zulu state of the time. Variability in the archaeological record affords us a glimpse beyond the historical context that is usually dominated by the histories of the post-Shaka Zulu state. Secondly, Type B homesteads are mostly found within the Khumalo chieftaincy.

If the occupation date for Type B settlements between the late 18th and early 19th centuries is correct, it provides a possible model for the identification and interpretation of Ndebele Khumalo homesteads in the Rustenburg area. The Khumalo chieftaincy split into two factions at about AD 1800, with the senior branch under Magugu staying in the upper White Mfolozi River area where Type B homesteads occur, and the junior branch, which included Mzilikazi’s father, Mashobane, moving north to between the sources of the Mkuze River and the Nkome Forest (Rasmussen 1978).

The defining features of this homestead type are two to nine primary enclosures that are linked by walling and which surround a central secondary enclosure. Entrances to the central enclosure face uphill, as do all the entrances into primary enclosures, and that all the enclosure entrance surfaces have been cobbled with stones (Fig. 57).
Figure 57: Nqabeni, a Type B homestead, in the upper White Mfolozi area, KwaZulu-Natal (after Hall and Maggs 1979).

The primary enclosures are thought to have housed sheep/goats and cattle, with the central enclosure functioning as a marshaling area before the livestock were divided into
smaller groups. On the evidence of dung, it is significant that at Doornspruit and Type 3 settlements, the central secondary enclosure does not seem to be a marshaling area for cattle but functioned as the primary cattle holding space. No dwelling foundations were identified at Type B settlements and it is assumed that the occupants built beehive huts on the outside of the primary enclosures (Hall 1984; Hall and Maggs 1979). This is certainly not the case with Class 3 and Doornspruit settlements, where as discussed above, the encircling primary enclosures were part of the domestic ring, and consequently, the boundary of the homestead is defined by walling.

This feature were possibly derived and incorporated from local Tswana practice. Other spatial markers have also been identified that potentially reflect Sotho/Tswana influence. The possibility exists that the paired primary enclosures in Class 3 settlements (see for example Fig. 23) reflect the front/back arrangement of domestic pace among the Tswana. Furthermore, the possible sequence shift from Class 3 to Doornspruit settlements that include the addition of the back embayment may also be attributed to Tswana influence. As has been discussed, the inclusion of muscovite mica in ceramics may hint at the fact that at least some of the ceramics were produced by Sotho/Tswana women. All this evidence points to the fact that Sotho/Tswana influence is present in the domestic areas of the settlements that are associated with women, but as will be discussed in more detail below, it seems that a central material expression of ‘Nguniness’, the beehive hut, is still placed at the centre of the domestic domain.
Doornspruit homestead organization have been described as representing ‘Nguni-ised’ Sotho, as Mzilikazi’s Ndebele are known to have incorporated Sotho/Tswana people into their society (Huffman 2004, 2007a). What exactly is meant by the term ‘Nguni-ised Sotho’, and how is the identity of these incorporated people expressed and indeed, in the context of the seeming vigorous imposition of the Ndebele polity, to what extent was it allowed to be expressed? Identity is not static or ahistorical, but is constantly in the process of being negotiated and re-interpreted (Barth 1969), as was highlighted by Kopytoff (1987) in his theoretical model of the internal African frontier. In this context, identity may be expressed at various social scales that include gender, age and class (Schoeman 1997), and the expression of this identity focuses either on maintaining or challenging the existing power relationships (Foucault 1972).

How can homestead organization at KS-145 to KS-150 (and other Doornspruit homesteads) be interpreted in the light of the multiple identities that would have been present in the society of Mzilikazi’s Ndebele? Moore (1985) has argued that homestead organization is used to communicate both external and internal identity. This was highlighted by Schoeman (1997) when she argued that men expressed identity and negotiated power relations through the control of the homestead pattern while women did it through ceramics. House form on the other hand was dependent on a complex interplay of gender relations.
If men determined the internal organization of Doornspruit homesteads, it would be expected that the overt identity expressed through such organization would have been one of ‘Nguniness’. It has been argued that the core of Mzilikazi’s Ndebele came from the Khumalo clan. The arrangement of the internal space, based on the concept of a centre/side axis and expressed through concentric rings, is evident in Class 3 and Doornspruit homesteads. Through controlling homestead organization, Nguni men (and later perhaps Sotho/Tswana men that were Nguni-ised), reinforced and negotiated the power relations they established, not only within their own society, but also as an expression towards the “other” on the landscape. Three concepts expressed by Kopytoff (1987) are important in this regard; that of the “institutional vacuum”, “pre-existing social models”, and once a new political entity was established, how it related to a regional context. Kopytoff (1987) argues that:

“The definition of a frontier was political: the metropole defined an area at its periphery as open to legitimate intrusion. To the immigrant settlers it represented an institutional vacuum, although it usually contained other organised groups with which the settlers had to deal” (Kopytoff 1987: 16).

By seeing the area in which they settled as an institutional vacuum, and by drawing on pre-existing social models (including homestead organization), Mzilikazi’s Ndebele sought not only to establish and assert their identity on the social landscape, but also to legitimize it. This they did, not by only incorporating Sotho/Tswana people into their
society, but also by trying to legitimize their society in the eyes of the already present polities in the region through

“... abandon(ing) its parochialism and draw(ing) upon the values, traditions, and legitimizing themes widely shared in the region” (Kopytoff 1987:17).

This leads to a possible answer for an apparent anomaly present in assigning Doornspruit type homesteads to Mzilikazi’s Ndebele. There are no eyewitness accounts to suggest that Mzilikazi’s Ndebele made use of stone in the construction of their homesteads. Drawings produced by the early visitors, such as Bell (Pistorius 1997a, 1997b), and to a lesser extent Burrow (Burrow 1971), also do not indicate the use of stone in the construction of Ndebele homesteads. Although Doornspruit type settlements are still significantly different from Molokwane type settlements, it is not impossible that Mzilikazi’s Ndebele built homesteads in stone as part of the process of establishing an identity that included Sotho/Tswana people. It has been suggested by Hall (1998) that the adoption of stonewalling among the Sotho/Tswana was not only pragmatic, but also symbolic, in that it served to mark a historical presence on the landscape that had become increasingly contested. If this were the case, would these early travelers have been aware that these homesteads were part of the Ndebele state and thus described them as such? Furthermore, it is known that some homesteads that formed part of the Ndebele state were under Sotho/Tswana control (Burrow 1971). Rasmussen (1978) also indicates that
some Sotho/Tswana settlements retained a level of physical independence within and on the fringes of the Ndebele polity. The only reference they had of Nguni homesteads was that of the newly established Zulu state in KwaZulu-Natal, but as has been shown by Hall and Maggs (1979), Nguni people did make use of stone as building material. To firmly establish or refute the use of stonewalling in the construction of settlements by Mzilikazi’s Ndebele, a better comparative sample of settlements is needed.

In the construction of the beehive hut among the Ndebele (and other Nguni), men constructed the wooden framework and women were responsible for the thatching. The hut is not only central to domestic space but is also a symbol of fertility and female reproduction. Through their control over the form a hut should take (beehive), and its location within the homestead, men asserted, through these material signs, a slightly different value system that underpinned a Ndebele affiliation, and hence to a certain degree, their control over production and reproduction in society (see Hall 1997). This may be part of the reason why Sotho/Tswana women that were incorporated into Ndebele society were expected to learn how to construct beehive type huts. Ndebele men exerted their control not just over Sotho/Tswana women, but at the same time also over the Sotho/Tswana men, by changing the ‘typical’ Sotho/Tswana hut form, and thus overriding the control they may have had over production and reproduction. Furthermore, through controlling the organization of the central cattle enclosures in settlements, Ndebele men also exerted their control over cattle and the formal political power that goes with the
control with this resource.

One last but important aspect to consider in relation to Kopytoff’s frontier model and the Ndebele polity is that a substantial number of Tswana in the Rustenburg area elected to move away and chose not to be assimilated into the Ndebele polity (see Hall 1995; Rasmussen 1978). The events that occurred after Mzilikazi’s Ndebele moved further westwards and ultimately to southwest Zimbabwe are instructive because Sotho/Tswana society, lineages and some chiefs moved back to the region and reconstituted themselves, insofar as they could, in the later 1800s. As a frontier process then, the Ndebele polity was in a sense almost ‘instantaneously’ constituted that would be difficult to recognize in the archaeology without the assistance of oral and written texts. For Sotho/Tswana people that were captured and/or assimilated into Ndebele society, cultural transformation also seems to have been rapid, whereas prior cultural models were most probably retained by the Sotho/Tswana people who moved away during the Ndebele occupation. In other words, there was not a longer drawn out process of cultural renegotiation within the Ndebele polity that is probably the norm in terms of internal frontier political dynamics. The fact that the Sotho/Tswana did move back to the Rustenburg area and tried to re-establish themselves indicates that there was minimal to no cultural residue left behind by Mzilikazi’s Ndebele. While subtle material markers within domestic space and pottery, for example, do hint at the incorporation of Tswana practice, the establishment of the Ndebele polity was culturally imposing rather than a negotiated cultural and political
process that is the norm within internal African frontiers.

The archaeology reflect a vigorous imposition of what it meant to be Ndebele (‘Ndebeleness’). In this case, the establishment of the Ndebele polity thus underlines an outcome in this internal frontier as one that encouraged cultural conservatism. This applies significantly to a core ideal of ‘Ndebeleness’ imported from the ‘metropole’. The archaeology indicates that despite the incorporation of people along the way as well as local Sotho/Tswana-speakers, the material signatures of a Ndebele cultural model are bold. The material, and hence value system of Sotho/Tswana people, found little room for overt and explicit expression in the imposed model of Ndebele political and cultural structure. The fact that Sotho/Tswana were assimilated does underpin, however, that this assimilation was facilitated by the broadly similar set of values held in common across this region.
CHAPTER 8

CONCLUSION

Concluding remarks

I conducted an aerial photograph survey and archaeological fieldwork of the research area in the North West Province to identify the location and examine the distribution of Class 3 and Doornspruit settlements. The majority of settlements identified were Class 3, with only one settlement cluster, consisting of six individual settlements, being identified as Doornspruit type settlements. Based on an analysis of the internal organization of these settlement types and then a comparison of them with other Late Iron Age stonewall settlements and the ethnography, I have concluded, and in so doing corroborated, that these two settlement types were built and occupied by Nguni-speakers, and people with Nguni roots, in an area that was supposedly dominated by Sotho/Tswana-speakers. Furthermore, I argue that Mzilikazi’s Ndebele probably built Doornspruit type settlements during the 1820’s and 1830’s before they moved north across the Limpopo River.

The recent archaeological synthesis of Nguni and Nguni-related people by Huffman (2004, 2007a, 2007b) has further highlighted that Nguni penetration and occupation of the area to the west of the escarpment has been a repeated feature of the last 500 years. Consequently, the area between Pretoria and Zeerust has not been a Sotho/Tswana
dominated cultural landscape and much interaction over this period has occurred. The establishment of the Ndebele polity in the early 19th century was the most recent episode in this history of interaction.

The material identification of Nguni incursions, as is the case in this thesis, partly established on the basis of Nguni settlement organization. Nguni settlements emphasize both a side/centre configuration, in which the cattle enclosure is a central focus, or a front/back axis, in which domestic space is arranged more linearly behind the cattle enclosure. Both Class 3 and Doornspruit settlements are organized according to the side/centre configuration. Based on the available evidence it seems that this type of settlement lay-out originated in northern KwaZulu-Natal before spreading into the interior of South Africa. Both Sotho/Tswana and Nguni-speakers thus constructed settlements that followed this side/centre settlement organization and these settlements have subsequently been classified as Type N, Badfontein, Klipriviersberg, Type V, Molokwane, Type Z, Type B, Thukela, and Doornspruit (Huffman 2007b).

Both Doornspruit and Class 3 settlements emphasize the centre/side axis, and when viewed from above, they are arranged in concentric rings. The people with an Nguni inheritance that built settlements north of the Vaal River, are based on Moor Park walling and these are unlikely candidates as builders of Class 3 and Doornspruit type settlements because these settlements do not have the same concentric pattern. Musi Ndebele, such as
the Ndzundza for example, built a variant of Moor Park walling. Furthermore, based on
descriptions of the Badfontein settlements and their restricted locality on the
Mpumalanga and Limpopo escarpment, it seems unlikely that they are related to Class 3
and Doornspruit settlements. It is also unlikely that Class 3 settlements form part of the
Type N settlement cluster and the later developments of Klipriviersberg and Type V,
although there might exist a degree of similarity between these settlement types. The
emphasis on linked primary enclosures to form a central secondary enclosure is a shared
concept but does not mean that Type 3 (or Doornspruit) settlements are derived from
Type N, Klipriviersberg or Type V settlements.

At this stage a probable identity for the builders of Class 3 settlements still needs to be
fully resolved, but it is likely that these settlements are recent in date. A ‘later’ Late Iron
Age date and Nguni identity are most probable for these settlements. There is a clear
continuity between Class 3 and Doornspruit settlements, and in keeping with the latter
settlements, there is an extreme paucity of material culture, especially pottery. This is in
keeping with an Nguni identity and is in sharp contrast to the Tswana settlements in the
same area.

Apart from the sixteen individual Class 3 settlements, all other settlements of this type
occur in clusters ranging from two to eighteen settlements. The majority of these Class 3
clusters are located between 1400 and 1600 meters above sea level with a clear settlement
preference in the Bankeveld/Highveld contact zone. This location is in keeping with a preference for, and emphasis upon, the cattle keeping section of the economy. The grasslands of the Highveld would have provided summer grazing and the mixed vegetation of the Bankeveld served as winter grazing. This location of Class 3 settlements may also be linked to Nguni identity because of their major emphasis on cattle. In contrast to Nguni, who generally are not averse to settlement in open grassland areas or relatively close to the edges of the grassland, as these offer appropriate habitat for cattle, Sotho/Tswana settlements in the same general area are more solidly linked with the mixed bushveld habitat.

At present, there is no obvious correlation between cluster size and the size of individual Class 3 settlements occurring within a cluster that would suggest a political hierarchy. Likewise, there is no relationship between cluster size and the distance to the next settlement cluster. How this can be interpreted in terms of social-political organization and differentiation is not clear at present.

Similarities between Class 3 and historic Ndebele (Mzilikazi’s Khumalo) settlements have been highlighted in this study. In both cases, settlements have been identified as appearing together in clusters. The organization of individual settlements also follow a similar pattern, and comprise a large central secondary enclosure that is formed by an enclosing ring of linked smaller primary enclosures. At this stage no firm conclusion can
be reached as to the possible significance of the similarities that exists between Class 3 settlements and those built by Mzilikazi’s Ndebele. As indicated they are clearly closely related and it seems most likely that there is a progression from Type 3 to Doornspruit settlements. This possibility is based on the addition of back ‘scallops’ or embayments on the outside of the linked primary enclosures in Doornspruit settlements. This is an addition derived from the strongly expressed back courtyard concept that is articulated in Molokwane type walling. The later Doornspruit settlements may thus reflect the incorporation of this spatial feature from the Sotho/Tswana settlement organization. Suffice to say, further research on the social implications of this spatial addition is warranted.

Comparisons were also drawn between Class 3 settlements and Type B settlements. It has been shown by Hall and Mack (1983) and Hall and Maggs (1979), that a direct correlation existed between the location of Type B settlements and the Khumalo Nguni chieftaincy at the turn of the 19th century. Although the Khumalo clan of Mzilikazi’s father, Moshabane, moved from this area at around AD 1800, more investigation should focus on the similarities and differences that existed in settlement organization of Type B settlements and those subsequently built by Mzilikazi’s Ndebele. This comparison, in which the amount of time elapsed between the date of Khumalo settlements in KwaZulu-Natal and Doornspruit settlements, would allow an assessment of rates of change.
The single cluster of Doornspruit settlements that was identified during the survey is also situated in the contact zone between the Bankeveld and Highveld. I made use of historical and ethnographic documents, together with archaeological excavations, to serve as a framework against which I could interpret the settlements’ organization. The large central secondary enclosure would have been used as a cattle kraal. These central spaces were however, probably subdivided by the erection of wood fence stockades within it, in order to shift cattle around or separate cattle of different households. It is possible that at settlements with larger central secondary enclosures, more than one wooden stockade would have been present at the same time to hold a larger number of cattle. The small primary enclosures, with entrances that lead directly into the central secondary enclosure would have housed either calves or small stock such as sheep and goats. An understanding of ownership of livestock among the Ndebele of Mzilikazi would greatly enhance our understanding of the organization of Doornspruit settlements. If private ownership of small stock and cattle were allowed, then some primary enclosures might have housed such livestock. This may explain the presence of primary enclosure entrances leading directly into smaller secondary enclosures that I have identified as being domestic areas.

Secondary walling that linked the primary enclosures with one another and at the same time signifying the perimeter walling of the settlement, formed the domestic areas of Doornspruit settlements. These smaller secondary enclosures had between one and three
primary enclosures associated with it. As shown, some of these primary enclosures probably functioned as small stock or calve enclosures, while the possibility that others may have functioned as kitchen areas, should not be disregarded.

Pistorius (1997a, 1997b) has argued that various types of settlements could be present in one settlement cluster at the same time. Settlements types that were identified by him during investigation of a Ndebele settlement cluster in the Magaliesberg included residential settlements, military kraals, iron-working settlements and umuzi yamathanga, a residential unit of a senior male and his family. Such settlement differentiation was not observed at the Doornspruit settlement cluster KS-145 to KS-150. It seems as if all the settlements present in the Doornspruit cluster were domestic residential units. If the linkage between Class 3 and Doornspruit is correct, then it may also be significant that with the larger sample of Class 3 settlements, the variability observed by Pistorius for his Doornspruit settlements, is also not evident in my Class 3 sample. The presence and size of agricultural production at this settlement cluster is still difficult to assess, as only one upper grinding stone was identified during archaeological investigations. What is again evident from the positioning of these settlements on the landscape is the importance that cattle played in the lives of its inhabitants.

It was stated earlier that there may exist a progression from Type 3 to Doornspruit settlements, with the addition of walled ‘scallops’ and arcs around the linked primary
enclosures and understood to be derived from the back courtyard concept that is articulated in Molokwane type walling. The later Doornspruit settlements may thus reflect the incorporation of some Sotho/Tswana settlement features. If there was indeed an incorporation of Sotho/Tswana concepts by Mzilikazi’s Ndebele this would stand in stark contrast to the views expressed in oral and written sources. It seems that while the establishment of an Ndebele polity in the 19th century on the basis of the oral and the written sources was a vigorous imposition of Nguni cultural practice, the archaeology does not only suggest that cultural interaction between Mzilikazi’s Ndebele and the Sotho/Tswana took place, but that the Sotho/Tswana did have influence upon certain aspects of Ndebele society.

In terms of settlement organization it seems as if the concept of the back courtyard, as expressed in the addition of ‘scallops’ and arcs around the linked primary enclosures in Doornspruit settlements, were introduced by Sotho/Tswana. An important distinction that needs to be made is the spatial additions to the domestic zones but the continuity in the linked primary enclosures that forms and encloses the central secondary enclosure. An inference that could be drawn is that Sotho/Tswana concepts incorporated by the Ndebele were through space associated with female activities. It thus seems as if Sotho/Tswana women carried some of their cultural structure into the Ndebele world. In contrast to this the spatial form that expresses Sotho/Tswana maleness, the arrangement of central cattle enclosures, is completed subdued in their corporation into the Ndebele world.
It would seem, therefore, as if Mzilikazi’s Ndebele did make some cultural concessions to the Sotho/Tswana through women as they were critical to the continuity of the Ndebele polity. On the other hand Sotho/Tswana men as potential competitors were culturally overwritten. This possibility would fit Kopytoff’s (1987) thesis that no new African political structure is an exact replica of what went before. Thus despite the seeming imposition of Nguni cultural structure within the Ndebele polity as expressed in oral and written accounts, the archaeology suggest a more nuanced picture that reflects, even if only in a small way, some of the cultural structure of the Sotho/Tswana world into which Mzilikazi’s Ndebele moved.
BIBLIOGRAPHY

Bergh, J.S. 2005. “We must never forget where we come from”: The BaFokeng and their

Congress of the Pan African Association for Prehistory and Related Studies, Gaborone Botswana.

Delius, P. and Schoeman, M.H. 2007. Who were the Koni? Paper presented at the 500 years seminar, University of the Witwatersrand.

Huffman, T.N. 2007a. The last 500 years in the Trans-Vaal. Paper presented at the 500 years seminar, University of the Witwatersrand.

Kirby, P.R. 1940b. The dairy of Dr. Andrew Smith, director of the expedition for exploring Central Africa, 1834-1836. Cape Town: The Van Riebeeck Society.

Marker, M.E., and Evers, T.M. 1976. Iron Age settlement and soil erosion in the Eastern

Omer-Cooper, J.D. 1966. *The Zulu Aftermath: A Nineteenth Century Revolution in Bantu*

Pistorius, J.C.C. 2007. A Phase I Heritage Impact Assessment (HIA) Study for Eskom’s Proposed New 2x400kV Power Line Route Between the Matimba B Power Station and

