The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
Evaluation of Children with Haemophagocytic Lymphohistiocytosis (HLH) at Red Cross War Memorial Children’s Hospital 1991-2010

by

Juli Switala

Submitted to the University of Cape Town

In fulfilment of the requirements for the degree

MMed in Paediatrics

Faculty of Health Sciences

UNIVERSITY OF CAPE TOWN

Date of submission :15 June 2011

Supervisor: Dr Marc Hendricks

Red Cross War Memorial Children’s Hospital Paediatric Haematology Oncology Service
DECLARATION

I, ...Juli Switala.............................., hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university.

I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever.

Signature: ...

Date: ...15/06/2011..............................
Table of Contents

1. List of abbreviations 6
2. Letters of Intent 9
3. Research Protocol 11
 Background 11
 Objectives 14
 Methodology 14
 Design 14
 Sample 14
 Inclusion Criteria 14
 Exclusion Criteria 14
 Data 15
 Analysis 15
 Dissemination Plan 15
 Costs 15
 Conflicts of Interests 15
 Ethical Considerations 15
 References 16
 Data sheet 17
4. Ethics approval 19
5. Literature review 20
 Background 20
 Pathophysiology 20
 Classification 21
 A: Primary HLH 21
 B: Secondary HLH 22
 1) Infection related HLH (IAHS) 22
 2) Malignancy related HLH (MAHS) 23
 3) Auto-immune related HLH 23
7. References 42
8. Appendix 44
 Addendum A: Diagnostic Criteria 44
 Table I. Revised diagnostic Guidelines for HLH 44
 Table II. Proposed Diagnostic criteria 2009 45
 Addendum B: Patient Cohort 46
 Table III. Patient Data 46
 Table IV. Patient Biochemical and Diagnostic Markers 47
 Table V. Clinical Features 48
9. Journal requirements: Journal of Pediatric Hematology and Oncology 49
10. Publishable Journal Article 57
 Title Page 57
 Abstract 58
 Introduction 59
 Materials and Methods 60
 Results 60
 Discussion 62
 References 65
 Table I. Revised Diagnostic Guidelines for HLH 66
 Table II. Proposed Modifications to diagnostic Criteria 67
 Table III. Patient Results 68
 Table IV. Cost of Laboratory Investigations 69
11. Proof of Submission 70
1. **List of Abbreviations**

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF</td>
<td>Alive disease free</td>
</tr>
<tr>
<td>ALL</td>
<td>Acute lymphoblastic leukaemia</td>
</tr>
<tr>
<td>AML</td>
<td>Acute myeloid leukaemia</td>
</tr>
<tr>
<td>ATG</td>
<td>Anti-thymocyte globulin</td>
</tr>
<tr>
<td>AWD</td>
<td>Alive with disease</td>
</tr>
<tr>
<td>BM</td>
<td>Bone marrow</td>
</tr>
<tr>
<td>CMV</td>
<td>Cytomegalovirus</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal fluid</td>
</tr>
<tr>
<td>CT</td>
<td>Computed tomography</td>
</tr>
<tr>
<td>DD</td>
<td>Died of disease</td>
</tr>
<tr>
<td>DIC</td>
<td>Disseminated intravascular clotting</td>
</tr>
<tr>
<td>DU</td>
<td>Death unrelated</td>
</tr>
<tr>
<td>EBV</td>
<td>Epstein Barr virus</td>
</tr>
<tr>
<td>ESR</td>
<td>Erythrocyte sedimentation rate</td>
</tr>
<tr>
<td>FHLH</td>
<td>Familial HLH</td>
</tr>
<tr>
<td>Hb</td>
<td>Haemoglobin</td>
</tr>
<tr>
<td>HDL</td>
<td>High density lipids</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>HLH</td>
<td>Haemophagocytic lymphohistiocytosis</td>
</tr>
<tr>
<td>IAHS</td>
<td>Infection related HLH</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IVIG</td>
<td>Intravenous immune globulin</td>
</tr>
<tr>
<td>JRA</td>
<td>Juvenile rheumatoid arthritis</td>
</tr>
<tr>
<td>LB</td>
<td>Liver biopsy</td>
</tr>
<tr>
<td>LDH</td>
<td>Lactate dehydrogenase</td>
</tr>
<tr>
<td>LDL</td>
<td>Low density lipids</td>
</tr>
<tr>
<td>LN</td>
<td>Lymph node</td>
</tr>
<tr>
<td>LP</td>
<td>Lumbar puncture</td>
</tr>
<tr>
<td>LPI</td>
<td>Lysinuric protein intolerance</td>
</tr>
<tr>
<td>MAHS</td>
<td>Malignancy related HLH</td>
</tr>
<tr>
<td>MAS</td>
<td>Macrophage activation syndrome</td>
</tr>
<tr>
<td>NCC</td>
<td>No clear cause</td>
</tr>
<tr>
<td>NKC</td>
<td>Natural killer cells</td>
</tr>
<tr>
<td>NSAID</td>
<td>Non-steroidal anti-inflammatory drug</td>
</tr>
<tr>
<td>Plts</td>
<td>Platelets</td>
</tr>
<tr>
<td>RSV</td>
<td>Respiratory syncytial virus</td>
</tr>
<tr>
<td>SLE</td>
<td>Systemic lupus erythematosus</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>TBM</td>
<td>Tuberculous meningitis</td>
</tr>
<tr>
<td>TG</td>
<td>Triglyceride</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour necrosis factor</td>
</tr>
<tr>
<td>VL</td>
<td>Viral load</td>
</tr>
<tr>
<td>VLDL</td>
<td>Very low density lipids</td>
</tr>
<tr>
<td>WBC</td>
<td>White blood count</td>
</tr>
<tr>
<td>XLP</td>
<td>X-linked lymphoproliferative syndrome</td>
</tr>
</tbody>
</table>
2. **Letters of Intent**

11 May 2010

School of Child and Adolescent Health

Dear Professor Zar

Re: Research Proposal for Ethics Committee approval.

Please find attached my submission for your approval, for a research project I wish to commence as part of my MMed during 2010. I plan to review the folders of patients admitted at Red Cross Children’s Hospital diagnosed with Haemophagocytic Lymphohistiocytosis. My supervisor for this study is Dr Marc Hendricks.

Kind Regards

Juli Switala

Paediatric Registrar- Red Cross Children’s Hospital
11 May 2010

Ethics Committee
University of Cape Town
Dear Colleague

Herewith I attach my application for ethics approval for my study ‘Evaluation of Children with Haemophagocytic Lymphohistiocytosis (HLH) at Red Cross Children’s Hospital’. This is a descriptive retrospective study of patients who have been treated for this disease at Red Cross Children’s Hospital. I have received scientific approval from the School of Child and Adolescent Health and I would like to request an expedited approval as my study is a retrospective folder review, requiring no further recall of patients and no further investigations.

This is a study that I am doing as part of my MMed and my supervisor is Dr Marc Hendricks at Red Cross Children’s Hospital.

Kind Regards,

Juli Switala

Paediatric Registrar – Red Cross Children’s Hospital
1. **Research Protocol**

Evaluation of Children with Haemophagocytic Lymphohistiocytosis (HLH) at Red Cross War Memorial Children’s Hospital

Background

Haemophagocytic Lymphohistiocytosis (HLH) is a rare haematological disorder in children. An estimated incidence of 0.12 per 100 000 children per year was found in a Swedish (Henter, Stockholm) study\(^1\). However, this is probably an underestimation due to the difficulty in diagnosing the disease.

HLH is characterized clinically by persistent fevers, organomegaly, cytopaenias and typical biochemical derangements viz. hypertriglyceridaemia, hyperferritinaemia and hypofibrinogenaemia. Other associated findings include decreased natural killer cell (NKC) function and raised soluble CD 25.

The exact pathophysiology of HLH is not completely understood but involves a trigger (often an infection) which sets off an uncontrolled inflammatory cascade, characterized by an increase in hyperactivated macrophages and T lymphocytes which leads to increased production of cytokines, alongside reduced cellular cytotoxicity as a result of reduced or absent NKC function. When functioning normally, NKCs play a role in lysis of cells by releasing cytotoxic proteins - perforins and granzymes, as well as by release of soluble mediators IFN-gamma, GM-CSF and TNF in response to pathogens. Once the foreign protein is destroyed, the stimulus for the immune activation is removed, and the reaction subsides. It follows therefore, that poor NKC function allows foreign proteins to persist and disseminate, causing increased, sustained activation of macrophages and a disproportionate increase in CD8 cells. This uncontrolled inflammatory response causes macrophage infiltration of tissue, as well as pro-inflammatory cytokine release, which likely accounts for the tissue damage and clinical picture associated with the disease\(^2,3\). TNF may be the cause of the hypofibrinogenaemia (it acts as a procoagulant) and the hypertriglyceridaemia\(^3\).
HLH is induced by strong, dysfunctional immunological activation. In primary HLH this arises as a result of a variety of mutations of the genes which encode for proteins involved different aspects of the granule dependant cytotoxic function of the NKC, such as perforin production. Predominant mutations vary between different ethnic groups. In secondary HLH this dysfunction may be related to infection, malignancy or auto-immune disease.

HLH secondary to infection may be misdiagnosed as an ordinary infection due to the similar clinical syndrome. Infection may also be linked to both onset and recurrences of primary HLH. Epstein Barr Virus is a common trigger for both conditions, and also carries the worst prognosis of the infection-associated HLH subtypes. Other viruses (especially those in the herpes group), bacteria, protozoa, fungi and rickettsiae may also lead to the condition.

In addition, HLH may herald the onset of malignancies or auto-immune disease. It has been described in ALL, germ cell tumours, thymomas and carcinomas. It may present with a masked haematolymphoid malignancy such as lymphomas.

Auto-immune related HLH, more commonly known to rheumatologists as macrophage activation syndrome, can occur as a result of rheumatoid arthritis and SLE.

The trigger in auto-immune related HLH may be viral infection or drugs, such as methotrexate or NSAIDs.

On reviewing 122 children on the international registry Arico et al found a 5 year survival of 10% in children receiving chemotherapy alone and 66% for those who received an allogenic bone marrow transplant with a median survival time of 6 months in untreated children. The disease is uniformly fatal in the absence of an HLA identical sibling bone marrow transplant, although chemotherapy alone may prolong survival. Death may be due to neutropenic sepsis, multi-organ failure or CNS manifestations.

The early diagnosis and initiation of appropriate treatment in HLH is crucial as it arrests the cytokinaemia and induces remission. In secondary phenomena, the diagnosis and control of precipitating disease entities is crucial in arresting evolving clinical disease and preventing death.
Although the importance of timeous diagnosis of HLH has been highlighted, it may be a difficult diagnosis to make. The diagnosis is one of exclusion, and is typically made in a child with a documented, unremitting fever—often without a clear cause, with associated cytopaenias and organomegaly.

Diagnostic criteria were established by the Histiocyte Society in 1991 and include fever, splenomegaly, cytopaenias involving at least two lineages, hypertriglyceridaemia and/or hypofibrinogenaemia and haemophagocytosis in bone marrow, spleen or lymph nodes. Five of these 8 features or a molecular diagnosis of HLH is needed to make the diagnosis. Criteria were adjusted in 2004 to include low NKC activity, hyperferritinaemia and raised serum concentrations of IL-2 r-α (CD 25). The alpha chain of IL-2 receptor increases during active disease making it a good marker. This occurs as a result of increased number of activated lymphocytes.

This lymphocytosis also explains the hepatosplenomegaly (with transaminitis and hyperbilirubinaemia) and the many manifestations of CNS disease. Although serum CD 25 may differentiate HLH from other conditions, the time delay, and lack of availability at many centres limit its usefulness. Raised serum ferritin and decreased serum fibrinogen occur as a result of activated macrophages which secrete ferritin and promote high levels of fibrinolysis.

Allen et al have shown a ferritin level >10 000 mcg/l to be 90% sensitive and 96% specific for HLH. Hyperferritinaemia is not unique to HLH and other differentials must be considered. Lysinuric protein intolerance (LPI), is an autosomal recessive disease in which high ferritin levels are present. Congenital haemochromatosis also causes hyperferritinaemia and may mimic neonatal HLH, as both can present with deranged liver functions, similar clinical phenotypes and hepatomegaly. Hereditary Hyperferritinaemia-Cataract Syndrome is another rare cause of hyperferritinaemia.

Raised serum triglycerides are found early in the disease, and resolves with remission. LDL and VLDL levels are usually markedly increased, and HDL decreased.
Because of the potential morbidity and mortality encountered in this disease, early diagnosis is paramount. We will review the epidemiological data of these patients including their biochemical markers in an attempt to gauge their usefulness as early indicators of HLH.

Objectives

1. To evaluate the epidemiological features of children with HLH.

2. To evaluate different biochemical markers of disease and to assess their usefulness as predictors of disease.

3. To assess whether threshold values for ferritin and triglycerides are helpful in identifying those who are most at risk/likely of having HLH.

4. To evaluate time to diagnosis and treatment in our study group compared to international norms.

Methodology

1. Design

A retrospective folder review.

2. Sample

15 patients treated at Red Cross War Memorial Children’s Hospital

Inclusion criteria:

Any child with confirmed HLH as assessed by 2004 HLH diagnostic criteria.\(^4\)

Exclusion criteria:

None.
3. Data

Patient notes will be reviewed and a database will be created.

4. Analysis

Data will be descriptively reported with specific reference to the questions set out in the objectives.

5. Dissemination Plan

The study results will be prepared for submission for an MMed thesis. Findings of the study will be presented at Research Day as a vehicle to educate local staff about early diagnosis and treatment. We will submit our findings for publication to the Journal of Paediatric Haematoalogy and Oncology or an equivalent.

6. Costs

There will be no costs involved in this study.

7. Conflict of Interests

The authors wish to declare no conflict of interest.

8. Ethical Considerations

As this is a retrospective folder review, patient management will not be affected in any way. Complete confidentiality will be ensured as patients will have numeric identifiers. No further recall of patient will be necessary and no further investigations will be undertaken. Patients will not incur any expense or inconvenience as a result of the review.
References

Data Collection Sheet

Folder number

Date of Birth

Sex

Race

Date of admission

Date of diagnosis

Age at diagnosis

Precipitants

Family History

Biochemical markers

- Ferritin
- Triglycerides
- Fibrinogen
- Haemoglobin
- White cell count
- Platelets
- EBV Viral load
- LP result
- Bone Marrow to confirm results
Clinical

- Fever and duration
- Hepatomegaly
- Splenomegaly
- CNS features
- Other clinical features
- Infections

Treatment

- Drugs
- Duration
- Remission

Principal Investigator

Dr Juli Switala
2. **Ethics Approval**

UNIVERSITY OF CAPE TOWN

Health Sciences Faculty
Research Ethics Committee
Room 132-24 Groote Schuur Hospital Old Main Building
Observatory 7925
Telephone (021) 406 6626 • Paarl (071) 406 6411
e-mails: hscu.ethics.committee@uct.ac.za

17 June 2010

HREC REP: 284/2010

Dr J Swetala
Paediatrics
Red Cross

Dear Dr Swetala

PROJECT TITLE: EVALUATION OF CHILDREN WITH HAEMOPHAGOCYTIC LYMPHOHISTIOCYTOYSIS (HLH) AT RED CROSS CHILDREN’S HOSPITAL

Thank you for your ethics submission to the Faculty of Health Sciences Human Research Ethics Committee.

It is a pleasure to inform you that the UHS HREC has formally approved the above-mentioned study.

Approval is granted for one year until 31 June 2011.

Please send an annual progress report if your research continues beyond the approval period. Alternatively, please send us a brief summary of your findings so that we can close the research file.

Please note that the ongoing ethical conduct of the study remains the responsibility of the principal investigator.

Please quote the REC HREC in all your correspondence.

Yours sincerely

[Signature]

PROFESSOR MOLLOCHMAN
Chairperson, HSF Human Ethics

Federal Wide Assurance Number: FWA00001637.
Institutional Review Board (IRB) number IRB0001928

pp
3. Literature review

Evaluation of Children with Haemophagocytic Lymphohistiocytosis (HLH) at Red Cross Children’s Hospital.

Background

Haemophagocytic Lymphohistiocytosis (HLH) is a rare haematological disorder in children. An estimated incidence of 0.12 cases per 100 000 children per year was reported in a Swedish study\(^1\). However, this is probably an underestimation due to the difficulty in diagnosing the disease.

HLH is characterised clinically by persistent fevers, organomegaly, cytopenias and typical biochemical derangements - primarily hypertriglyceridaemia, hyperferritinaemia and hypofibrinogenaemia. In 1952 Farquhar and Claireaux described what is now known to be familial HLH\(^2\) and in 1979 Risdall described similar findings in immunosuppressed patients\(^3\). These patients often had proven herpes or adenovirus infection and all had bone marrow and lymph node infiltration, lymphocyte depletion, hepatocellular necrosis and leptomeningeal involvement\(^4\).

Pathophysiology

The exact pathophysiology of HLH is not completely understood. It is thought to arise as a result of a hyperactivated, yet inefficient immune system. When functioning normally, NKCs play a role in lysis of cells by releasing cytotoxic proteins - perforins and granzymes, as well as by release of soluble mediators IFN-gamma, GM-CSF and TNF-alpha, IL1, 6, and 10 and macrophage colony stimulating factor in response to pathogens\(^5\). Once the foreign protein is destroyed, the stimulus for the immune activation is removed. In HLH, foreign cells stimulate T-cell activation and proliferation, but then fail to remove the stimulus due to poor NKC function, allowing foreign material to persist and disseminate, activating more T-cells and macrophages, worsening the cytokinaemia and causing end organ damage\(^6\) and a disproportionate increase in
CD8 cells. This uncontrolled inflammatory cascade and organ infiltration likely accounts for the tissue damage and clinical picture associated with the disease6,7.

The trigger for this cascade is typically a viral infection, but may be any infection, a toxin, a metabolic product, profound stress or tissue damage8. Chemotherapy and immune suppression post transplantation may also activate the immune system8, although the exact mechanism is not well delineated.

Classification

HLH is not a single disease but a clinical syndrome, induced by strong, dysfunctional immunological activation. Primary and secondary forms of the disease are histologically indistinguishable.

A: Primary HLH

The immune defect may be genetic (primary HLH), in which the actual mechanism of NKC dysfunction, viz. poor perforin or granzyme production, or poor exocytosis of granules, is a function of the gene mutation. HLH is induced by strong, dysfunctional immunological activation. In primary HLH this arises as a result of a variety of possible mutations of the genes which encode for proteins involved in different aspects of the granule dependant cytotoxic function of the NKC, affecting processes such as perforin or granzyme production, or exocytosis of granules7. Predominant mutations vary between different ethnic groups6,10. The perforin gene PRF1 mutations are currently thought to be the most common genetic defects in HLH6, but perforin mutations only occur at a frequency of

The inheritance may be autosomal recessive, with a reported frequency of one per 50 000 births5,9. Seventy percent of patients develop symptoms in the first year of life1,5. In utero development of primary HLH has been described and the upper age limit is not known1.

Different gene mutations result in different pathophysiological mechanisms of disease by affecting either the NKC or perforin production. The exact gene mutations differ in patients with different ethnicities6,10. The perforin gene PRF1 mutations are currently thought to be the most common genetic defects in HLH6, but perforin mutations only occur at a frequency of
between 20-30%. Other implicated genes include 10q21–22, UNC13D and STX11. In a study by Lee et al., British and American patients of African descent were all shown to have the same gene mutation on the perforin gene PRF1 (50delT) which occurred exclusively in this ethnic group. Similarly, Celtica et al. found that 90% of patients of African descent had this founder mutation. Phenotypically, it is associated with an earlier age of onset compared to other PRF1 mutations. By comparison, the most common mutation amongst Turkish patients (p.W374X) is not exclusive to this group, possibly as a result of gene migration.

Two subgroups of primary HLH are described:

1) Familial HLH (FHLH), a group in which HLH is the only manifestation.

2) A second group, in which HLH is a sporadic but frequent association, but not the only feature of disease. This is found in children with primary immune deficiencies like X-linked lymphoproliferative disease, Chediak Higashi syndrome or Griscelli syndrome.

B: Secondary HLH

Secondary HLH is induced by an immunological stressor, typically an infection, but malignancy and auto-immune disease may also precipitate the syndrome. A trigger is not always identified, making differentiation between primary and secondary HLH difficult. There is no way to reliably differentiate primary from secondary disease clinically, although secondary HLH tends to present after one year of age.

1) Infection related HLH (IAHS)

Secondary HLH is typically related to infection. The relationship between infection and HLH is a complex one. Due to the similarity of the clinical features, HLH may be misdiagnosed as an infection initially. When both occur concurrently the infection may be the trigger of IAHS or primary HLH, or be a result of the decreased immunity associated with HLH.

Epstein Barr Virus (EBV) is a common trigger for both primary and secondary HLH and carries the worst prognosis of the IAHS groups. EBV is reported to have been isolated in 74% of viral-
associated cases5. It has a higher prevalence in Asia than in western countries and this may be due to genetic or environmental factors8. The spectrum of infectious precipitants of HLH is substantial. Viruses, especially those in the herpes group, bacteria, protozoa, fungi and rickettsiae have all been implicated4,10. HIV, \textit{M.Tuberculosis} and \textit{Plasmodium spp.} have also been reported14 - all important diseases in sub-Saharan Africa. IAHS has a reported mortality rate of more than 50% in children by Janka \textit{et al}8.

2) Malignancy associated HLH (MAHS)

The incidence of MAHS is not known. Two patterns have been described4.

1) The first is characterised by HLH which develops as a result of an infection or unknown trigger, long before or during treatment for malignancy. The malignancy itself may respond to treatment and HLH may only become evident months later. Malignancies reported to display this pattern of presentation include acute lymphoblastic leukaemia, multiple myeloma, germ cell tumours, thymomas and certain carcinomas.

2) The second is characterised by HLH which develops rapidly in an apparently healthy child or adult, in which the malignancy is initially masked but later diagnosed. This has been reported preceding T-cell leukaemia, anaplastic large cell lymphoma, and adult B-cell lymphoma.

3) Auto-immune related HLH

Also known as macrophage activation syndrome (MAS), it was first described in 1985 in patients with rheumatoid arthritis and SLE8. Up to 7% of patients with systemic juvenile rheumatoid arthritis may develop MAS with a reported mortality rate of 10 -20\%13. Triggers include viral infections or drugs such as methotrexate or NSAIDs5.
Diagnosis

Introduction

HLH may be extraordinarily difficult to diagnose. The importance of early detection cannot be overstated, as the commencement of medical therapy is critical to survival. The diagnosis is one of exclusion and is typically made in a child with a documented, unremitting fever, often without a clear cause, with associated cytopaenias and organomegaly. A high index of suspicion is required, in a clinical setting where the differential diagnosis may be broad and the clinical course may vary considerably. Atypical presentations may further complicate matters. For example, neonatal onset disease may have a less prominent fever, which is usually a cardinal feature\(^1\). In addition, some patients experience improvements in their symptoms following non-specific therapies like blood transfusions or antibiotics\(^8\). The average time to diagnosis varies between studies from seven days to four weeks\(^{15,16}\).

In 1991 the Histiocyte Society proposed a set of diagnostic criteria which included documented fever, splenomegaly, and cytopaenias involving at least 2 lineages, hypertriglyceridaemia and/or hypofibrinogenenaemia and haemophagocytosis in bone marrow, spleen or lymph nodes. The criteria were amended in 2004 to include low NK activity, hyperferritinaemia and raised levels of serum IL-2 receptors (CD25). Five of these eight features or a molecular diagnosis of HLH is needed to make the diagnosis (Table I)\(^{11}\). Since then a slight modification has been proposed, but not yet codified (Table II). These modifications incorporate more clinical features, are less stringent and allow for the diagnosis of ‘suspected HLH’.

Clinical criteria and features

70-80% of patients with FHLH are symptomatic within the first 12 months of life\(^{13}\). Secondary HLH typically presents later in life, but both diseases ultimately run a rapidly fatal course\(^{16}\), unless treatment is instituted. Each clinical feature and biochemical abnormality is as a result of either the excessive cytokine release or organ infiltration by activated lymphocytes.
Fever and Tissue Involvement

Fever is caused by the release of IL-1 and IL-6, and is typically protracted13. Henter \textit{et al} compared the frequency of initial clinical features in patients on the FHL registry with those in a population based study, as well as those found in a literature review. In all three populations fever and splenomegaly were present in more than 90\% of patients. Similarly, hepatomegaly was present in 94\% of the patients in the literature review and 97\% of the study patients, but insufficient data was available for the registry population. Hepatosplenomegaly is reported to be marked and progressive and is accompanied by transaminitis and hyperbilirubinaemia1. Lymphadenopathy and skin rash were less consistent findings, varying from 17-51\% and 6-65\% respectively between the groups1. The rash is usually transient and associated with fever1. Pulmonary symptoms may also develop as a result of infiltration by activated lymphocytes.

Neurological disease

Neurological features associated with HLH include seizures, hyper- or hypotonia, a bulging fontanel, irritability, neck stiffness, ataxia, blindness, encephalopathy, psychological depression, opisthotonus, hemi- or tetraplegia, a depressed level of consciousness and 6th and 7th cranial nerve palsies1,13,16. These may be present early in the disease or may evolve later1,16. Haddad \textit{et al} found that 25 of 34 patients had CNS involvement at presentation. Twenty of these 25 had CSF abnormalities with no clinical features apart from neck stiffness17. In this study, development of CNS symptoms was associated with an inferior outcome. Seizures were found to be the commonest manifestation in young patients. In a series by Hallahan \textit{et al} 75\% of patients developed CNS involvement at some point during the course of disease, but most did not present with features initially. Again, CNS involvement worsened prognosis in this group16.

Biochemical markers and investigations

Typical serum biochemical findings include hypertriglyceridaemia, hypofibrinogenaemia or coagulopathy, elevated LDH, liver dysfunction and marked transaminitis, hyperferritinaemia, raised VLDL and decreased HDL and raised cytokines in both serum and CSF9. These changes may be present initially or develop later, usually normalising after successful treatment8.

25
Ferritin

Ferritin is an iron binding protein consisting of light and heavy chains. Oxidative stress and pro-inflammatory cytokines from the NKC pathway up-regulate transcription of the ferritin heavy chains. Ferritin can therefore be used as an indirect measure of cytokine activation\(^\text{15}\).

As a ferritin level may be acquired much faster than a functional NKC assay or IL-2 α receptor in most centres, it is of more practical significance in the acute setting\(^\text{15}\).

Hyperferritinaemia is not unique to HLH and other differentials must be considered. Lysinuric protein intolerance (LPI) is an autosomal recessive disease in which high ferritin levels have been reported. This is now understood to be due to a form of HLH related to LPI\(^\text{18}\). Congenital haemochromatosis also causes hyperferritinaemia and can mimic neonatal HLH, since both can present with deranged liver function, a similar clinical syndrome and hepatomegaly\(^\text{18}\). Hereditary hyperferritinaemia-cataract syndrome is another rare cause of hyperferritinaemia\(^\text{18}\).

Ferritin may be elevated in infections but values are not likely to exceed 200mcg/l\(^\text{8}\). In a study by Allen \textit{et al}, a ferritin level >10 000 mcg/l was found to be 90% sensitive and 96% specific for HLH (98% if fever was added as a criterion)\(^\text{15}\). By comparison serum ferritin levels in JRA without MAS may exceed 10000mcg/l\(^\text{8}\). In a series of patients including both viral- and malignancy associated HLH, Esumi \textit{et al} found ferritin levels to be elevated at diagnosis, with further increases at the onset of DIC. Patients with sustained high ferritin levels after three months died, while those with decreased levels survived, suggesting that ferritin level may be a useful marker of disease activity and not just the presence of disease\(^\text{19}\).

CD 25 (IL 2α receptors)

By comparison the alpha chain of the IL-2 receptor is made by activated histiocytes and T-cells. It increases during active disease and is cell specific. Janka \textit{et al}\(^\text{8}\) found it to be the most sensitive marker (93%) for HLH. Specificity is also high\(^\text{8,15}\) making it a good marker to differentiate HLH from infection. Diagnosis may be complicated by the fact that elevated levels may also be found in leukaemias and lymphomas\(^\text{8}\). The lack of availability to perform this test at many centres and the time required to obtain results limits its usefulness\(^\text{15}\).
Fibrinogen

Hypofibrinogenaemia may not be present on initial testing but may develop later. Depressed serum fibrinogen levels occur as a result of the increased numbers of activated macrophages secreting plasminogen activating factor, which promotes high levels of fibrinolysis\(^\text{13}\). Risdall *et al* reported clotting abnormalities in 68% of patients with viral-associated HLH\(^3\). These consisted of prolonged partial thromboplastin and thrombin times and normal to prolonged prothrombin times\(^3\).

Hypofibrinogenaemia may be useful in differentiating HLH from infection, as in most infections (other than DIC), fibrinogen is typically normal or raised\(^8\). Janka *et al* reported a sensitivity of only 53\(^%\)\(^8\).

The Bone Marrow

Pancytopenia is ascribed to the effects of TNF-\(\alpha\) and interferon-gamma on bone marrow precursor cells\(^\text{13}\). The platelet count typically increases during remission and may decrease at relapse. These changes occur relatively early on, making the platelet count a useful monitor for active disease\(^1\). The reticulocyte count may be inappropriately low for the severity of the anaemia, due to the increased, but ineffective erythropoesis in the bone marrow\(^8\), not unlike other bone marrow failure syndromes, like aplastic anaemia or leukaemia.

Bone marrow aspiration may provide histological evidence of HLH and help to exclude malignancies. The classic features are histiocyte hyperplasia and widespread infiltration of normal haemophagocytic macrophages and lymphocytes\(^3,\text{6,8}\). The bone marrow appearance varies considerably depending on when in the course of the disease it is performed\(^\text{6}\).

The haemophagocytosis may be absent initially, and repeated aspirations may be required to demonstrate it. When it develops, histiocytes are most commonly seen engulfing erythrocytes but may also phagocytose lymphocytes and platelets\(^8\). Cellularity may wane in later stages or after therapy, giving the bone marrow an aplastic appearance\(^1\). Histiocyte hyperplasia and haemophagocytosis may persist for up to 5 months after recovery in some patients, but in others normalises sooner\(^3\).
Triglycerides

Hypertriglyceridaemia is usually found early in the disease, and resolves as the disease remits1. This occurs as a result of the inhibition of lipoprotein lipase by TNF-\(\alpha\)13. LDL and VLDL levels are usually markedly increased, and HDL decreased1.

Elevated LDH

Imashuku \textit{et al} found a higher incidence of raised LDH than hypofibrinogenaemia and hypertriglyceridaemia, suggesting that it may be a useful marker for active disease20.

Natural Killer Cells

NKC dysfunction is a cardinal feature of HLH. In FHLH the number of NKCs may be normal, but defective. This defect persists even between episodes of active disease. In secondary HLH, both the number and function of NKCs are deficient during active disease with function typically, but not always, normalising between episodes8, 13.

Cerebrospinal Fluid and Neuro-Imaging Abnormalities

Cerebrospinal fluid (CSF) may have raised protein, lymphocytes and occasional erythrocytes5. CSF changes may be present even without any clinical features8 or conversely CSF may appear normal, even in patients with symptomatic CNS involvement16. For this reason, Janka \textit{et al} recommend a lumbar puncture be done in all patients8 as CNS involvement is associated with a worse outcome16. CSF neopterin levels may be a useful marker of disease as it indicates histiocyte activity16. Neuroimaging may show some features of ongoing or previous inflammation or demyelination. Findings include haemorrhage, infarction, atrophy and oedema1, 16.

Tissue Biopsy

When indicated and where possible, histological examination of tissue such as nodes, liver, and spleen show widespread infiltration of macrophages and lymphocytes9.
Treatment

Initial management is aimed at arresting the life threatening hyperinflammatory process. Once control of the cytokine response has been achieved, the stimulus for its continuous activation needs to be removed. Finally, as in FHLH, the dysfunctional immune system needs to be permanently replaced. Treatment modalities therefore include chemotherapy, immunotherapy, bone marrow transplant and the treatment of triggers and complications.

Corticosteroids arrest the cytokine cascade by destroying lymphocytes, inhibiting dendritic cell differentiation and reducing chemokine and cytokine expression. Dexamethasone is preferred to prednisolone as it has superior blood brain barrier penetration.

Etoposide is an epipodophyllotoxin derivative. It was first used for treatment of HLH in 1980. It reduces the activation of the cytotoxic cells by destroying the antigen presenting cells. It also inhibits synthesis of EBV nuclear antigen, and may prevent clonal expansion of virus-infected cells. Ambruso reported prolonged remission with its introduction, in combination with steroids in 1980. Etoposide is myelotoxic which may pose a problem in a disease in which cytopaenia and immunodeficiency are prominent. There is also a concern about the risk of developing a secondary leukaemia with the use of etoposide, as acute myeloid leukaemia and myelodysplastic syndrome have been reported in associated with epipodophyllotoxin derivatives. This risk is considered to be of less significance than the risk of under treatment for HLH. The risk of developing secondary AML, which is dose related, may be reduced by combining its use with immunotherapy (cyclosporin). Most modern protocols keep the cumulative etoposide dose well below the threshold which would put one at risk for a secondary leukaemia.

Cyclosporin has been used effectively to induce remission in HLH by affecting T-lymphocyte action and macrophage function. It interferes with the cyclophilin pathway thus causing immunosuppression. It has been used successfully as a single agent for maintenance in HLH, rheumatic disease and MAS. Another immune modulatory agent, antithymocyte globulin (ATG) has been shown to induce remission and may in future be used in resistant cases as part of salvage therapy.
Immunoglobulins act by cytokine and pathogen-specific antibodies which stimulate Fc receptor function\(^8\). Intravenous recombinant immune globulin (IVIG) has been shown to be of use in children with IAHS, in some cases inducing a response even when administered alone\(^4\).

Ladisch \textit{et al} found that the plasma of three patients with HLH had a lymphoproliferative inhibitor effect on normal, control mononuclear cells\(^22\). Although the reason for this is not entirely understood, this finding implies that removal of a plasma factor by exchange transfusions potentially reduces this inhibition. However, transfusions during relapses showed less response. These findings may be due to the ability of red cells to absorb cytokines\(^8,22\).

Bone marrow transplantation is the only way to restore a normal immune system, and it can be curative in up to 2/3 of patients\(^8\). Best results are achieved with HLA-matched siblings\(^11\). If this is not possible a matched unrelated donor is advised\(^11\).

Current Treatment Recommendations

The Histiocyte Society developed a study group with diagnostic guidelines in 1991 and the first treatment recommendations in 1994. This was known as the HLH-94 protocol. With the collective experience gained from this protocol, HLH-2004 was developed which included revisions to the diagnostic criteria as well as treatment guidelines\(^11\). Appropriate treatment differs depending on the type of HLH, identification of a trigger and the severity of symptoms. If an infective agent is identified, anti-infective therapy may be the only treatment needed in a mild form, although this is usually not the case\(^8\).

In mild to moderate secondary HLH, corticosteroids and immunoglobulins may be sufficient\(^8,13\). However, mild cases may progress rapidly and even in patients with proven EBV-related HLH, etoposide based regimens have a better outcome than those on corticosteroids, cyclosporin A, immunoglobulins or a combination of these\(^8\). Finding an infectious cause in children older than 1 year is not sufficient to exclude primary HLH. Janka \textit{et al} advise treating all critically ill children and those less than 1 year according to HLH protocol as the risk of under treating a patient with primary HLH outweighs the risks of over treating a child with secondary HLH. HLH-2004
recommends starting all patients, regardless of evidence of genetic disease, and viral infections on multi-agent intensive therapy11.

HLH-94 recommended using a combination of steroids and etoposide, and in some patients, intrathecal methotrexate, as initial therapy for 8 weeks. Continuation therapy included dexamethasone pulsed therapy, etoposide and the introduction of cyclosporin A. This aimed to stabilise patients awaiting bone marrow transplant9.

In HLH-2004, initial therapy is intensified by including cyclosporin A from the outset11. This modification was made as some patients had died from the disease itself during the first 8 weeks of treatment11. In patients who achieve resolution after the initial phase and have no family history, treatment is stopped11.

In patients with verified primary HLH or severe, persistent or reactivated secondary HLH, continuation therapy should be continued while awaiting a bone marrow transplant11.

Reactivation is part of the clinical picture of primary HLH, and these are most likely as the intensity of therapy is reduced or a new immune response trigger occurs (e.g. viral infections, vaccinations). Intensification of therapy is recommended in these patients11.

In patients with CNS involvement, adequate systemic therapy has been shown to decrease active CNS disease11 and intrathecal therapy alone has not been particularly effective9. It is not known whether or not intrathecal therapy in addition to initial systemic therapy would be of added benefit11. As such, both HLH-94 and HLH-2004 recommend intrathecal methotrexate be reserved for patients with evidence of persistence or progression of CNS disease after 2 weeks of treatment or CNS reactivation1,9,11. HLH-2004 advises corticosteroids be added to intrathecal therapy11. As some patients develop asymptomatic CNS involvement8. As a minimum, CSF analysis is recommended at the time of onset, and during reactivation of systemic or neurological features11.

For patients with rheumatic disease and associated HLH, cyclosporin is recommended either as first line therapy or as a second line agent, if high dose corticosteroids do not achieve an adequate response8.
In MAHS, treatment depends on the clinical scenario. It is focused on treating the malignancy and possible infections in patients not yet on chemotherapy. If a child is on chemotherapy and the malignancy is controlled appropriate treatment might include an interruption of chemotherapy, along with treatment of infection, steroids and etoposide. In rapidly progressive MAHS initial therapy is aimed at controlling the acute cytokine storm with steroids and etoposide focusing on the treatment of the malignancy once the patient is more stable⁴.

Supportive therapy recommendations (HLH-2004) during the initial phase include, broad spectrum antibiotics when required, prophylactic oral co-trimoxazole, an oral antifungal, and possibly an oral antiviral agent. Immunoglobulins once every 4 weeks, and gastroprotective therapy (e.g. with Ranitidine) is also recommended¹¹. A retrospective review of adverse outcomes of patients treated at the Hospital for Sick Children by Sung et al found that 50% of deaths were due to invasive fungal infection, emphasizing the need for a low threshold in starting antifungal treatment during prolonged neutropaenia, as well as prophylactic antifungal during chemotherapy²³.

In patients with FHLH, genetic counseling and prenatal diagnosis in future pregnancies should be offered to the parents.

Prognosis

The mortality in primary HLH is high. The disease is uniformly fatal in the absence of an HLA identical sibling bone marrow transplant, although chemotherapy alone may prolong survival¹. On reviewing 122 children on the international registry Arico et al found a 5 year survival of 10% in children receiving chemotherapy alone and 66% for those who received an allogeneic bone marrow transplant²⁴. Death may occur as a result of neutropaenic sepsis, multi-organ failure or CNS disease¹³. The median survival time without treatment is 2-6 months¹⁶,⁹.

In secondary phenomena the diagnosis and control of precipitating disease entities is crucial in arresting evolving clinical disease and preventing death. In a review of paediatric cases of IAHS reported between 1979-1996 (n= 219) by Janka et al⁸, the reported mortality rate was 38% in children older than three years old, 60% in children under three, but worse yet for those under
one year (68%). Amongst the infective precipitants, bacteria-related HLH had the best prognosis (82% survival), and EBV related, the worst (22% survival).

Using the treatment guidelines in HLH-94, 119 patients were followed up by Henter et al between 1994-1998. The 3 year overall survival was 55% for HLH and 51% for patients with FHLH. Patients who survived without a bone marrow transplant were all retrospectively presumed to have had non-genetic forms of the disease. No familial cases survived without transplant. A 64% 3 year overall survival was found in patients after haemopoietic cell transplant (varying from 71% for matched related donors to 50% for unmatched, unrelated donors).
4. **Database Review**

Methods

A retrospective review of data was performed using hospital folders of all children who met the diagnostic criteria for HLH (Table I) treated at Red Cross War Memorial Children’s Hospital between March 1991 and September 2010. Cases were identified using the institutional Red Cross Oncology Registry.

All patients with Langerhans Cell Histiocytosis, malignant histiocytoses or those who did not meet the diagnostic criteria for HLH were excluded.

Prior to 1991 four patients who presented with histopathological features of a haemophagocytic syndrome were excluded, as there was no other record of serological identifiers for disease apart from cytopaenias.

Results

Fifteen patients met the criteria for the diagnosis of HLH. Eight of the patients were female, seven male. The median age at diagnosis was 27 months (10-79 months) for males and 75 months (9-225 months) for females. Henter *et al* reports a male: female ratio of 1:1.

We did not classify any of our patients as having fHLH. There were multiple reasons we felt that secondary HLH was more likely:

- None of the patients included in the study had a documented family history of HLH, and no folders contained any history of consanguity or unexplained family illnesses or deaths related to haematological problems (This does not exclude familial HLH, as it is an autosomal recessive trait).

- The age of the patients: Of the three patients were under 1 year of age at diagnosis, the age at which primary HLH is likely to present, two are alive disease free and one died of an unrelated cause. Two patients died of disease. These were both older than 12 months at the time of
diagnosis, an age they would have been unlikely to reach in the presence of severe immune deficiency.

- In most patients we had a reasonable degree of certainty that we had established a primary cause.

- In all patients with refractory disease, remission was eventually achieved by increasing the doses of steroids and/or adding a second or third agent and lengthening the eight week induction.

Ten patients are black, four of mixed ancestry and one patient is Bangladeshi. There are no Caucasians in our cohort. According to Henter et al HLH has been reported in many ethnic groups, from all continents\(^1\).

The median time to achieve a diagnosis once the children had arrived at our own institution was 13.7 days (1-38 days) compared to seven days to four weeks reported in the literature\(^15,16\). In certain cases the time to diagnosis was shortened due to referring units pre-emptively discussing the case with the Haematology/Oncology department. This undoubtedly shortened the interval to diagnosis, and the commencement of treatment.

Clinical features (see Table V)

Fever was documented in 13 (87%) patients. This is in keeping with previous studies with larger cohorts of patients (91-100%) as reviewed by Henter et al\(^1\). The actual duration of fever was only available for seven patients, and this included fever noted by parents and referral centres. The median duration of fever in these patients was 19.2 days (1-51 days). One patient was referred with a history of intermittent fever for 6 months.

Splenomegaly was documented in 10 (67%) patients compared to 97-100%\(^1\). Despite hepatomegaly not being a diagnostic criterion, it was present in 11(73%) patients compared to 94-97% in an earlier study\(^1\). Other common features were rash (7 [47%, compared to 6-65%\(^1\)]) oedema (8) and lymphadenopathy (7, [47%, compared to 17-52%\(^1\)]).
Five patients were found to have clinical CNS involvement which is lower than the 75% found in a series by Hallahan et al., although in most of these patients CNS features were not present initially but developed later in the clinical course. Signs included non-specific pain, refusal to weight bear, abnormal gait, hydrocephalus, meningism, strabismus, hypotonia, weakness and neuroregression. One patient had no clinical CNS disease but had an abnormal CSF and meningeal enhancement on CT scan. In our setting meningeal enhancement is more commonly associated with meningitis, particularly tuberculous meningitis (TBM), but the CSF findings did not support a diagnosis of TBM.

Precipitants

All of the patients included in the group were classified as having secondary HLH. Ten patients had clear precipitants. In three patients EBV was the precipitating cause (viral load log values of >4). One of these three patients also had SLE. Eleven patients had evidence of previous EBV (IgG positive or viral loads log values of 3.2 - 4). One patient had no evidence of EBV.

Other precipitants included CMV and RSV (1) in the same patient, pneumococcal endocarditis (1), Kawasaki disease (1), acute lymphoblastic leukaemia (on maintenance chemotherapy) (1), acute myeloid leukaemia (preceding diagnosis of malignancy) (1), anaplastic large cell lymphoma (preceding the diagnosis of malignancy) (1) and T- cell lymphoma (on maintenance chemotherapy) (1). No clear precipitant was found in the five remaining patients.

Investigations

14 patients had documented serum ferritin levels at diagnosis. Thirteen had levels above 500mcg/L. The highest ferritin level was recorded was 10 000 mcg/L. This is useful as Allen et al. found a ferritin level on admission of above 500mcg/L to be 100% sensitive for HLH.

All patients had multiple full blood counts. The first values demonstrating an abnormality were recorded, and in many cases results continued to deteriorate before normalizing. HLH is a progressive disease and as such biochemical changes are dynamic. All 15 patients had haemoglobin levels of less than 11.5g/dl and 12 had a haemoglobin of 9.0g/dl or less.
al reported anaemia in 89-94% of patients. Despite its sensitivity, low serum haemoglobin has a broad differential, so anaemia in isolation is not a particularly meaningful finding.

The median white cell count was $17.2 \times 10^9/L \ (1 \ - \ 63.1 \times 10^9/L)$ and five patients had values under $4\times10^9/L$. The median platelet count was $68 \times 10^9/L \ (13 \ - \ 145 \times 10^9/L)$.

Seven of 14 patients (50%) who had serum triglyceride levels tested had elevations in excess of 3mmol/L. None of the records reflected whether or not children were fasted prior to triglyceride levels being tested. Henter et al reported hypotriglyceridemia in 80-100% of patients.

Six of the 13 patients who had recorded serum fibrinogen levels were below 1.5g/L. Sensitivity is reported as 53-64% in the literature, but this test is useful as fibrinogen is usually increased in infection- often the primary differential diagnosis.

An elevated serum LDH of more than 1000 U/L is considered supportive evidence for HLH. Only 3 of 15 patients in the cohort had elevated serum LDH levels.

Nine patients had lumbar punctures performed. Histiocytes were seen in the CSF of 3 patients, but no patients had an elevated CSF protein. CSF neuroleptin levels are not available at our institution.

All patients had bone marrow biopsies at diagnosis. All bar one demonstrated haemophagocytosis with histiocytic infiltration. One patient was thought to have an immune thrombocytopenia based on a bone marrow done at five months of age, which showed an anaemia of chronic disorders and increased megakaryocytes with peripheral blood thrombocytopenia. She was admitted a second time at 14 months of age with sepsis. A second bone marrow then revealed HLH.

One patient had haemophagocytosis present on a lymph node, bone marrow and skin biopsy. She presented with superior vena caval syndrome and airway obstruction, which required intubation and ventilation. Subsequently a diagnosis of anaplastic large cell lymphoma was made. Three of the four patients who had liver biopsies demonstrated haemophagocytosis.
Blood Product Support

Twelve patients required transfusions of packed cells. The median number of transfusions per patient was 9 (1-34 transfusions). Nine patients received platelet transfusions (1-18). Two patients received cryoprecipitate and three patients fresh frozen plasma.

Treatment

Thirteen of the fifteen patients received steroid therapy. Two patients demised, one before any treatment could be commenced, and a second from an unknown cause at her referral hospital six months after discharge.

Of the thirteen, ten patients were started on dexamethasone, nine at 10 mg/m2 and one patient (who was on maintenance therapy for T-cell lymphoma at the time) was started on 5mg/m2. Two patients were treated with prednisone. One patient was started on prednisone initially but was changed to dexamethasone (10mg/m2) nine days later.

Six patients were started on etoposide and two on cyclosporine (as per the HLH 2004 protocol) together with steroid therapy.

No patients came to bone marrow transplant.

Outcomes

Ten patients are alive: six are disease free, one has refractory disease still on treatment, one with relapsed disease and two still on the induction phase of treatment. Four patients have died; one from refractory HLH, one from relapsed HLH, one from end stage HIV and one from an unknown cause. One patient was lost to follow up.

Of the three patients with relapsed disease, two have died of disease. The third patient relapsed after being treated with steroid alone and is currently on second line therapy with etoposide and cyclosporin.

Discussion

The first patient with presumed HLH was diagnosed at Red Cross in 1973.

This patient, who has been excluded from the analysis, had a post mortem diagnosis made based on a histological finding of histiocytic infiltration with haemophagocytosis in multiple organs. He was four months old at the time of his death. His older sister who was living in England, suffered from a neurodegenerative disease characterized by acute febrile episodes with thrombocytopenia. Although extensively investigated the cause of her condition had not been found but was presumed to be due to a hereditary metabolic disorder. After her brother’s death, the possibility of a haemophagocytic syndrome as an explanation for her symptoms was considered, and specimens of both siblings were re-examined. The sister died before a liver biopsy could be performed but retrospective comparison suggested that these patients may have suffered from a familial form of HLH. This diagnosis was made well before established diagnostic criteria were proposed or were in use.

The earliest patient included in this analysis was diagnosed in 1991. He retrospectively fulfilled 5 of the 8 criteria: documented fever, splenomegaly, cytopaenias, haemophagocytic histiocytosis on bone marrow and liver biopsy and raised serum triglycerides (at that time the upper limit of normal for serum triglycerides was 1.6 according to the laboratory reference range). The child was treated with steroids, cyclosporin and etoposide and responded to therapy.

Formal diagnostic criteria were first proposed in 1994 and since that time fourteen patients have been diagnosed with HLH at Red Cross Hospital (ten of these in the last two years). This is a clear reflection of the increasing awareness amongst physicians of HLH as a distinct haematological entity.

An HIV positive patient who had defaulted highly active antiretroviral therapy, developed HLH and had positive cultures for multiple infections. Frequent infections are part of the clinical course of both HIV infection and HLH and in this patient, deciding which organism was the precipitant for HLH was challenging.
Similarly other illnesses such as Kawasaki disease can cause diagnostic difficulties because of similarities in presentation. One patient with Kawasaki disease did not respond to initial treatment with IVIG. She developed bicytopaenia requiring multiple blood product transfusions and had a markedly raised LDH. Further investigations revealed hyperferritinaemia, raised triglycerides and hypoferritinaemia. A bone marrow showed features compatible with HLH25.

CNS involvement is reported in 73-75\% of patients with HLH16,17. Our cohort did not display the high incidence reported in other series. Many patients were noted to be irritable, but this was usually attributed to fever and acute illness. This may imply that more subtle signs of CNS involvement may have been missed. Two patients were noted to have developmental regression, one prior to developing HLH and the other thereafter. This may reflect that the developmental history is typically not explored sufficiently when dealing with an acutely ill child or when referring patients with more pressing problems.

The two most consistent laboratory findings amongst these patients were anaemia and hyperferritinaemia. However, the differential diagnosis for anaemia is substantially broader, making a markedly elevated serum ferritin a far more reliable indicator of a possible histiocytic disorder.

It is our institutional policy to start dexamethasone monotherapy for non-EBV related HLH as most patients respond to steroids alone. Our institutional indications for etoposide and cyclosporine co-therapy are:

- Proven EBV- related HLH
- Refractory disease
- Relapsed disease
- Suspected primary HLH
- Critically ill patients with multi-organ failure, or life threatening complications

There are multiple reasons for this policy. One is the expense of cyclosporin, as well as the cost and difficulty involved in biweekly monitoring of patients in a setting such as ours where many
patients are referred from distant areas and where space and time constraints within the hospital pose very real challenges.

Although the development of diagnostic criteria has greatly assisted paediatricians in diagnosis of HLH, there are limitations in developing countries.

Firstly, there is a bias towards laboratory criteria. Resource constraints limit the usefulness of diagnostic criteria that are very laboratory dependant. Limited facilities also affect the time taken to obtain results, make a diagnosis and commence treatment. For example, soluble IL-2 receptor levels and NK-activity tests are not available in South Africa. Patients therefore need to fulfill five of the remaining six criteria to make a diagnosis of HLH.

In addition, the disease process is dynamic. Diagnostic criteria are always limited to capturing a patient at a specific moment in time. Although a patient may not meet the criteria at first presentation, he or she may do so at a later stage as the disease progresses. Serial examinations and investigations may be needed to make the diagnosis. This may not be practical in a setting where many patients are required to travel vast distances to referral hospitals.

Diagnostic guidelines which rely more heavily on clinical criteria would assist doctors in resource constrained environments. This is the case for a newly proposed modification of the guidelines (see Table II) which, although using many of the same criteria, is also less stringent, allowing for a diagnosis of ‘suspected’ HLH.
5. **References**

26. Filipovich A H. Hemophagocytic lymphohistiocytosis (HLH) and related disorders *ASH Meeting 2009 Abstract Book Hematology* 127-131

6. **Appendix**

Addendum A: Diagnostic Criteria

Table I. Revised Diagnostic Guidelines for HLH

The diagnosis HLH can be established if one of either 1 or 2 below is fulfilled

1. A molecular diagnosis consistent with HLH
2. Five of the eight criteria below are met:
 A) Initial diagnostic criteria (to be evaluated in all patients with HLH)

 - Fever
 - Splenomegaly
 - Cytopaenia affecting 2 or more lineages
 - Hb < 9g/dL (in neonates < 10g/dL)
 - Platelets < 100x10^9/L
 - Neutrophils < 1.0x10^9/L
 - Hypertriglyceridaemia – fasting triglycerides > 3 mmol/L
 and/or
 - Hypofibrinogenemia – fibrinogen < 1.5 g/L
 - Haemophagocytosis in bone marrow, spleen or lymph nodes,
 - No evidence of malignancy

 B) New diagnostic criteria

 - Low or absent NK-cell activity (according to local laboratory reference)
 - Ferritin > 500 mcg/L
 - Soluble IL-2 receptor > 2400 U/mL

 Comments

 - If haemophagocytic activity is not proven at the time of presentation, further search for haemophagocytic activity is encouraged. If the bone marrow specimen is not conclusive, material may be obtained from other organs. Serial marrow aspirates over time may also be helpful.
 - The following findings may provide strong supportive evidence for the diagnosis: a) spinal fluid pleocytosis (mononuclear cells) and/or elevated spinal fluid protein, b) histological picture in the liver resembling chronic persistent hepatitis (biopsy).
 - Other abnormal clinical and laboratory findings consistent with the diagnosis are: cerebromeningeal symptoms, lymph node enlargement, jaundice, oedema, skin rash. Hepatic enzyme abnormalities, hypoproteinaemia, hyponatremia, VLDL increased, HDL decreased.

Henter *et al* ¹
Table II. Proposed Diagnostic Criteria, 2009

1. Molecular diagnosis of haemophagocytic lymphohistiocytosis (HLH) Or X-linked lymphoproliferative syndromes (XLP)

2. Or at least 3 of 4:
 - Fever
 - Splenomegaly
 - Cytopenias (minimum 2 cell lines reduced)
 - Hepatitis

3. And at least 1 of 4:
 - Haemophagocytosis
 - Increased ferritin
 - Increased soluble IL-2 receptor
 - Absent or very decreased NKC function

4. Other results supportive of HLH diagnosis
 - Hypertriglyceridaemia
 - Hypofibrinogenaemia
 - Hyponatraemia

Filipovich²⁶
Addendum B: Patient Cohort

Table III. Patient Data

<table>
<thead>
<tr>
<th>Patient Number</th>
<th>Gender</th>
<th>Ethnicity</th>
<th>Age at diagnosis (in months)</th>
<th>Precipitant</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male</td>
<td>Mixed ancestry</td>
<td>27</td>
<td>Pneumococcal endocarditis</td>
<td>ADF</td>
</tr>
<tr>
<td>2</td>
<td>Male</td>
<td>Black</td>
<td>15</td>
<td>AML</td>
<td>DD</td>
</tr>
<tr>
<td>3</td>
<td>Male</td>
<td>Mixed ancestry</td>
<td>79</td>
<td>ALL</td>
<td>DD</td>
</tr>
<tr>
<td>4</td>
<td>Male</td>
<td>Black</td>
<td>14</td>
<td>CMV, RSV</td>
<td>AWD</td>
</tr>
<tr>
<td>5</td>
<td>Male</td>
<td>Black</td>
<td>10</td>
<td>NCC</td>
<td>AWD</td>
</tr>
<tr>
<td>6</td>
<td>Male</td>
<td>Black</td>
<td>11</td>
<td>EBV</td>
<td>DU</td>
</tr>
<tr>
<td>7</td>
<td>Male</td>
<td>Black</td>
<td>36</td>
<td>EBV</td>
<td>ADF</td>
</tr>
<tr>
<td>8</td>
<td>Female</td>
<td>Mixed ancestry</td>
<td>20</td>
<td>NCC</td>
<td>ADF</td>
</tr>
<tr>
<td>9</td>
<td>Female</td>
<td>Black</td>
<td>68</td>
<td>NCC</td>
<td>DU</td>
</tr>
<tr>
<td>10</td>
<td>Female</td>
<td>Black</td>
<td>33</td>
<td>NCC</td>
<td>Lost</td>
</tr>
<tr>
<td>11</td>
<td>Female</td>
<td>Black</td>
<td>147</td>
<td>T cell lymphoma</td>
<td>ADF</td>
</tr>
<tr>
<td>12</td>
<td>Female</td>
<td>Bangladeshi</td>
<td>26</td>
<td>NCC</td>
<td>ADF</td>
</tr>
<tr>
<td>13</td>
<td>Female</td>
<td>Mixed ancestry</td>
<td>73</td>
<td>Kawasaki Disease</td>
<td>ADF</td>
</tr>
<tr>
<td>14</td>
<td>Female</td>
<td>Black</td>
<td>9</td>
<td>Anaplastic large cell lymphoma</td>
<td>AWD</td>
</tr>
<tr>
<td>15</td>
<td>Female</td>
<td>Black</td>
<td>225</td>
<td>SLE,EBV</td>
<td>AWD</td>
</tr>
</tbody>
</table>

NCC No clear cause, **ADF** Alive disease free, **DD** Died of disease, **AWD** Alive with disease,

DU death unrelated **Lost** Lost to follow up
Table IV. Patient Biochemical / Diagnostic Markers

<table>
<thead>
<tr>
<th>Patient Number</th>
<th>Ferritin (mcg/L)</th>
<th>Triglyceride (mmol/L)</th>
<th>Fibrinogen (g/L)</th>
<th>LDH (U/L)</th>
<th>ESR (mm/hr)</th>
<th>Hb (g/dL)</th>
<th>WBC (x10^9/L)</th>
<th>Plts (x10^9/L)</th>
<th>Histiocyte Infiltration / haemophagocytosis</th>
<th>EBV VL (log value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal values</td>
<td>M: 7-300 F: 7-120</td>
<td>M: 0.31-1.4 F: 0.38-1.4</td>
<td>M: 1.8-3.4 F: 1.9-4.2</td>
<td>150-360</td>
<td>M: 0-10 F: 0-15</td>
<td>M: 10.5-18 F: 10.5-16</td>
<td>6-10.5*</td>
<td>140-340</td>
<td>BM, CSF, LB</td>
<td>BM, CSF</td>
</tr>
<tr>
<td>Diagnostic criteria</td>
<td>>500</td>
<td>>3.0</td>
<td><1.6</td>
<td><9.0</td>
<td><5</td>
<td><100</td>
<td></td>
<td></td>
<td>BM, CSF, LB</td>
<td>BM, CSF</td>
</tr>
<tr>
<td>1</td>
<td>6502</td>
<td>4.6</td>
<td>1</td>
<td>608</td>
<td>5</td>
<td>4.5</td>
<td>18.8</td>
<td>31</td>
<td>BM</td>
<td>3.2</td>
</tr>
<tr>
<td>2</td>
<td>4193</td>
<td>-</td>
<td>0.6</td>
<td>533</td>
<td>72</td>
<td>2.9</td>
<td>2.2</td>
<td>13</td>
<td>BM, CSF, LB</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1953</td>
<td>4.2</td>
<td>1.1</td>
<td>348</td>
<td>1</td>
<td>9</td>
<td>2.6</td>
<td>39</td>
<td>BM</td>
<td>4.8</td>
</tr>
<tr>
<td>4</td>
<td>885</td>
<td>2.3</td>
<td>3.8</td>
<td>272</td>
<td>4</td>
<td>8.3</td>
<td>22.3</td>
<td>53</td>
<td>BM</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>9424</td>
<td>2.8</td>
<td>3</td>
<td>3497</td>
<td>62</td>
<td>9</td>
<td>9.9</td>
<td>141</td>
<td>BM, CSF</td>
<td>3.3</td>
</tr>
<tr>
<td>6</td>
<td>811</td>
<td>1.5</td>
<td>0.1</td>
<td>590</td>
<td>3.2</td>
<td>35.1</td>
<td>16</td>
<td>BM</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1533</td>
<td>2.3</td>
<td>6.4</td>
<td>467</td>
<td>150</td>
<td>3.6</td>
<td>26.7</td>
<td>94</td>
<td>BM</td>
<td>3.7</td>
</tr>
<tr>
<td>8</td>
<td>4047</td>
<td>6.1</td>
<td>0.3</td>
<td>1134</td>
<td>125</td>
<td>7.3</td>
<td>31.2</td>
<td>109</td>
<td>BM</td>
<td>3.7</td>
</tr>
<tr>
<td>9</td>
<td>291</td>
<td>1.4</td>
<td>2.3</td>
<td>893</td>
<td>40</td>
<td>8.6</td>
<td>3.4</td>
<td>115</td>
<td>BM</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>1.9</td>
<td>-</td>
<td>120</td>
<td>-</td>
<td>4.3</td>
<td>4.9</td>
<td>22</td>
<td>BM, LB</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>4174</td>
<td>5.5</td>
<td>2.8</td>
<td>270</td>
<td>102</td>
<td>11.3</td>
<td>1</td>
<td>31</td>
<td>BM</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>4338</td>
<td>8.4</td>
<td>2.1</td>
<td>935</td>
<td>35</td>
<td>10.4</td>
<td>15.7</td>
<td>101</td>
<td>BM</td>
<td>3.3</td>
</tr>
<tr>
<td>13</td>
<td>10000</td>
<td>3.5</td>
<td>0.8</td>
<td>4873</td>
<td>19</td>
<td>8</td>
<td>27.2</td>
<td>91</td>
<td>BM</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>4635</td>
<td>5.4</td>
<td>-</td>
<td>224</td>
<td>10</td>
<td>63.1</td>
<td>23</td>
<td>BM, LN</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>567</td>
<td>2.7</td>
<td>6.2</td>
<td>287</td>
<td>75</td>
<td>8.1</td>
<td>3.6</td>
<td>145</td>
<td>BM, CSF</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Numbers highlighted indicate abnormal values relative to the diagnostic criteria. WBC seen is the total white blood count and not the total neutrophil count. EBV VL > 4 log considered significantly elevated.

*Reference ranges variable dependant on age and gender. The range stated is for children from 9-225 months of age both male and female.
Table V. Clinical features

<table>
<thead>
<tr>
<th>No.</th>
<th>Fever (in days)</th>
<th>Hepar</th>
<th>Spleen</th>
<th>Skin</th>
<th>Oedema</th>
<th>LN</th>
<th>CNS</th>
<th>Cardiac</th>
<th>Resp</th>
<th>Haem</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>unknown</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>unknown</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>No fever</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>No fever</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>19</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>51</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>unknown</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>21</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>13</td>
<td>17</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td>unknown</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>15</td>
<td>unknown</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

Hepar Hepatomegaly, **Spleen** Splenomegaly, **Skin** involvement included rash, subcutaneous nodules or any documented skin lesions, **LN** Lymph nodes, **CNS** involvement included meningism, hydrocephalus, headache, hypertonia, twitching, abnormal gait, lethargy, hypotonia, dizziness, neuroregression, unexplained pain, strabismus, decreased level of consciousness, **Cardiac** signs included murmur, cardiac failure, **Resp** respiratory symptoms including cough, airway obstruction and unspecified respiratory illness, **Haem** haematological involvement included bleeding, petechiae, **Other features** include joint swelling, diarrhoea, conjunctivitis wasting, abdominal distention, jaundice.
Journal Requirements

Journal of Pediatric Hematology/Oncology

SCOPE
Journal of Pediatric Hematology-Oncology reports on major advances in the diagnosis and treatment of cancer and blood diseases in children. Each issue presents informative case studies and original research articles from leading clinicians and investigators worldwide.

ETHICAL/LEGAL CONSIDERATIONS
A submitted manuscript must be an original contribution not previously published (except as an abstract or a preliminary report), must not be under consideration for publication elsewhere, and, if accepted, must not be published elsewhere in similar form, in any language, without the consent of Lippincott Williams & Wilkins. Each person listed as an author is expected to have participated in the study to a significant extent. Although the editors and referees make every effort to ensure the validity of published manuscripts, the final responsibility rests with the authors, not with the Journal, its editors, or the publisher. All manuscripts must be submitted on-line through the journal’s Web site at https://jpho.edmgr.com/. See submission instructions under “On-line manuscript submission.”

Patient Anonymity and Informed Consent: It is the author's responsibility to ensure that a patient's anonymity be carefully protected and to verify that any experimental investigation with human subjects reported in the manuscript was performed with informed consent and following all the guidelines for experimental investigation with human subjects required by the institution(s) with which all the authors are affiliated. Authors should mask patients' eyes and remove patients' names from figures. Photographs with bars placed over the eyes of patients CANNOT be used in publication, unless they obtain written consent from the patients and submit written consent with the manuscript.

Conflicts of interest
Authors must state all possible conflicts of interest in the manuscript, including financial, consultant, institutional and other relationships that might lead to bias or a conflict of interest. If there is no conflict of interest, this should also be explicitly stated as none declared. All sources of funding should be acknowledged in the manuscript. All relevant conflicts of interest
and sources of funding should be included on the title page of the manuscript with the heading “Conflicts of Interest and Source of Funding:”. For example:

Conflicts of Interest and Source of Funding: A has received honoraria from Company Z. B is currently receiving a grant (#12345) from Organization Y, and is on the speaker’s bureau for Organization X – the CME organizers for Company A. For the remaining authors none were declared.

In addition, each author must complete and submit the journal’s copyright transfer agreement, which includes a section on the disclosure of potential conflicts of interest based on the recommendations of the International Committee of Medical Journal Editors, “Uniform Requirements for Manuscripts Submitted to Biomedical Journals” (www.icmje.org/update.html). The form is readily available on the manuscript submission page (http://edmgr.ovid.com/jpho/accounts/ifauth.htm) and can be completed and submitted electronically. Please note that authors may sign the copyright transfer agreement form electronically. For additional information about electronically signing this form, go to http://links.lww.com/ZUAT/A106.

Compliance with NIH and Other Research Funding Agency Accessibility Requirements: A number of research funding agencies now require or request authors to submit the post-print (the article after peer review and acceptance but not the final published article) to a repository that is accessible online by all without charge. As a service to our authors, LWW will identify to the National Library of Medicine (NLM) articles that require deposit and will transmit the post-print of an article based on research funded in whole or in part by the National Institutes of Health, Wellcome Trust, Howard Hughes Medical Institute, or other funding agencies to PubMed Central. The revised Copyright Transfer Agreement provides the mechanism.

Permissions: Authors must submit written permission from the copyright owner (usually the publisher) to use direct quotations, tables, or illustrations that have appeared in copyrighted form elsewhere, along with complete details about the source. Any permissions fees that might be required by the copyright owner are the responsibility of the authors requesting use of the borrowed material, not the responsibility of Lippincott Williams & Wilkins.

MANUSCRIPT SUBMISSION

First-time users: Please click the Register button from the main top menu and enter the requested information. On successful registration, you will be sent an e-mail indicating your user name and password. Print a copy of this information for future reference. Note: If you have received an e-mail from us with an assigned user ID and password, or if you are a repeat
user, do not register again. Just log in. Once you have an assigned ID and password, you do not have to re-register, even if your status changes (that is, author, reviewer, or editor).

Authors: Please click the login button from the menu at the top of the page and log in to the system as an Author. Submit your manuscript according to the author instructions. You will be able to track the progress of your manuscript through the system. If you experience difficulties using the system, please contact JPHO@ymail.com. Requests for help and other questions will be addressed in the order received.

Preparation of Manuscript: Manuscripts that do not adhere to the following instructions will be returned to the corresponding author for technical revision before undergoing peer review.

Title Page: Include on the title page (a) complete manuscript title; (b) authors' full names, highest academic degrees, and affiliations; (c) name and address for correspondence, including fax number, telephone number, and e-mail address; (d) address for reprints if different from that of corresponding author; and (e) all sources of support, including pharmaceutical and industry support, that require acknowledgment.

The title page must also include disclosure of funding received for this work from any of the following organizations: National Institutes of Health (NIH); Wellcome Trust; Howard Hughes Medical Institute (HHMI); and other(s).

Unstructured Abstract and Key Words: Limit the abstract to 200 words. It must be factual and comprehensive. Limit the use of abbreviations and acronyms, and avoid general statements (eg, “the significance of the results is discussed”). List three to five key words or phrases.

Text: Organize the manuscript into four main headings: Introduction, Materials and Methods, Results, and Discussion. Define abbreviations at first mention in text and in each table and figure. If a brand name is cited, supply the manufacturer’s name and address (city and state/country). All forms of support, including pharmaceutical industry support, must be acknowledged in the Acknowledgment section.

Abbreviations: For a list of standard abbreviations, consult the Council of Biology Editors Style Guide (available from the Council of Science Editors, 9650 Rockville Pike, Bethesda, MD 20814) or other standard sources. Write out the full term for each abbreviation at its first use unless it is a standard unit of measure.

References: The authors are responsible for the accuracy of the references. Key the references (double-spaced) at the end of the manuscript. Cite the references in text in the order of appearance. Cite unpublished data—such as papers submitted but not yet accepted for publication and personal communications, including e-mail communications—in parentheses in
the text. If there are more than three authors, name only the first three authors and then use et al. Refer to the List of Journals Indexed in Index Medicus for abbreviations of journal names, or access the list at http://www.nlm.nih.gov/tsd/serials/lji.html. Sample references are given below:

Journal Article

Book Chapter

Entire Book

Software

Online Journals

Database

World Wide Web

URL (Uniform Resource Locator)
8. (J. M. Kramer, K. Kramer [jmkramer@umich.edu], e-mail, March 6, 1996).

Figures: Art should be created/scanned and saved and submitted as either a TIFF (tagged image file format), an EPS (encapsulated PostScript) file, or a PPT (PowerPoint) file. Line art must have a resolution of at least 1200 dpi (dots per inch), and electronic photographs—radiographs, CT scans, and so on—and scanned images must have a resolution of at least 300 dpi. If fonts are used in the artwork, they must be converted to paths or outlines or they must be embedded in
the files. Color images must be created/scanned and saved and submitted as CMYK files. Please note that artwork generated from office suite programs such CorelDRAW and MS Word and artwork downloaded from the Internet (JPEG or GIF files) cannot be used. Cite figures consecutively on the site, and number them in the order in which they are discussed. All electronic art that cannot be successfully uploaded must be submitted on a 3½-inch high-density disk, a CD-ROM, or an Iomega Zip disk, accompanied by high-resolution laser prints of each image.

Figure Legends: Include legends for all figures. They should be brief and specific, and they should appear on a separate manuscript page after the references. Use scale markers in the image for electron micrographs, and indicate the type of stain used.

Color Figures: The journal accepts for publication color figures that will enhance an article. Authors who submit color figures will receive an estimate of the cost for color reproduction. If they decide not to pay for color reproduction, they can request that the figures be converted to black and white at no charge.

Tables: Create tables using the table creating and editing feature of your word processing software (eg, Word, WordPerfect). Do not use Excel or comparable spreadsheet programs. Group all tables in a separate file. Cite tables consecutively in the text, and number them in that order. Each table should appear on a separate sheet and should include the table title, appropriate column heads, and explanatory legends (including definitions of any abbreviations used). Do not embed tables within the body of the manuscript. They should be self-explanatory and should supplement, rather than duplicate, the material in the text.

Supplemental Digital Content

Supplemental Digital Content (SDC): Authors may submit SDC via Editorial Manager to LWW journals that enhance their article's text to be considered for online posting. SDC may include standard media such as text documents, graphs, audio, video, etc. On the Attach Files page of the submission process, please select Supplemental Audio, Video, or Data for your uploaded file as the Submission Item. If an article with SDC is accepted, our production staff will create a URL with the SDC file. The URL will be placed in the call-out within the article. SDC files are not copy-edited by LWW staff, they will be presented digitally as submitted. For a list of all available file types and detailed instructions, please visit http://links.lww.com/A142.

SDC Call-outs

Supplemental Digital Content must be cited consecutively in the text of the submitted manuscript. Citations should include the type of material submitted (Audio, Figure, Table, etc.),
be clearly labeled as "Supplemental Digital Content," include the sequential list number, and provide a description of the supplemental content. All descriptive text should be included in the call-out as it will not appear elsewhere in the article.

Example:
We performed many tests on the degrees of flexibility in the elbow (see Video, Supplemental Digital Content 1, which demonstrates elbow flexibility) and found our results inconclusive.

List of Supplemental Digital Content
A listing of Supplemental Digital Content must be submitted at the end of the manuscript file. Include the SDC number and file type of the Supplemental Digital Content. This text will be removed by our production staff and not be published.

Example:
Supplemental Digital Content 1. wmv

SDC File Requirements
All acceptable file types are permissible up to 10 MBs. For audio or video files greater than 10 MBs, authors should first query the journal office for approval. For a list of all available file types and detailed instructions, please visit http://links.lww.com/A142.

Style: In general, style should be patterned after the *American Medical Association Manual of Style* (9th edition). *Stedman’s Medical Dictionary* (27th edition) and *Merriam Webster’s Collegiate Dictionary* (10th edition) should be used as standard references. Drugs and therapeutic agents should be referred to by their accepted generic or chemical names. The name should not be abbreviated. Code numbers should be used only when a generic name is not yet available. In that case, the chemical name and a figure giving the chemical structure of the drug is required. Copyright or trade names of drugs should be capitalized and placed in parentheses after the name of the drug. Names and locations (city and state in USA; city and country outside USA) of manufacturers of drugs, supplies, or equipment cited in a manuscript are required to comply with trademark law and should be provided in parentheses. Units of measure should be expressed in the metric system, and temperatures should be expressed in degrees Celsius. Conventional units should be written as SI units as appropriate.

CLINICAL AND LABORATORY OBSERVATIONS: Clinical observations may include case histories that demonstrate novel findings or associations, important clinical responses when a larger study is not needed to address a specific issue, or a unique laboratory observation linked to clinical care and/or practice. Text should contain 2500 words or fewer, with a brief abstract of 100 words or fewer. Abstracts outline background, observation(s), and conclusions. Include 4 illustrations and/or tables or fewer and 20 references or fewer.

MEDICAL PROGRESS: Review articles for this section should highlight what is particularly new and novel in a field related to pediatric hematology/oncology. Text should contain 5000 words
or fewer and 100 references or fewer. Shorter reviews are encouraged and preferred. Authors considering submission should consult the Editor-in-Chief.

MORPHOLOGY CORNER: This section features photographs of especially interesting blood smears, bone marrow, or other tissue specimens that highlight an important aspect of hematology/oncology. Include an introduction of 200 words or fewer, the figure(s), a conclusion of 200 words or fewer, and 6 references or fewer.

RADIOLOGY CORNER: This section features photographs of scans of radiographic studies, such as plain radiographs, bone scans, computed tomography scans, magnetic resonance images, or other modalities highlighting a special feature of a topic or case. Include an introduction of 200 words or fewer, the figure(s), a conclusion of 200 words or fewer, and 6 references or fewer.

HISTORICAL INSIGHTS: Historical insights include concise descriptions or analyses of historical importance in the field of pediatric hematology/oncology. These may include personal descriptions of historical figures, important papers, and interesting occurrences that led to advancements in pediatric hematology/oncology. Photographs and artwork are welcome. Text should contain 2500 words or fewer and include 25 references or fewer. All material should be original or carry permission for publication.

LETTERS TO THE EDITOR: Letters to the editor should pertain to articles published within the *Journal of Pediatric Hematology/Oncology* or highlight important new clinical or laboratory insights. Text should contain 500 words or fewer.

BOOK REVIEWS: Reviews of books should relate to topics relevant to pediatric hematology/oncology, including immunology and transplantation. Text should contain 1000 words or fewer.

ANNOUNCEMENTS: Announcements should be submitted 6 months in advance of the event date and may include scheduled meetings, symposia, postgraduate courses, and other announcements of interest to specialists in pediatric hematology/oncology.

AFTER ACCEPTANCE

Page Proofs and Corrections: Corresponding authors will receive electronic page proofs to check the copyedited and typeset article before publication. Portable document format (PDF) files of the typeset pages and support documents (eg, reprint order form) will be sent to the corresponding author by e-mail. Complete instructions will be provided with the e-mail for downloading and printing the files and for faxing the corrected page proofs to the publisher. Those authors without an e-mail address will receive traditional page proofs. It is the author's responsibility to ensure that there are no errors in the proofs. Changes that have been made to conform to journal style will stand if they do not alter the authors' meaning. Only the most
critical changes to the accuracy of the content will be made. Changes that are stylistic or are a reworking of previously accepted material will be disallowed. The publisher reserves the right to deny any changes that do not affect the accuracy of the content. Authors may be charged for alterations to the proofs beyond those required to correct errors or to answer queries. Proofs must be checked carefully and corrections faxed within 24 to 48 hours of receipt, as requested in the cover letter accompanying the page proofs.

Reprints: Authors will receive a reprint order form and a price list with the page proofs. Reprint requests should be faxed with the corrected proofs, if possible. Reprints are normally shipped 6 to 8 weeks after publication of the issue in which the item appears. Contact the Reprint Department, Lippincott Williams & Wilkins, 351 W. Camden Street, Baltimore, MD 21201; Fax: 410.528.4434; E-mail: reprints@lww.com with any questions.
8. **Publishable Journal Article**

Serum Ferritin is a Cost Effective Laboratory Marker for Haemophagocytic Lymphohistiocytosis in the Developing World

Juli Switala, MD \(^1\), Marc Hendricks, MD \(^2\), Alan Davidson MD\(^3\)

\(^1\) Department of Paediatrics, Red Cross War Memorial Children’s Hospital, University of Cape Town, South Africa

\(^2\) Paediatric Haematology Oncology service, Red Cross War Memorial Children’s Hospital, University of Cape Town, South Africa

\(^3\) Paediatric Haematology Oncology service, Red Cross War Memorial Children’s Hospital, University of Cape Town, South Africa

Juli Switala MBChB (WITS), DCH(SA), Paediatric Registrar

Marc Hendricks MBChB (UCT), FC Paeds (SA), CMO(SA) Paediatric Oncologist

Alan Davidson MBChB (UCT), FC Paeds (SA), CMO (PAEDS)(SA), MPhil (UCT) Associate Professor and Head, Paediatric Oncologist

Correspondence to:

Juli Switala, Red Cross War Memorial Children’s Hospital, Klipfontein Road Rondebosch, Cape Town, South Africa, 7700. Tel: +27 21 658 5598 Fax: +27 21 658 5439

E mail: johnnycashbravo@yahoo.com

Text word count: 1931

Abstract word count: 169

Brief running title: Ferritin as a diagnostic tool for HLH in the developing world

Key Words: Haemophagocytic Lymphohistiocytosis, ferritin

Tables: 4

Conflict of Interest and Source of Funding

The author has no conflict of interest to declare. No funding was received.
Abstract
Haemophagocytic Lymphohistiocytosis (HLH) is a rare disease in children\(^1\), and presents many diagnostic difficulties. Without prompt intervention, the disease typically runs a rapidly fatal course. Diagnostic criteria were proposed by the Histiocyte Society in 1991 and have since been modified. Included in these criteria is a ferritin level > 500mcg/L\(^2\). Although not diagnostic, a high ferritin level is highly suggestive of HLH. Serum ferritin assays are more accessible and cost effective compared to other biochemical markers, particularly in resource limited settings.

Fifteen patients with HLH were treated at Red Cross War Memorial Children’s Hospital between 1991 and 2010. Hyperferritinaemia was a consistently reliable finding (93%) compared to either serum fibrinogen or triglycerides which were elevated in only half of the patients. It is our contention that a complete blood count and serum ferritin (in addition to clinical criteria and tissue examination of marrow and / or CSF) is probably the single most cost effective and clinically helpful means to make the diagnosis of HLH where laboratory access is limited.

Key words: haemophagocytic lymphohistiocytosis, ferritin
Introduction
Haemophagocytic Lymphohistiocytosis (HLH) is a rare disease in children with an estimated incidence of 0.12 cases per 100,000 children\(^1\). As no published series is available, the incidence in Africa is unknown. Without treatment the disease runs an often fatal course, making prompt diagnosis a priority. The diagnosis may be difficult since HLH is a diagnosis of exclusion with no pathognomonic features, and a clinical picture which may be vague and varied. For this reason it is usually not considered early as a differential diagnosis to exclude and so treatment delays are inevitable.

In order to aid diagnosis, a set of diagnostic criteria including clinical and biochemical markers was proposed by the Histiocyte Society in 1991\(^2\). These were modified in 2004 (Table I), and new recommendations have been made since but have not yet been codified (Table II). Included in these criteria is a ferritin level > 500 mcg/l\(^2\). In a study by Allen et al a ferritin level >10000 mcg/l was found to be 90% sensitive and 96% specific for HLH (98% if fever added as a criterion)\(^3\). In a series of patients including both viral- and malignancy associated HLH, Esumi et al found ferritin levels to be elevated at diagnosis, with further increases at the onset of DIC. Patients with sustained high ferritin levels after three months died, while those with decreased levels survived, suggesting that ferritin level may be a useful marker to monitor disease activity and not just as an indicator of the presence of disease\(^4\). Serum ferritin levels are more readily available in most laboratories compared to functional NKC assays or IL-2 alpha receptor serum assays, which is of particular importance in Africa where laboratory services are often limited or unavailable.

Ferritin production is up-regulated by pro-inflammatory cytokines from the NKC pathway\(^3\), the activated yet ineffective pathway in HLH. The differential diagnosis for conditions associated with hyperferritinaemia include other infections, auto-immune disease, like juvenile systemic arthritis\(^5\), and several very rare syndromes which include lysinuric protein intolerance (LPI), congenital haemochromatosis and hereditary hyperferritinaemia-cataract syndrome\(^6\). A high ferritin level alone is therefore very suggestive but not diagnostic of HLH.
Materials and Methods

Between March 1991 and September 2010 fifteen patients were diagnosed with HLH at Red Cross War Memorial Children’s Hospital. This diagnosis was made based on the HLH diagnostic criteria (Table I). These criteria were modified for our local use to include an abnormal CSF with other tissues like the bone marrow and lymph nodes. This was done because CSF changes may be present even without any clinical features or conversely CSF may appear normal, even in patients with symptomatic CNS involvement. For this reason, Janka et al recommend a lumbar puncture be done in all patients as CNS involvement is associated with a worse outcome. Also, NKC activity testing and IL2 levels are not available at our institution. Cases were identified using the institutional oncology registry, and a retrospective review of data was performed using hospital folders.

Prior to 1991 four patients had histopathological features compatible with a haemophagocytic syndrome. These patients presented prior to there being specific diagnostic recommendations, as such many of the investigations required to meet the criteria were not performed, resulting in insufficient evidence for the diagnosis to be made. These patients, as well as those with Langerhans cell histiocytosis, malignant histiocytosis or those who did not meet the diagnostic criteria for HLH were excluded from this series.

Results

Eight of the 15 patients were female and seven male. The median age at diagnosis of 27 months (10-79 months) for males and 75 months (9-225 months) for females. Three patients were under 1 year of age at diagnosis, the age when primary HLH is more likely to present. Ten patients are black, four of mixed ancestry and one patient is Bangladeshi. There are no Caucasians in our cohort. None of the patients included in the study had a documented family history of HLH, although none of the folders contained any specific history of consanguinity or unexplained family illnesses or deaths related to haematological problems. All of the patients included in the group were classified as having secondary HLH. Three patients had EBV infection (viral load log values of >4) as a precipitant.
Precipitants were varied and included CMV and RSV (1) and pneumococcal endocarditis (1), Kawasaki disease (1), SLE (1). Four patients had malignancy-associated HLH: ALL (1), AML (1), T-cell lymphoma (1), and anaplastic large cell lymphoma (1).

The median time to achieve a diagnosis once the children had arrived at our own institution was 13.7 days (1-38 days). Discussion prior to referral undoubtedly shortened the interval to diagnosis in certain cases.

Fever was documented in 13 (87%) patients. Splenomegaly was documented in 10 (67%) patients. Despite hepatomegaly not being a diagnostic criterion, it was present in 11 (73%) patients. Other common features were rash (7, [47%]), oedema (8, [54%]) and lymphadenopathy (7, [47%]). By comparison, Henter et al. found the following clinical features of patients in a literature review, a population based study and the FHL Registry, respectively: fever (91%, 100%, 93%), splenomegaly (98%, 100%, 97%), hepatomegaly (94%, 97%, no data available) rash (6%, 65%, 24%), lymphadenopathy (17%, 52%, 31%). Five patients were found to have clinical CNS involvement which is lower than the 75% found in a series by Hallahan et al., although in most of these patients CNS features were not present initially but developed later in the clinical course.

Of 14 patients who had documented serum ferritin levels, 13 met the diagnostic criterion of levels above 500mcg/L.

All patients had multiple complete blood counts. The first values demonstrating an abnormality were recorded, and in many cases results continued to deteriorate before normalising. Twelve of 15 had serum haemoglobin levels of 9.0g/dL or less. Five patients had total white blood count values under 4x10^9/L and 10 had platelet counts of less than 100x10^9/L (13 – 145x10^9/L). Seven of 14 patients who had serum triglyceride levels tested had elevations in excess of 3mM/L. Six of 13 patients had fibrinogen levels below 1.5g/L.

All patients had bone marrow biopsies at diagnosis. All bar one demonstrated haemophagocytosis with histiocytic infiltration on initial or follow up biopsy. One patient had haemophagocytosis present on a lymph node biopsy. Three of the four patients who had liver biopsies demonstrated haemophagocytosis (Table III).

Thirteen patients were commenced on steroids. Ten were started on dexamethasone, two on prednisone. One of the patients started on prednisone initially was changed to dexamethasone nine days later.

Six patients were started on etoposide and two on cyclosporin (as per the HLH 2004 protocol).
Whether or not patients received etoposide or not did not seem to have any bearing on outcome, keeping in mind that it is a small cohort of patients and that our criteria for etoposide were fairly strict (primary steroid non-responders, proven EBV associated HLH, refractory or reactivated HLH).

No patients required bone marrow transplant.

Four patients have died; one from refractory HLH, one from reactivated HLH, one from end stage HIV infection and one from an unknown cause. Ten patients are still alive; six are disease free and four are alive with disease: one with refractory disease on treatment, one with reactivated disease on second line treatment and two still on the induction phase of treatment. One patient has been lost to follow up.

Discussion

The diagnosis of HLH in resource constrained environments is made more difficult by the reliance on laboratory criteria which are often unavailable or limited. New proposed modifications to the diagnostic criteria (Table II) will help to make this less so, as they are somewhat less laboratory focused compared to the current criteria (Table I). However, the onus is still on the clinician to actively make the diagnosis, and to pursue treatment early on.

The costs related to specific investigations are often not considered by the user. Cost considerations often move local, national or institutional groups to relook at diagnostic and treatment criteria, in order to balance what is best for the patient against what is affordable for a service provider. South Africa, although arguably more fortunate than most African countries, is not exempt to these pressures and we have had to make institutional alterations to the treatment guidelines for patients with HLH because of the costs of tests (cyclosporin levels) and drugs (cyclosporin, in particular). Furthermore these “hard” costs do not take include hidden expenses of difficulty with access, transport and accommodation for poor patients, especially those required to attend outpatient clinics several times a week. Table IV has a list of the cost of the laboratory tests typically involved in the diagnosis and followed up in HLH.

Because the disease is a dynamic process, investigations may need to be repeated before criteria are met and a diagnosis is made. Laboratory facilities themselves may be limited in
some hospitals and some tests not available at all (for example, soluble IL-2 receptor levels and NKC activity).

This then raises the question as to what the most cost effective and clinically instructive strategy is. In our series, hyperferritinaemia was a consistently reliable finding (93%) compared to either serum fibrinogen or triglycerides which were elevated in only half of the patients. This finding is supported by others studies in which a ferritin level >500 mcg/l was found in 100% of patients with HLH[^3].

Taking clinical comparators into account, fever was found in 87% of patients, hepatomegaly (73%) and anaemia (67%) were common findings but the differential diagnosis for each of these, or even in combination, remains much wider than for those with significant hyperferritinaemia, particularly in our region with high rates of endemic tuberculosis and HIV infection.

It is our contention that a complete blood count and serum ferritin (in addition to clinical criteria and tissue examination of marrow with or without a CSF) is probably the single most cost effective and clinically helpful means to make the diagnosis and that serum fibrinogen and /or triglycerides are useful adjuncts, when there is still sufficient doubt about the diagnosis. A full set of investigations (complete blood count, fibrinogen, ALT, LDH, triglycerides, ferritin, bone marrow aspiration) will cost roughly $130 US per patient. Based on our small group of patients it seems reasonable to limit investigations to a complete blood count, serum ferritin and bone marrow biopsy examination (at a cost of approximately $95 US), and initially forego the others, considering that the ferritin is consistently more reliable as an indicator of disease, compared to serum triglycerides and fibrinogen; a cost saving of approximately $35 US per patient.

Rationalizing costs should be a priority in any clinical care setting, and often measures taken to limit costs that arise out of necessity, subsequently have real implications for how patients are managed in environments even where resources are not limited.

There are a number of weaknesses of our review. The small size of the cohort limits it’s power and thus the interpretation of the findings. Although we believe some of the excluded patients did have HLH, they did not meet our inclusion criteria. Our inability to do certain tests due to cost and availability may have negatively affected the size of the cohort. Resource limitation
also had an impact on what upfront treatment could be offered. Some patients responded adequately to steroids alone, which may imply an immunological phenotype which is different to those who do not. We are unable to pre-empt which patients as these more sophisticated tests are not available at our institution. Survival analysis was not possible since some of the patients were still on treatment at the time of the analysis.
References

8. Filipovich A H. Hemophagocytic lymphohistiocytosis (HLH) and related disorders *ASH Meeting 2009 Abstract Book Hematology* 127-131
Table I. Revised Diagnostic Guidelines for HLH

The diagnosis HLH can be established if one of either 1 or 2 below is fulfilled

1. A molecular diagnosis consistent with HLH

2. Five of the eight criteria below are met:
 A) Initial diagnostic criteria (to be evaluated in all patients with HLH)
 • Fever
 • Splenomegaly
 • Cytopaenia affecting 2 or more lineages
 o Hb < 9g/dL (in neonates < 10g/dL)
 o Platelets < 100x10^9/L
 o Neutrophils < 1.0x10^9/L
 • Hypertriglyceridaemia – fasting triglycerides ≥ 3 mmol/L
 and/or
 hypofibrinogenemia – fibrinogen < 1.5 g/L
 • Haemophagocytosis in bone marrow, spleen or lymph nodes,
 No evidence of malignancy

 B) New diagnostic criteria
 • Low or absent NK-cell activity (according to local laboratory reference)
 • Ferritin > 500 mcg/L
 • Soluble IL-2 receptor ≥ 2400 U/mL

Comments
• If haemophagocytic activity is not proven at the time of presentation, further search for haemophagocytic activity is encouraged. If the bone marrow specimen is not conclusive, material may be obtained from other organs. Serial marrow aspirates over time may also be helpful.
• The following findings may provide strong supportive evidence for the diagnosis: a) spinal fluid pleocytosis (mononuclear cells) and/or elevated spinal fluid protein, b) histological picture in the liver resembling chronic persistent hepatitis (biopsy).
• Other abnormal clinical and laboratory findings consistent with the diagnosis are: cerebromeningeal symptoms, lymph node enlargement, jaundice, oedema, skin rash. Hepatic enzyme abnormalities, hypoproteinemia, hyponatremia, VLDL increased, HDL decreased.

Henter et al ²
Table II. Proposed Modifications to Diagnostic Criteria, 2009

1. Molecular diagnosis of haemophagocyte lymphohistiocytosis (HLH)
 * Or X- linked lymphoproliferative syndromes (XLP)

2. Or at least 3 of 4:
 - Fever
 - Splenomegally
 - Cytopenias (minimum 2 cell lines reduced)
 - Hepatitis

3. And at least 1 of 4:
 - Haemophagocytosis
 - Increased Ferritin
 - Increased soluble IL-2 receptor
 - Absent or very decreased NKC function

4. Other results supportive of HLH diagnosis
 - Hypertriglyceridaemia
 - Hyperfibrinogemia
 - Hyponatraemia

Filipovich®
Table III. Patient results

<table>
<thead>
<tr>
<th>No</th>
<th>Age months</th>
<th>Outcome</th>
<th>Ferritin mcg/L</th>
<th>TG mM/L</th>
<th>Fib g/L</th>
<th>Hb g/dL</th>
<th>WBC x10^9/L</th>
<th>Plts x10^9/L</th>
<th>Histiocyte infiltration & Haemophagocytosis</th>
<th>EBV VL (log)</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Diagnostic criteria</td>
<td>>500</td>
<td>>3.0</td>
<td><1.6</td>
<td><9.0</td>
<td><100</td>
<td>bone marrow</td>
<td>D</td>
<td>bone marrow, CSF</td>
<td>-</td>
<td>D,E</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td>ADF</td>
<td>6502</td>
<td>4.6</td>
<td>1</td>
<td>4.5</td>
<td>18.8</td>
<td>31</td>
<td>bone marrow</td>
<td>3.2</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>DD</td>
<td>4193</td>
<td>-</td>
<td>0.6</td>
<td>2.9</td>
<td>2.2</td>
<td>13</td>
<td>bone marrow, CSF, liver biopsy</td>
<td>-</td>
<td>P,E</td>
</tr>
<tr>
<td>3</td>
<td>79</td>
<td>DD</td>
<td>1953</td>
<td>4.2</td>
<td>1.1</td>
<td>9</td>
<td>2.6</td>
<td>39</td>
<td>bone marrow</td>
<td>4.8</td>
<td>D, E</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>AWD</td>
<td>885</td>
<td>2.3</td>
<td>3.8</td>
<td>8.3</td>
<td>22.3</td>
<td>53</td>
<td>bone marrow</td>
<td>-</td>
<td>D, E</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>AWD</td>
<td>9424</td>
<td>2.8</td>
<td>3</td>
<td>9</td>
<td>9.9</td>
<td>141</td>
<td>bone marrow, CSF</td>
<td>3.3</td>
<td>D</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>DU</td>
<td>811</td>
<td>1.5</td>
<td>0.1</td>
<td>3.2</td>
<td>35.1</td>
<td>16</td>
<td>bone marrow</td>
<td>6.5</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>36</td>
<td>ADF</td>
<td>1533</td>
<td>2.3</td>
<td>6.4</td>
<td>3.6</td>
<td>26.7</td>
<td>94</td>
<td>bone marrow</td>
<td>3.7</td>
<td>D</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>ADF</td>
<td>4047</td>
<td>6.1</td>
<td>0.3</td>
<td>7.3</td>
<td>31.2</td>
<td>109</td>
<td>bone marrow</td>
<td>3.7</td>
<td>D, P</td>
</tr>
<tr>
<td>9</td>
<td>68</td>
<td>DU</td>
<td>291</td>
<td>1.4</td>
<td>2.3</td>
<td>8.6</td>
<td>3.4</td>
<td>115</td>
<td>bone marrow</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>33</td>
<td>Lost</td>
<td>-</td>
<td>1.9</td>
<td>-</td>
<td>4.3</td>
<td>4.9</td>
<td>22</td>
<td>bone marrow, liver biopsy</td>
<td>-</td>
<td>P,E</td>
</tr>
<tr>
<td>11</td>
<td>147</td>
<td>ADF</td>
<td>4174</td>
<td>5.5</td>
<td>2.8</td>
<td>11.3</td>
<td>1</td>
<td>31</td>
<td>bone marrow</td>
<td>4</td>
<td>D</td>
</tr>
<tr>
<td>12</td>
<td>26</td>
<td>ADF</td>
<td>4338</td>
<td>8.4</td>
<td>2.1</td>
<td>10.4</td>
<td>15.7</td>
<td>101</td>
<td>bone marrow</td>
<td>3.3</td>
<td>D</td>
</tr>
<tr>
<td>13</td>
<td>73</td>
<td>ADF</td>
<td>10000</td>
<td>3.5</td>
<td>0.8</td>
<td>8</td>
<td>27.2</td>
<td>91</td>
<td>bone marrow</td>
<td>4</td>
<td>D</td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td>AWD</td>
<td>4635</td>
<td>5.4</td>
<td>-</td>
<td>10</td>
<td>63.1</td>
<td>23</td>
<td>bone marrow, lymph node biopsy</td>
<td>-</td>
<td>D,C,E</td>
</tr>
<tr>
<td>15</td>
<td>225</td>
<td>AWD</td>
<td>567</td>
<td>2.7</td>
<td>6.2</td>
<td>8.1</td>
<td>3.6</td>
<td>145</td>
<td>bone marrow, CSF</td>
<td>4.5</td>
<td>D,C,E</td>
</tr>
</tbody>
</table>

ADF alive disease free, DD died of disease, AWD alive with disease, DU death unrelated, CSF cerebrospinal fluid, VL viral load, TG triglycerides, Fib Fibrinogen. D Dexamethasone, P Prednisone, E Etoposide, C Cyclosporin

Numbers highlighted indicate abnormal values relative to the diagnostic criteria. WBC seen is the total white blood count and not the total neutrophil count. EBV VL > 4 log considered significantly elevated.
Table IV. Costs of Laboratory Tests

National Health Laboratory Services, South Africa

<table>
<thead>
<tr>
<th>Test</th>
<th>Cost in SA Rands</th>
<th>Cost in US Dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Blood Count</td>
<td>107.00</td>
<td>15.98</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>36.70</td>
<td>5.45</td>
</tr>
<tr>
<td>ALT</td>
<td>55.10</td>
<td>8.20</td>
</tr>
<tr>
<td>LDH</td>
<td>55.10</td>
<td>8.20</td>
</tr>
<tr>
<td>Triglyceride</td>
<td>80.80</td>
<td>12.02</td>
</tr>
<tr>
<td>Ferritin</td>
<td>126.70</td>
<td>18.85</td>
</tr>
<tr>
<td>Bone marrow examination</td>
<td>395.82</td>
<td>58.77</td>
</tr>
<tr>
<td>TOTAL (All tests)</td>
<td>R857.22</td>
<td>$127.47</td>
</tr>
<tr>
<td>TOTAL (CBC+ Ferritin+BM)</td>
<td>R629.52</td>
<td>$93.60</td>
</tr>
<tr>
<td>TOTAL saving</td>
<td>R227.70</td>
<td>$33.87</td>
</tr>
</tbody>
</table>

9. **Proof of submission**

Submissions Being Processed for Author Juli Renate Switala, MBBCh

Page: 1 of 1 (1 total submissions) Display 10 results per page.

<table>
<thead>
<tr>
<th>Action</th>
<th>Manuscript Number</th>
<th>Title</th>
<th>Initial Date Submitted</th>
<th>Status Date</th>
<th>Current Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Serum Ferritin is a Cost Effective Laboratory Marker for Haemophagocytic Lymphohistiocytosis in the Developing World</td>
<td>Jun 20 2011 6:14PM</td>
<td>Submitted to Journal</td>
<td>Submitted to Journal</td>
</tr>
</tbody>
</table>

Action Links