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GENERAL INTRODUCTION 

A major unresolved problem in biological oceanography is that of estimating the 

magnitude, variability and regulation of vertical organic carbon fluxes, which drive 

C02 draw-down from the atmosphere. The exchange of CO2 from surface waters 

into the deep ocean is the link between the atmospheric and oceanic carbon 

cycles, which may ameliorate current increases in atmospheric CO2. However, 

our understanding of the oceanic carbon cycle and its response to physical and 

biological forcing remains incomplete, although it is currently (1995) estimated 

that the oceans are taking up approximately 2 Gigatonnes (Gt) of anthropogenic 

carbon per year (Fasham et aI., 2001). 

Longhurst et aI., (1995) recognised the importance of the "biological pump" in driving 

oceanic CO2 uptake and attempted to quantify this by making global estimates of 

primary production based on CZCS-derived fields of surface chlorophyll-a 

distribution. However, it is not total primary production which is the key to the 

efficiency of the biological pump, but rather that fraction of total production which has 

the potential to sink rapidly, and is therefore exported below the seasonal 

thermocline. Coupled physical-biogeochemical models (e.g. Falkowski et aI., 1998; 

Fasham and Evans, 2000) and more recent models such as the Hadley Centre 

Ocean Carbon Cycle (HadOCC) model have been used to derive estimates of 

"export" production on the basis of modelling the losses of particulate carbon and 

nutrients into the deeper ocean (Palmer and Totterdell, 2001). What sets the export 

term in this model is the nitrate flux, which proves to be most sensitive to wind stress 

and the mixed layer depth. In a sensitivity analysis, Palmer and Totterdell (2001) 

predicted that where mixed depth is increased, increasing the availability of nitrate 

fuels increased productivity, as long as it is not offset by reducing the light field. 

Nevertheless, Palmer and Totterdell (2001) conclude that for the mid-latitude 

Southern Ocean, changes to the mixed layer depth would not dramatically alter 

productivity because macro-nutrients are non-limiting. Indeed, in a box-model 
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simulation of carbon and nitrogen cycling in the ocean, Popova et al. (2000) consider 

changes to both the mixed layer depth and the degree of iron fertilisation on 

phytoplankton growth rates in the Southern Ocean, and the impact this might have 

on ocean-atmosphere regulation of CO2 via the biological pump. They conclude that 

only a small (15ppm) reduction in atmospheric pC02 would be possible based on the 

combined effects of iron fertilisation and changes in the mixed layer depth. Such 

modelled data are however often constrained by the paucity of experimental data 

available to parameterise the models. More experimental, biogeochemical data are 

needed to test some of these hypotheses and in particular, to put real numerical 

values on the magnitude of export production. The recent SOIREE in situ iron­

enrichment experiment in the Southern Ocean attempted to provide such data and 

succeeded in many respects (Boyd and Law, 2001 ). Their observations 

demonstrated the positive impact of Fe fertilisation on phytoplankton productivity, 

and a 10% draw-down of surface CO2, but could not demonstrate significant 

particulate export. 

Direct measurements of export production in the Southern Ocean have been made 

by sediment trap (e.g. Honjo et aI., 2000) and by thorium isotopes (e.g. Cochran et 

aI., 2000) and indirectly by making the distinction between "new" and "regenerated" 

production (Eppley and Peterson, 1979). It is the latter technique which has been 

adopted in this thesis to make estimates of export production and to unravel aspects 

of nitrogen cycling by phytoplankton in the SW Indian sector of the Southern Ocean. 

7 

Univ
ers

ity
 of

 C
ap

e T
ow

n



Regulation of new and regenerated production 

Nitrogenous nutrients utilised by phytoplankton are supplied in various chemical 

forms from a variety of sources. Dugdale and Goering (1967) suggested the 

partitioning of primary production according to the source and oxidation state of the 

nitrogen substance utilised. New nutrient input into the euphotic zone (usually N03) 

are derived from the deep sea, the land and the atmosphere (e.g. N2 fixation), while 

regenerated nutrients (such as ammonium and urea) originate from microbial and 

metazoan recycling within the euphotic zone. 

The new production fraction is described by the f-ratio (new production/total 

production) (Eppley and Peterson, 1979) and over appropriately long time and space 

scales is equivalent to the proportion of production available for export. At the same 

time scale, this is quantitatively equivalent to the re-supply of new nutrients to the 

euphotic zone. Nitrogen flux into surface waters must ultimately be balanced by 

corresponding losses, therefore nitrate uptake should yield an indirect estimate of 

downward carbon flux when Redfield ratio stoichiometry is inferred (Eppley and 

Peterson, 1979; Minas et aI., 1986). 

Nitrogen partitioning by phytoplankton and its effect on planktonic community 

structure has, a sound observational basis (Probyn, 1992), and the interactions 

between nitrogenous resource, Fe and light can now be readily observed and 

modelled (Coale et aI., 1996; Babin et aI., 1996; Flynn et aI., 1997; Sunda and 

Huntsman, 1997; Armstrong, 1999; Boyd et aI., 2000; Hannon et aI., 2001). The 

conventional wisdom stemming from such work dictates that in well-lit, nutrient (N03, 

Si, Fe) replete systems, fast-growing diatom-dominated communities are typically 

favoured, leading to a high f-ratio (e.g. f>0.5), high export production and a strong 

CO2 "sink". This is particularly true when production and grazing become temporarily 

uncoupled (Michaels and Silver, 1988 cited Dugdale and Wilkerson, 1991). By 

contrast, in nutrient rather than light limited oceanic regions (e.g. sub-tropical gyres), 

the "microbial loop" prevails, dominated by small organisms «20J.!m) with low or 

negligible sinking rates (Hagstrom et aI., 1988 cited Detmer and Bathmann, 1997), 
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and low f-ratios (Probyn and Painting, 1995). In such ecosystems production is 

based primarily on regenerated nutrients and only weak biological CO2 draw-down is 

observed, or there is a net CO2 source to the atmosphere (for review see Karl, 

1999). 

Despite the domination of the nitrogenous nutrient pool by nitrate (96%) in sub­

Antarctic and Antarctic waters, ammonium and urea are the principle nitrogen 

resources utilised, and chlorophyll biomass and primary productivity fails to reach 

levels appropriate to the nutrient status of the system (Dugdale and Wilkerson, 

1991; Bathmann et aI., 2000). This long-standing puzzle has become known as 

the high nutrient low chlorophyll (HNLC) "paradox" (Cullen, 1991). A particular 

feature of HNLC systems is that small eukaryote monads, flagellates and 

picophytoplankton dominate to the virtual exclusion of diatoms (Detmer and 

Bathmann, 1997; Karl, 1999). This has profound implications for the global CO2 

budget in which diatoms playa pivotal role (Smetacek, 1998). 

Explanations proposed to account for these observations in the Southern Ocean and 

elsewhere have included grazing pressure by microzooplankton (Froneman and 

Perissinotto, 1996a,b), mesozooplankton and krill (Razouls et aI., 1998, Atkinson et 

aI., 2001), light limitation as a function of seasonality, deep mixing and critical depth 

relationships (Priddle et aI., 1986; Smith and Nelson, 1990; Mitchell et aI., 1991; 

Nelson and Smith, 1991), low temperatures (Jaques, 1983), and more recently 

limitation of algal growth by iron availability, for which the arguments are now 

convincing (Martin and Fitzwater, 1988; Martin et aI., 1989, 1990a,b, 1991; De Baar et 

aI., 1995; Boyd et aI., 2000; Boyd and Law, 2001). In Addition, the oceanic N:P and 

N:Si nutrient ratios are also important determinants of specific phytoplankton 

assemblages and species succession which govern biologically driven ocean­

atmosphere exchanges of CO2 (Egge and Aksnes, 1992; Laubscher et al. 1993, 

Sommer 1994a,b; Tyrrell and Law,1997). Nevertheless, it is the extent of vertical 

physical mixing and advective processes which regulate macronutrient and iron 

supply, the critical depth and light environment as well as water column stability. 
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It is not surprising therefore that major currents, fronts, eddies and many meso-scale 

features represent highly dynamic boundaries. These are frequently characterised 

by significant variability in primary production, which is often diatom dominated over 

interannual, decadal and seasonal time scales (e.g. Laubscher et aI., 1993; Dower 

and Lucas, 1993; Read and Pollard, 1993; Read et aI., 2000a). 

The area south of Africa is particularly dynamic. It is characterised by the close 

juxtaposition of the Agulhas Current, the Agulhas Return Current (ARC), the 

Subtropical Front (STF) and the Subantarctic Front (SAF), for review see Belkin and 

Gordon, (1996). Recent work has shown that the prominent topography in the 

vicinity of the SW Indian Ridge steers geostrophic flow in this region and that this 

has a considerable impact on biogeochemical zonation (Pollard and Read, 2001; 

Pollard et aI., 2001). Collectively this creates one of the most energetic and 

important hydrographic regions of the world oceans (Lutjeharms and Ansorge, 

2001). It is also a region of complex biogeochemistry, phytoplankton distribution and 

productivity associated with the transition from oligotrophic and nutrient 

impoverished subtropical gyres to nutrient replete subantarctic domains (Barange et 

aI., 1998; Bathmann et aI., 2000; Read et aI., 2000a). 

The importance of this survey from 31 0S 440E to the Prince Edward Islands and 

following the Madagascar and SW Indian ridge is that it seeks to determine the rates 

of new (export) and regenerated production in this largely unknown region of the 

ocean. Secondly, by making a careful study of the physical and biogeochemical 

environment, it is hoped that some key features will emerge which account for the 

observed distribution of phytoplankton and its productivity. Key questions were: 

• What are the rates of new and regenerated production and what therefore is the 

potential for significant particulate export? 
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Chapter 1 

PHYSICAL AND BIOGEOCHEMICAL CONTROLS ON 

PHYTOPLANKTON PRODUCTION IN THE SOUTHERN OCEAN: A 

REVIEW 

1.1 Fronts in the Open Ocean 

The Southern Ocean is divided into zonal, circum-global bands of quasiuniform 

water masses, separated by a series of well-defined fronts (for reviews see 

Belkin and Gordon, 1996, Pollard et aI., 2001). Primary control on the north-south 

zonation of the Southern Ocean is exerted by the strong winds of the roaring 

forties, which drive the transport of the Antarctic Circumpolar Current (ACC). In 

order to maintain geostrophic balance within the currents, isopycnals must slope 

upwards to the south. This tends to occur in narrow frontal bands. At each front, 

the sloping isopycnals expose different water types to the surface layer, or 

remove them from it, resulting in a different stratification and surface zonation. 

This often has profound consequences for production and biological structure of 

ecosystems (Pollard et aI., 2001). Fronts do not only represent physical 

boundaries for biological communities, but may in themselves, constitute specific 

areas of enhanced biological activity (Jacques, 1989). 

The first persistent frontal system to the south of Africa is the Agulhas Front (AF), 

formed by the Agulhas Return Current (ARC). The ARC lies between longitudes 

13.5°E and 25°E. It has a preferential retroflection at 200E and a secondary 

retroflection at 16°E (Lutjeharms and van Ballegooyen, 1988). The Agulhas Front 

of the ARC has steeper density gradients than any other front in the Southern 

Ocean. Its' average width of only 96km covers a temperature range of 21°_ 

15. rc, an average gradient of 0.1 02°C.km-1 (Lutjeharms and Valentine, 1984). 

The ARC is optically clear, warm (18°-25°C) and nutrient depleted with an 
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• Within the Southern Ocean, why is phytoplankton production, and particularly 

diatom production, lower than anticipated as well as being fuelled primarily by 

reduced nitrogen assimilation despite high concentrations of nitrate? 

• What accounts for the common observation of elevated chlorophyll 

concentrations associated with the STF (Dower and Lucas, 1993, Laubscher et 

aI., 1993; Weeks and Shillington, 1994,1996; Barange at aI., 1998), when 

immediately to the south, nutrient concentrations appear to be more favourable? 

• What are the mechanisms responsible for enhanced productivity and 

phytoplankton biomass in the region of the Prince Edward Archipelago? 

• And finally, do these areas of enhanced productivity contribute significantly as 

sinks for atmospheric CO2 in Southern Ocean waters? 

This thesis addresses these questions and hopes to make a contribution to our 

growing knowledge of export production and phytoplankton regulation of global CO2 

budgets for this region. Particular attention has been given to the density and 

nutrient structure along the respective transects in order to interpret the observed 

chlorophyll distribution, nitrogen (N03, NH4 and urea) uptake rates and export 

production. 
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observed southern limit of 40° 01 'S (Lutjeharms and Valentine, 1984). It can, at 

times compress closely onto the STF over distances of -500km, occasionally 

making the two features difficult to distinguish (Read and Pollard, 1993). 

Because of the intermittent proximity of the ARC to the STF, the region can be 

marked by strong temperature gradients of up to 1°C.Km-1. 

Further south is the Subtropical Front (STF), also known as the Subtropical 

Convergence Zone, with pronounced horizontal gradients in temperature and 

salinity. Directly south of Africa, the STF is a shallow feature of little more than 300m 

in depth although it's downstream spatial shape is determined by the bottom 

topography (Weeks and Shillington, 1996). It forms the Poleward boundary of warm, 

salty, surface waters of the South Atlantic subtropical gyre, and the conventional 

northern boundary of the Southern Ocean (figure. 1 ). It is the result of cold nutrient­

rich Subantarctic Surface Water (SAASW), subducting northwards beneath saline 

nutrient poor Subtropical Surface Water (SSW), which is thermally enhanced by 

Agulhas current water (Sverdrup et aI., 1942; Lutjeharms et aI., 1985). 

Lutjeharms and Valentine (1984) note that its location ranges from 40° 35' S to 42° 

36' S, with a mean position of 41 ° 40' S, although there is considerable variability in 

it's N-S latitudinal position. Whitworth and Nowlin (1987) describe the STF as a 

surface feature characterised by a southward temperature decrease of 4°C, from 

14°C to 10°C and having a southward salinity gradient of 34.9%0 to 34.4%0. 

Lutjeharms and Valentine (1984) give the mean central temperature of the STF as 

14.2°C within a range across the STF of 17.9°C to 10.6°C, a temperature drop of 

7.3°C. Salinity decreases are variable but fall by at least 0.5%0 in the range 35.5-

35.6%0 to 34.3-34.6%0 (Lutjeharms, 1985, Lutjeharms et aI., 1993). 

Poleward of the STF is the Subantarctic Front (SAF) and Antarctic Polar Front 

(APF), which marks the transition between Subantarctic and Antarctic water masses 

(figure. 1 ). In the meridional region south of Africa, the SAF was described by 

Lutjeharms et al. (1981 cited Lutjeharms and Valentine, 1984), where it manifested 
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itself as a subsurface temperature gradient lying between 3-5°C and about 4km 

north of the Antarctic Polar Front. Definitions of the SAF vary considerably between 

authors and the front's geographical location. Whitworth and Nowlin (1987) describe 

the SAF as the northern border of the Polar Frontal Zone, which marks the start of 

cross-frontal sinking of Antarctic Intermediate Water below 500m. Park et al. (1993) 

define subsurface expressions of the SAF at 200m with temperature and salinity 

ranges of 4-8°C and 34.1-34.5. In the Southwest Indian Ocean sector, Read and 

Pollard (1993) found no evidence of the SAF and concluded that it was merged with 

the APF into a unique, single structure at 48° S. 

1.2 Phytoplankton and the Factors Controlling Primary Production 

in the Open Ocean 

Phytoplankton, are free-Hoating, unicellular eucaryotes, which may account for 

up to 90% of the total plant production on earth (Branch and Branch, 1981). Their 

growth is dependant only on sunlight and the supply of inorganic compounds of 

carbon, nitrogen, phosphorus, and a certain other elements, such as Si and Fe 

(Tett and Edwards, 1984). 

Because of their important biogeochemical influence on the deep ocean CO2 

reservoir, phytoplankton play an important role in both short and long term 

climate change (Sarmiento and Bender 1994). 

A summary of the major impacts of phytoplankton on climate change is as 

follows -

1) Phytoplankton growth provides a sink for CO2. 

2) The biological pump maintains a pC02 gradient and prevents the atmosphere 

from reaching an equilibrium with the deep ocean. 

3) Synthesis of calcium carbonate coccolithophores removes dissolved 

bicarbonate, reduces ocean pH and produces a significant difference in the 

partitioning of C02 between the ocean and the atmosphere (Holligan and 

Robertson, 1996). 
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4) Both light absorption by chlorophyll and light scattering by coccoliths reduce 

light and heat penetration into the deeper ocean (Morel and Antoine, 1994; 

Holligan et aI., 1993) which alters the ability of the ocean to accept and retain 

heat (Sathyendranath et aI., 1991). 

5) The generation of dimethyl sulphide (OMS) by phytoplankton leads to the 

release of sulphur compounds to the atmosphere, cloud formation and increased 

albedo (Charlson et aI., 1987). Note that this effect is 20x greater in respect of 

coccolithophores relative to diatoms (Keller et aI., 1989). 

The rate at which phytoplankton cells and other particles sink, or are consumed, 

is largely size-dependant (Probyn, 1992; Hansen et aI., 1994 cited Froneman 

and Perissinotto, 1996a) phytoplankton can therefore be divided into three main 

size categories based on their cell diameters. 

Microphytoplankton (200-20lJm) consist mainly of diatoms, while 

nanophytoplankton (20-2IJm) and picophytoplankton «2IJm) consist mainly of 

small-celled flagellates. For the purposes of this thesis, the term 'diatoms' is 

synonymous with, and may be used in place of ' micro phytoplankton'. 

There is an immense literature dealing with phytoplankton and the factors 

governing their physiology and ecology (for example see: Hart 1934; Bridigare et 

aI., 1986; Holm-Hansen et aI., 1977; Tranter, 1982; Witek et aI., 1982; Jacques, 

1983; Tett and Edwards, 1984; Tilzer et aI., 1985; Martin et aI., 1990; Cullen, 

1991; Dugdale and Wilkerson, 1991; Nelson and Smith, 1991; De Baar et aI., 

1995; Falkowski and Raven, 1997, Bathmann,1998, Bracher et aI., 1999, Smith 

et aI., 2000, Sharples et aI., 2001). 

In brief summary, phytoplankton production ultimately depends on the 

physiological responses of the algae to the sometimes extreme conditions under 

which they live. Part of what makes the study of phytoplankton ecology and 

productivity so difficult is the diversity of phytoplankton assemblages. Differences 
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in species, sizes, the plasticity of their ultra-structure, bulk biochemical 

composition, pigment type and content, nutrient preferences, assimilation rates 

and rates of photosynthesis all contribute to the unpredictability of their 

responses to various physical, chemical and biological conditions. 

The Southern Ocean is a physically complex environment in which to investigate 

phytoplankton distributions. In contrast to most open ocean surface waters, the 

Southern Ocean is characterised by a unique set of environmental conditions: 

extreme seasonal variations in irradiance, consistently low temperatures 

(approximately 4.5 to 1.8°C), small to negligible vertical density gradients, and 

high nutrient concentrations (5.5 times higher than the global average (Sharp, 

1983 cited Koike et aI., 1986). 

South of the APF, these high nutrient concentrations are maintained by large­

scale upwelling and turbulent mixing in the upper water column (Koike et al. 

1986). Despite the permanently high nutrient concentrations, primary production 

in the Southern Ocean is unexpectedly low (Holm-Hansen et aI., 1977; Allanson 

and Parker, 1983), and nevertheless supports large numbers of secondary and 

tertiary producers. This scenario has become known as the high nutrient low 

chlorophyll (HNLC) "paradox" (Cullen, 1991). There are other areas of the ocean 

where relatively low primary production is observed in nutrient rich surface water, 

most notably the eastern equatorial Pacific, and the central north Pacific 

(Dugdale and Wilkerson, 1991 for review see Karl, 1999). Lack of biomass over 

any season, N03 concentrations that are never exhausted, and low primary 

production rates compared to eutrophic regions are characteristics of these 

HNLC regions (e.g. Holm-Hansen, 1985, De Baar et ai, 1990, Chavez and 

Barber, 1987, Miller et aI., 1988 cited Dugdale and Wilkerson, 1991 Wheeler and 

Kokkinakis, 1990). However, the Southern Ocean differs from these other 

regions in a way that makes it an area of potentially great importance for the 

global ocean-atmosphere carbon balance. This is because convergent zones at 

the APF and STF are the only places in the ocean where globally Significant 
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quantities of surface water down-well to aphotic depths, while still containing high 

concentrations of pre-formed nutrients (Belkin and Gordon, 1996). It has been 

suggested that utilisation of these "excess nutrients" might have a substantial 

impact on the regulation of atmospheric greenhouse gas CO2 concentrations 

(Nelson and Smith, 1991). 

Furthermore, there are regions in the Southern Ocean, which exhibit high 

seasonal rates of primary production. These areas are considerably important in 

terms of their potential as significant atmospheric CO2 sinks on a global scale. 

Regions of enhanced production are usually associated with oceanic frontal 

regions (Allanson et aI., 1981; Bridigare et aI., 1986; Lutjeharms et aI., 1985; 

Laubscher et aI., 1993; Dower and Lucas, 1993) or continental and sub-Antarctic 

island margins (Boden, 1988; Perissinotto and Duncombe Rae, 1990; 

Perissinotto et aI., 1990,1992). A further exception is the restricted area of the 

marginal ice-edge zone (Smith and Nelson, 1985, 1990; Waldron et aI., 1995; 

Bury et aI., 1995; Rees et aI., 1998; Smith et aI., 2000). 

Although no single factor governing phytoplankton production has been accepted 

conclusively, the search for underlying causal factors can begin profitably with 

understanding the factors limiting primary production. There are many physical, 

chemical and biological explanations proposed to account for the observations in 

the Southern Ocean and elsewhere. Zooplankton grazing, temperature, solar 

radiation, water column stability and the availability of macro- and micronutrients 

are considered to be the more important. Each of these factors will be considered 

in turn. 

Light and Primary Production 

The amount of photosynthetically available radiation (PAR) arriving at the sea 

surface is clearly dependent upon latitudinal, seasonal and diurnal effects while 

underwater irradiance is controlled by its attenuation co-e'fficient in sea-water 

(kd). Light penetration in the sea determined from kd nominally defines the 
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euphotic layer (where light is sufficient to support growth and reproduction by 

photosynthesis), which of course is related to the surface mixed layer (SML) and 

the seasonal thermocline boundary, because of the heat input associated with 

light. 

However, wind stress has a profound effect on the deepening or shallowing of 

the SML and therefore controls the extent to which phytoplankton cells are mixed 

through the euphotic zone into the aphotic layer. This concept is central to the 

critical depth models of photosynthesis (Nelson and Smith, 1991). Variations in 

available light intensity, duration and spectra are also important factors, which 

influence phytoplankton growth (e.g. Morel, 1991; Falkowski and Raven, 1997). 

Total incident radiation is a function of latitude, with higher latitudes experiencing 

24 hours of daylight in summer, albeit at lower average insolation than equatorial 

latitudes (Knox, 1994). During the austral summer months, total daily light flux at 

higher latitudes can therefore sometimes exceed that of tropical latitudes (Holm­

Hansen et aI., 1977). Superimposed on the annual patterns of incident radiation, 

are a number of other factors, which influence the availability of light energy to 

phytoplankton in the Southern Ocean. Firstly the height of the sun above the 

horizon is lower for a greater part of the year than in temperate and tropical 

latitudes. This low angle of the incidence of the sun's rays increases the 

reflection from the sea surface and reduces the period of effective submarine 

light per day (Knox, 1994). Secondly, the Southern Ocean is particularly stormy 

affecting surface reflection, as well as producing bubbles, which considerably 

reduce transmission through the surface waters (Powell and Clarke, 1936 cited 

Knox, 1994; Dera and Gordan, 1968 cited Lewis et aI., 1984). A combination of 

low irradiance and high albedo makes it likely that the underwater light field in the 

Southern Ocean is characterised by low light values which are further diminished 

by particle backscattering (Strass et ai, 2001; Bracher and Tilzer, 2001). 
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The key question then is to ask if phytoplankton of the Southern Ocean are light 

limited or whether they are photo-adapted to low ambient irradiance? 

Part of the answer to this question depends on light attenuation (kd). the mixed 

layer depth and the critical depth (Ocr). which has been addressed for the 

Southern Ocean by Nelson and Smith (1991). 

The compensation depth (Dc) is defined as the depth at which a cell's respiration 

during 24 hours exactly consumes the organic material fixed by photosynthesis 

during the same period (Le. Pc=Rc), and this can be used to set the lower limit of 

the euphotic zone (figure.2) which varies from 20-100m over much of the 

Southern Ocean (Jaques, 1983; Knox, 1994). 

The depth at which photosynthesis throughout the water column is balanced by 

phytoplankton respiration throughout the water column (Pw=Rw) is termed the 

critical depth, Ocr (figure.2). Sverdrup (1953) demonstrated theoretically that 

when the critical depth is less than the depth of mixing, no net production takes 

place (Le. Rw>Pw over 24 hours). Net production (Pw>Rw) only occurs when the 

critical depth lies below the depth of mixing. 

The Southern Ocean is well known for its rough weather and turbulent seas. 

Wind stress is frequently so great that a homogeneous (isothermal and isohaline) 

water column develops which reaches depths of 50-100m (Nelson and Srnith, 

1991; Knox, 1994). In these circumstances, phytoplankton cells, being without 

independent powers of movement, are mixed well below the critical depth where 

gains by photosynthesis are lost in respiration. This may hinder the development 

of blooms and contribute to the low primary productivity of Antarctic waters. 

There is now large-scale spatial information to suggest that high winds are 

coincident with low phytoplankton biomass. Satellite-derived composite 

distributions of annual mean winds show a zone of high wind stress in the Indian 

Ocean. This area is also one from which ocean colour images from Nimbus 7 
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coastal zone colour scanner (CZCS) show virtually no chlorophyll (Nelson and 

Smith,1991). 

However, it has been argued that the critical depth in the Southern Ocean is 

generally deeper than the usual summer mixed layer (>100m), and that 

Sverdrup's hypothesis cannot explain the low phytoplankton production of these 

waters (Jacques, 1983,1989; Priddle et aI., 1986; EI Sayed, 1988 cited 

Perissinotto et aI., 1990; Figueiras et aI., 1999). Nelson and Smith (1991) 

reformulated Sverdrup's equation for the critical depth by substituting terms that 

are more consistent with present-day optical and biological data, with the 

purpose of eliminating or significantly reducing the source of error. Using the 

reformulated equations, they found that in winter the entire region seemed to be 

mixed beyond the critical depth, and in late spring through summer, the 

irradiance mixing regime appeared to be favourable for the initiation and early 

development of a phytoplankton bloom. However, as chlorophyll increases in the 

surface layer, the critical depth shoals, making any bloom self-limiting. This self­

limitation may keep chlorophyll levels below -1 mg.m-3. 

It has been reported that phytoplankton blooms in the Southern Ocean occur 

predominantly in conjunction with a shallow mixed layer (Holm-Hansen and 

Foster, 1981 cited Perissinotto et aI., 1990; Mitchell and Holm-Hansen, 1991). An 

increase in water stability may help maintain phytoplankton in the euphotic zone, 

thus promoting growth and subsequent biomass accumulation (Marra and 

Boardman, 1984 cited Bridigare et aI., 1986). This is thought to occur at the ice 

edge, at the STF and surrounding sUb-Antarctic islands, where local stabilisation 

of the upper water diminishes to significantly less than the critical depth and 

permits high phytoplankton biomass to accumulate (Allanson et aI., 1981; 

Lutjeharms et aI., 1985; Nelson and Smith, 1991; Dower and Lucas, 1993). 

However, given that phytoplankton have evolved with the development of the 

Southern Ocean over the last 15million years, it would not be unreasonable to 
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expect that phytoplankton growth ought to be conditioned to a low light regime 

through adaptive physiological responses. When physiological parameters of P. 

vs. E. curves are examined (Sakshuag et aI., 1997) Southern Ocean 

phytoplankton can show high degrees of photo-adaptation to low ambient 

underwater irradiance (e.g. Dower and Lucas, 1993; Dower et aI., 1996; Bracher 

et aI., 1999; Strass et aI., 2001) 

In experiments on Antarctic diatoms, increased light utilisation was found in 

environments characterised by fluctuating light conditions. This is likely to be an 

adaptation of the microphytoplankton in overcoming such constraints and 

enabling them to attain a higher than expected productivity (Knox, 1994). In the 

APF region of the south Atlantic sector of the Southern Ocean, Bracher et aI., 

(1999) determined that light saturation (Ek) at the 1 % light depth ranged from 8-

139 mg-at.q m,2 S'1 and at the surface, was higher; 34-246 mg-at.q m,2 S'1. 

Consistently low Ek values (8-83 mg-at.q m-2 
S-1) we re only evident within ACC 

waters. These values are nevertheless considerably lower than are typical for 

phytoplankton in temperate regions indicating a degree of photo-adaptation to a 

low light environment. 

Temperature and Primary Production 

The temperature dependence of light-saturated photosynthesis has been well 

established (e.g. Knox, 1994) and is expected because the photosynthetic 

capacity is controlled by enzymatic processes. The metabolic machinery of a 

phytoplankton cell is complex, and there is no reason to suppose that its' 

component parts could adjust to changes in irradiance and temperature at the 

same rate (Lewis et aI., 1984). Results from Tilzer and Dubinsky (1987) suggest 

that under the nutrient-saturated conditions of the Antarctic Ocean, the 

temperature dependence of both photosynthesis and algal respiration are key 

factors in controlling phytoplankton productivity. Their studies show that when 

energy supply is low due to short days and/or deep mixing, mass balance of 

phytoplankton is mainly controlled by respiration rates, which are more 
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temperature sensitive than photosynthesis (Tilzer and Dubinsky, 1987). Low 

temperatures enable the algae to efficiently conserve carbon and stored energy. 

However, if the temperature were to rise even slightly, the maintenance of 

biomass would no longer be possible due to increased respiratory losses. 

Despite the adaptations of Antarctic phytoplankton to variable light conditions 

and low light intensities, the photosynthetic capacity (photosynthesis per Chl-a at 

optimum light) and maximum quantum yield of photosynthesis (moles C02 

assimilated per mole light quantum absorbed) are on average smaller by a factor 

of 7 and 4 respectively, than in phytoplankton at lower latitudes. This suggests 

that in Antarctic waters, constraints on the efficiency of photosynthetic energy 

conversion imposed by low temperature take over as rate limiting steps in 

otherwise light limited situations, and ultimately restrict phytoplankton productivity 

(Tilzer et aI., 1985). 

Macronutrients and Phytoplankton Production 

The mechanisms of supply and the kinetics of utilisation of dissolved nitrogen are 

believed to playa critical role in determining the productivity, size structure and 

species succession of phytoplankton communities in much of the world's oceans 

(Dugdale and Goering, 1967; Carpenter and Capone, 1983; Probyn 1992; Bronk 

et al; 1994; Harrison et aI., 1996; Karl 1999; Tremblay et aI., 2000). 

Following the pioneering work of Dugdale and Goering (1967), it became 

possible to partition primary production into "new" and "regenerated" production 

according to the source and oxidation state of the nitrogen resource. This 

partition is based on whether the nitrogen is supplied from within the euphotic 

zone (regenerated production), or from outside the euphotic zone (new 

production). Regenerated production is based on the uptake of reduced 

nitrogenous compounds; ammonium (NH4)' urea, or dissolved organic nitrogen 

(DON). Their uptake is related to the rates of remineralisation of organic matter 

by biological and chemical processes within the euphotic zone. New production 
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on the other hand, is based on nutrients introduced into the euphotic zone (1\103 , 

N2 fixation) and can be derived from the deep sea, the land and the atmosphere 

(Dugdale and Goering, 1967). 

The partitioning between new and regenerated nitrogen uptake can be summarised 

in the form of f-ratios, a quantitative measure of the proportion of phytoplankton 

growth dependant upon N03 relative to total N (Eppley and Peterson, 1979). Implicit 

in this therefore, is a measure of that fraction of primary production, which is 

available for export to the deep ocean or to higher trophic levels (new production); 

which is surplus to phytoplanktonic community maintenance requirements 

(regenerated production)(Tremblay et aI., 1997). The f-ratio is important in that it 

provides an index of coupling between the photic zone and the rest of the water 

column, being directly related to the rates of vertical N03 flux from below over 

suitable time scales (Probyn et aI., 1996). As nitrogen flux into surface waters must 

ultimately be balanced by equivalent losses, nitrate uptake yields an indirect 

estimate of downward carbon flux when Redfield ratio stoichiometry is inferred 

(Eppley and Peterson, 1979; Minas et aI., 1986). 

Qualitative relative preference indices (RPI) for the individual nitrogenous 

nutrients follow the sequence ammonium > urea > nitrate. This preferential 

uptake of reduced over oxidised forms of inorganic nitrogen by phytoplankton 

has been reported in various marine environments (Dugdale and Goering, 1967; 

McCarthy et aI., 1977; Probyn, 1985; Probyn and Painting, 1985). The 

preference is based on energy expenditure, the active uptake of nitrate being 

energy expensive. N03 first has to be reduced to NH4 before it can be utilised by 

the cell and this reduction phase costs energy (Tett and Edwards, 1984). 

Ammonium and urea on the other hand have already been reduced and their 

uptake can be considered as energy saving (Losado and Guerrero, 1979; Syrett, 

1981 cited Dortch, 1990). Raven's (1988,1990) calculations demonstrated the 

high cost of N2 fixation and the more moderate cost of N03 assimilation relative 

to least expensive growth based on NH4 uptake. 
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However, quantitative demands for nitrogen may not follow the RPI if supply and 

demand do not match. Ammonium and urea regeneration and uptake rates are 

based largely on the close coupling between microzooplankton grazers and 

uptake by nano- and picophytoplankton (Probyn 1987, 1992) within the "microbial 

loop". Regeneration of nitrogen and its turnover rate is not fast enough to support 

the demand of fast growing microphytoplankton populations which can therefore 

dominate the uptake of N03 at high concentrations of this nutrient (Malone, 1980; 

Chisholm, 1992 cited Tremblay et aI., 2000). 

By contrast, the smaller size-classes typically exhibit slower growth rates. Nano­

and picophytoplankton nitrogen requirements are therefore satisfied by the 

preferred assimilation of regenerated nitrogen without resorting to nitrate uptake. 

The smaller pico- and nanophytoplankton also have a higher surface area to 

volume ratio and are therefore more efficient (per unit chlorophyll) than 

microphytoplankton at scavenging nitrogen at low ambient concentrations (Koike 

et aI., 1981,1986; Holm-Hansen, 1985; Probyn and Painting, 1985). In low 

nutrient conditions small cell sizes will therefore typically out-compete the larger 

microphytoplankton. Thus for a particular water body, decreasing f-ratio and 

decreasing cell size within the phytoplankton community are likely to be closely 

related (Probyn and Painting, 1985, Probyn, 1992). 

In summary, it can be said that in well-lit nutrient replete systems, fast-growing 

microphytoplankton communities are typically favoured, leading to high f-ratios, high 

export production and a strong CO2 "sink". By contrast, in nutrient rather than light 

limited oceanic regions (egg sub-tropical gyres), regenerated production prevails, 

dominated by small organisms «20)lm) with low or negligible sinking rates 

(Hagstrom et aI., 1988 cited Detmer and Bathmann, 1997). In such ecosystems, the 

f-ratio is low and only weak biological CO2 draw-down is observed or there is a net 

C02 source to the atmosphere (Karl, 1999). 

The limiting elemental resource for plant production in most oceanic regions is 

believed to be nitrogen (Carpenter and Capone, 1983 cited Knox, 1994). 
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However, the characteristic features of large scale upwelling and turbulent mixing 

in the upper water column of the Southern Ocean south of the APF enhances 

and maintains the supply of nutrients, particularly N03 and Si, into surface 

waters. This region of the Antarctic marine ecosystem is thus almost unique 

amongst the world's oceans, where N03 is non-limiting while Si only becomes 

limiting towards the northern boundary of the APF (Read et aI., 2000a). 

High nutrient concentrations not withstanding, algal growth may still be restricted 

by the nutrient regime. Dugdale (1967 cited Harrison et aI., 1996) was the first to 

propose that the acquisition of nitrogen by phytoplankton be dependant on a 

relationship between the concentration of N03 or NH4 and the uptake of that 

nutrient. The preference of phytoplankton for NH4 over N03 extends over the full 

spectrum of nitrogen concentration (Harrison et aI., 1996). It is generally believed 

that I\JH4 recycling and high ambient NH4 concentrations can inhibit or repress 

nitrate uptake by phytoplankton. This together with a low light environment may 

set upper limits to new production in nutrient rich grazing-balanced environments 

(Wheeler and Kokkinakis, 1990). The inhibitory effects of NH4 on N03 uptake in 

natural phytoplankton assemblages have been investigated on numerous 

occasions. Some results confirm that extremely low concentrations of NH4 are 

capable of significant inhibition of N03 uptake, although complete inhibition was a 

rarity (Eppley and Renger, 1988; Wheeler and Kokkinakis, 1990; Harrison et aI., 

1996). These results highlight the important role NH4 plays in regulating new 

production and the f-ratio even at nanomolar concentrations. These results are 

based on the simplified assumption that N03 and NH4 uptake are regulated 

solely by kinetics (Harrison et aI., 1996). A study by Rees et al. (1999) 

challenged these results and found no direct evidence for NH4 inhibition. They 

concluded that the greatest influence on N03 uptake was the large decrease in 

N03 concentration. 
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Dortch (1990) has separated the interaction between N03 and NH4 into 

preference for ammonium (indirect interaction) and inhibition of nitrate uptake by 

ammonium (direct interaction). Preference and inhibition are two interactions, 

which are not mutually exclusive and are influenced differently by environmental 

conditions. Preference is hypothesised to be maximal at low light and nutrient 

deficiency, whereas inhibition will be maximal under conditions of low light and 

nitrogen sufficiency (Dortch, 1990). In its most extreme form, it is believed to 

result in no N03 uptake above a threshold NH4 concentration of -1 j..Im. A 

thorough review of the literature, however, indicates that 'inhibition' or 

'preference' is neither as universal nor as severe a phenomenon as is generally 

believed (Dortch, 1990). 

Another macronutrient, which is potentially responsible for setting upper limits to 

new production within some regions of the Southern Ocean is silicate (Si), which 

may be present in concentrations below the threshold for phytoplankton growth 

(Allanson et aI., 1981; Jacques, 1989; Verlencar et aI., 1990 cited Laubscher et 

aI., 1993). Nevertheless, the Southern Ocean is associated with the greatest 

rates of biogenic silicate deposition in any of the world oceans, particularly at the 

APF (Treguer et aI., 1995, Queguiner et aI., 1997) where large and highly 

silicified diatoms such as Fragilariopsis kerguelensis often dominate community 

biomass (Bathmann et aI., 1997). Since Antarctic diatoms have high cellular 

ratios Si:C and Si:N, they require high silicate concentrations to achieve their 

optimal growth (Jacques, 1989). Dugdale and Wilkerson (1998) note that nitrate 

uptake appears to cease when silica concentrations are less than -2mg-at.m-3. 

The results of Laubscher et al. (1993) showed positive relations between diatom 

abundance and silicate concentrations, supporting the suggestion that silicate 

limitation infiuences diatom distribution in the Southern Ocean. 

In open ocean waters, Redfield et al (1963 cited De Baar et aI., 1997) and 

Dugdale and Wilkerson (1998) have demonstrated that the nutrients nitrate, 

silicate and phosphate are typically released in constant atomic proportions N : 

S i: P of 16 : 16 : 1. Nevertheless, for the Southern Ocean there are 
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significant deviations to the Redfield ratio due to anomalies in N: Si: P 

uptake by diatoms and N: Si recycling rates (Queguiner et ai, 1997 cited 

Read et al 2000; De Baar et ai, 1997). Strong phytoplankton species-specific 

preferences also exist for different nutrients. Diatoms prefer high Si:N (Sommer, 

1994a,b cited Read et aI., 2000a), blue-green algae prefer low N:P (Howarth, 

1998 cited Read et aI., 2000a) and dinoflagellates prefer low N and low P 

(Margalef, 1978). 

In surface waters, N: Si: P will be due largely to uptake by phytoplankton, 

while in deeper waters, N: S i: P largely reflects re-mineralisation processes 

and can signify differing water masses (Read et ai, 2000). The N03 : Si ratio 

in particular significantly effects the driving of the diatom/non-diatom community 

succession, with implications for food chains and CO2 sequestration. 

Using field data and a Si-cycle model for the HNLC eastern equatorial Pacific. 

Dugdale and Wilkerson (1998) showed that there was a differential export of Si 

relative to N. Zooplankton grazing on diatoms resulted in much greater 

regeneration of N than Si in euphotic waters, so that the N 03: Si ratios were 

<1 and as low as 0.25 in Southern Ocean surface waters. These systems are 

eventually driven into Si limitation by the rate of supply of Si. 

More recently however it is clear that silicate concentrations alone cannot be the 

sole determinant of algal biomass or productivity. Algal biomass appears to be 

co-limited by nitrate, silicate, iron and light coupling (Sunda and Huntsman, 1997; 

Boyd et aI., 1999, Francke et aI., 2000) as well as by silicate distribution (Read et 

al.,2000a) 

Micronutrients and Primary Production 

The eastern Equatorial Pacific, the Subarctic North Pacific Ocean and the 

Southern Ocean are all recognised to be HNLC regions in which macronutrient 

abundance is very evident, but where productivity is nevertheless limited. A 

range of mineral micronutrients (Mo, Mn, Co, Zn, Cu, N, B, CI, Mg, Fe), have 
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been recognised as important for algal growth. In addition a number of organic 

substrates, especially vitamins, are required for sustained plant growth (Knox, 

1994). 

Amongst the first to recognise that these HNLC systems might be micro-nutrient 

(iron) limited were Martin and Fitzwater (1988), Coale (1988), Martin (1990) and 

Martin et aI., (1989, 1990). Martin's (1990) "Iron Hypothesis" was based on the 

theory that the lowered atmospheric C02 concentration observed during the Last 

Glacial Maximum was due to increased phytoplankton production and 

sequestration of atmospheric CO2, which he proposed was a result of increased 

iron supply to the Southern Ocean at that time. 

Iron is a particularly important micronutrient because it is instrumental in the 

biosynthesis of chlorophyll. It is a main component of ferrodoxin, which facilitates 

the intracellular transfer and storage of photosynthetically incorporated energy 

and occurs in both nitrate and nitrite reductase (Verstraete et aI., 1980 cited De 

Baar et aI., 1990). These Fe dependent enzymes serve to readily reduce nitrate 

via nitrite into ammonium, which is required for synthesis of amino acids and 

proteins (Raven, 1988, 1990). Nitrate assimilation and reduction increases the 

iron requirement for growth by 60% and N2 fixation increases the requirement by 

about 100 fold (Raven, 1988; Geider and La Roche, 1994; De Baar, 1994 cited 

De Baar et aI., 1997). However assimilation of ammonium does not require extra 

iron. Hence at open ocean sites with' extremely low iron «0.2nM) one may 

expect a recycling ecosystem, mostly utilising ammonium. Under these 

conditions biomass build up and export into deeper waters would be limited (De 

Baar et a!., 1997). The unused excess of major plant nutrients, and low ambient 

iron concentrations supports the "Fe hypothesis" which severely limits the 

"biological pump" and thus contributes to the raised atmospheric C02 

concentrations typical of previous and present interglacial periods (Martin et aI., 

1990). 

28 

Univ
ers

ity
 of

 C
ap

e T
ow

n



Fe has been found to sequentially stimulate net chlorophyll increase, carbon 

build up, nitrate uptake and P04 uptake in that order (De Baar et aI., 1990; 

Scharek et aI., 1997 cited Bathmann et aI., 1997; Martin et aI., 1990 cited Nelson 

and Smith, 1991). Other experimental studies by Price et al. (1991,1994) in the 

HNLC region of the west equatorial Pacific showed that Fe additions stimulated 

N03 reduction and CO2 fixation in cells >3)lm but not in picophytoplankton. They 

concluded that Fe limitation adversely affected N03 uptake and reduction in large 

(diatom) cells. However, Greene et al (1994) using fast repetition-rate fluorometry 

(FRRF) in the high N03 equatorial Pacific concluded that all size-classes were Fe 

limited, including the ubiquitous picophytoplankton. Changes in community 

structure have also been observed in which diatom cell (and red tide) division 

rates have been elevated (Di tullio, 1993) thereby increasing the biomass - but in 

the absence of grazers, which was a point of departure for those (e.g. Banse, 

1991) who questioned the ecological significance of such bottle experiments (for 

review, see De Baar and Boyd, 1999). 

An alternative approach was to relate ambient Fe concentrations in the ocean 

with phytoplankton distribution, biomass and size-structure, for example in the 

Southern Ocean (De Baar et aI., 1995, 1999). It was noted that the greatest 

phytoplankton abundance in the Southern Ocean was located downwind and 

downcurrent of the major continental land masses, where trace metal input is 

greatest, and within the fast-flowing, iron-rich jet of the Polar Front, where spring 

blooms produced phytoplankton biomass an order of magnitude higher than that 

in Fe deficient Southern Ocean waters. This hypothesis is further supported by 

composite ocean colour images of the Southern Ocean from Nimbus 7 CZCS. 

These images show areas immediately east (Le. downwind) of South Africa, 

Australia, and Argentina to have pigment concentrations higher than those in 

most other areas of the Antarctic Ocean. These observed pigment distributions 

are consistent with the hypothesis that airborne dust from the continents provides 

an iron source that stimulates phytoplankton growth (Nelson and Smith, 1991). 
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These surveys provided strong circumstantial evidence for the link between Fe 

concentrations and phytoplankton abundance. However, it was not until 

mesoscale Fe fertilisation experiments in HNLC environments of the equatorial 

Pacific (Martin et aI., 1994 - IronEx I and Coale et aI., 1996 - IronEx II) and the 

Southern Ocean (Boyd et aI., 2000, Boyd and Law, 2001 - SOIREE), that 

convincing in situ evidence emerged for the Fe dependence of phytoplankton 

growth (particularly by diatoms). 

However, despite Fe-mediated increases in chlorophyll biomass (from 0.2 to 

-2ug 1-1) and productivity (up to 1.3g C m-2 d-1) occurring concurrently with a 

10% draw-down of surface CO=2 over the 40 day period of the bloom, no 

downward export of particulate carbon was observed (Boyd and Law, 2001,. 

It seems plausible that the time-lag between the observations made during 

SOIREE and direct evidence of particulate export may well have exceeded the 

observation period. This in itself may place some constraints on the evidence 

from sediment trap (e.g. Honjo et. aI., 2000) and thorium (234Th, 238Th) 

measurements (e.g. Cochran et aI., 2000) which are frequently associated with 

relatively short term observation periods. Estimates of potential export based on 

measurements of new production may overcome some of these difficulties if 

integrated over appropriate time scales. 

Grazing controls on primary production 

Many studies have documented the existence of an inverse relationship between 

phytoplankton biomass and zooplankton. Peaks of zooplankton density generally 

coinciding with troughs in phytoplankton biomass; this relationship has been 

ascribed to grazing (Jacques, 1989). Although grazing has a direct impact on 

phytoplankton, the indirect impact is to promote growth through ammonium 

excretion by both micro- and mesozooplankton as well as by krill (Glibert et aI., 

1992, Atkinson and Whitehouse, 2001 and Atkinson et aI., 2001). Because of the 

inhibitory effects of NH4 on N03 utilization, an important consequence of grazing 
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is that it sets an upper limit on N03 uptake in nutrient~rich, grazing balanced 

ecosystems (Wheeler and Kokkinakis, 1990). 

There are two pathways (Hewes et aI., 1985 cited Jacques, 1989), which coexist 

in all ecological situations, but the magnitude of the flow passing through each of 

them varies (Jacques, 1989). In the first instance, mesozooplankton (-3~5mm in 

length) feeding on microphytoplankton typifies a short food chain where carbon 

may be efficiently passed to higher trophic levels (e.g. diatoms to zooplankton to 

fish) with minimal respiratory C02 losses. This path is based principally on new 

production and a large fraction of the organic matter is exported into deep water 

and the sediments through the rapid sinking of large diatoms and faecal pellets 

(Jacques, 1989; Tremblay et aI., 2000). 

The second pathway involves the small nano- and picophytoplankton, and 

microzooplankton of the "microbial loop". By contrast, to the efficient diatom­

dominated food chains, the "microbial loop" is characterised by many steps in the 

food chain (e.g. phytoflagellates to microzooplankton to mesozooplankton to 

larval/adult fish) and inefficient energy transfer, but a tight coupling between 

ammonium excretion and ammonium uptake by phytoplankton (Gifford and 

Dagg, 1988, 1991 cited Froneman and Perissinotto, 1996; Gifford, 1991; Glibert 

et aI., 1992). In conditions such as these, a high degree of phylogenetic, 

functional and genetic diversity exists, particularly with regard to nutrition and 

inter-relationships between the autotrophs, heterotrophic bacteria and 

microzooplankton consumers (for review, see Karl, 1999). This food web is 

representative of oligotrophic and HNLC conditions in which a sizeable fraction of 

the production is achieved through rapid recycling of inorganic carbon in surface 

waters (Jacques, 1989; Tremblay et aI., 2000) and export production is 

insignificant. 

Over large areas of the Southern Ocean, mesozooplankton have a generally low 

biomass and low grazing impact on phytoplankton productivity (egg Schnack et 
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aL, 1985, Atkinson, 1996, Razouls et aL, 1998). For example in spring 1992, the 

dominant species in the Polar frontal zone of the S. Atlantic were Calanoides 

acutus and Rhincalanus gigas, while Calanus propinquus was dominant at the 

ACC-Weddell Gyre boundary, yet in neither case did their grazing impact 

account for more than 1 % of the primary production (Dubischar and Bathmann, 

1997). There are exceptions of course, and it is apparent that strong grazing 

pressure by mesozooplankton and krill may be apparent locally, for example 

around South Georgia where diatoms frequently dominate (for review, see 

Atkinson et aL, 2001), by mesozooplankton around the Prince Edward Islands 

(Perissinotto and Boden, 1989) and by krill within the Marginal Ice Zone 

(Perissinotto et aL, 1997). These and other studies suggest that up to 80% of the 

net production is channelled into these larger herbivores (for review see 

Bathmann et aI., 2000). 

However, where small phytoplankton cells dominate in the ACC, 

microzooplankton constitute a significant proportion of total zooplankton biomass 

and may readily consume more than 100% of the phytoplankton productivity 

(Froneman and Perissinotto, 1996). In a review, Bathmann et aL (2000) 

concluded that microzooplankton grazing removed between 52-82% of the 

primary production on a daily basis in all subantarctic regions. Similarly, where 

salps (e.g. Salpa thompsonii) dominate, they too can remove close to 100% of 

the productivity (Perissinotto and Pakhomov, 1998). Due to the inefficient energy 

transfer of the "microbial loop", these microzooplankton grazing rates may be 

sufficiently high to account for the generally low phytoplankton biomass in the 

Southern Ocean (Bjornsen and Kuparinen, 1991 cited Froneman and 

Perissinotto, 1996). Some field studies also suggest that microzooplankton not 

only control the size of the phytoplankton population, but may also control the 

growth of certain species by selective grazing (Reynolds et aL, 1982; Burkhill et 

aI., 1987; Strom and Welschmeyer, 1991 cited Froneman and Perissinotto, 

1996). 
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It seems that essentially, there is no either/or pathway in subantarctic waters. 

However, it is clear, that planktonic food webs have strong size-based 

relationships. It is therefore likely, that where phytoplankton communities 

undergo seasonal or inter-annual shifts in community structure (Murphy et ai, 

1998), the relative importance of micro- and macrozooplankton grazing 

communities will shift accordingly. This in turn will influence the biogeochemical 

cycling of both carbon and nitrogen, but in relatively predictable ways based on 

allometric relationships (e.g. Moloney and Field, 1989, 1991). 

1.3 The Prince Edward Islands and primary production 

Sub-Antarctic Marion and Prince Edward Islands are volcanic outcrops of the 

Prince Edward Island Fracture Zone. The islands lie 28km apart and are S.E of 

the African continent (47°S, 38°E). The bathymetry to the west of the islands 

deepens rapidly to 5000m while the saddle between and to the east of the 

islands is shallow «250m)(Lucas and Probyn, 1987). 

Similar to most subantarctic islands, the Prince Edward Islands have a particular 

ecological importance. They support a rich benthic invertebrate community of 

mainly filter feeders in the shallow island seas (Branch et aI., 1993 cited Lucas 

and Probyn, 1987). whilst a very large community of marine birds and mammals 

(Williams et aI., 1979) depend on the primary production supported by these 

islands through meso- and macrozooplanktonic intermediary steps in the food 

chain (Perissinotto et aI., 1992). A certain level of controversy surrounds the 

oceanographic and biological processes responsible for the levels of enhanced 

phytoplankton production and biomass typically observed in the vicinity of these 

islands. 

It has been argued that the enhanced productivity and phytoplankton biomass 

associated with the Prince Edward archipelago is due to an "island mass effect" 

(Doty and Oguri, 1956). The "island mass effect" has been associated with two 
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main causes: (1) micronutrient (iron) availability (Martin 1990; Martin et aI., 1990) 

and (2) dynamic interactions between oceanic circulation and shelf topography 

(Heywood and Priddle, 1987; Perissinotto and Duncombe Rae, 1990). 

There is increasing evidence that bloom development associated with 

subantarctic islands is triggered by stabilization of the water column (e.g. Mitchell 

and Holm-Hansen, 1991; Perissinotto et aI., 1990, 1992, 2000). Smith (1987 

cited Ismail, 1990) stated that due to the high annual rainfall, guano is dissolved 

and carried into the sea via run-off, spreading out from the islands. The flux of 

fresh water is of particular importance for the development of phytoplankton 

blooms as it provides a significant input of buoyancy into the surface layer, and a 

consequent increase in water column stability and shoaling of the mixed layer 

depth (Perissinotto et aI., 1990; Duncombe Rae, 1989). When mixed layer 

depths are shallower than euphotic depths, the ratio of carbon fixation to 

respiratory losses improves (Tilzer and Dubinsky, 1987). However, bloom 

generation requires favourable environments, such as a stable mixed layer and 

high concentrations of ambient NH4• to persist long enough for the accumulation 

of excess biomass. 

Previous studies have shown that the SAF and APF display extreme meridional 

variability around the Prince Edward islands and in adjacent waters, either 

combining together to form an intensive single feature, or remaining separate 

(Read and Pollard, 1993; Park and Charriaud, 1997; Froneman et aI., 1999 cited 

Pakhomov et aI., 1999). The latitudinal position of the SAF and APF plays an 

important role in controlling the conditions of inter-island productivity. When the 

SAF is separate and further north of the islands, ambient current speeds are low. 

The complex bathymetry and topographically modified disturbances to the zonal 

currents associated with these fronts can create low density eddies, which may 

be retained in the immediate downstream vicinity of the islands. Trapped 

circulations over the plateau prolong the residence time of the water mass, thus 

retaining the fresh water and reduced nitrogen within the inter-island region and 
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allowing blooms of large diatoms to develop on the islands' shelf (Perissinotto et 

al. 1990). 

When the SAF migrates south and combines with the APF, a faster flowing 

system is set up through the islands preventing the retention of eddies. In 

consequence, the latitudinal variability of the SAF and APF sets up a conveyer­

like system where waters rich in nutrients and primary production are being 

continually replenished both upstream and downstream of the islands 

(Pakhomov, personal communication). 
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Chapter 2 

INTRODUCTION 

Phytoplankton biomass and photosynthesis provide the basis for transporting 

fixed carbon into the deep ocean by the process of direct sedimentation of cells 

and through particle transformation into rapidly sinking faecal pellets as a result 

of krill and mesozooplankton grazing on larger microphytoplankton cells. This is 

the "biological pump" (Volk and Hoffert, 1985; Longhurst, 1991). It provides the 

link between atmospheric and oceanic carbon cycles, which may ameliorate 

current increases in atmospheric CO2. A major unresolved problem in biological 

oceanography is that of estimating the magnitude and variability of the "biological 

pump" which drives C02 draw-down from the atmosphere. Our incomplete 

understanding of the speci'fic factors controlling phytoplankton distribution and 

nitrogen dynamics on broad spatial and temporal scales, constrains our 

predictive ability. 

A feature of the Southern Ocean generally is that primary production is typically 

based on regenerated uptake by pico- and nanophytoplankton, and much lower 

than might be expected on the basis of available nutrients, particularly nitrate and 

silicate. This long-standing puzzle has become known as the high nutrient low 

chlorophyll (HI\ILC) "paradox" (Cullen, 1991). Explanations proposed to account 

for these observations in the Southern Ocean and elsewhere have included low 

surface temperatures (Jaques, 1983), light and critical depth considerations 

(Mitchell et aI., 1991; Nelson and Smith, 1991), strong grazing pressure 

(Froneman and Perissinotto, 1996; Razouls et aI., 1998, Atkinson et aI., 2001), 

and the availability of macro- and micronutrients, in particular iron (de Saar et aI., 

1997, Boyd et aI., 2000; Boyd and Law, 2001). In addition, the oceanic N:P and 

N:Si nutrient ratios are also important determinants of specific phytoplankton 

assemblages which govern biologically driven ocean-atmosphere exchanges of 
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CO2 (Egges and Asknes, 1992; Laubscher et al. 1993, Sommer 1994a,b; Tyrrell 

and Law,1997). 

However, there are open ocean regions, which exhibit high seasonal rates of 

primary production; frequently in a diatom dominated fraction (Boden, 1988 cited 

Lucas and Probyn, 1987; Tremblay et aI., 2000). These regions are usually 

associated with particular topographic and hydrographic features, for example, 

oceanic frontal regions (Dower and Lucas, 1993; Laubscher et aI., 1993; Bracher 

et aI., 1999; Tremblay et aI., 2001), continental and sub-Antarctic island margins 

(Boden, 1988; Perissinotto and Duncombe Rae, 1990; Perissinotto et aI., 

1990,1992; Atkinson et ai, 2001), and at marginal ice-edge zones (Smith and 

Nelson 1985, 1990; Waldron et aI., 1995; Bury et aI., 1995; Rees et aI., 1998). 

Such regions are associated with the greatest rates of biogenic silicate 

deposition in any of the world oceans. As a result, the Southern Ocean is the 

oceanic province which exports (to 1000m) the highest proportion (-3%) of its 

total production (Honjo et aI., 2000), thus making it disproportionately important 

as a biologically mediated sink for atmospheric CO2 in its more productive 

regions. 

The area south of Africa is one of the most energetic and important hydrographic 

regions of the world oceans (Lutjeharms and Ansorge, 2001), it is characterised 

by the close juxtaposition of the Agulhas Front (AF), the Subtropical Front (STF), 

and the Subantarctic Front (SAF). This study has addressed the phytoplankton 

community structure surrounding Marion and Prince Edward Island, and along 

two transects: one from Cape Town to the Prince Edward Islands, and another 

northbound and reciprocal southbound transect along the Southwest Indian and 

Madagascar Ridge, between the Prince Edward Islands and 31°S. Particular 

attention has been given to the density and nutrient structure along these 

transects in order to interpret the observed chlorophyll distribution and export 

production, as a function of new production based on 15N stable isotope tracers. 
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METHODS 

A five year Marion Island Oceanographic Survey (MIOS) has been run 

concurrently with the annual Marion Island relief cruise, carried out by the MV SA 

Agulhas. Routine annual underway transects (Marion Underway) are done 

between April and May of each year between Cape Town and the Prince Edward 

Islands to determine the variability of meandering fronts in the Southern Ocean 

(Pakhomov et aI., 1998). During the 1999 logistics cruise (MIOS 4), an additional 

northbound and a reciprocal southbound transect were taken along the 

Southwest Indian and Madagascar Ridge, between the Prince Edward Islands 

and 31°S. The section crossed a number of major fronts and smaller, mesoscale 

features. The aim of this survey was to study the physico-biological interactions 

at the frontal regions. Associated with the physical survey, measurements of 

chlorophyll, nutrients and nitrogen uptake were made. The third component of 

this cruise involved a mesoscale oceanographic survey in the upstream region of 

the islands (along 37°E) and within the inter-island region. 

The Marion Underway Transect 

During the Marion Underway transect, Sippican T - 7 (760m) XBT's (expendable 

bathythermograph's) were deployed at 15' intervals. The XBT's were launched 

from a Sippican hand launcher and the data were captured using a Sippican 

Mk12 data acquisition system. Each probe was placed in a water bath for 5 

minutes before deployment in order to minimise the difference between the 

probe's storage temperature and that of the sea surface temperature. The 

profiles were converted into two-dimensional sections in Ocean Data View (ODV) 

and used to determine the geographical positioning of the fronts and physical 

characteristics of the water column. Surface water samples at each station were 

taken for size fractionated chlorophyll determinations. The method used to 

determine chlorophyll concentration is explained later in the methods. 
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Northbound transect 

During the northbound transect, 68 XBT's were deployed at 1S' intervals 

(figure.3c). The temperature section obtained from this transect was used to 

provide a first estimate of the geographical positioning of the fronts and hence 

plan the CTO station spacing of the southbound leg. To identify the major 

features along the Madagascar Ridge section, the definitions of the frontal 

positions outlined by Park et al. (1993) were adopted. They defined these 

features using the subsurface (200m) cross frontal ranges of temperature as well 

as their axial values. The Agulhas Front (AF) was identified by a temperature 

range of 12°-16°C with a median temperature of 14°C the Subtropical Front 

(STF) by 8°-12°C and 10°C and the Subantarctic Front (SAF) by 4°_8°C and a 

median temperature of 6°C. Surface water samples at each station were taken 

for total and size fractionated chlorophyll determinations. 

Southbound transect 

The southbound section was close to the crest of the ridge running south from 

Madagascar to the crest of the Southwest Indian Ridge then turning south-west 

terminating west of the Prince Edward Islands (figure.3.d). The positioning of the 

frontal regions obtained from the northbound XBT transect was used to plan the 

CTO station spacing for the reciprocal southbound transect during which a line of 

33 (2000m) CTO stations was conducted. Station spacing varied from 10 over the 

subtropical gyre between 31° and 37°S to every 20' over the frontal regions. The 

CTO rosette consisted of 12 Niskin bottles. Water samples were collected at 12 

standard depths between 2000m and the surface. Bottles were triggered at 

2000m, 1S00m, 1000m, 7S0m, SOOm, 2S0m, 1S0m, 100m, 7Sm, SOm, 2Sm and 

surface (-Sm). Pressure, depth, temperature, salinity and density were available 

to facilitate examination and quality control of the bottle data as the sampling and 

laboratory analyses progressed. Productivity stations were carried out at selected 

locations (table. 1 ) where a second CTO cast was performed. At each station, 
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light attenuation was estimated by Secchi disk. The extinction coefficient Kd was 

used to calculate the 100, 50, 25, 10, 1 and 0.1 % light depths. The use of a 

Secchi disk resulted from a malfunctioning light sensor. The light depths were 

determined from Secchi depth estimates according to the equation: 

Z(x%) = Z(sd) 

1.44( -In(X/1 00) 

Where: Z(x%) is the depth (m) of a particular light level (x%), Z(sd) is the Secchi 

depth (m) and x is the light level to be determined. 

The Inter-island Survey 

XBT profiles obtained from the transect along 37°E from 47°20'E northwards 

were used to identify the position of the SAF in relation to the Prince Edward 

Islands. Within the inter-island region, XBT profiles were obtained at 20 stations 

together with surface size fractionated chlorophyll data (figure.3b). Ocean Data 

View was used to create interpolated images of temperature at the sea surface 

and at 200m for the Prince Edward Island region and surrounding ocean. 

SURFER was used to plot surface contours of temperature and size fractionated 

chlorophyll-a for the inter-island region. 

Chlorophyll a 

At the end of each CTD deployment, water was drawn from the Niskin bottles for 

a number of routine hydrographic analyses. A 250ml sample was obtained from 

those bottles at depths 0, 25, 50, 75, 100 and 150m for the determination of total 

and size fractionated chlorophyll-a concentrations. 

Samples were screened for the >200lJm fraction to exclude grazers, after which 

they were gently filtered (5cm Hg) through a serial filtration unit and fractionated 

into pico- (2.0lJm), nano- (2-20lJm) and micro- (>20lJm) size fractions and 
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collected on 25mm GF/F Whatman filters. After extraction in 90% acetone for 24 

hours (Holm-Hansen and Riemann, 1978), chlorophyll a was measured on an 

AU-10 Turner Designs fluorometer calibrated against a standard chlorophyll-a 

solution (Sigma). 

Nutrients 

For every CTD cast along the Southbound transect, 15ml samples for every set 

depth were stored frozen for later analysis at the UCT laboratory. Manual 

analyses were performed for N03 and Si according to the methods described in 

Grasshoff et al. (1983) and Parsons et al. (1984), but scaled to a 5ml sample 

size. Nitrate samples were diluted three times with distilled water to make up 

sufficient sample size for running through the cadmium column. ODV was used 

to create nutrient (N03 and Si) sections of the transect. 

For each productivity station, on board analyses of ammonium and urea were 

carried out for each light depth in triplicate according to the manual method 

described in Grasshoff et al. (1983), scaled down to 5ml sample volumes. 

15N Incubations 

Bulk water samples were obtained from each light depth and 2-litre volumes of 

this water were dispensed into 2-litre acid cleaned polycarbonate bottles. Spikes 

estimated to be 10% of ambient concentration of 15N-N03, 15N-NH4 and 15N-urea 

were added to one of each of the three 2-1 incubation bottles. These were 

transferred into on-deck perspex tube incubators, which were screened with 

neutral density filters to simUlate in situ light levels at the appropriate depths. 

Near ambient in situ temperatures were maintained by pumping surface 

seawater through the system. The samples were incubated for between 10-24 

hours, centred round local midday. A more optimum strategy would generally be 

to employ relatively shorter incubation periods, so as to minimise bottle effects. 

Our objectives however, were to quantify the daily rates of nutrient uptake and 

since day and night incubations were not possible, longer incubation periods had 
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to suffice. Isotope-dilution, resulting from the production (recycling) of the traced 

substance in vitro, may lead to underestimates in the computed uptake rates 

(Harrison and Harris, 1986). Isotope dilution and recycling errors may be more 

important in the oligotrophic oceans where substrate concentrations are lower 

and regenerative fluxes are of proportionally greater importance (Harrison and 

Harris, 1986). Uptake experiments were terminated by filtration onto 47mm GF/F 

filters (Whatman Ltd), which were retained and stored frozen. These filters were 

later oven dried and analysed at the Plymouth Marine Laboratory (PML) for 

particulate nitrogen and atom% 15N. The analyses were performed on a Europa 

Tracermass continuous flow mass spectrometry (Europa Scientific Ltd.) using 

methods described by Barrie et al. (1989), and Owen and Rees (1989). 

Nitrate urea and ammonium uptake rates were calculated according to the 

equations of Dugdale and Goering (1967) and expressed as rates per day: 

PN03 , pNH4 and purea (mg-at. N. r1.h-1
) = (PE x PN) I (Ro x T) 

Where PE = % 15N enrichment of the PON fraction in excess of the natural 

abundance; PN = particulate N concentration (mg-at N.r\ T = experimental 

duration (hrs) and Ro is the calculated aqueous 15N enrichment at time zero. 

Relative preference index (RPI) 

Using the nutrient data, a relative preference index (RPI) was calculated for each 

nutrient assimilated, e.g. for ammonium: RPI = pNH;i I [NH;i] 

LpN [LN] 

Where pNH4 and LpN are the uptake rates for ammonium and the sum of the 

uptake rates for the three nitrogen sources, and [NH4] and [LN] are their ambient 

nutrient concentrations. RPI values of <1 reflect a relative rejection while RPI 

values >1 show a relative preference for that particular nitrogen resource 

(McCarthy et aI., 1977). 
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RESULTS 

The data obtained on the cruise have been divided into three main components. 

The underway transect from Cape Town to the Prince Edward Islands (figure.3a), 

the Northbound and southbound legs of the Northern Transect along the 

Madagascar Ridge (figure.3c and d), and the Inter-island survey between Marion 

and Prince Edward Island (figure,3b). 

The Underway Transect 

Temperature Distribution and Frontal Positions 

The thermal characteristics of the upper 760m were established by regular 

expendable Bathythermograph (XBT) deployments. From this information and 

from the sea-surface temperature distribution, the locations of the three major 

fronts were established (figureA) according to the definitions of Park et al. 

(1993). The Agulhas Front (AF) lay at approximately 400 S, while the STF was 

situated at around 43°S. The subsurface expression (200m) of the SAF was 

found at 45°45'S (Pakhomov et al.,1999), while the surface expression was 

found further north at 45° S (Ansorge, personal communication). The STF was 

found unusually far south compared to its mean latitudinal position of 41 °40' S 

(Lutjeharms et aI., 1985). This uncharacteristic position was most likely as a 

result of it being pushed further south by the warm Agulhas meander centred at 

approximately 42°S. This meander may have been formed by the Agulhas 

current, which retroflects eastward just south of the Agulhas Bank, and then 

meanders around the Agulhas Plateau. 

Sea Surface Temperature and Chlorophyll Concentration 

North of the AF, total surface chlorophyll remained low (-0.2mg.m-3
). Enhanced 

chlorophyll concentrations show a latitudinal correlation to surface temperature; 

enhanced concentrations coinciding with the positions of frontal systems. These 

fronts are marked by a large change in surface temperature over a relatively 
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small distance (figure.5a). Enhanced chlorophyll concentrations are found at both 

the northern and southern extremities of the AF, and are dominated by pico- and 

nanophytoplankton (figure.5b). The highest concentrations of surface chlorophyll 

(0.66mg.m-3
) are found just south of the STF at 43°30'S. This population is once 

again dominated by the smaller pico- and nanophytoplankton (95%). Moving 

further south, the size structure of the population changes with a steady rise in 

the contribution of microphytoplankton. At the SAF, these larger cells dominate 

the chlorophyll peak and contribute -41 % to the total biomass. 

Microphytoplankton also dominate the peak in chlorophyll (>56%) found at the 

most southerly station, which is in the vicinity of the Prince Edward Islands. 

Northbound transect 

Temperature Distribution and Frontal Positions 

The track of the northbound transect along the south west Indian and 

Madagascar Ridge from the Prince Edward Islands to 31°S and the positions of 

the XBT deployments (68) is shown in figure.3c). The temperature section 

(figure.6), which also shows bottom topography, illustrates the extent to which 

the ridge shallows in certain places «1000m). The Agulhas Front was positioned 

at approximately 40 0 S while further south, the STF was located at 43°30'S, 

further south than the range given by Lutjeharms and Valentine (1984). The AF 

and STF were present on this occasion as discrete fronts, most likely separated 

by a warm core eddy. It is probable that this feature was propagated downstream 

from the Agulhas retroflection zone. The suggested eddy was centred at 41 ° 45'S 

and the physical variables associated with this feature (>17°C and surface 

salinity >35.20) fell between subtropical and subantarctic water values. The 

presence and position of the eddy may account for the more southerly position of 

the STF on this transect. The SAF was located at 45° 30'S. 
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Sea Surface Temperature and Chlorophyll Concentration 

Surface temperature and surface chlorophyll-a concentrations for the Northbound 

leg are shown in figure.7a). Within the subtropical waters north of the AF, 

chlorophyll concentrations did not exceed -0.2mg.m-3
. To the south of the AF, 

maximum concentrations were 0.4mg.m-3 and were associated with the STF 

region. There was no marked change in the chlorophyll concentrations of the 

SAF region, although at -46°S, chlorophyll concentrations rose sharply to -1.6 

mg.m-3
. This may be a result of entering the shallow water, «1000m) of the 

Prince Edward Island plateau. Nano- and picophytoplankton dominate the 

surface chlorophyll biomass throughout the transect, except for the 

phytoplankton bloom over the Prince Edward Island plateau which was 

dominated by microphytoplankton; probably diatoms (figure.7b). 

Southbound transect 

General Hydrography 

The section running from 31°S 43°58.55'E to the Prince Edward Islands once 

again crossed major frontal features and smaller, mesoscale features. In 

comparison to the earlier northbound leg, the fronts had migrated during the 

intervening ten days. The STF had migrated equator ward, and although the 

position of the AF was similar to that in the northbound leg, it had now merged 

with the STF. The northward shift in the position of the STF may have been the 

result of the eastward movement of the warm eddy feature observed previously 

at 41° 45'S. 

Sloping isopycnals in the 2000m sections (figures.8,9 and 10a) at about 38°S 

and 40.5°S showed westwards and eastwards flow concentrated in relatively 

narrow bands. The westward flow at 38°S is thought to be part of a recirculation 

associated with a gap in the topography of the ridge (Pollard and Read, 2001). 

The concentrated eastward flow at 40.5°S separated Subtropical Surface Water, 

which is defined as lying along the TS line 15°C-35.5 to 24°C-34.6 (Darbyshire, 
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1966 cited Read and Pollard, 1993), from slightly fresher water found in the 

Agulhas Return Current. According to the Read and Pollard (1993) criteria, this 

would identify the position of the AF. Alternatively, according to criteria suggested 

by Park et al. (1993), the AF could be positioned at 400S. 

The depth of the surface mixed layer (SML) is defined by the steepest 

temperature gradient found at the base of the thermocline. North of the AF, 

surface waters exhibited relatively little temperature variability (19.5 -22°C) and 

were isothermal to -75m, which marked the upper boundary of the strong 

seasonal thermocline. Below this the temperature dropped sharply to <1 roc at 

150m (figure.8b). Water between 40.5-42.5°S is typical Agulhas Water, however 

to the south, from 42.5°S to 43.25°S, is a transitional region. In this region the 

surface layer is fresh (an Ekman layer driven north from the subantarctic zone) 

(figure.9b), while the central water beneath is lower in temperature (figure.8b). 

Temperatures at the base of the mixed layer (-80m) (about 12°C) are 

significantly less than those of Agulhas (15°C) or subtropical (19-200C) water but 

more then Subantarctic waters «9°C). The TS relation of this transitional region 

is indicative of a mixture of Agulhas Water and Subantarctic Surface Water, 

which has probably mixed in the retroflection zone (Read, personal 

communication). 

On this transect the Subtropical Front (STF) could be placed at the northern 

(42.5°S) or southern (43.25°S) edge of the transitional region. Both locations lie 

within a broad band of eastwards tlow (41 0S - 460S) indicated by upward sloping 

isopycnals, and neither is associated with any concentration of that flow. The 

more northerly edge marks the greatest change in water mass characteristics 

and concurs with the de'finitions outlined by Park et al. (1993). Hence the STF is 

placed at 42.5°S (Pakhomov et aI.1999). South of the STF, surface temperatures 

decrease to 8°C and the depth of the seasonal thermocline deepens to -90m at 

-45°30'S. 
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South of 43°S no frontal features were obvious. The water masses are typical of 

the subantarctic region, but potential temperature and salinity showed 

considerable structure superimposed on the general regime (figures.8 and 9b). 

There is a sequence, from north to south, of cold, fresh (44.5°S); warm, salt 

(45.33°S); cold, fresh (45.75°S); and warm, salt (46°S) features. Whether these 

were mesoscale eddies, filaments, or larger frontal structures, is not possible to 

determine from a single section. Such structures have been observed previously 

(Read and Pollard, 1993) and attributed to eddies, which often give rise to double 

step frontal features (e.g., Pollard and Regier, 1992 cited Read and Pollard, 

1993) that can be important in driving vertical motions that bring nutrients into the 

surface layer (Pollard et aI., 2001) enhancing primary production. South of 46°S 

the mesoscale structures were no longer present and the temperature and 

salinity characteristics were those of Subantarctic Surface Water. 

North of 45°S there is a subsurface salinity minimum (-300m) associated with 

subducting Antarctic Intermediate Water (AAIW). However, south of 45°S the 

lowest salinity water is in the surface layer and continues to decrease reaching a 

minimum at the southern end of the section ('figure.9a). According to Whitworth 

and Nowlin (1987), this change in vertical structure is the major identifier of the 

SAF and hence, for this transect it is placed at 45°S. The positioning of the SAF 

agrees with that of Pakhomov et al. (1999), who used definitions outlined by Park 

et al. (1993). Although the position of the subsurface salinity minimum appears 

easy to identify and label as the SAF, the lack of sloping isopycnals implies that 

there is no current jet associated with it. 

In contrast, and according to the criteria in Read and Pollard (1993), the most 

likely location of the SAF is about 46°S i.e. the southern edge of the field of 

mesoscale structures and of the broad eastward flow. However there is no 

compelling evidence in the water mass Temperature and salinity structure for this 

location and the only clue is in the density field (figure. 1 Ob). which shows greatly 
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reduced stratification of the pynocline which is a typical feature of the 

Subantarctic Frontal region (Read, personal communication). 

Phytoplankton Distribution 

Surface chlorophyll-a concentrations for the southbound transect are shown in 

figure.12a). In agreement with the northbound leg, chlorophyll concentrations in 

subtropical waters north of the AF are low (max -0.23mg chl.m-3
) but increase 

over the Agulhas and Subtropical Fronts to -0.27 and 0.38mg.m-3 respectively, 

and to -0.74mg.m-3 at the SAF. The bloom present at 46°S during the 

northbound transect was no longer evident at the same location, 10 days later. 

Total chlorophyll for the water column to (150m) along the southbound transect is 

shown in figure.11. The section shows low chlorophyll concentrations in 

subtropical waters north of the STF with a deep subsurface maxima (-0.2mg.m-

3) at -75m. This marks the upper boundary of the seasonal thermocline as can 

be seen in the temperature section (figure.8b). A slight increase in chlorophyll 

just north of the AF at -38°e corresponds with the sloping isopycnals of the 

westward flow that is thought to be part of a recirculation associated with a gap in 

the topography of the ridge (Pollard and Read, 2001). Enhanced chlorophyll 

concentrations showed strong correlations with all three of the frontal regions. In 

the STF region, maximum chlorophyll concentrations were found in the surface 

waters south of the front and only reached -0.4mg.m-3
. At the SAF, maximum 

concentrations of -0.7mg.m-3 were attained at subsurface depths of -50m. The 

highest concentrations (-0.74mg chl.m-3
) were found over relatively shallow 

waters in the proximity of the Prince Edward Island plateau. South of th~ STF 

chlorophyll distribution showed considerable variation with a series of high and 

low concentrations. These changes in chlorophyll appear to be related to the 

potential temperature and salinity structure, with enhanced biomass coinciding 

with cold, fresh waters and visa versa. Such structures have been observed 

previously (Read and Pollard, 1993) and attributed to eddies. 
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Integrated pigment concentrations to 150m for the southbound transect 

(figure.12b) show peaks in the concentration of all three size classes coinciding 

with the latitudinal positions of the frontal regions. Picophytoplankton dominate 

chlorophyll distribution north of the STF by >81 %, followed by nanophytoplankton 

(-16%) and low concentrations of microphytoplankton (2.75%) (table.2). 

However, south of the STF (-44°S) the phytoplankton community structure shifts 

in favour of the larger microphytoplankton cells, which dominate total pigment 

concentrations south of the SAF. 

A summary of chlorophyll distribution by size-class is given in table.2. South of 

the SAF microphytoplankton are the dominant size class by -53%. By contrast, 

between the STF and SAF. pico- (57%) and nanophytoplankton (31%) together 

account for -88% of total pigment concentration, rising to >97% further north of 

the AF. Nano- (-15%) and microphytoplankton (3%) are largely absent in 

subtropical waters north of the AF. Apart from around the P.E. Island plateau, 

picophytoplankton are ubiquitous and the dominant fraction everywhere, 

extending their distribution to greater than 100m depth. 

Nutrient Distribution 

The nutrient distributions for nitrate and silicate are shown in figures.13a) and b). 

A strong horizontal gradient in the nitrate concentration is exhibited with the 

progression from north to south across the transect (figure.13.a), concurrent with 

the decreasing temperature gradient (figure.8a). Nitrate values in subtropical 

surface waters are low «1 mg-ar3
) and intensify southwards, with sharp 

increases in concentration across the Subtropical (2-4mg-ar3
) and Subantarctic 

(8-11mg-ar3
) Fronts. 

In contrast, the spatial distribution of silicate (figure.13b) is noticeably different to 

that of nitrate. The surface silicate values remain low throughout the transect 

«2mg-at.m-3
), with minimum concentrations at the Subtropical and Subantarctic 

Fronts «1 mg-at.m-3
). However, in deeper water, and in particular between the 
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STF and the SAF, N03 and Si contours do correspond and are associated with 

colder water, both depicting the advection of nutrient rich bottom water into the 

surface layer (-43.75°S see figures.13a) and b). 

The introduction of nutrients into the surface can be attributed to upward sloping 

isopycnals towards the south. Moving polewards, a sequence of high and low 

concentrations is observed in both the silicate and to a greater extent in the 

nitrate concentrations. This sequence in the nutrient data matches the structure 

observed in the potential temperature (figure.8b) and salinity (figure.9b) sections, 

and supports the suggestion that mesoscale eddies may be driving the vertical 

motions responsible for the advection of these nutrients into the surface. 

Nutrient Ratios 

In open ocean waters, Redfield et al. (1963) and Dugdale and Wilkerson (1998) 

have demonstrated that the nutrients nitrate, silicate and phosphate are typically 

released in constant atomic proportions N: S i: P of 16 : 16 : 1. The N 0 3 : 

S i ratio in particular significantly affects the driving of the diatom/non-diatom 

community succession, with implications for food chains and CO2 sequestration. 

In surface waters, N: Si: P will be due largely to uptake by phytoplankton in 

the euphotic zone. An attempt to ensure that samples came from within this zone 

was made by setting the sample depth at 100m north of the STF and at 75m 

south of the STF. Stations are grouped into different water mass regions on the 

basis of their temperature and salinity characteristics, giving N03 : S i ratios for 

Subtropical water (north of the AF), typical Agulhas water (between the AF and 

the STF), and Subantarctic water (south of the STF) (figure. 14a-c). 

According to the regression method used by Redfield et al. (1963), nitrate and 

silicate concentrations are plotted for each region and fitted with linear 

regressions. The slope of the regression line gives the ratio of the difference in 

concentration of the elements in question. However these ratios do not represent 

50 

Univ
ers

ity
 of

 C
ap

e T
ow

n



the proportions in which the elements are available in seawater, but rather the 

ratios of change in their concentration resulting from biological activity. In surface 

waters, this ratio of change will indicate the uptake of the various nutrients during 

photosynthesis. The intercept of the regression line is also important. According 

to the relative uptake and availability of N03 and Si, it shows which of the two 

nutrients will be totally depleted before the other, and hence become limiting. 

This has particular special relevance to diatom production (Waldron, 1985; 

Smetacek,1998). 

Subtropical water north of the AF (figure.14a) and Agulhas water between the AF 

and the STF (figure.14b) have a N03: Si regression slope of -0.7 and -0.5 

respectively. Both are less than the predicted Redfield slope of 1, indicating a 

higher uptake of nitrate relative to silicate. 

In subtropical surface water north of the AF (figure.14a) the N03 : Si 

regression intercept lies on the x-axis close to the origin, and gives some 

evidence that when N03 is exhausted, there remains a low concentration of Si 

(-0.33mg-at.m-3). (Data from two of the stations in this region (NP1 and NT _69) 

have been excluded as outliers. These stations had abnormally high Si 

concentrations and low surface N03 concentrations). 

In Agulhas water (figure.14b), as with Subtropical water, the intercept of the 

regression line lies close to the origin, however, the position of intercept now lies 

on the Y axis, and the nutrient regime has switched to one, which is limited by Si. 

Once south of the STF (figure.14c) the intercept increases to -6mg-at.m-3 N03. 

This high intercept value implies that Si will be exhausted before N03, and 

provides strong evidence for the support of silicate limitation of diatom growth 

south of the STF. Dugdale and Wilkerson (1998) noted that nitrate uptake 

appears to cease when silicate concentration is <2mg-at.m-3. For subantarctic 

surface waters south of the STF this was the case (with one exception). 
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The N03 : Si regression slope for the subantarctic surface water (figure.14c) 

is -3.5. This is much greater than Redfield's predicted slope and implies an 

excess of silicate uptake relative to nitrate uptake. 

Phytoplankton Production 

Data are presented for the nominal euphotic zone to the 0.1 % light depth for six 

productivity stations (NP1-NP6) undertaken during the southbound transect. An 

exception is station NP1, which only has data up to the 1 % light depth. The 

locations of these stations within hydrographic regions are given in Table.1. The 

0.1 % light depth was used to define the base of the euphotic zone because 

previous studies have found N uptake below the 1 % light depth (Probyn et a/., 

1996). 

Ambient Nutrient Concentrations 

Ambient nutrient profiles for the six productivity stations are shown in figure.15a­

f). The N03 profiles for stations NP1 to NP4 show minimum concentrations within 

the surface waters, and a rapid increase with depth once below the surface 

mixed layer. Stations NP5 and NP6 on the other hand have subsurface peaks in 

N03 concentration, just above the mixed layer depth at station NP5, and at 32m 

at station NP6. Vertical profiles for both ammonium and urea are variable, at the 

three subtropical stations (NP1-NP3) surface and subsurface peaks occur, but 

generally, their concentrations tend to be higher in surface waters than at the 

0.1 % light depth. At stations NP5 and NP6 the profiles are noticeably more 

uniform from the surface through to the 0.1 % light depth. 

The ambient nutrient concentrations integrated over the photic zone are shown in 

figure.16a-f), together with their percentage of the total nutrient concentration. 

Changes in the nutrient regime occur with the latitudinal progression from north 

to south. This phenomenon is most evident from the large nitrate concentration 

differentials between subtropical water in the north and subantarctic water further 
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south. In subtropical waters (NP1-NP3) integrated N03 ranges from -20 to 

60mg-at.m-2 and comprises between 20% and 30% of the total ambient nutrients. 

Its concentration continues to increase with latitude to a maximum of 1074.94 

mg-at.m-2 at the southern most station (NP6), where it constitutes 93.8% of the 

total. The only interruption in the continuity of this increase with latitude is station 

NP1, which has a higher integrated nitrate concentration than station NP2 and 

NP3. However, it is important to note that the surface mixed layer at station NP1 

is very shallow (63m). Looking at the nutrient profile for this station (figure.16a) it 

is clear that the nitrate concentrations responsible for the high, integrated value 

are only present below the mixed layer depth, and surface concentrations remain 

characteristically low. 

Ambient urea was also latitude dependant, however in this case the 

concentration tended to decrease with latitude. From a maximum at station NP1 

(130.15mg-at.m-2
), where it comprised 68.3% of the total, to a minimum at station 

N P6 (11.4 7mg-at. m-2
), where it only contributed 1 % to the total ambient nutrients. 

Unlike N03 and urea, ambient ammonium concentrations are variable, and do 

not display any obvious spatial trends. Station NP1 had the least amount of 

ambient ammonium (2.24mg-at.m-2
), and comprised only 1.2% of the total N 

nutrients. The highest integrated concentrations of 39.23mg-at.m-2 and 59.92mg­

at.m-2 were found at the AF (stations NP3) and in the vicinity of the Prince 

Edward Island Plateau (station NP6). Between these two high ammonium 

stations were stations NP4 and NP5, which showed low amounts of ammonium 

(15.28mg-at.m-2 and 11.56I11g-at.m-2
). 

Temperature and Total Chlorophyll Profiles 

Temperature and total chlorophyll profiles for each of the production stations are 

shown in figure.17a-f), together with the position of the surface mixed layer 

(SML) and euphotic depth. The profiles of the most northerly stations show a 

stratified water column with strong thermoclines and shallow surface mixed 

layers (-60-75m), which lie above the euphotic depths. To the south, the SML 
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deepens to below the 0.1 % light depth (>80m), and the thermocline weakens. At 

the most southerly station (NP6) the profile has become almost isothermal. Total 

chlorophyll profiles for stations NP1 to NP3 show subsurface maxima that 

coincide with the depth of the surface mixed layer. At stations NP4 to NP6, the 

chlorophyll maxima are found at the surface and decline rapidly below the 0.1 % 

light depth. 

Size Fractionated Chlorophyll Distribution within the Euphotic Zone 

Chlorophyll profiles for stations NP1 to NP3 (figure.18a-c) show a general 

decrease in concentration with depth for all three of the size classes. Subsurface 

peaks in concentration coincide with the depth of the surface mixed layer at each 

of the three stations. At stations NP4 to NP5 (figure.18d-f) the surface mixed 

layer is deeper than the 0.1 % light depth, and has no effect on chlorophyll 

distribution within the euphotic zone. At station NP4, the size fractionated 

chlorophyll profiles are fairly uniform to the 0.1 % light depth, while at station NP5 

and NP6 they tend to decrease with depth. At station NP6 a subsurface peak in 

the concentration of micro, nano, and picophytoplankton is observed at 50m 

depth. 

Integrated and size fractionated chlorophyll data for the productivity stations is 

shown in figure.19a-f). These graphs depict how the overall biomass and 

community structure changed with progression from north to south. Within 

subtropical waters of the ARC (NP1 ,2) total biomass was low (7.5 and 8.6mg.m-2
) 

and picophytoplankton dominated total chlorophyll by around 80%. The 

microphytoplankton on the other hand only accounted for 2-4% of the total. The 

AF (NP3) was marked by a sharp increase in biomass to 19.6 mg.m-2 but showed 

little change in the community structure. At the STF (NP4), the biomass 

increased slightly, but there was a shift towards nanophytoplankton (-33%), the 

highest percentage of the entire transect. Further south however at stations NP5 

and NP6 the biomass rose to -26 and 45mg.m-2 respectively, which is 

attributable to the larger microphytoplankton >20~m which dominated the 

54 

Univ
ers

ity
 of

 C
ap

e T
ow

n



community with 58.6% and 61.4% of the total chlorophyll. These are followed by 

the pico- (-22%) and nanophytoplankton (-16%) size classes in terms of relative 

biomass. 

Nitrogen Uptake 

Profiles of the nutrient (N03, NH4, urea) uptake rates for the six stations are 

shown in figure.20a-f). Nitrogen uptake rates were typically highest in surface 

waters or at the 25% light depth and decreased with depth. An exception is at 

station NP5 (in the vicinity of the SAF), where significant ammonium uptake at 

-60m contributed to a total uptake rate at depth which was only exceeded at the 

25% light depth of (9m). 

The highest total nitrogen uptake rate occurred in the surface water of station 

NP2 (1.49mg-at.m-3.d-1
). Total uptake at the surface was more than six times 

higher than at any depth in the water column, and was dominated by ammonium 

uptake (-70%). From table.3 we see that the ambient NH4 concentration in the 

surface water of this station is 2 to 4 times greater than its neighbouring stations 

and is indeed the highest concentration of NH4 from all of the productivity 

stations. 

Station f\lP3 (50% light depth, 9m) has the second highest total uptake rate 

(1.39mg-at.m-3.d-1
). Urea uptake dominated the total uptake at 60%. The only 

other station with comparable total uptake rates is in the surface water of station 

NP6 (1.22mg-at.m-3.d-1
) in the vicinity of the Prince Edward Islands. Here, the 

maximum total uptake rate is 2.5 and 5 times higher than at the previous two 

stations, and is once again dominated by regenerated uptake with, ammonium 

uptake accounting for 70% of the total N uptake. Surface and subsurface 

maximum uptake rates, coincide with peaks in chlorophyll concentration. 
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f-ratio 

The relative contribution of N03 to total nitrogen uptake for each station can be 

expressed by the f-ratio, profiles (return to figure.15a-f). At subtropical stations 

NP1-NP3, the f-ratio coincided with the availability of ambient N03, and generally 

increased with depth. Subsurface peaks in the f-ratio at 15m coincided with 

increases in ambient N03 and with minimum concentrations of regenerated 

nutrients. However, at the subtropical stations NP4 and NP5 the situation is 

reversed and f-ratio's decreased with depth, indicating a shift from nitrate uptake 

in surface waters to reduced nitrogen uptake at depths with a lower light 

environment. The pro'file for NP6, in relatively close proximity to the PE Islands 

and situated over the PE Island plateau may be anomalous for a subantarctic 

station. Here the f-ratio increased from a surface value of -0.09 to a maximum of 

-0.492 at the 0.1 % light depth of 96m. 

When the f-ratio is calculated for the entire water column (figure.22), a 

southbound latitudinal increase in the f-ratio is evident, although this too remains 

low. The low f-ratios for stations NP1 (-0.06) and NP2 (-0.036) are indicative of 

regeneration based production. A shift from regeneration production toward new 

production is evident from an increase in f-ratio to a maximum of 0.14 in waters 

adjacent to the PE Islands (NP6). Increasing nitrate utilisation with latitude is 

attributable to an overall increase in chlorophyll biomass, together with an 

increase in the proportion of microphytoplankton cells, which are more likely to 

utilise N03 (especially at the SAF and in the region of PE Islands). 

Integrated Nitrogen Uptake 

The integrated nitrogen uptake rates in figure.21 a-f) illustrate the overall 

Significance and percent contribution of each nutrient throughout the euphotic 

layer. Despite having the lowest mean total chlorophyll concentrations (-8mg.m-

2), the mean integrated total uptake rate at stations NP1 and NP2 in subtropical 

waters, was surprisingly high; 26.82mg-at.m-2.d-1 (figure.21 a-b). Urea and NH4 

dominated uptake, together contributing on average -95% to total N assimilation. 
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Nitrate was relatively unimportant, contributing on average -4.77% to the total. 

The AF (NP3) was marked by a tripling in water column productivity to 84.61 mg­

at.m-2.d-1 but was still dominated by regenerated nutrient assimilation with urea 

and NH4 contributing -46% and -44% respectively to the total. The increased 

productivity is consistent with a doubling of the chlorophyll biomass to 19.6mg.m-

2 relative to stations NP1 and NP2. 

The STF station (NP4) did not fit the interpretive trend. In spite of having similar 

chlorophyll biomass (20.7mg.m-2
) to that at NP3, and an increase in ambient N03 

concentration (104.1.mg-at.m-2
), integrated total uptake was low (18.23mg-at.m-

2.d-1
). Station NP5 within the SAF was also seemingly inconsistent having the 

lowest rate of integrated total uptake (7.11 mg.N m-2.d-1
). This was in spite of 

higher total chlorophyll biomass (25.8mg.m-2) and a higher ambient nitrate 

concentration (422.42mg-at.m-2
) than at NP4. 

Integrated total uptake over the PE Island plateau (NP6) revealed an increase in 

uptake rate (55.18mg-at.m-2.d-\ similar to that of station NP3 at the AF. These 

high rates are consistent with the highest integrated chlorophyll value (45.3mg.m-

2) dominated by microphytoplankton (-61 %)(table.4). Despite having the highest 

microphytoplankton abundance, and the highest N03 assimilation of all the 

stations (-14%), total nutrient assimilation was still dominated by NH4 uptake 

(-70.6%). Urea assimilation accounted for -15% of the total uptake and was 

therefore of the same order as N03 uptake. 

Chlorophyll-a Normalised N Assimilation (pN*) 

Following the JGOFs protocol (Sakshaug et aI., 1997) chlorophyll-a normalised N 

uptake is denoted as pN*. This provides a tenuous photophysiological link to 

photosynthetic efficiency although it should not be forgotten that cellular 

carbon:chl-a ratios and packaging is species-specific and is influenced by light 

and nutrient regimes (Sakshaug et aI., 1997). 
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Chlorophyll-a normalised N uptake rates are shown in figure.24a-f. There is a 

general decrease in pN* with depth for all productivity stations. This is most 

noticeable in stations NP1 and NP2 where the pN* values decreased rapidly from 

the highest pN* values of all the stations in the surface waters (-14.5 and -16 

mg-at N [mg chl.r1.d-\ to (-6.14 and 2.52 mg-at N [mg chl.r1.d-1
) at the 50% 

light depth. Stations NP3 to NP5 on the other hand have subsurface maximum 

pN* values at the 50% and 25% light depths. 

Integrated pN* values for each of the productivity stations are shown in figure.23. 

The contrast in chlorophyll-specific photosynthetic efficiency between subtropical 

and subantarctic phytoplankton assemblages is outstanding. For stations NP1 to 

I'JP3, north of the STF, the mean integrated pN* value was approximately 5 times 

that of the three subantarctic stations (NP4-NP6). The highest integrated pN* 

value (3.97mg-at N{mg chlr1m-2d-2
) was in the region of the AF (NP3), whereas 

extremely low pN* values were associated with the subtropical and subantarctic 

frontal regions (I'JP4 and NP5). 

Relative Preference Index 

The relative preference index (RPI) provides a qualitative insight into the 

preference of a particular phytoplankton assemblage for a particular nitrogen 

source. This index incorporates aspects of the relative uptake rate and relative 

concentration of a particular nutrient and gives an indication of the physiological 

preference of phytoplankton for that nutrient (McCarthy et aI., 1977; Probyn, 

1985). An RPI >1 indicates a relative preference while an RPI<1 indicates 

relative discrimination against that nutrient. The RPI results in figure.25 

confirmed the typical hierarchy of NOa < urea < NH4 , and reflects the relative 

energetic costs of using oxidized as opposed to already reduced sources of 

nitrogen. 
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Inter-Island Region 

The contoured interpolated surface temperature in and around the Prince 

Edward Islands (figure.28a), and at 200m (figure.28b), give an indication of the 

positioning of the SAF, which lies between 46.8 and 46.9°S. The SAF is 

characterised by 6°C water at 200m depth, and forms the northern most 

boundary of the polar frontal zone. Figure.28a) reveals the SAF deflecting 

northwards around the islands. 

The Antarctic Polar Front (APF) is distinguished by 2°C water at 200m and forms 

the northern boundary of the polar frontal zone. The APF was not observed on 

either of the Madagascar transects, however cold temperatures <2.65°C at 200m 

indicative of Ataractic Surface Water were encountered at 47°20'S 14 days 

previously during a Marion Island survey (An sorge personal communication). The 

northern edge of the front can be seen in figure.28b) at 47.3°S, with 2.6°C water 

at 200m. 

Figure.29 provides a closer view of the surface temperatures between the 

islands. A relatively warm body of water (surface temperatures> 7°C) in the inter­

island region, and to the east, in the lee of Marion and Prince Edward island was 

evident. Offshore, of the islands domain, colder waters «7°C) were present. 

Surface temperature was closely coupled with the distribution of total surface 

chlorophyll (figure.30a). High chlorophyll concentrations were found in areas of 

warmer water. 

The inter-island region had surface chlorophyll concentrations, which varied over 

a range of 0.11 mg.m-3 to 2.4mg.m-3
. This maximum concentration was four times 

the maximum value found in the region south of the STF. Microphytoplankton 

dominated the inter-island region accounting for nearly 58% of the total pigment 

concentration. The larger microphytoplankton dominated offshore chlorophyll 

distribution (figure.30b). In the shelf region to the east of Marion Island (depth 
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>1000m), a phytoplankton bloom was observed (Pakhomov et aI., 1999) with 

microphytoplankton concentrations of 2.2mg.m-3
. The smaller nano- and 

picophytoplankton size classes dominated the inter-island and near shore 

regions (figure.30c) and d). 

The temperature depth profile of station.11 between Marion and Prince Edward 

Island (figure.31 a) illustrated a well-mixed surface layer to 60m. This surface 

layer had a temperature of approximately BOC. In contrast, the profile of 

station.10 in the shelf region offshore from lVIarion Island (figure.31b) showed a 

much shallower surface mixed layer (30m), and a slightly cooler surface 

temperature (7.5° C). 
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DISCUSSION 

For studies of general distribution it is convenient to divide a diverse sampling 

area into similar provinces. A broad-scale view of the world's oceans identifies 

two main region types: the less productive oligotrophic regions of the open 

oceans, which approximate to the central parts of the oceanic gyres and the 

more productive eutrophic regions, coincident with the shelf seas, coastal 

upwelling zones and some parts of the polar oceans. In accordance with this 

view, and based on an analysis of the data acquired from our respective 

transects, two contrasting marine provinces were identified within this study, 

each with distinctive physical, chemical and biological characteristics. The two 

provinces identified are: the subtropical region north of the STF and the 

subantarctic region south of the STF. 

Chlorophyll distribution and primary production within the various regions, 

requires careful explanation and revolves around four main questions. These are: 

1. What are the rates of new and regenerated production and what therefore is 

the potential for significant particulate export? 

2. How do we account for the low chlorophyll concentrations north of the 

STF? 

3. Why chlorophyll concentrations south of the STF are lower than 

anticipated despite high concentrations of nitrate? 

4. What mechanisms account for the elevated chlorophyll values found 

within the frontal regions and in the region of the Prince Edward Islands? 

Interpretation of the observed chlorophyll biomass distribution and differences 

between the regions can result from a consideration of hydrographic influences 

and potentially limiting combinations of factors which include grazing control, light 

limitation, nutrient and iron limitation (Read et al. 2000). Even partial answers to 

the questions will provide a better understanding of the biophysical forcing of new 

and export production, together with the magnitude and variability of C02 draw 
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down from the atmosphere. Such information will contribute to the effectiveness 

of ocean-atmosphere Global Carbon Models (e.g. Palmer and Totterdell, 2001), 

and increase the predictive ability to assess climate change. 

Chlorophyll distribution north of the STF 

Chlorophyll concentrations in subtropical waters are low, with maximum 

concentrations not exceeding 0.27mg.m-3
. Throughout this region 

picophytoplankton dominate chlorophyll distribution by >81 %, followed by 

nanophytoplankton (-16%) and exceptionally low concentrations of 

microphytoplankton (2.75%) (table.2). Subsurface chlorophyll maxima are found 

at depths of -75m (figure.11), which roughly coincide with the depth of the 

surface mixed layer (SML) (figure.8b). 

Since total incident radiation is a function of latitude (lower latitudes experiencing 

high light intensity throughout the year), the availability of sufficient light is not 

considered a limiting factor for phytoplankton production north of the AF. Our 

study confirms this statement for the region north of the STF, as surface mixed 

layer depths are shallower than the (0.1 %) euphotic depths, which vary from 90 

to 150m (figure.17 a-c). 

North of the STF is the region of warm and salty subtropical water with low nitrate 

«1 mg-at.m-3
) concentrations. However, maximum concentrations of ammonium 

and urea were observed in the surface waters of this region. The presence of 

regenerated nutrients in the euphotic zone is related primarily to in situ metabolic 

recycling by zooplankton, microzooplankton and bacteria. These high 

concentrations of regenerated nutrients imply, contrary to popular belief that 

subtropical waters are not necessarily marine deserts in terms of their biological 

production. The large populations of secondary and tertiary consumers (fish, 

marine mammals, and birds) observed in oligotrophic regions provide evidence in 

support of this statement. 
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Why then were the chlorophyll concentrations for this region so low? 

One explanation for low surface chlorophyll concentrations observed north of the 

STF is nitrate limitation of diatom growth despite some available silicate. A 

similar scenario was observed to the east of our study region by Read et aI., 

2000a). 

The productivity station data (figure.27) may clarify this statement. The integrated 

silicate value for station NP1 was unbelievably high and considered an outlier, its 

actual value has therefore not been represented on this graph. However, from Si 

concentrations at neighbouring stations one can confidently assume that it's 

integrated value is >90mg-at.m-2
. Silicate concentrations at all three productivity 

stations in subtropical waters were high (NP1, NP2, NP3). However, despite high 

ambient silicate, total nitrogen assimilation remained low at station NP1 and NP2. 

Silicate was therefore not considered a limiting factor in respect of primary 

production biomass accumulation in subtropical waters. However, ambient nitrate 

in the euphotic layer remained low for all subtropical stations, thereby increasing 

its likelihood as a factor limiting primary production by diatoms within this region. 

Microphytoplankton have a fast turnover rate, and the rate of remineralisation of 

ammonium and urea is not fast enough to support the development of diatom 

blooms (Malone, 1980; Chisholm, 1992 cited Tremblay et a/., 2000). 

Microphytoplankton therefore have to rely on new sources of nitrogen to allow for 

increases in their population size or in production passed on to higher trophic 

levels (Dugdale and Goering, 1967). 

The hydrographic characteristics for this region are governed by a shallow 

surface mixed layer (-75m), below which lies a strong seasonal thermocline 

(figure.8 and 1 Ob). This permanent thermocline may create a vertical stratification 
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sufficient to prevent vertical transport of deeper N03 rich waters into the euphotic 

zone through means other than by shear or eddy diffusion. 

Subtropical surface water north of the AF is the only water mass region with a 

~N03 : ~Si regression intercept that infers N03 to be more limiting than Si 

(figure.14a). The intercept lies close to the origin, but gives some evidence that 

when N03 is completely exhausted, there remains a small amount of Si (-0.33 

mg-at.m-2
). These data support the contention that low concentrations of N03 

limit diatom growth, and can account for the almost complete absence of 

microphytoplankton found in this region. The residual concentrations of silicate 

are typical of Subtropical Water. The subtropical gyre of the South Indian Ocean 

is surrounded by water of higher silicate values both to the north in equatorial 

regions, and to the south across the Antarctic Circumpolar Current (Read et aI., 

2000a). 

The subsurface chlorophyll maximum observed at -75m, was approximately 

coincident with the base of the surface mixed layer at each station (figure.17a-c). 

This raises the possibility that organisms living at the boundary between deep 

and surface water may take advantage of limited N03 diffusion across the 

thermocline. Albeit at a low level, the diffusive nutrient transport may be sufficient 

to sustain some primary productivity at this depth. Evidence in support of this 

suggestion is provided in the ~N03 : ~Si ratio (figure.14a) and in the f-ratio 

profiles (figure.15a-c). The relative contribution of N03 to total nitrogen uptake is 

expressed by the f-ratio. In subtropical water, the f-ratio profiles were positively 

related (quantitatively) to those of ambient N03 and generally increased with 

depth (figure.15a-c). Thus, in deeper water in close proximity to the base of the 

thermocline, N03 uptake by phytoplankton gave a greater contribution to total 

uptake. The ~N03 : ~Si ratio also suggest that nitrate is being taken up to a 

greater extent than silicate. This implies that most of the nitrate uptake is by 

phytoplankton not utilising silicate, which probably excludes diatoms. The ~N03 : 

~Si ratio therefore supports the proposed utilisation of limited nitrate diffusion 
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across the pynocline by smaller nano- and picophytoplankton not requiring 

silicate. 

Having attempted to justify the scarcity of microphytoplankton in subtropical 

surface water. The arguments presented still beg the question: why north of the 

STF the biomass of pico-and nanophytoplankton remains low, despite apparent 

nitrate utilisation and the highest concentrations of regenerated nutrients? 

A possible explanation may be microzooplankton grazing control of biomass 

(Froneman and Perissinotto, 1996a). 

Compared to microphytoplankton, the smaller nano- and picophytoplankton, 

have slower growth rates which can probably be met by the rate of nitrogen 

regeneration processes in surface waters. Their surface area to volume ratio also 

makes them more efficient (per unit chlorophyll) at nitrogen uptake than 

microphytoplankton, giving them an advantage in low nutrient subtropical 

conditions (Holm-Hansen, 1985; Probyn and Painting, 1985; Koike et aI., 1986). 

Although small size confers competitive advantages to assimilate nutrients at low 

diffusion-limited ambient concentrations, it also increases susceptibility to grazing 

by microzooplankton (Raven, 1986). At saturating prey abundance, 

microzooplankton growth rates can greatly exceed those of their 

picophytoplankton prey (Banse, 1982), which are characterised by an intrinsically 

lower resource unlimited growth rate than diatoms (Martin and Fitzwater, 1988). 

One consequence of such grazing pressure must be significant recycling of NH4. 

and the inhibitory effects of NH4 on N03 utilisation would further limit new 

production (Dortch, 1990). 

The low f-ratios (~0.1) for this region confirm that production is based primarily on 

nutrients recycled in the surface waters (figure.15a-c). If the turnover rate of the 

nano- and picophytoplankton is closely coupled to the rate of grazing by 

zooplankton, then predation and limited nitrate concentrations can be considered 
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as primary factors controlling phytoplankton biomass build up in the subtropical 

region north of the STF (Froneman and Perissinotto, 1996a,b; Bathmann et aI., 

2000). 

In a subtropical marine environment such as the one considered as part of this 

study, where a sizeable fraction of the production has shown to be achieved 

through recycling, and where nano- and picophytoplankton dominate the 

community. The phytoplankton may be too small to be easily consumed by 

mesozooplankton and may therefore enter the "microbial loop". This is 

characterised by many steps in the food chain and inefficient energy transfer 

(Gifford and Oagg, 1988, 1991 cited Froneman and Perissinotto, 1996 Gifford, 

1991; Michaels and Silver, 1988). In such cases, respiratory CO2 losses are 

great, and only a small fraction of the organic matter is exported into the deep 

water (Tremblay et aI., 2000). 

Chlorophyll distribution south of the STF 

Crossing the STF into subantarctic surface water, total chlorophyll concentrations 

increased and the community structure began to shift in favour of the larger 

microphytoplankton cells (figure.12b). Nanophytoplankton typically dominate 

subantarctic waters (90%) with microphytoplankton dominating only under bloom 

conditions (Weber and EI Sayed, 1987 cited Tremblay et aI., 2000). This study 

was in agreement in that the nano- and picophytoplankton size classes 

dominated south of the STF except at the SAF and over the Prince Edward 

Island (PEl) plateau bloom region where microphytoplankton dominated the 

water column community to attain the highest integrated biomass recorded 

(-35mg.m-2
) for this size-fraction. 

The hydrographic characteristics describing this region can be briefly stated as 

follows. South of the STF, the depth of the surface mixed layer gradually 

increased with latitude to a depth of -110m (figure.8a). Contrasting to the 
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subtropical waters, the subantarctic waters show no indication of a strong 

thermocline below the surface mixed layer. The absence of a strong thermocline 

reduces vertical stability and allows deeper water to be mixed into the surface 

layer. South of 43°S the potential temperature and salinity sections (figures.8 and 

9b) show considerable structure in a sequence from north to south, of cold, fresh 

and warm, salt features. These features are also apparent in the N03 and to a 

lesser extent in the Si sections (figure.13a and b), with corresponding sequences 

of high and low nutrient concentrations. These structures may be the result of 

small shear-edge eddies. Eddies shed from the Agulhas retroflection are typically 

comprised of warmer Agulhas Return Water and are known to move southwards, 

sometimes crossing the STF (Lutjeharms and van Ballegooyen, 1988). These 

anticyclonic eddies are approximately 200-300kms in diameter and have a deep 

isothermal core. Substantial heat loss and convective overturning may drive the 

vertical motions responsible for the entrainment of these nutrients into the 

surface (Dower and Lucas, 1993). 

Since the supply of nutrients into the photic zone is maintained by turbulent 

mixing and large-scale upwelling from deeper nutrient rich waters. Nitrate 

availability can be ruled out as a limiting factor to phytoplankton growth south of 

the STF (EI Sayed, 1984 cited Probyn and Painting, 1985). However, despite the 

dominance of the nitrogen pool by N03, primary production in this region is still 

based on regenerated nutrients as can be seen by the low f-ratios «0.5) 

(figure.21), and is dominated by the smaller pico- and nanophytoplankton cells 

(table.2). This scenario in Southern Ocean waters represents the now well known 

high nutrient low chlorophyll (HNLC) paradox. Implicit in the f-ratio is a measure 

of that fraction of primary production, which is available for export to the deep 

ocean or to higher trophic levels (Probyn and Painting, 1985). The low f-ratios 

mean that CO2 draw down is lower than one would expect from the potentially 

large N03 pool in this area. This has profound implications for the effectiveness 

of the biological pump and the global C02 budget, in which diatoms playa pivotal 

role (Smetacek, 1998). 
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The mechanisms responsible for maintaining phytoplankton biomass at levels of 

only a few percent of growth potential of this water are thought to involve a 

combination of physical and biological processes. 

Stratification and light limitation 

One such mechanism involves light limitation as a function of deep mixing and 

stability relationships. Subantarctic waters south of the STF show no indication of 

a strong thermocline and thus offer very little resistance to an increase in the 

thickness of the surface mixed layer, which in this region deepened to -90m 

(figure.17d-f). The mixing depth was deeper than the euphotic depth (which for 

this region averaged at around 72m) and may have resulted in the phytoplankton 

experiencing an unfavourable light environment for a time sufficient to limit their 

productive potential (Dower and Lucas, 1993). 

Nitrate uptake has previously been demonstrated to have a high light 

dependence in differing regions (Morel, 1991; Morel, 1991; Probyn et aI., 1996), 

such that significant nitrate dependent growth at depth is likely to be restricted. 

This is reflected quantitatively in the f-ratio profiles for the subantarctic (figure.15c 

and d), where f-ratios decrease with depth, indicating a shift from nitrate uptake 

in surface waters to reduced nitrogen uptake at depth. This preferential uptake of 

reduced over oxidised forms of organic nitrogen in low light environments can be 

explained in terms of the energy expenditure associated with intracellular 

reduction of nitrate, and is expressed in the relative preference index (RPI) 

values. The active uptake of N03 is energetically expensive and is therefore 

discriminated against with respect to NH4 and urea, which are the preferred 

nutrients and can be considered as energy saving. At depth, in low light 

intensities, regenerated nutrient assimilation is thus generally favoured over 

nitrate. 
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In summary, it can be said that light limitation will contribute to low f-ratios and 

low rates of new and export production. Limited microphytoplankton abundance 

would be expected under these circumstances. By contrast, where regenerated 

production prevails, the assemblage is dominated by small pico- and 

nanophytoplankton cells, with low or negligible sinking rates. I n such light limited 

environments one would expect weak biological C02 draw-down or there may be 

a net C02 source to the atmosphere. 

Preference and inhibition 

It has been argued that when NH4 is available to phytoplankton, the active 

transport of N03 into the cell is impaired. This together with a low light 

environment may set upper limits to new production in nutrient rich grazing 

balanced environments (Wheeler and Kokkinakis, 1990, Dortch, 1990). These 

conditions were present in this study and are made manifest by the integrated 

values of the f-ratios (figure.22), which were typically lower than might be 

expected on the basis of ambient N03 concentrations. The interaction between 

the uptake of nitrate and ammonium has been separated into two distinct 

processes: an indirect preference for ammonium and a direct inhibition of nitrate 

uptake (Dortch, 1990). The indirect preference for NH4 is expressed in the RPI 

results (figure.25), which confirms the typical hierarchy of preference for NH4 > 

urea > N03. Preference for reduced over oxidised forms of nitrogen is 

hypothesised to be maximal under low light and nutrient deficiency, whereas 

inhibition will be maximal under conditions of low light and nutrient sufficiency 

(Dortch, 1990). The relationship between regenerated nutrient concentration and 

both N03 uptake and the f-ratio found in this region (Garside, 1981; Smith and 

Harrison, 1991) suggests that high regenerated nutrient concentrations (-3mg­

at.m,3) are able to inhibit N03 uptake and reduce the f-ratio (figure.26). 

Silicate limitation 

Another possible macronutrient, responsible for setting upper limits in new 

production within the Southern Ocean is silicate (Si), which may be present in 
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concentrations below the threshold for phytoplankton growth (Allanson et aI., 

1981; Jacques, 1989; Verlencar et aI., 1990 cited Laubscher et aI., 1993). 

Dugdale and Wilkerson (1998) note that nitrate uptake appears to cease when 

silica concentrations are less than 2mg-at.m-3. For subantarctic surface waters 

south of the STF this proved to be the case for all Si concentrations (with one 

exception) and lends credence to the possibility of Si limitation of phytoplankton 

biomass. 

In open ocean waters, Redfield et al. (1963) and Dugdale and Wilkerson (1998) 

have demonstrated that the nutrients nitrate, silicate and phosphate are typically 

released in constant atomic proportions ~N : ~Si : ~P of 16 : 16 : 1. Since 

Antarctic diatoms have high cellular ratios Si:C and Si:N, they require high 

silicate concentrations to achieve their optimal growth (Jacques, 1989). The 

~N03 : ~Si ratio in particular significantly effects the driving of the diatom/non­

diatom community slJccession, with implications for food chains and C02 

sequestration. The ~N03 : ~Si regression slope for the subantarctic surface 

water is -3.5 (figure. 14c). This is much greater than Redfield's predicted slope 

and clearly implies an excess of silicate uptake relative to nitrate uptake. The 

intercept of the regression line at -6mg-at.m-3 N03, means that Si will be 

exhausted well before N03, and provides strong evidence for the support of 

silicate limitation of diatom growth south of the STF. 

Further evidence is provided in that despite an increase in ambient nitrate from 

STF (NP4) to the SAF (NP5), the total uptake rate actually decreased, which 

confirms that ambient nitrate concentrations are not a factor limiting primary 

production in subantarctic waters (figure.27). It is only over the Prince Edward 

Island plateau (NP6) where silicate concentrations show such a significant 

increase, that primary production increases and subsequent blooms of 

microphytoplankton can occur. 
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Fe limitation 

The oceanic regions of the Southern Ocean are among the most iron 

impoverished in the world because of the absence of land masses, which 

contribute iron through run-off and airborne dust (Martin and Fitzwater, 1988; 

Martin, 1990; Martin et aI., 1990). Evidence suggests that Antarctic 

phytoplankton may have iron deficiencies, which inhibit nitrate uptake and 

reduction within the diatom cells. This prevents them from blooming and using up 

the potential supply of nutrients present in Southern Ocean waters (Martin and 

Fitzwater, 1988, Martin et al. 1989,1990). Such iron limited nitrate assimilation by 

diatoms cannot be excluded as a viable mechanism for explaining their relative 

paucity south of the STF. However, we have no data for this region to further 

explore this issue. 

Enhanced Biomass and Productivity at Ocean Fronts 

Elevations of surface chlorophyll concentrations were correlated with the frontal 

regions on both the Northbound and Southbound transects (figure.7 and 12). The 

distribution of integrated chlorophyll during the southbound leg showed a 

significant peak just south of the STF, whereas peaks of lesser magnitude are 

associated with the SAF and the AF (figure.12b). 

This gives an indication of the importance of frontal features, not only as physical 

boundaries, but also as specific areas of enhanced biological activity. 

It is, however, possible that the enhanced chlorophyll concentrations at the fronts 

are the result of a decrease in loss rates, via reduced mortality or horizontal 

convergence, which is believed to concentrate buoyant, non-motile organisms at 

fronts, and is not due to enhanced primary productivity (Ainley and Jacobs, 1981; 

Olson and Backus, 1985 cited Allanson and Parker, 1983; Heywood and Priddle, 

1987; Franks, 1992). 
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Such mechanisms would lead to a decaying population at the fronts; however, 

Laubscher et al. {1993} found blooms at three oceanic fronts (STF, SAF and 

APF) that were strongly dominated by specific size classes and species. This 

suggests that the increase in biomass was probably the result of enhanced in situ 

production by selected components of the phytoplankton assemblage, rather 

than by accumulation of cells through hydrographic forces (Laubscher et aI., 

1993). One may conclude that phytoplankton populations at fronts are probably 

thriving for specific environmental reasons, and have not been accumulated 

there as part of the average advection patterns of the sea surface (Allanson and 

Parker, 1983; Dower and Lucas, 1993; Laubscher et aI., 1993; Bracher et aI., 

2000; Tremblay et aI., 2001). The combination of strong horizontal temperature 

gradients, nutrient gradients, current velocities and sharp but shallow pynocline 

boundaries tend to create the dynamical conditions most favourable to stimulate 

phytoplankton growth (Read et aI., 2000a). 

Biological activity at fronts has furthermore been shown not to be restricted to 

lower trophic levels. Atkinson and Targett (1983) have demonstrated a 

relationship between fish distribution and upwelling along a front, and Ainley and 

Jacobs (1981) have reported affinities between seabirds and certain fronts in the 

Southern Ocean. Fronts also seem to be preferred areas of spawning for krill, the 

main Antarctic macro-zooplankton (Tranter, 1982). 

The Agulhas Front 

The AF (NP3) was marked by a doubling in chlorophyll biomass (figure.16) and a 

3-fold increase in water column productivity, (figure.21) (relative to stations NP1 

and NP2). Little change is seen in the community structure, which is consistent 

with surrounding subtropical waters and dominated by picophytoplankton (-80%) 

with fewer nanophytoplankton and almost no microphytoplankton (figure.16). 

It has already been established that subtropical surface waters are thermally 

stable and stratified to an extent, which prevents the advection of nutrients into 
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the surface waters. However, two mechanisms are potential candidates for the 

introduction of N03 into the surface mixed layer at the AF. This may account for 

the increase in integrated N03 concentration from -19mg-at.m-2 at the previous 

station (NP2) to -32mg-at.m-2 at the AF (NP3), and ultimately for the biological 

enhancement observed in this region. 

The Agulhas Current is known to form part of a shelf current exhibiting meanders 

on various scales (Grundlingh, 1979; Lutjeharms et aI., 1981). The presence of 

upwelling in the lee of such meanders may cause a flux of nutrients into the 

euphotic zone, potentially resulting in significant increases in phytoplankton 

production. 

The second mechanism takes into consideration the kinematic nature of the 

Agulhas Current. Lutjeharms et al. (1985) stated that organisms living in the 

border-mixing area of a fast flowing current would experience a continuous but 

low level of nutrient replenishment. This might be sufficient to sustain a higher 

primary productivity in areas of strong horizontal shear. 

What prevents the chlorophyll biomass at the AF from reaching concentrations 

as high as those at the STF and SAF? 

Primary production in subtropical waters is limited by the supply of N03 and 

therefore relies on regenerated nutrients, which constrains the phytoplankton 

population to small cells. Microzooplankton growth rates can greatly exceed 

those of their picophytoplankton prey {Banse, 1982; Raven, 1986; Froneman and 

Perissinotto, 1996}. They are thus capable of cropping the phytoplankton 

population at a rate that can equal or exceed cell division rates (Frost, 1991; 

Banse, 1992), thereby preventing an increase in phytoplankton biomass, but at 

the same time, contributing to potential phytoplankton ammonium excretion 

(Glibert et al. 1992). An increase in phytoplankton population size would require 
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larger and faster growing microphytoplankton capable of escaping from 

significant zooplankton grazing pressure (e.g. Dubischar and Bathmann, 1997). 

However, why does the increase in N03 at the AF fail to encourage any change 

in the phytoplankton community structure, which continues to be dominated by 

small picophytoplankton cells? 

It is suggested that the replenishment of N03 is taking place at a slow rate and at 

depth. Small cells are better adapted to low light environments, and their surface 

area to volume ratio makes them more efficient than microphytoplankton at 

nitrogen uptake. Picophytoplankton thus out-compete the larger cells in low 

nutrient conditions and remain the dominant size class at frontal regions within 

subtropical waters despite an increase in new production (Dower and Lucas, 

1993; Tremblay et aI., 2000) 

Why are uptake rates at the AF faster than those at the STF and SAF where 

chlorophyll biomass is much higher? 

Low ambient nitrate may limit the development of microphytoplankton and the 

size of the population at the AF front. However, the nitrogen requirements of the 

slow growing picophytoplankton, which dominate here, are satisfied by the 

preferred, energy saving assimilation of regenerated nutrients. 

These phytoplankton cells are photosynthesising efficiently in a high light, Si and 

regenerated nutrient environment. Some evidence is given in the integrated 

chlorophyll-a normalised N uptake rates (figure.23), which provide some basis for 

a photophysiologicallink to photosynthetic efficiency. Station NP3 at the AF has 

the highest chl-a normalised photosynthetic rate of all the productivity stations, 

which may explain the higher nutrient uptake rates found there. On the contrary, 

phytoplankton new production at the STF and SAF (NP4 and NP5) is limited by 

light as a function of deep mixing, high NH4 concentrations, low Si and possibly 
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low Fe concentrations. Their chlorophyll~a normalised N uptake rates are the 

lowest of all the productivity stations. This confirms that despite the high biomass 

found at these fronts, the phytoplankton are probably not photosynthesising at 

maximum efficiency relative to those at the AF. However, without appropriate P 

vs. E experimental data, the light dependent physiological response of 

phytoplankton to the ambient underwater light regime remains rather speculative. 

The Subtropical Front 

Previous cruises studying the distribution of chlorophyll across frontal boundaries 

have shown the STF to have consistently high rates of biological activity (e.g. 

Barange et aI., 1998). CZCS composite data have also shown that phytoplankton 

pigment concentrations for this region are high all year round (Weeks and 

Shillington, 1994). Enhanced productivity has been recorded most often at the 

northern boundary between subtropical and subantarctic waters (Plancke, 1977 

cited Allanson and Parker, 1983; Lutjeharms et al.,1985; Laubscher et aI., 1993) 

however this study shows a peak in chlorophyll concentration to the south of the 

STF (figure. 12b). Total pigment concentrations are dominated by pico~ and 

nanophytoplankton, while microphytoplankton are largely absent. A community 

such as this (NP4) is based on regenerated nutrients, utilising urea (56.5%) and 

NH4 (37.6%) rather than N03 (5.9%) (figure.21). These observations imply little 

particle export and biological draw~down of C02 at the STF for this study at least. 

Three possible mechanisms explaining the biological enhancement at 

convergent fronts such as the STF have been put forward. The first, being due to 

advective processes only, is considered the least likely explanation. The latter 

two refer to cross~frontal mixing. 

The mixing of nutrient-rich Sub~Antarctic Surface Water northwards across the 

STF may have biologically significant consequences in transporting nutrients 

from the well-mixed side of the frontal boundary to the more stratified side. This 

increase in supply of nutrients would favour primary production and perhaps 
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explains the major chlorophyll increases found to the north of the STF in various 

other studies (Plancke, 1977; Allanson et aI., 1981; Lutjeharms, 1985). 

Similarly, conditions favourable to increased primary production may also be 

created by the mixing of warm, nutrient poor water southwards across the STF 

causing an increase in density stratification in the upper layers. Read et al. 

(2000a) have suggested that the combination of warm but nutrient depleted 

subtropical water and the cooler but nutrient replete subantarctic water meeting 

at the STF positively influences mixed layer depth, thermal stratification and the 

nutrient environment. Flooding from the north could be aided by the meandering 

nature of the STF and consequent northward movement of the front, but is 

restricted to the near surface layers. This enhancement in vertical stability 

. causes retention of phytoplankton in the euphotic zone and subsequent biomass 

accumulation associated with or just south of the STF and its' meandering. 

Meandering, or meridional displacement of water, appears to occur at irregular 

localities along the STF creating patches of high biomass (Weeks and 

Shillington, 1994). 

This particular mechanism of biological enhancement could explain the peak in 

chlorophyll pigments found to the south of the STF on the southbound leg of this 

cruise (figure.12b). It has been shown that the frontal systems in the Southern 

Ocean are subject to major changes, and the STF south of Africa has been 

described as one of dramatic variability (Lutjeharms et aI., 1985). During the 

northbound leg, the STF was situated at 43°30'S (figure.6), whereas on the 

southbound leg (figure.8a), 10 days later, the STF had shifted northwards to 42° 

30' S. This northward movement of the front by 1 degree may enhance the input 

of warm water from the north, thereby promoting vertical stability and enhanced 

biomass south of the front. 

If elevated pigment concentrations associated with ocean fronts are the result of 

favourable dynamical conditions, then enhanced primary productivity rates would 
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indicate a thriving population. This was not the case at 43°S (NP4) within the 

chlorophyll bloom south of the STF, where the productivity results show very low 

nutrient assimilation rates (figure.21). Furthermore, the temperature profile for 

this station shows no indication of enhanced vertical stability and the mixed layer 

depth is well below the 0.1 % light depth (figure.17). The very low integrated 

chlorophyll-a normalised N uptake rate for this station (figure.23) implies that the 

population is not photosynthesising as efficiently as it might be. The results 

suggest that cross-frontal mixing of subtropical water southwards across the STF 

was not the appropriate mechanism responsible for this particular peak in 

chlorophyll pigments found south of the STF on the southbound leg of this cruise. 

An alternative explanation of the chlorophyll peak situated one degree south of 

the STF could be that it represents a senescent phytoplankton population. The 

zone of peak production associated with the front having migrated one degree 

further north. 

The temperature section for the Northbound transect located the STF at 43°30' S 

10 days previously. A decrease in surface temperature across the front from 

17.22°C at 43° 15' S to 13.85°C at 43° 45' S coincides with a two fold increase in 

the surface total chlorophyll from 0.18-0.36mg.m-3 {figure.7a}. One may infer that 

the physico-chemical characteristics associated with the STF at this time 

favoured enhanced productivity and can account for the increase in surface 

chlorophyll across the front. Shallow surface mixed layer depths (-30m), and 

increased vertical stability (figure.6) supports mixing of subtropical water 

southwards across the front, as the mechanism responsible for creating the 

conditions favourable for increased production and subsequent biomass south of 

the STF on the Northbound transect. 

However, with the migration of the STF further north, the favourable conditions 

associated with the front, which are responsible for initialising and essential in 

maintaining enhanced productivity and biomass are no longer present at this 
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location (43°30' S). Apart from light limitation through deep mixed layer depths, 

phytoplankton growth at this station is also limited by low Si concentrations. The 

integrated Si concentration (figure.27) for the euphotic layer of station NP4 

confirms low silicate concentrations, which most likely limits diatom growth and 

the uptake of available nitrate (apparent in low integrated f-ratio in figure.22). The 

low assimilation rates and poor photosynthetic efficiency (figure.23) within the 

chlorophyll bloom at 43°S (NP4) supports this theory, which suggest that since 

conditions are no longer favourable, production has become limited and the 

population is in a state of decay. 

The Subantarctic Front 

A peak in chlorophyll concentration coincides with the position of the SAF at 45°S 

(figure. 12b). Total biomass is only slightly higher than at the AF and STF, 

however the community structure is significantly different (figure.19). Once south 

of the chlorophyll peak associated with the STF, microphytoplankton biomass 

begins to increase together with their percentage contribution to total pigments. 

The chlorophyll peak at the SAF is the first population in which 

microphytoplankton are the dominant size class (>58%). 

Microphytoplankton frequently rely on new sources of nitrogen to support 

increases in their population size (Dugdale and Goering, 1967). The upward 

sloping isopycnals for N03 at the SAF (figure.19a) indicates an advection of 

nutrient (N03 and Si) rich deep water into the surface layer. This would stimulate 

new production and cause an increase in diatom biomass, if zooplankton grazing 

is ineffective; a scenario the results from this study support. A study by 

Laubscher et al. (1993) also concluded that a microphytoplankton bloom 

associated with the SAF probably occurred as a result of cross frontal mixing of 

silicate into the surface layer. The SAF is therefore a potentially important open 

ocean site where subsequent sinking of diatom frustules provides a downward 

flux of biogenic silica, and probably carbon, into the ocean interior. 
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Despite the bloom in microphytoplankton (figure.19) and the increase in 

percentage new production at the SAF, station NP5 shows very low total nitrogen 

uptake rates (figure.21). What are the factors limiting primary production at the 

SAF? 

Antarctic diatoms have high Si:N ratios and require high silicate concentrations to 

achieve their optimal growth (Jacques, 1989). Such an increase in new 

production and diatom biomass (which is associated with the SAF) would have 

required an increased uptake of silicate. There is some evidence for this in the Si 

section (figure.19b) where peaks in microphytoplankton at the SAF coincide with 

the depletion of silicate in the euphotic surface layer. 

The uptake of nitrate by diatoms is energetically expensive and requires a high 

light environment (Probyn et aI., 1996 cited Read et aI., 2000a). The temperature 

profile for station NP5 (figure.17) indicates a very well mixed layer greater than 

150m, which is nearly 3x the 0.1 % light depth (53m). Light limitation as a result of 

a deep mixed layer, and the depletion of Si, which limits new production, might 

contribute to the low uptake rates in the diatom bloom at this station. 

Enhanced Biomass and Production in the Prince Edward Inter­

Island Region 

The physico-chemical parameters responsible for enhanced production and 

phytoplankton biomass associated with the Prince Edward archipelago, 

compared to the surrounding open ocean, have been thought to be due to an 

"island mass effect" (AI/anson et aI., 1985). Similar enhanced productivity 

associated with South Georgia is well documented and for review, see Atkinson 

et al. (2001). However, do the inter island results from this study provide any 

evidence in support of the supposed "island mass effect"? 
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Chlorophyll concentrations in this region were relatively high, with surface 

maximum values four times those of its neighbouring region south of the STF. At 

the productivity station (NP6) in the vicinity of the Prince Edward Island (PEl) 

shelf, microphytoplankton dominate the community to the extent of 61.4% and 

attain the highest integrated biomass recorded (45.3mg.n,-2) for this size fraction, 

followed by pico- and nanophytoplankton in relative abundance {figure. 19). 

Surface and subsurface maximum uptake rates (figure.20f) coincide with 

maximum chlorophyll concentrations (for all three size classes) (figure.18f), and 

are 2.5 and 5 times higher than at the STF and SAF. Total integrated nitrogen 

uptake for this station (NP6) is high (figure.21), second only to the AF (NP3) and 

dominated by NH4 assimilation (-70.7%) with the highest rates of uptake for this 

nutrient of all the productivity stations. Similar observations have been made 

previously (e.g. Boden, 1988; Perissinotto et al. 2000). 

The increase in chlorophyll concentrations and primary production around the 

Prince Edward Islands confirms the general validity of an "island mass effect" 

(Boden, 1988). The surface temperature distribution (figure.28a) shows the SAF 

as a single front, steered by the shallow bottom topography of the region, and 

deflecting northwards around the islands. 

In warmer waters, closer to the shore and between the islands (figure.29), the 

phytoplankton population was dominated by the smaller pico- (-26%) and 

nanophytoplankton (-16%) size classes (figure.30c and d). Further offshore but 

within the islands' domain colder waters were encountered. Although diatoms 

dominated total surface pigments for the inter-island region as a whole (-58%), 

their abundance was somewhat restricted to populations further offshore 

(figure.30b). Microphytoplankton distribution mirrors that of surface temperature 

(figure.29), bloom concentrations coinciding with colder waters. 
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Smith (1987 cited Ismail, 1990) stated that due to the high annual rainfall, guano 

gets dissolved and carried out into sea via run-off, spreading out from the islands 

and giving rise to enhanced concentrations of reduced nitrogen in near shore 

areas. The flux of fresh water in the inter-island region decreases the density of 

the surface mixed layer, with consequential local increase in water column 

stability (Perissinotto et aI., 1990; Duncombe Rae, 1989). Figure.29, revealed a 

relatively warm body of surface water between the two islands providing 

evidence of trapped circulation over the inter-island plateau (see also 

Perissinotto et aI., 2000). Whilst being trapped, these waters were thermally 

enhanced, from the surface allowing an even more stable, stratified water column 

to develop. A temperature profile from within the nanophytoplankton bloom 

(figure.31 a), provided further evidence in support of enhanced vertical stability, 

with a well developed surface mixed layer of thermally enhanced (-8°C) water to 

-60m. This enhancement in vertical stability causes retention of phytoplankton in 

the euphotic zone and subsequent biomass accumulation. 

In an environment such as this, high NH4 concentrations could potentially inhibit 

the uptake of nitrate and new production in surface waters (Dortsch, 1990). The 

particulate nitrogen pool becomes more and more based on regenerated 

nutrients through microzooplankton grazing and bacterial degradation of organic 

substrates and is reflected in the highest rates of uptake for NH4. Unlike 

microphytoplankton, production within the nano- and picophytoplankton size 

class is satisfied by the assimilation of regenerated nutrients without resorting to 

nitrate. Their surface area to volume ratio also makes them more efficient at 

nutrient uptake than diatoms, allowing them to out compete the larger cells, 

which explains their dominance in waters nearer the shore and between the 

islands (Koike et aI., 1981,1986; Holm-Hansen, 1985; Probyn and Painting, 

1985). 

Further offshore, microphytoplankton dominate total chlorophyll (figure.30a), with 

bloom conditions occurring in the shelf region to the east of Marion Island, as has 
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been recorded previously (e.g. Boden, 1988). The temperature profile for a 

station within the diatom bloom shows slightly cooler surface temperatures of 

7.5°C, and a shallower surface mixed layer of (-30m). The upward sloping 

isopycnals over the P.E.I plateau (figure.19a) indicates an advection of cold, 

nutrient (N03 and Si) rich (Antarctic Intermediate Water) into the surface layer. 

This would stimulate new production and cause an increase in diatom biomass. 

A shallow surface mixed layer above the 0.1 % light depth allows the 

phytoplankton population to grow in a relatively high irradiance environment. With 

the high light and nutrient (N03, Si) requirements of nitrate assimilation being 

met, faster growing microphytoplankton can out compete the smaller cells 

thereby increasing the size of their population or production passed on to higher 

trophic levels (Malone, 1980; Chisholm, 1992 cited Tremblay et aI., 2000). Thus 

the presence of diatom blooms and their ability to dominate phytoplankton 

populations offshore from the islands can be accounted for. 

The last productivity station of the Southbound transect NP6 was in the shelf 

region just north of the Prince Edward Islands. The f-ratio profile for this station is 

rather anomalous for a subantarctic station in that the f-ratio increases with 

depth. From low f-ratios in surface waters (-0.09). where regenerated production 

dominates, to a maximum value (-0.49) at the 0.1 % light depth (96m). This 

apparent paradox may be explained in the close proximity of this station to the 

Prince Edward Islands. The flux of fresh water run-off, spreading out from the 

islands gives rise to enhanced concentrations of reduced nitrogen in surface 

waters. It is generally believed that NH4 recycling and high ambient NH4 

concentrations can inhibit or repress nitrate uptake by phytoplankton (Dortch. 

1990). A possible explanation for the low surface f-ratios observed at this station 

may be direct inhibition of nitrate uptake by ammonium, which is hypothesised to 

be maximal under conditions of low light and nitrogen sufficiency (Dortch, 1990). 

The temperature and nutrient sections (figure.13a and b) show corresponding. 

sloping isopycnals over the P.E.lsland plateau, depicting the advection of cold 

nutrient rich bottom water towards the surface. In deeper waters of station NP6 
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an increase in the supply of nitrate and silicate will favour new production and 

diatom growth and can thus account for the higher f-ratios at depth. 

Diatom dominated communities such as these are likely to result in a short food 

chain, with efficient energy transfer to higher trophic levels and minimum 

respiratory C02 losses. This cycle is based principally on new production, where 

a large fraction of the organic matter is exported into deep water through the 

rapid sinking of large diatom cells (Jacques, 1989). Having the highest integrated 

f-ratio verifies the importance of nitrate in primary production for the inter-island 

region. The ability of the Prince Edward Island Seas to provide and sustain 

diatom dominated communities, significantly affects the avifauna and benthic 

community as well as the "biological pump" by strengthening the C02 "sink" of 

the region. 
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CONCLUSIONS 

An analysis of the data from this survey revealed two regions of contrasting 

characteristics. The most conspicuous changes in chemical, physical and 

biological variables occurred at the STF, which separated the two regions. To the 

north, a warm, salty, highly stratified water column with low nitrate concentrations 

distinguished the region of the South Atlantic subtropical gyre, while the region 

south of the STF was characterised by cold nutrient-rich Subantarctic Surface 

Waters of the Southern Ocean. The third component of this study was the Prince 

Edward Inter-Island region, whose waters are influenced by the "island mass 

effect" causing enhancement of water column stability and increased levels of 

reduced nitrogen in surface waters surrounding the islands. 

Subtropical waters were characterised by low concentrations of small 

phytoplankton cells and very low f-ratios, indicating productivity based almost 

entirely on recycled ammonium and urea. It is thought that the strong seasonal 

thermocline present in this region may create a vertical stratification sufficient to 

prevent vertical transport of deeper nitrate into the euphotic zone, thereby limiting 

diatom growth. The potential to accumUlate biomass was however, thought to be 

controlled by microzooplankton grazing. In subtropical marine environments such 

as these, energy transport within the food chain is inefficient, this together with 

the low sedimentation rates of smaller flagellated algae means that export 

production and CO2 draw down is minimal. 

Crossing the STF into subantarctic surface water, total chlorophyll concentrations 

increased and the community structure began to shift in favour of the larger 

microphytoplankton cells. Nano- and picophytoplankton however, still typically 

dominate subantarctic waters with diatoms dominating only under bloom 

conditions. South of the STF, the supply of nutrients is maintained by turbulent 

mixing and large-scale upwelling. However, despite the dominance of the 

nitrogen pool by nitrate, primary production in this region is still based on 
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regenerated nutrients as can be seen by the low f-ratios. This scenario in 

Southern Ocean waters represents the high nutrient low chlorophyll (HNLC) 

paradox. The results from this study favour the possibility of silicate limitation of 

new production, and light limitation resulting from the combination of shallow 

euphotic depths and deep surface mixed layers as the two mechanisms which 

exert the most control on primary production in subantarctic waters. However, 

since information on macrozooplankton biomass and iron concentration for this 

study was not available, these hypotheses can only be considered as possible 

explanations. The low f-ratios mean that CO2 draw down is lower than one would 

expect from the potentially large NOa pool in this area. This has profound 

implications for the effectiveness of the biological pump and the global C02 

budget, in which diatoms playa pivotal role (Smetacek, 1998). 

It is important to note that at a given point in time and space a phytoplankton 

bloom may eventually succumb for just one reason, e.g. a shortage of either, 

nitrate, a trace element, light, or intense grazing pressure. However for the many 

and various ecosystems integrated over time and space, control by just one 

single factor would appear most unlikely (de Saar et aI., 1990). 

Increased concentrations of microphytoplankton cells and rates of new production 

did however occur at oceanic frontal regions, and at bloom conditions in the Prince 

Edward Island region. In this study, the most likely factors favouring increases in 

phytoplankton biomass and production are thought to be the hydrographical 

conditions of water column stabilization in the upper layers, and an increase in 

dissolved nutrients (N03. Si) into surface waters, which probably stimulate 

phytoplankton growth rates especially diatoms. Open ocean regions such as these 

provide important areas for the export of carbon into the deep sea (biological pump) 

and associated draw down of C02 from the atmosphere. 
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Figure. 1. Schematic presentation of water types and their movements, frontal zones and 
hydrographic variable maxima and minima in the Southern Ocean sector south of Africa. 
Red arrows indicate lateral movement while black line arrows inferred vertical movement. 
(Lutjeharms et aI., 1985). 
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Figure. 2. An illustration of the relationships between the compensation light depth 
(Dc), the critical depth (Ocr), and the depth of mixing (Om) . The area bounded by 
points A, B, C and D represents phytoplankton respiration, and the area bounded by 
points A, C and E represents photosynthesis; these two areas are equal at the 
critical depth. When the critical depth is less than the depth of mixing (as illustrated 
in this figure), no net production takes place because photosynthesis throughout the 
water column is less than respiration. (Sverdrup, 1953). 
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Figure. 3a) Cruise track and XST station positions for the Marion 
Underway transect from Cape Town to the Prince Edward Islands and 
b) the positions of sampling stations for the Prince Edward Inter-Island region. 
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c) 

Figure. 3c) Cruise track and XBT station positions for the Northbound 
leg of the Northern Transect from the Prince Edward Islands to 31°S. 
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d) 

Figure. 3d) Cruise track and CTD station positions occupied on 
the Southbound transect from 31°S to the Prince Edward Islands. 
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Figure. 8 a) cro potential temperature (OC) section to 2000m for the Southbound leg of the 
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transect between 31°S and the Prince Edward Islands. 

~~ 
2{) 

, 19 

18 
'17 

16 
15 
14 
13 
12 

11 
10 
9 
8 

I 7 

6 

:::t 5 
4 
3 

127 

Univ
ers

ity
 of

 C
ap

e T
ow

n



a) 
o 
111fC"'Fc~'f'_=::=::;:;:g::::3::=;:;a:;;::;;;;;::;;5;;:-..075""ir-~,":~::;::~;;:;;;<jj=,. -. = ft==:5,iiiiii 

200 

400 

600 

-E 800 -~ 
~ 1000 t 

1200 _ 

! 
1400~ 

1600~ 
1800 ~ 

2000 ( I I 

<H _O -34.0 

AF STF SAF 

Latitude (OS) 

Figure. 9 a) CTO salinity (%0) section to 2000m for the Southbound leg of the Northern transect 
between 31°S and the Prince Edward Islands. 
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Figure. 9 b) cro salinity (%0) section to 500m for the Southbound leg of the Northern transect 
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Figure. 10 b) cro density (kg.m'~) section to 500m for the Southbound leg of the Northern transect 
between 31°S and the Prince Edward Islands. 
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Figure. 12 a) Sea surface temperature (OC) and total chlorophyll distribution (mg.m-;j), and b) size fractionated 
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) integrated over the top 150m for the Southbound leg of the Northern Transect. 
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Figure. 13 a) Nitrate (mg-at.m-:3) section to 2000m for the Southbound transect from 31°S to the Prince Edward Islands. 
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Figure. 13 b) Silicate (mg-at.m-3
) section to 2000m for the Southbound Transect from 31°S to the Prince Edward Islands. 
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Figure. 14. Inter nutrient relationships for nitrate and silicate (mg-at.m-3
) in the 

surface waters of the Southbound transect, showing patterns of utilisation and 
limitation. In figure. 14 a) Stations NT69 and NP1 have abnormally high Si and low 
surface N03 concentrations. These two stations are considered to be outliers and 
their data has not been included in the regression analysis. 
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Figure. 15. Vertical profiles of nitrate, ammonium and urea concentrations (mg­
at.m-3

) for subtropical stations NP1 (a) to NP3 (c) together with vertical f-ratio 
profiles for each productivity station. 
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Figure. 15. Vertical profiles of nitrate, ammonium and urea concentrations (mg­
at.m-3

) for subantarctic stations NP4 d) to NP6 f) together with vertical f-ratio 
profiles for each productivity station. 
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Figure. 16. Integrated (to the 0.1 % light depth) measurements of nitrate, 
ammonium and urea (mg-at.m-2

) concentrations represented as a percentage 
of the total ambient nitrogen, for each of the six productivity stations. 
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Figure. 17. Vertical profiles of temperature (OC) and total chlorophyll (mg.m-;j) for 
the top 150m of each productivity station on the Southbound transect. Together 
with surface mixed layer and euphotic (0.1 % light) depths. 

140 

Univ
ers

ity
 of

 C
ap

e T
ow

n



a) 

~ 

g 
.J: ... 
Co 
CII c 

b) 

g 
.t:. .... a. 
~ 

C) 

E -.J: ... 
Co 
CII 
c 

Ambient chlorophyll (mg.m-3) 

NP1 

0.0 0.1 0.2 0.3 0.4 
0 r 

20 ~ I i 
40 

60 -+-micro 

80 
- nano 

---'- pico 

100 J 

NP2 

0.0 0.1 0.2 0.3 0.4 

0 

20 

40 

60 
-+-micro 

80 - nano 

---'- pico 

100 

NP3 

0.0 0.1 0.2 0.3 0.4 
0 

20 

40 

60 -+- micro 

80 - nano 

---'- pico 
100 

Figure. 18. Vertical profiles of size-fractionated chlorophyll-a 
concentration (mg.m-3

) in subtropical waters from a) station 
NP1 to c) the Agulhas Front at station NP3. 

141 

Univ
ers

ity
 of

 C
ap

e T
ow

n



d) 

e) 

f) 

Ambient chlorophyll (mg.m"3) 

NP4 

0.0 0.1 0.2 0.3 0.4 
0 

20 

-.§. 40 
.c .... 
c. 60 -+-micro Q) 

c 
- nano 

80 
.......- PiCO~ 

100 ---- -- ---- -----

NP5 

0.0 0.1 0.2 0.3 0.4 
0 

20 

.§. 40 

.c .... 
c. 
Q) 60 -+- micro 0 

80 
- nano 

"""'- pico 

100 

NP6 

0.0 0.1 0.2 0.3 0.4 
0 

20 

.§. 40 

.c .... 
c. 
Q) 

0 
60 -+-micro 

80 - nano 

"""'- pico 
100 

Figure. 18. Vertical profiles of size-fractionated chlorophyll-a concentration 
(mg.m-3) for d) the STF region station NP4, e) the SAF region station NP5 
and f) the region of the Prince Edward Island plateau station NP6. 
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) for the six productivity stations on the 
Southbound transect 

143 

Univ
ers

ity
 of

 C
ap

e T
ow

n



a) 

§. 
~ 

0. 
III 
0 

b) 

I 
~ .... 
Q. 

c3 

c) 

I 
J: .... 
Q. 
G1 
0 

Nutrient Uptake (mg-at.m-3.d-1) 

NP1 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

20 

40 

60 -+- N03 

80 
- NH4 
--...- Urea 

100 -M-Total 

120 

NP2 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

0 

20 

40 

60 -+- N03 

80 - NH4 
--...- Urea 

100 -M-Total 

120 

NP3 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

0 

20 

40 

60 -+- N03 

80 - - NH4 

--"'- Urea 
100 -M- Total 
120 
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Figure. 20. Vertical profiles of N03-N, NH4-N , urea-N and total-N 
uptake (mg-at.m-3.d-1

) for the euphotic zone of subantarctic stations 
NP4 d), NP5 e) and NP6 f). 
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Figure. 21. Euphotic zone integrated measurements of nitrate, ammonium 
and urea uptake (mg-at.m-2.d-1

) for a/l productivity stations NP1-NP6. 
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Figure. 22. f-ratio's integrated over the euphotic zone for the six 
productivity stations of the Southbound transect. 
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Figure. 23. Euphotic zone integrated chlorophyll-a normalized 
nitrogen uptake (mg-at N(mg chlr1.m-2.d-1

) for the six productivity 
stations of the Southbound transect. 
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Figure. 24. Profiles for productivity stations NP1 to NP6 of 
chlorophyll-a normalized nitrogen uptake (mg-at N(mg chlr1.m-3.d-1

) , 

provides a photophysiologicallink to photosynthetic efficiency. 
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Figure. 27. Relationship between total nitrogen uptake (mg-at.m-2 .d-') and 
integrated nitrate and silicate concentrations (mg-at.m-2

), from station NP1 at 
31°S to NP6 in the region of the Prince Edward Islands. 
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Figure. 28 a) Interpolated surface temperature (OC) distribution for 
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Figure. 28 b) Interpolated temperature (OC) distribution at 200m 
for the Prince Edward Islands and surrounding ocean, 
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Figure. 29. Sea surface temperature (OC) distribution for the Prince 
Edward Inter-Island region 
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Figure. 30 a) Total surface chlorophyll (mg.m-3
) distribution for Prince 

Edward Inter-Island region. 
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Figure. 30 b) Surface microphytoplankton (mg.m-3
) distribution for the 

Prince Edward Inter-Island region. 
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Figure. 30 c) Surface nanophytoplankton (mg.m<5) distribution for the 
Prince Edward Inter-Island region. 
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Figure. 30 d) Surface picophytoplankton (mg.m-J
) distribution for the 

Prince Edward Inter-Island region. 
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Figure. 31. a) Temperature (OC) profile for a station between Prince Edward 
and Marion Island, within the nanophytoplankton bloom. Notice the well 
developed surface mixed layer to -60m. 
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Figure. 31 b) Temperature (OC) profile for a station offshore from Marion 
Island, within the microphytoplankton bloom. Notice the shallower surface 
mixed layer of -30m. 
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TABLES 

Table. 1. Sampling dates and positions of the six, productivity 
stations along the Southbound transect. 

Station Date Latitude Longitude Region 

Number 1999 (Degrees S) (Degrees E) 

NP1 17/04 ~1 00.04 4358.43 NofAF 

NP2 19/04 3700.20 <1:358.33 'N of AF 

NP3 120/04 4000.43 44 02.27 ~F 

,NP4 ~3104 4301.02 4057.36 ~TF 

NP5 ~4/04 4520.60 3844.18 ~AF 

NP6 124/04 46 30.28 3752.37 PEl I>Iateau 

Table. 2. Depth of chlorophyll maximum and size fractionated 
community structure of the different regions along the 
Southbound transect. 

, Chlorophyll within the top 150m l mg/m3) ! 
iRegiOn Max Depth (m) micro (%) nano (%) pico (%) 

'NofAF 0.23 ,100 ~ 115 l!2 

~F -STF 0.27 0 F·5 16.9 80.6 
. ~.-~ .--

~TF-SAF 0.53 [75 j12.2 ~1 56.8 

$ ofSAF 0.74 124 52.5 18.5 k9 
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Table. 3. Nitrate, ammonium and urea concentration (mg-at.m-3
) at the various light 

depths for the productivity stations of the Southbound transect, together with 
temperature (OC) and total chlorophyll (mg.m-3) concentrations in the top 150m. 

Station I % Light : Ambient Ambient Ambient I Depth Temperature Total 

INumber I [N03] [NH4] [Urea] Chlorophyll 
, 

(mg-atlm3) I (mg-atlm3) (mg-atlm3) (m) (Degrees C) (mg chl/m3) I 

'NP1 11010 10.106 10.103 1.59 10 ?3.D7 10.105 
i5D 10.13 10.103 1.1 ~D 22.75 10.105 

I @5 0.18 10.103 1.103 510 ?2.73 10.109 

I 110 10.18 10.101 1.38 1100 19.08 0.109 
, 

1 1.89 10.103 1.45 
Np2 1100 110.101 1.22 2.5 0 210.63 10.109 I "-, 510 10.110 10.12 0.83 ~5 210.62 10.109 

, 

I , 
~5 0.16 10.41 10.17 510 210.54 10.08 

1 110 0.24 p.29 '10.17 .75 19.87 10.15 i 

.1 0.17 10.17 P.67 hDD 18.25 10.108 
, 

0.1 0.47 p.06 '10.17 1510 16.82 10.101 
iNP3 11010 10.06 :0.68 10.79 10 19.53 0t==J , 510 10.16 10.68 1.53 ?5 19.55 

1
10.19 

25 p.22 0.41 10.84 510 119.56 110.24 " , 

110 110.33 10.41 1.58 75 19.56 '10.25 

1 '0.44 10.47 10.74 11010 19 10.12 

10.1 10.63 10.34 0.2 150 L ,17.21 10.102 

INP4 1010 2.13 0.28 10.76 110 113.54 0.38 

50 ?1D 0.17 0.76 ~5 113.52 0.3~ 25 2.07 
, 

10.22 1.105 50 13.55 0.4 
, 

?D1 175 10.37 10 10.28 10.76 13.55 
i1 1.86 Kl.33 12.67 ,11010 12.23 0.105 

1 ,0.1 1.91 0.33 /2.57 '1510 10.53 0.01 

INP5 '11010 7.66 0.23 '0.59 '0 8.27 10.61 

1 510 7.66 0.23 10.71 ?5 8.27 10.47 
I 

125 .7.66 10.52 iO.59 510 8.25 0.41 
i 110 7.66 10.12 10.71 75 8.101 10.11 

1 8.107 10.17 0.59 1010 7.41 r03 1 

l 0.1 8.69 10.23 0.35 150 ~.69 =:J INP6 11010 7.84 0.72 0.29 .10 ~.17 
~.02 
10.63 

i 1510 10.51 0.67 10.11 ~5 6.17 '0.46 
I '0.11 

i "-
~5 12.39 10.58 510 6.16 10.57 

10.11 175 
, 

i 10 14.71 0.63 6.2 10.36 
"--.-~ .. 

10.11 ~.3 1 1 10.29 '10.63 11010 0.31 

L 110.1 ~.44 iO.58 0.11 L15D 5.26 10.105 
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