

The copyright of this thesis vests in the author. No
quotation from it or information derived from it is to be
published without full acknowledgement of the source.
The thesis is to be used for private study or non-
commercial research purposes only.

Published by the University of Cape Town (UCT) in terms
of the non-exclusive license granted to UCT by the author.

Univ
ers

ity
 of

 C
ap

e T
ow

n

SIl\IULATING RAID STORAGE SYSTEl\IS FOR PERFORMANCE
ANALYSIS

A DlSSERTATIO:\

SL;B~IlTTED TO THE DEPART~IEf\T OF CO~IPl'TER SCIE:\'CE,

FACULTY OF SCIE".'CE

AT THE Uf\IVERSITY OF CAPE TOW".'

IN FULFILLMENT OF THE REQUIRE~IE:\,TS

FOR THE DEGREE OF

MASTER OF SCIEf\CE

By
Samcshan Pcrmnal

]\; ovember 2007

Supervised by
Dr P. S. Kritzingcr

Univ
ers

ity
 of

 C
ap

e T
ow

n

© Copyright 2007
by

Samcshan Pcrumal

11

Univ
ers

ity
 of

 C
ap

e T
ow

n

Acknow ledgements

To my family, .'.lom, Delisha and l\1arlan, for believing in me.

To my friends for their valiant efforts at keeping me sane.

To Thamaray, for being there.

Univ
ers

ity
 of

 C
ap

e T
ow

n

Abstract

Redundant Array of Independent Disks (RAID) provides an inexpensive, fault-tolerant storage
solution using commodity hard-drives. RAID storage systems have recently surged in popularity
amongst enterprise clients, as they provide economical, scalable, high-performance solutions for
their storage requirements.

The performance of RAID systems is negatively affected by the overhead required to manage and
access multiple drives, and multiple disk failures can result in data loss. As RAID has developed,
various improvements have been devised by both academia and business to address these short
comings. These improvements have suggested improved architectures to increase performance
and new coding techniques to protect against data loss in the case of drive failure.

Evaluating the effect on performance of these improvements is greatly simplified by the use of
discrete-event, software simulations. The RAID Operations Simulator for Testing Implementa
tions (ROSTI) was developed to support such simulation experiments. ROSTI is a modular.
extensible, RAID-focused simulation environment, built on the OMNet++ framework, and able
to run on both the Microsoft Windows Tlvl and GNU jLinux ™ platforms.

In this environment, RAID storage systems can be modelled using the graphical tools provided
by OMNet++. The RAID model adopted by ROSTI is modular in nature, with the intention
that extensions can be added transparently. The configuration of these models. once specified, is
also achieved through the ROSTI graphical user interface. The configured simulation models can
then be executed, and the results analysed from within ROSTI.

The work of Courtight et. al. [CGHZ96bj on representing RAID operations as Directecl Acyclic:
Graphs (DAGs) served as the basis on which extensive validation of ROSTI was performed. This
validation was also extended to the various caching schemes that are implemented in ROSTI. Test
runs of the system were performed and the results compared against expectations as additional
verification of ROSTI.

ROSTI currently supports modelling of RAID 5, RAID 6 and SPIDRE protection schemes. as
well as LRU, LFU and ARC caching schemes.

Univ
ers

ity
 of

 C
ap

e T
ow

n

Contents

Acknowledgements

1 Introduction

I Background

2 Redundant Array of Independent Disks (RAID)

2.1 Terminology......

2.2 RAID Implcmcntation

2.3 RAID Taxonomy .

2.4 Issnes with RAID.

2.5 RAID Caching ..

3 Simulation of Systems

3.1

3.2

3.3

3.4

3 h .0

Introduction.

Eyaluating the Benefits of Simulation

Simulation Fundamentals . . .

Dcwloping a Simulation Study

Choosing a Simnlation Euvironment

4 Previous Work

.. 1.1 :-leasurement tools

4.2 Tools for designing RAID systems

4.3 RAID performance modelling tools

ii

1

4

5

5

6

9

14

18

22

22

23

24

32

33

39

39

41

45

Univ
ers

ity
 of

 C
ap

e T
ow

n

II Implementation

5 Building the Simulator

5.1 ROSTI and IBM

5.2 UML.

5.3 User Requirements Specification

5.4 Architecture.

5.5 Design and Implementation

5.6 Functionality

5.7 Implementation Issues

6 Configuring the simulation

6.1 Motivation

6.2 Approach

6.3 Implementation

7 Analysing Simulation Results

7.1 Motivation

7.2 Utilising the Partitioned Results

7.3 Implementation .

III Testing

8 Validating the Simulator

8.1 Validating the Disk Models

8.2 Validating the Data Sources

8.3 Validating the RAID Controller

8.4 Validating Cache Operation

9 Test Case

9.1 RAID Simulation Model

111

51

52

52

53

53

60

70

74

80

85

85

86

88

91

91

91

92

95

96

96

96

97

111

117

. 117

Univ
ers

ity
 of

 C
ap

e T
ow

n

9.2 \\"orkload 117

9.3 Disk Drives 119

9 . .J Definitions. 119

9.5 Simulation Expectations 119

9.6 Simulation Results 120

9.7 Simulation Analysis 121

10 Summary 122

10.1 Overview 122

10.2 Outcomes 123

10.3 Future Work 124

IV Appendices 132

A Formalising Controller Operation 133

A.1 Raid Layout Specification 133

A.2 Specifying Protection Groups 134

A.3 Deriving Array Operations. 134

A . .J Correctness of Operation. 134

B ROSTI Messages 135

13.1 IORequest . 135

B.2 IOResponse 136

B.3 Array l\Iapping 136

B.4 BlockIO 137

13.5 mockI 0 Response 137

C Available Distributions 138

C.1 Discrete Distributicms 138

C.2 Continuous Distributions 139

lV

Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 1

Introduction

Over the recent history of computer systems, there has been a phenomenal increase in both ra,v
processing power (as predicted by Moore's Law) and primary memory (RAM) capacity, Imt this
has not been adequately matched by the performance of secondary memory (disk drives) . ."Jeither
capacity nor transfer rates have experienced serious improvements, yet disk requirements arc soon
anticipated to reach PetaByte1 levels [KBC+OOj.

Single Large Expensive Disks (SLED) have previously been the solution of choice amongst or
ganisations with large storage requirements, as the Mean Time to Failnre2 (MTTF) is high, and
reliability and persistence of storage is of utmost importance to most organisations. They do suffer
from problems however. SLEDs are expensive and can require large amounts of power to operate.
More importantly SLEDs have limited bandwidth, which means recovering a hackup from tertiary
storage3 to secondary storage could take prohibitively long. This last factor is especially impor
tant for online applications, where constant availability is essential, ane! the nOll-accessibility of
backed-up data could be crippling.

A solution to this problem is provided by the widespread availability of commodity hard disk drives
for personal PCs. They offer a number of benefits: they are cheap, with a lower cost per Megabyte
(MB) than SLEDs; an individual disk now has a MTTF comparable to most SLEDs; they require
far less power; they conform to a uniform access standard, typically SCSI (Small Computer
Systems Interface), IDE (Integrated Drive Electronics) or SATA (Serial Advanced Technology
Attachment); and they have built in controller logic which performs both error detection and
correction functions.

The concept of a Redundant Array of Inexpensive Disks (RAID) was introduced to harness the
potential of these commodity hard drives: Patterson ct. al. [PGK88] established the RAID
taxonomy in 1988. RAID overcomes the capacity limitations of commodity disks by exposing an
array of such low-capacity disks as a virtual SLED.

Such arrays offer flexibility over SLEDs, in that capacity can be increased incrementally, and as
desired, by adding more disks to the array. Since each individual disk in a RAID syst.em consumes
little power, and t.he cost of replacement of a single disk is small compared to the overall cost.
RAID systems have low associated running costs. Finally. given the fact that each disk in the

IIPB = (1024)6 B
2The average time for a single disk in a group to fail.
3High capacity, low performance storage solutions, such as Tape Drives

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHA.PTER 1. INTRODUCTION 2

array can perform transfers independently of the others, due to the built-in controllers, there
exists the possibility of increased I/O bandwidth due to parallelism.

All these advantages are not without a significant problem: reliability. The Mean Time To Failure
(:\ITTF) of an array of disks is inversely proportional to the number of disks in the array, given

by [PGK88]:
l\1TTF of RAID = ?vlTTF of Single Disk

."Jumber of Disks in Array

To illustrate the effect of this, consider an array of 100 disks. each with a MTTF of 30000 hours.
The :\ITTF of anyone disk in the array is then 300 hours or 12.5 days. Ensuring that data
loss does not occur in a RAID is thus essential. Almost all current RAID architectures focus on
preventing data loss from a single disk failure. They are generally susceptible to data loss if a
second failure occurs before the first is repaired. The two main strategies employed are mirroring
[BG88] and striping with parity [LKB87]. Both these approaches utilise redundancy information
to achieve reliability.

The applications for RAID (Redundant Array of Independent Disks) [PGK88] in Enterprise Stor
age Systems (ESS) continue to grow as applications demand ever more secondary storage. New
protection schemes are being used in commercial systems to meet this demand.

These schemes increase the number of disk failures that are tolerable before data loss occurs. In
organisations with large arrays of disks, this is of particular importance, since the ~1ean Time To
Failure (:\ITTF) of the array decreases as the number of disks increase. The increased number of
disks across which data can be distributed can also improve data transfer rates for certain types
of I/O operations, as well as allowing multiple operations to occur in parallel.

The benefits offered by these new schemes are offset by a number of factors: write operations take
longer, since more protection information must be updated on each operation: certain schemes
reduce the lewl of parallelism possible: a greater proportion of the available storage space is
used to store protection information: rebuilding lost data after a disk failure is a longer and more
complicated procedure: and the complexity of the associated controller increases, which introduces
a greater possibility for errors in operation.

Motivation

Our work here came about as a result of collaboration with the IB~I Ziirich Research Lab, which
is involycd in developing new, more effective schemes for RAID storage. These schemes aim

to decrease the potential for irrecoverable data loss with a minimal increase in capacity and
processing overhead. The first such scheme under development is Sector Protection through
Intra-Drive REdundancy (SPIDRE), described in Section 2.3.6 (p. 13).

The goal of developing the Raid Operation Simulator for Testing Implementations (ROSTI)
was born out of the desire to implement and test the performance of these new RAID schemes
using a common, extensible simulation environment. This simulator allows for advanced RAID
schemes. such as those under development by IR\1, to be performance tested prior to implemen
tation. thus allowing for more cost-effective development. The extensibility of the simulator is
thus essent ial tot his goal.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 1. INTRODUCTION 3

Our secondary goals are to ensure that ROSTI is configurable in a simple, graphical manner
to allow inexperienced users access to its capabilities. A further goal is to assist in first-order
analysis4 of results produced by ROSTI. thus allowing simulations to be fine-tuned as part of the
simulation process.

Contribution

Our contributions to the area of RAID storage system research are as follows:

• Development and validation of a RAID simulation environment (ROSTI) that allows RAID
simulation models to be specified, configured, executed and analysed. ROSTI supports
the RAID 5, RAID 6 and SPIDRE protection schemes5 , and the LRU, LFU and ARC
caching algorithms6

. This simulation environment was further designed to be modular and
extensible 7 .

• Provision of a Graphical User Interface (GUI) to this simulation environment, thc:reby al
lowing inexperienced users to utilise the functionality provided without requiring a detailed
knowledge of the system internals8 .

• Creation of a validation strategy for RAID implementations focused on high-level behaviour
rather than low level implementation 9 . This strategy uses the extensive work done by
Courtright et. a1. [CGHZ96a] on formalising RAID Controller operations, and applies it to
ensuring the correctness of a particular implementation.

• Outlining a possible avenue of research into a formalisation strategy for RAID Controller
operations lO . This strategy would allow the individual disk operations required for a given
array operation to be automatically inferred from a high-level description of the RAID
scheme (RAID 5, RAID 6, etc.) in usc.

4Initial examinations of results that are uspd to refine or redefine a simulation experiment.
5Sect ion 5.6.3 (p. 78)
6Sect ion 5.6.3 (p. 79)
7Sect ion 5.4 (p. 60)
8Figures 35 (p. 88), 63 (p. 118), and Chapter 7 (p. 91)
9Sect ion 8.3 (p. 97)

10 Appendix A (p. 133)

Univ
ers

ity
 of

 C
ap

e T
ow

n

Part I

Background

4

Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 2

Redundant Array of Independent
Disks (RAID)

Describing the nature of a RAID system requires the use of specialised terminology, covenx! in
Section 2.1. These systems are composed of a number of individual components, that frequently
interact in complex ways. Section 2.2 provides an overview of this aspect of RAID. A taxonomy
of the various RAID schemes available is presented in Section 2.3 ane! their associated clravvbacks
are discussed in Section 2.4. Finally the issue of caching, its impact on RAID systems and an
overview of some widely implemented caching policies is presented in Section 2.5.

2.1 Terminology

RAID technology usually requires the distribution of data across a numher of disks. vVe define
here those terms used to more clearly describe the various ways in which this can he accomplishecl.

Stripe •

Chunk Chunk Chunk Chunk Chunk
1---------- - --~~- - f---- -------- ----- ----

Chunk Chunk Chunk Chunk Chunk
f----------- "------- -._-- --

Chunk Chunk Chunk Chunk Chunk

Chunk Chunk Chunk Chunk Chunk

Chunk Chunk Chunk Chunk Chunk 4

-- Strip ------ -- Strip ------ -- Strip ------ -- Strip ------ -- Strip ------

Figure 1: Illustration of the relation between Stripes, Strips and Chunks. The numbers to the far right

indicate numbering of chunks within a strip.

Restricting ourselves to one-dimensional arrays 1 , we term the ordered set of all disks participating
in a RAID configuration an Array. Referring to Figure 1, each column (outlined in thick black)
represents a single disk in the array.

ISee Section 2.2.4 (p. 8)

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 2. REDUNDANT ARRAY OF INDEPENDENT DISKS (RAID) 6

Each row represents a Stripe, such that a Stripe spans all disks in the Array. A Stripe
represents the smallest unit of protection in an Array- any lost data within a Stripe can be

recovered using only the surviving data within that Stripe.

A Stripe consists of a sequence of Strips corresponding to the disks in the Array. A Strip
is t hc smallest unit of data that will be accessed on a disk, and the str'ip size is thus chosen to
match the norlllal size of a physical disk sector, \ls\lally 512KB. For most common RAID schemes
(RAID 1 - 5), these are the only terms that are necessary.

For more complex schemes, such as SPIDRE2 and EvenOdd [BBB:"194], it is necessary to introduce
one additional term. Each Strip can be logically segmented into a contiguous series of one or
more Chunks. A Chunk represents the smallest \lnit of data on which a RAID Controller can
operate. The purpose and size of each chunk is dependent on the RAID scheme used.

2.2 RAID Implementation

RAID implementations can exist in either software or hardware, with some occasional imple
mentations using hybrid combinations. The majority of commercial implementations utilise a
dedicated hardware implementation, however, since the overhead imposed on the CPU by having
to handle RAID logic diminishes the performance gains of RAID significantly. The majority of
such systems are connected to a single host system using either a commodity disk interface (IDE,
SATA or SCSI) or enterprise level storage interfaces (Fibre Channel, iSCSI). Whichever solution
is chosen. the RAID appears as a single disk to the host system which is accessed normally over
the giwll channel.

2.2.1 Hardware

In a hardware RAID system, all processing and management of the RAID array is offioaded to
a dedicated processor in hardware, referred to as the RAID Controller. This controller performs
parity checking, management of recovery from disk failures, and the physical striping of data across
multiple disks. Internally, drives are attached using IDE, SATA or SCSI interfaces. Hardware
solutions prescnt the RAID array to the host system as a single disk. Configuration of various
RAID parameters (such as stripe size, strip size, RAID mode) is handled by external utilities that
interface with the hardware. Parallel performance of such a system is effectively equivalent to a
single server, with a single large disk, serving requests from multiple clients.

2.2.2 Software

In a software RAID system, a software driver performs all necessary operations to treat an array
of drives as a RAID. Thc CPU load increases because of this overhead, and can thus present a
performance bottleneck ill multitasking situations. Drives in the array are connected via one of
t he commodity disk interfaces mentioned above. The software driver allows the the Operating
System to access the array as a single, large disk.

"See Section 2.3.6 (p. 13)

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 2. REDUNDANT ARRAY OF INDEPENDENT DISKS (RAID) 7

2.2.3 Parallelism in RAID

Since clients are connected to the RAID via a serial access channel, parallel access by multiple
clients is not explicitly supported. Some implementations offer multiple access channels, but each
channel can only access a designated part of the RAID. This is achieved by partitioning the

RAID and allowing each channel exclusive access to a subset of the partitions. If the partitions
are on physically separate volumes, true parallel access is supported, since each channel can
independently access its associated partitions as exclllsive disk access is possible. If all disks are
shared by all partitions, this is not possible.

Oisk 1 Oisk 2 Oisk3 Oisk4

Stripe 1 01 D2 ····D3 P1

Stripe 2 D4 D5 P2 06

Stripe 3 07 P3 09 08

Stripe 4 P4 010 011 012

O? = Oata Strip P? = Parity Strip

D = Large Access

Figure 2: A single large I/O request that accesses all disks in the array. No other request can be executed

while the large request is being serviced.

Oisk 1 ~isk 2 Disk 3 Disk 4

Stripe 1 .01 02 03 Pl

Stripe 2 04 05 P2 06

Stripe 3 07 P3 09 08

Stripe 4 P4 010 011 012

O? = Oata Strip P? = Parity Strip

D = First Access 0= Second Access

Figure 3: Two small I/O requests that do not require shared access to any disk, and can thus be executed

in parallel.

The extent to which parallelism is possible in an array is thus primarily a question of how queued
requests are scheduled to run in parallel. This can be answered by examining the nature of I/O
requests presented to the system. In particular, a distinction can be macle between large requests
(that require access to at least a full stripe) and small wquests (which require access to only a
subset of strips within a stripe).

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 2. REDUNDANT ARRAY OF INDEPENDENT DISKS (RAID) 8

All large accesses must be performed in serial, whereas most small accesses can be parallelised.
Large accesses can only be serviced one at a time, since all disks are necessarily involved in the
transfer and disks are themselves serial. Hence, none of them can be used until the transfer is
complete, as illustrated in Figure 2.

Small accesses, on the other hand, can be serviced in parallel if each access addresses different
disks, as illustrated in Figure 3. It follows that the smaller the accesses, the greater the degree
of parallelism possible, with the maximum number of simultaneous accesses determined by the
number of disks in the array.

2.2.4 Logical to Physical Mapping

As described previously, data in RAID arrays is divided into discrete blocks (strips) that are
then striped across a series of drives in the array. This striping requires a well defined system to
determine where each strip will be physically stored. The only requirement of such a system is
that each strip in a given stripe must be placed on physically independent disks.

Given this criteria. the most commonly used system matches the number of strips in a stripe to
the number of available physical disks, as illustrated in Figure 2. This system has the advantage
of requiring the minimal number of parity strips for a given array size. A significant downside,
howewL is that rebuild operations3 on the array cannot take advantage of parallelism as each
stripe reconstruction uses all disks in the array.

2 3 4

01 02 03 Pl

04 05 P2
2

06
3 4 5 6 7 8

07 P3 08 09 01 02 03 P1 04 05 P2 06

P4 010 011 012 07 P3 08 09 P4 010 011 012

Logical Array Physical Array

(A) (8)

Figure 4: Parity Declustering mapping a logical array mapping (Figure A) to a physical array mapping

(Figure B). Note that the physical independence of data and parity strips in a stripe is maintained,

since each is located on an independent physical disk.

An alternate solution to this problem was presented by Holland et. al. in their work on Parity
Dec:lustering [HoI94]. In this solution, the number of disks in the array is greater than the number
of strips per stripe. The array layout is then logically identical to the previous case in Figure 2.
However at a physical level, the strips can be mapped to the individual disks in a variety of ways.
The most straightforward of these is illustrated in Figure 4. Each disk is partitioned into a series

'See Section 2.4.2 (p. 17)

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 2. REDUNDANT ARRAY OF INDEPENDENT DISKS (RAID) 9

of equal sized blocks, as in a normal RAID array, and the stripes are then laid out in a sequential,
rotating pattern across them.

The important aspect of this layout is that related data and parity strips are still kept on separate
disks, thus ensuring that the normal RAID recovery proceuures can be applied. The primary
advantage such a layout offers is a much higher maximum bandwidth during rebuild operations.
This follows since there are more disks in the array, and not all are utilised to rebuild a given
stripe. This also allows for the possibility that multiple stripes can be rebuilt in parallel. The
major disadvantage is the reduced data capacity of the array compared to a traditional layout,
due to the extra parity strips.

2.3 RAID Taxonomy

2.3.1 Non-Redundant arrays - RAID Level 0

Oisk 1 Oisk 2 Oisk 3 Oisk4

Stripe 1 01 02 03 04

Stripe 2 05 06 07 08

Stripe 3 09 010 011 012

O? = Oata Strip

Figure 5: Data Layout in RAID 0 scheme

The scheme illustrated in Figure 5 has come to be known as RAID 0, though it is generally
acknowledged that is not a true RAID. A single failme will render the data across tIlE' entire
array useless, since each disk stores part of every file. It is thus necessary to store error correcting
information, so that it is possible to recover from at least one disk fail1ll'e.

2.3.2 Mirroring - RAID Levell

In the case of mirroring4, reliability is achieved by simply duplicating all data across two or more
disks. This provides complete reliability with minimal repair and recovery time - in the event of
a single failure, any of the duplicates can be used for reads, while writes can be mirrored across
the remaining disks. This scheme offers the possibility of greater bandwidth through parallelism,
since two reads of different sectors can be assigned to two different disks - both reads occur at the
same time, effectively doubling the bandwidth. With more than two disks, multiple reads can be
scheduled simultaneously.

Mirrored disks also suffer the smallest write penalty, since the cost of any write is simply the max
imum cost for any of the individual disk writes. If the disk spindles and heads are synchronizeu5 ,

4Initially referred to as disk shadowing by Britton et. al. [BGSS]
5 At any given moment, the heads of each disk are over the same logical sector

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 2. REDUNDANT ARRAY OF INDEPENDENT DISKS (RAID) 10

Disk 1 Disk 2 Disk 3 Disk 4

Stripe 1 Dl Dl Dl Dl

Stripe 2 D2 D2 D2 D2

Stripe 3 D3 D3 D3 D3

D? = Data Stria

Figure 6: Data Layout in RAID 1 scheme

there is no write penalty, since all disks move in unison, acting as one large disk. Mirroring has
the highest overhead of all (100%), however, since each disk in addition to the primary disk is
used solely for redundancy - none of its capacity is available for useful storage.

Another issue is that recovering a failed disk involves copying the entire disk to a replacement - this

is not only time consuming, it also reduces the performance of the RAID during reconstruction,
which Illay not be acceptable in certain real-time applications. However, if more than 2 disks are

used. one of the clones can simply be taken off line and used to recoyer the failed disk in a short

period of time.

2.3.3 Striped Data with Parity - RAID Levels 2 - 4

Disk 1 Disk 2 Disk 3 Disk4

Stripe 1 Dl D2 D3 Pl

Stripe 2 D4 DS D6 P2

Stripe 3 D7 D8 D9 P3

D? = Data Strip P? = Parity Strip

Figure 7: Data Layout in RAID 4 scheme

In order to prevent data loss in RAID systems. other than levell, it is necessary to incorporate
SOllle sort of redundancy into the systelll. The simplest and most widely adopted scheme provides
single error correcting parity [PGKtl8] using XOR operations. and is able to prevent single disk
faillll'es. This technique forms the basis of RAID 2-4.

RAID level 2 uses additional disks to store Hamming Code data, which is used to determine which
disk in the array failed. However, most modern drive controllers can detect which disk in the
array has failed, thus eliminating the need for these extra redundancy disks. This allows more of

the total capacity to be utilised for data storage versus redundancy.

Since disk failure can now be detected by the controller, parity can be stored on a single separate

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 2. REDUNDANT ARRAY OF INDEPENDENT DISKS (RAID) 11

disk, and a single failed disk (parity or data) can be reconstructed from the remaining disks. This
is referred to as RAID 3 in the taxonomy. The two possible failure scenarios are illustrated in
Figure 8.

Data Parity Data Parity Data Parity
0 1 0 1 0 1 0 ? 0 1 ? 1
1 1 1 1 1 1 1 ? 1 1 ? 1

1 1 0 0 1 1 0 ? 1 1 ? 0

Normal Data Layout Failed Parity Disk Failed Data Disk

Figure 8: Illustrdtion of the 2 possible fdilure scendrios

The reconstruction simply involves reading the data from all the undamaged disks for each stripe,
calculating the parity of that data, and then writing this value to the replacement disk. If the
failed disk was the parity disk, the recovery is done by simply recomputing the parity. If the failed
disk was a data disk, the scheme still works since the XOR operator is commutative. Figure 9
illustrates this using the state represented by the Failed Data Disk scenario in Figure 8.

Old Data
o 1
1 1
1 1

Parity
1

1

o

RecovcredData
o
1

o

Figure 9: Reconstruction of lost ddtd

RAID 4 still distributes data across disks, with a parity disk for redundancy, but novv data is
partitioned across the disks in strips. The new parity must be computed and written to disk
to complete a write request. Hence, each write must access the parity disk before it completes.
Since multiple write requests will be queueing for this single parity disk, a bottle Heck is created
in RAID levels 3 and 4.

2.3.4 Rotating Parity with Striped Data - RAID Level 5

Disk 1 Disk 2 Disk3 Disk4

~1 ~~ ~~ ~J
D~ D5! l-~J ~
m "' EJ ~'I

P4 D10 D11 ~J

Stripe 1

Stripe 2

Stripe 3

Stripe 4

D? = Data Strip P? = Parity Strip

Figure 10: Ddtd Ldyout in RAID 5 scheme

RAID 5 improves on RAID 4 by distributing the parity information across all dish.; in the array.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHA.PTER 2. REDUNDANT ARRAY OF INDEPENDENT DISKS (RAID) 12

thus reducing the bottleneck created by a single parity disk. This scheme allows multiple simul
taneous writes if the writes are to different stripes, and there are no common clusters between
the writes.

RAID 5 is the most common scheme used commercially, as it offers the best balance between data
integrity, storage performance and overhead (the amount of total free space that must be devoted
to storing redundant parity information).

2.3.5 Dual Disk Failure Protection - RAID Level 6

All the RAID levels described thus far offer protection from only a single disk failure. These
schemes work well in deployments where data integrity must be balanced against storage perfor
mance, but are in insufficient in situations where data integrity is of primary importance. RAID
6 addresses this by providing protection from up to two disk failures.

Disk 1 Disk 2 Disk 3 Disk4 Disk S

I
------,

Stripe 1 Dl D2 I D3

Stripe 2 D4

Stripe 3 I D7

Stripe 4 P4 i , D10 I Dll D12
,

~-

D? ~ Data Strip P? ~ XOR Parity Strip Q? ~ Reed-Solomon Parity Strip

Figure 11: Data Layout in RAID 6 scheme

RAID 6 achieves this using two different, independent parity strips per stripe. The first parity
strip is the same XOR parity used in RAID level 5. The second is a Reed-Solomon code across
the data strips within the stripe. Like RAID 5, the parity strips are rotated to reduce bottleneck
effects caused by concurrent accesses to these strips.

RAID 6 Reed Solomon Coding

The Reed Solomon Code used to provide the parity protection for the second disk in RAID 6 is
the result of work by Reed and Solomon [RS60j. Their coding technique is based on the algebra of
Galois fields [Anv07], specifically the GF(28) Galois field. This is a finite field with 28 elements6

with several important properties:

l. Addition (+) is represented by the bitwise XOR operator.

2. ~lultiplication is represented by boolean polynomial multiplication modulo the irreducible
polynomial .1. 8 + y" + .1.3 + :1: 2 + 1, which is equivalent to the operation of a linear feedback
shift register.

6The size of the field is chosen so as to no limit the maximum number of usable drives (255), while still ensuring
reasonablc bounds on the computations required.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 2. REDUNDANT ARRAY OF INDEPENDENT DISKS (RAID) 13

3. The normal algebraic commutative, associative ;wd distributive laws of addition 80nd mul
tiplication apply.

4. Raising an clement to a power is congruent mod 255.

5. Field generators, gil, exist that generate elements of the field without repetition until all
elements have heen exhausted with the exception of the identity element.

Consider each strip in a given stripe as a vector of bytes, with Do, D 1 , D 2 , ... ,D n - 1 representing
the data strips, P representing the RAID 5, XOR parity and Q representing the RAID 6, Reed
Solomon parity. We can then compute P and Q for n data disks as follows:

Il

(1)
;=0

n

Q (2)

where g is any generator of the field.

In the event that 1 data disk and the P drive are lost, the lost data can he recomputed through
the equation:

(3)

In the event of 2 data disk failures, the following set of equations can be used to recover the
missing data Dx and Dy

P + P xy + Dx

g-x.(Q + Qxy) + gY-1:.(P + P:l:Y)
gY-x + I

where I is the multiplicative identity clement.

In all other cases, lost data can he recovered as in the equivalent RAID 5 case.

2.3.6 Sector Protection through Intra-Drive REdundancy (SPIDRE)

(4)

(5)

SPIDRE is a RAID protection scheme developed at the II3M Ziirich Research Lab. SPIDRE
addresses the real-world problem of strip-failures in disks. A strip-failure occurs when a small
contiguous surface area of a disk platter becomes unreadable. This area is usually smaller than a
RAID strip?, and since the rest of the disk is still operational, it is only a single RAID stripe that
is compromised. This type of burst failure is differentiated from the atomic failure of an entire
disk, in that some portion of the data on the disk is recoverahle.

In a RAID 5 array operating in degraded mode, such a failure would result in immediate data loss
in the array. The only way to prevent this would he to utilise a RAID scheme designed to protect
against more than a single disk failure, such as RAID 6. However, this introduces additional
overhead, both in terms of number of disks and in storage performance. SPIDRE provides an
compromise solution by recovering strip-failure related burst errors with minimal overhead.

7See Section 2.1 (p. 5)

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 2. REDUNDANT ARRAY OF INDEPENDE}VT DISKS (RAID) 14

012

Disk 1 Disk 2 Disk 3 Disk4
/ Group 1 Data Chunk

/

/
Stripe 1 Dl D2 D3 Pl /

/

Group 2 Data Chunk

nk
/

Stripe 2 D4 DS P2 D6 /
/ Group 1 Data Chunk

/

Stripe 3 D7 P3 D9 98 Group 2 Data Chunk

nk
Stripe 4 P4 D10 Dll

Group 1 Parity Chunk

D7 = Data StriP p7 = Parity Strip

JUnk

Figure 12: Illustration of the SPIDRE parity scheme applied to a RAID 5 array.

SPIDRE proposes an alternate solution to this problem. Instead of using an extra parity disk,
SPIDRE adds XOR parity information to each strip in a stripe. This parity is arranged as in
Figme 12 and can be used to recover lost data chunks in a strip.

The important part of this scheme is that there are several XOR protection groups (labeled as
such in the diagram), that are interleaved. vVithout interleaving, only a single missing chunk could
be recovered. as is the case with RAID 5. Interleaving allows for recovery from strip-failmes that
span several chunks.

In the illustrated SPIDRE configmation, the loss of any 3 consecutive chunks in a given strip
(due to strip-failure) can be recovered using the same recovery algorithm used in RAID 5. The
number of groups per strip, as well as the number and size of chunks are determined by examining
strip-failme data from real-world disks.

The storage efficiency of SPIDRE is directly related to the number of sequential bytes that can
be recovered and the size of a strip. For instance, given a strip size of 64KB and a maximal
strip-failure length of 256B8 , we would require a 256 interleaved protection groups, each with
6c1~~g2c1 = 256 chunks. This would provide protection against any strip failure of less than 256
bytes within that strip, while requiring an overhead of only 256 bytes. Thus the focus on burst
failures within a strip allows the SPIDRE overhead to be minimised to exactly the number of
recoverable consecutive bytes in a strip required.

2.4 Issues with RAID

\Yithill RAID systems, there are a number of problematic areas: the physical layout of data across
the array; improving reliability; recovery and repair after disk failure; design and correctness
of RAID controllers and architectures; and performance of RAID architectures in specifically
problematic areas. A summary of these issues, and related work in these areas, follows.

"This would be established from real-world data.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 2. REDUNDANT ARRAY OF INDEPENDENT DISKS (RAID) 15

2.4.1 The Small Write Problem

A significant problem with RAID systems anses m their application to On-Line Transaction
Processing (OLTP) systems. These systems have disk access patterns that typically consist of
read-modify-write cycles. With the exception of RAID 1, this causes several problems for a RAID
system. Firstly, a write in a striped array requires reads of both data and parity blocks, compu
tation of a new parity, and writes of both new data and new parity - 4 times more accesses than
for a single disk. Another problem is that these accesses are small, and hence only a few blocks
within a specific stripe are altered, yet the parity disk for the entire stripe is unavailable during
the update - this effectively reduces the performance of the array, by reducing the parallelism
possible.

This problem was initially tackled by [SC090], who proposed a scheme wherein writes were
buffered until a sufficiently deep queue had developed to minimise the write penalty. The problem
with this approach is that a disk failure could lead to data loss unless the buffers used are fault
tolerant.

The work of Menon et. al. [MM92] attempts to solve this problem using a technique referred
to as Floating Data and Parity. Each cylinder in a disk is set to contain either data or parity,
and for each such cylinder, an empty track is set aside. During the update cycle, rather than
overwrite the old data, the new data is instead written to the rotationally closest free block. This
allows the read-compute parity-write to be executed without an extra rotational delay. The main
problem with this approach is that undermines large block reads, since logically sequential data
need not necessarily be stored sequentially on the disk.

The overhead required by this scheme is very low, but fault tolerant array controller storage is
required to track data and parity locations. Variations on this technique are the log structure
filesystem (LFS) [R091] and the distorted mirror approach [S091], which uses the 100% overhead
of mirroring to maintain a copy of each block in both fixed and floating storage. All the above
schemes require significant amounts of controller memory to handle buffering and store location
information.

The most promising solution thus far arises from the ,"York of Holland and Stodolsky et. al.
[SGH93, SHG93]. They pl'8sent a system wherein parity updates arc buffered, then written to a
log when sufficient are accumulated to allow for efficient disk transfer - data updates are written
immediately. This log is then periodically purged, with all parity updates in it being written to
disk. This scheme ensures data reliability, since: if a data disk fails it can be recovered from
the parity and remaining data disks; if the parity or log disk fails, then the parity disk can be
reconstructed from the remaining data disks, and the log disk can be emptied.

One problem with this approach is that unless the array controller has fault tolerant buffers, a
failure could result in data loss. Another is that the log disk could easily become a bottleneck
in the system - this can be solved by distributing the log disk across all disks, much as is done
with the parity disk in RAID 5. The most problematic aspect of this approach, and one that
does not appear to have been addressed, is how user response will degrade during reconstl'llction
of a failed disk. Various schemes to address this for other RAID configurations are presented in
Section 2.4.2.

A fairly recent solution presented by Haruo [YG99], Fault-tolerant Buffering Disks, uses disks to
provide double buffering, which increases write speed, as well as backup for fault tolerance ane!

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 2. REDUNDANT ARRAY OF INDEPENDENT DISKS (RAID) 16

read speed improvements. The system does not scale well, and has a higher overhead than other
systems, but for small arrays increases both throughput and response time.

2.4.2 Reliability

Due to their decreased l\ITTF, preventing data loss in RAID systems is a very important consider
ation. Redundancy is the primary fail safe, and many schemes exist to achieve this. Immediately
after a failure, it is necessary to perform some form of recovery. Finally, the failed disk needs to

be replaced and reconstructed to restore the system to full working efficiency. This section covers

advances in these areas.

Red undancy Schemes

In order to prevent data loss in RAID systems, other than levell, it is necessary to incorporate
some sort of redundancy into the system. The simplest, and most widely adopted, system uses
single error correcting parity [PGK88]' using XOR operations, and is able to prevent single disk

failures.

EVE);ODD [BBBM94] is an alternate scheme that prevents two disk failures, and is efficiently
implement able in hardware. The layout described to prevent bottlenecks restricts the array to a

maximum of 259 disks, however.

Other schemes include balanced incomplete block designs (BIBD) [HG92]' which attempt to
uniformly distribute data and parity across a disk. and coding methods proposed by Gibson

[HGK+9.:!] which protect against arbitrary numbers of failures, but have overheads that increase
exponentially w.r. t. prevented failures. Additionally, the schemes are fairly restrictive on array

dimensions for optimal redundancy usage.

Finally, a scheme proposed by Alvarez [ABC97], DATU~I, allows for recovery from an arbitrary
number of disk failures, using an optimal amount of redundant storage, whilst still allowing flexible

array configurations, and ensuring both parity and data are evenly distributed across the disks.

Recovery

Recovery is necessary immediately after a disk failure, to ensure that operations in progress at
that time are not lost completely. There are currently three approaches to this problem. The first
and most prevalent solution, forward error correction, attempts to handle errors dependent on
the current state of the system and the state of execution of the requested disk operation. This
method requires enumeration of all possible states of the system, and handcrafting execution
paths for each. This is both time-consuming and error prone.

All altemate approach, backward error recovery [CG9':!], uses an approach popular in transactional
systems which are required to support atomicity of operations. The approach is to set out a small
number of execution paths for each of the possible states of the system (error-free, disk failed, etc.).
Each execution path is composed from a set of simple, reversible operations, which are logged
as they execute. \Vhen a failure occurs during execution of one of these paths, the execution
is rolled-back by executing the inverse operations in reverse order. \Vhen the original state is

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 2. REDUNDANT ARRAY OF INDEPENDENT DISKS (RAID) 17

recovered, an alternate execution path, appropriate to the current state of the system, is used to
retry the failed operation.

The final alternative, roll-away error recovery [Cou97], uses a similar scheme to backward error
recovery, but adds commit barriers to simulate two-phase commit in transactional systems. The
idea is that when a failure occurs, execution is allowed to continue up to a commit barrier, but not
beyond. If the completed state is not reached by this, then an alternate execution path is chosen.
and the operation is reattempted. This style of error recovery is popularised by the RAID frame
system [CGHZ96a]. which is discussed in Section 4.2.1 (p. 42).

Reconstruction

A major consideration when recovering from a failed disk is the effect on user response times.
i.e. does the reconstruction of the failed disk degrade the performance of the RAID? In the
usual case this is very true, since reconstructing any single disk requires access to all the other
disks to reconstruct every stripe, effectively rendering the RAID inaccessible during each such
access. While stripe reconstruction can be interleaved with user requests to allow the RAID to
continue operation, access latency will rise unacceptably and the :Mean Time to Repair (lvITTR)
will increase. The longer it takes to repair the RAID, the more likely it is a second disk will fail
before the first is recovered, resulting in data loss.

An innovative solution to this is presented in [HG92, HGS93, HGS94, HoI94]. The authors suggest
that performance degradation during reconstruction can be reduced by sacrificing some of the data
capacity of the RAID toward redundancy. The crux of their work is the idea of a virtual topology
that is mapped to the physical disk topology of the system. Assuming that there are 7 disks
available, the normal, intuitive solution would be to treat all 7 as a large array with striping
across all 7, and distributed parity. An alternative would be to treat this as an array of 4 disks,
in a RAID 5 configuration. The authors discuss ways of mapping such a virtual topology to the
physical one9 to allow this behaviour.

The benefit of this approach is that if a single disk fails, only particular stripes in the virtual
array will be affected. Importantly, since each stripe only consists of 4 virtual disks, reconstruct
ing affected stripes only requires read accesses to 3 other real disks. This greatly diminishes the
bandwidth required for reconstruction, and allows accesses to the other 3 disks 10 to occur sirrmlta
neously. Additionally, the mapping scheme mentioned above ensures that the virtual sectors are
uniformly distributed, thus ensuring that no single disk gets overburdened during reconstruction.
The only requirement is increased redundancy overhead, since instead of a ratio of 6:1 of data to
parity sectors, the ratio is now 3:1.

The latest development in this field has been data-reconstruction networks [YokOO]. The idea is
that disks arc connected in subnetworks which are then interconnected to form one large network.
Reconstruction of a single failed disk is localised to a subnetwork, hence reducing the impact on
the whole network. Additionally, the overlapping of subnetworks allows the recovery of more than
1 failed disk, dependent on the architecture.

Other considerations during reconstruction are how to handle user requests. If a read is requested
of an as yet unreconstructed sector, the sector can recovered on the fly using parity and the

9See Section 2.2.4 (p. 8)
lORernernber that 1 disk has failed. and is in the process of being reconstrncted

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 2. REDUNDANT ARRAY OF INDEPENDENT DISKS (RAID) 18

remaining dat a disks. However, once this data is calculated, the option arises to store it (which
requires buffering), write it to disk (which could upset the scheduling algorithm in use) or discard

it (which entails having to recalculate it later during the reconstruction). The choice of which

approach to take is dependent on the implementation.

If a write is requested during reconstruction, then this new value is simply written to the replace
ment disk and the appropriate stripe is excluded from the rebuild list, which reduces reconstruc
tion time. Alternatively. all stripes are reconstructed in order, and new data is simply overwritten
- this has the advantage of significantly less bookkeeping, but there is a lot of unnecessary work
performed.

2.5 RAID Caching

Due to the relatively slow access and transfer times of secondary storage systems in general,
caching plays an important role in improving the performance of these systems. The most im

portant function of a cache is to store recently accessed data in memory. Subsequent requests for
this data can then be served from memory much faster than accessing it on disk.

As the cache is finite in size, its contents must be managed so as to ensure sufficient space for

new additions whilst still retaining data which is most likely to be accessed in future. The various

techniques for achieving this are discussed in Section 2.5.1 (p. 18).

The cache can also perform a predictive function, by examining the list of recently accessed data

and requesting adjacent data from disk to store in memory. This predictive behaviour leverages
the spatial locality of most workloads, where data is generally accessed in physically adjacent
groups.

As in all connected systems with a speed disparity. the cache can also act as a buffer to mask

the speed differential. This can be accomplished by allocating a section of the cache to buffer

data that is being sent faster than it can be processed by the RAID system. This section can
also be used to hold intermediate results until a sufficiently large amount has been accumulated
to efficient ly send to the host in one transmission.

2.5.1 Caching Schemes

A cache is finite in size and divided into a number of equal-sized, contiguous sections, referred to

as pages. These pages arc atomic and form the basis of all cache operations.

When a cache is initialised, it is empty and all pages are available to hold data. As data is added
to the cache. the number of free pages decreases until the cache is full and no pages are available.
From this point on. whenever new data is added to the cache, it is first necessary to free one or
more pages that contain data before the new data can be successfully added.

The process of freeing pages is referred to as destaging .. If a page to be destaged has been marked
as dirty 11 • its value is first written to disk. The page's entry in the cache page table (which holds

a list of all pages in the cache) is then modified to reflect that it is free and available to store

llSee Section 2.5.:2 (p. :21)

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 2. REDUNDANT ARRAY OF INDEPENDENT DISKS (RAID) 19

data. Note that the data in the page is not actually deleted, as the value stored therein will be
overwritten when the page is next used.

The method used to determine which cache page to free when the cache is full is referred to as the
cache policy. There are a variety of cache policies that arc tailored to specific uses, but all derive
to some extent from either the LRU or LFU policies, which are discussed below. We also present
the ARC policy, which attempt.s t.o synthesise the best aspects of LRU and LFU to provide a very
good, general purpose policy. For a detailed overview of some of the operational details of these
schemes, refer to Section 8.4 (p. lll).

Optimal Page Replacement Policy

The optimum efficiency criteria for a cache is the rate at which pages are recycled. In other words,
the more infrequent the need to destage a cache page, the better the policy is performing. This
arises from the desire to minimise the number of slow disk accesses necc:ssary, which are incurred
whenever a page of data must be brought into the cache from disk.

Early research into page replacement algorithms that maximised this criteria, particularly the
First-In-First-Out (FIFO) algorithm12 led to the discovery of Belady's anomaly: For certain
page replacement algorithms, increasing the cache size could increase the page recycle rate.

This led to the definition of an optimum cache replacement policy (OPT) [SGG02j, which IS

characterised by the following algorithm:

Replace the page that will not be used
for the longest period of time.

Clearly, this algorithm is not practically implement able since it requires knowledge of future
workload behaviour. It does, however, provide a baseline against which other policies can be
compared.

LRU

The Least Recently Used (LRU) policy is an attempt to approximate the OPT policy by using
the events of the recent past to predict events in the near future. Under LRU, each page has
associated with it the time it was last accessed. An access here is defined as a read or write
request that alters the contents of that page without requiring it to be destaged.

When a page must be chosen for replacement, the LRU policy picks the cache page with the
earliest access time, i.e. the page that has not been used for the longest period of time. This
scheme then works under the presumption that a page that has not been used for a long time will
not be required in the ncar future.

One of the problems with the LRU scheme is that the possibility of thrashing exists. Thrashing
occurs when a page that has just been destaged is then requested and has to be read back into
the cache. It occurs with workloads that repeatedly access a working set of data that is just

12Where the first page added to the cache is the first page freed.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 2. REDUNDANT ARRAY OF INDEPENDENT DISKS (RAID) 20

larger than the cache size. In this case, LRU is very inefficient as the page recycling rate increases
greatly.

LRU is also susceptible to cache pollution by sequential workloads. In this scenario, the sequential

workload causes all pages in the cache to be destaged and replaced by the sequential data. As

long as the sequential stream lasts, existing pages (that should potentially remain in the cache)
are destaged on each request. In addition, once the sequential stream transitions to some other

access pattern, the cache is left devoid of any useful recency information with which to determine

policy behaviour.

LFU

The Least Frequently Used (LFU) policy takes a different approach to LRU in that it considers

recent behaviour rather than recent history. This utilises the assumption that if a page has been
used frequently in the past, it is likely to be used again even if it has not been used recently.

Under LFU, each page has associated with it a counter of the number of times it has been
accessed since being read in from disk. \\Then a page must be chosen for replacement, the LFU
policy chooses the page with the smallest frequency count.

A major weakness in LFU is also related to the occurrence of thrashing, though under different

circumstanccs. A workload that comprises a large number of frequently accessed pages, together
with an cqual number of random requests will experience cache starvation as the cache becomes
filled wit h the frequently accessed pages.

In this situation, none of the frequently accessed pages are eligible for destaging, and so the

recently used, random accesses must be continuously swapped into and out of a single cache page.
Once again this is not ideal, as the page recycling rate increases here too.

ARC

The Adaptiw Replacement Cache (ARC) policy was developed by IB:\1 [Mr.I03bj. It attempts

to strike a balance between the characteristics of LRU and LFU by dynamically adapting to the
workload presented.

An ARC cache uses a page table that is twice the size of the actual number of pages in the cache.
This page table is split into two equal sized lists: L1 which contains those pages that have been
accessed exactly once: and L2 which contains pages that have been accessed more than once.

L1 and L2 arc further divided into Tl, 81 and T2, 82 respectively. Tl and T2 contain information
related to the actual pages in the cache, and as snch the total size of Tl + T2 is always equal to
thl' cadw size. 81 and 82 art' used to record historical data, and do not reference actual cache
pages. ARC also nses a target size target~Tl, which represents the optimum size of L1 and is
updated constantly during execution.

The replacement policy for ARC uses the LRU criteria:

Replace the LRU page in Ti, if Ti contains at least target-Ti pages;
otherwise, replace the LRU page in T2.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 2. REDUNDANT ARRAY OF INDEPENDENT DISKS (RAID) 21

The adaptive nature of cache is achieved by varying targeLTl in response to the observer work
load. The adaptation rule, which is applied whenever a new page is added (ie. an actual cache
miss), is:

Increase targeLTl, if the new page exists in the history B1;
similarly, decrease targeLT1, if the new page exists in the history B2.

By applying these two rules to the cache, ARC is able to adapt to changing workloads and hence
avoids the pitfalls inherent in both LRU and LFU. It is scan-tolerant, in that sequential workloads
do not pollute the cache, and it is less susceptible to thrashing as the targeLTl metric attempts
to ensure there is enough space for both frequently and recently used pages. For a more in-depth
explanation of ARC, refer to [MM03b, MM03a].

2.5.2 Write Caching

Across all caching schemes a distinction can be drawn between Write-Back and Write-Through
caching. Both these terms refer to the situation where a write operation is requested and the
data to be written is sent by the host to the RAID Controller.

In a Write-Back cache, this data is added to the cache and the relevant pages fiagged as dirty.
A signal is immediately sent to the host indicating the success of the requested write. At somp
later time, usually when pages are Hushed from the cache, the updated data is actually written
to disk. This scheme has the advantage that multiple updates to the same data will result in a
single disk access that refiects only the last, correct value.

By reducing the overall number of disk accesses required, this increases performance in the system.
but at the cost of reliability. Unless the cache is implemented in non-volatile RA!\113 (~VRA'\1),
any data not written to disk will be lost in the case of a power failure. This scheme also proves
problematic when used in multi-level RAID schemes14 as cache coherency cannot be guaranteed.

In a Write-Through cache, the data is added to the cache and immediately written to disk. Only
once the disk request has succeeded is the host signalled to indicate a success. Since this scheme
requires more disk accesses that Write-Through caching, it performs poorly by comparison. It
does have the advantage of offering much better reliability across power failures, as writes are
always persisted immediately to disk.

13RAM that can persist its contents across power failures, such as NAND flash RAM.
14See Section 5.4.4 (p. 68).

Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 3

Simulation of Systems

In this chapter. we present an overview of the discipline of simulation. \Ve introduce the discipline,

and eyaluate both it benefits and shortcomings. \Ve further present the fundamental aspects of

simulation and outline the principles of conducting a simulation study. Finally, we discuss the use
of simulation environments, present a number of available simulation environments, and justify

the choice of one for the development of our simulator.

3.1 Introduction

III areas such as operations research and management science. simulation is a tool that allows
busilless processes to he analysed and optimised without disrupting the daily activities of the

business. In engineering disciplines, simulation allows products to be developed and tested be

fore investing in the manufacturing process. In scientific disciplines, theoretical models can be
simulated to determine their validity and future behayiour.

A simulation attempts to imitate the behaviour or operation of some process for the purpose of
studying some aspect of it. The process being simulated is referred to as a system, and in order

to correctly mimic its operation it is necessary to develop a model of this system. This model

usually takes the form of mathematical relationships, which calculate observable outputs based
on input parameters. and logical relationships, which determine which portions of the model are

exercised at a particular point in time [LK82].

In order to develop this model of the system, it is necessary to make a set of assumptions re
garding the operation of the system. These assumptions may be based on a theoretical idea of
how the system should work, or may be derived from an empirical investigation of the system.
These assumptions seek to approximate the system, which is usually too complex to model in its
entirety. by concentrating on areas of particular interest or importance. The results produced by
a simulation are thus only estimates of the true behaviour of the system.

For certain models that are sufficiently simple. it is possible to determine an analytical solution
for the system model. This solution is obtained by using mathematical methods 1 to obtain exact
results from the system model. This is obviously a significant improvement over the estimated

lSuch R,<; algebra. calculus or probability theory

22

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 3. SIMULATION OF SYSTEMS 23

results produced by simulation, but such analytic solutions arc usually not possible for realistic
system models, due to associated complexity.

For most other models, simulcttion is necessary to obtain information from a system model.

Simulation, in our context, involves using a computer to numerically evaluate a given model

over a stipulated time period. This evaluation involves a number of steps, and at each step data

is gathered that is later 11sed to estimate the desired characteristics of the model[LK82]. These

estimates can then be used to refine the model, change the simulation parameters or implement

changes in the corresponding real-world system.

3.2 Evaluating the Benefits of Simulation

Simulation and analytic solutions are the most common approaches to analysing a given system

model. Each has their own advantages and drawbacks, as outlined by Law and Kelton [LK82].

Given our focus on simulation of systems, we present first the advantages that simulation of

system models provide:

1. Most mathematical models of real-world systems are too complex to evaluate analytically.
thus simulation is often the only viable option.

2. Simulating an existing system allows hypothetical operating conditions to be applied and

the performance of the system to be estimated.

3. Simulation is best suited to evaluating alternative designs of a single system (or alternative

operating parameters for a single system) against a given set of requirements to determine

the most suitable.

4. It is possible to maintain much tighter controls over experimental conditions while conduct

ing a simulation of a system when compared to experimentation with the system itself.

5. Simulation allows us to manipulate time within an experiment. Thus we can compress time

for long simulations, allowing for results to be obtained sooner. Conversely, it is possible

to dilate time for processes that occur over a very short time, allowing a detailed study of

their operation in expanded time.

Simulation is not a magic cure, however, and there are a number of drawbacks that must be care
fully considered. In many situations, an approximated analytic solution of a simplified model ma:,
be of more use, simpler to construct and less expensive than the equivalent complex simulation.
The considerations against simulation are:

1. Simulation models can be time-consuming to develop, and complex simulations require large

amounts of computation time and power, which can prove expensive.

2. A simulation that uses stochastic models2 produces only estimates of the true behavio1ll' of a
system, whereas an analytic solution can produce exact results. It thus stands to reason that
if an analytic solution is possible, it would be preferable to simulation. However, analytic

solutions are not always possible.

2See Section 3.3.1 (p. 24)

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 3. SIMULATION OF SYSTEAIS 24

3. Stochastic models that produce estimates of a model's characteristics require several sim
ulation nms to be executed for each set of input parameters, to allow statistical analysis
of the results. This requirement means that simulations are better suited to comparing a
finite set of alternatives, rather than optimising over a range of parameter values.

3.3 Simulation Fundamentals

3.3.1 Systems and Models

A system is defined by Schmidt alld Taylor [ST70] to be a collection of entities (components),
e.g. people or machines, which act and interact toward the accomplishment of some goal. A
simulation of a system requires a model of the system to be developed. This model describes
the functions of the various components of the system, as well as the interaction between these
components. The granularity of this model is highly dependent on the particular objectives of
the study. as well as the accuracy of results required. For instance, a simulation of a commodity
computer hard disk drive would model the various components of the drive, such as the drive
arm. the platters and the read/write head. However. in a simulation of a storage system, the disk
drive would form one small component within t he overall model.

A model of a system usually involves a number of variables whose values changes over time. These
variables are referred to as state variables, and the state of the system is then defined to be the
values of all state variables at a given time. In the simulation of a storage system, examples of
such variables would be: the number of I/O requests being processed; the time of arrival of each
request: and the collection of data stored in the cache.

Continuous and Discrete Systems

Depending Oll the areas of interest and the model employed. a system may be classified as either
continuous or discrete in nature. For a continuous system. the state variables change continuously
with respect to time. In a discrete system, the state variables change only at a finite number of
points in time.

For example. a model of storage systems that is interested in investigating the Quality of Service
of the system will be continuous, as variables such as the throughput, bandwidth utilisation and
failed requests change continuously. Conversely, a model that focuses on the actual requests in the
system and how they are processed is discrete in nature, since each individual request is simulated
atomically. Hence, the state variables only change when commands are executed to satisfy each
request.

Deterministic and Stochastic Simulations

A further distinction can be made between deterministic and stochastic models. A deterministic
model given a set of initial conditions will always produce the same resultant state at a given
instant in time. A deterministic model contains no random variables, hence the results it produces
are always the same.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 3. SIMULATION OF SYSTEMS 25

For the same set of initial conditions, a stochastic model will produce different states for the same
time instant dependent on the random number seeds chosen3 . Since a stochastic model contains
one or more random variables, the output data it produces are also random and serve only as an
estimate of the true behaviour of the system. Consequently, the results of a stochastic simulation
require more interpretation than those for a deterministic one.

The simulation models we present in this work are discrete and stochastic. They model the
processing of individual I/O requests, over a period of time, using random variables.

3.3.2 Advancing Simulation Time

The state of a dynamic discrete simulation model changes over time. anel hence the state variahles
must be periodically updated at specific times. The concept of simulation time must thus he
introduced to determine when to update individual variables. This simulation time is stored in
an independent variable, and must be updated over the course of the simulation. The units in
which simulation time is measured is determined by the simulation environment. There is also
usually no relationship between the length of the simulation time required to complete a simulation
(the period of time under investigation) and the actual time required to run the simulation to
completion on a computer system (the execution time).

There are two main approaches to advancing simulation time: fixed-increment time advance
and event-driven time advance. Each method is responsible for incrementing the value of the
simulation time by a specific amount, which in turn determines when and how simulation variables
are updated.

Fixed-Increment Time Advance

In this approach, a fixed time interval 6.t is chosen at the start of the simulation. This interval
represents the value by which the simulation time will be advanced after each update. Aftrr each
time increment, the simulation must check whether any events were scheduled to occur during
the elapsed interval of length 6.t. All such events are then assumed to have occurred at the rnel
of the interval, and the routines associated with these events are executed as though this were
the case. This scheme is illustrated in Figure 13.

,. ----- "..--- ",.------------ ,. ...
"' /" "' /" "' /" /" "' /" "' I , I , I , I , I ,

/ \/ \/ \/ \I \
I + + + + t ~

0 L'o.t 2L'o.t 3L'o.t 4L'o.t 5L'o.t time

eO e 1 e2

Figure 13: In the Fixed-Increment time advance approach, events are only processed at fixed increments.

Events occurring between increments must be moved to an appropriate boundary. In the figure

above, both events Cl and e2 will be processed as though they had originated at time 46.L.
(Figure adapted from [LK82])

The requirement that events be processed as though they had occurred at the end of an interval
has a number of disadvantages. Multiple events that occur in a given interval are treated as

3See Section 3.3.6 (p. 31)

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 3. SIMULATION OF SYSTEMS 26

having occurred at the same simulation time, which ignores the actual ordering of events within
the interval. This requires that the simulator must have some method of determining in which
order to execute these apparently simultaneous events. Calculations that are dependent on the
time an event occurred will hence be incorrect.

The interdependence between events may also be disrupted by these simultaneous occurrences.
For example, a computation associated with event A may rely on the elapsed time since the last
occurrence of event B. If both A and B occur in the same interval, but at different times, the
computation for A may be incorrect.

The abm'e problems may be mitigated to some extent by reducing the size of f::::.t, but this increases
the number of interval advances required for the simulation to complete. This in turn requires
more checks for event occurrences, which finally increases execution time.

Due to these problems, fixed-increment time advance is not an appropriate choice for simulations
where the inter-arrival time between events is not known, or varies greatly. This scheme is,
however, well suited to scenarios where events occur on a regular schedule. Financial models
where the simulation state is updated every year is a natural application for fixed-increment time
advance. as are we at her simulations and astrophysical simulations.

Event-Driven Time Advance

Ewnt-driven time advancc is a scheme that attempts to address the shortcomings evident in fixed
increment time advance. vVith this approach, the concept of an interval is scrapped. Instead,
all cwnts generated by the simulation are appended to a queue. commonly known as the Future

Event Set (FES) or Future Event List, which is sorted by time of occurrence. Whenever the
simulation enters an idle state (no event is being processed). the FES is searched for the most

nmninent event. The simulation time is then advanced to the time this event occurs, and the
ewnt is processed. This processing may lead to other events being generated, and these are added
to the FES. \Vhen all relevant processing is done, the simulation then enters another idle state,
the FES is searched for a new event, and the loop repeats. This scheme is illustrated in Figure 14.

-- - -- -...... --_._- --------- ,. -'- ----------, ,. , ,. , ,. , .- ,
'((

f f f f t ~

0 ~tl ~t2 ~t3 ~t4 ~t5 ~\ time
8

0 t!1 8 e
3

e e
2 4 5

Figure 14: In the Event-Driven time advance approach, events are processed at the time they are generated.
Thus the simulation time is advanced by differing amounts depending on the elapsed time between
events (the 6.t i 's above). (Figure adapted from [LK82])

Simulations using event-driven time advance have an implicit stop condition that is triggered
when the simulation is in an idle state (no events arc being processed) and the FES is empty
(there are no future events to be processed). This is in contrast to the fixed-increment scheme,
which cannot detect whether requests will be issued in future. and hence must have an explicit
stop condition built into the simulation.

Another advantage of the event-driven approach is that periods of inactivity in the system are not
simulated, since the time is only advanced to points where processing must be performed (when
an event has occurred). This reduces the simulation overhead, and hence execution time. Further,

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 3. SIMULATION OF SYSTEMS 27

since all events are processed as they occur, the inter-dependence between events is preserved, in
contrast to the case with fixed-increment time advance.

3.3.3 Workloads

Once a model of the system of interest has been created, it is necessary to consider the ~orkload
associated with the system. The workload refers to the series of inputs that are passed to the
system, and to a large extent determines the results that a given simulation run will produce.
Typical types of workloads that <trP processed by RAID systems include:

• On-Line Transaction Processing (OLTP) workloads: these workloads consist of many small
requests to random areas on disk, and generally involve a read-pro cess-write pattern applied
to this data. This workload is typical of financial systems where large numbers of clients
are making small changes to their accounts.

• Web Server workloads: these workloads typically consist of medium sized read-only requests
to random areas on disk, as web pages are delivered to clients.

• Batch Processing workloads: these workloads consist of large, sequential data accesses that
are primarily read requests, since they primarily relate to the processing of large volumes
of data.

An appropriate analogy for the relationship between system models and workloads is the typical
computer system: the system model represents the hardware and the workload the software.
Each is defined separately, but both are required to achieve the required output. Further, while
the model changes infrequently, the workload is routinely altered in order to investigate varying
aspects of the system. Thus in any simulation study, determining the characteristics of the
required workload is of paramount importance.

A number of methods are available to help determine possible workloads for a given system. If the
system under investigation is a real-world system, measurements of the current load on the system
can be made and used to extrapolate similar workloads. Historical data captured over a period
of time can also be used to help determine appropriate workloads. Alternatively, a theoretical
model of the workload can be built and then used to exercise the system model. This last option

is particularly useful for abstract, theoretical systems where no data on usage is available.

For the particular case of storage systems, both methods are equally feasible. The workload for
such a system consists of a set of Input/Ouput (I/O) requests that arc submitted to the system.
These requests are for particular segments of data stored within the system that arc to br fetched
(read) or stored (written). Each request is defined by a number of parameters, details of which
can be found in Section 5.5.1 (p. 70). A series of requests, each with appropriately configmed
parameters, determines the workload presented to a storage system.

Since most storage systems of interest exist in the real-world, we have considered two forms of
workloads to use with our system models. The first uses traces obtained from real systems. A
trace is a record of all the I/O requests, and their parameters, submitted to a system over a period
of time. Such a trace may be used directly to exercise a system model that corresponds exactly
with the original system in terms of configmation. More usually, the system model cliffers from
the original system and the trace must be manipulated before being used.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 3. SIMULATION OF SYSTEMS 28

This manipulation could entail altering the parameters so that they map on to the system model.
For instance, if the collected trace was from a storage system with a small capacity, increasing
all requested data sizes by a factor of x would allow the trace to be used with a system model
configured with a capacity x times larger. Alternatively, the times between requests could be
expanded or contracted by a constant factor, thus allowing a correspondingly longer or shorter
period of time to be simulated.

Such manipulations of traces should be carried out with caution, Slllce altering a trace might
significantly change the nature of the associated results. In particular. drmving conclusions from
these results based on the nature of the original trace may be incorrect. Trace manipulations
must thus be carefully considered and analysed to ensure the underlying behaviour represented
in the trace is preserved.

The second form of workload we have considered is the synthetic workload. A synthetic workload
uses a theoretical model to determine the parameters of the individual requests in the workload.
Each parameter is represented by a random variable whose value is drawn from some predeter
mined statistical distribution, such as those presented in Table 6 (p. 138). These distributions
are themselves configured by the choice of a number of parameters.

Determining which distributions to use and how to configure them is an important consideration
before using any synthetic workload. These choices can be determined by modelling the charac
teristics of a series of traces, as is done in the ESSWA project [Sik06]. Alternatively, a particular
set of distributions may be chosen which artificially stress some component of the system, or
exercise a particular subset of the available operations. For instance, a workload that consists of
only write requests may not be common in practice but may be necessary in order to evaluate
the performance of various RAID schemes during write operations.

However the workload is determined, it must be remembered that it is only the combination of an
appropriate workload with a given system model that can provide meaningful simulation results.
The simulation software we have developed allows for both the above workload options to be
utilised. but only the user can ensure that a representative workload is used.

3.3.4 Simulation Execution

The process of discrete, event-driven simulation can be generalised to apply to simulation of any
system model [LK82]. Almost all such simulations have a common set of core units, and a com
mon How-of-control between these units. The organisation of these units promotes a structured,
partitioned approach to developing, debugging and extending simulation code. The functions of
each of these units arc:

• System state: Refers to all the state variables that are used to describe the system at a
given time. Depending on the architecture used these variables may be collected in a single
location or distributed amongst various code objects .

• Future Event Set (FES): This is a collection of all the events that are scheduled to occur
during the execution of the simulation. These events are sorted by the simulation time they
are schpclulecl to occnr at.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 3. SIMULATION OF SYSTEMS 29

• Statistical counters: Encompasses all variables that are used to record statistical in
formation about the simulation. These variables are updated as appropriate after each
timestep.

• Simulation clock: The variable or object responsible for maintaining the current simulated
time within the system.

• Initialisation: This encompasses all code executed prior to the start of the simulation.
The system state and future event set are both initialised and the simulation clock is set to
O.

• Simulation loop: This is the main loop of the simulation program and is responsible for
controlling the operation of the simulation. The simulation core calls the timing TOutine

to update the simulation time and retrieve the next event to be processed. It then calls
the appropriate event routine to handle the pending event. Once the event has been pro
cessed, the simulation terminating conditions are checked to determine whether to end tllE'
simulation or continue processing events.

• Timing: Removes the next event from the future event set, advances the simulation clock
to the time at which this event should occur and returns the event to the simv.latiun core.

• Event handling: Performs the appropriate processing and update of system state variables
and statistical counters for a given event. Generates future events and adds them to the
FES. In object-oriented simulations, each object in the simulation has such a routine for
processing particular types of events.

• Statistical Output: A post-simulation subroutine that outputs the values of all statistical
counters for later analysis.

This basic structure applies to most discrete, event-driven simulations, however individual im
plementations may merge or subdivide units based on their requirements. In particular, modern
simulations tend to be object-orientated and distributed in design. This increases the flexibility
of the simulation in terms of extensions and changes, but it also leads to structures that are
notably different from the one we have presented. However, the functionality described and the
interactions between the functions still remain broadly similar.

3.3.5 Events versus Messages

The traditional approach to simulation leans heavily on the concept of events. An event is any
occurrence within the system which requires a series of actions to be performed. These actions
can be any combination of: processing of new data; updating the simulation state; updating
the statistical counters; or generating a further series of events. Events are usually described in
terms of type, and generally do not have information associated with them. For instance an event
indicating the arrival of a new I/O request to a storage system must be handled by an appropriate
process to determine the specifics of the request.

Such a system works well for simulations where the entire system state is accessible by all event
routines. However, modern simulations distribute functionality across multiple objects rather
than having a number of independent processes, and the internal state of these objects are often
hidden. In such a scenario, the event model is a poor fit to the architecture. Additionally, features

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHA.PTER 3. SIIHULA.TION OF SYSTEMS 30

such as polymorphism mean that the simulation loop may not be aware of all the events that a
parti(,ular object can handle.

The solution to this is the concept of messages. A message is similar to an event in that it
indicates a system occurrence that requires processing. Hmvever, messages are passed between
objects rather than being raised globally. A message also has an associated state that is used to
pass information between objects in the simulation. This change has a number of consequences.

Firstly, events are categorised and distinguished solely by type. This means that subcategories
of events cannot be differentiated unless each is represented by a new event type. By example,
consider an event indicating a I/O request entering the system. It would be necessary to create
two new event types for each possible request, in order to differentiate between read and write
requests. :'lessages overcome this problem by allowing the internal state of the message to be
examined to determine the appropriate action. Thus, an IORequest message might contain a
field to indicate whether it is a write or read request, rather than requiring two different message
types.

In an event based system. when an event is triggered the simulation must decide how to appropri
ately handle it. This is usually solved by having each process in the simulation register handlers
for the events it is interested in. This requires that the simulation software must keep track of
the relation between events and the corresponding registered processes, as well as deciding which
of the registered processes for an event should be invoked. By contrast, messages are a directed
conmnmication between two objects. This means that when a message is dispatched, the recipient
and delivery time is known, and there is no ambiguity in how to handle it.

Another consideration stems from an event's lack of state information. This requires that the
individual processes in the simulation need to maintain a notion of statecl . This in turn lends itself
to utilising a looping execution strategy, wherein the process is constantly alternating between
waiting for events and handling them. The necessity of state information increases the memory
requirements for a simulation, and the looping strategy requires an explicit terminating condition
to exit the loop. A side effect of this looping strategy is that a mechanism to allow the passage of
simulation time must exist, since the processes are always active. Such a mechanism means that
an event could occur at any point during the loop. Accounting for this complicates the expression
of functional logic within the loop.

A messaging system, by contrast, is able to avoid this problem, since messages themselves contain
state information. Thus the objects in the simulation do not need to maintain state information.
Further. objects can be developed using a simpler message-handling approach, where a specific
method is called to handle an incoming message. Once the message has been dealt with, the
method exits. \Yhen the handling of a message requires time to be advanced- a delay in satisfying
an I/O Requpst. for example - a message can simply be scheduled for delivery at a later time. This
approach ensures that objects in a message-based simulation are only activated when a message
arrives. Ad(iitionally, since messages are handled instantaneously there is no time advance
mechanism as in an event-loop system a new message cannot arrive whilst handling an old one.
This allows the logic for handling a message to be more clearly expressed, since detecting other
message arrivals is not necessary.

The messaging paradigm is also a good representation of directed communication between various

"The alternative is to have a global state that is manipulated by all processes but this is a poor, inextensible
solution comparable to the use of global variables in software.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 3. SIMULATION OF SYSTEMS 31

components of the system. It is also well-suited to illustrating the implicit logic at work, as the
flow of messages between objects and the types of these messages can be used to describe the
operation of the system. The event system, on the other hand, is simpler to implement and llse in
small simulations as the messaging infrastructure does not need to be constructed and managed.

Finally, messaging allows for abstract, black-box type development of component objects. This
is possible by treating the set of messages that an object consumes, and the associated set of
messages it generates as a contract between the object and other objects it communicates with.
Two objects that both satisfy the same contract can then be interchanged without requiring
changes to other objects they communicate with.

3.3.6 Random-Number Generation

A fundamental aspect of any stochastic simulation is the use of random numbers drawn from
specified distributions. In practice this involves generating a series of numerical values for a
random variable, such that the frequency of each of these values satisfies the Probability Density
Function (PDF) of the associated distribution. A series of such values is referred to as a random
number stream.

A random-number generator is software that generates such a stream. When developing simu
lations, it is preferable to use generators which possess a particular set of characteristics. Most
importantly, the values that are generated should conform to the chosen statistical distribution
and be independent of each other (statistically uncorrelated). In terms of implementation in
software, it is important that generators execute quickly (so as not to create a bottleneck) and
utilise a minimum of storage space.

It is also important that the generator is able to reproduce a given random-number series. This
requirement is useful for reproducing error conditions for debugging purposes and verifying the
operation of the simulation. It also allows the same series of random input data to be used
in several simulation runs, either to increase the precision of results or to compare different
configurations.

Generating true random numbers that conform to these requirements is prohibitively difficult,
in large part due to the deterministic nature of computers. The accepted compromise is to
use pseudo-random generators. These are arithmetic based generators where the entire random
number stream is determined by a given seed value. The numbers generated are thus not truly
random, but they are sufficiently uncorrelated to pass a series of statistical tests that check for
randomness.

All such pseudo-random generators share one noteworthy problem. After a given number of values
have been generated in a series, the series begins repeating. The number of values reqllired for
this to occur is referred to as the period of the generator. The quality of a generator is primarily
determined by this period, since a small period implies a small number of usable random values.

Most random-number generators generate streams for the Uniform Distribution over the interval
(0,1), referred to as U(O,l). However, it is more usual to require the use of other statistical
distributions, such as Exponential, Geometric or Poisson. There exist a number of methods to
use the random-number stream from a U(O,l) generator to generate a value for a random variable

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 3. SIMULATION OF SYSTE!lIS 32

from another distribution5 . Most notable are the:

• Inverse-Transform method, which uses the inverse of the required distribution function.

• Composition method, which describes the required distribution function (F) as a function
of a number of other distribution functions (FI , ... , }~,)' from which the required random
\'Clriable can be more easily sampled.

• Convolution method, where the desired random variable (X) is described as a sum of
other independent identically distributed (IID) random variables which can be more easily
generated than X.

• Acceptance-Rejection method, where a number of possible values are generated until
one satisfies a given condition.

The most commonly used random-number generators are linear congruential generators (LCGs).
LCGs were introduced by Lehmer [Leh51] in 1951. LCGs are defined by the recursive formula:

Zi = (aZi-1 + c) (mod m) (6)

where the Zi'S represent the consecutive values in the series. The choice of the various parameters
a, c and III determines the quality of the generator and significant research has been conducted
to find such values so as to maximise the period of the LCG. Other notable generators are: the
.\Iersenne Twister by :\1. :\Iatsumoto and T. Nishimura [:\I~98b], which has a period of 219937 -1;

and the C:\IRG by L'Ecuyer [PLK02], which has a period of about 2191 and can provide a large
number of streams that are guaranteed independent.

3.4 Developing a Simulation Study

Law [LK82] presents a series of steps that are typical of the development of any simulation study.
These steps are reproduced below:

1. Formulate the problem: Determine the objecti\'Cs of the study, describe the scope of the
alternate system designs to be studied and the criteria that will be used for evaluation.

2. Collect data and define a model: Determine the specifics of the system under consid
eration, including details of its operation, input parameters and output dependencies. Use
this information to create a representative system model that can be simulated.

3. Validate the model: Compare the model to real instances of the system and consult
people involved in using the system to ensure the validity of this system model.

-i. Construct a simulation: Utilise an appropriate simulation library to develop a running
simulation of the above system model. Conduct testing and debugging to ensure the simu
lation operates correctly.

OSee Chapter 7 in [LK82] for details on these methods.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 3. SIMULATION OF SYSTEMS 33

5. Validate simulation with pilot runs: Conduct pilot runs with chosen test data to
compare the simulation results with expectation based on real systems. Adjust the model
or input parameters where necessary based on feedback from these runs.

6. Design experiments: Determine the particular aspects of the system and the variances
in their behaviour that need to be investigated. Develop input data that exercises these
aspects in appropriate waYfl.

7. Make production runs: Conduct simulation runs based on the experimf'nts of interest
and collect generated results.

8. Analyse output data: Analyse results from the experiments to address the questions
posed by the experiments.

9. Document and implement results: Document the assumptions, experiments and results
for later reference. Implement results in the real system where appropriate, or use results
to refine further experiments.

Our focus in this work has been on the design and development of an Enterprise Storage System
simulation environment (step 1). Our study has therefore been focused on designing an appro
priate, extensible model of such a system (steps 2-3), creating a simulation environment based on
this model (steps 4-5) and developing a set of support tools. Steps 6-9 would typically be carried
out by users of the system, who have a particular investigation in mind and wish to simulate
several storage system configurations to derive an answer. As such, these steps arc not directly
addressed in our work, though Sections 6 and 7 present the support tools we have created to aid

them.

3.5 Choosing a Simulation Environment

When developing a simulation, there are two main options available to the developer: constructing
a simulation from scratch in a general purpose language such as C++; or utilising a simulation en
vironment that provides the necessary management, statistics collection and support functionality

required. Our reasons for choosing to use a simulation environment are outlined in Section 3.5.1,
an overview of the simulation libraries we considered appears in Section 3.5.2 and our reasons for
settling on the OMNet++ environment are presented in Section 3.5.3.

3.5.1 Advantages of Using a Simulation Library

Developing a simulation and the associated support environment in a general purpose language is
feasible in situations where the system model itself is fairly small, or where specific optimisations
or constraints are necessary. It is also of use in cases where physical hardware must be included
in the simulation process. This approach can become complex, however, and has a tendency to
divert development focus away from the simulation model as the supporting environment routines
need to be tested and maintained.

By contrast, a simulation library offers a number of advantages over the above approach. Most
importantly, it allows development to focus on the implementation of the system model, as the

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 3. SIMULATION OF SYSTEMS 34

supporting environment is provided for the developer to use. In addition, most quality simulation
libraries have been validated and tested, both by the developing company and a community of
users whose input further improves the software. This user community also provides a forum in
which problems can be posed and solutions provided by knowledgeable developers who are well
versed in both simulation and the particulars of the library.

A primary, but often understated, advantage of a simulation library is the expert knowledge it
implicity provides. This is most apparent if the library imposes structural constraints on how
simulation models are implemented and executed under the provided environment. This enforced
structure encourages the use of best practices in simulation, such as:

• The use of a robust pseudo-random number generator with a large cycle-length6 and a
statistically valid distribution of the generated values.

• The management of event queues such that events are delivered to the appropriate recipients,
and the associated simulation time is correctly updated.

• Providing various housekeeping functions that ensure that resources are allocated and freed
correctly, aud that contention for resources is correctly handled.

• Centralising simulation activity logging and statistics collection, providing a single interface
usable throughout the simulation environment.

Finally. simulation libraries usually ship with example simulations illustrating various features
of the environment. These examples not only flatten the learning curve, but can also serve as
a simulation primer for the novice developer. They can also illustrate particular features of the
library that simplify some aspect of simulation, or show how best to implement a particular
pattern within the environment.

3.5.2 Available Simulation Libraries

Having outlined above the reasons for using a simulation library, we undertook an initial inves
tigation of two simulation environments to determine which was most appropriate for our needs.
Given the very large number of environments available, we chose to compare environments with
\'ery different design and execution ideologies: CSL\I and O:\I:\et++7. A description of each of
these foIlO\\·s.

CSIM

CSI:\18 is a proprietary simulation environment that is widely used in business simulation. It
is a Process-Oriented environment, targeting models with explicit producers and consumers of
resources rather than models with multiple, independent, interacting components.

6The number of ullique values generated in a sequence before the sequence begins repeating.
~ Other alternatives, such as NS2 (http://www.isi. edu/nsnam/ns/), were not considered.
8http://www.mesquite.com

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 3. SIMULATION OF SYSTEMS 35

CSIM is implemented as a library of classes and procedures which implement all of the structures
and operations necessary to implement a simulation model. CSIM thus requires that the end user
be responsible for configuring, executing and controlling the resultant simulation.

As a process-oriented simulation environment, a typical CSIM simulation involves:

• Defining a set of processes that produce, consume or process resources.

• Allocating a set of facilities, that represent consumable resources.

• Executing the model logic, wherein processes queue, interact and compete for available
resources.

This focus on autonomous processes competing for resources is not a natural match to the data
centric operation of I/O systems. Moreover, CSIM lacks support for loosely coupled systems, as
each process must know precisely which resources it requires. This contrasts with an I/O request,
where a process' request for data may be routed by an underlying process (the Operating system,
for instance) to anyone of a number of I/O devices.

An advantage that CSIM offers is a built-in statistics gathering and processing function. This
capability is based around the various objects CSIM provides for constructing a simulation, and
hence the statistical analysis can be automatically computed. A downside to this approach is
that this mechanism cannot be automatically applied to custom objects. This requires users to
either instrument their code manually for the statistics they wish to collect (which negates the
advantage offered) or to use only the objects provided by CSIM.

The latter approach is problematic, in that it requires models to adhere to the CSL'vl process
oriented, producer-consumer model view, rather than selecting an appropriate idiom for the sys
tem at hand. This is constricting and can lead to cumbersome models that must work around
the library, rather than with it. CSIM is also a proprietary library, with paid for support and
development. This is useful in that bug fixes can be requested and effected immediately, but it
prevents end-users from studying and extending the core functionality where necessary.

While the library has undoubtedly benefitted from the experience of the developing company over
the course of many years, its lack of flexibility and enforced structure make it less appealing for
the development of simulations with a wide range of applicability, or which do not easily fit the
design paradigm it espouses.

OMNet++

OMNet++9 [Pon93] is an Open-Source, object-oriented, modular, discrete event simulation li
brary originally developed at the Technical University of Budapest. It is also available as a
commercially supported distribution known as OMNEST.

OMNet++ was initially designed as a simulator for communication networks and the associated
protocols, such as IPv4, IPv6 and MPLS (Multiprotocol Label Switching). The modular archi
tecture and flexible nature of the environment have subsequently given rise to a number of other
application areas from hardware architectures to business processes.

9http://www.ornnetpp.org

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 3. SnlfULATION OP SYSTEMS 36

The design of O:-I~ et++ is focused around its primary application area of communicating sys
tems. In such systems, it is the fiow of information between distinct, functional objects that
is of interest. This has resulted in a simulation environment tailored around message-oriented
simulation.

A typical O'\I:\et++ simulation consists of a number of modules (independent objects responsible
for generating and processing messages), connected by a set of communication channels, along
which the actual messages fiow.

System Module

Compound Module

(SimPle MOdule}--(SimPle Module I-+---l(Simple Module

Figure 15: Hierarchy of modules in an OMNet++ simulation.

:-lodules map directly to C++ objects, and can be classified as either simple or compound. Simple
modules perform the actual processing on messages, while compound modules serve as containers
for organising the simulation into a hierarchy of nested modules, as illustrated in Figure 15.

Gates abstract the connection between modules. such that every module defines a number of
gates. Channels are then bi-directional connections between any pair of gates. The notion of
a gate allows a module to send a message to a particular gate without knowing the recipient
module.

This anonymous messaging decouples modules, which in turn allows for a much more modular,
extensible design of simulations. It also allows for reusability, since a module can be generically
defined by a C++ module (for example a disk module) and then connected to any channel that
provides it with messages it can understand.

The architecture of the simulation model is specified using a custom description language called
:,\ED (:'\l'twork Description language). NED is editable either as a text file. or using the pro
vided graphical editor, GN'ED. ;,JED further extends modularity of O.\I:'\et++, by separating the
simulation architecture description from the actual elements of the simulation.

Another major feature of OMNet++ is the Graphical User Interface (GUI) it provides. This
interface greatly simplifies the user interaction with a simulation. as well as aiding understanding
of the processes at work in said simulation. This GUI is dynamically generated from the simulation
model description. and is implemented in TCL/TK [HLl\I+97]. The choice of TCL/TK further
adds to the extensibility of OI\INet++, as it allows GUI extensions to be written and added to
t he simulation environment.

Finally. a compiled O.\'I;,Jet++ simulation executable can store several independent simulation
models. and the choice of model to use can be specified at runtime. This feature allows one to
ship a single large executable containing several models as a standalone simulation tool.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 3. SIMULATION OF SYSTEMS 37

3.5.3 Suitability of OMNet++

After an initial comparative study of the available simulation environments, Ol'vlNet++ was
chosen as our simulation environment of choice. The message oriented simulation models espoused
by OMNet++ is a good fit for the RAID I/O simulations, as outlined above, creating a natural
correspondence with the movement of I/O Requests within a RAID system. This correspondence
is further enhanced by OMNet++'s modular support, where a simulation model can be partitioned
into modules that are functionally equivalent to their real-world counterparts. It is thus possible
to create modules representing RAID Controllers, Disks and Data Somces, and to integrate thf'sC
various modules into an overall simulation model, in the same way that the equivalent physical
components are integrated into an overall system.

Completeness of Simulation Library

An important characteristic of a simulation environment is the presence of a comprehensive library
of functions that encompass the range of common tasks involved in developing a simulation. These
tasks include those directly related to the execution of a simulation, such as random number
generation and timekeeping, and those that fulfill a support role, such as data manipulation. In
this regard, OMNet++ offers the following noteworthy capabilities:

• A statistically sound Random Number generator based on the Mersenne Twister [MN98b]
algorithm, which has a period of 219937 -1, and a 623-dimensional equidistribution property

is assured. Using this base Uniformly distributed generator, OMNet++ also provides a
comprehensive list of other distributions from which random numbers can be drawn (see
Appendix C).

• A comprehensive simulation timekeeping functionality that is integrated with the entire
simulation framework, thus allowing message transport effects associated with latency and
bandwidth to be incorporated into a simulation model.

• Comprehensive, simulation-wide logging to a centralised output location, with the data
partitioned according to the specific simulation execution.

• Extensive data manipulation functionality of the above output data using provided CUI
tools. Data manipulation is also facilitated during simulation using adaptive histogram
data collection classes.

• Parallel and distributed simulation execution over multiple machines, and across networks,
by integrating with the Akaroa framework [EPM99].

OMNet++ is open-source software, and as such is maintained by the very same community of
developers who use it to develop simulations. This offers a number of advantages over proprietary
environments, chief amongst which is that bugs are identified and corrected much more quickly.
The collaborative nature of the environment encourages contributions from many simulation
practitioners, which improves both the quality and ease-of-use of the environment.

This input also represents a pool of knowledge that is encapsulated in the strnctme enforced by
the environment, which encourages componentisatioll of code. reusability ancl an understanding of

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHA.PTER 3. SIMULA.TION OF SYSTEMS 38

the fundamentals of discrete event simulation. It also increases the usefulness of the accompanying
documentation, which is both generated and consumed by the same group of users.

Simulation Portability

O:'I"\'"et++ is completely implemented in C++, with only standard libraries as dependencies. This
allows it to be completely cross-platform, with versions currently targeting Microsoft Windows TI\[,

Apple OS/XT'.[, Sun SolarisTCI [, FreeBSD and GNU/LinuxTCI [. This allows simulations to be

developed for all these platforms using a single code base.

User Interface

O:'I"\'"et++ provides two complementary interfaces to simulations developed using it. The first
is a standard command-line interface that outputs status messages during simulation execution,
but allows for no user interaction. This interface is ideal for executing batches of preconfigured
simulations. and is similar to standard interfaces of other simulation environments.

O:'I"\'"et++ also offers the unusual option of a Graphical User Interface (GUI), which visually
represents the various modules of the simulation. The low-level support for this is provided by
the TCL/TK scripting language [HLM+97], which allows powerful GUls to be created at runtime.
This GUI is dynamically generated from the model being simulated, and as such requires no extra
work on the part of the programmer. During simulation execution, the interface animates the
movement of messages within the system and provides control over the passage of simulation time
(allowing time to be paused, sped up or slowed down).

\Yhen paused. various aspects of the internal simulation state can be interactively changed, with
these changes taking effect once simulation time is restarted. This facility is useful in several
scenarios: debugging a simulation model during development: developing an understanding of
a simulation model authored by another developer: and initiating events to alter the state of a
simulation for analysing once-off events.

Multi-Level Models

O:'I"\'"et++ encourages hierarchical development of simulation models using nested components,
which separate functionality into independent modules. This allows the developer to break a
simulation model down into a series of ever simpler components, each representing a specific
subset of the functionality of the entire system. This top-down approach to designing a simulation
model is a well recognised design pattern.

It also allows for the representation of very detailed models, since each component can be refined
internally without affecting its interactions with other components. Moreover, once a sufficiently
detailed simulation module has been developed, it can be nested in any number of other simulation
models without requiring modifications.

Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 4

Previous Work

As RAID systems are being developed, their performance is analyzed using either simulation or
analytic methods. Simulators are generally handcrafted, or built on t.op of existing tools such as
CSIM 1 and OMNet++ 2 which may entail code duplication and potentially unreliable systems as
explained by Holland [HG92]. On the other hand, RAID architectures, once defined, arc difficult
to verify correct without extensive simulations. In addition, simulators need input and therefore
workload measurement tools.

Tools can be divided into one of three categories:

1. In the first category the tools are used to do measurements of drive storage systems to
determine either the performance characteristics of a drive or to measure the I/O activity.

2. The second category is about the design and development of RAID redundancy procedures.
One such tool is RAIDframe [CGHZ96a] which uses Directed Acyclic Graphs (DAGs) to
define RAID architectures in terms of primitive operations, together with the roll-away error
recovery scheme, to enable quick development and testing. The system has shown excep
tional code reuse, and has been utilized by other, independent researchers, e.g. [ABC97].

3. The third category of software tools are for modelling the performance of RAID storage
systems. There are several in this category and we will describe what we discovered about
each of them in the following sections.

4.1 Measurement tools

4.1.1 Rubicon

Rubicon is a disk workload characterization tool made available in the public domain by Hp3,
with the ability to perform many different types of analysis4 on disk traces[VK03]. In generaL

lDeveloped by Herb Schwetman of Mesquite Software Inc., Austin, Texas, www.mesquite.com.
2Developed by Andras Varga as part of his PhD work at the University of Budapest,

www.hit.bme.llU/phd/vargaa/
3http://tesla.hpl.hp.com/publicsoftware/
4Ranging from simple rate measurement (I/Os per second) to correlations between I/O streams, spatial and

temporal locality measures and self-similarity properties.

39

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHA.PTER -1. PREVIOUS WORK 40

Rubicoll reacis a sequence of disk trace records, performs some analysis on them, and outputs the
result of the analysis. The user call configure Rubicon in several different ways. Firstly, the disk
trace can be filtered in order to select subsets for analysis (e.g. single out a single logical volume),
with multiple filtered streams undergoing analysis in parallel. N"ew analysis functionality can be
easily added to the system. The output generated is independent of the analysis; by adding a
new "reporter" module, the same analysis can be reported in several different styles (e.g. as an
Excel spreadsheet).

4.1.2 DIXTrac

DIXTrac [SG99] (DIsk eXtraction) is a program that can quickly and automatically characterize
disk drives that comply to the Small Computer System Interface (SCSI). Such characterizations
include data about mechanical delays, on-board caching and pre-fetching algorithms, command
and protocol overheads, and logical-to-physical block mappings. It is not the only attempt at
measuring disk characteristics, but it seems by far the most successful, probably supported by
the fact that the disk model parameterizations accompany the DiskSim simulator discussed later
in Section 4.3.1 (p. 45). Similar work is reported by B.L. Worthington et. al[WGP95] and M.
Aboutabl ct. al. [AAD97]

DIXTl'aC nms as a user-level application on Linux, using the /dev/sg interface to pass SCSI
cOllllllanus directly to the uevice uriver. It requires no special hardware or operating system
support.

DIXTrac's disk characterization process can be divided into five logical steps. First it discovers
the basic physical geometry characteristics (e.g., numbers of LBAs, cylinders and surfaces) by
translating random and targeted LBAs. Second, it finds out where any media defects are located.
Third, explicitly avoiding defective regions, it figures out the sparing scheme (e.g., the allocation of
spare sectors) used and the locations of any space reser'Yed by the firmware. Fourth, it determines
the boundaries and number of sectors per track for each zone. Fifth, the re-mapping mechanism

used for each defective sector is identified.

The information in the disk map is necessary for the remammg steps, which involve issuing
sequences of commands to specific physical disk locations. Second, mechanical parameters such
as seek times. rotational speed, head switch overheads, and write settling times are extracted.
Third, the cache management policies are uetermined. Fourth, command processing and block
transfer overheads are measured. Since these overheads rely on information from all three of the
prior steps, they must be extracted last.

DIXTrac has oeell useu to characterize different disk models from various manufacturers, in
cluding IB:"!. Peri'onnillg a characterization cOllsists of simply pointing DIXTrac at the disk of
interest. The characterization process generally requires less than 3 minutes to complete. Us
ing the extracted characteristics to parameterize the DiskSim simulator giws rise to very close
matches between simulated and measured disk performance.

Although the DIXTrac software is not offered for general use the authors are providing a database
of over 20 validated disk characterizations on the Web'5. IBl\1 is a member of the Carnegie Mellon
Parallel Data Laboratory Consortium which may mean that they would characterise a particular
urive for IB:-I if so requested.

5http://w\\,w.ece.Clllu.edu/ schilldjr/DIXTrac and http://www.pdl.clllu.edu/DiskSim/diskspecs.html

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 4. PREVIOUS WORK 41

Finally the technical report. by J. Schindler G. R. Ganger [SG99] which describes DIXTrac contains
a wealth of information about drive buffer management, the layout of data on the physical media
and other disk operations.

4.1.3 I/O Stat

The AIX iostat 6 command is used for monitoring system input/output device loading hy ob
serving the time the physical disks are active in relation to their average transfer rates.

The Disk Utilization Report generat.ed by the iostat command provides stat.istics per phys
ical disk. The report contains the following:

• The percentage of time t.he physical disk was active or it.s utilization.

• The amount of data transferred (read or written) to the drive in KB per second.

• The number of transfers per second that were issued to the physical disk. A t.ransfer is an
I/O request to the physical disk. Multiple logical requests can be combined into a single
I/O request to the disk.

• The total number of KB read.

• The tot.al number of KB written.

Similarly the Adapter Throughput Report contains:

• The amount of data transferred (read or written) in the adapter in KB per second.

• The number of transfers per second issued to the adapter.

• The total number of KI3 read from the adapt.er.

• The tot.al number of KB written to the adapter.

4.2 Tools for designing RAID systems

Apart from redundancy, there are three other issues at stake when designing RAID systems:

• The correctness or otherwise of the procedures.

• Given a particular workload, what effect the design will have on the system performance.

• Once one is satisfied with the answers to the above two questions, it remains to implement
the design in software without destroying the credibility of the results obtained in the first

two steps.

6http://linux.die.net/rnan/1/iostat

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 4. PREVIOUS WORK 42

4.2.1 RAIDframe

One general approach to designing RAID systems is presented by Courtright et. a1. [CGHZ96bj
[CGHZ96a] and used by [VLW97]. Courtright outlines the design of RAIDframe, an application
with a graphical interface that enables structured specification of RAID architectures, as well
as detailed testing using built-in disk simulators or running the same code as real-world disk
drivers. The system uses Directed Acyclic Graphs (DAG) to define RAID architectures in terms
of primitive operations, together with the roll-away error recovery scheme, to enable quick de
velopment and testing. The system has shown exceptional code reuse, and has been utilized by
other, independent researchers, e.g. [ABC97].

RAIDframe is therefore primarily a framework for rapidly prototyping redundant disk arrays.
Based on a model of RAID operations as directed acyclic graphs (DAGs) and a simple state
machine (engine) capable of executing operations represented as DAGs, RAIDframe is designed
to allow new array architectures to be implemented with small, localized changes to existing code.

The programming abstraction RAIDframe uses is based on directed acyclic graphs (DAGs). A
designer wishing to introduce a new architecture or optimize an existing architecture will be able
to achieve this goal by modifying the library of graphs and graph-invocation rules implemented
in RAIDframe. While graphs and the binding of graphs to requests varies widely, the majority
of the code in RAIDframe is found in the unchanging DAG interpretation-engine. In this way,
designers are encouraged to experiment with and extend various RAID architectures because they
can ignore the majority of the code, which is devoted to device-manipulation details. A typical
DAG for RAID level 5 reconstruct-write is shown in Figure 16. Architecture features that cannot

Figure 16: The write operation shown by the DAG in this figure writes both data and parity to disk. The
cluster of read operations on the left side of the graph represent the read of old data and the
single read operation at the bottom on the left represents the read of old parity. Once parity has
been computed successfully, the new data and parity symbols are written to the array as shown

be expressed in request DAGs are usually satisfied by RAIDframe's flexible, dynamic address
mapping mechanism, its extensible disk queueing policies or its policy configurable cache.

RAIDframe moreover allows a single implementation to be evaluated in three distinct environ
ments.

l. First. it provides a discrete event simulator with configurable array parameters and disk
models. RAIDframe offers a synthetic and trace-driven load generator to exercise this
simulator.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 4. PREVIOUS WORK 43

The synthetic generator conforms its load to a script containing a variable nnmoer of access
profiles with individual occurrence probabilities. Each profile defines a deterministic or
exponentially distributed access size with a given mean and alignment. Access addresses
are randomly generated throughout the entire address space, or with a given probability,
within a single locality specified with each profile. Access types are either read, write or
sequential (the same as the last access with its address advanced).

The trace file contains actual I/O traces that have been collected from another application
instead of synthetic traces that have been generated from a script. The trace file must con
tain a header and trace records. The header contains the number of independent processes
in the trace, the number of traces for each process, and the file offsets for each trace.

2. Second, RAIDframe implementations and its load generator can be executed in a user
process using the Unix device interface to access real disks instead of simulated disk models.

3. Finally, to allow real applications to be run against a file system mounted on a RAIDframe
described array architecture, the same implementation code that runs in simulation or as a
user process can be run as a device driver in a specific Unix operating system on specific
wor kstations.

A particularly powerful feature of RAIDframe is that it separates error recovery from array
architecture. The mechanism used to recover from failed primitive operations (such as a disk
read) during the execution of an array operation is a part of RAIDframe's internal infrastructure.
RAIDframe uses a two-phase approach to error recovery called roll-away error Tecovery to do
this. RAIDframe's architecture-independent DAG interpreter handles errors by identifying those
nodes in a DAG which commit data to disk and by specifying the direction of recovery based on
when errors occur in relation to this commit point.

Specifically, if an error occurs before any data has been committed to disk, then the system rolls
back, releasing resources, and retries the operation with a more appropriate graph. On the other
hand, if an error occurs after data has been committed, the system rolls forward through the
remainder of the graph, giving later requests the impression that this graph completed instan
taneously before the error. In either case, this process is hidden from the user and performed
without regard to array architecture. Graph commit points (see Figure 16) can be specified so
that roll-back is inexpensive (that is, it does not induce additional device work in preparing for
or executing roll-back) and so that roll-forward does not need to execute any device operation
not already coded in the in-progress graph. By eliminating the need for architecture-specific code
for handling errors, roll-away error recovery further simplifies the process of building new RAID
architectures: there is no need to create or alter thousands of lines of error-recovery code.

Although aimed at RAID implementations in the first instance, RAIDframe has the facility to
compare how different RAID architectures perform relative to one another when implemented in
RAIDframe. It enables users to test throughput versus response time for various RAID architec
tures and configurations.

RAIDframe was developed in the Parallel Data Laboratory in the Computer Science Department
of Carnegie Mellon University. It is said to be freely available to the research community, but seems
to have fallen into disuse. The latest version of the comprehensive and informative RAIDframe
manual [CGR+97] is dated June 1997.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHA.PTER -1. PREVIOUS WORK 44

4.2.2 DiskRaid

DiskRaid from l\1icroSoft is a command-line tool that enables configuration and management of
RAID storage subsystems. Ko details could be found about this software.

4.2.3 RAIDtool

The RAIDtool[ZR:'196][ZMR96] was developed by Jai ~1enon and Jeff Riegel at the IBM Almaden
Research Center. Although still available the information 7 was last updated in April 1996 and it
would therefore seem to have fallen into disuse. The stated objective in building RAIDtool was
to develop a fast and easy to use software tool which allows the efficient evaluation of different
RAID configuration alternatives [ZMR96].

RAIDtool accepts a description of a RAID array controller card as its input. The architecture on
the card would however seem to be restricted to that shown in Figure 17 and although several
drive alTa~' strings can be attached, the possible configurations are not many. The RAID array

Controller

CPU

SCSI or

Other

Data Buffer

Internal Bus

Figure 17: The standard RAIDtool architecture contains a data buffer, an optional DRAM for data caching,
and an optional non-volatile RAM (NVRAM) for fast writes, all connected by an internal bus with
a certain bandwidth. All the characteristics (speed, bandwidth, capacity, etc.) of the components
and the bus are configurable

controller card is configurable for an unlimited number of RAID groups which may be configured
for the same or different RAID levels and each group may have a different disk type. Disks
themselYes are configurable and support pre-fetch sector buffering.

The tool distinguishes between three differellt I/O-requests, each with a different priority. Listed
in order from highest to lowest, these are:

7http:j /w3.almaden.ibm.comj riegeljconftool.html

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 4. PREVIOUS WORK 45

1. Regular I/O-requests which may pre-empt all others.

2. Destage requests from the NVRAM to disk.

3. Rebuild requests to reconstruct a failed disk.

Since RAIDtool allows for all RAID levels up to RAID 5. the scheduling of additional reads and
writes for parity calculations during writes in RAID 5, for example, is simulated in detail using
three different scheduling strategies ([ZMR96] page 27).

For more detail the reader is referred to the IBM Research Report [Z-:vIR96] by P. Zabback, J.
Riegel and J. Menon.

4.3 RAID performance modelling tools

There are several tools for modelling disk storage systems which do not necessarily have to be
redundancy or parity protected. Although analytical models exist for simplified disk systems such
as that by Peter Harrison[HZ04] this chapter concerns software tools only.

4.3.1 DiskSim

DiskSim [Bea03] is an efficient, accurate, highly-configurable disk system simulator developed at
the University of Michigan and enhanced at Carnegie Mellon University to support research into
various aspects of storage subsystem architecture. It is written in C and requires no special system
software. DiskSim includes modules for four secondary storage components of interest, namely
device drivers, buses, controllers and storage devices. Storage devices are the abstraction through
which the various storage device models are interfaced with DiskSim. In the current release. there
are 2 such models: conventional disks, and a simplified, fixed-access-time disk model which. inter

alia allows no disk cache. There are two further components namely queues/schedulers and caches
which serve as subcomponents of the above components.

The possible interconnections are independent of the components themselves except that an 1/0-
path from the host must begin with a sillgle device driver and terminate with the storage devices.
Exactly one or two array controllers must be between the device driver and each disk, with a
bus connecting each such pair of components along the path from driver to disk. Each disk or
controller can only be connected to one bus from the host side of the subsystem. A bus can
have no more than 15 disks or controllers attached to it. A controller can have no more than
4 back-end buses. The system topology is specified to DiskSim via a topology specification. A
topology specification consists of a device type, a device name and a list of devices which are
children of that device. The named devices must be instantiated; the component instantiations
should precede the topology specification in the parameter file. In the current implementation.
no device may appear more than once in the topology specification. Future versions may provide
multi-path support.

An example DiskSim topology is provided in Figure 18 below. The specification of the storage

system (disk) addresses three aspects, namely:

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER -1. PREVIOUS WORK 46

Figure 18: Typical DiskSim storage system configuration

1. The relationship with the bus, such as whether the bus is released during media access time
or not.

2. The disk cache management with comprehensive options such as size, write pre-buffering,
read-ahead options, fast write level, allowing cache hits on read and/or write, etc.

3. The disk actuator control such as allowing the actuator to begin relocation as soon as the
access of the last sector of the current request has been completed, seek scheduler options
(FCFS, SSTF, etc.) including whether detailed media mapping is available, and so on.

The (array) controller can be configured with its own cache. The cache management options
m'ailable in that case are not as rich as that for the disk cache management, but include size,
segment (block) replacement algorithms (FIFO, LRU or LIFO), fast write, read pre-fetch, size of
inclividual I/O-transfers, etc.

DiskSim can simulate a variety of logical storage organizations, including striping and RAID Level
1 and 5 architectures. Although DiskSim is organized to allow such organizations both at the
system-level (the front end of the device drivers) and at the controller-level. only system-level
organizations are supported in the current release. It would not appear from the manual that
DiskSim explicitly allows for disk rebuilds or reconstruction.

The DiskSim simulation can be driven by either a trace or a synthetic workload.

In the case of an I/O-trace, the default input format is a simple ASCII stream (or file), where
each line contains values for five parameters which are:

• Request arrival time in milliseconds.

• Device number i.e., the storage component that the request accesses.

• LBA start address of the request.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 4. PREVIOUS WORK 47

• Request size.

• Operation, i.e., read or write, etc.

In the event that a synthetic workload is used to drive the simulation, then apart from specifying
the length of the simulation, DiskSim generates values for fourteen parameters, where some arc
generated from a probability-distribution which may be one of the following:

• Uniform between a specified minimum and maximum value.

• Normal, requiring a mean and variance to be specified.

• Exponential, requiring a mean value to be specified.

• Poisson, requiring a mean value to be specified.

• A three parameter distribution, where a specified probability determines which of the two
other specified values are returned.

Apart from the obvious parameters such as request size and inter-arrival time, the probability of
sequential access along with the probability of local access, determine how a generated request's
starting address is assigned. Each request's starting address is sequential, local or random. A
random request is assigned a device and starting address from a uniform distribution spanning
the entire available storage space. The reader is referred to the User Manual[Bea03] for more
information.

DiskSim reports a comprehensive list of performance metrics at the overall system level as well as
for each component in a configuration. The statistics can be turned on selectively when providing
the corresponding configuration parameters in the input to DiskSim. Again, the reader is referred
to the User Manual[Bea03] for more information. It makes no provision however for computing
confidence intervals for any of the values reported and presumably leaves that to the user.

Finally, and very important, DiskSim explicitly includes hooks for inclusion into a larger scale
system-level simulator and will be used to model individual disks in ROSTI.

4.3.2 raidSim

The RAID simulator, raidSim[CP90] was developed at the University of California at Berkeley in
1990. It consists of a module for implementing a variety of RAID levels, a module for modelling
disk behavior, and a module for generating synthetic I/O requests. The only resources modelled
are disks.

Despite being no longer in use raidSim had interesting properties. It worked in three main steps.
The first step was to collect information about the typical workload as I/O-traces. Rather than
use these traces directly, the data was analyzed with a dual purpose in the second step, namely

• to generate a synthetic workload description with characteristics similar to the measured

one, and

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 4. PREVIOUS WORK 48

• to determine key workload characteristics which are important for the configuration of a
RAID controller.

This approach allowed the simulator to be run several times using a scaled workload with, for
instance. different arrival rates while doing processor intensive work, such as cache modelling,
only once in the analyzer rather than every time in the simulator. In the third step different
RAID array controller configurations were simulated.

The raidSim analyzer had two ingenious ways, in particular, of dealing with the real trace data.
First of all it translated the location specific data in the trace to logical seek distances and then
to seek times to be used in the simulator.

For the second clever idea, raidSim did not simulate cache management during simulation but in
order to speed up the simulation, nsed the probability of a cache-hit calculated from the I/O-trace
for each of four cache configurations:

1. read cache only (a hit in either the NVRA~I or controller cache),

2. write hit in the RA~I cache (i.e., the same block was written before, but not yet destaged),

3. write hit in the NVRAM cache (i.e., the block is different but has not yet destaged),

4. hits in the read and and both write caches.

In addition, the analyzer generated hit ratios for the disk buffers from the I/O-trace with a
separate buffer hit ratio for each disk.

Ot her workload characteristics were request sizes which the workload synthesizer computed ran
domly from a distribution derived by the analyzer from the I/O-trace. Inter-arrival times were
assumed to be exponentially distributed at high arrival rates and the simulator allowed for vari
ations in the mean arrival rate derived by the analyzer over a \vindow of a fixed number of I/Os.
The controller processor time was accounted for in the simulation by specifying a MIPS rate and
the instruction path length for a read hit/miss and a write hit as well as a write de-stage. SCSI or
SSA interface overheads were fixed and taken from the corresponding standardization documents.

4.3.3 Pantheon

The Pantheon[WiI96] simulator was designed and built in the Storage Systems Program of the
Hewlett-Packard Computer Systems Laboratory in Palo Alto to support the rapid exploration of
design choices in storage systems and their components such as disks, tapes and array controllers.
It has been functional in some form or another since summer 1992.

The Pantheon simulator proper is constructed from a set of primitive simulation components
together with infrastructure to glue these together to configure and execute a simulation. A
Pantheon simulation is primarily driven by recorded disk-level I/O traces but it has a less well
used workload generator facility. The package includes a set of analysis tools that can summarize
the results of simulation l'llllS.

Pantheon's simulation modules are written in C++, compiled and linked together to make a
single Pantheon executable program. Using compiled building blocks of this form means that

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 4. PREVIOUS ,"VORK 49

simulations execute at full speed: the runtime cost of linking the components together is just a
C++ virtual function call. In addition, new components can be added, or existing ones extended,
to meet particular needs.

Considering that Pantheon was developed over a decade ago, it still uses an interpreted language,
Tel[Ous94], to control which simulation modules are to be instantiated, and how they should be
connected and parameterized. Since Tel is a full programming language, arbitrarily complicated
configuration decisions are possible: for example, it is possible to calculate how many disk drives
an array needs to accommodate its load as a function of its redundancy algorithms. rather than
having to pre-compute this. The net result is that Pantheon achieves both great configuration
flexibility and good execution-time performance.

Particularly instructive or interesting about Pantheon is the detailed way in which cache is mod
elled. Caches in Pantheon include support for a simple speed-matching pipeline (e.g., between
the DMA engine and a drive) or FIFO buffer, caches that can hold contiguous data or multiple,
separate items of data, multi-segment caches, and ones that have arbitrary replacement policies
like LRU.

A Cache is simply a virtual class that specifies the operations that can be clone on all the different
kinds of cache: adding and removing address-ranges, searching for data that overlap a given range,
and so on. In addition, there are producer-consumer semaphores, and flags indicating whether
a specific cache-data range holds dirty data that has yet to be written out, or if it is fixed in
memory and must not be selected for replacement.

The two basic ways in which Pantheon models the use of a cache are as:

1. speed-matching buffers between a producer and a consumer where the producer extends the
range, space, valid, and ready areas while the consumer shrinks them. Extensions occur at
the ends; i.e., the lengths increase, while shrinkage occurs at the beginning of the ranges,
by advancing the start address and adjusting the remaining lengths accordingly, or

2. buffer caches, that have long-term state. Here the typical mode of use is that the range and
space lengths are set equal when the cache-data range is created, and the valid and ready
lengths advance in lock-step. The start addresses of these elements never change: instead,
it is deleted when it is done with.

There are circumstances where a process thread needs to await some set of states across multiple
caches. For example, that one cache contains no dirty data that overlaps a given range, while
the other contains no fixed data ranges. Unfortunately, in the time required for the second set
of conditions to become true, the first set might have been invalidated. The cache modelling
functions address this by backtracking to re-establish earlier conditions if necessary.

Replacement and flush policies are modelled in Pantheon to decide what to do if space is required
in a cache, but there is none available. In this case, a replacement policy function decides which
existing cache data blocks to evict. If a replacement policy picks a dirty block to evict, it will
usually first have to be written out to a lower-level device. The flush policy modelled allows
additional blocks to be written out at the same and so on.

Further details are in the well-written summary [WiI96] about Pantheon.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHA.PTER -1. PREVIOUS WORK 50

Why use a tool?

In conclusion to this part it is probably wise to pause and ponder the role of modelling in the
development of a new RAID system. Whereas it is accepted wisdom that one needs a model of
some sort to verify certain aspects of what one is doing, a much more reliable, but less cost-efficient,
approach is to build a prototype of the planned system. Even when simulating the implementation
of a Hew redundancy coding technique, the detail which would have to be incorporated in a
simulator would almost require as much coding as building a prototype.

For instance, consider a large write operation in an existing RAID level 5 array which overwrites
data and parity with new information. The previous contents of the data and parity must be
stored in the log, to guarantee that each of these write operations is undo-able. Instead of just
overwriting each one, each disk operation must now read and write data and parity, doubling
the total workload of the disks and decreasing the response time and throughput of the system.
If a disk operation fails, then the saved state is restored: and, while the system restores state,
processing stops. \Vhereas the performance impact of this can be modelled to some degree of
confidence. one would have to build an implementation to be confident that one fully understands
all aspects of the proposed new technique. The raidSim tool discussed above was developed
for exactly this purpose, and ROSTI is intended to provide similar functionality with greater
ease-of-use and extensibility.

Univ
ers

ity
 of

 C
ap

e T
ow

n

Part II

Implementation

51

Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 5

Building the Simulator

The RAID Operations Simulator for Testing Implementations (ROSTI) forms the core of
this work. and its origins are covered in Section 5.1. ROSTI was designed to be an extensible, easy
to-use simulator that models the operation of a RAID Controller in an Enterprise Storage System
(ESS). This chapter outlines the development of ROSTI, from User Requirements Specification
(Section 5.3) through the Architecture (Section 5.4), Design (Section 5.5) and Implementation
(Section 5.6) phases. \Ye also address problems encountered during implementation (Section 5.7).

5.1 ROSTI and IBM

The ROSTI project originated as part of a Joint Research Agreement between the University
of Cape Town (UCT) and the IBM Research Lab in Zurich, Switzerland (ZRL). IBM Research
was interested in developing new RAID technologies to address the need for larger capacities,
which in turn require better protection methods. The Data I\"etwork Architecture (DNA) group
in the Department of Computer Science at UCT proposed a collaboration with ZRL, leveraging
its expertise in modelling and performance analysis to assist in this research. This collaboration
was formalised \vith a Joint Research Agreement (JRA) that was signed by the two institutions,
describing the areas of research and projects that would be jointly pursued.

ROSTI was proposed as one of the initial projects that formed part of this JRA. The aim of ROSTI
was envisioned to be a simulator that would enable IB~1 to verify and validate the analytical
models they were working with, as well as to compare and contrast with other simulation work they
were conducting. ROSTI would thus have to be: expressive, allowing many RAID architectures
to be simulated: extensible; and easy to use l .

Development of ROSTI was approached as a normal software engineering task. involving the
development of a simulator which is supported by configuration and analysis software modules.
As part of this focus, software engineering best practices were used where appropriate, and a
Release Schedule agreed upon that set clear milestones for delivery. This formal engineering
approach guided the development of ROSTI and simplified its implementation.

Given that ROSTI is intended to be modular and extensible, a Responsibilities Driven design

1 As the primary users would not be the developers

.'i2

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIMULATOR 53

approach was adopted [WBW89]. This approach concentmtes on segmenting a design into com
ponents with unique responsibilities. The contrasting Data Driven approach is inappropriate for
object orientated design, as it encourages tightly integrated designs, with overlapping responsi
bilities.

5.2 UML

The Unified Modelling Language (UML) [RJB99, BRJ99] is an open industry standard maintained
by the Object Management Group (OMG). UML is used to model application structure, behavior,
and architecture. UML consists of a number of different diagram types, each with a different use.
A good overview of the various diagrams may be found in [MiI03]. A brief synopsis of the article,
for diagrams utilised in the design of ROSTI, appears below.

1. Use Case Diagrams describe what a system does from the standpoint of an external
observer. The emphasis is on what a system does rather than how. Use case diagrams were
used to express the User Requirements obtained from ZRL (Section 5.3).

2. Activity Diagrams focns on the flow of activities involved in a single process. The activity
diagram shows how those activities depend on one another. Activity Diagrams werr used
to describe the function and operation of the RAID Controller within ROSTI (Section 5.3
(p.53)).

3. Class Diagrams give an overview of a system by showing its classes and the relationships
between them. Class diagrams are static - they display what interacts but not what happens
when they do interact. Class diagrams were used to model the basic components of ROSTI,
and the relationship between them (Section 5.5 (p. 70)).

4. Sequence Diagrams detail how operations are carried out - what messages are sent and
when. Sequence diagrams are organized according to time. The time progresses vertically,
and the objects involved in the operation are listed horizontally according to when they take
part in the message sequence. Sequence diagrams were used to model the message flows
between components (Section 5.5 (p. 70)); a very important part of the design of ROSTI.

ArgoUML2 is a widely used, open-source UML creation tool we chose to create these diagrams.
It is a simple tool to usc, but still sufficiently powerful to create all the relevant UML diagrams
we required.

5.3 User Requirements Specification

In any well-engineered software product, obtaining a complete list of user requirements is the first
step [WBW89]. It ensures that the expectations of the client are clearly understood by the devel
opers, and that these expectations are both realistic and feasible. Achieving these two aims helps
prevent common development problems, such as: Feature Creep, where the list of requirements
continually grows during development; changing requirements which extend development time:

20pen-source application, available at http: / / argouml. tigris. org/.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHA.PTER 5. BUILDING THE SIMULA.TOR 54

producing a product that does not meet user expectations; and having to continually refactor the
system becallse of a lack of direction or focus.

In designing ROSTI using Software Engineering best practices, we avoided the above pitfalls and
ensured that the capabilities of ROSTI were tightly constrained, thus ensuring that the software
could be completed in the time available. The User Requirements of IBM ZRL as the client hence
focused the rest of the design of ROSTI.

5.3.1 Types of Requirements

\Vhen discllssing requirements, it is important to differentiate between functional and non-functional
requirements, as outlined by Mylopoulos et. 0,1. [MCI\'92].

Functional Requirements:

Functional requirements capture the behavioural characteristics of a system. They define what
the s.vstem should be capahle of and arc usually the first, and only, requirements considered
during design. This is understandable, as they provide the most immediately useful information
for programmers implementing the software. This is particularly true for the simulation core of
ROSTL where correctness of operation is of primary importance.

The functional requirements for ROSTI helped to define the system model that was used, by fo
cusing the work on particular areas of interest within RAID systems in general. The requirements
also helped refine this model, by focusing on specific aspects of the operation of a RAID system.
This system model was then translated into a simulation implementation. Finally, the functional
requirements were aligned with the capabilities of the simulator for the research areas in which it
will be used.

Non-functional Requirements:

:\"on-Functional requirements generally relate to the software interface. They capture user expec
tations of mocles of interaction and workfiows. These are features of the system that are often
overlooked. but are frequently most important - a system that is hard to use is frustrating.

~Iodcs of interaction describe how the user expects to utilise the \'arious functions offered by the
system. as it is important that system functionality be easily accessible. \Vorkfiows describe how
variolls functions are used together. For instance, it might be normal to open a simulation, alter a
number of simulation parameters, and the execute the simulation. In such a case, it is important
that the user interface support such a scenario. without introducing unnecessary complications.

For ROSTI, the interface may be of little concern to specialist users, who are accustomed to
interacting with software via configuration files and other complicated methods. However, the
importance of a simple interface is underscored by our experience with DiskSim 3. As we found
with DiskSim, it is often necessary to use a simulator without being familiar with how it operates.
Possible reasons for this are:

3See Section 5.7.3 (p. 81)

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIMULATOR 55

1. Assessing the suitability of a simulator to a given task or research area, such as the initial

investigations conducted with DiskSim.

2. Determining the constraints and limitations of a particular simulator, as part of the abovc.

3. Delegating simulation tasks to an assistant, whose knowledge of a given simulator may not
be as complete.

4. Automating simulation execution, through the use of batch runs. An interface that supports

this natively, rather than require the use of external scripting facilities4 greatly simplifies

and expedites this process.

Our approach with ROSTI was an attempt at balancing powerful functionality with ease-of-use.

Thus, we have created an extensible backend simulator, using configuration files at; t;tipulated

by OMNet++\ wrapped within a Graphical Uscr Interface (GUI) that is both intuitive and

easy-to-use.

5.3.2 Obtaining User Requirements

Our approach in obtaining user requirements for ROSTI was based on that outlined by \Virfs

Brock and Wilkerson [WBW89]. We began with a series of informal discussions around the

subject area of RAID Storage Systems, and how best to assist IBM's research goals. This process

allowed us to gain an understanding of the work that was being undertaken, and determine that

developing a simulator was the best course of action.

The next step was a series of formal discussions, eliciting areas of interest to the researchers

and hence the functional requirements for the system. This was followed by formal feedback

sessions, presenting our initial high-level designs via diagrams and verbal explanations. This

was an iterative process, intended to refine requirements, and identify differences between user

expectations and our understanding of their requirements.

An important part of this process was functionality walkthroughs, where particular parts of the

system model were discussed in depth. For example, the operation of the RAID Controller was

analysed by discussing each step required to satisfy any I/O Request. These walkthroughs \vere

fairly technical in nature, as they formed the basis for the simulation model and approach adopted.

Discussions on interface requirements were also conducted to establish what was required. Restric
tions imposed by OMNet++ initially limited the scope of these requirements to manual editing
of configuration files. However, these requirements were supplemented with user feedback during
testing of the simulator, at which point common usage patterns could be established. These
patterns helped determine the focus of the GUI simulator interface, discussed in Chapter 6.

As part of the formal design process we adopted, it was necessary to transform the user require

ments we obtained into a formal representation, from which lower level design documents could

draw. As stated previously, UML was chosen as the formal language of choice. The following

sections provide formal representations of both the F\mctional and Interface (Non-Functional)

Requirements.

4Such as Bash, a common command line interface to the GNU /Linllx operating system.
5See Section 3.5.3 (p. 37)

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIMULATOR 56

5.3.3 Non-Functional Requirements Specification

An owrarching consideration for ROSTI was that we foresaw it being used as a simulation en
viroument by people who had not necessarily designed the simulation. Configuring a simulation,
executing and examining the output should therefore not require detailed knowledge of the sim
ulation being performed. Further, the design of ROSTI supports common patterns of usage for
simulation environments. Figure 19 illustrates the interactions between a user and ROSTI, and
the likely sequencing of these interactions. This dictated the design and relationship of the user
interface components of ROSTI, in order to more closely model the users' likely usage patterns.

(LAUNCH

ROSTI

• Set up Storage
~

Set up Parameter - Configuration values ,
Execute

Simulation ,
Peruse Output

Figure 19: Collaboration Diagram illustrating typical usage patterns of the ROSTI system.

The actual actions that can be performed in ROSTI by a user are illustrated in Figure 20. These
actions relate to interacting with a particular simulation model, and as such are differentiated
into three categories, each relating to a particular aspect of the simulation model.

/ Specify Component> __ -I

Choose Subsystems for AnalysIs

Specify POints of Failure

Specify Connections

Execute Single Run
<...:.include» ---

Run In Parallel
SpeCify Simulation Run

Includ >

Execute Multiple Runs Specify Confidence Levels

Figure 20: Use Case Diagram illustrating user requirements of simulator interface.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIMULATOR 57

Specify Configuration

Configuring the simulation involves:

• Choosing the components used in the simulation model (disks, controllers, caches, etc.) and
setting the parameters for each component.

• Specifying the connections between these components (IDE, SCSI, SATA, etc.) and setting
applicable parameters for these connections.

• Choosing a subset of components to fail during simulation execution and configuring the
timing and nature of these failures.

• Identifying and specifying particular sub-systems and components that will generate output
for use in analysis.

A particular configuration identifies a unique instance of the simulation model, thus specifying a
configuration equates to choosing a model to simulate. In ROSTI this choice can be made from
a set of pre-defined configurations (by loading a saved configuration), or by allowing the user to
create a new configuration that is subsequently used. This flexibility allows ROSTI to be used
effectively by both novice and experienced users.

Specify Workload

Once the simulation model instance has been configured, it is necessary to specify the workload
that will exercise the model. This workload specification will vary depending on the whether the
workload is trace-driven or synthetic. In the former case, one need only specify an appropriate
trace file, while the latter requires that a number of parameters governing the workload be appro
priately set. Both actions were sufficiently similar to configuration of the simulation model that
these two use cases could be integrated into a single user interface.

Specify Simulation Run

Having configured both the simulation model and the workload it is presented with, it is then
necessary for the user to specify how the simulation model will be executed. If a single simulation
run is required, the user must decide if the run should be in debug mode (with a graphics
visualisation of the simulation operation) or possibly executed in parallel over multiple machines.
If multiple simulation runs are required (for statistical error analysis), the user should be able to
specify a required confidence level for which statistics will be calculated.

Analysing Results

Whereas configuration and execution of a simulation model occur before results are generated,
analysis of these results can naturally only occur after results are available. Analysis of simulation
results thus forms a separate set of use cases, as illustrated in Figure 2l. User interaction with an
analysis tool typically consists of selecting a set of sub-systems of interest, such as the set of disks

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHA.PTER 5. BUILDING THE SIMULA.TOR 58

Select independent variables and range

0----1

t
Select Sub-systems Select dependent variables and range

ROSTI User

Select output medium I format

Figure 21: Use Case Diagram illustrating user requirements of analysis tool interface.

mapped to a given logical volume, and then performing some form of analysis on the outputs from
this set. Typical tasks are: selecting a subset of independent parameters defining some aspect
of the sub-system (such as the chosen RAID level); then selecting a subset of dependent statis
tical outputs (such as the response time for serving I/O requests); and then selecting an output
medium and format for this comparison (such as plotting a graph of independent parameters
versus dependent outputs).

5.3.4 Functionality Requirements Specification

The functional requirements for ROSTI refer primarily to the manner in which RAID operations
are performed. Specifically, since ROSTI is a RAID Operations Simulator, it was necessary to
identify the common RAID operations that can be performed. and formalise the steps involved
in their execution. \Ye consider here the general case of a RAID-like operation being performed
on an array of disks, taking into account the effect of parity on both the operations and error
recm·ery6. This generic approach allowed us to design the high-level structure of ROSTI without
being tied to the specifics related to a given RAID level.

Normal Mode Read

A :\ol'lnal .'-lode Read operation refers to the case where the RAID Controller receives an I/O
request to read data while the array is in Korrnal ~Iode (no disks have failed). The steps involved
in fulfilling this request are illustrated in Figure 22. If the request maps to unprotected storage
(such as RAID 0), the data is simply read frolll disk. However if the request maps to a RAID
protected set of disks, it is first necessary to examine the RAID level cache to determine which
portions of the requested data is available there. All data that does not exist in the cache must
be read from disk and the cache appropriately updated with these. The final result is then
reconstructed (to account for striping across disks) and returned to the requesting host.

Normal Mode Write

A :\ormal .'-lode \\'rite operation refers to the case where the RAID Controller receives an I/O
request to write data while the array is in Normal Mode (no disks have failed). The steps involved

GThe specific steps involved for each of the supported RAID levels in ROSTI can be found in Section 8.3 (p. 97)

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIMULATOR 59

[Array Cache Hit]

[Array Cache Full Hit]

[Array Cae e Partial Hit]

Figure 22: Activity Diagram illustrating actions to be performed during a Normal Mode Read.

in fulfilling this request are illustrated in Figure 23. If the request maps to unprotected storage
(such as RAID 0), the data is simply written to disk. If the request maps to a RAID protected set
of disks, the parity must be recalculated and the cache updated with the new data (dependent on
the cache policy). For the parity calculation, if an entire stripe is being written then all necessary
data is available to calculate parity so no reads from disk are required. If less than a full stripe
is written, the missing data to recalculate parity must be read from disk. Once parity has been

recalculated, the new data and parity can then be written to disk.

Degraded Mode Read

A Degraded Mode Read operation refers to an I/O request to read data while the array is in
Degraded Mode (at least one disk has failed). The steps required to fulfill this request are
illustrated in Figure 24. If the request maps to unprotected storage, the data is read ane! returned
if all required strips are available. If any of the required strips have failed, the request rdurns an
error. If the request maps to a RAID protected set of disks, the request can be treated as a Normal
Mode Read if either only parity or unaffected data is missing. If data strips are unavailable, the
RAID cache must first be checked for any of the requested data. Data not present in the cache
must then be read from disk or reconstructed as appropriate 7 . Once all requested data has been
retrieved, the result can be returned to the requesting host.

7For details see Section 8.3.8 (p. 106)

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHA.PTER 5. BUILDING THE SIMULATOR 60

Figure 23: Activity Diagram illustrating actions to be performed during a Normal Mode Write.

Degraded Mode Write

A Degraded },lode Write operation refers to an I/O request to write data while the array is
in Degraded :'Iode (at least one disk has failed). The steps required to fulfill this request are
illustrated in Figure 25. If the request maps to unprotected storage, the request returns an error
since it is not possible to write all tIl(' provided data. If the request maps to a RAID protected set
of disks. the request can be treated as a Normal Mode \Vrite if all the requested data and parity
strips are available. If data strips are unavailable, the RAID cache must be updated with the
provided data. If all data strips in a stripe are being written, the parity can be directly computed.
If only part of a stripe is being written, the missing data strips must be reconstructed and used to
recalculate parity together with the provided data from the I/O request8 . Once parity has been
recalculated. the new data and parity can be written to the surviving disks in the array.

5.4 Architecture

In defining the architecture of ROSTI, we define a high-level model of the system, its components
and their interactions. This model was based upon the User Requirements elicited in Section 5.3
and guided the development phase. The construction of the model and the ways in which it can
be extended are covered in this section.

8For details see Section 8.3.9 (p. 108)

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIMULATOR

[Data elements
unavailable)

[All dato
available)

Read all elements
from disk

[Array Cache Partial Hit)

'---------~I.

[Only parity elements
unavailable)

Read all elements
from cache

Figure 24: Activity Diagram illustrating actions to be performed during a Degraded Mode Read.

[Partial Stnpe wrrte]

(Some required
elements unavailable]

[All required
elements available]

Figure 25: Activity Diagram illustrating actions to be performed during a Degraded Mode Write.

61

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIMULATOR

B
U
S

Figure 26: Model of an Enterprise Storage System, as used by ROSTI

5.4.1 Defining the System Architecture

62

Our approach to creating the architectural system model focused on decomposing the simulator
into a number of implementation independent components that function together to form the
system. Each component was defined by the responsibilities it had, and was defined to be as
generic as possible. This allows the user to create a desired configuration by composing a subset
of the available components into an appropriate system architecture. This approach allows for the
modular, flexible architecture that was one of the initial design goals. To illustrate the benefits
of such an architecture, consider a user who chooses to simulate a configuration where a RAID 5
array with a large capacity is presented with a heavy, sequential workload. Alternately they may
choose to simulate a RAID 6 array with limited capacity being presented with a light, random
workload. In either case, the architecture we develop here should be able to support the required
model.

\Ye first dewloped a system model to support the above. This model maps well onto the func
tiormlly independent components referenced above. The high-level system model is constrained
by our area of interest, namely Enterprise Storage Systems, and is presented in Section 5.4.2.
\Vithin this model, the functional requirements presented in 5.3.4 define areas of specific interest
within the simulator. This information leads to an expansion of the RAID Controller sub-model,
as presented in Section 5.4.3. Finally, we explore how the architecture we have developed can be
applied to increasingly more complex systems in Section 5.4.4.

5.4.2 Storage System Model

The model presented in Figure 26 is illustrative of a typical Storage System arrangement, as
initially presented by Patterson et. al. [PGK88] and later utilised by [HoI94, HGS93, UAMOl,
KS95. Pan95]. It is a relatively simple model, however it is capable of expressing fairly complex
architectures9 . Extending this model to represent Storage Area ~etworks (SA.:"J) [GMOO] or iSCSI
rSS:\I+] is also possible by changing the model used for the b11s.

The model consists of one or more I/O sources connected to a common bus. A number of Storage
Device are also attached to this bus, each providing independent data storage. Each Storage
Device is a self-contained entity, and may represent a physical disk drive or a RAID Storage
device, as illustrated in Figure 27. The functions of each of these sub-models is covered in the
following sections.

9SCC Section 5.4.4 (p. 68)

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIMULATOR 63

I/0 source

An I/O source is an abstraction of a device which utilises the secondary storage provided by
a Storage System. A common example of such a device would be a computer or workstation
accessing a shared disk or, in our case, a Storage System (see below).

An I/O source is responsible for generating a stream of requests for submission to any of the
available Storage Systems. The nature of these requests determine the workload submitted to
the system. For example, a source could generate a stream of requests that accessed a sequential
range of Logical Block Addresses (LBAs) to provide a sequential workload. Alternately, a source
could replay a previously recorded trace of disk activity to simulate a particular real-world system
of interest.

The I/O source is also responsible for accepting responses to these requests. These responses typ
ically provide a response time for the requested operation, which can then be used to characterise

the performance of the system.

Storage Device

The Storage Device is an abstraction of a physical device that provides secondary storage. A
Storage Device can present multiple logical volumes to the connected I/O sources. Examples of
Storage Devices are a simple disk drive or a RAID Array. In either case, a storage device must
provide a range of Logical Block Addresses (LBAs) which can be used to access stored data.
Additionally, it must accept I/O Requests for data, where each request is characterised by:

• LBA: The address of the data.

• Size: The amount of data requested.

• Operation: Determines whether the request is to read (fetch) or write (store) the specified
data.

Given a request with the above information, any Storage Device must provide a response that
contains the time taken to perform the requested operation. This time is determined by the

internal simulation of processing overhead, which might encompass: the time required to locate
the data; the time required to transfer the data; the time required to process the data and calculate
protection information; and the time required to recover lost data.

RAID Storage Device

A RAID Storage Device is a specific type of Storage Device that provides the RAID functionality
within our model. It comprises a RAID Controller connected to a common bus, to which is
connected a number of Physical Storage Devices (see below). A RAID Storage Device has the
same responsibilities as a generic Storage Device, and hence must accept the same requests, and
provide the appropriate responses.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIMULATOR

RAID Controller

RAID Storage Device

B
U
S

Figure 27: Model of RAID Storage, as used by ROSTI

64

The RAID Controller provides the RAID functions within a RAID Storage Device. It is respon

sible for intercepting and processing requests from I/O sources. issuing appropriate commands
to the attached Storage Devices (which are usually Physical Storage Devices), and returning a
response to the appropriate host. A more detailed model of this appears in Section 5.4.3 (p. 64).

Physical Storage Device

A Physical Storage Device is a specific type of Storage Device that represents a commodity hard
disk drive. It is responsible for modelling such a device, using an approach similar to that outlined
by Ruemmler et. al. [RW94].

Bus

The bus is an abstraction for the interconnection between devices. It may represent: a physical
bus. such as SCSI: a device interface, such as IDE; or a communication channeL such as a network
for iSCSI. In each case. this component is responsible for modelling the specifics of the exchange
of data between two devices connected to this bus. These specifics may include delays due to
transmission. cOlltention. bandwidth limitations. data loss or other appropriate factors. Since the
bus is lllodelled independently, this allows the accuracy of the model used to be changed without
affecting other components. Thus, it is possible to use a bus with an underlying network model
to simulate the operation of an iSCSI RAID array.

5.4.3 RAID Controller Model

Common implementations of RAID Controllers vary from software based schemes (Linux Soft
ware RAID [Bro05]) through hybrid schemes (Intel RAIDIOS Scheme [Poo02]) to pure hardware
implementations (IB~f Shark [IBM05]). It is necessary to develop a generic model of the op
eration of the RAID Controller which captures its core functionality to describe this range of

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIMULATOR 65

RAID Controller
r ""

Logical
~

RAID
~ Caching ~

Read
Mapping Coding Data
(f\'1;lppcr) ((ode r) ~ (C;)che) ~ (C)iSpdlC1)cr)

i + +
Receive

Write

f--+ Data ~ Return
Request

h'r)

'-..

Figure 28: Model of the operation of a RAID Controller. Each step is labelled according to its function, and

the name of the associated component appears in brackets.

schemes. The model we developed appears in Figure 28. It covers each of the necessary steps
in satisfying an I/O Request to a RAID array 10, as well as illustrating the logical progression
between steps. As such it is representative of the logical operation of any controller. rather than
the physical implementation of a particular controller. This model was developed by synthesising
the common features of the functional requirements presented in Figures 22 through 25. Each of
these operations (Normal/Degraded Read/Write) thus map well onto the resultant model.

As outlined in Section 2.2.4 (p. 8), there are numerous ways of placing data on disk for a given
RAID level. Given this, it is useful to separate the mapping of data to disk and the RAID
functions performed on the data. This allows for various mapping schemes to be used with a
given coding scheme - for example, using RAID 5 coding with a normal rotated parity layout,
or with a distributed parity layout. This feature is evident in the model in the usc of separate
mapping and coding steps. An explanation of each of the individual steps follows.

Receive Request

When an I/O Request is received, the RAID Controller must interpret the request to establish
what is required. It should also check that the request is valid, and that the requested data is
available in the array.

Logical Mapping (Mapper)

Once a request has been received and interpreted, the first step in satisfying that request is
locating the data on disk. The layout of data on disk is established by the user when the array is
initially configured. As such, we assume that this layout is fixed for the duration of simulation.
Possible layouts are determined by the chosen RAID level and the parity location scheme, such
as Fixed Position Parity (RAID 4), Rotated Parity (RAID 5) or Distributed Parity (see 2.2.4).

The chosen layout determines mapping of the logical address (LBA) referenced by the source
to the actual logical address of the requested data on disk. The logical mapping step uses the
predetermined layout information to create a mapping between the stripes, strips and chunks
layout that a RAID scheme refers to, and the physical location of these items on disk. Once

lOThese steps were established from the Function Requirements specification in Section 5.3.4 (p. 58).

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIMULATOR 66

this mapping has been established, operations and requests can be performed using only the
abstract notions of stripes, strips and chunks. The corresponding physical locations need only be
referenced when a chunk is read from or written to disk. This abstraction allows the Coding phase
of operation to proceed independently of the physical arrangement of data on disk. As already
mentioned, it also allows for various mapping schemes to be used with a given coding scheme.

Since the :dapper is aware of the physical layout of disks, it further follows that it should be
responsible for maintaining a list of unavailable chunks on each disk. These chunks may be
unavailable due to a complete disk failure or a disk strip failure 11 . During the Logical Mapping
step. it is then possible to specify whether the chunks that the requested data maps to are actually
available. This information is used in the RAID Coding step to determine an appropriate action
to reco\'er these lost chunks when the array is operating in degraded mode.

RAID Coding (Coder)

Once the logical mapping step is complete, the RAID Controller has the location of all requested
data and the associated parity. Using this information, it can then proceed to perform the relevant
RAID coding on the requested data. This coding always consists of reconstructing the requested
data from the various stripes, and may also consist of:

• Calculating new parity information for a write request in normal mode.

• Reconstructing lost data for a read request in degraded mode.

• Reconstructing lost data and calculating new parity information for a write request in
degraded mode.

In practice. the operations required are dependent on the particular coding scheme in use. For
instance. with RAID 5 coding:

• Calculating ~ew Parity involves computing the XOR of both old and new data.

• Reconstructing Lost Data involves computing the XOR of the parity information with the
surviving data to recover the lost data.

It is also the responsibility of the RAID Coding step to indicate which data is required to fulfill
the abo\'e requirements. Specifically, not all available data may be required, or it may be more
efficient to use cf'rtain combinations of data and parity information. This decision determines
what data needs to be fetched from disk, and can influence the performance of the system (see
8.3.3).

As evident m Figure 28, the RAID Coding step may be invoked more than once for a given
request. This occurs when fulfilling a request requires two or more phases, such as a write request
in a RAID 5 array which has an initial phase to read data, followed by a phase to write data.
Thus. the RAID Controller must maintain state information for each request regarding the phase
of execution it is in, and correctly process each phase of such requests.

tt A sequence of adjacent blocks Oil disk have become unreadable.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIMULATOR 67

Caching (Cache)

In real-world systems, the cache is often tightly integrated with the rest of the system, and may
serve a dual-purpose as a processing buffer for parity computations. By contrast, software RAID
implementations do not have a specific cache, relying instead on general system memory, which
is allocated as necessary. Each of these choices are implementation specific, and as such are
an impediment to generalisation. Restricting our cache model to one particular implementation
restricts the possible flexibility of the simulator.

With regards to caching, we determined the impact of different caching schemes on the entire
system. We preferred to be able to determine the best caching scheme for a given RAID level.
rather than how best to implement caching for a given RAID Controller. Since accessing cache
memory is three orders of magnitude faster than accessing disks 12 , it is more reasonable to model
the cache independently of other components and investigate other, more exact models where a
particular investigation requires it.

As such, our choice decoupled the cache from the operation of the controller, and placed it as
an intermediate step between processing and requesting data. This is conceptually how a cache
operates, and also allows for caching within a given RAID Controller to be optional. That is,
removing caching affects neither the operation nor the flow of execution within the controller.
This choice also allowed for different caching schemes to be used with a given controller. since the
cache implementation is independent of other components. For a complete explanation of how
ROSTI implements caching, see Section 8.4 (p. 111).

During operation, the Cache monitors communication between the Coder and Dispatcher. vYhen
the Cache detects a request to read a chunk of data, it checks whether the chunk exists in the
cache. If it does exist, the chunk is marked as read, and is not processed by the Dispatcher.
When the cache detects a request to write a chunk of data, it updates the value if it exists in
the cache. If it does not exist, the cache management algorithm 13 is used to destage sufficient
pages to create room for the new chunk, which is then added to the cache. These operations art'
transparent to the Coder and the Dispatcher.

Reading and Writing Data (Dispatcher)

This step encapsulates the interaction between the RAID Controller and attached Storage Devices,
and is conceptually performed by a Dispatcher. The Dispatcher is responsible for dispatching
I/O Requests to attached Storage Devices, and receiving and collating the associated responses.

When the RAID Controller needs to read or write data, it requests a block of chunks (Block) on
various attached devices. The Dispatcher then constructs appropriate I/O Requests for each of
these chunks. These requests are represented in exactly the same way as I/O Requests presented
to the RAID Controller, and are then dispatched to the appropriate devices.

The Dispatcher maintains a list of outstanding requests, as well as the associated Block. Each
such Block is associated with a particular I/O Request received by the RAID Controller. When
the Dispatcher receives a response from an attached device, it matches this response against those
that are outstanding. When all responses for a Block are received, the Dispatcher informs the

12RAM has average access speeds around IOns wherea~ the figure for disk drives is IOrns.
13See Section 2.5.1 (p. 18)

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHA.PTER 5. BUILDING THE SIMULA.TOR 68

Coder, which can then continue processing the data (in the case of multi-phase operations) or
send an I/O Response to the appropriate I/O source.

5.4.4 Representing Complex Systems

\Ye have thus far presented a relatively simple model of a RAID Storage System. While this is
representative of a large number of commercial products, there is still the need to provide for
more complex implementations. Obvious examples of this are RAID 1+0 and RAID 0+1. Both
of these implementations use two levels of RAID, with the upper levels using the lower levels as
single drives. Another notable example is the Shark Enterprise Storage Systems 14 , which uses
multiple underlying RAID arrays to provide a large pool of storage.

In attempting to represent the above architectures in ROSTI, we wish to reuse as much of the
m'ailable functionality as possible, so as to limit the amount of work required. One way of
achieving this exploits our choice to use the same representation for any I/O Request within our
model. As such, a request from a Source to a RAID Controller has exactly the same format as a
request from a RAID Controller to a disk. It is thus possible for one RAID Controller to submit
an I/O Request to a Storage Device, which happens to be another RAID Controller. This ability
allows us to represent complex, multi-level architectures such as RAID 1+0 and RAID 0+1, which
use the same communication paradigm. There are two equivalent, compatible methods we can use
to model these complex systems: creating model Hierarchies, which are similar to tree structures;
and using c'\esting, which is analogous to Recursion. These two approaches are outlined below.

Hierarchies

Figure 29: Example Hierarchical representation for a RAID 0+1 Storage System

As mentioned above, a Hierarchy is similar in concept to tree data structures. An example of a
hierarchical representation of a RAID 0+ 1 configuration appears in Figure 29. A Hierarchy is
a direct representation of the structure the system. It consists of a number of levels, with each
level directly controlling the operation of the level below. In the diagram, this amounts to a

14Details can be found at http://'01'01'01-03 . ibm. com/servers/storage/diskl essl

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIMULATOR 69

RAID 0 Controller issuing instructions to a number of RAID 1 Controllers, each of which issues
instructions to attached disk drives. An implicit, but not obvious, feature of this approach is that
each layer communicates only with the layers directly above and below it. This is similar to the
interaction between different layers of the TCP lIP stack.

Using Hierarchies has the important benefit of showing the entire system model in a single di
agram. Additionally, the connections between each module are explicitly shown. However, for
complex hierarchies, the model quickly grows large and llnwieldy. Additionally, because each con
nection must be explicitly created, it is not possible to exploit recurring patterns in the model.
For example, each RAID 1 controller, together with attached disks, is a sub-system that occurs 3
times within the model in Figure 29. However, it is not possibly to reuse this model, since each
such sub-system must be separately instantiated.

Nesting

An alternate approach to representing complex systems uses the idea of nesting. An example
of a Nested representation of the same RAID 0+1 configuration appears in Figure 30. Nesting
uses the same principles as recursion to reuse recurring portions of a model. The idea involves
encapsulating the relevant components into a sub-model, and then llsing the sub-model in place
of these components. This allows us to reuse the behaviour of the various components. vvithout
explicitly representing them.

As in the example figure, each level of complexity is represented by a separate sub-model. Each
sub-model typically consists of a RAID Controller and attached Storage Devices. As per the
System Model we have previously developed, each of these Storage Devices can either be a RAID
Storage Device, which is a nested sub-model, or a Physical Storage Device, which represents a
physical disk drive and terminates the recursion. We are thus able to reuse the concept of a RAID
1 Storage Device without having to explicitly represent all the relevant components.

This approach provides the extensibility that is a core design goal of ROSTI. It also models
real-world architectures, where layers of complexity are hidden behind standard interfaces. One
notable disadvantage of this approach is that for complex systems, the system model is not
immediately visible. However, every Nested system model can be converted to an equivalent
Hierarchical system model, while the reverse is not possible. Thus a Nested model can be expanded
to show the entire System Model at a glance.

(a) Top-level view
of the system

(b) View inside the RAID 0+ 1 array

RAID I Array

(c) View inside
the RAID 1 array

Figure 30: Example Nested representation for a RAID 0+1 Storage System

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHA.PTER 5. BUILDING THE SIMULA.TOR 70

5.5 Design and Implementation

In this section, we consider the implementation of our system architecture in OMNet++. We
discuss how best to utilise the features that OMNet++ provides in Section 5.5.1. These include:
encapsulating messages; visualising the execution of the simulation; promoting code re-use; and
collecting statistical data. Given the modular nature of both the system model and OMNet++
programming environment, it is also essential to define a communication protocol. This pro
tocol will govern communication between the various modules of the system and is covered in
Section 5.5.2.

5.5.1 Exploiting OMNet++ Facilities

Besides being a comprehensive event-driven simulation library, OMXet++ offers a number of
useful features that simplify the implementation of ROSTI. The most interesting of these features
are discussed below.

Encapsulating Messages

O:\I:\et++ is a simulation environment that uses messages to communicate between various mod
ules. Thus a RAID Controller would receive a message requesting a read operation. In processing
this request, the modules within the Controller15 will need to communicate via messages in order
to satisfy the request. We would like to associate all such communication with the associated I/O
request, so that the details of the request are always available without having to duplicate the

information. O:\II\et++ provides for this by allowing message encapsulation, which amounts to
attaching a secondary message to a primary message as an extra data element. It is thus pos
sible to layer messages, with the inner message representing the original request, and the outer
messages representing subsequent requests. This is illustrated in Figure 31.

BlockIO

ArrayMapping

IORequest

Figure 31: Encapsulation of messages, which maintains an association between related communication.

Visualising Simulation Execution

While able to run in a conventional command-line mode, O~L'\et++ also provides the ability to
run a simulation with a Graphical User Interface (GUI). This interface displays the individual
modules in the simulation, as well as the inter-connections between them. The user is able to
control the execution of the simulation, as well as observe the operation of the simulation. The
GUI is also useful for debugging and validating the simulation, as it shows the flow of messages

lSSee Section 5.4.3 (p. 64)

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIMULATOR 71

between modules, as well as allowing the user to inspect the internal state of the simulation.
One can thus visually trace the execution of a simulation, and stop the simulation should an
unexpected event occur. The state of the faulty module could then be inspected to determine the
cause of the error, and make appropriate changes to the code. OMNet++ also allows the user to
change the internal state of the simulation for testing purposes.

In order to accomplish the above, the simulator code must be slightly modified. OMi'\" et++
requires that all messages derive from a base cMessage class to support visualisation of these
messages. Rather than derive messages explicitly, however, OMNet++ provides a formal descrip
tion language for messages that is fairly similar to C++. These descriptions are then translated
into appropriate C++, which can be referenced and used in code. We have used this method for
all the messages used in ROSTI, allowing these messages to be animated and inspected within
the GUI. The definitions of a subset of the messages used in ROSTI appear in Appendix B: the
C++ convention of using / / to indicate comments is used in the examples.

It is necessary to use an OMNet++ specific data type. called cPar, to allow inspection of the
simulation state. This structure can hold data of any type, and any variables within code that
are declared to be of this type can be inspected and altered from the GUI. However, there are
overhead issues associated with this type 16 , so we have limited the number of these inspectable
values in ROSTI. However, they have still played an important role during the development of
ROSTI, specifically in debugging the simulator during development.

Collecting Statistical Data

Due to the fact that each module of ROSTI is designed to be an independent entity, it is necessary
to take a different approach to statistics collection. A centralised approach will not work, as there
are a myriad of possible configurations that can be simulated. At the same time, we do want all
statistics from a given simulation to be grouped together. Our approach places the responsihility
of statistics calculation on the individual modules. This is reasonable, since the implementor of
each module is best aware of the statistics of interest for that module. For instance, an I/O Source
that generates a workload from a trace file may be interested in reporting the average inter-arrival
time between requests, whereas that statistic is redundant for a source that generates a random
workload with a specified inter-arrival time between reqnests.

In order to group the statistics, we use the facility of Scalars and Vectors provided by O;";IKet++.
A Scalar is simply a statistic that is recorded at the end of a simulation execution, such as the
average response time of the system. A Vector represents a series of values recorded over the
duration of the simulation, such as the list of queueing times experienced by requests at a given
disk. In both cases, OMNet++ provides function calls that any module can use to store either a
Vector or Scalar value. These values from every module are then stored in common output files
(one for Vectors and another for Scalars). Thus, our distributed statistical calculation approach
still allows for centralised collection and analysis of this data.

16see Section 5.7.1 (p. 80)

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIMULATOR 72

Promoting Code Reuse

O:\I:\et++ is an inherently Object Orientated (00) software library, and as such it encourages
the reuse of code. Particularly, modules are objects \vhich can have any base class. We have used
this fact to extract the common operations from sets of related modules, and encapsulated this
within an abstract base class.

For instance, for any given I/O Source the steps involved in generating a request are the same, with
the exception of how the individual fields are filled. So we have a base class that handles creating
an IORequest message, dispatching that message, receiving the corresponding 10Response
message, and recording statistics related to that request. The task of determining the logical
yolume, LBA, size, and required operation is handled by subclasses. Adopting this approach
allows modules to concentrate on their particular function, by abstracting the majority of the
housekeeping t hat would otherwise be required.

5.5.2 Defining Communications Protocols

For our purposes, the communication we define consists of messages and interfaces. A message
represents a simplex communication between two modules. It may represent a request for the
recipient to perform some function, or a response to such a request. A message is defined by its
type and its format. The message type defines its specific function, such as a request for an I/O
operation. The message format contains the data necessary for the recipient module to perform
t he requested function. For an I/O operation, the message would contain the address and size of
the requested data and the required operation.

Eyery module in our system must implement at least one interface. An interface specifies a set of
request messages that the implementing module must accept and a corresponding set of messages
that it should generate in response to requests. The advantage this offers is that any module

that correctly implements a given interface can be used within the simulator without altering
other components. For example, to add an aclditional disk simulation component, one need only
develop a module that correctly implements the Storage Device interface. This module can then
be used in a simulated RAID array without altering the code for either the RAID Controller or

the I/O Source.

An additional benefit of using interfaces is that it supports the Kesting approach outlined in

Section 5.4.4 (p. 69). By ensuring that both RAID Controller and Disk Drive modules implement
the Storage Device interface, it is possible to seamlessly replace Disk Drives with a RAID Array.
This allows more complicated architectures to be simulated, such as the RAID 0+ 1 array in
Figure 30 (p. 69). The various interfaces used in ROSTI appear below. Each of the messages
referenced below were implemented as OMNet++ messages, the definitions of which appear in
Appendix B (p. 135).

I/O Source Interface

The I/O Source interface governs generating I/O Requests. This interface is typically implemented
by I/O Source modules. It is also implemented by RAID Controllers, in order to submit requests
to attached Storage Devices. This interface stipulates that the module must generate 10Request

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIMULATOR 73

messages, and accept corresponding IOResponse messages.

Storage Device Interface

The Storage Device interface is the corollary to the I/O Source Interface. It governs receiving and
satisfying I/O Requests. This interface is typically implemented by Physical Storage Devices, such
as disk drives. It is also implemented by RAID Controllers, in order to receive requests from I/O
Sources and other RAID Controllers, via the I/O Source Interface. This interface stipulates that
the implementing module must accept IORequest messages and respond with corresponding
IOResponse messages.

Mapper Interface

The Mapper Interface governs the operation of Mapper modules. It stipulates that implementing
modules must accept IORequest messages and generate a corresponding ArrayMapping mes
sage. This ArrayMapping message specifies the layout of requested data on disk, as well as the
availability of this data.

Coder Interface

The Coder Interface governs the operation of Coder Modules. It stipulates that implement
ing modules must accept ArrayMapping messages. In response, the modules must generate
BlockIO messages, which indicate what operations to perform on marked blocks within the
encapsulated ArrayMapping message. The ArrayMapping message is encapsulated in the
BlockIO message, as illustrated in Figure 31.

The Coder must also accept BlockIOResponse messages, indicating which of the requested op
erations on markecl chunks were successful. Using this information, the Coder can generate either
a IOResponse message, indicating whether the requested operation completed sllccessfully, or
another BlockIO message. For a RAID 5 write, this BlockIO would represent the request to
write new data and parity after having read old data and recomputed parity.

Cache Interface

The Cache Interface governs the operation of Cache Modules. It stipulates that modules using
it must accept BlockIO messages. The cache is responsible for examining the list of requested
chunks in the encapsulated ArrayMapping: if a read of the chunk is requested, the chunk should
be marked as such; if a write of the chunk is requested, the cache should update its internal state
appropriately. Once this processing is complete, the Cache should pass the modified message on
to the Dispatcher.

Implementing modules must also accept BlockIOResponse messages. The Cache must examine
the message and update its internal state whenever the message indicates that chunks have been
successfully read. Once this processing is complete, the Cache should pass the modified message
to the Coder.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIfdULATOR 74

5.6 Functionality

The System :,'lodel we have described for ROSTI allows for a number of different implementations
for each of the described components. This section outlines the range of components that have
thus far been implemented, as well as the extent of their functionality. For the purposes of
describing collected statistics in this section, the notation (:'1~'L,\1S) indicates that the Minimum,
:'Iaximum, :'Iean and Standard Deviation for the corresponding statistic have been calculated.

In addition, where the phrase "chosen distribution" appears, this indicates that any random
distribution from those listed in Table 6 (p. 138) can be used to describe the associated parameter.
The table also lists the required parameters for each distribution.

5.6.1 I/O Sources

As per our System ~lodel, I/O Sources generate a workload that is presented to Storage Devices in
the system. \Ye have implemented a number of Sources, some producing synthetic workloads and
others that use trace data from real systems. In each summary below, the nature of the generated
workload is described, as well as the configurable parameters that determine the output of the
source. All I/O Sources record the following statistics:

• .\"umber of Requests generated.

• System Response Time for completing requests (M:'\1:\lS).

• Inter-Arrival Time between requests (r..nvlr..IS).

Random Source

The Random Source generates I/O Requests, with the parameters given in Table 1 (p. 74).
Generated requests are distributed across all available Logical Volumes, and all distributions
are synthetic. The Random Source generates a purely synthetic workload, distributed across all
clYailable logical volumes. described by the parameters listed in Table 1 (p. 74).

Volume Logical Volume for which workload will be gen-
erated.

LBA Chosen distribution ranging from 0 to the maxi-
mum addressable LBA for the above logical vol-
ume.

Size The size of a given request, drawn from a chosen
distribution.

ReadRatio Read ratio, specifies what percentage of requests
should be reads.

Inter Arriva ITi me Time between generation of requests, drawn
from a chosen distribution.

Table 1: Configurable Parameters for the Random Source

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIMULATOR 75

Hotspot Source

This source is able to describe workloads similar to those in OLTP 17 systems, which consist

of mixed reads and writes to random locations on disk, as well as multiple requests to a small
number of locations that represent often used information. This source is similar to the Random
Source and uses the same parameters listed in Table 1 (p. 74). In addition, a number of Hotspots
can be chosen and the frequency with which requests will target one of these Hotspots can be
specified. The location of the hotspots are drawn from a uniform random distribution ranging
from 0 to the maximum addressable LBA. The additional configurable parameters are listed in

Table 2 (p. 75).

NumHotspots Specifies the number of hotspots to simulate.

HotspotFrequency The percentage of requests that should target
one of the specified hotspots.

Table 2: Configurable Parameters for the Hotspot Source

Sequential Source

The Sequential Source generates a purely synthetic workload covering one specified logical volume.
The workload is sequential, in that it starts at a specified LBA, and proceeds to issue requests of
varying sizes, with each subsequent request LBA starting at the end of the previous request. Each
request generated is of a single specified type, thus representing scientific computing workloads
which consist of large batches of reads or writes.

Volume Logical Volume for which workload will be gen-
erated.

LBA Starting LBA from which the workload will be-
gin.

Size The size of a given request, drawn from a chosen
distribution.

Opcode Decide whether workload will consist of reads or
writes.

Inter Arriva ITi me Time between generation of requests, drawn
from a chosen distribution.

NumRequests Number of requests in sequence to generate.

Table 3: Configurable Parameters for the Sequential Source

Trace Driven Sources

Trace Driven Sources encompass a number of types that share one common attribute: they all
generate workloads from files that record traces of I/O operations in real systems. Since their
operation is so similar, they all share a common implementation and are configured by a single
parameter, the name of the trace file. Each of these sources differ in the format of the trace files
they can read. Currently only the SPC Trace Source is supported.

17See Section 3.3.3 (p. 27)

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHA.PTER 5. BUILDING THE SIMULA.TOR 76

The SPC Trace Source reads input from a file in which the fields arc comma separated, and are

in the order and format specified by the SPC Benchmark. i.e.:

Volume, LBA, Size, Opcode, Timestamp

where

1. Volume, LBA and Size are integer values

2. Opcode is one of ('R', 'W')

3. Timestamp is a real value.

5.6.2 Disks

The implemented disk models represent the Physical Storage components in our System Model.

As will be mentioned in Section 5.7.2 (p. 80), these models have been adapted from freely available

source code. rather than attempting a full implementation.

All disk modules have the capability to fail at any time during the execution of the simulation.

\\'hen nm in CUI mode, ROSTI is interactive and the user can stop the simulation, fail a disk18 ,

then continue from where it was stopped. It is also possible to specify a ~vIean Time to Failure

(~ITTF). and each disk will then automatically fail at a time drawn from an exponential distri

bution, with mean specified by the MTTF.

The list of integrated disks is given below, and all disks record the following statistics:

• :\ulllber of Requests receieved

• Request Queueing Time (~1MMS)

• Request Service Time (MMMS)

• Inter-Arrival Time between requests (MMMS)

Simple Disk

This disk module simply serves incoming IOReq'Uests with an exponentially distributed response

tillle. The mean of this response time is draw from a chosen distribution.

This module integrates the functionality of the DiskSim simulator into RbsTI as a slave program.
This module allows the simulation of a single IBM18ES disk drive. The specifications for this

drive layout are separately specified, as per the DiskSim method, in a file called ibm18es. parv.

Any of the available DiskSim disks can be used by appropriately modifying this file.

lSThis failure can be initiated by the user by changing the Failed parameter of the relevant disk module.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIMULATOR 77

DiskSim_Array

This module extends the above by allowing the simulation of an array of 8, independent IBM18ES
drives. The specifications for this layout are contained in the file ibm.18es_o,Tmy. po,TV.

IBMu146Z10 Disk

This module incorporates work by Dr. Xiao-Yu Hu from IBM Research Ziirich. It specifics the
behaviour of an IBMu146Z10 3.5 inch SCSI 10k RPM hard disk drive using a mathematical model
of a disk drive adapted from the work of [RW94]. The three components of the drive response
time are modeled as follows:

Seek Time The seck time 8t is given by:

5t = { ~OO + 22.6jn + 0.1543l.n
500 + 45.3jn + 0.063095.n

n=O
read
write

(7)

where n represents the distance, in number of cylinders, between the current head position

and the target head position.

Rotational Delay The rotational delay Tt is given by:

TI. = St - (55, + cs, + hs,) (8)

where Tt is the rotational delay, ss, is the time to rotate to the start sector, CS, is the time
incurred due to a cylinder switch, hs, is the time incurred due to a head switch.

Transfer Time The transfer time it is given by:

it = st f + cs f + h5 f (9)

Notes regarding this implementation:

• The time to read sectors of the disk st f is calculated as a fraction of the total time
to read all sectors of the current track. Since sectors per track is zone dependent, the
case where a request crosses a zone boundary is not considered.

• In contrast to the rotation delay above, each cylinder switch C5 f and head switch hs f
incur a fixed delay.

• The number of cylinder switches 6.c is given by the end cylinder less the start cylinder.

• The number of head switches is given by the number of tracks 6.t accessed. This is
calculated in two ways:

end. track - start.track - 6.c
sectors + 1 - 6.c

sectors / track
i

All tracks in same zone

Tracks cross zones (10)

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIMULATOR 78

5.6.3 The RAID Controller

As outlined in Section 5.4.3 (p. 64), the function of the RAID Controller is performed by a number
of independent components. The combination of these components determines the functionality
provided by the Controller. \Ve therefore present here the implemented features by the associated
components.

The Mapper and Coder

The combination of a particular Mapper with a compatible coder module determines the RAID
functionality available. The functionality of the Mapper is determined by the types of codes it
supports. Our current implementation provides two mapping modules for Distance 219 and Dis
tance 320 codes. In addition, each Mapper version has support for SPIDRE, the RAID technology
developed by IB:-l described in Section 2.3.6 (p. 13). There is also a :-lapper provided for RAID
o mapping, which simply stripes data across disks.

Together ,vith these :-'iapper modules, we have implemented five Coding modules to perform the
various RAID functions. These modules implement: RAID 5; RAID 5 + SPIDRE; RAID 6;
RAID 6 + SPIDRE; RAID O. Each module is able to operate in normal or degraded mode.

In order to use a particular RAID level, it is necessary to combine the correct pair of Mapper and
Coder. The required combinations are illustrated in Table 4 (p. 78).

! RAID level Mapper Coder
! RAID 4 Distance 2 without Parity Rotation RAID 5

I RAID 5 Distance 2 RAID 5

i RAID 5 + SPIDRE Distance 2 RAID 5 + SPIDRE
II RAID 6 Distance 3 RAID 6

I RAID 6 + SPIDRE Distance 3 RAID 6 + SPIDRE

Table 4: The various RAID levels available in ROSTI, together with the required Mapper/Coder combinations.

lYCodes with 1 parity blocks per row, sllch as RAID 4, RAID 5.
2°Codes with 2 parity blocks per row, sllch as RAID 6, EvenOdd

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIMULATOR 79

Cache

The cache intercepts messages to the Dispatcher and handles them according to the required
operation.

• If it is a read operation, the cache contents arc checked to determine if the required data
can be found. If it is found, the data is returned, the cache page is updated with access
information, and the corresponding disk request is cancelled.

• If it is a write operation, the data is written into the cache. If the data is already in cache, the
value is updated. Access information for the cache page is updated and the corresponding
disk request is passed on for processing.

If the cache becomes full, space needs to be freed. Three policies have been implemented to handle
this21 :

• LRU: Each cache page possesses a timestamp, which indicates the time of the last access
to the corresponding data. When a page needs to he freed, the page with the oldest timf'
(the Least Recently Used page) is freed.

• LFU: Each cache pages additionally possesses a frequency counter, indicating thf' nmnber
of accesses to each page in the cache. The page with the smallest frequency COllnt (Least
Frequently Used) is freed, since it has been used the least of all pages in cache.

• ARC: An advanced caching algorithm developed by IBM. A detailed description can be
found in Section 2.5.1 (p. 20).

5.6.4 Interconnections

Interconnections arc represented in ROSTI using OMNet++ channels, which are queue-like mes
sage delivery mechanisms with the following properties:

• Propagation delay: The propagation delay models the latency involved in traversing a
connection. For most local I/O connections (SCSI, IDE, SATA, etc.), this value is negli
gible given the proximity of the physical disk drive to the RAID Controller. For remote
connections, such as iSCSI, this delay is noticeably longer as I/O requests must be routed
across an external network. For the purposes of ROSTI, which currently foc1lses 011 local
connections, this delay is set to a minimal value.

• Bit Error Rate: The prohability that a bit is corrupted during transmission. For modern
error-correcting I/O connections, this value is assumed to be o.

• Data Rate: The data rate models the time taken to transmit a message (or equivalently
an I/O request) across a connection. It is specified in bits/sec, and is equivalent to the
bandwidth of the corresponding connection. This is of importance when large requests are
transmitted, which cause corresponding transmission delays. For ROSTI, we have taken
the maximum theoretical bandwidth of each modern I/O connection.

21 For details see Section 2.5.1 (p. 18)

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIMULATOR 80

5.7 Implementation Issues

During the implementation of ROSTI, we encountered a number of difficulties: some were due to
limitations of the external software we used (Sections 5.7.1, 5.7.2 and 5.7.3); others to problems
encountered in fulfilling the user requirements (Sections 5.7.4, 5.7.5 and 5.7.6). These difficulties
and the corresponding solutions are discussed below.

5.7.1 Visualisation Inefficiencies

As mentioned in Section 5.5.1 (p. 70), OMNet++ provides a GUI that allows the user to inspect
the state of an executing simulation, which can provide a useful debugging aid. While developing
the cache simulation module, we attempted to use this ability to monitor the contents of the
cache during simulation execution. This would allow us to visually track the movement of pages
ill the cache in order to test whether the caching scheme in use was working correctly.

In order to achieve this, each page of the cache was represented as an object deriving from the
O'\[\"et--i--+- class cObject, and the cache itself served as a container for these objects. Doing this
caused O'\['\et++ to generate TCL/TK22 code that allowed the user to inspect the state of the
cache during simulation execution. Moreover, this state was dynamically updated as changes to
the cache occurred. As a debugging tool, this proved very useful, particularly in early stages of
implementation.

The inefficiency alluded to above was encountered once full simulation runs were attempted.
'Ye noticed that for small cache sizes with approximately 10 000 pages, enabling caching had a
minimal performance impact on the simulation execution time. However, as the cache size grew
the execution time increased almost linearly, while an implementation using normal C++ arrays
scaled significantly better23 . Operating under the assumption that the poor performance was due
to the TCL/TK code being generated for the GUI, we performed the same comparison test using
the command-line version of the simulator. Surprisingly, the results of this comparison showed
the same linear scaling for the visualised cache version.

Further investigation revealed that the TCL/TK generated code was executed irrespective of the
mode (GUI or command-line) the simulator was run in. Given this and the poor performance
of the cache with visualisation support, we were forced to utilise native C++ arrays and structs
to represent the state of the cache. This llleant that we were now unable to debug and test the
cache within the O'\II\et++ GUI. Given the important role of caching within our system model,
this presented a large problem. The solution we arrived at involved developing an external tool
to both test and validate the operation of the various caches we implemented. The details of this
tool arc covered in Section 8.4 (p. 111).

5.7.2 Scarcity of Simulated Disk Implementations

ROSTI is a simulation environment focused on RAID enabled storage systems. To that end, we
had previously decided to focus development effort on those aspects directly related to RAID

22Sce Section 3.5.:2 (p. 35)
23 Although associative caches cannot be directly represented in software, we used hash-tables and free page lists

to minimise the time searching the cache, hence a linear increase in execution time was unexpected.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIJHULATOR 81

(such as the controller and caching), and utilise external software models for the disk drives. Our
first choice was DiskSim24 , which is a well-tested, comprehensive disk simulator with a number of
available disk models. Unfortunately, we experienced a number of problems in trying to integrat.e
DiskSim with ROSTI25. In addition, the DIXTrac tool [SGOO], which generates th8 physical
parameters required to simulate a given disk drive to the DiskSim database, was unavailable. This
meant that the available disk models were all outdated26 , and newer drives could not be added.

The problem of outdated disk drive models was something we encountered on a number of oc
casions. Most disk models that are available as part of a simulation environment [eGHZ96a,
er90, Wi196] are all integrated into other simulation environments, and our experience with
DiskSim suggests that extracting these models would be equally difficult. The final problem we
encountered was that the source code for some disk models referenced in published papers was
unavailable due to commercial considerations [RW94, KTR94, ep90]. Thus, we were left with a
small number of disk models that can be simulated efficiently27. This shortcoming will hopefully
be addressed in future work with ROSTI.

5.7.3 Encapsulating DiskSim

As mentioned previously, the DiskSim environment provides a number of comprehensive disk
models that we wished to integrate with ROSTI. The source code for DiskSim is available under
an academic licence, allowing us to use it as a component of ROSTI. However, given that DiskSim
is a standalone simulation environment, we wished to extract just the disk models from the entire
simulator.

Decomposing DiskSim

This is where we encountered out first problem. DiskSim is a monolithic system, written primarily
in e, and as such is not well segmented into functional blocks. Moreover, the code is not well
commented, and no documentation exists for it. As such, interpreting the purpose of various
sections of code is difficult, and attempting to separate the system into independent components
is even more so. We did manage to locate the code directly related to disk simulation, but this only
made the tight integration of the system clearer, with explicit calls being made to core simulation
functionality as well as other simulated components. The scale of the problem is evident. in the
comments left by the current maintainer of the code, who professes to "not understand" certain

sections.

All the above meant that it was not possible to separate the disk model from DiskSim for use
in ROSTI. The alternate solution we eventually used was to run the full DiskSim simulation
environment as a slave process under ROSTI. This required that ROSTI manually advance the
DiskSim simulation time at a very fine interval. As one might expect, running a full simulation
environment under another has a very heavy impact on performance. This expectation was
realised when tests with ROSTI and DiskSim working together were run. In these tests, nOSTI
was an order of magnitude slower than using a simple analytical disk model.

24Details on DiskSim appear in Section 4.3.1 (p. 45)
25See Section 5.7.3 (p. 81)
26The newest model represented was from 1999.
27While the DiskSim models can he used, the limitations their llse imposes and the overhead involved makes it

unsuitable for large simulation studies.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIMULATOR 82

Our inyestigations rewaled that the overhead of running DiskSim as a slave was not totally to
blame. however. Equally problematic was that DiskSim required its internal time advanced in
such small intervals that for a simple I/O Request, upwards of 50 calls to DiskSim were required
for the request to complete. This in turn requires a similar number of calls to the OMNet++
backend to advance the ROSTI simulation time at similar intervals. The net effect is an overall
decrease in the performance of ROSTI.

Porting DiskSim to Windows

Another issue we encountered was that DiskSim is not cross-platform, while ROSTI is. Thus,
although DiskSim uses standard C and compiles under Unix platforms, it produces errors when
compiled under \Vindows. These compilation errors reference code deep within the simulation
core. and as such we have been unable to make the necessary changes. The overall result of this is
that while DiskSim can still be used under ROSTI, its use is discouraged and limited to operation
under Unix-based Systems.

5.7.4 Ensuring Optimality of Implementation

\Vhen processing a RAID request. there are a number of methods to fulfill that request. Although
each method may be semantically correct, each may access a different number of disks. Consider
the case of the small-write, as outlined by Courtright [Cou97]. This case occurs when a request
is receiwd to write a slllall number of blocks to disk, all of which are stored on a single disk
in the array. The correct method to process this request is illustrated in Figure 32, where the
corresponding old data from the disk is read together with the parity information. The new parity
is then calculated using these two pieces of information, and new parity and data are written back
to disk.

new data

XOR
Engine

-disk write
request

Figure 32: The small-write algorithm is used where a single disk in the array is written to.

An alternate method to process this request would read all old data (Dl ... D 3) from the disks,
together with old parity. ~ew parity information would then be calculated using the new data
(Do). remaining old data (Dl ... D3) and the old parity. The new data, remaining old data and
new parity would then all be written back to disk. Although this method is semantically correct,
it is obviously inefficient in terms of number of disk accesses when compared to the first method.

A subtler example of this issue is illustrated in Figure 33. For this case, the optimal method
is to read the remaining old data (D3) and parity, compute the new parity and then write the
new data (Do . .. D2) and parity to disk, as illustrated. However, it is also correct to read the
corresponding old data (Do ... D2) and parity. I\ew parity would then be computed using the

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIMULATOR 83

old data, new data and old parity. The new data and parity would then be written to disk. The
second approach is slightly more obvious, and though it produces the correct end result, it is
again inefficient in terms of number of disk accesses compared to the first method.

new data

new
data

new
data

new
data

XOR
Engine

r""Ii'-,----.--c-----'

L±J

-disk write

request

Figure 33: The reconstruct-write algorithm is used where more than half the disks in the array are being
written to. The strips that are not being overwritten are read from disk.

These examples illustrate that ensuring that the RAID Controller is performing operations both
correctly and efficiently can be problematic. This was a problem encountered during the imple
mentation of ROSTI, where the reconstruct-write algorithm was initially implemented using the
second method above. The problem was only detected some time after the initial implementation,
using the visualisation provided by the ROSTI GUI interface. This initial problem prompted an
investigation into the implementation of various other RAID operations, and more efficiency is
sues were found. In each case, although the implementation was correct in terms of the final state
of the array, the number of disk accesses required was suboptimal.

A systematic search for these types of problems requires a knowledge of all the possible error
cases. A request trace can be generated for each case that compares the actual disk accesses to
the expected accesses. This was done for ROSTI for each of the RAID 5 and RAID G Coder
implementations, and the appropriate cases fixed. The exact cases used are covered in Section 8.3
(p. 97).

However, this process had to be tailored for each scheme, and there still existed the possibility
of human error in ignoring certain cases to be tested for. This lack of a generic approach, and
the possibility for error, led to the formulation of a scheme for formalising the operation of the
RAID Controller. This scheme is outlined in Section A (p. 133), but has not been implemented
due to time constraints. Should it prove successfuL it would allow Cont.roller implement.ations
to be automatically verified for both correctness of operations and minimisation of required disk
accesses.

5.7.5 Storing Parameters with Associated Results

OMNet++ provides a centralised method for collecting statistical output in common files, using
the Scalars and Vectors facilities. Simulation configuration parameters are stored in a separate
file, however, using a different format to the output files. Keeping these files linked is problematic.
as is performing analyses on output statistics versus input parameters. The latter was an issue
encountered during the implementation of the Analysis tool for ROSTI28 .

Our solution stored all input parameters in the Scalars output file during initialisation. All

28See Chapter 7 (p. 91)

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 5. BUILDING THE SIMULATOR 84

parameters were prefixed with the tag parameter:, to ensure they were not confused with actual
statistical outputs. This approach ensured that related inputs and outputs were stored together,
and it also simplified analysis of dependent output statistics versus independent input parameters
in the Analysis tool.

5.7.6 Representing I/O Connections

:'Iodern I/O buses such as IDE, SATA and SCSI support multiple devices connected to a sin
gle bus . .:\etwork connected I/O, such as iSCSI and Fibre Channel (FC) allow even more con
nected devices, and also support complex routing of requests that is transparent to the underlying
hardware. Both types of interconnections support auto-detecting connected devices and indirect
addressing of these devices by number or address. For ROSTI, we would like to mirror this ca
pability and also account for the fact that the RAID Controller operation is independent of the
particulars of the underlying disk arrangement.

Om solution uses the idea of a bus manager which acts as a multiplexer/demultiplexer for requests
between connected devices. This bus manager functions similarly to a DNS server and router on
network. It allocates numeric identifiers to connected devices and routes I/O requests to the
correct recipients. This allows the RAID Controller to address disks by index and disks to treat
the RAID Controller as their sole host, which mirrors the way internal interconnects (IDE, SCSI)
work. This scheme is also easily extensible to mimic the operation of network-based interconnects
(iSCSL FC), given that the concept of a routing and addressing mechanism is already present.

5.7.7 Dynamic Module Detection

Part of the modular design of ROSTI creates the possibility that particular components of a given
simulation can be seamlessly replaced by equivalent components that still adhere to the same
interface29 . This enables inter-operation between disks and RAID Controllers, neither requiring
specific knowledge of the other, a principle similar to interface based software design.

Since all RAID Controllers and disks adhere to a common Storage Device Interface, it is
possible to treat them in an identical manner. Hence when a Storage Device is connected to a
bus. it is required to advertise itself and its capacity to the bus manager described above. When
all devices have registered, the bus manager assigns each device a unique ID that is used for
addressing devices on that bus.

The bus manager also informs all connected devices of the list of other connected devices on
that bus, which allows any device on that bus to transparently send requests to any other device
using only its ID. This also allows any RAID Controllers to dynamically determine the number
of available storage devices it can use for striping, as well as their capacities.

29See Section 5.5.2 (p. 72)

Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 6

Configuring the simulation

In ROSTI, as with most simulators, the largest part of user interaction with the simulator occnrs
during configuration: determining the component types required; describing the architecture to
be simulated; and setting appropriate input parameter values for the various components. This
chapter covers the steps we have taken to simplify these common t.asks.

6.1 Motivation

As discussed in Section 5.3 (p. 53), one of the central requirements of ROSTI was that it be easy
to use. This is particularly important given our experiences with similar simulators1, which have
all proved to exhibit a steep learning curve.

ROSTI offers a number of simulation options as well as a flexible system model, but to utilise
them effectively, one needs to be well versed with the system implementation. As discussed
in Section 5.3.1 (p. 54), there are a number of instances where using a simulator without such
experience is necessary. We developed a configuration interface to ROSTI (dubbed Configurator)
to address this need. This interface enables simple configuration and execution of simulations,

by:

• Allowing saving and loading of particular configurations, thus enabling sample configura
tions to be provided to illustrate how a particular architecture might be simulated.

• Providing meaningful descriptions of simulator parameters, thus ensuring thE' user is always
aware of what values are required, what restrictions are imposed. and what changes will be
made to the configuration.

• Constructing a GUI that refiects the way a simulation is configured, executed and then
analysed2 , thus creating an interface that is intuitive in its operation.

• Hiding the complexities of the simulator implementation behind a GUI frontend.

There are also additional reasons for developing this configuration GUI, namely:

[See Chapter 4 (p. 39)
2Section 7 (p. 91)

85

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 6. CONFIGURJNG THE SIMULATION 86

6.1.1 Aiding Architecture Description

Describing storage architectures requires knowledge of both O:\INet++ NED3 and the available
components in ROSTI. :tvlistakes can be made whilst creating this textual description, and creating
the required connections for large models can quickly become tedious. GNED is powerful tool that
ships with O:\INet++, allowing graphic manipulation of NED files. The tool is relatively simple
to use, however it requires an understanding of what the various components in a simulation
are and how they are intended to work together. It provides syntax checking of the generated
:\ED descriptions, but is unable to perform semantic checking on the specified architectures.
For complex architectures with many components, this semantic checking is a necessity. The
configuration interface to ROSTI provides this by using the system model we have defined and
imposing a set of restrictions on what can be described.

6.1.2 Automating Multiple Executions

For statistically meaningful results, it is necessary to execute a given simulation multiple times,
with varying random seeds. Doing this in OMNet++ requires multiple entries to be created in a
configuration file. but doing this manually is time consuming and error prone. :\1oreover, it is not
easily repeated for different configurations. By integrating this functionality into the configuration
interface, we are able to provide a simple, reusable method to automate this process.

6.1.3 Simulating Over Parameter Ranges

\Yhen conclucting simulation experiments, it is usual to investigate the behaviour of the system
oyer a range of input parameter values. For instance, one might be interested in the behaviour of
the system for request sizes in the range 4KB to 16KB. and cache sizes in the range 512KB to 2MB.
\Yith the configuration interface, we have provided a simple, extensible means of achieving this.
This makes it possible to run a simulation experiment across multiple ranges of input parameters,
with output from all executions stored in a common file. Performing such an experiment is thus
simplified.

6.2 Approach

Our approach to deyeloping the Configurator centred around three main aspects: the architectural
restrictions on the possible RAID architectures supported by the Configurator that were necessary
to make the task more manageable: the choice of O~VI:\et++ environment and feedback to present
to the user: and the provision of programming style variables to assist with conducting simulation
experiments oyer ranges of input parameters. These considerations are discussed in more detail
belO\v.

3 A language with syntax similar to C that describes the components in the system and the connections between
them.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 6. CONFIGURING THE SIMULATION 87

6.2.1 Setting Architectural Restrictions

Given the variety of architectures that can be specified using the system model we have defined, it
was necessary to limit the possible architectures that the Configurator would allow. In particular,
the recursive nature of some possible architectural descriptions proved problematic to cater for.
We have thus limited the scope of systems that can be configureu to those that fit the model
illustrated in Figure 34, which is derived from our original model.

B
U
5

B
U
5

Figure 34: Restricted system model used by the Configurator.

This modified model is somewhat simpler than the original, but is still sufficiently expressive to
allow many RAID configurations to be described. The obvious exception is complex systems with
multiple layers of RAID Controllers4 , however such architectures can still be configured using the
GNED tool.

6.2.2 Interacting with the Simulation

As covered in Section 3.5.3 (p. 37), OMNet++ offers two methods of monitoring the operation
of a simulation. Command line mode is a non-interactive, text-based interface that allows t.he
execution of batches of simulations from a single command. This mode also details the progress
of a simulation through various output messages. Given that our aim is simplification of usc,
most of this feedback is unnecessary for general usc, where the user is interested specifically
in the outcome of the simulation. This mode is thus ideally suited to the case where multiple
simulations must be run without user intervention. The feedback provided is filtered to provide
a progress bar to the user, indicating the number of outstanding simulation executions. This is
the default method used when a user chooses to execute a configuration using the Configurator.

6.2.3 Providing Parameter Variables

As stated above, simulating over parameter ranges is a common simulation activity. vVe have
introduced the idea of variables to the Configurator to support such simulations. In our context.
a variable consists of a finite set of typed values. Variables can be assigned to input parameters
with the same type. For each execution of a simulation, one member of this set is selected and the
associated input parameters arc given this value. For example, we might define a variable whose
values are {10, 20, 30, 40, 50}. If we assign this variable to the request size input parameter, the

4See Figure 30 (p. 69).

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 6, CONFIGURING THE Sg!ULATION

C<mfiglll'atol' will g.nna.te !i simulation executions, For each of these ~X{'('Htin)]', the rl~l'~"1 ,ize
wijj be a different value from the v",.iable set,

We l'a,-e implemenl.~d ~ cliff~rellt \'a,jabl<' 1)'1-, but more can easily be add!'d. These typc, are:

• 1m eger Hange: CivelL milLim lJm. m~ximHm awl 'tel' v"l HC', I.hi, '-ar]ablf. ,·,,,-e]·, all im~ger,

in the Sl't {i f Z: (min SiS max),i = min I j x step,j (Z},

• Double Range- As a bow. but minimum. ma."imum and , tel' are real values,

• Halio Range: Same a, Doubl~ !lange, but minimum = 0 and maximum = I.

0.3 i mplementation

The Conli!\mal ()] cl~""]'ibecl ab",-e wa, implem"nt~d in ('# using a tab based interfoce, as illt",
trated j" Fi!\lJre 35

-~-_ ""--,-
,_~~_,,,,,,,,,,,,,,,,,, ,,.~ .~ .. ,,,,,c....~

Fig ure 35: Sc r..,dlOt of th< Contl~u" t'" utility lor ROST I

G. 3. I The Choice Of C #

G# i, a ~licro",-,ft SIo:T lallguage that is id""lly 'H ifM (n rapid GUt d~,,"lOl'm~j]1 JI en!)() mp,,-"'''''
all extelLsin' visHal cn)]trol library. ,e, ",,,II '''' co«oplele AP I <1ocH«oe! daliOlL C.II larg~I." Ihe
11;(,1',,,,,,fl .l\'ET Fl-am~w()] k, a"d a, ,udJ 1 un, in a manag~d envmmmellt. In such an environment,

me«",!'y allc"'a(io" awl di'l'o"l.l i" aul.oma",'al l)' hfUHlle<1 b}' "garbage "oll~dor. whkh gl'ea.tly
l'"llJ"e, (he !"""ibiliUe, fot .. oe m"',)']elal.~d program <'''ot5 C#" n"tively ,upported by the
Visual SI]](lio 200:1 JOE all imeg , ... l CUI de\'elo!Jlneni em-iromnent (h"l is bette\, ",ited to

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 6, CQ,'iFlGURI,\'G THE SIMULAT!()S

Gn Rapid Application Dcwlopment (HAD,! I h~n Unix/C++ ,,It''Tlw\iw,, All (he above rcasons
",ake C# an ideallilllguaRe for the implelllf'lJl&lion of the ConJif(UT"t"r

The ennl\o;lll'~Unn of 0,,1" el + + _h'M·el ,imu\;tlio", is pri","rily accomplished t hro"p;h f'dil.ill!', lexl
Jih_ A GUI ennJiWln,j ion front-('wl is thn' only n('CCS,ary where the "-~,,,,'iM.ed ('ompl('xit.v nf th<o
text lilr' "Iiling is un,,","cptabl<' for Ill<' larget ueer We l",-"f' l,u,,(' Ihe po.,ition Ih"t. Unix/G:-lU
Linux 'oser, "", il.'<"urHxllo I", tC!'!Lni",,Jly knnw]c"lgeablc, !(inn I.hal. l.exl-hled KUling i, t h"
prc,ln",in"nt mean> "f "onligur"ti"n wilhin this OperatinR Sy'l~m,

In contra,t, l\licrOf'oft Windows moor., are accll,lomed I" G1JI ilJle .. "clio[l ,,·i(.h and "onliguration
of applic~tiom. As such, we h~ve as,,,mod Ihe COlJJi~llr"l.nf 1"""ld be of primary me to thi'
cl~,., nf ".'HS, Hr.,ll'il'ling I.he de,-eJopmenl pl"iJorm for the C"nlig"ralnr tn \Yindows is lhlL., a
rr"""",,,b",, el"ejsion, r.,pr~'i" llv given Ikl1 UL" _KIT Plalfnrrn is in the process of bein,o; POri-eel
to Lin"" vi" Ihe ,,[ono prnj''<Ct [<lIJ02[On"," "omplete, this should alkJW Ihe CnnJi~m"ln' to lw
"o)llpibl "nd "",~l "'s",lr.-,,,Iy nndc, Linnx

(;. :l.2 Allowing for Exumsibility

G;\-en l·h"l, HO~"TI is ~xl.~",ihle hy '"e''''' of adelil,io,,"1 m(xlnl"" it is "Iso ne",-""ary to provide
",,,n" rrw'Ch"ni"n to ,,,,tend the COll Jig>m.\tor tn "''<'matdy relled these Ri:'lsn eXl.~",inlJ' _ Thh"
"chi''"\'ed hy "'j)[e""ll\ing BOSTT mndnk,", C# <"I""", wi(.h Public Propert ies thal ,.~p,.~"",m
conlignrable a'pect, of the gi\'''n JHndulr' The"" Public Properti", an then ex~min".1 ~I !'Un_li"'"
by a P ropertyCrid control which display, all the Propcrlie, of a class ano allnw, I.h~ "",.r I.n
alter (.hem,

We h",e d",,,,,,n tn "se lh~ nOlion of (''iF- At t r ibnt e~ I.n ,I or~ oescdplio", o[",,(,) , P"b lic PH'l,erty
i n "", I~ ,.~onf(,idf' I h ~ Properly, II' hi" h ~lc,me., t ktl. l h,· C ii eb""", ,m' '''If-docnrrl''nting. We haw
"h" """d Cii b"", ,'J"c"", (.0 d""~Tmi".-· in whi ch "'<"lion of Ihe GUI ni)STI eOmjK'nents ,hould
"ppr.,u- . Th" COlJJiguu" ,lm- h I.h", exl,· ",;hl.-· hy implem(,,,jing '.' C# ,,1"", th"t d",iycs from (he
!.'omd b,,"," "],c" fm ,,"eh "doitKHwl nOSTJ m(xlnk

Repre",nting a Ri::1ST] module in ende for m" ,,-ilhin the Conligura(.or provides us "ilh the im
por(,ant ability to customise ho'O; propertie, are edited in the Pl'op"rtyCrid coni tol. Fm- ilJ,Ul.llce
w~ ,,"') prm-ide ~ drop-down liM where .,clC'Cting from a pn·-dehlJed IL,I, (Ji op l. ions ;, ,.,,<]ui,,·,L or
~ ,lide,,-cOlJt.rnl whe'" a lJlL"leric~1 \-~lll" in ~ d~JilJ .. d r~ngf' i, lJ"'"·",,,.,,-y_ Con,I,,.,,,ini,w m'" inpn!..
in thi> m,,"ner i, "ll ei''''"nti"1 p" .. 1 of min imi.,ing conlignr"tion errOTh_

(i :.\.3 F.xc("ut ing BOS' !'! ~s ,Ill F.xt('rn"l I'roc('ss

H()~"TI depend., ~xplidlly on lhe runlime a.nd execution elJ\'ironm~nl provio",J hy O"-lKe1.++_
ThH" is elll'r~mly 110 mppOl'l for exccul.inR (.he Ol>IKel+ - rulll.ime as ~ ehild pro('~" of a llolher
""plicalion. so hoslin!,; H.hST J under the Confip;mator i, nol p03'ihlc_ II i., I hill nKe&,~rl' 1. 0 rUlI
H()STI as a .,lave proce,.' of lhe ConJigurator, illing the process managemcnl mpahihtic, of Ihe
,KET l-l'am''',;ork.

Confip;,,"alion of l1i'lSTI from (,he Conligurator is acco",plished by writin,o; the appropri~(,e I."xl,
lile" to disk. which are subsequently parsed by Ri-jSTl, A more important consideraUon i, pre>
,;ding the nscr with a ,(."t1" iwl i,·"ti"n of tl", progre", of rrOSTI in ''''''<C''tillg the ,imulation_

Univ
ers

ity
 of

 C
ap

e T
ow

n

('IIAPTF.R 6 CW',FlGURISG "iII/:; 81MI ,'LATl()N 00

Th" r('qu in". focdback from H(lSTI w I,., t~iaY'''1 loack to the Confi!,;ur"tor, which i, "chip\c'<i
loy '"'<iin~'tin)!; and parsing th~ eOllsolr Olltplll n, I1,OSTI. TIOP C(~Lfi~,,'at<K then displays this

p">g'~"' status to 'hc llset,

Th~ ConJi~ n'-wn, a],,) prov id(". the ('apability to run H(lSTI in Oehllg mode. Thi,)Hexlp <ii,pi",",

" Gl'1 rppH,"""tation of the execution of a simniation. and alle"", ll'" u,," 1.0]Jam"" .i lllUlatiCtl,
('<iit s illlUl"tion propertics and altcr the ,imniaLion pxeenl.ion '1'(,,-,1 Thi s is '''I':"in "" 'OTJlplished
loy mnning the HOST ! deb.,g eXel",,"lole ", , .. "Iavp JH<X'C,,"

6,3.1 R emoviug DiskSim S"pport

An unfortunatr con""quence of f(~;],"mg <le\'('lnl~ll('''1. of ll OP Confiworator on thc lVindCM" 0lwr
atiug Syolem platfmm WI:<, U", f'Xdus ifH L nf Di,kSinl . u]J]Jort frOlll the Conligurator, A, outlined
in s..."inll ,,.',:l (p , bl), the Di.kSi'li supp ort within 1l('lSTI is limited to ex,'elltio" in U"jx

b".,,,1 pnvi rOfll"PIlI> meh as Cl\C,iLinux, !, WI:<, (1m, nL< l"""ihle '0 "'pport Di,kSi'li f,o", the
CfHLii l':uratOT

6,:1:> Partitiollillf\ Hf'Slllt"

I'he ,\nwysi, '001 d~_Cl'iI"' l in Cl",v!.e, 7 d(']J('n<i" on thc pmtitioning of simulation re,,,l(, , Thi.,

jJanitionin!,; , ('f('" ',0 "']Jaccltin8 th" reoults from indcpend~n' ,im"htion rlln" , w hi l, (," ill ~ro' LpiTI 8
1'~1"1.,,1 oul put ,e,,,it, which me med to calc"laTe nntplll ,I , .. li,l.i", lWer 'UL ""ti'e . illlUbtion "tud)'.
,\ " ill lUl"tion stooy eOIBL'ts of a "Hie, of ,.,,,,, 1"",,1 (N L "'i"8Ie oosc "miigmation,

For om I"'tpo""" a, 'U" r('f"," to a ,ingle simulatioll conJiglll'alion)HodiJi,,1 loy eil.l",r: d'"TI ~ iTl g

r[", \'alue of aTI inpllt J"lT"'lle<cr that is ,~prrsmted b)' a \'Il.l:i"blc', Or ('h"n ~ i"l(th(' se'Cd fo .. the
1'Il.lldmn nmHJx,r !',""er"lor. T he former ea"" allow, ".,iugle simllb tioll H"",,,I. ion to ,va,,, rHultiple
oimlll" I ion rlH" 0\'(" " WT!)!;e of parametcr value.' , T hc lat'~r ca,e allow.' a oj ,,!',Ic efHLfil':ur~l i(~ L t o he
"illLlljaJ " I rHultiV)" til li e, for ,he ealcular-icn of eonlidence int('n'ai.<. GOt h ("~",", , .. wi ('Ol II loinatiorn
I he,eo!, "r" "Lvvo'te<i and ('(~'1 oct Iy mal'ked as .,uch , thnil "lIov.-ing I he A" "I}"i, lld 10 ('on'eet Iy
p,u",-, Ihi' infor",ation,

We ha,'e eh,_n 1.0 ""IH.,."I" I h(' 'e"uit" in to individual ioidel's, w hieh are a.'>Siglli'd)Honol-<micali),
increa,ing lllHll h('" fo' ,,"do "i,,,,,lation stud, that i, eompl~ted, .<:,,,,h folde, COYH "i", th" input

contiglll'al.ion 'ex,-IiI"s W"l(" "t l,llo">ed on valueo iu th~ C# das""" The f~ltp"l. ,,,,,,,Iar ,ulll "(d.(~
Jil~, from the oinllll"tion st udy arc aloo 'Ioroo in ' his [older I.lm" c'ealin~" ('ll'a' "~",)(: i atio,,

belwl"" ,inlll)"tiOTI ('onfigura,icn and , ,,,,ult ', Ail wi,h all O.\II\-(, t++_I",,,,,,<I ,inluiatioTI ", c"('h
scalar IllId ,'eetOr ourpll' file ('(NLtains ,hc ,,,,,,ult., from a lI" mlw.r of "illLlllao;oll rOIl"

Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapte r 7

Analysing Simulation Results

7.1 J\.iotivatioll

Anal,..,,>; (If "])lui"i'Ol I n',,,i l." fnnm pan r,f , he "'''ge workHow [m BOSTJ, ,.., illll,nulod 1),

Fif',m e 19. AIl all"]}"' ;' tor,] t h at par"" tnc OULpnt 1'>"nit," of" ' imllht inn, and i, able (." gY"ph
rf.'l~l iOl" l~,tw('Pll t iw",' reill]I." _ i, w),w.blc in a nu''' '.",r of ",' I'nar i",:

• UetrnLLinir,g whether , ;"mlal,,,n n "'"ll. , an' ('ic"" to cXpcctn.tiU llS, "-, a firo! mti<'r ""'ahllrC
of Ihe vl<lid il.y of a ,imnl"l.inli me,,\"]

• Per [ormi ng mp id li 'I('_i nrl iIlfl r,f ,imlllat~lTl p'~·amc<.Cl'S by irMgral.i '* ' impie "" "In", witn
""nfig","iion ""el ('-,N'lll;" " , tel"_

• ,~~, i,t ing ll()\·iel' ",,'r, of ROSn when fin t, running ,i [lLlll l<i inr., A s implified ,\I1,lIy,i, V,,':

""o\lld i<Jt! in ,,,, dc, ,tanding I.nc initial si ULUlat ion r"'<u il,,; all d Ill<' ('/f,'c!' r,f changing \''''wn,
P'~ ameteTs,

GiVPll I h'''''' "'" "i,kr" tin n'i, 'W' have chmen t u denlop a lllir,i 'fl aJ da!.a l1l "rI ip"l"t inn (<)r,1 capable
uf grapilirlg , imnlat inn i"pnt p"ramet= '>gainst onl pUi. " '5nl L, for in i I ii<J "rlal,", i,_ 'T'hi, analys;"
I, d ie Imll!"r irlt "grat"u illto the cxistin~ ConfiglITftlul C IT] ir,l..,rl,, (:p_ I.in" prr,,,'nting a sing le

i" (.,'rl"o,, t il tiw ""'r 'fi,i, aid, interface cohel ellCY. jJruviding' a " in gk ('n" ,dent window fl Uflt

w il~' :i l n OSTI ,im" latin", C"rI be ('onfigl l) cd, executod ",,,I "",a l,\'_,,,1

7.2 U t ili:-,i n g the P artitioncd R csults

In ol'!ler to "irIl.iw 1)J'()(' """ing III "imniatlO" ontp"t. da,a, we nnw lewrag,,1 t ile parl,il. inning ci
,im"lation onlpul data pedr,rr fl ed by Ihe Cnr,lignml.« \Y" have "",,"ciatcd the nrAwn or a ,.e mll
H't with e,,,'n JlJftitioned data set , indic";,ing ~il"l , ail Ii", Ual.a lrom " " " lll ber of m m' wi lhin"
oilll;le ,imnlation st ndy' shu wd lw tl'1'al.p,1 ft, lelal ,,<1

j A "" " ~ "" l),\1 ~,,' q k"" i" d;"" '''; ~" """:u: io,, of t I" , im'JI"i--.,(l m""" ~;tb ~ p~tI , ;,'"b, "o" r, ; u," :,,"
'A ~roup "f "U(lO rcbtod b, ""_,m,n"" ,,_,, [;,,''''.'''''' ,,, wb, I, ,1;l\U ,,-,)difi,~t;('" '" ,-,-"~,, s..o Soxb", (;';\.1,

': p, 00) (c~ " m"~ ,:" . ;;.d d",,,rip:;,," "I h",,' run, .ro ~r""",,, jll',,, " , i,n"l" .ow ""J)'

!J I

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 7, M,"ALrSJNG 8HlIJLA.TION RESUl.TS

r,inl(thi' concopt ofresu!t ,ot". we ate able 1.0 dj'piay Ihe li,t of ~yailablc resuit ';<Ow (ami honce
,imulatioll smdi(!l; i tilat ate ayailab!e . S,.'i<" l.illl(a ... ·t from thi. li;t ~llow, v~riouo combination" of
statiSI.ies of illt e,'e,1 lobe ,'o[[qmmtivciy graphed and displayed w;'·hill tho G U I (')1\ il'Ollmelll, fl.,

outlilled below Tbe II,.. of r"'>'lLlt , .. ts i '''portallt ly onsures that remIts from unrelated simulatiOll
Slndie" witb p'XJ.,ibly wildly diffcrcnt configuratio"" are not accidolltly compared

7.3 Implementation

rhe Analysis tool)"", bc .. ,] impl""H'lll,,,1 in G#. as with the Configurator, The im r·rfa<.e jL;eli is

IJlm'j,hl '''' ~ ""'Hldary tab within ,he Conhgurator imerface, fl., illu.'I[al"~1 ilL Fi~llre ;j6 The
interface is automatically acr ivaled at. Ihe el~l of a .,'mlLlaliO IL 'Illdy c"(,<' lItion, T hi. further
w'"cntuat06 tho te>ol;, wle in 'he t.ypical lL'"",,''' "orHlow of nOSTT. Th .. tool lliCi Gnul'lot for
producillg graphs. and allow, for pio l U"I(bol h ,,","<lar and vodor results to \'arious output fmmals,

7.3.1 Using Gnul'lot for Graphi,,>;

C; nu]'!ol. b ~IL ove,,- ,O llrce, freely available', fully-fi'a[\lled gl'aph'"l(lLtilily U,aL i< widcly 1L"",,1
wil.b'" Ibc ",'ieuhfic research communit y, IL is capable of pr<."llldlL~· atim,'tive I(raph output s in
nUllLerorn formats and supporl< bol.h 21) ~"d 31) gra.phs, Gnnl'lot is oporated by means of texc
commands, and as such is nol imm"li"ldy ~pplk ~blc to our ne,'(k which scok to roduco analysis
"omplcxity for 'he (·nd nSel

GlluJ'lot io capable of acreptin~ bal cb".,; of (\)HLHLa"d, "-i~ text file,. alld it is thi> llllxle of int.er
a('(ion that we nsc !o generate om ~,.aph,. n.v ","'trlLdinK a "oJmnand file describing tho desired
~tavb ~"d p~"inK thil tile to Gnul'lOl a; a CO""ll~"d li"e parameter, we aro ablo to scallllossly
~e "e" ale~" oU!put graph thai can be disp.byed 1.0 Ihe lI'er. This pwccssing by Gnul'lot j" ac
"(H"pli,hed by running- it as a slave proc".~, lllHlc,· Ih" A"alY"i. GUI, When Gnu!'l", complet es
P'W'C"","g Ihe ba!<'n file, the slave pwce.ss e"its and Ih" GL'l i, "ble to n."tiuue operation, A
"tHLvl" Olllpllt remIt [wm this Pl"Otess is illu.,nale·d i" FiguT<' 37

'nownJo<.d~b l. a< h '''' / /.".,. ",.uplot info

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPfER /, .4.NALYSI!V(; SIAllJL4TJON JWSULTS

"

•

" , ,
j

0-

:L" i~ ..• •

!

The usc of a batch comm1l.lld fi]~ all",,,., " ' Lo specify Lhe uppe"run<:c OI ax)s label, "lJd mllRe"
M w,,]] AA tille, and Golom, ior Ihe Rmph l<'ge" d I" ",]dition, we prov ide the H5<'l' wilh" ", .. t

oi Mnlto], Lo c",,,,mi,e Lhc'S<.· r"Mm"" • wh,," " ,,')) 'tro] is changed, th~ bMrh Mnlnl""l ril"
is 1'>":'re",,,,] IH\d r~pr()(''''',,,,] bv (;lIlLPlm, Il"d I.l", 'C"Hlting i11WgC di,?layoo to the llSel Th i,

pwyicJe" Lhe u.,,'" wiLh Lhe ill",i(", or i''',erndi''ll wilh an ~Jnheddcd gm,llung ""'''p'''lJe"l, r,l,Ih!',
I]M" "," '",de pe",l!',, \ ,b .. ,-" [H(X,",,",'

The AlJ"ly,is I 001 Il l", "Il<N' '''\' '''R Ih!' bllt",h ,,'''''m'I1,d filc 10 di81, Since thi' fi]~ ,imply cOlJl ",i",
""er';", or ('" lIPlOl "", ,, nlll"'b. i" ,, '" n lx· ,un throug'h CnuPlot on a ""?,,,ale marhilJe (wi,hml
Tl.()STI im '''''lhl) t.o prod",'!, un idenli<:nl outp",t to the ,om"" graph, ~ I ore ir"IXH' L",lI l.lv_ il ullr",',

10., '" a re pr c~.'iM' ' ''"",onli""!.io,, or ,~ruph, by ;"""Tting l1101'e ad"1l.Ilced (;"",1'1'" com, ,, ",j(b wi!.hi"
Lhe rnmnl"lJd file

Th" UdWllCOJ gmphing capubiliticr of Cnul']ot also ..tl",,- I"r 'h" po,,-, ibiliIY Ihal the Anul"'is
\<x)] can he extendcd to handle 3D ?lot, wh~I~ 2 i11d~I*"denL "inlillutifH' input panllllcwrs arc
plotted against a ,ilJgle depelJdeli t Oll'p,l1

7.:1 . 2 P lotti,, !,: 01111'111 S calurs a g wusl InjJ11t Punulldcn

Scala, is Ol>. I ~et+~ t,~1"minology for ,ingle sr," "i,tb ''''-'''.' '' I!,d m'", d'e ('o',,,,;c of a sim(lc 8lln
'.l]ation rnn, Since both ilJ?Ht paramel>'1" ""d ompH!. ,.,Ilhr, UTi' wri tt,," to t hc 811111C fi]c, it- is

noc~3Sary ',a ditr~rent.iat e b etween Onr.P11L '0",1",', ""'] inilUt PUTU ,,, ,,t"'" by thc H,e oi a -·?aram
ej~l''' ?l'eb on th~ sllll.i,(.ic n"me, I'm-,ing the ,r"lur OlJ tp"t '!"II'R d, " nlcdlUni,m, ,,;.c:; of lbt
hox~", for ind~pC:11de111 in?',,!." "nd d~l*lJd>'''1 ol1li""I.., i, poplLlul.,-~1 ullow',,'g thc H"'C' to scloct
cOlllbinations of intcl'est W be graphed,

I'm , implicit\,. we h,,,,e l'",I,riGt>'(] Lhe n,,,,r', d,oi('C t.o u oill gk' iu put pummetcr _ c""-,,,s ,,~,h 2 or

morc indcJX'ndent ,'ariab]e, arc cover",] by th~ IldvlllJo",l Rmp)dng ,'upub il;"ic", l1lC'lItitllll,J ubo',c,
IVe "ll"",. Imy llUmber of OUlpU!. ,r"lllr, 10 1,,· ""k'(-Ic"] ,,-, dqw",l"nt- ,,,riables , however this may

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 7. ANALYSING SIMULATION RESULTS 94

cause problems where individual outputs cover widely different ranges. User discretion is required
in this case. as it may require axis ranges to be specified, or for separate graphs to be created for
each output scalar.

Once the user has selected the data to plotted, the batch command file is created with a legend
labeled with static names for each dependent statistic obtained from the scalar output file. The
axes are appropriately labeled using units drawn from the scalar output file. and the completed
command file is passed to GnuPlot for processing. The resultant image is then displayed to the
uscr.

7.3.3 Plotting Output Vectors

A vector is O:-'!:\et++ terminology for a series of individual data values captured throughout the
execution of a simulation nUl. Each data value is associated with the simulated time at which it
was measured. and output vectors thus have time as an implicit independent variable. Vectors
arc thus plotted identically to Scalars, with the vector data points as dependent values and the
associated simulation time as independent values. The same graph customisation options are
availabe for Vector plots, and multiple vectors can be plotted on the same graph.

Univ
ers

ity
 of

 C
ap

e T
ow

n

Part III

Testing

Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 8

Validating the Simulator

ROSTI consists of four main components that must each be validated: the Disk l\1odels (Sec
tion 8.1): the Data Sources (Section 8.2); the RAID Controller (Section 8.3); and the RAID Cache
(Section 8 . ..1). Each section presents the issnes relevant to validation, the approach adopted in
validating the component, and any specific details relevant to validation.

8.1 Validating the Disk Models

For this release of ROSTI we have chosen to focus on the operation and performance of the RAID
Controller, and its effect on the system as a whole. The simulation of the disk drives in the
system is not our main focus, and as such we have used other, specialised simulation modules
that focus on this area. In particular, we have used disk simulations from DiskSim and the IBM
Ziirich research group. In each case, we have assumed that the respective disk simulation has
been validated by its creators, as they have more experience with the intricacies of disk simulation
than we do.

As with the rest of the simulator, the disk modules are designed to be replaceable, so any of the
default disk models can be replaced with more accurate implementations as required.

8.2 Validating the Data Sources

ROSTI currently supports two types of data sources: trace-driven, which use logs of I/O requests
to replicate workloads from actual systems; and synthetic, which use mathematical models to
generate workloads that are similar to real-world workloads. Given their origin, trace-driven data
sonrces do not need validation as they represent a specific workload instance.

The synthetic data sources included with ROSTI generate \vorkloads that test various boundary
condition behaviours of a RAID Controller, They are represented by simple mathematical rela
tions, and frequently use random number generation to determine I/O field values. There are
thus two areas that must be validated:

• The above workloads exhibit particular features, used in testing boundary conditions of

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 8. VALIDATING THE SIMULATOR 97

a RAID Controller, that are represented by a set of mathematical relations. Given these
relations, it is necessary to validate that a given generated workload exhibits the expected
features and is statistically consistent with the mathematical model. A tool such as ESSWA
(Enterprise Storage System Workload Analyser [Sik06]) can be used to check this .

• The Random Number Generator (RNG) used by these data sources should be validated to
ensure that the random number sequences produced by a given seed are always identical,
and that these sequences are statistically equivalent to their respective distributions. The
RNG used in ROSTI is an implementation of the Mersenne Twister algorithm [:M:"J98a]
that ships as part of OMNet++ and has been extensively used in a number of simulation
studies based on the OMNet++ framework. As such, we have assumed that this RNG is
statistically correctly.

It is envisioned that future uses of ROSTI will utilise synthetic workloads generated by ESSWA.
a tool developed for analysing real-world trace files and generating representative synthetic work
loads that exhibit the same characteristics. This will provide ROSTI with a robust inpnt-data
generator for use in comprehensive stndies of RAID Controller behaviours.

8.3 Validating the RAID Controller

The RAID Controller is the core of ROSTI, but is also a simplified, synthesised model of the
behaviour of complex real-world implementations. Validation therefore centres on the fnnctional
behaviour of the controller, and the extent to which this behaviour matches the behaviour of
real-world systems. We specify a comprehensive set of test cases to test this, for each snpportecl
RAID level, that cover the full range of expected inputs. Each test case is then independently
validated, and if all test cases are passed then the controller is deemed to be valid for that RAID

level.

8.3.1 Approach

The work of Courtright [Cou97] presents a novel approach to verifying the correctness of RAID
Controller operations. As part of this approach, he defines a modelling notation using Directed
Acyclic Graphs (DAGs) that formalises the idea of a RAID Controller operation. Using this
notation, he presents several orthogonal operation types that cover the spectrum of possible
operations for a RAID Controller. Each operation type is constructed such that it minimises the
number of disk requests issued. This condition is important as disk requests are the dominant
time factor in fulfilling an I/O request.

Using these operation types, Courtright was able to construct a RAID simulator, RAIDframe
[CGHZ96a], that performed automatic recovery and rollback from errors during operations. using
the DAGs for each operation type. Since the correctness of the component DAGs are verifiable
using formal methods, it follows that the above RAID simulator is also verifiable.

The operation types outlined by Courtright are categorised according to several attributes:

• The failure mode the array is in, e.g. Normal, l-Disk failure. 2-Disk failure, etc:.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 8. VALIDATING THE SIAIULATOR 98

• The type of the I/O request associated with Controller operation, i.e. Read or Write.

• The size of the I/O request relative to the number of disks in the array.

Each operation type can be illustrated by a diagram such as Figure 38 (p. 99). In this diagram,
the cylinders represent strips in an array stripe, while the letters indicate the contents of that strip
and the subscript serves as an index. Hence Dl indicates a data strip with index 1, while P0123

indicates a parity strip protecting data strips 0 through 3. The arrows indicate the How of data
between the controller, the strips (and hence disks) and the XOR engine, which is responsible for
calculating the parity over a set of data strips.

Each arrow terminating on a strip indicates a write request issued to the disk, while arrows
originating from a strip indicate read requests to the associated disk. This convention then
naturally leads to a validation strategy for ROSTI that is agnostic of actual implementation
details. Consider the ROSTI RAID Controller to be a black box with I/O requests from data
sources as inputs and I/O requests to attached disks as output. Each possible input can be
classified as one of the allowed operation types, and the expected outputs determined from this.
If the actual I/O requests issued to disk match the expected requests for that input, then the test
is successful. Successfully repeating this procedure for a large number of inputs that all map to
a single operation type, we can validate the operation of the controller for that operation type.
This can then be applied to validate all operation types for a given RAID scheme.

8.3.2 Method

Although we have not adopted the DAG notion for ROSTI, we have used the operation types
outlined by Courtright to direct the validation of ROSTI. Specifically, we generate representative
workloads for each of the operation types, and then nm a number of simulations using these
workloads. For each run, we log all read and write requests submitted to each disk. By examining
t his log and comparing it with the expected set of disk requests for that operation type, we can
determine if the RAID Controller correctly processed the associated request.\Ve deem a request
to be correctly processed if the following fields are identical between expected and actual disk
requests:

• Request type (read/write)

• Request size (in bytes)

• Request LBA

In the following sections we present the various operation types for each supported RAID config
uration. Each operation type description is accompanied by a diagram, as described above, which
illustrates the expected outputs checked during validation.

8.3.3 RAID 5 - Normal Mode Operation Types

The following operation types all relate to operations submitted to a RAID-5 array running in
l\onnal mode (no disk failures). For the purpose of illustration, operation type diagrams are

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER. 8. VALIDATING THE SIMULATOR. 99

drawn for an array with 5 disks (4 data, 1 parity), but the rules defining the operation type can
be applied to arrays of any size.

Read

Read requests are the simplest operation type, as illustrated in Figure 38. All disks are available
in normal mode and no parity calculations are needed, thus the only consideration is the striping
of data across the disks.

tit
: I I
I I~.

~l1j8~~
XOR

Engine

Figure 38: Disk operations for a RAID 5 Read request in Normal Mode

Small Write

Small writes refer I/O requests whose size is less than half the stripe capacity of an array. For
example, the array in Figure 39 has 4 data strips in a stripe. Assuming a strip size of 16KB, the
stripe capacity is 64KB and hence a small write would be any request with a size less than 32KB.
In this situation, we are modifying less than half the disks in the array, so having to read the old
data from all disks to recompute parity is less than ideal. We can avoid this by using the fact
that:

=} Pold ® DOoiel = DOoid ® DOoid ® D1 (X) D2 ® D:l

= D1 ® D2 Q9 D3

(ll)

(12)

where P old is the old parity value and DOold the old value of Do before the write. This then
provides the following formula to calculate the new parity value to be written to disk:

(13)

Equation 13 then minimises the number of disk accesses required. as illustratrxl in Figure 39.
Hence, we now need only read the data from strips that are being modified to recalculate parity.

Large Write

Large writes are the complementary case to small writes, and refer to I/O requests whose size is
greater than half the stripe capacity but less than the full stripe capacity of an array. Referring
to the example above, a large write would be any request between 32KB and 64KB. In this case,

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHA.PTl:.'R 8. VALIDATING THE SIMULATOR

new data

XOR
Engine

-disk write
request

Figure 39: Disk operations for a RAID 5 Small Write request in Normal Mode

100

we have as input more than half the required data to calculate parity. vVhereas with the small
write it made sense to read only those data strips that were being modified, in this case we can
read only those data strips that are unaffected by the write. Combined with the data that is to be

written to the new disks, we can recalculate parity with far fewer disk accesses. This is illustrated
in Figure 40 and follows from the equation:

(14)

which effectively states that the new parity value is given by an exclusive-or of the newest values

for each data strip in that stripe.

new data

new
data

new
data

new
data

XOR -disk write
request

--

Figure 40: Disk operations for a RAID 5 Large Write request in Normal Mode

Full-Stripe Write

Full Stripe \\Tites refer to I/O requests whose sizes are exactly equal to the stripe capacity of the
arra~·. In other words, ewry data strip in a single stripe is modified by the request. In this case

it is unnecessary to read in any of the old data strips, as parity can be directly calculated from
the new data, as illustrated in Figure 41.

Cross-Stripe Write

The previous three write operation types may be considered atomic, in the sense that there is
no overlap between them. There are, however, various conditions in which an I/O request will
stretch across stripe boundaries as illustrated in Figure 42. The Cross-Stripe vVrite is a composite

operation type than encompasses the idea that a single I/O request may map to many operation
types on adjacent stripes.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 8. VALIDATING THE SI!v[ULATOR

new data

new
data

new
data

new
data

-disk write
request

Figure 41: Disk operations for a RAID 5 Full-Stripe Write request in Normal Mode

101

Since a Cross-Stripe write is composed of several atomic operation types, it follows that validating

each of the atomic operation types is equivalent to validating the composite operation type. A
potential problem with this approach is that the RAID Controller combines several small requests
to a given disk into one, large, continnous request. It is thus difficult to separate each request
into its original component requests. The solution to this involves combining the expected disk

requests for each operation type to create an expected composite disk reqnest for each clisk. This
composite request is then compared to the actual disk request issued by the RAID Controller -
if they match, then the Cross-Stripe write is deemed valid.

o D D D D P

D D D P D

2 D D P D D

3 D P D D D

4 P D D D D

Figure 42: Cross-Stripe Write example. For this write request, accessing stripe 1 is a Large write, stripe 2
is a Full-Stripe write and stripe 3 is a Small Write.

8.3.4 RAID 5 - Degraded Mode Operation Types

Degraded mode operation occurs when exactly one disk in the array has failed. Depending on

the location of the stripe containing the requested data in the array, the strip on the failed disk
may contain either data or parity. Each case (missing data or missing parity) must be handled
differently, and the number of required disk operations increases as more data is required to
reconstruct that which is missing.

Read with Parity Strip Missing

In this case, a read of data strips is requested from a stripe where the parity strip is missing.

Since all requested data is available, no data reconstruction is required. The operation can thus
continue exactly as it would for the Normal Mode Read case, as illustrated in Figure 43.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 8. VALIDATING THE SIMULATOR 102

Figure 43: Disk operations for a RAID 5 Read request in Degraded Mode with a Parity strip missing.

Read with Unaffected Data Strip Missing

In this case. a read of data strips is requested from a stripe where a data strip is missing. The
missing data strip has not been requested, however, and thus does not impact the operation.
This case is almost identical to the previous one, as all required data is present and no data
reconstruction is required.

r 1 1
i ' I ,'I, I "';

~0~§~
XOR

Engine

Figure 44: Disk operations for a RAID 5 Read request in Degraded Mode with an unaffected data strip
missing.

Read with Required Data Strip Missing

XOR f="'-'"--- Engine

~§§
Figure 45: Disk operations for a RAID 5 Read request in Degraded Mode with a Parity strip missing.

In this case, a read of data strips is requested from a stripe where a required data strip is missing.
Since the missing data is required, it is necessary to reconstruct it from the available data and
parity. This involves reading all remaining data strips and the associated parity strip, as illustrated
in Figure 45, and recalculating the missing data via the XOR engine using the relation:

(15)

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 8. VALIDATING THE SIMULATOR 103

Write with Parity Missing

In this case, a write to a set of data strips is requested, while the associated parity strip is missing.
Under normal mode, the par-ity mode would need to be updated as part of the write operation.
but here it can safely be ignored since it cannot be used later on to reconstruct data in the stripe.
The expected operations thus consist of a set of disk write requests for each of the modifiecl data
strips, as illustrated in Figure 46.

new data

new new
data data

XOR
Engine

-disk write
request

Figure 46: Disk operations for a RAID 5 Write request in Degraded Mode with a missing parity strip.

Write with Unaffected Data Strip Missing

In this case, a write to a set of data strips is requested, where an unaffected data strip is missing.
Although the missing data strip is not being modified, it can still be reconstructed from the parity
information available, and hence it is imperative that the parity be correctly updated with the
new data being written. This update proceeds exactly like the Small \Vrite case in :'-Jormal mode
(Figure 39), and requires that all the old values of modified strips be read from disk and passed
to the XOR engine together with the new data strips and the old parity value to calculate the
new parity value. This new parity is then written back to disk along with the new data strips, as
illustrated in Figure 47.

new data

'''''''''' .. ,-.-.-.-+-~-,.,.''''''''''---.'''~''''''''''' .. '''''. XOR

Engine

-disk write
request

"i*'o.-
new t ",!~

8 § ~"" ",,:,
Figure 47: Disk operations for a RAID 5 Write request in Degraded Mode with a missing unaffected data

strip.

Write with Required Data Strip Missing

In this case, a write to a set of data strips is requested, where one of the strips in the set
is unavailable. The missing data strip can be reconstructed from available parity information,
hence the write can be accomplished by updating the parity with all new data available. This

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 8. VALIDATING THE SIMULATOR

new data

I

fu::~

-disk write

request

--...

Figure 48: Disk operations for a RAID 5 Write request in Degraded Mode to a missing data strip.

104

updated parity is then written to disk along with the other modified data strips, as illustrated in
Figure 4~.

8.3.5 RAID 6 Preamble

As outlined in Section 2.3.5 (p. 12), RAID 6 is a dual-failure tolerant scheme that uses both
XOR parity (like RAID 5) and Reed-Solomon (RS) parity. Reed-Solomon parity is independent
from XOR parity and hence the combination of the two can be used to reconstruct any two data
strip failures within a single stripe. Further, one of the mathematical properties of Reed-Solomon
coding is that changes in RS parity can be calculated using only the changes in dependent data
strips, rather than requiring it be recalculated using all data strips in the stripe. This follows
from the matrix equation:

"
C; = Ci + L fi) (dj - d j) (16)

j=1

where fij are the elements of an n x m Vandermonde matrix: fi) =],-1, TIL is the number of data
disks in the array, and n is the number of parity disks. C; and Ci are, respectively, the new and
old value of the RS parity, and dj and dj respectively are the old and new values of the changed
data strips in the array. The above arithmetic is performed over a Galois Field. This equation
is effectiwly equivalent to the parity recalculation equation for RAID 5 arrays with XOR parity
(Equation 13).

The important point is that since parity updates can be done using only changed data, we can
simply modify the RAID 5 operation types fOl' use in RAID 6, whilst still minimising the number
of issued disk requests per I/O request. Further, these operation types can be composed using
Composite Stripe \"rites in exactly the same manner as the RAID 5 operation types.

8.3.6 RAID 6 - Normal Mode Operation Types

The following operation types all apply to a RAID 6 array operating in ~ormal Mode, with all
disks available. \Ve have presented the operation types using a canonical array representation
with 4 data disks. 1 XOR parity (P) disk and 1 RS parity (Q) disk, thus these operation types
can be equally well applied to larger arrays. or arrays with parity rotation enabled.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 8. VALIDATING THE SIMULATOR 105

Read

In this case, a read of a set of data strips is required from a single stripe. Since no parity updates
are required, it is only necessary to read the relevant data strips, as illustrated in Figure 49. The
individual data from each strip is then combined by the RAID Controller to reverse the effect of
data striping across the disks.

r

~
""'''''l('(

'Lt,:

,

Do

1

GJ~§~

XOR
Reed-

Solomon
Engine Engine

Figure 49: Disk operations for a RAID 6 Read request in Normal mode.

Small Write

This case applies when a request is received to write less than half the array stripe capacity, and
is almost identical to the Small Write for RAID 5, with the addition that the old and new data
values are also used to update the Reed-Solomon parity strip. As illustrated in Figure 50, both P
and Q parities are updated using the changes in data strips, rather than the entire stripe contents,
using Equations 13 and 16.

new data

new
data

-disk write

request

Figure 50: Disk operations for a RAID 6 Small Write request in Normal mode.

Large Write

This case applies when a request is received to write more than half the array stripe capacity, like
the RAID 5 Large Write case. Both P and Q parities are recalculated using the newest values for
each strip in the stripe, as illustrated in Figure 51.

Full-Stripe Write

This case applies when a request is received to write the entire array stripe capacity. Both P
and Q parities can be recalculated from the new data without requiring any reads from disk, as
illustrated in Figure 52.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 8. VALIDATING THE SIMULATOR

new data

new
data

-disk write
request

Figure 51: Disk operations for a RAID 6 Large Write request in Normal mode.

new data

new
data

new
data

new
data

-disk write

request

Figure 52: Disk operations for a RAID 6 Full-Stripe Write request in Normal mode.

8.3.7 RAID 6 - Degraded and Critical Mode Operation Types

106

A RAID 6 can be in either of two failure states: degraded mode where a single disk has failed, in
which case the array behaves almost exactly like a RAID 5 array in degraded mode; or critical
mode where two disks have failed, putting the array in a critical state from which no further
failures can be tolerated. As is the case with RAID 5 arrays, the strip on the failed disk may
contain either data or parity depending on the location of the stripe containing the requested
data in the array. Due to the similarity of RAID 6 degraded mode to RAID 5 degraded mode, the
operation types presented focus on critical mode with reference made to degraded mode where
the expected behaviour is not clear.

8.3.8 RAID 6 - Failure Mode Read Operation Types

For RAID 6 operations in a failed mode, a distinction is made between read and write operation
types. This section covers the read operation types encountered when in either degraded or critical
failure mode.

Read with No Reconstruction

This case applies when a request is received to read a set of strips that are all available in the
related stripe. Since no reconstruction is required, the strips can simply be read and returned.
This operation type is applicable to both degraded and critical failure modes, and is illustrated
in Figure 53.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER. 8. VALIDATING THE SIMULATOR. 107

Reed·
XOR Solomon

Engine Engine

Figure 53: Disk operations for a RAID 6 Read request in Degraded mode where no data reconstruction is

necessary.

Read with Single Reconstruction

This case applies when a request is received to read a set of strips where exactly one reqnested data
strip is unavailable in the related stripe. This missing data strip must be reconstructed by reading
the remaining data and parity strips, and using the appropriate recovery technique depending on
which parity is available, as either of the parity strips may be unavailable. It may also be the
case that both parity strips are available (and hence only a single data strip is missing), in which
case either parity may be used in reconstruction. This case is applicable to both degraded and
critical failure modes, and is illustrated in Figure 54.

--disk write
request

Figure 54: Disk operations for a RAID 6 Read request in Degraded mode where a single data reconstruction

is necessary.

Read with Double Reconstruction

This case applies when a request is received to read a set of strips where exactly two requested
data strips are unavailable in the related stripe. This implies that the array is in critical mode
and that both parity strips are available. The missing data must be reconstructed by reading
the remaining data strips and both parity strips in the stripe. The relationships between the
surviving data strips and each of the parity strips are linearly independent, hence the missing
strips can be reconstructed by solving a simple set of simultaneous equations or using Ganssian
Elimination on an appropriately constructed matrix, as presented by Plank [Plag7]. The required
disk requests to enable this are illustrated in Figure 55.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 8. VALIDATING THE SIAIULATOR

... .t
.,1 I

j I

-disk write

request

108

Figure 55: Disk operations for a RAID 6 read request in Degraded mode where a double reconstruction is

necessary.

8.3.9 RAID 6 - Failure Mode Write Operation Types

This section covers all write operation types in both degraded and failed modes. There are three
types of strip failures that can be experienced: data failures, where a modified data strip is
unavailable: parity failures where the P or Q parity for a given stripe is unavailable: or unaffected
failures. where an unmodified data strip is unavailable. In degraded mode, the operation types
are \'Cry similar to RAID 5, however there is significant overlap in how the various combinations
of these failure are handled in critical mode.

Write Operation Type Missing Strips

Write \Vith Only Missing Parity Strips 1 parity
2 parity

1 unaffected
Write With Missing Unaffected Strips 2 unaffected

1 unaffected, 1 parity

1 data
Write With Missing Data Strips 1 data, 1 parity

i 1 data, 1 unaffected ,

I 2 data

Table 5: The relation between failed strip types and the degraded write operation types.

In particular. each strip failure type adds an additional level of complexity to how a write operation
is handled. \Ye have therefore separated a failure mode write into three operation types, with
each type adding recovery support for one more strip failure types. Table 5 (p. 108) lists these
three operation types that we have derived together with the associated failure conditions. Each
operation type covers the expected requests for each associated failure condition.

Write with only Missing Parity Strips

This operation type deals only with write requests where one (degraded) or both (critical) parity
strips are unavailable. If one parity strip is available, it can be processed identically to a RAID 5
:\ormal :dode write 1

. If both parity strips are unavailable, the write can be successfully completed

1 A RAID 6 stripe with one failed parity strip is functionally equivalent to a RAID 5 stripe

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 8. VALIDATING THE SIMULATOR 109

by ignoring the failed parity strip(s) and writing the appropriate data strips, as illllstrated in
Figure 56.

new data

new
data

new

data
new

data

-disk write
request

Figure 56: Disk operations for a RAID 6 Write request in Critical mode with only parity strips missing.

Write with Missing Unaffected Strips

This operation type deals with write requests where unaffected and parity strips may be un
available. The common factor here is that at least 1 unaffected strip is missing. This presents

problems, since parity strips can not be recalculated using all available strip data (see RAID 5
Large Write). This implies that any parity strips must be updated llsing the same procednre as

for a RAID 6 Small Write, even though this doubles the number of disk reqllests required. Thus
the old value of all modified strips must be read and combined with the new data from the write

request and the current parity values to update the parity, which is then written back to disk
along with the new data.

new data -disk write
request

Figure 57: Disk operations for a RAID 6 Write request in Critical mode where one unaffected and one parity

strip are missing.

Fignre 57 illustrates this parity update for the case where one unaffected and one parity strip are
missing. The remaining Q parity strip is updated using the method above. Fignre 58 illustrates
the expected requests for the case with two missing unaffected strips. Here both P and Q parities
are updated using the Small Write algorithm. The case where one unaffected strip is missing is

handled identically.

Write with Missing Data Strips

This operation type allows for any combination of strip failure types, with the restriction that at
least one data strip has failed. In this case, it is not possible to read the old value corresponding

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 8. VALIDATING THE SIAfULATOR

new data

new
data

new

data

XOR
Engine

-disk write

llO

Figure 58: Disk operations for a RAID 6 Write request in Degraded mode where two unaffected strips are

missing.

to at least one new data strip, so updating parity using the Small ~Write method is not possible.
This implies that the new parity values must be reconstructed using all data strips in the array.

new data

new
data

~ _________ "~I XOR

~~-,--,-,--... Engine

f----... I newQ

~§"."

-disk write

request

Figure 59: Disk operations for a RAID 6 Write request in Critical mode where one data and one parity strip

are missing.

If no unaffected strips are missing, this is simple amI amounts to reading all unaffected strips and
performing the parity calculations on these together with the new data. The new data and parity
strips are then written back to disk. This is illustrated in Figure 59 (failed data and failed parity)

and Figure 60 (two failed data).

new data

'1 '1
~---~---------"~I----r-~~--~ .. XOR

r"
I I I . r---'"

~~ ~ LtJ::,
Engine

-disk write
request

Figure 60: Disk operations for a RAID 6 Write request in Degraded mode where two data strips are missing.

A problem arises if both a data and an unaffected strip arc missing. In this case, as previously,
all old data cannot be read, hence parity cannot be recalculated. This requires that the missing
unaffected data be reconstructed using one of the remaining parity strips, as is the case for a
RAID 6 Degraded Read. Once the missing ullaffected data is reconstructed, the parity strips can
be recalculated using all the data strips in the stripe, since they are now all available. The new
data and parity strips are then written back to disk.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 8. VALIDATING THE SIMULATOR

new data -disk write
request

111

Figure 61: Disk operations for a RAID 6 Write request in Degraded mode where a single reconstruction is

necessary.

8.4 Validating Cache Operation

Caching in ROSTI models the effect of a cache on the overall performance of the system, rather
than the actual physical implementation of such a cache. Thus the primary focus of validation of
ROSTI caching schemes is on the functional behaviour of such a cache, rather than the validity
of the design. In other words, although a ROSTI cache implementation may differ significantly
from real-world equivalent implementations, the effect of the cache on the operation of the system
will be the same. It is the correctness of this effect that we wish to validate.

8.4.1 Approach

Our validation of the cache implementation focuses on analysing functional behaviour of the cache,
rather than low-level implementation details. Changes in the state of the cache occur only when
an operation is executed, and hence a particular operation can he charact.erised in terms of t.he
expected changes in the cache state. As such, we can concentrate on examining the state of the
cache over the course of simulation and verifying t.hat a given operation produces the expected
change in the cache state.

There are two approaches to ensuring this correlation between cache operations and cache state
changes. The first is to implement some form of automated testing system which examines each
requested operation, determines the expected cache state change, and verifies that this change
occurs. The second is to visualise the state of the cache in a meaningful manner and using this
visualisation t.o manually check st.ate changes.

The automated t.esting system option works well in cases where there are large numbers of im
plementations to test, or if a particular implementation has numerous test cases. Such a system
would require some form of formal description technique to describe the expected state change
for a given operation. Validating a single operation would require different steps for each partic
ular cache policy being tested, due to the interdependency between the cache contents and the
associated status information. Finally, depending on the complexity of this testing system, it
may be necessary to validate the correctness of the testing tool itself. This complexity makes an
automated testing solution a poor fit for our testing requirements.

The latter option is well suited to small numbers of test cases, and is the approach we have
adopted. Visualising the cache state requires the cache implementation t.o be slightly modified
so as to output the cache state after each operation into a trace file. This output is then used as

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 8. VALIDATING THE SIMULATOR 112

input to a separate visualisation tool that was created, which shows the cache state before and
after each operation. This scheme is also extensible to incorporate automation, by feeding the
output cache state data to an automated validation tool. This output data can then be used to
manually determine the correctness of the cache operation for each of the boundary condition
test cases.

Generating these test cases is accomplished by specifying \vorkloads which exercise particular
boundary conditions. For each such workload, a list of expected state changes is described and
then manually compared to the visualised cache state. If all expected state changes are encoun
tereeL without side-effects, the associated test case is deemed to have been validated.

The normal operation of the cache is first validated by conducting a number of simulation runs,
and testing the constraints outlined in Section 8.4.2 (p. 112). Once this is accomplished, boundary
conditions for each cache policy can be validated. The boundary conditions vary dependent on
the cache policy in use, and are described in Section 8.4.3 (p. 114). Each boundary condition
tests a specific aspect of the cache operation where errors are most likely, since they are rarely
encountered.

The validation process is initially conducted on small cache sizes, as these are significantly more
manageable in terms of testing. Once the cache has been validated for these sizes, a small number
of larger cache sizes are validated to ensure correct operation. This approach is valid since the
caching policy and operation are independent of cache size, and as such an inductive approach to
validation works well.

Each cache implementation in ROSTI was subjected to the following validation procedures in
an iterative manner, as errors were discovered and subsequently corrected. The end result of
this process is a series of cache policy implementations that are functionally valid and behave as
expected.

8.4.2 Common Validation Scenarios

There are three specific scenarios within the operation of the cache that require individual vali
dation. Each scenario is associated with a specific subset of operations2

, and is common across
all caching schemes. In addition, each cache algorithm has a series of constraints that must also
be checked at varying points during execution. These details are listed in the individual cache
validation descriptions in Section 8.4.3 (p. 114).

Initialisation

This refers to the period between starting a simulation, when the cache is empty, and the cache
reaching a full state. During this period, any queries to the cache are automatically added (or
updated if they are already present), but no destaging occurs. The following conditions must be
checked in order to validate operation over this period:

• Each page in the cache is allocated as entries are added. such that there are no unused pages
remaining once the cache is listed as full.

2These operations and their relation to the function of the RAID Controller are referenced in Figures 22 to 25
011 Pages .59 to G 1

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 8. VALIDATING THE SIl\IULATOR 113

• Added entries should not overwrite or modify other entries present in the cache.

• The number of pages allocated is never greater than the maximum permitted by the con
figured cache size.

Cache Hit

A cache hit occurs when one or more of the requested blocks in a read request currently exist in the
cache. In this scenario, the following tasks must be performed, and hence tested for correctness:

• The associated IORequest should be modified so as to reflect that the associated disk blocks
are present in the cache (and hence need not be fetched from disk). Unrelated fields in the
IORequest should not be altered.

• The status information for the appropriate page should be correctly updated. This could
refer to the recency (LRU) or frequency (LFU) status of the related paRe, or it could H'quire
moving the page between various tables (ARC).

Cache Update

A cache update occurs if one or more of the requested blocks in a read request does not exist in
the cache (a Cache Miss) or if a write request is intercepted. In either case it will be nr:cessary to
create space in the cache to accommodate the new data blocks. This entails freeing, and possibly
destaging, pages from the cache and adding the new blocks to the cache. In this scenario it is
necessary to validate the following steps:

• The page that is freed should match the conditions imposed by the caching scheme, e.g. the
least-recently used page should be freed under LRU.

• If the dirty bit is set, indicating the cache page has been modified by a write operation, thc
contents of the freed page should be correctly destaged to disk.

• If the cache update is triggered by a write request:

If write-through caching is enabled, the new blocks should simultaneously be written
to disk.

If write-back caching is enabled, the dirty flag on the associated cache page should be
set.

• The status information for the freed page should be correctly reset. This prevents errors
where new page data is treated as old.

• The new data blocks should occupy the same cache location as the recently freed page. The
referenced cache location should be valid and within the size of the cache. This enforces a
locality constraint on the cache update operation.

• After each Cache Update operation, the cache should be full. This checks for lost or missing
pages and prevents the cache equivalent of memory leaks.

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 8. VALIDATING THE SIMULATOR 114

8.4.3 Cache Policy Dependent Validation

In addition to the general cache validation outlined above, it is necessary to perform cache policy
specific validation to account for the differences in operation between the policies. The steps
involved in this validation test various unique constraints and conditions associated with each
policy, as well as checking for certain expected behaviours at boundary conditions. The approach
taken for each implemented cache policy is outlined below.

LRU

The Least Recently Used (LRU) cache policy specifics that the cache page with the oldest times
tamp should be destaged. It therefore follows that the primary validation condition should check
that the pages freed satisfy this criteria. This is easily checked by examining the cache trace
output before and after each update to determine that the cache page freed was also the least
recently used.

The cache behaviour induced by this policy is best validated by examining three boundary condi
tions related to the provided workload. For each of these boundary conditions, a series of test I/O
workloads were prepared that provided the expected cache workload, and the actual cache be
hayiour \\"as compared to the expected one. The natnre of these workloads. and the corresponding
expected behaviour is detailed below:

• \Yhen provided with a sequential workload3 , we expect to observe cache cycling as no data
is repeatedly used. Specifically, we expect the position of the freed cache page to mimic
the workload: the index of the freed page increases sequentially with each new data block
request, cycling back to 0 once the end of the cache is reached.

• A repeating sequential workload is a sequential workload with a finite size that is repeated
several times. \Ve consider specifically a repeating sequential workload that requests exactly
as many disk blocks as there are pages in the cache. In this case, it is expected that after
the initialisation phase the cache contents will remain static, as no additional data is added
and hence no pages need be freed. This is the best-case scenario for the LRU scheme.

• A refinement of the previous boundary condition uses a repeating sequential workload with
length = cache size + 1. This is the worst-case scenario for the LRU scheme, in which the
cache is expected to continuously free pages as the frequently used set is just larger than
t he cache itself.

LFU

The Least Frequently Used (LFU) cache policy specifics that the cache page with the fewest
number of accesses should be destaged. As with LRU above, this constraint can be checked
by examining the cache trace output. In addition, the following boundary conditions and the
associated expected behaviours were tested:

3See Sequential Source in Section 5.6.1 (p. 75)

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 8. VALIDATING THE SIMULATOR 115

• When presented with a repeating sequential workload with length greater than the cache
size, an LFU cache is expected to exhibit LRU-like behaviour, as the least-recently used
block is also the least-frequently u3ed.

• When presented with a hotspot4 workload where the number of frequently used blocks is
less than half the cache size, the cache should contain a set of static pages (representing the
frequently used data) as well as a set of frequently freed pages (representing the randomly
accessed data). The persistence of the static pages in the cache is the validation criteria for
this boundary condition, which is the best-case scenario for LFU.

• The final boundary condition is characterised by an initial repeating sequential workload
consisting of cache size - I blocks. After several repetitions of this sequence, the workload
changes to a random one. This is the worst-case scenario for LFU, as the cache is initially
polluted by the frequently used blocks in the sequential workload, which persist in the cache
long after they have actually been used. In this case we expect to observe thrashing in the
cache, as the random workload has only I effective free page in which it can be cached.

ARC

The Adaptive Replacement Cache (ARC) policy attempts to adapt the caching scheme dynami
cally in order to make best use of both recency and frequency information. ARC has a number
of parameters that are tuned by the algorithm during execution. This added complexity implies
that the simple validation performed for the above two policies is insufficient in this case. A brief
overview of the ARC scheme is presented in 2.5.1.

We have developed a GUI validation tool (see Figure 62) to account for this that is able to parse
the cache trace output and visualise the state of the cache. It also monitors the ARC constraints
across cache state changes, and raises an alert when one is violated. This tool greatly simplified
the validation of the ARC scheme.

Given a cache size, C, the ARC constraints that must hold at all times al'f~:

• TI + T2 = C

• TI + T2 + BI + B2 = 2 x C

• TI ::; C, T2 ::; C, BI ::; C, B2 ::; C

• TI should converge to the target value targetTI

where TI, T2, BI, B2, and targetTI are the parameters dynamically tuned by the ARC schcme5 .

In addition to the above constraints, the following boundary conditions were tested:

• When presented with a purely sequential workload, we expected TI (the recency portion
of the cache) to expand to the entire cache size while T2 (the frequency portion) remains
empty. Further, the behaviour of TI is expected to be identical to the behaviour of an LRU
cache subjected to the same workload.

4See Hotspot SouTce in Section 5.6.1 (p. 75)
'"Sec Section 2.5.1 (p, 18) for details on the ARC scheme,

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTf.'R ii, .. :ALJDATING THI': SIHULA T()II llti

, ,
rr--r i' , ,

""
, , "'.
, , , '" , ,. r,-, - p---, ,,~ , ,'~ ,..--'-

~ , - , , , ,. , ,- ,,---, " , ,
'" "
i

• Wh~n l'r,","nl,ed with repe"ting sequenl ial workload with 1""l',th e'l11lJ 1.0 (he cache size, we
expecl T~ In fillnl' ,.",1 exp"nd 1.0 the enlirc size of Ihe u),ehe. while TI l'emains empty,
T hi , fnllow" ,~, AIl. C ,.1 tern pIS to maximise tile amnn ni of ("".l", fre'lnency infonnation u';N,

• When p",,,,,,,,1 ed wit.h Ihe ;;a,,,e houp01. workload &-.' LFU "hnv~ WE' e_~l' '''I, T2 1.0 e,xpand to

contailL cxactlv I h,,," hl(>(b ,'o""fuponcling t() hotspot" while Tl cyd,.., I.l mHlgh the l'andom

bl<>eks that al'e l'C<luc;;t..u

• Wlwn pl'e'enl.ecl with a random workload, W~ ex l'''-:! Tl ",,,I T2 to fluctuate as the worklnacl

('h a"K"", which i, in keeping ",;,h tile "daptiw "at.ur~ of Aile.

• Fin"lh', a Il.A1D w()l'kl()ad conoisting of ,mall ''''IUe"li",1 writ" 1"'ocluCfS an interc;li ng
h(·hay;o\j((;iWll that 'he wriws "-J'C omall, we expect a 'ingle P""lly bloc,k on diok to

he acee~",d for each wril.e 10 lIlli' "ripe_ At the oamc ,irne, t.h~ dat.a bled" me aceeosoo
comparat iwly in frequently_ Thu" W~ ex)",'1 T2 to hl! with the parity hh;b bei ng nlxlat ed ,
while '1'1 fills with the data bllxh that ,.r~ lwinl', wrillen,

Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 9

Test Case

An im~f!,",d p,m. <If I)w v"li<i"l.iull <lr !lOST] i","u\w-<I "1','Cirying "wi ~x,,,,,tinf!, ,imulations of

,i'''plifiK! RATD '}"'t~m'_ Tlw'~ ~Xlw'h"'"t' t'~plir",,,ll)1(' U'" of ROSTJ in "d"al ,imu]ation
,tudi,";, and tITIN that ROSTI a.df'q''"t~lr fulfi]l, \h~ requirements of it' intcTHlcd usc. rhe
rcs'.lito prC'S('ntoo below mc from one ,uci, experiment.

9.1 RArn Silllllia1,jotl l\lodel

T~ 'y,Lem we dll>"e t<! sbnula,~ comistr'. of ~ simple HAlO ""I "I' wiln a .,in!;lr cia," ""U",~_ on~

IlA In C<mt.tl)ll~,·. and sew,,,l d"k elt iw.', The c<!llfil\",ed Il iiST! .,i Tnubl ion "pp~"r' in Figure fi3.

Tlw RAID C:ontroll~r W"' ('onfif!,uwd to \"~,, Strip ,iz~ of u,jKB, with 1(; Chunks P"'"' Sr.rip.
r",ulting in a Chunk ,iz~ of 4KB. Th~ R,\ TD m;)dc heing oimulatexl Wail an independent l'at'~ rtlrl rt
of t he simuhtion that wa,; al\ema\,'(l l,..tw, ... n a ch',si" R,\ID 5 3Chem~ and RAU) t, wi, h Sl'lDIl E

l\u caching w," enabled fo, thi,; ~",perimcnt, and the HAID sy,tem W"-' only .,imulatrd inl\u'HI"1
mode operation [ie. no diok failure; we,e ,imuhtcd).

9.2 \Vorkload

Tk ",orkload for \hio ,imul"tion W'" pnwidPd by " ,inlde, synthetic, Handum Scml'ce' , cUllfigme<1
t" g('n~,.,'t~ 100 000 I/O r~"'''1 0, nniforml)' di4,ibuted """"" the a"ulabl~ w:ldr",wbl~ (li,k space.
with" m('"n ,iI(' rur ,·"rh "'<111«<1. or 4KR Tlw I/O '''''1m",\> w(,r(, "lt~rn"t<'{l betweea "aly reMs
"nd only w,iw, r"o' ~,,,,h ,imn\;<lio)) ,"n. Th(' t.iHl~ lw\;v""n r~q"M;t" (the]a\",-·,\",i,,11 Timel waz,

d,"w)) [">1,," :<<Hm"l di,i.tib11lioll wllh ~ nl~",n \'"I11~ t.h",- """'" ""oond independent pal'nmet~J'
or I he ,inmla"<!ll.

117

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHM'Tj,.'H 9 Tj,.'ST CASt:' 118

m
/ .~-

. J>j: .!ilI. .~.
"-~'''-.,. ""'< •. ~

@ -

.,

Figur<' G3, S,-,<<",hv t vi th e c"' , f;~,,,.d nOS T I t.,t modol p-ior to >< 01,,1 ".01 Tho wino'ow 00 th< top
I. ft r.,>I'O><o n" t~o top _I""c! RI\ID 'i".m mod " n, 'Mrdcw on tho! top right ,how, lil" <; ,_w
io>ide to. kAll) (co\'011 . , ccmpvre1t I h. wi"do-", ,t to< Iy,jtom "tho W)STI cootrol w:"oc.,.,
wh"h (hpl,)" st""I> ;nh""ro" "X' pro,;"", control ovor the ~rn" l .t;';'l -

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 9 TEST CA.SE 119

9.3 Disk Drives

Tluw dil[,·,..,ni: driv,' simnla",rs were usea in 'he ~xperimenl ', the de'ails 0-[whieh fire de""rib~d
i" 5.6.2 (1' . 76j, ",,,I ',h~ choice of drive nSKI w'"" '" I.hird ir)(lepe"(h·,,, p,.,."m.·t,·, of lilE' "mttl"tiotL

The <Iri,-,,, ",,,I w,'n" "" atTI", o[4 Si"'I)I~ Dbb. ",il,h " rr .. ,Ul "'.'1)0""· lim.· o[4",,; "" ,u",,,- of
4 IK\!nUtiZ10 drives: and a Di'"Sim ,UT,,,, of 4 lf1,\T l i\F,s drives

9.4 Definitions

• The I ntcr- Arrival 'J ;, tlC (T A 1') lwtwMOn ""qlle-cts i, th~ tiJ\l~ hetwO('n 'n,U'.<siw r"1nests
flrn\'ing a, ,he RAID Controller In this 'imulatio-n, it is aetC"\minoo by ar",wing nLines

from a "ormal <Iistrihnt ion with" 'jl<'('ifi"I _\Iean Hlh", (mlAT),

• Tk Res pollse 'rimc of th,· ,nl"lI[ill tlw av~,"g~ elap""IIiJll~ h('twO('n a rcqnest arriving

at th~ RAID Controller "",I tllE' ('-o"troll~r i.~" \ing " reply 1.0 tk data """H'C indicating
complct;o-n of the r~qllcst,

• T h,· "' I ill imllln n"'J")1'''' T in", ;,., lh~ lowed l~"'ibh' ""In,· of 11,,· ,,-,I,·m n "'pon'" I'ime,
,"HI i, (h·t~rmi,,,'(1 by th~ "bility of th~ ,imnl"t".1 "",,·m to pro('~.'<S" ""qn,,,t i" tk ahsence

of "'wnrc~ COllt '·lIt.io" or 'I""' •. ; "g dd,,},,_ I" I,h i' in,huH"., t.hi, tinw " prin,"rilv d~tcrminoo
by t.h~ ph"sic"1 Ii tllil,,,tio", o[Ih~ di,k d , iv,,,., i" th,· .,,-,h'm [n\\·V4]. ,~, t k ,.jf~(t of ('ommana

owrh~ad "nd proc~~,ini{ i., '~'.'nm,,1 to lw minim,lI_

9.5 Simulation Expectat.ion:;

For large m luC'S 01 mIAT . tk ,yst~m i, cffcctivdy proce6;ng iwlal"d r"<luesl" a"d tlll!' th~
mef<.'ttre<i He,pome Time of the eystem should he equ",1 to t,he Minirr"'''' R''''l~''k''· Tin", Thi,
val"" ie known fol' the Simple Di,k array, f<.' we haw specified", 4ms me",n R'''l~l''S'· TilllE· '" "
IHu·"mHel' lo Ih" diek model. Pal'ity hel w<'en this Sl)""ified param~t"r ,"1(1 t.h,· nw'",nn~1 Rc'ponse
Tirr,e lrom the "mnlalion is the firol validMion cl'il-erh v. ... rilE·(k,·d_

As the spCO:'ifiod mlAT approa('h", Ihe l\linimllln RClpon,e Tim~ of th~ sy,tem (Ihe salm"l,ioll

point), "''' eXjX'ct the mea,,,,,,1 R",pon'c Time to grow exponentially_ Thi3 follow3 3ince r"<luest.,
arc arri,-ing at the R;\ID Controller fa.,ler than they call be proc(,S3od. ana henc~ l!tteneing eff~d,
'tart to aominate t.h~ 1><:h""io"r of th~ s\"t~m_ 'I'his provi(b, th~ AACond mlidaticlll cri,eria [or the

,\'Stem, th~ valne of m!;\T "I which Ih,' m~"'''m.1 RcspoJ>"'C Time b~gi'" to gww cxponentil'\lly
,oonld be mmparable to th,· ""I,,~ 01 Ih,· m~,~,,, ... ,,1 f\"spon>e Time at high \'aluC'S ofthe mIAT,

Another aiffcr~ntiatillg feat."re is exp,,·tco:l betv.""n sim"lations conauctoo with a WOl'kh)8.(1 of
purely read rC(l n~.'t' (Fig"re G4} a"d th",~ wilh" v.wkloa.d of pnrdy writ~ leqUC'St ' (t'igure C5),
FO<' t.h~ ",wi work!o,,,L both th,· RAID 5 ,,,.1 R;\ID5-SPTDRF (OQllr'gmation.' ar~ expcctC'd to

l"'riorm , imil;trly, .,i"c~ ",·itl ,, ·,· 11<"<'(1, 10 "c('"" IlI,r it\' i"lonn"ho"

For the "'Tit~ workload, both configllration, nrod to npdate parity information on a different di,k,

which r",nlt3 in overhead in procc'''ing thi3 rcq"est. a' well "" generally requiring '" rel«l-modily.
writc ,-"ydeZ_ Thi' i, ~xjX'dco:l 1.0 manife,t a;; a higher l\linimum Il cspome Time for the ",<it.<.

'Soc 4U (p, 1(0)

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHA1'TEH 9 T.EST CASE I:W

WOl'klo~rI t.il~n I,,,. the ('o",pal'~ble "ead wml:Jo~d. with ~ minimum inClease of 2lXf/c, (owing to

tW;('e "-, Hll<ny "e'lUiled ope"at;o,,")_

An a,lditional discrepancy shou),1 be e,-ident oetw"'['n the RATD5 "nd RAlD5+SPlDRE ,,,,,di~"

m~tio"-', due to the i<drlitiolll .. 1 patity updl!.te roquiremems of SP1DRE. This overhead should
I", Hle .. ,umble 1<, an inc"""",,,,1 ~Ii"i"'Uln !l"opOllS" Time lot the HAID~+SI'I[)llL configuration
w"SllS ,be default HAlO" conligmalion

9.6 Simulation Results

The rfl.,,,I,, v,,,,,,,,,te,1 h~,e '·epre. nt ,he OUlV'" of "allOU_, RiisTl _,irrmlation lUllS executed with

the abov" defined configll,,,tion. Th" "',wto ''''. first vanitiom'(\)", workload: ,ilrlulation rU!l_'
conducted with ,,,ad-only workload" are illustrated in figur" ti4 and write-onl.'- worklotul, 'tre
illunrated in Figuw 1Xi.

,,~--

0.D48
ONo
0.D44
0.(042
O~

0.D3~

0.(036
0.034
0.032

(o.o:J
0.028
0(026
0.024
O.D22

(om
0.018
0.(0'6
0.014 j

:o~i_L·
O.COl .
0.004 - _"""" ___ 0" 0

0.00<

S;"ple 0;,< - Rud, - RAID 5 --<
I3MJ146Z10 - f1<od, - RAI~' ~

8"",10; Di'lk - [leO"> - ~i\lU 5 + Sl'1c-n~
I"'.V, 4671 (0 _ Roa'" _ RAIr) ~ + SPlrJRE 0

[i"~,,j"ay - R~od, - RAI~' 0

Within these Pl<,·t it io,,". the "",Ull_, a"e flln he" (liIr~,·,·u; ia 1",1 by I'll<' t.ype of di>;k ~nl<y u_1 I<nd

the RAID _",bclrIe implemented. Each cumbination or t.he;e two pammetDr' is rel"'e_'Dlll<'<1 I,y I<
separate hne in the ~raphed re_,ults.

The hOl'iwn' 1<1 ,,--~b or holh gravh_' repre:;"'Lt, 'he me"" 1 AT, spedii('(\ "" " ,iHlU iatio" p""amet'"
The ,-eltici<l !<XL, rep"",""ts the Hle,Ul Res1KHL"" TiHle of the spte"" aIL ItHrage of 'he Hle,,,",,~l
l'e-po,,,e ~illle 10" "n r"ln>,:;!., for th"t ,ulAT

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAl'l'IOH g, TEST C.iS£.'

0'
o. j c'
0.11;

0.17

0.15

a.15

0.14 c
0.13 [~
0.1::'

!
,

0.11

~ "
! 0.C<9

• 000 >
0.07

[0.00

[0 0,

~.04

~.OJ

0.02 f
CO,

0
C

Sirrge U" - \'i,,:e,' I' .. 'IU'
IG t.j" '4i)lI0 ·Wri:,,,·F.A ID5 ·x

S,,~'" n",,· WriU· RA n ,. SPlnRe •
!!;If,'. ,· 457 I 0 . Wri" , . HA D, ,SI'IUH~ c

Di,,I<,Si,,, _Arr,1' . Wrl1e, - R.".ID 5

121

.~
----:,----------------~,;o----------------:,';-----------

InIOf·Alri,,1 nrne 1"".1

9.7 Simulation Anulysi::;

The tirot CUlT~' in Figur~ (i.i SholW t]'"t "part Irmtl tl ... c",~ 1m th~ DiskSiTTl 'lffaV driwo. all
other driw oilt, ubtoC5 Yield \]". "HtI~ n,,"ll, "nl.,> til"t tl", r~'pnn'«' tiTTle is IlITTl"'\ flilt at .]

millbecondh which. in the cruw nl Ih~ Simpl~_Diok TThldcl is the me"ll r~sponse time and at low
inter-arrival rat", is exp",te<:\, 'J'h~ Illet tl,"t the Di,kSim ~ra.ph i, 'il TTlll ch diff~fent is due te, the

gre~1 el detail in tlte ,imnl ation and that the performlln"~ of this rath~r old dri\'~ is relatively very
, low

For read r0Cjucols, Ih~ ,mnra"imL INT i, "htl,«t ~ ti,tI ~, IO,,:N til"" tlw Respnn,~TiTTle III In.,; IAT,

Thi, result mak", ""nS<', in t\'"t th~ f~qn~'t ,i""" Ilr~ 'm,~1 (ritti"~ wit hin 1 snip). thllS aIlS di,h
('!<l1 be ,ervicing lead request, si1!lultm'f'Ouoly. Thi, suggest , th"t tk cilpacitv of tlw sy, tem (in

termo of 1,\'1') slwuld b~ 0 tim~' '11lall~r \1",,, \h~ R~'J"m'«' Tilll~ Ilt brg~ lAT . which is obS<'fvm.

Th~ "",,'nd ,0\ "r CUlW, in Figur~ GO ar~ mono illt~r"'ting in that th~ overhead that SI'IDIn: cod
ing incur, "nlhe perr,'rmance is mor~ deorl}' ~,·idmt. ,\, crp~ded. th~ mean H!:'Spe'no<o 1'in)(' of
bo,h RA1D configurations is m~",unlhlv hi!\iler f"r th_ write'_nnly workloa.d. Additi,lIlllllv, there
b the expected measurable di"('f~p","('V ~t",,"en th~ ('onfi~nmtions with and without Sl'IDHl:,
wb.ich is porticularly l",tie~"bk i" Ih~ lB). r,, 14(j7.10 ,..,,,It, (tile 1!,,'r~ Ill"{'ur"\~ disk me,dd). Fi
naily. the relationohip bN"'",n th~).fini,tl llln R",p"n,~ Ti1!l~ (,I.' pmlictM Il\ high ",Iu,," nf mlAT1

!<lid the ,aturation pc'int is f"uwi te, "" "' =JH,<, t~d.

Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 10

Summary

In this work we have focused on the modelling and simulation of Redundant Array of Indepen
dent Disks (RAID) storage systems. RAID systems allow organisations to leverage large storage
capacities and parallel data accessibility using low-cost, commodity hard drives. Given the value
of such systems. a simulation environment tailored to RAID systems would allow prototypes to
be quickly evaluated without the overhead of physically implementing them. With this in mind,
the ROSTI project was begun with the stated goal of developing an extensible simulation envi
ronment that could be used to implement and test the performance of new RAID schemes. A
secondary goal was to increase the usability of the system for a novice end user, both in terms of

simulation configuration and analysis.

10.1 Overview

Part I of this thesis presents the relevant background to the topic under consideration. Chapter 2
presents extensive coverage of the principles and operation of RAID storage systems, a taxonomy
of current RAID schemes, and a brief summary of some of the issues facing RAID systems.
Chapter 3 provides an overview of the field of simulation, and the considerations involved in
developing a custom simulation environment. The decision to use O?d~et++ as the simulation
library foundation on which ROSTI is built is discussed, in comparison to CSIM as an alternative
option. An examination of available simulation environments in Chapter 4 helped identify useful
functionality where ROSTI could provide improvement, particularly in regards to extensibility
and ease-of-use of the simulation environment.

Part II represents the main body of work that is the subject of this thesis. Chapter 5 details the
development process of ROSTI as a simulation environment. It covers the use of Unified Modelling
Language (U~'IL) to obtain user requirements using industry best practices. These UML require
ments were then transformed into high-level system architectures, guided by the principles of
modularity and reusability. The system architectures were translated into OMNet++ specific de
signs. which were subsequently implemented. ROSTI's current support for various RAID schemes
and capabilities is discussed, together with the problems encountered during implementation, and
their solutions.

Having created ROSTI, the secondary goal of usability was addressed. Chapter 6 describes the

122

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 10. SUMMARY 123

design and development of a Graphical User Interface (GUI) to ROSTI for configuring and exe
cuting RAID simulations. While relatively restricted in terms of capabilities, this GUI represents
an important first step in improving usability of the system, particularly for casual users. The
next logical step was to provide rudimentary data analysis functionality for the results produced
by a typical ROSTI simulation run. The development of this tool, and its current capabilities are
covered in Chapter 7.

Part III of this thesis covers the testing performed on ROSTI to ensure the validity of the system
and component models that have been implemented. Chapter 8 presents the rationale behind
omitting validation of the disk models used in ROSTI, and the limited validation performed on
the data source modules. Given the central importance of the RAID Controller, an extensive
validation of each of the implemented RAID schemes was performed, and is documented in Sec
tion 8.3 (p. 97). The other important component of the system is the caching modeL and the
testing process for each of the three implemented caching schemes (LFU, LRU, ARC) is described
in Section 8.4 (p. 111). Chapter 9 presents an exemplar simulation experiment of ROSTI being
used to investigate a RAID system. The simulation results are found to match expectations.
further validating the implementation of RC)STI.

10.2 Outcomes

Having researched the fields of simulation and RAID storage, we were able to develop the RAID
Operations Simulator for Testing Implementations (ROSTI). ROSTI is a RAID-oriented i:limu
lation environment, built in C++ on the OMNet++ library and designed to be modular and
extensible. This environment serves as the foundation on which implementations of three RAID
protection schemes (RAID 5, RAID 6, SPIDRE) were implemented. Simulation input is accepted
via trace files or one of three implemented synthetic workload generators. Several disk imple
mentations are provided, most notably through the DiskSim package. Users can interact with
ROSTI using either a command-line interface, or a Graphical User Interface (GUI) provided by
OMNet++. The architecture of ROSTI allows for any combination of RAID schemes, workloads
and disks to be simulated on either Linux (TM) or Microsoft Windows (TM).

The use of ROSTI is simplified through a secondary GUI interface, implemented in C#, which
hides the initial complexity of ROSTI and OMNet++. This interface allows novice users to con
figure and execute simulations without requiring knowledge of OMNet++, as well as automating
execution of multiple simulation runs. The capabilities of ROSTI were further extended by the
development of a results-analysis module that integrates with the above GUI. This allows users
to generate 2-dimensional graphs plotting independent simulation parameters against dependent
simulation results. This analysis is useful as initial data analysis tools to fine tune simulation
parameters, or establish the approximate accuracy of a simulated model.

These capabilities fulfill ROSTI's initial primary goal of providing a modular, extensible RAID
simulation environment, and the secondary goal of improving the usability of the software.

In addition we also developed a validation strategy for RAID implementations focused on high
level behaviour rather than low level implementation1 . This strategy greatly simplified the im
plementation and testing of ROSTI. It allowed specific aspects of controller functionality to be
tested independently, and the sum of all such related tei:lts ensured the validity of implementation

ISee Section 8.3 (p. 97)

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 10. SUM1\IARY 124

of each RAID scheme. By analogy, this system fulfilled the same role that unit tests currently fill
in commercial-grade software projects.

Finally. \\'e have outlined a possible avenue of research into a formalisation strategy for RAID
Controller operations2 . This strategy would allow the individual disk operations required for
a given array operation to be automatically inferred from a high-level description of the RAID
scheme (RAID 5, RAID 6, etc.) in usc. If successful, this would provide a less error-prone and
more efficient means of implementing theoretical RAID protection schemes, either in software or
hard,vare.

10.3 Future Work

In completing the first version of ROSTI, several opportunities for future improvements to the
system were identified. The first stems from ROSTI's focus on RAID, which concentrated the
majority of the development effort on the implementation of several RAID Controller modules.
This focus has meant that both the data sources and disk models provided are lacking in certain
capabilities.

The synthetic data sources, which serve as input to drive a ROSTI simulation, are limited in
terms of the complexity of workloads they can generate. They currently only support genera
tion of random workloads that can be expressed as one of the statistical distributions listed in
Appendix C. :'-.lorc realistic inpnt workloads can be achieved by implementing and integrating a
synthetic workload generator that uses data from real-world trace files. ESS\VA 3 is just such a
tool that was recently developed in the Dl'IA group at the University of Cape Town as an MSc
thesis by Paul Sikalinda [Sik06]. Integration with ESSWA would greatly extend the capability of
ROSTI to simulate more realistic workloads.

The disk drive models could also be updated to allow simulation of recent commodity drives.
'\lodels of modern disk drives can be added to DiskSim using the DIXTrac utility, but this has
not been released by its creators. An alternate option is to use the work of Lee et. al. [LK93] on
disk drive modelling to alter the parameters of the included disk models, or implement an entirely
new disk model.

ROSTI currently lacks support for simulating the rebuilding of a RAID array after data loss.
Although this occurs infrequently compared to other actions in a RAID array (notably operation
in :'\onnal or Degraded mode), it is still of importance in systems where the length of downtime is
important. Hence extending ROSTI to provide these capabilities would add value to the system
as a whole.

Another possible area for improvement is the Graphical User Interface to ROSTI. At present,
it places restrictions (which do not exist in ROSTI) on the types of RAID architecture that
can be configured. This was necessary to simplify its implementation. It would be useful to
provide a structured, visual design environment to allow any possible architecture to configured
and silllulated. It is envisioned that this environment would be similar to that provided by
O'\l.\Jet++. but customised with regards to the specific requirements of RAID architecture.

2See Appendix A (p. 133)
3Enterprise Storage System Workload Analyser

Univ
ers

ity
 of

 C
ap

e T
ow

n

CHAPTER 10. SUMMARY 125

The results analyser provided with ROSTI is currently limited. This is a particularly important
aspect of a simulation study, and it may thus be useful to extend this tool to allow for more
complex analysis to be performed on output from ROSTI. This could extend to more elaborate
graphing support, statistical analysis of the output or even comparison with analytical models.

A final possible improvement relates to the technical implementation of ROSTI's cache model.
As it presently stands, multi-level RAID hierarchies are representable in ROSTI4, but each RAID
level has its own independent cache. Thus although a multi-level caching system is present, there
is no explicit support for cache coherency across these caches. This is particularly problematic
where write-through caching is not used. Implementing support for the notion of cache-coherency
in ROSTI would greatly benefit the development of these hierarchical models.

4See Section 5.4.4 (p. 6R)

Univ
ers

ity
 of

 C
ap

e T
ow

n

Bibliography

[AAD97]

[ABC97]

[Anv07]

.\1. Aboutabl, A. Agrawala, and J. Decotignie. Temporally determinate disk access:
An experimental approach. Technical Report CS-TR-3752, Dept. of Computer Sci
ence. University of Maryland, College Park, 1997.

Guillermo A. Alvarez, Walter A. Burkhard, and Flaviu Cristiano Tolerating multiple
failures in RAID architectures with optimal storage and uniform declustering. In
Proceedings of the 24th Annual International Symposium on Computer Architecture,

pages 62-72. IEEE Computer Society Press, 1997.

H. Peter Anvin. The mathematics of RAID 6. http://www . cs. utk. edu/ -plank/
plank/papers/CS-07-602.pdf, 2007.

[BBB'\194] .\1. Blaum, J. Brady, J. Bruck, and J. Menon. Evenodd: An optimal scheme for
tolerating double disk failures in raid architectures. In Proceedings of the 21st Symp.

on Computer Architecture, pages 245-254, 1994.

[Bea03]

[DG88 1

:BRJ99]

[Bro05]

[CG94]

J. S. Bucy and G. R. Ganger et al. The DISKSim simulation environment. Techni
cal Report CMU-CS-03-102, Parallel Data Laboratory, Carnegie ~'Iellon University,
January 2003.

Dina Britton and Jim Gray. Disk shadowing. HP Labs Technical Reports, June 1988.

Grady Booc'h, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language

lLser guide. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA,
1999.

Neil Brown. mdadm. http://cgi.cse.unsw . edu. au/-neilb/mdadm, 2005.

William V. Courtright II and Garth A. Gibson. Backward error recovery in redundant
disk arrays. In Proceedings of the 1994 Computer Measurement Group Conference

(CMG), volume 1, pages 6374, December 1994.

[CGHZ96a] William V. Courtright II, Garth Gibson, .\Iark Holland, and Jim Zelenka. Raid
frame: rapid proto typing for disk arrays. In Proceedings of the 1996 Conference on
Afeasurement and Modeling of Computer Systems (SIGMETRICS), volume 24, pages
268-269, ~1ay 1996.

[CGHZ96b] William V. Courtright II, Garth Gibson, .\lark Holland, and Jim Zelenka. A struc
tured approach to redundant disk array implementation. In Proceedings of the In

ternational Computer Performance and Dependability Symposium (IPDS) , 1996.

12()

Univ
ers

ity
 of

 C
ap

e T
ow

n

BIBLIOGRAPHY 127

[CGR+97] William V. Courtright II, Garth Gibson, LeAnn Neal Reilly, Mark Holland, and Jim
Zelenka. RAIDframe: rapid prototyping for RAID systems. Parallel Data laboratory,
Carnegie Mellon University, CMU-CS-97-142 edition, June 1997.

[Cou97] William V. 'Courtright. II. A transactional approach to redundant disk array imple
mentation. l'vla!>ter's thesis, Carnegie Mellon University, 1997.

[CP90j

[dIJ02j

[EPM99]

[GMOO]

[HG92]

P. Chen and D. Patterson. Maximizing performance in a striped disk array. In
Proceedings of ACM SIGARCH Conference, pages 322-331. AGM, 1990.

M. de Icaza and B. Jepson. Mono and the. Net framework. Dr. Dobbs Journal of

Software Tools, 27(1):21-24, 2002.

G. Ewing, K. Pawlikowski, and D. McNickle. Akaroa2: Exploiting network computing
by distributing stochastic simulation, 1999.

Garth A. Gibson and Rodney Van l'vietcr. Network attached storage archit.pcturc.
Commun. ACM, 43(11):37-45, 2000.

Mark Holland and Garth A. Gibson. Parity declustering for continuous operation in
redundant disk arrays. In Proceedings of the 5th Conference on Architectural Support

for Programming Languages and Operating Systems, pages 23-35, October 1992.

[HGK+94] Lisa Hellerstein, Garth A. Gibson, Richard M. Karp, Randy H. Katz, and David A.
Patterson. Coding techniques for handling failures in large disk arrays. Algorithmica,

12(2/3):182-208, 1994.

[HGS93] Mark Holland, Garth A. Gibson, and Daniel P. Siewiorek. Fast, on-line failure re
covery in redundant disk arrays. In Proceedings of the 23rd Annual International

Symposium on Fault-Tolerant Comput'lng, 1993.

[HGS94] Mark Holland, Garth A. Gibson, and Daniel P. Siewiorek. Architectures and algo
rithms for on-line failure recovery in redundant disk arrays, Journal of Distributed

and Parallel Databases, 2(3):295-335, July 1994.

[HLM+97] M. Harrison, D. Libes, M. McLennan, J. Ousterhout, T. Poindexter, M. Roseman,
L.A. Rowe, B. Smith, M. Ulferts, A. Brighton, et al. Tcl/Tk tools. O'Reilly &
Associates, Inc. Sebastopol, CA, USA, 1997.

[HoI94] Mark Calvin Holland. On-line data reconstruction in redundant disk arrays. l\/Iaster's
thesis, Carnegie Mellon University, 1994.

[HZ04] P. Harrison and S. Zertal. Calibration of a queueing model of RAID systems. In
Proceedings of Practical Application of Stochastic Models, page to appear, Imperial
College, London, September 2004.

[IBM05j IBM. Ess product brochure. http://www-03.ibm.com/servers/storage/disk/
ess/pdf/ess-brochure.pdf, 2005.

[KBC+OOj John Kubiatowicz, David Bindel, Yan Chen, Patrick Eaton, Dennis Geels, Ramakr
ishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westly Weimer, Christopher
Wells, and Ben Zhao. Oceanstore: An architecture for global-scale persistent stor
age. In Proceedings of ACM A SPL OS. ACM, November 2000.

Univ
ers

ity
 of

 C
ap

e T
ow

n

BIBLIOGRAPHY 128

[KS95]

[KTR94]

[Leh51]

[LK82]

[LK93]

A. Kuratti and W. H. Sanders. Performance analysis of the RAID5 disk array.
In Proceedings of the IEEE International Computer Performance and Dependability

Symposium, pages 236~245, Erlangen, Germany, 24-26 1995.

David Katz, Song B Toh, and Sriram Radhakrishnan. A detailed simulation model of
the hp 97560 disk drive. Technical report, Dartmouth College, Hanover, NH, USA,
1994.

D. H. Lehmer. Mathematical methods in large-scale computing units. In Proc. 2nd

Sympos. on Large-Scale Digital Calculating Machinery, Cambridge, MA, 1949, pages
141-146, Cambridge, MA, 1951. Harvard University Press.

Averill M. Law and David W. Kelton. Simulation Modelling and Analysis. McGraw
Hill, Inc., 1982.

Edward K. Lee and Randy H. Katz. An analytic performance model of disk arrays.
In Proceed'Lngs of the 1998 ACM SIGMETRICS conference on Measurement and

modeling of computer systems, pages 98-109. AC'\1 Press. 1993.

[LKB87] .\1iron Livny, Setrag Khoshafian, and Haran Boral. l'Ilulti-disk management algo
rithms. In Proceedings of the 1987 ACM SIGMETRICS conference on Measurement

and modeling of computer systems, pages 69-77. ACM Press, 1987.

['\IC::\92] John Mylopoulos, Lawrence Chung, and Brian Nixon. Representing and using non
functional requirements: a process-oriented approach. IEEE Trans. Softw. Eng.,

18(6):488-497, 1992.

[.\Ji103] Randy fvliller. Practical uml: A hands-on introduction for developers. Borland De
veloper :\etwork, http://bdn.borland.com/article/0,1410,31863 ,00. html, De
cember 2003.

[.\1.\192] J. :\lenon and D. Mattson. Performance of disk arrays in transaction processing
environments. In 12th International Conference on Distributed Computing Systems,

pages 302-309, 1992.

['\1l\103a] Kimrod r-,legiddo and Dharmendra S. '\lodha. Arc: A self-tuning, low overhead
replacement cache. In USENIX File fj Storage Technologies Conference (FAST),

2003.

['\1.\103b] ::\imrod Megiddo and Dharmendra S. '\lodha. A simple adaptive cache algorithm
outperforms lru. IBM Research Report RJ 10284, IBl\1 Research Division, Almaden
Research Center, 650 Harry Road, San Jose, CA 95120-6099, February 2003.

['\I::\98a] ,\1 .\IATSUMOTO and T. NISHIMURA. r-,lersenne Twister: A 623-Dimensionally
Equidistributed Uniform Pseudo-Random ="Jumber Generator. ACM Transactions

on Modeling and Computer Simulation, 8(1):3-30, 1998.

[.\1::\ 98b]

[Ous94]

'\lakoto Matsumoto and Takuji l'\ishimma. '\lersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Trans. Model.

Comput. Simul., 8(1):3-30, 1998.

J. K. Ousterhout. Tel and the Tk toolkit. Professional Computing series. Addison
Wesley, April 1994.

Univ
ers

ity
 of

 C
ap

e T
ow

n

BIBLIOGRAPHY 129

[Pan95]

[PGK88]

[Pla97]

[PLK02]

[Pon93]

[Poo02]

[RJB99]

[R091]

[RS60]

[RW94]

[SC090]

[SG99]

[SGOO]

[SGG02]

[SGH93]

O.A. Panfilov. Performance analysis of rFlid-5 disk arrays. In 28th Hawaii Interna

tional Conference on System Sciences (HICSS'95), 1995.

David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant arrays
of inexpensive disks (RAID). SIGMOD '88: Proceedings of the 1988 ACM SIGMOD

international conference on Management of data, pages 109-·116, 1988.

James S. Plank. A tutorial on reed-solomon coding for fault-tolerance in raid-like
systems. Software: Practice fj Experience, 27(9):995~1012, 1997.

E. J. Chen P. L'Ecuyer, R. Simard and W. D. Kelton. An objected-oriented random
number package with many long streams and substreams. Operations Resparch,

50(6):1073~1075, 2002.

György Pongor. Omnet: Objective modular network testbed. In MASCOTS

'93: Proceedings of the International Workshop on Modeling, Analysis, and Sim

ulation On Computer and Telecommunication Systems, pages 323~326. Society for
Computer Simulation, 1993.

Frank W. Poole. A look at modular raid on motherboards. http://www.intel.com/
design/network/papers/25157501.pdf,2002.

James Rumbaugh, Ivar Jacobson, and Grady Booch, editors. The Unified Modeling

Language reference manual. Addison-Wesley Longman Ltd., Essex, UK, UK, 1999.

Mendel Rosenblum and John K. Ousterhout. The design and implementation of a log
structured file system. In SOSP '91: Proceedings of the thirteenth A CM symposium

on Operating systems principles, pages 1~15, New York, NY, USA, 1991. ACM Press.

1. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of

the Society for Industrial and Applied Mathematics, 8(2):300-304, 1960.

Chris Ruemmler and John Wilkes. An introduction to disk drive modeling. IEEE

Computer, 27(3):17-28, 1994.

M. Seltzer, P. Chen, and J. Ousterhout. Disk scheduling revisited. In Proceedings of

the USENIX Winter 1990 Technical Conference, pages 313~324, Berkeley, CA, 1990.
USENIX Association.

J. Schindler and G.R. Ganger. Automated disk drive characterization. Technical
Report CMU-CS-99-176, School of Computer Science, Carnegie Mellon University,
December 1999.

J. Schindler and G.B.. Ganger. Automated disk drive characterization (poster ses
sion). Proceedings of the 2000 ACM SIGMETRICS international conference on Mea.
surement and modeling of computer systems, pages 112~ 113, 2000.

A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts. John
Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, 2002.

Daniel Stodolsky, Garth Gibson, and Mark Holland. Parity logging overcoming the
small write problem in redundant disk arrays. In Proceedings of the 20th annual

internati.onaJ symposiv.m on Comp11.ter architecture, pages 6475. ACr-..l Press, 1993.

Univ
ers

ity
 of

 C
ap

e T
ow

n

BIBLIOGRAPHY 130

[SHG93]

[Sik06]

[S091]

[ST70]

Daniel Stodolsky, Mark Holland, and Garth A. Gibson. A redundant disk array
architecture for efficient small writes. Technical report, Carnegie Mellon University,
Pittsburgh, PA, USA, 1993.

Paul Sikalinda. Esswa: Enterprise storage system workload analyser. Master's thesis,
University of Cape Town, 2006.

Jon A. Solworth and Cyril U. Orji. Distorted mirrors. In Proceedings of the first

international confer'ence on Pam lie I and distributed information systems, pages 10-
17. IEEE Computer Society Press, 1991.

Julian Satran, Daniel Smith, Kalman ~vleth, Ofer Biran, Jim Hafner, Costa Sapuntza
kis, :\Iark Bakke, and et al. iscsi.

J. W. Schmidt and R. E. Taylor. Simulation and Analysis of Industrial Systems.

Irwin, Homewood, Illinois, 1970.

[UA:\I01] ;\1. Uysal, G. Alvarez, and A. Merchant. A modular, analytical throughput model
for modern disk arrays. In Proc. of the 9th Inti. Symp. on Modeling, Analysis and

Simulation on Computer and Telecommunications Systems (MASCOTS), pages 183
- 192, August 2001.

[VK03] A. Veitch and K. Keeton. The Rubicon workload characterization tool. SSP technical
report HPL-SSP-2003-13, HP Laboratories, :March 2003.

[VLW97] ~landana Vaziri, Nancy A. Lynch, and Jeannette .\1. Wing. Proving correctness of a
controller algorithm for the RAID level 5 system. In Symposium on Fault- Tolerant

Computing, pages 16-25, 1997.

[WBW89] R. Wirfs-Brock and B. Wilkerson. Object-oriented design: a responsibility-driven
approach. In OOPSLA '89: Conference proceedings on Object-oriented programming

systems, languages and applications, pages 7175, :\ew York, :"JY, USA, 1989. ACM
Press.

[\YGP95]

[Wi196j

[YG99]

[YokOO]

[Z'\IR96]

B. 1. Worthington, G. R. Ganger, and Y. :\. Patt. On-line extraction of SCSI disk
drive parameters. In Proceedings of A CM Sigmetrics Conference on Measurement

and Modeling of Computer Systems, pages 146-156, 1995.

J. \Yilkes. The Pantheon storage-system simulator, version 1. SSP technical re
port HPLSSP9514 revision 1, Storage Systems Program, HP Laboratories, Hewlett
Packard Laboratories, Palo Alto, CA, :\lay 1996.

Haruo Yokota and Masanori Goto. Fbd: A fault-tolerant buffering disk system
for improving write performance of raid5 systems. In PRDC '99: Proceedings of
the 1999 Pacific Rim International Symposium on Dependable Computing, page 95,
Washington, DC, USA, 1999. IEEE Computer Society.

H. Yokota. Performance and reliability of secondary storage systems. In World Mul

ticonference on Systemics, Cybernetics and Informatics, pages 668-673, July 2000.
invited paper.

P. Zabback, J. Menon, and J. Riegel. The RAID configuration tool. In Proceedings

of Third International Conference on High-Performance Computing, HiPC, pages
55-61, Trivandrum, INDIA, December 1996.

Univ
ers

ity
 of

 C
ap

e T
ow

n

BIBLIOGRAPHY 131

[ZRM96] P. Zabback, J. Riegel, and J. Menon. The RAID configuration tool. Researc~ Report
RJ 10055, IBM Research Division, Almaden, November 1996.

Univ
ers

ity
 of

 C
ap

e T
ow

n

Part IV

Appendices

132

Univ
ers

ity
 of

 C
ap

e T
ow

n

Appendix A

Formalising Controller Operation

This chapter outlines a proposal for future work that would formalise the characteristics of a
given RAID level using dependency relationships. Using this formalism, it would be possible to
implement the controller logic for such a defined RAID level automatically, by determining the
affected chunks and applying a standard set of operations to these chunks.

A.I Raid Layout Specification

The layout of a RAID Array refers to the number and arrangement of Stripes, Strips and Chunks
in the arrayl. In general, this amounts to defining the type of each chunk as being either data
(the chunk contains user data) or parity (data protection information). One approach is to hard
code an algorithm based on the scheme in use.

Our proposed approach is to differentiate between three t.ypes of parit.y:

• Horizontal: All parity chunks lie in a single row for each stripe.

• Vertical: All parity chunks lie in a single strip, for each stripe (eg. RAID 4).

• Diagonal: The position of parity chunks lie within a single strip, but the location of this
strip rotates in a round-robin fashion (RAID 5 and RAID 6).

Using these parity types, it is possible to specify a number of types of parities to apply to a layout,
together with an order in which to apply them. This automatically produces the correct layouts
for any combination of Stripe, Strip and Chunk size settings. A proof of concept of this techniquE'
has been implemented, and was tested with combinations of all 3 types of parity. In all cases, the
layout produced was correct.

lSee Section 2.1 (p. 5).

133

Univ
ers

ity
 of

 C
ap

e T
ow

n

APPENDIX A FORMALISING CONTROLLER OPERATION 134

A.2 Specifying Protection Groups

The usefulness of the above formalism becomes more apparent \vhen we consider that a given
type of parity protects data chunks in a consistent manner. Specifically. Horizontal parity chunks
protects all data chunks in its Strip, while Vertical and Diagonal parity chunks protect all data
chunks in their Row. This web of protection can easily be represented using a dependency graph,
linking data chunks to the parity chunks that protect them. This graph can be built as the above
layout process occurs, based on a simple set of rules. The use of a dependency graph also allows
for more complicated dependency mappings, but using the same three parity types. Thus, we
could conceive of a Horizontal parity that protects all data chunks that lie in the same diagonal.

A.3 Deriving Array Operations

The dependency graph created above can now be used to automate the operation of the RAID
Controller. Specifically, if data needs to be reconstructed for a read operation due to a failed
disk, the dependency graph can be used to determine the list of all parity chunks protecting the
data chunks in question. Using this information, it is possible to determine the minimum number
of disk accesses required to read in appropriate parity and recover the data, thus addressing the
optimality issue raised earlier.

For a write. parity chunks need to be updated to reflect changes in data. Using the dependency
graph, we can ensure that all parity chunks related to changed data chunks are correctly updated.
\\'e can even minimise the number of disk I/Os issued for certain operations (eg. Large Stripe
Write).

Since the operations are extracted from the dependency graph, rather than coded by hand, it is
possible to guarantee that operations are executed correctly and efficiently, under the assumption
that the dependency graph is correctly constructed. Additionally, a trace of the operation of
a controller using this scheme can be used to verify whether another, hand-coded controller is
operating correct ly.

A.4 Correctness of Operation

Although a RAID Controller may operate correctly during normal operation, it may still not
handle error scenarios correctly. The most critical time during which errors can occur is if a
disk failure happens while an I/O Request is being processed. The array may be left in an
inconsistent state, and hand-coding of recovery schemes for all possible cases is a time-consuming
and error-prone task. The work of Courtright [Cou97] presents a formal method to prevent
this. using Directed Acyclic Graphs (DAGs). By using the dependency graph described above
to automatically generate these DAGs, where possible, one can create an end-to-end formalism
governing the operation of the RAID Controller.

Univ
ers

ity
 of

 C
ap

e T
ow

n

Appendix B

••

ROSTI Messages

B.1 IORequest

message IORequest
II Message mapping a host IORequest to physical array storage. Uses an array
II of partial stripes to represent this mapping, which in turn consists of
II arrays of strips which each contain 1 or more elements. This general
II representation allows any coding scheme to be both represented and simulated.
II Additional fields with the messages data members are used during execution of
II a request to signal any required operations on strips and the state of
II various elements.
{

};

fields:
int Volume;
llong LBA;
long Size;

II Logical Volume to which this request applies
II Starting address of request
II Size of request, in 512B blocks

long ActualSize; II Actual number of bytes requested
int Opcode enum(OpcodeEnum); II Operation requested (see OpcodeEnum)
int Identifier; II Unique identifier, used by host to keep track

II of outstanding requests
int HostIdentifier; II Unique identifier, used to enumerate and

II differentiate hosts
int Flags; II For any specific bit type flags that

II may be required

135

Univ
ers

ity
 of

 C
ap

e T
ow

n

APPENDIX B. ROST! MESSAGES

B.2 IOResponse

message IOResponse
IIRepresents a response to a particular IORequest. Specifies the result of
II the request. Encapsulates the IORequest it references

II*Encapsulates IORequest
{

};

fields:
int Response enum(ResponseTypeEnum); II Result of requested operation
int Identifier; II Corresponding IORequest identifier
int HostIdentifier; II Identifier for host that issued corresponding

II IORequest. Used in routing responses.

B.3 ArrayMapping

message ArrayMapping extends IntraArray
II Message mapping a host IORequest to physical array storage. Uses an array
II of partial stripes to represent this mapping, which in turn consists of
II arrays of strips which each contain 1 or more elements. This general

136

II representation allows any coding scheme to be both represented and simulated.
II Additional fields with the messages data members are used during execution
II of a request to signal any required operations on strips and the state
II of various elements.

II*Encapsulates IORequest
{

}

fields:
int DataLength;
PartialStripe Stripes[];

class PartialStripe

II How many sectors (512B) is the request
II Array of partial stripes,
Ilused to effect host-to-array mapping.

IIRepresents part (or a whole) stripe in a logical volume.
{

}

fields:
int StripeNumber; II Logical number of stripe (starting from 0)
int StripSize; II Size of a strip in this stripe
int ChunkSize; II Size of an element in any strip in this stripe
PartialStrip Strips[]; II Array of strips in this stripe

Univ
ers

ity
 of

 C
ap

e T
ow

n

APPENDIX B. ROS11 MESSAGES 137

B.4 BlockIO

message IntraArray
II Base class that provides fields common to all intra-array messages
II (messages that are only used within the simulation of the array-controller).
{

}

fields:
int ArrayMode enum(ArrayModeEnum); II The mode the array is in

II for the current operation
int ArrayOp enum(OpcodeEnum); II The overall operation being

II performed by the array

message BlockIO extends IntraArray
IIIndicates an internal request by the array controller to schedule
II multiple disk requests to either read or write data.

II*Encapsulates ArrayMapping
{

}

fields:
int Stage; II Stage of completion for this request.

II (eg. RAID 5 read has 1 stage, RAID 5 write has 2 stages.
int Identifier; II Used by array controller to enumerate all requests

B.5 BlockIOResponse

message BlockIOResponse extends IntraArray
IIIndicates a response to a BlockIO request. Indicates to the coding module
II (which controls the stage of array operations, and subsequent actions)
II what the results, from each disk to which a request was issued, were.

II*Encapsulates BlockIO
{

fields:
int NumResults; II Number of results returned

}

int Results [] ;
int Stage;
int Identifier;

II (and hence num IORequests to disks issued
II Array of results for disks
II Copied from BlockIO
II Copied from BlockIO

Univ
ers

ity
 of

 C
ap

e T
ow

n

Appendix C

Available Distributions

C.l Discrete Distributions

Function Description

intuniform(a, b, rng=O) uniform integer from a .. b

bernoulli(p, rng=O) result of a Bernoulli trial with probability

O<=p<=l (1 with probability p and 0 with
probability (l-p))

i binomial(n, p, rng=O) binomial distribution with parameters n>=O

I and O<=p<=l
geometric(p, rng=O) geometric distribution with parameter

O<=p<=l
negbinomial(n, p, rng=O) binomial distribution with parameters n>O and

I O<=p<=l
poisson(lambda, rng=O) Poisson distribution with parameter lambda

Table 6: Available Discrete Random Number Distributions for specifying workload parameters. Listed Dis
tributions are provided by OMNet++.

138

Univ
ers

ity
 of

 C
ap

e T
ow

n

APPENDIX C. AVAILABLE DISTRIBUTIONS 139

C.2 Continuous Distributions

Function Description 1

uniform (a, b, rng= 0) uniform distribution in the range [a,b)
exponential(mean, rng=O) exponential distribution with the given mean

normal(mean, stddev, rng=O) normal distribution with the given mean and
standard deviation

truncnormal(mean, stddev, rng=O) normal distribution truncated to nonnegative
values

gamma_d(alpha, beta, rng=O) gamma distribution with parameters alpha>O.
beta>O

beta(alpha1, alpha2, rng=O) beta distribution with parameters alpha1>O,
alpha2>O

erlang_k(k, mean, rng=O) Erlang distribution with k>O phases

chLsquare(k, rng=O) chi-square distribution with k>O degrees of free-
dom

studenLt(i, rng=O) student-t distribution with i>O degrees of free-
dom

cauchy(a, b, rng=O) Cauchy distribution with parameters a,b where
b>O

triang(a, b, c, rng=O) triangular distribution with parameters
a<=b<=c, al=c

lognormal(m, s, rng=O) lognormal distribution

weibull(a, b, rng=O) Weibull distribution

pareto_shifted(a, b, c, rng=O) generalized Pareto distribution

Table 7: Available Continuous Random Number Distributions for specifying workload parameters. Listed

Distributions are provided by OMNet++.

Univ
ers

ity
 of

 C
ap

e T
ow

n

