

The copyright of this thesis vests in the author. No
quotation from it or information derived from it is to be
published without full acknowledgement of the source.
The thesis is to be used for private study or non-
commercial research purposes only.

Published by the University of Cape Town (UCT) in terms
of the non-exclusive license granted to UCT by the author.

Univ
ers

ity
 of

 C
ap

e T
ow

n

Univ
ers

ity
 of

 C
ap

e T
ow

n

Software Quality Assurance in
Scrum
The need for concrete guidance on SQA strategies in meeting
user expectations

A Thesis Presented to the

Department of Information Systems at the University of Cape Town
In Partial fulfilment of the requirements for the

Masters in Information Systems (INF5005W)

BY:

Tiisetso Khalane

KHLTII001

February 2013

Univ
ers

ity
 of

 C
ap

e T
ow

n

i

DECLARATION

1. I know that plagiarism is wrong. Plagiarism is to use another’s work and pretend that it is

one’s own.

2. I have used the APA convention for citation and referencing. Each contribution to, and

quotation in, this Masters Thesis, from the work(s) of other people has been attributed, and has

been cited and referenced.

3. This Masters Thesis Software Quality Assurance in Scrum is my own work.

4. I have not allowed, and will not allow, anyone to copy my work with the intention of passing

it off as his or her own work.

5. I acknowledge that copying someone else’s assignment or essay, or part of it, is wrong, and

declare that this is my own work.

SIGNATURE: Tiisetso Khalane

DATE: FEBRUARY 2013

Univ
ers

ity
 of

 C
ap

e T
ow

n

ii

ACKNOWLEDGEMENTS

I would like to pass my sincere gratitude to my supervisor Ms. Maureen Tanner for her

guidance during the course of my Masters Course. I would also like to thank Prof. Irwin Brown

for his advice and recommendations.

I wish to thank the staff and students in the Department of Information Systems at the

University of Cape Town, particularly the Masters class of 2011.

My gratitude also goes to my girlfriend, Mots’elisi Pearl Mokhachane for her love and patience

with me, for giving me the encouragement that I needed throughout the course, and for

helping me overcome some of the difficulties I faced.

To my friend Moletsane Monyake, for challenging my ideas, my thinking, and my understanding

of Scientific research, thank you.

I wish to pass my deepest gratitude to my colleagues and friends who contributed immensely

and gave me countless ideas on my research topic.

Most importantly, my sincere gratitude goes to Tom O’Rielly for the vested interest he had on

my thesis, for opening many doors for me, and for giving me direction when I most needed it.

May God bless you!

Univ
ers

ity
 of

 C
ap

e T
ow

n

iii

ABSTRACT

The purpose of this study is to identify and present the concerns of project stakeholders in

relation to Software Quality Assurance (SQA) in a Scrum environment. Guided by the tenets of

Classic Grounded Theory Methodology, this exploratory and inductive case study presents a

broad range of SQA concepts related to the main concern of “Meeting User Expectations”. In

trying to resolve the main concern, the Scrum project stakeholders alluded to lack of “Concrete

Guidance” on SQA strategies, tools, and techniques in Scrum. The lack of concrete guidance in

Scrum requires a development team to devise “Innovations” which may include “Adopting

Practices” from other methodologies and carefully designing the “Process Structure” to

accommodate the “Adopted Practices”, ensure “Continuous Improvement” of the process, and

provide an environment for “Collaborative Ownership”.

In addition to the “Need for Concrete Guidance”, the study reveals two other important

concepts necessary for “Meeting User Expectations”: the “Need for Solid User Representation”

and the “Need for Dedicated Testing”. While some Agile proponents claim that the Agile SQA

practices are adequate on their own, the study reveals a number of challenges that impact on a

team’s ability to meet user expectations when there is no dedicated tester in a Scrum

environment. The challenges include increased “Capacity Demands”, “Testing and Quality

Issues”, and “Lack of Testing Expertise”.

By demonstrating the incompleteness of Agile methods with particular attention to the lack of

concrete guidance in Scrum, the study draws on method tailoring literature to argue for

customisation of Scrum. The study further proposes that Scrum needs to be viewed as a

framework of ‘empty buckets’ which need to be filled with situation specific SQA practices and

processes in order to meet user expectations.

Univ
ers

ity
 of

 C
ap

e T
ow

n

iv

DEDICATION

I dedicate this thesis to the most precious person in my life – my mother, ‘Me’ ‘Matiisetso

Khalane. With this thesis I pledge to pursue the promise - the dream, and to honour your

teachings; so that you may see in me, what you would have become if you had the

opportunities that I have.

Univ
ers

ity
 of

 C
ap

e T
ow

n

v

LIST OF TABLES

Table 2.1 Agile Manifesto ... 27

Table 2.2 the Scrum framework ... 29

Table 2.4 Scrum roles .. 31

Table 2.5 Scrum Ceremonies .. 32

Table 2.6 Scrum Artefacts ... 33

Table 4.1 Team Composition .. 46

Table 5.1 List of Participants ... 53

Table 5.2 Concept-Indicator model and emergence of Capacity Constraints .. 56

Table 7.2 Dependency resolution ... 102

Table 7.3 Traditional SQA vs. Agile SQA .. 108

Univ
ers

ity
 of

 C
ap

e T
ow

n

vi

LIST OF FIGURES

Figure 1-1 Systematic reviews of literature on Agile .. 14

Figure 2-1 Scrum methodology (Schwaber, 1995, p. 10).. 30

Figure 5-1 The Research Process: Applying Classic GTM .. 49

Figure 5-2 Concept indicator model comparing subsequent incidents with concept (Adolph et al., 2011)

 .. 55

Figure 5-3 Constant comparisons for Capacity Constraints .. 57

Figure 6-1 Aspects of Software Quality Assurance in a Scrum environment ... 68

Univ
ers

ity
 of

 C
ap

e T
ow

n

vii

TABLE OF CONTENTS

Declaration ... i

Acknowledgements ... ii

Abstract .. iii

Dedication .. iv

List of Tables ... v

List of Figures ... vi

Chapter 1. Introduction and Background to the study ... 11

1.1 Introduction .. 11

1.2 Background ... 11

1.3 The State of Research on Scrum and Software Quality Assurance ... 14

1.4 Research Objectives and methodology .. 16

1.5 Research Context .. 17

1.6 Organisation of Paper ... 18

Chapter 2. Literature Review .. 19

2.1 Software Quality ... 19

2.2 Traditional Approaches to Software Quality .. 21

2.2.1 Software Quality Assurance .. 21

2.2.2 Software Quality Evaluation ... 22

2.2.3 Software Quality Management ... 22

2.3 Software Testing ... 24

2.4 Agile Methodologies ... 26

2.5 Scrum Methodology .. 28

2.5.1 Scrum .. 28

2.5.2 Scrum Workflow.. 29

2.5.3 Scrum Roles ... 31

2.5.4 Scrum Ceremonies .. 31

2.5.5 Scrum Artefacts ... 32

Univ
ers

ity
 of

 C
ap

e T
ow

n

viii

2.6 Disparate Field Studies on Scrum ... 33

2.6.1 Overview ... 33

2.6.2 Studies on Enablers of Quality .. 33

2.6.3 Studies on Challenges to Achieving Quality .. 34

Chapter 3. Research Methodology ... 36

3.1 Methodology ... 36

3.2 The Grounded Theory Method ... 36

3.2.1 Glaserian versus Straussian GTM .. 37

3.2.2 Classic GTM ... 38

3.3 Research Paradigm ... 40

3.4 The Case Study Strategy .. 40

3.5 Reliability and Validity in Case Research... 41

3.6 Qualitative versus Quantitative Data .. 42

Chapter 4. Context Description .. 43

4.1 Case Organisation ... 43

4.2 Project Background ... 44

4.3 The Project Team .. 45

4.4 The History of Scrum at SAIT... 46

4.5 Scrum Implementation by the Portal Project Team ... 47

Chapter 5. Research Approach ... 48

5.1 Data Collection .. 49

5.2 Canons of Classic GTM .. 54

5.2.1 Data Incidents, Concepts, and Categories .. 54

5.2.2 Constant Comparative Method and Rigour in Classic GTM .. 54

5.2.3 Theoretical Sampling ... 58

5.2.4 Theoretical Memoing .. 59

5.3 Data Analysis ... 60

5.3.1 Open Coding .. 61

5.3.2 Selective Coding .. 61

5.3.3 Theoretical Coding .. 63

5.4 Scaling Up .. 64

Univ
ers

ity
 of

 C
ap

e T
ow

n

ix

5.4.1 Theoretical Saturation .. 64

5.4.2 Delimiting the theory .. 64

5.4.3 Sorting ... 65

Chapter 6. Findings ... 67

6.1 Meeting user expectations ... 67

6.2 Concrete Guidance .. 69

6.2.1 Need for Concrete Guidance .. 69

6.2.2 Process Structure .. 71

6.2.3 Adopted Practices ... 75

6.2.4 Guiding Principles.. 79

6.3 Dedicated Testing ... 82

6.3.1 The Need for (or lack of) Dedicated Testing ... 82

6.3.2 Challenges due to the absence of dedicated testers .. 83

6.4 Business Buy-in ... 87

6.5 Solid User Representation .. 89

Chapter 7. Discussion .. 91

7.1 Method tailoring ... 93

7.2 Process Structure .. 96

7.2.1 Adopted Practices ... 96

7.2.2 Workflow Design ... 98

7.2.3 Developer testing .. 98

7.2.4 Collective Code Ownership ... 99

7.3 Work Cordination and Dependency Resolution ... 100

7.4 Dedicated Testing ... 103

7.4.1 Consequences of the Lack of Dedicated Testing in Scrum ... 104

7.5 Business buy in .. 105

7.6 Software Quality Assurance and Agility .. 107

7.7 Empirical Process Control ... 109

7.8 Implications for Practice ... 110

Chapter 8. Conclusion ... 111

8.1 Research Objectives .. 111

Univ
ers

ity
 of

 C
ap

e T
ow

n

x

8.2 Summary of findings ... 111

8.3 Future research ... 113

8.4 Research Contribution .. 114

8.5 Limitations... 114

Chapter 9. References .. 115

Chapter 10. Appendices .. 122

10.1 Appendix A: Interview Questions ... 122

10.2 Appendix B: Concept-Indicators (Coding Sheet) ... 123

10.3 Appendix C: Sample Memo ... 147

10.4 Appendix D: Real Time Memoing and Theorisation ... 149

Univ
ers

ity
 of

 C
ap

e T
ow

n

11

CHAPTER 1. INTRODUCTION AND BACKGROUND TO THE STUDY

1.1 INTRODUCTION

The purpose of this chapter is to introduce the study by providing an introductory background,

research gaps, research objectives, and an introductory section on the research methodology.

The chapter has five sections. The first section provides a background to the study by detailing

the need for organisations to pay attention to software quality. It also provides recent adoption

of Agile software development methodologies such as Scrum as an alternative for overcoming

some of the downfalls of traditional plan-based software development methodologies. The

second section provides detailed research gaps regarding Scrum and Software Quality

Assurance (SQA). The third section provides the research objectives based on the identified

gaps and introduces the Grounded Theory Methodology. The fourth section gives a brief

introduction to the case organisation – SAIT – and the Portal Project. The fifth section provides

the layout and organisation of this research document.

1.2 BACKGROUND

As Osterweil et al. (1996) predicted, the ability to deliver successful Information Technology

(IT) projects has become a critical and strategic necessity for contemporary organisations

(Owens & Khazanchi, 2009). An average company invests five to ten percent of revenue on IT

initiatives (Charette, 2005). A large amount of the spending goes to new software development

projects aimed at improving the future prospects of the organisation.

IT initiatives in general continue to face high cost overruns, scope creep, cancellation, quality

issues, and customer complaints (Cicmil, Hodgson, Lindgren, & Packendorff, 2009; Smyth &

Morris, 2007). A failing software project can jeopardize an organisation’s competitive position

and can have far reaching consequences (Charette, 2005). Software quality is one critical

component of the criteria used to measure success of a software development project. Quality

is a multifaceted and a complex concept (Kitchenham & Pfleeger, 1996). This has lead to many

definitions of quality as stipulated in the Chapter 2 of this document. For the purposes of this

Univ
ers

ity
 of

 C
ap

e T
ow

n

12

study quality refers to the ability of a software project to meet business requirements and add

value to the user. Although much effort has been put on identifying ways of ensuring software

quality, software projects continue to fail (Charette, 2005).

Traditional software development methodologies such as the Waterfall model are said to have

contributed largely to the high failure rates of software projects (Kayes, 2011). A 2006 report by

the Standish Group, (as cited in Kayes (2011)) indicates that 41% of agile projects succeeded as

compared to 16% of Waterfall projects. Traditional software development methodologies are

characterised by formalised and rigid structures for all types and sizes of projects (Huo, Verner,

Zhu, & Babar, 2004). They do not allow flexibility of incorporating late changes to requirements

(Huo et al., 2004). These traditional methodologies are also known for their big design upfront

approach to software development. With this approach, significant modelling and

documentation occur before any development activities. This has proven risky in practice as it is

often the case that users want to add or change some items in the requirements specification

later in the project thus leading to cancelations, scope creep, incorrect software behaviour, and

other software quality problems (Ambler, 2005).

Agile software development has emerged as an alternative to organising and managing

complex project undertakings by providing mechanisms to adapt to constant project change

(Strode, Huff, Hope, & Link, 2012). Agile software development is defined as “the continual

readiness of an Information Systems Development (ISD) method to rapidly or inherently create

change, proactively or reactively embrace change, and learn from change while contributing to

perceived customer value (economy, quality, and simplicity), through its collective components

and relationships with its environment” (Conboy, 2009, p. 340). The aim of Agile methods is to

minimise the cost of inevitable change (Highsmith & Cockburn, 2001). Timperi (2004, p. 1)

states that the “aim of Agile methodologies is to deliver business value rapidly by delivering

working software frequently”.

Agility and software quality are becoming more important due to the pace of technology

change and market dynamics (Winter et al., 2008). Traditional quality approaches were tightly

coupled with traditional software development methods such as the Waterfall model. These

Univ
ers

ity
 of

 C
ap

e T
ow

n

13

quality approaches focused on harnessing complete, testable, and consistent requirements,

traceability to design, code and test cases, and heavyweight documentation (Winter et al.,

2008, p.1). On the other hand, agility redefines software quality assurance and management

practices and makes some traditional quality responsibilities and roles such as Quality

Assurance Engineer less valuable (Talby, Keren, Hazzan, & Dubinsky, 2006; Sfetsos & Stamelos,

2010). The Agile Manifesto has become the blue-print for adoption of these light-weight

methodologies (Fowler & Highsmith, 2001).

The Scrum Methodology is one Agile approach widely followed in industry (Moe & Dingsøyr,

2008). Although Scrum is gaining popularity, few empirical studies have investigated how

organisations can achieve quality requirements in Scrum projects. Beyond the case studies by

Schwaber (2004) little is known about how Scrum teams achieve software quality

requirements. In recent years, Scrum has become one of the most commonly used project

management methodologies in practice (Kayes, 2011). While the prevalence of Scrum in

industry justifies attention from the research community, there are significant gaps in the

academic literature on Scrum (Sfetsos & Stamelos, 2010) and software quality in particular

(Timperi, 2004). Scrum and Software Quality Assurance are the focal areas for this study.

Systematic reviews of empirical literature on Agile software development by (Dingsøyr, Dybå, &

Abrahamsson, 2008) and (Dingsøyr & Dyba, 2008) revealed that only 21% of all the research

papers under the review were published in scientific journals. Almost half of these 21% were

published in a magazine, namely the IEEE Software, which is not a primary academic journal. .

Figure 1-1 depicts the results of the review.

Univ
ers

ity
 of

 C
ap

e T
ow

n

14

Figure 1-1 Systematic reviews of literature on Agile

Further, 76% of all the research papers under review focused on eXtreme Programming (XP).

Another review, as cited in (Dingsøyr et al., 2008) corroborated these findings and discovered

that only 6% of published studies focused on Scrum and another 6% focused on software

quality assurance. Of a few studies reviewed by (Bhasin, 2012), all focused on XP and none on

Scrum. Thus Dingsøyr et al., (2012) bemoan the absence of a unified framework that lays down

fundamental principles and provides a coherent structure to disparate streams of research

work.

1.3 THE STATE OF RESEARCH ON SCRUM AND SOFTWARE QUALITY ASSURANCE

As illustrated in the preceding section, most studies in the Agile literature have investigated XP.

“Other management-oriented approaches, such as Scrum, are clearly the most under-

researched compared to their popularity in industry” (Dingsøyr & Dyba, 2008, p. 852). As per

the review by Dingsøyr and Dyba (2008), Scrum was studied in only one empirical research

article each.

Dingsøyr, Nerur, Balijepally, and Moe (2012) provide a summary of five Special Issues from

major Journals on Agile methods between 2003 and 2011. The Special Issues addressed a

Research Publications

Scientific
Journals

Non-Scientific
Journals

Agile Development Methods

eXtreme
Programming

Scrum

Others

Univ
ers

ity
 of

 C
ap

e T
ow

n

15

range of topics including adoption, distributed environments, flexibility, and control. A review

of the articles within the Special Issues reveals that none of these Special Issues or articles

published within them focused explicitly on how software quality may be achieved when using

Agile methods. Agile research tends to treat quality as a bi-product of a range of aspects

treated in isolation by the research community. A majority of articles that have touched on

software quality and software quality assurance investigated XP not Scrum. Some discussed

quality from the broader Agile umbrella and although the Agile methods share similarities in

underlying principles, each has its own practices that make it unique and therefore warrant

separate treatment.

The focus on XP is more prominent in the European Journal of Information Systems Special

Issue on Agile methods published in 2009 (Abrahamsson, Conboy, & Wang, 2009). None of the

articles (Maruping, Zhang, & Venkatesh, 2009; Mangalaraj, Mahapatra, & Nerur, 2009; Cao,

Mohan, Xu, & Ramesh, 2009) in the Special Issue focused on Scrum. For example, Maruping,

Zhang, et al. (2009) focused on 56 XP projects and discovered that collective ownership and

coding standards contribute to improved technical quality.

Another Special Issue on Agile methods in Information Systems Research publication (Ågerfalk,

Fitzgerald, & Slaughter, 2009), looked at flexibility in distributed systems development. The

central theme in Special Issue was agility. Most articles discussed agility from a XP perspective

while some discussed the broad Agile methods umbrella. A study by (Maruping, Venkatesh, &

Agarwal, 2009) uses control theory to argue that the relationship between software quality and

use of Agile methods is dependent on requirements change and project governance modes.

Although this study makes a significant contribution, it too focused on XP. It is important to

highlight that although there is a disproportionate attention afforded to the methods, Conboy

(2009) makes a stellar contribution in this special issue by clarifying the definition of agility,

flexibility, and leanness.

Although Scrum and XP share some similarities such as flexibility, short delivery cycles, and

simplicity (Maruping, Venkatesh, et al., 2009), there are differences in that “Scrum targets the

planning and management of development projects whereas XP concentrates on supporting

technical implementation steps” (Overhage & Schlauderer, 2012, p. 5453). It is important for

Univ
ers

ity
 of

 C
ap

e T
ow

n

16

researchers to treat these two methodologies separately in order to improve understanding of

how each works in practice.

Dingsøyr and Dyba (2008) believe that theory and research in some Agile methodologies such

as Scrum is still nascent, and this calls for more qualitative studies. According to Dingsøyr, Dybå,

and Abrahamsson (2008, p. 88), “nascent research areas are characterized by open-ended

inquiry about the phenomenon which can generate suggestive theories”. The researcher

therefore embarked on an exploratory and inductive theory building case study focusing on

Scrum and SQA as stated in the Research Objectives section as follows.

1.4 RESEARCH OBJECTIVES AND METHODOLOGY

Based on the stated gaps detailed in the preceding section, the objectives of this study were as

follows:

 To illuminate the concerns of Scrum project stakeholders in relation to SQA in a Scrum

environment.

 To identify and illuminate aspects of SQA in a Scrum environment

This study viewed SQA as a broad range of activities, processes, and techniques employed in

Agile teams to achieve software quality requirements. Based on these objectives and the lack of

inductive studies in Scrum and SQA, the researcher decided to use the Grounded Theory

Method (GTM). While SQA is not a new area, its applicability to Scrum has not been given

adequate attention from the IS research community as demonstrated in the literature review.

According to Tan (2010) GTM is suitable for situations where the researcher aims to seek

insights into a new field. GTM is particularly suitable for exploring areas that have not been

explored in detail before Hoda, Noble, and Marshall (2012) and SQA in Scrum is one such area.

Further, a SQA perspective on Scrum is a socio-technical territory and this makes GTM a

suitable approach for generating empirical knowledge about this phenomenon (Fernández,

2004; Tan, 2010). Finally, GTM is useful for investigating IS phenomena and creating context-

based, process-oriented descriptions and explanations as stated by Myers in Urquhart,

Lehmann, and Myers (2010).

Univ
ers

ity
 of

 C
ap

e T
ow

n

17

The support for GTM as a suitable methodology for exploring how software project

stakeholders collaborate in development projects was also emphasised by Hoda et al. (2012). A

GTM study must answer the question: “what is going on there and how” (Tan, 2010, p. 94) and

provide a conceptualization of the concepts. According Lehmann (2010) there is a scarcity of

theories and skills to generate them in the Information Systems (IS) discipline. “Substantive

theories apply to the substantive area of enquiry but are independent of and beyond the data

analysed and the incidents observed” (Urquhart, Lehmann, & Myers, 2010, p. 364). Lehmann

(2010) suggests that building theories through qualitative and inductive approach is a well

suited approach for areas where there is scarcity of theories. Gregor (2006) outlines a

taxonomy of theory in IS and Urquhart et al. (2010) suggest that GTM is capable of creating

theory that suits all categories of theories in Gregor's (2006) taxonomy because a theory

created through GTM has constructs in the form of categories tied together by relationships.

1.5 RESEARCH CONTEXT

Researching IS phenomena often requires one to focus on wide interactions between people

and technology (Lehmann, 2010). The researcher employed a case study research strategy

because it is an ideal method for generating theory by learning from practitioners (Benbasat,

Goldstein, & Mead, 1987). The case study methodology is appropriate for studying the nature

and complexity of processes in emerging areas (Fernández, 2004). A SQA perspective on Scrum

does not have a strong empirical and theoretical base hence the area can be fruitfully studied

through the case study strategy (Benbasat et al., 1987).

The study investigated a Scrum team in one South African IT and business consulting company

called SAIT* (not real name). The data collection lasted for 10 months from December 2011 to

November 2012. The team had been using Scrum from July 2010. The project under

investigation is called the Portal Project* (not real name). The researcher is a full time

employee in the organisation but is not a member of the Portal Project team.

The case site was selected for both opportunistic and theoretical reasons. The one

opportunistic reason is that the researcher is a software developer in the organisation and this

allowed the researcher easy access to participants. The fact that the researcher is a full time

Univ
ers

ity
 of

 C
ap

e T
ow

n

18

employee also offered theoretical opportunities for follow up interviews during the iterative

data collection and analysis as was dictated by the emerging theory. Further observations,

participation in software development meetings, and longer immersion in the field also helped

theoretically in the saturation of concepts. The relatively ‘young’ Scrum implementation

offered theoretical opportunities for investigating aspects of SQA in an environment that has

not been exposed to too much customisation. Finally, the organisation has a strong experience

in process oriented methodologies such as the Waterfall Model. The experience in Waterfall

provided participants a better chance of judging comparatively their new concerns that

resulted from the move to Scrum. The selection of the ‘Portal Project’ project over other teams

was judgmental because that is the one project team that had close to two years of experience

with Scrum and offered opportunities for investigating the aspects of SQA in a team that has

just started using Scrum.

Details of the organisation, project team composition, and the implementation of Scrum are

discussed in the Context Description chapter.

1.6 ORGANISATION OF PAPER

The next chapter provides a brief summary of the literature in software quality, software

quality assurance, evaluation, and management. It also provides a brief overview of Agile

methodologies. The chapter culminates with a review of literature in Scrum. Following the

literature review chapter is a chapter on research methodology that presents methodological

assumptions which guided the study. After the research methodology chapter follows a context

description chapter and a research approach chapter. The research approach chapter provides

a detailed ‘as-lived’ account of how the research process unfolded and how the classic GTM

techniques were applied. Following the research approach chapter is the findings chapter which

presents the results of data analysis. A discussion chapter which presents an interweaving of

the findings and the literature follows the findings chapter. The conclusion chapter is the last

chapter and discusses the findings in relation to the research objectives.

Univ
ers

ity
 of

 C
ap

e T
ow

n

19

CHAPTER 2. LITERATURE REVIEW

This chapter is structured as follows: from Section 2.1 to Section 2.4 the focus is on a

descriptive background and overview of traditional approaches to software quality

management, software quality assurance, software quality evaluation, and testing. The sections

are preceded by a definition of, and different perspectives on, software quality. The aim of the

sections is to lay a summarised foundation, and background on traditional ways of achieving

quality in software development.

Section 5 and Section 6 present a descriptive overview of software development and the Scrum

methodology. These sections also aim at presenting basic definitions and summarised principles

of agility and Scrum to facilitate discussion in later chapters. Section 7 presents the state of

research on Scrum while Section 8 focuses on disparate research streams that have been

pursued by various authors on Scrum with a particular focus on aspects of how software quality

may be achieved through a Scrum process.

The next section discusses the notion of software quality and the different meanings attached

to it.

2.1 SOFTWARE QUALITY

The study focuses on SQA in a Scrum environment and it is therefore fitting to briefly describe

software quality. Two definitions of quality by the ISO 8402 and the IEEE respectively, are

stated below:

“Quality is the totality of characteristics of an entity that bear on its ability to satisfy stated and

implied needs.” (Bevan, 1999, p. 89).

“Quality is the degree to which a system, component, or process meets specified requirements

and customer/user needs or expectations.” (Sfetsos & Stamelos, 2010, p. 44)

Univ
ers

ity
 of

 C
ap

e T
ow

n

20

These definitions are stated here for reference purposes to illustrate the fact that quality is a

multifaceted concept. In addition to the above definitions of quality, different people describe

quality from five different perspectives (Kitchenham & Pfleeger, 1996, p. 13; Ward &

Venkataraman, 1999, p. 1). These perspectives influence the process of measuring quality and a

brief overview is given as follows:

“The transcendental view sees quality as something that can be recognized but not defined.”

“The user view sees quality as fitness for purpose.”

“The manufacturing view sees quality as conformance to specification.”

“The product view sees quality as tied to inherent characteristics of the product.”

“The value-based view sees quality as dependent on the amount a customer is willing to pay for

it.”

(Kitchenham & Pfleeger, 1996, p. 13; Ward & Venkataraman, 1999, p. 1).

Although the are many views on quality, it is paramount that organisations approach quality

and quality assurance in a manner which reflects their business goals (Kitchenham & Pfleeger,

1996). Alsultanny and Wohaishi (2009) argue that software development projects should define

their own explicit meaning of quality.

Osterweil et al. (1996) state that the level of quality achieved is dependent on the quality of

assessment and assurance processes. The rigour of these processes depends on the type and

purpose of the software product. For example, mission critical systems have high quality

requirements which means that the processes must be stringent (Feldman, 2005). At a

fundamental level, the processes aim at minimising deviation between the specified, intended

behaviour of the product and the actual developed behaviour of the software product

(Osterweil et al., 1996). The next section discusses software quality assurance, software quality

management, and software quality evaluation.

Univ
ers

ity
 of

 C
ap

e T
ow

n

21

2.2 TRADITIONAL APPROACHES TO SOFTWARE QUALITY

This section presents an overview of traditional approaches to achieving software quality and is

presented here for reference purposes only. These approaches are: Software Quality

Assurance, Software Quality Evaluation, and Software Quality Management. The overview

serves as a historical background and precursor to the current agile driven approaches to

quality.

2.2.1 Software Quality Assurance

SQA is one of the most important components of a software development process. As with

software quality, various definitions of SQA exist in the literature. Some of the definitions in the

literature are as follows:

“Software Quality Assurance is a process for providing adequate assurance that the software

products and processes in the product life cycle conform to their specific requirements and

adhere to established plans” (Feldman, 2005, p. 27).

“SQA is a well defined, repeatable process that is integrated with project management and the

software development lifecycle to review internal control mechanisms and assure adherence to

software standards and procedures.” (Owens & Khazanchi, 2009, p. 245).

“Software Quality Assurance (SQA) is referred to as the activities for independent assurance of

adherence to defined processes as stated in the CMM key process area on SQA” (Runeson &

Isacsson, 1998, p. 685)

The shared commonality between all the definitions is assuring conformance and adherence to

defined processes, standards, and procedures. The goals of SQA as stipulated by the Capability

Maturity Model Integration (CMMI) include monitoring, ensuring adherence to standards and

procedures, and identifying areas of improvement (Runeson & Isacsson, 1998). In CMMI, the

role of SQA is to engage in monitoring of project activities using reviews, audits and

measurements. SQA functions require collaboration between software development and SQA

teams. The development team is responsible for implementation of the technical work (Owens

Univ
ers

ity
 of

 C
ap

e T
ow

n

22

& Khazanchi, 2009, 250). The role of a SQA team is to verify a systematic execution of the rules

governing unit tests, code walkthroughs, and peer reviews.

SQA includes software testing which is treated separately in Section 2.3 because it is a broad

topic and is dominant in traditional (process-oriented) approaches to quality as well as Agile

approaches.

2.2.2 Software Quality Evaluation

Software quality standards prescribe guidelines for measuring and monitoring quality (Ward &

Venkataraman, 1999). Standards promote understanding of the development process and

communication between members. Quality models are used in conjunction with standards to

clearly define attributes of a high quality software product. Also, models can also specify

measures for evaluating the attributes and the entire product. In order to measure and

understand quality, different models have been developed for relating quality characteristics to

each other (Kitchenham & Pfleeger, 1996).

Although a detailed discussion about these models is not the main focus of this study, a brief

overview goes as follows. McCall’s quality model organises product quality as a hierarchy of

factors, metrics, and criteria (Kitchenham & Pfleeger, 1996). McCall’s model has been criticised

for subjectivity in the measurement of the metrics (Côté, Suryn, & Georgiadou, 2007). Apart

from the McCall’s model, the International Organisation for Standardisation (ISO) also

developed a software quality standard, ISO 9126, to facilitate assessment of software quality

(Botella et al., 2004). It defines six quality characteristics that a high quality software product

must exhibit. The attributes include correctness, integrity, usability, reliability, portability,

maintainability (Ward & Venkataraman, 1999, p. 2)

2.2.3 Software Quality Management

One important aspect to the software development process is quality management. This helps

in ensuring that quality standards are achieved (Gill, 2005). Software Quality Management aims

at defining processes for achieving quality while Software Quality Assurance reviews and

ensures that the processes are being followed (Runeson & Isacsson, 1998). A quality

management system must be documented in order to achieve effectiveness (Gill, 2005). The

Univ
ers

ity
 of

 C
ap

e T
ow

n

23

documentation should clearly detail standards and procedures that a development team must

observe and adhere to. Quality management initiatives must focus on ensuring that the team

recognises the factors that affect quality and take corrective measures. This requires upfront

establishment of quality requirements and subsequent monitoring for early detection and

correction of deviations. Finally, the initiatives must provide evidence that the system meets

required quality standards.

Three approaches to software process quality management are: Total Quality Management

(TQM), ISO 9000, and CMMI’s quality management. These approaches are discussed next.

Total quality Management

TQM “represents a style of management that is aimed at achieving long-term success by linking

quality with customer satisfaction” (Kan, Basili, & Shapiro, 1994). Software quality requires

strong management commitment and management should take responsibility to ensure that

quality is built into the processes (Ward & Venkataraman, 1999). Different techniques include

the use of statistical process control that provides insight into the development process (Ward

& Venkataraman, 1999). These techniques require that software quality be measured and

findings reported so that improvements could be made (Ward & Venkataraman, 1999). TQM

main elements are: customer focus, process, human side of quality, and measurement and

analysis (Kan et al., 1994).

 ISO 9000

The ISO 9000 standard is based on the premise that “a right production and management

system produces the right product” (Ward & Venkataraman, 1999, p.5). The standard relies on

heavy documentation for all the processes and procedures to promote control, auditability,

verification / validation and process improvement. Gill (2005, p. 2) ISO 9000 standard specifies

quality assurance aspects that best viewed as a network of interrelated processes. The ISO

9000/IS 14000 standard is not prescriptive on how the implementation of a system must be

handled, and leaves these details for developers. This standard takes a holistic view to quality

management and puts the responsibility on all people involved with the development of the

software.

Univ
ers

ity
 of

 C
ap

e T
ow

n

24

CMMI

The Capability Maturity Model Integration (CMMI) defines an approach to software process

maturity across five levels of maturity. An organisation has to achieve process goals stated at

each level before it can move to the next level (Ward & Venkataraman, 1999). As the

organisation moves up these levels, it software process improve. The five levels are: Initial,

Repeatable, Defined, Managed, and Optimising. As with the ISO 9000 standard, the CMMI puts

emphasis on process monitoring and continuous improvement. Unlike the ISO 9000, CMMI is

exclusively applicable to software development processes only (Ward & Venkataraman, 1999).

CCMI has grown to be a de facto standard in the software processes arena (Runeson &

Isacsson, 1998).

These traditional approaches to software quality have been criticised for their assumption that

process improvement leads to product quality improvement (Côté et al., 2007) . This

assumption leads to organisations prioritising process improvement at the expense of creating,

cultivating, and using effective product quality models. According to Kitchenham and Pfleeger

(1996) evidence that adherence to process standards ensures quality products is sparse. Rather,

these process standards ensure only uniformity and can institutionalize creation of poor

products into an organisation (Kitchenham & Pfleeger, 1996).

One other assumption in quality management is that the quality of the final product is directly

influenced by the quality of development and testing processes (Kayes, 2011). The next section

therefore discusses software testing as a critical component to achieving product quality.

Testing is discussed separately from Traditional Quality Assurance because it is also a critical

approach to Agile software development methodologies.

2.3 SOFTWARE TESTING

As the quality of software becomes increasingly important, the processes used to support and

ensure software quality are gaining momentous importance as well (Winter, Rönkkö, Ahlberg,

& Hotchkiss, 2008; Gill, 2005). Software testing is one such process. Testing is done to provide

Univ
ers

ity
 of

 C
ap

e T
ow

n

25

confidence in the quality of the software product. The quality of testing processes and

methodologies translates to level of quality of software products (Winter et al., 2008).

Testing is a key activity in SQA (Feldman, 2005) and a very important phase in a software

development life cycle (Owens & Khazanchi, 2009). According to Humphreys, as (cited in

Owens & Khazanchi, 2009, p. 258) “The goal of testing in Software Development Life Cycle

(SDLC) is to find and document defects”. It is important to note that SQA encompasses testing

and other processes as discussed in previous sections. This is contrary to a common believe in

some academic and practitioner works that SQA is Testing.

Effective and efficient testing and quality assurance can be realised by ensuring that the test

process, techniques, and tools are built upon the people and an enabling organisational culture.

This also requires the development team to understand the customer’s implied, expected, and

exciting requirements (Gill, 2005). The testing team must avoid taking shortcuts in testing,

reducing testing time, inadequate planning, poor user involvement, poor documentations, and

poor understanding of the application environment (Gill, 2005).

Software testing requires that the organisation define test processes, test cases and test plans,

testing techniques, methodologies, tools, standards, and testers. The output of software is a

report that shows summary of testing results. The results are reviewed for completeness and

rigour. The following are the foundations of software testing (Gill, 2005):

- Test process, test cases and test plan

- Techniques, methodologies, tools and standards

- The people and the organisation

A test plan aims at catching as many defects as possible and to provide a measure of quality

(Feldman, 2005). According to Feldman, a solid test plan requires agreed-upon requirements

and specifications. According to Godbole as cited in Owens and Khazanchi (2009, p. 257), test

cases are written to detect undiscovered defects. Writing test cases requires that requirements

be reviewed for completeness and accuracy. However, as software systems become more

complex, “software testing and evaluation become more difficult and its effectiveness falls

Univ
ers

ity
 of

 C
ap

e T
ow

n

26

below expectations” (Gill, 2005). Testing in traditional software development processes is

different than testing in Agile methodologies. It should be noted that the aim of this study is not

to give a detailed comparison between traditional and Agile testing but to present a

background on the field of SQA. The next chapter provides an introduction to Agile

methodologies as a precursor to a discussion on Scrum and quality achievement.

2.4 AGILE METHODOLOGIES

In 2001, a group of 17 practitioners and authors published the Agile manifesto summarised in

Table 2.1 adopted from Cho (2008, p. 189). The manifesto lays down fundamental principles

and values that recognised software development as an empirical process (Williams &

Cockburn, 2003). It views the process as one that requires teams to constantly inspect and

adapt accordingly. This contradicts sharply to the traditional way of thinking which view

software development process as linear and predictable through extensive upfront planning.

However, over the years, it became clear that this is highly unlikely because “requirements

change, technology changes, people are added and taken off the team, and so on” (Williams &

Cockburn, 2003, p. 40).

Highsmith and Cockburn (2001) state that traditional process management assumed that

deviations were a result of errors and therefore focused on continuously identifying and

measuring errors in an attempt to eliminate deviations. On the other hand, Agile methods aim

at employing a “variety of practices for constant feedback on technical decisions, customer

requirements, and management constraints” (Highsmith & Cockburn, 2001, p. 122). These

methods advocate for simple designs, self management, active customer involvement,

flexibility, and rapid delivery of value to the customer. It is important to note that Agile

methods advocate for “just enough method”, contrary to the believe that their quest for

flexibility renders them anti-method (Ågerfalk, Fitzgerald, & Slaughter, 2009, p. 317).

More Valuable Items Less Valuable Items

Individuals and interactions Processes and tools

Univ
ers

ity
 of

 C
ap

e T
ow

n

27

Working Software Comprehensive documentation

Customer collaboration Contract negotiation

Responding to change Following a plan

Table 2.1 Agile Manifesto

In light of limitations inherent in the traditional prescriptive approaches, Agile development

methodologies were designed to provide new ways of planning and managing software

development projects (Li, Moe, & Dybå, 2010a). Agile methodologies are characterised by:

incremental development, cooperative collaboration between customers and developers,

straightforward, and adaptive development processes (Abrahamsson, Salo, Ronkainen, &

Warsta, 2002). These methodologies offer better opportunities over process oriented

approaches (Abrahamsson, Salo, Ronkainen, & Warsta, 2002).

Most research studies comparing Agile and traditional approaches argue in favour of Agile in

terms of its ability to provide faster development cycle and improved speed to market (16 as

cited in (Li et al., 2010a)). It should be noted that Agile proponents do not claim that their

approach is suitable for all kinds of projects. However, the main focus is to satisfy the customer

when the software is shipped rather than at project initiation. This is made possible by the fact

that Agile approaches assume that change is inevitable during the life cycle of a project

(Abrahamsson et al., 2002).

Agile methodologies aim at overcoming some of the shortcomings of the traditional

methodologies. The iterative and incremental nature of Agile processes put emphasis on

customer involvement, and frequent software releases, shorter and faster development cycles

(Cho & Huff, 2011). Research reports indicate greater customer satisfaction, fewer defects, and

better adaptation to changing requirements (Cho & Huff, 2011). Highsmith and Cockburn (as

cited in Abrahamsson et al., 2002, p.14) note that Agile methods recognise the value of people,

effectiveness, and manoeuvrability as crucial for successful delivery of projects.

Univ
ers

ity
 of

 C
ap

e T
ow

n

28

2.5 SCRUM METHODOLOGY

2.5.1 Scrum

According to Schwaber and Beedle, (as cited in Abrahamsson et al., 2002, p. 29), the first

mention of Scrum in the literature referred to “an adaptive, quick, self-organising product

development process originating from Japan”. The following is a definition of Scrum:

“Scrum is a simple framework used to organise teams and get work done more productively and

with higher quality. It is a lean approach to software development that allows teams to choose

the amount of work to be done and decide how best to do it.”

(Sutherland & Schwaber, 2007, p. 11)

Scrum as an Agile approach emphasises flexibility, adaptability, and productivity. The focus is on

the effectiveness and agility during the life cycle (Schwaber, 1995, p. 10). It allows developers to

be adaptive within a complex, chaotic environment using imprecise processes. This

necessitates maximum flexibility and greater tolerance for changes in environmental variables.

The variables that influence release plans include customer requirements, time pressure,

competition and the required level of quality given the other variables (Schwaber, 1995).

Scrum is said to be an empirical process approach as opposed to a defined process approach

because it makes the assumption that “analysis, design, and development processes in the

Sprint phase are unpredictable” (Schwaber, 1995, p. 10).

“Scrum defines the systems development process as a loose set of activities that combines

known, workable tools and techniques with the best that a development team can devise to

build systems” (Schwaber, 1995, p.1). Scrum views the software development process as a

complex, unpredictable journey characterised not only by changes in requirements, but also by

changes in environmental and technical variables. One of the strengths of Scrum is its focus on

clearing any impediments during the life cycle (Schwaber, 1995).

The Scrum methodology provides a project management method that is suitable for situations

where it is not easy to make stable plans. According to Li et al. (2010a), scrum provides greater

Univ
ers

ity
 of

 C
ap

e T
ow

n

29

decision making power to developers at the operational level. It empowers teams to cope with

inherent uncertainty, requirements changes, incomplete requirements specification, and

ambiguity in software development (Sutherland, Johnson, & Jakobsen, 2008).

The Scrum framework is defined by three constituent parts: roles, ceremonies, and artefacts

(Cho, 2008; Marchenko & Abrahamsson, 2008). These are summarised in Table 2.2.

Roles Ceremonies Artefacts

Scrum Master Daily Scrum Sprint Backlog

The Team Sprint Planning Product Backlog

Product Owner Sprint Review Burndown Chart

 Sprint Retrospective

Table 2.2 the Scrum framework

2.5.2 Scrum Workflow

Scrum process follows an iterative and incremental approach to development (Schwaber,

2009). The process starts with a team reviewing the work it commits to do. After the

commitment, the team assumes independence to devise the best ways of achieving the

increment. At the end of the iteration, the team presents the work to stakeholders for

inspection, review, and adaptations. The Scrum process involves three phases: pre-game,

development, and post-game as shown.

The pre-game phase involves planning and architecture design sub-phases (Abrahamsson et al.,

2002).The planning sub-phase defines the system being built. This involves creating a Product

Backlog that contains all requirements that are known at the time. The Product Backlog items

are amenable to changes and additions as more or new requirements come to the fore. It also

includes prioritisation and estimation of the resources needed to implement the requirements.

The architecture design sub-phase produces a high level design of the system and the

architecture based on the Product Backlog.

Univ
ers

ity
 of

 C
ap

e T
ow

n

30

The development phase “is the Agile part of the Scrum approach” (Abrahamsson et al., 2002, p.

31). It involves constantly observing and controlling the various technical and environmental

variables that might change. The development of the actual system happens in Sprints with

each Sprint representing a two to four week iteration that produces a new working increment

to the system. Details of each Sprint are decided during a two-phase Sprint Planning meeting

whereby items to be developed during the Sprint are listed in a Sprint Backlog (Abrahamsson et

al., 2002). The Sprint Planning Meeting “begins with the Product Owner reviewing the vision,

the roadmap, the release plan, and the Product Backlog with the Scrum Team” (Sutherland &

Schwaber, 2007, p. 13).

Figure 2-1 Scrum methodology (Schwaber, 1995, p. 10)

Each increment represents properly tested and well written code converted into an executable.

The user operation of the functionality in help files or user manuals should accompany the

executable code. “This is the definition of a done increment and it should factor into how much

work a team can take in a Sprint” (Schwaber, 2009, p.2)

There are important characteristics to note about the Scrum methodology shown in Figure 3.

The first characteristic is that, the Planning and Closure phases are linear and well defined, both

in terms of processes, inputs and outputs (Schwaber, 1995). The Sprint phrase is empirical in

nature, undefined and uncontrolled, and requires external mechanisms to control and mitigate

risk, and improve flexibility (Schwaber, 1995). According to Koch (2005), the short increments

Univ
ers

ity
 of

 C
ap

e T
ow

n

31

that characterise Agile methods act as a risk mitigation mechanism. The Sprints are not linear,

and sometimes require trial and error to build knowledge in the process of evolving the product

(Schwaber, 1995). As mentioned before, the project remains open to environmental influences

such as time pressures and quality requirements during the Planning and Sprint phases.

2.5.3 Scrum Roles

Scrum defines only three roles namely: Product owner, ScrumMaster, and Team (Sutherland &

Schwaber, 2007; Marchenko & Abrahamsson, 2008; Schwaber, 2009; Schwaber, 2004). A brief

summary is given in Table 2.3.

Role Brief Description

Product

Owner

responsible for defining, prioritising, and changing product features, and

specifying release dates among other responsibilities

ScrumMaster

The ScrumMaster is a team leader and facilitates productivity, collaboration

between role players, resolving impediments, and coordinates the whole

development process. The ScrumMaster needs to have proper training to run

efficient Scrum meetings and provide relevant coaching to the team

Team

The team ideally has between five to nine members. This self-organising and

cross-functional team is responsible for development and delivery of project

goals. The mandate is to achieve the goals set for each Sprint by

autonomously setting its own pace and development approach

Table 2.3 Scrum roles

2.5.4 Scrum Ceremonies

Scrum prescribes four different ceremonies that should be adhered. These ceremonies occur at

the beginning of a Sprint, during the Sprint, and at the end of the Sprint. Table 2.4 gives a brief

summary of these cermonies (Abrahamsson et al., 2002; Sutherland & Schwaber, 2007;

Marchenko & Abrahamsson, 2008).

Univ
ers

ity
 of

 C
ap

e T
ow

n

32

Ceremony Description

Sprint

Planning

The Sprint Planning meeting also involves gaining commitment from

developers that they will achieve the goals of the Sprint.

Daily Scrum Daily Scrum meetings are held during the Sprint to discuss progress and

address impediments.

Sprint Review This meeting gives participants an opportunity to assess the increment and

redefine the direction of project. When the development of the system is

complete and agreement between involved parties is reached, the project

enters the post-game phase.

Retrospective Retrospective is an opportunity for a team to identify ways in which the

development process can be adjusted and thus improved. The main aim of

retrospective should be continuous improvement which is an ideal that must

be commonly shared by all team members

Table 2.4 Scrum Ceremonies

2.5.5 Scrum Artefacts

Scrum introduced a few artefacts used throughout a development process as described in Table

6.3. (Marchenko & Abrahamsson, 2008; Schwaber, 2009).

Artefact Description

Product

Backlog

The product backlog contains technical and business functionality to be

developed. The Product Owner controls the list and is in charge of properly

prioritising the list. The product backlog is never complete.

Burndown

Chart

Depicts the amount of work remaining across time and progress made.

Sprint Contains the work to be done in a Sprint. Unlike the product backlog, the Sprint

Univ
ers

ity
 of

 C
ap

e T
ow

n

33

Backlog backlog cannot be changed for the duration of the Sprint.

Table 2.5 Scrum Artefacts

Scrum works differently from traditional process control mechanisms which rely on detailed

plans, Gantt charts, and work schedule (Schwaber, 2004, p. xvii). The next section reviews the

literature on Scrum and software quality.

The next provides an overview of disparate empirical field studies on various aspects of Scrum.

2.6 DISPARATE FIELD STUDIES ON SCRUM

2.6.1 Overview

Although there is an increasing interest in Agile research from the academic community, the

field is still dominated by practices emerging in industry. According to Dingsøyr et al. (2012)

research on Agile methods has primarily focused on issues around adoption, test driven

development, pair programming, team dynamics, and challenges in distributed environments.

More research is therefore needed to shed light into how these appealing practices could

produce desired outcomes as claimed by practitioners (Abrahamsson et al., 2009).

2.6.2 Studies on Enablers of Quality

A few studies have investigated the use of quality achievement techniques in Scrum. Li et al.

(2010) found that constant collaboration amongst developers, early testing, iterative

development and continuous feedback improve defect correction. These findings were also

made by Sutherland et al, (as cited in Li et al., 2010). In addition to early testing, the authors

also concluded that knowledge sharing, retrospective, and daily meetings helped to improve

defect fixing efficiency. Another study, Mnkandla and Dwolatzky (2006), concluded that

allowing no changes until the end of a Sprint in Scrum is a way of preventing scope creep.

(Green, 2012) reports a product quality improvement after adoption of Scrum as a result of

value-driven decomposition of features, a clear Definition of Done, testing expertise, adherence

to the Definition of Done. Green acknowledges the role of engineering practices from XP and

top management direction in allowing in achieving better quality products.

Univ
ers

ity
 of

 C
ap

e T
ow

n

34

In a rating of teams at Adobe Systems, (Green, 2011) discovered that teams that adopted

Scrum without changing their processes to accommodate key practices, roles, and artefacts did

not achieve fruitful effectiveness. According to (Green, 2011) , proper adoption of Scrum lead

to improvements in quality and this improvement was made possible by assigning quality

assurance responsibilities away from SQA teams to development teams. Successful

implementation was also found to have a strong correlation with improved defect

management.

Cho (2008) found that a majority of developers valued the improved communication between

team member in Scrum and the increased customer involvement. In addition, the Scrum

ceremonies were identified as being very helpful. Caballero, Calvo-manzano, and Feliu (2011)

studied how an organisation attempted to improve project productivity by introducing Scrum

to assess the impact on efficiency and product quality standards. Their finding is that that

Scrum can improve productivity without compromising quality in a very small enterprise.

2.6.3 Studies on Challenges to Achieving Quality

While Scrum promises to offer greater control over development processes and improve

quality, Sutherland et al.(2008) found challenges faced in Scrum implementations. The

implementations in the cases studied do not meet basic Scrum requirements. For example, the

process does not result in fixed Sprint iterations to produce fully tested and working software.

In some cases, the product owner role is not clearly defined. In other cases, teams do not keep

a Burndown chart and do not know the velocity of software production thus making it hard for

the Product Owner to make release plans (Sutherland et al., 2008). As such, Sutherland et al.

(2008) advise software development organizations to consider introducing CMMI practices to

improve process maturity while using Scrum. In particular CCMI Level 3 list generic practices

that can be helpful to Agile software development.

According to Rong, Saho, and Zhang (as cited in (Caballero et al., 2011) the productivity and

quality in Scrum depends on the talent and capabilities of team members. Another weakness

noted by Timperi (2004) Scrum leaves too many aspects about quality management open and

Univ
ers

ity
 of

 C
ap

e T
ow

n

35

it needs practices from other Agile methodologies. If scrum is used independently it is suitable

in cases where validation is emphasised and verification not important (Timperi, 2004).

Cho (2008) found that the reduced documentation in Scrum and other Agile methodologies

made it difficult for some developers to work with existing code for the first time. They also

found that due to lack of documentation, new developers ask a lot of questions thus wasting

valuable time for the senior developers. Further, Cho also discovered that some developers had

a problem with collocation and working in an open plan. The problem is with distraction that

makes it difficult for developers to concentrate.

Scrum has been found to exert excessive time pressure and stress on developers thus making it

hard for them to carry out certain tasks such as refactoring (Li, Moe, & Dybå, 2010b). In this

case study, the authors also found that iterative development and early testing in Scrum helps

improve defect management. This study is one of the very few that focus on Scrum and aspects

of software quality assurance. The focus in this study is more on defect management and

defect density by comparing defect data from pre-Scrum phase with defect data from post-

Scrum phase.

Akif and Majeed (2012) identified a long list of challenges and issues encountered in Scrum

implementations. However, a majority of the issues identified and attributed to adoption of

Scrum seem to have been a result of poor implementation and less informed conception of

Scrum.

In summary, research on software quality faces the challenge of providing tools and

technologies that will help industry to use safe, dependable, and usable products within an

economic framework (Osterweil et al., 1996). One major challenge facing Agile researchers is to

ensure that their studies embrace both research rigour and relevance to industry (Dingsøyr et

al., 2008). Research rigour implies that the output of the study provides a better understanding

of the field. In order to achieve this, theories from other related fields should be employed.

Dingsøyr et al., (2008) advise that using methodologies such as grounded theory can help

achieve middle range theories.

Univ
ers

ity
 of

 C
ap

e T
ow

n

36

This study aimed to make contribution to both industry and academia by producing a middle

range theory that is grounded in data. The anticipated output of the research was greater

understanding of Scrum methodology from a quality assurance perspective. The study involved

collaboration with practitioners in the field.

The next chapter presents the research methodology which guided the study.

CHAPTER 3. RESEARCH METHODOLOGY

3.1 METHODOLOGY

This chapter presents and justifies methodological choices employed to build an exploratory

substantive theory on aspects of Software Quality Assurance (SQA) in Scrum. According to

Strauss and Corbin, (as cited in Tan, 2010, p. 99) a research methodology is a “way of thinking

about and studying social reality and a research method is a set of procedures and techniques

for gathering and analysing data”. A methodology therefore entails ontological and

epistemological assumptions about social reality. This chapter presents the research paradigm,

the research method, the research strategy, and the nature of data used. This chapter focuses

on the debates surrounding the methodological assumptions employed in this study, and the

reasoning behind the choices. The actual detailed specifics of how these ‘choices’ were used to

guide this study are presented in the Research Approach Chapter.

3.2 THE GROUNDED THEORY METHOD

According to Goulding (as cited in Matavire and Brown, 2011, p. 2) “a grounded theory is

defined as theory which has been systematically obtained through social research and is

grounded in the data”. Lehmann (2010) also backs this definition. While GTM is different from

general Qualitative Data Analysis (QDA) many of its tenets are not unique to it. Lehmann

(2010), states that the most prominent difference between GTM and other qualitative methods

is GTM’s approach to rigour. The difference between GTM and other qualitative methods can

be explained by the following tenets of GTM:

Univ
ers

ity
 of

 C
ap

e T
ow

n

37

 “Theory is emergent from empirical data rather than from inferences or existing

theories

 The constant comparison method enable theory generation during systematic collective

and analytic procedures

 Memo writing is the formulation and revision of theory throughout the research process

 The research process is flexible and creative” (Tan, 2010, p. 95).

Lehmann (2010) states that GTM places more emphasis on iterative data collection and analysis

and these iterations are much tighter than in other qualitative methodologies. The tight

coupling between data collection and analysis underpins theoretical sampling which proceeds

until no new insights emerge from the data. For data analysis, it is crucial that each incident of

data is compared instantly with all other incidents collected so far and this procedure must be

followed religiously (Lehmann, 2010).

The next section discusses the two strands of GTM by its founders and presents the preferred

rendition used by the researcher.

3.2.1 Glaserian versus Straussian GTM

Since the original publication of GTM, the method has been marred by disagreements between

its founders (Roode & Niekerk, 2009; Matavire & Brown, 2011). The debate surrounds the

canons of the methodology and the creators of the methodology disagreed on the right tenets

of the methodology. This debate has resulted in two alternative approaches namely ‘Glaserian’

and ‘Straussian’ approaches (Matavire & Brown, 2011). Glaser emphasizes adherence to the

original way of GTM and prefers the term Classic GTM. On the other hand, Strauss teamed up

with Corbin to produce an evolved form of GTM referred to as Evolved GTM. The differences

between these two approaches are articulated in (Roode & Niekerk, 2009) and the researcher

does not intend to engage in the debate between the methods as this has been extensively

dealt with in the literature.

Univ
ers

ity
 of

 C
ap

e T
ow

n

38

For the objectives of this study, the researcher opted to follow the Classic GTM as the best

approach to generate an exploratory and grounded account of aspects of SQA in Scrum for the

reasons provided in the next section.

3.2.2 Classic GTM

Glaser emphasized theory emergence by data conceptualization, whereas Strauss and Corbin

“introduced a new coding process with a strong emphasis on conditions, context, interaction

strategies and consequences” (Tan, 2010, p. 95). Glaser objected strongly to this and believed

it was ‘forcing’ of the concepts as opposed to allowing the theory to emerge (Urquhart et al.,

2010). The lack of prescriptions in Classic GTM is considered to be a strength because it offers

researchers flexibility and creativity for conceptualisation (Roode & Niekerk, 2009). This is one

of the main reasons why the researcher opted to use Classic GTM over other approaches. The

researcher believed that going into a previously unexplored territory requires maximum

creativity and freedom. The researcher believed that creativity and systematic application of a

unified whole of Classic GTM tenets would result in a rigorous theory generating process than a

forced confinement.

The Classic GTM researcher has a range of theoretical coding families to use for conceptualising

how categories relate to each other (Hoda et al., 2012). The coding families include: The Six C’s

(causes, contexts, contingencies, co-variances, and conditions), Process (stages, phases,

passages etc), Degree family (limit, range, intensity, etc), Dimension family (dimensions,

elements, divisions) and many more. Glaser did not prescribe any specific coding paradigm to

be followed, and espouses that a researcher can add to the coding families (Roode & Niekerk,

2009). It is important to note that according to Glaser (as cited in Hoda, Noble, & Marshall,

2012, p. 624) theoretical codes are not strictly required although they enhance the quality of a

GTM product. It was therefore important for the researcher not to be restricted or confined to

any particular paradigm because the research objectives were kept as broad as possible from

the on-set and the researcher wanted to remain open to the emerging theory.

Univ
ers

ity
 of

 C
ap

e T
ow

n

39

Furthermore, the fact that the study was conducted in a relatively unexplored territory means

the researcher needed to be as open to emergence as possible. This is more achievable through

the use of Classic GTM over other approaches because with Classic GTM, the researcher does

not start with a research question but investigates a main concern of subjects (Roode &

Niekerk, 2009). This allowed for emergence of concepts that had previously not been

uncovered in Scrum and SQA. This also allowed the researcher to remain open to what the data

was indicating and, through constant comparisons, the researcher arrived at grounded

concepts that illuminate aspects of SQA in a Scrum environment.

The Classic GTM is not without criticism though. Roode and Niekerk (2009) state that the Classic

GTM does not follow traditional research which makes it difficult for researchers to justify the

need for their studies. In addition, authors such as Suddaby (as cited in Matavire & Brown,

2011) state that it is illogical to conduct reasonable research without a clearly defined research

question. Further, the Classic GTM mandates that researchers must not start with research

questions and extensive literature review (Roode & Niekerk, 2009) in order to avoid

preconceptions that may lead to theory testing instead of theory building and this goes against

conventional university post-graduate research requirements. Glaser defends Classic GTM

against the criticism by advising researchers to use all the tenets as one package instead of

picking some and omitting others (Glaser & Holton, 2004).

It is important to note that the recommendation by Glaser does not mean that researchers

should completely discard literature review before taking up the research work as most studies

are supposed to be situated in the context of current research work (Adolph, Kruchten, & Hall,

2012). For this study, the researcher also had to provide a descriptive account of Scrum and

SQA as a basis for further discussion and as a sharpening mechanism for effective conversation

with practitioner participants (Hoda, Noble, & Marshall, 2012). Furthermore, the researcher

needed to conduct the literature review in order to stimulate ideas for research and identify

gaps in the extant literature on Scrum and SQA. The reviewed literature helped strengthen the

realisation that the IS research community has given little attention to the Scrum methodology.

In addition, the researcher had to provide literature review as part of requirements by the

University of Cape Town for partial fulfilment of a Master of Commerce degree.

Univ
ers

ity
 of

 C
ap

e T
ow

n

40

3.3 RESEARCH PARADIGM

Ontology is concerned with “whether social and physical worlds are objective and exist

independently of humans, or subjective and exist only through human action” (Orlikowski &

Baroudi, 1991, p. 8). Ontological assumptions inform epistemological beliefs. An epistemology

represents as a set of philosophical assumptions about the nature of phenomena and how valid

knowledge about these phenomena may be generated (Orlikowski & Baroudi, 1991).

Epistemology is concerned with “what is knowledge” and “how we obtain valid knowledge”

(Hirschheim & Klein, 1985). The three main epistemological perspectives in IS research are:

Intepretivism, Positivism, and Critical Research. These philosophical perspectives are discussed

in detail in (Orlikowski & Baroudi, 1991).

While IS research had traditionally followed the positivist paradigm (Orlikowski & Baroudi,

1991), the researcher found it appropriate to follow the interpretive paradigm in order to

achieve the research objectives. In addition to the research objectives, the interpretive

paradigm is compatible with GTM because GTM can be used in any paradigm (Urquhart, 2001;

Lehmann, 2010). The interpretive paradigm was particularly attractive because it makes it

possible “to understand how members of a social group, through their participation in social

processes, enact their particular realities and endow them with meaning, and to show how

these meanings, beliefs and intentions of the members help to constitute their social action”

(Orlikowski & Baroudi, 1991, p. 13). This was important for this study as the aim was to

understand aspects of SQA work in Scrum from the perspectives of the practitioners at SAIT.

3.4 THE CASE STUDY STRATEGY

 “The case study is a research strategy which focuses on understanding the dynamics present

within single case settings” (Eisenhardt, 1989). Klein and Myers (1999) state that case study

research is now a valid and accepted strategy in IS research. It is important to note that the

researcher sought to gain deep understanding on the phenomenon and therefore opted for a

single-case design.

Univ
ers

ity
 of

 C
ap

e T
ow

n

41

The combination of GTM and case study methodology offered several advantages. As stated

previously, both these methodologies are suitable for exploring emerging areas. Further, the

use of comparative analysis of evidence allows researchers to reconcile conflicting or

paradoxical evidence (Eisenhardt, 1989; Fernández, 2004). This proved critical when the

researcher had to confront differences in the meanings and value attached to different SQA

practices by the participants. Comparative analysis also helped to implicitly build validity into

the findings because the data was questioned from the beginning to the end. In addition, the

close connection between the data and theory renders the theory amenable to further testing

and expansion or falsification (Eisenhardt, 1989). Finally, one adavantage of the case study

methodology is ’face validity’, of which, according to (Myers, 2009), implies a representation of

a real life story. According to Myers, plausibility is the key factor in interpretive case studies and

this is contrary to the focus on validity and reliability in positivist studies.

3.5 RELIABILITY AND VALIDITY IN CASE RESEARCH

Fernández (2004) advises researchers using both GTM and case study methodology to explicitly

state the methodology driving their research work. It is important at this juncture to state that

this research study followed GTM canons not canons of the case study methodology. According

to Fernández (2004) it is imperative that true emergence of theory is not distorted by tenets of

the case study methodology.

For achieving reliability and validity, Glaser (2004) recommends the use of GTM’s procedures as

a methodological whole whereas Yin, as cited in (Voss, Tsikriktsis, & Frohlich, 2002) espouses

the use of pattern matching, explanation building, time-series analysis, use replication logic,

case study protocol, and case study database. According to Glaser as cited in (Adolph, Hall, &

Kruchten, 2011, p. 495) validity in GTM is achieved after “much fitting of words, when the

chosen one best represents the pattern”. Klein and Myers (1999) argue that the criteria for

evaluating case study research as stipulated in (Benbasat et al., 1987) and (Voss et al., 2002) are

inappropriate for interpretive research as followed in this study. Last but not least, interpretive

case studies have been mistakenly criticised for lack generalizability (Klein & Myers, 1999).

This study closely adhered to GTM’s canons as demonstrated in the research approach chapter.

Univ
ers

ity
 of

 C
ap

e T
ow

n

42

It is therefore important that GTM studies are not subjected to validity and reliability concerns

as mentioned in Voss et al., (2002).

Apart from case methodology demands, Glaser (2004) states that a GTM product is not a

“factual description” which is often a demand in pure Qualitative Data Analysis (QDA). Glaser

emphasises that GTM is not concerned with producing accurate and descriptive facts

demanded in QDA. The main focus is on producing plausible and grounded conceptualisation

integrated into theory. The theory is open to falsification, modification, and/or extension

through further constant comparative analysis.

GTM canons such as comparative analysis and simultaneous data collection and analysis act as

control mechanism to curb researcher bias (Fernández, 2004). Theorectical Meoming is

another tenet of GTM (explained in Research Approach Chapter) which curbed deep-seated

assumptions from the researcher about the substantive area. These tenets and how they have

been employed in this study are clearly articulated in the Research Approach Chapter on data

collection and analysis. It is also important to note that the GTM tenets can only serve to limit

researcher bias but cannot completely prevent it.

3.6 QUALITATIVE VERSUS QUANTITATIVE DATA

According to Glaser (2004, p. 9) GTM can use any data because it is independent of the nature

of data (Lehmann, 2010) and should not be restricted to any ontologies/epistemologies

(Lehmann, 2007). For the purpose of this study the researcher decided to use qualitative data

through interviews in order to gain richness from textual accounts. Appendix A provides a base

guideline used in all interviews.

According to Myers (1997), qualitative research requires collection of qualitative data through

mechanisms such as interviews, documents, and participant observation. Interviews formed the

major mode of data collection for this study. There are three types of interviews that available

to researchers (Myers, 2009). These are: structured interviews, semi-structured interviews, and

unstructured interviews. According to Myers (2009), unstructured interviews employ very few

pre-formulated interview questions. Structured interviews require the use of, and adherence to

Univ
ers

ity
 of

 C
ap

e T
ow

n

43

pre-formulated interviews. Semi-structured interviews offer an opportunity to pre-formulate

interview questions as well as some degree of openness during the interview. The researcher

used semi-structured interviews in most cases. The Research Approach Chapter provides more

details on the actual data collection specifics during the course of this study.

The researcher drew inspiration from Glaser (2004) in his quest to dispel strong emphasis on

data accuracy and trustworthiness as being concerns of the mainstream qualitative data

analysis. For this study, field notes were used only as a commentary after team meetings or ad

hoc conversations. It is important to state that it was also not easy to capture impressions

through observations on quality assurance processes because the researcher was not a

member of the Portal Project. However, the researcher had many discussions over lunch time

with friend developers about various aspects of SQA emerging from the data such as absence of

a dedicated tester, code reviewing, and developer testing. In some cases, most of what they

said was already captured in prior formal interviews and did not add anything analytically to the

study therefore their points were not written down.

CHAPTER 4. CONTEXT DESCRIPTION

4.1 CASE ORGANISATION

The research took place at SAIT, a South African organisation in the Information Technology (IT)

services sector. SAIT specializes in business and IT consulting. The organisation began

operations in 1997, has branches in the United Kingdom, and is head-quartered in South Africa.

SAIT’s key offering is to partner with clients by providing expert IT solutions to business

Univ
ers

ity
 of

 C
ap

e T
ow

n

44

problems and IT-enabled change programmes which often involve business analysis and

software development. In 2011, the organisation had 150 full time employees in its payroll.

In the software development services arena, SAIT provides technology consulting which

includes software product development and enterprise architecture consulting to big and

medium size organisations. It also develops software for its internal business areas. The

department responsible for delivery of software development services is known as Software

Services Delivery (SSD). At the time of data collection, SSD had four software development

teams working on different client and internal projects using Microsoft Dot.Net and Java

technology platforms.

4.2 PROJECT BACKGROUND

In 2006, departments at SAIT expressed the need for development of a custom solution to

consolidate internal business processes as well as streamline client-specific contractual

processes. This lead to the development of a small employee management system for general

human resources functions and was called Staff Information Database (SID). In addition to

serving specific business needs, SID was also used as a proof of concept application for the then

new Google Web Toolkit (GWT) framework for developing rich internet applications. It was also

used as a ‘playing-ground’ for Java developers who were not contracted to a specific client

project. At the time of this study, the Portal Project was still under development.

In 2010, the organisation decided to revamp the SID and strategise its development in a

modular approach which would lead to design and development of an organisational portal –

the ‘Portal Project’. From a technical perspective, SID’s rich functionality had outgrown its initial

design and needed architectural redesign.

The aim of Portal Project is to allow for the efficient sharing of data and allow for easy

interactive functional behaviour to be readily available. The idea is to give employees an

opportunity to make a meaningful contribution to their workplace. The ‘Portal Project’

development project is the main focus of this study. The development team for this project will

be referred to as the project team.

Univ
ers

ity
 of

 C
ap

e T
ow

n

45

As part of a broad strategy, the management at SAIT decided to commoditize the product by

customizing and installing cloud based instances for different clients on demand. The way it

works is that each client selects modules of the system that it wants to use and specifies

custom functionalities or features that it wishes to have. The instance is customized to meet

the client’s requirements. In most cases, the client instances comprise of changes to themes,

colours, and screen layouts. The core functionality of selected features is almost always the

same with minor tweaks to suit client specific business processes.

4.3 THE PROJECT TEAM

A Project Board was set up to drive the vision of the product when the organisation decided to

strategise Portal Project in 2010. This vision has been driving the product backlog. The CEO

heads the Project Board and is the official Product Owner. The core development project team

is made up of Computer Science and Information Systems Honours graduates from leading

South African universities. The project team roles were as follows: eight programmers, one

software analyst, one business analyst who ‘shadows’ the Product Owner, two user experience

(UX) developers, and the ScrumMaster. It is important to note that there was no dedicated

tester at SAIT. The team is responsible for all testing. Table 4.1 gives a breakdown of the project

team.

In addition to their academic qualifications, the developers had each written a number of Java

certification examinations such as Sun Certified Programmer for the Java 6 Platform, Sun

Certified Web Components Developer for the Java 5 Platform, and Core Spring Training. This

team constantly engaged in identifying and researching new technology frameworks to improve

its toolset. For example, towards the end of the study, one lead developer had just completed

research on testing strategy and how to incorporate and follow Test Driven Development.

Job Position Project Team Role Experience

Senior Software Project Manager ScrumMaster 11 Years

Application Architect Developer 12 Years

Lead Developer 2 Developer 7 Years

Univ
ers

ity
 of

 C
ap

e T
ow

n

46

Lead Developer 2 Developer 6 Years

Developer 2 Developer 4 Years

Developer 2 Developer 4 Years

Developer 2 Developer 2 years

Developer 1 Developer 1 Year

Developer 1 Developer 1 Year

Software Analyst Software Analyst 3 Years

Business Analyst Product Owner 4 Years

Lead Developer 2 UX Developer 6 Years

Front End Developer UX Developer 3 Years

Table 4.1 Team Composition

4.4 THE HISTORY OF SCRUM AT SAIT

SAIT piloted Scrum in 2010 as part of their broader change in strategy. Portal Project was to be

used as a pilot project to introduce Scrum in the organisation. The release for Sprint 1 was

scheduled for July 2010. The core team started scrumming officially on the 21st July 2010. Prior

to that, the organisation employed a waterfall-based development methodology. The rationale

behind the move to Scrum was to curb some of the difficulties experienced with waterfall

model on SID and client projects. Some of the frustrations on waterfall based development in

the context of SAIT can be seen from the Wiki extract below written by one of the key

developers in 2010:

“Current ERM Portal development for internal projects is waterfall based:

1. Consultants have workshops with the client and write up a spec

2. Developers implement the system using very little from the spec (lots is missing, what is

there has not been thought through well enough, client doesn’t know what they

want/need yet etc.)

3. Developers leave the project and go onto higher priority billable work

Univ
ers

ity
 of

 C
ap

e T
ow

n

47

4. Consultants and the client go through a formal test cycle and want changes and bug

fixes but very little development time is available”

The organisation therefore decided to test Scrum on its internal project before using it on client

projects.

4.5 SCRUM IMPLEMENTATION BY THE PORTAL PROJECT TEAM

The project team GreenHopper software as a tool for visualizing Scrum project management.

The software provides a Planning Board functionality that allows teams to manage backlogs for

each iteration. It offers dragging functionality that allows users to order items, and move them

across stages of development. It allows members to break down stories into technical tasks

reflecting estimate, status, and version. The tool offers the ability to track and monitor

burndowns and schedules. In addition to GreenHopper, the team also uses Git for version

control and hosts the project on GitHub. The team also uses Hudson for continuous integration.

The Scrum process workflow consists of five phases: New, Ready, In Progress, Ready to be

Tested, In Testing, and Complete. This workflow reflects steps through which a Story has move

before it is declared as ‘Done’. The ‘Ready to be Tested’ and ‘In Testing’ steps are particularly

important steps to quality development. It is in these two steps where code reviews and

developer testing take place. A story has to be code reviewed before it can be developer tested.

After code review feedback has be incorporated, the story is tested, and marked as ‘Complete’

if the testing did not uncover bugs.

Each Sprint takes 2 weeks, at the end of which follows a retrospective meeting to determine

what worked well, lessons learned, problems, and areas of improvement. At the beginning of

each Sprint, which is normally on a Wednesday, the team holds Sprint planning and review

meetings. During this meeting, work done during the Sprint is analysed and progress is

reflected by the Sprint Burndown chart. The Project Board and any interested people attend

the review meeting.

The Sprint planning meeting is divided into two parts. Part I focuses on assigning work to the

Sprint, sizing backlog items, and determining resource capacity. Part II focuses on identifying

Univ
ers

ity
 of

 C
ap

e T
ow

n

48

tasks that the team commits to undertaking during the Sprint and producing the Sprint Backlog.

Before the planning meeting, the Scrum Master and Product Owner should have produced the

Sprint Backlog.

CHAPTER 5. RESEARCH APPROACH

This chapter presents a confessional account (Schultze, 2000) of the research process. It details

how the research process unfolded from the beginning to the end. The main focus is on the

application of an integrated set of Classic GTM tenets throughout the research process. The

theorisation process was not straight forward and was non-linear. Figure 5-1 depicts how the

research process explained in this chapter unfolded. This figure is rendition of a figure in Hoda

et al. (2012) adopted and modified here to provide more detail and clarity on how this

particular research process enfolded.

Univ
ers

ity
 of

 C
ap

e T
ow

n

49

Figure 5-1 The Research Process: Applying Classic GTM – adopted from (Hoda et al., 2012)

Section 5.1 details data collection while Section 5.2 details general Classic GTM tenets such as

Constant Comparison. Section 5.3 details the Data Analysis process through the three levels of

coding while Section 5.4 provides an overview of theoretical saturation, delimiting of the

theory, and theoretical sorting.

5.1 DATA COLLECTION

In retrospect, data collection comprised three phases: an initial exploratory phase (Phase 1),

the formal phase (Phase 2), and the selective phase (Phase 3). It is important to note that these

phases were not designed in advance but were guided by the emerging theory. Table 5.1

provides a list of participants, their respective roles, and the data collection phase in which they

Univ
ers

ity
 of

 C
ap

e T
ow

n

50

participated. It is important to note that the researcher did not focus solely on members of the

Portal Project. Some participants, such as Participant 9 and Participant 8 were not members of

the Portal Project.

The researcher started discussing his intentions with senior stakeholders (software

development leadership) in October 2011. Phase 1 took place from October 2011 to early 2012

through informal meetings. This exploratory phase started with conversations with two initial

participants where the researcher discussed areas of concern within SAIT. The participants

emphasised software testing as an area of concern. The researcher decided to explore more

options and organised an ‘initiation’ meeting with three senior employees: the Head of

Software Operations, the ScrumMaster, and the Support Manager. The purpose of that meeting

was to discuss the broad area of interest and to gain insights into what particular areas were

pressing to SAIT. Options emerging from the meeting included focusing exclusively on the role

of testers in Scrum, the impact of dedicated testing on productivity, customers’ perceived

quality of products from SAIT, and Software Quality Assurance.

After the first initiation meeting, the researcher explored documents that detailed the context

of the Portal Project, the history, and the implementation of Scrum. These documents provided

an understanding of the case organisation (SAIT) and of the Portal Project. Lessons learned

from this phase helped narrow down the research problem. This is valid in Classic GTM because

“the researcher works with a general area of interest rather than with a specific problem until a

problem is identified” (Adolph et al., 2012, p. 1271). The outcomes of Phase 1 included clearly

articulated research objectives, an understanding of different SQA issues important to SAIT, and

list of possible participants for interviewing.

Formal interviewing, transcribing, and data analysis (Phase 2) and Phase 3 took place from

March 2012 until end October 2012. These two phases comprised of formal recorded

interviews and ad hoc unrecorded conversations. Phase 2 comprised of eight formal and

recorded interviews. The number and the choice of participants for these phases was not pre-

conceived. The researcher was guided by theoretical sampling (explained in Section 5.1) and

the emerging theory. According to Adolph et al. (2012, p. 1273) “the sampling strategy must

Univ
ers

ity
 of

 C
ap

e T
ow

n

51

promote the development of sufficient concepts to support a conceptually dense grounded

theory”. Theoretical sampling provided an opportunity to assess the emerging concepts and

decide on the next participant. Deciding on the very first participant for the formal interviewing

phase was easy because it was based on the information gathered during Phase 1. This decision

can also be seen as a judgemental sampling (Marshall, 1996) and also as opportunistic because

Participant 1 had been part of Phase 1, was about to leave SAIT, had interest in software

testing, and the researcher had grown ‘comfortable’ around him.

Throughout Phase 1 and Phase 2, the Head of Software Operations acted as a co-researcher

and had vested interest in the thesis. He was also available to discuss different ideas that he

had on improving the software quality approach at SAIT. He was always willing to communicate

his vision and the problems he had noted since joining SAIT and became the main source of

data during the first phase. He also instructed the team leaders to give the researcher access to

both the GreenHopper software (visualisation of the Scrum process) and Git-Hub mailing list in

order to have access to all mails shared after code reviews.

The interview questions were always tailored for individual participants based on their specific

role in the team, the level of seniority and their experience. This helped because senior

participants were more aware of issues around context of development, the rationales behind

the development process and SQA practices, and the reasons behind presence or absence of

some important SQA resources such as a Dedicated Tester. The junior participants were helpful

in giving insights about operational matters, learning aspects, and experiences during various

Scrum ceremonies. This approach helped maximise the richness of data from each interview.

Tailoring questions for individual participants does not mean the questions were overly

different. The theme in the questioning was always the same as stipulated in Appendix A. Each

interview took its own trajectory depending on the openness of interviewee and atmosphere.

Some participants were calm and relaxed and open to discuss. Others were more defensive and

it was difficult to coax information from. After the third interview, the researcher decided to

ask participants for a ‘chat about my thesis’, not an interview. The researcher also stopped

Univ
ers

ity
 of

 C
ap

e T
ow

n

52

carrying a printed list of questions to the interviews. This improved the richness of data

collected because most participants were warm and welcoming.

Prior to each interview, the researcher detailed specific information to be collected based on

the needs of the emerging theory, insights from prior interviews, and areas marked for further

exploration in prior interviews. After each interview, the researcher captured memos about

impressions of the interview. As the data collection evolved, the researcher used ideas and/or

questions captured in memos and the emergent story to decide on next data to collect. The

memos captured questions about gaps on the emerging theory, areas that needed further

clarification and areas that had seemingly conflicting evidence. For example, Participant 6 had

voiced concerns around the nature of code review process in the organisation. The participant

was not satisfied with the fact that some developers liked to impose their specific style of

writing code in the feedback they gave during code reviews. The researcher followed this up in

subsequent interviews and learned of ‘the diminishing value of code reviews’ which is one of

the properties of the Code Reviews concept of the Adopted Practices category (Details on the

categories can be found in the Findings Chapter).

Phase Participant Job Position Experience

(Years)

1 (Exploratory) Head Of Software

Operations

21

1 (Exploratory) Business Analyst 2

1 & 2 Participant 1 Business Analyst 5

2 Participant 2 Senior Business Analyst 7

2 Participant 3 App. Architecture 10

Univ
ers

ity
 of

 C
ap

e T
ow

n

53

2 Participant 4 Senior Software Project

Manager

9

1& 2 Participant 5 ScrumMaster 11

2 Participant 6 Lead Developer 2 7

2 Participant 7 Business Analyst 2

1 & 2 Participant 8 Support Manager 7

3 Participant 9 Head of Regional

Operations

11

3 Participant 10 Business Analyst 4

3 Participant 11 Lead Developer 2 6

3 Participant 12 Developer 2 4

3 Participant 13 Developer 2 2

Table 5.1 List of Participants

From the beginning of selective data collection phase (Phase 3), the researcher took a draft

diagram of the emerging theory to the interviews. At this stage, the interviews focused on a few

follow-up questions from the previous interviews in addition to specific questions centred

around the emerging core category – Meeting User Expectations. Further questions focused on

the two overarching themes emerging from the data: challenges and innovations to overcome

the challenges in light of the fact that Scrum does not prescribe any techniques or rules for

implementation of SQA processes. After the initial questioning, the researcher would introduce

the interviewee to what has emerged so far and would let them say more or query some of the

ideas captured in the mock up theory. Keeping the interviewing process this way enabled room

for comments and differences in opinion which reflected differences in how they experienced

various SQA practices. It also sharpened thinking around the naming and the definition of the

main categories.

During Phase 2 and Phase 3 the researcher also observed daily Scrum meetings. The most

important thing noted from the observations was the nature of collective effort, knowledge

sharing, and mentoring. Transcribing the interviews was a laborious and time consuming

Univ
ers

ity
 of

 C
ap

e T
ow

n

54

exercise even though the immersion in data proved invaluable throughout the constant

comparison process.

5.2 CANONS OF CLASSIC GTM

5.2.1 Data Incidents, Concepts, and Categories

Data analysis in GTM focuses on generating categories and their concepts. The concepts

consists of initial codes which are labels assigned to data incidents. The incidents which are

sometimes called indicators, are often captured in the words of participants (Adolph et al.,

2011, p. 494). Glaser uses the terms “concepts” and “categories” interchangeably, but to avoid

confusion, the researcher chose to follow (Adolph et al., 2012) by thinking of concepts as the

basic building blocks of theory and categories as a grouping of concepts. “Concepts are often

behaviours or factors affecting behaviours, which help to explain to the analyst how the basic

problem is resolved or processed” (Adolph, Hall, & Kruchten, 2011, p. 493). Categories are

therefore concepts at higher level of abstraction.

5.2.2 Constant Comparative Method and Rigour in Classic GTM

Constant comparative method entails systematic and simultaneous collection and analysis of

data. Constant comparison is seen as a core strategy for producing a grounded theory

(Matavire & Brown, 2011). This strategy is based on a concept-indicator model in Figure 5.1

(Adolph et al., 2011) and involves comparing at three different levels: The first level involves

comparing data incidents to data incidents to clarify uniformity (Glaser & Holton, 2004).

Incidents labelled under the same concept are compared to ensure to fit and workability

(Urquhart et al., 2010). It involves constantly comparing and contrasting incidents as they

emerge from the data to distil similarities, differences and degrees of consistency. The second

level compares data incidents to generated concepts to establish theoretical properties of

generated concepts. The third level comparisons focus on comparing concepts to concepts.

Univ
ers

ity
 of

 C
ap

e T
ow

n

55

Figure 5-2 Concept indicator model comparing subsequent incidents with concept (Adolph et al., 2011)

Table 5.2 presents the emergence of an example concept (Capacity Constraints) and indicators

compared and aggregated into the concept. A full list of all indicators and data fragments for all

concepts in the final theoretical framework is listed in Appendix B. Capacity Constraints is one

of the key issues that came up as a result of the absence of dedicated testers. It relates to

knowledge, skill, and time demands placed on business analysts and developers for them to be

good at their respective disciplines and also be good at testing. Comparison between the

indicators that made up Capacity Constraints concept reveals that the capacity constraints

range from analysis work to development work. Business Analysts in a team that does not have

Dedicated Testers are required to facilitate and oversee the whole testing process while also

taking care of requirements analysis.

Further comparison reveals that developers are also required to write code, to test, and fix the

bugs and this leads to Workload Overheads. This also means that they are required to be good

developers and also be good testers.

The resulting dimensions for the Capacity Constraints concept are:

- Capacity: The ability to fulfil both analysis role and a tester’s role

- Pressure: The amount of work and deadline pressures. When deadlines are tight, testing is

always the first to be pushed aside.

- Expertise: The need for developers to be good programmers as well as being good testers.

This applies to business analysts as well.

Univ
ers

ity
 of

 C
ap

e T
ow

n

56

Concept Indicators Data fragments

Capacity

Constraints

Multiple pressures “Where we trying to work in this area of multiple, uhm,

I suppose pressures”

 Increased Capacity

Demands

“so at one point in time, that person is going to have a

dual role at the same time, which means there is going

to be increased pressure on capacity required for that

person”

 Duality of Roles “so you are asking an analyst to do an analyst job but

also to be facilitating a software testers role“

 Workload

Overheads

“Obviously with all the testing done by the team there

is an overhead.”

 Required Expertise

(lack of)

“Developers are traditionally not good Testers”

Table 5.2 Concept-Indicator model and emergence of Capacity Constraints

A full list of all indicators and data fragments for all concepts in the final theoretical framework

is listed in Appendix B. The Data Analysis section in this chapter provides more detail on the

coding process.

Univ
ers

ity
 of

 C
ap

e T
ow

n

57

Figure 5-3 Constant comparisons for Capacity Constraints

To make the first level comparisons more explicit, the researcher coded at both sentence and

paragraph level. Coding at the sentence level improved immersion into the data and this made

comparisons between incidents in different interviews easy. Another factor that contributed to

making this process possible was the transcription of recorded interviews. The researcher used

both Microsoft Word and Microsoft Excel to perform comparative analysis. Microsoft Word was

used for initial coding and the codes together with memos for each code were written as

‘Comments’ on the right panel. After initial coding, the researcher transferred the initial codes,

the data excerpts, and the memos into Microsoft Excel columns for further comparative

analysis (see Appendix B). The initial codes were kept as descriptive as possible. During the

process of comparing incidents, the researcher constantly reverted to memos to regain

reasoning, to challenge and refine own thinking. Using Microsoft Excel, the researcher was

able to filter through similar codes and do comparisons. At later stages of the study, the

researcher would filter by concepts to compare all initial codes under the concept, or filter by

categories to compare all concepts under the categories and their initial codes do further

refining.

There is no grounded theory without constant comparison (Fernández, 2004). This process

forces a researcher to think widely about a category by considering its dimensions, conditions

Univ
ers

ity
 of

 C
ap

e T
ow

n

58

that minimise or pronounce it, its consequences, and how the category relates to other

categories and to its properties (Glaser, 1965). It improves consistency and minimises bias. It

also refines definitions given to concepts by constantly comparing and renaming data incidents

and concepts. The aim is to ensure that the generated concepts fit the data and are workable

(Urquhart et al., 2010). This process is a key component of GTM’s procedures for ensuring

rigour in order to discover theories that enhance understanding, explanation, and prediction of

phenomena under investigation (Lehmann, 2010).

Details of the coding process through the three levels of coding are discussed in the Data

Analysis section.

5.2.3 Theoretical Sampling

Theoretical sampling is the process through which a researcher jointly collects, codes, analyses

the data, and uses the analysis to decide on what data in needed and where to find the data

based on the emerging theory (Adolph et al., 2011) . It refers to “the process whereby the

researcher selectively samples the next data to collect whilst jointly collecting, coding and

analysing the data” (Roode & Niekerk, 2009, p. 101). The properties, dimensions, and variations

of generated categories dictate theoretical sampling (Strauss & Corbin, 1990). As a researcher

moves from one interview to the next, he/she is guided by the concepts that emerged from the

previous round, and it is important that he/she watches for reoccurrence of important concepts

from previous interviews in the next batches of data. This process cannot be pre-determined

because it is driven by the emerging theory. It differs from purposeful sampling in that, it is

directed by the emerging theory (Matavire & Brown, 2011).

The researcher sought comparative incidents through theoretical sampling with the sole

purpose of generating categories and their properties drawing inspiration from Glaser and

Holton (2004). For example, Participant 2 mentioned that although the team did code reviews,

he still believes that the level of quality is not good enough. He had also complained about the

quality of testing from developers. He further mentioned that he believes the quality is not so

good because the developers are subjected to pressure to finish as many stories as possible

Univ
ers

ity
 of

 C
ap

e T
ow

n

59

within a sprint. He then went to suggest that the reason for the scrapping off of one release

was because of poor quality.

Based on the analysis of the data from Participant 2, the researcher had to find out more about

the mechanisms put in place for ensuring code quality, the experiences of developers with

testing, the focus on quantity of stories, and why there were no dedicated testers. The

researcher therefore saw it fit to look for a more senior Participant, who would be in a good

position to provide information about quality control mechanisms, sprint planning decisions,

and hiring of personnel at SAIT. For this, Participant 3 - an Application Architect - was identified

as the most senior member of the development team and thus the right candidate for the third

interview. He stressed the importance of ‘developer testing’ and ‘code reviews’. He mentioned

that developer testing as part of the ‘process workflow’ was new to SAIT. He mentioned that

their approach had evolved and that their estimation process had improved. He however

bemoaned the ‘workload overheads’ as a result of team doing all the testing. He further alluded

to ‘time constraints’ and that regression tests are therefore not given enough time.

 Taking the issue of quality further, Participant 4 - Senior Project Manager - mentioned the need

for a Scrum process to be supported by techniques from other Methodologies such as XP.

Following the same principles of theoretical sampling, the researcher learned that there are

pros and cons for doing code reviews when Participant 5 mentioned the ‘diminishing value of

Code Reviews’. He stressed the importance of Code Reviews for improving the learning curve

for new starters and making sure that coding standards are adhered to. But he mentioned that

sometimes Code Reviews can lead to unwarranted arguments over semantics when senior

developers review each other’s code. The choice for the level of experience and role for the

next participant was always guided by the gaps in emerging theory.

5.2.4 Theoretical Memoing

Memos form a fundamental element of GTM (Strauss & Corbin, 1990). It records theoretical

ideas about the data and the emergent theory (Roode & Niekerk, 2009). The process of keeping

memos enables one to track all categories, properties, conceptual relationships, and generative

questions as they are discovered from the data. This process begins at the first coding session

Univ
ers

ity
 of

 C
ap

e T
ow

n

60

until the research is completed. The researcher recorded memos to outline ideas about

interview sessions and generated categories. Other memos were arbitrary questions and ideas

about whether one incident indeed belonged to a certain high level category. It is important to

confess that the memos were not always nicely organised. This is due to the fact that the best

ideas seemed to strike in unconventional settings and the researcher would grab piece of pen

and paper and jot down the ideas. These neatly written memos allowed for a place to jot down

areas for further exploration, own internal debates on abstraction of codes, and confusions

around where certain codes belonged, and reasoning around coding process. Appendix C and

Appendix D show example memos.

5.3 DATA ANALYSIS

Classic GTM coding techniques were employed for data analysis. After transcription of each

interview, the researcher would engage in initial coding, memoing, and comparison of interview

data incidents with previous incidents. The aim of coding is to generate categories and their

properties. As several codes were discovered from raw data, those that were deemed related

were grouped into higher level categories (Strauss & Corbin, 1990). The unit of analysis was the

organisation, the project, and the development team. It was therefore important to look at the

data from a holistic level while also grounding codes by coding at a sentence level.

The researcher focused on increasing the level of abstraction as the research process evolved

through the coding steps. In addition to raising the level of abstraction, “theory building

requires abstraction to classes that cut across different empirical environments and transcend

to nomothetic constructs that are independent of the actual units of enquiry” (Lehmann, 2010,

p. 3). These basic principles were executed extensively. For example, ‘Testing Coordination’

was abstracted to ‘Work Coordination’. Various individual SQA techniques from other software

development methodologies such ‘Test Driven Development’ were abstracted to ‘Adopted

Practices’. These basic principles were also helpful in deciding the core category.

More often than not the researcher found naming concepts and categories tricky. The main

problem was trying to come up with a best-fit name. According to Glaser as cited in (Adolph et

al., 2011, p. 495) validity in GTM is achieved after “much fitting of words, when the chosen one

Univ
ers

ity
 of

 C
ap

e T
ow

n

61

best represents the pattern”. Details of how each of the three coding steps in Classic GTM

were employed in this study are elaborated in the next sections.

5.3.1 Open Coding

Open coding involves naming incidents, making comparisons between incidents, and recording

memos (Roode & Niekerk, 2009; Urquhart, 2001; Fernández, 2004). Each data incident is coded

into as many categories as possible. Open coding was always the first coding done for each

interview. Coding at a sentence level ensured that the generated categories were as close to

the data as possible. This stage had many inconsistencies at the beginning of the research

process. Some incidents were coded as low level descriptions whereas others were coded at

higher abstract level. After further reading on coding, particularly in the IS field, the researcher

had to re-do initial coding for the first three interviews.

Some categories tended to saturate quickly, for example, the Adopted Practices category

saturated quickly as all respondents mentioned code reviews, test driven development, and

developer testing in way that did not add any variation to the category. This category saturated

after the sixth interview. Other categories took longest to saturate, for example, Capacity

Constraints was the longest lasting. The reason being that most participants varied in opinion

on whether it was good or not to have analysts and developers do the testing. The differences

were around expertise as some participants believed that further training can enhance

developer/analyst testing whereas others believed that developers or analysts were simply not

motivated to be good testers and that testing is a skill in its own right and needs someone who

has it as a profession.

5.3.2 Selective Coding

“Selective coding means to cease open coding and to delimit coding to only those variables

that relate to the core variable in sufficiently significant ways as to produce a parsimonious”

(Glaser, 2004, p. 11). Selective coding started after analysis of the eighth interview when the

core category emerged through constant comparison. Deciding on the core category took a lot

of thinking and back and forth analysis. The researcher waited for the core category to emerge

and ensured that the core category was only selected when there was no other category that

Univ
ers

ity
 of

 C
ap

e T
ow

n

62

seemed to account for all other categories more than this category. During the early stages of

the research process, the researcher was tempted to select ‘Dedicated Testing’ as a core

category. This category seemed to account for all challenges around SQA in the case

organisation. It also seemed to be the key concern from all participants. But the researcher had

to ‘wait’ and consistently question the data, apply creativity, and think at level higher than the

data. Glaser (2004, p. 12) advises patience and that the analyst “must accept nothing until

something happens, as it surely does”.

Dedicated Testing as a core category was not enough as this category was linked to the fact that

there was no dedicated tester at the case organisation. Dedicated Testing as a core category

would not cut across empirical environments. Another contender for core category was ‘lack of

prescriptions’. The issue around lack of prescriptions had been present in all interviews and the

researcher could not find a suitable term or phrase to use to capture the issue. It was only after

the eighth formal interview that the researcher decided to do some literature review to find

appropriate terms to define this category.

It was also important at this point for researcher to really compare with the original Scrum

monographs whether Scrum does not provide prescriptions on SQA strategies. One article on

agile methods (Abrahamsson, Warsta, Siponen, & Ronkainen, 2003), confirmed that in fact

Scrum does not offer prescriptions, and the category – Concrete Guidance, was born. It is

important to note that according to Glaser (2004) the literature can be treated as another

source of data, can be used in constant comparative analysis, and can improve theoretical

sensitivity.

The need for Dedicated Testing and Concrete Guidance did not account for all variation in the

data on their own. Another category ‘Need for Solid User Representation’ emerged as a strong

contender for core. But this category on its own also did not account for all variations although

it seemed to be the essence of all mechanisms put in place for achieving user quality

requirements. Digging further into the data, the researcher discovered that there should be a

reason why the participants sought solid user representation and that there should be some

concern being addressed by the different innovations put in place as a result of no concrete

guidance in Scrum. Further, the researcher studied the challenges and probed the data to find

Univ
ers

ity
 of

 C
ap

e T
ow

n

63

the concern which leads to participants calling for dedicated testing and encountering the

challenges as a result of lack of dedicated testing. This questioning, this interrogation of the

data, and this relentless comparison of the concepts and indicators within all categories lead

the researcher to the core concern: Meeting User Expectations. This core category embodies

all three contenders (Need for Dedicated Testing, Need for Concrete Guidance, and Need for

Solid User Representation) as its concepts.

The researcher decided it was important to go back to the analysis of the interviews in an effort

to ensure that all aspects related to the core category were captured. Following Urquhart et al.

(2010, p. 362), “the saturated concepts were reduced as much as possible to the relationships

between the core categories”. In addition to coding selectively, the researcher engaged in

further selective data collection with the prime focus being around the core category. The aim

was to elaborate the relationship between the core variable with other categories.

5.3.3 Theoretical Coding

The aim of theoretical coding is to stipulate explicit relationships amongst the categories

(Urquhart et al., 2010). This stage of coding is critical in producing theories (Glaser & Holton,

2004). The relationships between categories can be stated in a form of associations, influences,

or can be causal (Urquhart et al., 2010). Recording memos extensively at this stage was

important to keep record of thinking as the researcher sought linkages between categories. The

researcher relied on drawing diagrams and writing mock stories of the enfolding theory. This

step in coding epitomises the essence of iterative conceptualisation and provides an

opportunity to think creatively about the data.

The GTM researcher has a range of theoretical coding families to use for conceptualising how

categories relate to each other (Hoda et al., 2012). In this study, applying theoretical coding

towards the end of analysing resulted in some categories being conceptualised into Challenges

and Innovations as overarching categories. Within the Challenges, further theoretical coding

illuminated that Capacity Constraints, Lack of Testing Expertise, Testing and Quality Issues were

consequences of the absence of dedicated testers. It also emerged that Developer Testing, and

Process Workflow were elements of the Process Structure category.

Univ
ers

ity
 of

 C
ap

e T
ow

n

64

It is important to note that the researcher did not focus on causality between the categories as

this is limiting in interpretive research (Urquhart et al., 2010). This does not mean causality was

discarded. The researcher only remained open to the emerging theory. According to Tan

(2010), a GTM researcher must be creative and must question, reason, and make sense of the

relationships between categories. These cognitive processes require a great deal of memoing.

Contrary to many academic activities, the researcher found that a majority of theorising was

done in informal and unconventional settings, such as in a train to work, in a bar, or in bed

during one of the many sleepless nights. One of the most productive attempts at theoretical

coding was done after a Friday night out with friends! This attempt was also a mock write-up of

the theory.

5.4 SCALING UP

5.4.1 Theoretical Saturation

Data collection proceeded and was informed by theoretical sampling decisions until no new

concepts emerged. After the emergence of the core category, the researcher continued

collecting data with a specific focus on the concepts of the core category. The researcher

continued gathering more data even after it was clear that no new significant concepts were

emerging. This was an attempt to remain open for any new relationships, contradicting

evidence, or further densification of established categories. At some point, the researcher

needed to ‘trust’ the data and the established relationships. At this point the memos were

revisited and the mock storyline and did further sorting and rework.

5.4.2 Delimiting the theory

After reaching saturation, it was important to scale up the theory and decide on the story line.

To achieve this, the researcher needed to ‘leave’ the data and think about the results of

theoretical coding. Urquhart et al. (2010) state that grouping high-level categories into larger,

broader themes is a successful mechanism to use in order to rise above the detail and consider

the bigger picture. The researcher noted the importance of rising above the generated

categories to give them a substantive meaning. This exercise produced two overarching

categories: Innovations and Challenges in Meeting User Expectations. The essence of this is that

Univ
ers

ity
 of

 C
ap

e T
ow

n

65

due to the lack of concrete guidance in Scrum, a development team has to devise innovations

such as adopting practices from other methodologies in order to meet user expectations.

Further, the absence of dedicated testing in a Scrum environment poses challenges such as

capacity constraints, testing issues, and quality issues. A detailed elaboration of these is given in

the Findings chapter which follows this chapter.

5.4.3 Sorting

Sorting involves integrating different memos related to the core category and its properties

(Glaser & Holton, 2004). This stage requires some thinking about the data, the memos, the

generated concepts, and the relationships. According to Glaser (2004, p. 7), “relevant

theoretical codes emerge in conceptual memo sorting and could be whatever”. In order

accomplish this, the researcher listed all major categories related to the core category on a

paper sheet. Then, the researcher started writing up on these categories without looking at the

memos or the data. Doing this exercise made it possible to determine whether the generated

categories made sense and were simple and yet grounded to the data. The researcher then

visited the memos to make sure that the write up was inclusive of all major ideas. Refer to

Appendix D for a detailed real-time memoing, sorting, and theorisation.

Later on this mock write-up became a central point for further selective coding, constant

comparison, and theoretical memoing. This is where major theoretical categories as they

appear in the final theory were generated. Work Coordination, Adopted Practices, and Process

Structure were derived after initial sorting. Reading the mock write-up also allowed for further

writing down of memos and refining of categories. This also allowed for refinement of the

significance of concepts such as Capacity Constraints, Testing Expertise, Testing Issues, and

Quality Issues. For example, Capacity Constraints was initially an independent high level

category. After the first attempt at sorting, and further thinking, it was clear that this category

was actually a consequence of the absence of a dedicated tester.

It is important to confess that some concepts under the Adopted Practices category, such as

Test Driven Development, and their importance on SQA in an Agile environment might have

been pre-conceived. The minor literature review highlighted the importance of TDD in Agile

Univ
ers

ity
 of

 C
ap

e T
ow

n

66

developments. This might have influenced the decision to include these as concepts under the

category. However, it is important to note that these concepts were present and dominant in

the data, either through interviews, ad hoc conversations, software development team

meetings, and introductory presentations given to new graduates. Code Reviews and Collective

Ownership were emphasised during induction presentations when the researcher first joined

SAIT. However, it is also important to note that some pre-conceived practices such as the

“System Metaphor”, “Agile Model Driven Development”, and “Pair Programming” do not

feature in the theory at all because they were never emphasised by the participants.

According to Glaser (2004), sorting results in theoretical completeness, and provides internal

integration between the categories. It also affords the researcher, an opportunity to decide on

the relevance and significance of categories. The next Chapter focuses on the substantive

theory, its categories, the concepts, and the relationships between the categories.

Univ
ers

ity
 of

 C
ap

e T
ow

n

67

CHAPTER 6. FINDINGS

6.1 MEETING USER EXPECTATIONS

The material presented in this chapter is the outcome of analysis of raw data analysed through

Classic GTM techniques. This chapter does not provide an integrated analysis of the findings

with the literature. It presents the findings integrated in a theoretical framework of Figure 6-1

which depicts main categories and their concepts. The categories are integrated by a core

category which embodies the core concern on the aspects of software quality assurance in a

scrum environment. Chapter 7 provides an interweaving of the findings presented in the

chapter and the literature

The core concern at SAIT is “Meeting User Expectations”. This concern was evident in all

interviews. Some participants mentioned it explicitly while others did not state it explicitly

although it was evident in the texts. In addressing the concern, the participants alluded to the

three concepts: “Need for Solid User Representation”, “Need for Concrete Guidance”, and

“Need for Dedicated Testing”. As depicted in Figure 6-1, the lack of dedicated testers at SAIT

presents challenges to meeting user expectations and the lack of concrete guidance in Scrum

requires the project team to come up innovations in order overcome the challenges and

improve the ability to meet user expectations. It is also important to note that some of the

innovations were devised to minimise the impact of the absence of a dedicated tester and to

improve solid user representation.

The lack of concrete guidance concept is central to almost all categories. For example, solid

user representation is easily achievable when there are concrete prescriptions on how to

handle user requirements elicitation and articulation. Similarly validation and verification

processes require concrete guidance. In the same manner, software testing requires concrete

guidance on how to plan, write test cases, and execute different testing activities. In the case of

testing, the absence of a dedicated tester at SAIT worsens the challenges for the Portal Project

team.

Univ
ers

ity
 of

 C
ap

e T
ow

n

68

The theoretical framework of Figure 6-1 proposes understanding Scrum as a framework of

“empty buckets” which needs to be filled with situation-appropriate processes, techniques, and

practices in order to meet user expectations. The empty buckets analogy came up during one of

the interviews as one participant emphasised the absence of concrete guidance in Scrum. All

senior participants (more than 5 years experience) pointed out the absence of concrete

guidance as a big concern. This concept accounts for a majority of the innovations and some of

the challenges such as the Testing Issues and Quality Issues. This concept is more related to the

innovations such as Adopted Practices and the design of the Process Structure.

Figure 6-1 Aspects of Software Quality Assurance in a Scrum environment

It is important to note that most participants attributed the challenges to the lack of dedicated

testers at SAIT. When quizzed why there were no dedicated testers, senior participants pointed

to two reasons; Lack of business buy-in and the fact that Scrum does not explicitly prescribe

how dedicated testers fit in into a development team. Junior participants mentioned that the

Portal Project started off as an in house ‘play-ground’ project for Java developers who were not

resourced to client project and as such there was no need to employ a dedicated tester.

The lack of concrete guidance in Scrum and the absence of dedicated testers at SAIT hampers

the Portal Project team’s ability to meet user expectations. More importantly, the team finds it

Univ
ers

ity
 of

 C
ap

e T
ow

n

69

hard to achieve required solid user representation as the idea of a full-scale user involvement is

unrealistic. Solid user representation is particularly pressing at SAIT because the absence of a

dedicated tester makes it challenging for the team to confidently ascertain that user stories

accurately reflect user needs and the finished product features adhere to the user needs.

The next sections provide a more detailed elaboration of the concepts and how they relate to

each other. The presentation focuses more on the ‘Need for Concrete Guidance’ and the ‘Need

for Dedicated Testing’ concepts as the researcher deemed these two concepts most important

to SAIT and to a Scrum environment and are an interesting part of the theory. User

representation covers aspects around user requirements elicitation, analysis, articulation,

verification, and validation. The Information Systems literature provides a lot of insights into

these aspects and as such this study does not provide a detailed account of these aspects.

It is also important to note that the presentation in this chapter is not a linear textual version of

the theoretical framework. For example, the section that focuses on the Need for Concrete

Guidance is not linearly followed by a section for discussing the ‘Need for Dedicated Testing’.

Rather, Concrete Guidance is presented and interweaved with the Innovations because the lack

of concrete guidance requires a development team to devise the best processes, techniques,

and practices for meeting user expectations. In the same way, the lack of dedicated testers has

had the many consequential challenges and it is therefore fitting to discuss the Need for

Dedicated Testing together with challenges.

6.2 CONCRETE GUIDANCE

6.2.1 Need for Concrete Guidance

One of the main concepts within the core category relates to a lack of concrete guidance on

how to incorporate and implement SQA processes and techniques in Scrum. Participants at SAIT

stated that, Scrum does not provide any prescriptions on how to design the process structure, it

offers no guidance on how to coordinate SQA activities, and does not define what specialised

disciplines and skill sets are necessary when composing a team. The study has identified that

this provides room for innovation based on the situation at hand.

Univ
ers

ity
 of

 C
ap

e T
ow

n

70

The lack of concrete prescriptions came up in the first data collection meeting with SAIT’s Head

of Software Operations, the Service Desk Manager, and the project team’s ScrumMaster. In

that very first meeting, all of them highlighted the fact that Scrum is a management framework,

and does not prescribe any rules, any guidelines, or any processes that a team should use for

SQA.

Participant 4:

“Scrum as a methodology does not have any rules around quality”

This aspect about Scrum came up in all subsequent interviews. All participants in the eight

interviews (formal recorded interviews of data collection phase 2) alluded to the fact that Scrum

does not prescribe any standards to follow, it does not offer any guidelines on how to actually

do the work, it does not offer a definition of “done”, and leaves everything open to the team.

The onus is on team members to deliver a quality output at the end of the day.

 Participant 1:

“We are unknowingly applying SQA, because we know that it needs to work at the end of the

day”

Participant 2:

“I don’t think we even know what we supposed to be working off as the base”

The innovations that the Portal Project team had to devise include designing the process

structure, adopting SQA practices from other methodologies, and using principles of collective

ownership, constant feedback, and continuous improvement while doing devising the

innovations. As Participant 8 stated, allowing a development team to innovate provides

empowerment, sense of ownership, and flexibility to adapt to different situations. These

aspects are discussed in the next sections.

Univ
ers

ity
 of

 C
ap

e T
ow

n

71

6.2.2 Process Structure

The Process Structure category denotes the processes, phases, techniques, and responsibilities

to transform requirements on the Product Backlog to potentially shippable piece of software.

Essentially, Process Structure embodies a team’s “Definition of Done” on a story and in this

case includes the activities, the roles, and the tools. For the Portal Project team, the structure

of the process is designed in a way that allows for incorporation of practices and techniques

from other software methodologies. These practices are; Developer Testing, Code Reviews, and

Continuous Integration. At the end of this study, one lead developer (Participant 11) had

completed a major testing strategy Research and Development work to determine how to

integrate Test Driven Development in the Portal Project process structure. In addition to

adopting practices, process structure is also concerned with the process workflow and

coordination of various activities and work dependencies.

The concepts within the Process Structure category are: Process Workflow, Work Coordination,

and Situation Appropriateness. These concepts are discussed in the next sections.

Process Workflow

The main concept within the process structure category is Process Workflow. All senior

participants advised on careful design of the process workflow to incorporate practices aimed

at meeting user expectations. According to the participants, Scrum does not offer any concrete

advice on how to design the workflow. It leaves everything open for development teams to

figure out. According to the participants, the process workflow can consist of just three phases:

“Ready”, “In Progress”, and “Done”. When the process workflow has only these three phases, it

becomes difficult to incorporate SQA practices within the process structure. Alternatively, it

can include many sub phases between “Ready” and “Done”. The Portal Project team’s workflow

has “Ready”, “In Progress”, “Ready for Test”, “In Testing” and “Done”. Participants believe that

carefully designing the structure can significantly help meet user expectations.

Participant 5:

“So what I would recommend for a new team that is starting is to really think about that

workflow for a bit and understand how you can incorporate testing into it.”

Univ
ers

ity
 of

 C
ap

e T
ow

n

72

The design of this workflow is fundamental to ensuring delivery of software that meets user

expectations. It determines and affects how a team approaches and organises its work. For

example, when a story is moved into “Ready for Test”, it means one developer has to pick it up

and first do a code review and thereafter do the testing. This aspect also demonstrates the

concept Collective Ownership in the Guiding Principles category while also touching on the

Adopted Practices category.

Participant 3:

“So this whole process that I described where the code reviews and functional testing are built

into the workflow has worked well for us.”

These aspects demonstrate the relationship between the Process Structure category and the

Adopted Practices category in that Developer Testing and Code Reviews as Adopted Practices

are mandatory within the process workflow. According to all participants, Scrum does not say

anything about these software engineering practices and does not offer any guidance on how

to incorporate them activities.

One of the phases that has to be built in the process workflow is testing. Participant 5 stated

that it is important that a development team does not assume that testing will happen outside

the workflow. Coordination of the work between analysts, user experience developers, and the

programmers is one area that requires careful innovation, particularly when it comes to testing.

Work Coordination

Work coordination is about how the processes and roles within the process structure should be

organised and how the different roles should interact in the delivery cycle to collectively work

towards meeting user expectations and delivering quality code. This concept simply denotes

dependency resolution within the process structure. It is concerned with ensuring that input

artefacts are available as and when the consumer actors need them. For example, participants

mentioned that it is important that user interface screens and wireframes are ready before

developers start writing code for the screens. It is also important that analysis work on user

Univ
ers

ity
 of

 C
ap

e T
ow

n

73

stories is complete before developers can start. These aspects require tight coordination and

dependency resolution mechanisms.

One critical aspect at SAIT in the Project Portal team is around testing coordination. There is a

lot of work involved in planning for testing which includes setting test environment, organising

test data, and so on. This means that coordinating testing requires a lot of thinking from the

leadership team. This has led to some participants arguing for need more prescriptions on how

actually organise testing work.

Participant 5 (the ScrumMaster) concluded by saying the following:

“I personally would like to come across a material that gives me a testing strategy that I can

readily expect to work

Participant 5

“There is nothing in Scrum that says well this is Scrum for when you taking the product to the

market and this is Scrum for when you already have a product in the market.”

Dependency resolution for analysis and design work is not a big problem for the Portal Project.

The analysts ensure that they are one or two sprints ahead in terms of analysis work. This

means that in current sprint, the software analyst and the product owner begin writing stories

and other related activities for work that will be done in the next sprint. In a similar manner,

user experience work commences one or two sprints ahead which means that user experience

developers start working on user interfaces for features that will be part of work to be

developed in the next sprint. This innovation was referred to as the “N+1” concept by the

ScrumMaster (Participant 5). The coordination of analysis work and user experience work is one

example innovation that is working smoothly at for the Portal Project team.

On the other hand, testing work requires a little more innovation over the basic N+1 concept.

According to the ScrumMaster, there are at least three important aspects to testing that make

applying the N+1 concept difficult in testing. Firstly, testing can only begin when there is work

ready for test. This means that at least one story has be completed by developers. Secondly,

Univ
ers

ity
 of

 C
ap

e T
ow

n

74

there will be work that is completed on the last day of the sprint that needs to be tested before

being released to the client. Finally, test cases, test data, test environment need to be ready

before testing can begin.

While the N+1 innovation works smoothly for analysis work and user experience, the exact

nature of how dedicated testers are supposed to be involved in a two week sprint is not clearly

defined at SAIT. The main question relates to the timing for testing work that is completed on

the last day of Sprint. Through the N+1 concept, testers can start preparing test cases for the

next sprint during the current sprint while at the same time being available to test new features

as they get developed in the current sprint. However, there will be some work that will only be

completed in the last day of the sprint that still needs to get tested before release. One option

is to test this work in the next sprint. In that case, the Tester does not only work N+1. The tester

does work for the last sprint (N-1), the current sprint (N), and the next sprint (N+1). The exact

nature of how this can work is not yet fully understood and requires more creativity.

The one option that is currently in place in the Portal Project team is the concept of a “Doctor”.

At the beginning of each sprint, the team selects one team member to be the “Doctor”. The

doctor is on ‘stand-by’ for the whole sprint to work on any bugs that are found on work

released in previous sprints. This concept is working well in light of the fact that there are no

dedicated Testers and no dedicated testing phase at SAIT.

Situation Appropriateness

Almost all participants stated that the exact nature of how work should be organised and what

practices to adopt including team composition depend on the nature of a project. They

supported this by saying that what works well in one environment may not necessarily work

well in another environment. For example, what works well within an internal project may not

work for a client project. An internal project may have a strong product owner with a clear

vision and power as in the case of the Portal Project. On the other hand, a client project may

not have the same support and vision.

Participant 7

Univ
ers

ity
 of

 C
ap

e T
ow

n

75

“When you choose how to structure your team, and when you choose how to structure your

approach or project, I think it is very dependent on the project”

As such the Scrum team will have to innovate how to organise and coordinate its work based

on structural constraints. Structural constraints can include the source of user requirements,

the availability of testing environment, and the availability and location of the “customer”.

Some participants argued against asking for more prescriptions by advising that people have to

understand that Scrum is a management framework and it leaves room for situation-based

innovation.

Participant 8

“You know there is a lack of misunderstanding out there. Scrum is a framework of empty

buckets, it gives you a backbone and you need to fill the buckets”

The lack on concrete guidance and prescriptions on how to coordinate development can pose

challenges and at the same provide room for innovation. The most important part is that Scrum

stakeholders need to understand that Scrum needs to be built around situation appropriate

innovations. The next section presents practices adopted by the Portal Project team and those

that are in the pipe-line for adoption.

6.2.3 Adopted Practices

The study revealed that the process structure must be designed in such a way that practices

from other software development methodologies such as XP can be incorporated. Participant 4,

who is a devout Scrum proponent promoting Scrum at SAIT mentioned that Scrum helps a team

code faster but it needs right control mechanisms to produce good quality code. According to

the Participant, if the project team does not adopt right quality control practices then they can

write poor quality code quickly.

Participant 4:

Univ
ers

ity
 of

 C
ap

e T
ow

n

76

“...but if you do not have right control mechanisms in place, you can code bad stuff quickly, it’s

all going to happen quickly.”

As such, the process structure should make it possible to adopt Software Quality Assurance

practices and build them into the release cycles. Such important practices include peer code

reviews, developer testing, and test driven development. The next sections discuss these

practices in detail

Developer Testing

In the Portal Project, developer testing as part of the process workflow means developers test

each other’s work before the work can be marked as done. The story has to first be marked as

“Ready for test”. “Ready for test” – as one of the steps in the workflow - means that another

developer needs to first do a code review. At the completion of the code review process, the

story will be moved to “In Testing” whereby another developer will do a functional test. This

means that every piece of functionality has to go through a code review process and developer

testing by the development team.

Participant 3:

“Obviously the quality has been better since we moved to Scrum, because previously we didn’t

have this predefined necessity to test every story before it makes it into production release”

Although developer testing plays a big role in meeting user expectations, some participants

expressed concerns over this. For example, Participant 3, the Application Architect in the team,

expressed that there is a workload overhead as a result of all testing being done by developers.

There are differing views to this as three other senior participants mentioned that it is

important that the team takes responsibility of their code and ensure that it works before

passing it on to other people.

Participant 8:

“to me you are as good a developer as you are a tester...”

Univ
ers

ity
 of

 C
ap

e T
ow

n

77

Code Reviews

As mentioned in the Developer Testing section, every piece of work that gets addressed by the

team has to be peer reviewed before it can be tested. The Portal Project team uses code

reviews to ascertain that the written code adheres to stated coding standards. Code reviews

present an opportunity for team members to continually improve their code base and share

learned lessons.

Participant 4:

“....you generally do have peer code reviews, so that also improves the quality because you have

got more than one person doing it”

All participants mentioned peer code reviews as being integral to the software

development process. Participant 3 mentioned that although developers are not traditionally

good Testers,

“... Peer reviews and peer testing does bring out a number of bugs”.

Participant 2:

“The team ensures that a story is of the highest quality because somebody else has refactored

on whether I have achieved what the business wants”.

Although code reviews are good for ensuring code quality and helping junior developers

improve their coding skills, there are some negative aspects to them. For example, two

participants felt that some team members impose their own coding preferences on other

developers. This results in a lot of arguments over semantics and wastes time.

Participant 5:

“Arguments over semantics after code review feedback happen all the time”

Participant 5 talked about what he referred to as “diminishing value of code reviews”. This

phenomenon occurs when two seniors developers review each other’s code. They waste of a

Univ
ers

ity
 of

 C
ap

e T
ow

n

78

lot of time that could be used for productive development arguing over semantics, standards,

and so on. In most cases when such arguments ensue, one finds that the two arguing seniors

developers are “almost always right, just that one is more correct than the other”.

The importance of code reviews therefore depends on the makeup of the team. When a team

has junior developers it is important that their code is reviewed for rapid learning.

Test Driven Development

All developers who participated in this study, formally or informally would like to see Test

Driven Development (TDD) in place at SAIT, particularly in the Portal Project. When asked on

what practices the team should incorporate in the process structure, Participant 4 had this to

say:

“TDD definitely!”

It should be noted that the Portal Project team has not practiced Test Driven Development. It is

one of the processes that the team has learned through experience that they need to be

incorporate the practice. At the end of this study, Participant 11 had just presented his findings

on how to incorporate TDD in the Portal Project.

Participant 3:

“We have not done TDD, it is something that we fantasise about...I would really love to try them

out, but there is a reluctance from stakeholders to grant so much time to try retrospectively go

and write automated tests for this legacy code...”

This is where the lack of prescriptions or guidance on what development practices to

incorporate can affect a team. The point mentioned by the Participant above is lack of business

support. The lack of prescriptions on what practices to adopt makes it difficult for development

team leadership to motivate for certain practices if they are not mandated by Scrum. This is

particularly relevant in a time based organisation. This point is dealt with in more detail under

Business Buy-in category.

Univ
ers

ity
 of

 C
ap

e T
ow

n

79

In essence, the design of Process Structure is important for meeting user expectations in a

Scrum environment. As Scrum does not provide any guidance on what practices to adopt, it is

important for organisations to carefully include these activities in their process workflow. This is

not a challenge, but an opportunity for organisations to tailor their delivery cycles according to

the demands of a situation.

6.2.4 Guiding Principles

A closer look at the data reveals underlying principles driving the design of the process

structure and adoption of practices from other methodologies in order to meet user

expectations. These principles are common in all Agile methodologies and guide the design of

process structure and the choice of practices to adopt: Collective Ownership, Constant

Feedback, and Continuous Improvement.

Collective Ownership

Four senior participants explicitly stated that collective and collaborative code ownership is

important to meeting quality requirements. The belief is that if more than one person work on

a feature and the team participates in design and planning sessions, then the quality of the

software produced is better. This closely relates to code reviews and developer testing. The

whole idea is that, the final output is a result of a collective effort and the team has ensured

that they have inspected the code to make sure that it adheres to required standards.

Participant 4:

“A team should ensure that people are following the concept of collaborative group ownership

of code and stories and it’s not the case of that story is yours, that story is yours, etc”

In addition to code ownership, collaborative design sessions help to ensure that the team

meets quality requirements.

Univ
ers

ity
 of

 C
ap

e T
ow

n

80

Participant 4:

“The other thing is that your planning, your sprint planning 2, which is kind of your design

session, is done with the whole team. So by virtue of that, you don’t have one person running off

alone figuring out how to do this thing. “

In cases where designs are done before the planning 2 meeting, the designer has to defend

their ideas during the meeting. This allows the whole team to have contribution to the overall

quality of the design. This according to the participants helps avoid having one person as a

single point of failure. Participant 5 saw quality as a bi product of collective team effort. He

stated that he does not believe that collective design sessions directly contribute to product

equality. On the other hand, Participant 6, who has had experiences in several different

organisations and development methodologies, did not think collective design sessions were

efficient. He mentioned that it is a waste of time for everyone else to learn about a story on

which they are not going to do any work.

Participant 6:

“The velocity here is much slower, too many people work on the same thing, I don’t think it is

efficient”

Constant Feedback

Constant feedback is the key to meeting user expectations in the Portal Project team. Some

practices are adopted to allow the team to get feedback sooner. The workflow is designed to

allow the team to get feedback sooner. Working in two weeks sprints and short delivery cycles

allows for constant feedback.

Participant 4:

“But with Scrum, if you embed testing, and there are various ways you can build it into your

release cycles, then obviously you are getting feedback sooner”

Univ
ers

ity
 of

 C
ap

e T
ow

n

81

Focusing on early feedback and making incremental releases also allows the project decision

makers to constantly assess the delivered value against budget. This means that at any point,

the key stakeholders can decide that the delivered value is enough if there are any budget

constraints.

Participant 8

“I would say because of the constant reviews it means that at any point in the journey, at each

cycle, you have something which is shippable, it is possible to say oh well we got this far, and

we going to stop here that’s it for now”

This principles helps to ensure that the is always kept aware of user expectations and they can

know soon if they are not in the right path.

Continuous Improvement

The absence of concrete guidance means that a development team has to continuously look at

ways of improving its processes. The importance of continuous improvement in a scrum

environment was emphasised by the ScrumMaster. This aspect is also evidenced by the strong

R&D portfolio lead by Participant 11 who had just finished research on the testing strategy. At

the beginning of the phase 2 of data collection, Participant 3 presented research on code

coverage technologies that the Portal Project team have adopted to assess the coverage of

their unit test suit. Participant 3 also lauded the importance of developer testing – which is a

practice that the team did not start with.

Participant 3

“Our process has been evolutionary, and where it has evolved for two years has worked well for

us. I think it is good at the moment”

Participant 4:

“The other thing is that if you are performing scrum properly, then there should be strong

emphasis within your team of continuous improvement, and the continuous improvement

philosophy is that at any given stage you can always do your job better.”

Univ
ers

ity
 of

 C
ap

e T
ow

n

82

In essence, adopting good quality control practices can only be realised when there is a strong

focus on continuous improvement. Designing the process workflow, incorporating coordination

strategies into the process structure also requires focus on continuous improvement.

Participant 10 had just attended workshops where the main focus was on how to better

implement the N+1 concept.

6.3 DEDICATED TESTING

6.3.1 The Need for (or lack of) Dedicated Testing

Participant 4 mentioned that it is paramount that the team is composed in such a way that

there is at least one person from each of the software engineering disciplines who knows what

they are doing. However, the Portal Project team does not a dedicated tester. The absence of a

dedicated tester and the challenges faced by the team as a result, came out strongly in all

interviews.

Participant 1:

“This is not an argument that you have to entertain; I think we do need dedicated Testers.”

And

Participant 2:

“If we use it as a pure debate thing, where I sit now, I believe strongly in having SQA as a

dedicated function in the environment”

Other participants were more concerned about knowledge retention. They mentioned that

because there are no clearly defined rules and guidelines on how to test, and there are no

permanent dedicated testers, it is a challenge to retain testing knowledge. Individual

developers or analysts accumulate and develop testing skills through experience, but there is a

serious gap when they leave the organisation. This results in a lack of quality consistency when

someone else fills the testing gap.

While developers and analysts can still meet functional testing requirements to some extent,

regression tests, system wide tests, and integration tests require more sophisticated and

Univ
ers

ity
 of

 C
ap

e T
ow

n

83

dedicated testing resources than the story level functional tests. These require proper testing

expertise and can also result in work overload and a loss of production time.

Participant 4:

“When stuff goes from development, to integration environment, and then to production, you

will always need a certain amount of testing especially to touch integration points”.

Although the adopted practices help, some participants felt that these were not enough.

These concerns are discussed under Testing and Quality Issues Section.

Participant 2:

“Developers do code reviews, they do some testing, so does the product owner, but I don’t

believe that we do thorough enough that we need something that is dedicated.”

The next section discusses challenges that result from the absence of dedicated testers, and the

resultant lack of testing expertise. The challenges have been categorised into: Lack of Testing

Expertise , Capacity Demands, Testing Issues, and Quality Issues.

6.3.2 Challenges due to the absence of dedicated testers

This section presents some of the consequences of the absence of dedicated testers. The study

did not attempt to exhaust all possible consequences. Some consequences were dropped

through constant comparison. These are consequences that did not appear to have any more

support in subsequent interviews and were not to the researcher.

Lack of Testing Expertise

All participants mentioned the lack of testing expertise as the major challenge that is affecting

their ability to deliver quality products. The lack of proper testing skills amongst developers

and business analysts was mentioned in all interviews.

Participant 4:

“That ties back to what we have discussed before in that we don’t know what we are doing, it’s

a very harsh statement”

Univ
ers

ity
 of

 C
ap

e T
ow

n

84

Four senior participants mentioned that in addition to testing, dedicated Testers would also

provide coaching to the developers.

Participant 8:

“They don’t necessarily need to do it themselves; they can coach your guys and teach them how

to do it because otherwise it is not going to be done effectively”

Testing requires a fair amount of upfront planning. The first two participants mentioned that

they felt this was lacking as a direct consequence of the lack of dedicated testing personnel.

Planning upfront involves drawing test cases, verifying and updating specs, and ensuring that

different scenarios are included based on client requirements.

Participant 4:

“the idea of testing as a function in our world is a young idea, it comes with many challenges,

we don’t plan properly for it , no one actually goes and says what amount of work is it, who do

we need to talk to, so that is the main challenge”

Participant 3:

“I suppose the problem is we don’t have that skill , I mean we don’t have a proper skill for it”

According to Participant 8, dedicated testers think from the other side of the coin, would help

change the way the team thinks about customers. The participant also emphasised on the need

to have the dedicated Tester as part of the team, included in sprint planning meetings and

estimation sessions. This would help in ensuring that testing is included adequately when

assigning story points. This would in turn ensure that adequate attention is paid to test

planning and test execution.

Participant 8:

“Making a dedicated Tester part of the team would ensure that nobody forgets about testing”

However, there are different views about the criticality of the apparent lack of testing skills.

Some participants felt that it is only a matter of training for the team to acquire the skills.

Another participant attributed the apparent lack of testing skills to pure motivation. He

Univ
ers

ity
 of

 C
ap

e T
ow

n

85

mentioned that developers and business analysts are not measured by their ability to test or

find bugs, but by their ability to design and implement great solution. As such, they are not

motivated to improve their testing skills.

Testing and Quality Issues

Consequences of the absence of dedicated Testers include a range of testing and quality issues.

The study did not attempt to identify them all, but will present a few that came through from

the analysis. One of the major concerns on testing is narrow testing. This results from the fact

that developers test one story in isolation. As such, they could have broken something else in

the process. This functional testing of discrete features is not enough to cater for regression

problems.

Participant 1:

“I mean in this particular instance, we only test towards one sticky ready for test , one story

ready for test”

In addition to narrow testing, the problem at SAIT is that developer testing is not effective as it

should be because the testers wrote the system and know how it works.

Participant 3:

“...because you know what you have written, and you are testing for a predefined output, so

you are not necessarily testing to try to break it”

This differs with how users use the system:

Participant 2:

“When you ask other people outside the organisation to use the application, they look at it

differently and I believe we need something that is dedicated”

The lack of proper testing expertise and subsequent quality issues delayed a release at one

stage in the Portal Project. According to one participant, they had gone through what they

believed was the right approach, but the quality wasn’t good enough and therefore the product

Univ
ers

ity
 of

 C
ap

e T
ow

n

86

was not released. The participants cited the fact that testing had not properly covered all the

various scenarios based on how the client uses the application.

Participant 3:

“One of the issues that come up is that doing functional testing of these discrete activities is not

necessarily doing regression testing”

Capacity Constraints

One of the key issues that came up as a result of the absence of dedicated Testers is capacity

constraints. This relates to knowledge, skill, and time demands placed on business analysts and

developers to be good at their respective disciplines and also be good at testing. What often

happens is that business analysts in particular spread their attention across different areas and

end up being under pressure to fulfil deadlines. When this happens, they often postpone

testing and end up not doing it. According to Participant 7, testing is always the first thing to be

pushed aside when workload pressures demand more capacity than they can offer.

Participant 1:

“I mean the capacity constraints, so you are asking an analyst to do an analyst job but also be

facilitating a software tester’s role”

Participant 7:

“And analysts should not be the ones that are doing the testing, analysts don’t specialise in

doing testing, in particular things like regression testing”

Participant 6:

“Developers are traditionally not good Testers”

The absence of dedicated Testers means that developers and analysts are required to design

and implement solutions while at the same time being able to test. This goes further for

developers as they have to test and in turn fix the bugs.

Participant 3:

Univ
ers

ity
 of

 C
ap

e T
ow

n

87

“dedicated testers would alleviate the pressure from developers of having to test the issues and

fix them themselves”

The result of this is increased pressure on required capacity from team members. They occupy

dual roles and are expected to be good at them. According to the first two business analysts,

this results in a lack of adequate knowledge on testing technologies, and lack of awareness of

developments in testing. The effect according to Participant 7 is that one becomes a “jack of all

and a master on none”. The lack of testing capabilities as experienced by analysts in particular,

can result in poor testing outcomes as Participant 1 put it this way:

“In one sentence, you only going to test what you can test, I mean what you put in is what you

are going to get out”

Further, one Participant mentioned that he believes that all testing should be done by a

dedicated tester to pick up any usability errors.

Participant 6:

“Java developers are not good testers and I personally think that testing is a skill on its own

right”

The absence of a dedicated tester is one the aspects that highlight the importance of business

buy-in. The senior leadership at SAIT has been motivating for dedicated testers for a long time.

At the time of writing up the findings, work is under way to bring in a senior tester at SAIT who

will pioneer a testing function. The next section discusses business buy-in as seen through the

lived experiences of the participants at SAIT.

6.4 BUSINESS BUY-IN

A software development team needs top management support to be able to produce good

quality software. The Head of Regional Operations (Participant 9), stated that organisations

have to give the development team necessary support in terms of resources, time, and

strategic direction.

Participant 1:

Univ
ers

ity
 of

 C
ap

e T
ow

n

88

“I think management need to enable the team to perform at the level they need to perform”

Time in a time-based organisation such as SAIT directly translates into cost to company. The

participants at SAIT were well aware of this fact. The next section discusses Time. As mentioned

by most participants, time is of critical importance to meeting user expectations in a Scrum

environment. For example, TDD requires that a team write unit tests before writing production

code. This means developers spend more time on stories than they would without TDD.

Participant 3

“There has been reluctance from stakeholders to grant us enough time to retrospectively write

these unit tests”

And Participant 2:

“...that’s where the challenge comes in, because we are a time based business, that to me has

almost become a driver for everything....”

Furthermore, time pressure in a high pace, productivity-focused environment makes it difficult

for a team member to dedicate time to do SQA practices. Regression tests were considered to

be a waste of development time. For that reason, they are not done regularly. Scrum

ceremonies such as retrospectives and daily stand up meetings are seen to be a waste of

development time by some developers, although there are varying views amongst participants.

Participant 2:

“You got people that want to do stuff quickly because they are driven by time”

In addition to time, meeting user expectations requires resource support from management.

dedicated testers as has been previously discussed are crucial in a Scrum environment. The

team in the case had been asking for a dedicated Tester for a long time without getting one.

When asked why there was no dedicated Tester, Participant 8 said:

“That’s a good question, but we have managed to win that battle. I think the reason why we

don’t have or we didn’t have a dedicated Tester is that, unfortunately most people look at the

short term expense. “

Univ
ers

ity
 of

 C
ap

e T
ow

n

89

The ‘battle’ was a also a result of a misunderstanding about what Scrum is. The

misunderstanding stems from how the idea of Scrum is often communicated to decision

makers.

Participant 8:

“Scrum is seen as a silver bullet that is capable of destroying everything which this makes it

difficult to convince management to grant you time and resources”

Participant 2:

“I think it is a difficult challenge, they will say yes we all buy in into the notion of having a Tester,

it all sounds good whatever the case is, when it come to the cost, we need these dedicated

people whatever but it is going to cost X”

Meeting user expectations requires business buy-in otherwise a team will not perform at its

best.

6.5 SOLID USER REPRESENTATION

Solid user representation encompasses a broad range of aspects related to user requirements

elicitation, analysis, articulation, verification, and validation. The concern embodied in this

concept is to ensure that the team clearly understands what the users want and can ascertain

before user acceptance testing that they have indeed delivered according to user expectations.

This means that user stories should accurately reflect user expectations, and the processes for

validation and verification should be solid enough to ensure to ensure that the expectations are

met. Solid user representation captures the need for adequate user involvement of which most

of the participants mentioned that it was almost impossible to have.

 Participant 3:

“I would change the way the client is seen, so someone like XX really understands what the

business wants, so I would just have someone to facilitate that process and put more around

deeply understands what the business wants.”

Participant 2:

Univ
ers

ity
 of

 C
ap

e T
ow

n

90

“I think from where we are right now at SAIT, my role from a BSD perspective is making sure

that a story that you put down on the product backlog meets user’s requirements.”

Participant 4:

 “Ideally your team is working with your users directly so they sit with them, but that is not

always realistic.”

The lack of adequate user involvement requires team members to be the representative and to

have a clear understanding of what the user wants. Solid user representation should ascertain

that the stories accurately represent what the user wants and that the finished product

features are indeed what the user expects to see. Some participants stated that dedicated

testers are ideal for achieving solid user representation.

According to Participant 2, dedicated testing would help client-centric thinking within the team,

it would improve client representation, and would ensure that there is someone in the team

who understands the client.

Participant 2:

“dedicated testers should be the client, should know exactly what they want and ensure that the

system meets all other quality requirements before the client sees it”

This is important because it is not always feasible to have an onsite customer. The absence of

dedicated testing personnel therefore results in quality requirements being looked at too late.

In essence, solid user representation, concrete guidance, and dedicated testing are the core

aspects towards meeting user expectations. The absence of dedicated testing has undesirable

consequences as stated in the challenges sections. The lack of concrete guidance means the

team has to innovate, adopt, and devise processes, practices and techniques for ensuring the

team meets user expectations. All these require that a team clearly understands the user

expectations which is possible through solid user representation. These aspects require strong

commitment from top management to provide an enabling environment with adequate

resources and time.

Univ
ers

ity
 of

 C
ap

e T
ow

n

91

CHAPTER 7. DISCUSSION

This discussion aims to integrate the concepts outlined in the findings with extant literature on

method tailoring, Scrum’s empirical process control, and agility. The central theme proposed in

this discussion relates to the core category – “Meeting User Expectations” with a particular

attention to its core concept “Lack of Concrete Guidance”. Abrahamsson et al.(2003, p. 4)

explain concrete guidance as “practices, activities and work products at the different phases of

the software development life-cycle that characterise and provide guidance on how a specific

task can be executed”. This definition is extended here to include guidance on how to organise

SQA activities, how to setup a Scrum project team to include SQA personnel, and how to

customise the development process to incorporate SQA practices and techniques.

Since Scrum does not provide concrete guidance (Abrahamsson et al., 2003), this study

proposes that Scrum needs to be seen as a framework of ‘empty buckets’ which need to be

‘filled’ with situation specific practices and processes. This study reveals that organisations need

to understand that Scrum offers a planning and control backbone but needs to be supported by

other methodologies. This means that organisations need to tailor their Scrum process

innovatively based on the demands of the situation. Ensuring that relevant SQL practices are

included in the Scrum process structure would be an innovative way of tailoring the Scrum

process. A failure to understand that the Scrum package lacks details on technical SQA

practices, on team composition, and work coordination can lead to various challenges.

Literature on method tailoring (Fitzgerald, Russo, & O’Kane, 2003) is integrated in this

discussion to situate the method incompleteness and how this can be overcome. This literature

also sheds light into how method tailoring was achieved in real world projects. In order to

achieve this discussion, the chapter interweaves literature and research findings to:

 Emphasise the need for tailoring of Scrum to incorporate project specific, and situation-

appropriate SQA techniques and processes.

Univ
ers

ity
 of

 C
ap

e T
ow

n

92

 Discuss each of the research findings categories by drawing on method tailoring

literature and the relevant extant literature specific to that category.

 Illuminate aspects of SQA in Scrum by focusing on agility and SQA from extant

literature.

 Illuminate aspects of SQA in Scrum by focusing explicitly on Scrum’s empirical process

control.

Method tailoring literature was deemed relevant to this study because the lack of prescriptions

is a common characteristic of Agile methods as their founders avoided prescribing bulky and

time-demanding processes (Fitzgerald, Hartnett, & Conboy, 2006). Prescriptions provided by

Agile methods are ‘just enough’ to add value to the software product and keep the

development process as lean as possible. This study corroborates the notion that the software

development community has generally accepted that no one method is comprehensive enough

to provide exact fit for all types of information systems development projects (Conboy &

Fitzgerald, 2007). In addition to methods being incomplete, a 1998 study by Firtzgerald (as cited

in, Conboy & Fitzgerald, 2007) uncovered that rigorous use of methods in practice is limited

with a reported 6 per cent of developers ‘religiously’ adhering to methods. It is therefore

advisable to organisations who are new to Scrum or wishing to implement Scrum to be aware

of the incompleteness of the method.

Further, Abrahamsson, Conboy, and Wang (2009) state that agility is contextual and situation

specific. This means that organisations need to reflect on their situation and decide what agility

means to them (Abrahamsson et al., 2009). Abrahamsson et al. (2009, p. 282) state that

“specific needs of organisations and human nature inevitably lead to diverse interpretations

and implementations of a method, which in turn lead to different, sometimes surprising, effects

and consequences of use of Agile methods and associated practices”. Agile teams therefore

need to adopt development practices that reflect the context of the project (Hoda, Kruchten, &

Noble, 2010).

Univ
ers

ity
 of

 C
ap

e T
ow

n

93

The chapter is not a linear side-by-side comparison of the findings with the literature. The

structure of this chapter is therefore not in-line with the structure of the findings chapter. For

example, the tailoring of a Scrum process at SAIT to coordinate project work dependencies as

embodied by the Work Coordination concept is discussed through the literature on

coordination theory by (Malone & Crowston, 1994). The other categories such as Process

Structure are covered in a detailed discussion on method tailoring because tailoring includes

adopting practices and designing the process workflow. The tight relationship between adopted

practices and process structure makes these two categories amenable for a combined

discussion. Concepts like Constant Feedback and Solid User Representation are interweaved in

Section 7.6 which discusses SQA and Agility.

Lack of concrete guidance and method tailoring are the main focus of this discussion and are a

part of almost all sections in this chapter.

7.1 METHOD TAILORING

The lack of prescriptions on SQA strategies and techniques as revealed by this study implies

that there is a need for Scrum to be customised and tailored to the needs of individual projects.

This is in line with one stream of research in software development focusing on tailoring

methods to suit the development context (Fitzgerald et al., 2006). According to Fitzgerald et al.

(2006), factors that should be considered when deciding how to customise development

methods include organisational issues, distributed teams, and existence of legacy systems.

Two traditional strands of research closely related to method tailoring are Method Engineering

and Contingency Factor approaches (Fitzgerald et al., 2006).

“Method engineering requires a meta-method process from which precise project specific

methods are constructed based on pre-defined and pre-tested method fragments” (Fitzgerald et

al., 2006, p. 201)

Univ
ers

ity
 of

 C
ap

e T
ow

n

94

“The contingency factor research suggests that specific features of the development context

should be used to select an appropriate method from a portfolio of methods”

 (Fitzgerald et al., 2006, p. 201)

There are problems with these approaches that render them unsuitable for most organisations.

First, the contingency approach requires organisations to have a repertoire of methods from

which to choose (Fitzgerald et al., 2006). This implies that software organisations would have to

go through a learning phase of additional methods in order to be versed in each of the

methods. This might not be advisable for companies that are still trying to perfect their Scrum

implementation. The other problem that could make it difficult for organisations is that the

experience needed to be versed in a method is best gained through development projects.

Changing methods and learning a different method for every client project can be risky and

costly.

Second, the method engineering approach poses problems to organisations because it requires

a repository to store method fragments (Fitzgerald et al., 2006). This approach also requires the

method fragments to have been tested in development projects and certified to work. Further,

following this approach might force organisations to employ method engineers and may not be

favourable in most organisations (Fitzgerald et al., 2006). The cost and risks of maintaining

method fragments also makes method engineering not suitable to software companies.

In light of the weaknesses in method engineering and contingency factors approaches, the

researcher sought literature grounded on real world case studies from organisations that have

successfully implemented method tailoring as described in Fitzgerald et al. (2003) Conboy and

Fitzgerald (2007) and Fitzgerald et al. (2006). The method tailoring approaches reported in

these literature accounts involved establishing and using an overarching method at a macro-

level for all projects and then customising the method at a micro-level to suit the needs of

individual projects. This form of customising requires organisations to outline the general

approach and its fundamental process elements to be followed in all projects. This strategy

rises above the downfall common to both method engineering and contingency approaches

which force organisations to “wait while a lengthy tailoring process takes place” (Fitzgerald et

Univ
ers

ity
 of

 C
ap

e T
ow

n

95

al., 2003, p. 69). It also overcomes the need to have a series of methods and competence in

each of the methods. It presents an opportunity to design one broad macro-method that is

comprehensive enough to cater for majority of projects. In this way, fine-tuning the general

method at a project level is easy and can be accomplished without a waste of resources and

time.

Fitzgerald et al. (2006) and Fitzgerald et al. (2003) report on an approach to method tailoring

which could be suitable as an alternative to the method engineering and contingency factors.

Through this approach, a method such as Scrum is customised at a macro level as an over-

arching approach upon which further micro-level customisation is done based on the needs of

individual projects. This is partly similar to the gradual approach to tailoring revealed by this

study which also included subsequent efforts at incorporating practices from other

methodologies within the Scrum framework.

One way of customising a Scrum process is using technical engineering practices from eXtreme

Programming (XP). “XP and Scrum were found to be very complementary with XP particularly

useful for the technical development stages, whereas Scrum provided the necessary overall

management process” (Fitzgerald et al., 2006, p. 201). This study reveals that some of the

adopted practices such as Developer Testing are XP specific while others such as Code Reviews

are general to software development.

It must be noted that there are conflicting opinions in the literature about fragmenting Agile

methods because of reported synergistic relationship between practices of each method which

makes it impossible to break up the method into independent practices. Beedle and Schwaber

(as cited in Fitzgerald et al., 2006, p. 210) report that XP practices should be used as an

integrated package in order to achieve full benefits. However, this study reveals a successful

adoption of practices from XP. This is in line with Fitzgerald et al. (2006) who assert that the

incompleteness of both XP and Scrum in terms of their coverage of the whole development

process makes them complementary and thus suitable of combination as they address different

aspects of software development.

Univ
ers

ity
 of

 C
ap

e T
ow

n

96

7.2 PROCESS STRUCTURE

Structure denotes “the arrangement of, and relations between, the parts of something

complex” (Strode, Huff, Hope, & Link, 2012, p. 1232). In this study, Process Structure denotes

the relations between practices (i.e. Code Reviews), processes (i.e. Testing), and discrete life-

cycle phases (i.e. Ready, In-Progress, Done) through which requirements are transformed to

potentially shippable software. Traditional software development processes are designed to

comply with assurance and measurement mechanisms whereas Agile processes reflect the

need to adapt to variations in requirements, resources, and uncertainty (Nerur, Mahapatra, &

Mangalaraj, 2005). Tailoring a Scrum process structure as evidenced in this study requires

organisations to think about SQA practices to adopt, SQA roles and responsibilities, the

workflow design, and to ensure that developer-testing phase is part of the workflow.

7.2.1 Adopted Practices

This study reveals that Scrum needs to be supported with quality control mechanisms to ensure

desired outcomes. This view corroborates the explanation by Abrahamsson et al. (2003. p. 3)

that “Scrum leaves open for the developers to choose the specific software development

techniques, methods, and practices for the implementation process”. According to Schwaber

(2004) Scrum teams cannot realise the full benefits of Scrum until they improve their

engineering practices to ensure that code written every day is checked in, built, and tested. A

majority of such practices are prescribed in XP.

Schwaber and Beedle as cited (Abrahamsson et al., 2003) suggest the use of practices from

other methodologies such as XP. While Scrum focuses on Agile project management, XP

provides a collection of well-known software development techniques (Abrahamsson et al.,

2003; Hashmi & Baik, 2007). Although a majority of authors on Agile claim that Agile

methodologies embrace a set of best practices for SQA and control (Sfetsos & Stamelos, 2010),

most of the well-known practices such as Test Driven Development are XP specific. XP

techniques that can be adopted within a Scrum framework are test driven development, pair

programming, refactoring, developer testing, and simple design (Fitzgerald et al., 2006). This

Univ
ers

ity
 of

 C
ap

e T
ow

n

97

study provides evidence of successful adoption of code refactoring, developer testing, and

simple designs.

Code Reviews

As mentioned in the Developer Testing section, every piece of work that gets addressed by a

development team has to be peer reviewed before it can be tested. Peer code reviews provide

assurance that the written code adheres to stated coding standards and is classified as an

empirical process control mechanism in software development by Schwaber (2009). Although

this practice provides the benefits stated, this study reveals disadvantages such as time-wasting

arguments by senior developers over semantics which in most cases end up spoiling a positive

team spirit.

Test Driven Development

Test Driven Development (TDD) came out as the most sought-after practice in this study.

According to Ambler (2005, p. 36), TDD is an approach that emphasizes writing software tests

before writing production code and enables programmers to “think about what new functional

code should do before they write it”. In addition to TDD, Agile developers develop and maintain

tests and treat them as first-class artefacts. Crispin (2006) states that TDD allows developers

write failing unit tests before writing code, and then write code to make the unit tests pass. “It

also provides a safety net of tests that the programmers can run with each update to the code,

ensuring that refactored, updated, or new code doesn’t break existing functionality” (Crispin,

2006, p. 70). The use of TDD in Agile projects implies that developers assume both

development and SQA aspects(Huo et al., 2004; Hashmi & Baik, 2007).

TDD lowers the amount of time that programmers take debugging software (Koch, 2005). With

TDD, developers no longer treat testing as the right thing to do, but as the first thing to

consider. In XP, development does not proceed at all until all tests pass, and this is normally

used to gauge the developers’ progress (Koch, 2005). Some authors, such as (Nerur et al., 2005)

claim that TDD changes the role of traditional SQA functions in organisations. A systematic

review of the literature by Sfetsos and Stamelos (2010) revealed that most empirical studies

considered test-driven development as the most important practice for achieving quality. It is

Univ
ers

ity
 of

 C
ap

e T
ow

n

98

important to note however that, most of studies evaluated Sfetsos and Stamelos (2010)

focused on XP. This implies that the use of TDD in Scrum projects is still in early stages thus not

much evidence exists to support the efficacy of adopting this practice in Scrum.

7.2.2 Workflow Design

The process workflow category is a core element which defines the process structure. It

provides an outline of the phases through which backlog items are transformed into shippable

software. This is where project level tailoring can be easily done with a view of incorporating

SQA activities or processes. Teams need to decide the most important activities that need to be

part of the workflow. Through method tailoring, a process workflow should be designed in such

a way that successful completion of all the phases within the workflow includes important SQA

practices and the task-board should also reflect these SQA practices. It should be noted that

Scrum mandates that a team defines its own “Done” based on the demands of a project. The

lack of prescriptions offers opportunities for innovating and incorporating best practices that

are appropriate for unique situations. For example, an acceptance criteria could include that

the study is tested and code reviewed before being marked as “Done”

7.2.3 Developer testing

This study reveals that developer testing as part of the process workflow means that

developers have to test every single user story they address before the product owner can test

that story. This is a critical component to ensuring quality of code and quality of functionality

because the story is both code reviewed and developer tested at this phase by another

developer before it can be moved to the next phase. The introduction of this phase as part of

the workflow as evidenced in this study has important benefits such as early feedback and

insightful test-driven design approach.

Although, there are benefits to developer testing, this study encountered situations where the

quality of testing by developers was not satisfactory. This goes in line with Koch (205) who state

that developers’ testing perspective is limited and focused on one feature at a time. In most

cases developers do not consider ‘regression bugs’ that may have been introduced by the new

features. Suggestions to improve the effectiveness of developer testing include changing the

Univ
ers

ity
 of

 C
ap

e T
ow

n

99

attitude of developers towards testing (Gill, 2005). One other technique discovered in this study

is the use of ‘emotional’ motivation by project leaders to encourage proper developer testing.

The problems that arise from developer testing will be discussed in more detail the Dedicated

Specialities section because these are tightly linked to the role of a Dedicated Tester.

7.2.4 Collective Code Ownership

Another characteristic of Agile software development that impacts quality is emphasis on

collaboration and communication amongst team members (Sutharshan & Maj, 2010). This

study highlights that collective and collaborative code ownership is important to meeting

quality requirements. The idea is that if more than one person work on a feature and the team

participates in design and planning sessions, then the quality of the software produced is

better. This corroborates the finding by Maruping, Zhang, et al. (2009) who focused on 56 XP

projects and discovered that collective ownership and coding standards contribute to improved

technical quality.

Collaborative approach to development is made possible by co-location and face to face

communication (Bhasin, 2012). This study reveals that all developers working on the same

project need to within a touching distance to each other. A normal working day is characterised

by continuous discussions amongst developers. Other studies such as (Huo et al., 2004) report

smooth collaborative work between SQA groups and developers. This includes faster and light-

weight, two-way communication between developers and SQA professionals in which a small

piece of work is evaluated and feedback communicated back to developers (Huo et al., 2004).

Further, business analysts and the user experience developers need to sit very close to the

developers and this allows for quick exchange of ideas and clarification of requirements.

Collective ownership requires a shift in project management thinking from that of command

and control to that of facilitating, directing, and coordinating (Nerur et al., 2005). The role of a

traditional project manager is replaced with that of a ScrumMaster who is tasked to promote

team work rather than individualistic ownership of duties. Although well supported in

organisations that have dedicated SQA personnel, Williams and Cockburn (2003) state that

Univ
ers

ity
 of

 C
ap

e T
ow

n

100

much needs to be done in terms of establishing clear relationships between development

groups and SQA groups.

7.3 WORK CORDINATION AND DEPENDENCY RESOLUTION

Effective coordination is a fundamental factor for achieving project success (Strode et al., 2012).

While Agile methods were designed to provide mechanisms for dealing with constant change,

they place little importance on traditional coordination means such as upfront planning,

comprehensive documentation, and stringent adherence to a pre-defined process. The

researcher draws on Coordination Theory by (Malone & Crowston, 1994) who view

coordination as a management of dependencies. “The key idea in Coordination Theory is that

coordination is needed to address dependencies, which are the constraints on action in a

situation” (Strode et al., 2012). This is particularly important for SQA efforts in software

organisations because there are dependencies that need to be resolved between analysis work,

user experience (UX) work, programming, and testing.

Coordination in this context is defined simply as “managing dependencies between activities”

(Malone & Crowston, 1994, p. 90). This study reveals that Scrum tailoring initiatives for

coordinating inter-dependent SQA activities in Scrum in order to ensure that the needs and

constraints of project work do not affect the quality of the product. One key coordination

mechanism customised based on the needs of the project and availability of development

resources revealed in this study is the N + 1 innovation. This type of coordination mechanism

addresses a Producer / Consumer relationship (Malone & Crowston, 1994, p. 93) whereby “one

activity produces something that is used by another activity”. An example relationship in

software development teams is that the UX developers design user interface screens and

wireframes to be used by the developers. Further, the software analyst uses the output of

analysis to create testing artefacts such as test cases. Software development teams need tp

continuously improve their approach to this coordination strategy to ensure enough lead time

for performing analysis work, testing work and user experience activities.

Univ
ers

ity
 of

 C
ap

e T
ow

n

101

According to Malone and Crowston (1994) there are numerous kinds of dependencies that

result from producer / consumer relationships as summarised in Table 7.2.

Dependency Description Implications for Development Teams

Prerequisite

constraints

The consumer activity cannot be

started before the producer

activity has been completed. This

kind of dependency requires

effective notification mechanisms

to ensure that the consumer actors

are notified as soon as the

producer has finished. This

dependencies also require

sequencing and tracking

mechanisms.

Developers do not start on stories until

analysis is done.

Testing cannot start before development

is finished. Drawing test cases requires

finished analysis on stories. Drawing

wireframes requires that analysis be

done.

The use of software applications such as

GreenHopper software to visualise the

transition of artefacts from the analysis

stages until they work is signed off as

shippable software. For example,

software analysts and developers get

notifications when stories are ready for

test.

Transfer “When one activity produces

something that is used by another

activity, the thing being produced

must be transferred to the

consumer activity”.

The use of ‘just in time’ delivery of

producer artefacts is

recommended to avoid the need

for storage.

Stories and any supporting

documentation are attached and stored

in software applications such as

GreenHopper. Wireframes and any UX

artefacts are also attached as part of the

stories on GreenHopper.

The ‘just in time’ concept is not really

relevant in this case, as storage is not a

concern. However, timely delivery of

Univ
ers

ity
 of

 C
ap

e T
ow

n

102

The management of dependencies

needs to ensure that consumer are

not overwhelmed by a heavy

inflow of artefacts to deal with.

And the producers should also not

be placed under pressure to

deliver an overwhelming amount

of artefacts within a short space of

time.

artefacts is of utmost importance to

ensure smooth transition between

activities and timely delivery of Sprint

artefacts.

The Sprint estimation and planning

sessions serve to ensure that the right

amount of work is assigned to producers

and consumers at the right time. Also,

the N+1 innovation serves to ensure that

enough time is allocated for all producer

artefacts to be ready for consumption.

The N + 2 also serves the purpose. It

provides a buffer of some sort.

Usability “Another, somewhat less obvious,

dependency that must often be

managed in a producer / consumer

relationship is that whatever is

produced should be usable by the

activity that receives it”.

The specifications and any supporting

documents produced should be clear

and comprehensive enough...and the

screens designed should be workable. In

the case of clarity of specifications, co-

location also helps to clarify any

misunderstandings.

Table 7.1 Dependency resolution

While the N+1 innovation works for analysis work and user experience, questions still to be

answered on how dedicated testing personnel should be integrated going to be integrated into

the project. This study could not reveal the exact nature of how Testers are supposed to be

involved in a two-week sprint. The main question relates to the timing for testing work that is

completed on the last day of Sprint. These testing bottlenecks and coordination of the testing

work among testers and programmers have been noted in the literature (Talby et al., 2006).

Univ
ers

ity
 of

 C
ap

e T
ow

n

103

7.4 DEDICATED TESTING

This study reveals various challenges were attributed to absence of dedicated testers in Agile

software development teams. These include concerns around inadequate testing, capacity

constraints, and lack of expertise. In addressing similar concerns, Ken Schwaber, the co-creator

of Scrum, stated the following: “In response, I explained to them that a team is cross-functional:

in situations where everyone is chipping in to build the functionality, you don’t have to be a

tester to test, or a designer to design” (Schwaber, 2004, p. 104). The idea that anyone can test

is dominant in Agile literature. However, the various challenges revealed by this study suggest

that this premise can be misleading.

Schwaber’s (2004) statement that in a team “you don’t have to be a tester to test, or a designer

to design” undermines the importance of professional expertise in these specialties in software

development. The evidence presented in this study contradicts his statement as various

challenges were attributed to the absence of dedicated testers. The notion of cross-functional

teams defined as “teams of employees from different functional areas ”(Webber, 2002, p. 201)

underpins team composition in Scrum. Cross-functional teams consist of members from diverse

specialisations and thrive on effective coordination and collaboration mechanisms. In a case of

software development teams, a cross-functional team would therefore consist of testers,

programmers, designers, and analysts.

Koch (2005) states that although independent and professional testing is highly beneficial, Agile

methods do not even mention testers. It is important to state that the statement is not entirely

true because a Scrum cross-functional team should presumably include testers. The belief in

some sections of Agile literature is that developer testing lessens the need for dedicated testing

in Agile methods (Winter et al., 2008). This belief might have lead decision makers at SAIT to

undermine the importance of dedicated testers and instead put all the trust in developers and

analysts. With hindsight, the need for dedicated testers is clear and most of the challenges

reported stemmed from the absence of dedicated testers. It is also important to note that the

belief is dominant in XP literature because XP explicitly mentions developer testing as a

practice.

Univ
ers

ity
 of

 C
ap

e T
ow

n

104

Much has been written in practitioner literature about Agile testing and Koch (2005) states that

efforts are being made in the Agile arena to understand how this can work. Cohn and Ford

(2003) advise teams to carefully integrate testers in Agile projects to enable close collaboration

between testers and programmers. It is suggested that SQA professionals must approach

testing in Agile differently from testing in traditional methodologies (Talby et al., 2006). The

approach recommended by this study is that one experienced Agile tester should be part of the

team and should be responsible for coaching developers and analysts, managing the testing

function, and overseeing the whole testing across all development teams. This approach aims

at carefully integrating testers into development teams and is in line with the advice by Cohn

and Ford (2003).

The next section discusses the concerns of stakeholders in relation to the adequacy of testing

and subsequent levels of quality attributed to the absence of dedicated testers.

7.4.1 Consequences of the Lack of Dedicated Testing in Scrum

While developer testing is the main form of testing in Agile environments, the main problem is

that most developers and customers who have to assume the responsibility of testing have

never had a formal testing training (Koch, 2005). This was also noted in this study as testing

expertise and the lack of testing knowledge base, testing guidelines are the main concerns with

regards to testing. Koch suggests that traditional testers can be used in this situation to provide

coaching and help in building the testing skills of developers. While this approach can

contribute to good testing in Agile, Koch (2005) also notes that there is still a need for

independent testing because the customers’ and developers’ testing perspectives do not

encompass the bigger picture of SQA.

This study reveals that dedicated testers are needed for their ability to think differently than

developers. Dedicated testers can induce client-centric thinking into the team, are able to think

about quality from different dimensions, and would introduce wide-covering test strategies.

This can be important in mitigating narrow testing by developers. Koch (2005) states that

developers actively look for ways of making the code work, while testers look for ways to break

the code. This is where dedicated testers can play a crucial role in ensuring that the product not

Univ
ers

ity
 of

 C
ap

e T
ow

n

105

only achieves functionality and usability, but also meets the needs of the customer (Koch,

2005). Techniques for improving developer attitude towards testing include the use of

emotional motivation which sensitises developers to the fact that they can effectively protect

each others’ careers by properly testing each others’ code. This is partially similar to Gill's

(2005) suggestion that improving developers’ attitude towards testing is critical for effective

developer testing.

In addition to the testing and quality issues, one of the concerns is capacity constraints.

Capacity in this context refers to skills, experience, and time available to undertake work

assignments. While Agile proponents as stated in (Talby et al., 2006; Koch, 2005) support

shifting SQA responsibilities to developers, this can also lead to capacity demands and time

pressures. The absence of dedicated testers means that business analysts and programmers

have to undertake testing responsibilities. The result of this as evidenced in this study is that

SQA tasks are almost always pushed aside.

The absence of a dedicated tester highlighted the need for top management to actively support

a team in terms of resources. Testing is not the only aspect of SQA that requires top

management support. For example, a development team needs to innovate and come up with

situation-appropriate (Abrahamsson et al., 2003) and devise engineering practices (Schwaber,

2004, p. 107) to support Scrum’s transparency. This requires management support for

providing strategic leadership, promoting a collaborative culture, and creating an enabling

environment for innovation. Management needs to give a development team the freedom to

solve its own problems and devise the best ways to achieve its commitments (Schwaber, 2004,

p. 108).

The next section discusses business buy-in as seen through the lived experiences of Scrum

projects stakeholders.

7.5 BUSINESS BUY IN

The challenges and opportunities for innovation presented by the lack of concrete guidance

imply that top management involvement and support is paramount. Management needs to

Univ
ers

ity
 of

 C
ap

e T
ow

n

106

create an enabling environment and offer financial support in order for their project teams to

meet quality requirements. Scrum needs to be directed from management through a set of

clearly stated expectations and actions (Marchenko & Abrahamsson, 2008).This then means

that Scrum needs to be communicated to stakeholders in a manner that highlights the fact that

Scrum as a management framework does not prescribe any SQA processes, techniques, roles,

and practices to use. Management need to be aware that teams need to innovate and devise

engineering practices to support to overall Scrum framework.

Janzen and Saiedian (2005) mention economics as one of the factors affecting the adoption of

TDD. This touches on two most important aspects for time-based organisations such as SAIT -

time and cost to company. As evidenced in this study, a development team needs to be granted

time to innovate, incorporate, and execute SQA practices. It is important to note that practices

like TDD, regression testing, and code reviews do not only require research time, but can

significantly affect the amount of time to complete features because of the required extensive

tests that accompany production code.

Although innovation requires management support, Williams and Cockburn (2003) came across

instances where management were not happy with Agile approaches, claiming that these

approaches effectively give developers a leeway to hack. Cohn and Ford (2003) also report a

case where some team members felt being micro-managed in Scrum because they interacted

with their managers too often. Friis et al. (2011) discovered that one of the challenges that

management faces in a Scrum environment is conceding that Scrum teams need to be left

alone and not micro-managed. Scrum emphasizes self-managing teams (Schwaber, 2004) and

this presents a challenge in traditional command and control as authority is pushed down to

level of operational problems (Moe, Dingsøyr, & Dybå, 2010). Scrum teams need to have full

control and authority to devise new approaches and solve their problems which means that

management is supportive in providing space for innovation.

It is important to re-iterate that a development team needs full support and empowerment to

devise ways of ensuring quality delivery. Without adequate support, the team faces challenges

as evidenced through the consequences of the lack of testing expertise.

Univ
ers

ity
 of

 C
ap

e T
ow

n

107

The next two sections focus explicitly on aspects of agility and empirical process control from

the extant literature and how they apply to SAIT.

7.6 SOFTWARE QUALITY ASSURANCE AND AGILITY

McBreen (as cited in Mnkandla and Dwolatzky, 2006) defines Agile SQA as the flexibility to

respond to changes in customer requirements. While traditional SQA methodologies use heavy

inspection techniques, statistical mechanisms, and reporting processes (Bhasin, 2012; Feldman,

2005) this study highlights the importance of constant feedback which is a concept under the

Guiding Principles category. Table 7.3 provides a brief comparison of traditional SQA, Agile SQA,

and implications for Scrum teams.

Other features of Agile development that improve SQA include short-time delivery (Huo et al.,

2004). This results in rapid feedback, simplicity, and constant testing (Abrahamsson et al.,

2002). The design of the Process Structure as evidenced in this study should be in such a way

that these aspects are possible. The principles are meant to provide guidelines for production

of quality software (Mangalaraj et al., 2009). Furthermore, Agile methods have additional SQA

practices that are not used in traditional approaches (Huo et al., 2004). These practices include

code refactoring, continuous integration, On-site customer, and the use of system metaphor as

opposed to formal architecture. For examples, development team can use applications such as

Hudson continuous integration server for daily builds and Git for revision and source control

management. However, the team does not have an On-site customer hence the need for solid

user representation.

SQA is not only about testing and feedback, but incorporates planning and control. The next

section discusses a SQA perspective of Scrum’s empirical process control to situate planning

and control in a Scrum process.

Univ
ers

ity
 of

 C
ap

e T
ow

n

108

Traditional SQA Agile SQA Implications for Scrum teams

Formal Review More Flexible, informal

peer reviews

Code Reviews, Stand-up meetings,

developer testing, retrospectives

QA engineers On-site customer on-site customer if possible, developer

and analyst testing

Life-cycle phases Frequent Integration Use of Hudson server for frequent

integration

Heavy inspection and

control by QA ‘police’

Emphasises collaboration

and communication

Co-located team, collaboration as one of

the core values

Verification and Sign-

off of each life-cycle

phase

Short time delivery Two-week Sprints, major releases every

two sprints.

Stringent Reporting Rapid Feedback Constant feedback, creation of feedback

loops, open communication.

A dedicated testing

phase

Constant testing Developer Testing as part of definition of

done. Analyst testing after a feature is

done.

Dedicated QA and

Testers

Done by developers and

analysts

 Done by developers and analysts. Need

for dedicated testing, improvement of

testing expertise through training.

Table 7.2 Traditional SQA vs. Agile SQA

Univ
ers

ity
 of

 C
ap

e T
ow

n

109

7.7 EMPIRICAL PROCESS CONTROL

The most important SQA aspect about Scrum is its emphasis on empirical process control

(Schwaber, 2009). Examples of empirical processes include stand up meetings, and

retrospectives. As discussed in the Chapter 4, the Portal Project team holds daily Scrum

meetings every day and have retrospective sessions after every Sprint. Empirical processes are

characterised by transparency, inspection, and adaptation. These allow those in charge to have

a “bird sight view” of the aspects of a process that affect the product quality (Schwaber, 2009).

Empirical process mechanisms allow stakeholders to detect any aspects of the process that are

not going well early in the process. This affords the organisation an opportunity to reorganise

and adjust the work so that quality standards are not affected (Schwaber, 2009). Scrum teams

should adopt Code Reviews and integrate Developer Testing in the Process Structure. It must be

noted that control in Scrum does not mean controlling to create what we predict. It means

controlling the “work towards the most valuable outcome possible” (Schwaber, 2009, p.1).

Scrum methodology puts in place mechanisms to mitigate risks during development

(Schwaber, 1995). Controls used to mitigate risks include using Backlogs. Scrum teams team

have both the Sprint Backlog and the Product Backlog. The team and management must track,

manage, review, modify, and reconcile the controls at every Sprint meeting (Schwaber, 1995).

In addition, the Daily Scrum meeting and the Burn-Down chart provide a way to monitor team

progress and manage impediments (Friis et al., 2011). Daily Scrum meetings provide an

opportunity for a team to deal with inevitable changes in user requirements (Maruping,

Venkatesh, et al., 2009). This offers an opportunity for a team to re-plan accordingly based on

changing requirements and available resources.

Although Scrum offers empirical process control mechanisms and agility, the methodology does

not cover all aspects of SQA as discovered by this study and stipulated in Chapter 6.

Univ
ers

ity
 of

 C
ap

e T
ow

n

110

7.8 IMPLICATIONS FOR PRACTICE

Agile literature accounts often state numerous SQA benefits and techniques associated with

migrating to Agile. Often these techniques and benefits are related to the XP methodology.

Scrum on the other hand does not prescribe any SQA techniques. From a SQA perspective,

Scrum is incomplete as demonstrated in this study. It is on this premise that organisations are

encourage to engage on method tailoring and customisation.

Customising Scrum in particular requires organisations to adopt industry best practices from

methodologies such as XP. This study has shown how practices such as Code Reviewing can be

fruitfully incorporated in Scrum process workflows. The workflow design is of particular

importance in terms of ensuring that SQA practices and techniques are successfully employed

in Scrum. Senior leaders should focus on continuously improving the base process and ensure

that SQA practices are incorporated as soon as they gain dominance in industry.

Method tailoring has several advantages as outlined in Fitzgerald et al. (2003):

- Incorporation of new ideas as they emerge in practice

- Replacement of method components which are not working well

- Continuous improvement of the base method over time

- Early design of process artefacts, techniques, and tools that are applicable to a broad

range of projects

- Establishment of a concise project level tailoring approach and criteria for consistency

and rigour.

Univ
ers

ity
 of

 C
ap

e T
ow

n

111

CHAPTER 8. CONCLUSION

This chapter aims to provide a summary of the findings and a reflection on whether the

research objectives have been met. To achieve this aim, the chapter commences with a revisit

of the research objectives. After the research objectives, the core aspects of the findings are

then presented in summary. After the summary, the researcher makes recommendations for

future research. The recommendations are followed by a section stating the limitations and a

brief account of the contribution made by this study.

8.1 RESEARCH OBJECTIVES

The researcher embarked on an exploratory and inductive theory building case study focusing

on aspects of SQA in a Scrum environment through the application of Classic Grounded Theory

Methodology tenets. The study sought to understand how an organisation using Scrum

achieves software quality requirements and to generate a substantive theory on Scrum and

SQA. It aimed at providing an understanding of SQA processes, practices, and techniques

involved, the concerns of different individuals about the processes, and how SQA might be

improved. The specific research objectives were:

 To identify and illuminate aspects of SQA in a Scrum environment

 To illuminate the concerns of Scrum project stakeholders in relation to SQA in a Scrum

environment.

This study viewed SQA as a broad range of activities, processes, techniques employed in Agile

teams to achieve software quality requirements.

8.2 SUMMARY OF FINDINGS

The study revealed a broad range of SQA aspects related to the main concern of Meeting User

Expectations. The Need for Concrete Guidance on SQA strategies, techniques and processes

came up as one dominant aspect necessary for Meeting User Expectations. Scrum does not

offer concrete guidance on technical aspects of how to achieve quality requirements. Due to

Univ
ers

ity
 of

 C
ap

e T
ow

n

112

the lack of concrete guidance in Scrum, a development team has to devise Innovations which

may include adopting practices from other methodologies. The Innovations may also include

carefully designing the Process Structure to accommodate the Adopted Practices, to make

dependency resolution smoother, and to ensure a continued improvement of the base process

framework. Adopting SQA practices and designing the process structure accordingly needs to

be guided by ‘quality-enabling’ principles such as Collaborative Ownership and Continuous

Improvement.

In addition to the Need for Concrete Guidance, two other important aspects necessary for

Meeting User Expectations are Need for Solid User Representation and Need for Dedicated

Testing. The study revealed a number of challenges related to the absence of a dedicated tester

at SAIT. The absence of dedicated testing in a Scrum environment poses challenges such as

increased capacity demands and pressure on developers and analysts to improve their skills

and expertise in both analysis/development work and testing work. The increased pressure

and/or the lack of required testing expertise results in a broad range of testing and quality

issues such as inadequate test planning.

It is therefore important that team composition is cognisant of the fact that there needs to be

at least one member in the team representing each of the software engineering disciplines that

are demanded by nature of the project. This statement suggests that a user centric application

requires a strong User Experience function. Similarly, a mission critical system requires strong

quality control mechanisms to be adopted within the Scrum process structure. For example,

this may include acquiring skilled Agile testing personnel to oversee testing.

Further, a brief literature review reveals that Scrum already provides some level of quality

assurance through empirical process control. Empirical process control makes aspects of

development work visible so that appropriate action may be taken to address any issues that

might hamper a team’s ability to meet user expectations. Also, the fact that Scrum is an agile

method means that there are some inherent aspects of SQA such as constant feedback, short

time delivery, and flexibility to accommodate inevitable changes in user requirements. It is

important to reiterate however that some of the widely talked about SQA practices in Agile

Univ
ers

ity
 of

 C
ap

e T
ow

n

113

literature such as Test Driven Development are XP practices and need to adopted into a Scrum

process.

It is therefore important that Scrum is viewed as a framework of ‘empty buckets which need to

be filled’ with situation specific practices and processes. This means that organisations need to

understand that Scrum offers a planning and control backbone but needs to be supported by

other methodologies. This suggests that organisations need to tailor their Scrum processes

innovatively to accommodate the demands of a situation. An innovative approach to tailoring a

Scrum process is important in ensuring that relevant SQA practices are part of the process

structure.

Overall, the study does present various aspects of SQA in a Scrum environment and provides an

understanding of how SQA can be addressed in Scrum. The lack of concrete guidance requires

innovation and/or adoption of existing quality control mechanisms. With emphasis on method

tailoring the study does provide an understanding on how to improve SQA processes and

techniques.

The next section presents recommendations.

8.3 FUTURE RESEARCH

This study was an exploratory account and covered a broad range of aspects. There is need for

future work to focus on each of the concepts in the theoretical framework and provide a

deeper understanding. For example, a future study can solely focus on Agile testing and explore

how it may be best implemented in Scrum environment. Other studies can investigate the

impact of the challenges discovered in these study to software quality. In addition, more case

studies on how different organisations have tailored their Scrum processes can benefit both the

practitioner and the academic communities. A future GTM study could extend the findings of

this study through further comparative case studies and comparative cross-case analysis to

modify and extend the theoretical framework.

Univ
ers

ity
 of

 C
ap

e T
ow

n

114

8.4 RESEARCH CONTRIBUTION

The study contributes to the research community by providing an understanding how Scrum

works in practices in relation to SQA. The study unearthed a range of concepts that are open for

further exploration. The study dispels the common misunderstanding about SQA in Agile

methods propagated by studies focusing solely on XP teams and then generalising their findings

to the broader Agile umbrella. This study reveals that a majority of the common Agile SQA

practices most talked about in the literature are XP practices. Even the studies that seek to

verify - through experiments and statistical data - whether these practices work in practice, do

so by investigating XP. It is therefore important for practitioners and researchers to be

cognisant of the fact that Scrum does not prescribe a majority of the most popular agile SQA

practices such as TDD.

This study further contributes to the research community by addressing the need to close the

gap in studies focusing on the Scrum methodology. Further, the study fills the gap of

investigating Agile methods beyond the adoption stage. Finally, the study also makes a

contribution to the IS field by adding an inductive and substantive theory through the

application of a grounded theory techniques.

8.5 LIMITATIONS

The study is subject to the following limitations: Firstly, the application of classic GTM

techniques may not have been good enough given the inexperience of the researcher with this

methodology. Secondly, the prior literature review means that the researcher did not

completely adhere to the tenets of classic GTM. Third, the single case study might not have

covered a broad range of possible variations in the field of SQA in a Scrum environment.

Univ
ers

ity
 of

 C
ap

e T
ow

n

115

CHAPTER 9. REFERENCES

Abrahamsson, P., Conboy, K., & Wang, X. (2009). “ Lots done , more to do ”: the current

state of agile systems development research. European Journal of Information Systems, 18,

281–284.

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile software development

methods. VTT Technical report.

Abrahamsson, P., Warsta, J., Siponen, M. T., & Ronkainen, J. (2003). New Directions on Agile

Methods : A Comparative Analysis. 25th International Conference on Software

Engineering (Vol. 6).

Adolph, S., Hall, W., & Kruchten, P. (2011). Using grounded theory to study the experience of

software development. Empir Software Eng, 16(4), 487–513.

Adolph, S., Kruchten, P., & Hall, W. (2012). The Journal of Systems and Software Reconciling

perspectives : A grounded theory of how people manage the process of software

development. The Journal of Systems & Software, 85(6), 1269–1286.

Ågerfalk, P. J., Fitzgerald, B., & Slaughter, S. A. (2009). Introduction to the Special Issue

Flexible and Distributed Information Systems Development : State of the Art and Research

Challenges. Information Systems Research, 20(3), 317–328.

Akif, R., & Majeed, H. (2012). Issues and Challenges in Scrum Implementation. International

Journal of Scientific & Engineering Research, 3(8), 1–4.

Alsultanny, Y. A., & Wohaishi, A. M. (2009). Requirements of Software Quality Assurance

Model. Second International Conference on Environmental and Computer Science (pp. 19–

23).

Ambler, S. (2005). Quality in an Agile World. Software Quality Professional, 7(4), 30–34.

Benbasat, I., Goldstein, D. K., & Mead, M. (1987). The Case Research Strategy in Studies of

Information Systems. Management Information Systems, 11(3), 369–386.

Bhasin, S. (2012). Quality Assurance in Agile: A Study towards Achieving Excellence. IEEE

Computer Society (pp. 12–15).

Botella, P., Burgués, X., Carvallo, J. P., Franch, X., Grau, G., Marco, J., & Quer, C. (2004). ISO

/ IEC 9126 in practice : what do we need to know ? Proceedings of the 1st Software

Measurement European Forum (SMEF).

Univ
ers

ity
 of

 C
ap

e T
ow

n

116

Caballero, E., Calvo-manzano, J. A., & Feliu, T. S. (2011). Introducing Scrum in a Very Small

Enterprise : A Productivity and Quality Analysis. Systems, Software and Service Process

Improvement (pp. 215–224).

Cao, L., Mohan, K., Xu, P., & Ramesh, B. (2009). A framework for adapting agile development

methodologies. European Journal of Information Systems, 18, 332–343.

Charette, R. N. (2005). Why Software Fails. Ieee Spectrum, (September), 42–49.

Cho, J. (2008). Issues and Challenges of Agile Software Development with Scrum. Issues in

Information Systems, IX(2), 188–195.

Cho, J., & Huff, R. A. (2011). MANAGEMENT GUIDELINES FOR SCRUM AGILE

SOFTWARE DEVELOPMENT. Issues in Information Systems, XII(1), 213–223.

Cicmil, S., Hodgson, D., Lindgren, M., & Packendorff, J. (2009). Project management behind

the façade. Ephemera: Theory and Politics in Organization, 9(2), 78–92.

Cohn, M., & Ford, D. (2003). Introducing an Agile Process to an organisation. Computer, 74–78.

Conboy, K. (2009). Agility from First Principles : Reconstructing the Concept of Agility in

Information Systems Development. Information Systems Research, 20(3), 329–354.

Conboy, K., & Fitzgerald, B. (2007). The views of experts on the current state of agile method

tailoring. In T. McMaster, D. Wastell, E. Ferneley, & J. DeGross (Eds.), IFIP International

Federation for Information Processing (Vol. 235, pp. 217–234). Boston: Springer.

Crispin, L. (2006). Driving Software Quality : How Test-Driven Development Impacts Software

Quality. IEEE Software, 23(6), 70–73.

Côté, M.-A., Suryn, W., & Georgiadou, E. (2007). In search for a widely applicable and accepted

software quality model for software quality engineering. Software Quality Journal, 15(4),

401–416.

Dingsøyr, T., & Dyba, T. (2008). Empirical studies of agile software development : A systematic

review. Information and Software Technology, 50, 833–859.

Dingsøyr, T., Dybå, T., & Abrahamsson, P. (2008). A Preliminary Roadmap for Empirical

Research on Agile Software Development. Agile 2008 (pp. 83–94).

doi:10.1109/Agile.2008.50

Dingsøyr, T., Nerur, S., Balijepally, V., & Moe, N. B. (2012). A decade of agile methodologies:

Towards explaining agile software development. The Journal of Systems and Software, 85,

1213–1221.

Univ
ers

ity
 of

 C
ap

e T
ow

n

117

Eisenhardt, M. (1989). Building Theories from Case. The Academy of Management Review,

14(4), 532–550.

Feldman, S. (2005). Quality Assurance : Much More than Testing. ACM Queue, 3(1), 27 – 30.

Fernández, W. D. (2004). The grounded theory method and case study data in IS research : issues

and design. In D. N. Hart & S. D. Gregor (Eds.), Proceedings of Information Systems

Foundations Workshop: Constructing and Criticising Australian National University (pp.

43–59). Canberra Australia: ANU E-Press.

Fitzgerald, B., Hartnett, G., & Conboy, K. (2006). Customising agile methods to software

practices at Intel shanno. European Journal of Information Systems, 15, 200–213.

Fitzgerald, B., Russo, N. L., & O’Kane, T. (2003). Software Development Method Tailoring at

Motorola. Communications of the ACM, 46(4), 65–70.

Fowler, M., & Highsmith, J. (2001). The agile manifesto. Software Development, 9, 28–32.

Friis, D., Ostergaard, J., & Sutherland, J. (2011). Virtual Reality Meets Scrum : How a Senior

Team Moved from Management to Leadership Results. 44th Hawaii International

Conference on System Sciences (pp. 1–7).

Gill, N. S. (2005). Factors Affecting Effective Software Quality Management Revisited. ACM

SIGSOFT Software Engineering Notes, 30(2), 1–4.

Glaser, B. (1965). The Constant Comparative Method of Qualitative Analysis. Social Problems,

12(4), 436–445.

Glaser, B., & Holton, J. (2004). Remodeling Grounded Theory. Forum: Qualitative Social

Research, 5(2), 1–17.

Green, P. (2011). Measuring the Impact of Scrum on Product Development at Adobe Systems.

44th Hawaii International Conference on System Sciences (pp. 1–10).

Green, P. (2012). Adobe Premiere Pro Scrum Adoption How an agile approach enabled success

in a hyper-competitive landscape. IEEE 2012 Agile Conference.

Gregor, S. (2006). The nature of theory in information systems. MIS Quarterly, 30(3), 611–642.

Hashmi, S. I., & Baik, J. (2007). Software Quality Assurance in XP and Spiral - A Comparative

Study. Fifth International Conference on Computational Science and Applications.

Highsmith, J., & Cockburn, A. (2001). Agile Software Development : The Business of

Innovation. Computer, 34, 120–122.

Univ
ers

ity
 of

 C
ap

e T
ow

n

118

Hirschheim, R., & Klein, H. K. (1985). Information systems epistemology: An historical

perspective. In E. Mumford, R. Hirschheim, G. Fitzgerald, & T. Wood Harper (Eds.),

Research Methods in Information Systems (pp. 1–18). North-Holland, Amsterdam.

Hoda, R., Kruchten, P., & Noble, J. (2010). Agility in Context. Proceedings of the ACM

international conference on object oriented programming systems languages and

applications, 1–16.

Hoda, R., Noble, J., & Marshall, S. (2012). Developing a grounded theory to explain the

practices of self-organising Agile teams. Empir Software Eng, 17(6), 609–639.

Huo, M., Verner, J., Zhu, L., & Babar, M. A. (2004). Software Quality and Agile Methods. the

28th Annual International Computer Software and Applications Conference, 1–6.

Janzen, D. S., & Saiedian, H. (2005). Test-Driven Development: Concepts, Taxonomy, and

Future Direction. IEEE Computer Society, 77–84.

Kan, S. H., Basili, V. R., & Shapiro, L. N. (1994). Software quality: An overview from the TQM

perspective. IBM Systems Journal, 33(1), 4–19.

Kayes, I. (2011). Agile Testing : Introducing PRAT as a Metric of Testing Quality in Scrum.

ACM SIGSOFT Software Engineering Notes, 36(2), 1–5.

Kitchenham, B., & Pfleeger, S. L. (1996). Software Quality: The Elusive Target. IEEE Software,

13(1), 12–21.

Klein, H. K., & Myers, M. D. (1999). A set of principles for conducting and evaluating

interpretive field studies in information systems. MIS quarterly, 23(1), 67–93.

Koch, A. S. (2005). The Role of Testers in the Agile Methods. SQP, 7(1), 33–40.

Leahmann, H. (2007). A DAPTING THE G ROUNDED T HEORY M ETHOD FOR I

NFORMATION S YSTEMS R ESEARCH. 4th QUALIT Conference Qualitative Research

in IT & IT in Qualitative Rsearch.

Lehmann, H. (2010). Grounded Theory and Information Systems : Are We Missing the Point ?

Proceedings of the 43rd Hawaii International Conference on System Sciences, 1–11.

Li, J., Moe, N. B., & Dybå, T. (2010a). Transition from a Plan-Driven Process to Scrum – A

Longitudinal Case Study on Software Quality. Proceedings of the 2010 ACM-IEEE

International Symposium on Empirical Software Engineering and Measurement.

Li, J., Moe, N. B., & Dybå, T. (2010b). Transition from a Plan-Driven Process to Scrum – A

Longitudinal Case Study on Software Quality. Proceedings of the ESEM’10 Conference, 1–

10. New York: ACM.

Univ
ers

ity
 of

 C
ap

e T
ow

n

119

Malone, T. W., & Crowston, K. (1994). The Interdisciplinary Study of Coordination. ACM

Computing Surveys, 26(1), 87–119.

Mangalaraj, G., Mahapatra, R., & Nerur, S. (2009). Acceptance of software process innovations

– the case of extreme programming. European Journal of Information Systems, 18, 344–

354.

Marchenko, A., & Abrahamsson, P. (2008). Scrum in a Multiproject Environment : An

Ethnographically-Inspired Case Study on the Adoption Challenges. Agile 2008 (pp. 1–12).

Toronto, Canada.

Marshall, M. (1996). Sampling for qualitative research. Family practice, 13(6), 522–525.

Maruping, L. M., Venkatesh, V., & Agarwal, R. (2009). A Control Theory Perspective on Agile

Methodology Use and Changing User Requirements. Information Systems Research, 20(3),

377–399.

Maruping, L. M., Zhang, X., & Venkatesh, V. (2009). Role of collective ownership and coding

standards in coordinating expertise in software project teams. European Journal of

Information Systems, 18, 355–371.

Matavire, R., & Brown, I. (2011). Profiling grounded theory approaches in information systems

research. European Journal of Information Systems, (35), 1–11.

Mnkandla, E., & Dwolatzky, B. (2006). Defining Agile Software Quality Assurance.

Proceedings of the International Conference on Software Engineering Advances, 1–7.

Moe, N., & Dingsøyr, T. (2008). Scrum and Team Effectiveness : Theory and Practice. XP 2008,

11–20.

Moe, N., Dingsøyr, T., & Dybå, T. (2010). A teamwork model for understanding an agile team :

A case study of a Scrum project. Information and Software Technology, 52(5), 480–491.

Myers, M. (2009). Qualitative research in business & management. London: Sage Publications,

Inc.

Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of Migrating to Agile

Methodologies. Communications of the ACM, 48(2), 72–78.

Orlikowski, W. J., & Baroudi, J. J. (1991). Studying Information Technology in Organizations:

Research Approaches and Assumptions. Information Systems Research, 2(1), 1–28.

Osterweil, L., Clarke, L., DeMillo, R., Feldman, S., McKeeman, B., Miller, E., & Salasin, J.

(1996). Strategic Directions in Software Quality. ACM Computing Surveys, 28(4), 738–750.

Univ
ers

ity
 of

 C
ap

e T
ow

n

120

Overhage, S., & Schlauderer, S. (2012). Investigating the Long-Term Acceptance of Agile

Methodologies : An Empirical Study of Developer Perceptions in Scrum Projects. 45th

Hawaii International Conference on System Sciences, 5452–5461.

Owens, D. M., & Khazanchi, D. (2009). Software Quality Assurance. In I. S. Reference (Ed.),

Handbook of Research on Technology Project Management, Planning, and Operations,

245–263.

Roode, J., & Niekerk, J. C. Van. (2009). Glaserian and Straussian Grounded Theory : Similar or

Completely Different ? SAICSIT , 96–103.

Runeson, P., & Isacsson, P. (1998). Software Quality Assurance - Concepts and Misconceptions.

Proceedings of the 24th EUROMICRO Conference, IEEE Competer Soc, 853–859.

Schultze, U. (2000). No Title. MIS Quarterly, 24(1), 3–39.

Schwaber, K. (1995). SCRUM Development Process. OOPSLA’95 Workshop on Business

Object Design and Implementation, 1–23.

Schwaber, K. (2004). Agile Project Management with Scrum (pp. 1–155). Redmond,

Washington: Microsoft Press.

Schwaber, K. (2009). What Is Scrum ? Chart. Retrieved from

http://www.scrumalliance.org/resources/227

Sfetsos, P., & Stamelos, I. (2010). Empirical Studies on Quality in Agile Practices : A Systematic

Literature Review. Quality of Information and Communications Technology (QUATIC),

2010 Seventh International Conference on the, 44–53.

Smyth, H., & Morris, P. (2007). An epistemological evaluation of research into projects and their

management: Methodological issues. International Journal of Project Management, 25(4),

423–436.

Strauss, A., & Corbin, J. (1990). Grounded Theory Research: Procedures, Canons and Evaluative

Criteria. Zeitschrift fur Soziologie, 19(6), 418–427.

Strode, D. E., Huff, S. L., Hope, B., & Link, S. (2012). Coordination in co-located agile software

development projects. Journal of Systems and Software, 85(6), 1222– 1238.

Sutharshan, A., & Maj, S. P. (2010). An Evaluation of Agile Software Methodology Techniques.

International Journal of Computer Science and Network Security, 10(12), 68–71.

Sutherland, J., Johnson, K., & Jakobsen, C. R. (2008). Scrum and CMMI Level 5 : The Magic

Potion for Code Warriors. Proceedings of the 41st Hawaii International Conference on

System Sciences, 1–9.

Univ
ers

ity
 of

 C
ap

e T
ow

n

121

Sutherland, J., & Schwaber, K. (2007). The Scrum Papers : Nuts , Bolts , and Origins of an Agile

Process, 1–181.

Talby, D., Keren, A., Hazzan, O., & Dubinsky, Y. (2006). Agile Software Testing in a Large-

Scale Project. IEEE Software, 23(4), 30–37.

Tan, J. (2010). Grounded theory in practice : issues and discussion for new qualitative

researchers. Journal of Documentation, 66(1), 93–112.

Timperi, O. P. (2004). An Overview of Quality Assurance Practices in Agile Methodologies. T-

76.650 SEMINAR IN SOFTWARE ENGINEERING.

Urquhart, C. (2001). An Encounter with Grounded Theory : Tackling the Practical and

Philosophical Issues. In E. Trauth (Ed.), Qualitative Research in IS: Issues and Trends (pp.

1–26). PA, USA: Idea Group Publishing, Hershey.

Urquhart, C., Lehmann, H., & Myers, M. D. (2010). Putting the “theory” back into grounded

theory: guidelines for grounded theory studies in information systems. Information Systems

Journal, 20, 357–381.

Voss, C., Tsikriktsis, N., & Frohlich, M. (2002). Case research in operations management.

International Journal of Operations & Production Management, 22(2), 195–219.

Ward, W. A., & Venkataraman, B. (1999). Some Observations on Software Quality. Proceedings

37th Annual ACM southeast regional conference.

Webber, S. S. (2002). Leadership and trust facilitating cross-functional team success. Journal of

Management Development, 21(3), 201–214.

Williams, L., & Cockburn, A. (2003). Agile Software Development: It’s about Feedback and

Change. Computer, 39–42.

Winter, J., Rönkkö, K., Ahlberg, M., & Hotchkiss, J. (2008). Meeting Organisational Needs and

Quality Assurance through Balancing Agile & Formal Usability Testing Results. The 3rd

IFIP TC2 Central and East European Conference on Software Engineering Techniques.

Univ
ers

ity
 of

 C
ap

e T
ow

n

122

CHAPTER 10. APPENDICES

10.1 APPENDIX A: INTERVIEW QUESTIONS

1) What is your role in relation to SQA in the Portal project?

2) How does the team ensure that Portal project meets quality requirements?

3) What highlight practices / processes either Scrum specific or in general, do you think

contribute to ensuring required quality levels? What processes stand out to be the best in

terms of assuring quality i.e. Coding conventions, ? And how do you think these practices

can be enhanced?

3) What challenges, constraints, and problems do you think the project team faces in

ensuring that required quality levels are achieved?

4) To what extent do you think quality requirements are met in the project?

5) How does the team know when quality requirements are met for a release?

6) If you were to restructure the team, how would you do it? What roles and processes

would you introduce to improve quality delivery?

7) Are there any defined testing policies? Any defined testing strategy?

8) Any recommendations on how you think SQA practices must be integrated in Scrum

Univ
ers

ity
 of

 C
ap

e T
ow

n

123

10.2 APPENDIX B: CONCEPT-INDICATORS (CODING SHEET)

Concept Indicator Data Fragment

Meeting User Expectations

Need for
Dedicated
Testing

Dedicated testing
has a place in
scrum

I think there is place for both. I
would not say there is no place
for them , we have been asking
for one for one for some time
now,

 System Wide
Testing Focus

particularly to address that issue
that with regression testing, so it
would be nice to not put the
responsibility on the team to do a
system wide test, uhm, for
regression purposes, for a major
release

 Testing workload
sharing

I certainly agree that it does not
help to have a testing team and a
development team and one
should hand over all the testing
and they are not responsible for
that , I think the way we have it
now test pieces of functionality in
isolation, work nicely and it is the
team’s responsibility to sort that
out, particularly code review, so
your peer reviews are very
important, but functional system
wide testing can be done by
external dedicated testers .

 need for external
testing functionality

In terms of what I would change,
it would be nice to see an
external testing functionality

 Help improve unit
tests suit

and maybe that’s the problem
why I keep, why I say it might be
useful to have external testing
team to do these system wide
tests, regression tests, possibly
that’s why the need for them is
there is because we don’t have a
lot of unit tests

Univ
ers

ity
 of

 C
ap

e T
ow

n

124

 Absolute need for
dedicated testers

This is not an argument that you
have to entertain, I think we do
need dedicated testers

 Adequate expertise
in testing

uhm, purely because they know
what they should know when it
comes to testing, you think about
qualification, you are not just
going to hire anyone who is going
to do testing for you . and this
touches on what we were saying
earlier on in terms of knowing the
processes...

 Specs verification
and test planning

so where an analyst is running
ahead, your software testers can
be running in parallel with your
analyst to make sure that all to
specs are up to date and adhere
to what to users wants

 Regression and
integration testing

what you would also be testing is
you always be going back in
terms of regression testing, so
initially in a sprint, your testers
could focus on just like testing a
certain requirements, not
necessarily looking at stories, just
about looking at the quality,

 Focus on other
Quality Measures

waiting for things to be pushed
into ready for test, make sure
that you look at other quality
measures for example perform
performance testing, pressure
testing, you know.

 Absolute need for
dedicated Testing

If we use it as a pure debate
thing, where I sit now, I believe
strongly, in having SQA as a
dedicated function in the
environment

 Better Client
Representation

Dedicated testers should be the
client, should know exactly what
they want and ensure that it is
meeting all those quality
measures before the client sees
it.

 User centred
thinking

I believe that kind of function
could have facilitated the thinking
early on in the process that didn’t
delay our eventual beta delay .

Univ
ers

ity
 of

 C
ap

e T
ow

n

125

 Testing
Repeatability and
Consistency

I think u are spot on, the other
part ...in testing is that it has to
be consistent, and repeatable,

 Need for dedicated
tester

I agree with the saying that your
team is your team and they
should not be divided into I do
the testing and you do the coding
kind of thing, but the point is, you
need at least one person in that
team from each of the disciplines
who knows what they are doing

 Dedicated Testers
provide coaching

They don’t necessarily need to do
it themselves, they can coach
your guys and teach them how to
do it because otherwise it is not
gonna be done effectively

 Structured testing
for integration
testing

you do need some form of
structured user testing just to
guide your users through the
process and especially if you
integrating with other systems
need some integration testing
happening.

 testers, and analysts can operate
as testers, you don’t specifically
need a tester, but I think it is
quite naive

 System wide testing And that is where testers are
incredibly important because the
testers are not just testing that
the new work in itself works

 Integration and
Regression Testing

but they are testing that the new
work works but also works well
with existing features in
production

 Regression Testing
Requires Dedicated
Testers

another problem is regression, so
bear in mind that team that I am
working on does not have a
dedicated tester

 user point of view
in testing

In my opinion the entire story
should go to a tester so that they
can thoroughly test, just from an
end user point of view or from a
usability point of view rather than
checking the quality of the code
or what other code has been
written,

Univ
ers

ity
 of

 C
ap

e T
ow

n

126

 get a tester to test
better

Even better, get them a tester.
Some1 who knows how to test

Need for
Concrete
Guidance

Unknowingly
Applying SQA

I wouldn’t say we say that we
know that we are applying
software quality assurance . We
are unknowingly applying SQA ,
because we know that it needs to
work at the end of the day .

 Lack of Awareness
of SQA techniques

I think what we are lacking then is
that we are not aware of
processes and techniques ,

 Lack of base
guidance

I don’t think we even know what
we supposed to be working off as
the base .

 Lack of Quality
Assurance
knowledge base

 I think we do the best to our
ability, but I don’t think we
understand what this whole thing
means and if we doing it good

 Lack of Rules for
Quality

so Scrum as a methodology does
not have any rules around
quality

 Lack of
Prescriptions on
team composition

scrum does not dictate what the
team has to do within a team
environment,

 Lack of
Prescriptions on
team composition

It just says you know, if you
throw the team together, they
will work it out and in my world

 Lack of guidance on
how integration
tests should be
handled.

and i don’t think scrum has any
sympathy towards that there is
nothing in the scrum that says
well this is scrum for when you
taking the product to the market
and this is scrum for when you
already have a product in the
market

 Adopted Practices
not prescribed in
Scrum

But it is worth noting that Scrum
says nothing about CRs. A
majority of these techniques such
as TDDs are associated with
Scrum but are not mandated by
Scrum

 Situation
Appropriate
strategy

You can say that at least in
financial systems, if you use
scrum plus this, you can expect a
better quality product and so on

Univ
ers

ity
 of

 C
ap

e T
ow

n

127

 Situation
Appropriate Testing
strategy

Although scrum offers a
foundation, there is space for
more work that can done. I
personally would like to come
across a material that gives me a
testing strategy that I can readily
expect to work

 Industry specific
strategy

I have nt found any thing that has
a significant level of support
apart from individual
experiences. Something like, this
is what you can do with financial
systems, or this is what you can
do with a single scrum team

 lack of specific
prescriptions

it does not give you a specific way
to go about doing the work

 Analysis guidelines
lacking

, particularly in the analysis side
of things

 Lack of structured
approach for
analysis work:

But i think one thing that really
hampered with our ability to get
out requirements quickly was we
didn’t have a structured approach
of how to analyse things upfront
or iteratively or how that fits in
the sprint

 a major lack of information, all
things that I have read before
about scrum say nothing about
having different approach to
different projects

 no testing
prescriptions

“how do I use scrum to make my
developers test better?” and
100% of the time, the person
who answering the question who
is obviously somebody using
scrum will say: “Scrum cant make
your developers to test better”
because it doesn’t prescribe how
to test . If you want to find out
how to test better, go and find a
testing methodology and
incorporate it into the phase
where scrum says you need to do
the testing at this point

 lack of prescribed
hows

So I think that is where the
problem is, without having this
prescribed ‘hows’….

Univ
ers

ity
 of

 C
ap

e T
ow

n

128

Need for Solid
User
Representation

Meeting User
Expectations

To your point yes, it is testing, but
it goes further than that , it is not
only about testing, also meeting
the expectations of your user and
the business owner

 User testing
important

but if u didn’t test your software
with users then you know, it
could fail as well, so therefore
you don’t meet the quality
expectations of your user.

 Meeting user
requirements

I think from where we are right
now at BSG, my role from a BSD
perspective is making sure that a
story that you put down on the
product backlog meets user’s
requirements ,

 Determining
Requirements

you have sat down with them ,
you have determined the
requirements, so its always like a
mini spec in that story

 Accurate
Articulation of
Requirements

is it articulated correctly, is it
clear ...

 Assessing
Requirements
feasibility

the second thing is, is it feasible

 getting the balance
between feasibility
and user needs

The role we play is facilitating
that process between getting the
balance between what the user
wants and what is feasible

 Assessing
adherence to
requirements

So post that, after development
and code reviews and unit
testing, internal testing, when we
come to do our story testing
again ...” does what is been
produced adhere to our story?”

 Pressure from
requirements
adherence
assessment

The other pressure comes from,
'ok, I have asked you to do
something, does it actually look
like what I asked you to do?'

Univ
ers

ity
 of

 C
ap

e T
ow

n

129

 Requirements-
Product mismatch

I believe that is probably the
biggest gap we have at the
moment is that ...guys doing a bit
of work here, guys are thinking
they are doing the work, and
when it comes to a day like this
we say "ooo wait a minute, these
things don’t meet"

 Requirement
articulation should
avoid
misinterpretation

So one is, of course you did not
understand the requirement,

 Change Client
Representation

I would change the way the client
is seen, so someone like a Jo
really understands what the
business wants, so I would just
have someone to facilitate that
process and put more around
deeply understands what the
business wants

 Collocated user not
always realistic

Ideally your team is working with
your users directly so they sit
with them, but that is not always
realistic, you need an analyst to
go do some analysis, so your
stories describe the business
value, but they are just showing
you the what

 Design details are
decided during
sprinting

you still need some design
aspects which you can only come
through in the actual sprinting,
and thats the how, and that how
will obviously bring other
questions that need to be
answered.

 Limited user
availability
necessitates
documentation

So yeah unless you can sit with
your users 24/7 while you are
coding, you going to need some
form of documentation

 verifying adherence
to requirements

One thing that I do think what we
are not doing well, that we still
need to figure out how we do it
well is checking that we are doing
the right thing

Univ
ers

ity
 of

 C
ap

e T
ow

n

130

 poor verification
processes

Thats validation, its making sure
that the system actually does
what it has to do . I don’t think
we do that very well, I think the
perceived poor quality comes
from there.

 Adhering to story
format gives
enough insight

I think the format of the stories if
adhered to allows the person
writing the story to give enough
insight to the developer

 Intent and Purpose
stated in story
articulation

By insight we are referring to
specficially to the why. What kind
notable is that you can create an
entire specification, 5000 pages,
and never once in that document
state why it is that you are
building this

 Intent and Purpose
stated in story
articulation

. But if you get a spec about a
feature and u don’t understand
the intend behind that you
always gonna create a , uhm, well
i would say that if you know the
why then u have the opportunity
to add value in the value chain

 Client interaction
and availability:

the second thing was scrum it
feels like, scrum relies on a lot of
client of communication, or client
interaction

 Detailed
articulation of a
story

but behind that there is whole
bunch of technical concepts, so
like what are the things that i
need to take into account, what
are the rules and all that kind of
stuff

 User Stories not
adequate

I didn’t find t user stories adequate

BUSINESS BUY-IN

Univ
ers

ity
 of

 C
ap

e T
ow

n

131

Gaining
Business Buy-in

Stakeholder
reluctance to grant

time for TDD

I would really love to try them,
but we so far down the line and
there is obviously a reluctance
from stakeholders to grant so
much time to try to
retrospectively go and write
automated tests for all this legacy
code although it would probably
be the best way to do it. We just
don’t have luxury of that time

 Setting the
expectations

expectation with your
stakeholders and say listen, I
mean you can go to our senior
product owner like XXX or YYY,
and say its about setting that
expectation that we dont have
the tools, we don’t have the
capability, so you are going to get
what you an get what u get

 Create Awareness
of the need for
dedicated testing

I think what need to do is to
create awareness of the need for
SQA

 Superficial
acknowledgement
of SQA importance

everybody will say yes, we agree
we do need to improve our SQA,
we need to make sure it meets
requirements, what we haven’t
gotten yet, but we getting there,
is that, for long time we were not
able to motivate for dedicated
testers

 Enhance SQA
Awareness

So I suppose the challenge is
making sure that everybody is
aware of why the business needs
the framework. So that’s a bit of
a softer issue, but people need to
understand exactly why QA is
being brought into the
framework

 Time concerns in a
time-based
organisation

that’s where the challenge comes
in...because we are time based
business, that to me has almost
become a driver for, we got two
weeks let’s get that much that in
the two weeks

Univ
ers

ity
 of

 C
ap

e T
ow

n

132

 Management
accountable for
quality outputs

I think mgt need to enable the
team to perform at the level they
need to perform

 Business buy in a
challenge due to
cost

I think it is a difficult challenge,
they will say yes we all buy into
the notion of having SQA, it all
sounds good whatever the case
is, when it comes to the cost , we
need these dedicated testers its
going to cost X

 Lack of business
buy-in for testing
resources

That’s a good question, but we
have managed to win that battle .
I think the reason why we don’t
have or we didn’t have a
dedicated tester is that,
unfortunately most people look
at the short term expense versus
and the long term gain is
sometimes not valued

Process Structure

Process
Workflow

Use of software for
visualisation

so you can configure what it
takes to move an issue from
beginning to done

 Testing Step in the
Process Workflow

And one of the steps in our
workflow is a testing process.

 Developer Testing
and Code Reviews

and only once the code review is
done then they will do a
functional test of that work and
when both the CR and FT have
been done then the issue will be
marked as done.

 Functional Testing On top of that once all issues in a
particular story, all activities in a
story have been code reviewed
and tested, then product owner
does a story level test which is a
higher level test of all the
individual activities in a story .

Univ
ers

ity
 of

 C
ap

e T
ow

n

133

 No I think we have, I think our
processes have evolved, our team
has been working nicely for two
years, so this whole process that I
described where the code
reviews and functional testing are
built into the work flow has
worked well for us that’s not
something that we had when we
first started

 Build testing in the
workflow

But with Scrum if you build it
(Testing) in, and there are various
ways you can build it into your
release cycles, sprint cycles, then
obviously you are getting
feedback sooner

 Incorporate Testing
in definition of
done

At the very least your definition
of done should be that it is only
done when it has been dev tested
and tester tested

 testing as part of
the workflow

In other words you should not
release at the end of the sprint if
testing has not been done.

Work
Coordination

GreenHopper as a
tool for
coordination

you know how we use
GreenHopper, GreenHopper
allows you to set up swim-lanes

 Marking a story
ready for test

So every single story that gets
addressed by the team, when
they finished working on it, they
will mark it as ready for test,

 Upfront planning
for testing

Uhm, I do believe that you need
to plan for testing, as I said it may
not necessarily be in a Sprint
itself, it can be during the release
cycle

 Test environment
setup

So there is a lot of work involved
in just planning testing, you need
to set up test environment, you
need to put dummy data

 Organising
Stakeholders for
testing

you need to organise your
stakeholders, it calls for someone
with the necessary knowledge,
someone thinking with that brain
to make sure that we are
covering everything

Univ
ers

ity
 of

 C
ap

e T
ow

n

134

 Managing end-of-
sprint tasks

I think one of the difficult
challenges that scrum has and I
think if you look online a number
of people are coming up with
solutions to this, but scrum itself
has not offered a solution as part
of the scrum package. And that is
how do you manage things that
need to happen both before and
after your delivery cycle?

 Analysis and
development work
dependencies

 That itself is fine it works, but
there is a problem in...say you
have got 4 stories and only one
analyst, now that analyst has to
provide input on all four stories
before the developer can start
working on it

 Tester involvement I have gone to a course, I have
read the books, I followed scrum,
I am scrumming but it is not
working, I don’t where or how my
testers are supposed to get
involved.

 N+1 Concept and I will get to that essentially
what i was doing is designing
things upfront, preparing stories,
”trying to prepare stories” like a
sprint in advance is a sense, so
the analysis of the story or at
least the initial analysis of the
story wasn’t done in the cycle
itself, it was done in the previous
cycle

 Interaction so in the sprint itself, the team
would request an additional
analysis from me or from the
client to clarify things, which
slowed down things because the
sprint was not designed or
planned to take that analysis into
account

Univ
ers

ity
 of

 C
ap

e T
ow

n

135

Situation
Appropriate
Innovations

Situation
appropriate
definition of Done

So you know, your software
moves through a life cycle in the
beginning, its all pre-release, so
you may agree here that your
definition of done is that it goes
into the dev environment, and
nothing breaks, and you do
review it, and then you one 16:36
then you take it to a point where
you probably

 Situation
appropriate
definition of Done

Then you do a revision of done to
say, its only done when it is from
SIT and tested for user
acceptance testing, so now your
testers here are not just testing in
a dev environment, they are
testing in the SIT environment as
well

 Situation
appropriate
definition of Done

they don’t tell you what the
definition of done must be, they
just say you need to agree what
the definition is your
environment and based on that
you figure out what is acceptable

 Situation
Appropriate
Innovation

I appreciate that they try to cater
for a broader audience as much
as possible, that if you work it out
you then you can be compliant
but still come up with you own
innovation around the core
process.

 Customising scrum
based on the
project

when you choose how to
structure your team, and when u
choose how to structure your
approach or project, I think it is
very dependent on what the
project

 Situation
Appropriateness

...I think the nature of the work,
and the nature of your source of
requirements is coming from,
define how you structure the
team and how you go about
things like testing cycles, test
coordination, that also ties in
with your release cycle and when
you test stuff to make it in
production

Univ
ers

ity
 of

 C
ap

e T
ow

n

136

GUIDING PRINCIPLES

Constant
Ownership

Scrum ceremonies
waste time

 Uhm some of the
challenges...Scrum I think,
sometimes is a fair amount of
overhead with all these scrum
ceremonies, with the planning
and the estimation,

 Time costly
ceremonies

although it is nice for the entire
team to be involved with the
estimation and planning it does
come at the cost,

 Scrum Ceremonies
Overheads

so 1 and half days out of a two
week sprint, the entire team is
out of active development they
are doing planning estimation
and all sorts of things and this is
quite a high amount of overhead
that is defined by Scrum which is
almost 10% of team’s time

 Peer reviews
necessary for
meeting
requirements

I a lot of the guys, I am not saying
that’s how it is, but the
perception maybe that we need
to get 36 or 40 story points done
as opposed to "no" every story
point that leaves myis of the
highest quality, not because I
have done it, but I have ensured
that somebody else has
refactored on whether I have
achieved what the business
wants and more

 Team Ownership of
Stories

The other thing that Scrum does
better is that whole uhm having
not one person owning a story....
by virtue of that, people are
seeing each other’s code

 Code reviews for
collective code
ownership

you generally do have peer code
reviews, so that also improves
the quality because you have got
more than one person doing it

 Team participation
in Planning

The other thing is that your
planning, your sprint planning 2,
which is kinda like your design
session is done with the whole
team

Univ
ers

ity
 of

 C
ap

e T
ow

n

137

 Combined team
effort

You don’t have one person
running off alone figuring out
how to do this thing. They might
do it first before Sprint planning
2, but during the meeting they
have to motivate and support
their ideas and why they are
doing it the way they are. So from
that perspective, it does allow
you to leverage from the whole
team, rather than one person as a
point of failure

 quality as bi
product of synergy

. It keeps the team quite tight, I
think u can assume that the bi-
product of that is quality because
if people are working better
together, if there is synergy then
you can expect a better output, i
think .

 Code tested by
other developers in
the team

is that there was a round of
developer testing, in other words,
I tested my own code, then
some1 else in the team tests my
work based on the story, then the
last piece of testing would the
product owner testing because
there is no dedicated tester

 an environment of
team effort

Scrum provides the atmosphere
of team effort

Constant
Feedback

Early Testing Where Scrum works well though
is that because it is not waterfall,
you can test stuff sooner

 Early verification
and testing works
well in scrum

So I mean Agile helps with that
because you get stuff verified
sooner, and it embraces change.

 customer gets small
increments of value

the benefit of constant review
cycle where the customer gets
small delivered packages, of
shippable software then I would
say those are the main ways that
scrum delivers quality

Univ
ers

ity
 of

 C
ap

e T
ow

n

138

 Constant Delivery
of Shippable
software helps
monitor budget

I would say because of the
constant reviews it means that at
any point in the journey, at each
cycle, you have something which
is shippable, it is possible to say
oh well we got at 03:30... and we
going to stop here thats it for
now

 Agility to respond
to changes to
business requires

, then we can maybe either
continue or at each point we can
realise that our business model
has changed, oh so we going to
change direction, so that’s one
side of it

 Early Feedback You never go so far down the
road where it hasn’t been
reviewed and we can’t turn back
from that point

Continuous
Improvement

Process evolution Our process has been
evolutionary, and where it has
evolved for two years has worked
well for us ??. I think it is good at
the moment

 Process Maturity I think our team has matured
enough and the process is mature
enough that we don’t try to do as
many as possible ,

 Estimation process
maturity

we are fully aware of, you know,
after two years of doing this, we
have a good idea of what our
velocity is, even without looking
at the story points we can say
that there is enough for next two
weeks, I think we are pretty good
at that, at our sprint targets and
things

 Emphasis on
continuous
improvement

there should be strong emphasis
within your team of continuous
improvement, and the
continuous improvement
philosophy is that at any given
stage you can always do your job
better.

Univ
ers

ity
 of

 C
ap

e T
ow

n

139

 Retrospectives And that is largely driven by the
retrospective meetings, that is
one thing that Scrum mandates
with the end goal of continuous
improvement

 Retrospectives for
Team Building

without continuous improvement
in mind, so you could use it as a
way of socialising with the team

 Retrospectives if performed efficiently they help
the team to identify areas where
things could be done efficiently,
or to the right level of quality and
they challenge the team to then
improve that.

 Retrospectives
should drive
continuous
improvement

So without the philosophy, just
having the meetings, the
retrospectives in itself won’t
produce better quality

55

ADOPTED PRACTICES
Code Reviews Code Review

before testing
and ready for test means another
developer needs to first do a
code review ,

 Incorporating code
review feedback

if the issue is coming out of code
review the issue will get send
back to the original developer to
sort that out

 Practice Code
Reviews

and that you are doing peer code
reviews,

 Value depends on
team make-up

depending on the makeup of your
team, code reviews become more
or less important

 Improve learning And that is how you learn u
know, you have some1 who
knows, looks at your code and
tells you where you are going
wrong. It would be reckless if we
did anything other than that.

Univ
ers

ity
 of

 C
ap

e T
ow

n

140

 Diminishing value
of code reviews

 If you have a team of 5 people
senior developers, there is value
in doing code reviews, but that
value diminishes. So it is far less
value in doing reviews than when
a senior is reviewing a junior
developer’s code.

 Paramount for
ensuring adherence
to standards from
juniors

 So in our environment we have a
lot of new grads joining so it’s not
even debatable, it is paramount
that we have people reviewing
their code, because we have
people that are learning. When a
senior is reviewing another
senior’s code, they end up just
arguing over semantics. And you
find that they are almost always
right just that one is more correct
than the other. But that can be a
wasted time arguing over
semantics instead of writing
code.

 Less value in code
reviews between
seniors

 So in our environment we have a
lot of new grads joining so its not
even debatable, it is paramount
that we have people reviewing
their code, because we have
people that are learning. When a
senior is reviewing another
senior’s code, they end up just
arguing over semantics. And you
find that they are almost always
right just that one is more correct
than the other. But that can be a
wasted time arguing over
semantics instead of writing
code.

 Code reviews
should pick up any
errors

 because the code reviews by
your peers should pick up any
errors you have written and your
tester should find errors in the
usability of your software during
end-user testing

 Code Reviews and
Refactoring

I don’t think scrum forces you to
do peer reviews. So if you choose
to implement these things then
you would

Univ
ers

ity
 of

 C
ap

e T
ow

n

141

Test Driven
Development

Fantasising about
TDD

We have not done TDD, it is
something that we fantasise
about, particularly with our
project being a legacy project

 Slim unit tests we don’t have a hell lot of tests,
full stop, whether it is TDD or
not, our unit tests are very slim

 Scrum needs things
like TDD

So it needs to be built around
things like test driven
development.

 Unit Tests provide
Documentation

that is a big driver for TDD and
unit tests actually become your
code documentation because
they are very clear way of saying
this is what this thing is supposed
to do

 Test Driven
Development

TDD definitely

 Practice Test Driven
Development

 that they are practicing either
TDD or at least write Unit tests

Developer
Testing

Developer Test
Enforcement

Obviously the quality has been
better since we moved to scrum ,
because previously we didn’t
have this pre-defined necessity to
test every story before it makes it
into production release

 Developer Testing does not have many direct codes
because most of the indicators are part of the Process
Workflow concept. This is because, the process
workflow is designed such that developer testing is part
of the workflow. Further, as indicated in code reviews, a
story has to be reviewed and then developer tested.
There are a few indicators in the process workflow that
point to developer testing

CHALLENGES

Capacity
Constraints

Workload
Overhead

Obviously with all the testing
done by the team there is an
overhead.

 Required Expertise developers are traditionally not
good testers

Univ
ers

ity
 of

 C
ap

e T
ow

n

142

 Simultaneously
Testing and Fixing
Issues

there would be enough coming
out from the external testers to
keep the development team busy
actually fixing the issues as
opposed to having to test the
issues and then fix them
themselves

 duality of roles the capacity constraints , so you
are asking an analyst to do an
analyst job but also to be
facilitating a software testers
role

 pressure from
duality of roles

so at one point in time, that
person is going to have a dual
role at the same time, which
means there is going to be
increased pressure on capacity
required for that person

 multiple pressures Where we trying to work in this
area of multiple, uhm, I suppose
pressures

 Lack of motivation
to test well

I would not say it is knowledge,
tools, or even skills. But I would
break it down to motivation

 Lack of desire and
motivation to test
Well

So a coder knows that they can
code and they know that they can
code it well but obviously there is
a desire there and motivation to
code it well. A

 Attaching
emotional
motivation to
testing

I try to highlight to the individuals
of the team that when testing, it
is not about finding a bug or a
fault in someone else’s code you
can you can fix and come up with
a better product or code, but
what it is about is supporting and
assisting your colleague. So it is
more of a emotional motivation,
the motivation is emotionally
centred.

 Testing is a skill on
its own right

 I don’t know if that is the std of
Java developers doing the testing,
because Java developers are not
testers , and I personally think
that testing is skill on its own
right

Univ
ers

ity
 of

 C
ap

e T
ow

n

143

 Lack of Role
understanding

I think that analysts struggle to
understand what their role is

 Regression Testing
Requires Dedicated
Testers

And analysts should not be the
one’s that are doing the testing,
analysts don’t specialise in doing
testing in particular things like
regression testing

 Jack of all, master
of none

The effect is that you become the
jack of all trades and a master of
none

 Capacity Demands
and lack of
attention

you are focusing on, you are not
able to do a good job because
you are spreading yourselves
across a view of things

 pushing testing
aside

It is easy to say I will do this test
case next week, or I will do this
design next week you know those
things have more pressing
deadlines in what they require
from you so it is easier to
‘deprioritise’ testing or limit the
amount of testing that you do, it
is always the first thing to do in
terms of capacity

Lack of Testing
Expertise

Lack of qualified
testing skills

One of the challenges we looking
at right now is the lack of
qualified testing skills

 Lack of Knowledge
Retention

I imagine if DD had to go to JHB
for another project and they
slotted in TT, then whatever DD
had learned on the project would
be lost because she developed
her own SQA skills, she knows
what she was doing in her little
bubble , then when TT comes in,
he has to develop those skills and
processes from scratch .

 Lack of testing skill I suppose the problem is we don’t
have that skill , I mean we don’t
have a proper skill for it

 Lack of testing
skills and expertise

No we have a long way to go. I
think the main thing is we don’t
have the skills and expertise

Univ
ers

ity
 of

 C
ap

e T
ow

n

144

 Off-sprint testing
requires testers

I think the main challenge is that
we don’t have the testing skills.
The automated testing does help
for Sprinting side of things
because there you are writing
code in parallel, so there it does
not necessarily have to be your
tester, it could be some who is
part the tester part the coder,
which makes them more sort of
interchangeable

 Immature testing
function

And also because we are so
inexperienced, the idea of testing
as a function in our world is a
young ideaa

 Expertise can be
developed

that I think can be developed, I
don’t think naturally an analyst
would be a good tester, I think
an analyst can be a good tester if
he had developed the skills,
potentially training or so

 Lack of experience
and skills for proper
testing

one is that we don’t have the
knowledge the skills and
experience to do it

Testing Issues Narrow testing One of the issues that come up is
that doing functional testing of
these discrete activities is not
necessarily doing regression
testing

 Incomprehensive
testing

So you will test the little piece of
functionality in isolation and you
could have broken something
which completely unaffected by
this piece of work, so that can
and does happen occasionally

 testing for a
predetermined
outcome

because you know what you have
written, and u testing for a
predefined outcome, so u not
necessarily testing to try to break
it

 Narrow one story
testing

I mean in this particular instance,
MWL, we only test towards one
sticky ready for test , one story
ready for test,

Univ
ers

ity
 of

 C
ap

e T
ow

n

145

 Inadequate Testing
due to lack of
understanding

lack of understanding of available
tools, lack of capacity, in one
sentence, you only going to test
what you can test,

 Testing issues due
to lack of dedicated
testers

Developers do code reviews, they
do some testing, so does the
product owner, but I don’t
believe that we do thorough
enough that we need something
that is dedicated

 Lack of adequate
Testing

I believe we had issues with
quality because we hadn’t
properly tested each of the
various scenarios based on how
business will use this application.

 Lack of user
orientation in
testing

Because we as a team we know
how to use the system, they
know it in and out, they have
been part of its creation, we go
about testing it and using it in
certain way , when u ask other
people outside the organisation
to use the application, to look at
it, they look at it differently

 Proper assessment
of adherence to
requirements
lacking

I don’t think we always do, I think
we end up focusing on the “tick
all the boxes” rather than taking a
step back and saying: does this
thing still do what it is supposed
to do in order to fulfil its function,
so it kind of evolves

 users lack
motivation to test

like user acceptance testing and
that kind of thing, because the
other problem with people is that
you can tell them to play around
with the system, but if they have
never seen it before, and they
don’t know about it and they
don’t have any motivation, they
are not going to

 Incomprehensive
Testing

back there is still a bug or not
comprehensive enough or you
haven’t done enough regression
testing

Univ
ers

ity
 of

 C
ap

e T
ow

n

146

 Incomprehensive
Testing

again I don’t think that is
effective, it is not comprehensive
enough

Quality Issues Bugs slipping
through

I think in most cases we meet
requirements , I think there are,
with every major release, one or
two minor bugs that slip through
as happened last night all of
which have been addressed in
the first hour of the day, and they
all been very trivial bugs

 Product quality
dependent on
analysts quality
assurance expertise

I mean what u put in is what you
going to get out, so If I put 10% in
I am going to get 10% out in
terms of quality

 release delayed due
quality

and secondly, and that the reason
why we didn’t go to our beta
release , is because we were not
quite happy with quality

 Approach not
adequate

We went through what we
believed was the approach, but
the one thing that was the reason
why we didn’t, is because we had
issues with quality

 Late attention to
client quality
requirements

Quality requirements are met,
but they are met and looked at
too late, they are almost looked
at when we go to the client we
say to the client and say does this
meet your quality?

Univ
ers

ity
 of

 C
ap

e T
ow

n

147

10.3 APPENDIX C: SAMPLE MEMO

Concept Indicator Data Fragment

Need for
Concrete
Guidance

Unknowingly
Applying SQA

I wouldn’t say we say that we know that we are applying software
quality assurance. We are unknowingly applying SQA , because we know
that it needs to work at the end of the day .

“I don’t feel OK with this being lack of expertise…the question of expertise here does not weigh for much
because whether there is expertise or not…they know that it has to work at the end of the day, and
somehow they get around it. This could indicate that the processes to be used during development are
imprecise and not specified. In the first meeting, Head** emphasised that scrum does not prescribe
anything. As such members learn the craft of making sure that the product works at the end of the
day....be it learning how test, learning and experimenting with different kinds of testing frameworks,
different aspects of QA processes, requirements validation, etc. Scrum says something about knowledge
being gained through experiment, while this might be either good or bad, and in line with Scrum core
philosophies, it might be a cause of many other issues related to SQA such as lack of testing skills, lack of
guidelines and clearly defined processes. This might be due to lack of defined processes, is this inline
with Scrum’s empirical process control. Nothing is set on stone, so SQA in a traditional sense requires
that processes and techniques be clearly defined and adhered to. Also this could also indicate that
Scrum relies on individual tacit knowledge, which carries with it, the assumption that tacit knowledge
can be easily shared. there are a lot of queries that can be asked around this assumption, aspects of
culture, individualism, unhealthy competition, organisational elements such as bonuses and promotion,
lack of trust might hinder the much required knowledge sharing that scrum relies on. Also it is not clear
how the tacit knowledge is to be capture and how it is actually transferred to other team players.”

Concept Indicator Data Fragment

Process
Workflow

Developer
Testing and
Code
Reviews

and only once the code review is done then they will do a functional test
of that work and when both the code review and functional test have
been done then the issue will be marked as done.

“So this can be coded in different ways, it can be about the fact that there must be a peer review on the

story, and the review must ensure that development adheres to set standards. This also indicates the

relationship between Adopted Practices and Process structure in that these practices are adopted and

incorporated in the process workflow. So when designing the process structure, teams have to ensure

that practices such as developer testing and code reviews are part of the workflow. On the other hand,

this gives a definition of done, the fact that story has to have been code reviewed and functionally tested

before it gets marked as done. You need to find out from developers how they feel about this, whether

they think they are in a good position to do it, or whether they would rather have it done by analysts. Do

they feel confident about it, do they have required business domain knowledge and supporting

Univ
ers

ity
 of

 C
ap

e T
ow

n

148

documentation to perform the task, would they have it done by testers? the challenges they face on

doing these two things etc”.

Concept Indicator Data Fragment

Collective
Ownership

Scrum
Ceremonies
Overheads

so 1 and half days out of a two week sprint, the entire team is out of
active development they are doing planning estimation and all sorts of
things and this is quite a high amount of overhead that is defined by
Scrum which is almost 10% of team’s time

“The use of development resources’ time also comes into question as the respondent feel like the use of
10% of a developer time for the 'ceremonies' is just too much. This should also be seen in the context that
SAIT is time based business. So cost and time again play a major role. Need to formulate relationships
between collective ownership and productivity & time concerns. But this is more of a resourcing issue
than productivity issue. So I need to dig deeper to explore how other respondents feel about collective
ownership.”

Univ
ers

ity
 of

 C
ap

e T
ow

n

149

10.4 APPENDIX D: REAL TIME MEMOING AND THEORISATION

Univ
ers

ity
 of

 C
ap

e T
ow

n

150

Univ
ers

ity
 of

 C
ap

e T
ow

n

151

Univ
ers

ity
 of

 C
ap

e T
ow

n

152

Univ
ers

ity
 of

 C
ap

e T
ow

n

153

Univ
ers

ity
 of

 C
ap

e T
ow

n

154

Univ
ers

ity
 of

 C
ap

e T
ow

n

155

