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Abstract

With the advent of large and complex applications and the emergence of
semi-structured information repositories such as the World Wide Web, new
demands are being made on database systems.

The TENTACLE database system is an experimental database system
which provides facilities capable of meeting some of these demands. The
distinguishing features of the system are that it:

e uses a graph-based data model (and storage subsystem) to provide a
flexible means of representing poorly structured information,

e integrates a path expression-based query language with a general pur-
pose language to query and manipulate the graph structures, thereby
eliminating the impedance mismatch encountered in a two language
system, and

e provides a programmable database kernel capable of executing the com-
bined query and utility language, allowing the construction of domain
specific applications inside the database without the assistance of wrap-
pers or gateways.

As a demonstration of the utility of the system, I have constructed a
hypertext server inside the TENTACLE database without making use of
external mediators or gateways. Since the hypertext server program is part
of the database content, database facilities may be used to assist in the
creation and maintenance of the hypertext server itself. In addition, the
close integration of hypertext server and database simplifies tasks such as the
management of associations between hypertext entities or the maintenance
of different document views.
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Chapter 1

Introduction

The goal of the TENTACLE project was to build an alternative database
system. The system is intended to be an experimental (yet usable) platform
designed to explore a number of unconventional ideas which are currently
unlikely to be encountered in more mainstream systems.

Since the system has been built for the sake of exploring a different per-
mutation of design decisions and establishing whether these are viable, the
contribution of the system lies more in the exploration of the space of possi-
ble database systems and not necessarily in the introduction of a particular
capability.

By choosing to build a complete, stand-alone database it has been possi-
ble to introduce alternatives in a number of significant database components.
Furthermore, the complete implementation makes it possible to apply this
experimental system to a real-life problem domain and to acquire empiri-
cal results — something which would have been difficult with an on-paper
simulation.

When building such an experimental database system it is interesting
to select a set of alternative approaches and components in the hope of
producing a system which exhibits strengths in areas where conventional
databases are weak — this helps to justify the existence of the database
system.

1.1 Conventional Database Systems

Conventional databases have been designed for applications such as payroll
processing, stock or inventory management, flight reservation systems and
banking transactions. These applications tend to exhibit the following prop-
erties:



Known Database Schema and Structure: The aspect of the world to
+ be modeled by the database can be described beforehand. This al-
lows the analysis and creation of schema information and typing struc-
tures before the system becomes operational. For example, it is usually
known in advance that the canonical toy banking system requires oper-
ations to withdraw, deposit and transfer funds as well as an operation

to make a balance enquiry.

Informed User Population: Users and their agents are aware of the da-
tabase schema and know where to look for a particular data item. In
the case of the toy banking system the software running on the ATM
(Automatic Teller Machine) implicitly contains the information to se-
lect an account balance entry from the correct table, while the expert
intent on discovering ATM usage trends is explicitly aware of the da-
tabase schema. In other words the users know where a particular piece
of information is located.

1.2 Alternative Database Systems

Conventional databases perform very well within the constraints given in the
previous section. However, there are a number of application domains which
do not exhibit the abovementioned properties of comparative simplicity and
static structure amenable to prior analysis. Such applications include hy-
pertext systems, databases containing research results and PIMs (Personal
Information Managers). Recently these applications have been described as
having a poorly defined structure — they have been called semi-structured
applications [13, 19].

It appears to be accepted that plain relational databases have difficulties
meeting the requirements of such applications [21, 57]. Consequently signif-
icant amounts of effort have been directed at finding more suitable systems.
Thusfar no definitive database solution seems to have been found! — this
seems to be borne out by the fact that semi-structured applications still tend
to use no more than structured files as their storage subsystems (for exam-
ple HTML [16]), although it is clear that they would benefit from the more
advanced capabilities of complete database systems.

In light of these circumstances it seemed interesting to make provisions in
the TENTACLE database systems for semi-structured applications. These
provisions take the form of a data model, query language and implementation

1Qbject-orientated databases still tend to require advance analysis of the problem do-
main to set up class hierarchies.




which may be adapted more easily to a particular problem domain and which
seem to be more suited to the task of representing and manipulating a poorly
defined structure than a typical relational system. A brief overview of these
three features is provided below.

e The data model used by the TENTACLE system is untyped and graph-
based and is thus similar to the ones used by LORE [48] or STRU-
DEL [30]. The advantage of using a graph-based structure is that it
is comparatively easy to model associations between entities by repre-
senting entities (or attributes of entities) as nodes and their interrela-
tionships as edges.

e The TENTACLE query system makes use of path expressions over
the database graph. Path expressions on graphs are similar to regular
expressions on strings, where regular expressions match character se-
quences, path expressions match sequences of nodes and edges. Path
expressions appear to be a natural extension of navigational access
methods used in hypertext or file systems and should assist the user in
traversing a poorly structured environment. A further feature of the
query system is that it is integrated with a procedural scripting lan-
guage, where query expressions may be used within the scripting lan-
guage and vice versa. This not only guarantees that the query system
is sufficiently expressive, but also removes the classical impedance mis-
match between poorly coupled query and general purpose language sys-
tems as encountered in many of the more popular relational databases
(eg SQL/PL1, SQL/C,C++).

e The TENTACLE database implementation takes the form of a pro-
grammable database kernel which provides a native graph storage sys-
tem. Programs written in the combined query and scripting language
are uploaded into the database kernel, stored as part of the database
graph and executed on request. The benefit of such an approach is that
it is possible to create an entire, self-contained application within the
database — it is possible to do away with the helpers and gateways
typically required by conventional databases. Furthermore, the capa-
bilities of the database may be used to manage the construction of the
domain specific application itself.

Since these capabilities are not typical of a database, it is not only inter-
esting to build such a system, but also to apply it to a problem domain to
discover how the combination of capabilities may be deployed — this provides
an indication of the utility and performance of the system.
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1.3 Application

The World Wide Web has been chosen as the example application to exercise
the TENTACLE implementation. It provides an opportunity to demonstrate
the capabilities of the TENTACLE database system since it is a domain
which does not satisfy the properties of typical database applications?: In-
formation encountered on the World Wide Web is semi-structured and the
user is initially unaware of the interrelationship between entities — these
have to be discovered, hence the phrase “to navigate the World Wide Web”.

The World Wide Web example application takes the form of a program
which has been uploaded into and runs within the TENTACLE database.
This allows the application to program the database server to provide an
HTTP (Hypertext Transfer Protocol [17]) interface to the world. In other
words, the database becomes a hypertext or web server which services re-
quests submitted by web browsers.

Because the web server executes inside the database, facilities such as
querying capabilities are available immediately, making it possible to offer
more advanced services such as materialised document views. Currently these
features are not commonly encountered on web servers — most web servers
do not provide database capabilities but simply store hypertext entities as
files on the server file system. In the cases where hypertext entities are indeed
stored in a database, the database is unlikely to make provisions for semi-
structured data. Instead the database content is no less regular than that of
a conventional database. In such a case the World Wide Web (a networked
database in its own right) merely serves as a gateway to another database.

1.4 Outline of the Dissertation

The remainder of the dissertation is structured as follows: The next chapter,
Chap. 2, supplies a background, describing a selection of graph-based query
languages and database systems, of which a number have been applied to
semi-structured applications. The background chapter also introduces the
example application domain, the World Wide Web and a number of systems
which have been used to query it.

Chapter 3 sets out the TENTACLE data model (an untyped graph-based
model) while Chap. 4 describes the integrated query and scripting language
and provides a number of short examples of how the language may be used.

Thereafter, in Chap. 5, the implementation is documented. This chapter
consists of a system design overview, followed by a description of the im-

2See the itemised properties listed earlier in this chapter.
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plementation of the database components, from the lowest layers (physical
storage organisation) to the higher layers (query and scripting interpreter).

Chapter 6 explains how the system was used to build the example appli-
cation. It shows how the database system has been programmed to provide
a Hypertext Transfer Protocol server and how the built-in query system can
be used in this environment.

Chapter 7 concludes the dissertation with a discussion of the results, as
well as a description of potential extensions to and further applications of
the system.




Chapter 2

Background

2.1 OQOverview

The TENTACLE project relates to a number of database subtopics. It is an
alternative database system and makes use of a graph-based model and query
language. These are related to other systems in Sect. 2.2. TENTACLE, like a
number of other graph-based systems, is intended to be used in semi or poorly
structured application domains. This topic will be introduced in Sect. 2.3.
One of the most significant examples of a semi-structured application (and
the one chosen as example in this project) is the World Wide Web — it will
be described in Sect. 2.4.

2.2 Data Models and Query Languages

As a first approximation data models may be grouped into two categories
(See also Fig. 2.1):

Value-based systems where entities are accessed using keys, where a key
is a set of distinguishing properties or attributes.

Identity-based systems where entities are referenced by means of pointers
or (object) identifiers.

The primary example of a value-based data model is the relational model.
It was introduced by Codd [24] and has become the dominant model used
in commercial systems (such as Informix [6] or Oracle [9]). Query languages
associated with the relational model include SQL, Quel and Query by Ex-
ample. Most introductory database textbooks include a description of the
relational model and associated query languages including [42, 58].
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Figure 2.1: Classification of selected data models into identity and value-
based systems

Identity-based data models include network, hierarchical, object orien-
tated and graph-based models. Network and hierarchical models are earlier
systems which have mostly been displaced by relational systems, while newer
databases using the object-oriented model are in ascendancy.

Databases using the network model are typically CODASYL-based sys-
tems such as IDMS, while IMS [5] is an example of a hierarchical database.
Well-known object-oriented databases include O, [27], Orion [41] and Gem-
stone [45]. There are a number of query languages in use in object-orientated
systems, the most prominent one is OQL [22], a derivative of SQL. [29]
contains a survey of object-orientated systems, while [44] explains selected
object-orientated data models and languages.

Graph-based models are less well known identity-based data models. Es-
sentially graph-based systems model entities as a set of nodes and their
interrelationships as edges between nodes. Apart from their more recent
use in semi-structured applications, graph-based databases have also been
used in GIS (Geographic Information Systems) as well as visual specification
and query languages. Examples of graph-based systems include GRAS [39],
GraphDB [34], GraphLog [26], GOOD [35] and Hyperlog [53]. Note that some
of the systems, while graph-based at a conceptual level, are implemented on
top of a non-native storage subsystem (eg: GraphLog uses Datalog, GOOD
uses a relational database). The TENTACLE system provides its own graph-
based storage subsystem.




GRAS (GRAph Storage) is an operational graph-based database system
initially developed for a software engineering application (IPSEN) and
has subsequently been used in a number of other structure-oriented en-
vironments. The GRAS data model and implementation was designed
to support entities which change size and structure dynamically. The
GRAS system is implemented as a kernel (a manager of complex data
items which may vary in size and structure) surrounded by several
layers which provide extended services such as change management of
individual items or schema/attribute management of the entire data-
base. The GRAS kernel is also used by PROGRES (PROgrammed
Graph REwriting System). PROGRES [55] provides a very high level
language based on graph grammars which provides facilities for graph
rewriting and transformation.

GraphDB is a data model and query language designed to be used in spatial
databases in order to better represent the connectivity between enti-
ties (and not merely their spatial geometry). Coupled with specialised
graph traversal operations and the ability of GraphDB to store paths
in the database explicitly it is possible to formulate, amongst others,
reachability queries. GraphDB’s querying system provides an SQL-
like construct as well as graph rewriting facilities and the capability to
represent and manipulate heterogenous collections.

GraphLog is a visual database query language. Queries in the language
are formulated as graphs. These so-called query graphs are approxi-
mately equivalent to conventional logic rules. In such a query graph
a distinguished edge approximates the head of the logic rule (specifies
the “output” of the query) whilst the remaining graph components are
the equivalent of the rule body, where the rule body is matched against
the database graph.

GOOD is a graph-orientated object database model which represents both
the database schema as well as data instances as graphs. GOOD was
intended to provide a minimal set of graph operations which could
serve as the foundation for more complex operations or transformations.
GOOD, like GraphLog, is a visual environment.

Hyperlog is a graph-based language. It uses the hypernode data model
which is an extension of a conventional graph-based model where nodes
may themselves consist of graph structures. In this regard the hyper-
node model may be thought of as a nested graph-based model. As in
GraphLog, Hyperlog queries take the form of rules which are matched

10




against the data graph. The body of a hyperlog rule serves as a set of
templates matched against the graph, while the rule head may be used
to update the graph. Negated rule heads are interpreted by Hyperlog
as deletion requests.

2.3 Semi Structured Data

Traditionally databases have been deployed in applications such as payroll
management, analysis of census data, inventory management or flight reser-
vation systems. Such systems are tightly controlled and highly structured
environments modeling only a comparatively small part of the world — al-
though the volume of data handled by such systems may be very large, the
schema information is usually comparatively simple and amenable to prior
analysis. Typically there exist only a small number of types, operators and
constraints, and it is feasible to declare these before the database becomes
operational and retain them for the life of the database.

It has been long recognised that database systems designed for such tra-
ditional applications are difficult to apply to both more complex as well
as less structured application domains. When extending databases to non-
traditional applications, the emphasis has usually been focused on the former
— providing an environment supportive of more complex and sophisticated
tasks, with a lesser emphasis on supporting less structured applications.

In particular, the more advanced systems which are reaching commer-
cial maturity, namely object-orientated and object-relational systems, have
been developed to provide, amongst other features, larger and more com-
plex typing systems. In the case of the object-orientated system, these take
the form of user-defined class hierarchies and member functions, while object-
relational systems tend to provide pre-written modules (commercially known
as data blades [6] or data cartridges [9]) which provide a domain-specific set
of data types and associated operations.

Only recently {and probably as a consequence of the explosive growth of
the World Wide Web) has an emphasis been placed on supporting less struc-
tured applications. This is the field of semi-structured data (introductions
to which can be found in [13, 19]). Semi-structured data {(sometimes also
described as poorly structured or schemaless data) is data characterised by
the absence of an explicit, well-defined schema. Instead it is left to the user
to discern schema information from the structure of the data.

This can be thought of as a reversal of the conventional approach of
managing information — in a conventional database system a schema is
defined beforehand and data inserted into the system has to conform to
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the schema or be discarded, whilst in a semi-structured system the schema
information is derived or deduced from the data as it is added to the system.

This alternative approach results in schema information of a different
quality. A classical predefined database schema is designed to be regular (to
facilitate database manipulation) and tends to be small (in order to make
prior analysis tractable), as well as complete and accurate (in the sense that
all data entities are fully specified and non-conforming entities rejected).
The schema information contained in a semi-structured system is weaker —
it tends to be part of the structure of data and may be difficult to discern
from instance information. It may only provide a partial indication of the
database structure, serving more as a guide or set of hints to the user.

Clearly the classical schema, when available, provides significant assis-
tance when querying and manipulating data. However, there exist situations
when such a schema is unavailable or of reduced effectiveness.

For example, genuinely unstructured or irregular data may only derive
minimal benefit from a conventional schema — the schema may be expensive
to construct and maintain, and be itself irregular and complex, effectively
treating each data instance as a special case.

Another example would be an application domain where very little is
known about the data before it is inserted into the database. Such sys-
tems include databases which hold research results (for example AceDB [28]
which stores information related to molecular biology). In such a situation a
conventional schema might have to redesigned with each new data entry.

A further example would be a heterogenous, decentralised environment
where it is not possible to impose a global schema, or where the schema
is unreliable. The World Wide Web exhibits these characteristics — no
central authority can impose a schema, and schema information, to the extent
present, has been known to be falsified!.

There even exist a few cases where a semi-structured system may be
useful even though a well-formulated schema for the given domain is available.
These include situations where a casual user wishes to browse the database
content without having to be aware of or learn the underlying schema. It
may also be useful to employ a system supporting semi-structured data when
integrating or interchanging data of environments employing divergent data
models.

Systems designed for semi-structured environments include LORE [48]
and UnQL [20].

1For example, some authors include commonly searched-for phrases in the keyword
fields of hypertext documents in order to achieve a greater exposure in the listing of index
gervers, see [12].
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LORE (Lightweight Object REpository) was initially intended to function
as a private workspace or intermediate store for the mediators of the
TSIMMIS (The Stanford/IBM Manager of Multiple Information Sour-
ces) project, but has been subsequently extended to function as a da-
tabase in its own right.

LORE makes use of OEM (the Object Exchange Model) to represent
information. Each object within this model consists of an identifier,
a label and a value. The value can either be a simple entity or a set
of references to further objects. This model may be thought of as
representing data as a node-labelled graph.

This graph structure can then be queried using the LORE query lan-
guage, LOREL [14, 54]. The language attempts to deal with irregu-
lar structures by performing type coercion, permitting wild-cards in
queries and not differentiating between tests for equality against a sin-
gle value and tests for existence within a set.

UnQL (UNstructured Query Language) is a query language and associated
calculus (UnCal) for semi-structured data. UnQL models data as an
edge-labelled tree or graph, storing information only at edge labels —
unlike OEM, the UnQL model does not associate an identity with a
node. UnQL attempts to augment the conventional relational opera-
tions which tend to operate on flat structures with operations which
are capable of manipulating deep or cyclic structures.

2.4 'World Wide Web

The World Wide Web is the largest networked hypertext system. It was
introduced in 1990 and has, at the time of writing grown to over 3 million
participating hosts or web servers [8].

The World Wide Web is a client/server system where clients (known as
user agents) contact the servers (referred to as web servers) to access named
hypertext entities. Entities are identified by their URL (Uniform Resource
Locator [18]) and are related to each other via references called hyperlinks.

Hyperlinks are tags embedded in hypertext documents which refer to
other hypertext entities. Conceptually hyperlinks are the extended electronic
successors of footnotes or bibliographic references as encountered in printed
texts.

The hypertext documents (also known as web pages) of the World Wide
Web are usually written in HTML [16], the Hypertext Markup Language, an
application of SGML (Standard Generalized Markup Language). In addition
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to providing a means of inserting hyperlinks, HTML also provides more con-
ventional markup tags to declare elements such as headings, tables or quoted
texts. Apart from HTML documents, the World Wide Web also makes pro-
visions for a large number of other data entities making it possible to refer to
items such as audio or video clips, images, executables or compressed archives
from hypertext documents.

Web server and user agent interact via HTTP (the Hypertext Transfer
Protocol [17]). HTTP was intended to be a high-level, simple and stateless
protocol. It specifies a text-based request/response dialog between client
and server (initiated by the client) where the client requests an operation
(such as the retrieval) on a particular hypertext entity where after the server
returns a response (in the case of a retrieval request this might contain the
requested entity). HTTP was designed to be used atop any conventional
reliable connection-based transport protocol, but is currently deployed almost
exclusively atop TCP/IP (the reliable connection-based transport protocol
of the Internet).

Conventional web servers tend to store hypertext entities either on the
local file system or generate hypertext entities by invoking CGI [3] programs
(programs conforming to the Common Gateway Interface). Since web servers
usually do not provide their own database or querying facilities, CGI scripts
or programs are also used when database capabilities are required. This pro-
cess involves starting a CGI program to query a third-party database server,
adding hypertext markup to the query results and returning the output to
the web server. Attempts have been made to reduce the costs of invoking
a gateway program for each client request by optimizing the interface (eg
FastCGI [4]) or by moving the gateway program into the web server. The
latter is usually achieved by including a scripting interpreter in the hyper-
text server (such as mod_perl or mod_php in the case of the Apache [2] web
server).

The World Wide Web is an interesting system because it lacks a con-
trolling entity which can impose and enforce a schema or structure. As a
consequence the associations between hypertext entities are unconstrained.
For example, in a classical database modeling a part of a university, it might
be possible to enforce the constraint that members of a department (listed
in the departmental members relation) have to be employees of the univer-
sity (listed in the employees relation). Such constraints are unlikely to be
enforced on the World Wide Web — while one departmental web page may
indeed contain hyperlinks to all its employed members, another department
may only list the secretary as contact person, a third department may link
to its research groups instead, while a fourth might list staff, students and
the departmental cat.

14




The absence of a global schema makes it difficult to use traditional query
systems to extract information from the World Wide Web. Instead a number
of alternative approaches are in use. Currently the most popular approach
to query the web is to use index servers (also known as search engines).
Index servers occur in two variants, those where potentially interesting doc-
uments are selected and categorised by humans (such index servers include
Yahoo [11]) and those which are generated automatically and allow the user
to search for matching string expressions or phrases present in the indexed
documents (an example of such an index server is Altavista [1]).

In addition there exist a number of research projects which attempt to
provide query and or database management facilities which are suited to the
semi-structured domain of the World Wide Web. Not all of these projects
approach this task from the semi-structured data perspective — for example,
some attempt to transform selections of the web into more regular structures
whilst others develop specialised hypertext models or extensions to existing
models. A small sample of these different approaches is briefly described
below:

ARANEUS [15] attempts to query the World Wide Web by formulating a
schema for an existing set of hypertext documents, extracting informa-
tion from these documents (using the EDITOR language to parse the
documents) and inserting this information into a conventional relational
system (using the ULIXES language). Once the information has been
inserted, the facilities of the relational database can then be used to
create different views of the information in the form of new hypertext
documents (this phase is specified using the PENELOPE language).
Essentially the ARANEUS project translates semi-structured informa-
tion sources into an intermediate, highly structured form which may
then in turn be used to construct semi-structured views of the infor-
mation source.

RAW [31] (Relational Algebra for the Web) augments the classical rela-
tional algebra with operators and types (domains) designed to make it
possible to apply the algebra to the World Wide Web. In particular
RAW introduces types to access URLs, sequences of URLSs (paths) and
fragments of hypertext documents. RAW also adds operators (SCAN
and INDEXSCAN) to retrieve documents from the web and insert these
into a suitable tuple structure which may then be accessed by other re-
lational operators. In other words RAW is a domain specific extension
to the relational algebra which makes it possible to traverse the World
Wide Web using relational operators.
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WebSQL [49] is a SQL derivative designed to query the web. The system
models the web as a relation of hypertext documents and a relation
of hyperlinks, both computed on demand. These form the basis for
the wvirtual graph which is used by the query system. WebSQL aug-
ments SQL with constructs to perform string searching (MENTIONS and
CONTAINS) as well as facilities to formulate path-based queries using
regular expressions. WebSQL is able to distinguish between hyperlinks
to the current document, to documents on the same host and hyper-
links to a different, remote host. This capability enables the system to
calculate the cost of a query and may be used to optimise it.

WebLog [43] is a logic and query language for the World Wide Web. We-
bLog introduces the rel-infon, a fragment of an HTML document delim-
ited by a user-selected HTML tag (an example would be paragraphs if
the user selects the paragraph delimiting HTML tag <p>). Hyperlinks,
rel-infons and entire HTML pages may be used in query expressions
which resemble DATALOG rules and these queries may be used to gen-
erate restructured or derived web pages. WebLog provides a number of
domain specific builtin predicates for matching string subexpressions
and accessing web pages. The set of builtin predicates may be ex-
tended by making the functionality of external programs available as a
new builtin.

Hyperwave [47] (previously HyperG) provides a data model developed
specifically for hypermedia systems. It defines a graph by means of
S-collections. An S-collection can either be an atomic node or be a
structure consisting of a number of S-collections and associated di-
rected edges. S-collections bear some resemblance to hypernodes as
encountered in systems such as Hyperlog [53]. An interesting aspect of-
the model is that it attempts to impose a typing structure on graphs
by categorising the S-collections into specific types (lists, trees as well
as a catch-all) in an attempt to model common hypertext structures.
For example a sequence of hypertext pages constituting the chapters of
a book might be represented as the list S-collection type.

STRUDEL |[30] is web-site management and query system. It uses a graph-
based data model similar to OEM (the Object Exchange Model of the
LORE system), and like LORE, STRUDEL is capable of integrating
data from a number of sources via wrappers and mediators. STRUDEL
also provides its own native data graph repository. The query language
associated with STUDEL is STRUQL (Site Transformation Und Query
Language). STRUQL is used both in the definition of an integrated
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view of several information sources, as well as in the querying of the
unified data graph, where it may be used to define site graphs (analogs
to database views) which are used by an HTML generator to create
a web site. As the acronym indicates, STRUQL provides constructs
to generate and restructure graphs. Furthermore STRUQL allows the
user to formulate powerful path expressions which may include builtin
as well as user-defined predicates.

Of the systems listed above, STRUDEL bears the closest resemblance to
TENTACLE. Both STRUDEL and TENTACLE use a graph-based data
model and provide sophisticated path expressions to traverse the database
graph. Both systems have been applied to the domain of the world-wide web.

However there also exist a number of differences between the two sys-
tems: Where STRUDEL has been designed specifically for the management
of web sites, TENTACLE is intended for use in semi-structured applications
in general. STRUQL as well as LORE and OQL use path expressions as an
adjunct to more conventional query clauses which bear some resemblance to
the SELECT ...FROM ...WHERE ... of SQL, while TENTACLE attempts
to investigate the feasibility of using path expressions as the only query con-
struct. TENTACLE allows the user to embed output formatting information
in a query expression, while STRUDEL, like ARANEUS, appears to use a
separate HTML generator module to markup the query output.

17




Chapter 3
Data Model

3.1 Overview

The TENTACLE database system uses a weakly typed graph-based model
to represent information. The following features of a graph-based model
may make it attractive for use in both poorly structured as well as complex
applications:

1. It is possible to traverse the database structure without having to refer
to a schema. The user merely follows links from known entities to
unknown ones. This process is relatively simple and inexpensive — no
join operation is required.

2. It is relatively easy to represent associations between entities. A graph-
based model allows the user to relate entities to each other by simply
creating a link between two nodes. The addition is reasonably inex-
pensive.

3. A graph-based model is capable of modeling complex structures di-
rectly. Such structures may be arbitrarily deep or cyclic. Like object-
orientated models, graph-based models tend to provide a means to dis-
tinguish between references to the same entity (node/object identity)
or references to entities merely possessing the same attributes.

That such a model can be useful is supported by the fact that the World
Wide Web may be viewed as a graph or network based database system. Its
phenomenal growth and popularity can partly be credited to the ease with
which new information can be added to the system and related to other,
already existent information. In this regard it differs fundamentally from
relational or even most object-orientated systems which might require costly
schema modifications.
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Figure 3.1: Graphical representation of node N; with a; attributes where
each attribute consists of a key K;; and value V;. Note that values V;, and
Via; are references to other nodes.

3.2 Model Definition

The graph-based model used by the TENTACLE system represents the da-
tabase as a set of objects or nodes, where each node possesses a unique
identifier as well as zero or more attributes. An attribute takes the form of a
key/value pair. The key may be used in lookup operations within the scope
of the node to return the attribute value component. The value is either a
reference to a node or an atomic entity.

Viewed as a graph, the key of a node attribute may be thought of as being
a directed labelled edge originating at that node, while the attribute value
may be thought of as being the target node. Where the attribute value is an
atomic entity, the target node may be thought of as a special case possessing
no attributes of its own (meaning that it has to be a leaf node) and having
an identifier which corresponds to the atomic attribute value.

More formally: The TENTACLE data model represents information as a
set of nodes { Ny, ..., N, } and a set of atomic entities { My, ..., M,,} where each
node N; consists of a unique identifier ¢ and a set of attributes {Ay, ..., Aig, }-
Each attribute A;;,j € [0, a;] consists of a key/value pair (Kj;, Vi;) where the
key K;; is an atomic entity Mp,p € [0, m], while the value is either an atomic
entity M,,r € [0, m] or a reference to a node Nj, s € [0,n].
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Itemised definition:

D database, D=NUM,NNM=10
N node set, N ={M,... Ny}
M atomic value set, M= {M,,.., My}

N; node with a; attributes, N; € N, N; = (2, {A,‘Q, ey Aia;})
A,’j attribute of node N,', A,’j = (K,;j, VU)

K,'j key of attribute A,;j, K,*j eEM

V;j value of attribute A,‘j, V;j ENUM

Note the deliberate distinction between the node set N and atomic values
M. Elements in the set M are assigned by and of meaning to the user, while
the identifiers of the node set IV are opaque, immutable surrogates meeting
the requirements for strong identity as set out by [38].

The TENTACLE data model is similar to those used by other systems de-
signed to deal with semi-structured data. For example it differs only slightly
from OEM (the Object Exchange Model of LORE [48]) in that that OEM
uses a different object or node representation — an OEM node consists of
an identifier, a single label and a set of references to other nodes whilst
TENTACLE models a node as an identifier and a set of attributes (each
attribute consisting of a label and a reference). In other words OEM labels
nodes, while the TENTACLE data model labels edges.

To explain the TENTACLE data model in more familiar terms, one can
use a file system analogy: A node in the graph-based model can be thought
of as a directory in the file system, where attributes (key/value pairs) are
directory entries. The key component corresponds to the name of the direc-
tory entry, while the value is either the content of a file or another directory.
However, unlike a file system, the graph based structure has no intrinsic no-
tion of a parent directory — after all, the data is not modeled as a hierarchy,
but as a graph, thus a node can be referenced by zero or more other nodes
(using the directory analogy this means zero or more “parents”).

It should be noted that a graph is a generalization of a hierarchy or tree
(a file system has a hierarchical structure), since any tree is a special case of a
graph which has been restricted to a non-cyclic structure where a single node
(the root) has no parent node and all others have exactly one parent. For
example if one were emulate a file system structure using the TENTACLE
data model, one could use distinguished keys for the purpose of denoting
references to the current node and its parent (the key . and .. would seem
appropriate) and enforce an acyclicity constraint.

This fact that trees are special cases of graphs should make it possible
for the TENTACLE database to interact with or emulate the functionality
of information repositories which use a hierarchy as their data model (such
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systems would include some text retrieval systems, networked file systems or
directory servers such as LDAP [60]).

3.3 Summary

The TENTACLE system uses a simple, untyped, graph-based data model.
Such a model is capable of representing complex associations between entities
directly and allows the user to explore (or navigate) the data without having
to refer to a schema. Similar models have been used in other systems intended
to query and manipulate semi-structured information.
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Chapter 4
Language

The TENTACLE system provides an integrated query and scripting lan-
guage. The query component is based on path expressions over the data-
base graph, while the scripting component resembles conventional general
purpose programming languages. The former will be described in the next
section (Sect. 4.1), whereafter a brief overview of the scripting language will
be given (Sect. 4.2). That section will be followed by an explanation of the
integration of the two components (Sect. 4.3) and a section (Sect. 4.4) of
example queries phrased in the combined language.

4.1 Query Component

Query languages are an essential feature of any database; without a facility
for formulating queries, a database is likely to become a write-only storage
system. Relational databases introduced a number of high-level query lan-
guages including QBE, QUEL and, the best known, SQL. These declarative
languages make it significantly easier to access the database to the extent
that even people with limited programming skills are able to query a data-
base system.

This success of systems which offer a declarative and easy to use query
interface suggests that these aspects should also be made part of the require-
ments of the TENTACLE query language.

In addition it is desirable to make provisions in the TENTACLE language
for querying semi-structured or schema-less data, since cases may arise where
the structure of the stored data may not (yet) be known, or where a casual
user may simply be unaware of the schema. In such cases the query language
should assist in the browsing the data and possibly even assist in the discovery
of its structure.
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Several attempts have been made to modify SQL to be used in non-
relational and semi-structured applications (for example OQL [22] appears
to become the most popular query interface to object-orientated databases,
while LOREL [14] employs an SQL-like syntax to query the semi-structured
LORE system).

However, using an already familiar syntax with different semantics can
cause confusion, and since the TENTACLE database system is a deliberate
attempt to explore alternative database designs, it was decided to follow a
different approach. In particular, the system which serves as a point of de-
parture for the design of the TENTACLE query language is that of regular
expressions. Regular expressions occur in a number of user applications such
as shell interpreters and advanced editors and should be familiar to non-
programmers, thus presumably meeting the requirement of being reasonably
easy to use.

Conventional regular expressions are template strings which are matched
against a stream of characters. The TENTACLE query language applies a
similar principle but matches sequences of nodes and edges instead of se-
quences of individual characters. To avoid confusion with the usual regular
expressions, these expressions have been termed path ezpressions.

Put simply: A regular expression matches a character string, while a
path expression matches a path in the database, where a database path is a
sequence of nodes and edges which allows the user to move from an initial
node to another entity in the database graph. In this respect TENTACLE
paths are not dissimilar to the paths encountered in object hierarchies or file
systems. Examples of these include the path expression:

ship.hold[2] .container[4].owner

which allows the user of an object database to locate the owner of the fourth
container stored in the second hold of a given freighter, while a file system
path of the form:

/usr/bin/vim
allows the user to descend from the root directory / to the file vim.
Path expressions seem to be useful in semi-structured problem domains

since they permit the user to start at a known point and then gradually
explore adjacent entities.
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4.1.1 Terminology

In order to explain the TENTACLE query language it is useful to introduce
two terms which can be used to describe the components of path expressions.
Consider the object path expression

ship.hold[2].container[4].owner

This expression is specified as a concatenation of delimited entities. For
this dissertation such entities shall be referred to as segments while their
delimiters shall be referred to as separators. Thus the first segment (left to
right ordering can be assumed) of the example path expression would be ship
and the second segment would be hold[2]'. The separator in this example
is the period (.) — other environments may make use of different separators
(for example file systems tend to use / as separator).

Observe that the first or initial segment specifies the point at which the
path starts, while subsequent segments are used to constrain the possible
paths emanating from this point of entry. In the above example, the first
segment ship might be a variable containing a reference to a freighter ob-
ject, while the next segment hold[2] indicates that only the second member
of the hold attribute needs to be considered when following this path. In
other words, the initial segment specifies the starting or input entity of the
traversal. This traversal ends at the final or result entity. In the above case
the result entity is a reference to the owner (of the fourth container).

Note that the terminology has been introduced using an example from
an object-orientated programming language or database. However, the terms
can easily be extended to TENTACLE path expressions. Where segments of
an object path are matched against objects and their members, TENTACLE
segments are matched against nodes and their attributes. Similarly the input
and result entities are extended to refer to sets of graph components (nodes,
attribute keys and attribute values, see Chap. 3 for their definition).

4.1.2 Operators

So far a separator has been presented as a means to delimit the segments
of a path. However, a separator can also be thought of as a binary infix
operator, in the case of the above example the separator . is associated with
the concatenation operation.

The TENTACLE query language extends this notion to provide its core
functionality. In particular it introduces three additional separators which

!Note that an individual segment may have a composite structure.
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provide a means of specifying alternation, conjunction and closure. These
may then be used to construct more complex path expressions to be matched
against database paths. The three separators are | to denote alternation, &
to denote conjunction (requiring a match for both alternatives in a branch of
the graph, where alternation requires only a single one) and * for closure?.

To relate these operators back to conventional regular expressions across
sequences of characters: In regular expressions the concatenation operator
is left implicit (assumed between all plain characters) while both alternation
and closure are specified explicitly. An operator to denote conjunction is
usually not required since strings are linear structures (where a particular
position in the string is uniquely determined) unlike the branching structures
of graphs (where a particular branch might have to match one subexpression,
and another branch might have to match another).

4.1.3 Syntax

The grammar defining the syntax of TENTACLE path expressions is rea-
sonably compact and given below:

PATH — SEGMENT
— SEGMENT ¢.’ PATH
— ‘[* PATH ‘]’ %’
— ‘[’ PATH ‘)’
— PATH ‘&® PATH
— PATH ¢|’ PATH

LEGEND: Uppercase strings denote nonterminals, singly quoted characters
denote terminals.

The structure of a segment will be explained later and the complete gram-
mar of the combined query and scripting language is given in Appendix A.

Since TENTACLE path expression make use of several separators, it be-
comes necessary to define their precedence: Alternation has the lowest prece-
dence followed by conjunction followed by concatenation. Square brackets
are used to override default precedence and thus have the highest precedence.
The closure operator incorporates square brackets and has thus an equally
high precedence.

2The closure operator is an unary postfix operator.
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age 22

name
Marc

Figure 4.1: Simple example database graph

4.1.4 Introductory Examples

This section provides a number of simple TENTACLE path expressions.
More complex examples will be given in Sect. 4.3 and Sect. 4.4, while a
detailed semantics of the path expressions can be found in Appendix B.
Consider the TENTACLE database graph given in Fig 4.1 consisting of
a single node possessing two attributes, with keys age and name respectively.
Given a reference to the node in the variable me it is possible to retrieve
the value of the age attribute using the following path expression:

me.age.

Here the first segment, me, specifies the point of entry into the system (ie
the input set) while age selects the age attribute. The expression contains
a third segment, the empty or null segment (hence the second . separator).
When occurring as any other than the initial segment, the null segment
matches any graph component — it is the equivalent of a wildcard or don’t
care match. In the example the null segment matches the attribute value 22.
This is also where the path expression finishes, returning the attribute value
as its result set.

If the null segment occurs in place of a conventional initial segment, then
the default input set is used. It contains a reference to a single node. This is
node defined as the global database entry point and is the persistent root of
the database. If the node given in Fig. 4.1 is designated the database root,
then the above path expression may be replaced by a shorter equivalent:

.age.
An example of a path expression which makes use of the alternation
construct is given below. The expression requests either the age or birthdate

value:

me.age.|me.birthdate.
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Again, the result set contains a single reference to the 22 of the age
attribute (the example node does not possess a birthdate attribute). By
making use of the square brackets to override default precedence, it is possible
to rewrite the above expression as:

me. [age|birthdate] .

The final introductory example expression illustrates the use of the closure
operator:

me. []*

The result set of this expression contains all the graph components reach-
able from the graph component referenced by the variable me3. Here this set
contains four members — references to the keys and values of the node at-
tributes (key name and value Marc for the first attribute and age and 22 for
the second).

4.2 Scripting Language

The TENTACLE language includes a general purpose programming (here
referred to as scripting) component.

It is somewhat uncommon to encounter scripting languages in database
systems. Usually the reason advanced for their omission is that general pur-
pose programs may consume an unpredictable amount of resources (time,
storage). This problem is solved somewhat crudely in the TENTACLE sys-
tem by setting resource limits which, if exceeded, result in the termination
of the script.

The inclusion of a scripting component guarantees the computational
completeness of the TENTACLE language, thus making it unnecessary to use
host or wrapper languages (as is the case in a number of other query languages
such as SQL). The elimination of host languages removes the impedance
mismatch usually encountered in two language systems.

The scripting component is also used as data definition language, new
data items may be added to the system by calling a function to link the
new item to a node reachable from the database root (in other words data
persistence is by reachability).

In addition the scripting language component makes it easier to add
active-database capabilities to the system such as dynamically computed

3 Although not illustrated in this example, the TENTACLE closure operator is capable
of dealing with graph cycles.
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data or triggers. The TENTACLE system takes advantage of this by provid-
ing a trigger which is executed as soon as a client connection to the database
is established. Such a facility makes it possible to program the interface pre-
sented by the database to the client, in other words, it is possible to adapt or
interface the database to its problem domain or application without having
to make use of external gateway or mediator programs.

Like the path expressions, the scripting component of the TENTACLE
language has been kept simple deliberately — had either component been
overly complex their combination would, in all likelihood, have become un-
readable and their interaction unmanageable. Hence the scripting component
resembles a small, simple subset of a procedural language such as C [37] or
PHP [10].

Most complex syntactic constructs have been omitted — equivalent func-
tionality is provided by a set of builtin functions. For example where C
would use a construct such as X&&Y to denote conjunction, the TENTACLE
scripting language uses and (X,Y)*. This reduces the tokens reserved by the
scripting component of the language to the following:

if else conditional evaluation

while iteration

var variable declaration

{} block delimiters

0 parameterisation of functions, loops and conditions

s parameter separator

] path expression delimiters

"t and ’’  quoting of literals
program terminator

The complete grammar of the language is given in Appendix A.
The canonical “Hello World” program expressed in the TENTACLE
scripting component looks like this:

write(connection,'Hello World").

In this example the function write() appends the value of its second
argument (The quoted literal "Hello World") to its first argument (the net-
work connection handle referenced by the variable connection).

Another example shows how the scripting language may be used to insert
data into the system. The script given below will generate the graph in
Fig. 4.1 and make the node the root of the database graph:

4Note that this changes the semantics of and() from those of C to those of PASCAL.
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var me

me=newid()

link(me, "age","22")
link(me,"name","Marc")
root(me) .

The first line declares the variable me, the second line requests the da-
tabase to allocate a new node and assigns a reference to this node to the
variable me. The two calls to the 1ink() function associate two attributes
with the node, while the last line informs the system that the newly allocated
node should become the new entry point into the system.

Further examples of the scripting language will be given in the next sec-
tion (Sect. 4.3) and Chap. 6.

4.3 Integration

The integration of the query and scripting components of the TENTACLE
language is achieved by allowing path expressions to appear in place of R-
values in the scripting component (here termed R-value substitution) and by
permitting R-values of the scripting language to appear as segments in the
path expressions of the query component (referred to as segment substitu-
tion). In other words parts of the scripting component may occur in path
expressions and vice versa. This mutual nesting may be arbitrarily deep.

4.3.1 R-value Substitution

Path expressions, when enclosed in brackets []1, may appear in place of the
more usual R-values (literals, variables and function calls) of the scripting
component. When a path expression occurs as an R-value, its value is the
result set of the expression®. Consider the path expression me.age. matched
against the database graph depicted in Fig. 4.1. The result set of this ex-
pression is a reference to the attribute value 22. Thus when the expression
is used as the third R-value in the script:

write(connection,"My age is ", [me.age.]).

the output will be the text My age is 22.

5Where the caller expects only a single value, the first element of the set is used.
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4.3.2 Segment Substitution

Any R-value (ie literal, variable or function call) of the scripting component
may be used as a segment in a path expression. For example in the first path
expression me .age ., it is given that the initial segment me is a variable which
references the node in Fig. 4.1, while age is a literal matching itself.

The example may be modified by replacing the age literal with a variable
holding the value age:

var property
property=age
write(connection,"My ",property," is ", [me.property.]).

The output of this script is identical to that of the previous example,
namely My age is 22. Note that, like in all the previous examples, the
variable me is assumed to have been declared and initialised previously. Also
note that the quoting of literals containing only plain characters is optional,
there is no distinction between property=age and property="age" pro-
vided age has not been previously declared as a variable (in which case
property=age would assign the dereferenced value of the variable age to
the variable property). Defensive coding practice suggests enclosing all lit-
erals in quotes, including those occurring in path expressions (for example
me . "age"). However, for the short examples given in this dissertation, this
appears unnecessary and only reduces readability.

Function calls may be used in a similar manner to variables. When a
function call occurs as initial segment, its return value is used as input set
for the path expression. When used in another position a match succeeds
if the function call returns true (ie non-null — the TENTACLE language
provides a distinct null value). Thus the path .age. can be thought of as
being a shortened version of root().age.true(), since root() returns a
reference to the entry point of the graph, while true () always succeeds.

Another example of a path expression using a function call is:

[me.age.write(connection,"My age is ",here())].

Again the output of this expression isMy age is 22. The nested function
call write(connection,"My age is ",here()) has been inciuded as the
third segment in the path expression and the side effect of its evaluation
results in output. Note the special function here() returns the value of the
current matching component of the database graph (22 in the example)®.

8The here() function bears a limited similarity to the this pointer as encountered in
C++.
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The last example of path expression and scripting integration illustrates
how functions and path expressions may be nested several layers deep:

[me.write(connection,"My ",here()," is ",[here().],".")].

The resultant output is My age is 22. My name is Marc.. The top-
level path expression consists of two segments, where the second segment is
the nested function call
write(connection,"My ",here()," is ",[here().]). This function call
is evaluated for each attribute key of the node (name and age) and accesses
the current graph component by using the here() function as well as the
immediate neighbour using the path expression [here().] which uses the
current position as input set.

The above examples of formulating similar queries in a number of different
ways demonstrate the flexibility of the integrated querying and scripting
language, even though the language consists of a comparatively small number
of building blocks. By providing a flexible querying system, it is hoped that
users will be able to construct queries in formats which are convenient and
which map naturally to a given application domain.

4.4 Further Example Queries

This section presents three more complex queries. They are derivatives
of queries presented in the literature, and show how one might use the
TENTACLE query language to approach some of the issues identified by
the authors.

4.4.1 The Movie Database

Query: Find the scriptwriters of movies directed and produced
by the same person.

This query has been adapted from an application domain introduced
by [19] (the Internet Movie Database [7], where users may browse a large
body of movie-related information). The query is an attempt to compare
TENTACLE path expressions and path expressions which might form part
of more conventional SELECT ...WHERE ... clauses.

Given a database graph such as depicted in Fig. 4.2 which represents
selected details of two movies, the path expression which would return the
set of scriptwriter names is:
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scriptwriter name

Arthur C. Clarke

2001: A Space Odyssey

Stanley Kubrick

Spartacus

Kirk Douglas

Howard Fast

Figure 4.2: The Movie Database

[..equal([here().director.], [here().producer.])
.scriptwriter. .name.]

This path expression (which has been split over two lines for the sake of
readability) consists of seven segments, where the third segment is a complex
subexpression. The subexpression evaluates to true if the result sets of the
two path expressions [here() .director.] and [here().producer.] are
equal. Since evaluation of subsequent segments only proceeds if previous
segments have been matched, the third segment serves to eliminate movie
nodes which do not possess equal director and producer attributes. The
remaining four segments (scriptwriter..name.) traverse the graph from a
movie node to the name attribute of the scriptwriter.

An advantage of TENTACLE path expression syntax over more conven-
tional SELECT ...WHERE ... clauses is that the relationship between the
result (the SELECT clause) and the constraint (the WHERE clause) can be given
directly. Consider a naive attempt at splitting the above path expression into
a SELECT and a WHERE clause:

SELECT [...scriptwriter..name.]
WHERE [...director.] = [...producer.]

Clearly the clauses as given above are insufficient since they do not specify
how the three path expressions are related to each other, ie how much of
the path expressions should be the same — if left unspecified the paths
[...director.] and [...producer.] might refer to an entirely different
movies. This difficulty has been identified by [19]. The author suggests using

"This is a hypothetical example. The TENTACLE language does not provide a SELECT
. . .WHERE ... construct.
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Figure 4.3: The Blue Cars

variables to indicate how the different path expressions relate to each other.
Such a query clause could possibly be written as:

SELECT [..%movie.scriptwriter. .name.]
WHERE [..$movie.director.] = [..$movie.producer.]

This is the approach which has been chosen for query languages such as
OQL. The TENTACLE approach of combining all clauses into a single path
expression appears to be more compact, since common segments of the path
need only be given once, and variables are not required.

4.4.2 The Blue Cars

Query: Find all blue vehicles driven by the president of the com-
pany that manufactured them.

This example has been taken from [40]. The query given has, what the
author calls, a type-n cycle in its query graph. Such a query is difficult to
express in SQL.

A fragment of a database graph which matches the query is given in
Fig. 4.3. In the figure a company® is represented as a node (anchored at
the database root) which contains a president attribute (a reference to the
president node) and a manufactures attribute. The president node references

8For the sake of brevity only a single company somecorp has been shown where other-
wise several would have been given.
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the set of vehicles driven by him, while the manufactures node references the
set of vehicles manufactured.

The TENTACLE path expression which retrieves the vehicles meeting
the requested criteria is given below:

[...[president..drives...&
manufactures. . .equal ([here().colour.],blue)]]

The expression consist of four segments, where the first three are null seg-
ments which traverse the graph from an entry point to a company node. The
fourth segment consists of a conjunction subexpression, where the result set
of the conjunction is the intersection of the result sets of its two components.
The first component returns a result set of vehicles which are driven by the
president, while the second returns a set of vehicles which are manufactured
by the company and have the colour blue.

4.4.3 The Restaurant Guide

Query: Find cheap restaurants.

This example has been derived from [14]. The query is intended to illus-
trate how information may be extracted from a semi-structured database.

In the example this database takes the form of a restaurant guide. The
entries of this guide do not conform to a regular structure. Some restaurants
may be described by a brief text, other entries may contain a listing of
courses, yet other restaurants might be described by key fields which classify
the restaurant according to criteria such as price or cuisine.

Figure 4.4 provides a small part of this hypothetical guide. The figure
shows three restaurants, Amigos, Melissa’s and The Squirrel. Amigos is
only described by a short text, The Squirrel contains greater detail about
individual courses (The Squirrel provides a wide selection of cheap starter
courses of a reasonable quality®), while Melissa’s is described by attributes
indicating opening times, cuisine and price.

Selecting cheap restaurants from this guide is achieved by searching (re-
cursively) for attributes of restaurants which contain the substring cheap.

It should be clear that this query might not retrieve all cheap restaurants
(some cheap restaurants might be described as having a reasonable price).
The query might also retrieve expensive restaurants (for example, those which
contain the substring not cheap). This illustrates the tradeoff made by a
.semi-structured system — the benefit of being able to store complex and

9Descriptions of the other courses have been omitted to simplify the figure.

34




guide

Melissa’s

The Squirrel opening times

cuisine
Tue-Sun

9am-8,
starter courses am-Spm

mediterranean

main

courses quite cheap
selection
. description
price quality
wide reasonable .. . moisy surroundings
cheap but surprisingly cheap . ..

Figure 4.4: The Restaurant Guide

unconstrained data without having to formulate an exact schema is paid for
by either reduced query accuracy or increased query complexity. In many
cases this tradeoff is acceptable — the casual user browsing the guide in
search of a cheap meal is probably prepared to accept an incomplete list of
cheap restaurants, and is likely to examine individual restaurant descriptions
before visiting the restaurant.

The query to select cheap restaurants can be written as the TENTACLE
path expression:

[.guide. .restaurants..setsubstring("cheap", [here().[1*])]

The segments [.guide. .restaurants.] traverse the graph from its root
to the node which contains a set of references to restaurant nodes. The path
expression [.guide..restaurants..] would select the keys of all of these
references, ie all restaurant references. In order to constrain the result set,
the function call setsubstring("cheap", [here().[1*]) is used in place of
the last empty segment.

setsubstring() returns true if the first argument is a substring of one of
the elements of its second argument. In the example, the second argument is a
path expression which returns the set of all graph components reachable from
the current position (the current position being the key of a reference to a
particular restaurant node). Thus setsubstring(“cheap", [here().[]1*])
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only succeeds if a graph component which contains the substring cheap is
reachable from the current position.
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Chapter 5

Implementation

5.1 System Overview

The core of the TENTACLE database system is a single server process which
fields requests from multiple clients via a network interface. The server takes
the form of a programmable database kernel which interprets instructions
written in the combined querying and scripting language. It is thus one of
the tasks of the server to map instructions in the language to low-level storage
operations.

This mapping can be decomposed into several stages, making it possible
to partition the database into several layers (see Fig. 5.1) where each layer
can make use of the functionality provided by lower layers.

This section explains how the TENTACLE server was partitioned into
its layers. The description progresses upwards from the lowest layer.

The lowest layer of the TENTACLE database system is called the block
manager. It accesses secondary storage via seek, read and write system calls
to the host operating system. Since disk devices, device drivers and file
systems typically use a fixed block size for their internal operation (common
sizes are 1K or 4K), it was decided that the block manager request fixed
(instead of variable) size blocks, thus avoiding the penalty of having the
operating system merge or split variable size blocks.

It is the task of the block manager to keep track of free and used blocks
and service requests submitted by the other database layers for new and
existing blocks from its local set of cached fixed-size pages.

The layer above the block manager is called the graph storage manager.
It performs all the basic graph manipulation operations — these comprise
operations to create, retrieve, modify and delete nodes and their attributes.
This makes the graph storage manager responsible for mapping the nodes
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Figure 5.1: Components of the TENTACLE Database
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and their attributes onto the pages supplied by the block manager.

In addition the graph storage manager is responsible for maintaining a
global node index so that references between nodes can be resolved efficiently,
as well as a per node index so that individual attributes of a node can be
retrieved efficiently on their key.

The operations provided by graph storage manager are used by the cursor
manager. It is responsible for maintaining pointers or handles (here termed
cursors) to nodes and their attributes. This allows the cursor manager to
detect access collisions between different clients.

The language module is the topmost layer of the system and co-ordinates
the other database components. It provides a re-entrant interpreter for both
the query and the scripting component of the TENTACLE language — in
other words it is capable of servicing several remote clients simultaneously.
This module receives and parses the instruction stream of a client, dispatches
the instructions, uses the cursor module to access the database graph and
returns output to the client.

This concludes the overview of the database components. The next sec-
tions present a more detailed description of the assumptions made, design
decisions taken and tradeoffs arrived at for each component implementation.

5.2 Block Manager

The TENTACLE block manager is responsible for reading and writing data
blocks or pages from secondary storage on behalf of the other system com-
ponents. The block manager can use either a single file or disk partition as
secondary storage. Writing directly to a partition allows one to bypass the
overhead imposed by the file system.

It is assumed that the available secondary storage (disk space) is signif-
icantly larger that the available primary storage (Random Access Memory)
and that accesses to secondary storage are comparatively expensive oper-
ations, but unavoidable since the entire database might not fit into RAM.
Thus the block manager maintains a buffer or page cache, so that only active
parts of the database need to be resident. An incoming request is compared
to the content of the cache. If the block has already been retrieved and is
available in one of the buffers, then the address of that buffer is returned to
the calling layer (usually the graph storage manager). Otherwise the block
at the given file or disk offset is read into the least recently used page and
its address returned to the callee.

It may seem counter-intuitive to maintain a block cache when the oper-
ating system can maintain a block cache as well. However, there exist three
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advantages which a user-level cache has over a cache within the operating
system:

1. Most conventional operating systems can not easily be modified to
adjust their caching strategy (especially on a per file/device basis),
and the global caching strategy might not be the best one available for
the database.

2. In most operating systems it is difficult to pass information about the
importance of a block to the caching component of the operating system
— in general there is no way of providing the operating system with
hints as to the likelihood that a given block will be requested again.

3. An operating system level cache incurs the overhead of a copy opera-
tion, even on a cache hit, since the data needs to be transferred from
an internal operating system buffer into the area specified by the user-
level program, while a user level cache only needs to pass an address
to the calling function.

Since the TENTACLE database is intended to function as an experimen-
tal/research platform, it might be desirable to modify the caching strategy
at a later stage and investigate the effects of the modifications on the per-
formance of the system (currently such an investigation has not yet been
attempted). Thus it seemed prudent to include a user-level cache.

The first two reasons enumerated above also motivate the decision not
make use of a memory-mapped file/device interface!, instead the database
interacts with the operating system via the conventional read, write and seek
system calls.

5.3 Graph Storage Manager

The graph storage manager is responsible for mapping graph structures onto
the block buffers supplied by the block manager — the graph storage manager
uses the services of the block manager to provide the operations to store,
retrieve and modify the components of a graph.

A decision which influences the set of possible designs of this module
(and which needs to be taken in almost all storage system where references

IMemory-mapped 10 is the process whereby the operating system uses the virtual
memory facilities provided by the hardware to place (map) a file into the address space
of a process, causing the file to appear like a normal memory area — this removes the
overhead mentioned in point 3 above and confers the advantage of having a cache hit or
miss detected in hardware.
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exist between stored entities) is the choice between implementing a reference
between two entities as a direct pointer to the storage location of the entity,
or as a reference to a logical identifier which is only later mapped onto the
address of the entity.

The direct pointer approach has been used by systems such as O, [27].
It offers the advantage of minimizing the lookup costs, but makes moving
stored entities difficult, since this involves either updating all pointers on
referring entities or keeping a forwarding pointer to the new address at the
original location of the (now moved) entity. Updating all referring pointers
is expensive, while forwarding pointers fragment the storage space.

The alternate approach of using logical identifiers as references which
are mapped onto an address introduces the performance penalty of an extra
lookup for each access. The advantage is that it becomes comparatively easy
to move an entry (since only the lookup system, instead of all references,
needs to be updated). For the same reasons it is also less expensive to com-
pact the holes left by deleted entries in an effort to minimize fragmentation.

The TENTACLE system uses logical identifiers (sometimes also referred
to as surrogates), singe it was anticipated that nodes within the system are
likely to change size relatively frequently and these resize operations may
involve the movement of nodes. Logical identifiers also make it possible to
support a stronger form of node identity as defined by [38].

This choice means that the graph storage manager layer can be divided
into three principal subcomponents: An index mechanism to assign identi-
fiers to nodes and map these identifiers onto addresses, a component which
manages the packing of nodes into block buffers and a component which orga-
nizes the internal structure of an individual node. These parts are explained
in more detail below.

5.3.1 Node Index

The function of this component is to map a logical identifier onto a physical
block address (an offset into a file or directly into a disk partition). It was
deemed desirable to have the block address of a node independent of its logical
identifier, since this has the advantage that the system can select any block
which has sufficient space (resulting in far better space utilization) and also
makes it possible to implement more sophisticated graph clustering strategies
at a later date (dynamic clustering strategies which attempt to cluster groups
of nodes which reference each other (see [50])). However, this approach of
making physical node locations independent of their logical identifiers has
the disadvantage that there has to be an index entry for each node. Since
it is conceivable to have large numbers of small nodes, this means that the
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index structure can be very large. Thus a memory resident structure does
not seem to be a viable solution; instead the index resides on disk and only
its actively used parts are paged into memory.

Two of the more common approaches used for maintaining such indices
are trees (B-trees are common for disk resident structures) or hash tables
(although these are more frequently used for memory resident structures).

A hash table (in this case its task would be to hash the logical identifier
onto a position in the table containing a pointer to the physical address of
its block) offers a very fast lookup mechanism, but has the disadvantage of
requiring large amounts of contiguous storage for efficient operation. If the
storage space is reserved when the database is created, then it is possible
that a significant amount of space may be wasted. On the other hand, if the
table is only increased in size when needed (as is the case with extendible
hashing), then, because the table would be disk resident, one incurs the
expensive overhead of having to reorganize the database in order to create a
larger piece of contiguous storage.

A B-tree, while not as fast as a hash table, has the advantage that it does
not require a contiguous storage area, and makes efficient use of the storage
allocated to it.

As a matter of fact, for the TENTACLE system it is possible to improve
the space utilization of the B-tree even further, since one can take advantage
of the fact that the system itself generates the node identifiers: If one uses a
counter to generate the logical identifiers, it can be guaranteed the identifier
of the newest node is always larger than all other existing ones®. This means
that new entries are only ever inserted at the rightmost side of the tree (see
Fig. 5.2). Thus nodes in the B-tree can be filled completely (there is no
advantage in reserving space in the nodes for subsequent insertions, since it
is certain that none will occur).

If no deletions occur, then only the rightmost nodes of this modified B-
tree are ever incompletely filled. For such a case the average space utilisation
(u) is better than 1 — (d/N) where N is the number of nodes in the B-tree
and d is depth of the tree. This is a pleasing, since it means that the average
space utilisation tends to unity as the tree increases in size.

Unfortunately this formula only holds if no deletions occur, since dele-
tions, unlike insertions, may occur anywhere in the tree. However, it is
possible to compact the tree using a post-order tree traversal which shifts
each entry to the left by = positions and decrements the keys of the interior

2 Admittedly there is the problem of encountering a counter wraparound, but the cur-
rent implementation does not attempt to deal with that contingency since the default 32
bit counter can sustain one insert per second for 136 years, while a 64 bit counter can
sustain a million insertions per second for 584 millennia.
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In the example application the hypertext network which is the World
Wide Web has been mapped to the graph-based model of the TENTACLE
database system. This mapping is reasonably straightforward. The query
language has been used to materialise several hypertext documents from the
same data source, where the query and postprocessing phase have been folded
into a single step. The scripting language has been used to construct a parser
for the Hypertext Transfer Protocol (HTTP) which runs inside the database
server process, which means that the database server appears as a web server
to the outside world.

The creation of the TENTACLE system has been a large undertaking —
it covered the design, implementation and example deployment of an alter-
native database system. In other words, the project has covered a breadth
of topics, as opposed to being an in-depth study of a single one. This means
that there exist numerous opportunities to explore aspects of the system
further. A selection of these is given below:

e The TENTACLE data model might be extended to include facilities for
encoding constraints or schema information, even if this information is
not well specified. The LORE system attempts to encode such schema
information using structures which the authors call Data Guides, and
it might be interesting to equip the TENTACLE system with similar
capabilities.

e The TENTACLE query language currently does not allow the user
to specify in which order path expressions are matched against the
database graph — at the moment the only supported (implicit) eval-
uation strategy is a breadth first traversal where the attributes of a
node are examined in their sorted order. It would be interesting to
add other evaluation strategies such as a depth first traversal, or even
parameterized evaluation strategies which would allow the user to spec-
ify cost and sorting functions. Such an extension could even form the
basis for addressing some of the limitations of network/graph based sys-
tems identified by [24] which motivated the introduction of relational
databases.

o It might be interesting to employ path expressions to rewrite the da-
tabase graph. The path expressions presented in this dissertation have
been read-only in the sense that they have not modified the database
graph — however, it should be possible to include functions which
do modify the database graph as segments of path expressions. This
would mean that the side effects of traversing the database graph would
change the graph — the potential for making such a process recursive
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In addition to improving and extending the existing system, there exist
opportunities to apply the TENTACLE database system to a variety of other
semi-structured domains. Of particular interest are structured texts such as
XML or programming languages where path expressions may be a suitable
tool to query the parse tree of a document or program. Similarly VRML
scene graphs might be queried using TENTACLE path expressions.

Yet another potentially interesting topic would be a comparison of the
TENTACLE database system with persistent programming languages (See
[23] for a survey). Viewed from such a perspective the TENTACLE system
is a persistent programming language which uses a graph as its bulk storage
system, possesses builtin query facilities and runs inside a database.

Further application of TENTACLE could be as a graph storage system
for other graph-based query languages. Examples include Hy* [25], which is
implemented on a deductive database system, and Hyperlog [53], which used
to be implemented on a functional database system.
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Appendix A

Language Syntax

SCRIPT
STATEMENTS

STATEMENT

ASSIGNMENT
LOgP
CONDITIONAL—

A A A A A A

{

DECLARATION—
VARIABLES

BLOCK

LVALUE
RVALUE

FUNCTION

ARGUMENTS

PATH

N A

STATEMENTS .’

STATEMENT

STATEMENT STATEMENTS
ASSIGNMENT

LOOP

CONDITIONAL

DECLARATION

BLOCK

RVALUE

LVALUE ‘=’ RVALUE

while ‘(’ RVALUE ‘)’ STATEMENT
if ‘(' RVALUE ‘)’ STATEMENT
if (> RVALUE ‘)’ STATEMENT else STATEMENT
var VARIABLES

variable

variable ‘,’ VARIABLES

“{’ STATEMENTS ‘}’

variable

literal

variable

FUNCTIQN

r[; PATH r];

literal ‘(’ ?’)’

literal ‘(’> ARGUMENTS ’)’
RVALUE

RVALUE ‘,’ ARGUMENTS
RVALUE

RVALUE ‘.’ PATH
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— ‘[’ PATH ‘]’ ‘%’
— ‘[’ PATH ‘]’

— PATH ‘&’ PATH
— PATH ‘|’ PATH

LEGEND: Uppercase strings denote nonterminals, lowercase strings or singly
quoted characters denote terminals.
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Appendix B

Path Expression Semantics

The semantics of the TENTACLE path expressions will be explained by
annotating the productions of the TENTACLE grammar with logic rules.

For this purpose it is useful to draw a distinction between the first seg-
ment of a path expression and other segments. This distinction is neces-
sary since the initial segment has a different semantics — it specifies the
set of graph components which serve as starting points, while subsequent
segments are used in matching operations. This bears some resemblance to
path expressions as encountered in object-orientated programming languages
— for example the first segment of expression ship.hold[2] selects a start-
ing point from the set of all available objects, while the second segment can
be thought of as matching a neighbouring entity (selecting only from the
immediate neighbours of the previous segment).

The TENTACLE grammar which draws the distinction between initial
and subsequent segments is given below:

PATH — initial_segment
initial_segment ‘.’ TAIL
‘[’ PATH ‘]’ ‘¥’

‘[’ PATH ‘]’

PATH ‘&’ PATH

PATH ‘|’ PATH

14idd

TAIL segment

segment ‘.’ TAIL
‘[> TAIL ‘]’ ‘%’
‘[’ TAIL ‘]’

TAIL ‘&’ TAIL
TAIL ‘|’ TAIL

L4l
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This grammar may be annotated as follows: A predicate is associated
with each production — as the production is matched against a query, the
predicate is evaluated. The first argument ($$) of such a predicate contains
the path expression which still remains to be parsed. The second argument
(I) contains a set of graph components which serve as starting point for
that path expression, while the third argument (R) contains the graph com-
ponents at which the path expression terminates — in other words the result.

Note that the annotation uses a YACC (Yet Another Compiler Com-
piler) notation to indicate the relationship between the production and the
predicate. Briefly $$ denotes the head of the production while $n where
n € [1,2,3..] denotes the n’th token in the body of the production. Ob-
serve that the $$ and $n parameters serve as the equivalent of distinguishing
subscripts.

Production: PATH ::= initial_segment
Predicate: path($$,I,I) :- initial($1,I)

Production: PATH ::= initial_segment ‘.’ TAIL
Predicate: path($$,I,R) :- initial($1,I), tail($3,I,R)

Production: PATH ::= ‘[’ PATH ‘]’ ‘%’

Predicate: path($$,I,R) :- path($2,I,X), tail($$,X,Y),
union(X,Y,R)

Production: PATH ::= ‘[’ PATH ‘]’

Predicate:  path($$,I,R) :- path($2,I,R)

Production: PATH ::= PATH ‘&’ PATH
Predicate: path($$,I,R) :- path($1,I,X), path($3,I,Y),
intersection(X,Y,R)

Production: PATH ::= PATH ‘|’ PATH
Predicate:  path($$,I,R) :- path($1,I,X), path($3,I,Y),
union(X,Y,R)

Production: TAIL ::= segment
Predicate: tail($$,I,R) :- extend($1,I,R)

Production: TAIL ::= segment ‘.’ TAIL
Predicate: tail($$,I,R) :- extend($1,I,X), tail($3,X,R)

78



Production: TAIL ::= ‘[’ TAIL ‘]’ ‘=’
Predicate: tail($$,I,R) :- tail($2,I,R), union(I,R,I)
tail($$,I,R) :- tail($2,I,X), tail($$.X,Y),
union(X,Y,2), union(I,Z,R)
tail($$,I,[1)

Production: TAIL ::= ‘[’ TAIL ‘]’
Predicate: tail ($$,I,R) :- tail($2,I,R)

Production: TAIL ::= TAIL ‘&’ TAIL
Predicate: tail($$,I,R) :~ tail($1,I,X), tail($3,I,Y),
intersection(X,Y,R)

Production: TAIL ::= TAIL ‘|’ TAIL
Predicate: tail($$,I,R) :- tail($1,I,X), tail($3,I,Y),
union(X,Y,R)

The above annotations make use of the following predicates:

union/3
difference/3
initial/2
extend/3

The predicates union/3 and intersection/3 have their conventional
semantics, where the third argument is the union, respectively intersection,
of the first two arguments. In this context the arguments to these two rules
are sets of graph components.

initial/2 is a predicate which, given an initial segment (first argument),
computes the corresponding set of graph components (second argument).
A segment is an R-value in the TENTACLE language (see Appendix A)
— thus initial/2 evaluates an R-value and returns its result as a set of
graph components!. When compared to an object-orientated programming
language, initial/2 performs a task similar to the resolution of a variable
label to an object address.

extend/3 takes a set of graph components (second argument) and returns
their immediate neighbours (third argument) which match a particular con-
straint encoded in the given segment (first argument).

1f the initial segment is the empty string, then initial/2 returns the default entry
point into the graph (the database root).
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In order to supply a more detailed definition of the extend/3 predicate
it is useful to encode the database graph as an existensional relation, and
provide a suitable representation for sets of graph components.

For this purpose the database graph may be thought of as consisting of
the following extensional relation?:

e(n,k,v)

where n € N, k € M and v € N UM (refer to Chap. 3 for the definitions
of N and M). In other words the relation e() contains a tuple for every
attribute of every node, where n is the identifier of the node, k is the key
of the attribute and v is the value of the attribute, either an atomic value
(k € M) or a reference to another node (k € N). Note that the pair (n,k)
is the primary key in this relation, since each n uniquely identifies a node,
whilst k identifies an attribute within the scope of its node n3.

A set of graph components may be represented as a list of sublists, where
each sublist is a reference to a graph component. A reference to a node is
denoted by single element sublist [n], a reference to an attribute key by a
sublist of two elements [n,k] and a reference to an attribute value by the
triple [n,k,v].

Given these two representations (of encoding a graph as the e() rela-
tion, and a graph component set as a list of sublists) it is possible to define
extend/3 as follows:

extend(_, [1,[1)
extend(S, [HI|TI],TR) :- singlextend(S,HI,HR),
extend(S,TI,TR), member (HR,TR)
extend(S, [HI|TI], [HR|TR]) :- singlextend(S,HI,HR),
extend(S,TI,TR)

singlextend(S, [N],[N,K]) :- e(N,K,.), match(K,S)

singlextend(S, [N,K],[N,K,V]) :- e(N,K,V), match(V,S)

singlextend(S, [N,K,V],[V,L]) :- e(N,K,V), e(V,L,)),
match(L,S)

2Note that the translation does not take isolated nodes into consideration. Fortunately
isolated nodes (nodes which possess no outgoing or incoming edges) are only of interest
in trivial path expressions, namely those consisting of a single segment referring to the
isolated node. Also note that the TENTACLE system maintains a sorted order on the
keys of a node, thus e(n,Xk,v) should be sorted on (n,k), and the rule evaluation should
be order preserving.

3This constraint has been introduced to simplify the semantics — the implementation
itself permits duplicate node keys.
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age 22

name
Marc

Figure B.1: Simple example database graph

Essentially the extend/3 predicate determines the set of neighbours of
each input set element and returns those which match the segment. Observe
that the immediate neigbours of a node reference [n] are its attribute keys
[n,k], while the neighbour of an attribute key is its value [n,k,v]. If an
attribute value is a node reference then its neighbours are the attribute keys
of the referenced node.

member/2 has its usual meaning of testing if the first argument is a mem-
ber of the list given in second argument, while match/2, like initial/2
provides an interface to the scripting component of the language — match/2
succeeds if the graph component (first argument) matches the current seg-
ment (second argument), where the segment is an R-value of the language.
A literal or variable is deemed to match if its value is the same as the graph
component, while a function call matches if the function does not return
false. If the R-value is the empty string, then match/2 succeeds for any
graph component.

The following small example illustrates how a TENTACLE query may
be mapped to a logic program using the above method. Consider the simple
path expression:

me.age.equal (here() ,sum(14,8))

where me is a variable referring to the node in the database graph given in
Fig. B.1. Assuming that this node has an identifier of 1, the graph may be
represented as the relation:

e(1,age,22)
e(1,name,Marc)

The evaluation of the above path expression starts when the first pro-
duction PATH ::= initial segment ‘.’ TAIL is matched. The associated

rule is:

path("me.age.equal (here() ,sum(14,8))",I,R) :-
initial("me",I), tail("age.equal(here(),sum(14,8))",I,R)
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initial/2 evaluates the R-value "me" which returns a set containing a ref-
erence to a single node [[1]]:

path("me.age.equal (here() ,sum(14,8))",[[1]1],R) :-
initial("me", [[1]1]),
tail("age.equal (here() ,,sum(14,8))",[[1]],R)

The first argument to tail/3 matches the production TAIL ::= segment
‘.7 TAIL and its associated rule:

tail("age.equal(here(),sum(14,8))",[[1]],R) :-
extend("age”,[[1]],X), tail("equal(here(),sum(14,8))".X,R)

extend/3 finds the immediate neighbour of [1] which matches the segment
"age". "age" is a literal, thus match/2 compares its value against the keys
of [1] and returns those which are the same:

extend ("age",[[1]11[]1],[HRI[]1]) :-
ginglextend (“age",[1],HR), extend("age",[],[])

singlextend("age",[1],[1,K]) :~-
e(1,K,.) ,match(K,"age")

The matching key value is returned to the callee:

tail("age.equal (here() ,sum(14,8))",[[1]1]1,R) :~
extend("age",[[1]1],[[1,agell),
tail(“equal (here() ,sum(14,8))", [[1,agel]l,R)

The production which matches the remainder of the expression is TAIL
::= segment and its associated rule is given below:

tail ("equal(here(),sum(14,8))", [[1,age]l],R) :-
extend ("equal (here(),sum(14,8))",[[1,agel],R)

extend/3 finds the immediate neighbour of [1,age] which matches the seg-
ment "equal (here() ,sum(14,8))". match/2 evaluates this segment and re-
turns true (here () retrieves the value of the graph component to be matched,
in this case 22):
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extend("equal (here() ,sum(14,8))", [[1,agel | [11, [HRI []]) :-
singlextend("equal(here(),sum(14,8))", [1,age] ,HR),
extend("equal (here(),sum(14,8))",[1,[])

singlextend("equal (here(),sum(14,8)", [1,age]l, [1,age,V]) :-
e(1,age,V), match(V,"equal(here(),sum(14,8)")

Finally the nested calls unwind to the top level where the result set con-
tains a single reference to the node attribute value [1,age,22]:

tail("equal(here(),sum(14,8))",[[1,agel]l,[[1,age,22]]) :-
extend("equal (here() ,sum(14,8)",[[1,agel], [[1,age,22]])

tail("age.equal (here(),sum(14,8))",[[11]1,[[1,age,22]1]) :-
extend("age",[[1]1],[[1,agell),
tail("equal (here() ,sum(14,8))",[[1,agel]l, [[1,age,22]]1)

path("me.age.equal (here(),sum(14,8))", [[1]1],[[1,age,22]]) :-

initial("me",[[1]]),
tail("age.equal(here(),sum(14,8))",[[1]1], [[1,age,22]])
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Appendix C

Elementary System
Performance Test

This appendix presents the results of an elementary performance test of the
database server. The test serves more as an example (of a number of ro-
bustness and performance tests undertaken during the implementation of
the system) than a reliable benchmark. The inclusion of this example in the
dissertation is intended to show that the implementation is more substantial
than a toy prototype.

C.1 Description

The test consists of creating a single node as database root and adding a
thousand attributes to this node. After this large node has been set up, the
database server is stopped and restarted (in order to remove the effects of
any caching performed by the server) and all the attributes are requested
from the server using the following query:

[.write(connection,"\"" here(),"\":", [here().],"\n")]

This query returns a list containing elements of the form:
"attribute key":attribute value

The test input consists of a thousand words selected randomly from the
system word list (/usr/dict/words), which on the test system consists of
45402 words. Each selected word serves as an attribute key, while the at-

tribute value (of lesser importance in this test) simply stores the sample
number of the selected word (ie a number in the range 1 — 1000).
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For example, given the random list of words contingent, Britannica,
contingencies, entire, disabler, liquid, hey, levers, fraternal,
phenomenological, the output of the above query would take the following
form:

"Britannica":00002
“contingencies" :00003
“contingent":00001
""disabler":00005
"entire'":00004
"fraternal':00009

"hey" : 00007

""levers" :00008

"liquid" :00006
""phenomenological": 00010

The TENTACLE storage subsystem arranges node attributes as a list
of blocks where the attributes on each block are sorted on attribute key
and packed contiguously. In addition a separate index structure (a modified
Patricia Tree, see Chap. 5) is maintained for the node attribute keys. In
other words the system contains provisions for both random and sequential
access.

This test thus exercises the system component which re-arranges contigu-
ous attributes packed into a block as well as the module which updates the
index in response to such a re-arrangement. Other components exercised
include the language parser, query evaluation module and network interface.

C.2 Platform

The test platform is a personal computer, dating from 1997 and having the
following specifications:

e Cyrix Pentium clone (120 MHz)
e 512k secondary cache

e 64M RAM

The database server was compiled using the GNU C Compiler (2.7.2.1)
with neither debugging nor optimisations enabled, the executable (unstripped
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ELF format) was linked dynamically against libc.s0.5.3.12 and was run un-
der Linux (2.0.30). Both the server and client were run on the same (other-
wise lightly-loaded) system, communicating via TCP/IP over the loopback
network device. The database content was stored as a buffered file with
asynchronous writes.

C.3 Data Recorded

The data which was recorded for each insertion and retrieval was the user
and system times for the server process, as well as the elapsed time for the
client process — the user and system times of the server may be viewed as
the cost (ie a count of the number of instructions required) to perform the
task!, while the elapsed time recorded for the client is the metric of greatest
subjective interest to the user (the wall time needed for the results to be
returned). Data was collected for ten iterations of the test script given at
the end of this appendix.

C.4 Results

Average | Variance
User Time of Server (U) | 1.732 0.0079
System Time of Server (S) | 0.860 0.0318
Total CPU time of Server (U + S) | 2.592 0.0214
Elapsed Time of Client (E) | 2.581 0.0209

Figure C.1: Insertion times for 1000 attributes

Average | Variance

User Time of Server (U) | 0.486 | 0.0027
System Time of Server (S) | 0.852 0.0014
)
)

Total CPU time of Server (U + S 1.338 0.0007
Elapsed Time of Client (E 1.321 0.0008

Figure C.2: Retrieval times for 1000 attributes

All results are in seconds. User time (U) is the time a processes spends
runs as user privilege, system time (S) the time spent by the kernel servicing

1These measurements include the cost of starting and stopping the server.
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the process and elapsed time (E) is the wall time which passed while the
process had been running.

C.5 Discussion

The variance of the insertion test is larger than that of the retrieval test.
This is to be expected: For insertions the input data sets are generated
randomly — some input sets would be ordered in ways which require fewer
re-arrangements than others. On the other hand retrievals operate on already
sorted and indexed database content, thus the variance between retrievals is
smaller.

The fact that the total CPU time of the server process exceeds the elapsed
time recorded for the client may be attributed to the cost of starting and
shutting down the server, as well as to the cost of deallocating resources set
aside for a client after its completion. That this is visible at all confirms that
client consumes only minimal system resources and that no other tasks were
active while running the tests.

A counter-intuitive result is that the variance of the combined user and
system times (U + S) is less than their individual variances (U, S). Inter-
preting this result as a negative correlation between user and system times
is obviously not feasible; instead this result could possibly be attributed to
a limited resolution of the system profiling utility (time) which might not
be able to establish the exact time of transition between user and kernel
execution modes.

C.6 Conclusion

The test shows that the system is capable of inserting 1000/2.592 = 385
node attributes per second and retrieving 1000/1.338 = 747 node attributes
per second. While the test did not take the effects of multiuser accesses,
disk bottlenecks or storage space fragmentation into account, it nevertheless
showed that the system performs reasonably well, even on a modest platform.

C.7 Shell Script Test Harness

#!/bin/sh

# n: number of iterations
n=1000

# p: port number to use
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p=9101

# m: pumber of words available

m=‘wc -1 < /usr/dict/words | tr -d \ °
# truncate files

> words-random.txt

> words-output.txt

# generate random word list
echo "Selecting $n random words from $m in system word list"
while [ "$11" "gt g ] ; do
g=‘printf "%05d" $n°
sed -ne "$[RANDOM/mls/\\(C..*\\)/\"\1\":$q/p" \
/usr/dict/words >> words-random.txt
n=$[n-1]
done

# transform word list into insertion commands

echo -n "Preparing words for imsertiom... "

echo "var n n=newid() " > commands.txt

sed -ne ’8/\(..*\):\(..*\)/1link(n,\1,\2)/p’ \
< words-random.txt >> commands.txt

echo "root(global,n) write(connectionm,\"ok\n\")." \
>> commands.txt

echo '"ok*

# start the server: tentacle database daemon (tdbd)

echo "Starting database server on port $p... "

time -f "%U+/S" -a -0 time-server-insert.txt \
../../bin/tdbd -N -p$p >& default.log &

# wait for the server to boot up

sleep 2

# send insertion requests to tentacle database

echo -n "Inserting words... "

time -f "%e" -a -o time-client-insert.txt \
../../bin/tdbsend -q -p$p commands.txt

if [ "§?" 1= "0" ] ; then
echo "failed"
echo "Consult default.log in ‘pwd‘ for diagmostics"
exit 1

fi
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# shut down server after insertion
echo -n "Shutting down database server... "
../../bin/tdbsend -q -p$p \
"shutdown() write(comnection,\"ok\\n\")."
if [ "$?" t="0" ] ; then
echo "failed"
echo "Consult default.log in ‘pwd‘ for diagnostics"
exit 1
fi

# restart server for retrieval

echo "Starting database server on port $[p+1]... "

time -f "}U+%S" -a -0 time-server-extract.txt \
../../vin/tdbd -p$[p+1] >& default.log &

# wait for the server to boot up

sleep 2

echo -n "Extracting words... "
time -f "%e" -a -o time-client-extract.txt \
../../bin/tdbsend -q -p$[p+1] -o words-output.txt \
"[.write(connection,\"\\\"\" here ) ,\"\\\":\", [here().],\"\n\")]."
if [ "$7" 1= "0" ] ; then
echo "failed"
echo "Consult default.log in ‘pwd‘ for diagnostics"
exit 1
else
echo "ok"
fi

echo -n "Shutting down database server... "
../../bin/tdbsend -q -p$[p+1] \
"shutdown() write(connection,\"ok\\n\")."
if [ g7 t= 0" ] ; then
echo "failed"
echo "Consult default.log in ‘pwd‘ for diagnostics"
exit 1
fi

# Final paranoia check
echo -n "Comparing before and after... "
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sort words-random.txt > words-sorted.txt
diff -q words-output.txt words-sorted.txt
if [ "$?" = "0" ] ; then
echo "success - word lists are identical"
else
echo "ouch - word lists not identical®
exit 1
fi
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