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Abstract 
 

Global climate predictions hinge on our understanding of the global carbon cycle, and in 

particular, the role of the Southern Ocean (SO).  Sea surface measurements across the SO are 

sparse and subject to temporal, spatial and seasonal biases.  These biases arise from the 

inaccessibility of the SO due to the high-risk weather conditions and ice coverage experienced 

during the winter.  This study looks at the feasibility of autonomous measuring platforms in 

the SO for the purpose of reducing the uncertainty bias observed in the SO, constraining the 

global carbon budget and observing the seasonal cycle of carbonate chemistry in seawater.  

The high resolution Wave Glider (WG) dataset located in the sub-Antarctic zone (SAZ) of the 

SO, during the spring-summer bloom period of 2013/2014, resolves the seasonal cycle of TA 

from pCO2 and pH (WGTA) and the empirical expression for TA (Lee et al., 2006) using 

salinity and temperature and measurements of pH.  The discrepancy between WGTA and the 

calculated TA gives rise to a summer bias in the seasonal cycle of TA attributed to the uptake 

of nitrate during the bloom period, and the entrainment of nitrate in the pre-bloom period.  The 

effect of this bias on estimating pCO2 indicates that the amplitude of the pCO2 seasonal cycle 

may be overestimated by as much as 3.6% during the pre-bloom period.  

An assessment of the Lee et al., (2006) TA expression (LeeTA) in the SO regime against ship-

board observations showed a significant regional different in TA between the Atlantic Ocean 

and Indian Ocean sectors of the SO at the onset of winter, where LeeTA overestimates TA 

observations in the Atlantic Ocean sector. This further emphasises the seasonal bias of the TA 

algorithm which provides an averaged TA across the SO as a whole.  Hence, it is proposed that 

a regional formulation be developed for the prediction of TA in each ocean sector of the SO.   

To further assess the performance of empirical expressions for TA, the Carter et al., (2014) 

LIAR expression, utilized by the Southern Ocean Carbon and Climate Observations and 

Modeling (SOCCOM) project were compared to shipboard underway measurements of TA in 

the autumn-winter season, and WGTA.  The LIAR expression showed a strong dependence on 

salinity that coincided with the summer bias of the Lee et al., 2006 formulation. This re-

enforces that estimates of TA in the SO cannot resolve biologically driven changes in the 

seasonal cycle of TA, and measurements of pH alone are not enough to elucidate the accurate 

pCO2 estimates if TA is not constrained by the seasonal cycle of nitrate.    
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1 Introduction and Literature Review  

Since the rise of the industrial revolution in the 18th century, the combustion of fossil fuels, 

increased land-change practices and industrial processing have rapidly released carbon dioxide 

(CO2) into the atmosphere leading to an increase of CO2 from ~275 ppm in 1750 to ~408 ppm 

in 2018 (Le Quéré et al., 2018, Tans and Keeling, 2018, Etheridge et al., 1996).  The recent 

record of the accelerating rate of this release is reflected in the atmospheric CO2 observations 

taken at the Mauna Loa Observatory (Figure 1.1).  This anthropogenic perturbation of CO2 into 

the atmosphere results in global warming through the greenhouse effect, and consequently 

impacts on climate change.  

 The CO2 molecule, like other greenhouse gases, readily absorbs longwave terrestrial radiation 

emitted by the Earth.  These greenhouse gas molecules then re-emit the radiation back to Earth, 

effectively trapping heat in the atmosphere, and thus raising global temperature (Wallace and 

Hobbs, 2006).  It follows that as concentrations of CO2 increase, so does global temperature.  

Thus, the long term trend of anthropogenic CO2 in the atmosphere is of particular interest for 

the future of quality life on Earth.  

  

 

Figure 1.1: The Keeling curve depicts the rising CO2 concentration in the atmosphere, largely 

attributed to the burning of fossil fuels for energy production.  The red curve signifies direct 

measurements of CO2 as the mole fraction in dry air.  The black curve indicates the monthly 

mean values of CO2, corrected for the average seasonal cycle.  Atmospheric CO2 has risen 

from ~270 ppm in 1750 to ~408 ppm at present day (Tans and Keeling, 2018) 
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The transfer of carbon between the atmosphere, land and ocean carbon reservoirs is described 

by the global carbon cycle (Emerson and Hedges, 2008).  Increasing urbanization and land use 

has reduced the uptake of anthropogenic CO2 from the atmosphere by the land biosphere, 

however, current estimates show that the land sink (3.0 ± 0.8 Gt C/yr) and oceanic sink (2.4 ± 

0.5 Gt C/yr) for CO2 from the atmosphere are comparable (Figure 1.2, Le Quéré et al., 2018).  

The flux of CO2 between the land and atmosphere is highly variable and difficult to observe 

with certainty.  Thus, the accurate measurement of ocean-atmosphere CO2 fluxes are important 

to constrain the global carbon budget.  

 

 

Figure 1.2: The current estimate of the flux of anthropogenic carbon across the terrestrial 

biosphere, the hydrosphere and the atmosphere as outlined by the Global Carbon Budget 

2017 (Le Quéré et al., 2018) 
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Our understanding of carbon storage in the ocean through marine carbonate chemistry is 

dependent on the physical and chemical processes taking place at the air-sea interface (Section 

1.4).  Approximately 40 % of anthropogenic CO2 emissions to the atmosphere are taken up by 

the ocean (Sabine et al., 2004), and of this it is estimated that the Southern Ocean alone takes 

up ~ 43 % (Landschützer et al., 2015, Khatiwala et al., 2013).   

The ocean naturally absorbs CO2 by means of the thermodynamic equilibrium that exists at the 

ocean-atmosphere interface.  However, the absorption of CO2 throughout the ocean basins is 

not uniform.  The physical drawdown of CO2 from the atmosphere is stronger at higher 

latitudes in regions of deep water formation, and weaker at mid latitudes in regions where deep 

water is upwelled to the surface.  Coupled with this is the effect of temperature on CO2 

absorption, known as the solubility pump, whereby colder sea surface waters at the poles are 

able to absorb greater amounts of CO2 from the atmosphere than warmer waters at the equator. 

As CO2 enters the ocean, it is available for uptake by biology.  The biological pump transports 

CO2 from the surface ocean into the ocean interior by transforming it into dissolved organic 

carbon and particulate organic carbon (Sabine and Feely, 2007).  

The pH of seawater is largely controlled by the speciation of carbonate in seawater, and changes 

in the equilibrium of this system act as a chemical buffer between the oceanic and atmospheric 

reservoirs of carbon (Sarmiento and Gruber, 2013).  The growing influx of anthropogenic CO2 

into the ocean impacts the carbonate chemistry in seawater (explained in Section 1.4) by 

lowering the pH, which has led to ocean acidification.  However, the focus of this study will 

concentrate on the high precision measurement of pH to quantify the carbonate system in 

seawater.  
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1.1 The Southern Ocean 

The Southern Ocean (SO), defined as the unbounded ocean region south of 40 °S, encircles the 

continent of Antarctica and covers approximately 30 % of the global ocean surface.  The SO 

accounts for almost half of the total uptake of anthropogenic CO2 (~43 %) and three-quarters 

of the heat (~75 %) from the atmosphere (Frölicher et al., 2015, Sabine et al., 2004, Khatiwala 

et al., 2013).  It is estimated to absorb ~25 % of anthropogenic CO2 emissions on an annual 

basis (Le Quéré et al., 2016) and as such, plays a critical role in climate change.  

 The SO connects three large ocean basins (Indian, Atlantic and Pacific) via the Antarctic 

Circumpolar Current (ACC) that is driven eastward by the strong westerly winds (Rintoul et 

al., 2001), and northward by Ekman transport, which forms part of the meridional overturning 

circulation.  The ACC is characterised by the continuous flow of several fronts of varying 

strength: the Sub-Tropical Front (STF) at the north-most boundary, the Sub-Antarctic Front 

(SAF), the Antarctic Polar Front (APF), the Southern ACC Front (SACCF) and the Southern 

Boundary (Sbdy) (Figure 1.3).  The zonally unbounded flow across the three ocean basins 

allow for the transport of heat, nutrients, water and associated properties from one region to 

another (Rintoul et al., 2001).  

 

 

 

 

 

 

 

 

 

Figure 1.3: Major fronts of the Antarctic Circumpolar Current (ACC) in the Southern Ocean: Subtropical 

Front (STF), Sub-Antarctic Front (SAF), Antarctic Polar Front (APF), Southern ACC Front (SACCF) and 

the Southern boundary (Sbdy). Image sourced from PhD thesis of Gregor (2017) 



5 

 

Global climate predictions hinge on our understanding of the role of the SO in the global carbon 

cycle.  The physical mechanism by which anthropogenic CO2 enters the ocean is the formation 

and transport of shelf, surface, intermediate and deep waters (Figure 1.4).  Antarctic Bottom 

Water (AABW) is formed against the continent shelf, as strong winds create polynyas (open 

ocean areas surrounded by ice) which pump the high salinity, dense, cold waters downward to 

the ocean bottom (< 0 °C, salinity maxima ~34.8 PSU), and transports the water mass 

northward.  This is the site at which a large amount of atmospheric CO2 is drawn down into 

the deep ocean, facilitated via rapid air-sea gas exchange by the strong winds driving the 

polynyas (Talley, 2011, Rintoul et al., 2001). 

Circumpolar deep water (CDW) is formed from the deep-water masses of each of the 

surrounding ocean basins as they move south into the ACC, upwelling into the region south of 

the Polar Front (PF).  This mixes with Antarctic water masses that are not dense enough to be 

AABW. CDW is a combination of Upper CDW (UCDW) characterised by an oxygen 

minimum layer and high nutrient concentration (1.5 – 2.5 °C, 33 – 34.5 PSU) , and Lower 

CDW (LCDW) characterised by a salinity maximum layer (1.3 – 1.8 °C, 34.8 – 34.9 PSU).  

UCDW lies just beneath the surface waters of SACCF as it upwells, supplying nutrients to the 

surface layer, and is transported northward via Ekman transport.  It is this connection of deep 

water to the surface layer that allows the outgassing of CO2-saturated waters to the atmosphere.  

LCDW also upwells in this region moving southward toward the continent, laying beneath the 

UCDW and eventually being sub-ducted and transported north, forming the dense, high 

salinity, bottom waters of the world’s oceans north of the ACC (Talley, 2011).  

Antarctic Intermediate Water (AAIW) lies north of the SAF, and is pervasive through the sub 

tropics and sub-tropical gyres of the Southern Hemisphere, characterised by a low salinity layer 

(~ 34.2 PSU) at ~ 500 – 1500 m at a temperature range of 4 – 5 °C.  AAIW is thought to form 

from the sinking of the Antarctic surface waters as they are transported north via Ekman 

transport across the SAF (Talley, 2011).   

Sub-Antarctic surface water (SASW) in the upper 500 m of the surface ocean is found north of 

the SAF and is characterised by high salinity waters (> 34 PSU, -1 – 4 °C) due to the proximity 

of the sub-tropical gyres.  The deep winter mixed layers adjacent to the SAF are known as Sub-

Antarctic Mode Water (SAMW).  SAMW (8 – 9 °C, ~34.6 PSU) is transported eastward with 

the flow of the ACC, or northward by Ekman transport and sub-ducted to from part of the 

subtropical gyres.  At the surface, SAMW take up large amounts of anthropogenic CO2 from 
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the atmosphere due to increased wind speeds which act to enhance the gas-transfer velocity 

and waters that are under-saturated in pCO2 (Talley, 2011).  

Owing to the paucity of data in this region, the SO is responsible for much of the uncertainty 

in current earth system model predictions.  The flux of CO2 and trace gases across the air-sea 

interface are dependent on sea surface temperature, salinity, mixed layer physical processes, 

wind speed and biological productivity.  The largest compilation of high resolution seawater 

pCO2 measurements are found in the Surface Ocean CO2 Atlas (SOCATv4) database (Bakker 

et al., 2016) containing over 18 million observations spanning from 1957 – 2015.  Currently, 

Figure 1.4: Schematic of the meridional overturning circulation in the Southern Ocean 

showing the movement of water masses across the major fronts and zones.  Water masses: 

Continental Shelf Water (CSW), Antarctic Surface Water (AASW), Antarctic Bottom Water 

(AABW), Lower Circumpolar Deep Water (LCDW), Upper Circumpolar Deep Water 

(UCDW), Antarctic Intermediate Water (AAIW), Sub-Antarctic Mode Water (SAMW) and 

Sub-Antarctic Surface Water (SASW).  Fronts: Antarctic Slope Front (ASF), Southern 

Boundary (SB), Southern ACC Front (SACCF), Polar Front (PF), Sub-Antarctic Front 

(SAF), Subtropical Front (STF). Image sourced from Talley (2011) based on Speer et al. 

(2000). 
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the Drake Passage Time-series (DPT) situated across the ACC, between the southern tip of 

South America and Antarctica, is the most temporally and spatially sampled region of the SO 

with 20 crossings per year since 2002 (Munro et al., 2015).  

However, sea surface measurements across the SO at large are sparse and subject to temporal, 

spatial and seasonal bias as the routes travelled are largely repetitive in order to resupply 

Antarctic bases during the summer (Gregor et al., 2018).  This emphasises the need for the 

deployment of autonomous measuring systems throughout the Southern Ocean in the form of 

ocean robotics, moorings and profiling floats - such as those utilised by the Southern Ocean 

Seasonal Cycle Experiment II (SOSCEx II) (Monteiro et al., 2015) and the Southern Ocean 

Carbon and Climate Observations and Modelling (SOCCOM) project (Russel et al., 2014).  

SOSCEx makes use of remote operational systems, namely the Wave Glider and the Sea Glider 

which are fitted with various autonomous sensors for physical, biological and chemical 

seawater parameters.  The SOCCOM project uses biological Argo profiling floats that have 

been modified to operate beneath the sea ice.  
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1.2 Non-steady state of the natural and anthropogenic CO2 signal  

The transport cycle of CO2 between the land, ocean and atmosphere was thought to be in steady 

state prior to the industrial revolution, since the atmospheric concentrations of CO2 remained 

at a constant of ~280 ppm (Etheridge et al., 1996).  However, through the perturbation of CO2 

into the atmospheric reservoir through the burning of fossil fuels, industrial cement production 

and deforestation, the steady state equilibrium of carbon transport between the respective 

reservoirs has been disturbed.  The extent of the anthropogenic perturbation is still unclear.  

It was postulated that the anthropogenic perturbation of CO2 in the atmospheric carbon 

reservoir would act passively over the natural steady-state signal driven by biology and 

circulation (Matear et al., 2000).  However, recent model evaluations and observations suggest 

the emergence of a non-steady state CO2 signal owing to a large outgassing of CO2 from the 

ocean due to climate change and rising surface ocean temperatures (Le Quéré et al., 2007). 

This led to the identification of an emerging non-steady state oceanic CO2 signal.  McNeil 

(2013) proposed a novel multi-method approach to distinguish between the natural CO2 signal, 

the anthropogenic CO2 signal and now, the non-steady state oceanic CO2 signal (McNeil, 

2013).  

The multi-method approach employs several techniques that capture the steady-state signal and 

the net oceanic signal.  The non-steady state oceanic signal can then be inferred by the 

combination of these signals, however, the uncertainty associated with this approach renders 

the currently observable signal statistically insignificant (McNeil, 2013).  In order to accurately 

deconstruct the CO2 signal into its respective steady state and non-steady components and 

reduce uncertainty, accurate measurements of pCO2 in the surface ocean are required.  

The determination of the non-steady state oceanic signal can give us valuable insight into the 

evolution of the oceanic CO2 sink and more importantly, constrain the global carbon budget. 

According to Le Quéré et al. (2007), a large percentage of the non-steady state signal can be 

attributed to the outgassing of CO2 from the carbon rich waters of the Southern Ocean, in 

correlation with the intensification of winds across decadal timescales.  Seasonal studies in 

different sectors of the Southern Ocean have reportedly shown a shift from ocean sink to source 

of CO2, from summer to winter respectively (Metzl et al., 2006, Fransson et al., 2004).  

Due to limited sampling it is difficult to determine whether or not the Southern Ocean CO2 sink 

will strengthen in response to the anthropogenic perturbation of CO2 to the atmosphere and the 
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decadal outgassing witnessed from model and observational data.  Recent studies (Munro et 

al., 2015, Williams et al., 2017, Landschützer et al., 2015, Majkut et al., 2014, Gray et al., 

2018) have reported a strengthening of the Southern Ocean pCO2 sink.  However, owing to the 

lack of observational data for the winter season, model predictions are still inconsistent with 

these findings.  
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1.3 The SOCCOM Project 

The Southern Ocean Carbon and Climate Observations and Modelling (SOCCOM) project is 

a regional division of the biogeochemical-Argo Program (Group, 2016) that aims to deploy 

~200 autonomous floats throughout the Southern Ocean.  To date, there are ~100 floats in 

operation around the Antarctic continent, with more than 3.5 million biogeochemical 

measurements throughout the water column in remote regions.  

The aim of the SOCCOM project is to understand the mechanisms at play in the Southern 

Ocean that impact on the climate and global ocean biogeochemistry by increasing the number 

of monthly biogeochemical measurements made in this region.  The increased measurements 

of biogeochemical parameters will improve our understanding of carbon uptake, biological 

activity and the nutrient distribution of the Southern Ocean to the global ocean.  This will 

further improve constraints on high resolution Earth system models, reduce spatiotemporal 

bias, and improve projections for Earth’s climate and biogeochemistry.  The floats can also 

help to resolve inter-annual and annual variability in biogeochemical parameters in the 

Southern Ocean that cannot be accomplished through ship-board measurements or satellite 

observations.  

The biological-Argo profiling floats are fitted with biogeochemical sensors to measure pH, 

nitrate, oxygen, chlorophyll-a fluorescence, suspended particle abundance and down-welling 

irradiance (Group, 2016).  The floats obtain a horizontal and vertical profile of the ocean 

interior as they sample the ocean down to a depth of 2000 m once every five to ten days.  The 

floats have a lifespan of 250 – 300 vertical profiles (depending on their sampling cycle) which 

equates to roughly 7 years.  This long lifespan allows us to resolve seasonal to inter-annual 

variations in carbon and nutrient cycling through the water column.  

Recent studies utilised the measured pH captured by these floats together with an estimated TA 

to calculate pCO2 all year round, thereby deducing seasonal variations in the Southern Ocean 

(Williams et al., 2017, Gray et al., 2018).  The source and sink of pCO2 varies regionally and 

zonally in the SO, depending on the dominant mechanism of uptake or saturation in each zone.  

All data collected by the SOCCOM floats are made freely available in near real-time via the 

SOCCOM website.  Float data can be obtained interactively through a mapped tool for each 

float, or through a database in varying resolution through the website under the float identifier.   
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1.4 The carbonate system in seawater 

The carbonate chemistry of seawater plays a large role in the ocean’s capacity to uptake carbon 

dioxide from the atmosphere.  Thermodynamic equilibrium equations describe the reaction of 

CO2 with seawater, which provide a buffering effect to the flux of anthropogenic CO2 into the 

ocean.  The drawdown of atmospheric CO2 into the ocean is facilitated through several 

physical, chemical and biological processes (Figure 1.5) (Sabine et al., 2004).  These processes 

can be described as a system of pumps that compete with each other and include vertical 

transport and mixing, air-sea gas exchange, formation of calcium carbonate, photosynthesis 

and remineralization (Sarmiento and Gruber, 2013). However, CO2 is not the dominant species 

present in the ocean, it exists as dissolved inorganic carbon (DIC), dissolved organic carbon 

(DOC), particulate organic carbon (POC), calcium carbonate (CaCO3) and in trace amounts as 

aqueous CO2 and carbonic acid. 

The solubility pump is comprised of the temperature-driven solubility of CO2 in seawater, and 

the transport of CO2 into the deep ocean via thermohaline circulation (Sabine et al., 2004).  The 

surface ocean loses heat to the atmosphere in the high latitudes, where deep water formation 

takes place, taking up more CO2 from the atmosphere as CO2 dissolves readily in cold waters 

to produce inorganic carbon species (DIC).  Conversely in the low latitude region, cold waters 

are upwelled to the surface and warmed at the equator, leading to an outgassing of CO2 from 

the surface ocean (Sarmiento and Gruber, 2013). The biological pump counters the effects of 

this outgassing of CO2 to the atmosphere, and is comprised of the soft-tissue and carbonate 

pumps.  

The soft-tissue pump depletes the surface ocean of inorganic CO2 and nutrients through the 

photosynthetic production of organic matter (DOC and POC).  Biological productivity is 

dependent on light availability and nutrients in the surface ocean.  Productivity in warmer lower 

latitude regions are efficient at utilising the high concentration of inorganic CO2 and nutrients 

upwelled from the deep ocean.  Thus, limiting the amount of CO2 available to outgas into the 

atmosphere. However, in high latitude regions such as the Southern Ocean, biological 

production is less efficient due to limited iron and light availability, thus there is an excess of 

CO2 and nutrients in these surface waters (Sarmiento and Gruber, 2013, Emerson and Hedges, 

2008).  

The organic matter produced by photosynthesis sinks through the water column as it increases 

in mass or is drawn down by vertical mixing.  As organic matter sinks, it decomposes back into 
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inorganic carbon through the process of remineralisation, thus storing atmospheric CO2 in the 

ocean interior (Emerson and Hedges, 2008, Sarmiento and Gruber, 2013). 

The carbonate pump describes the action of calcifying organisms that form calcium carbonate 

shells in the surface ocean and rapidly sink through the water column.  While the precipitation 

of CaCO3 utilises DIC species present in seawater, it also produces CO2 as a by-product, thus 

acting in contrast to the soft-tissue pump, which decreases CO2 in the surface ocean.  CaCO3 

shells sink through the water column, leading to dissolution in the deep ocean or becoming 

incorporated in sediment at the bottom of the ocean (Sarmiento and Gruber, 2013). 

 

To quantitatively determine the carbonate system of seawater, it is necessary to define the 

thermodynamic equilibrium equations which describe the reaction of CO2 with seawater, and 

the four master variables which impact this system: the DIC concentration, the total alkalinity 

(TA), the pH of the seawater and finally the partial pressure of carbon dioxide (pCO2) in 

seawater (Emerson and Hedges, 2008).  By accurately measuring at least two of these variables, 

we can use the thermodynamic equilibrium equations to calculate the remaining two master 

Figure 1.5: Scheme depicting the solubility, biological, soft-tissue and carbonate pumps at 

play in the surface ocean, which influence CO2 drawdown from the atmosphere into the ocean. 
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variables, and the relative concentrations of the carbonate species present in seawater (Dickson 

and Goyet, 1994).  

The dissolution of gaseous CO2 into water is described by the following thermodynamic 

equilibrium equation, where K0 is the solubility constant for carbon dioxide in seawater.  K0 is 

highly dependent on the temperature of the surface ocean, which drives the air-sea gas 

exchange.  Colder waters will absorb more CO2 compared to warmer waters (Sarmiento and 

Gruber, 2013, Zeebe and Wolf-Gladrow, 2001). 

𝐶𝑂2(𝑔)  
𝐾0
⇔ 𝐶𝑂2(𝑎𝑞) (1) 

𝐾0 =
[𝐶𝑂2(𝑎𝑞)]

[𝐶𝑂2(𝑔)]
 (2) 

K0 is defined as the solubility coefficient of CO2 in water based on Henry’s Law (Zeebe and 

Wolf-Gladrow, 2001):  

𝑝𝐾0 = −log𝐾0 (3) 

Aqueous CO2 reacts with water to form carbonic acid  

𝐶𝑂2(𝑎𝑞) + 𝐻2𝑂 ⇌ 𝐻2𝐶𝑂3 (4) 

The concentrations of aqueous CO2 and H2CO3 are present in such small quantities, that they 

are often denoted together as CO2
* (Zeebe and Wolf-Gladrow, 2001):  

𝐶𝑂2
∗ = [𝐶𝑂2(𝑎𝑞)] + [𝐻2𝐶𝑂3] (5) 

H2CO3 rapidly dissociates into the carbonate ion by the loss of a proton. The bicarbonate ion 

further dissociates to the carbonate ion by losing the remaining proton: 
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𝐶𝑂2 + 𝐻2𝑂
𝐾1
⇔ 𝐻𝐶𝑂3

− + 𝐻+ (6) 

𝐻𝐶𝑂3
− 𝐾2
⇔ 𝐶𝑂3

2− + 𝐻+ (7) 

where 

𝐾1 =
[𝐻𝐶𝑂3

−][𝐻+]

[𝐶𝑂2]
 (8) 

𝐾2 =
[𝐶𝑂3

2−][𝐻+]

[𝐻𝐶𝑂3
−]

 (9) 

K1 and K2 are the stoichiometric equilibrium constants for the respective dissociation reactions, 

and control the forward and reverse reactions.  The equilibrium constants are dependent on 

temperature, salinity and pressure, and are determined experimentally.  Several expressions for 

K1 and K2 have been reported e.g. (Lueker et al., 2000, Millero et al., 2006, Mehrbach et al., 

1973), as well as numerous comparisons between these expressions e.g. (Lee et al., 1996, 

Millero et al., 2002, Clayton et al., 1995), however, these studies cannot agree on which is the 

most accurate set of expressions.  
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Total dissolved inorganic carbon 

The total dissolved inorganic carbon (DIC) is the sum of the individual inorganic carbonate 

species in seawater: CO2, HCO3
- and CO3

2-.  

𝐷𝐼𝐶 = [𝐶𝑂2] + [𝐻𝐶𝑂3
−] + [𝐶𝑂3

2−] (10) 

 

Figure 1.6 shows the Bjerrum plot depicting the relative speciation of DIC present in seawater 

at a given pH.  At an estimated surface ocean pH of ~ 8.1 indicated on the figure, the 

concentration of HCO3
- is dominant, followed by CO3

2-, and the smallest concentration present 

is CO2*.  It is the proportions of these carbonate ions in seawater which control the seawater 

pH.  

 

 

 

 

 

Figure 1.6: Bjerrum plot indicating the dominant carbonate ion species present in seawater and the 

corresponding pH 



16 

 

Changes in the concentration of DIC in seawater (Zeebe and Wolf-Gladrow, 2001): 

The main drivers affecting changes in DIC concentrations in seawater are summarised as 

follows:  

1. Photosynthesis and respiration 

DIC decreases with photosynthesis as CO2 is utilised to produce glucose and oxygen, the 

reaction scheme is seen in Figure 1.5.  Conversely, CO2 is released through respiration and 

increases the concentration of DIC in seawater.  

2. Formation and dissolution of calcium carbonate 

DIC concentration is decreased as carbonate ions are utilised in the biogenic precipitation 

of CaCO3 shells.  However, this reaction also produces CO2 as a by-product, increasing the 

DIC pool.  The dissolution of CaCO3 releases carbonate ions, increasing the concentration 

of DIC.  

3. Remineralization 

Dissolved organic carbon species are converted back to DIC and release nutrients as they 

progress down through the water column, thereby increasing the concentration of DIC.  

4. Air-sea gas exchange 

Dependent on the temperature, salinity and wind speed over the surface ocean, CO2 is 

absorbed in cold high latitude waters, in regions of deep water formation, increasing the 

DIC concentration.  In the low-latitude warm waters, in regions of upwelling, DIC is 

decreased as CO2 is outgassed to the atmosphere, and absorption of CO2 into the ocean is 

weak.  

5. Upwelling  

Upwelled waters enriched with DIC (via remineralization) are brought up to the surface, 

thereby increasing the concentration of DIC in surface waters.  
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The pH of seawater  

pH is a measure of the hydrogen ion concentration in a solution, it is defined by the equation:  

𝑝𝐻 =  −log [𝐻+] (11) 

The most accurate representation of pH is in terms of activity, however, activities cannot be 

determined experimentally in a solution of high ionic strength containing multiple species. 

When the concentration of a solute is greater than 0.1 M, interactions between the solute 

molecules or ions are significant, and the effective and real concentrations are no longer equal 

(Housecroft and Sharpe, 2005).  The deviations from ideality associated with seawater do not 

allow for the use of the stoichiometric thermodynamic relationships, thus pH must be 

operationally defined on an appropriate scale that is consistent with the experimentally defined 

equilibrium constants (Zeebe and Wolf-Gladrow, 2001).  

It is required that these concentrations are expressed in terms of activity, which takes into 

account the interactions between the ionic species in solution.  The activity of a species (a) is 

related to the stoichiometric concentration of the species by the activity coefficient (γ) (Zeebe 

and Wolf-Gladrow, 2001):  

𝑎𝐻 = 𝛾𝐻 [𝐻
+] (12) 

Under ideal behaviour, the activity coefficient of a chemical species is unity (1.0) under the 

infinite dilution convention that applies to simple systems of high activity, which implies a 

dependence on the concentration of the chemical species.  The calculation of the activity 

coefficient for low ionic strength systems can be approximated by the Davies equation or the 

Debye-Huckel limiting law for ionic solutions, and will not be considered here (Loewenthal 

and van Rooyen Marais, 1976).  

For seawater, the increased number of ions indicates a low ionic activity due to the interaction 

of the ions with each other i.e. long range electrostatic interactions, ion pairing and the 

formation of ionic complexes.  The ionic strength of a solution is a measure of the concentration 

of ionic species present in an aqueous solution, defined as (Loewenthal and van Rooyen 

Marais, 1976):  
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𝐼 =
1

2
 ∑𝑐𝑖 𝑧𝑖

2 (13) 

where c is the concentration of chemical species i, z is the charge of the ion i.  The complex 

system of seawater contains a mixture of different charged ions.  The ionic strength of seawater 

is ~ 0.7 (Loewenthal and van Rooyen Marais, 1976, Zeebe and Wolf-Gladrow, 2001), which 

is considered a high ionic strength, high salinity solution.  In such cases, the activity coefficient 

will be expressed as a total activity quantity that accounts for all deviation, and is estimated by 

the use of ion-pairing models (Zeebe and Wolf-Gladrow, 2001).  

It stands to reason then that the correct representation for the thermodynamic equilibrium 

constants defined for the carbonate equilibria described at the start of this chapter, are more 

appropriately expressed in terms of activities:  

e.g.   𝐾2 = 
{𝐻+} {𝐶𝑂3

2−}

{𝐻𝐶𝑂3
−}

  

However, the measurement of these quantities in seawater is extremely difficult, and are thus 

expressed in terms of stoichiometric concentrations.  This is made possible by the assumptions 

based on the constant ionic medium convention – whereby the ratio of the composing ions are 

fairly constant, which is the case for the seawater matrix.  The deviations from ideality caused 

through ion pairing and complex formation are quantified by the changes in the equilibrium 

constants due to ionic strength and chemical composition (Loewenthal and van Rooyen Marais, 

1976).  

The activity coefficients of each ion decrease as the ionic strength increases (i.e. activity 

decreases), this in turn changes the ratio of the activity coefficients used to express the 

equilibrium constant: 

e.g.   𝐾2
∗ = 𝐾2  

𝛾𝐻𝐶𝑂3
−

𝛾𝐻+𝛾𝐶𝑂3
2−

 

The chemical composition of seawater remains fairly constant, which suggests that the 

variations in the equilibrium constants are only a function of temperature, salinity and pressure 

(Loewenthal and van Rooyen Marais, 1976, Zeebe and Wolf-Gladrow, 2001). 
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The total hydrogen ion pH scale 

For calculations of the carbonate equilibria in seawater, pH is defined on the total hydrogen 

ion scale under the constant ionic medium approach.  Introduced by Hansson (1973), the total 

pH scale (pHT) was developed based on artificial seawater where the “activity coefficient 

approaches unity when total H+ concentration tends to zero in pure synthetic seawater”.  The 

standard pH buffers introduced by Hansson reduced the liquid junction potential between the 

sample and the buffer due to the similarity of the buffers to the seawater medium (Zeebe and 

Wolf-Gladrow, 2001): 

pH
T
 = −  log[H+]

T
 = − log ([H+]

F
 + [HSO4

-])   (14) 

This was an improvement on the previous National Bureau of Standards (NBS) pH scale which 

had large deviations between low ionic strength standard buffers and the high ionic strength 

seawater being measured, which lead to irreproducible changes in the liquid junction potential.  

The measurement of seawater pH 

As a master variable to quantify the carbonate system in the ocean, pH is an important factor 

to measure.  Early on, potentiometric methods of determining pH with glass electrodes proved 

problematic as the sensors were subject to drift and produced poor quality measurements as the 

electrodes were difficult to calibrate in the seawater medium.  Thus, the vast majority of pH 

measurements were determined by the spectrophotometric method refined by (Clayton and 

Byrne, 1993), however, this method was confined to ship-based measurements.  Autonomous 

samplers integrated with spectrophotometric analysers were employed later on to reduce the 

spatial variability of the pH measurements, this involved the use of indicator dyes being 

pumped into seawater samples and mixed.  These measurements, although improved for in situ 

analysis (Liu et al., 2006, Seidel et al., 2008), were not continuous and limited by slow response 

times due to the need for blank measurements to be taken between samples, and required the 

maintenance of complex systems (Martz et al., 2010).  

The need for a rapid response, high precision and simple operation system was met in the early 

2000s with the development of the metal oxide semiconductor field effect transistor 

(MOSFET).  This semiconductor device proved highly sensitive to changes in conductivity of 

the n-channel which varied by the amount of electrical potential applied between the gate and 

the source electrodes.  The semiconductor was modified by replacing the metal gate over the 
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conductivity channel with a layer of amphoteric substrate, usually, silicon nitride (Si3N4).  This 

modified MOSFET is known as an ion-selective field effect transistor (ISFET) and is sensitive 

to changes in pH of the analyte solution (Martz et al., 2010, Skoog, 2004). 

Commonly used for the determination of pH, the ISFET sensor has been applied to ocean-

based measurements due to its sensitivity, low electrical impedance, ruggedness in harsh 

environments, quick response time and the ease of integration with electronic measurement 

devices.   

The ISFET sensor exploits the sensitivity of the n-channel to changes in electrical potential of 

the gate i.e. the conductivity of the device.  Variations in the gate voltage of the ISFET are 

based on the concentration (or more accurately, the activity) of the analyte ions in the solution, 

thus enhancing the conductivity of the n-channel which can be measured electronically (Skoog, 

2004). 

Consider a solution of hydronium ions in contact with the gate insulator and reference electrode 

shown in Figure 1.7.  The hydronium ions become adsorbed onto the Si3N4 gate insulator, thus 

altering the concentration (and activity) of the solution.  The change in the electrochemical 

potential at the source and the gate gives rise to the change in the conductivity of the channel.  

The measured electronic signal arising from the change in conductivity is proportional to the 

logarithm of the activity of the hydronium ion in the analyte solution (Skoog, 2004).  

Instrumentation and calculations associated with the measurement of pH in seawater are 

detailed in Section 3.2.4. 

 
Figure 1.7: Cross-section of an ISFET pH sensor 
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Partial pressure of carbon dioxide in seawater  

The partial pressure of carbon dioxide (pCO2) is the concentration of dissolved gaseous carbon 

dioxide that is in equilibrium with seawater at a given temperature and salinity.  The pCO2 of 

seawater is related to atmospheric CO2 by Henry’s Law, which can be used to calculate the 

concentration of aqueous CO2 present in seawater (Emerson and Hedges, 2008, Zeebe and 

Wolf-Gladrow, 2001):  

𝑝𝐶𝑂2 = 
[𝐶𝑂2

∗]

𝐾0
 (15) 

However, the relationship between pCO2 and the DIC concentration is not as straightforward 

as this equation suggests.  It is better expressed in terms of the concentration of HCO3
- and 

CO3
2- ions present in seawater and the equilibrium constants, K0, K1 and K2:  

𝑝𝐶𝑂2 = 
𝐾2
𝐾0 𝐾1

 
[𝐻𝐶𝑂3

−]2

[𝐶𝑂3
2−]

 ≈  
𝐾2
𝐾0 𝐾1

 
( 2 𝐷𝐼𝐶 − 𝐴𝑙𝑘)2

𝐴𝑙𝑘 − 𝐷𝐼𝐶
 (16) 

This equation shows that the factors affecting the distribution of pCO2 in the surface ocean are 

complex, in addition to the initial DIC concentration of the seawater, each of the terms in the 

equation are subject to temperature, salinity and biological uptake, which in turn, have an 

impact on the pCO2.  We have already established that K0 has a strong dependence on 

temperature, and this is largely responsible for the variations in pCO2, whereas the ratio of 

K2/K1 show a stronger influence from salinity (Sarmiento and Gruber, 2013). 

The temperature dependence of pCO2 is important for the correction process for calculating 

pCO2 from the analytical determination of the dry mole fraction of CO2 (Section 3.2.4).  The 

contribution of temperature to the changes in pCO2 were quantified by Takahashi et al. 2003, 

which showed that for a 1 °C change in temperature at a pCO2 of 400 μatm, there would be a 

change in pCO2 of ~ 17 μatm.  This relationship is expressed by the logarithmic function 

(Sarmiento and Gruber, 2002):  

1

𝑝𝐶𝑂2
 
𝛿𝑝𝐶𝑂2 

𝛿𝑇
=
𝛿𝑙𝑛𝑝𝐶𝑂2 

𝛿𝑇
 ≈ 0.0423 °𝐶 −1 (17) 

Whether or not the ocean is a sink or a source of CO2 to the atmosphere is determined by 

calculating the air-sea flux of pCO2.  A negative value indicates that the ocean is a sink for CO2 

from the atmosphere, and a positive value indicates that the ocean is a source of CO2 to the 
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atmosphere, when the ∆pCO2 is pCO2SW – pCO2ATM.  The air-sea flux of pCO2 (FCO2) is 

estimated by the equation: 

𝐹𝐶𝑂2 = 𝑘 𝐾0(𝑝𝐶𝑂2 𝑆𝑊 − 𝑝𝐶𝑂2 𝑎𝑡𝑚) (18) 

where k is the gas transfer velocity as a function of wind speed (Wanninkhof, 1992) and K0 is 

the solubility of CO2 in seawater as a function of temperature and salinity.  These values vary 

regionally depending on the dominant mechanisms at play, as well as the seasonal distribution 

of pCO2.  

In summer, the increase in the sea surface temperature creates a stratified water column which 

increases biological uptake of DIC due to increased photosynthesis in the thin surface layer.  

This depletes DIC in the surface ocean, which is not replenished through upwelling due to the 

stratified water column.  The rise in temperature impacts the K0 equilibrium constant by 

reducing the solubility of CO2 in the surface ocean.  The shallow mixing in regions such as this 

indicate that pCO2 in the surface ocean is under-saturated relative to the atmosphere, suggesting 

that the region becomes a sink for CO2.  Thus, the summer season is driven by temperature and 

productivity (Sarmiento and Gruber, 2013, Le Quéré et al., 2007).  

Conversely, the winter season is driven by temperature and upwelling and entrainment.  Sea 

surface temperatures decrease, increasing the gradient of CO2 solubility and deepening the 

mixed layer.  Upwelling of deep water to the surface ocean increases the DIC concentration, 

indicating that the surface ocean is saturated with pCO2 relative to the atmosphere.  This 

suggests that these regions are a source of CO2 to the atmosphere due to outgassing (Sarmiento 

and Gruber, 2013, Gray et al., 2018).  

Ice formation in winter at high latitudes increases the density of surface waters due to brine 

rejection, facilitating the drawdown of CO2 into the deep ocean (Talley, 2011).  The ice also 

acts as a barrier between the ocean and the atmosphere, preventing the air-sea flux of CO2. 

Conversely, ice melt during the summer increases air-sea gas exchange as the surface ocean 

directly interacts with the atmosphere, which leads to the outgassing of CO2.  This is also 

coupled with biological uptake of CO2 in the summer as the sun is able to penetrate the thinning 

ice (Bakker et al., 2008, Gray et al., 2018).  

The SOCCOM project has recently released a number of studies which report on the year-

round measurements of salinity, temperature, pH and nitrate throughout the Southern Ocean. 
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This gives us the first comprehensive insights into the seasonal and zonal distribution of 

carbonate variables (calculated from pHT and estimated TA) in the ACC, especially during the 

winter season. Gray et al., (2018) resolve the predominant seasonal mechanisms in the STZ, 

SAZ, PFZ, ASZ (Antarctic-Southern Zone) and SIZ.  The STZ shows significant uptake of 

CO2 during winter, with a smaller flux during the summer which indicates a temperature-driven 

change in solubility. The SAZ shows strong uptake to CO2 during the spring-summer and 

outgassing of CO2 in winter which indicates the influence of transport and biological activity. 

The PFZ shows a similar trend to the SAZ, with a larger outgassing of CO2 in the winter season, 

corresponding to a greater component of the upwelling of deep waters in this region. The ASZ 

shows a consistent outgassing trend of CO2 from the surface ocean, which peaks in the winter 

and lessens in the summer that indicates the influence of transport and biological activity. Ice 

cover in the SIZ suppresses the winter air-sea flux of CO2, with significant uptake during spring 

and outgassing of CO2 in the autumn prior to the onset of ice formation.  

The float-based measurements when compared to ship-based measurements show a 

discrepancy between the calculated pCO2 and in-situ measurements of pCO2.  Gray et al. 2018 

indicate that the floats show a consistently higher value of pCO2 compared to ship 

measurements.  However, owing to the summer-bias of ship measurements, these values may 

be skewed due by the interpolation method used calculate TA, and subsequently estimate pCO2.  

This thesis makes a direct comparison of winter ship-based measurements taken aboard the 

R/V SA Agulhas II during June-July 2016/7, against the float-calculated pCO2 values that 

coincide with the ship transects in space and time.  
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Total Alkalinity  

Total alkalinity (TA) is a carbonate parameter than can be measured with great accuracy by 

Gran-type titration in seawater (Dickson et al., 2007).  In simple terms, TA is the measure of 

the excess proton acceptors (bases) over proton donors (acids) in a sample of seawater (Dickson 

et al., 2007) with the advantage that it is insensitive to temperature, pressure and CO2 changes 

(Wolf-Gladrow et al., 2007).  

The titration of a sample solution with a strong acid, such as HCl, can be seen as the addition 

of protons to the solution.  The added protons neutralise the bases present in solution e.g. CO3
2-

and HCO3
-.  In a complex system such as seawater, there are a number of weak acid-base 

systems to consider that contribute to TA, namely: carbonate, borate, phosphate, sulphate, 

nitrate and water (Wolf-Gladrow et al., 2007). 

Dickson et al. (2007) defines conservative TA as the sum of the following ions in seawater 

according to standard operating procedure (SOP) 3a of Dickson and Goyet (1994):  

“The total alkalinity of a sample of sea water is defined as the number of moles of 

hydrogen ion equivalent to the excess of proton acceptors (bases formed from weak acids 

with a dissociation constant K < 10-4.5 at 25 °C and zero ionic strength) over proton 

donors (acids with K >10-4.5) in one kilogram of sample.” (Dickson, 1981) 

𝑇𝐴 = 𝑝𝑟𝑜𝑡𝑜𝑛 𝑎𝑐𝑐𝑒𝑝𝑡𝑜𝑟𝑠 − 𝑝𝑟𝑜𝑡𝑜𝑛 𝑑𝑜𝑛𝑜𝑟𝑠 

= [𝐻𝐶𝑂3
−] + 2[𝐶𝑂3

2−] + [𝐵(𝑂𝐻)4
−] + [𝑂𝐻−] + [𝐻𝑃𝑂4

2−] + 2[𝑃𝑂4
3−]

+ [𝐻3𝑆𝑖𝑂4
−] + [𝑁𝐻3] + [𝐻𝑆

−] − [𝐻+]𝐹 − [𝐻𝑆𝑂4
−] − [𝐻𝐹]

− [𝐻3𝑃𝑂4] 

(19) 

where the bracketed constituents represent total concentrations in solution and [H+]F is the free 

concentration of hydrogen ion.  The chosen dissociation constant at pK = 4.5 defines a zero 

level of protons that classifies chemicals species into proton donors, acceptors and neutral 

species for each of the acid-base systems which contribute to TA.  The definition of TA is 

dependent on the chosen zero level of protons (Wolf-Gladrow et al., 2007). 

The zero level of protons is unique to each acid-base system under consideration.  Usually 

taken as the neutral chemical species, the ionised forms of the species are then classified as a 

proton donor or proton acceptor relative to this.  A relation between the relative acid-base 

systems and the choice of species taken as the zero level of protons can be specified via a 
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chosen pK value, denoted as pKzlp.  The pKzlp acts as a defining point to separate proton donors 

(with pK < pKzlp) from proton acceptors (with pK > pKzlp) (Wolf-Gladrow et al., 2007). 

At a seawater pH of 8.2, the dominant acid-base system (the largest concentration) is that of 

the carbonate species.  As such, the pK1 value for CO2 at ~ 4.5 is taken to be the zero level of 

protons – when the carbonate weak acid system is completely converted to H2CO3
* (Wolf-

Gladrow et al., 2007). 

pKzlp  = 4.5 was chosen by Dickson 1981 based on thermodynamic pK values at standard 

temperature and pressure (25 °C, 1 atm) and zero ionic strength.  This value was ideally selected 

as it applies to both the stoichiometric conventions used in natural waters, as well as the 

thermodynamic constraints used in seawater.  The chosen pKzlp leads to the same division 

between the acidic basic species in the respective systems (Wolf-Gladrow et al., 2007). 

Explicit conservative expression for total alkalinity 

The expression for the TA proposed by Dickson contains the concentrations of non-

conservative chemical species i.e. the individual chemical species that define TA are dependent 

on temperature and pressure.  An alternate expression for TA can be attained by combining the 

conventional expression for TA (Eq. 19) with the broader relation of electroneutrality (Eq. 20) 

to yield an expression for TA which contains only conservative ions, denoted as TAec (Eq. 21).  

The relation of electroneutrality states that the sum of charges of the respective chemical 

species are zero for aqueous solutions according to equation 20:  

∑𝑞𝑖[𝐶𝑖] = 0

𝑖

 (20) 

where q is the electric charge of the respective chemical species, and C is the concentration of 

the respective species.   

TAec is known as the explicit conservative expression for TA.  TAec is equivalent to TA, 

however, it is more useful for quantitatively assessing the changes in TA due to biological 

processes (Wolf-Gladrow et al., 2007, Zeebe and Wolf-Gladrow, 2001). 

𝑇𝐴𝑒𝑐 = [𝑁𝑎
+] + 2[𝑀𝑔2+] + [𝐾+] + 2[𝑆𝑟2+] + ⋯+ [𝑁𝐻4

+] + ⋯− [𝐶𝑙−]

− [𝐵𝑟−] − [𝑁𝑂3
−] − ⋯𝑇𝑃𝑂4 + 𝑇𝑁𝐻3 − 2𝑇𝑆𝑂4 − 𝑇𝐻𝐹

− 𝑇𝐻𝑁𝑂2  

(21) 

where  

𝑇𝑃𝑂4 = [𝐻3𝑃𝑂4] + [𝐻2𝑃𝑂4
−] + [𝐻𝑃𝑂4

2−] + [𝑃𝑂4
3−] 
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𝑇𝑁𝐻3 = [𝑁𝐻4
+] + [𝑁𝐻3]  

𝑇𝑆𝑂4 = [𝑆𝑂4
2−] + [𝐻𝑆𝑂4

−]  

𝑇𝐻𝐹 = [𝐹−] + [𝐻𝐹] 

𝑇𝐻𝑁𝑂2 = [𝑁𝑂2
−] + [𝐻𝑁𝑂2] 

are total phosphate, ammonia, sulphate, fluoride and nitrite, respectively. The derivation of 

TAec (Eq. 21) from Eq. 19 and Eq. 20 is outlined in Appendix A.  

Changes of total alkalinity in seawater 

Variations in TA are governed by processes which are able to drive changes in the charge 

difference between the conservative ions which make up TA.  The main drivers for changes in 

TA are summarised as follows:  

1. Salinity 

Fluctuations in salinity affect the charge difference between conservative cations and 

anions, thus TA is closely linked to changes in salinity, which can be caused via 

precipitation, evaporation, fresh water input, formation and melting of sea ice. (Zeebe and 

Wolf-Gladrow, 2001) 

2. Production/dissolution of calcium carbonate 

The precipitation of calcium carbonate (CaCO3) by marine organisms drives a decrease in 

the concentration of Ca2+ ions, this leads to a decline in the charge difference between 

conservative ions and therefore decreases TA.  Conversely, the dissolution of CaCO3, 

calcareous shells and skeletons at depth would drive an increase in TA as the Ca2+ 

concentration increases, TA is seen to increase in the surface ocean in regions of upwelling. 

(Zeebe and Wolf-Gladrow, 2001, Wolf-Gladrow et al., 2007, Millero et al., 1998).  

3. Uptake of nutrients  

Changes in TA can be caused by the uptake of nutrients, depending on the reactive forms of 

nitrogen produced by biological reactions taking place.  This is governed by the “nutrient-

H+-compensation principle” proposed by Wolf-Gladrow et al., 2007.  Increases in TA are 

calculated for nitrate, phosphorus and sulfate reduction.  Decreases in TA are calculated by 

the remineralization of these processes, as well as N2 fixation and nitrification (Brewer et 

al., 1986, Brewer et al., 1975, Chen, 1978, Brewer and Goldman, 1976, Goldman and 

Brewer, 1980, Wolf-Gladrow et al., 2007).  
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Observed and derived methods for the estimation of total alkalinity  

The concentration of TA in a sample of seawater is typically determined by differential 

potentiometric (Gran-type) titration against 0.1 M HCl.  TA can be measured at a precision of 

~ 2 μmol/kg in the surface ocean (Watanabe et al., 2004).  This method of measuring TA is 

limited by the number of samples that can be collected, analysed, as well as the amount and 

cost of chemicals and certified reference materials available.  

Millero et al., (1998) first proposed an algorithm for estimating TA in the surface ocean based 

on the relationships which exist between TA, salinity, and temperature.  Algorithms for TA are 

particularly useful for estimating the distribution of other carbonate variables in the surface 

ocean when only one other carbonate variable is measured e.g. underway fCO2 measurements. 

However, the algorithm pertaining to the Southern Ocean region is based on observations of 

TA collected in the Indian Ocean sector during the onset of austral winter, and the Atlantic and 

Pacific Ocean sectors during the austral summer.  Based on this, Millero et al., (1998) assume 

that the algorithm is seasonally robust, despite the differences in region owing to the salinity-

normalisation of the dataset.  

A later version of the TA global relationship algorithm (adjusted for each oceanic regime) 

proposed by Lee et al., (2006) is based on surface ocean measurements of salinity and 

temperature, taken from the global carbon survey between 1990-1998 (JGOFS, WOCE).  

However, the seasonal bias of this dataset toward the Southern Ocean is of particular concern 

for resolving the winter seasonal changes in TA.  

The locally interpolated alkalinity regression (LIAR) method for global alkalinity estimation 

developed by Carter et al. (2016) is an algorithm based on the GLODAPv1.1 (Key et al., 2004), 

CARINA (Anton et al., 2010) and PACIFICA (Suzuki et al., 2013) datasets from 1990 

onwards.  The LIAR method interpolates the regression coefficients of the TA algorithm to the 

location of interest, as opposed to having a generalised algorithm pertaining to the large spatial 

areas of each ocean basin.  This is the case for the SOCCOM float project which only measures 

pH in the water column over a 10-day period.  The pH measurement is combined with a TA 

algorithm, such as the SOCCOM-specific algorithm used by Williams et al., (2017), or LIAR 

(Carter et al., 2016) to calculate pCO2.  

The accuracy of TA estimated by these algorithms for the Southern Ocean, particularly in 

context of strong regional heterogeneities, is still unknown.  It is necessary to look closer at 

how the seasonal biases in the surface ocean sampling are affecting the validity of these 
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algorithms, particularly in the winter season of the under-sampled Southern Ocean regime.  

Salinity and temperature data are easily attainable measurements for autonomous systems, such 

was the Wave Glider and SOCCOM floats, in comparison to direct measurements of TA which 

are discrete in nature.  For this reason, as well as the available datasets for the scope of this 

study, we have selected the Lee et al., (2006) formula to calculate TA for comparison with the 

LIAR formula utilized by the SOCCOM floats to assess the seasonal bias and accuracy of these 

algorithms for TA to predict changes in sea surface pCO2 of the Southern Ocean.  
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2 Problem statement 

Although there has been an increase in global observational data collection for surface ocean 

pCO2 over the past two decades through initiatives such as the Joint Global Ocean Flux Study 

(JGOFS), the Surface Ocean CO2 Atlas (SOCAT) (Bakker et al., 2016) and the World Ocean 

Circulation Experiment (WOCE), the Southern Ocean is still largely under-sampled and 

subject to seasonal, spatial and temporal biases (Gray et al., 2018, Gregor et al., 2018). 

Transects to and from the Antarctic continent are repeat voyages travelled mainly in the 

summer season when the Southern Ocean is less hostile and the continent is once again 

accessible when ice coverage has receded, which creates a seasonal bias in ship-board 

observations.   

As such, the SO is still largely under-sampled in the winter season – the harsh weather 

conditions experienced in the SO emphasize the need for the use of autonomous measuring 

systems to gather more observational data at higher resolutions in under-sampled locations.  A 

large scale initiative to gather more data in the SO all year round was undertaken by the 

SOCCOM Project biological profiling float array (Group, 2016).  However, these floats can 

only measure one carbonate parameter of seawater, pH.  There exist empirical algorithms for 

TA (Lee et al., 2006, Carter et al., 2018) which can be calculated from other measured seawater 

parameters (T, S, P, NO3
- and O2). Estimates of pCO2 are then calculated from the measured 

pH and calculated TA.  

Given the summer bias in seasonal data for the SO regime, this study will investigate whether 

or not empirical algorithms of TA are correct throughout the seasonal cycle, as well as assess 

the effects of the seasonal cycle of TA on the resultant estimates of pCO2 during the austral 

winter in the SO.  
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2.1 Aims  

The first aim of this study is to examine whether pH is a viable measurement to estimate pCO2 

concentrations in the surface ocean (Gray et al., 2018). What is the seasonal cycle of the TA? 

Can pH be used with estimated TA to accurately reconstruct the seasonal variations in pCO2?   

The second aim of this study is to determine whether TA algorithms based on measurements 

of temperature and salinity (Carter et al., 2016, Williams et al., 2016, Lee et al., 2006) are 

accurate enough to resolve the concentration of TA in the surface layer of the Southern Ocean 

during the winter season. Does the Lee formulation need to be re-evaluated based on 

observations emerging from the Southern Ocean in the winter season? What biogeochemical 

or physical factors are influencing the increased drawdown of pCO2 during winter? What is the 

impact of using a regionally averaged algorithm for TA on the seasonal variations of TA in the 

surface ocean? 

The last aim of this study is to determine compare estimates of pCO2 calculated from the 

seawater parameters measured by SOCCOM floats, with in situ shipboard and WG 

measurements of pCO2.  How do in situ ship-board measurements of pCO2 compare to float-

based calculations of pCO2 during the winter season? What impact does derived TA in winter 

have on estimating pCO2 from pH and TA? 

2.2 Approach 

Data collected by the Southern Ocean Carbon-Climate Observatory (SOCCO) at the Council 

for Scientific and Industrial Research (CSIR) through Wave Glider (WG) deployments (pCO2, 

pH, T, S), shipboard underway sampling (DIC, TA) and continuous in situ analysis (pCO2) 

provide a high resolution estimate for carbonate chemistry in the SAZ, the PFZ, the PUZ and 

the MIZ in the Southern Ocean.  The duration of this study spans the time period from summer 

2013/14 and winter 2015-2017 in the Southern Ocean.  In addition to this, we will use 

SOCCOM float data which is made freely available by the SOCCOM Project funded by the 

National Science Foundation, Division of Polar Programs (NSF PLR -1425989), supplemented by 

NASA, and by the International Argo Program and the NOAA programs that contribute to it. 

This study will use three distinct datasets to investigate three main research questions, namely:  

1. Can pH be used to estimate seasonal variations in pCO2?  

2. What is the performance of the Lee formula in austral winter across the Southern 

Ocean? 

3. How do SOCCOM results compare to ship- and glider-based measurements?  
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This study will investigate the accuracy of predicting surface ocean pCO2 from pH 

measurements obtained from the WG and empirically derived TA, at the SOCCO reference 

station, located at 43 °S; 8.5 °E. Ship-board measurements from winter cruise data will be 

compared to the Lee et al., (2006) expression for TA in the Atlantic and Indian Ocean sectors 

of the SO to determine its performance in the winter season. Finally, we will investigate the 

SOCCOM float measurements and calculated pCO2 against ship- and glider-based 

measurements to determine the impact of the seasonal cycle of TA on the estimation of pCO2 

in winter.  

A literature review is presented in Chapter 1, addressing the context of the Southern Ocean in 

the global carbon cycle, the marine carbonate system in seawater, and the physical and 

chemical characteristics at play in the Southern Ocean.  Chapter 2 outlines the key aims and 

research questions addressed in this study.  Chapter 3 outlines the in situ and discrete 

observations carried out during sample collection of the data, the experiments undergone to 

analyse the samples in the context of this study, and the methods used to process the collected 

data.  Chapter 4 presents an analysis of the results obtained from direct measurements and 

calculations.  Chapter 5 poses a discussion of the results framed toward answering the proposed 

research questions. Finally, Chapter 6 concludes the findings of this study and puts forward 

recommendations for future related research.   
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3 Methods 

3.1 Data collection 

3.1.1 Wave Glider measurements 

This study utilizes data collected from a Liquid Robotics SV2 Wave Glider (WG), deployed 

from the R/V SA Agulhas II, during the second Southern Ocean Seasonal Cycle Experiment 

(SOSCEx II) in the sub-Antarctic zone of south of Southern Africa (Monteiro et al., 2015).  

The WG was deployed on 13 October 2013 at 41 °S, 9.5 °E and piloted in a quasi-circular 

sampling pattern centred at the SOCCO station (43 °S, 8.5 °E) with a diameter of 16 km (Figure 

3.1).  The glider arrived at this position on 17 November 2013 and the experiment terminated 

on 08 February 2014.  The WG was deployed with a modified MAPCO2 surface CO2 sensor 

(Sutton et al., 2014) to measure the pCO2 in seawater, and a Honeywell Durafet® pH sensor 

(Martz et al., 2010) to measure the pHT of seawater.  These measurements were taken at hourly 

intervals over the course of the four month experiment.  TA and DIC were calculated from the 

in situ pCO2 and pHT measurements collected by the WG.  TA was also calculated from  the 

in situ measurements of salinity and temperature according to the (Lee et al., 2006) T-S 

relationship for TA in the Southern Ocean. 

Figure 3.1: The position and sampling pattern followed by the Wave Glider centred at the SOCCO 

station (43 °S, 8.5 °E) in the sub-Antarctic zone of Southern Africa from Oct 2013 - Feb 2014 
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3.1.2 Ship-board measurements 

The R/V SA Agulhas II traversed the Good Hope Line, from Cape Town to Neumayer Station 

on Antarctica, in the early winter seasons from 2015 – 2017 (as shown in Figure 3.2).  Discrete 

samples of seawater were collected for DIC, TA and salinity via the ship’s underway (UW) 

system at 4 hour intervals, and from the deployment of the CTD rosette at pre-determined 

stations as indicated on Figure 3.2.  Continuous measurements of pCO2 (1 minute intervals) 

were recorded along the Good Hope transect by means of an autonomous underway measuring 

system.  The pCO2 system was only switched on after the ship had left the harbour, and 

switched off once the ship had reached pack-ice.  

In addition to sampling along the Good Hope Line on the journey down to the marginal ice 

zone (MIZ) in 2017, the R/V SA Agulhas II also sampled (UW and CTD) along the WOCE 

IO6 transect on its journey back to Cape Town (the green line on Figure 3.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Transects for the R/V SA Agulhas II from Winter Cruise 2015 - Winter Cruise 2017 
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Table 3.1: Summary of cruise duration for the winter season from 2015 – 2017 

Cruise Start Date End Date 

Winter Cruise 2015 (WC2015) 24/07/2015 13/08/2015 

Winter Cruise 2016 (WC2016) 15/07/2016 27/07/2016 

Winter Cruise 2017 (WC2017) 28/06/2017 13/07/2017 

 

3.1.3 The SOCCOM Project  

The Southern Ocean Carbon and Climate Observation Modelling (SOCCOM) project 

biogeochemical profiling floats were chosen on the basis that the floats were fitted with Deep-

Sea DuraFET pH sensors (Johnson et al., 2016).  Secondary criteria was based on the location 

of the floats which overlapped with the selected winter cruise transects and the position of the 

wave glider i.e. longitude 0 – 45 °E and latitude 30 – 60 °S. The data collected by these floats 

was further constrained to surface measurements of 5 m, and valid pH measurements on the 

total pH scale.  

The stations for each float pertaining to these criteria are shown in Figure 3.3. The selected 

floats are summarised in Table 3.1, showing the date when the float began taking 

measurements, the date for the most recent data available for each float at the time of this study, 

and the number of winter time surface measurements (to a depth of 10 m) taken by each of the 

floats. Calibration and validation protocol for the deployment of the SOCCOM floats is 

outlined in (Wanninkhof et al., 2016, Riser et al., 2017).   

 

 

 

 

 

 

 

 

Figure 3.3: Position of the SOCCOM profiling floats operating within the region of study 
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Table 3.1: Selected SOCCOM profiling floats within the region of study during the winter season 

Float ID Start End 
No. of winter 

measurements 

9096SOOCN 11/12/2014 22/04/2018 2 

9260SOOCN 28/01/2015 23/07/2017 2 

9313SOOCN 07/12/2014 30/04/2018 3 
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3.2 Sample Analysis  

3.2.1 The carbonate system in seawater  

The Versatile INstrument for the Determination of Total inorganic carbon and titration 

Alkalinity (VINDTA) 3C is designed to determine the TA and DIC concentrations of a 

seawater sample by means of differential potentiometric titration and coulometric titration 

respectively.  

The VINDTA 3C instrumentation was designed by Ludger Mintrop and Marianda Marine 

Analytics and Data. The operation and setup of the VINDTA 3C system is in compliance with 

the accompanying manual authored by Ludger Mintrop (Mintrop, 2010).  

Seawater samples collected for DIC and TA analysis are in compliance with SOP 1, SOP 2 and 

SOP 3b outlined in the Handbook of Methods for the Analysis of the Various Parameters of 

the CO2 System in Seawater (Dickson and Goyet, 1994).  Each seawater sample is poisoned 

with mercuric chloride to arrest biological activity. 

3.2.2 Total alkalinity 

The TA concentration is determined by differential potentiometric titration of a seawater 

sample with 0.1 M pure HCl.  100 mL of seawater is pipetted into a custom-built alkalinity 

open titration cell over a magnetic stirrer.  The 0.1 M HCl is dispensed in 0.150 mL volumes 

by a Metrohm 702 SM Titrino to the titration cell.  

The potentiometric changes in the solution are recorded in mV as acid is added to the solution. 

Changes in the potential of the solution are detected by a combination of three electrodes: the 

Metrohm double junction electrode (reference electrode), the Orion Ross-electrode (glass 

electrode) and an electrode of shielded titanium metal (auxiliary electrode).  

The Metrohm double junction electrode is filled with a 0.7 M NaCl solution in the outer jacket 

and 3.0 M KCl solution in the inner jacket.  The inner jacket solution is changed weekly to 

avoid crystallization of the salt, and the outer jacket is changed daily as it exchanges with the 

sample solution in the titration cell.  

The glass electrode and the reference electrode are used in combination to achieve high 

resolution potential measurements needed to detect the relevant end points between the 

different carbonate species.  The auxiliary electrode is essential for counteracting the electrical 

ground signal produced through the nature of the flow system by means of the peristaltic pump 
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apparatus which delivers the seawater to the pipettes and cells.  The differential nature of the 

titration helps to alleviate this drift by measuring the glass electrode and the reference electrode 

against the auxiliary electrode.  The sample undergoes a 25 point titration and uses a method 

of non-linear least squares and the Gran method (Appendix A, Section A1) function to calculate 

TA, as described in SOP 3b of the Handbook (Dickson and Goyet, 1994).  

3.2.3 Total dissolved inorganic carbon  

The DIC concentration is determined by coulometric titration of the carbon dioxide gas evolved 

from a mixture of the seawater sample with 8.5 % (v/v) phosphoric acid and absorbed into an 

aqueous solution of monoethanolamine (MEA).  

The reaction of the seawater with a strong acid (influx of protons) drives the reverse 

equilibrium reaction to evolve carbon dioxide gas (CO2): 

 HCO3
- + H+ ⇌ CO2 (aq) + H2O ⇌ CO2 (g) (22) 

A fixed volume of 8.5 % phosphoric acid (H3PO4) is dispensed into the stripper cell and 20 mL 

of the seawater sample is dispensed to the cell via peristaltic pump and pipette.  The evolved 

CO2 gas is carried through a peltier (set at 2-3 °C) by the nitrogen carrier gas flowing through 

the system (Lei and Xian-kun, 1997). 

The dried CO2 gas is directed to the coulometer cell housed in the UIC 5011 Coulometer by 

the constant flow of the carrier gas.  The CO2 gas is bubbled through a solution of (MEA) in 

the cathode compartment of the coulometer cell.  The CO2 is absorbed into the MEA to form 

an acid:  

CO2 + RNH2 ⇌ RNHCO2H 

RNHCO2H + RNH2 ⇌ RNHCO2
-
 + RNH3

+ 

R = C2H5 (Xie et al., 2010) 

(23) 

The resulting acid is titrated against OH- generated at the platinum spiral cathode of the 

coulometer cell when a current is running through it.  Upon completion of the titration, the 

solution will once again turn from colourless to blue as all the “CO2” is neutralized i.e. at the 

end point.  The reaction of OH- with RNH3
+ will regenerate MEA, thus returning the solution 

to its blue colour.  The amount of charge (raw electron counts) required to generate OH- at the 
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cathode until the acid is neutralized is the quantitative measurement registered by the computer 

(Lei and Xian-kun, 1997, Xie et al., 2010). 

The raw electron counts are converted by the VINDTA LabView software to a concentration 

in μmol/kg according to the equation outlined in Dickson and Goyet (1994):  

𝐶𝑇 = 
𝑁𝑠 − 𝑏𝑡 − 𝑎

𝑐
×
1

𝑉𝑠𝜌
 (24) 

 

where CT is the total dissolved inorganic carbon concentration of the sample in μmol/kg, Ns is 

the raw electron count for the seawater sample, b is the background reading for the system in 

counts/min, t is the time taken measure the sample in min, a is the acid blank raw electron 

count, c is the coulometer calibration factor in counts/min, Vs is the volume of the seawater 

sample at 25 °C in dm3 and ρ is the density of the seawater sample in g/cm3. 

 

Certified reference materials  

For quality control purposes, certified reference materials (CRMs) obtained from the Scripps 

Institute of Oceanography were used as a means of calibration to measure the accuracy and 

precision of the VINDTA 3C system.  A duplicate analysis of each CRM was carried out before 

and after each batch of samples (approximately 12 samples per batch), and as required when 

the coulometer cell was changed to test the reproducibility of the measurements.  The CRM 

batch numbers pertaining to the analysis for each cruise are outlined in Table 3.2.  

Adjustments to the acid concentration factor were carried out on the data obtained for the CRM 

measurements.  This was done post-analysis to account for evaporation or addition of acid to 

the titrant supply in the case of TA, in order to achieve the certified value.  In the case of DIC, 

a linear correction factor was applied.  The sample data were corrected using an average of the 

CRM corrections calculated between sample batches.  The recalculation of the sample data was 

carried out using the VINDTA reCAlk package (Version 2.1) for Python 3.6+ developed by Dr 

Luke Gregor, available at: https://github.com/luke-gregor/vindta_reCAlk. 
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Table 3.2: Batch number for certified reference materials used during the analysis of 

seawater samples 

Cruise CRM Batch Number 

SOSCEx II (2013/2014) 115 

Winter 2015 143, 146 

Winter 2016 143 

Winter 2017 158 

 

3.2.4 pCO2 measurements in seawater 

pCO2 in seawater and the atmosphere was carried out from two platforms: the ship’s underway 

(UW) system, and the Wave Glider (WG).  

3.2.4.1 Autonomous underway pCO2 measuring system  

High resolution continuous measurements (1-2 min) of pCO2 were taken by means of an 

autonomous UW measuring system, the General Oceanics GO-8050 fitted with a non-

dispersive infrared (IR) LICOR® LI-7000 CO2/H2O Analyser, as described by (Pierrot et al., 

2009).   

A ~3 L/min flow of seawater was channelled into the equilibrator chamber where CO2 in the 

seawater equilibrated with the headspace of the chamber.  The resulting headspace gas was 

dried through a series of Nafion® tubes before being pumped through the IR analyser to 

determine the mole fraction of CO2 (xCO2) in seawater.  The mole fraction of CO2 in the 

atmosphere was determined by pumping a flow (~ 4 L/min) of atmospheric air through the 

analyser at regular intervals.  The analyser was calibrated every 2.5-3 hours with four standard 

reference gases obtained from the Global Atmosphere Watch station at Cape Point. 

3.2.4.2 Moored autonomous pCO2 measuring system  

The Wave Glider utilized in this study was deployed with a moored autonomous pCO2 

(MAPCO2) sensor to measure surface ocean pCO2 at a sampling frequency of 1 hour (Sutton 

et al., 2014). Like the ship-board autonomous underway pCO2 measuring system, the MAPCO2 

sensor also uses the combination of an air-water equilibrator and a non-dispersive infrared (IR) 

analyser for the measurement of CO2 in the gas phase. The functioning of the MAPCO2 sensor 

is described in great detail by Sutton et al. (2014).  
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The IR analyser used in this system is the LICOR® LI-820 CO2 gas analyser which requires 

the addition of a relative humidity (RH) and temperature sensor (Sensirion SHT71) to account 

for moisture in the gas stream. The analyser is calibrated by a zero standard gas and a standard 

reference gas obtained from NOAA’s Earth System Research Laboratory (ESRL) before each 

measurement. The zero standard gas is generated by cycling air into a closed loop which is 

scrubbed of all CO2 by means of a soda lime tube (Sutton et al., 2014).  

To obtain the mole fraction of CO2 in seawater (xCO2), the MAPCO2 system measures a closed 

loop of air that has been equilibrated with surface seawater within the h-shaped equilibrator. 

The air is passed through a silica drying agent to remove any condensation and the RH sensor 

to measure the moisture content of the air. This cycle is repeated for 10 min and the air then 

pumped to the IR analyser which records an average over 30 s. The mole fraction of CO2 in air 

is measured by drawing air in through the air block and silica drying agent before being pumped 

through the IR analyser, and a 30 s average is recorded.  

3.2.5 pHT measurements in seawater 

Measurements of pHT were taken at hourly intervals with a Honeywell Durafet pH sensor fitted 

to the Wave Glider, and at ten day intervals for the surface ocean by the Deep-Sea DuraFET 

pH sensor deployed on the SOCCOM biological profiling floats. 

3.2.5.1 Honeywell Durafet® ISFET sensor  

The Honeywell Durafet® III sensor is made up of two cells in which the ion-selective field 

effect transistor (ISFET) is the working electrode compared to the internal reference electrode 

in the internal cell, and the external reference electrode in the external cell.  The ISFET is 

sensitive to changes in the activity of the hydrogen/hydroxide ions present in solution.  The 

measurement of this sensitivity is relayed by electronic signal which is detected by interaction 

of the ISFET with the internal and external reference electrodes (Martz et al., 2010, Scientific, 

2018)).   

The internal reference electrode consists of an Ag wire immersed in an AgCl and KCl saturated 

gel.  This electrode is in contact with the sample solution by means of a liquid junction 

separated by an annular frit, and is sensitive to chloride ions present in solution.  

The external reference is a chloride ion-selective electrode (Cl-ISE) developed in-house at the 

Monterey Bay Aquarium Research Institute (MBARI).  The external reference electrode is 

expected to vary with the chloride concentration in the sample solution.  Since the sample 
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solution in this case is seawater, the signal for the chloride concentration can be calculated 

based on the salinity of the sample.  Thus, the remaining hydrogen/hydroxide ion signal can be 

obtained.  The working principle behind the operation of the ISFET is outlined in Section 1.4.  

The calculation of pHT from the recorded raw signal is outlined in Section 3.3.3.  

3.2.5.2 Deep-Sea DuraFET pH sensor 

The SOCCOM biological profiling floats utilize a pressure tolerant pH sensor, known as the 

Deep-Sea DuraFET, which can operate down to depths of 2000 m in seawater.  The Deep-Sea 

DuraFET sensor is a Honeywell ISFET die (based on the commercial Honeywell Durafet 

ISFET sensor) housed within a pressure tolerant casing, coupled with a solid-state AgCl 

reference electrode that is able to withstand considerable temperature and pressure gradients 

(Johnson et al., 2016).  The principle operation of this sensor is similar to that of the ISFET pH 

sensor described in Section 1.4.  

The sensor was designed for use on Argo profiling floats which dive down to depths of 2000 

m and are deployed for a number of years.  The sensor has an accuracy of 0.01 pHT units with 

a drift of -0.036 yr-1 for the early models of the sensor (Martz et al., 2010).  With improved 

conditioning techniques, the drift has been reduced to less than 0.01 yr-1 (Wanninkhof et al., 

2016, Johnson et al., 2016, Johnson et al., 2017).  The calibration procedure and details of the 

pressure tolerant housing for the Deep-Sea DuraFET pH sensor are outlined in Johnson et al. 

(2016). 

3.2.6 Carbonate variables in seawater 

Using a combination of each of the measured carbonate variables (pHT and TA, pCO2 and TA, 

pCO2 and pHT), the remaining carbonate variables were calculated using the CO2 Calc program 

(Robbins et al., 2010).  pHT was calculated on the total scale, and dissociation constants were 

based on Leuker et al., 2010.  The cross-calculation of these measured variables were used to 

validate measurements and test our understanding of the carbonate chemistry in seawater.  The 

calculations for the derivation of pCO2 from TA and pHT, and the derivation of pHT from TA 

and DIC are outlined in Appendix A, Section A2. 
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3.2.7 Nutrient analysis  

Nutrient analysis was carried out on discrete samples of seawater collected from the underway 

system and the CTD rosette to supplement the DIC and TA data to account for the effect of 

biology in the sample. Samples were analysed for nitrate, nitrite, phosphate and silicate.  

3.2.7.1 Nitrate and nitrite 

The determination of the concentration of nitrate in a sample of seawater was a two-step 

process. The concentration of nitrite was first measured spectrophotometrically at a wavelength 

of 543 nm by reacting the sample with sulphanilamide and N-1-naphthyl-ethylenediamine 

dihydrochloride (NEDI) to produce a pink hue (Strickland and Parsons, 1977). The 

concentration of nitrate in the sample was then determined by reducing all nitrate in the sample 

to nitrite by means of passing the sample through a copperized cadmium column using a Lachat 

Quick Chem Flow Analysis platform (Riley, 1976). The concentration of nitrite was then 

subtracted from this total value to isolate the concentration of nitrate.  

[𝑁𝑂3
−] = [𝑁𝑂3

− + 𝑁𝑂2
−] − [𝑁𝑂2

−] (25) 

3.2.7.2 Phosphate 

The concentration of phosphate in seawater was determined by reacting a sample of seawater 

with a mixed reagent made up of ammonium molybdate, sulfuric acid, ascorbic acid and 

potassium antimonyl-tartrate (Strickland and Parsons, 1977). The reaction of seawater with the 

mixed reagent produces a blue hue which is directly proportional to the concentration of 

phosphate in the sample, which was measured by means of a spectrophotometer at a 

wavelength of 885 nm. 

3.2.7.3 Silicate 

The concentration of silicate in a sample of seawater was obtained by first reacting the sample 

with acid molybdate. The resulting product is then reacted with oxalic acid and ascorbic acid 

to form a blue hue (Riley, 1976). The colour intensity is directly proportional to the 

concentration of silicate in the sample, which was measured by means of a spectrophotometer 

at a wavelength of 820 nm.     
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3.3 Calculations 

3.3.1 Global relationship for total alkalinity in the Southern Ocean regime   

Lee et al., (2006) developed an empirical function for the estimation of TA in the surface ocean 

using measurements of salinity and temperature. The function was applied to global 

measurements of TA and correlated with salinity and temperature to generate an algorithm for 

each of the five ocean regimes. The Southern Ocean algorithm for sea surface TA is constrained 

to a latitude range from 30 – 70 °S, sea surface temperatures < 20 °C and sea surface salinity 

between 33 – 36 psu. The TA estimate has a weighted average uncertainty of ± 8.4 μmol/kg 

based on a sample set of 1708 surface TA measurements in the Southern Ocean regime. The 

algorithm for TA in the Southern Ocean is: 

AT = 2305 + 52.48 (SSS - 35) + 2.85 (SSS - 35)
2 - 0.49 (SST - 20) + 0.086 (SST - 20)

2
 (26) 

where SSS is the measured sea surface salinity in psu and SST is the measured sea surface 

temperature in °C. 

3.3.2 Locally interpolated alkalinity regression (LIAR) 

The locally interpolated alkalinity regression (LIAR) equation was developed by Carter et al., 

(2016) to supplement the SOCCOM float pHT measurements. The only mandatory input for 

the LIAR equation is salinity, however, regressions containing more prediction variables 

reduces the uncertainty of the resulting TA estimate. The other predictor variables are outlined 

in Eq. 27: 

𝐴𝑇 = 𝛼0 + 𝛼𝑆𝑆 + 𝛼𝜃𝜃 + 𝛼𝐴𝑂𝑈𝐴𝑂𝑈 + 𝛼𝑁𝑁 + 𝛼𝑆𝑖𝑆𝑖 (27) 

where α represents the estimated regression coefficients, S is salinity, θ is potential temperature 

in °C, N is the nitrate concentration in μmol/kg, AOU is the apparent oxygen utilization in 

μmol/kg and Si is the total dissolved silicate concentration in μmol/kg.  

The use of the LIAR equation is available as a MATLAB R2014b script, compatible with 

earlier versions dating back to 2012.  The script interpolates regression coefficients to the 

location by Delaunay Triangulation 3D linear interpolation routines and inputs the resulting 

regression coefficients directly into Eq. 27 to estimate TA. Further requirements and 
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assessment of uncertainties associated with each regression combination are discussed in Carter 

et al., (2016).   

3.3.3 pHT calculation from the raw output of the sensor 

The Nernstian response of the internal cell for the pHT sensor is calculated as:  

𝑝𝐻𝑖𝑛𝑡 = 
𝑉𝐹𝐸𝑇|𝐼𝑁𝑇 − 𝑘0 − 𝑘2𝑇

𝑆𝑁
 (28) 

𝑆𝑁 = 
𝑅 𝑇 ln (10)

𝐹
 (29) 

where VFET|INT is the measured potential for the internal reference electrode in mV, R is the 

universal gas constant in J/(K mol), T is the temperature in K, SN is the Nernst potential, F is 

the Faraday constant in C/mol, k0 is the cell standard potential offset and k2 is the temperature 

slope provided as part of the instrument calibration. 

The Nernstian response of the external cell of the pHT sensor is affected by the activity of 

chloride in the seawater, which is calculated from the salinity of the sample solution:  

𝑝𝐻𝑒𝑥𝑡 = 
𝑉𝐹𝐸𝑇|𝐸𝑋𝑇 − 𝑘0 − 𝑘2𝑇

𝑆𝑁
+ log(𝐶𝑙𝑇) + 2 log(𝛾𝐻𝐶𝑙) − log (1 + 

𝑆𝑇
𝐾𝑆
) (30) 

where VFET|EXT is the measured potential for the external reference electrode in mV, k0 is the 

cell standard potential offset, k2 is the temperature slope provided as part of the instrument 

calibration, T is the temperature in K, ClT is the total chloride concentration, γHCl is the constant 

for HCl activity, ST is the total sulphate concentration of seawater and KS is the acid 

dissociation constant of HSO4
-. 

The chloride activity of the sample solution is calculated from several equations, the ionic 

strength of the solution, the total chloride concentration, the acid dissociation constant for 

HSO4
- and the total sulfate activity in seawater are calculated according to Dickson et al., 

(2007).  

The ionic strength, total chloride concentration and total sulphate concentration of seawater are 

based on the salinity of the seawater, and is calculated according to the equations: 
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𝐼 =  
19.924 𝑆

1000 − 1.005 𝑆
 (31) 

𝐶𝑙𝑇 = 
0.99889

35.453
×

𝑆

1.80655
 (32) 

𝑆𝑇 = 
0.1400

96.062
×

𝑆

1.80655
 (33) 

where I is the ionic strength of seawater, ClT is the total chloride concentration of seawater, ST 

is the total sulphate concentration of seawater and S is the measured salinity of seawater in 

PSU.  

The logarithm of HCl activity coefficient is calculated according to the equation by Khoo et 

al. (1977): 

log(𝛾𝐻𝐶𝑙) =
−𝐴𝐷𝐻√𝐼

1 + 1.394√𝐼
+ (0.08885 − 0.000111 𝑡) 𝐼 (34) 

where ADH is the Debye-Huckel constant for HCl activity, I is the ionic strength and t is the 

temperature in °C.  The Debye-Huckel constant for HCl activity is calculated from the 

relationship with temperature according to Khoo et al., (1977): 

𝐴𝐷𝐻 = 0.00000343 𝑡
2 + 0.00067524 𝑡 + 0.49172143 (35) 

where t is temperature in °C.  

Acid dissociation constant of HSO4
-  

𝐾𝑆 = (1 − 0.001005 𝑆) 𝑒
𝑥 

𝑥 =  
−4276.1

𝑇
+ 141.328 − 23.093 ln(𝑇)

+ (
−13856

𝑇
+ 324.57 − 47.986 ln(𝑇))√𝐼

+ (
35474

𝑇
− 771.54 + 114.723 ln(T)) 𝐼 − (

2698

𝑇
) 𝐼1.5

+ (
1776

𝑇
) 𝐼2 

 

(36) 

where T is the measured temperature in K and I is the ionic strength of seawater.  
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3.3.4 Carbonate variables in seawater – CO2calc parameters  

Measured pHT obtained from the SOCCOM float array is combined with estimated values of 

TA from the LIAR equation to compute the carbonate system via CO2Calc (Robbins et al., 

2010).  In situ pH was input on the total pH scale, with carbonate constants based on Lueker et 

al. (2000), borate dissociation coefficients on Dickson (1990), total boron from Lee et al. 

(2010) and the HF dissociation constant from Perez and Fraga (1987).  The resulting outputs 

are included in the data product available in real time on the SOCCOM website: 

https://www.mbari.org/science/upper-ocean-systems/chemical-sensor-group/soccom-float-

visualization. 
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3.4 Data processing  

3.4.1 pHT calibration by percentage error correction  

The raw pHT data (Figure 3.4) obtained from the first WG clearly showed an error in calibration 

of the pHT sensor prior to the deployment of the WG.  pHT measurements from October – 

November 2013 were too high to reflect an accurate representation of the carbonate system 

within valid parameters.  Therefore, raw pHT measurements were back calibrated by a 

percentage error method (Equation 37) based on monthly climatology of pCO2, the monthly 

mean of pCO2 measured by the WG, and discrete bottle measurements of TA obtained from 

the deployment of the second WG, to determine the expected pHT at the WG location (45 °S, 

8.5 °E).    

% Error = 
Measured pHT− Calculated pHT

Calculated pHT
 × 100 (37) 

Proper calibration of the sensor prior to the deployment of the WG and at the recovery of the 

WG are essential to calibrate the pHT sensor, determine its precision and to account for sensor 

drift over time.  The absence of valid pHT data between November and December is due to the 

retrieval of the first WG and the deployment of the second WG (Figure 3.4). The correction 

over the December period was minimal, indicating that the initial calibration on the second 

WG was carried out correctly.  Further validation and considerations of using this approach are 

outlined in Appendix D, Section D.1.  

Figure 3.4: Raw pH data output from the Wave Glider compared to the percentage error corrected 

values between October and December 2013 
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3.4.2 SOCCOM float data processing  

SOCCOM float data was obtained from (https://www.mbari.org/science/upper-ocean-

systems/chemical-sensor-group/soccom-float-visualization/) for floats 9096, 9620 and 9313 in 

the region of interest (longitude 0 – 45 °E and latitude 30 – 60 °S). The data obtained was 

further constrained by valid in situ pHT readings in the range of 7 – 8.2, at an ocean surface 

depth of 10 m, and contained measurements over the winter season from 2015 – 2017 

collectively.  

The float-measured salinity and temperature were used to compute TA from the Lee et al., 

(2006) formula for comparison with TA derived from the LIAR equation (Carter et al., 2016). 

The LIAR_TA and LIAR_pCO2 values, provided in the data product, were also used for 

comparison against ship measurements of TA, DIC and computed pCO2 thereof.  

pHT sensor calibration adjustment 

The float-measured pHT is calibrated according to an empirical algorithm outlined by Williams 

et al., (2016): 

Measured pHT is obtained from discrete bottle samples and converted to in situ pH using CTD, 

temperature and pressure. An estimate for pHT for the same bottle samples is calculated from 

the MLR algorithm using temperature, salinity, pressure, oxygen and the in situ pH at a depth 

between 1000 – 2000 m. The MLR algorithm is applied to the float-measured pHT to yield an 

in situ pH-MLR estimate. The reference potential for the Deep-Sea DuraFET pH sensor is 

adjusted to match the in situ pH sensor pH at ~1500 m, and the in situ pH-MLR estimate using 

a one-time offset correction or a time-dependent drift correction. The new calibration is applied 

to the entire float profile.  
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3.4.3 Salinity normalisation  

To assess the variation in TA in the surface ocean, TA measurements were salinity-normalised 

to identify the biological processes affecting TA without the influence of salinity and differing 

water masses. This correction process was applied to all measured TA datasets.  

Measured TA values were processed using the Friis et al., (2003) correction formula and 

normalised to a constant salinity reference value of 34.2 psu (Equation 38), which was the 

average salinity value for the observational dataset. Measured TA values are plotted against 

salinity to yield a straight line equation to find the value of TA at the x-intercept i.e. at zero 

salinity (Figure 3.5 a), which is then subtracted from the measured TA before the correction is 

applied, and added back after the correction process (Figure 3.5 b): 

𝐴𝑇
𝑒𝑆 = 

𝐴𝑇
𝑚𝑒𝑎𝑠 − 𝐴𝑇

𝑆=0

𝑆𝑚𝑒𝑎𝑠
× 𝑆𝑟𝑒𝑓 + 𝐴𝑇

𝑆=0 (38) 

where AT
eS

 is the salinity-normalised total alkalinity in μmol/kg, AT
meas

 is the measured total 

alkalinity in μmol/kg, AT
S=0

 is the calculated total alkalinity at zero salinity in μmol/kg, S
meas 

is the measured salinity in psu and Sref is the selected reference salinity in psu 

(Friis et al., 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: (a) Total alkalinity dataset for the Wave Glider and (b) salinity-normalised total alkalinity dataset 
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4 Results 

4.1 Oceanographic context 

The results are based on the analysis of three data sets which coincide in space, but differ in 

time and the platform of measurement. Figure 4.1 depicts the location of each observation 

platform in relation to each other: the WG is situated at 43 °S, 8.5 °E in the SAZ from spring 

to summer 2013; the WC transects run parallel to the meridian from 2015-2017 during austral 

winter; and the SOCCOM floats run parallel to the ACC, situated in the STZ, SAZ, PFZ and 

the MIZ, from summer 2014 – winter 2017.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 shows the temperature/salinity (TS) plots for each observation platform in the 

surface ocean.   Figure 4.2 (a) and (b) show data from the WC transects and the WG, and Figure 

4.2 (c) shows the data from float 9313, 9260 and 9096 located in the SAZ, PFZ and MIZ, 

Figure 4.1: Sampling location for each observation platform relative to each other, the Wave Glider 

is shown in white, the Winter Cruise transects are shown in blue, and the SOCCOM float transects 

are shown in orange. 
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respectively.  The WC TS plot shows a meridional progression with higher temperatures 

coupled to a higher salinity in the north, and the lower temperatures coupled to a slightly fresher 

surface ocean at the MIZ.  The WG TS plot shows minor changes in salinity over time, with a 

slight freshening coupled to warmer temperatures in the SAZ.  The float TS plot indicates that 

Float 9313 shows higher salinity, lower density waters consistent with warmer temperatures in 

the STZ/SAZ, with denser, slightly fresher waters coupled with cooler temperatures.  Float 

9260 located in the PFZ shows little variation in salinity over a narrow range in temperature, 

whereas float 9096 in the MIZ shows larger variations in salinity over a narrow temperature 

range, characteristic of the changing seasonal environment linked to brine rejection during the 

formation of sea-ice.  

 

  

Figure 4.2: Temperature/salinity diagrams for the (a) WC transects from 2015 – 2017, (b) the 

WG, and (c) the SOCCOM floats from summer 2014 – winter 2017. 
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4.2 Wave Glider observations 

Measurements of pCO2, pHT, temperature and salinity were made by the WG from October to 

December 2013 at 43 °S and 8.5 °E.  Figure 4.3 shows the WG in location during spring-

summer bloom period, when satellite imagery shows an elevated mean chlorophyll-a 

concentration (~2.0 mg/m3) associated with a mesoscale frontal feature in December 2013.  

 

 

 

 

 

 

 

 

 

 

 

 

The physical (T, S) and biogeochemical (pHT, pCO2) observations from the WG and satellite 

data (Chl-a) are depicted in Figures 4.4 - 4.6.  Together, the physical and biogeochemical data 

sets show that the seasonal observations are characterised by two distinct periods: the spring 

period (Oct – Nov) marked by variations of T, S and Chl-a within a narrow range, and the 

spring-summer period (Dec – Jan) characterised by rapid warming, weak freshening and the 

spring-summer bloom (Figures 4.4 – 4.5).  Hereafter, these distinctions will be referred to as 

the pre-bloom period and the bloom period, respectively. The absence of measured data 

between November and December is due to the retrieval of the first WG and the deployment 

of the second WG.  

Figure 4.3: Monthly mean chlorophyll-a over the sub-Antarctic zone from December 2013 

- January 2014. The position of the Wave Glider is denoted in white at 43 °S and 8.5 °E. 
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The daily mean values for salinity and temperature are shown in Figure 4.4.   The freshening of the surface 

ocean from the pre-bloom period into the bloom period indicates added precipitation to the surface ocean 

in the region. The added precipitation can be linked to storm activity, or a freshening of the SAMW at the 

surface in the SAZ due to the melting of sea ice in summer (Talley, 2011).  The rise in temperature from 

the pre-bloom to the bloom period coincides with the increase in chlorophyll-a concentrations (Figure 

4.5) as the summer season in the SAZ ensues.  Coinciding with increasing temperatures and a weak 

freshening of the surface waters, we see a decrease in surface pCO2 from 379.3 ± 7.453 μatm to 332.2 

± 15.34 μatm, and an increase in pHT from 8.050 ± 0.006 to 8.112 ± 0.020 (Figure 4.6).  The daily 

mean increase in pHT and corresponding decrease in pCO2 is characteristic of the increased biological 

uptake of CO2 during the bloom period as CO2 is utilised during photosynthesis, which is supported by 

the increasing chlorophyll-a concentrations (Figure 4.5).  The monthly averaged measurements from 

the WG are summarised in Table 4.1.   

 

 

 

Figure 4.4: Daily mean salinity and temperature time series for the WG from Oct – Dec 2013. The missing 

data between Nov – Dec is a result of the retrieval of Glider 1 and the deployment of Glider 2. 
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Figure 4.6:  Daily average pH and daily average pCO2 from Oct - Dec 2013 obtained from the WG. The 

missing data between Nov – Dec is a result of the retrieval of Glider 1 and the deployment of Glider 2. 
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Figure 4.5: 16 day composite of chlorophyll-a concentrations in the region of the WG from Oct 2013 – 

Dec 2014 obtained from satellite observations (GLOB colour) 
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Table 4.1: Monthly average pHT, pCO2 Temperature, and Salinity from the Wave Glider for 

Oct – Dec 2013.  

 pHT pCO2 (μatm) Salinity (PSU) 
Temperature 

(°C) 

October 8.051 ± 0.006 377.4 ± 7.567 
34.300 ± 

0.03843 
9.14 ± 0.25 

November 8.049 ± 0.006 380.5 ± 7.258 
34.275 ± 

0.02485 
10.4 ± 1.40 

*Pre-bloom 8.050 ± 0.006 379.3 ± 7.453 
34.285 ± 

0.03301 
9.92 ± 1.26 

December (Bloom) 8.112 ± 0.020 332.2 ± 15.34 
34.201 ± 

0.03468 
11.0 ± 0.61 

Pre-bloom compared to Bloom 

Difference between 

averages 
0.062 -47.1 -0.084 1.08 

**Significant difference  ✓ ✓ ✓ ✓ 

Average difference between WGpCO2 and LEEpCO2 

*Pre-bloom 13.56 μatm 

Bloom 4.978 μatm 

 

*The pre-bloom period is an average of measurements from October – November 2013. 

**Significant difference is statistically defined as a measurable difference between the pre-

bloom period and the bloom period for the respective measurements, with a p-value < 0.05. 
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Total alkalinity 

Globally, TA is often derived from T-S parameterizations (Lee et al., 2006, Carter et al., 2014), 

and used along with measurements of pHT to compute pCO2.  The WG dataset utilized for this 

study offered an opportunity to examine these parameterizations against in situ observations.  

The observed pHT, T and S were used to calculate pCO2 from the Lee et al., 2006 relationship 

(LEEpCO2), as is typically done in many studies e.g. the SOCCOM floats.  This was then 

compared to in situ pCO2 observations (WGpCO2; Figure 4.7).   

There was a significant difference observed between LEEpCO2 and WGpCO2 from the pre-

bloom period to the bloom period in both datasets (Figure 4.7).   However, there was an average 

difference between the observed (WGpCO2) and calculated pCO2 (LEEpCO2) of 13.56 μatm 

in the pre-bloom period, and 4.978 μatm in the bloom period (Table 4.1).  The largest difference 

between LEEpCO2 and WGpCO2 occurred during the pre-bloom period (19.26 μatm), followed 

by little to no difference during the bloom period (Figure 4.7), although it is acknowledged that 

this large discrepancy may in part be an artefact of the pH percentage error correction method.    

To investigate the drivers of the differences between the LEEpCO2 and WGpCO2, WG 

measurements of pHT and pCO2 were used to calculate TA (WGTA) and compared to LeeTA 

(Figure 4.8).  LeeTA had a nearly constant value from Oct – Dec 2013, with a mean of 2281 ± 

4.242 μmol/kg and a range of 2273 – 2288 μmol/kg.  In contrast, WGTA had a mean of 2206 

± 13.86 μmol/kg during the pre-bloom period, which increased to a mean of 2271 ± 40.29 

μmol/kg following the bloom period.  The increase in WGTA observed during December 

coincided with Chlorophyll-a maxima (Figure 4.5), the decrease in pCO2 (Figure 4.6) and the 

increase in pHT (Figure 4.6).   

The salinity normalised WGTA is also shown in Figure 4.8 to account for possible 

contributions from changes in water physical properties in the surface ocean.  However, a 

significant increase in normalised WGTA was still seen throughout the bloom period.  
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 Figure 4.7:  Time series for WG measured pCO2 and pCO2 calculated from LeeTA from Oct - Dec 2013 
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Figure 4.8: Total alkalinity derived from measurements on the WG, and salinity-normalised total alkalinity 

derived from the WG plotted against time, compared with total alkalinity derived from the Lee formula.  
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4.3 Ship-board observations during winter 

Ship-board measurements for each winter cruise (WC) are categorized according to an estimate 

of the frontal zones from N to S: the subtropical zone (STZ: 30 – 40 °S), the sub-Antarctic zone 

(SAZ: 40 – 45 °S), the polar frontal zone (PFZ: 45 – 50 °S), the Antarctic zone, referred to here 

as the Polar Upwelling Zone (PUZ: 50 – 55°S) and the marginal ice zone (MIZ: 55 – 70 °S) 

along the Good Hope line.   

As salinity and temperature are the key parameters used to calculate TA by the means of the 

Lee expression, we looked at how each of these parameters change across the respective 

transects.  Salinity (Figure 4.9) and temperature (Figure 4.10) between WC2015, WC2016 and 

WC2017 are not significantly different across each transect.    The STZ was characterised by 

saline and warm surface waters consistent with SASW with temperatures ~ 15 °C and a salinity 

range of 34.0 – 35.5 PSU (Emery, 2015).  The SAZ had cooler and slightly fresher waters, as 

expected of SAMW with temperatures between 4 –10 °C, and a salinity of 33.9 – 34 PSU in 

the winter (Talley, 2011).  Temperatures continued to decrease into the PFZ and further south 

to the MIZ, indicating the presence of AASW, with temperatures -1.9 – 1.0 °C, and a salinity 

range of 33.0 – 34.6 PSU (Talley, 2011, Emery, 2015).  However, the surface ocean was 

observed to become more saline in the PUZ and salinity increased into the MIZ. Salinity and 

temperature data show a similar trend, with a freshening of the surface waters coinciding with 

a decrease in temperature across the transect from the STZ to the PFZ.  The increase in salinity 

observed in PFZ and PUZ coincided with colder temperatures, thus we attributed the more 

saline waters to an excursion of brine from the formation of sea-ice in the winter, coupled with 

the upwelling of CDW.  Considering the spatial difference between the Indian and Atlantic 

Ocean sectors, we observed that there was a significant difference (see Appendix C, Table C3 

– C8 for p-values) in salinity between WC2015 and WC2016, and WC2015 and WC2017, 

respectively.   

Owing to the sparse number of data points across the WC2015 transect that could be 

corroborated by CTD cast and nitrate data, the WC2015 dataset will not be included in the TA 

analysis.  It is rather used to provide an insight into winter conditions along the Good Hope 

transect – for our purposes, salinity and temperature values were assigned accordingly by 

latitude from the nearest CTD station, and used in subsequent carbonate calculations.  For 

example, in the STZ for WC2015 (Figure 4.9), salinity is set to 35.69 PSU, based on the closest 

CTD station at 35.15 °S.   A value of 35 PSU was used in the carbonate calculations for 
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WC2017 across the STZ and SAZ due to a loss of 9 samples (Figure 4.10). This value was 

chosen as it falls within reported surface ocean measurements in these zones at a range of 34.5 

– 35.5 PSU (Talley, 2011), as well as being similar to salinity values obtained during WC2015 

and WC2016.    

Nitrate concentrations (Figure 4.12) across each transect showed an increasing trend from the 

STZ to the PFZ, and are seen to plateau across the PUZ and MIZ.  This is expected as the STZ 

is deplete of nutrients, characterised by low nitrate concentrations below 5 μM. The SAZ is a 

more biologically productive region as low nitrate concentrations are associated with nitrate 

consumption, nitrate concentrations increased throughout the SAZ (~ 20 μM).  The plateau of 

nitrate at a maximum in the PUZ and MIZ are consistent with upwelling in the region, coupled 

with biological activity, as expected for a high-nutrient, low-chlorophyll (HNLC) region, 

limited by light and iron supply.  Low light conditions coincided with the decrease in 

temperature across each transect.  This trend is also observed between nitrate concentrations 

for WC2015 and WC2017. The highest nitrate concentrations were observed in the PUZ (> 25 

μM), with slightly lower values observed in the MIZ (Figure 4.11).   

For clarity, and because this study is not concerned with fine scale variability, underway pCO2 

averaged over a 4-hour period was observed for each transect. A minimum pCO2 was observed 

in the STZ (~370 μatm), coinciding with more saline surface waters, warmer surface 

temperatures and low nitrate concentrations.  pCO2 increased along the transect moving south, 

SAZ (~ 400 μatm), PFZ (~ 420 μatm), with a pCO2 maximum occurring in the the PUZ and 

MIZ (~440 μatm).  This maximum coincides with the upwelling region, where cooler, CO2 and 

nutrient-rich waters are brought to the surface from the deep ocean.   The colder surface waters 

nearest the ice edge were expected to have a higher pCO2 content as CO2 is more readily 

absorbed by colder surface waters as per the solubility pump.  There was little variation seen 

between the PUZ and MIZ in terms of pCO2 content, likely due to the ice coverage which 

inhibits air-sea gas exchange of CO2 in the MIZ. These results are summarised in Table 4.3. 
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Figure 4.10: Temperature observations for WC2015 – WC2017 from the STZ to the MIZ 
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Figure 4.9: Salinity observations for WC2015 - WC2017 from the STZ to the MIZ 
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Figure 4.11: Nitrate distribution from the STZ to the MIZ for WC2015 – WC2017 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 4.12: Underway pCO2 measurements averaged over 4-hour intervals, along the each transect for 

WC2015 – WC2017 
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TA observations for WC2015 – WC2017 are illustrated in Figure 4.13.  The STZ showed high 

concentrations of TA (2326 ± 19.74 μmol/kg) that decreased moving further south into the 

SAZ (2284 ± 18.98 μmol/kg) and the PFZ (2270 ± 10.09 μmol/kg).  The PUZ and MIZ are 

characterised by an increase in TA (2292 ± 8.97 and 2307 μmol/kg respectively) closest to the 

ice edge (Figure 4.13, Table 4.2).  Examining the Lee relationship against these TA 

observations, Figure 4.14 shows the corresponding LeeTA values for each measured TA 

observation (shown in Figure 4.13).  The LeeTA estimates showed a similar trend to the TA 

observations in each zone, however, LeeTA and TA are significantly different in the PFZ and 

PUZ between WC2015 and WC2016, and in the STZ during WC2017 (See Table C6 in 

Appendix C).  A closer analysis of TA will be discussed further in Chapter 5, Section 5.1.3.  

 

   

 

 

 

 

 

 



63 

 

 

    

Figure 4.13: TA observations along transects spanning the subtropical zone (STZ) to the marginal ice zone 

(MIZ) during WC2015 – WC2017 

Figure 4.14: LeeTA estimates in comparison with the TA observations along transects spanning the 

subtropical zone (STZ) to the marginal ice zone (MIZ) during WC2015 – WC2017 
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Table 4.2: Mean observed values of salinity, temperature and nitrate concentrations for each 

winter cruise from the STZ to the MIZ.  Note that WC2017 was conducted in a different 

geographical location from WC2015 and WC2016.  

Cruise Zone Salinity (PSU) Temperature (°C) [NO3
-] (μM) 

2015 

STZ 35.45 ± 0.29 15.7 ± 1.35 2.89 ± 0.60 

SAZ 34.39 ± 0.19  10.2 ± 1.95 14.3 ± 5.53 

PFZ 33.91 ± 0.08 4.54 ± 2.38 22.6 ± 0.41 

PUZ 34.18 ± 0.17 -0.78 ± 1.04 28.1 ± 2.13 

MIZ 34.17 -1.43 25.6 

2016 

STZ 35.23 ± 0.35 16.1 ± 2.30 2.34 ± 1.50 

SAZ 34.56 ± 0.51 9.73 ± 3.27 15.5 ± 6.39 

PFZ 33.84 ± 0.023 4.20 ± 1.20 24.6 ± 4.23 

PUZ 33.84 ± 0.35 2.26 ± 6.63 30.4 ± 3.29 

2017 

STZ 35.00 ± 0.33 17.50 ± 1.06 2.69 ± 1.62 

SAZ 34.96 ± 0.15 12.52 ± 2.53 7.24 ± 2.80 

PFZ 33.94 ± 0.17 6.35 ± 3.02 18.3 ± 4.29 

PUZ 33.94 ± 0.28 1.00 ± 0.65 25.5 ± 1.41 

MIZ 34.16 ± 0.10 0.27 ± 0.28 27.0 ± 0.24 
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Table 4.3: Mean observations and estimates for TA and pCO2 for each winter cruise from the 

STZ to the MIZ.  Note that WC2017 was conducted in a different geographical location from 

WC2015 and WC2016. 

Cruise Zone 
Measured TA 

(μmol/kg) 
LeeTA (μmol/kg) 

*Significant 

Difference 
pCO2 (μatm) 

2015 

STZ 2326 ± 19.74 2333 ± 14.16 ✘ 373 ± 7.66 

SAZ 2284 ± 18.98 2287 ± 5.181 ✘ 411 ± 12.9 

PFZ 2270 ± 10.09 2280 ± 10.08 ✓ 424 ± 6.88 

PUZ 2292 ± 8.97 2311 ± 10.39 ✓ 445 ± 10.8 

MIZ 2307 2314 - 449 ± 10.7 

2016 

STZ 2316 ± 26.45  2321 ± 16.54 ✘ 367 ± 9.08 

SAZ 2283 ± 17.77 2298 ± 20.18 ✘ 392 ± 16.0 

PFZ 2266 ± 8.040 2277 ± 4.189 ✓ 414 ± 7.41 

PUZ 2269 ± 15.14 2288 ± 5.986 ✓ 424 ± 10.00 

2017 

STZ 2326 ± 9.67 2307 ± 17.72 ✓ 382 ± 13.6 

SAZ 2311 ± 16.57 2312 ± 5.653 ✘ 398 ± 10.5 

PFZ 2277 ± 3.29 2276 ± 6.332 ✘ 423 ± 7.89 

PUZ 2299 ± 13.73 2293 ± 14.05 ✘ 445 ± 11.2 

MIZ 2304 ± 4.26 2306 ± 5.459 ✘ 438 ± 12.0 

*Significant difference is statistically defined as a measurable difference between measured 

TA and LeeTA, with a p-value < 0.05. The dash signifies that there is not sufficient data to 

perform statistical analysis within the specified region.   
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4.4 SOCCOM float observations 

The selected floats (9313, 9260, 9096) are taken to be representative of conditions from the 

STZ to the MIZ, in the Atlantic-Indian sector of the SO (Figure 4.15).  Float 9313 was situated 

in the SAZ from December 2014 – April 2016 and moved to the STZ from April 2016 – 

November 2017.  Float 9260 was located in the PFZ from January 2015 – October 2015.  Float 

9096 was located in the PUZ from December 2014 –September 2017 and moved to the MIZ 

from September 2017 – April 2018 (Figure 4.15).  The selected floats were all operational in a 

similar time period from Oct 2014 – Oct 2015, whereas only floats 9313 and 9096 were both 

operational until 2018.  

 

Figures 4.16 and 4.17 show the spatial distribution of the average measured TA over a two-

degree latitude band, compared to LeeTA and LIAR_TA, from the STZ to the MIZ observed 

during WC2016 and WC2017, respectively.  TA was seen to vary more in the Atlantic Ocean 

sector compared to the Indian Ocean sector, evident from the range of TA observed (2225 – 

2360 μmol/kg and 2265 – 2345 μmol/kg, respectively).  A similar trend was seen in both ocean 

basins with TA decreasing from the STZ to the PFZ and increasing from the PUZ to the MIZ.  

A significant difference between TA measurements and LeeTA estimates are observed in the 

PFZ and PUZ in the Atlantic Ocean sector (WC2016) of the SO.  LeeTA was observed to 

overestimate TA measurements in these regions during the “winter” season.  By comparison, 

Figure 4.15: Latitudinal position of each selected float from December 2014 – April 2018 
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there was no significant difference between observations and LeeTA in the Indian Ocean sector 

(WC2017) of the SO from the SAZ to the MIZ.  The difference in the performance of LeeTA 

in these sectors is attributed to the bias of the Lee expression to summer, as conditions in the 

Indian Ocean sector have not yet transitioned into winter conditions.   

LIAR_TA was observed to be within the margin of error of measured TA in the STZ and SAZ 

in the Atlantic Ocean sector during “winter” (Figure 4.16).  However, the majority of the data 

points were captured outside of the winter season and are not consistent temporally with the 

time of WC2016 – only one data point corresponds in time and space in the SAZ (Figure 4.16). 

We note that in the SAZ, one data point seems to indicate that float-based data begins to 

overestimate ship-board measurements, however, there is not enough data available presently 

to confirm this.  LeeTA (both ship and float-based) were observed to overestimate ship-board 

measurements of TA from the SAZ, leading into the PFZ and PUZ in the Atlantic sector.  

LIAR_TA performs better in the STZ which has a greater number of data points, and is not 

historically under-sampled, as is the case with the zones of the ACC, particularly in the winter 

season.  This discrepancy between LIAR_TA and observed TA is further emphasised from the 

SAZ – PUZ in the Atlantic Ocean sector.     

In the Indian Ocean sector, LIAR_TA estimates are observed to converge with TA 

measurements from the STZ into the SAZ (Figrure 4.17). We suspect that the convergence 

between observed TA and LIAR_TA occurs as a result of the assumed salinity values at this 

frontal position. However, the winter LIAR_TA observation heavily underestimates the TA 

observations in the STZ, and overestimates TA observations in the PUZ.  LIAR_TA in the 

PUZ and MIZ are consistent with TA observations, within the margin of error.  We suggest 

here that the LIAR_TA during the summer season better matches TA observations in the Indian 

Ocean sector during winter, due to the warmer ocean currents experienced in this ocean basin.  

The deviations between LIAR_TA and Lee TA across the SO, at temperatures below 0 °C and 

between 11-12 °C are outlined in Appendix D, Section D.3.  
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Figure 4.16: Winter cruise 2016 TA values in the Atlantic Ocean sector averaged over two degree intervals, 

compared to Lee TA and float LIAR_TA along the same latitude band in the year of 2016.  TA ranged between 

2225 – 2360 μmol/kg.  

Figure 4.17: Winter cruise 2017 TA values in the Indian Ocean sector averaged over two degree intervals, 

compared to Lee TA and float LIAR_TA along the same latitude band in the year of 2017.  TA ranged 

between 2265 – 2345 μmol/kg.  
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5 Discussion 

5.1 Research questions 

The discussion addresses the three main research questions of this study outlined in Section 

2.2, namely: 

• Can pHT be used to estimate seasonal variations in pCO2?  

• What is the performance of the Lee formula in winter?  

• How do SOCCOM results compare to ship- and glider-based measurements? 

  

5.1.1 Can pHT be used to estimate seasonal variations in pCO2?  

Due to a paucity of seasonal data in the Southern Ocean, climatology estimates of carbonate 

chemistry in the surface ocean are seasonally biased, thus high resolution spatial and temporal 

measurements of the carbonate system in seawater are necessary to reduce the uncertainty and 

biases for mean annual fluxes and constrain model predictions in this region (Williams et al., 

2017, Gray et al., 2018, Takeshita et al., 2018, Gregor et al., 2018, Gruber et al., 2019). 

Resolving the seasonal cycle, to address the seasonal bias of the carbonate system, in the SO 

is a step towards reducing the uncertainty in empirical model estimates. An increased number 

of observations better distributed in space and time are starting to be achieved by the SOCCOM 

project, with the deployment of 200 profiling floats throughout the Southern Ocean that have 

been in operation since December 2014 (Group, 2016, Johnson et al., 2017).  However, the 

floats are only capable of measuring one carbonate parameter (i.e., pH) and rely on the 

measurement of ancillary variables salinity, temperature, oxygen and nitrate to estimate a value 

for TA.  

In this study, the WG dataset provides a unique simultaneous high resolution dataset of hourly 

measurements of pHT and pCO2 (Monteiro et al., 2015) over the spring-summer transition 

period in the SO, which allows for the calculation of  TA and pCO2 in the SAZ region of the 

SO to be resolved and compared to the derived estimates from ancillary variables.  These high-

resolution observations showed the effect of enhanced biological activity, the spring bloom, on 

the variability of the carbonate parameters in seawater at seasonal and inter-annual scales.  This 

allows us to ascertain how these changes can affect our ability to predict TA by the means of 

empirical algorithms, and subsequently evaluate pH as an estimator of pCO2.   

Wave Glider Total Alkalinity (WGTA) was calculated from pH and WGpCO2 and compared 

to LeeTA (Figure 4.8). There is a significant difference observed between WGTA and LeeTA 
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across the entire dataset, where LeeTA shows no change in TA during the transition from spring 

to summer.   The Lee formula assumes a linear relationship with salinity in the region, and as 

such provides a higher estimate of TA (Lee et al., 2006).  The salinity normalised WGTA is 

also shown in Figure 4.8 to account for possible contributions from changes in water physical 

properties in the surface ocean.  However, a significant increase in normalised WGTA was still 

seen throughout the bloom period. We see from Figure 4.4 that salinity fluctuates between 

34.15 and 34.4 PSU throughout the pre-bloom and bloom period and showed a weak freshening 

of the surface ocean toward the bloom period. The fluctuations in salinity were mirrored by the 

fluctuations seen in LeeTA over this period. This emphasises that the Lee formula is highly 

dependent on changes affecting salinity. 

However, this does not account for other drivers of TA which can be affected by changes in 

pHT via the precipitation/dissolution of calcite, and the uptake of nutrients in the surface ocean 

via the “nutrient-H+-compensation principle” (Wolf-Gladrow et al., 2007).  Thus, LeeTA 

during the pre-bloom period can potentially be attributed to the changes in salinity, however, 

the lower WGTA is proposed to indicate a more complex system of drivers at play in the 

surface ocean, which act to lower TA – for example, the precipitation of calcium carbonate, 

the remineralization of nutrients (Wolf-Gladrow et al., 2007), or the entrainment of nitrate 

below the mixed layer (Gregor et al., 2018).   

The calculated WGTA also showed a seasonal trend in sharp contrast to LeeTA (Figure 4.8).  

The two showed a difference of 76.53 ± 14.77 μmol/kg in the pre-bloom and converged during 

the spring bloom (Figure 4.8).  The increase in WGTA observed during the bloom period points 

to the reduction of nitrate in the surface ocean in the presence of increased biological activity 

(evident from the increase in chlorophyll-a noted in Figure 4.5).  

The change in WGTA seen from the pre-bloom to the bloom period also coincides with the 

decrease in pCO2 (expected from the biological uptake of CO2 for photosynthesis) and the 

consequent increase in pH (Figure 4.6).  Thus, the change in WGTA can be attributed to the 

impact of biological productivity in the region during the bloom period.  Wolf-Gladrow et al., 

(2007) showed by the expression of TAec (Eq. 21, Section 1.4) that the uptake of 1 mole of 

nitrate or nitrite by photoautotrophs will lead to an increase in TA by 1 mole.  Thus, we 

conclude that the Lee formula cannot resolve the seasonal changes in TA induced by nitrate 

uptake in the SO. 
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We suggest that summer bias stems from the foundation of the Lee formula as this empirical 

expression for TA is averaged over the entire Southern Ocean regime, with most measurements 

based in the summer season (Lee et al., 2006).  The summer bias in the estimated TA suggests 

that a region and/or season specific formula for TA needs be devised.  Considering that this 

bias exists here, it is probable that similar formulations for TA based on salinity and 

temperature data, which are calibrated in different regions, may not pertain to all sectors of the 

SO.  Given what we now know of the TA seasonal cycle during the spring-summer period, we 

investigate the effect of the summer bias of the Lee formula on predicting pCO2 from pH 

(Figure 4.7).   

The largest disparity between the measured and calculated pCO2 occurred during the pre-bloom 

period, with differences in pCO2 ranging from 5 – 20 μatm i.e. LEEpCO2 was significantly 

higher than WGpCO2 during the pre-bloom period.  However, LEEpCO2 was more accurate 

during and after the bloom period with an average difference in pCO2 (LEEpCO2 – WGpCO2) 

of ± 5 μatm.  LEEpCO2 and WGpCO2 were also not significantly different during the bloom 

period.  The overestimation of pCO2 in the pre-bloom period suggests that the summer bias in 

LeeTA leads to higher estimates of pCO2 in pre-bloom conditions.  Our results suggest that if 

current TA algorithms are used with measured pHT, there is potential to overestimate pCO2 by 

3.6% during pre-bloom conditions.   

Thus, our ability to predict pCO2 accurately from pHT is limited by the accuracy of the TA 

algorithm to resolve the seasonal cycle of TA. We have shown here that the seasonal cycle for 

TA that is predominantly driven by nitrate uptake in the summer and re-entrainment in the 

winter. The Lee formula causes a further seasonal bias in the calculation of pCO2, as it does 

not factor in the impact of nitrate uptake on TA.  As a result, we conclude that pHT can only be 

used as a predictor for pCO2 if concurrent measurements of TA are observed, or if the Lee et 

al., (2006) formula can be corrected for the uptake of nitrate from nitrate observations i.e. a 

critical component of elucidating the regional differences in pCO2 is first resolving the seasonal 

cycle of TA, and determining what impact this has on the estimation of pCO2 in the SO.   

Further evaluation of TA is required in the winter season SO to confirm that there is no change 

across the different zones of the ACC, perhaps zone and/or sector specific algorithms required 

to calculate TA are necessary here as well – more observations are needed to resolve the scope 

of this phenomenon across the seasonal cycle in the SO. 
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5.1.2 What is the performance of the Lee algorithm in austral winter across 

the Southern Ocean? 

We have established that the largest discrepancy in calculated pCO2 from pHT and LeeTA occur 

during the pre-bloom period, prior to the onset of spring.  This indicates that the bias in the 

calculated pCO2 extends back into the winter season, and therefore potentially overestimates 

the magnitude of pCO2 particularly during that part of the seasonal cycle.  

A recent study by Gray et al., (2018), suggested that the amplitude of the pCO2 seasonal cycle 

is underestimated by ship-board measurements, as they found that the calculated pCO2 derived 

from float-based data was consistently higher than ship-board measurements in the PUZ and 

MIZ during autumn and winter.  Gray et al., (2018) suggested that the large source of CO2 from 

the PUZ during the winter season may be compensated for by a stronger CO2 sink in another 

ocean region.  Similarly, Williams et al., (2017) compared float-based data to climatological 

data for pCO2 and found that most discrepancies between the datasets occurred in the PUZ, 

where float-based data indicated a source of CO2 to the atmosphere, as opposed to the neutral 

sink/source implied by climatology.  However, in our study of surface ocean pCO2 derived 

from pH and LeeTA, we observed lower pCO2 values than would be calculated using 

algorithms similar to the float-based approach, prior to the onset of the spring-summer season 

in the SO.   

The seasonal cycle of pCO2 in the SO winter is driven by the southward deepening of the mixed 

layer depth, indicating that light and iron limitation in the SO are inhibiting biological 

productivity, and a resupply of enriched waters to the surface ocean via upwelling increases 

pCO2 in the surface ocean (Gregor et al., 2018).  Thus, there is a higher concentration of pCO2 

measured in the surface ocean moving poleward during the winter season (Figure 4.12).  In the 

summertime, this shifts as temperature and biological activity driven changes predominate, the 

melting of sea-ice provide a source of iron, and the stratification of the surface ocean promotes 

biological activity through added light limitation, thereby lowering the pCO2 concentration in 

the surface ocean (Gregor et al., 2018).   

Thus, to assess if float-derived pCO2 are anomalous due to a bias in resolving TA through 

empirical algorithms in the winter, we look at the Lee formula across the seasonal cycle.  Here, 

we compare observational data obtained from winter-time research cruises in the SO, across 

the Atlantic and Indian Ocean sectors.  WC2015 and WC2016 took place along the Good Hope 

transect from June – July 2015 and July – August 2016, respectively in the Atlantic Ocean 
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sector.  WC2017 took place across a transect in the Indian Ocean sector of the SO from June – 

July 2017 down to 62 °S in the winter MIZ (Figure 3.2).   

Discrete measurements of TA (Figure 4.14) are seen to decrease from the STZ to the PFZ, and 

increase in the southern most regions of the PUZ and MIZ.  The decrease in TA can be 

attributed to added precipitation along the transect moving south, as well as Ekman transport, 

which coincides with the freshening of the surface waters (Figure 4.10).  The increase in TA 

can be attributed to the upwelling of deep water in this region (Figure 4.11), coupled with 

biological productivity taking place in the MIZ through sea-ice brine channels, where we also 

see a  corresponding slight decrease in nitrate (Figure 4.12).  The increase in TA observed 

during WC2017 (Indian Ocean sector of the SO) was seen to plateau in the MIZ region.  

However, in the Atlantic sector, both WC2015 and WC2016 show a rise in TA from the PUZ 

to the MIZ, with no corresponding change in nitrate (Figure 4.12).  There was a significant 

difference in TA observed between WC2016 and WC2017 from the SAZ to the PUZ, indicating 

that the Indian and Atlantic Ocean sectors of the SO are sufficiently different to warrant a 

region specific formula to estimate TA.  

We compare the discrete measurements of TA to the Lee et al., (2006) estimated TA (Figure 

4.15).  We see that for WC2017 in the Indian Ocean, there is no significant difference between 

measured TA and the corresponding LeeTA.  Conversely, TA for both WC2015 and WC2016 

are significantly different from the corresponding LeeTA estimates in the Atlantic Ocean sector 

of the SO, particularly in the PFZ and PUZ where LeeTA overestimates observations.  These 

regions coincide with colder temperatures and more saline waters in the Atlantic Ocean sector 

as compared to the Indian Ocean sector of the SO (Figures 4.10 and 4.11).  This suggests that 

the Indian Ocean sector still exhibits Lee expression characteristics into what is considered the 

austral “winter” season i.e. the warmer and more saline waters of the Indian Ocean mimic 

summer biogeochemical trends, and thus early austral winter in the SO is thus less pronounced 

in this sector.  

Comparing our ship-board measurements to those collected from the WG, we would expect 

the difference in LeeTA and observations to be most divergent in the winter season.  However, 

we see that there is still a large discrepancy between data gathered by ship-board measurements 

in the periods from late June to early August, and the WG data gathered from mid-October into 

December.  Pre-bloom averages of WGTA (2206 ± 13.86 μmol/kg) are significantly lower than 

Winter Cruise TA observations in the SAZ (2287 ± 5.181 μmol/kg, 2298 ± 20.18 μmol/kg and 
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2312 ± 5.653 μmol/kg for WC2015 – WC2017, respectively).  Thus, the late August to early 

October period that would represent the winter-spring transition period, remains unaccounted 

for as there is no available data.   

Assuming that the WG is representative of the spring-summer transition period, the 

discrepancy between the WC observations in June – August combined with the WGTA 

estimates in October – November during the pre-bloom period suggest that there is a further 

decrease (approximately 81 – 92 μmol/kg) in TA occurring in the SAZ between August and 

October.  By comparison with WGTA, the higher LeeTA estimates during October (Figure 

4.8) are likely an artefact of the summer bias in observations on which the algorithm is built. 

Thus, the discrepancy that occurs between WC and WG data for the winter-spring period, 

indicates that there is likely a shift in drivers affecting TA that promote a lower TA 

concentration.  

It is expected that TA would decrease during winter via entrainment and the reduction in 

biological productivity from light limitation coupled with the deepening of the mixed layer 

depth, however, it is difficult to resolve which process dominates the lowering of TA in this 

period without available data.  To reconcile the discrepancy for the proposed winter-spring 

transition period, we suggest that the WC observations presented here are more representative 

of the autumn-winter transition period, rather than the winter period itself.   

This idea is re-enforced by looking at the differences in nitrate concentrations between the 

Atlantic and Indian Ocean sectors of the SO (Figure 4.12).  No significant difference in nitrate 

concentration was observed for WC2016 and WC2015 along the same transect, indicating that 

the Atlantic Ocean sector is closer autumn-winter transition state period.  However, there was 

a significant difference observed between WC2016 and WC2017 from the SAZ to the PUZ.  

We suggest that this is due to the Indian Ocean sector not having completed the transition to 

the winter season – as opposed to the Atlantic Ocean sector, where nitrate concentrations are 

significantly higher than those observed in the Indian Ocean sector (Appendix B, Table B5).   

Our results showed that LeeTA is significantly different from ship-board measurements of TA 

in the Atlantic Ocean sector of the SO as compared to the Indian Ocean sector, during the 

“winter” season i.e. the Lee algorithm is unable to predict TA in the “winter” season in the 

Atlantic Ocean sector.  Thus, future developments of TA expressions should look at 

formulating an algorithm in each sector, and in particular, the PFZ, PUZ and MIZ regions based 

on repeat hydrography in different seasons.  Autonomous systems will be paramount in 
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constraining the seasonal cycle of TA and gather much needed data to further constrain Earth’s 

system models, and to determine which regions are thus responsible for carbon drawdown and 

carbon efflux.  
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5.1.3 How do SOCCOM results compare to ship- and glider-based 

measurements? 

Gregor et al., (2018) showed that a discrepancy between empirical products for the prediction 

of pCO2 resulted in a low confidence of changes in pCO2 on a regional scale throughout the 

SO, despite a consistency in overall trends between the empirical products. We see that TA 

also varies in the different regions of the SO, with empirical algorithms of TA able to predict 

TA in the Indian Ocean sector than the Atlantic Ocean sector more accurately during the 

autumn-winter season.  The Locally Interpolated Alkalinity Regression (LIAR) method (Carter 

et al., 2016) to interpolate TA across the SO is another empirical product, such as the Lee et 

al., (2006) formula, that is used to interpret the SOCCOM project float measurements. Here we 

discuss what implications the findings above have on the calculation of pCO2 from float-

derived TA (LIAR_TA).  

Although the SOCCOM floats are able to gain coverage of the SO in the winter, the Atlantic 

and Indian Ocean sectors in line with the Good Hope Line are still under-represented for the 

winter season – with only two operational floats out of a fleet of approximately 100 deployed 

floats to observe winter conditions in the STZ and MIZ regions of the SO.  The disadvantage 

of the floats are that they cannot be controlled remotely in order to gather location-specific 

data.  The risk here is collecting a bias of information as floats are subject to the flow of the 

current and cannot target specific areas of interest outside of this flow.  Observations of TA are 

needed across all seasonal conditions to create an accurate representation of the seasonal cycle 

of TA in the SO.  

This study considered three floats in the Southern Ocean, spanning across the Atlantic and 

Indian Ocean basins down to the marginal ice zone (Figure 3.2).  A comparative analysis of 

LeeTA, LIAR_TA, WGTA and ship-board measurements of TA will be explored in this 

section.  SOCCOM observational data is illustrated in Appendix B.  To understand the 

SOCCOM float data in context of the TA seasonal cycle, we compare these data to 

measurements from WC2016 and WC2017 (Figures 4.16 and 4.17). A further seasonal bias 

analysis was compiled with the addition of GLODAPv2.2019 data from the glider location and 

compared with SOCCOM Float 9313 LIAR_TA, LeeTA values, WC and WGTA (Appendix 

D, Section D.2).  

The corresponding LeeTA estimates for float-based measurements (LeeFloats) are not 

significantly different from LIAR_TA for WC2016 and WC2017 (p-value significant 
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difference tables can be found in Appendix C), which indicate that calculations are largely 

dependent on salinity, and must be adjusted to account for the seasonal cycle of TA when 

biological controls of TA are dominant.  WC2017 showed no significant difference with 

corresponding LeeTA values in the Indian Ocean, across all zones of the ACC.  In comparison, 

both WC2015 and WC2016 showed a significant difference with corresponding LeeTA values 

with particular emphasis on the PFZ and PUZ.  LIAR_TA and the corresponding LeeTA 

estimates are not significantly different, which indicate that the LIAR algorithm is potentially 

subject to the same winter bias as the Lee expression. 

Figure 5.1 shows the WGTA and the corresponding LeeTA averaged over two-day intervals 

from Oct – Dec 2013.  LIAR_TA is shown in the same region during Dec 2014.  WGTA 

indicated consistent TA during the pre-bloom period, and an increasing trend during the bloom 

period (Section 5.1).  The corresponding LeeTA estimates based on WG measurements showed 

a constant TA throughout the period, with no variation corresponding to the seasonal changes.  

LeeTA was seen to overestimate WGTA in the pre-bloom period, and underestimate WGTA 

during the bloom period.  In comparison to LeeTA and WGTA, we observed that LIAR_TA 
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Figure 5.1: WGTA averaged over two days intervals compared with estimated LeeTA, and LIAR_TA 

estimates for Dec 2014 



78 

 

Figure 5.2: pCO2 scenarios based on the difference in calculated pCO2 between pCO2 as a function of 

LIAR_TA and pH and pCO2 as a function of LIAR_TA corrected for nitrate and pH.  Scenario 1: LIAR_TA 

less 10 μmol/kg, Scenario 2: LIAR_TA less 20 μmol/kg, Scenario 3: LIAR_TA less 30 μmol/kg, Scenario 4: 

LIAR_TA less 50 μmol/kg and the difference between LIARpCO2  and LEEpCO2.  Data used to render this 

graph applies to Float 9096 in the PUZ.  

corresponds exactly with the LeeTA estimate during the bloom period.  Although LIAR_TA 

and LeeTA only coincide in space, we expect to observe increased TA during the summer 

season.  This indicates that the LIAR_TA estimate is also strongly driven by changes in salinity 

and does not adequately account for the increase in TA due to nitrate uptake.   

We know that the uptake of nitrate in the summer season drives an increase in TA, however, 

this is not accounted for in the Lee formula, causing an uncertainty in the subsequent pCO2 

calculation. The uncertainty in the calculation of pCO2 is highest in the winter season when the 

error between observed TA and derived TA is most apparent (Figure 4.7).  

To illustrate the magnitude of the effect a change in TA due to nitrate uptake has on the 

estimation of pCO2 under winter time conditions, we present four scenarios based on data 

obtained from Float 9096 situated in the PUZ and MIZ of the SO.  We expect low 

concentrations of TA in the winter season as established from the WG dataset.  Figure 5.2 

shows the difference in pCO2 calculated from LIAR_TA and pH, and the calculated pCO2 from 

pH and a decrease in LIAR_TA by 10, 20, 30 and 50 μmol/kg for scenario 1 – 4, respectively.  
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We see that there is an inverse relationship between LIAR_TA and the calculated pCO2.  The 

lower the concentration of LIAR_TA, the greater the difference in calculated pCO2.  This 

shows that not considering nitrate-linked changes in the calculation of TA will lead to an 

overestimation of pCO2 in the surface ocean i.e. measurements of nitrate are essential to 

resolving the seasonal cycle of TA.  This consideration may account for the discrepancy 

between float estimated pCO2 exceeding ship-based pCO2 measurements in the surface ocean 

in the PUZ of the SO as reported by Williams et al., (2017) and Gray et al., (2018). 

The implications of this inverse relationship suggest that the discrepancy observed between 

WGTA and LeeTA (Figure 5.1) with a difference of ~ 100 µmol/kg in the pre-bloom period, 

indicates that the lowering the LeeTA concentration can lead to an increased change in pCO2, 

or rather in the case of LeeTA, to reconcile the difference discrepancy observed in pre-bloom 

conditions as the formula is optimised for nitrate uptake in the summer season. A further 

analysis of this scenario is shown in Appendix D, Section D.4.  

Another factor that may contribute to the elevated calculated pCO2 estimates from float-based 

measurements, is the sampling frequency at which the seasonal cycle of pCO2 is extrapolated 

from. Monteiro et al., (2015) reported an alias in sampling frequency of the mean hourly flux 

of CO2, are highest in the SAZ and MIZ with a sampling time frame of 10 days. The uncertainty 

in the measurement of the hourly mean flux of CO2 increases with the sampling time frame for 

example, from one day to 10-day sampling intervals.  Thus, it is more likely to calculate a mean 

that is significantly different to the hourly mean.  The study also reported that the sampling 

alias occurred more frequently in the Atlantic Ocean sector of the SO (Monteiro et al., 2015). 

This may also account for the regional differences we observe between derived TA between 

the Atlantic and Indian Ocean sectors of the SO.   

Considering that the SOCCOM float measurements occur at a 10-day frequency, it is possible 

that a sampling alias exists, and as such, the accurate prediction of pCO2 across the seasonal 

cycle is influenced (Monteiro et al., 2015).  The floats do not acquire repeat measurements in 

the same position every 10 days, but rather dive down to greater depths and move with the flow 

of current.  Thus, the floats are measuring the surface ocean through bloom and non-bloom 

conditions, and as suggested by our WG dataset, accurate measurements of pCO2 may be 

difficult to attain if captured in pre-bloom conditions.   

Our study of ship-based TA observations, LIAR_TA and LeeTA suggest that more data is 

needed in the winter season to draw more conclusive findings.  However, this initial 
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investigation indicates that TA is varying across zones and sectors of the SO, which make it 

difficult for empirical algorithms based on salinity and temperature to predict changes in the 

seasonal cycle of TA i.e. the regional changes in TA are aggregated when averaged across the 

entire SO regime, as is the case with the Lee et al., (2006) formula, and influenced by the 

summer bias of TA due to the higher resolution of data in the summer season.  Autonomous 

measuring platforms are necessary to resolve the seasonal bias in the SO due to the paucity in 

winter-time data, as well as constrain the differences between each sector.  However, the sparse 

data collected at 10-day intervals by the SOCCOM project cannot accurately convey trends in 

TA on the intra-seasonal scale.  

The seasonal cycle of TA across each ocean sector of the SO needs to be constrained by 

measurements of nitrate to determine more accurate estimates of pCO2 in the surface ocean, 

particularly in the winter season.  A preliminary analysis of the impacts of the nitrate seasonal 

cycle on TA are discussed in Appendix D, Section D.5.  Our current understanding of the 

seasonal dynamics of the CO2 in the SO is dependent on the accuracy of the empirical TA 

algorithms, which are better predictors of pCO2 in the summer season.  Given the potential bias 

of TA algorithms, we can expect elevated pCO2 estimates in the winter season until the seasonal 

cycle of TA in each sector of the SO can be better resolved.  

Possible experiments to achieve the accurate prediction of pCO2 during the winter season 

would involve gathering more surface measurements by the floats at a higher sampling 

frequency in different sectors to reduce a regional bias.  This would give us a better idea of the 

intra-seasonal dynamics in each sector in the SO, as well as constrain the empirical TA 

algorithms and allow for the improved location-specific prediction of pCO2.   
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6 Conclusions and recommendations  

Conclusions  

The aim of this study was to investigate whether pHT together a simple algorithm for the 

calculation of TA, could be used to determine an accurate measure of pCO2 and the carbonate 

system in seawater.  We have shown that the changes in TA related to the seasonal cycle of 

nitrate are critical to the correct estimation of the seasonal cycle of pCO2 and its fluxes in the 

SO. 

The high resolution Wave Glider observations in the sub-Antarctic zone of the Southern Ocean 

showed that the seasonal variation of TA was larger than predicted by empirical algorithms 

(Lee et al., 2006, Carter et al., 2016) in the summer season. The main reason was that the 

empirical formulations are unable to resolve the seasonal changes in TA, which are attributed 

to the uptake of nitrate in the summer time and the entrainment of nitrate below the mixed layer 

depth in the winter time.  

Evaluating the Lee formula against ship-board observations of TA taken during the autumn-

winter season, show a significant difference in TA between the Atlantic and Indian Ocean 

sectors of the Southern Ocean.  This re-enforces that there are also regional differences in the 

seasonal cycle of TA that cannot be accounted for by the empirical algorithms which are 

averaged over the entire Southern Ocean basin.  Therefore, it is suggested that TA algorithms 

be devised per region to better constrain the seasonal cycle of TA in the SO.   

The magnitude of the bias of the TA expressions on pCO2 was shown to decrease by 

constraining the effect of nitrate on the seasonal cycle of TA.  The assessment of float-based 

measurements also demonstrated that pCO2 may be overestimated as the winter season 

progresses, stemming from the bias in calculated TA due to changes in the uptake of nitrate.  

The effect of nitrate on the seasonal cycle of TA must be accounted for in order to reduce 

uncertainty in pCO2 estimates.  

Hence, it is recommended that an additional carbonate variable be measured alongside pHT in 

order to elucidate seasonal changes in TA, or that the impact of the uptake of nutrients by the 

spring bloom on TA be corrected for.  
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Recommendations for future study  

To further this study, the following recommendations and improvements can be considered for 

further experimentation:  

More high-resolution data collection of SO sea surface TA and nitrate concentrations are needed to 

resolve trends in the seasonal cycles of TA and nitrate. Together, these measurements can be used to 

develop more accurate expressions of TA, and to reduce the uncertainty in pCO2 estimates 

prior to the summer season.  

The WG could be deployed in different zones of varying sectors to gain a greater understanding 

of the seasonal changes in the SO.  CTD profiles and underway samples should be included in 

the calibration protocol for glider recoveries and deployments.  At these stations, duplicate 

sampling of CTD cast and underway samples can be used to calibrate glider measurements and 

account for sensor drift over time.   

The SOCCOM comparison to should be extended to analyse other sectors and zones of the SO 

around the Antarctic continent, with particular emphasis on the winter season i.e. segment float 

data per ocean basin and zone across the ACC to constrain regions of pCO2 sinks and sources. 

The sampling frequency of the SOCCOM floats should be increased during the inter-seasonal 

periods at opportunistic events, which can be determined by monitoring satellite ocean colour 

and sea-ice cover data.  
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APPENDIX A 

A.1 The Gran Method 

The Gran method is used to accurately determine the endpoint of a potentiometric titration by 

mathematically manipulating the data close to the endpoint region.  While derivative plots are 

a close estimate, they are not as accurate as the Gran method.  The deviation in accuracy occurs 

due to the erratic electrode response close to the endpoint, and the low receptivity of the buffer 

close to the endpoint.  The Gran method mathematically transforms a titration curve into a 

straight line which intersects the x-axis at the equivalence point, or rather, the endpoint.  

In order to calculate the endpoint by means of the Gran method, it is necessary to use the 

activity coefficient of hydrogen since the pHT electrode measures the activity of the hydrogen 

ions in solution.  Consider the potentiometric titration of a weak acid with a strong base, such 

as carbonic acid with sodium hydroxide; the corrected plot to yield a straight line is as follows: 

(Harris, 2010) 

The weak acid will completely dissociate upon titration with a strong base: 

𝐻𝐴 ⇌  𝐻+ + 𝐴− 

The activity of each of the hydrogen species is related to the pHT as follows: 

𝑎𝐻+ = [𝐻
+]𝛾𝐻+ = 10

−𝑝𝐻 

At equilibrium:  

𝐾𝑎 =
[𝐻+]𝛾𝐻+[𝐴

−]𝛾𝐴−

[𝐻𝐴]𝛾𝐻𝐴
 

It is assumed that at any point before reaching the endpoint, that 1 mole of strong base (such 

as NaOH) will convert one mole of HA to one mole of A-. If a known volume of acid (Va) with 

concentration Ca is titrated with a volume of base (Vb) with concentration Cb, then: 

[𝐴−] =
𝑚𝑜𝑙𝑒𝑠 𝑂𝐻−𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒
=
𝑉𝑏𝐶𝑏
𝑉𝑏 + 𝑉𝑎

 

[𝐻𝐴] =
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑜𝑙𝑒𝑠 𝐻𝐴 −𝑚𝑜𝑙𝑒𝑠 𝑂𝐻−

𝑡𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒
=
𝑉𝑎𝐶𝑎 − 𝑉𝑏𝐶𝑏
𝑉𝑏 + 𝑉𝑎
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Substituting the values of A- and HA into the equilibrium expression: 

𝐾𝑎 =
[𝐻+]𝛾𝐻+  𝑉𝑏𝐶𝑏 𝛾𝐴
(𝑉𝑎𝐶𝑎 − 𝑉𝑏𝐶𝑏)𝛾𝐻𝐴

 

Rearranging the above formula: 

10−𝑝𝐻𝑉𝑏 =
𝛾𝐻𝐴
 𝛾𝐴−

(
𝑉𝑎𝐶𝑎 − 𝑉𝑏𝐶𝑏

𝐶𝑏
)𝐾𝑎 

The term in parentheses equates to the endpoint volume minus the volume of base delivered: 

(
𝑉𝑎𝐶𝑎 − 𝑉𝑏𝐶𝑏

𝐶𝑏
) =

𝑉𝑎𝐶𝑎
𝐶𝑏

− 𝑉𝑏 = 𝑉𝑒 − 𝑉𝑏 

Thus, the Gran plot equation simplifies to:  

10−𝑝𝐻𝑉𝑏 =
𝛾𝐻𝐴
 𝛾𝐴−

(𝑉𝑒 − 𝑉𝑏)𝐾𝑎 

The Gran plot is attained from a graph of Vb10-pH
T against Vb. For a constant ratio of 

𝛾𝐻𝐴
 𝛾𝐴−⁄ the plot will yield a straight line intercepting the x-axis at Ve and the slope –Ka 

𝛾𝐻𝐴
 𝛾𝐴−⁄ . In order to obtain Ve, the curve plotted must be extrapolated to zero. (Harris, 2010) 

Any curvature arising on the plot as the curve approaches and passes the endpoint, can be 

attributed to the changing ionic strength of the solution and the assumption that 1 mole of base 

will completely dissociate 1 mole of acid into 1 mole equivalents of its constituent species.  

The curvature at this point in the curve is disregarded, as 10-20 % of the data (0.8Ve -0.9Ve) 

before the endpoint, Ve, is sufficient to produce to a straight line, provided that the ionic 

strength of the solution is kept constant. (Harris, 2010). 
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A.2.1 pCO2 derived from pHT and TA (Zeebe and Wolf-Gladrow, 2001) 

𝑝𝐻 = −log [𝐻+] 

𝑇𝐴 =  2[𝐶𝑂3
2−]  +  [𝐻𝐶𝑂3

−]  +  [𝐵(𝑂𝐻)4
−]  +  [𝑂𝐻−]  − [𝐻+] 

𝐶𝐴 =  𝑇𝐴 −  [𝐵(𝑂𝐻)4
−]  −  [𝑂𝐻−]  + [𝐻+]  

=  2[𝐶𝑂3
2−]  +  [𝐻𝐶𝑂3

−] 

Solve for [CO3
2-] and [HCO3

-] from the equilibrium equation:  

𝐻𝐶𝑂3
− 𝐾2↔ 𝐶𝑂3

2− + 𝐻+ 

∴ [𝐻𝐶𝑂3
−] =  

[𝐶𝑂3
2−][𝐻+]

𝐾2
  

Substitute K2 into CA:  

𝐶𝐴 =
[𝐶𝑂3

2−][𝐻+]

𝐾2
+ 2[𝐶𝑂3

2−]  

= [𝐶𝑂3
2−] (

[𝐻+]

𝐾2
+ 2) 

∴ [𝐶𝑂3
2−] =

(
[𝐻+]
𝐾2

+ 2)

𝐶𝐴
 

Solve for CO2 from the equilibrium equation: 

𝐶𝑂2(𝑎𝑞) + 𝐻2𝑂
𝐾1
↔ 𝐻𝐶𝑂3

− + 𝐻+ 

𝐾1 =
[𝐻𝐶𝑂3

−][𝐻+]

[𝐶𝑂2(𝑎𝑞)]
 

∴ [𝐶𝑂2(𝑎𝑞)] =
[𝐻𝐶𝑂3

−][𝐻+]

𝐾1
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∴ 𝐷𝐼𝐶 = [𝐶𝑂2(𝑎𝑞)] + [𝐻𝐶𝑂3
−] + [𝐶𝑂3

2−]  

Solve for CO2 (g) i.e. pCO2 from the equilibrium equation: 

𝐶𝑂2(𝑔)
𝐾0
↔ 𝐶𝑂2(𝑎𝑞) 

∴ [𝐶𝑂2(𝑔)] =
[𝐶𝑂2(𝑎𝑞)]

𝐾0
 

 

A.2.2 pHT derived from DIC and TA  (Zeebe and Wolf-Gladrow, 2001) 

h = [H+] and s = [CO2]: 

𝐷𝐼𝐶 = 𝑠 (1 +
𝐾1
ℎ
+
𝐾1𝐾2
ℎ2

) 

∴ 𝑠 =  
𝐷𝐼𝐶

(1 +
𝐾1
ℎ
+
𝐾1𝐾2
ℎ2

)
 

and  

𝑇𝐴 = 𝑠 (
𝐾1
ℎ
+
2𝐾1𝐾2
ℎ2

) + 
𝐵𝑇𝐾𝐵
𝐾𝐵 + ℎ

+
𝐾𝑤
ℎ
− ℎ 

∴ 𝑠 =
𝑇𝐴 − 

𝐵𝑇𝐾𝐵
𝐾𝐵 + ℎ

− 
𝐾𝑤
ℎ
 + ℎ

(
𝐾1
ℎ
+
2𝐾1𝐾2
ℎ2

)
 

Equating s:  

𝐷𝐼𝐶 (
𝐾1
ℎ
+
2𝐾1𝐾2
ℎ2

) = [𝑇𝐴 − 
𝐵𝑇𝐾𝐵
𝐾𝐵 + ℎ

− 
𝐾𝑤
ℎ
 + ℎ] (1 +

𝐾1
ℎ
+
𝐾1𝐾2
ℎ2

) 

𝐷𝐼𝐶 (
ℎ𝐾1 + 2𝐾1𝐾2

ℎ2
)

= [
ℎ𝑇𝐴(𝐾𝐵 + ℎ) − ℎ𝐵𝑇𝐾𝐵 − 𝐾𝑤(𝐾𝐵 + ℎ) + ℎ

2(𝐾𝐵 + ℎ)

ℎ(𝐾𝐵 + ℎ)
] (
ℎ2 + ℎ𝐾1 + 𝐾1𝐾2

ℎ2
) 

 

 

Multiply through by h3(KB+h): 
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LHS:  

𝐷𝐼𝐶 ∙ ℎ3(𝐾𝐵 + ℎ) (
ℎ𝐾1 + 2𝐾1𝐾2

ℎ2
) = 𝐷𝐼𝐶 ∙ (𝐾𝐵 + ℎ)(ℎ

2𝐾1 + ℎ2𝐾1𝐾2) 

= ℎ2𝐾1𝐾𝐵𝐷𝐼𝐶 + ℎ2𝐾1𝐾2𝐾𝐵𝐷𝐼𝐶 + ℎ
3𝐾1𝐷𝐼𝐶 + ℎ

22𝐾1𝐾2𝐷𝐼𝐶 

RHS:  

ℎ3(𝐾𝐵 + ℎ) [
ℎ𝑇𝐴(𝐾𝐵 + ℎ) − ℎ𝐵𝑇𝐾𝐵 − 𝐾𝑤(𝐾𝐵 + ℎ) + ℎ

2(𝐾𝐵 + ℎ)

ℎ(𝐾𝐵 + ℎ)
] (
ℎ2 + ℎ𝐾1 + 𝐾1𝐾2

ℎ2
) 

= [ℎ𝑇𝐴(𝐾𝐵 + ℎ) − ℎ𝐵𝑇𝐾𝐵 − 𝐾𝑤(𝐾𝐵 + ℎ) + ℎ
2(𝐾𝐵 + ℎ)](ℎ

2 + ℎ𝐾1 + 𝐾1𝐾2) 

= [ℎ𝑇𝐴𝐾𝐵 + ℎ
2𝑇𝐴 − ℎ𝐵𝑇𝐾𝐵 − 𝐾𝑤𝐾𝐵 − ℎ𝐾𝑤 + ℎ

2𝐾𝐵 + ℎ
3](ℎ2 + ℎ𝐾1 + 𝐾1𝐾2) 

= ℎ3𝑇𝐴𝐾𝐵 + ℎ
4𝑇𝐴 − ℎ3𝐵𝑇𝐾𝐵 − ℎ

2𝐾𝑤𝐾𝐵 − ℎ
3𝐾𝑤 + ℎ

4𝐾𝐵 + ℎ
5 + ℎ2𝐾1𝑇𝐴𝐾𝐵 + ℎ

3𝐾1𝑇𝐴

− ℎ2𝐾1𝐵𝑇𝐾𝐵 − ℎ𝐾1𝐾𝑤𝐾𝐵 − ℎ
2𝐾1𝐾𝑤 + ℎ

3𝐾1𝐾𝐵 + ℎ
4𝐾1 + ℎ𝐾1𝐾2𝑇𝐴𝐾𝐵

+ ℎ2𝐾1𝐾2𝑇𝐴 − ℎ𝐾1𝐾2𝐵𝑇𝐾𝐵 − 𝐾1𝐾2𝐾𝑤𝐾𝐵 − ℎ𝐾1𝐾2𝐾𝑤 + ℎ
2𝐾1𝐾2𝐾𝐵

+ ℎ3𝐾1𝐾2 

= ℎ5 + ℎ4(𝑇𝐴 + 𝐾𝐵 + 𝐾1) + ℎ
3(𝑇𝐴𝐾𝐵 − 𝐵𝑇𝐾𝐵 − 𝐾𝑤 + 𝐾1𝑇𝐴 + 𝐾1𝐾𝐵 + 𝐾1𝐾2)

+ ℎ2(−𝐾𝑤𝐾𝐵 + 𝐾1𝑇𝐴𝐾𝐵 − 𝐾1𝐵𝑇𝐾𝐵 − 𝐾1𝐾𝑤 + 𝐾1𝐾2𝑇𝐴 + 𝐾1𝐾2𝐾𝐵)

+ ℎ(−𝐾1𝐾𝑤𝐾𝐵 + 𝐾1𝐾2𝑇𝐴𝐾𝐵 − 𝐾1𝐾2𝐵𝑇𝐾𝐵 − 𝐾1𝐾2𝐾𝑤) − 𝐾1𝐾2𝐾𝑤𝐾𝐵 

∴ 𝐿𝐻𝑆 + 𝑅𝐻𝑆 = 0 

ℎ5 + ℎ4(𝑇𝐴 + 𝐾𝐵 + 𝐾1) + ℎ
3(𝑇𝐴𝐾𝐵 − 𝐵𝑇𝐾𝐵 − 𝐾𝑤 + 𝐾1𝑇𝐴 + 𝐾1𝐾𝐵 + 𝐾1𝐾2 − 𝐾1𝐷𝐼𝐶)

+ ℎ2(−𝐾𝑤𝐾𝐵 + 𝐾1𝑇𝐴𝐾𝐵 − 𝐾1𝐵𝑇𝐾𝐵 − 𝐾1𝐾𝑤 + 𝐾1𝐾2𝑇𝐴 + 𝐾1𝐾2𝐾𝐵

− 𝐾1𝐾𝐵𝐷𝐼𝐶 − 2𝐾1𝐾2𝐷𝐼𝐶)

+ ℎ(−𝐾1𝐾𝑤𝐾𝐵 +𝐾1𝐾2𝑇𝐴𝐾𝐵 − 𝐾1𝐾2𝐵𝑇𝐾𝐵 − 𝐾1𝐾2𝐾𝑤 − 2𝐾1𝐾2𝐾𝐵𝐷𝐼𝐶)

− 𝐾1𝐾2𝐾𝑤𝐾𝐵 = 0 

∴ ℎ5 = 𝐾1𝐾2𝐾𝑤𝐾𝐵 − ℎ
4(𝑇𝐴 + 𝐾𝐵 + 𝐾1)

− ℎ3(𝑇𝐴𝐾𝐵 − 𝐵𝑇𝐾𝐵 − 𝐾𝑤 + 𝐾1𝑇𝐴 + 𝐾1𝐾𝐵 + 𝐾1𝐾2 − 𝐾1𝐷𝐼𝐶)

− ℎ2(−𝐾𝑤𝐾𝐵 + 𝐾1𝑇𝐴𝐾𝐵 − 𝐾1𝐵𝑇𝐾𝐵 − 𝐾1𝐾𝑤 + 𝐾1𝐾2𝑇𝐴 + 𝐾1𝐾2𝐾𝐵

−𝐾1𝐾𝐵𝐷𝐼𝐶 − 2𝐾1𝐾2𝐷𝐼𝐶)

− ℎ(−𝐾1𝐾𝑤𝐾𝐵 + 𝐾1𝐾2𝑇𝐴𝐾𝐵 − 𝐾1𝐾2𝐵𝑇𝐾𝐵 − 𝐾1𝐾2𝐾𝑤 − 2𝐾1𝐾2𝐾𝐵𝐷𝐼𝐶) 

5th order polynomial of h yields one positive root and four negative roots. Once h has been 

determined, s can be solved and subsequently each of the carbonate variables, as well as pHT 

= -log(h). 
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A.2.1 Derivation of TAec (Wolf-Gladrow et al., 2007) 

The derivation of TAec pertains to equations 19, 20 and 21 in Section 1.4, Pages 23 – 25.  

𝑇𝐴 = [𝐻𝐶𝑂3
−] + 2[𝐶𝑂3

2−] + [𝐵(𝑂𝐻)4
−] + [𝑂𝐻−] + [𝐻𝑃𝑂4

2−] + 2[𝑃𝑂4
3−]

+ [𝐻3𝑆𝑖𝑂4
−] + [𝑁𝐻3] + [𝐻𝑆

−] + 𝑥 − [𝐻+]𝐹 − [𝐻𝑆𝑂4
−]

− [𝐻𝐹] − [𝐻3𝑃𝑂4] − [𝐻𝑁𝑂2] + 𝑥 

(19) 

 

∑𝑞𝑖[𝐶𝑖] = 0

𝑖

 (20) 

= [𝑁𝑎+] + 2 [𝑀𝑔2+] + 2[𝐶𝑎2+] + [𝐾+] + 2[𝑆𝑟2+] + 𝑥 + [𝑁𝐻4
+] + [𝐻+] + 𝑥

− [𝐶𝑙−] − 2[𝑆𝑂4
2−] − [𝐵𝑟−] − [𝑁𝑂3

−] − [𝑁𝑂2
−] − 𝑥

− [𝐻𝐶𝑂3
−] − 2[𝐶𝑂3

2−] − [𝐵(𝑂𝐻)4
−] − [𝑂𝐻−] − [𝐻𝑆−]

− [𝐻3𝑆𝑖𝑂4
−] − [𝐻𝑆𝑂4

−] − [𝐹−] − [𝐻2𝑃𝑂4
−] − 2[𝐻𝑃𝑂4

2−]

− 3[𝑃𝑂4
3−] 

 

where x represents unidentified species of the acid-base system in seawater. 

Dickson’s expression for TA (Eq. 19), with the addition of HNO2, is added to both sides of 

equation 20 such that the right hand side is equal to Eq 19, and the left hand side of the equation 

simplifies to TAec (Eq. 21):  

∴  ∑𝑞𝑖[𝐶𝑖] + 𝑇𝐴 = 𝑇𝐴

𝑖

 

∴  ∑𝑞𝑖[𝐶𝑖] + 𝑇𝐴

𝑖

=[𝑁𝑎+] + 2 [𝑀𝑔2+] + 2[𝐶𝑎2+] + [𝐾+] + 2[𝑆𝑟2+] + ⋯+ [𝑁𝐻4
+] + [𝐻+] + ⋯− [𝐶𝑙−]

− 2[𝑆𝑂4
2−] − [𝐵𝑟−] − [𝑁𝑂3

−] − [𝑁𝑂2
−] − ⋯− [𝐻𝐶𝑂3

−] − 2[𝐶𝑂3
2−]

− [𝐵(𝑂𝐻)4
−] − [𝑂𝐻−] − [𝐻𝑆−] − [𝐻3𝑆𝑖𝑂4

−] − [𝐻𝑆𝑂4
−] − [𝐹−]

− [𝐻2𝑃𝑂4
−] − 2[𝐻𝑃𝑂4

2−] − 3[𝑃𝑂4
3−] + ([𝐻𝐶𝑂3

−] + 2[𝐶𝑂3
2−]

+ [𝐵(𝑂𝐻)4
−] + [𝑂𝐻−] + [𝐻𝑃𝑂4

2−] + 2[𝑃𝑂4
3−] + [𝐻3𝑆𝑖𝑂4

−] + [𝑁𝐻3]

+ [𝐻𝑆−] + ⋯− [𝐻+]𝐹 − [𝐻𝑆𝑂4
−] − [𝐻𝐹] − [𝐻3𝑃𝑂4] − [𝐻𝑁𝑂2] + ⋯)

= [𝑁𝑎+] + 2 [𝑀𝑔2+] + 2[𝐶𝑎2+] + [𝐾+] + 2[𝑆𝑟2+] + ⋯+ [𝑁𝐻4
+] + +⋯− [𝐶𝑙−]

− 2[𝑆𝑂4
2−] − [𝐵𝑟−] − [𝑁𝑂3

−] − [𝑁𝑂2
−] − ⋯− [𝐻𝑆𝑂4

−] − [𝐹−]

− [𝐻2𝑃𝑂4
−] − [𝐻𝑃𝑂4

2−] − [𝑃𝑂4
3−] 

= 𝑇𝐴𝑒𝑐 
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Therefore:  

𝑇𝐴𝑒𝑐 = [𝑁𝑎
+] + 2 [𝑀𝑔2+] + 2[𝐶𝑎2+] + [𝐾+] + 2[𝑆𝑟2+] + ⋯+ [𝑁𝐻4

+]

+ +⋯− [𝐶𝑙−] − 2[𝑆𝑂4
2−] − [𝐵𝑟−] − [𝑁𝑂3

−] − [𝑁𝑂2
−] − ⋯

− [𝐻𝑆𝑂4
−] − [𝐹−] − [𝐻2𝑃𝑂4

−] − [𝐻𝑃𝑂4
2−] − [𝑃𝑂4

3−] 

= [𝑁𝑎+] + 2[𝑀𝑔2+] + [𝐾+] + 2[𝑆𝑟2+] + ⋯+ [𝑁𝐻4
+] + ⋯− [𝐶𝑙−]

− [𝐵𝑟−] − [𝑁𝑂3
−] − ⋯𝑇𝑃𝑂4 + 𝑇𝑁𝐻3 − 2𝑇𝑆𝑂4 − 𝑇𝐻𝐹

− 𝑇𝐻𝑁𝑂2  

(20) 

where  

𝑇𝑃𝑂4 = [𝐻3𝑃𝑂4] + [𝐻2𝑃𝑂4
−] + [𝐻𝑃𝑂4

2−] + [𝑃𝑂4
3−] 

𝑇𝑁𝐻3 = [𝑁𝐻4
+] + [𝑁𝐻3]  

𝑇𝑆𝑂4 = [𝑆𝑂4
2−] + [𝐻𝑆𝑂4

−]  

𝑇𝐻𝐹 = [𝐹−] + [𝐻𝐹] 

𝑇𝐻𝑁𝑂2 = [𝑁𝑂2
−] + [𝐻𝑁𝑂2] 

 

Ellipses represent unidentified acid-base species in seawater.  
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APPENDIX B  

B.1 SOCCOM observational data 

SOCCOM float observations (Figures B1 – B10) showed a decrease in temperature ranging 

from ~ 22 °C in the STZ (Float 9313) down to ~ -2 °C in the MIZ (Float 9096). The highest 

sea surface temperatures were observed in the STZ and decreased moving south into the higher 

latitudes (Figure B2).  The STZ had an average temperature of 17.29 ± 2.041 °C, which 

decreased to 11.10 ± 2.506 °C in the SAZ, 4.529 ± 0.666 °C in the PFZ, 0.542 ± 0.909 °C in 

the PUZ, and -0.089 ± 1.190 °C in the MIZ (Table 4.4).  The lowest temperatures were observed 

in the MIZ, closest to the ice edge.   

Figure B2 shows the temporal distribution of the sea surface temperature measurements from 

Dec 2014 to Nov 2017.  Autumn/winter months in the southern hemisphere are demarcated in 

grey from May to August of each year.  Float 9313 situated in the SAZ showed an upward 

trend in sea surface temperature over the time period moving from the SAZ to the STZ, with 

maximum temperatures between Jan – Feb 2015, Apr 2016, Dec 2016 – Jan 2017 and Nov 

2017.  Minimum temperatures in the SAZ/STZ region occur between Jul 2017, Jun 2016 and 

Jul – Aug 2017.  Float 9260 situated in the PFZ showed little variation in observed 

temperatures, with minimum temperatures seen from Aug – Sep 2015.  The PUZ/MIZ showed 

increasing temperatures during Feb – Apr 2015, Feb – Mar 2016, Jan – Apr 2017, and Dec 

2017 – Apr 2018.  Decreasing temperatures were observed in the PUZ/MIZ from May – Jun 

2015, May – Dec 2016 and May – Nov 2017.  The MIZ was characterised by warmer sea 

surface temperatures in the winter months as ice coverage inhibits the exchange of heat 

between the ocean and the atmosphere, and slightly cooler temperatures in the summer months 

coupled with the melting of sea-ice in the region. 

Coinciding with the decrease in temperature, was a freshening of the sea surface salinity from 

more saline waters in the STZ, to relatively fresher waters in the MIZ.  (Figure B3).  The STZ 

had an average salinity of 35.40 ± 0.227 PSU, and decreased to 34.35 ± 0.450 PSU in the SAZ. 

The PFZ had the lowest average salinity at 33.78 ± 0.075 PSU, which increased to 33.86 ± 

0.161 PSU in the PUZ and 33.81 ± 0.0113 PSU in the MIZ.  

The temporal distribution of sea surface salinity in each region (Figure B4) showed an 

increasing trend in salinity as Float 9313 moved from the SAZ to the STZ, little variation in 

salinity in the PFZ and a varying salinity in the PUZ/MIZ.  Salinity is observed to increase 



IX 

 

from May – Jun 2015, Apr – Nov 2016, and Jun – Sep 2017 in the PUZ/MIZ, which coincide 

with the winter-time months in the southern hemisphere.  The surface waters of the MIZ are 

seen to be less saline at the onset of the winter months, and increased leading up to the summer 

season.  This coincides with brine rejection from sea-ice formation i.e. waters grow more saline 

as ice forms, and fresher as the ice melts throughout the summer. 

In situ pHT measurements at the sea surface were observed to range between 7.1 and 8.1 on the 

pHT scale (Figure B5).  The lower end of the pHT readings, indicating a neutral pHT are 

attributed to sea-ice thaw at the sensor interface in the PUZ and MIZ. The largest variation in 

pHT was observed in the MIZ, as pHT drops to < 8.0.  pHT observations showed a decrease in 

pHT as the float drifted from the SAZ in 2014 (8.067 ±0.021) to the STZ in 2016 – 2017 (8.027 

± 0.029).  The average pHT decreased from the PFZ at 8.026 ± 0.028, to 7.973 ± 0.181 in the 

PUZ, and to 7.927 ± 0.182 in the MIZ.   

Surface ocean pHT measurements from the STZ to the MIZ show a similar seasonal trend 

(Figure B6) through time.  The MIZ, closest to the ice edge had the most variation in pHT 

measurements.  The seasonal trend of pHT in the low latitudes (STZ and SAZ) indicated a high 

during the summer months, and lows during the winter months. This was in contrast to the 

seasonal trend in the high latitudes (PFZ and MIZ), where highs were observed in the winter 

months and lows in the summer months, which coincides with the trend observed in salinity.  

It is expected that the melting of sea-ice freshens the surface waters of the MIZ in summer 

thereby lowering pHT.  Conversely, the winter-time exchange of CO2 between upwelled deep 

water and the atmosphere are seen to increase pHT in the surface ocean.  Anomalous 

observations of pHT that appeared to be unreasonably low are likely due to sea-ice thaw at the 

sensor interface, and are not considered in this study. 

The sea surface average float-based measurements for each zone are summarised in Table B1. 
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Figure B2: Available monthly average sea surface temperature measurements in each zone from December 

2014 – April 2018 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B1: Sea surface temperature measured in each zone from 30 °S – 60 °S  
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Figure B3: Sea surface salinity measurements in each zone from 30 °S – 60 °S  

Figure B4: Available monthly average sea surface salinity measurements in each zone from December 2014 – 

April 2018 
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Figure B5: Sea surface in situ pH measurements in each zone from 30 °S – 60 °S  

Figure B6: Available monthly average sea surface pH measurements in each zone from December 2014 – April 

2018 
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Surface ocean TA estimates calculated from float-based measurements by means of the LIAR 

algorithm (LIAR_TA) and the Lee expression (LeeTA) are shown in Figure B7.  LIAR_TA 

estimates showed an increase in TA as Float 9313 moved from the SAZ (2283 ± 20.17 μmol/kg) 

to the STZ (2329 ± 9.912 μmol/kg). The regional average of LIAR_TA showed a decrease 

from the SAZ to the PFZ (2274 ± 6.275 μmol/kg).  The PUZ and MIZ had an average 

LIAR_TA of 2295 ± 12.69 μmol/kg and 2294 ± 7.950 μmol/kg, respectively.  By comparison, 

LeeTA showed an almost constant average of 2291 ± 8.879 μmol/kg and 2291 ± 7.065 μmol/kg 

in the PUZ and MIZ, respectively.  It is seen that LIAR_TA showed a good correlation with 

LeeTA in the STZ, SAZ and PFZ, however, it is shown to have had a higher estimate of TA in 

the MIZ. This suggests that the LIAR expression is also affected by a summer bias which will 

be further explored in Section 5.4 

The temporal distribution of LIAR_TA and LeeTA are shown in Figure B8.  An increasing 

trend in TA was observed moving from the SAZ to the STZ according to data from Float 9313, 

with no significant difference seen between LIAR_TA and LeeTA, and little seasonal variation 

observed across the annual cycle.  This suggests that the LIAR_TA algorithm is insensitive to 

changes in TA due to biological activity as we expect to see biological activity in the SAZ 

during the spring-summer transition.  Float 9260 situated in the PFZ showed an increase in TA 

from the winter (May – Aug 2015) into the summer period (Jun – Nov 2015), with no 

significant difference observed between LIAR_TA and LeeTA.   

In contrast, LIAR_TA in the MIZ (Float 9260) showed a strong seasonal trend, with high values 

of TA seen in the summer months of 2014/2015 and 2016/2017, and additionally, right before 

the onset of the winter months in April/May 2016.  A significant difference between LIAR_TA 

and LeeTA was observed in the PUZ/MIZ from Aug 2016 – Apr 2018.  However, it is noted 

here that these highs for LIAR_TA directly coincide with the trend in measured salinity by the 

float during the same time period, which is expected from what we know of TA expressions 

being heavily correlated with salinity.  

The resulting calculated pCO2 values based on pHT measurements and LIAR derived TA are 

shown in Figures B9 – B10.  pCO2 is seen to increase as Float 9313 moves from the SAZ (369.7 

± 20.84 μatm ) to the STZ (406.6 ± 21.32 μatm), which showed a seasonal trend of highs during 

the winter months, and lows during the summer months.  This is expected in the STZ region as 

it is dominated by changes in temperature – we see a loss of pCO2 to the atmosphere in the 

warmer season, and an intake of pCO2 from the atmosphere into the ocean during the colder 
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season.  In addition, due to the uptake of CO2 by biology, we expect to see a low pCO2 during 

the summer in the SAZ, as evidenced by the WG, and high pCO2 in the winter, as seen from 

ship-board measurements.   

pCO2 is shown to increase from the SAZ to the PUZ (408.0 ± 18.60 μatm).  The PFZ (406.4 ± 

32.73 μatm) showed a significant increase in pCO2 in the winter of 2015, but essentially 

showed a similar trend as the SAZ.  The PUZ showed low pCO2 in the winter months, likely 

due to the inhibition of exchange at the air-sea interface from sea-ice coverage, and highs in 

the summer months coincident with a lack of ice-cover.  pCO2 values from 2016 to 2017 in the 

MIZ are not shown here due to bad data flags in the dataset and were thus excluded.  Calculated 

values for TA and pCO2 are summarised in Table 4.5.  
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Figure B8: Available monthly average estimated TA at the sea surface, calculated from LIAR and Lee 

equations from December 2014 – April 2018 

  

Figure B7: TA estimated by the LIAR algorithm for floats 9096 (red), 9260 (blue) and 9313 (green) in the 

surface-ocean (upper 10 m) compared to TA derived from the Lee expression (white).  
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Figure B10: Available monthly average estimated pCO2 at the sea surface in each zone from December 2014 –Sep 

2017 

Figure B9: Estimated pCO2 at the sea surface in each zone from 30 °S – 60 °S 
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Table B1:  Average sea surface float-based measurements for each zone  

Float Temperature (°C) Salinity (PSU) pHT 

STZ 17.29 ± 2.041 35.40 ± 0.227 8.027 ± 0.029 

SAZ 11.10 ± 2.506 34.35 ± 0.450 8.067 ± 0.021 

PFZ 4.529 ± 0.666 33.78 ± 0.075 8.026 ± 0.028 

PUZ 0.542 ± 0.909 33.86 ± 0.161 7.973 ± 0.181 

MIZ -0.089 ± 1.190 33.81 ± 0.113 7.927 ± 0.182 

 

Table B2: Average estimated TA and pCO2 for the LIAR and Lee expressions per zone  

Float LIAR_TA (μmol/kg) LeeTA (μmol/kg) LIAR pCO2 (μatm) 

STZ 2329 ± 9.912  2329 ± 10.95 406.6 ± 21.32 

SAZ 2283 ± 20.17 2284 ± 19.10 369.7 ± 20.84 

PFZ 2274 ± 6.275 2274 ± 4.937 406.4 ± 32.73 

PUZ 2295 ± 12.69 2291 ± 8.879 408.0 ± 18.60 

MIZ 2294 ± 7.950 2291 ± 7.065 - 
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Discrete data in Southern Ocean is limited in winter, however, a seasonal cycle of nitrate can 

be constructed from summer voyage datasets which is outside the scope of this study.  The 

illustration of nitrate for the winter season in the SO showed the latitudinal changes of nitrate 

moving from the SAZ to the MIZ, which is necessary to have the full picture of what is 

occurring in each zone for this season in particular.  The basis of this study is that winter-time 

datasets are scarce, and while the nitrate seasonal cycle can be shown for the SOCCOM float 

data, it is still necessary to see how sensor data compares to discrete shipboard measurements 

in the region.  

From Figure B11 we see that nitrate concentrations increase in the winter months in each zone, 

as expected with the decrease in biological activity and low light conditions in the Southern 

Ocean.   

Figure B11: Available monthly average nitrate concentrations at the sea surface in each zone from 

December 2014 – April 2018 
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APPENDIX C 
 

Key 

✓  There is a significant difference between the datasets 

 

C.1.1 Wave Glider p-value tables  

Table C1: p-values for WGTA compared to LeeTA 

 LeeTA LeeTA_pre 
LeeTA-

bloom 

WGTA-

bloom 

WGTA 2.20 × 10
-16

 ✓      

WGTA-pre   2.20 × 10
-16

 
✓  2.39 × 10

-6
 ✓ 

WGTA-bloom     0.6019   

WGTA_pre        

LeeTA_pre     8.095 × 10
-16   

 

Table C2: p-values for WGpCO2 compared to LEEpCO2 

 LEEpCO2 LEEpCO2_pre LEEpCO2_bloom 

WGpCO2 2.92 × 10
-2

 ✓ 
   

WGpCO2-pre   2.13 × 10
-15

 ✓ 
 

WGpCO2-

bloom 
    0.8658 
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C.1.2 Winter Cruise p-value tables  

 

Table C3: p-values from WC2015-WC2017 on significant difference of salinity 

Salinity 15v17 16v17 15v16 

STZ 0.007542 ✓ 0.1924  0.1683  

SAZ 5.90 × 10
-6

 ✓ 0.04957 ✓ 0.3597  

PFZ 0.6913  0.2525  0.00408 ✓ 

PUZ 0.07686 ✓ 0.4919  0.004859 ✓ 

 

Table C4: p-values from WC2015-WC2017 on significant difference of temperature 

Temperature 15v17 16v17 15v16 

STZ 0.003473 ✓ 0.1359  0.6927  

SAZ 0.05228  0.06658 
 

0.7373  

PFZ 0.2677  0.189  0.6144 
 

PUZ 0.0001824 ✓ 0.4922  0.112 
 

 

Table C5: p-values from WC2015-WC2017 on significant difference of nitrate 

Nitrate 15v17 16v17 15v16 

STZ 0.7777  0.7525  0.6043  

SAZ 0.1473  0.004869 ✓ 0.782  

PFZ 0.08925 ✓ 0.02497 ✓ 0.1197 
 

PUZ 0.05432  0.0001514 ✓ 0.1027 
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Table C6: p-values from WC2015-WC2017 on significant difference of total alkalinity 

Total Alk 15v17 16v17 15v16 

STZ 0.9461  0.3575  0.3741  

SAZ 0.006244 ✓ 0.003989 ✓ 0.8998  

PFZ 0.02109 ✓ 0.0009246 ✓ 0.2419  

PUZ 0.2441  0.0004533 ✓ 7.70 × 10
-5

 ✓ 

 

Table C7: p-values from WC2015-WC2017 on significant difference of LeeTA 

LeeTA 16v16 17v17 15v15 

STZ 0.665  0.0228 ✓ 0.3441  

SAZ 0.1047  0.9067  0.5657  

PFZ 0.000473 ✓ 0.8083  0.006861 ✓ 

PUZ 0.000409 ✓ 0.4381  3.30 × 10
-5

 ✓ 

MIZ   0.36    

 

Table C8: p-values from WC2015-WC2017 on significant difference of pCO2 

pCO2 15v17 16v17 15v16 

STZ 0.02089 ✓ 0.001604 ✓ 0.04799 ✓ 

SAZ 0.01381 ✓ 0.2264  0.002877 ✓ 

PFZ 0.5248  0.002504 ✓ 6.19 × 10
-5

 ✓ 

PUZ 0.893  6.90 × 10
-5

 ✓ 8.45 × 10
-7

 ✓ 
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Table C9: p-values from WC transects compared to LeeTA 

 LeeTA 

WC2017 0.2343   

WC2016 6.01 × 10
-3

 ✓ 

WC2015 0.03269 
✓ 

 

C.1.3 SOCCOM float p-value tables  

 

Table C10: p-values for significant difference between LeeTA and Liar_TA for each float 

SOCCOM Liar vs Lee 

Float 9096 0.01253 

Float 9260 0.6789 

Float 9313 0.08662 

 

Table C11: p-values for significant difference between LeeTA and Liar_TA for each zone 

SOCCOM by zone   

STZ 0.9921 

SAZ 0.7448 

PFZ 0.6789 

PUZ 0.03088 

MIZ 0.2019 
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APPENDIX D 

This section serves to outline possible considerations, limitations, and uncertainties related to 

this study. 

D.1 Alternate correction method for pH calibration 

The decision to use a percentage error method to calibrate the pH sensor as the raw measured 

readings from the WG I dataset proved to have unrealistic corresponding DIC and TA values 

when combined with WGpCO2 observations to derive all the carbonate values, which were far 

outside of the acceptable margins of error for such a calculation.  Rather than affecting the 

apparent trend in the data that was captured by the sensor, a percentage error approach was 

applied to bring the pH observations within an acceptable range of values.   

We acknowledge that this method makes the WG dataset and subsequent calculations of 

WGTA dependent on the reference value for pH.  However, the reference value is supported 

by discrete samples of DIC and TA that were acquired from the deployment of the second WG, 

as well as climatological pH derived from available pCO2 and TA monthly estimates in the 

region.  Both WG I and II were subjected to the same correction, while WG II did not have a 

significant adjustment like WG I, it was still corrected in the same manner.  pH was calculated 

from this to determine what would be a ‘likely’ pH value and taken to be the reported reference 

values for the correction.   

However, owing to the inverse relationship between pH and pCO2 (Figure D1), and logarithmic 

nature of pH, a further step in the correction process was performed on [H+] concentration 

derived from the raw pH data obtained by the Durafet sensor, which has a linear relation to 

pCO2 (Figure D2).  The [H+] concentration was then corrected by the percentage error method 

outlined in Section 3.4.1 and converted to pH.  

Figure D1 shows the relation between WGpCO2 and pH derived from the pH % correction and 

the [H+] % correction – clearly showing that the [H+] % correction pH values have more 

variation than the pH % correction values, which have a strongly inverse relationship with 

WGpCO2.  Figure D2 shows the relation between WGpCO2 and [H+] between WG I and WG 

II, where WG I concentrations show less correlation with WGpCO2 than WG II, reinforcing 

the need for additional calibration to the sensor readings that require a less sensitive approach 

to changes. 
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Figure D3 shows the raw pH data, the pH corrected by % error, and the pH derived from the 

corrected [H+] concentration.  As expected, the alternate correction of [H+] concentration also 

acts to lower the pH within acceptable reported ranges for surface ocean seawater.  At present 

there is not enough data to account for a reason for the observed variations for pH derived from 

the [H+] concentration correction. We acknowledge that the slight decreasing trend observed 

in the pH [H]corr values from October - November may be attributed to a number of factors 

such as initial calibration of the sensor on WG I, drift between the internal and external 

electrodes of the Durafet pH sensor (Martz et al., 2010), or shifts in the surface ocean properties 

temperature (Figure 4.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D1: Relationship between WGpCO2 and pH from [H+] and pH % corrected values for 

WG I and WG II between October and December 2013 
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 Figure D3: Raw pH data output from the Wave Glider compared to the percentage error 

corrected values([H+] and pH) between October and December 2013 

Figure D2: Relationship between WGpCO2 and [H+] corrected values for WG I and WG II 

between October and December 2013 
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D.2 Seasonal bias of TA algorithms 

In trying to resolve the seasonal bias of measurements, we compared GLODAPv2.2019 data 

(Key et al., 2015, Olsen et al., 2016)  with WC, WG, LeeTA and LIAR_TA data  available in 

the region of study (WG location).  However, we acknowledge that these values are not 

temporally consistent with the SOCCOM, WC, or WG datasets.  Spatially comparative 

GLODAP data was obtained from February 2008, November 2004, and December 2014, all of 

which fall within the austral summer months.   

The seasonal bias of the data points is clearly not representative of a complete seasonal cycle 

in TA.  As seen from Figure D4, GLODAPv2.2019 data points coincide with LIAR_TA and 

LeeTA estimates from October – December, with higher values in February that are similar in 

range to the WGTA data points – whether or not this coincides with a late summer bloom 

cannot be determined without additional data.  Similarly, WC data show that there is a range 

in TA during the winter season that is not captured by the algorithms, reinforcing that there 

exists a seasonal bias in the formulae.  This study does not expand the domain of study outside 

of the sampled region would be subject to the same data bias that already exist due to the scarce 

data measurements in the Southern Ocean.  

Figure D4: Comparison of TA per month compiled from WC, WG, GLODAPv2.2019 and 

SOCCOM datasets 
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D.3 Relation between LeeTA and LIAR_TA 

The following graph was constructed to illustrate the deviations between LIAR and Lee TA 

across the SO, at temperatures below 0 °C and between 11-12 °C.  Figure D5 was constructed 

using observational data obtained from shipboard and float-based measurements.  We see the 

relationships differ from one another most at temperatures below 0 °C, however, show a 

remarkable similarity (1:1) at temperatures between 11 – 12 °C.  This supports our theory that 

Lee TA and LIAR TA are similar in nature in the biologically productive regions of the SO i.e. 

accounting for nitrate and oxygen in the LIAR formulation does not show a significant 

difference from simpler formulations based on only salinity and temperature.  

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure D5: Comparison between LeeTA and LIAR_TA across a range of Southern Ocean 

conditions at temperatures below 0 °C and between 12-11 °C 
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D.4 Impact of changes in LeeTA on derived pCO2 

Hypothetical scenarios were carried out on LeeTA, lowering the TA concentration by 10, 30 

and 60 µmol/kg respectively to mimic the expected lower TA during the pre-bloom conditions, 

these values were then used to compute pCO2 and compared to WGpCO2 observations.  

Figure D6 shows the derived pCO2 values from varying TA and WGpH. As observed, larger 

magnitude changes in LeeTA result in a significant difference of calculated pCO2 and correlate 

more closely to the observed WGpCO2 measurements, as seen from the scenario where LeeTA 

is decreased by a magnitude of 60 µmol/kg.  This indicates that the discrepancy observed 

between LEEpCO2 and WGpCO2 (Figure 4.7) can be reconciled by accounting for a bias in 

nitrate uptake during the bloom period i.e. accounting for remineralisation (no nitrate uptake) 

and a subsequently lower TA (WGTA) in the pre-bloom period.  

 

  

Figure D6: Resultant estimates of pCO2 with decreasing LeeTA during the pre-bloom period 

as compared to WGpCO2 observations  
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D.5 Impact of the nitrate seasonal cycle on TA 

The changes in TA associated with the nitrate seasonal cycle are difficult to resolve without 

corresponding discrete measurements of TA throughout the seasonal cycle in the Southern 

Ocean.  For this purpose, we show the correlation between LIAR_TA in the STZ and SAZ 

(regions of high biological activity) and corresponding nitrate sensor measurements, compared 

with discrete TA observations from cruise data in the winter season.  From Figure D7 we 

observe seasonal cycle of nitrate as measured by the SOCCOM float sensors, we see a 

maximum nitrate concentration between June – August, the winter period when nitrate uptake 

is expected to be low, these values are supported by the WC datasets for discrete measurements 

of surface nitrate concentrations.  

Figures D8 and D9 show the correlation between LIAR_TA, WC TA observations and the 

corresponding nitrate concentrations. Both datasets show a strong correlation between TA 

nitrate concentration, showing a linearly inverse relationship i.e. for low nitrate concentrations, 

TA is high in concentration (in accordance with the findings of this study), and TA is low when 

nitrate concentrations are at a high – this can be indicative of nitrate uptake and 

remineralisation.  However, we acknowledge that there are several factors that could affect TA 

in this region that cannot be definitively resolved with the available data. It is suggested that a 

time series of discrete data measurements be obtained to constrain the seasonal cycle of TA, as 

well as validate the float sensor measurements in under-sampled regions of the SO.  

 

  

Figure D7: Float, WC and GLODAPv2 nitrate concentration data in the STZ/SAZ region per month 
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Figure D8: LIAR_TA correlated with corresponding nitrate sensor data from Float 9313 

Figure D7: WC2016 and WC2017 discrete TA observations correlated with corresponding nitrate 

concentrations 




