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Abstract 

The at-sea behaviour of seabirds, such as albatrosses and petrels (order Procellariiformes), is 

difficult to study because they spend most of their time on the ocean and have extremely 

large ranges. In the early 2000s, behavioural studies of seabirds were dominated by diving 

patterns of diving birds or spatial studies from satellite telemetry. Recent advances in bio-

logging technologies have opened up new avenues for studying the at-sea behaviour of far-

ranging seabirds in their natural environment. Bio-logging devices are now small enough to 

be attached to flying seabirds where multiple sensors record data at infrasecond sampling 

rates. These data can be used to infer, inter alia, body posture, activity (e.g. flapping, take-

off, landing, etc.), magnetic heading and spatial distribution at a resolution that was not 

previously possible. Bio-logging devices are battery powered and a tradeoff exists between 

the length of deployments and sampling frequencies, however not a lot of study has been 

done on what the effect of coarse sampling rates are on data quality. Together with the 

masses of data that are generated by bio-logging devices, analytical tools have also become 

available to extract useful metrics from the data.  

This thesis utilized some of the latest bio-logging technology to study the at-sea behaviour of 

several procellariiforms, breeding on Marion, Gough and Nightingale Islands, from fine-

scale data. After describing the loggers used and the methods of deployment in Chapter 2, I 

assess the effect that sampling rates have on metrics derived from GPS loggers in Chapter 

3. This was done by sub-sampling GPS tracks recorded at 1-s sampling intervals, showing the 

effect that different sampling intervals have on metrics, including the total distance travelled 

and behavioural states derived from path length and turning angles. I show that for larger 

sampling intervals, the total distance travelled will be underestimated at varying degrees 

depending on flight sinuosity. By varying sampling rates when estimating behavioural states, 

I show that moderate (10–30 min) sampling intervals may produce better results. I explore 

the limitations of low-cost GPS loggers for fine-scale analyses and conclude that specialized 

loggers are most likely required when sampling at intervals < 1 s. In Chapter 4 I use 

specialized loggers in the form of tri-axial magnetometer, and video loggers and describe two 

novel methods to extract roll angles of albatrosses during dynamic soaring flight. Animal 

body angles are normally extracted by using tri-axial accelerometer data, but their dynamic 

soaring flight mode inhibits the use of these methods. I show how magnetometer data are 

independent of dynamic movement and can be used to estimate roll angles of flying seabirds. 

This method is validated from bird-borne video footage where the horizon is used as a proxy 

for the bird’s roll angle and I describe a method to automatically extract such angles using 

computer vision techniques. These new methods are then applied to data collected from 

Wandering Albatrosses Diomedea exulans in Chapter 5, showing how the birds vary their 
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roll angle in response to changing winds. Additionally, flapping flight was identified from 

patterns in the vertical axis (heave) of a tri-axial accelerometer and I show how Wandering 

Albatrosses may be flapping more than expected. By coupling flapping and roll angles I show 

that flapping, on occasion, occur at the upper turn of the dynamic soaring cycle, a period 

previous thought devoid of flaps. These results also suggest possible sexual differences, 

where males seem to flap more often than females and limit their take-offs to favourable 

wind conditions. Lastly, in Chapter 6 I use the same methods as in the previous two 

chapters to compare the fine-scale flight of six Procellariiformes species breeding on Marion, 

Gough and Nightingale Islands. I show how these species have varied flight patterns where 

they respond differently to wind patterns, most likely driving their distribution and eventual 

foraging areas. As expected, smaller species seem to be more manoeuvrable allowing them to 

rapidly roll at extreme angles in strong winds while tolerating light winds by increasing the 

amount of time spent flapping. Breeding location also played a role as birds from the Tristan 

da Cunha archipelago flapped more often and flew in lighter winds than Marion Island birds.  

In summary, Chapter 7 discusses how, using a multisensor approach, bio-logging 

technology can be effectively used to study the fine-scale behaviour of flying seabirds. Each 

of the loggers have their own limitations and it is important to take these into account when 

analyzing the data. I describe two new methods for extracting roll angles from dynamic 

soaring seabirds and show how individuals from several species vary roll angle and flapping 

flight in response to changing winds. This thesis highlights the varying behavioural strategies 

that flying seabirds use in the Southern Ocean, showing that individual species and 

populations may respond differently to changing environmental conditions. 
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Chapter 1: General introduction 

The constraints imposed by body size have long been studied in animals under the general 

term of allometry (Gould 1966), which underpins many of the general relationships in 

ecology (Dial et al. 2008). Birds are particularly useful to study these relationships, as their 

morphologies are easy to predict with allometric scaling (Dial et al. 2008) and they show 

strong allometric scaling in a host of morphological and physiological parameters (e.g. wing 

area, heart rate, eye size etc.; Warham 1977; Brooke et al. 1999; Shaffer et al. 2001b). Where 

general trends are well known, exceptions to these trends are particularly interesting to 

study and although flapping flight scales with body size (Pennycuick 1982), the distances 

travelled by soaring birds seem to be largely independent of body size (Spear and Ainley 

1997; Watanabe 2016). Flying animals are also interesting to study as they appear to have 

similar efficiencies regardless of body size (Bale et al. 2014). Animals may have functional 

limitations that scale with body size, but can compensate for these by behavioural 

adaptations (Dial et al. 2008). Scaling effects of behaviour seem to be very complex and 

although allometric relationships are well studied, the allometry of behaviour and movement 

are not (Dial et al. 2008; Hebblewhite and Haydon 2010).  

Seabirds as central place foragers 

While breeding, seabirds are central place foragers that have to find food within commuting 

range of their nests. The albatrosses and petrels (Procellariiformes) are among the most 

extreme central place foragers as they can travel at great speeds and remain away from their 

nests for up to 3–4 weeks while incubating eggs. This allows them to cover immense 

distances between incubation shifts (Phillips et al. 2008; Weimerskirch et al. 2014), and 

some species undertake long foraging trips lasing 2–4 weeks even while provisioning chicks 

(Weimerskirch 1998; Einoder et al. 2011; Cleeland et al. 2014; Schoombie et al. 2018). These 

long foraging trips during chick-rearing are thought to be self-provisioning trips, when 

parents recover body condition, and are usually alternated with several shorter chick-

provisioning trips (Weimerskirch 1998). Coupled with their fast and fuel-efficient flight, 

these seabirds can cover vast distances during each trip, and thus exploit food resources 

thousands of kilometres from their breeding islands (Weimerskirch et al. 2014). These 

incredible flying feats are achieved by albatrosses and petrels largely independent of body 

sizes (Figure 1.1 and Supplementary Table S1.1). Seabird distribution and foraging behaviour 

may not be related to their body size, but rather to variations in foraging strategies 

(Weimerskirch et al. 2005). Studying their behaviour (and individual variation) together 

with environmental variables is crucial for conservation of biodiversity in the Southern 
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Ocean (Cooke 2008), where they function as top-predators and potential indicators of 

ecosystem health (Boyd et al. 2006).  

 

Figure 1.1: Maximum distance travelled from nesting grounds by breeding albatrosses and 

petrels in relation to body size. Supplementary Table S1.1 shows the data sources of the 

values.  

Seabird flight 

Seabirds can be grouped by the proportion of time they spend performing different modes of 

flight: soaring, gliding, flapping, or a combination of gliding and flapping (Spear and Ainley 

1997; Ainley et al. 2015). Soaring seabirds are sometimes split into dynamic and thermal 

soaring groups (Watanabe 2016), with thermal soaring largely restricted to the tropical 

Fregatidae (Pennycuick 1983; Weimerskirch et al. 2016). In oceanic areas with high wind 

speeds, birds can take advantage of the winds (and wind-induced waves) to soar at low 

altitudes at high speeds (Pennycuick 1982; Sachs 2005; Richardson 2011; Weimerskirch et 

al. 2012). Thus, when referring to procellariiforms in the Southern Ocean, I am assuming 

soaring birds to be gliding or dynamic soaring. Variations in flight type among 

procellariiforms are mainly attributed to their wing shape and wing loading, which influence 

their gliding and flapping speeds (Pennycuick 1987). Larger species generally glide more, 

and flap less than smaller species that flap more with intermittent gliding (Pennycuick 1982). 
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Wing loading (body weight divided by wing area) of procellariiforms decrease with 

decreasing body weight (Suryan et al. 2008), with the exception of diving petrels, which are 

highly adapted to propel themselves underwater by flapping (Warham 1977). Birds with high 

wing loading are better adapted for soaring flight, but often require flapping during take-off 

(Sato et al. 2009; Williams et al. 2020a). Flapping typically is the most energy expensive 

period of a soaring bird’s flight (Weimerskirch et al. 2000; Sakamoto et al. 2013). As a result, 

albatrosses attempt to maximise their flight in periods of favourable winds (Clay et al. 2020), 

when they can achieve energy efficient flight in the form of dynamic soaring (Pennycuick 

1982) which extracts energy from the wind gradient above the surface of the ocean through a 

series of upwind and downwind turns (Pennycuick 1982; Sachs 2005; Richardson 2011; 

Sachs et al. 2012).  

Wind-driven behaviour 

Animal behaviour is the response of the individual to its environment and thus it is crucial to 

consider environmental conditions when studying animal behaviour (Fritz et al. 2003; 

Shepard et al. 2008). Wind is one of the main drivers of pelagic seabird behaviour, and wind 

patterns significantly alter the behaviour of albatrosses and petrels (Wakefield et al. 2009; 

Weimerskirch et al. 2012; Safi et al. 2013). Albatrosses and most petrels use a dynamic 

soaring flight mode (Pennycuick 1982; Weimerskirch et al. 2000; Richardson 2011; Sachs et 

al. 2012) with heart rates during flight close to resting heart-rates, at least for the larger 

species (Weimerskirch et al. 2000; Shaffer et al. 2001b). However, taking-off is energy 

expensive for large albatrosses and they appear to take longer to recover from increased 

heart-rates after take-off (Weimerskirch et al. 2000; Sakamoto et al. 2013) than large 

terrestrial soaring Gyps vultures (Duriez et al. 2014). Albatrosses seemingly save energy by 

taking off in favourable wind conditions (Clay et al. 2020) avoiding light winds or strong tail 

winds (Kroeger et al. 2020).  

Dynamic soaring seabirds may take advantage of favourable winds to decrease flying costs, 

but their ability to compensate for wind can influence their flight efficiency (Tarroux et al. 

2016). Seabirds seemingly have knowledge of the wind fields within their foraging ranges 

(Ventura et al. 2020) and can also use wind drift to their advantage by adjusting their 

heading so that their flight paths are directed straight to their nesting grounds (Goto et al. 

2017; Yoda 2019). The winds experienced by dynamic soaring seabirds have the potential to 

shape their distribution (Frankish et al. 2020) and migratory routes (González-Solís et al. 

2009). However, individual variation also occurs and birds may target specific foraging areas 

while flying in unfavourable winds (Dell’Ariccia et al. 2018; Frankish et al. 2020), especially 

when providing for offspring (Elliott et al. 2014; Frankish et al. 2020). Much of what we 
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know about this fascinating behaviour has been learned in the last few decades through the 

development of bio-logging technologies. 

Bio-logging 

Since the development of the first animal-borne data loggers in the 1960s, technological 

advances have revolutionized the way we study the behaviour of free-living animals 

(Kooyman 2004). Bio-logging refers to the use of animal borne loggers/transmitters to 

collect data on animal movement (Ropert-Coudert and Wilson 2005; Rutz and Hays 2009) 

and their surroundings (Boyd et al. 2004), which in turn can be used to study physiological 

or behavioural aspects of the animals (Ropert-Coudert and Wilson 2005; Cooke 2008). 

Some studies refer to the use of transmitting devices as “biotelemetry” (Kooyman 2004), 

however for simplicity, here “bio-logging” refers to both loggers and transmitters. Bio-

logging enables researchers to study the behaviour of free-living animals, in their natural 

environment (Cooke et al. 2004; Cooke 2008), in the absence of human observers (Bograd et 

al. 2010). This is particularly useful where animals are difficult to access or when direct 

observation is impossible (Rutz and Hays 2009), such as far-ranging seabirds that spend 

most of their time away from land. 

Most of the first bio-logging devices used to study animal behaviour were simple mechanical 

time-depth recorders, used to recording the diving behaviour of aquatic animals for at most 

one hour at a time (Kooyman 2004; Ropert-Coudert and Wilson 2005; Wilson and 

Vandenabeele 2012). These loggers were improved during the early 1980s by reducing the 

size and increasing the sampling time to more than 20 days, making it possible to obtain 

data from flying-diving seabirds (Naito 2004). With the introduction of microprocessors in 

the 1980s, the development of bio-logging devices changed considerably, as these devices 

were much smaller and able to log several variables at the same time (Kooyman 2004; Naito 

2004; Wilson and Vandenabeele 2012). Together with better processing power, the 

development of solid-state electronic memory also improved bio-logging capabilities by 

allowing more data to be recorded on smaller devices at higher resolutions (Ropert-Coudert 

and Wilson 2005; Wilson and Vandenabeele 2012). Bio-logging devices also started to 

record data from animal’s environment, allowing researchers to study the environmental 

conditions where certain behaviours are observed (Ropert-Coudert and Wilson 2005).  

Since the early 2000s, bio-logging devices have become increasingly complex, with the 

ability to record many different variables at the same time (Ropert-Coudert and Wilson 

2005), and record at extremely high frequencies (> 300 times per second; Wilmers et al. 

2015). A common combination in recent studies is that of GPS-accelerometer loggers, which 

can be used to derive energy expenditure or behaviour of an animal at known locations 
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(Wilmers et al. 2015). In addition to data loggers recording movement, visual observation is 

also possible for a range of seabirds through the use of animal-borne cameras (Marshall 

1998; Rutz et al. 2007). This is perhaps the best way to study animal behaviour, but the 

method is limited by depth and duration when the subject is under water (Davis et al. 1999; 

Ropert-Coudert and Wilson 2005), and short battery life remains a problem for small 

animal-borne cameras (Thiebot et al. 2017). Video cameras are mostly used to calibrate other 

loggers such as accelerometers that are used to infer behaviours (Watanabe and Takahashi 

2013; Pagano et al. 2017), although they also have revealed previously unobserved 

behaviours (Handley and Pistorius 2016) and animal interactions (Tremblay et al. 2014). 

Other bio-logging devices enable researchers to record parameters that cannot be observed 

visually, such as heart and breathing rates or skin humidity (Weimerskirch et al. 2000; 

Ropert-Coudert and Wilson 2005; Ponganis 2007). 

In last two decades the use of accelerometers to infer animal behaviour (Shepard et al. 2008) 

has increased tremendously, allowing researchers to study behavioural patterns in 

unprecedented detail (Brown et al. 2013). Initially, accelerometers and animal-borne 

cameras were mostly used on diving animals, such as marine mammals or penguins, where 

device mass is less of an issue (Yoda et al. 1999, 2001; Cooke et al. 2004; Shepard et al. 

2008). But more recently, accelerometers have been used to study the behaviour of a range 

of flying and flying-diving birds (Ropert-Coudert et al. 2004; Kato et al. 2006; Sato et al. 

2008, 2009; Williams et al. 2015; Sherub et al. 2017; Leos-Barajas et al. 2017) down to 

species as small as Alpine Swifts Tachymarptis melba weighing ~100 g (Liechti et al. 2013). 

Some of the most recent advances in accelerometer technology include the transmission of 

data from Southern Elephant Seals Mirounga leonina through the Argos satellite system 

(Cox et al. 2018) or the use of real-time machine learning to record specific behaviours of 

Black-tailed Gulls Larus crassirostris (Korpela et al. 2020).  

 

Thesis aims, overview and outline 

I aim to test the efficacy of several bio-logging technologies to study the fine-scale behaviour 

of free-ranging albatrosses and petrels in the Southern Ocean. I will discuss the effect of 

sampling rates on GPS-derived metrics and detail new methods to extract body angles from 

video loggers and inertial measurement units on dynamic soaring seabirds. Furthermore, I 

will test the idea that flight behaviour drives distribution ranges of soaring seabirds in the 

Southern Ocean and how this relates to changing winds. 

In this thesis I use some of the latest in bio-logging technology, including inertial 

measurement units and bird-borne video cameras, combined with GPS tracking, to study the 

fine-scale at-sea behaviour of albatrosses and petrels across a range of body sizes. Remote-
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sensed wind estimates are used to show the fine-scale responses of these seabirds to local 

wind conditions, and how they take advantage of predictable wind fields to structure their 

foraging trips while breeding. 

Chapter 2 describes the various loggers used in this thesis, as well as the methods used to 

attach them to the study species. 

In Chapter 3, I describe the effect of sampling rates on metrics and behavioural states 

inferred from low-cost GPS loggers by sub-sampling 1-s GPS tracks from a range of 

albatrosses and petrels. The sub-sampled tracks are compared to the original tracks to 

estimate the error associated with metrics commonly used in seabird tracking studies, at 

varying sampling intervals. GPS tracks are subjected to measurement error (fine-scale) and 

interpolation error (coarse-scale). I expect that: 

1- Movement paths estimated from successive GPS locations will vary with sampling 

rates. 

2- Behavioural states derived from path length and turning angles of successive location 

estimates will vary with sampling rates. 

Chapter 4 shows how a multisensor approach can be used to collect behavioural data from 

dynamic soaring seabirds at infrasecond rates and describes two novel methods of extracting 

roll angles from video and magnetometer data. Animal posture can be estimated from tri-

axial accelerometer data with relative ease. However, dynamic soaring seabirds are subjected 

to increased centripetal acceleration during flight, which precludes the use of accelerometers 

when estimating posture during flight. I expect that: 

1- A camera attached to a dynamic soaring seabird’s back will allow estimates of roll 

angles relative to the horizon. 

2- Because seabirds do not seem to pitch regularly during routine flight (i.e. not during 

prey encounter), tri-axial magnetometers may be suitable to estimate roll and yaw 

angles of dynamic soaring seabirds without additional postural data from 

accelerometers. 

In Chapter 5, the methods developed in Chapter 4 are applied to Wandering Albatrosses 

breeding on Marion Island. Wandering Albatrosses are well studied, as their surface-nesting 

behaviour makes them easy to access and their large size makes them ideal candidates to 

carry multiple devices. Multiple bio-logging devices were deployed from 2016-2020 on 

Wandering Albatrosses incubating eggs or brooding small chicks. Data from these loggers 

were used to estimate fine-scale flight behaviour, which included the proportion of flapping 

flight and variations in roll angles within the dynamic soaring cycle. I hypothesize that: 
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1- Wandering Albatrosses will vary their roll angles in response to wind speed and 

direction. 

2- Flapping rate of Wandering Albatrosses will decrease with increased wind speeds.  

3- The behavioural responses to changing winds will be different between sexes of 

dimorphic Wandering Albatrosses. 

Chapter 6 uses the same approach as Chapter 5 to compare the fine-scale behavioural 

responses of a suite of albatrosses and petrels to varying winds by examining their flapping 

rates and roll angles. Despite having a wide range of body sizes, these species all have large 

ranges in the Southern Ocean. Although my sample sizes are small, I hypothesize that: 

1- The fine-scale flight behaviour of all studied species will be affected by the wind. 

2- The varying ability of species to adjust their fine-scale flight behaviour to changing 

winds may drive their distribution. 

Finally, Chapter 7 is a synthesis of the previous chapters discussing the broader context of 

the results, possible limitations of the technology used, and makes recommendations for 

future research.  

The data chapters (Chapters 3–6) are written in the format of individual journal articles, 

leading to some repetition in text. 
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Supplementary material 

Table S1.1: An example of maximum foraging ranges of breeding albatrosses and petrels 

ranging from small to large body sizes. See Oppel et al. (2018) for a comprehensive list of 

seabird body sizes and ranges.  

Species Sample 

size (n) 

Maximum 

range (km) 

Mass 

(kg) 

Reference 

Leach's Storm-petrel 

Oceanodroma leucorhoa 

133 1400 0.045 (Hedd et al. 2018) 

Murphy’s Petrel  

Pterodroma ultima 

18 4800 0.4 (Clay et al. 2019) 

Manx Shearwater 

Puffinus puffinus 

287 1200 0.4 (Oppel et al. 2018) 

Streaked Shearwater 

Calonectris leucomelas 

21 600 0.5 (Shiomi et al. 2012) 

Short-tailed Shearwater 

Puffinus tenuirostris 

27 5000 0.6 (Cleeland et al. 2014) 

Great Shearwater 

Ardenna gravis 

20 5100 0.8 (Schoombie et al. 2018) 

Grey Petrel 

Procellaria cinerea 

2 3400 1.1 Present study 

White-chinned Petrel  

Procellaria aequinoctialis 

56 2700 1.25 (Phillips et al. 2006; Rollinson 

et al. 2018; Frankish et al. 2020) 

Atlantic Yellow-nosed Albatross  

Thalassarche chlororhynchos 

11 3300 2.1 Present study 

Sooty Albatross 

Phoebetria fusca 

70 2000 2.5 (Schoombie et al. 2017) 

Black-footed Albatross 

Phoebastria nigripes 

20 4500 2.8 (Fernández et al. 2001) 

Grey-headed Albatross  

Thalassarche chrysostoma 

98 4300 3.5 (Oppel et al. 2018) 

Wandering Albatross  

Diomedea exulans 

> 600 3500  9 (Weimerskirch et al. 2014) 
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Chapter 2: Loggers and attachment methods 

Bio-loggers 

In this chapter I describe the loggers used throughout the thesis, where each subsequent 

chapter lists the respective loggers used. Where devices were encased in plastic housings, the 

electronic units were removed and sealed in heat-shrink tubing or 3D-printed casings, for 

waterproofing and to reduce mass. These methods followed previous studies of logger 

deployment on Marion and Gough Islands (Nel et al. 2001; Schoombie et al. 2017, 2018; 

Reisinger et al. 2018; Rollinson et al. 2018; Carpenter-Kling et al. 2020) 

Global positioning system (GPS) 

The development of satellite tracking technology is ongoing and newer devices are now able 

to process data from several satellite systems (in addition to the conventional GPS system) 

and are referred to as global navigation satellite system (GNSS) devices (Tomkiewicz et al. 

2010). The loggers I used only logged location estimates from GPS satellites and for 

simplicity, when referring to satellite tracking, I use the term GPS.  

GPS loggers used were one of the following models: 

- i-gotU GT-120 and GT-600(Mobile Action Technology, Inc. 2013, Taiwan) 

- CatTraQ/CatLog (Catnip Technologies, Ltd 2013, Hong Kong) 

These were near identical GPS units, with a SiRFstarIII chipset and a ceramic patch antenna 

with a maximum update rate of 1 Hz.  

Video loggers 

I used custom built video loggers which were miniature video cameras recording video in 

high-definition resolution (1280 x 720 pixels) at 24 frames∙s-1, controlled by an ATmega32U4 

micro controller (Microchip Technology, USA). This allowed me to program the cameras to 

record at specific intervals for predefined periods of time. 

Inertial measurement units (IMUs) 

These were Daily Diary (DD) loggers which are multichannel loggers recording data at 

infrasecond rates (Wilson et al. 2008). For my thesis I used data recorded at 40 Hz which 

included three accelerometer channels and three magnetometer channels. The tri-axial 

accelerometer and magnetometers consist of transducers mounted perpendicular to each 

other and allows measurements in three dimensions referred to as the X, Y, and Z planes. 

The DD loggers were calibrated prior to deployment, as close as possible to the deployment 

site, to account for hard- and soft-iron offsets in the magnetometry data (following Bidder et 

al. 2015; Williams et al. 2017). 
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Device dimensions  

The GPS loggers were 42 x 26 x 10 mm with a 380 mAh battery, weighing 15.7 g. For smaller 

petrels, a 200 mAh battery was used reducing the mass to 12.7 g. The video loggers were 77 x 

34 x 18 mm and weighed 48 g, including 3D-printed housing and 800 mAh battery. Daily 

Diary loggers were 30 x 25 x 10 mm and weighed 25–27 g including waterproofing and a 750 

mAh battery. Three of the DD devices deployed on Wandering Albatrosses in 2016 had pitot 

tubes attached to the loggers and were placed in streamlined 3D-printed housing, increasing 

the height to a maximum of ~40 mm. The combined device mass (including attachment tape 

and waterproofing) was well below 3% of body mass for albatrosses (Tickell 2000) and did 

not exceed 5% of mass for smaller petrels. It has to be noted that a 3-5% body mass threshold 

may differ between species (Vandenabeele et al. 2012). Albatrosses are large birds and 

although it could not be explicitly tested, there was no indication that the devices had any 

adverse effects on the birds. The added mass of devices may have an effect on the 

performance of smaller petrels and the results from these individuals have to be considered 

with this in mind. 

Deployment methods 

The birds were caught by hand or by using a crook (modified hook attached to a ~2 m pole; 

Figure 2.1a), while on or next to their nests. The loggers were deployed by attaching them to 

contour feathers on the backs of the birds in a straight line (to minimize drag; Figure 2.1b) 

using waterproof Tesa tape (Beiersdorf), which allows safe removal without damaging the 

feathers (Wilson et al. 1997). A subset of individuals (see Chapter 5) had GPS and video 

loggers attached to back feathers, while DD loggers were attached to their central tail 

feathers. 

 

Figure 2.1: Deployment methods showing a) capture of a Wandering Albatross using a 

crook (photo credit PG Ryan) and b) bio-loggers attached to the back of an albatross. 

All of the work presented in this thesis is my own, but I have to acknowledge the help of 

several field biologists who’s dedicated field work made this project possible. Ben Dilley and 
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Delia Davies collected 1-s GPS tracks and DD data from several species on Gough and 

Nightingale Islands between 2014 and 2017. Christiaan Brink and Kim Stevens collected 

video and DD data from Marion Island albatrosses in 2017. Jaimie Cleeland and Fabrice le 

Bouard collected video and DD data from albatrosses breeding on Gough Island in 2017. 

Christopher Jones and Michelle Risi collected video and DD data from albatrosses on 

Marion Island in 2017 and Gough Island in 2018. Janine Schoombie, Makabongwe Sigqala 

and Melissa Schulze assisted me with DD and video deployments on a range of Marion 

Island species in 2020. 

  



19 
 

Chapter 3: The efficiency of detecting seabird 

behaviour from movement patterns: the effect of 

sampling frequency on the inference of movement 

metrics in Procellariiformes 

Abstract 

The use of satellite tracking allows researchers to study the movement of far-ranging animals 

such as seabirds anywhere on the planet. Recent technological advances have resulted in 

low-cost GPS loggers that are small enough to be used on a range of seabirds, producing 

accurate location estimates (± 5 m) at sampling intervals as low as 1 s. However, tradeoffs 

between battery life and sampling frequency result in studies using GPS loggers on flying 

seabirds yielding locational data at a wide range of sampling intervals. The effect of sampling 

interval on the metrics derived from these data have largely been ignored. GPS data have two 

main errors associated with them, depending on sampling intervals. Very frequent sampling, 

coupled with limited movement, can result in measurement error (associated with device 

accuracy) overestimating movement, but a much more pervasive problem results from 

sampling at long intervals, which grossly underestimates path lengths. In this chapter I use 

fine-scale (1-s sampling interval) GPS data from a range of albatrosses and petrels to study 

the effect of sampling interval on metrics derived from the data. The GPS tracks were sub-

sampled at increasing intervals to show the effect on path length (i.e. ground speed), turning 

angles, total distance travelled, as well as inferred behavioural states. I show that distances 

are overestimated (4% on average, but up to 20%) at the shortest sampling intervals (1–5 s) 

and underestimated at longer intervals. The latter error is greater for more sinuous flights 

(underestimated by on average 40% when sampling > 1-min intervals) as opposed to straight 

flight (11%). Although sampling sizes were small, the error rates seemingly varied with 

species where species with more sinuous flight modes had larger error. Sampling intervals 

also played a large role when inferring behavioural states (e.g. foraging, commuting) from 

path length and turning angles, with the most stable results obtained from moderate 

sampling intervals (10–30 min). Location estimates from low-cost GPS loggers are 

appropriate to study the large-scale movements of seabirds when using coarse sampling 

intervals, but it is inevitable that the actual flight distances are underestimated. When 

inferring behavioural states from path lengths and turning angles, moderate sampling 

intervals (10–30 min) may provide more stable models, but the accuracy of the states will 

depend on the time period associated with specific behaviours. Sampling rates have to be 

considered when comparing behaviours derived using varying sampling intervals. 
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Introduction 

Satellite tracking is the simplest form of telemetry and can be used to determine the location 

of an animal anywhere on the planet, as long as the device is not obstructed (i.e. under water 

or dense tree cover; Cooke et al. 2004). This is especially useful for marine organisms that 

can’t easily be tracked with other technologies, such as VHF radio tags (Hooker et al. 2002). 

From the mid-1990s, seabirds were most often tracked with platform terminal transmitters 

(PTTs) using Argos satellites to triangulate bird locations every 1–3 hours to a precision of a 

few kilometres (Tremblay et al. 2009). In the last two decades the use of global positioning 

system (GPS) devices are preferred to PTTs as they are more accurate (± 5 m; Fritz et al. 

2003; Ryan et al. 2004; Forin-Wiart et al. 2015; Morris et al. 2017), can record locations 

more frequently (Cooke 2008; Hebblewhite and Haydon 2010) and can be used in 

conjunction with Argos or GSM systems (Global System for Mobile Communications) to 

transmit data, eliminating the need for device retrieval (Tomkiewicz et al. 2010; Orben et al. 

2018). In the past, studies using GPS/PTT devices to track animals suffered from low sample 

sizes as a result of high device costs, device failures and loss (Hebblewhite and Haydon 

2010). However, recent technological advances and increased demand in the electronics 

consumer sector (Wilson and Vandenabeele 2012) have driven reductions in device costs and 

increased reliability. 

Although GPS loggers can acquire data at infrasecond rates (Bouten et al. 2013; Dewhirst et 

al. 2016), low-cost GPS loggers typically contain a SIRFstarIII chipset with a maximum 

update rate of 1 Hz (Morris and Conner 2017). However, most seabird tracking studies use 

even less frequent sampling intervals, mainly to conserve battery life but also to prevent 

spurious movement estimates arising from positional errors (Ryan et al. 2004; Dewhirst et 

al. 2016). Battery life is particularly important for far-ranging seabirds that undertake 

foraging trips lasting many days as the logger mass (and consequently battery size) is 

constrained by the size of the bird. Empirical studies suggest that procellariiforms behaviour 

is adversely affected if a logger weighs > 2–3% of the bird’s mass (Phillips et al. 2003). Most 

studies of seabird movements using GPS loggers prioritize battery life rather than frequent 

sampling rates to ensure data for a full foraging trip (e.g. Reisinger et al. 2018). In practice, 

when comparing behaviours derived from several sampling scales, the coarser scale should 

be used for all data (Johnson et al. 2017). However, reducing location-based sampling 

intervals can limit the inferences that can be made from the data. Coarse sampling rates may 

be appropriate to study large-scale distribution of animals, but such rates might be less 

useful when inferring habitat selection or animal behavior from the same data (Johnson et 

al. 2017; Mitchell et al. 2019).  
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When studying animal behaviour from tracking data, the objective of the research should 

dictate the sampling rate and not the other way around (Halsey et al. 2009a). This can be 

problematic as high sampling rates are impractical for behaviours that stretch over extended 

periods (e.g. distance travelled during a foraging trip). However, location estimates at coarse 

sampling rates might not be applicable to the temporal scale of particular behaviours, and 

behavioural states identified from location-based data might vary with sampling intervals 

(Postlethwaite and Dennis 2013). Advances in microelectronic technology have reduced the 

size of GPS loggers allowing for smaller seabird species to be studied using this technology 

(Cagnacci et al. 2010), but again the effective lifespan of these loggers is limited by battery 

mass. 

We know that seabird behaviour at sea is scale dependent (Spear and Ainley 1997; Fauchald 

et al. 2000; Fritz et al. 2003) and that sampling rates may have significant effects on 

estimating metrics derived from GPS locations, such as ground speed (Tarroux et al. 2016). 

However, few studies have examined the effect of sampling frequency on detected movement 

rates (Ryan et al. 2004; Johnson and Ganskopp 2008) and to my knowledge, none of these 

studies have included flying seabirds (Hebblewhite and Haydon 2010). The study of seabird 

movement using GPS locations has increased dramatically in recent years and studies 

collating large data sets from various sources are becoming more popular (Birdlife 

International 2004; Dias et al. 2017; Reisinger et al. 2018; Carneiro et al. 2020; Ropert-

Coudert et al. 2020). However, a wide range of sampling intervals are used in these tracking 

studies. For example, albatross foraging behaviour have been studied using fine-scale 

tracking data with sampling rates < 10 s (Weimerskirch et al. 2007; Nevitt et al. 2008), 

intermediate rates (1–15 min; Torres et al. 2011) as well as coarse sampling rates > 15-min 

(Wakefield et al. 2009; Pereira et al. 2018; Reisinger et al. 2018; Clay et al. 2020). Studies 

with varying sampling intervals in their data usually sub-sample the data to the coarsest rate 

(Reisinger et al. 2018) or analyse data with similar rates separately (Clay et al. 2020), but the 

explicit effect of sampling rates on the inferred metrics are rarely acknowledged, let alone 

assessed. 

Two main errors occur when using GPS data to infer movement patterns depending on 

sampling frequency: measurement error and interpolation error (Ranacher et al. 2016a & b). 

Measurement error occurs at high sampling rates resulting in overestimation of distances 

measured while interpolation error occurs at coarse sampling rates with large gaps between 

points (Ranacher et al. 2016a & b). This chapter determines errors associated with low-cost 

GPS loggers used in seabird studies, explores how these errors change with varying sampling 

intervals and describes best practice to address ecological questions using GPS data.  
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Methods  

Field sampling 

Data from several albatross and petrel species breeding on Gough (40° 20′ S, 9° 50′ W), 

Nightingale (37° 25′ S, 12° 28′ W; Tristan da Cunha archipelago), and Marion Islands (46° 

50′ S, 37° 50′ E) were collected between 2014 and 2020 using CatTraQ (Catnip 

Technologies, Ltd 2013) or i-gotU (Mobile Action Technology, Inc. 2013) GPS loggers 

recording positions every second (except for one bird with a 2-s sampling interval; Table 3.1). 

Details of logger attachment methods can be found in Chapter 2. The GPS loggers were 

programmed to start a few days after deployment to maximize the likelihood of obtaining at-

sea points, or loggers were deployed on individuals that had just been relieved by their 

partner at their nest. 

Table 3.1: Fine-scale GPS tracking data acquired from albatross and petrel species from 

three Southern Ocean breeding islands, listed in order of descending body mass. 

Species 
Breeding  Year Number of Sampling  Logging duration 

island  individuals rate (s) (mean hours ± SD) 

Diomedea exulans  Marion 2018 4 1 8 ± 6 

  2020 4 1 25 ± 15 

Diomedea dabbenena Gough 2014 2 1 & 2 15 ± 0 

Thalassarche chrysostoma Marion 2019 1 1 8 

Phoebetria fusca Marion 2019 2 1 25 ± 1 

Thalassarche chlororhynchos Gough 2014 2 1 13 ± 6 

 Nightingale 2014 2 1 15 ± 0 

Procellaria cinereal Gough 2016 2 1 12 ± 2 

Ardenna gravis Gough 2016 1 1 15 

 Nightingale 2016 5 1 17 ± 1 

Pterodroma incerta Gough 2014 1 1 13 

Pterodroma mollis Gough 2016 2 1 15 ± 0 

Point speed measurements recorded by GPS units are very accurate and independent of 

measurement error and can be used as a reference distance when interpolation error is 

negligible (as is the case at a 1-s sampling interval; Safi et al. 2013; Ranacher et al. 2016b). To 

test if this is the case for the loggers used in this study, 10 GPS loggers were placed in a 

stationary position with an unobstructed view of the sky and away from any structures on 

Marion Island. The loggers were placed outside on 19 July (3 loggers, ID S1–S3) and 21 July 

2019 (7 loggers, ID S4–S10) and left to record until they ran out of battery power (~12 hours 

later). The mean ± SD total distance as well as the point speed recorded by the stationary 
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loggers was calculated to the nearest metre. A Welch two-sample t-test was used to test for 

significant differences between speed and location derived distances reported by the 

stationary GPS loggers. Speed and distance were both log-transformed to conform to a 

normal distribution. 

Data analysis 

Track preparation 

The GPS data were cleaned prior to analysis by removing points with duplicate date and time 

values as well as on-land points (22412 points ~2% of total). The cleaned data were 

converted to trajectories (referred to as tracks) using the R package adehabitatLT (Calenge 

2006). It is expected that sinuosity of foraging trips will increase with trip duration and thus 

I split the tracks into individual flights to account for variation in foraging trips. The tracks 

were divided into individual flights where the average speed over 10 s were < 10 km·h-1 (non-

flying periods) for at least 60 s and the non-flying periods were removed from the data. A 

straightness index (SI) was calculated for each flight by dividing the great-circle distance 

between the first and last points of the flight by the total distance travelled during the flight 

(i.e. values close to 1 represent a straight flight; Figure 3.1a). Flights with a straightness index 

<= 0.75 were classified as sinuous flights and > 0.75 were straight flights. This threshold 

value was chosen by filtering the flights in a stepwise fashion, reducing the threshold value 

and looking at the rate at which flights were excluded at a given threshold (Figure 3.1b). 

Although sinuous flights are often associated with foraging flights, I did not differentiate 

between commuting and foraging here as the sampling rates will affect the outcome of 

behavioural state estimations (see below). 

 

Figure 3.1: a) Example of classifying a 1-s track as straight (alternating shades of blue) or 

sinuous (red lines) flight as chosen by a straightness index (SI) threshold identified in b). 

The track is from an Atlantic Petrel with data for ~11 hours of a foraging trip and the arrow 

shows direction of flight. 
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Sub-sampling 

To determine the effect of sampling rate on seabird GPS trajectories, individual flights were 

sub-sampled (re-discretized) at 1-s time intervals (k; sub-sampled flight denoted as Fk) and 

compared to a reference flight (F0). Sub-sampling was done using the redisltraj function 

from the adehabitatLT package (Calenge 2006), with k up to 3600 s (1 hr). Thus, only flights 

that were > 1 hr were used for the analysis. F0 was equal to F1 except for distance estimates 

between points, where point speed was used as a proxy for distance in F0, while great circle 

distance between location estimates were used in Fk. Point speeds proved to be more 

accurate (see Results) when determining path lengths at short intervals where path lengths 

from distance between consecutive points were subject to measurement error. Speed 

between sub-sampled points was calculated as the distance divided by the sampling interval 

k. The raw tracks were set to record location at 1-s intervals, but ~10% (see Results) of points 

had 2-s sampling intervals and these points were linearly interpolated to obtain a uniform 1-

s track for the reference track F0. I acknowledge that hermite/cubic splines or Bézier curves 

are suggested to be better options when interpolating seabird tracks (Tremblay et al. 2006), 

but it did not make any difference at such short (2-s) intervals. The total distance of Fk was 

divided by that of F0 to get the proportional distance at different sampling intervals (PDk), 

where PD values > 1 indicated an overestimation and < 1 an underestimation of distance. 

This process is shown in Figure 3.2 where sub-sampling of a simulated track has a PD value 

of 1.12 (i.e. 12% overestimation of distance) at 1-s interval and a PD value of 0.98 (i.e. 2% 

underestimation of distance) at a 3-s interval.  

Point errors (PE) were calculated for each point at varying sampling rates (Figure 3.3) for 

distance (PEdist), speed (PEspeed), and relative turning angle (PEangle). This was done as the 

metrics associated with individual points are important when state-space models are used to 

estimate behavioural states. Figure 3.3. shows this process for two consecutive time steps 

where a simulated track is sub-sampled at a 3-s interval. PEdist is calculated by subtracting 

the total distance between the sub-sampled points from the total distance of the reference 

track falling between the sub-sampled points. It is important here to note that the distances 

of the reference track are derived from the point speeds as described above. PEspeed was 

calculated in a similar way where the speed (total distance divided by time) between sub-

sampled points were subtracted from the average point speeds of the reference track 

between the sub-sampled points. Lastly, PEangle was the relative angle between sub-sampled 

points subtracted from the mean relative angles of the reference track between sub-sampled 

points (absolute values). 
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Figure 3.2: Steps followed when sub-sampling a flight to determine the proportional 

distance at varying sampling intervals (PDk). Shown here is a hypothetical 30 s flight with 

sub-sampled points in black and reference track at 1-s interval as shaded points. 

To show the effect that the above errors might have on analysis of seabird behaviour from 

tracking data, a state-space model was used on an example track at varying sampling 

intervals. Unfortunately, I could only record a full foraging trip with 1-s sampling interval 

from one individual (Wandering Albatross) and the rest of the tracks did not have enough 

points to extract behavioural states at coarse sampling rates. The track was rediscretized at 

10-s increments, starting at 10 s and ending at 3600 s. Each sub-sampled point was assigned 

one of three states (rest, forage or commute) as a function of speed (distance over time) and 

relative turning angle, using the depmix function from the depmixS4 R package (Visser and 

Speekenbrink 2010). Resting states had low speed and turning angle, foraging had 

intermediate speed and large turning angles, and commuting had high speed and low 

turning angles. To estimate the difference between sampling rates, the percentage of points 

belonging to each state was calculated and kernel density estimates were calculated for each 

state at respective sampling intervals. The kernel density estimates were produced with the 

kernelUD function (R package adehabitatHR) and the smoothing factor h was chosen using 

the “href” method which is based on the standard deviation of the x and y coordinates (Kie 

2013). The 50% distribution kernels produced for each sampling interval were compared 

using the kerneloverlapHR function with the “VI” method. A linear mixed-effects model was 

used to test for differences in means of sinuosity between species, where individual birds 
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were added as a random effect. Values are reported as means ± SD unless otherwise stated. 

All analyses were performed within the R software environment (R Development Core Team 

2018).  

 

Figure 3.3: Example of how point error estimates were calculated for two time steps at a 

sampling interval of k = 3 s. The reference track (F0) is shown as dotted lines and circles with 

sub-sampled track (F3) as solid lines and squares. 

Results 

Stationary loggers 

The ten static GPS loggers produced 380 248 points that were used to determine the error of 

the units. The loggers performed well, maintaining the 1-s sampling interval for 98% (n = 

374 265) of the time and the rest (2%, n = 5983) at 2-s intervals. The loggers erroneously 
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recorded movement only on a few occasions (0.5%, n = 1969 points; Figure 3.4). The 

cumulative distance error (522 ± 618 m) was significantly larger than error from point 

speeds (156 ± 210 m; t18 = 2.44, p = 0.025). Similarly, the mean error per second (0.018 ± 

0.021 m) was higher than point speed error (0.006 ± 0.007 m; t18 = 2.144, p = 0.046). The 

maximum recorded errors were 51 m and 3 m from distance and speed estimates 

respectively (Figure 3.4). 

 

Figure 3.4: Boxplots of error associated with stationary low-cost GPS loggers recording 

position and point speed at 1-s intervals for ~12 hours on Marion Island. Values are from 

points where the distance between points were > 0 m (n = 1969 points), indicating erroneous 

location estimates. Boxplots are shown for error derived from distance (red) and point speed 

(blue). 

Tracked birds 

Useful data were obtained from 28 individuals from nine different species: 27 birds 

generated 1 591 743 points at 1-s intervals and one bird 28 201 points at 2-s intervals (Table 

3.1, Figure 3.5). Overall, the devices performed well, maintaining a 1-s sampling interval 

89.7% of the time (1 427 284 points) and 99.6% of points (1 584 986) falling within a 2-s 

interval. Data gaps > 2 s were rare, and usually occurred at the start and/or end of a track. 

One individual, that was tracked for a complete foraging trip (2.8 days), had several isolated 
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~250 s data gaps most likely caused by interference from additional loggers deployed with 

the GPS. A total of 429 individual flights were isolated with 124 of those lasting more than 

1 hour, providing a total of 293 hours of flight for the sub-sampling analysis. Of the 124 

flights, 64 (143 flight hours) were classified as ‘straight’ and 60 (150 flight hours) as sinuous 

flight.  

 

Figure 3.5: All GPS tracks for Procellariiformes tracked at 1-s sampling intervals from 

Marion, Gough and Nightingale Islands. 

Sub-sampling 

On average, the total distance of sub-sampled flights was overestimated (PD > 1) up to k = 

6 s for both sinuous (9% overestimate) and straight (4%) flight types, after which it was 

underestimated (PD < 1; Figure 3.6). From k = 6 s to 30 s the degree of underestimation 

increased rapidly, after which it levelled out around k = 60 s for both flight types, but the 

error for sinuous flights continued to steadily increase as k increased up to 3600 s (Figure 

3.6). The average underestimate for k > 60 s for straight flights (10%; PD = 0.90 ± 0.04) was 

much less than that of sinuous flights (38%; PD = 0.62 ± 0.05). Individual variability in PD 

also was much greater for sinuous flights than for straight flights (Figure 3.7a) and although 

sample sizes were small it is possible that species specific flight patterns may also influence 

the error rates (Figure 3.7b). The flight of Atlantic Yellow-nosed Albatrosses Thalassarche 

chlororhynchos was significantly more sinuous than any of the other species (Figure 3.7b; t19 

= 2.7, p = 0.014). This might simply reflect a high proportion of sinuous foraging tracks, but 

two of the four Yellow-nosed Albatross tracks seemed to be commuting flights 
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(Supplementary Figure S3.1) and the low sinuosity is possibly as a result of erratic fine-scale 

movement during cruising flight. 

 

Figure 3.6: a) Proportional distance estimates for straight (blue dashed) and sinuous 

flights (red solid) at increasing sampling intervals. b) Zoomed in portion showing the same 

curves as in a), but only up to 30-s interval. Shaded regions indicate ± 1 SD of means. 
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Figure 3.7: Proportional distance estimates of flying seabirds tracked at 1-s sampling 

interval. Curves are means for a) each individual separated into straight (black) and sinuous 

(grey) flights and b) averages for each species. The inset in b) shows the frequency of flight 

sinuosity for individuals from respective species. 

The average distance error for individual points (PEdist ) was < 5 m up to k = 9 s for sinuous 

flights and k = 11 s for straight flights, with a steeper slope for sinuous flights ending at a 

value of 15.2 ± 9.8 km for F3600 compared to a value of 4.7 ± 2.0 km for straight flights 

(Figure 3.8). The average speed error for individual points (PEspeed) curves were similar to 

the PD curves in Figure 3.6 (seeing that the speed was derived from distance), with a 
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maximum PEspeed of 12 ± 5 km·h-1 for sinuous flights and 8 ± 2 km·h-1 for straight flights at 

F3600 (Figure 3.9). The average relative angle error for individual points (PEangle) increased 

sharply up to k = 10 s (where it reached a maximum value for straight flight; 22 ± 4°), after 

which it decreased up to k = 120 staying steady for straight flight but increasing steadily for 

sinuous flights with a maximum value of 57 ± 38° at F3600 (Figure 3.10). 

 

Figure 3.8: a) Mean ± SD point distance error (PEdist) estimates for sinuous (red solid line) 

and straight (blue dashed) flights of all tracked birds. b) Zoomed in section of a) with means 

only and a solid line shown at an error of 5 m, within the positional error margins of the GPS 

loggers used. 



32 
 

 

Figure 3.9: Mean ± SD point speed error (PEspeed) for flights at varying sampling intervals. 

 

Figure 3.10: a) Mean ± SD point error for turning angles (PEangle) of flights at varying 

sampling intervals. b) Zoomed in section of a). 
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State-space modelling, where speed and turning angle were used to determine states, had 

variable results depending on the value of k (Figure 3.11). At high sampling rates (< 300 s) 

the states were overrepresented by commuting and foraging states, with little distinction 

between the two (Figure 3.11a). At moderate sampling rates (10–30 min intervals) the states 

became more distinct and areas associated with each behaviour could be clearly seen (Figure 

3.11b-c). At coarse the lowest sampling rate (1 hr), the states were still distinct, but seemingly 

different from those identified from moderate sampling rates (Figure 3.11d). The same 

trends were found from the kernel density estimation of foraging states at varying sampling 

intervals where the states identified at moderate sampling rates were most stable, while fine 

(< 5 min) and coarse sampling rates (1 hr) had lower overlap with the rest of the points 

(Figure 3.12). These stable periods are not necessarily more accurate reflections of 

behavioural states, but rather shows smearing of behaviours in space as sampling intervals 

become coarser, thus changing from specific foraging sites to general foraging areas. The 

rapid change up to 5 mins (Figure 3.12b) suggests the derived states may change perspective 

dramatically at these finer sampling intervals. The reason for these variations becomes clear 

from Figure 3.13, where the variation in speed and relative angle at different k values are 

shown. At lower sampling rates speed has a bimodal distribution, but this distribution 

flattens out as sampling interval increases, making it more difficult to distinguish different 

states. 
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Figure 3.11: Example of the same state-space model run on a foraging trip (~37 hr) of a 

Wandering Albatross at different sampling intervals (10-s, 10-min, 30-min, and 1-hr), 

estimating commuting (red), foraging (green) and resting (blue) states. 
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Figure 3.12: Effect of sampling rate on identification of behaviour states using a state-space 

model. a) Shows kernel density estimates of points identified as “foraging” at four different 

sampling rates. b) Shows the proportional overlap of kernel density estimates of respective 

behavioural states at varying sampling intervals. 
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Figure 3.13: Density plots of a) speed and b) turning angle at varying sampling intervals 

for a complete foraging trip performed by a Wandering Albatross tracked with a 1-s sampling 

interval. 



37 
 

Discussion 

The results show the effect that sampling interval has on information obtained from GPS 

tracking data in flying seabird behavioural studies. Although the sample sizes were small, 

data from a wide range of species (varying in size and breeding location) were obtained and 

analysed to highlight the various factors that should be considered when interpreting GPS 

tracking data.  

Device performance 

As noted by Forin-Wiart et al. (2015), the low-cost GPS loggers used in this and many other 

seabird tracking studies performed well compared to commercial devices at all sampling 

intervals. The manufacturer specifications for the SiRFstarIII chipset claim it can obtain 

GPS fixes at a maximum rate of 1 Hz with 2.5 m horizontal position accuracy. However, in 

practice the accuracy and fix acquisition rate of GPS loggers can be affected by many factors. 

Several studies have detailed the efficacy of low-cost GPS loggers in varying environmental 

conditions and generally the horizontal positional accuracy is closer to 5 m, depending on 

obstruction above the GPS (e.g. tree cover) and position of the antenna (Vazquez-Prokopec 

et al. 2009; Forin-Wiart et al. 2015; Morris and Conner 2017). The fix success rate of low-

cost GPS loggers is often close to 100% (Morris and Conner 2017), which was the case for the 

stationary loggers tested in my study, but loggers deployed on seabirds had a lower fix 

success rate (90%). Weather conditions in the sub-Antarctic are harsh and could affect the 

fix rate, and some loggers were deployed with additional loggers (cameras, IMUs), which 

might have interfered with their ability to obtain fixes. Most GPS loggers record information 

regarding fix quality (Morris and Conner 2017), but downloading these data is not the 

default setting and it is often not downloaded (as was the case in my study). Additionally, at 

very high sampling rates (~1 Hz), track paths estimated from low cost GPS loggers are 

subject to measurement error (Ranacher et al. 2016a), where error associated with their 

accuracy (usually ± 5 m) compounds, resulting in inflated distances between points. 

However, point speed values recorded by the GPS loggers is derived from Doppler shift and 

are not implicated in the measurement error (Ranacher et al. 2016b). My results confirm 

that the error associated with point speed is much lower than distance error in stationary 

loggers. Point speeds can thus be used as a proxy for distance at 1-s sampling rates to create 

reference tracks with lower error rates. 

Fine-scale use 

When estimating travel distances of flying seabirds from successive GPS locations, sampling 

intervals > 10 s will likely result in underestimation of the distances. For example, a Great 
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Shearwater Ardenna gravis tracked with a 1-hr sampling interval on a three week foraging 

trip may report a total distance of 11 000 km, but the actual distance may be closer to 12 100 

km (10% underestimate) or even up to 15 400 km when the flight is extremely sinuous (40% 

underestimate). In reality, longer foraging trips may have large portions of commuting 

where flight may be straighter (Weimerskirch et al. 2007) and at hourly intervals total 

distance travelled will most likely be underestimated somewhere between 10–40%.  

When estimating path length from successive GPS locations, sampling intervals > 60 s will 

likely result in path length errors of up to 5 km (at 1 hr intervals). Sinuous (often foraging) 

flights could have a much larger error, up to 15 km for path lengths at hourly intervals. When 

sampling at high frequencies (< 60 s intervals) the error becomes smaller, but only at rates < 

10 s does it reach errors that are within the accuracy range of the loggers (i.e. path length 

error < 5 m). However, when sampling at rates < 6 s, the path lengths and total distance will 

likely be overestimated by up to 4% and 9% for straight and sinuous flights respectively due 

to measurement error. To avoid overestimation at these small sampling intervals, point 

speeds can be used as a proxy for speed to reduce the error. 

Points speed and heading recorded by GPS loggers are measured using Doppler shifts and 

previous studies have shown speed to be within 0.01 m·s-1 of actual speed on straight paths 

and within 0.02 m·s-1 on curved paths (Townshend et al. 2008), while heading is accurate to 

0.01° according to manufacture specifications. However, these are only useful at very high 

sampling rates and because they are instantaneous measurements, could provide values that 

are not representative of the overall movement (especially for heading). This will likely be 

the case for dynamic soaring seabirds that constantly change speed and heading during flight 

(Pennycuick 1982; Sachs 2005; Richardson 2011). However, Safi et al. (2013) suggested that 

point speed and heading estimates might be more informative than using successive 

locations, even at coarse sampling rates. These authors also suggested using short bursts of 

1-s sampling rates where point speed measurements could not be recorded by loggers. My 

results suggest that this might be a plausible solution as measurement error only becomes a 

problem when compounded over many hours. In short bursts the measurement error of high 

frequency (~1 Hz) data should be small enough to be comparable with point speed 

measurements (see Figure 3.8). Other options include varying sampling rates according to 

external triggers or power availability (Bouten et al. 2013; Sherub et al. 2017). However, this 

has to be done with caution, because my results suggest that estimating speed from 

successive locations at high sampling intervals could overestimate speed and result in large 

errors in turning angle. Measurement error could result in erroneous conclusions from 

tracking studies and it might be beneficial to exclude points that are very close to each other 

in time (Ryan et al. 2004; Hurford 2009). Where fine-scale tracks are needed, specialized 
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loggers that incorporate satellites from several systems and record raw signal data are better 

to obtain the required accuracy (Sachs et al. 2012; Sachs 2016). Alternatively, dead-

reckoning complemented with intermittent GPS locations could produce tracks with high 

accuracy (Dewhirst et al. 2016), as has been done with Humpback Whales Megaptera 

novaeangliae (Wensveen et al. 2015). However, dead-reckoning for dynamic soaring 

seabirds will be challenging as they constantly change their heading and may be subjected to 

wind drift (Tarroux et al. 2016; Yoda 2019) that will not be easy to estimate without 

matching high resolution wind data. 

Inferring behaviour 

Although sample sizes were small, there seemed to be differences in error rates of different 

species. Most notably, Atlantic Yellow-nosed Albatrosses had extremely tortuous fine-scale 

flight patterns, with their flights significantly more sinuous than other species. Two of the 

Yellow-nosed Albatross tracks were not obviously related to foraging as the overall tracks 

were relatively straight, but the fine-scale movement was tortuous. These tortuous tracks 

may be the result of flying in lower wind speeds where albatrosses perform longer soaring 

cycles (see Chapter 6). In contrast, Great Shearwaters performed very straight commuting 

flights with lower errors in total distance travelled. These shearwaters perform long foraging 

trips during incubation and alternate long and short trips during chick-rearing periods 

(Ronconi et al. 2018; Schoombie et al. 2018). These extraordinary chick-rearing trips often 

have high travelling speeds while commuting between foraging areas where the birds travel 

up to~14 000 km (Schoombie et al. 2018). However the total distance reported by 

Schoombie et al. (2018) is most likely an underestimate as they used hourly GPS sampling 

rates and the actual distance is probably closer to at least 15 000–17 000 km (10–20% 

underestimate) when accounting for sampling rates.  

Body size did not have a marked effect on error rates as the largest (Wandering Albatross) 

and smallest species (Soft-plumaged Petrel Pterodroma mollis) had similar proportional 

distance curves (Figure 3.7b). However, Wandering Albatrosses had the largest sample size 

(n = 8) while only two Soft-plumaged Petrels were sampled. The behaviour of the birds (i.e. 

foraging vs commuting) undoubtedly contributes to observed differences (or lack thereof) 

between species. Nonetheless, studies comparing several species of seabirds using coarse 

GPS sampling intervals (e.g. Wakefield et al. 2009) might be at risk of comparing behaviours 

that are not directly comparable as tracks from different species may be affected differently 

by sampling interval. Determining the effects of sampling intervals by having a subset of 

loggers with higher sampling rates might be beneficial for individual studies, as shown by 

Tarroux et al. (2016). 
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When using location data to infer behavioural states, error in relative turning angles can 

completely change the inferred behaviours (Hurford 2009; Postlethwaite and Dennis 2013). 

Errors in turning angle are very sensitive to sampling interval of GPS tracks. Particularly 

interesting is the steep increase in error from k = 1–10 s with a local maximum at k = 10 s for 

both sinuous and straight flights. Turning rates are often used in flying seabird studies to 

differentiate foraging, commuting and resting periods (e.g. Thiebault et al. 2013; Bennison et 

al. 2017; Clay et al. 2020). The large variation of inferred behaviour at high sampling 

frequencies (< 300 s intervals) is most likely as a result of larger error in turning rate at these 

frequencies. The inference of behaviour might again become unreliable at low sampling rates 

> 30 min intervals, as the error in path length increases. High levels of uncertainty in 

predictor variables (i.e. speed and turning angles) may significantly impact models using 

such predictors to infer behavioural states of seabirds and different conclusions can be 

drawn from the same track at varying sampling intervals (Postlethwaite and Dennis 2013). 

Location only data could be useful to infer behavioural changes or identify foraging areas at 

broad scales but inferring fine-scale behaviour using coarse location data will likely result in 

erroneous conclusions. Behaviour coupled with distribution can provide informed 

distribution maps (Shepard et al. 2008), but behaviour derived from location estimates are 

probably not informative enough and a multi-sensor approach might be more beneficial 

(Williams et al. 2020b). For example, fine-scale GPS locations (5-s interval) in conjunction 

with cameras showed fine-scale behaviour of Cape Gannets Morus capensis (Tremblay et al. 

2014). 

In some cases the need for fine-scale data can be overemphasized (Hebblewhite and Haydon 

2010). When fine-scale data are not necessary to answer a certain research question, it might 

better to use coarse sampling rates (i.e. hourly fixes) and reduce logger mass by using 

smaller batteries, consequently reducing the load the study species has to carry. Where fine-

scale data are required, using loggers with higher accuracy, or a multi-sensor approach might 

be better. This chapter is restricted to soaring seabirds, but the results may be applicable to 

other flying seabirds or even terrestrial animals where GPS path lengths are used to derive 

metrics and infer behaviour.  
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Supplementary material 

 

Figure S3.1: Tracking data from individual albatrosses and petrels tracked with GPS 

loggers at 1-s sampling intervals. The raw tracks are shown for individual birds with the 

mean sinuosity index of flights (SI) shown for each track. 
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Chapter 4: Estimating body angles from bird-borne 

video cameras and tri-axial magnetometers 

Note: Parts of this chapter have been published in a peer reviewed journal as –  

Schoombie, S., Schoombie, J., Brink, C.W., Stevens, K.L., Jones, C.W., Risi, M.M., & 

Ryan, P.G. (2019). Automated extraction of bank angles from bird‐borne video 

footage using open‐source software. Journal of Field Ornithology, 90, 361-372. 

Abstract 

Advances in bio-logging technology allows us to study the behaviour of free-ranging animals 

at unprecedented fine-scale resolution. The posture of animals is commonly described on a 

three-axis system, represented by yaw (rotation around the vertical axis), pitch (around the 

transverse axis), and roll (around the longitudinal axis), which can be detected by inertial 

measurement units (IMUs). Commonly used IMUs include tri-axial accelerometers to 

estimate pitch and roll angles (bank angles), and tri-axial magnetometers to estimate yaw 

angles (heading). More recently, bird-borne video cameras have also been used to estimate 

roll angle of flying seabirds, but video loggers have high power consumption, short recording 

duration and analysis of their datasets can be time-consuming. Many large seabirds use 

dynamic soaring flight to travel large distances with minimal energy expenditure. However, 

this flight mode has high centripetal acceleration, which obscures posture derived from 

accelerometers, limiting their use for studying body angles of dynamic soaring seabirds. Tri-

axial magnetometers are not influenced by acceleration and might provide a more efficient 

means of estimating the posture of animals that typically experience high centripetal 

acceleration. I propose a new method to estimate yaw (𝜑) and roll (𝜙) angles for dynamic 

soaring seabirds using tri-axial magnetometer data. This method relies on coarse positional 

data and the assumption that the birds do not have a large pitch (𝜃) angle during routine 

flight. Using a directional cosine matrix, the reference magnetic field vector (from the World 

Magnetic Model 2020) is rotated around a point, measured by the magnetometer on the 

body axis of a bird. By assuming 𝜃 = 0, the resultant matrix can be solved to produce 

estimates of angles 𝜑 and 𝜙. The magnetometer-derived roll angles are validated by 

comparison to roll angles from bird-borne video loggers. To reduce the processing time for 

video analysis, I describe a new technique using open-source software to automatically 

extract bank angles from bird-borne video footage. These methods were field-tested by 

deploying a combination of bio-logging devices on three albatross species breeding on 

Marion Island. Comparison of magnetometer-derived angles with control data showed that 

the method worked well in most instances, with lower accuracy when the actual heading was 
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closer to magnetic north or south. Accurate estimates of seabird body angles could allow for 

the estimation of fine-scale tracks through dead-reckoning, while roll angles provide insight 

into dynamic soaring flight and how the birds react to different environmental conditions 

(e.g. wind). The magnetometer method has potential for use on other species where 

centripetal acceleration prevents the use of accelerometers to estimate body angles. 

Introduction 

When studying animal behaviour, direct observation is considered among the most 

important and useful techniques (Ropert-Coudert and Wilson 2005; Hebblewhite and 

Haydon 2010). However, direct observation is not always possible, and this is particularly so 

for marine animals such as seabirds that are inaccessible to human observers for most of 

their life-cycle (Ropert-Coudert and Wilson 2005; Rutz and Hays 2009; Bograd et al. 2010). 

The inaccessible nature of these animals has given rise to the field of bio-logging, which uses 

miniaturised loggers/transmitters to provide information about an animal’s movement and 

behaviour (Boyd et al. 2004; Kooyman 2004). In recent years, the increased demand for 

consumer electronics has resulted in ever smaller and more efficient electronic devices, 

leading to an increase in bio-logging studies across multiple taxa (Ropert-Coudert and 

Wilson 2005; Wilmers et al. 2015), opening up new doors to study the behaviour of free-

ranging animals in their natural habitat. 

Albatrosses are amongst the largest flying birds (Tickell 2000), making them ideal 

candidates for carrying a wide range of bio-logging devices that allow glimpses into their at-

sea behaviour. Like most procellariiforms, albatrosses rely on wind-driven dynamic soaring 

as a means of low-energy flight (Pennycuick 1982; Weimerskirch et al. 2000, 2012; Sachs 

2005; Richardson 2011; Sachs et al. 2012). Dynamic soaring has recently been described, in 

increasing detail, for Wandering Albatrosses as a series of sequential cycles consisting of four 

elements generally lasting 10–15 s: 1) a windward climb, 2) a turn, 3) a leeward descent, and 

4) a turn to restart the windward climb (Figure 4.1; Richardson 2011, Sachs et al. 2012). 

More frequent cycles could increase the ground speed of the bird, but are limited by, inter 

alia, the angle of bank, physical strength of the bird and the wind speed (Richardson 2011). 

Albatrosses mainly fly with cross-winds (Alerstam et al. 1993; Weimerskirch et al. 2000; 

Sachs 2005; Richardson 2011), and to maintain a relatively straight flight path (despite the 

effects of wind drift), albatrosses can bank slightly during climbing and descent phases of 

dynamic soaring, lowering the required bank angles in the turns and consequently reducing 

the aerodynamic forces experienced by the bird (Richardson 2011). Wind patterns are 

seemingly predictable to Wandering Albatrosses at a large scale, as breeding birds regularly 

perform clockwise looping trips when travelling south from their breeding islands and anti-
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clockwise loops when travelling north from their islands (Weimerskirch et al. 2000). 

Understanding the fine-scale flight patterns of albatrosses could help predict behavioural 

changes as a result of their changing environment.  

 

Figure 4.1: Illustration of a typical dynamic soaring cycle showing the four characteristic 

elements. 1) a windward climb, 2) a turn, 3) a leeward descent, and 4) a turn to restart the 

windward climb. 

Inertial measurement units (IMUs) have been widely used in bio-logging technology (Rutz 

and Hays 2009; Wilson and Vandenabeele 2012) and mostly include a combination of 

accelerometers, magnetometers, and gyroscopes, with the former utilized most often 

(Bograd et al. 2010; Wilmers et al. 2015). Gyroscopes are generally seldom used due to their 

high power consumption and sensitivity to environmental conditions (Ettinger et al. 2002; 

Williams et al. 2017), while magnetometers produce complex data that are often perceived as 

difficult to use (Williams et al. 2017). Alternatively, recent advances in video camera 

technology (Rutz and Troscianko 2013) have resulted in animal-borne cameras now being 

readily available to researchers. This allows direct observation of behaviour from the 

perspective of the animal in its natural environment (Moll et al. 2007). Up until the late 

2000s, animal-borne cameras were mainly limited to large marine animals (Moll et al. 

2007), but these devices are now small enough to use on flying birds (Rutz et al. 2007; 

Tremblay et al. 2014; Yamamoto et al. 2017). However, cameras also have high power 

consumption and record much less data compared to IMUs using a similar power source. 

Dynamic soaring flight imposes limitations on the use of accelerometers and, as a result, 

accelerometers are not used to study flight behaviour to the same extent as for animals 

moving on land or in water (Williams et al. 2015, 2017). Tri-axial accelerometers measure 

instantaneous acceleration in three different axes (Wilson et al. 2008). A stationary 
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accelerometer will be subjected to an acceleration of 9.81 m·s-2 (or 1 g), as a result of gravity, 

and the proportion of the 1 g measured on each of the three orthogonal axes of the 

accelerometer can be used to derive its posture (Shepard et al. 2008; Wilson et al. 2008). 

The static acceleration component of a moving accelerometer can be estimated by calculating 

the rolling mean of each accelerometer axis (Shepard et al. 2008). During flight, many 

seabirds are often subjected to varying centripetal acceleration as a result of their dynamic 

soaring flight mode (Sachs et al. 2012). Increased centripetal acceleration results in an 

inflated measurement of acceleration in the heave axis of the bird, which adds to the static 

acceleration, and consequently hinders the estimation of posture from accelerometer data 

(Williams et al. 2015, 2017). Accelerometers are thus applicable to study the posture of slow-

moving/stationary animals, or to study short bursts of high energy movement, such as rapid 

jaw movement when catching prey or individual flaps of flying birds (Shepard et al. 2008). 

In certain instances, tri-axial magnetometers may be better suited to estimate body angles of 

flying seabirds, as their measurements are not influenced by dynamic acceleration (Williams 

et al. 2015, 2017). Nowadays, inexpensive magnetometers are sensitive enough to measure 

the Earth’s magnetic field and tri-axial magnetometers can be interpreted in a similar way as 

accelerometers to infer posture (Shepard et al. 2008; Williams et al. 2017). However, the 

Earth’s magnetic field is not constant, changing in intensity and direction depending on time 

and location. Fortunately, in recent years, a collaboration between the United States 

National Geospatial-Intelligence Agency (NGA) and the United Kingdom Defence 

Geographic Centre (DGC) has produced a world magnetic model (WMM), which provides 

estimates of the magnetic field around the earth (NCEI Geomagnetic Modeling Team and 

British Geological Survey 2019). The spatial data produced by the WMM can be used to 

correct for regional variations when estimating posture from magnetometer data. 

Bio-logging often generates large amounts of data, requiring the development of novel 

analytical techniques (Moll et al. 2007; Rutz and Hays 2009) to allow rapid, automated 

processing of data that would take many hours to analyse manually (Moll et al. 2007). When 

using video data, estimating roll angles from the horizon is commonly used with unmanned 

aerial vehicles (UAVs) such as fixed-wing aeroplanes (Ettinger et al. 2002; Dusha et al. 

2007) or for spatial orientation of ships at sea (Praczyk 2018). Most algorithms use some 

form of edge detection (Praczyk 2018), with the Canny edge detection filter (Canny 1986) 

being one of the most commonly used to extract strong edges from images. Tri-axial 

magnetometers have been successfully used in animal behaviour studies including derivation 

of heading for dead-reckoning applications (Mitani et al. 2003; Bidder et al. 2015) and more 

recently to infer average bank angle in thermal soaring Gyps vultures (Williams et al. 2018). 

However, when deriving heading (yaw angle – 𝜑) from magnetometer data, pitch (𝜃) and roll 
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angles (𝜙) of the sensor has to be taken into account (Wilson et al. 2007; Bidder et al. 2015). 

These pitch and roll angles are often derived from accelerometer data (Walker et al. 2015), 

but as stated above, this is problematic for dynamic soaring seabirds. 

Here, I present two new methods to estimate body angles from video and magnetometer 

data, respectively. First, I explain how to extract bank angles from video footage obtained 

from free-ranging albatrosses. Second, I propose a new method to estimate 𝜑 and 𝜙 angle 

from magnetometer data without postural information derived from accelerometers. My 

approach is based on assumptions relevant to dynamic soaring flight and requires having at 

least some information on the location of the animal. The results are compared to posture 

estimated using accelerometer data on a control logger and field tested on Wandering, Sooty 

Phoebetria fusca and Grey-headed Albatrosses Thalassarche chrysostoma where control roll 

angles were obtained from video loggers that were deployed with the magnetometers. Few 

studies have been able to estimate the roll angle of dynamic soaring seabirds and the 

presented methods will allow further research into their dynamic soaring behaviour. The 

magnetometer method might also be applicable to other species where dynamic movement 

limits the use of accelerometers when estimating body angles. 

Methods 

A combination of bio-logging devices was deployed on 31 Wandering, two Grey-headed, and 

three Sooty Albatrosses between 2016 and 2020 (Table 4.1). Deployments were done on 

Marion Island (37° E, 46° S) during the brood-guard period for Grey-headed and Sooty 

Albatrosses (December), and during late incubation (February – March) and brood-guard 

(March – April) periods for Wandering Albatrosses. The loggers were a combination of 

customised video loggers, Daily Dairy inertial measurement loggers (DD – Wildbyte 

Technologies) and GPS loggers (CatTraQ – Catnip Technologies, Ltd., i-gotU GT-120 – 

Mobile Action Technology, Inc.). The loggers were deployed on the backs of the birds in a 

straight line to minimize drag and the combined masses (including waterproofing and 

attachment tape) were ~130 g for Wandering Albatrosses and ~70 g for Grey-headed and 

Sooty Albatrosses (< 3% of body mass; Tickell, 2000) with sampling intervals as shown in 

Table 4.1 (see Chapter 2 for details of attachment methods).  
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Table 4.2: Sampling intervals of bio-logging devices deployed on several albatross species 

on Marion Island between 2016 and 2020 

Year Species n Video DD GPS 

Video 

duration 

Video 

Interval 

GPS 

interval 

2016 Wandering Albatross 4 x - x 10 min 6 hr 60 min 

2017 Wandering Albatross 9 x x x 5–10 min 3–6 hr 60 min 

2018 Wandering Albatross 15 x x x 5–10 min 3–6 hr 60 min 

2020 Wandering Albatross 3 x x x continuous N/A 1 s 

2020 Sooty Albatross 3 x x x continuous N/A 1 s 

2020 Grey-headed Albatross 1 x - x continuous N/A 1 s 

2020 Grey-headed Albatross 1 x x - continuous N/A N/A 

Analysis 

Data recorded by the video and DD loggers were used to estimate body angles of the birds 

during flight using two new methods described below. Roll angles were estimated from video 

data by extracting the angle of the horizon in each frame, while the DD loggers were used to 

estimate heading and roll angles from magnetometry data. All video footage was inspected 

and clips where the birds were flying were isolated for analysis. Subsequently, the 

corresponding magnetometry data from the DD loggers were also isolated. Video data were 

analysed using the open source software OpenCV (www.opencv.org) in the Python 

programming language with all functions mentioned below found in the software 

documentation (https://docs.opencv.org/2.4.0/). The rest of the analyses were done with 

the R programming language (R Development Core Team 2018), but initial calculations were 

performed in the Julia programming language (Bezanson et al. 2017). 

Video analysis – roll angle estimation 

Image preparation 

To be able to detect the horizon in an image, there needs to a be clear contrast between the 

sky and the surface (land or sea). This is normally the case for seabirds flying over the ocean 

but can be confounded by the presence of clouds (particularly dark clouds on the horizon) or 

the sun in an image. To overcome these obstacles the images were prepared to minimize 

contrasting colours other than that of the horizon. 

• First, the isolated image (Figure 4.2a) was cropped to exclude the timestamp at the 

bottom right of the frame. Then the image was down-sampled (reducing the resolution) 

using a Gaussian Image Pyramid through the pyrDown function (Figure 4.2b) at a 

predetermined level ndown. This reduces the processing time for the following steps but 

http://www.opencv.org/
https://docs.opencv.org/2.4.0/
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also reduces the quality of the image, thus a ndown value of more than three is not 

advisable for 1280 x 720 images.  

• Next, the image was smoothed/blurred (Figure 4.2c) using multiple iterations (nbilat) of a 

bilateral filter (function bilateralFilter). Using multiple iterations flattens the colours 

present in the image, resulting in a much smaller colour map but still retaining the 

edges. The bilateral filter assigns a new value to each pixel from weighted pixels within a 

given diameter (bdiameter) surrounding the input pixel. Pixel weights are determined by 

two factors: 1) the difference in colour intensity (bcolour) of the input and neighbouring 

pixels and 2) the spatial distance (bspatial) between the input and neighbouring pixels.  

• Lastly, the image was up-sampled to its original resolution with the pyrUp function. The 

reason for the up- and down-sampling is that the bilateral filtering process is quite slow 

(compared to other filters such as Gaussian) and the process takes an appreciable time 

when many frames are present, so lowering the image resolution reduces processing 

time. 

Horizon detection 

Various algorithms have been used to identify the horizon in maritime images (Gershikov et 

al. 2013; Lipschutz et al. 2013) with the basic workings outlined by Praczyk (2017). To find 

the horizon in the smoothed image, it was converted to greyscale and detail was removed 

from the image until only the horizon remained.  

• First, the greyscale image was smoothed using a Gaussian filter (GaussianBlur function) 

to remove any noise remaining following the bilateral filtering above (Figure 4.2d). The 

Gaussian filter is similar to the bilateral filter but does not consider colour intensities 

when weighting neighbouring pixels. The amount of smoothing performed by the 

Gaussian filter was determined by the size of the square window surrounding the input 

pixel (called the kernel) and was defined here as gx and gy. It is important to remove as 

much noise as possible from the images for the next step.  

• A Canny edge detection algorithm was used (Canny function) to identify the edges 

present in the smoothed image. The Canny function evaluates the gradient intensity and 

direction of a given pixel within a given range (usually 3 x 3 pixels) using a Sobel 

operator to retain pixels with the highest gradient within the specified range. To ensure 

that only the desired edges are identified, the Canny function uses a double threshold 

method (Canny 1986) where specified values (th1 and th2) are used to determine if the 

edges are strong enough to retain. Gradients above the upper threshold (larger of the th 

values) are retained as strong edges and gradients below the lower threshold are 

discarded, while gradients between the thresholds are retained only when they are 
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connected to strong edges. Canny edge detection results in a binary image where pixels 

identified as edges have a value of 1 and other pixels have a value of 0 (Figure 4.2e). 

• The Canny edge detection results in many edges of various lengths being identified. To 

find the horizon, these edges were combined by first dilating (dilate function) the edges, 

then eroding (erode function) and dilating them again. Dilation is a method used in 

image processing where the bright areas of the image are expanded, and erosion has the 

opposite effect. The amount of expansion (for both bright and dark areas) is dependent 

on predetermined search window size (n x n matrix) and the number of iterations 

chosen. The process of dilation compares each pixel to neighbouring pixels falling within 

the search window and assigns the input pixel the same value as the maximum in the 

window. Erosion works in the same manner except that the minimum value within the 

search window is used. The resulting image is similar to Figure 4.2e, but the lines are 

much thicker and neighbouring edges are now fused together (Figure 4.2f). 

• Canny edge detection is then performed for a second time on the thickened lines to 

generate several contours representing the lines with the highest contrast in the image. 

The contours were identified using the findContours function and a bounding box was 

computed for each contour with the boundingRect function. The bounding box provides 

the height and width of the contours and allowed me to exclude contours that did not 

represent a straight line (i.e. the horizon) where contour height/width < 0.05-0.2. It was 

assumed that the longest of the remaining contours would represent the horizon.  

• Finally, a line was fitted to the points of the identified contour using a weighted least-

squares algorithm with the fitLine function (Figure 4.2g). The angle of this line in 

relation to the horizontal axis of the image was then calculated and retained as the bank 

angle of the bird in degrees ranging from -180 to 180°. A video example of the process 

can be found at the following link: https://vimeo.com/475447736. 

Post-processing 

The resulting bank angles were processed using R software to correct for missing or 

erroneous angles. Each angle was compared to the previous two angles and if they varied by 

more than 4° on average, the point was marked as incorrect. Thus, the first two data points 

after a gap in the data were always discarded. The threshold of 4° was identified through 

visual inspection of several video clips where successive angles never varied by more than 4°. 

Lastly, the gaps were filled in through interpolation using a Hermite cubic spline algorithm 

(see Results Figure 4.5a; Fritsch and Carlson 1980). To determine the extent to which 

interpolation would be biologically meaningful, data loss was simulated by removing chunks 

of data (ranging from one to 1000 data points = 0.04 to 41.67 s) every 50 s from existing data 

https://vimeo.com/475447736
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sets. Interpolation was performed on the simulated data sets and the error calculated for the 

interpolated values. 

Validation  

To validate the automated process described above, horizon angles from 100 randomly 

selected images (10 images from 10 birds) were measured manually. Measurements were 

done with a protractor on a computer screen to an accuracy of approximately 1° by three 

observers. The same images were then run through the horizon detection code and the 

resulting bank angles were compared to the three sets of direct measurements. The test set of 

measured angles was not normally distributed and transformation (log, square- and cube 

root) did not improve normality of the data. Thus, a non-parametric Kruskal-Wallis rank 

sum test was used to determine if there was a significant difference between the direct 

measurements and the computer-generated angles. 

 

 Figure 4.2: Illustrations of the method used to extract horizon angles from images isolated 

from albatross flight footage using algorithms from open-source software, OpenCV. The a) 

original image is b) down-sampled and cropped followed by smoothing through applying 

both c) bilateral and d) Gaussian filters to allow e) Canny edge detection. The edges are f) 

inflated to produce thicker contours which are used to identify the contour most likely 

representing the horizon and is g) used to estimate the angle of the horizon. 
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Magnetometer analysis – yaw and roll angle estimation 

The DD loggers contain a tri-axial magnetometer which produced data used to estimate yaw 

𝜑 and roll 𝜙 angles using a new method described below. These analyses were done using 

data collected from three albatross species in 2020 (Table 4.1) where priority was given to 

recording longer periods of flight with enough overlap between video and DD logger data for 

validation of the results. The roll angles estimated from video data (above) was compared 

with roll angles estimated from the magnetometry data to validate the efficacy of the method. 

Body angle calculation 

Tri-axial magnetometers measure the earth’s magnetic field along three axes. When the 

measured values are compared to the known magnetic field intensity at a given location, they 

reveal something about the rotation of the measurement device. Such a rotation can be 

presented as:  

𝐻𝑥𝑦𝑧 = 𝐷𝑁𝐸𝐷
𝑥𝑦𝑧

𝐻𝑁𝐸𝐷 (1) 

Where 𝐻𝑥𝑦𝑧 are the values measured by the tri-axial magnetometer, 𝐻𝑁𝐸𝐷 is the magnetic 

vector as given by the World Magnetic Model (WMM2020; 

https://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml) and 𝐷𝑁𝐸𝐷
𝑥𝑦𝑧

 is the directional 

cosine matrix (DCM) from the north east down (NED) axis system to the xyz axis system 

(Figure 4.3). Equation (1) can be shortened by calling the xyz system b (body axes) and the 

NED system i (inertial axes).  

𝐻𝑏 = 𝐷𝑖
𝑏𝐻𝑖 (2) 

 

Figure 4.3: a) Body (xyz) coordinate system applied to an albatross, showing the three axes 

measured by the magnetometers (pitch 𝜃, roll 𝜙, and yaw 𝜑) and resultant angles around 

each axis when compared to b) the north east down (NED) inertial axis system of the 

reference magnetic field.  

https://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml
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There are several ways to represent such a rotation and it is important to note that the 

following steps are done using a passive intrinsic rotation (Figure 4.4), where 𝐻𝑖 is rotated 

around a fixed point on the 𝐻𝑏 axis system, in a yaw-pitch-roll order. 

 

Figure 4.4: Example of a passive intrinsic rotation around the x-axis. a) The body axis 

system (Hb) stays fixed while b) the inertial axis system (Hi) is rotated in c) where 𝜙 is the 

roll angle and both pitch and yaw are zero.  

Equation 2 can be expanded to a standard matrix form, but at least one of the angles (yaw, 

pitch, or roll) is needed to allow the calculation of the remaining two. Albatrosses do not 

regularly pitch at high angles for extended periods of time, which is evident from the video 

data, where the horizon is seen in the frame most of the time. If pitch angle 𝜃 is reduced to 

zero, equation 2 can be expanded to: 

[

𝐻𝑥

𝐻𝑦

𝐻𝑧

] =̇ [

𝑐𝑜𝑠𝜑𝐻𝑁 +𝑠𝑖𝑛𝜑𝐻𝐸 0
−𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜑𝐻𝑁 +𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜑𝐻𝐸 +𝑠𝑖𝑛𝜙𝐻𝐷

𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜑𝐻𝑁 −𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜑𝐻𝐸 +𝑐𝑜𝑠𝜙𝐻𝐷

] (3) 

allowing the calculation of the yaw angle 𝜑: 

𝜑 = ± 𝑐𝑜𝑠−1(ℎ𝑥) + 𝛽 (4) 

where ℎ𝑥 is the raw magnetometer data from the surge axis (𝐻𝑥) normalized to the NE plane 

of the 𝐻𝑖 reference data and 𝛽 is the magnetic declination angle at the given location. Once 𝜑 

is obtained, the roll angle ϕ can be calculated via: 

𝜙 = tan−1 (
𝐻𝑦

𝐻𝑧
) + 𝛼 (5) 

where 𝛼 is a function of 𝜑 and the reference magnetic field data 𝐻𝑖. A detailed explanation of 

the above equations is given in the Supplementary material. It has to be noted that the loss of 
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sign in the 𝑐𝑜𝑠−1 operator (equation 4) results in two solutions of yaw (and consequently 

roll) and a post hoc decision has to be made to determine which of the solutions is correct.  

Validation 

To determine how well 𝜙 estimation from magnetometer data worked, the estimated values 

were compared to 𝜙 derived from tri-axial accelerometer data on a control DD logger (DD0): 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟 𝜙 =  𝑡𝑎𝑛−1 (
𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑡𝑒𝑟𝑦

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑡𝑒𝑟𝑧
) (6) 

The DD0 logger was calibrated in the same manner as the loggers deployed on albatrosses. 

Next, a compass swing was performed, rotating DD0 at 10° yaw angles (starting at magnetic 

north) and then rotating the logger around the x-axis to get roll at each yaw increment. 

Rotations on the DD0 logger was undertaken slowly to ensure that the centripetal 

acceleration was minimal and thus roll angles derived from the accelerometer values could 

be used as a control.  

Analyses of albatross data were restricted to individuals where enough high-quality data 

were present from both tri-axial magnetometers and video loggers. For equipped birds, 

reference roll angles were obtained from video where the horizon angle was used as a proxy 

for roll angle (see Video analysis above). The magnetometer data were down-scaled to fit the 

lower sampling frequency of the video data (24 Hz) and were matched temporally to the 

video data. The video data were recorded in 5-min video files (bins) and time 

synchronisation between video and magnetometry data was visually inspected for each of the 

bins to ensure correction of time lag that occurred in the video loggers. This resulted in a 

single dataset with comparable roll angles at 24 Hz where the error for each roll angle was 

calculated by subtracting the magnetometry estimate from the video estimate and mean 

error was calculated for data corresponding to each video bin. This was done for each section 

of flight across all individuals. In addition, the number of dynamic soaring cycles (identified 

by consecutive roll angle peaks) was counted manually from both the video and 

magnetometer data. To determine the importance of location accuracy when extracting 

reference magnetic field data from the WMM, roll estimates supplemented with tracking 

data were compared to roll estimates using a single coordinate (deployment site on Marion 

Island). 

Results 

The 36 cameras, 32 DDs and 35 GPS loggers deployed on 36 birds (Table 4.1) were all 

recovered. Two cameras were water-logged and four malfunctioned, not recording any 

footage. From the 30 cameras producing useful footage, I isolated 17.5 hours of flight from 17 
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birds. However, cameras from two individuals (2018 deployments) only recorded three 

flights of 10 s each and were excluded from the analyses. The mean ± SD duration of flight 

recordings for the remaining birds was 7.1 ± 6.8 min (n = 10; 2016-2018) and 43.9 ± 38.6 

min (n = 5; 2019-2020).  

Video analysis 

The values used for different steps in the horizon extraction algorithm were determined for 

each 5-min video bin by examining the results of the first ~10 s of each video. This was 

necessary as the light levels and presence of clouds/sun varied between individual flights. 

Ideal conditions for horizon detection were flights over calmer waters on overcast days (i.e. 

in the absence of direct sunlight). High wind speeds caused white water while sunlight 

reflected off wave crests resulting in high contrasts that were detected as edges by the Canny 

algorithm. Changing the values of the Canny edge detection thresholds were sufficient to 

account for the changes in scenery and the rest of the values were kept constant (Table 4.2). 

Higher th1 values were used when there was white water or reflected sunlight (or the sun 

itself) in video clips. Some video clips had to be cropped to remove the bird’s head and body 

from the images. Using the values in Table 4.2 worked well on all video clips that were 

analysed and it took approximately one hour of processing time for a 10-min video clip (~14 

000 frames) on a standard laptop computer (i5, 2.4 GHz CPU with 12 Gb memory and 

NVIDEA GeForce 840M graphics card). Using down sampling (ndown = 2) was almost four 

times faster (0.3 s per frame) than without down sampling (1.1 s per frame). The simulation 

of data loss showed that interpolation was appropriate when data gaps were smaller than 45 

data points (~2 s) as larger gaps resulted in mean errors that were larger than 10° (Figure 

4.5b) and not meaningful within the current application. As a result, I excluded all data gaps 

> 45 frames from the analysis.  

Table 4.2: Parameters and their associated values used in the horizon extraction algorithm 

Parameter Value Description 

ndown  2 Gaussian Image Pyramid down sampling 

nbilat  7 Iterations of bilateral filter 

bdiameter  9 Bilateral filter: diameter for pixel weighting 

bcolour 9 Bilateral filter: colour intensity weighting 

bspatial 7 Bilateral filter: spatial distance weighting 

qx 13 
Gaussian filter kernel parameters 

qy 13 

th1 8 to 20 
Thresholds for Canny function 

th2 th1  



55 
 

erosion 4 x 4 erosion kernel size n x n 

dilation 4 x 4 dilation kernel size n x n 

 

 

Figure 4.5: a) Subset of computer-generated bank angles from Wandering Albatross video 

footage during flight. This illustrates the post-processing of measured angles (black dots) 

where erroneous points (red triangles) are discarded and gaps filled in through cubic spline 

interpolation (green squares). b) Simulation of data-loss where gaps of varying lengths were 

removed from the data at regular intervals, missing values interpolated, and then compared 

to actual values to determine the mean error. The error band (above which data gaps 

resulted in errors larger than was deemed acceptable for this study) is indicated by dashed 

lines. 

Video validation  

The mean standard deviation of measured angles by the three observers was 2°. There was 

no significant difference between the measured angles and the angles produced by computer 

analysis (Kruskal-Wallis rank sum test, 2 = 1.28, df = 3, p = 0.73). The computer analysis 

was able to find angles for 93% of the images with 7% unobtainable due to low light 

conditions or bad image quality. The mean ± SD difference between the direct and computer 

estimated measurements was 3 ± 4°. Seven estimates (7%) had an error > 10° (maximum 

18°). These large errors were caused by the presence of the bird’s head in the image (n = 6) 

and a dark cloud bank on the horizon (n = 1). Manual scoring of images was confounded by 

the presence of large waves obscuring the horizon and curvature of the horizon caused by the 

wide-angle lens of the camera. The latter was resolved by measuring the angle from the 

centre of the image, but the former could not be corrected for and possibly resulted in some 

error in bank angle estimates.  
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Magnetometer analysis 

Control logger (DD0) 

Roll and yaw angles could be estimated for most headings (magnetic), with some gaps 

around magnetic north and south (Figure 4.6). Yaw angles around magnetic north and south 

could not be estimated as the absolute ℎ𝑥 values were often > 1, which is not a valid input for 

the cos-1 operator. Missing roll angles (where 𝜑 was not available to calculate 𝛼), were 

estimated by using the nearest valid 𝛼 value (Figure 4.6). When compared to the roll angles 

estimated from accelerometer data (regarded as the “true” rotation) a mean error of 4.5 ± 

5.5° was found. Roll angles were successfully estimated from the magnetometer data 

recorded on the DD0 logger for all headings (10° increments from 0° to 360°). 

Magnetometer validation 

From the retrieved devices, good quality data were present from two Wandering Albatrosses 

(five flights, seven hours), one Grey-headed Albatross (six flights, 2.8 hours), and two Sooty 

Albatrosses (nine flights, 4.8 hours) that allowed comparison of video- and magnetometer-

derived roll angles. Magnetometer-derived angles compared well to those derived from video 

loggers for all three albatross species, with a mean ± SD roll angle error of 12 ± 12° (Table 4.3 

and Figure 4.7). Location accuracy did not have a large effect on the reference magnetic field 

within the range of the four individuals tracked with GPS loggers (maximum distance from 

Marion Island 300 - 500 km). The mean ± SD error for flights at the maximum distance was 

1 ± 1° for both roll and yaw angles estimated from magnetometry data (Figure 4.8). The 

Grey-headed Albatross data did not include GPS tracking, and a single coordinate (Marion 

Island; 37° E, 46° S) was used for all magnetometer estimates, which still produced 

acceptable results (Figure 4.7c). 

The newly described method produced the best results when the birds were not heading 

directly into magnetic north or south and when consecutive dynamic soaring cycles were 

present. This allowed for easy discernment between the two possible solutions from the yaw 

angle estimates (equation 4). The solution with the lowest mean value over 2-5 seconds (half 

of a dynamic soaring cycle) were assumed to be correct as roll angle regularly crosses the 

zero mark during dynamic soaring (Figure 4.9). Larger errors occurred when the birds were 

flying with a heading that was close to magnetic north or south for large portions of the 

flight. As shown above for the control logger, this resulted in ℎ𝑥 values > 1 where yaw angles 

(and subsequently roll angles) could not be calculated. Interpolating the missing values by 

using the nearest valid yaw value to calculate the roll worked well in most cases, maintaining 

the shape of the soaring cycle (Figure 4.9). The direction of the roll (positive vs negative 

banking) was also mostly preserved, even when several seconds of flight path were 
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interpolated (Figure 4.9). Another problem that arose from a heading that corresponded 

with magnetic north or south was that the choice between the two solutions for yaw angles 

(Equation 4) became less apparent (see Figure 4.9a). Even so, the overall shape of the 

dynamic soaring cycles as calculated through magnetometer data corresponded well with the 

video-derived data (Figure 4.7). When estimating the number of dynamic soaring cycles in a 

flight, the magnetometer data were just as effective as the video data, with 98.6% of the video 

cycles identified by magnetometer data (Table 4.3). 
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Table 4.3: Error estimates of roll angles derived from magnetometry (Mag) compared to 

roll angles from video loggers deployed on three albatross species. All values are degrees  

(-180° to 180°) unless otherwise stated. 

      
Roll angle range Dyn. soaring cycles 

Bird 

ID 

Flight 

number 

Duration 

(min) 

Mean 

error 

± SD  Bearing Heading Video Mag Video (n) Mag (n) 

Wandering Albatrosses 

WA1 1 109 13 ± 12 -83 -39 -84 – 57 -82 – 68 602 591 

WA1 2 50 15 ± 13 -103 -52 -100 – 60 -88 – 59 366 362 

WA1 3 45 16 ± 13 -85 -54 -99 – 58 -89 – 53 363 353 

WA2 1 120 9 ± 9 126 -35 -93 – 46 -88 – 55 715 722 

WA2 2 94 10 ± 11 150 -50 -93 – 46 -88 – 52 627 637 

Total average error ± SD 13 ± 11 
      

Sooty Albatrosses 

SA1 1 106 12 ± 12 -142 -31 -96 – 63 -104 – 86 876 893 

SA1 2 50 13 ± 13 -127 -41 -78 – 60 -84 – 84 415 410 

SA2 1 8 19 ± 15 170 -16 -100 – 64 -94 – 95 66 63 

SA2 2 2 26 ± 19 -115 -16 -88 – 84 -66 – 87 15 15 

SA2 3 5 24 ± 14 -100 -23 -96 – 68 -100 – 83 36 33 

SA2 4 49 19 ± 14 -48 -16 -93 – 71 -92 – 94 261 245 

SA2 5 46 21 ± 15 -58 -17 -85 – 75 -100 – 94 213 200 

SA2 6 5 19 ± 15 -66 -14 -90 – 79 -121 – 114 30 30 

SA2 7 19 13 ± 12 63 -3 -79 – 107 -79 – 112 163 162 

Total average error ± SD 18 ± 14 
      

Grey-headed Albatrosses 

GA1 1 75 11 ± 9 - -51 -85 – 78 -93 – 86 601 597 

GA1 2 38 12 ± 10 - -52 -88 – 78 -102 – 82 325 327 

GA1 3 13 13 ± 13 - -53 -88 – 89 -103 – 76 98 100 

GA1 4 5 13 ± 13 - -49 -90 – 86 -120 – 91 38 38 

GA1 5 35 13 ± 11 - -53 -92 – 80 -110 – 90 271 270 

GA1 6 4 15 ± 14 - -51 -90 – 88 -93 – 76 35 35 

Total average error ± SD 13 ± 12 
      



59 
 

 

Figure 4.6: Control logger DD0 results showing performance of the newly described method 

for estimating yaw and roll from tri-axial magnetometer data. a) The two solutions of yaw 

(see equation 4) showing valid (green) and invalid (grey) angles when performing a compass 

swing of magnetic heading at 10° increments for constant roll angle (0°). Magnetic north and 

south are indicated by dashed lines. b-e) Roll angle estimated from DD0 data at varying 

magnetic headings (north, east, south, and west) while performing a full rotation of roll 

angles. Black lines are control angles from accelerometer data compared to valid (green) and 

interpolated (red; using the closest 𝛼 value) magnetometer angles.  
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Figure 4.7: Examples of roll angle estimates from magnetometer data (red lines) for three 

albatross species (Wandering, Sooty and Grey-headed Albatross). a, c, e) show roll angles 

from a 90 s flight section while b, d, f) are density plots of roll angles for respective species. 

Control angles were estimated from video loggers (black dashed line) deployed with the 

magnetometers.  
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Figure 4.8: Roll angles extracted from a 90 s Sooty Albatross flight ~330 km from Marion 

Island. Roll angles were estimated using reference magnetometer data at GPS locations (5-

min interval; black line) and using reference data from a single coordinate (Marion Island; 

grey line). 
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Figure 4.9: Examples of roll angle estimates from magnetometer data under varying 

circumstances. The two possible solutions from equation 4 are shown (green and blue lines) 

with interpolated values (red lines) where no valid solution was available. a) Irregular 

dynamic soaring cycles where both solutions produce correct values. b-c) Regular dynamic 

soaring cycles with valid roll angles mainly in the turning phases (b) or during the 

ascent/descent phases of the cycles (c) with only one correct solution. 

Discussion 

Using bird-borne cameras and tri-axial magnetometers proved to be a viable method for 

fine-scale analysis of seabird flight behaviour. Roll angles were successfully extracted from 

the video data and were used to validate roll angles estimated from magnetometer data. A 

substantial amount of flying footage was obtained with the filming intervals used in the 

present study, but the magnetometers still produced significantly more data over a longer 
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period. Both methods (video and magnetometry) have their own limitations that should be 

taken into consideration when interpreting results from these technologies. To my 

knowledge, this is the first study to directly measure the fine-scale bank angle of dynamic 

soaring seabirds using either video or magnetometry data. 

Video  

The horizon extraction algorithm described here worked well for all three albatross species 

studied and should work equally well for other procellariiforms large enough to carry a 

camera. However, camera placement can influence the accuracy of the results. If the camera 

is too far back, the head and body is in the frame. This can be overcome by cropping the 

images, but this can result in a lot of images where the horizon is absent. However, even if 

very small cameras were available, they cannot be mounted on the head, because it is clear 

from the back-mounted footage that albatrosses keep their heads more or less level during 

flight, and thus head-mounted footage would not record bank angles. 

The automated extraction of bank angle performed well compared to manual measurements 

from the images, with larger observed errors attributed to bad image quality or the presence 

of objects on the horizon’s plane. Here I used manual measurements as a baseline for 

comparison, but is has to be noted that manual measurements may not always be possible as 

curvature of the horizon (due to lens effects) and large waves (when the bird is very close to 

the ocean surface) makes it difficult to measure the horizon angle. Automated extraction 

overcame these problems in many instances by removing potentially erroneous angles and 

replacing them with interpolated values. Computer vision techniques have been used to track 

the posture of a range of animals in a controlled environment (Gomez-Marin et al. 2012), but 

here it is shown how it is possible for free-ranging animals as well. Detecting the horizon 

from images is often confounded by irregularities in the images, such as complex 

environments and particularly when the sun (and its reflections) is present in images (Wang 

et al. 2009). The horizon detection algorithm performed best in the absence of direct 

sunlight, but with enough light to differentiate ocean from sky. At twilight, light levels were 

often too low to accurately detect the horizon. Direct sunlight was only a problem when the 

sun was directly on the horizon (i.e. sunrise or sunset). White clouds did not hinder the 

detection of the horizon, but dark cloud banks on the horizon caused problems when they 

were similar to the ocean colour. 

The method used is only one of several options for detecting the horizon in marine 

environments. Most horizon detection algorithms use Canny edge detection followed by 

Hough transformation (Duda and Hart 1972) to detect straight lines. However, Hough 

transformation did not work in my study as the horizon was often distorted as a result of 
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large waves or bad image quality, and using contours proved more effective. A faster method 

that might allow for real-time analysis of bank-angles utilizes a range of interest (ROI) 

approach, where the approximate location of the horizon is found, and images are cropped to 

only use pixels within this ROI (Praczyk 2018). OpenCV proved to be a useful tool for 

analysing video footage from bird-borne cameras. This open-source software is extremely 

powerful, well documented and although I used the Python programming language, OpenCV 

is available for a variety of computer languages. 

In the past, footage obtained from animal-borne cameras was mainly considered to be useful 

in the public domain or for educational purposes with low scientific potential (Moll et al. 

2007). However, more recently, video cameras have been used to study the effect of wind on 

juvenile Brown Booby Sula leucogaster flight, by manually measuring bank angle from the 

horizon as seen in the video frames (Yamamoto et al. 2017). Back-mounted cameras have 

also been used on captive Gyps vultures to study the effect of bank-angle on soaring-flight 

(Williams et al. 2018) or used in conjunction with accelerometers and ground-based video to 

estimate the body and tail movement of a Steppe Eagle Aquila nipalensis in flight (Gillies et 

al. 2011).  

Magnetometry 

By assuming that dynamic soaring albatrosses do not routinely pitch at large angles during 

flight, magnetometer data were used effectively to extract yaw and roll angles from three 

albatross species breeding on Marion Island. Albatrosses observed flying around their 

breeding colonies or out on the ocean seldom pitch significantly (personal observation). This 

is also evident from the video data, where the horizon is visible in most of the frames, 

allowing the extraction of roll angle from the horizon. The yaw angle could then be used to 

estimate heading by adjusting the value according to the magnetic declination at the given 

location.  

Fine-scale location data were available for all but one (Grey-headed Albatross) of the 

individuals that were used in the magnetometer validation study. Where tracking data were 

not available, the deployment location was used, and the roll angle estimates done in this 

manner still produced acceptable results. The amount of location data that are necessary to 

extract body angles of dynamic soaring seabirds using magnetometers will depend on the 

species, location and the questions that are being asked. For example, birds that stay close to 

their breeding colony for an entire foraging trip will not require additional location data, but 

birds that traverse ocean basins will need at least some location estimates. The frequency of 

location data needed will also depend on the range of the bird as the magnetic declination 

becomes increasingly variable closer to the dip poles (where magnetic inclination is 90°) 
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which is located at approximately 65° S, 140° W in the Southern Hemisphere. Where 

accurate heading is necessary, more frequent location estimates (e.g. hourly GPS fixes) are 

appropriate, but coarse location data (e.g. daily estimates from geolocators) should provide 

sufficient accuracy to estimate roll angles within a dynamic soaring cycle.  

Accelerometers are effective tools to study animal movement but cannot be used to infer the 

direction of these movements. Using magnetometers to determine the direction of 

movement of an animal (Noda et al. 2014) and the ability to measure instantaneous heading 

at high resolution is thus a valuable tool for studying fine-scale animal behaviour. When 

accurate heading estimates are known, fine-scale movement patterns can be studied by 

means of dead-reckoning (Wilson et al. 2007, 2008; Bidder et al. 2015). Dead-reckoning has 

been used to study long distance routes of flying birds (Bramanti et al. 1988; Dall’Antonia et 

al. 1995). These days, satellite tracking can provide accurate tracks of seabirds’ movement 

spanning days to months, depending on sampling intervals and battery size or even the 

addition of solar panels (Weimerskirch et al. 2020). Satellite tracking has been used 

extensively to study the flight behaviour of dynamic soaring seabirds (Weimerskirch et al. 

2000; Wakefield et al. 2009; Sachs et al. 2013; Richardson 2015; Gibb et al. 2017), but these 

studies are limited to inferences from displacement of the birds. Dead-reckoning from 

magnetometer heading estimates can produce tracks at much finer scales (> 100 Hz) when 

speed of movement can be inferred (see Chapter 7 for challenges relating to movement 

speed). Reducing the time between heading estimates increases the accuracy of dead-

reckoned tracks and can shed light on the decisions an animal makes prior to certain 

behaviours (Wilson 2001). Although satellite trackers can now be used on even smaller 

seabird species, the use of magnetometers to estimate tracks might be a better alternative 

due to their low power consumption. GPS tracks can give information regarding the course 

over ground, which is not the same as heading when a bird is flying in variable wind 

conditions. The heading of a dynamic soaring bird in relation to the wind is important when 

studying its flying behaviour, but this information is rarely available.  

The estimation of roll angles from magnetometer data is equally valuable in providing a new 

means of studying dynamic soaring flight. Magnetometers have been used to estimate the 

average bank angle of Gyps vultures while soaring in thermals (Williams et al. 2018), or to 

identify different behavioural states in terrestrial and marine environments, but 

instantaneous measurements of body angles are usually limited to heading for dead-

reckoning studies (Gómez Laich et al. 2008; Williams et al. 2017; Chakravarty et al. 2019). 

Studies of avian flight that utilises IMU technology are mostly limited to the identification of 

flapping flight (Williams et al. 2015). Accurate estimates of roll angles are crucial to 
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understand dynamic soaring flight, as it is an integral part of this flight mode (Richardson 

2011, 2012; Sachs et al. 2012). 

Limitations and possible solutions 

There are several limitations to the above calculations that must be considered before it is 

applied to any study. Firstly, this method is only applicable to species where it can be 

assumed that the pitch angle is very small for most of its movement. Secondly, the cos-1 

operation in equation 4 will only give an answer when ℎ𝑥 is between -1 and 1. Outlying values 

can be the result of electronic noise or bad calibration and will result in the inability to 

calculate yaw and consequently roll angles. Fortunately, data gaps that result from such 

outliers may be estimated by assuming that 𝛼 will not change significantly within a short 

period of time. Then, roll angles can be calculated by substituting 𝛼 from previous reliable 

estimates into equation 5. Thirdly, if both 𝐻𝑦 and 𝐻𝑧 are zero (yaw coincides with magnetic 

north) the outcome of equation 5 is undefined, which will also be the case on the magnetic 

equator where this method will not work. In general, whenever a bird is flying in the same 

direction as the magnetic field, the entire magnetic field is only measured on the x-axis and it 

becomes impossible to infer roll angle. Finally, the cos-1 operation in equation 4 will result in 

two valid solutions (and consequently two solutions for 𝜙), but only one of them will 

represent the rotation of the magnetometer axes. There are two ways to determine which of 

the solutions is correct. First, if positional data are available (e.g. GPS positions), the average 

yaw angle can be compared to the average heading for a specific section of flight to 

determine which is correct (but bearing in mind the effects of wind drift). Second, if the 

flight behaviour of a study species results in frequent changes in roll angle (such as the case 

for dynamic soaring seabirds), the solution with the lowest average roll angle will be the 

correct one. It must be noted that the accuracy of the above calculations relies on the quality 

of the calibration and how well the hard- and soft-iron offsets are accounted for. 

Additionally, the calibration values might have to be adjusted for deployments spanning 

several days where individuals are subjected to varying magnetic field intensities. Future 

studies could use IMUs that include accelerometers, magnetometers and gyroscopes to 

estimate accurate body angles for several seabird species. These data could then be used to 

determine the efficacy of the methods described in the present study for seabirds ranging in 

body size and flight modes.  

Conclusions 

The fine-scale study of dynamic soaring flight in seabirds has mainly been done by looking at 

trajectories of flight from location estimates. IMUs provide new methods to study animal 

movement, but they currently rely heavily on the use of accelerometers, which have limited 
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use for the study of dynamic soaring flight due to the increased centripetal acceleration 

produced by this flight mode. This chapter presents two new methods of body angle 

extraction from bird-borne video cameras and tri-axial magnetometers that are not affected 

by the large changes in acceleration experienced by dynamic soaring seabirds. The video data 

were automatically processed using computer vision algorithms, drastically reducing the 

time needed to analyse the video data (that is often done manually). The magnetometer data 

could be used to estimate the yaw and roll angles of three albatross species while dynamic 

soaring in the southern Indian Ocean surrounding Marion Island, validated by roll angles 

extracted from the video loggers. The high energy demand of video cameras currently limits 

their use in seabird behavioural studies, but the present study shows how bird-borne 

cameras can be used as an effective tool to validate estimates from other bio-logging devices. 

These methods provide new tools for the analysis of bio-logging data that will provide new 

insights into the dynamic soaring flight mode of seabirds. This is particularly relevant for 

seabirds in the Southern Ocean, where changing wind patterns could have significant effects 

on their behaviour (Clay et al. 2020).  
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Supplementary material 

This supplementary section provides a detailed explanation of the calculations performed to 

estimate yaw and roll angles from a tri-axial magnetometer in Chapter 4.  

The values recorded by a tri-axial magnetometer can be presented as a rotation in terms of 

the known magnetic field at its location: 

𝐻𝑥𝑦𝑧 = 𝐷𝑁𝐸𝐷
𝑥𝑦𝑧

𝐻𝑁𝐸𝐷 (1) 

where 𝐻𝑥𝑦𝑧 are the values measured by the tri-axial magnetometer, 𝐷𝑁𝐸𝐷
𝑥𝑦𝑧

 is the directional 

cosine matrix (DCM) from the north east down (NED) axis system to the xyz axis system, 

and 𝐻𝑁𝐸𝐷 is the magnetic vector as given by the World Magnetic Model (WMM2020; 

https://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml). Equation (1) can be 

shortened by calling the xyz system b (body axes) and the NED system i (inertial axes): 

𝐻𝑏 = 𝐷𝑖
𝑏𝐻𝑖 (2) 

𝐷𝑖
𝑏 is the resultant 3 x 3 matrix when the rotation matrices around each separate axis (𝑅𝑥𝑦𝑧) 

are multiplied with each other (yaw-pitch-roll order), where the yaw pitch and roll angles are 

𝜑, 𝜃 and 𝜙, respectively. 

𝑅𝑧(𝜑) = [
𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜑 0

−𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 0
0 0 1

] (3) 

𝑅𝑦(𝜃) = [
𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃

0 1 0
𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

] (4) 

𝑅𝑥(𝜙) = [

1 0 0
0 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙
0 −𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙

] (5) 

When 𝑅𝑧 is left-multiplied by 𝑅𝑦 and the result is multiplied by 𝑅𝑥, we get: 

𝐷𝑖
𝑏 =  [

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 − 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜑 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 + 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃
𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 + 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 − 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃

] (6) 

In equation (2), 𝐻𝑏 and 𝐻𝑖 are both vectors and can thus also be written as: 

[

𝐻𝑥

𝐻𝑦

𝐻𝑧

] = 𝐷𝑖
𝑏 [

𝐻𝑁

𝐻𝐸

𝐻𝐷

] (7) 

https://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml
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Using equation (6), equation (7) can be expanded to: 

[

𝐻𝑥

𝐻𝑦

𝐻𝑧

] = [

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑𝐻𝑁 +𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑𝐻𝐸 −𝑠𝑖𝑛𝜃𝐻𝐷

(𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 − 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜑)𝐻𝑁 +(𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 + 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜑)𝐻𝐸 +𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃𝐻𝐷

(𝑐𝑜𝑠𝜙𝑠𝜃𝑐𝑜𝑠𝜑 + 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜑)𝐻𝑁 +(𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 − 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜑)𝐻𝐸 +𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃𝐻𝐷

]

 (8) 

From equation (8) it is apparent that at least two known angles are required per axis in order 

to calculate the third angle. Thus yaw, pitch and roll can’t be calculated with only 𝐻𝑏 and 𝐻𝑖 

as known values. Without additional information, the only way forward is to make certain 

assumptions. For the purpose of this study, I assume that soaring birds do not pitch 

significantly, which is a reasonable assumption given personal observation of several 

albatross species in flight. If the pitch angle (𝜃) = 0, 𝑠𝑖𝑛𝜃 = 0 and 𝑐𝑜𝑠𝜃 = 1, and equation (8) 

can be simplified to: 

[

𝐻𝑥

𝐻𝑦

𝐻𝑧

] =̇ [

𝑐𝑜𝑠𝜑𝐻𝑁 +𝑠𝑖𝑛𝜑𝐻𝐸 0
−𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜑𝐻𝑁 +𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜑𝐻𝐸 +𝑠𝑖𝑛𝜙𝐻𝐷

𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜑𝐻𝑁 −𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜑𝐻𝐸 +𝑐𝑜𝑠𝜙𝐻𝐷

] (9) 

Yaw angle calculation 

We can get 𝜑 from the first row in equation (9) and, by substituting 𝜑 into the second and 

third rows, we can calculate 𝜙 by solving these equations simultaneously. These equations 

are solved by first mapping the 𝐻𝑁 and 𝐻𝐸 values to a unit circle, so that they can be 

normalized according to the radius of the circle (√(𝐻𝑁
2 +  𝐻𝐸

2) denoted as ‖𝐻𝑁𝐸‖2) and 

expressed as sine and cosine terms of a single angle (𝛽), which is the magnetic declination 

angle (Figure S4.1).  
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Figure S4.1: a) The N and E axes of the reference magnetic field is mapped to a unit circle 

with radius ‖𝐻𝑁𝐸‖2 and b) normalized by dividing by this radius, where 𝛽 will represent the 

magnetic declination angle. 

This angle is chosen to be an angle from the North axis as this is the conventional definition 

of the magnetic declination angle. Thus,  

ℎ𝑁 = 𝐻𝑁/‖𝐻𝑁𝐸‖2 and 

ℎ𝐸 = 𝐻𝐸/‖𝐻𝑁𝐸‖2  so that 

𝛽 =  tan−1(ℎ𝐸/ℎ𝑁), ultimately allowing the first row of equation (9) to be rewritten as: 

𝐻𝑥

‖𝐻𝑁𝐸‖2
= ℎ𝑥 = 𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝛽 +  𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝛽 (10) 

Which simplifies to: 

𝜑 = ± 𝑐𝑜𝑠−1(ℎ𝑥) + 𝛽 (11) 

The loss of sign implied in the 𝑐𝑜𝑠−1 operation is unavoidable, thus resulting in two possible 

solutions, which are discussed in the main text of Chapter 4. 

Roll angle calculation 

To calculate the roll angle 𝜙, the same procedure is followed as above with the resultant 

values from the above calculations substituted into the second and third rows of equation 

(9). Note that 𝜙 is solvable for both the second and third lines of equation (9) on their own, 

but this again results in ambiguous answers. However, if both these equations are solved 
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simultaneously, a single value is returned. Substituting the resultant values into the second 

and third rows of equation (9) simplifies to: 

𝐻𝑦 = −𝑐𝑜𝑠𝜙‖𝐻𝑁𝐸‖2𝑠𝑖𝑛(𝜑 − 𝛽) +  𝑠𝑖𝑛𝜙𝐻𝐷 (12) 

𝐻𝑧 =  𝑠𝑖𝑛𝜙‖𝐻𝑁𝐸‖2𝑠𝑖𝑛(𝜑 − 𝛽) +  𝑐𝑜𝑠𝜙𝐻𝐷 (13) 

For both equations (12) and (13) ‖𝐻𝑁𝐸‖2𝑠𝑖𝑛(𝜑 − 𝛽) and 𝐻𝐷 can be mapped to a unit circle 

and the radius used for normalization (√(𝐻𝑁
2 + 𝐻𝐸

2)𝑠𝑖𝑛2(𝜑 − 𝛽) +  𝐻𝐷
2) here will be referred to 

as ‖𝐻𝑁𝐸𝐷′‖2 (Figure S4.2). 

  

 

Figure S4.2: a) Representation of the unit circle where the axes 𝐻𝐷 and ‖𝐻𝑁𝐸‖2𝑠𝑖𝑛(𝜑 − 𝛽) 

has a radius ‖𝐻𝑁𝐸𝐷′‖2 and b) normalized by dividing by ‖𝐻𝑁𝐸𝐷′‖2, where 𝛼 is measured from 

𝐻𝐷. Note that the bottom hemisphere is positive due to the NED axis convention. 

This time the angle (𝛼) is calculated from the z-axis (positive down axis) so that: 

𝛼 =  tan−1 ((‖𝐻𝑁𝐸‖2𝑠𝑖𝑛(𝜑 − 𝛽))/𝐻𝐷) (14) 

Now, when 𝐻𝑦 and 𝐻𝑧 are normalized by ‖𝐻𝑁𝐸𝐷′‖2. the resultant equations are: 

ℎ𝑦 = 𝑠𝑖𝑛(𝜙 − 𝛼) (15) 

ℎ𝑧 = 𝑐𝑜𝑠(𝜙 − 𝛼) (16) 

And finally, by dividing ℎ𝑦 by ℎ𝑧, the roll angle can be calculated by applying a four-quadrant 

tan-1 operation while preserving the sign: 
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𝜙 = tan−1 (
𝐻𝑦

𝐻𝑧
) + 𝛼 (17) 

Note that, because the same normalization factor is used in both ℎ𝑦 and ℎ𝑧 calculations, the 

original 𝐻𝑦 and 𝐻𝑧 values can be used in the final equation (17). 
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Chapter 5: Wandering around the Southern Ocean: 

fine-scale description of Wandering Albatross flight 

using a multisensor approach 

Abstract 

Wandering Albatrosses are among the largest flying birds. Their highly energy-efficient 

dynamic soaring flight allows them to travel large distances by exploiting the gradient in 

wind strength above the sea surface. The topic of dynamic soaring flight has received 

increased attention in recent years, with the advancement of bio-logging technology 

providing new insights into this flight mode. Dynamic soaring can be defined as a cycle 

consisting of 1) a windward climb, 2) a turn with the wind, 3) a leeward descent, and 4) a 

turn into the wind to restart the climb. However, the exact means of energy gain from this 

cycle is still contentious. I use bio-logging devices to study the dynamic soaring flight 

behaviour of Wandering Albatrosses. Roll (bank) angles are derived from video and tri-axial 

magnetometers, and flapping events from tri-axial accelerometers. The birds flew mostly in 

westerly winds coming from their left during outbound flights from their breeding colonies 

and from their right when returning. They compensated for wind speed by varying their roll 

angles and predominantly turning into the wind, resulting in a net displacement that was 

perpendicular to the wind. Flapping flight was influenced by wind speed, with birds 

spending more time flapping in light winds and in head winds. Combining roll angles and 

flapping data, I show that flapping occurred at the upper turn of the dynamic soaring cycle, a 

stage previously considered devoid of flapping. Although the results were only marginally 

significant, there were some evidence of sexual differences in flight behaviour of Wandering 

Albatrosses, with females flapping less than males. However, males possibly differ from 

females during take-off, with males almost exclusively taking off into head winds, while 

females utilized cross winds as well. These results add new perspectives to our knowledge of 

dynamic soaring and show how the birds react to their dynamic environment at a fine scale. 

Introduction 

Wandering Albatrosses are among the largest flying birds and have the largest wingspan of 

extant birds (Tickell 2000). They can cover thousands of kilometres in a single foraging trip, 

making them one of the widest ranging pelagic seabirds (Jouventin and Weimerskirch 1990; 

Weimerskirch and Wilson 2000; Mackley et al. 2010; Weimerskirch et al. 2012, 2014). This 

is achieved by spending extended periods in flight, with bouts lasting up to 17 hours 

(Weimerskirch et al. 1997; Mackley et al. 2010). In general, Wandering Albatrosses land less 

frequently than smaller albatrosses (Phalan et al. 2007) and breeding birds either forage 
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throughout long looping trips or direct flights to specific foraging areas (Weimerskirch et al. 

1997). Female Wandering Albatrosses take off in lighter winds than males (Clay et al. 2020), 

suggesting that males avoid landing in light winds where they might have increased energetic 

costs when taking off again. 

The heart rates of flying Wandering Albatrosses are often only slightly elevated above resting 

rates, with lowest rates when ground speed is high (Weimerskirch et al. 2000). To achieve 

such energy efficient flight, Wandering Albatrosses minimize flapping and favour gliding 

flight (Pennycuick 1982). Flapping flight is an expensive flight mode for large soaring birds 

(Alerstam et al. 1993; Weimerskirch et al. 2000; Williams et al. 2020a) and Wandering 

Albatrosses follow flight strategies that limit energy expensive take-offs, especially in light 

winds (Mackley et al. 2010). They are more prone to take-off when favourable wind 

conditions arise and adjust their flight patterns in changing wind conditions (Clay et al. 

2020). Like most procellariiform species, Wandering Albatross flight is centred around the 

wind, where the birds utilize dynamic soaring as a means of low-energy flight (Pennycuick 

1982; Weimerskirch et al. 2000, 2012; Sachs 2005; Richardson 2011; Sachs et al. 2012). 

In the past two decades, our knowledge of dynamic soaring flight has increased substantially, 

largely due to advances in bio-logging technology providing accurate, fine-scale (1–10 Hz) 

location estimates for extended periods of albatross flight (Weimerskirch et al. 2002; Sachs 

et al. 2012, 2013). Such data have shown that dynamic soaring consists of sequential cycles, 

each lasting 10–15 s (Sachs 2005; Richardson 2011; see Figure 4.1). The leeward turn is 

pivotal for dynamic soaring (Sachs et al. 2013), and upwind flight is possible through 

variations of tacking flight modes (Sachs 2016; Richardson et al. 2018). There is much 

debate regarding the exact means of energy gain from dynamic soaring (Richardson 2011; 

Sachs et al. 2012, 2013), but flapping flight is usually excluded as a means of energy gain 

(Sachs et al. 2013).  

Direct observations of flying albatrosses confirm that they seldom flap, but occasionally flap-

glide in light winds (Pennycuick 1982; Spear and Ainley 1997; Richardson 2011). Initial 

studies using bird-borne heart rate monitors suggested that flapping flight in Wandering 

Albatrosses is mainly limited to take-off and landing events (Weimerskirch et al. 2000; 

Shaffer et al. 2001a). More recently, accelerometers have shown that albatrosses have two 

flapping modes, with higher flapping frequencies during take-off as opposed to cruising 

flight (Sato et al. 2009). These studies highlight the complexity of seabird flight and how new 

technologies can improve our understanding of these processes. In recent years, the use of 

IMUs (including accelerometers and magnetometers) have been extended from the study of 

marine mammals and penguins, to include flying birds (Wilmers et al. 2015). These have 
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mainly been limited to identify flapping flight (oscillations of the vertical accelerometers axis 

around 1 g; Gómez Laich et al. 2008; Shepard et al. 2008), but more recently 

magnetometers have been used to study body/wing angles of thermal soaring birds 

(Williams et al. 2018, 2020a).  

Although body angle (roll/bank angle) is often mentioned in dynamic soaring studies (Sachs 

2005; Richardson 2011; Sachs et al. 2013) there have been no direct measurements of such 

angles. A change in roll angle is an important aspect of the dynamic soaring process as it 

determines the rate at which the birds turn and consequently the direction in which they fly. 

Likewise, although it has been inferred that flapping is not part of dynamic soaring flight 

(Sachs et al. 2013), flapping has not been explicitly quantified in conjunction with the 

dynamic soaring cycle. Here I show how magnetometer-derived roll angles can be used to 

add to our knowledge of albatross dynamic soaring flight. I use video loggers and IMUs to 

estimate roll angles of Wandering Albatrosses (Chapter 4), which can then be used to 

identify individual dynamic soaring cycles. The IMUs are also used to identify individual 

flaps, which can be matched to different elements of the dynamic soaring cycle to provide 

new insights into the flight mechanics of albatrosses and how they manage to fly in a 

dynamic environment. 

Methods 

To study the fine-scale flight behaviour of Wandering Albatrosses, I used data collected from 

33 individuals breeding on Marion Island between 2016 and 2020. The devices and methods 

used during deployment are detailed in Chapter 2. In short, a combination of GPS, video 

camera, and daily diary (DD) loggers were deployed on the backs of the birds in a straight 

line, except for eight individuals where the DD was attached to 4–5 tail feathers (see Results 

Table 5.1). DD loggers deployed in 2017 had a small magnet in a silicone paddle attached to 

the casing of the logger to estimate airspeed, but these data were not used in the current 

study. GPS loggers provided location estimates at varying intervals ranging from 1 s to 60 

min but were re-discretized at 60-min intervals to conform to the lowest sampling rate. 

Hourly GPS locations were deemed acceptable it was the same resolution as the wind data 

(see below) and Chapter 4 showed that coarse location estimates were appropriate for 

magnetometer-derived metrics. The GPS locations were linked to hourly wind data at 10 m 

a.s.l. from the European Centre for Medium Range Weather Forecasts (ECMWF) ERA5 

reanalysis dataset (Hersbach et al. 2018). The ERA5 dataset comprises zonal and meridional 

wind speed components at a spatial resolution of 0.25° (which equates to 27 km latitudinally 

and 16–23 km longitudinally within the range of the tracked birds). The wind speed 

components were used to calculate wind speed and direction using the uv2ds function from 
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the R-package rWind. The relative flight course for each GPS location was calculated as the 

difference between GPS course and wind direction and was classified into three wind types 

so that the absolute relative course was: 1) ≤ 45° for tail winds, 2) between 45° and 135° for 

cross winds, and 3) ≥ 135° for head winds. GPS-derived data were temporally matched with 

the DD data, using the closest location where exact matches were not possible. Metrics 

derived from the DD loggers were averaged for each GPS-hour (i.e. individual track points) 

when comparisons were made with environmental variables. The camera data were also 

temporally matched to the DD data, and visual inspection of roll angles (from both DD and 

video loggers) allowed for exact matching of the data at infrasecond resolution. 

Flight isolation 

For the purpose of this study, I limited the data collected to in-flight data. This was initially 

done by visual inspection of the data using custom software for the DD loggers (DDMT, 

Wildbytes, http://wildbytetechnologies.com/research.html). The dynamic soaring nature of 

albatross flight produces a repeated pattern in tri-axial magnetometer data during flight, 

which can be easily identified through visual inspection (Figure 5.1a). Additionally, the 

increased centripetal forces experienced by the birds during dynamic soaring results in a 

distinct tri-axial accelerometer pattern, where the mean vertical axis (AZ – the heave axis) 

follow the cyclical pattern of the magnetometer data, while the remaining two axes 

(longitudinal axis – AX, latitudinal axis – AY) stay relatively constant (Figure 5.1b). 

Visual inspection allows the simultaneous interpretation of multiple data streams and can be 

an effective means of filtering data, but it is time-consuming and not practical for very large 

data sets. I tested how well automated extraction of flight periods would work by following 

the approach of Collins et al. (2015) to identify periods of flight by examining frequency 

histograms of accelerometer data. Density histograms of standard deviation (SD) AZ (over 10 

s) were produced for each individual bird. The histograms were examined and where a 

bimodal distribution was present a threshold value (minimum frequency between peaks) was 

chosen for standard deviation(thSD) values. Where > 2 modes were present in the 

distributions, the minimum between the largest two modes were chosen. Flying periods were 

then identified where SD AZ over 10 s > thSD. The 10-s smoothing interval was chosen 

because the mean dynamic soaring cycle duration for Wandering Albatrosses is ~10 s 

(Richardson 2011; Sachs et al. 2012). Time gaps < 60 s in flight periods were removed and 

flights < 60 s also were disregarded. This resulted in the exclusion of short periods on the 

water and very short flights, but this was deemed acceptable for the scope of the study as the 

emphasis is on flying behaviour in general and Wandering Albatrosses do not land 

frequently (Weimerskirch et al. 1997). The above was done to evaluate the efficacy of using 

http://wildbytetechnologies.com/research.html
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an automated approach to separate flying from non-flying data in future studies and the 

analyses and averages reported in this chapter (Chapter 5) were from periods separated by 

visual inspection and included flights < 60 s. 

To analyse the effect of wind on take-off events, the first 10 s of every flight was isolated. The 

total number of flaps (see below) and mean instantaneous heading (derived from 

magnetometer data, see Chapter 4) during take-off was compared to the wind speed and 

direction at the nearest GPS location. 

 

Figure 5.1: Data traces (smoothed over 60 s) showing tri-axial a) magnetometer (MXYZ) and 

b) accelerometer (AXYZ) data from a sequence showing the take-off from the water by a 

Wandering Albatross.  
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Dynamic soaring cycles 

Roll angles (rotation around the longitudinal axis) were estimated for Wandering Albatross 

flight from DD and video logger data, as described in Chapter 4. Accurate roll angles could 

not be estimated from the 2017 deployments because the windspeed paddle magnet 

interfered with the calibration of the magnetometer axes. However, the relative roll angles 

could still be used to estimate the shape of the dynamic soaring cycle. This was done by 

normalizing the roll angles and then identifying the turns in the dynamic soaring cycle (see 

below). Tail-mounted DD loggers were not effective at estimating soaring cycles because tail 

movement is independent of body roll when birds turn with steep bank angles (Gillies et al. 

2011). The roll angles were smoothed with a 1-s running mean to remove outliers. Peaks in 

roll angles were identified as points where the slope changed from positive to negative (right 

turn) or vice versa (left turn), where a right turn peak had to be followed by a left turn peak 

to be valid (Figure 5.2). Peaks within 2 s of each other were disregarded as a typical dynamic 

soaring cycle generally lasts ~10 s (Richardson 2011; Sachs et al. 2012). The number of cycles 

per 1 min of flight was summed for each flight. Additionally, the accelerometer data from the 

DD loggers were used to estimate the centripetal force experienced by the birds during flight. 

This was done by first calculating the vector sum of static body acceleration (VeSBA), where 

the static component of each of the three axes was calculated by applying a rolling mean of 

2 s on each axis respectively and subtracting 1 g (Williams et al. 2015). The vector sum of the 

static components of an accelerometer should be 1 g as a result of gravity and where VeSBA 

> 1 g it indicates increased centripetal forces experienced by the birds.  
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Figure 5.2: Identification of dynamic soaring cycles from roll angles extracted from a video 

logger on a Wandering Albatross. Data between positive (grey circle – right turn) or negative 

(black square – left turn) pulses are counted as individual dynamic soaring cycles. Red 

dashed line shows the centripetal acceleration (g) calculated from the accelerometer data. 

Flap identification 

Data from the tail-mounted loggers (n = 7) were excluded from the analysis of flapping flight 

as these loggers were not aligned with the birds’ centre of gravity. Flaps were identified as 

pulses in the AZ data. These peaks were isolated following Lotz & Clilverd (2019) using a type 

of band-pass filter (based on LULU operators) to isolate downward pulses within a range of 

bandwidths (k – lower limit, m – upper limit). This method identifies peaks purely based on 

the duration of the pulse, regardless of intensity. Pulses below a chosen threshold (thflap) 

were subsequently labelled as flaps (Figure 5.3), while ignoring pulses that were < m/2 apart. 

The thflap value was chosen by plotting the total number of flaps isolated while incrementing 

thflap by 0.1 g (range -2 g to 0 g), while keeping k and m constant at 40 Hz (sampling 

frequency of DD) and 3 Hz (Wandering Albatross flapping frequency; Sato et al. 2009), 

respectively. Where the slope of the plots started levelling out (Figure 5.4a), the 
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corresponding thflap was chosen for each individual bird. Next, the optimal m value was 

chosen for each individual as above, by incrementing m by 1 sample unit (range 1–20 sample 

units, i.e. 2–40 Hz) while keeping k at 1 sample unit (40 Hz) and thflap at the value chosen in 

the previous step. Again, the m value that corresponded to the point where the slope started 

levelling out was chosen (Figure 5.4b). Random sections of flight were visually inspected for 

each individual to see if the identified flaps seemed plausible. To estimate the time spent 

flapping, the flight data were rounded to 1-s intervals and each 1-s interval with at least one 

flap was labelled as single flaps while intervals with > 2 flaps were labelled as sequential 

flaps. These intervals were presented as percentages of the total flight duration. The vector 

sum of dynamic body acceleration (VeDBA) was used to estimate flapping intensity. The 

dynamic component of the accelerometer axes was calculated by subtracting the static 

component (see above) for each respective axis, before performing the vector sum (Qasem et 

al. 2012).  

 

Figure 5.3: Isolation of flaps (red arrows) from the vertical accelerometer axis (AZ) showing 

how a) the raw data were b) filtered and minimum values below a threshold (dashed line) 

were used to identify individual flaps. 
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Figure 5.4: Example of how parameters a) thflap and b) m values were chosen for flap 

identification from a Wandering Albatross individual. The dashed lines represent the chosen 

value for each parameter. 

To test for significant differences in means (reported as mean ± SD unless otherwise stated) 

between groups, two-sample t-tests were used, or Wilcoxon rank-sum tests were used when 

normality of the data could not be attained. A non-parametric generalised additive model 

(GAM) was used to show the relationship between flapping intensity and centripetal forces 

(g) as well as the relationship between flapping flight and wind speed. This was done using a 

penalised cubic regression spline with the smoother function s in the R package mgcv (Wood 

2011). All statistical analyses were performed in the R software environment (R Development 

Core Team 2018). 

Results 

All but one of the 33 loggers were retrieved with useful DD data from 19 individuals (Table 

5.1); the remaining 14 birds had devices that did not record any data or ran out of battery 

charge before the birds left their nests. All the valid DD deployments had accompanying 

location data from GPS loggers and eight individuals had overlapping video data during 

flight (Table 5.1). 
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Table 5.1: Summary of Daily Diary (DD) data recorded from 19 breeding Wandering Albatrosses on Marion Island between 2016 and 2020. 

Values are averages across flights per individual unless total values are stated. 

     
Flights 

Dynamic 

soaring  
Flapping 

ID Date Sex 

Video 

total 

dur. 

(min) 

Total 

dur. 

(hr) 

Auto 

flight 

accuracy 

(%) 

Total 

manual 

flights 

(automated) 

Flights 

per day 

Flight 

dur. 

(s) 

Cycles 

per 

minute 

Cycle 

dur. 

(s) 

Flaps 

per 

minute 

Flapping 

intensity 

(g) 

Single flap 

(% of 

flight) 

Sequential 

flaps (% of 

flight) 

A1 2016-04-14 f 0 32 99 22 (14) 16 4485 7 8 15 0.88 16 2 

A2* 2016-04-14 m 0 119 83 50 (87) 10 5367 - - - - - - 

A3* 2016-04-14 m 0 65 88 17 (30) 6 7609 - - - - - - 

A4 2016-04-15 m 0 93 95 24 (49) 6 8383 5 11 25 1.15 27 3 

B1 2017-02-16 f 0 40 98 24 (36) 14 4457 6 8 21 0.75 22 3 

B2 2017-03-16 f 17 46 91 25 (58) 13 3698 6 11 14 0.76 13 3 

B3 2017-03-24 f 45 42 97 14 (20) 8 4233 5 13 8 0.81 8 1 

B4 2017-03-23 m 0 6 80 7 (10) - 576 8 7 65 0.88 57 13 

B5 2017-04-08 m 12 44 97 35 (32) 19 2265 6 9 15 0.8 15 2 

B6 2017-04-08 m 1 34 92 25 (32) 18 3891 7 8 15 0.89 15 2 

C1* 2018-04-13 f 2 168 94 83 (121) 12 4128 - - - - - - 

C2* 2018-04-14 f 2 89 95 45 (54) 12 3393 - - - - - - 

C3 2018-04-15 f 0 36 99 26 (23) 17 4096 6 9 6 0.82 6 2 

C4* 2018-04-15 f 0 146 79 48 (209) 8 6508 - - - - - - 

C5* 2018-04-13 m 0 71 98 50 (34) 17 3755 - - - - - - 

C6* 2018-04-13 m 0 46 88 37 (44) 19 2409 - - - - - - 

C7 2018-04-15 m 0 59 92 54 (73) 22 2926 6 9 29 0.85 26 5 

D1 2020-03-13 f 202 35 99 14 (13) 10 4376 7 9 22 1.09 23 2 

D2 2020-03-15 m 212 69 99 24 (23) 8 7545 6 10 14 0.93 15 2 

 Mean ± SD  

 

 93 ± 6 
33 (51) ±  

18 (47) 
14 ± 6 

4426 

± 1959 
6 ± 1 9 ± 2 21 ± 15 

0.88 ± 

0.12 
20 ± 13 3 ± 3 

*Tail-mounted devices
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Flights 

A total of 624 flights were isolated from 1238 hours DD data, of which 694 hours was flight 

data. Most of the DD (76%) and all the video data were recorded during outbound sections of 

foraging trips. However, GPS tracks covered the total duration of the foraging trip for all but 

one individual (bird D2). The video loggers recorded 8.1 hours of flight from 13 flights (eight 

individual birds) and all flying footage recorded on the video loggers was correctly identified 

as flying periods from the matched DD data (visual inspection). Automated isolation of flying 

periods from AZ histograms was effective in most cases, with 93 ± 6% of points 

corresponding to points identified through visual inspection (Table 5.1). Flight identification 

from tail-mounted loggers were less successful with 89 ± 7% success rate compared to 95 ± 

6% for back-mounted loggers but was not successful at identifying exact take-off and landing 

events. Figure 5.5 shows a comparison between two individuals, bird A1 and C7, where the 

automated method under- and overestimated the exact number of flights respectively, but 

the total flight time was still accurately represented (99% and 92%). The automated 

approach was not successful at identifying take-off and landing events with large variation 

between individuals (Table 5.1). Standard deviation of AZ over 10 s yielded good results when 

isolating periods of flight with the values being 0.19 ± 0.04 g on average. Birds performed 14 

± 6 flights per day (range 6–40) with an average duration of 1.2 ± 0.5 hr (range 8 s – 12 hr) 

per flight. 

Westerly winds dominated the winds experienced by Wandering Albatrosses during the 

study (Supplemental Figure S5.1). However, more northerly winds were experienced during 

the inbound period of foraging trips, when the birds were returning to their colony (Figure 

5.6a). Wandering Albatrosses flew mostly with cross winds (76%) from their left (outbound 

flights) and right (inbound flights), as well as tail winds (22%) during inbound flights (Figure 

5.6b). The birds flew with an average wind speed of 12 ± 5 m·s-1 (range 1–25 m·s-1). 
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Figure 5.5: Automated identification of flying periods from two Wandering Albatrosses, 

bird A1 and C7. a & c) Show histogram plots of standard deviation AZ separated into flying 

(green bars) and non-flying (blue bars) periods through visual observation and dashed lines 

show the threshold used in for the automated method. c & d) Shows the raw data of SD AZ 

and the threshold (dashed line) used to identify flying periods. Lines at the top of the graphs 

show periods of flight identified through the automated and manual methods where 

alternating colours indicate where individual flights are separated. 
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Figure 5.6: Winds experienced by 32 Wandering Albatrosses tracked during the study 

period (Feb – Apr, 2016-2020). a) The absolute wind direction where values are the 

direction the wind is blowing in (i.e. 0° is wind blowing to the north). b) Difference between 

the bird’s course over ground and the wind direction, so that negative values are wind 

coming from the left and positive values for winds from the right. Data for both outbound 

(red dashed lines) and inbound (solid black lines) sections of foraging trips are shown.  

Dynamic soaring cycles 

Roll angle analyses were only performed for six individuals with back mounted loggers 

without magnetic paddles (birds A1, A4, C3, C7, D1, and D2) or where video data were 

available. Dynamic soaring cycles estimated from the video-derived roll angles were 

compared to cycles from DD derived angles. Dynamic soaring cycles estimated from video 

data had a mean duration of 8.4 ± 1.6 s and frequency of 7 ± 2 cycles per minute (Table 5.2), 

and this was not significantly different from DD-derived cycles (t-test, t26 = 1.84, p = 0.08 

and Wilcoxon rank sum test, Z = 0.57, p = 0.57). The estimated centripetal forces (g) 

experienced by the birds were compared to the estimated roll angles. This proved to be an 

effective way to estimate the different periods of the dynamic soaring cycles (see Figure 5.2). 

Centripetal forces (g) are expected to be highest during the descent phase (lowest altitude in 

the cycle) and lowest when the bird is at the upper turn (highest altitude). Wandering 

Albatrosses had a mean roll angle of 25 ± 9° (range -109° to 89°) during flight and had 
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higher roll angles (29 ± 8°) when turning with the wind (low g turns) as opposed to turning 

into the wind (25 ± 9°; Wilcoxon rank sum test Z = 5.39, p < 0.01). When flying in cross 

winds (the majority of flights), the roll angle distribution was skewed, with birds spending 

more time at angles turning into the wind (i.e. with the wind blowing onto the back of the 

birds; Figure 5.7). Birds flying with tail winds had a more uniform distribution of roll angles, 

while one individual filmed flying into a head wind showed a bimodal distribution of roll 

angles (Figure 5.7). As expected, the distribution of roll angles was influenced by wind speed, 

with more extreme angles at higher wind speeds (Figure 5.7).  

Table 5.2: Comparison of Wandering Albatross dynamic soaring cycles estimated from 

video and DD loggers. 

   

Total cycles Cycles per minute Cycle duration (s) 

Bird 

ID 

Flight 

section 

Duration 

(min) 
Video DD Video DD Video DD 

B2 1 17 115 118 7 7 9 9 

sB3 2 10 68 79 6 8 9 8 

B3 3 19 133 142 7 8 8 8 

B3 4 9 69 78 7 8 8 7 

B5 1 2 19 14 8 6 7 9 

B5 2 4 23 34 5 8 10 8 

B5 3 5 26 41 6 9 10 7 

B6 1 0.5 2 3 5 7 12 7 

C1* 1 2 20 12 10 6 6 5 

C1* 2 2 20 10 10 5 6 6 

D1 1 158 1036 1002 7 6 9 9 

D1 2 44 352 369 8 8 8 7 

D2 1 212 1375 1454 6 7 9 9 

*Tail-mounted devices 
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Figure 5.7: Frequency distribution of roll angles extracted from video loggers on 

Wandering Albatrosses in relation to wind speed and relative direction. The relative wind 

direction was grouped into four categories: a) cross wind coming from the left, b) cross wind 

coming from the right, c) head wind, and d) tail wind. 

Flapping behaviour 

Individual flaps were isolated from back-mounted DD loggers (n = 13). On average, 

Wandering Albatrosses performed 21 ± 15 flaps per minute of flight with the largest number 

occurring at the start and ends of flights (Figure 5.8). These single flaps represented 21 ± 

13% of flight time, but sequential flapping (> 2 flaps∙s-1) only represented 3 ± 4%. However, 

it must be noted that the number of flaps per minute of flight is likely overestimated due to 

the potential inclusion of erroneous “low intensity” flaps (see below). Likewise, averaging 

over individual flights could skew the data towards shorter flights where flapping is likely 

more pronounced, and the flapping rate was lower when averaged over hourly periods of 

flight as opposed to complete flights (see Chapter 6). Most flaps occurred in periods with 

lower centripetal acceleration (g), which corresponded to the upper turn and the leeward 
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descent of the dynamic soaring cycle (see Figure 5.2 and Supplementary Video S5.1 and S5.2 

for examples of Wandering Albatross flapping behaviour). The mean VeDBA (representing 

intensity) of flaps was 0.68 ± 0.28 g with a decreasing trend in VeDBA as centripetal 

acceleration increased (Figure 5.9). Flapping intensity was not significantly different 

between sexes (male - 0.68 ± 0.09 g, female - 0.74 ± 0.13 g; t9 = 0.92, p = 0.38) and was the 

same when restricted to take-off periods (0.86 ± 0.13 g; t10 = 10.0, p = 0.95). However, males 

had significantly higher flapping intensities during take-off (0.86 ± 0.14 g) than during the 

rest of the flight (0.68 ± 0.09 g; t8 = 2.58, p = 0.03). 

 

Figure 5.8: Distribution of the number of flaps through the course of individual flights of 

Wandering Albatrosses. 
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Figure 5.9: 2D Density plot showing the relationship between centripetal acceleration and 

flapping intensity (VeDBA) for Wandering Albatross flapping flight. A generalised additive 

model (GAM) curve is shown as a green line.  

Wandering Albatrosses were more likely to flap when flying in low wind speeds, with the 

highest frequency of flapping occurring during head winds (Figure 5.10). Interestingly, the 

amount of flapping seemingly increased again at the highest wind speeds for cross and head 

winds, but this was only the case for “low intensity flaps” (Figure 5.10). The birds were able 

to fly in lower wind speeds without flapping when flying with tail winds, which had less 

flapping in general (Figure 5.10). Males flapped more often (27 ± 18 flaps∙min-1) than females 

(14 ± 7 flaps∙min-1), but this was only marginally significant (Welch two sample t-test, t11 = 

2.134, p = 0.056), likely due to the modest sample size. Males had a strong affinity for 

taking-off into headwinds, while females took off into both head and cross winds (Figure 

5.11a). Lower wind speeds resulted in more flapping during take-off, with males also flapping 

marginally more than females (Figure 5.11b). One male Wandering Albatross flew into the 

wind for ~1 hr flapping almost every second of the flight (54 flaps∙min-1). This was just before 

the bird reached its maximum distance from Marion Island, where it spent ~12 hours 

presumably foraging, before returning to the island. 
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Figure 5.10: Relationship of flapping flight and wind speed for Wandering Albatrosses 

flying with a) cross winds, b) tail winds, and c) head winds. The first panel shows results for 

all flaps as identified by the chosen thflap value (see Methods), while the second panel shows 

results for “high intensity flaps” where the flap intensity was > 1 g. Generalised additive 

model (GAM) curves show trends for both sexes, while sexes are differentiated by point 

colours (male – grey, females – black). 
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Figure 5.11: Effect of wind direction and speed on the take-off behaviour of female (black 

solid lines) and male (red dashed line) Wandering Albatrosses. a) Shows the wind direction 

relative to the take-off heading of the birds and b) the number of flaps occurring at varying 

wind speeds. Take-off periods were regarded as the first 10 s of individual flights. 

A detailed illustration of the above results is shown in Figure 5.12 and Supplementary Video 

S5.2, where the outbound section of a female Wandering Albatross (bird D1) foraging trip is 

shown. The bird flew into the wind heading north-west, while frequently flapping at a high 

intensity (flight 7 Figure 5.12). As the northwesterly wind speed increased, the bird flapped 

less (flaps with very low intensity) and had more extreme roll angles when turning with the 
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wind, resulting in the bird heading west. When the wind speed decreased (flight 11 Figure 

5.12), the amount of flapping and flapping intensity increased, while the roll angles were less 

extreme. The wind then turned, coming from the south-west, resulting in the bird rolling 

towards the left (into the wind) more often and heading north-northwest while flapping 

infrequently. Supplementary Video S5.3 shows the flight behaviour of all the tracked 

individuals in relation to wind. 
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Figure 5.12 (previous page): Example of the flight behaviour of a female Wandering 

Albatross (bird D1) flying in varying wind conditions. Points are hourly GPS locations with 

colour representing the number of flaps for every location where DD data were available. 

Wind vectors are also shown for locations with DD data while the total track is shown as a 

shaded grey line. Inserts are 30 s extracts of 40 Hz DD data showing roll angles (black) and 

the vertical accelerometer axis (AZ) with individual flaps indicated by red dots in relation to 

the roll angles. Accompanying video is shown in Supplementary Video S5.2. 

Discussion 

With the rapid advancement of bio-logging technology and the introduction of new analytical 

tools, the multisensor approach has revolutionised the way in which we conduct ecological 

research (Rutz and Hays 2009; Williams et al. 2020b). In this study, using a range of bio-

loggers, I show how Wandering Albatrosses use dynamic soaring as an energy efficient flight 

mode in the harsh Southern Ocean environment. My results show how male and female 

albatrosses differ in their flight behaviour, possibly influencing their spatial distribution. To 

my knowledge, this is the first study to directly measure the fine-scale body angles of a 

dynamic soaring seabird.  

While dynamic soaring, albatrosses subject themselves to rapidly changing centripetal forces 

(Figure 5.2; Sachs et al. 2012). These changes in acceleration could be used to identify 

periods of flight from acceleration measured on the vertical (heave) axis of an accelerometer, 

using an automated approach (Collins et al. 2015). These automated flight periods matched 

well with manually identified periods, but the exact number of flights could not be identified. 

This was due to short gaps, incorrectly subdividing longer flights into several shorter flights 

(overestimating flights) or when short flights were merged into a single longer flight 

(underestimate). This happened more often where the loggers were deployed on the tail 

feathers and stresses the importance of logger placement (Williams et al. 2020b). The 

average number of flights per day (14 ± 6) was similar to values from a previous study of 

Wandering Albatross activity (~14 flights per day; Weimerskirch et al. 2000). The 

distribution of flight duration was similar for both sexes, with both males and females flying 

for up to 12 hours at a time. A considerable proportion of flights (6%, n = 41) lasted < 30 s. 

Video footage showed that some of these flights were during foraging events, but visual 

inspection of DD data suggests that some might be failed take-off events (when a bird had 

been sitting for some time, then attempted to take-off a minute or two before the start of a 

long flight). Weimerskirch et al. (2000) measured an increased heart rate prior to take-off 

and hypothesised that this could be an anticipatory response. However, my data show that 

this increase in heart rate might also be due to failed take-off events. 
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Dynamic soaring cycles were identified from the roll angle estimates, even when the absolute 

roll angles had a large error (due to magnetic interference caused by a magnetic paddle in 

deployments in 2017). Such magnetic interferences caused a shift in the roll angle estimates, 

but the general shape of the cycle was maintained. By normalizing the roll angles to a range 

of -1 to 1, the cycles could still be identified, and durations estimated. Unsurprisingly, data 

from tail-mounted loggers could not be used to estimate roll angles or dynamic soaring 

cycles because these loggers were not in line with the birds’ centre of gravity and because the 

tail may be angled independent of the body when turning. Roll angles from tail-mounted 

loggers could provide information on how tail movement responded to sudden changes in 

the wind, but this would need further validation (e.g. back facing cameras) and is beyond the 

scope of this study. The dynamic soaring cycles of Wandering Albatrosses lasted ~9 s, which 

is similar to estimates from fine-scale tracking data (~10 s; Sachs et al. 2013). By coupling 

the centripetal force (estimated from accelerometer data) to the estimates of roll angles, the 

wind- and leeward turns of the dynamic soaring cycle could be identified, assuming that 

these forces peak during the descent phase of the cycle while the birds are turning into the 

wind.  

Roll angle distribution during Wandering Albatross flight changed with wind conditions, and 

individuals often maintained a heading perpendicular to the wind by predominantly banking 

in the direction from which the wind was coming. Albatrosses and petrels tend to favour 

cross winds in the Southern Ocean (Sachs 2005; Nevitt et al. 2008; Weimerskirch et al. 

2014; Tarroux et al. 2016) because these winds are seemingly predictable to the birds 

(Weimerskirch et al. 2000) and allow flight with minimal energy expenditure (Sachs et al. 

2012). Flying with a cross wind can result in windward drift and birds must either 

compensate or tolerate such drift when trying to maintain a specific heading. Antarctic 

Petrels Thalassoica antarctica might be able to compensate for drift, but are apparently not 

always able to detect how much they are drifting (Tarroux et al. 2016). My results suggest 

that Wandering Albatrosses may compensate for wind drift by altering their roll angle in 

response to changing wind conditions. The ability to compensate in this manner is probably 

influenced by body size. Male Wandering Albatrosses average 20% heavier than females with 

~7% more wing area, and thus have 12% greater wing loading (Shaffer et al. 2001b), allowing 

them to fly with faster airspeeds in stronger winds, where the aerodynamic forces on the 

birds are higher (Richardson 2011). Most of the IMU and video data were recorded during 

the outbound period of respective foraging trips and were dominated by westerly winds. 

During these flights, Wandering Albatrosses were flying with the wind coming from their left 

and spent more time turning into the wind (left turn) and less time with the wind (right 

turn). By turning into the wind for longer periods, their net displacement was more or less 

perpendicular to the wind and resulted in a northerly bearing. The shape of the upper turn of 
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the dynamic soaring cycle is likely to be relatively constant (Sachs 2016), thus the birds are 

probably banking towards the left during the leeward decent, causing a net displacement 

perpendicular to the wind. Inbound sections of flight were dominated by northerly as well as 

westerly winds and the birds mostly flew with the wind coming from the right or from 

behind.  

As expected, the amount of flapping (deduced using the accelerometer data) was highest 

during take-off and landing (Weimerskirch et al. 2000). However, there was appreciable 

flapping during cruising flight, with ~3% of flights consisting of continuous flapping (> 2 

flaps·s-1). Wandering Albatrosses spend between 1.2–14.5% of their time flapping according 

to accelerometer-based evidence (Sato et al. 2009), but the sample size on which these 

results are based is not clear. Smaller Black-browed Albatrosses Thalassarche melanophris 

spend ~4% of their time flapping, amounting to 14% of their total energy expenditure during 

flight (Sakamoto et al. 2013). Flapping is not regarded as being part of the dynamic soaring 

cycle and the exact means of energy gain from the cycle remains contentious (Richardson 

2011, 2015; Sachs et al. 2012, 2013; Sachs 2016). This debate is of particular relevance to the 

design of unmanned aerial vehicles (UAVs) to travel across the ocean in the absence of 

powered flight, where upwind flight is of particular concern (Richardson 2015; Sachs 2016). 

My results show how one male Wandering Albatross flew for an extensive period (~1 hr) 

against the wind while flapping at a high rate (54 flaps∙min-1). Flapping behaviour occurred 

during periods of low centripetal acceleration, which was often associated with the upper 

turn of the dynamic soaring cycle, as identified by roll angles at lower g values (see Figures 

5.2, 5.9 and 5.12). The upper turn of the dynamic soaring cycles is hypothesised to be where 

energy gain takes place, independent of flapping flight (Sachs et al. 2013; Sachs 2016). My 

results suggest that this is not always the case and that Wandering Albatrosses might 

supplement dynamic soaring with flapping flight.  

Albatrosses and petrels seem to have two modes of flapping, a high frequency flap during 

take-off and a low frequency flap during cruising flight (Sato et al. 2009). There appeared to 

be a difference in flapping intensity depending on the timing in the dynamic soaring cycle of 

Wandering Albatrosses, possibly adding a third flapping mode. High intensity flapping 

occurred at low centripetal acceleration values (upper turn of the dynamic soaring cycle) 

while intensity decreased with increasing centripetal acceleration (lower turn). The latter 

were normally sporadic flaps during flights with low flapping percentages (see Figure 5.12) 

and their lower intensity was expected as presumably the airspeed was higher, reducing 

gains of flaps and increasing the effort required to flap. Wing morphing (the flexing of wings) 

is important for stabilisation of seabirds in flight, especially when experiencing high wind 

speeds or gusts (Harvey et al. 2019). The low intensity flaps observed in Wandering 
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Albatrosses might be wing morphing events for stability rather than power generating flaps, 

but this requires further investigation. Another explanation for these low intensity 

movements could be minor attitude corrections that the birds undergo to avoid lumps in the 

sea surface when flying very close to the water. 

As expected, the time spent flapping increased at lower wind speeds when the birds were 

flying with cross winds, but minimal flapping was required for flight at low wind speeds in a 

tail wind. In the absence of wind, albatrosses may utilize updrafts caused by large waves to 

perform a type of wave-slope soaring (Pennycuick 1982; Richardson 2011). With a tail wind, 

the birds could travel perpendicular to the waves and possibly supplement dynamic soaring 

flight with wave-slope soaring where wind speeds do not allow continuous dynamic soaring 

without flapping (Richardson 2011). Wandering Albatrosses seldom fly into head winds, and 

sample sizes were too small to obtain clear results. However, males almost exclusively flew 

into the wind during take-off, while females took off into cross winds as well as head winds. 

Flapping intensity (VeDBA) was significantly higher during take-off than during routine 

flight for male Wandering Albatrosses. Although not explicitly tested for albatrosses, 

dynamic acceleration metrics have shown promise as indicators of energy expenditure 

during flapping flight (Van Walsum et al. 2020). Take-off events in large soaring birds are 

seemingly the most energy expensive part of the flight (Weimerskirch et al. 2000; Williams 

et al. 2020a), so male Wandering Albatrosses might limit their take-offs to favourable wind 

conditions (Clay et al. 2020) and once airborne may increase flapping rather than landing 

when wind conditions become temporarily unfavourable. Taking off in favourable wind 

conditions may not be restricted to albatrosses, as this behaviour has been observed for 

smaller seabird species as well (Kogure et al. 2016). 

Although the small sample size rendered the result only marginally significant, female 

Wandering Albatrosses also tended to flap less than males. Female Wandering Albatrosses 

are predicted to fly in lower winds (Shaffer et al. 2001) as they are smaller (~20%) and have 

lower wing loading resulting in lower stall speeds (Warham 1977). Female Wandering 

Albatrosses from the Crozet archipelago and South Georgia are more likely to take-off in 

lower wind speeds and males fly in higher wind speeds than females (Clay et al. 2020). Birds 

from Marion Island (present study) flew in similar wind conditions regardless of sex during 

the breeding period, similar to a previous study of Wandering Albatrosses from South 

Georgia (Wakefield et al. 2009). Female Wandering Albatrosses from the Crozet archipelago 

(neighbouring Marion Island) are spatially segregated from males during the breeding 

period, but to a lesser extent during the non-breeding period (Weimerskirch et al. 2014). 

Although the data I collected were mostly during the brood-guard period (when foraging 

trips are short), and during outbound sections of flight, I did see some evidence of sexual 
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differences. Females flapped less and were seemingly more tolerant of low wind speeds. This 

could explain the affinity of males for higher wind speeds (Clay et al. 2020), as birds that are 

unable to take-off in low wind conditions likely have reduced foraging efficiency (Jouventin 

and Weimerskirch 1990). Flying in higher wind speeds could result in a larger degree of wind 

drift, and coupled with increased flight speeds could result in the wider distribution of males 

during the breeding period (Weimerskirch et al. 2014).  

Conclusions 

This chapter demonstrates how multiple sensor bio-logging can be used to infer fine-scale 

patterns in seabird flight behaviour. I show how wind drives the flight behaviour of 

Wandering Albatrosses and how they react to wind conditions by altering roll angles. I also 

show that flapping flight is present in most flights and how it might be a key part of the 

dynamic soaring cycle where wind conditions are not optimal. Future studies could add to 

these results using additional loggers, such as gyroscopes or side facing cameras, to further 

study albatross flapping behaviour. One drawback of fine-scale studies is the lack of 

matching fine-scale environmental data. How a dynamic soaring seabird’s behaviour 

changes in response to fine-scale wind patterns is difficult to study with relatively coarse 

environmental data. Future studies, incorporating accurate measures of bird airspeed, might 

help to answer some of these questions (Williams et al. 2020b). Likewise, most of the 

positional data used in my study were relatively coarse and fine-scale positional data could 

benefit future studies looking at body angles and flapping behaviour.  It is likely that 

Wandering Albatrosses are also physically limited with regards to their roll angles when 

flying in high wind speeds, and research into their mechanical limits could also be beneficial 

to understanding their behaviour. Lastly, I showed that Marion Island Wandering 

Albatrosses displayed sexual differences in flight behaviour and responses to changing wind 

patterns. However, my sample sizes were modest, and the study of more individuals could 

further highlight these patterns. 
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Supplementary material 

 

Figure S5.1: Average wind speed and direction across the study period with kernel density 

estimations (50% and 90%) of track points corresponding to DD data. 
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Video S5.1: Examples of Wandering Albatross flapping flight filmed from Marion Island 

where birds are: 1) sequentially flapping at the upper turn of the dynamic soaring cycles, 2) a 

single flap at the lower turn, 3) continuous flapping with intermittent gliding, and 4) a low 

intensity flap at the lower turn. Video at https://vimeo.com/507438059 

Video S5.2: Bird-borne video footage showing the flying behaviour of a Wandering 

Albatross (bird D1), exhibiting: 1) sequential flapping at the upper turn of the dynamic 

soaring cycle, 2) reduced flapping at higher wind speeds. This footage corresponds to flights 

7 and 8 from Figure 5.12 respectively. Video at https://vimeo.com/507436974 

Video S5.3: Animation of Wandering Albatross GPS tracks in relation to hourly averages of 

wind speed and direction (arrows). The points are hourly GPS locations with the number of 

flaps within the hour represented by colour. Video at https://vimeo.com/507437755 
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Chapter 6: The incredible flight of albatrosses and 

petrels: how do central place foragers of varying sizes 

cover the same extensive ranges? 

Abstract 

Breeding albatrosses and petrels are extreme central place foragers, commuting between 

offshore foraging areas and their nests to incubate eggs or feed chicks. Each foraging trip 

covers hundreds to thousands of kilometres, largely irrespective of body size. They achieve 

these astonishing flights, often in harsh weather conditions, by employing an energy efficient 

dynamic soaring flight mode that allows them to travel large distances while extracting 

energy from fine-scale changes in wind speed. I assess how body size affects flight behaviour 

in relation to the wind. Larger dynamic soaring seabirds have higher wing loadings, with 

faster flight speeds to avoid stalling, especially in light winds. In contrast, smaller species 

also rely on flapping flight and often fly closer to the sea surface (where wind speed is lower) 

in high wind speeds. To investigate the behavioural responses of albatrosses and petrels to 

varying wind conditions, I equipped 101 birds from six species with bio-logging devices 

recording a multitude of data. The birds ranged in body size from Great Shearwaters (~800 

g) to Wandering Albatrosses (~9 kg). Roll angles during dynamic soaring flight were 

estimated from video (albatrosses only) and tri-axial magnetometer data (all species), while 

periods of flight as well as flapping flight were identified from tri-axial accelerometer data. 

GPS loggers provided location estimates that allowed coupling of flight data to local 

estimates of wind speed and direction. Birds mostly flew in westerly winds with an average 

speed of 10 m·s-1, but wind speed averaged less for birds flying in the south Atlantic Ocean (8 

m·s-1) than in the southwest Indian Ocean (11 m·s-1). All species flew with cross winds but 

had varying responses to wind direction. For example, Wandering and Atlantic Yellow-nosed 

Albatrosses alternated flying in cross winds from the left and right during outbound and 

inbound flights, respectively, whereas Grey-headed Albatrosses on occasion flew with tail 

winds during outbound flights to rapidly reach frontal systems. Variation in roll angles and 

flapping behaviour was related to wind speed and direction, with birds rolling at more 

extreme angles in high winds and flapping more in low winds. When turning into the wind, 

Wandering Albatrosses appeared to be more limited in roll angles they could achieve than 

smaller, more manoeuvrable species. This could explain why these large birds often perform 

long looping trips when foraging in the Southern Ocean. The Great Shearwater flapped most 

often but surprisingly, Grey-headed Albatrosses flapped least of all the studied birds. The 

flight behaviour of dynamic soaring seabirds is evidently complex and does not seem to 

follow a clear allometric relationship. The use of multisensory data loggers allows us to 
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improve our understanding of the complex behavioural patterns that allow seabirds to 

survive in a harsh environment such as the Southern Ocean.  

Introduction 

The Southern Ocean is home to many procellariiform seabirds, where they spend most of 

their time (Weimerskirch et al. 2014), only returning to land when breeding or courting. 

Albatrosses and petrels are extremely efficient flyers, with albatrosses thought to have the 

lowest energy expenditure of all seabirds while flying (Weimerskirch et al. 2000; Shaffer et 

al. 2001a), only rivalled by the thermal soaring of frigate birds (Weimerskirch et al. 2016). 

This enables them to travel extreme distances while foraging (Phillips et al. 2008; 

Weimerskirch et al. 2014), relying on wind when travelling over the open ocean (Pennycuick 

1982) where they mostly use dynamic soaring to travel with minimal energy expenditure 

(Weimerskirch et al. 2000; Shaffer et al. 2001b; Sachs 2005; Richardson 2011). The size of 

seabirds using dynamic soaring may be a limiting factor to their ability to take-off and 

sustain flight by flapping their wings in unfavourable wind conditions (Shaffer et al. 2001a; 

Sato et al. 2009). However, size does not seem to limit how far these birds can travel, as 

smaller shearwaters can travel to areas that are > 5000 km away from their nesting sites 

while breeding (Cleeland et al. 2014; Schoombie et al. 2018), at least as far as the largest 

albatrosses (Weimerskirch et al. 2014). Even the small Leach’s Storm Petrel Oceanodroma 

leucorhoa (50 g) can reach distant foraging areas up to 1400 km from their nests while 

breeding (Hedd et al. 2018). 

In order to explain how seabirds with such a wide range of body sizes can forage over equally 

large areas we need to understand their fine-scale behaviour at sea. Studying the 

characteristics of seabirds over a range of body sizes can help to indicate appropriate 

sampling strategies for different species (Hebblewhite and Haydon 2010). Most studies 

scaling behaviour with size of birds have been with regards to predator-prey interactions 

(Dial et al. 2008). More recently Sato et al. (2009) studied the fine-scale behaviour of a 

range of seabirds, showing that larger bodied birds flap less during flight, which is applicable 

to birds in general (Bale et al. 2014; Watanabe 2016). However, Sato et al. (2009) did not 

take local wind conditions into account. Behaviour is the response of an animal to its 

environment and when studying the behaviour of seabirds, it is important to consider 

environmental conditions. One of the reasons that behaviour is not often compared across 

species is that it might be difficult to accurately quantify animal behaviour (Dial et al. 2008). 

Recent advances in bio-logging technology (Wilmers et al. 2015) have made it easier to 

quantify discrete behaviours and this has been used on several seabirds (e.g. Ropert-Coudert 

et al. 2004, Sato et al. 2008, 2009, Sakamoto et al. 2013).  
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One of the fundamental aspects to consider in conservation is the energetic status and 

demands of animals (Cooke et al. 2004; Wilson et al. 2008). Traditionally, the energetic 

demands of free-ranging animals have been estimated using doubly labelled water or heart-

rate monitors (Wilson et al. 2006). More recently, we can estimate the energy usage of free-

ranging animals at a much higher resolution using metrics derived from accelerometer data 

(Halsey et al. 2009a). Experimental studies on a range of birds have shown that dynamic 

body acceleration serves as a valid proxy for energy expenditure (Wilson et al. 2006, 2012; 

Halsey et al. 2009b; Hicks et al. 2017). The overall energy efficiency of birds probably does 

not scale with size (Bale et al. 2014), but this might be different when looking at behaviour at 

a smaller scale (i.e. flapping flight and take-off) as well as in different wind conditions. Fritz 

et al. (2003) concluded that the small and medium scale (up to 10 km) movements of 

foraging Wandering Albatrosses seems to be independent of wind conditions, but wind 

patterns may show a significant effect if examined at smaller scales than was available in 

their study.  

Birds in the order Procellariiformes span a wide range of body sizes, from 30 g Least Storm-

petrels Oceanodroma microsoma to 9 kg Wandering Albatrosses. However, the distances 

they can cover over the ocean does not scale strongly with size, as is the case for soaring 

seabirds where migration ranges are mass-independent (Watanabe 2016). In this chapter I 

report differences in fine-scale flight behaviours between species and how these behaviours 

are influenced by varying wind conditions. This provides insights into the different strategies 

that species of varying body sizes use to travel large distances across the ocean. Seabirds with 

varying morphologies display similar behavioural patterns (i.e. far-ranging foraging trips) 

and through the exploration of individual behaviours we can identify the mechanisms behind 

these general behaviours (Cooke et al. 2004). Understanding the behaviour of individual 

species may help us predict how they respond to changing environmental conditions and 

could help shape future conservation measures. 

Methods 

Daily Diary (DD) loggers were deployed on four procellariiform species breeding on Marion 

Island (46° S, 37° E, southwestern Indian Ocean) and three species on islands in the Tristan 

da Cunha archipelago (37° S, 12° W) and Gough Island (40° S, 9° W, central south Atlantic 

Ocean; Table 6.1). Deployments were done on breeding adults, incubating eggs or brood-

guarding small chicks, from Feb–Apr (Wandering Albatrosses) and Nov–Dec for the 

remaining species (Table 6.1). In addition to the DD loggers, GPS loggers were deployed on 

all birds except one Sooty Albatross, one Grey-headed Albatross, and two Atlantic Yellow-

nosed Albatrosses (from here on referred to as Yellow-nosed Albatrosses). The GPS loggers 
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were programmed to record locations at intervals between 1 s and 1 hr. Video loggers were 

also deployed on some Wandering, Grey-headed and Sooty Albatrosses. The details of logger 

deployment, and logger attachment in general is detailed in Chapter 2. Only back-mounted 

devices deployed on Wandering Albatrosses were used (tail-mounted loggers were excluded), 

and the 2017 loggers used on Wandering Albatrosses were excluded from the magnetometer 

analysis because their magnetic paddle compromised the calibration of the magnetometers 

(see Chapter 5 for further details). 

Analysis 

Periods of flight were isolated from the DD data by examining frequency histograms of the 

vertical accelerometer axis AZ (Collins et al. 2015; see Chapter 5) and subsequent analyses 

were only performed on the in-flight data. Roll angles were extracted from tri-axial 

magnetometer and video data (see Chapter 4). The length of individual dynamic soaring 

cycles was estimated from the time between peaks in roll angles (see Figure 5.2 in Chapter 

5).  

Individual flaps were extracted using a modified LULU filter (Lotz & Clilverd 2019; Chapter 

5). Analyses from Chapter 5 suggest that erroneous low intensity flaps could be detected for 

Wandering Albatrosses at high wind speeds. Thus, analysis of flapping flight was also done 

using data where low intensity flaps were excluded based on the vector sum of dynamic body 

acceleration (VeDBA) of the flap (see Chapter 5). Based on visual observation of 

accelerometer data, most clear flaps (see Figure 5.3 in Chapter 5) had VeDBA values > 0.7 g 

so this was used as the threshold when excluding low intensity flaps. Results of flapping 

analyses are shown separately where low intensity flaps are included and excluded 

respectively, but statistical analyses are only reported from data where low intensity flaps 

were excluded. Flapping was summed for every second of DD data (40 Hz) so that every 

second with at least one flap was labelled as flapping flight and the percentage of seconds 

with flapping flight is reported. Flapping rates were calculated by counting the number of 

flaps for every minute of flight. To estimate the effect of wind on flapping rate, the flapping 

rates were averaged across a grid of the available wind speeds and direction for individual 

species. However, sample sizes were small and only Wandering Albatrosses had a good 

representation of wind speeds and relative directions. 

Location estimates from GPS data were transformed to trajectories and rediscretized at 

hourly intervals using the R package adehabitatLT (Calenge 2006). GPS tracks were split 

into outbound and inbound sections of a foraging trip based on the maximum distance 

travelled during the trip (i.e. outbound ends at the maximum distance, where inbound 

starts). The DD (and video) data were matched temporally to the nearest GPS location (when 
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available) and hourly wind data were extracted from the ERA5 reanalysis dataset (Hersbach 

et al. 2018; see Chapter 5) for each location. A linear mixed effects model with individual 

birds as random effect was used to determine if there were significant differences in wind 

variables between species and breeding location while generalised additive models (GAM) 

were used to show trends in roll angle with varying wind speeds. The distribution of wind 

direction was square root transformed to conform to a normal distribution.  

Table 6.1 List of species and breeding location of birds equipped with Daily Diary loggers in 

respective years. 

Species Breeding Island n 
Useful DD data 

(GPS data) 

Year of 

Deployment 

Wandering Albatross Marion Island 33 19*(19) 2016–18, 2020 

Grey-headed Albatross Marion Island 21 11(8) 2018,2019 

Sooty Albatross 
Marion Island 7 2(2) 2018,2019 

Gough Island 3 1(0) 2017 

Atlantic Yellow-nosed 

Albatross 

Gough Island 10 9(8) 2018 

Nightingale Island 14 0 2017 

White-chinned Petrel Marion Island 4 1(0) 2019 

Great Shearwater Nightingale Island 9 1(1) 2018 

* Only 12 individuals with back-mounted DD loggers were used in this chapter 

Results 

All but one of the 101 equipped individuals were recaptured upon returning to their 

respective breeding islands. Ten DD loggers were lost and from the remaining 91, useful data 

could only be obtained from 44, with the remaining 47 loggers running out of power before 

the birds departed or had corrupted data. Logger retrieval rate was lowest for the smaller 

burrowing birds, White-chinned Petrels Procellaria aequinoctialis and Great Shearwaters, 

but useful DD data were obtained for at least one individual of every species (Table 6.1). In 

addition to the DD data, accompanying GPS tracks were recorded for all but six individuals, 

representing five species (Table 6.1). Video data overlapping with DD data (flight periods) 

were recorded for Wandering (n = 8), Grey-headed (n = 1), and Sooty Albatrosses (n = 2), see 

Chapter 4 for details. The DD loggers recorded data for an average of 74 ± 23 hours across all 

species with 75% of data from the outbound section of the foraging trip. Where GPS tracks 

were available, the tracks covered the whole foraging trip, except for two Sooty Albatross and 

one Grey-headed Albatross tracks (2019), where GPS tracks were only recorded during the 

outbound section of the trip. 
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Wandering Albatrosses spent less time in flight than smaller species from Marion Island and 

the Sooty Albatross from Gough Island (Table 6.2), but Wandering Albatrosses were tracked 

towards the end of summer when day lengths were shorter. Yellow-nosed Albatrosses spent 

less time in flight than the other albatrosses, while Great Shearwaters spent the least amount 

of time in flight (Table 6.2). The birds flew in similar wind conditions, with an average wind 

direction of 112 ± 63° (i.e. WNW) and speed of 10 ± 4 m·s-1. There was no significant 

difference (p > 0.1) in wind conditions between species, but the sample sizes were 

inconsistent. Marginally significant results were obtained for Wandering Albatrosses that 

flew in the stronger winds than the other species (11 ± 5 m·s-1; t33 = 1.85, p = 0.07) and Sooty 

Albatrosses that flew in different wind direction (151 ± 29°; t33 = 1.94, p = 0.06) than other 

species. When grouping birds by breeding location, Marion Island birds experienced 

stronger winds in the southwest Indian Ocean (11 ± 4 m·s-1) than birds from Tristan and 

Gough in the south Atlantic Ocean (8 ± 3 m·s-1; t32 = 4.95, p < 001). The birds flew in 

different wind conditions during outbound and inbound flights, except for Grey-headed 

Albatrosses that consistently flew in westerly winds and Sooty Albatrosses where only 

outbound flights were tracked (Figure 6.1a). Wandering and Yellow-nosed Albatrosses 

mainly flew with cross winds from the left during outbound flights and switched to cross 

winds from the right when inbound, but Wandering Albatrosses also flew with some inbound 

tail winds (Figure 6.1b). Grey-headed Albatrosses flew with tail winds during outbound 

flights and alternated between cross winds from the left and right (majority) during inbound 

flights while tacking back into the wind (Figure 6.1b). The Great Shearwater started foraging 

within a day of leaving its nest and flew in various directions relative to the wind while 

outbound, but mainly flew with cross winds from the left when returning to its nest (Figure 

6.1b). Sooty Albatrosses were only tracked for the first part of their foraging trips, when they 

mainly flew with cross winds from the right (Figure 6.1b). 
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Figure 6.1: Distribution of wind direction experienced by five seabird species during 

outbound (black solid line) and inbound (dashed red line) sections of foraging trips. There 

were no inbound data for Sooty Albatrosses and thus no red dashed line. a) Shows the 

absolute wind direction where the angles represent the direction the wind is blowing in, i.e. 

0° is a southerly wind blowing from south to north. b) Is the relative wind direction, i.e. the 

direction of the wind relative to the course of the bird, where smaller values represent tail 

winds and negative values are winds coming from the left of the birds. 

Bird-borne video loggers recorded 18 hours of flight footage from three species: Wandering, 

Grey-headed and Sooty Albatrosses. However, most of the data were from five individuals 

(see Table 4.3 in Chapter 4). The maximum roll angle recorded was 114° from a Sooty 

Albatross, 108° from a Wandering Albatross and 103° for a Grey-headed Albatross. 
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Examples of extreme roll angles from bird-borne video can be seen for Wandering Albatross 

(https://vimeo.com/511513395), Grey-headed Albatross (https://vimeo.com/511513520) 

and Sooty Albatross (https://vimeo.com/511513742) at the respective links. However, angles 

> 80° accounted for only 1% (~10 min) of the recorded flight time across all three species. As 

shown for Wandering Albatrosses in Chapter 5, the roll angle distribution (from video data) 

of Sooty and Grey-headed Albatrosses were also skewed, presumably in response to wind 

conditions (Figure 6.2). However, the sample sizes were much smaller for Sooty (n = 2) and 

Grey-headed Albatrosses (n = 1) than Wandering Albatrosses, and no GPS data were 

available for the Grey-headed Albatross. 

 

Figure 6.2: Frequency distribution of roll angles extracted from video loggers for 

Wandering, Sooty and Grey-headed Albatrosses in relation to wind speed and relative 

direction. The relative wind direction was grouped into four categories: a) cross wind 

coming from the left, b) cross wind coming from the right, c) head wind, and d) tail wind 

while colour represents wind speed (apart from Grey-headed Albatrosses where wind speed 

and relative direction was not available). 

The average maximum roll angles (at the respective turns of dynamic soaring cycles) were 

similar for all albatrosses and the White-chinned Petrel (~39°) but was significantly lower 

https://vimeo.com/511513742


109 
 

for the Great Shearwater (20°; t22 = 3.07, p = 0.006). Indeed, the Great Shearwater’s flight 

behaviour was consistently different from the other species (Table 6.2). The mean duration 

of dynamic soaring cycles was 10 ± 1 s for Wandering Albatrosses, 9 ± 1 s for Grey-headed 

Albatrosses and 8 ± 1 s for Sooty and Yellow-nosed Albatrosses (Table 6.2). The duration of 

dynamic soaring cycles could not be reliably estimated for the White-chinned Petrel or Great 

Shearwater as neither showed consistent repetition of roll angle patterns associated with 

dynamic soaring. Visual observation of DD data where repetitive cycles did occur suggests 

that dynamic soaring cycles for White-chinned Petrels and Great Shearwaters most likely last 

6–7 s. All species constantly experienced centripetal forces > 0 g and all species apart from 

Wandering Albatrosses and the Great Shearwater experienced centripetal forces > 1 g at least 

every hour of flight. The maximum recorded centripetal force was 1.98 g from a Grey-headed 

Albatross flying in a 11 m·s-1 cross wind, while Wandering Albatrosses had the lowest 

maximum value (1.26 g). The absolute difference between maximum roll angles of individual 

dynamic soaring cycles (i.e. difference between peaks at the respective turns of the cycle) was 

greatest for the smaller albatrosses and the White-chinned Petrel (total roll, Table 6.2). 

Birds breeding at Tristan and Gough flapped considerably more (20% of the time) than birds 

breeding on Marion Island (10%; t32 = 3.38, p = 0.002). Among Marion albatrosses, 

Wandering Albatrosses spent more time flapping than smaller Grey-headed Albatrosses 

(Table 6.2) and had the lowest flapping intensity, but only the latter was significantly 

different (t21 = 2.95, p = 0.008). The Great Shearwater and White-chinned Petrel spent the 

most time flapping among birds tracked from their respective breeding sites (Tristan and 

Marion Island) and the Great Shearwater had the highest flapping intensity of all species 

(Table 6.2). Overall, wind speed influenced flapping behaviour where low winds resulted in 

increased flapping as well as increased flapping in head winds in general (Figure 6.3). 

However, most species were only tracked in a single breeding year and experienced little 

variation in wind conditions. Only Wandering and Grey-headed Albatrosses were tracked 

flying in strong winds (>15 m·s-1); Sooty and Yellow-nosed Albatrosses were only tracked in 

moderate winds (5–15 m·s-1). Albatrosses had the highest flapping rate in head winds and tail 

winds where wind speeds were lower. Wandering Albatrosses had increased flapping rates in 

moderate cross winds as well as very strong winds (Figure 6.4; but see Chapter 5 for 

discussion on the flapping of Wandering Albatrosses). Yellow-nosed albatrosses had 

moderate flapping rates regardless of wind direction with highest rates in stronger head 

winds, but again, the birds were only tracked flying in moderate wind speeds (Figure 6.4). 

Wind speed also affected roll angles, with stronger winds resulting in more extreme roll 

angles (Figure 6.5). The effect of wind speed on roll angle was less pronounced for the Great 

Shearwater and two Sooty Albatrosses, but the sample sizes were too low for meaningful 
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comparisons. Wandering Albatrosses seemed to increase their roll angles up to a point, but 

the angles were again lower at very high wind speeds (Figure 6.5).  

 

Figure 6.3: Presence of flaps in flight in relation to a) wind speed and b) direction for 

several seabird species. The percentage of seconds with at least one flap is shown where wind 

speed and direction are grouped into three broad categories. 
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Figure 6.4: Flapping rate of several seabird species at varying wind speeds and relative 

wind directions. 
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Figure 6.5: The effect of wind speed on the range of roll angles (absolute difference of roll 

angles at both upper and lower turns of dynamic soaring cycle) of several seabird species 

with fitted curves (GAM). 
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Table 6.2: Summary of estimated metric pertaining to the flight of several Procellariiformes species breeding in the southern Indian and 

Atlantic Ocean. Values are means ± SD across all sampled individuals where valid data were available.  

  
Time flapping (%) Flap rate (flaps·min-1) Flap intensity (VeDBA g) 

   

Species Flight % All flaps 

VeDBA > 

0.7 flaps All flaps 

VeDBA > 

0.7 flaps All flaps 

VeDBA > 

0.7 flaps 

Cycle 

duration (s) 

Total  

roll (°) 
Max g 

Indian Ocean - Marion Island 

Wandering 

Albatross 
56 ± 19 12.4 ± 6.3 6.9 ± 4.6 12 ± 6 5 ± 4 0.73 ± 0.1 0.86 ± 0.05 10 ± 1.2 56 ± 5 1.26 

Grey-headed 

Albatross 
67 ± 15 5.1 ± 2 3.7 ± 1.7 5 ± 2 3 ± 1 0.91 ± 0.11 0.96 ± 0.04 9 ± 0.8 63 ± 7 1.98 

Sooty Albatross 73 ± 4 8.6 ± 1.5 6.3 ± 0.2 8 ± 1 5 ± 2 0.83 ± 0.02 0.96 ± 0.02 8.2 ± 0.9 61 ± 4 1.69 

White-chinned 

Petrel 
77 12.8 10.5 17 11 0.85 0.92 - 67 1.67 

Mean ± SD 68 ± 9 9.7 ± 3.6 6.9 ± 3.0 11 ± 5 6 ± 3 0.83 ± 0.07 0.93 ± 0.05 9 ± 1 62 ± 5 1.65 ± 0.30 

Atlantic Ocean - Tristan da Cunha archipelago 

Sooty Albatross 76 17.2 15.1 19 14 0.89 0.93 7.5  1.43 

Atlantic Yellow-

nosed Albatross 
53 ± 20 14.5 ± 4 12 ± 3.7 15 ± 4 7 ± 2 0.82 ± 0.02 0.89 ± 0.01 7.9 ± 0.29 60 ± 5 1.79 

Great Shearwater 45 30.1 28.4 43 40 1.06 1.05 - 38 1.67 

Mean ± SD 
58 ± 16 

20.6 ± 

8.3 
18.5 ± 8.7 26 ± 15 20 ± 17 0.92 ± 0.12 0.96 ± 0.08 7.7 ± 0.0 49 ± 16 1.63 ± 0.18 
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Discussion 

In this Chapter I show how the flight behaviour of six procellariiform species varies with 

body size and local wind conditions. Because sample sizes were modest and most data were 

collected during the outbound section of the foraging trips, the behavioural patterns reported 

in this chapter are not necessarily representative of the population (or foraging trips of 

individual species) but provide context for the fine-scale behaviour of the individuals birds. 

Wind conditions 

Much of the sub-Antarctic is dominated by westerly winds and most of the tracked birds flew 

in westerly winds (i.e. winds coming from the west) during outbound and inbound flights, 

but Wandering Albatrosses also flew with northerly winds on inbound flights. Wandering 

Albatrosses in the southwestern Indian Ocean typically perform anti-clockwise looping 

foraging trips where they leave their nests in favourable westerly winds and travel north into 

areas with prevailing easterly winds, allowing them to then travel back to their nests while 

constantly flying in favourable wind conditions (Weimerskirch et al. 2000). The same 

strategy can be followed by performing clockwise trips when travelling to the south 

(Weimerskirch et al. 2000) and this is what I observed for Grey-headed Albatrosses. Grey-

headed Albatrosses performed clockwise looping foraging trips, constantly flying in cross 

winds, before returning to the colony with the prevailing westerly wind at their backs. Grey-

headed Albatrosses seemed to favour flying with tail winds more often than the other 

species. Many of their foraging trips were directed flights with following winds, to a narrow 

band between the subtropical and sub-Antarctic fronts (Reisinger et al. 2018; Carpenter-

Kling et al. 2020) where the birds spend several days foraging. This area is to the east of 

Marion Island and the birds had to make their way back against the wind, but maintained a 

cross wind orientation by tacking across the wind to gain ground against the wind 

(Weimerskirch et al. 2002; Nevitt et al. 2008; Richardson 2011; Sachs 2016). Wind 

conditions at the start of a foraging trip may influence the foraging strategy of seabirds (De 

Pascalis et al. 2020) and the birds may also have knowledge of the local wind fields (Ventura 

et al. 2020) allowing them to decide on the direction of their flight.  

Only two of the three Sooty Albatrosses had partial GPS tracks (from Marion Island) and 

both birds headed east to south-east in northerly and northwesterly winds. More typically, 

Sooty Albatrosses travel north from Marion Island (Schoombie et al. 2017; Carpenter-Kling 

et al. 2020) and these two tracked birds were most likely driven southeast by the unusually 

northerly winds. Birds foraging in the south Atlantic flew in less windy conditions, most 

likely because the Atlantic breeders were only tracked relatively close to their breeding 

islands. The southwest Indian Ocean is distinctly windier than the south Atlantic (Young 
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1999) and mean wind speed increases with latitude in the Southern Ocean, with highest 

speeds between 50–60° S (Young 1999; Weimerskirch et al. 2012). However, Great 

Shearwaters from Gough Island have been tracked flying in high wind speeds covering 

extreme daily distances (Schoombie et al. 2018). 

Dynamic soaring behaviour 

Video data showed that albatrosses occasionally roll at extreme angles, going beyond vertical 

(103°–114°) regardless of size, but the most extreme angle (114°) was from the smallest 

albatross sampled, the Sooty Albatross. Dynamic soaring procellariiforms are probably all 

capable of rolling at extreme angles, but larger birds might be limited when turning into the 

wind at high speeds when the forces on the wings would be highest (Richardson 2011). 

Previously albatrosses have been estimated to roll at angles up to 70° (Pennycuick 1982). 

Large albatrosses, such as Wandering Albatrosses, also have higher wing loading than 

smaller species, which are associated with increased flight speeds (Warham 1977; Shaffer et 

al. 2001b). Increased flight speeds result in increased centripetal acceleration and remote 

controlled gliders have been shown to record centripetal forces > 90 g during extreme high 

speed dynamic soaring flight (Richardson 2012). Dynamic soaring seabirds in the present 

study were often subjected to centripetal forces > 1 g (i.e. 1 g above the force of gravity), 

reaching up to 1.3 g in Wandering Albatrosses and ~2 g in Grey-headed Albatrosses. The 

physical strength (e.g. structural wing strength) may limit the rate at which birds are able to 

turn in varying wind conditions and birds may perform longer dynamic soaring cycles to 

reduce the aerodynamic forces on their wings (Richardson 2011). This is evident from 

Wandering Albatrosses which had the longest period for individual dynamic soaring cycles. 

Richardson (2011) argued that the theoretical airspeed that Wandering Albatrosses can 

achieve is much faster than what is seen in nature, which he attributed to the increased 

forces experienced at such speeds. Unfortunately, I did not have wing measurements or 

masses for the birds used in my study and could not accurately calculate wing loading for 

each individual. Future study could explore the potential physical limitations of flying 

seabirds in varying wind conditions. 

Increased wind speeds resulted in larger roll angles in albatrosses, but the total roll angle 

(absolute difference of both upper and lower turn angles) seemed to be lower for Wandering 

Albatrosses. Wandering Albatrosses have the largest wingspan of extant birds, at 

approximately 3–4 m (Tickell 2000; Shaffer et al. 2001b), and consequently a high wing 

loading (Pennycuick 1982), which is associated with lower manoeuvrability and turning rates 

(Warham 1977). It seems possible that Wandering Albatrosses might be more limited in their 

response to local wind conditions than smaller species. When flying in strong winds, 
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Wandering Albatrosses had larger roll angles when turning with the wind (upper turn of the 

dynamic soaring cycles) than when turning into the wind (lower turn). Smaller species are 

expected to have faster turning rates (Warham 1977), and this was supported by the 

seemingly shorter dynamic soaring cycles exhibited by the White-chinned Petrel and Great 

Shearwater. The Great Shearwater had the smallest roll angles and did not display regular 

dynamic soaring cycles. Shearwaters are varied in their flight ability, which may be 

compromised when species are adapted to dive in pursuit of prey (Kuroda 1953; Brown et al. 

1978), such as Sooty Shearwaters Ardenna griseus able to dive to ~70 m (Shaffer et al. 

2009). Great Shearwaters seem to be intermediate with regards to flying and diving ability 

within the shearwaters (Brown et al. 1978) and although I only obtained behavioural data 

from a foraging individual, Great Shearwaters have the ability to fly very fast in high wind 

speeds while commuting (Schoombie et al. 2018). During such flights they may display more 

regular dynamic soaring with extreme roll angles, but more data are needed to confirm this. 

The ability of dynamic soaring seabirds to vary their roll angles and consequently change the 

length of individual soaring cycles, may have consequences for their ability to adapt to 

changing wind conditions (see below).  

Flapping behaviour 

The use of accelerometers to measure flapping behaviour in albatrosses has demonstrated a 

greater role of flapping flight in dynamic soaring than previously appreciated (Sato et al. 

2009; Sakamoto et al. 2013). One of the striking results of my study was that Wandering 

Albatrosses did not seem to flap significantly less than smaller albatrosses. Indeed, Grey-

headed Albatrosses flapped least off all the species studied. Flapping flight in 

procellariiforms is thought to scale allometrically, with large birds flapping less than small 

birds (Sato et al. 2009), but sample sizes remain low and more data are required to assess 

population level behaviour. It also has to be noted that Grey-headed Albatrosses were flying 

with tail-winds on many occasions, which could also explain why they seemingly flapped 

less. Wandering Albatrosses did have the lowest flapping intensity (VeDBA), which could be 

used as a measure of energy expenditure (Van Walsum et al. 2020). Chapter 5 reported how 

larger male Wandering Albatrosses flap more than females. Flapping intensity peaks during 

take-off, as opposed to routine flight and taking off is harder for males given their higher 

wing loading, especially at lower wind speeds (Clay et al. 2020, Chapter 5). Thus, there might 

be a trade-off for these larger birds in light winds where they might prefer to flap-glide rather 

than land, risking increased energy expenditure to take-off again or even getting stuck in a 

low wind area (Jouventin and Weimerskirch 1990; Alerstam et al. 1993).  
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In contrast, the smaller Great Shearwater flapped considerably more than any of the other 

birds in the present study and had the highest flapping intensity, which is expected for 

smaller bodies birds (Sato et al. 2009). Shearwaters have a different flight mode to dynamic 

soaring birds, where they soar close to the water in wave troughs with intermittent flapping 

(Spivey et al. 2014). Spear and Ainley (1997b) previously grouped Great Shearwaters and 

White-chinned Petrels together with flap-gliding seabirds, while “diving-type” shearwaters 

were grouped with glide-flappers. Recent studies have shown that both Great Shearwaters  

and White-chinned Petrels perform shallow dives, but may be capable of diving to depths of 

~20 m (Ronconi et al. 2010; Rollinson et al. 2014). Unfortunately, I did not have tracking 

data for the White-chinned Petrel and the results are thus not comparable to the Great 

Shearwater as the behavioural state (forage or commute) and wind conditions for the White-

chinned Petrel could not be inferred. The amount of flapping observed in albatrosses and 

petrels are most likely influenced by the winds they are flying in. 

Wind driven flight 

Wind speed is a key factor underpinning dynamic soaring among procellariiform seabirds. 

Overall, birds foraging in the south Atlantic Ocean flapped more than birds foraging in the 

southwest Indian Ocean linked to the lighter winds in the south Atlantic (Young 1999). The 

Sooty Albatross tracked from Gough Island flapped almost twice as often as the two birds 

tracked from Marion Island. Atlantic and Indian Ocean birds might be adapted to fly in 

different wind conditions and may respond differently to changes in the Southern Ocean 

climate (Weimerskirch et al. 2012), but more data are required to better understand these 

observed differences. Grey-headed and Sooty Albatrosses show little overlap between 

different populations breeding on sub-Antarctic Islands in the Indian (Marion Island) and 

Atlantic Oceans (South Georgia and Tristan da Cunha; Nel et al. 2001; Clay et al. 2016; 

Schoombie et al. 2017). However Grey-headed Albatrosses range much further, sometimes 

performing circumnavigations during non-breeding periods (Clay et al. 2016). White-

chinned Petrels breeding on Marion Island mainly stay within waters between Southern 

Africa and Antarctica (Rollinson et al. 2018), while Great Shearwaters are trans-equatorial 

migrants basically ranging the entire Atlantic Ocean but with their breeding restricted to the 

Tristan da Cunha archipelago (Ronconi et al. 2018; Schoombie et al. 2018). The Great 

Shearwater in the present study stayed close to its breeding island, flapping almost a third of 

the time, but these birds can also travel incredible distances while rearing chicks with one 

bird travelling ~14 000 km (possibly 17 000 km, see Chapter 3) in a single foraging trip 

(Schoombie et al. 2018). With such large ranges, Great Shearwaters are likely adapted to 

travel and forage in a range of wind conditions and might be well suited for a combination of 
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soaring and flapping flight. Birds relying solely on flapping flight are expected to have 

smaller ranges, while soaring birds are expected to have larger ranges (Watanabe 2016). 

Wind speed and direction seemed to influence the roll angles during dynamic soaring flight 

as well as the presence of flapping. When flying with cross winds, birds banked into the wind 

for longer periods and had more extreme roll angles as the wind speed increased. Albatrosses 

and petrels increase their airspeed when flying into the wind (Pennycuick 1982; Spear and 

Ainley 1997) and can achieve a net upwind displacement by continuously tacking across the 

wind (Sachs 2016). The tacking behaviour is necessary to avoid large lateral displacements 

associated with dynamic soaring (Sachs 2016). In strong winds albatrosses and petrels fly 

faster (Pennycuick 1982; Spear and Ainley 1997) and these lateral displacements may be 

larger. Thus the birds may have to adjust their body angles faster by rolling at more extreme 

angles to avoid large lateral displacements, as such wind drift may have energetic 

consequences (Tarroux et al. 2016). In light winds birds had smaller roll angles and 

intermittent flapping was observed. Alerstam et al. (1993) described how albatrosses flew 

with irregular flight paths in light winds while intermittently flapping, with most flapping 

seen in Yellow-nosed Albatrosses. Larger species of procellariiforms seem to only flap in light 

winds while smaller species tend to flap-glide (Pennycuick 1982). My results were similar to 

the above observations, where larger albatrosses flapped less than smaller birds and mostly 

in light winds but showed that flapping (or more likely wing morphing, see Chapter 5) may 

also be important during flight in high wind speeds.  

Conclusions 

The flying behaviour of procellariiforms comprises a complex set of fine-scale manoeuvers in 

response to dynamic environmental conditions. The multitude of responses by different 

species are likely one of the factors allowing the large variation in species (and body sizes) to 

co-exist in the Southern Ocean. Although sample sizes were small for most species, my 

results highlight the value of a multisensor approach when studying the fine-scale behaviour 

of free-ranging seabirds. I show how dynamic soaring seabirds of varying sizes respond to 

local wind patterns, by adjusting their roll angles and supplementing soaring with flapping in 

unfavourable winds. This demonstrates how seabirds can alter their behaviour to access 

resources efficiently in a pelagic environment with patchy resource distribution 

(Weimerskirch 2007). Flapping generally scaled with body size, but wind speed also played a 

crucial role in the amount of flapping observed. These results also highlight the importance 

of sampling birds at different breeding locations because local conditions may expose birds 

to different challenges and threats. Breeding stage also likely influences fine-scale movement 

patterns, just as it does at much larger scales (through changes in trip duration and distance; 
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Oppel et al. 2018). I mostly sampled birds during the brood-guard period, when birds might 

prioritise feeding their chicks above energy efficient flying (Frankish et al. 2020). Future 

studies of birds at different breeding stages might yield slightly different results. My sample 

sizes were too small for comparison between sexes (and many sexes were unknown) and 

future studies could include these comparisons as it is expected that sexually dimorphic 

seabirds could have different behaviours (Shaffer et al. 2001b; Phillips et al. 2004; 

Weimerskirch et al. 2014), as was possibly the case for Marion Island Wandering 

Albatrosses. The use of a range of bio-logging devices, ever decreasing in size, creates 

exciting new opportunities for the study of free ranging seabirds not possible before. 

Chapter 7: Synthesis 

The main aim of this thesis was to study how albatrosses and petrels of varying body sizes 

respond to changing winds by altering their fine-scale flight behaviour. To achieve this, I 

used advanced bio-logging technology and developed two novel methods to extract body 

angles from the bird-borne loggers. The at-sea behaviour of oceanic seabirds is difficult to 

study as these birds range far from land, limiting opportunities for direct observation. 

Advances in bio-logging technology have opened new avenues to study the behaviour of 

seabirds in the absence of human observers. Since the early 2000s, the use of GPS loggers to 

study seabird behaviour has increased dramatically. I show the limitations of low-cost GPS 

loggers and the effect of sampling interval on derived metrics (Chapter 3) and conclude that 

it is preferable to use specialized loggers that record infrasecond data to study fine-scale 

seabird movement patterns. In Chapter 4 I develop two new methods to use bird-borne video 

loggers and IMUs to study the fine-scale flight behaviour of dynamic soaring seabirds. These 

methods are then applied to a range of seabird species in Chapters 5 and 6, to show how the 

birds respond to wind conditions. 

Main results 

I show that metrics derived from GPS loggers are affected by sampling rates, something that 

needs to be considered when analysing data or planning research. At short sampling 

intervals the loggers are subject to measurement error, which compounds over time, 

resulting in overestimates of distances travelled. As sampling intervals increase, points are 

subject to interpolation error resulting in distance travelled being underestimated by 10–

40%, suggesting that trip distances may be up to 40% longer than those reported in the 

literature based on hourly sample intervals. Error in path length (the distance between 

individual points) increased steadily with increasing sampling intervals up to 5 km for 

straight flights and 15 km for sinuous flights at hourly intervals. The error in relative turning 

angle between successive GPS locations was highest at short intervals < 1 min, after which 
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the error seemingly stabilized. This resulted in behavioural states (identified by path length 

and turning angles) being variable at shorter sampling intervals, stabilising at moderate 

intervals and steadily becoming more unstable as intervals increased. Seabird studies using 

multiple GPS data sets, with varying sampling intervals, usually use the coarsest sampling 

interval to allow comparison of the data (Johnson et al. 2017). This approach inevitably has 

consequences on the quality of the inferences that can be made, which has to be 

acknowledged when interpreting results. When data with varying sampling intervals are 

treated as separate populations (Clay et al. 2020), these might not be directly comparable 

and different results might be obtained if corrected for the interpolation error associated 

with infrequent sampling rates. 

In Chapter 4, I show how back-mounted video loggers can be used to extract roll angles by 

estimating the horizon angle in video footage. Pelagic seabirds flying over the open ocean 

have the horizon in sight most of the time, and horizon angle can be extracted reliably using 

computer vision techniques to identify strong colour gradients (where the ocean meets the 

sky). Video loggers are power intensive and record large data files, resulting in relatively 

short recording times. Accordingly, I explored the use of IMUs to extract fine-scale body 

angles of seabirds for longer periods than is currently possible with video loggers (e.g. 

several days). Tri-axial accelerometers are often used to estimate animal posture, but the 

increased centripetal forces experienced by soaring seabirds precludes the use of 

accelerometers for such purposes. Tri-axial magnetometers are free from the effects of 

centripetal acceleration and I show how they can be used to estimate yaw and roll angles, if 

we assume that birds do not pitch significantly during routine flight.  

Using these newly developed methods, in Chapter 5 I analysed the fine-scale flight behaviour 

of Wandering Albatrosses by coupling roll angles and flapping flight (as identified from 

accelerometer data). Both roll angles and flapping rates were influenced by wind speed, with 

increasing wind speed resulting in more extreme roll angles and reduced flapping. The 

albatrosses adjusted for wind drift by turning into the wind for longer periods and were able 

to fly in light winds by supplementing dynamic soaring with intermittent flapping, 

particularly at the upper turn of the dynamic soaring cycle. The birds flapped more than 

expected, with males flapping more often than females and males seemed to restrict their 

take-offs to favourable wind conditions. These factors likely contribute to the spatial 

segregation sometimes reported for this sexually dimorphic species. 

Finally, in Chapter 6 I compared the flight behaviour of six procellariiform species across a 

range of body sizes. Although sample sizes were small, I showed how species employed 

different flight strategies despite largely experiencing similar wind conditions (i.e. westerly 
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winds dominating the Southern Ocean). Birds breeding in the south Atlantic Ocean typically 

experienced slightly lower wind speeds and flapped more than birds breeding at a higher 

latitude in the southwestern Indian Ocean. All species increased their roll angles with 

increasing winds while spending less time flapping, except for the Great Shearwater, which 

had a different flight mode and had overall smaller roll angles and increased flapping 

activity. 

The problem of sampling rates and location estimates 

The introduction of microprocessors in bio-logging technology in the 1980s started a 

revolution of new ways to study animals in their natural environment (Kooyman 2004; 

Wilson and Vandenabeele 2012). With the lower cost and increased reliability of GPS 

loggers, studies using these loggers have increased dramatically in the past decade, but 

questions have been raised around the efficacy of GPS loggers to study animal behaviour 

when only small sample sizes could be obtained (Hebblewhite and Haydon 2010). Now 

larger sample sizes are available (e.g. Weimerskirch et al. 2014) or studies resort to 

collaborations where tracking data from various sources are pooled to allow large-scale 

inferences (Reisinger et al. 2018; Hindell et al. 2020). However, one drawback of using 

pooled datasets is the lack of standardisation among bio-logging studies (Campbell et al. 

2016; Williams et al. 2020b). When using GPS loggers to study animal movement, the 

chosen sampling rates are rarely justified, apart from maximising recording time.  

My results show that it is very important to consider sampling rates of GPS loggers when 

studying seabird movement. For large-scale movements (distribution ranges), coarse 

sampling rates (i.e. hourly) are adequate, but estimates of distances travelled inevitably will 

be underestimated. The magnitude of this error depends on the flight style of the birds; 

distances travelled will be underestimated to a greater extent for birds flying with tortuous 

paths. Although sinuous flight paths often occur during foraging, responses to wind may also 

play a role. A bird flying in light winds may increase the duration of soaring cycles, resulting 

in longer turns and more sinuous flight paths. Likewise, a bird tacking into a headwind may 

also have a more sinuous flight path (Nevitt et al. 2008; Richardson 2011; Sachs 2016). This 

may be different between species where flight mode may result in larger deviations from the 

straight-line flight course (Alerstam et al. 1993) and species may respond differently to wind 

conditions depending on flight mode (Ainley et al. 2015). 

When location estimates are used to infer behavioural states, the effect of sampling rates 

become more complex. Many studies of animal behaviour use a combination of path length 

and turning angle to segregate location estimates of a foraging trip into discrete states 

(Patterson et al. 2008). However, the ability to accurately infer states may vary considerably 
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in relation to sampling intervals, which will be applicable to behaviour at different scales. 

Coarse sampling rates may result in behavioural states being smoothed over a long time 

period and because of error associated with path length, short foraging events will most 

likely be missed. Although moderate (10–30 min) sampling rates produced the most stable 

estimates of behavioural state, they are not necessarily the most accurate. Accuracy depends 

on the behaviour in question. Models used to identify states from tracking data have been 

validated on several occasions, but these are mostly done with sampling rates of 1–10 mins 

(Dean et al. 2013; Thiebault and Tremblay 2013; Bennison et al. 2017). These validation 

studies may not be applicable to data at coarse sampling rates. Coarse sampling rates can 

give information regarding “hotspot” areas that could be associated with foraging, but these 

areas are easily identified by using simple kernel density estimates, negating the need for 

complex modelling (Bennison et al. 2017).  

A simple way to decide on sampling intervals is to use the Nyquist (or sampling) theorem, 

which posits that the sampling rate should be at least double that of behaviour in question 

(Williams et al. 2020b). For example, when studying the daily movement of an animal, a 12-

hour sampling interval would be appropriate. When the aim is to describe a foraging event 

that lasts 10 mins, a sampling interval of 5 min is needed. Seabirds may also use “forage-in-

flight” strategies (Weimerskirch et al. 1997) where they cover larger distances and not 

necessarily target a specific area. During these flights they could encounter prey sporadically 

and often land for short periods of time. These short foraging bouts are difficult to identify 

from GPS data, with coarse sampling rates likely missing these events. Where researchers 

are interested in the fine-scale movement of animals to infer behaviour, it might be 

necessary to use specialised loggers, such as IMUs, or specialised GPS loggers with higher 

sampling rates and accuracy. GPS loggers that can record raw GPS data can be post-

processed to correct for errors associated with clock drift and interference in the ionosphere 

(Ranacher et al. 2016a). These loggers can be used to estimate position at decimetre accuracy 

while logging at up to 10 Hz and have been used to study the dynamic soaring cycle of 

albatrosses (Sachs 2016). 

Loggers beyond location 

Observing animals in their natural environment through visual observation is still a very 

important aspect of animal behavioural studies and technological advances should not be 

used in such a manner that they remove biologists from the field (Hebblewhite and Haydon 

2010). Visual observation is challenging when it comes to far-ranging or cryptic animals, 

where direct observation can have many logistical challenges. Many seabirds spend most of 

their time at sea, only coming to land to breed or find a mate. Since the early 1900s, ship-

based observation of seabirds have been used to study seabird ecology (Jespersen 1924; 
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Tasker et al. 1984; Spear et al. 2004) and is still an important tool today (Raymond et al. 

2010; Ryan et al. 2020). However, ship-based observations also have associated biases, 

especially if birds react to the presence of a ship, as is often the case for procellariiforms 

(Griffiths 1982; Pennycuick 1982; Tasker et al. 1984), resulting in observations that may not 

reflect their natural behaviour.  

Since the introduction of GPS loggers in seabird behavioural studies in the early 2000s 

(Weimerskirch et al. 2002; Ryan et al. 2004), the technologies available to measure animal 

movement have increased substantially. IMUs (including accelerometers, magnetometers 

and gyroscopes) can record data at much higher rates (e.g. 300 Hz or even more) and have 

much lower power consumption than GPS loggers. With advances in solid-state technology 

(Wilson and Vandenabeele 2012), these loggers are now small enough to allow deployment 

on small birds for long periods of time (Liechti et al. 2013). The use of IMUs on flying birds 

has mainly been restricted to the study of flapping flight from accelerometers (Williams et al. 

2015), with a large number of studies on cormorants where the relationship between 

dynamic movement and energy expenditure has been well described (Kato et al. 2006; 

Wilson et al. 2006; Gómez Laich et al. 2008; Sato et al. 2008; Halsey et al. 2009b). The 

potential uses of magnetometers to study animal behaviour have recently been highlighted 

(Williams et al. 2017; Chakravarty et al. 2019) and these loggers have been used to described 

the flight of large, thermal-soaring condors (Williams et al. 2018). 

In this thesis, tri-axial magnetometers were particularly useful to study the flight of dynamic 

soaring seabirds as these data are not sensitive to centripetal acceleration. However, 

validation through visual observation using bird-borne cameras was vital for the 

development of this method. When using IMUs to infer behaviour, it is imperative that the 

conclusions make biological sense and visual observation (human observer or bird-borne 

camera) may be needed to confirm inferred behaviours (Williams et al. 2018, 2020b). IMU 

data also complimented video data in that the IMU data could be used to identify potentially 

interesting video sequences. Combing through many hours of video footage in search of 

interesting animal behaviour is a tedious task, and transient behaviours can easily be missed. 

Visual observation of IMU data traces can be used to rapidly identify periods of interest and 

relevant video sequences can then be isolated, reducing the amount of footage to look 

through. Recently, IMU data have even been used to control bird-borne cameras to only 

capture certain events (Korpela et al. 2020). 

The magnetometer analyses described in Chapter 4 showed how yaw angles (heading) can be 

calculated from dynamic soaring seabirds. To my knowledge, this is the first study to do so, 

as estimates of heading from magnetometers usually depends on posture corrections from 
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accelerometer data (Bidder et al. 2015), which is not possible for dynamic soaring birds 

(Williams et al. 2015). Accurate heading from soaring seabirds opens up exciting 

opportunities to study fine-scale flight of seabirds using dead-reckoning techniques (Bidder 

et al. 2015), but more work is needed on this topic as continual calibration of magnetometer 

loggers will be necessary as well as corrections for wind drift. Such dead-reckoned tracks can 

now be validated with decimetre-accurate GPS tracks at 10 Hz (see above). 

The flying behaviour of albatrosses and petrels 

Seabirds forage in an environment where resources are sparsely distributed across a massive 

area (Weimerskirch 2007). However, while breeding, they are central place foragers, 

constrained to return to their nesting grounds to incubate eggs or feed chicks. This makes 

them an interesting group of birds to study as they all start at the same point, but do not 

necessarily target the same foraging areas (e.g. Reisinger et al. 2018; Carpenter-Kling et al. 

2020). Yet regardless of size, breeding albatrosses and petrels can cover similar distances 

during foraging trips (see Figure 1.1). Migration ranges of migrating birds are influenced by 

flight mode where ranges scale allometrically for flapping birds, but is largely independent of 

body size for soaring birds (Watanabe 2016). It is likely similar for albatrosses and petrels, 

where their flight mode seems to influence their foraging distribution. I first briefly describe 

the flight modes and morphology of varying groups of albatrosses and petrels, before 

discussing how they may react to varying winds in the Southern Ocean. 

Flight mode and morphology 

Southern Ocean seabirds have been divided into several broad groups based on their modes 

of flight (Warham 1977; Pennycuick 1982; Spear and Ainley 1997; Ainley et al. 2015). These 

include gliders (or dynamic soarers), which use dynamic soaring flight most of the time, only 

occasionally flapping; flappers, which spend most of their time flapping; and combination 

flap-gliders, which mostly glide with intermittent flapping, and glide-flappers, which mostly 

flap with intermittent gliding (Spear and Ainley 1997). Gliders include albatrosses and larger 

petrels, flap-gliders are surface feeding petrels and larger shearwaters, glide-flappers are 

diving-type shearwaters and storm petrels, while flappers are mostly Charadriiformes. Flight 

mode seems to be related to wing loading, and although wing area scales allometrically, there 

is variation in wing loading between similar-sized species (Warham 1977). Wing loading also 

varies as birds lose and gain weight (Warham 1977). For example, wing loading will be lower 

immediately after a long incubation shift and higher when returning to its nest with a full 

stomach. This may result in birds favouring flying in winds with a head wind component 

during outbound flights while favouring tail wind components during inbound flights 

(Alerstam et al. 2019), which may result in the looping nature of many large seabirds while 
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breeding (Weimerskirch et al. 1997). Unfortunately, I could not test for differences in flight 

behaviour between outbound and inbound flights as most of my fine-scale data were from 

outbound flights. However, tracking data suggest that species may have different flight 

strategies during inbound and outbound flights. Wandering Albatrosses mainly flew with 

cross winds but occasionally flew with tail winds during inbound flights, while Grey-headed 

Albatrosses occasionally flew with tail winds during outbound flights and flew into the wind 

to get back to their nests with tacking flight. Changes in wing loading during a foraging trip 

may influence decisions on where birds forage in certain wind conditions, but birds may also 

be able to change their wing loading by altering their wing configurations (Pennycuick 1960). 

The effect of varying wing loading is likely more pronounced in birds that do not regularly 

use a dynamic soaring , such as glide-flappers (e.g. diving shearwaters), where the birds may 

favour flying at low altitudes in head winds during outbound flights and at higher altitudes 

assisted by following winds during inbound flights (Alerstam et al. 2019). 

In general, procellariiforms can be grouped by body size such that larger birds have higher 

wing loading and flight speeds but are less manoeuvrable, whereas smaller birds have lower 

wing loading and flight speed but are more manoeuvrable, and medium-sized birds fall in 

between these groups (Warham 1977). However, similar sized species may have varying 

structural adaptations, often linked to diving behaviour (Wilson et al. 1992), that result in 

different flight modes (Kuroda 1953; Pennycuick 1982). Another factor to consider is that 

adaptations in wing shape results in varying flight speeds during gliding and flapping flight 

(Pennycuick 1987). The wide range of morphologies present in procellariiform seabirds may 

offer some explanation for how they are able to coexist (Warham 1977). As expected, 

amongst the birds that I studied, the smaller petrels flapped more than the larger 

albatrosses, but flapping flight varied among the albatrosses. Albatrosses breeding on Gough 

Island flapped more than albatrosses from Marion Island, and may be adapted to flying in 

lighter winds of sub-tropical waters. Grey-headed Albatrosses are known to reach very high 

ground speeds during flight (Catry et al. 2004) and spent the least amount of time flapping 

of all the albatrosses studied. The period of dynamic soaring cycles decreased with body size, 

with Wandering Albatrosses having the longest cycle (~10 s). Albatrosses have more sinuous 

flight paths than shearwaters as a result of their curved flight while dynamic soaring 

(Alerstam et al. 1993). Larger albatrosses might be limited by the rate at which they change 

their roll angles, whereas smaller petrels can rapidly change from one extreme angle to the 

next, reducing the duration of the dynamic soaring cycle. Such structural limitations may 

influence how seabirds are able to react to changing winds. 



126 
 

Wind-driven flight 

Wind is undoubtedly an important factor for seabird flight (Raymond et al. 2010; 

Weimerskirch et al. 2012). The flight behaviours of all study species were influenced by both 

wind speed and relative direction. In general, albatrosses are rarely observed flapping and 

this only occur in relatively calm conditions (Warham 1977; Pennycuick 1982; Richardson 

2011), but even in calm conditions Wandering Albatrosses can glide over the waves without 

flapping (Pennycuick 1982). For flap-gliding to be efficient, birds have to achieve a flight 

speed through flapping that is similar to the optimal gliding speed (Pennycuick 1987; 

Alerstam et al. 1993). In lower wind speeds, Wandering Albatrosses flap-glide by flapping at 

the upper turn of the dynamic soaring cycle, likely in response to a reduction in flight speed 

when turning into the wind at low speeds (Pennycuick 1982).  

All the tracked birds fitted with magnetometers reacted to the wind by altering their roll 

angles. In strong winds, albatrosses and petrels roll at more extreme angles than in lower 

winds. For albatrosses, relative wind direction affected the way they changed their roll 

angles, turning from left to right and vice versa. When flying in cross winds (which was the 

case for most flights) albatrosses had larger roll angles when turning with the wind and 

smaller roll angles when turning into the wind, but spent more time turning into the wind. 

This effect was more pronounced in Wandering Albatrosses; smaller albatrosses were 

seemingly able to roll with large angles when turning into stronger winds. When birds turn 

with the wind (at the upper turn of the dynamic soaring cycle), they pick up speed and 

rapidly change direction by following the wind, before turning into the wind again and 

restarting the cycle. The rate at which birds can change their roll angles at the lower turn of 

the dynamic soaring cycle may influence the amount of wind drift they experience.  

Albatrosses mainly fly with cross winds in the Southern Ocean (Alerstam et al. 1993; 

Weimerskirch et al. 2000, 2012), which allows them to attain high flight speeds (Alerstam et 

al. 1993). The recent increase in westerly wind speeds in the Southern Ocean associated with 

global climate change seems to be benefiting albatrosses (Weimerskirch et al. 2012), but if 

wind speeds continue to increase, seabirds may be in trouble as they are limited in their 

responses (González-Solís et al. 2009; Weimerskirch et al. 2012). Larger albatrosses and 

petrels may be more dependent on stronger winds than smaller species that are able to 

alternate gliding and flapping flight. Kuroda (1955) noted that Northern Fulmars Fulmarus 

glacialis in the Pacific Ocean were seemingly able to fly wherever they wanted regardless of 

wind conditions. Wandering Albatross males are larger than females and males seem to be 

affected by wind conditions to a larger degree than females (Clay et al. 2020). Males flapped 

more often than females and seemed to limit their take-offs to favourable wind conditions; 

this result helps to explain why males often favour areas with higher wind speeds than 
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females (Shaffer et al. 2001b). However, flying in stronger winds may increase wind drift, 

resulting in the typical looping trips of Wandering Albatrosses (Weimerskirch et al. 1997). 

Life at high g!  

The dynamic soaring flight mode of albatrosses and petrels results in these birds being 

exposed to fluctuating centripetal forces (g-force) at regular intervals. All birds tracked in 

this study consistently experienced g-forces > 1 g (i.e. 1 g in addition to the force of gravity) 

at least once each hour of flight. The flight speed of seabirds may be limited by the g-force 

they are able to tolerate (Richardson 2011). The amount of g-force experienced did not seem 

to scale allometrically; rather, there appears to be a more complex relationship between g-

force and flight mode, wing shape, and wing loading. Grey-headed Albatrosses experienced 

the highest maximum g-force (~2 g) and Wandering Albatrosses had the lowest (~1 g), 

despite the much larger sample size for the latter species. The White-chinned Petrel 

experienced similar forces to the smaller albatrosses. It would be interesting for future 

studies to look at the distribution of g-forces throughout a foraging trip to see if this changes 

as wing loading changes with increased weight while foraging (Warham 1977) and through 

varying wing configurations (Pennycuick 1960). The forces experienced by different birds in 

flight may also provide insights into the physical limitation of birds flying in different wind 

conditions, and may explain why larger seabirds have a tendon wing locking mechanism that 

is not present in smaller species (Pennycuick 1982). 

Limitations and precautions to consider for bio-logging 

Bio-logging technology opens up exciting new avenues of animal behavioural research that 

was not previously possible (Wilmers et al. 2015). However, a considerable amount of work 

is still needed to establish guidelines for the use of these technologies (Williams et al. 

2020b). I realised throughout my use of these various technologies that it is vital to 

understand the principles behind the working of individual loggers to be able to use them 

effectively.  The devices I used for fine-scale data acquisition only lasted several days, 

resulting in most of the data being restricted to outbound foraging flights. Even worse, many 

loggers ran out of battery power before the birds even left their nests. To ensure that data 

were recorded during the foraging trip, many birds were equipped as they were relieved by 

their partners, but this required many hours (and a fair amount of luck) in the field, which is 

not always possible. Future studies would greatly benefit from loggers that can be 

programmed to only record when a bird leaves its nest or solar-powered loggers that only 

record specific events (Korpela et al. 2020).  
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Timing 

I used multiple independent loggers run by separate micro-processors. Accurate temporal 

matching of loggers was extremely important, but sometimes proved to be difficult, as the 

camera timestamps had a considerable amount of drift between individual video bins. This 

resulted in the video data slowly drifting in time relative to the IMU data, which had to be 

corrected through visual inspection. This was a time-consuming process but was essential to 

allow comparison between video and IMU data. Studies using bio-loggers with multiple 

sensors would benefit from loggers being controlled by the same micro-processor, to ensure 

temporal alignment. 

Accelerometers 

The tri-axial accelerometers I used proved to be a valuable tool to isolate periods of flight or 

to identify flapping flight but were not useful to estimate bird posture during flight. 

Accelerometers are normally well suited to estimate posture (Shepard et al. 2008), but not 

when birds experience centripetal acceleration. Dynamic soaring birds are exposed to 

increased centripetal forces for large parts of their flight and thus estimating posture from 

accelerometer data was not possible. This is a very important aspect to consider as it means 

that the standard methods of pitch and roll correction of magnetometer data (Bidder et al. 

2015) is not applicable unless additional data on posture is available (Williams et al. 2017).  

Magnetometers 

Magnetometers are now being used to study animal behaviour in a similar way to 

accelerometers (Williams et al. 2017; Chakravarty et al. 2019). Because magnetometers are 

free from the effects of centripetal acceleration, they provide means to measure movement 

where accelerometer data are limited (see above). However, magnetometers are sensitive to 

interference in the magnetic field, which can be caused by ferrous or magnetic material 

(Bidder et al. 2015). Careful calibration of magnetometers is crucial for accurate values 

(Bidder et al. 2015; Williams et al. 2017). The Earth’s magnetic field varies across the globe 

and becomes more varied closer to the magnetic poles, which needs to be considered when 

studying wide-ranging species where data are collected over long periods of time. Under 

these conditions, repeated calibration of the data might be necessary. 

Recommendations for future research 

Bio-loggers are valuable tools to study the fine-scale behaviour of dynamic soaring seabirds, 

but currently most data are from breeding birds where complete foraging trips are rarely 

recorded (Fritz et al. 2003; Sato et al. 2009; Sachs et al. 2012; Sakamoto et al. 2013). Data 

from complete foraging trips are needed to further test the effect of sampling rates on 
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behavioural states estimated from GPS locations and to see how flight behaviour changes 

throughout a foraging trip. Most of my data were also gathered during the brood-guard 

period; data from other breeding stages are needed to test how bird behaviour changes 

through the breeding cycle. More data are also needed for smaller species as I was only able 

to get IMU data from one Great Shearwater and one White-chinned Petrel. 

There is a definite need for standardisation when it comes to the analysis of IMU data in 

animal behavioural studies (Campbell et al. 2016; Williams et al. 2020b). Future studies 

should compare ways of estimating flapping flight (Sato et al. 2009; Van Walsum et al. 2020; 

Williams et al. 2020a) to assess differences in reported metrics and possibly suggest 

appropriate methods for different species. Future studies would also benefit from adding 

gyroscopes to IMUs where animals have increased centripetal acceleration during 

locomotion (Wilson et al. 2013). These data can then be used to validate proposed methods 

to overcome challenges related to centripetal acceleration. Gyroscopes would also be useful 

to test the assumption made in Chapter 4, that dynamic soaring seabirds do not pitch 

significantly during routine flight. 

A limitation of comparing fine-scale behavioural data to environmental variables is that the 

environmental data seldom match the resolution of the behavioural data. Accurate fine-scale 

environmental data are limited in the Southern Ocean and studies rely on remote-sensed 

data. Fine-scale tracking data have been used to estimate fine-scale wind speed and direction 

through analysis of changing ground speed and heading (Yonehara et al. 2016), but relating 

behaviour to such estimates might be counterintuitive. Future studies may benefit from 

using bird-borne cameras to estimate weather conditions. Wind speed may be estimated 

from wave crests and it might be possible to estimate wave height from such video footage.  

The loggers I attached to the tail feathers of Wandering Albatrosses were not useful for 

estimating body angles. However, tail mounted IMU loggers could be used in conjunction 

with backwards-facing cameras to study how seabirds use their tails for steering (Gillies et al. 

2011), and how this may differ between species and with varying wind conditions. 

Conclusions 

Bio-logging devices are useful to study the fine-scale behaviour of flying seabirds, but 

sampling frequencies must be carefully considered during data acquisition and research 

planning. Such measurements can benefit greatly from validation through visual observation 

from bird-borne video loggers. Albatrosses and petrels varied their fine-scale flight 

behaviour in response to winds, by flapping less and rolling at more extreme angles in 

increased winds. The varied responses of albatrosses and petrels to the wind supports the 
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idea that seabird movement and distribution is determined by flight mode and not by size 

alone. Birds of different sizes may have morphological adaptations that allow them to fly in 

specific conditions and this may ultimately drive their movement paths and large-scale 

distribution. In an environment where the wind is constantly changing it is important for us 

to understand how animals respond to the wind. Albatrosses and petrels are among the 

species most intimately linked with wind and continued study of their responses to wind is 

important for informed conservation decisions. 
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