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ABSTRACT

Iron is one of the most commonly studied trace metals as it exerts a significant influence on
ocean productivity, carbon sequestration as well as modulating atmospheric CO;
concentrations. As iron is such a vital nutrient for biogeochemical processes it is often
included as a variable in ocean biogeochemical models. In representing the iron cycle,
biogeochemical models must parameterise the major processes of uptake by phytoplankton,
remineralisation and scavenging. However, there is no generally accepted set of equations to
represent iron dynamics and thus a variety of different parameterisations are employed
across the modelling community. The thesis work focussed on the inorganic iron
parameterisations with an emphasis on the scavenging formalisms which are employed in
current biogeochemical models. Using an open-source numerical model (Biogeochemical Flux
Model, BFM) as a background model, a more advanced inorganic iron parameterisations that
simulates free iron scavenging and ligands linked to dissolved organic carbon (DOC) (from the
open-source model PISCES) was included and compared to assess the implications on iron
cycling and plankton community structure. The parameterisations were compared by running
box models (0D) in four different regions: Southern Ocean, Equatorial Pacific, North Atlantic
gyre and North-east Pacific, representing different types of iron dynamics. The free
scavenging model (FePISCES) resulted in dissolved iron concentrations being two to three
times greater than with the standard formulation (FeBFM), which used a simpler formalism
for scavenging. Consequently, the elevated iron concentrations in FePISCES resulted in
altered community compositions for phytoplankton which impacted the seasonal cycle of
macronutrients and chlorophyll concentrations. Furthermore, the prognostic appreciation of
ligand dynamics in FePISCES lead to a decoupling of dissolved iron from its organic species
with the DOC content for a region being indirectly implicated in driving the iron system by
affecting the scavenging regime. Therefore, using a different set of iron parameterisations will
alter the biogeochemical behaviour of a model. The results suggest that the testing of
parameterisations should be initially done within 0D models in order to assess any non-linear

behaviours and ultimately embedded in 3D models to study how they interact with physics.
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1. Introduction

1.1 Background

Iron is a crucial limiting micronutrient for phytoplankton, and it has been linked to processes such
as photosynthesis, respiration and nitrogen fixation (Morel & Price 2003). Iron was showcased to be
an important limiting nutrient for productivity in the 1980’s; however, it was only in the early 2000’s
that iron was included as a variable in global ocean models (Tagliabue et al. 2017). In describing the
dynamics of iron, biogeochemical models employ a host of partial differential equations (PDEs) to
represent various chemical, physical and biological processes. However, there is no generally
accepted set of equations to model a marine ecosystem and thus a variety of parameterisations
(refer to Sec. 2.2.1 for meaning) can be utilised to describe a single process (Tian 2006).
Consequently, there are inter-model differences in the description of key processes related to iron
(Tagliabue et al. 2016). Therefore, there is a need to understand the implications of different iron

parameterisations in effecting biogeochemical model outputs.
1.2  Scope of project

The thesis work will focus on the inorganic iron parameterisations of two biogeochemical models.
The idea is to test the various parameterisations and understand their impact on the model outputs.
However, the work does not intend to validate the respective iron parameterisations, instead, it aims
to showcase the different biogeochemical responses that occur due to the choice of iron
parameterisations. In no way is this work an exhaustive assessment of all the inorganic iron
parameterisations that are used in current biogeochemical models. However, the chosen formalisms
are commonly employed in most biogeochemical models capable of representing iron (Tagliabue et

al. 2016).
1.3 Aims and objectives

The aim of the thesis is to compare two sets of iron parameterisations within a background
numerical model to understand the implications of the choice of iron parameterisations have on the
functioning of a biogeochemical model. Focus will be given to the parameterisations of scavenging
(refer to Sec. 2.1.1 and 2.2.3) as it is an important process in the iron cycle and is poorly constrained
in current ocean biogeochemical models (Tagliabue et al. 2016, Yao et al. 2019) which reflects a lack

of knowledge and scientific consensus on the process itself. To accomplish this, the second chapter
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presents a literature review which focusses on the description of the iron cycle as well as exploring
the various iron parameterisations employed in current biogeochemical models. The third chapter
is the methodology and it describes the background biogeochemical model, the various numerical
experiments and the statistical test utilised on the model outputs. The results and discussion
chapters will explain and interrogate the modelling repercussions for the choice of iron
parameterisations while the conclusion will answer two important questions: 1) Is the choice of iron
parameterisations significant when running a biogeochemical model? 2) Can OD models be used as
spaces to test and understand accurately the modelling repercussions for different

parameterisations?



2. Literature review

Iron is one of the most commonly studied trace metals as it exerts a significant influence on
ocean productivity, carbon sequestration as well as modulating atmospheric CO;
concentrations (Boyd & Ellwood 2010). As iron is such a vital nutrient for biogeochemical
processes it is often included as a variable in biogeochemical models (Tagliabue et al. 2017).
The literature review is divided into two main sections: biogeochemistry of iron and
biogeochemical modelling. The first section introduces the iron cycle (Gledhill & Buck 2012)
and explores the major components of: sources of iron, biogeochemical processes and organic
ligands. This is necessary in order to highlight the variety of biological, physical and chemical
interactions that have to be modelled and parameterised in biogeochemical models.
Consequently, the second section introduces the concept of a biogeochemical model before
addressing the various parameterisations and mathematical formalisms utilised to describe

key biogeochemical processes related to iron such as scavenging and complexation to organic

ligand.
2.1 Biogeochemistry of iron
2.1.1 Iron Cycle

The earth system comprises of chemical, physical, biological and human influences that
manifest themselves as multiple non-linear responses and linkages between the different
components (Jickells et al. 2005). The iron cycle is one such process (Fig. 1) and it involves the
complex interactions between lithogenic inputs, dissolution, precipitation, scavenging,
biological uptake, remineralisation and sedimentation dynamics (Gledhill & Buck 2012).
Martin & Fitzwater (1988) showcased iron to be an important limiting nutrient for
phytoplankton growth in the High Nutrient Low Chlorophyll (HNLC) regions of the North-east
Pacific (NEP) as well as the Southern Ocean (SO) (Martin, Gordon & Fitzwater 1991). It has
been estimated that HNLC regions constitute 25% of the world’s ocean (Boyd & Ellwood 2010)
and represent places of potential CO, drawdown. Martin & Fitzwater (1988) only did bottle
iron-enrichment studies to showcase the increased utilization of excess nitrate in HNLC
regions and noted the link between increased iron supply and elevated CO; drawdown known

as the iron hypothesis.



Consequently, the iron hypothesis spurred on the need for mesoscale iron fertilisation
experiments such as the IronEx project in the east Equatorial Pacific (EP) (Martin et al. 1994;
Coale et al. 1996; Landry et al. 2000) and the Southern Ocean Iron-Release Experiment
(SOIREE) (Boyd et al. 2000) to assess the viability of HNLC regions as being places to sequester
CO; from the atmosphere. Both IronEx and SOIREE corroborated the ideas of Martin et al.
(1991) with elevated phytoplankton growth and increased chlorophyll concentrations
occurring as a result of iron fertilisation (Martin et al. 1994; Coale et al. 1996; Boyd et al. 2000;
Landry et al. 2000). However, Boyd et al. (2000) cautioned about the viability of iron-
enrichment leading to elevated carbon sequestration. A follow up model study by Aumont &
Bopp (2006) stressed that iron fertilisation was not the solution for stemming the rise in
atmospheric CO; concentrations, citing the large uncertainties relating to the fate of

sequestered carbon as a major barrier.
Sources of iron

As first noted by Martin & Fitzwater (1988), the supply of iron is a limiting factor to
phytoplankton growth over most areas of the ocean. Exogenous iron reaches the ocean in
three major ways (Fig. 1): river and fluvial deposits, hydrothermal vents and aeolian
deposition (Jickells et al. 2005; Boyd & Ellwood 2010). River and fluvial deposits as well as
sedimentary and glacial particulate iron only nourish the coastal and near coastal
environments (Jickells et al. 2005, Rijkenberg et al. 2014). Consequently, iron is found at 100
to 1000 times greater concentrations within coastal environments compared to the open
ocean (Sunda & Huntsman 1995). This strong horizontal gradient in concentration has a
profound effect on the respective biological communities. Sunda & Huntsman (1995) showed
that oceanic phytoplankton species tended to be smaller in cell size, had decreased demand
for iron containing enzymes and had lower growth requirements for cellular iron when
compared to coastal phytoplankton. However, the high iron availability in coastal waters could
permit luxury uptake; which is the ability to take up and store iron in excess levels needed for
immediate metabolic requirements. Therefore, it is hypothesised that luxury uptake would be
advantageous to coastal species where iron concentrations are high but temporally variable

(Sunda & Huntsman 1995).
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Figure 1: The iron-cycle involves the interplay of multiple biotic and abiotic components that manifest
themselves within the land, atmosphere and ocean. A transect along the Southern Ocean to the North
Atlantic reveals the spatial disparities within the iron cycle between these two regions. Most pertinent
being the high aerosol flux received in the North Atlantic in contrast to the Southern Ocean; resulting
in the North Atlantic being nitrogen/phosphorous limited. In addition to aerosols, hydrothermal vents
and fluvial deposits act as sources of iron to the ocean. Excess ligand production occurs in the Southern
Ocean owing to the high biological productivity. Dust particles play a part in the scavenging of
bioavailable iron while bacteria remineralise the particulate organic iron. (Source: Tagliabue et al.

2017)

Hydrothermal vents have their iron inputs rapidly dissipated at depth but can act as an
important source for the deep ocean (Tagliabue et al. 2010), especially along the Mid-Atlantic
Ridge (Lough et al. 2019). However, the most important exogenous source of iron to the open
ocean is aeolian dust (Jickells et al. 2005). Hyper-arid regions comprise nearly a third of global
land area and are the major sources for dust particles. Desert dust comprises of um sized
particles that can have lifetimes of hours to weeks in the atmosphere, allowing them to be
transported great distances (Duce & Tindale 1991). However, dust particle production,
transportation and deposition are a function of multiple non-linear factors such as climate,
topography and vegetation cover (Duce & Tindale 1991; Jickells et al. 2005). There is a large
spatial disparity between ocean basins in terms of aerosol fluxes with regions such as the

North Atlantic receiving large quantities of dust as a result of the Sahara (Jickells et al. 2005;



Anderson et al. 2016) while the SO is characterised by a low aerosol flux (Martin & Fitzwater

1988; Boyd & Ellwood 2010).

In addition to exogenous sources of iron, vertical mixing and upwelling also act as important
sources of new iron to the photic zone (Falkowski, Barber & Smetacek 1998; Fung et al. 2000).
Furthermore, iron can also be made biologically available to phytoplankton through recycling
(regenerated production) in the upper layers of the ocean. Fung et al. (2000) studied the
cycling dynamics of iron in the upper-ocean and explored the recycling efficiency of iron in the
major HNLC regions of the SO, EP and NEP as well as the high atmospheric deposition region
of the North-west Pacific (NWP). Using numerical simulations, Fung et al. (2000) calculated
the recycled iron flux as being the difference between fixed iron and supplied iron, noting
uncertainties relating to preferential consumption of recycled or new iron for phytoplankton.
Consequently, for regions such as the SO, which have a small aeolian input, >95% (Fung et al.
2000) of production had to be supported by regenerated iron. Whereas for the NWP, the high
atmospheric deposition precluded the need to regenerate large quantities of iron to sustain
production. The EP differed to the SO and NEP as the EP is a prominent upwelling region which
results in an additional source of iron for the upper-ocean, ensuring lower levels (<30%) of

regenerated production (Fung et al. 2000).

Therefore, exogenous sources of iron as well as upwelled and regenerated production of iron
act as important sources for phytoplankton. Once iron is made available, it is transformed by

multiple biogeochemical processes.

Biogeochemical processes

Iron is the fourth most abundant element in the Earth’s crust (Falkowski, et al. 1998) and is an
essential micronutrient for phytoplankton as it has been linked to key processes such as
photosynthesis, respiration and nitrogen fixation (Morel & Price 2003). However, iron occurs
at concentrations less than 1 nM in most surface oceanic waters (Martin et al. 1991) due to
iron’s low solubility in seawater (Falkowski et al. 1998) and rapid scavenging, utilisation and
complexation (Rue & Bruland 1995) by biotic and abiotic mechanisms (Boyd & Ellwood 2010).
Therefore, from a biogeochemical context, the key flux to the ocean is not particulate iron but

rather soluble or dissolved iron.



Dissolved iron is unigue among nutrients as it has a short residence time, 100-200 years,
(Johnson, Gordan & Coale 1997) when compared to the time scale of the thermohaline
circulation (1000 years). As exhibited by Martin et al. (1991), dissolved iron has a nutrient-like
profile (Fig. 2) indicative of a biological influence. Subsequently, low dissolved iron
concentrations occur in the surface waters as a result of uptake by phytoplankton and
increasing concentrations are observed with depth as a consequence of remineralisation,
mainly by heterotrophic bacteria (Morel & Price 2003). However, Johnson et al. (1997) noted
that this simple uptake and remineralisation scheme cannot account for the rapid formation
of a nutrient-like profile (Fig. 2) and suggested that iron concentrations were maintained by
organic ligands that complexed iron which limited scavenging. Consequently, the
complexation to organic iron-binding ligands plays a significant role in controlling the

concentration of dissolved iron in the ocean (Gledhill & Buck 2012).
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Figure 2: The dissolved iron profiles for the North Atlantic, North East Pacific and Southern Ocean
observe low concentrations of dissolved iron in the surface waters due to uptake by phytoplankton
while increasing concentrations with depth are associated with remineralisation. (Source: Boyd &

Ellwood 2010)



Organic ligands

Dissolved iron (< 0.4 um) can take on multiple physio-chemical forms which include: Fe(lll),
Fe(ll), colloidal (0.02-0.4 um), truly soluble (< 0.02 um), organically complexed iron and
inorganic iron (Boyd & Ellwood 2010). However, almost 99% of dissolved iron is complexed to
organic iron-binding ligands (Fig. 3b) (Rue & Bruland 1995) which act to buffer dissolved iron
concentrations in seawater, limiting hydrolysis, precipitation and particle scavenging (Gledhill
& Buck 2012). Organic ligands are molecules that can bind to, and form stable complexes with
trace metals in the aquatic dissolved phase (Volker & Tagliabue 2015) and they are an
important component in the Dissolved Organic Carbon (DOC) pool as they act to increase the
solubility of iron and hence the availability to phytoplankton (Hassler, van den Berg & Boyd
2017). Traditionally, electrochemical detection methods distinguish between two types of
organic ligands, a ‘strong’ binding ligand (L1) and a ‘weaker’ ligand (L2) which have different
affinities for iron (Hunter & Boyd 2007). However, the production of organics ligands by

various biological processes lends itself to the existence of multiple species of ligands.

Over most regions of the ocean, organic ligand concentrations exceed that of dissolved iron
on average by 1 nM (Gledhill & Buck 2012). In the upper ocean, bacteria can produce L1
binding siderophores, which is an iron-chelating compound, to acquire iron (Tortell et al. 1999;
Barbeau et al. 2001) while phytoplankton can release several L2 ligands such as domoic acid,
saccharides and exopolymetric substances (EPS) (Hassler et al. 2017). In addition, L2 ligands
are produced by passive processes linked to exudate or remineralisation of cellular debris
(Gledhill & Buck 2012) which leaves behind less labile dissolved organic matter as a humic like
material. (Hassler et al. 2017). Furthermore, Fig. (3b) shows that iron-binding ligands are
found in most iron sources such as: glacial-ice, dust and hydrothermal vents, highlighting the

tight coupling between iron and its complexing pair.

Iron-binding ligands are not likely to be long-lived on the scale of the thermohaline circulation
as they are affected by bacterial as well as photochemical degradation in the surface layers
(Barbeau et al. 2001; Hunter & Boyd 2007) and aggregation onto sinking particles (Volker &
Tagliabue 2015) (Fig. 3b). Consequently, the interplay of sources and sinks for ligands result in
the surface waters (upper 100 m) having the greatest and most variable concentration of
ligands (Fig. 3A), with a peak occurring around the subsurface chlorophyll maximum,
corresponding to high biomass accumulation (Gledhill & Buck 2012). However, processes such

8



as remineralisation and photochemistry may be dualistic as being sources and or loss terms

for organic ligand, showcasing the complexity of ligand cycling (Hassler et al. 2017).
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Figure 3: A, vertical profile of organic ligands taken in the North Atlantic showing the distribution of
strong (L1), weak (L2) and total (Ltotal) concentrations. B, illustration of the cycling of ligands in the
ocean highlighting the various sources (black bold) and loss terms (red bold) as well as the flow of
matter indicated by the arrows. Humics are subdivided into two categories: terrestrial based (HS) and
marine based (HS-like). While siderophores and various biological excretions (EPS) are shown in

association with the accumulation of organic matter. (Source: Hassler et al. 2017)

2.1.2 Summary

A dynamic relationship exists between ocean biota and iron as phytoplankton and bacteria
control the chemistry and cycling of iron while iron controls the growth of the organisms, and
in turn, the cycling of other major nutrients such as carbon and nitrogen. An appreciation of
the iron cycle in the world's oceans requires the integration of diverse fields of knowledge,
ranging from global geochemistry to cellular-scale genetics. Consequently, the iron cycle is
incredibly complex as it involves the interplay of numerous physical and biological
components resulting in multiple uncertainties. Although decades of research have improved
our understanding of the iron cycle, quantification of the fluxes of iron to the ocean (Jickells
et al. 2005) as well as understanding the spectrum of iron-binding ligands and their

interactions with different iron species (Gledhill & Buck 2012) are required. Therefore, an



integrated view of the iron cycle places additional challenges on biogeochemical models that

are utilised for hypothesis testing and climate change projections.
2.2 Biogeochemical modelling of the iron cycle

2.2.1 What is a biogeochemical model?

At present, a quantitative appreciation of marine ecosystems requires two major research
components: marine biology and physical oceanography. In contrast to physical
oceanography, where the basic hydrodynamic equations have their origins in mathematical
formulas of fundamental laws, biological models cannot be derived from first principles
because ecological dynamics play a significant role (Fennel & Neumann 2001; Fulton, Smith &
Johnson 2003; Tian 2006). Therefore, a biological model consists of a number of PDEs that are
formulated mathematically by translating observations into formulas that are consistent with
ecological principles. In doing so, a spectrum of biogeochemical models that describe a marine
ecosystem exist and they encompass a variety of parameterisations, spatial as well as process

resolutions.

Parameterisations

A parameterisation refers to a formula or set of formulas that are used to describe and
quantify a controlling process (Fennel & Neumann 2001); however, some authors use the
word ‘model formalism’ synonymously. With relevance to marine ecosystems, this basically
manifests itself as the description of gains and losses in a state variable. Therefore, let X; be a
state variable that can be described in terms of concentration per unit volume of water and

thus the change in X; by a marine ecosystem can be expressed in Eq. (1.1):
= X; = (gain(X)) — loss(X)))X; + Qexternat (1.1)

where the processes that control the change in X; may depend on another state variable X;
as well as external variables which can be both physical and/or biological. Consequently,
processes such as the uptake of nutrients or ingestion are representative of gain terms while
cell lysis, respiration and egestion are loss terms. However, there is no generally accepted set
of equations to model a marine ecosystem and thus a variety of parametrisations can be
utilised to describe a single controlling process (Pereira, Duarte & Norro 2006; Tian 2006). In

addition, different biogeochemical models may model the same processes, but with different
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degrees of detail. Inherently, the degree of detail for a process is predicated on its importance

as well as available knowledge (Pereira et al. 2006).

A common example is phytoplankton growth which can be parameterised with three different
models: Monod, quota and mechanistic (Flynn 2003). The Monod model is the simplest as it
relates the growth of phytoplankton as a function of the external dissolved concentration of
the limiting nutrient (Sommer 1991). Therefore, if X is the limiting nutrient and Ky is the half-

saturation constant for growth, then the Monod model can be written in Eq. (1.2) as:
X
u= .umaxm (1.2)

Where U,qx is the maximum specific growth rate for a set of temperature and light conditions
while u is the actual growth rate. Though simple, the Monod model is only suited to steady-
state simulations and struggles to represent systems with multi-nutrient interactions. In
addition, the Monod model does not permit phytoplankton to utilise their internal quotas of

nutrients in the absence of external concentrations (Flynn 2003).

Consequently, the quota model improves upon the Monod by relating phytoplankton growth
to the internal availability of nutrients (Flynn 2003). Thus the quota model is an intrinsic
function, where phytoplankton growth is a function of internal nutrient content and this in
turn is a function of the external nutrient concentration in the ocean. Typically, the quota
model uses nutrient ratios in terms of carbon (C) and two of the most commonly used quotas

models are the Droop (Eqg. 1.3) and Caperon & Meyer (Eq. 1.4) (Sommer 1991).

Cu = Mmx —5— (1.3)
Xc—Xc,
Cu = Umx XC—XC0+KX (1-4)

Therefore, let €, be the carbon related growth rate while X is the nutrient:C quota and X,
is the minimum quota at which phytoplankton can survive. In addition, Ky is a curve fitting

constant and p,,x is the maximum specific growth rate when using nutrient X as substrate.

The trend in biogeochemical modelling is to develop more mechanistic descriptions of
biogeochemical processes based on physiological and biological dynamics rather than relying

on empirically derived functions as seen in Eq. (1.2-4) (McDonald & Urban 2010). However,
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Crout, Taritano & Wood (2009) state that mechanistic models are likely to be less detailed
than the system they seek to describe which inevitably results in them becoming over-
parameterised. In addition, Flynn (2003) notes that though mechanistic models attempt to
include more biologically meaningful interactions, we lack the necessary knowledge to

construct them.

Consequently, as biogeochemical parameterisations become more complex, greater
uncertainty is incurred in model formalisms due to the increase in the number of parameter
values. Though some parameter values can be constrained, insufficient data exists to deal with
all parameters, even in simple models (Ward et al. 2010). Incidentally, efforts can be made to
reduce model uncertainty by reducing the number of model variables (Crout et al. 2009) or
adopt parameter optimization techniques (Annan et al. 2005; Ward et al. 2010) that assign
optimal values. Parameter optimisation is advantageous as it can reduce model error, relative
to observational data, compared to hand-tuned models (Yao et al. 2019) and from a
methodological perspective, assigning optimal parameter values makes inter-model
comparisons more fair as the true difference in model behaviour can be attributed to model

structure rather than the relevant parameter values (Ward et al. 2010).
Iron parameterisations

In current global biogeochemical models, the iron cycle is usually resolved into a
phytoplankton, dissolved and particulate component (Fig. 4) (Moore et al. 2002; Vichi, Pinardi
& Masina 2007b; Aumont et al. 2015). Typically, the dissolved component is seen as
completely bioavailable to phytoplankton (Vichi et al. 2007b) while the particulate component
can be divided into separate species along particle size (Moore et al. 2002; Aumont et al. 2015)
or dissolution state (Vichi et al. 2007b). Most biogeochemical models consider iron as an
essential nutrient for phytoplankton growth (Tagliabue et al. 2016) but unlike carbon, nitrogen
and phosphorous; iron is typically added as a separate multi-nutrient limitation term within

phytoplankton (Vichi et al. 2007b).

In representing the iron cycle, biogeochemical models must parameterise the major processes
of: uptake by phytoplankton, remineralisation and scavenging (Fig. 4). Dissolved iron is
typically modelled using the quota model for phytoplankton growth (Vichi et al. 2007b;

Aumont et al. 2015) while the process of remineralisation is generally coupled to the dynamics
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of organic matter by multiplying the concentration of particulate carbon by a fixed iron:carbon
ratio and this early approach to iron remineralisation has been employed by several other
authors (Archer & Johnson 2000, Parekh, Follows & Boyle 2004). Even in more advanced
biogeochemical models, remineralisation is generalised as a linear process (Moore et al. 2002;
Vichi et al. 2007b; Aumont et al. 2015). Multiple parameterisations can be utilised to model
the scavenging of iron (Archer & Johnson 2000; Parekh et al. 2004) and the process is one of
the least constrained in the biogeochemical modelling of the iron cycle (Tagliabue et al. 2016,
Yao et al. 2019). Consequently, Sec. (2.2.2) explores the current generation of global
biogeochemical models, with Tagliabue et al. (2016) noting that the inter-model differences
in the scavenging parameterisations as well as the dynamics of organic ligands play a
significant role in dictating the concentration of dissolved iron in the global ocean. As the
scavenging regime exerts a significant influence on the concentration of dissolved iron, the
various scavenging parameterisations employed in current biogeochemical models are

explored in detail in Sec. (2.2.3).
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Figure 4: Flow diagram of the PISCES biogeochemical model. Arrows represent the flow of matter and
energy between the state variables which is governed by various processes such as uptake, lysis,

remineralisation and scavenging. (Source: Aumont et al. 2015)
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Spatial resolution

Biogeochemical models can be run as simple box models or be coupled to 3D global-
circulation models. Box models assume instantaneous homogeneity of all state variables in
the given spatial enclosure. According to Fennel & Neumann (2001), they are useful for
theoretical studies with multiple state variables and to explore as well as identify key
processes that drive a biogeochemical system. Whereas coupled 3D ocean models are used
extensively in modelling large scale dynamics such as the large scale distribution of plankton
(McKiver et al. 2015). In addition, coupled models are used as forecasting tools, most notably
being projections of change relating to rising atmospheric CO; concentrations (Bonan & Doney

2018).

A general trend in ecosystem modelling is to improve spatial resolution by shifting from box
and low resolution models (Ménesguen et al. 2007) to fine grid, high resolution 3D models
(McKiver et al. 2015). However, conflicting arguments exist regarding the use of finer
resolution models as being solutions to resolve discrepancies between coupled
biogeochemical model outputs and observational data. Though increasing the complexity of
a biogeochemical model may result in improved representations of the ecosystem dynamics,
under-resolving the physical processes that have a direct influence on the biogeochemical
system will also significantly affect model outputs. McKiver et al. (2015) used a coupled
biogeochemical model to investigate the impact of mesoscale processes on the global marine
biogeochemical system by utilising a low (2°) and high (%°) resolution model. By improving the
vertical and spatial resolution, McKiver et al. (2015) saw improvements in representing the
chlorophyll dynamics of: coastal regions, subtropical gyres and the SO due to the high-

resolution model better resolving the vertical physics.

Ménesguen et al. (2007) had a similar methodology to McKiver et al. (2015) where a
biogeochemical model of pelagic primary production was coupled to a physical ocean model
of differing spatial resolutions. Using a two and three-layered box model as well as a fine
resolution 3D model, Ménesguen et al. (2007) assessed their differing capabilities in
representing the biogeochemistry of the English Channel. With relevance to annual primary
productivity, both the box and 3D models showed similar results; with all the models having
an inadequate phasing of the chlorophyll maximum. Therefore, Ménesguen et al. (2007)
suggested that improved representations of the biogeochemical system would only be
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accomplished with better biogeochemical parameterisations rather than more refined spatial

resolutions.

Consequently, the principle of parsimony would require a balance between the complexity of
the biogeochemical parameterisations and the spatial resolution. Therefore, for
biogeochemical tracers that have a global valence, such as iron, their ultimate implementation
should be within coupled 3D models. However, owing to large uncertainties relating to the
parameterisations of the iron cycle in biogeochemical models (Yao et al. 2019), box or low
resolution models can provide an ideal environment for testing and refining biogeochemical

processes before they are embedded in fine resolution 3D simulations.

Process resolution

A marine ecosystem can be modelled with varying degrees of complexity by altering the
number of state variables as well as the detail of the biogeochemical parameterisations used
to model individual processes. Consequently, the structural complexity of a model will
influence the resolution of the processes that wish to be studied and this is dependent on the

scientific question that needs to be addressed.

The state variables of nutrients, phytoplankton, zooplankton, dissolved and particulate
organic matter in themselves can have varying degrees of process resolutions in relation to
the required modelling scenario. Nutrients can be envisaged as a single limiting nutrient or
consist of a host of macronutrients (nitrate, phosphate and silicate) as well as micronutrients
such as iron (Flynn 2003). In addition, phytoplankton can be represented as a single bulk
biomass for showing general patterns of biological activity. In more advanced models,
phytoplankton can be resolved into separate functional groups corresponding to: diatoms,
flagellates and cyanobacteria to account for their differing uptake rates, sinking speeds and
nutrient preferences (Vichi et al. 2007b). Similarly, zooplankton can simply be parameterised
as a grazing pressure term on phytoplankton or be modelled as a separate functional groups
with different levels of predation rates. Pegged to phytoplankton-nutrient dynamics, detritus
can be partitioned in correspondence with the phytoplankton variables or be considered as a

single bulk variable (Fennel & Neumann 2001).

15



Intuitively, the increase in the structural complexity of a model should lead to a reduction in
model error with observational data. Kriest et al. (2010) used a biogeochemical model based
on phosphorous and set-up a hierarchy of models with increasing structural complexity. The
simplest only considered the nutrient phosphate while the most complex included the
interactions of particulate and dissolved organic phosphate, phytoplankton and zooplankton.
However, Kriest et al. (2010) found that merely increasing the number of model components
does not necessarily lead to improved correspondence with observational data. Following a
similar methodology to Kriest et al. (2010), Yao et al. (2019) used a calibrated coupled
biogeochemical model and adjusted the structural complexity of the iron module to
investigate whether explicitly representing the processes of iron would lead to a reduction in
model-data misfits. Three variants of an iron module were used, with the first explicitly
resolving the iron cycle while the second considered iron limitation in primary productivity by
utilising an iron mask of prescribed monthly concentrations of dissolved iron and the third
variant did not represent the iron cycle. Yao et al. (2019) found that using an explicit module
for the iron cycle lead to improvements in representing the distribution of macronutrients

(phosphate, nitrate and silicate) as well as oxygen in the global ocean.

Therefore, Yao et al. (2019) concluded that increasing the process resolution of iron in a
biogeochemical model was important as it lead to improved representations of global
biogeochemical nutrient cycles. Consequently, process resolution encompasses multiple
facets of biogeochemical modelling and thus the choice of complexity regarding state

variables and parameterisations must compliment the system being modelled.

2.2.2 Current state of biogeochemical models in representing iron dynamics

The iron cycle plays an important role in ocean biogeochemistry and received extensive
academic attention in the 1980’s; however, it was not until the early 2000’s that iron was
included as a variable in major biogeochemical models (Tagliabue et al. 2017). At present, a
host of biogeochemical models exist such as: Biogeochemical Flux Model (BFM) (Vichi et al.
2007b), Biogeochemical Elemental Cycling (BEC) (Moore et al. 2002; Moore, Doney, & Lindsay
2004) and the Pelagic Interactions Scheme for Carbon and Ecosystem Studies (PISCES)
(Aumont et al. 2015) (Fig. 4) to list a few. All of these models simulate marine biological

productivity and describe the cycling of major nutrients such as: C, P, N, Si and Fe.
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In comparison to the early iron models of Archer & Johnson (2000) and Parekh et al. (2004),
the current suite of biogeochemical models has integrated iron into the living functional
groups. They have also improved the process resolution of the iron cycle by incorporating
multiple iron sources, including: riverine, dust and hydrothermal (Tagliabue et al. 2016) as well
as refining the parameterisations of key processes such as scavenging (Moore & Braucher
2008) and ligand dynamics (Tagliabue & Volker 2011, Volker & Tagliabue 2015) (refer to Sec.
2.2.3).

Inter-comparison of biogeochemical models that represent dissolved iron

The increased observational data provided through the GEOTRACES programme (Mawiji et al.
2015; Schlitzer et al. 2018) has allowed a more rigorous assessment of the current suite of
biogeochemical models that are capable of representing the cycling of iron. Subsequently,
Tagliabue et al. (2016) conducted a comparison of 13 major biogeochemical models (Fig. 5)
that represent iron dynamics with the 2015 GEOTRACES data (Mawiji et al. 2015) known as the
Iron Model Inter-comparison Project (FeMIP). Fig. (5) highlights the inter-model differences in
representing the distribution of surface dissolved iron with models such as the BFM and BLING
having significantly lower concentrations of dissolved iron in the polar regions while TOPAZ,

MEDUSA1 and MEDUSAZ2 have higher dissolved iron concentrations in the ocean gyres.

The study revealed that contemporary models contain a greater array of iron sources, with
most including a dust and sediment source; but fewer models having hydrothermal and river
inputs. Even for a given source, there was still significant inter-model differences in the
strength of the iron flux, the most prevalent being the dust source (Tagliabue et al. 2016).
However, though the range of total iron inputs between the various FeMIP models varied
substantially (66.9 + 67.1 Gmol Fe yr), the mean dissolved iron concentration was similar
(0.58 +0.14 nM) (Tagliabue et al. 2016). From Fig. (5) it is clear that the current suite of FeMIP
models struggle to replicate the observational patterns of dissolved iron in the surface, owing
to the intricacies of the iron cycle and the inherit knowledge gaps therein. Therefore,
Tagliabue et al. (2016) attributed the similar mean dissolved iron content to the various
scavenging regimes employed in the respective models with most using the formalism of
Parekh et al. (2004) except for BFM, COBALT, BEC, MEDUSA1 and MEDUSA2. However,
Tagliabue et al. (2016) acknowledged that the various iron parameterisations for each
respective model were not evaluated and instead their coupled physical-biogeochemical
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framework was compared. Consequently, there is a necessity to evaluate and constrain the
various scavenging parameterisations and rates to improve the comparability as well as the

functionality of biogeochemical models in the representation of ocean iron dynamics.
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Figure 5: Comparison of annual mean surface dissolved iron concentration (nM) across 13
biogeochemical models with cruise data from the GEOTRACES programme. (Source Tagliabue et al.

2016)
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Furthermore, there is a limit to which more advanced parametrisations can reduce model
error without any fundamental changes in the understanding of the biogeochemistry of iron.
Subsequently, more complexity does not necessarily lead to better results as increasing the
complexity of a system increases the uncertainty by adding more degrees of freedom.
Although multiple uncertainties exist in the cycling of iron, biogeochemical models that

include the iron cycle will produce more realistic outputs than models without.

2.2.3 Different iron parameterisations for scavenging

Iron bioavailability is altered by several key processes: scavenging by inorganic and organic
particles, remineralisation and biological uptake. Consequently, the parameterisations of
these various processes have evolved in tandem with increased observational measurements.
Tagliabue et al. (2016) as well as Yao et al. (2019) have showed that the iron scavenging
parameters are not well constrained and significant inter-model differences exist in the
parametrisation of the scavenging regime. Consequently, this section will focus on the process
of scavenging and explore two different complexation formulations: a constant ligand model
(Johnson et al. 1997, Archer & Johnson 2000) and a free scavenging model (Rue & Bruland
1995, Parekh et al. 2004). In addition, focus will be given to how current biogeochemical

models have made improvements regarding scavenging rates and ligand dynamics.

Constant ligand model

Iron differs from other scavenged metals such as lead, aluminium and thorium because iron
is utilised by biota for growth (Gledhill & Buck 2012). Johnson et al. (1997) utilised sample
data from the North and South Pacific, SO as well as the North Atlantic to quantify the
processes that controlled the distribution of dissolved iron by means of a numerical model.
Based on the consistency of deep dissolved iron concentrations, Johnson et al. (1997)
suggested that the removal rates of dissolved iron must decrease below concentrations of 0.6
nM and this was maintained by a mechanism of strong iron-binding ligands (Rue & Bruland
1995). Therefore, Johnson et al. (1997) parameterised scavenging /. as a first-order process

(Eq. 1.5):

Jre = kpe[Fer — Lr] (1.5)
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Where Fer is the total dissolved iron concentration and Ly is the total ligand concentration
(Archer & Johnson 2000), set to 0.6 nM. A switch function was employed whereby the
scavenging rate constant kg, = 0 when Fe < L and the value of kg, was treated as an
adjustable parameter for dissolved iron concentrations > L. After calibrating the scavenging
rate, Johnson et al. (1997) used their model to reproduce vertical profiles of dissolved iron
from stations in the North Atlantic, SO as well as the Pacific. To accomplish this, Johnson et al.
(1997) prescribed the export flux of carbon in the various regions to account for the differing
levels of biological productivity. Consequently, the model was able to resolve many of the
open ocean stations with careful calibration of the carbon export rate but struggled to
represent coastal systems which are influenced by additional iron sources such as riverine

deposits.

A follow up model study by Archer & Johnson (2000) sought to contextualize the iron
parameterisations of Johnson et al. (1997) in a global circulation model where primary
production was limited by the availability of phosphate and iron using a Monod approach. In
addition, the formalism of Johnson et al. (1997) was applied with two ligands, a weak and
strong, using the depth-dependent concentration of the respective iron-binding ligands
measured by Rue & Bruland (1995). Unlike the single ligand model of Johnson et al. (1997),
scavenging was permissible with the two-ligand model at concentrations below 0.6 nM. The
study did not seek to validate the various scavenging parameterisations and instead
showcased the global distribution of dissolved iron using a coupled ocean model; noting
excess dissolved iron concentrations near coastal and upwelling regions and the deficiency of

dissolved iron in the SO.

Free scavenging model

The bulk concentration of dissolved iron exists in a non-reactive colloidal state due to the
binding to organic ligands (Morel & Price 2003). To understand how organic complexation by
ligands influenced the speciation of dissolved iron, Rue & Bruland (1995) constructed a

theoretical mass balance equation (Eqg. 1.6):
[Fer] = [Fe'] + [Fe.] (1.6)

In Eq. (1.6), Fey is the total concentration of dissolved iron consisting of: Fe’ which represents

the sum of all inorganic species while Fe; represents the organically complexed fraction. Using
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this model, Rue & Bruland (1995) showed that 99.9% of dissolved iron exists in a complexed

form with a marginal fraction existing as uncomplexed or ‘free iron’. Embedding the study in

a six-box ocean model with the tracer elements of dissolved iron, particulate iron and
phosphate, Parekh et al. (2004) sought to improve upon the work of Archer & Johnson (2000)
by including a more mechanistic description of iron complexation to organic ligands by
incorporating the idea of free iron. Where Archer & Johnson (2000) used L equivalent to 0.6
nM, Parekh et al. (2004) assigned Ly being equal to the sum of complexed iron and

uncomplexed ligands L' (Eq. 1.7):
LT = [FeL] + [L,] (1.7)

Using Eq. (1.6) and (1.7), Parekh et al. (2004) assumed that only the free form of iron was

susceptible to scavenging:
Jre = kFeFe’ (1.8)

The parameterisations of Parekh et al. (2004) allow for the representation of free ligands as
well as highlighting the inverse relationship between Fer and Ly. Therefore, the presence of
a strong binding ligand ensures Fer = FeL which is the limit modelled in Archer & Johnson
(2000). However, Fer is highly sensitive to the choice of the L which means the scavenging
constant kg, must be increased significantly to prevent elevated concentrations of Fey. In
applying the scavenging parameterisation, Parekh et al. (2004) noted improved reproduction
of the deep dissolved concentration of iron as well as the observed presence of uncomplexed
organic ligands. Consequently, Parekh et al. (2004) suggested that the use of a weaker ligand
and a greater total ligand concentration was more appropriate in reproducing the broad

patterns of dissolved iron.

Therefore, the two models of Johnson et al. (1997) and Parekh et al. (2004) both acknowledge
the importance of complexation by ligands in controlling the scavenging rate of dissolved iron.
However, both parameterisations are still employed in sophisticated biogeochemical models;

highlighting the variability present in the iron modelling community.

Improved process resolution of iron dynamics

Numerical models typically have parameters and constants that need to be assigned values in

order to produce results (Rykiel 1996). The early models of Archer & Johnson (2000) and

21



Parekh et al. (2004) treated organic ligand concentrations (L) and the scavenging rate
constant (kg.) as adjustable parameters that were spatially calibrated to agree with
observational measurements. However, increased observational data has shown that ligands
are spatially variable (Tagliabue & Volker 2011) and that the process of scavenging can include
the interaction of lithogenic and biogenic particles (Moore & Braucher 2008). Consequently,
a more prognostic parameterisation of scavenging rates and ligand dynamics was required to

include more biologically meaningful processes.
Scavenging rate constant

Typically, the scavenging rate of dissolved iron (kp, in Eq. 1.5 and 1.8) is parameterised as a
constant value around 0.005 year™ to represent an estimated residence time of 200 years in
the ocean (Johnson et al. 1997). In attempting to include a prognostic appreciation of
scavenging, Moore & Braucher (2008) altered the iron scavenging rate (Moore et al. 2004) in
BEC (Eq. 1.9), which was determined by a base scavenging coefficient (k;) and scaled by the
sinking particle flux of Particulate Organic Carbon (POC) and mineral dust (Dust).
Furthermore, k. could be adjusted by multiplying it by a coefficient to account for different

concentrations of dissolved iron.
kre = k,(POC + Dust) (1.9)

Moore & Braucher (2008) changed the definition of the scavenging rate constant (Eq. 1.10) to
include biogenic silica (bSi), calcium carbonate (CaC03) as well as arbitrarily scaling POC to

represent a larger weight of the particulate organic carbon fraction.
kge = k,[(POC X 6) + Dust + bSi + CaCO5] (1.10)

The parameterisations of Moore et al. (2004) and Moore & Braucher (2008) allow for
variability in the scavenging rate, which is dictated by aeolian deposition of dust particles as
well as biological activity. Consequently, this prognostic approach permits variable scavenging
rates, acknowledging the spatial variance in biological activity and dust flux between regions
such as the SO and North Atlantic. By making the scavenging rate constant a variable, Moore
& Braucher (2008) improved the representation of dissolved iron, especially in low iron
regions. In addition, improved correlations with observational data were present for the

surface and deep ocean.
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Ligand dynamics

Most biogeochemical models assume a constant iron-binding ligand concentration, fixed
between 0.6-1 nM (Tagliabue & Volker 2011). However, ligands observe spatial-temporal
variations in their concentrations, prompting a prognostic approach to ligands in numerical
models. As ligands have a biological origin, Tagliabue & Voélker (2011) related the total ligand
concentration to vary as a function of total DOC (Eq. 1.11) based on the observational work of

Wagener, Pulido-Villena & Guieu (2008).
Lr = (DOC x 0.09) — 3.2 (1.11)

In a follow up model study, Volker & Tagliabue (2015) included the prognostic ligand
parameterisation in two biogeochemical models, PISCES and REcoM. Comparisons with
observational data showed that a prognostic ligand parameterisation yielded more nutrient-
like profiles for dissolved iron than the explicit ligand formalisms. However, the elevated ligand
concentrations resulted in increased dissolved iron concentrations in non-iron limited regions
such as the Atlantic and Indian Oceans (Volker & Tagliabue 2015). This was due in part to the
low scavenging rates of uncomplexed iron; prompting the need to re-evaluate the scavenging

rates in the respective models.
2.2.4 Final remarks

Biogeochemical models are an abstraction of the complex ecosystem processes and they have
grown in sophistication as well as complexity in tandem with our knowledge of the biosphere.
They can be run with varying temporal, spatial and process resolutions in accordance with the
scientific question that needs to be addressed. Within biogeochemical models, the iron cycle
can be described with an array of parameterisations. Consequently, the early iron models of
Archer & Johnson (2000) and Parekh et al. (2004) showcased different conceptualisations of
scavenging and ligand dynamics. Further study has been dedicated to improving the
description of these processes by adopting a prognostic approach which has seen positive
results in subsequent model studies. However, the current suite of FeMIP models still struggle

to model the iron system.

Consequently, there is a limit to which more advanced parametrisations can reduce model

error and uncertainty without any fundamental changes in the understanding of the
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biogeochemistry of iron. Increasing model complexity through the addition of more advanced
parameterisations reduces model error relative to observational data by improving the
process realism of the model. However, the addition of more complex parameterisations
inherently increases the overall model uncertainty by increasing the degrees of freedom.
Although multiple uncertainties exist in the cycling of iron, biogeochemical models that
include the iron cycle will produce more realistic outputs than models without (Yao et al.

2019).
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3. Methodology

This chapter is divided into two main sections: model description and experimental set-up.
The first section addresses the reference biogeochemical model as well as describing the
representation of iron in phytoplankton and the various iron parameterisations implemented.
The second section will explore the multiple numerical experiments undertaken and the

diagnostics utilised for the analysis.
3.1 Model Description

3.1.1 The reference biogeochemical model

Tagliabue et al. (2016) only had datasets of existing simulations of various biogeochemical
model systems available and the authors could only compare the outputs of these different
model formulations and speculate to which degree inter-model differences were due to detail
in the iron parameterisations, mainly the scavenging parameterisations. Therefore, the thesis
was constrained and focussed only on biogeochemical models that implemented the
parameterisations of Johnson et al. (1997) or Parekh et al. (2004). To standardise the study, a
single biogeochemical model was used and subsequently acted as a testing bench wherein
the various parameterisations were embedded. This removed the need to run multiple
biogeochemical models and eliminated the issue of inter-model differences in representing
other major biogeochemical processes such as carbon uptake or nitrification which have
ramifications on the cycling of iron. Therefore, the use of a single model allowed for a more

focussed analysis of the various iron parameterisations.

Consequently, the BFM (Vichi et al. 2007b, Vichi et al. 2015) was chosen to be the main
biogeochemical model as its’ modular structure allows for the easy inclusion of additional
state variables (Vichi et al. 2015). The BFM utilises the simpler iron parameterisation of
Johnson et al. (1997) and employs a hybrid of Monod and quota models in representing the
cycling of major nutrients (Vichi et al. 2007b), which are present in several current models. In
order to analyse the effects of a free scavenging model, like the one described by Parekh et
al. (2004), a variant of that model employed in a current biogeochemical model was sought.
Since a number of biogeochemical models use the scavenging regime of Parekh et al. (2004),

each with varying alterations and calibrated constants, the iron parameterisations of PISCES
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(Aumont et al. 2015) were chosen. PISCES uses a free scavenging model and also employs a
prognostic appreciation towards ligand concentrations (Tagliabue & Volker 2011). This is an
additional facet to describe the scavenging regime that many biogeochemical models do not
include yet (Tagliabue et al. 2016). In addition to the scavenging scheme, the remineralisation

equations of PISCES were also utilised.

BFM description

The BFM stems from the European Regional Seas Ecosystem model (ERSEM) (Baretta,
Ebenhoh & Raurdij 1995) and improves upon it by including additional biogeochemical
constituents such as iron and chlorophyll which are important components in ocean
biogeochemistry (Vichi et al. 2007b). The model has been included in several coupled
simulations studies (Vichi, Masina & Navarra 2007a; Vichi & Masina 2009; Epicoco et al. 2016)
which have focused on validating the skill of the BFM. The premise of the BFM is that the
functions of producers, decomposers and consumers as well as their respective trophic

interactions can be represented in term of material flow of basic elements such as C, N and P.

Taking a functional approach, the BFM defines Chemical Functional Families (CFF) and Living
Functional Groups (LFG) which are theoretical constructs used to describe the flow of matter
in marine biogeochemistry (Vich et al. 2007b). The standard model (Fig. 6) resolves 4 different
phytoplankton  groups PU) =1,23,4 (diatoms, autotrophic  nanoflagellates,
picophytoplankton and large phytoplankton), 4 zooplankton ZU) = 3,4,5,6 (carnivorous and
omnivorous mesozooplankton, micozooplankton and heterotrophic nanoflagellates), 1
bacteria, 7 inorganic variables for nutrients and gases (phosphate, nitrate, ammonium,
silicate, reduction equivalents, oxygen and carbon dioxide) and 10 organic non-living

components for dissolved and particulate detritus (Vichi et al. 2015).
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Figure 6: The flow scheme illustrates the interactions of LFGs with organic and inorganic species. CFFs
are indicated with bold-line boxes, non-living organic CFFs with thin-line boxes and inorganic CFFs with

rounded boxes. (Source: Vichi et al. 2015)

Using a theoretical approach, a marine biogeochemical system can be described by the
concentrations of CFFs in living and non-living components. Consequently, if C; indicates a
given CFF then the conservation equation for an infinitesimal volume can be written as:

ac;

= —V-F (2.1)

-

In Eq. (2.1), C; is continuous in space and time while F is the generalised divergence flux of C;

within a fluid. Therefore, Eq. (2.1) can be separated into a physical and biological component:

C; - - >
6_tl == _V . thys - V * FbiO (22)

The second term on the right hand side of Eq. (2.2) cannot be quantified directly and so the

biological component is approximated as follows:
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V- Fyip = —wpg 6_ |bl0 (2.3)

with the first term parameterising the divergence flux due to sinking of biological particulate
matter and the second being the local rate of change of a given C; by biological processes.

Therefore, Eq. (2.3) can be contextualised in the advection-diffusion-reaction equation:

acC; d aC; aC; ac;
L= _V * (uCl) + VH . (AHVHCI.) + _AV : - W i + =t |blO (2.4)
at 0z 0z
“
horizontal physical forcing  yertical physical forcing biological forcing

Where u = (u, v,w) is the three-dimensional current velocity and (4, A,) are the horizontal
and vertical turbulent diffusivity coefficients. Eg. (2.4) is at the basis of biomass based
ecosystem modelling where there is the non-local physical forcing of mass by currents and
horizontal advection as well as local physical forcing in the form of vertical turbulence. In

addition, C; is altered by various biogeochemical processes.

In the BFM, each variable can be expressed as a multi-dimensional array that contains the
concentration of the reference chemical constituents (Vichi et al. 2007b). Consequently, a
superscript notation indicates the desired CFF for a specific living functional group while a
subscript denotes the basic constituent. The example below shows the 6 living CFFs for

diatoms:

1) — p(1) p(1) p(1) p(1) p(1) )
PO = M, pD, P, P, W, Py

Following Vichi et al. (2007b), the biogeochemical equations represented in Eq. (2.4) can be
written in two forms: 1) rates of change; and 2) explicit functional form. For “rates of change”

a given CFF state variable C is written as:

e]-

atb Zl 1nZ] 1mat (2.5)

where the right hand side contains the terms representing significant processes for each living
and non-living component (Eq. 2.5). The superscript e; are the abbreviations indicating a
specific biogeochemical process (Tab. 1) while the subscript V; indicates the state variable
involved in the process. If a term is present as a source in one equation and a sink in another,

the following notation is used:

28



(2.6)

28
<—®

(o5}

~

Table 1: Showing the various biogeochemical processes

in the BFM Source (Vichi et al. 2007b)

Abbreviation
app

rsp

prd

rel

exu

lys

syn
nit/denit
scv

rmn

In “functional process form” the

explicit. Consequently, for ease of reading and understanding, the biogeochemical equations

are written in both forms.

3.1.2

Process

Gross primary production

Respiration

Predation

Biological release: Egestion, Excretion
Exudation

Lysis

Biochemical synthesis

Nitrification, denitrification
Scavenging

Biochemical remineralisation

biogeochemical processes and dependencies are made

Iron dynamics in phytoplankton

Within the BFM, iron is included as an inorganic CFF (N(7), a living organic CFF for
phytoplankton as well as a non-living organic CFF for particulate (RIE@) and dissolved (R;l))

organic iron (Vichi et al. 2015). The iron content of phytoplankton Pf is governed by three

primary processes: uptake of bioavailable iron, loss due to lysis as well as predation by

zooplankton (Eq. 2.7).

ap; _apy Pt ap. S p. o ap, pTd (2.7)
= =7 VT L T k=3 :
ot ot n(n 0t R}6) P Jat Zék)
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The iron uptake shown in Eqg. (2.8) is computed according to Droop kinetics by taking the
minimum of two rates, a linear function of the ambient concentration representing the
membrane through-flow at low concentrations and a balancing flux linked to carbon
assimilation. The second term pertains more to coastal systems/upwelling sites where high
macronutrient concentrations occur; facilitating high biological productivity. Consequently,
the iron:carbon quota for phytoplankton varies between a maximum ( $7***) and minimum
(pPH™) threshold where ¢pFH™ represents the adaptive ability of each functional group at

prevailing iron concentrations and cl)f,pt is the optimal ratio for growth.

pt

0
(;th ! — mm(a7N(7)Pc, (I)OptG + pr I;)((bmax Pf)Pc) (2.8)
N C

Meanwhile, it is assumed that the only physiological iron loss from phytoplankton is due to
cell disruption and that when a cell is about to die, it has the minimum quota of iron cl)"”"
present. Consequently, iron loss is computed according to carbon lysis multiplied by qf,!li" as

shown in Eq. (2.9).

y lys
2L = gpinZ (2.9)
ot (6) at (6) '
Ry

Therefore, the phytoplankton processes of uptake and cell lysis form an important part in

utilising N and controlling the flux of R]E6) and R;l).

With regards to the work of Wagner et al. (2008), refer to Eq. (2.17), the production of DOC is

an important parameterisation for determining the concentration of organic ligands.
Consequently, the production pathway of DOC (Rgl)) is governed by three primary processes:
exudation of carbohydrates from phytoplankton, uptake by bacteria as well as release of Rgl)

by zooplankton (Eq. 2.10).

6R£1) 3 6PC(1') exu  ap uPt k) rel

0Z;
=)= - 2.10
ot b!o 21—1 ot Rgll) at (1) Zk 56 gt R(|1) ( )
c

Focussing on the first term of Eq. (2.10), it is assumed that when there are intra-cellular

nutrient shortages, not all photosynthesised carbon can be assimilated. Consequently, the

30



non-assimilated portion is released as DOC. Therefore, increased exudation is observed under

nutrient-stress conditions when the nutrient:carbon ratio becomes low (Vichi et al. 2007b).

3.1.3 Iron parameterisations

Similar to BFM, PISCES simulates marine biological productivity and describes the
biogeochemical cyclings of major nutrients (P, N, Si, Fe). There are 24 prognostic variables in
PISCES; encompassing phytoplankton, zooplankton, inorganic and organic nutrients (refer to
Aumont et al. 2015). As well as representing the major processes of the iron cycle such as
scavenging, remineralisation and uptake by phytoplankton, PISCES incorporates several
additional processes that are not present in the BFM such as: uptake of iron by bacteria,
colloidal fractions and aggregation (Aumont et al. 2015). In addition, PISCES has two chemistry
models for iron: a simple model based on one ligand and one inorganic iron species and a
complex model that uses five iron species and two ligand classes. To amalgamate the PISCES

parameterisations into BFM, the simple model was used for ease of translation.

To compare the iron formalisms of scavenging and remineralisation between the two models,
the PISCES equations, as shown in Aumont et al. (2015), were written in an explicit functional
form. For consistency, the PISCES equations were translated into the format of the BFM,
substituting the PISCES variables for the appropriate BFM variable and only adding additional
variables and diagnostics where necessary. Furthermore, the parameter values for the
scavenging and remineralisation rates for PISCES were conserved when translating the model

formalisms.

BFM iron dynamics

The concentration of bioavailable iron for the BFM, shown in Eq. (2.11), is influenced by: the
uptake of iron by phytoplankton, the remineralisation of particulate and labile dissolved
organic material as well as the scavenging of dissolved iron. Consequently, Eq. (2.11) forms

the basis of the iron cycling model within BFM.

aND _ opy upt aR}(f) rmn. sn(7) SCV

at at N!7)+Zi=1'6 at

2.11
N ot sinkf ( )
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Remineralisation

In @ marine ecosystem, the remineralisation of particulate and dissolved organic matter is
facilitated by autotrophic and heterotrophic bacteria. The remineralisation scheme for the

BFM is a linear function for both particulate and labile (dissolved) organic iron (Eq. 2.12).

9 R](f) rmn

—L | = prmngT RO (2.12)
126 N IR

There is a temperature dependence term fRT(G) and a constant remineralisation rate AZ™",
f

where the remineralisation rate of dissolved iron is an order of magnitude greater than the
particulate. However, a drawback is that the linear formulation decouples iron from other

major nutrients such as N and P, which are instead dynamically remineralised by bacteria.

Consequently, Eq. (2.13) shows that the concentration of non-living organic iron species in the
BFM are influenced by the lysis of phytoplankton and coupled to this, the predation of
phytoplankton by zooplankton as well as the remineralisation of non-living organic iron
species (Eqg. 2.12). It is important to note that iron is not tracked within zooplankton and it is
assumed that zooplankton is never iron-limited, with the iron fraction of ingested

phytoplankton being egested as particulate detritus (Vichi et al. 2007b).

® lys prd D rm
i | = % | +—Pf22 3—6PC | =2 16—6Rf r|n (2.13)
ot  pi ot (@ P =39t _(k 1=L6 5¢ ’
i~16 bio R}(f) c Zg ) N

Scavenging

The scavenging dynamics for BFM consider inorganic and organic mechanisms as well as the
buffering effect of ligands (Eqg. 2.14). Consequently, the formalism follows that of Johnson et
al. (1997), assuming a single strong iron binding ligand that controls the solubility of iron when

N exceeds 0.6 nM. In addition, the BFM also considers the scavenging effect of sinking

detrital matter, represented by particulate organic carbon (R£6)), that acts to absorb dissolved

iron and transport it into the deep ocean.

Two scavenging constants are used: A]Sfmrg for scavenging and absorption onto particles and

Aff” for the buffering effect of ligands. Under the current formulation, scavenging is always

32



larger than zero, permitting scavenging at any concentration of dissolved inorganic iron even

if there is no particulate detritus.

(7) Sscv 0.58
az;t Sir!kf: max(O, A;cvorgN(7)R£6) ) + A}C”max(O, N® — 0.6) (2.14)

PISCES iron dynamics

The iron parameterisations of PISCES were translated and added as a separate module within
the BFM. The objective in creating the PISCES iron module was to conserve as much of the
BFM source code as possible while incorporating as many elements of the PISCES iron
dynamics. However, PISCES included several processes not present in the BFM such as
colloidal interactions, which were not added, but are important as they affect both free and

complexed species of iron and can be a significant abiotic loss term (Aumont et al. 2015).
Remineralisation

The PISCES formalism for the remineralisation of particulate organic iron (Eqg. 2.15a) is similar

to that of BFM's (Eq. 2.12) as both schemes are simple linear functions.

6R}6) rmn T 6)
— N!n: A fR;e)(l — 0.45A(0®))R; (2.15a)

min,1 _0(2)

A(0,) = min(1,max(0,0.4 ZZ

;nin,z +0(2)

) (2.15b)

An additional facet to the remineralisation scheme for PISCES is an environmental oxygen
dependency term A(0®). A(0®) was added as a diagnostic into the BFM (Eqg. 2.15b) and it
can vary between 0 (oxic) and 1 (anoxia). During oxic conditions, the rate of remineralisation

would be greater for a given temperature. To account for the fact that PISCES does not include

a tracer variable for dissolved organic iron, the BFM scheme of R;l)was maintained.

Scavenging

The simple PISCES iron chemistry model (Aumont et al. 2015) uses one ligand class and two
dissolved iron species: dissolved inorganic iron and dissolved complexed iron, in accordance
with the free scavenging model of Parekh et al. (2004). Both forms of iron are susceptible to

consumption by phytoplankton and the total bioavailable iron concentration is the sum of the
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non-complexed and complexed dissolved iron species. To represent the free scavenging model
in the BFM, an additional diagnostic was created, N and only this species of iron would be

free

susceptible to scavenging.
— eq eq
A=1+K b Ly — Koty N
(2.16)

_ 2 eq 7
N(7) B A+ /(A +4KN(7)N )

free — eq
ZKN(7)

The concentration of N(7)

free (Eq. 2.16) is computed using a chemical equilibrium constant for

iron in seawater (K;‘gn adopted from PISCES) as well the total ligand concentration L.

Unlike the BFM that assumes a constant ligand concentration, PISCES allows for a prognostic
(Eg. 2.17) as well as an explicit concentration (Aumont et al. 2015) using the relationship from
Tagliabue & Volker (2015). Eqg. (2.17) is built upon the work of Wagener et al. (2008) who
showed a relationship between DOC and ligand concentrations. Consequently, a switch
function is employed to ensure that even under low biological activity, Ly will be at least 0.6

nM.

Ly = max(0.09(R™ + 40) — 3, 0.6) (2.17)

Similar to BFM, PISCES uses organic and inorganic mechanisms in the scavenging regime as

shown in Eq. (2.18).

Ageveor = pgevmin 4 ASPOTI (RO 4 0 4 RIV) 4 AfUStDyst  (2.18)

N SV evtot A (7)
o sirlkf_ Af Nfree (2.19)

Unlike the BFM, the scavenging rate constant is treated as a variable in PISCES (A}C”t"t) and
consists of a minimum scavenging rate (A}C”mi”) as well as the total particulate load of the
seawater which is separated into biogenic and lithogenic particles. This approach of including
biogenic and lithogenic particles is similar to that of Moore & Braucher (2008) in the BEC
model. It is assumed that the scavenging rates of biogenic (A]Scworg) and lithogenic (A?“St)
particles are different because they have dissimilar affinities for iron.
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The amount of iron scavenged is heavily influenced by biological activity which will determine
the total ligand concentration as well as the biogenic particulate load of the water.
Consequently, PISCES employs a more dynamic range of interactions than the BFM, facilitating

a wider range of modelling capabilities.

3.2 Experimental set-up
3.2.1 Model set-up

The diverse physical, chemical and biological conditions in the oceans lend themselves to
harbouring unique biogeochemical systems. Consequently, four disparate regions were
selected for study: North Atlantic gyre (NAG), SO, EP and the NEP under typical mixed layer
conditions. The oligotrophic NAG is of interest as it experiences some of the highest rates of
dust deposition (Fig. 7) in the global ocean (Jickells et al. 2005; Anderson et al. 2016) as well
as being a region where phosphorous is a limiting nutrient for N; fixation (Mills et al. 2004).
Whereas the SO (Martin et al. 1991), NEP (Martin & Fitzwater 1988) and EP (Fitzwater et al.
1996) are the major HNLC regions (Fig. 7) and are iron deficient due to low rates of dust
deposition (Jickells et al. 2005) which is a limiting factor for primary productivity. Although the
SO, NEP and EP are similar in terms of excess major nutrients, they differ in their physical
oceanographic properties of Sea-Surface Temperature (SST), light availability, salinity and

Mixed-Layer Depth (MLD) which will influence their respective biogeochemical processes.

Modifications to standard BEFM

In order to assess the response of the two iron parameterisations, the BFM was configured to
run in a standalone 0D/box-model format. Fennel & Neumann (2001) highlighted that simple
box-models allow for the identification of key processes in a biogeochemical system which
was exactly of interest. In addition, biogeochemical parametrisations are independent of
spatial resolution. However, a major shortfall in using a OD configuration was the inability to
represent the key physical processes of horizontal and vertical advection of nutrients as well
as surface-boundary layer fluxes such as dust deposition. Consequently, the standard forcing
functions and boundary conditions of the BFM model as described by Vichi et al. (2015) were
extended. Three additional components were added to the model: a variable MLD as well as

a boundary condition for dust deposition and a dust particle state variable. This was done with
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the intention of facilitating the inclusion of the PISCES formalisms into BFM as well as to add

some important physical dynamics to the 0D simulations.

Dust deposition

Dust deposition (g/mz/day)
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Figure 7: The annual surface mean values for: dust deposition rate (Jickells et al. 2005), nitrate
(WOA18) and phosphate (WOA18) concentrations. Several cruises from the GEOTRACES programme
(Schlitzer et al. 2018) are shown; with a grey dot representing a location where a full depth CTD iron

profile was taken. Red stars indicate the location where the BFM was run.

36



Dust flux . MLD

2.5 - = -EP
~ NAG

Sk N7 ~ - Pl T
- S0

Flux (Log g dust/mz/day)
'
\
!

35+ > . 200 .

Jan  Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan  Feb Mar Apr May Jun  Jul Aug Sep Oct Nov Dec
Months Months

Figure 8: Climatology of surface dust deposition (left) (Jickells et al. 2005) and MLD (right) for the NAG,
EP, SO (de Boyer Montégut et al. 2004) and NEP (Holte et al. 2017).

Dust deposition model

In selecting the regions for the study (Fig. 7), only open ocean locations were chosen as coastal
regions have additional sources of iron such as riverine and sediment deposits (Boyd &
Ellwood 2010) which are difficult to constrain in a OD simulation. Consequently, for the various
regions, atmospheric dust was the principle source of iron. For each location the surface-
boundary flux for mineral dust (Fig. 8) was taken from the climatological model of Jickells et
al. (2005) where it was assumed that the average iron content of mineral dust was 2% with a
dissolution fraction of 3.5%. To complement the surface-boundary flux of atmospheric dust, a
state variable for dust was added to the BFM as it plays a role in the scavenging of dissolved
iron. The concentration of Dust was computed using the formalism (Eq. 2.20) of Aumont et
al. (2015) which used the surface deposition D;,s; and sinking speed w4, Of dust. In a 0D
model, this assumes a homogeneous distribution of dust within the box, independently of its

depth.

Dust = 2dust (2.20)

Wdust

Variable MLD

The standalone configuration for the BFM focussed on representing the biogeochemical
dynamics for the upper-ocean which was constrained to the depth of the MLD. By using a box-
model approach, it is assumed that the processes of uptake, remineralisation and scavenging
are confined to the upper-ocean and thus the biogeochemical system is sustained through
recycled nutrients. However, for the upper-ocean, vertical mixing and upwelling act as

important sources of new nutrients (Falkowski et al. 1998; Fung et al. 2000). The inclusion of

37



additional sources of preformed iron would however influence the rigorous investigation of
the parameterisations. Acknowledging the fact that the shoaling and deepening of the MLD
also plays an important role in influencing the nutrient concentrations for the euphotic zone,
the addition of a variable MLD in the BFM was done to take into consideration the changes in
light availability to phytoplankton and the length scale of sinking particles. Rudimental
methods to scale the input of organic nutrients based on the gradient of the MLD would result
in the addition of spurious modes of variability which would be counter-productive in efforts
to identify the main processes that control the iron dynamics. Therefore, the inability to
represent the physical dynamics of upwelling of nutrients would be a major shortfall when
modelling the EP as the region is heavily influenced by episodic upwelling events which are

driven by the easterly trade winds (Bidigare & Ondrusek 1996).

For each location (Fig. 8), the MLD data was extracted from the monthly climatology data of
de Boyer Montégut et al. (2004) (available at www.ifremer.fr) for the NAG, EP and SO while
data for the NEP was sourced from Holte et al. (2017) (available at mixedlayer.ucsd). The main
reason the NEP used a different data set to the other regions was due to the MLD climatology
of de Boyer Montégut et al. (2004) poorly resolving the depth and temporal extent of the
Winter time MLD for the region while Holte et al. (2017) produced more consistent results

with other observational works, such as with Ohno et al. (2009).

3.2.2 Model analysis

In the following, the use of the term “FeBFM” will refer to the BFM model with the iron
dynamics of Vichi et al. (2015) while “FePISCES” to the iron parameterisations of Aumont et
al. (2015) that have been adjusted to be compatible with the BFM source code. Once the
PISCES iron parameterisations were embedded into the BFM; a total of eight simulations were
run. Each simulation was initialised in January and ran for 10 years to allow the
biogeochemical system to reach a steady state. FeBFM and FePISCES were each run once in

four locations, representative of the: NAG, SO, NEP and EP (Fig. 7).

Model initialisation

For each configuration, FeBFM and FePISCES, the initial conditions for the macronutrient

concentrations and physical forcing were identical. The World Ocean Atlas 2018 (WOA18) was
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used for the macronutrient concentrations of: oxygen, (Garcia et al. 2018a) nitrate, phosphate
and silicate (Garcia et al. 2018b) while the physical forcing conditions of light intensity, wind
speed, SST and salinity are shown in Tab. (2). For the WOA18 and physical forcing data sets,
the Climate Data Operators (Schulzweida 2019) (CDO) program was used to create the forcing

files for the simulations.

Table 2: List of data sets used for the physical forcing conditions in the BFM

Variable Data set Reference

SST NOAA_OI_SST_V2 www.esrl.noaa.gov
Light NCEP/DOE 2 Reanalysis data www.esrl.noaa.gov
Wind NCEP/DOE 2 Reanalysis data www.esrl.noaa.gov
Salinity World Ocean Atlas 2013 www.nodc.noaa.gov

The iron data was sourced from the GEOTRACES IDP2017v1 (Schlitzer et al. 2018) with the
NAG, SO, NEP and EP corresponding to the: GAO3, GIPY05, GP02 and GP16 GEOTRACES’
cruises (Fig. 7). Owing to the scarcity of iron data, from each location, surface iron data was
extracted from stations within a 400 km radius, corresponding to the resolution of 2° earth
system models (McKiver et al. 2015). Each configuration was initialised with homogeneous
initial conditions for all the LFGs and the BFM state variables were the same ones as used in

the global simulations by Vichi et al. (20073, b).

Metrics utilised

A wide variety of methods can be employed to analyse model outputs; however, choosing the
best metrics as well as understanding the score itself is not trivial (Stow et al. 2009). Taylor
diagrams (Taylor 2001) are ideal for juxtaposing observational data with model outputs;
however, in comparing and contrasting the model runs of FeBFM and FePISCES, the objective
was not to validate either configuration but to assess the representation of dissolved iron as
well as the cascading effect on the wider biogeochemical community. Consequently, two

methods were used: time series plots and Principal Component Analysis (PCA).
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Time series

Stow et al. (2009) noted that a major feature in comparing ecosystem models was to identify
the appearance of specific features and/or patterns in the model outputs and observational
data. Consequently, the model outputs of FeBFM and FePISCES were compared against
climatology data from the WOA18 and Ocean Colour Data from the European Space Agency
(ESA) (available at esa cci). The objective in using the time series plots was to assess whether
altering the iron parameterisations would affect the seasonal cycling of nutrients. However,
no climatology data existed for dissolved iron, so only the macronutrients of: nitrate,

phosphate and silicate were studied as well as chlorophyll.
PCA plots

In 1901, Pearson developed PCA as an explanatory technique aimed at identifying unknown
trends in multidimensional data sets (Abdi & Williams 2010). PCA utilises singular value
decomposition from linear algebra to decompose a square correlation matrix. The left and
right eigenvectors as well as singular values allow for the relationship between two variables
in multidimensional space to be assessed using a smaller number of principal components.
The power of PCA is in its ability to reduce the number of dimensions in a data set.
Consequently, for multi-variable systems, PCA allows for the relationship between variables
to be determined by their relative position in a lower dimension space (usually 2D). This allows
for an easy assessment of how the different iron parameterisations affect the whole
biogeochemical system without relying on multiple time series plots. However, unlike the time
series plots, PCA was reserved for the model outputs as insufficient observational data limited
its’ application. Therefore, the application was aimed at conducting an inter-comparison

between FeBFM and FePISCES.

When conducting a PCA, the correlation matrix requires that data be sampled from a normal
distribution. Inherently, natural systems and model outputs struggle to be Gaussian owing to
the high number of non-linear interactions. Therefore, non-Gaussian distributed data must be
transformed before applying PCA. On analysing the distribution types for the various state
variables in the model outputs, the most observed were: normal, log-normal, generalised
Pareto and extreme value. Subsequently, applying a transformation such as the box-cox to all

the non-Gaussian state variables seemed excessive. Instead, noting that most of the variables
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were positively skewed, it was assumed that the dominant distribution was log-normal and
thus taking the natural logarithm of the model output data would transform the state

variables to a normal distribution.

To illustrate how to read and understand a PCA plot, an example is shown in Fig. (9), but this
does not intend to be an exhaustive explanation about PCA and instead aims to showcases

the basics that will become important in Sec. (4.2.3).

The example plot shows various characteristics pertinent to cars. The data matrix is
decomposed using two principal components (PC1-2) with the horizontal axis showing the
projections to PC1 while the vertical axis is PC2. The percentage explained for each PC is an
indication of the percentage of the total variance each PC explains. Therefore, from Fig. (8),
PC1 explains 62.8% of the total variance while PC2 explains 23.1%. The variables are plotted
as vectors from the origin and their orientation is an indication of their influence by a specific
PC. For example, the number of gears in a car is strongly influenced by PC2 while miles per
gallon (mpg) is influenced by PC1. In addition, the cosine of the angles between the vectors is
an indication of the correlation between each variable. Therefore, there is a strong positive
correlation between the number of cylinders a car has (cyl) and the combined volume of an
engine’s cylinders (disp), while there is a negative correlation between the number of
cylinders and the mpg of a car and no correlation between the number of gears and number
of carburettors (carb) a car has. The black dots are the scores which in this example
correspond to the various car models. The proximity of a score relative to the head of a vector
indicates how much variance a single vector describes. A good example is for mpg, where
there are three scores in close proximity. This means that those three cars share similar

characteristics and are strongly influenced by mpg.
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standardized PC2 (23.1% explained var.)

-1 0 1
standardized PC1 (62.8% explained var.)

Figure 9: Example PCA plot showing characteristics of various cars (Source: www.datacamp.com)
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4. Results

The results chapter is divided into two main sections: iron cycling of FeBFM vs FePISCES and
biogeochemical impact. The first section compares and contrasts the cycling of iron between the
two formulations described in Sec. (3.1.3). The objective is to highlight the implications of the
different scavenging parameterisations between the two configurations. The second section then
builds upon the first by exploring the impacts of the different iron configurations on the model
states, such as: community composition, macronutrient cycling as well as state variable relationships

as described in Sec (3.2.2).
4.1 Iron cycling of FeBFM vs FePISCES

The biogeochemical cycling of iron involves multiple abiotic and biotic processes such as scavenging,
remineralisation, lithogenic inputs and biological uptake (see Sec. 2.1.1) and these processes need
to be modelled and parameterised in biogeochemical models. To assess the broad impacts of the
iron parameterisations on the dynamics of iron between the two configurations, the residence times
and annual mean concentrations of dissolved iron as well as the annual mean flux of dust for the
various modelled regions are shown in Tab. (3). The residence times were calculated by dividing the
depth integrated mean iron concentration over ten years by the mean flux of atmospheric dust over
the same period. Consequently, the residence times provided an important metric in gauging how
rapidly iron was cycled in the various locations, which would be a reflection upon the behaviour of
the different iron parameterisations. Short residence times are associated with high dust deposition

regions with high scavenging rates while long residence times occur in low deposition regions.

Table 3: Concentration and residence time of iron in the modelled regions

FeBFM FePISCES
Residence time Mean iron Mean dust flux Residence time  Mean iron
(years) (nM) (g/m?/year) (years) (nM)

SO 10.37 0.17 0.15 21.27 0.33

EP 4.0 0.19 0.21 10.08 0.47

NAG 0.72 1.07 3.87 1.12 1.65

NEP 3.08 0.34 0.52 4.88 0.55

For all the modelled regions, FePISCES observed longer residence times as well as dissolved iron

concentrations that were two to three times greater than FeBFM’s. As both configurations had an
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identical dust flux, only the differences in their scavenging and remineralisation parameterisations
(Sec. 4.1.2) were responsible for affecting the concentration and cycling of iron. Both configurations
showed low dissolved iron concentrations occurring in the HNLC regions of the SO, EP and NEP and
elevated concentrations in the high dust deposition region of the NAG. As expected, the low dust
deposition regions of the SO and EP had longer residence times compared to the NEP and NAG, with

both configurations having residence times that were comparable to the work of Moore et al. (2004).

41.1 Iron time-series analysis

To appreciate how the different iron parameterisations affected the concentration of iron, it was
necessary to visualise the seasonal cycle as well as the long-term evolution of iron in the model runs.
Fig. (10) compares and contrasts the seasonal and ten-year cycling of iron between FePISCES and
FeBFM in the modelled regions. Starting with the climatologies, FePISCES had a greater seasonal
variability of iron than FeBFM in all the model locations. However, both configurations showed
similar seasonal cycles for iron with both capturing the maxima of iron in September for the NAG as
well as the relatively constant iron concentrations of the EP. In the SO, the seasonal variability was
greater in FePISCES, but both configurations showed a summertime minimum (December-January)
and a winter maximum (June-August), following the trend of biological productivity for the region.
For the NEP, both configurations showed a minimum iron concentration in March and a maximum
in August which was anomalous because the NEP is in the northern hemisphere and it was expected
that the minimum concentration of iron would occur in September, corresponding to the summer
months and a maximum in winter, around January, due to accumulation and remineralisation.
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Figure 10: (upper row) Annual climatology of iron. (lower row) Ten-year time-series of iron
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To further understand the cycling dynamics for each region, it was necessary to isolate the processes
responsible for controlling the seasonal variability. Of importance was the influence of the dust flux
in controlling the seasonal cycle of iron. Tab. (3) shows the mean annual flux of dust and it was
expected that in regions of high atmospheric deposition, there would be a good correspondence
between dissolved iron concentrations and lithogenic inputs. Conducting a Pearson’s correlation
between iron and the dust flux revealed a surprising result. For the SO, both FeBFM and FePISCES
had strong negative correlations (-0.71 and -0.60) while the highest positive correlation occurred in
the EP (0.55 and 0.43). Meanwhile, the NAG had a moderate correlation of 0.45 with FeBFM but a
significantly lower one of 0.26 in FePISCES. In the NEP, the correlations were the smallest of any

regions at 0.18 for FeBFM and 0.16 for FePISCES.

Therefore, in the low to moderate correlation regions of the EP, NAG and NEP, the deposition of dust
was not playing a significant role in driving the cycling of iron. However, in the SO, the strong negative
correlation could be significant as the onset of high dust deposition in the summer months could
seed elevated levels of biological activity and hence result in the consumption of available iron.
Consequently, the assumption that high dust deposition regions would have elevated correlations
with iron was unfounded, as this was exemplified in the NEP as well as the NAG for the FePISCES
configuration. Thus, the cycling of iron for the respective regions must be driven by the chosen

parameterisations (scavenging and remineralisation dynamics of the respective configurations).

While appreciating the seasonal cycling of iron, it was necessary to understand the long-term
variability of iron in the box-model simulations, because this set-up is a coarse approximation of
what may happen in reality and in 3D coupled models. Similar to the climatology plots, FePISCES
observed greater variability than FeBFM, especially in the NAG. A key difference between FeBFM
and FePISCES was that FeBFM reached a steady-state in all the modelled regions except in the NEP,
while FePISCES did not reach a state of equilibrium in any location. Fig. (10) shows that in all the
modelled regions, FePISCES had a steady upward gradient for the SO, EP and NEP while the NAG
displayed a biennial oscillation. The biennial oscillation in the NAG is likely to stem from a
mathematical feedback in the system of PDEs since it isn’t forced by any external iron. However, the
lack of a steady state may have been responsible for the lower correlations with atmospheric dust
in comparison with FeBFM. It should also be noted that spurious trends and long-term cycles may
create local artificial gradients in a coupled configuration with a transport model. Therefore, the
long-term variability of iron was influenced by the iron configuration that was used. Since all the

inputs and initial conditions were the same, variability in the iron cycles between FeBFM and
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FePISCES can be attributed to the respective scavenging and remineralisation parameterisations.
Consequently, the next section explores the role of the scavenging and remineralisation processes

and how they affect the seasonality and cycling of iron.

4.1.2 Scavenging and remineralisation dynamics

The contrast in the time-series plots for the two configurations (Fig. 10) was attributed to the
differences in the respective remineralisation and scavenging parameterisations. Thus, Fig. (11)
compares the scavenging and remineralisation rates for FeBFM and FePISCES in the modelled
regions to ascertain what implications the parameterisations had on controlling the cycling of iron.

In reality, the true scavenging and remineralisation rates are unknown and therefore this is a

theoretical exercise to understand the functions.

The HNLC regions, especially the SO and NEP, had higher remineralisation rates than the NAG due
to elevated levels of biological activity and nutrient availability. Whereas the scavenging rate was
proportional to the concentration of dissolved iron and thus the NAG had the greatest scavenging
rate compared to the SO and EP. Referring back to Sec. (3.1.3), the main difference between FeBFM
and FePISCES stemmed from their different formulations regarding the scavenging and

remineralisation dynamics of iron. Consequently, Fig. (11) highlights the difference in behaviour

between the two configurations.
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Starting in the SO, both configurations observed higher remineralisation rates in summer and lower
in winter; however, FeBFM maintained a lower but steady-state remineralisation rate in comparison
to FePISCES; which grew in magnitude with time. As for the scavenging rate, FePISCES had little to
no scavenging throughout the entire simulation while FeBFM observed a scavenging trend
consistent with the seasonality of iron. Consequently, the lack of scavenging resulted in the
accumulation of iron in the SO for FePISCES. As for the remineralisation rate, the steady increase in
FePISCES reflected an increase in the production of particulate matter which could only be induced
by increasing levels of primary productivity as the simulation evolved (See Fig. 13). The EP was
similar to the SO as FePISCES maintained a greater remineralisation rate than FeBFM but in contrast
to the SO, FePISCES did not have an increasing rate as the simulation evolved. Instead, the EP saw a
convex shape regarding the evolution of the maxima for FePISCES. Again, FePISCES had little to no
scavenging throughout the simulation which caused iron to accumulate while FeBFM maintained a

relatively steady-state at lower ambient iron concentrations.

The NAG presented more of a challenge when interpreting the results as the oligotrophic state of
the region resulted in very little primary productivity in the model simulations (refer to Fig. 12 and
13). For the remineralisation regime, both configurations had near identical time-series, very close
to zero. The lack of biological activity due to limited nutrient availability inherently resulted in little
particulate matter production and thus low remineralisation rates. However, a large contrast was
observed in the scavenging regime linked to the substantial dust flux in the region (Tab. 3). The
biennial oscillation of scavenging for FePISCES is out of phase with the seasonal cycle of iron for the
region (Fig. 10). Consequently, when dissolved iron reaches a threshold concentration, scavenging is
activated and reduces the dissolved iron concentration. Despite the repeating seasonal cycle of dust
deposition (Fig. 8), which does not have any biennial oscillation, the scavenging rate seems to have
a threshold response that triggers the cycle. As for FeBFM, the scavenging rate remained relatively

constant throughout the simulation.

The NEP saw FeBFM and FePISCES following a very similar remineralisation time-series. However,
two features stand-out, the amplitude of FePISCES was greater than FeBFM and the phasing of the
two configurations were not directly in sync. The relatively steady-state of the remineralisation
regime for FePISCES was in contrast to the behaviour of the EP and SO which had underlying trends.
Focussing on the scavenging regime, for FePISCES in the NEP, the fluctuation was similar to the NAG,
where there were periods of intense scavenging followed by a lull period of little to no scavenging.

While FeBFM maintained a lower steady-state scavenging rate compared to FePISCES, FePISCES was
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punctuated by annual events of intensive scavenging. Similar to the NAG, the onset of scavenging

occurred when dissolved iron concentrations reached a threshold value.

It was apparent that the remineralisation rates for FeBFM and FePISCES were more similar than that
of the scavenging. However, the scavenging regimes of FePISCES and FeBFM differ significantly in-
terms of their representation of organic ligands as well as the scavenging model employed.
Therefore, it was apparent that the choice of scavenging dynamics had distinct behaviours and these
inherently altered the cycling of iron in the modelled regions. However, what implications would

different iron cycling have on the general behaviour of the biological community?
4.2 Biogeochemical impact

To understand the implications of the iron cycling on the other biogeochemical state variables within
the BFM, this section is divided into four parts. The first will analyse phytoplankton biomasses and
assemblages while the second section will explore the differences in the cycling of macronutrients.
The third section will attempt to identify what impact the iron parameterisations have on the state
variable relationships within the BFM. Finally, the last section will investigate the effect of ligands in

driving the cycling dynamics of iron (refer to Sec. 3.1.3).

421 Impact on phytoplankton community composition

Fig. (12) summarises the differences between FeBFM and FePISCES in terms of phytoplankton
community composition and cumulative biological productivity for the four selected regions over

the ten-year model simulation.

The HNLC regions had the most biological activity, with the SO having the highest biomass of any
location. Between FeBFM and FePISCES, there was not a considerable difference in the total biomass
in each region, considering that iron concentrations were nearly double in FePISCES compared to
FeBFM (Tab. 3). These observations suggest that iron may not have been the limiting nutrient for
growth in some regions, thus additional nutrient limitations may have been responsible for
hindering significant biological activity. In the SO, FePISCES observed a greater abundance of diatoms
than FeBFM; however, this was accompanied by smaller picophytoplanton and flagellate
communities. In the EP, FeBFM had a slightly greater biomass than FePISCES even though the iron
concentration in FePISCES were greater than FeBFM. Furthermore, unlike the other HNLC
environments, the EP was dominated by picophytoplankton in both configurations but FePISCES

observed a greater biomass of diatoms than FeBFM. Though not much visible in the figure, the
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community compositions for the NAG were identical for both configurations with flagellates
dominating the system. The NEP also saw both iron configurations attaining a similar total biomass
and very similar community compositions. The only marginal difference was that FePISCES had a
greater biomass of diatoms than FeBFM. Consequently, the elevated proliferation of diatoms in the
HNLC environments could be attributed to the elevated iron concentrations. However, in order to
understand the phytoplankton dynamics in more detail, it was necessary to analyse the time-series
for the various species in order to understand how the community composition changed as the

model simulations evolved.
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Figure 12: Cumulative carbon biomass for diatoms, flagellates and picophytoplankton after 10 years with

FeBFM (left bars) and FePISCES (right bars)

Fig. (13) illustrates the differences in the phytoplankton groups between FeBFM and FePISCES in the
modelled regions and complements Fig. (12) by illustrating the time evolution of biomass. Beginning
in the SO, FeBFM reached an equilibrium state whereby the various phytoplankton groups
maintained a similar seasonal cycle as the simulation progressed. While FePISCES saw a continued
shift in the phytoplankton assemblage as diatoms grew in concentration which reduced the
abundance of flagellates and picophytoplankton. The growing biomass of diatoms incidentally
explained the trend in the remineralisation rate for FePISCES (Fig. 11), whereby a greater abundance
of diatoms resulted in the elevated production of particulate organic matter as the model run

progressed. To explain the overall elevated biomass in FeBFM compared to FePISCES in the EP (Fig.
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12) it is important to note that, diatoms are the only phytoplankton group which require silicate as
a macronutrient. In contrast to the SO and NEP (see Fig. 14 and 17), the EP had significantly lower
concentrations of silicate (Fig. 15). Consequently, the elevated iron concentration in FePISCES
spurred on a greater biomass of diatoms in comparison to the other phytoplankton groups. Whereas
in FeBFM, the lower concentration of iron did not favour the proliferation of diatoms and instead
favoured picophytoplankton. As picophytoplankton were not limited by silicate availability, this

allowed FeBFM to achieve a greater biomass than FePISCES.

For the NAG, FeBFM and FePISCES had identical time-series for all the phytoplankton groups even
though there was a stark difference in the ten-year iron time-series for the region (Fig. 10). This
suggested that the behaviour of iron in the NAG for both configurations was controlled by similar
biogeochemical processes (refer Sec. 4.2.3). Unlike the other HNLC regions, the NEP had a near
identical phytoplankton biomass for FeBFM and FePISCES despite differences in dissolved iron (Tab.
3 and Fig. 10). Though the total biological productivity does not differ significantly between the two
iron configurations, some regions observed changes in their dominance of a certain phytoplankton
species. In addition, the non-linear response in biological productivity relative to the abundance of
iron reflected the influence of additional nutrient limitations. Consequently, the next section

evaluates the impact of the iron configurations on the cycling of macronutrients.
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4.2.2 Influence on the seasonality of macronutrients

As nutrients do not cycle independent of each other in a biogeochemical system it was important to
understand whether changing the iron configuration would affect the seasonality of other major
macronutrients such as nitrate, phosphate and silicate as well as chlorophyll. Therefore, each region
would be analysed separately and the macronutrient as well as chlorophyll dynamics would be
compared against observational data from the WOA18 and ESA. This was not intended for validation
purposes but to understand whether changing the iron configuration would lead to a better

correspondence with observational measurements.

Southern Ocean

Fig. (14) illustrated the typical HNLC conditions for the SO where there was an excess concentration
of macronutrients accompanied by little chlorophyll due to limited iron availability (refer to Sec.
3.2.2). Both configurations had greater chlorophyll concentrations than the observed with FePISCES
having a greater chlorophyll concentration than FeBFM due to the greater quantities of iron that
were available (Tab. 3) which allowed diatoms to flourish (Fig. 13). Furthermore, both configurations
showed a chlorophyll minimum in June/July, corresponding to the winter months and periods of
little biological activity, but neither configuration accurately resolved the timing of the chlorophyll
maximum. Because of the diatom growth in FePISCES: nitrate, phosphate and silicate were utilised
for primary production which reduced their concentrations, but no nutrient was entirely depleted
which permitted diatoms to continually grow throughout the model run (Fig. 13). This facet

regarding nutrient depletion will become important in subsequent regions.
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Furthermore, FePISCES saw greater seasonal variations in the macronutrient cycles than FeBFM.
Though neither configuration captured the observed nutrient concentrations, FeBFM had more
similar seasonal cycles for phosphate and nitrate relative to the observations. This was in major part
due to FeBFM maintaining a low iron concentration (Fig. 10) consistent with observational

measurements (Martin et al. 1991; Schlitzer et al. 2018).
Equatorial Pacific

Fig. (15) highlights the HNLC conditions prevalent in the EP, although the nutrient concentrations are
lower than in the SO. The EP is a region heavily influenced by episodic upwelling events which are
driven by the easterly trade winds (Sec. 3.2.1). As the BFM was run in its OD, uncoupled state, this
physical dynamic could not be captured. As a result of being unable to resolve the upwelling
dynamics, the seasonality for chlorophyll for both the configurations were completely out of phase
with the observations. In addition, neither of the iron configuration could resolve the observed
seasonal cycle of nutrients, but they both developed a seasonal cycle of primary producers despite
the low nutrient standing stock (Fig. 13). FeBFM maintained a slightly greater chlorophyll
concentration which was reflected in the greater total biomass in Fig. (12). Referring back to Sec.
(3.2.1), the premise of the simulations was to assume all the biological processes were constrained
within the MLD. Consequently, the complete consumption of nitrate did not terminate biological
productivity (Fig. 13) due to the system being sustained through regenerated production of
ammonium. Therefore, though the EP attained almost double the iron concentration in the FePISCES
configuration than in FeBFM, the limited availability of preformed nitrate hindered the biological

productivity of both configurations.
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North Atlantic Gyre

The NAG is an oligotrophic region and has small nutrient concentrations and little biological activity

at the surface as seen in Fig. (16). Both iron configuration showed nitrate and phosphate to be

depleted for the entire duration of the simulation. As a consequence of the low macronutrient

concentrations, the biological productivity was very low in both configurations (Fig. 13). Though the

NAG is phosphate limited (refer to Sec. 3.2.1) which reduces biological productivity, the lack of

seasonality in either the nitrate or phosphate concentration for both configurations suggests that

the model was not directly capturing the nutrient dynamics for the region. Instead, the oligotrophic

nature was observed due to the model being unable to simulate productivity at low nutrient levels.

The NAG does illustrate the phenomenon that additional nutrient stresses affect the biological

productivity of the region independent of the iron concentration.
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Figure 16: Monthly climatologies of: chlorophyll, nitrate, phosphate and silicate in the NAG for FeBFM and

FePISCES.

North-east Pacific

The NEP was an interesting HNLC region (Fig. 17) as it had similar nutrient concentration to the SO

but had a moderate flux of atmospheric dust. As expressed in Sec. (4.1.1), it was odd that the peak

period of biological activity occurred in February/March, corresponding to winter, while in the

observations this occurs in the summer months (Anderson 1969). According to the prescribed

climatological boundary condition, the NEP region is characterised by a sharp increase in iron

deposition from February (Fig. 8) which corresponds to the period of increased biological activity in

the model. Consequently, the early onset of the chlorophyll maximum could have been due to the

winter deposition of atmospheric dust that spurred on biological activity. Similar to the SO, both

configurations struggled to capture the trend of chlorophyll. However, the NEP is a region which has
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a subsurface chlorophyll maximum that occurs at 55-65 m (Anderson 1969). Though within the range
of the modelled MLD, satellite products would struggle to capture this feature. Again, the similar
phytoplankton dynamics for both configurations could be attributed to the depletion of nitrate but

the slightly higher concentration in diatoms in FePISCES could be seen in the lower concentration of

silicate
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Figure 17: Monthly climatologies of: chlorophyll, nitrate, phosphate and silicate in the NEP for FeBFM and
FePISCES.

4.2.3 Principal component analysis on key state variable relationships

In summarising the findings thus far, the various scavenging and remineralisation schemes employed
in FeBFM and FePISCES did have a definite impact on the cycling dynamics of iron in the modelled
regions. A major feature that distinguished the two configurations was the greater concentration of
iron in FePISCES than FeBFM. However, besides for the SO, the elevated iron concentration had little
impact on affecting the overall biological productivity in the remaining regions. This was due to the
influence of additional nutrient limitations which resulted in similar biomasses. Consequently, as the
phytoplankton assemblages were similar between FeBFM and FePISCES, this resulted in similar
macronutrient cycles which corresponded poorly with observational data. Incidentally, the use of
time-series plots was a useful technique in understanding how state variables evolved in the model
simulations. But it was difficult to understand the relationship of one state when contextualized in
the whole model system. Consequently, PCA (see Sec. 3.2.2) was chosen as a useful tool for
identifying changes in key state variable relationships in a multi-variable system. When reading the

PCA plots, refer to the list of in Tab. (4) and note that the scores represent monthly mean states.

Furthermore, the DOC (Rgl)) variable was used as a proxy in FePISCES for the influence of ligands.
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Table 4: List of symbols used in the PCA plots

Symbol Description

Fe Dissolved iron

POFe Particulate organic iron
DOFe Dissolved organic iron
DOC Dissolved organic carbon
Chla Chlorophyll

02 Oxygen

N Nitrate

P Phosphate

Si Silicate

Southern Ocean

Using two principal components (PCs), 78% of the total model variance was explained in FeBFM
while 87% was explained in FePISCES (Fig. 18), with both configurations being strongly influenced by
the first PC. In comparing the variable relationships between the two configurations, there was not
a significant shift between FeBFM and FePISCES. Both configurations showed: nitrate, phosphate
and silicate to be strongly correlated with each other; however, they were poorly correlated to iron.
In addition, both configurations highlighted the poor correlation between bioavailable iron and its
particulate organic species, however, it was strongly negatively correlated with its dissolved organic
component. There was no shift in the relationship between DOC and iron from FeBFM to FePISCES.
Treating the DOC content as a proxy for ligand concentrations, for FePISCES, ligands were not playing
a major role in controlling the cycling of iron as there was no correlation between iron and DOC;
however, DOC was strongly related to PC1 in FePISCES. Of significance was the fact that in FeBFM,
iron explained a greater proportion of the model variance than in FePISCES where it was far removed
from the other state variables. Focussing on the scores, FePISCES observed more clustering than in

FeBFM.
Equatorial Pacific

Like the SO, the EP (Fig. 19) saw the macronutrients maintaining a similar relationship in both
configurations. Both FeBFM and FePISCES were strongly influenced by PC1 with 91.5% of the total
variance being explained by both PCs in FeBFM and 89.46% in FePISCES. Unlike the SO, both the
organic iron species in FeBFM showed a positive correlation with iron which was odd considering
that the production of particulate iron is accompanied by the consumption of bioavailable iron.
However, DOC became more correlated with iron in FePISCES which suggested that organic ligands
may have played a role in controlling the dynamics of the iron cycling. Instead, there is a decoupling

between bioavailable iron and its dissolved organic species in FePISCES. Similar to the SO, FePISCES
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saw iron being far removed from the other state variables, suggesting that it did not play a significant

part in influencing the function of the system.

FePISCES
0.6

0.4r

Component 2 (32.47%)
Component 2 (19.39%)
o

0.4

-0.6 - -0.6

-0.6 04 -0.2 0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
Component 1 (45.57%) Compenent 1 (68.14%)

Figure 18: PCA plot for the SO with the variables indicated by a blue dot and the scores are shown with black

dots with the orientation of each PC being arbitrary.

FeBFM FePISCES
0.6 Fe

0.4r

Component 2 (11.88%)
Component 2 (20.01%)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
Component 1 (79.56%) Component 1 (69.45%)

Figure 19: PCA plot for the EP
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North Atlantic Gyre

For the NAG (Fig. 20), the PC1 and 2 explained approximately 78% of the variance in FeBFM and 82%
in FePISCES, with both configurations being strongly influenced by PC1. In addition, the distribution
pattern of the scores was very similar (the sign of PCs is arbitrary and it can be changed without
affecting the decomposition) in both the configurations. From Fig. (20), bioavailable iron is not
correlated with any of the other state variables in FeBFM and is not well explained by the first two
PCs. However, in FePISCES, iron becomes strongly coupled to DOC and decoupled from both organic
species as they are orthogonal to each other. This suggests that ligands were playing a role in
affecting the cycling of iron; however, it was unclear whether ligands were responsible for the

biennial cycle of iron seen in Fig. (10).
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Figure 20: PCA plot for the NAG
North-east Pacific

The NEP (Fig. 21) was an interesting HNLC region because unlike the EP and SO, the NEP had a
moderate dust deposition flux (Fig. 8) which resulted in a greater iron content for the region. In both
FeBFM and FePISCES, the value of the respective PCs was similar which suggests that both
configurations were constrained by the same biogeochemical processes. Both configurations saw a
similar pattern for the distribution of the scores and there was no discernible difference between
FePISCES and FeBFM in terms of the variable relationships. Focussing on iron, both configurations
saw dissolved iron being negatively correlated with the particulate and dissolved organic species.

However, the relationship between iron and DOC does not change from FeBFM to FePISCES. Noting
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the fact that the DOC content only affects the ligand concentration in FePISCES, it was unclear why

the variable relationship remained the same.
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Figure 21: PCA plot for the NEP

4.2.4 Impact of ligands on the cycling of iron

The parameterisation of ligand dynamics were significantly different between the configurations
(Sec. 3.1.3) and owing to their importance in affecting the scavenging regime, it was necessary to
appreciate what affect the ligands were having on the cycling of iron. The PCA results hinted that
the shift in the DOC variable to become more correlated with iron in FePISCES was due to the
influence of organic ligands. However, the shift may have also been caused by the slight differences
in the phytoplankton assemblages between the configurations which would result in different levels
of DOC production (Eg. 2.10). Consequently, Fig. (22) shows the time-series evolution of DOC for
each region and it will be used to further understand the implications of DOC on the cycling of iron.
Fig. (23) will then be used to explore the relation between DOC on the scavenging regimes of both
parameterisations. The section will end with an analysis of the scavenging parameterisation used in

FePISCES in order to contextualise the implication of DOC on the free scavenging regime.

DOC time-series

Starting in the SO, it was anomalous that FeBFM maintained a small and stable DOC concentration
while FePISCES maintained a similar DOC content to FeBFM until 2006. At this point the

concentration spiked and continued to grow. Unlike FeBFM which established a steady-state
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regarding the concentration of diatoms (Fig. 13), FePISCES had continued growth. Therefore, the
increase in the DOC content may have been due to the system accumulating DOC which is linked to
the non-linear relationship of the PDEs. An explanation may be due to the system becoming nutrient
stressed, implying that the greater iron abundance in FePISCES resulted in the overconsumption of
key macronutrients, such as phosphate and nitrate, which resulted in the increased production of
DOC due to the parameterisations of DOC in the BFM (refer to Eq. 2.10). Incidentally, the idea of
nutrient stress was also seen in the EP, as the DOC content was greater than that of the SO. This
suggested that most of the assimilated carbon existed in the dissolved pool rather than the
particulate. Both configurations had similar phasing to each other with FePISCES maintaining a
greater DOC content throughout the simulation than FeBFM. Consequently, the greater
concentration of iron in FePISCES for the EP may have spurred on a greater diatom biomass resulting

in a greater production of DOC.
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Figure 22: Time-series plot of DOC with FeBFM (red) and FePISCES (blue) represented for the four modelled

regions

In Fig. (22) for the NAG, the DOC time-series for FeBFM cannot be seen as it is overlapped by
FePISCES’s. The DOC content of the NAG showed the same biennial oscillation for both FeBFM and
FePISCES. Comparing the DOC time-series of FePISCES with the ten-year time-series of iron in Fig.
(10) revealed a plausible relationship between the two variables as both exhibited a biennial
oscillation. On closer inspection, the time-series of DOC is not perfectly in phase with that of iron,

which suggests that there is not a linear relationship between the two variables, but this is
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understandable concerning the multiple non-linear relationships that affect both iron and DOC.
Therefore, as both configurations had the same DOC time-series it provides some evidence that DOC
may have been a major variable influencing the behaviour of iron in FePISCES. Consequently, the
nutrient stressed environment of the NAG in the modelled regions resulted in almost all assimilated
carbon being transferred to the dissolved pool (Eg. 2.10) which resulted in the largest concentrations
of DOC for any region. The NEP had similar DOC concentrations to the EP with both FeBFM and
FePISCES having a similar DOC time-series after the simulations adjusted (FeBFM was slower). The
similar phytoplankton community structures between the two configurations (Fig. 12) would result
in the near identical production of DOC (Eg. 2.10). Consequently, if DOC content was similar in
FeBFM and FePISCES and as there was no shift in relationship between DOC and iron in the PCA
analysis (Fig. 21), this does not suggest that ligands were not playing a role in affecting the iron
cycling for FePISCES in the NEP. Instead, the moderate deposition of dust in the region would
promote high iron concentrations (Tab. 3) and at the same time high biological productivity (Fig. 12

and 13) which could result in iron and DOC varying together regardless of the iron parameterisations.

Implications of DOC on the scavenging regimes

To further improve the understanding between the DOC dynamics and iron, Fig. (23) complements
Fig. (22) by showing a correlation heatmap between DOC, iron and iron scavenging for the various

modelled regions.
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Figure 23: Correlation heatmap showing the relationships for: DOC, iron and scavenging (Scav) for FeBFM

(left) and FePISCES (right) in the four modelled regions
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In the SO, iron observed a small negative correlation with DOC and a strong positive relationship
with scavenging in FeBFM. Furthermore, DOC was weakly correlated with scavenging which is
understandable because the DOC dynamics do not implicate the scavenging regime in FeBFM.
Contrasting FeBFM with FePISCES, there was a marginal shift in the correlation between DOC and
iron as it became positive while DOC became negatively correlated with scavenging. Furthermore,

there was a slight reduction in the correlation between scavenging and iron.

Like the SO, the EP also saw the correlation between DOC and scavenging becoming more negative
from FeBFM to FePISCES but unlike the SO, the iron to DOC correlation decreased. However, the
scavenging to DOC relationship became more negative from FeBFM to FePISCES. In the NAG, DOC
was poorly related to iron and scavenging in FeBFM which was also seen in Fig. (20) for the PCA
plots; while iron was strongly related to the scavenging rate. However, in FePISCES, DOC became
significantly more related with iron but there was a major decoupling in the relationship between
scavenging and iron. In addition, the scavenging to DOC relationship became more negative. Similar
to the NAG, the NEP showed a strong positive relationship between DOC and iron for FeBFM as well
as a positive relation to scavenging. In FePISCES, scavenging became negatively correlated with DOC

and there was a reduction in the correlation between scavenging and iron.

From Fig. (23), a recurring phenomenon is the negative correlation observed between DOC and
scavenging in FePISCES as well as a poorer relationship between iron and scavenging. Referring to
Sec. (3.1.3), the concentration of ligands was calculated in relation to the DOC content using Eq.
(2.17). Consequently, though the DOC content was similar in both configurations, the implications
would be elevated ligand concentrations in the FePISCES configuration. Using Eq. (2.17), the mean
ligand concentration over the ten-year period of the model simulations could be calculated for each
region. The NAG had the highest mean concentration of ligands at 3.81 nM while the SO had the
lowest (0.86 nM). The EP and NEP were similar with mean concentrations of 1.87 nM and 1.37 nM.
Though the ligand concentration was merely proportional to the DOC content, the implications of a

greater ligand concentration would influence the scavenging regime.

Starting with Eq. (2.16), N(7) can be made the subject of the formula of the quadratic by rearranging

the equation to the following:

N =K (NT) )2 + ANS) (2.21)

free free

Noting that N « N, Eq. (2.21) could be simplified by removing the squared term.

free
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7 ND
Nf(rie ~ (2.22)
Expanding A in Eq. (2.22) gives:
N

~—s (2.23)
free 14K 1) (Lr=N™)

The simplified relation shown in Eq. (2.23) shows that the amount of iron available to scavenging is
inversely proportional to the ligand concentration. Therefore, when the ligand concentration is high,
the amount of iron that can be scavenged is small. But, when Ly = N then the amount of iron
that can be scavenged is directly proportional to the concentration of dissolved iron. Therefore, a
greater ligand concentration should limit the ability of scavenging and inherently allow iron to
accumulate as seen in Fig. (10). This idea is corroborated from Fig. (23) as the negative relationship
between DOC and scavenging in FePISCES highlights that elevated ligand concentrations result in
most bioavailable iron being complexed and thus unavailable to scavenging. While when the DOC
content drops, the scavenging rate can elevate due to less bioavailable iron being complexed.
Consequently, the DOC content for a region was indirectly driving the iron system by altering the

scavenging regime of FePISCES.
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5. Discussion

Multiple parameterisations and mathematical formalisms can be utilised to describe the iron cycle
in biogeochemical models (Sec. 2.2.3) and therefore it is important to understand what implications
different parametrisations have on the functional behaviour of a biogeochemical model in its ability
to represent major processes such as: dissolved iron concentrations, macronutrient cycling and
phytoplankton assemblages (Sec. 4). Therefore, this chapter is divided into two sections, with the
first discussing whether the choice of iron parameterisations is significant when running a
biogeochemical model and the second section exploring how useful 0D models are as spaces for

testing different parameterisations.
5.1 Does the choice of iron parameterisations matter

In a biogeochemical model, the various PDEs used to describe key biogeochemical processes do not
function in isolation. Instead they mathematically interact and influence each other which can result
in non-linear behaviours and feedbacks. Consequently, by altering the iron parameterisations in
BFM, it was expected that the functional behaviour of the BFM would change but to what degree
could not be determined prior to performing the various experiments. It is important to note that
when undertaking the thesis work, any free scavenging model variant from a different
biogeochemical model could have been used. Therefore, this discussion does not constrain itself to
solely comparing the inorganic iron dynamics of BFM and PISCES but also intends to be a general

commentary on translating parameterisations into different biogeochemical models.

5.1.1 Inorganic iron parameterisations

From Sec. (4) the parameterisations of FePISCES produced dissimilar results to FeBFM when
comparing the: concentration and seasonality of dissolved iron, scavenging and remineralisation
rates, phytoplankton community compositions and macronutrient cycles in all the modelled regions.
Contrasting the inorganic iron parameterisations of FeBFM and FePISCES, it was clear that the
remineralisation schemes were more similar than the scavenging. Both configurations
parameterised remineralisation as a linear process, which is the simplest form one can choose when
data are not available to better constrain the parameterisations, with FePISCES including additional
environmental stresses such as an oxygen dependency term which just modulated the intensity of
the remineralisation scheme. The similarity in the remineralisation schemes was seen when

analysing the rates in Fig. (11) as both configurations showed similar seasonal cycles for the
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remineralisation rates, with FePISCES having a higher rate than FeBFM which could be attributed to

the parameter value used for the remineralisation rate constant.

In contrast, the scavenging regimes between FeBFM and FePISCES differed significantly and this was
due to FePISCES employing a different model formalism for scavenging as well as including a
prognostic appreciation of organic ligands which was linked to the concentration of DOC (refer to
Sec. 3.13). The free scavenging model of FePISCES resulted in the low iron regions of the SO and EP
having almost zero scavenging while in the high iron regions of the NAG and NEP, there was
intermittent periods of intense scavenging followed by little to no scavenging (Fig. 11). The simpler
model of FeBFM reached a steady-state in all the modelled regions and produced a clear seasonal
cycle. The disparate scavenging regimes for the two configurations highlight the importance of
constraining the scavenging rates which is a sentiment shared by other authors such as Tagliabue et
al. (2016) and Yao et al. (2019). Especially in a free scavenging model like FePISCES, constraining the
scavenging regime is necessary to avoid accumulation of iron, mainly in HNLC regions. A major
reason for this is that in a 3D coupled model simulation, regions with excess iron concentrations
would seed productivity in adjacent regions as iron would be advected and transported by the
physical model. Incidentally, this could bias the modelled distribution of primary production since

iron is a limiting nutrient in large regions of the global ocean.

A prognostic appreciation of organic ligands is a feature that is not common in current
biogeochemical models (Tagliabue et al. 2016) and therefore it acted as an additional facet in the
free scavenging model of FePISCES. Though the parameterisation of ligands was basic, the ligand
concentrations in FePISCES were on average 1.4 nM greater than the prevailing iron concentrations
in each region which reflects well with the observations of Gledhill & Buck (2012) in terms of
representing the feature of uncomplexed ligands. However, coupling the ligand concentration to
DOC resulted in the NAG having a greater ligand concentration than the SO. This result is not
supported by observational evidence because the SO has greater biological activity than the NAG
and owing to the production pathways of ligands (Hassler et al. 2017), the SO should have a greater
concentration than the NAG. This highlights an issue with the DOC dynamics of the BFM. Therefore,
the feedback in the model is one of mathematics which does not represent the biological behaviours

of the modelled regions.

When adding new parameterisations to a model it is important to disseminate between
mathematical feedbacks in the model system and process-based responses that would be expected

in a real biogeochemical system. The PCA plots presented a useful tool in understanding how the
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variable relationships shifted with the choice of iron parameterisations. In general, for both iron
configurations there was a decoupling of iron from the major macronutrients in the modelled
regions. This could be due to the fact that iron is typically added as an additional multiple-nutrient
limitation term within numerical models (Vichi et al. 2007b) and is not coupled to the functioning of
other major nutrients. Not only was dissolved iron poorly related with the macronutrients but in
most of the regions, it was weakly associated to its own organic species. In the SO, both iron
configurations saw dissolved iron uncorrelated with its particulate organic species and negatively
correlated with the dissolved organic species. Whereas in the EP, the improved relation of DOC to
dissolved iron in FePISCES resulted in a decoupling of dissolved iron from its organic species. This
same situation was seen in the NAG but not in the NEP as there was no shift in the relation of DOC
and dissolved iron from FeBFM to FePISCES. Consequently, the ligand parameterisation of FePISCES
caused a decoupling of dissolved iron to its organic species in some regions but both iron

configurations struggled to resolve the biogeochemical relationships in the iron cycle.

As expressed in Eqg. (2.23), the ligand concentration dictated the amount of iron available for
scavenging in FePISCES. Using PCA, there was a strong relationship between DOC in the high iron
regions of the NAG and NEP and from the similar biennial time-series of DOC (Fig. 22) and iron (Fig.
10) in the NAG, it could be inferred that DOC was indirectly driving the iron system by altering the
scavenging regimes. This observation was corroborated using Fig. (23) where DOC became
negatively correlated with iron scavenging in FePISCES. Therefore, as the DOC content increased, the
amount of iron available to scavenging decreased. Furthermore, except for the EP, there was a
reduction in the relationship between iron and scavenging in FePISCES which could have been due
to the additional influence of DOC on the iron system. However, it is important to note that the study
did not use the full PISCES model, but only the inorganic cycling of iron. Consequently, the spurious
trends in iron observed for the FePISCES configuration may not occur in PISCES as the biology has
been tuned appropriately and the production pathway of DOC may be suited to the free scavenging
model. Furthermore, the formulation of iron dynamics in the full PISCES model of Aumont et al.
(2015) contains full colloidal interactions and these parameterisations were not included in the test
experiments of FePISCES. Incidentally, the accumulation of iron in the HNLC regions in the FePISCES

configurations may have been due to the absence of a colloidal component.

5.1.2 Challenges of translating parameterisations into biogeochemical models

In addressing the question whether the choice of iron parametrisations is significant, the answer is

yes. Using a different set of iron parameterisations will alter the biogeochemical behaviour of a
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model. Indeed, a major shortcoming of the thesis was that no parameter optimisation was done
when translating the inorganic iron equations of PISCES into BFM so how much of the variance in
dissolved iron concentrations could be attributed to the various model constants vs. model structure
was unknown. This highlights a major challenge in translating parametrisations as not only the
model formalisms need to be reconfigured to be suitable within a different model but also the
various parameters may need to be appropriately tuned. However, appropriately tuning parameters
will be difficult if there is not the necessary data to contain them which is a prevalent issue for iron
parameterisations. In addition, if a parameterisation is sensitive to another state variable, such as
ligands to DOC concentration, those facets may not be easily translated into a different model which
means that the parameterisation may be a source error in model outputs. This further exemplifies

the inflexibility in translating iron parameterisations between models.

When embedding new parametrisations, it is important to appreciate that a different model
formalism of a biological process may not lead to improved model results. This does not disparage
the fact that a more detailed parameterisation includes more meaningful biological interactions,
instead, if the equations are not contextualised properly within a model, then the model
performance could be worse off. Therefore, when translating parameterisations it would be
advantageous to use parameter optimisation techniques to constrain parameters to optimal values
(Ward et al. 2010) if sufficient data are available, but not the case for iron as well as conducting
sensitivity tests to appreciate the various non-linear behaviours and responses. Ideally, the inclusion
of more sophisticated parameterisations should be done only if they will lead to improved
representations of a biological system, which become prevalent in coupled 3D simulations used for

hypothesis testing.
5.2  Suitability of 0D models as spaces for testing parameterisations

The ultimate implementation of iron, which has a global valence, should be within coupled 3D
models. However, large uncertainties are prevalent in describing the iron cycle in biogeochemical
models (Yao et al. 2019). Furthermore, a wide variety of different parameterisations for processes
such as scavenging and ligand dynamics are employed across the modelling community (Tagliabue
et al. 2016). Acknowledging the work of Ménesguen et al. (2007) and McKiver et al. (2015), the
choice of spatial resolution is not trivial when conducting biogeochemical modelling. Therefore, 0D
models are dichotomous as their simplicity aids in the identification of non-linear processes and

functional responses of parameterisations. However, a caveat to the simplicity of OD models is the
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inability to include important physical processes which influence biology (McKiver et al. 2015).
Therefore, this section wishes to explore the advantages and disadvantages of using 0D models for

testing biogeochemical parameterisations by using the results of iron as a case study.

5.2.1 Advantages and disadvantages to 0D models for testing parameterisations

Running the BFM in its 0D configuration meant that important physical dynamics which implicate
biological activity could not be included; however, this was to be expected given the limitations of a
box-model set-up. For each region, it was assumed that the main source of exogenous iron was from
atmospheric deposition and that the respective biogeochemical systems were sustained through
regenerated production of nutrients, including iron, in the upper ocean, which was bounded

between the surface and MLD.

Though some of the physical dynamics for the modelled regions could be accounted for with
rudimental physical forcing functions and biological assumptions, the lack of a coupled physical
model severely influenced the seasonal cycle of macronutrients, especially in the EP and NEP. In the
EP, the chlorophyll and phosphate concentrations for the two iron configurations were out of phase
with the WOA18 observations (Fig. 15) due to the inability to capture the upwelling dynamics of the
regions. While for the NEP, the onset of a winter bloom in chlorophyll was attributed to the basic
dust forcing function used in the model (Fig. 17). In addition, the NEP is a region with a sub-
chlorophyll maximum (Anderson 1969) and this feature could not be represented in a mixed layer
model. Furthermore, in all the modelled regions, nitrate and phosphate concentrations were drawn
down below observed levels; however, in the 3D simulations of Vichi et al. (2007a, b), this same
phenomenon was not prevalent. Low macronutrient concentrations will feedback onto iron as they
will enhance N and P limitation in a system. Consequently, a weakness of OD simulations seems to
be the over utilisation of key macronutrients and this issue could be addressed by initialising the 0D
model with greater macronutrient concentrations so that the steady-state resembles observational

measurements.

0D models can be useful for testing and illustrating fundamental principles and ideas, with a good
example being Daisyworld (Watson & Lovelock 1983). Though the 0D configuration of the BFM
limited its ability to represent important physical dynamics, for the various modelled regions, a lot
of iron features could be captured. This was accomplished through the addition of: a boundary flux
for atmospheric dust, a particle tracer for dust and a variable MLD. However, the addition of multiple

new components at once did not permit a step-wise assessment of the respective influence of each

67



component on the modelling system. Consequently, a step-wise approach would involve multiple
model runs whereby the various iron parameterisations are assessed while the number of additional
modelling components such as a dust flux or variable MLD are incrementally added to assess the
impact of the added modelling components on the iron system and to better disseminate the

responses of the iron parameterisations.

Incidentally, as numerical models become more complicated by increasing the number of:
dimensions or coupled components (physical, climate and ice models); the modelling system
becomes more complex and thus more resilient to non-linear behaviours in parameterisations.
Consequently, the complexity of a 3D model would make it difficult to test such sensitive
parameterisations as iron and the different responses of the biogeochemical parameterisations may
be diluted by the interactions with the physical model. In comparison, 0D simulations have a simpler
structure which helps to better understand the sensitivity to different parameterisations. As seen
with the identification of the variable relationships between FeBFM and FePISCES, it is unclear
whether a 3D model would be able to identify the non-linear responses in the iron system, but within
a 0D context, the identification of non-linear behaviours was aided due to the simpler model
structure. At present, the only method to improve both OD and 3D representations of iron and its
impact on the wider biogeochemical systems of the ocean lies in improved observational data. At
present, the GEOTRACES program has successfully increased the number of iron observations but
what is lacking are seasonal measurements of dissolved iron. Having seasonal observations of iron
would allow an assessment of how iron evolves with other key macronutrients. From increased
observational data, existing iron parameterisations could be improved, with OD models being an

ideal space to test and refine them before being implemented in coupled 3D simulations.
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6. Conclusion

6.1 Conclusion

This thesis has compared and contrasted the functional behaviour of iron parameterisations
implemented in current biogeochemical models. The iron cycle has only recently been included in
biogeochemical models and the parameterisations that describe key processes such as scavenging
and ligand dynamics are not well constrained by available observations. Therefore, there is a need
to understand the biogeochemical modelling implications of using different iron parameterisations
while new data are being collected. Using the BFM as the background numerical model the iron
parameterisations of BFM and PISCES were tested in four regions: Southern Ocean, Equatorial
Pacific, North Atlantic gyre and North-east Pacific; encompassing a diverse array of biogeochemical
environments. From Sec. (4), the disparate functioning of FeBFM and FePISCES was evident as
FePISCES observed significantly greater iron concentrations than FeBFM in all the modelled regions.
This had implications on the phytoplankton assemblages as well as the macronutrient cycles of
FePISCES in all the modelled regions. The main difference in the iron formalisms of FeBFM and
FePISCES was the scavenging regime and thus the scavenging model of FePISCES was implicated in
the dissimilar iron concentrations. Furthermore, the ligand parameterisations of FePISCES lead to an
apparent decoupling of dissolved iron from its organic species where in fact the inclusion of

dynamical ligands should have led to the opposite.

Though the thesis did not aim to validate the various parameterisations, it is important to note that
neither of the iron parameterisations was able to represent the key variable relationships involved
in the iron cycle, namely the relationship of dissolved inorganic iron to its organic species. This
represents a shortcoming in the application of these parameterisations in higher order models. In
addition, the diverse behaviour of the different iron parameterisations potentially showcases a lack
of consensus in the modelling community in the representation of dissolved iron because if the
parameterisations are drawn from the same scientific knowledge, it would be expected that they
would behave in a similar or near similar manner. Another facet to the study was acknowledging the
difficulty in testing and translating iron parameterisations from one model to another, noting that
various parameter values may need to be tuned appropriately as well as the sensitivity of
parameterisations to other biogeochemical processes which may not become apparent until
sensitivity tests are conducted. Therefore, the testing of parameterisations should be done within

0D models in order to assess any non-linear behaviours and ultimately embedded in 3D models to
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study how they interact with physics. Therefore, the choice of iron parameterisations in a

biogeochemical model is significant as they will have different implications on model outputs.
6.2 Future work

In the thesis, no parameter optimisation techniques were applied when translating the PISCES iron
parameterisations into BFM. Incidentally, how much of the variation in the outputs could be
attributed to inappropriately tuned model parameters vs. model structure was unknown.
Consequently, future studies could use the work of Ward et al. (2010) or Annan et al. (2005) in
applying parameter optimisation schemes to numerical models. If parameter optimisation was done
on the translated parameterisations, then with greater certainty, variations in model outputs could
be attributed to the differences in model formalisms which would aid in the improvement of

parameterisation schemes.

Another interesting metric that could be applied in testing different parameterisations is the
computation of Lyapunov exponents. Lyapunov exponents are used in the study of non-linear
systems (Wolf et al. 1985; Das 2012) to quantify how model trajectories diverge in phase space
whose initial states are slightly different. Therefore, perturbing a biogeochemical model with a
different set of iron parameterisations and understanding the time evolution and divergence of the
whole model system would allow for a greater appreciation of the impact of different iron

parameterisations on a biogeochemical model.
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