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ABSTRACT 

Iron is one of the most commonly studied trace metals as it exerts a significant influence on 

ocean productivity, carbon sequestration as well as modulating atmospheric CO2 

concentrations. As iron is such a vital nutrient for biogeochemical processes it is often 

included as a variable in ocean biogeochemical models. In representing the iron cycle, 

biogeochemical models must parameterise the major processes of uptake by phytoplankton, 

remineralisation and scavenging. However, there is no generally accepted set of equations to 

represent iron dynamics and thus a variety of different parameterisations are employed 

across the modelling community. The thesis work focussed on the inorganic iron 

parameterisations with an emphasis on the scavenging formalisms which are employed in 

current biogeochemical models. Using an open-source numerical model (Biogeochemical Flux 

Model, BFM) as a background model, a more advanced inorganic iron parameterisations that 

simulates free iron scavenging and ligands linked to dissolved organic carbon (DOC) (from the 

open-source model PISCES) was included and compared to assess the implications on iron 

cycling and plankton community structure. The parameterisations were compared by running 

box models (0D) in four different regions: Southern Ocean, Equatorial Pacific, North Atlantic 

gyre and North-east Pacific, representing different types of iron dynamics. The free 

scavenging model (FePISCES) resulted in dissolved iron concentrations being two to three 

times greater than with the standard formulation (FeBFM), which used a simpler formalism 

for scavenging. Consequently, the elevated iron concentrations in FePISCES resulted in 

altered community compositions for phytoplankton which impacted the seasonal cycle of 

macronutrients and chlorophyll concentrations. Furthermore, the prognostic appreciation of 

ligand dynamics in FePISCES lead to a decoupling of dissolved iron from its organic species 

with the DOC content for a region being indirectly implicated in driving the iron system by 

affecting the scavenging regime. Therefore, using a different set of iron parameterisations will 

alter the biogeochemical behaviour of a model. The results suggest that the testing of 

parameterisations should be initially done within 0D models in order to assess any non-linear 

behaviours and ultimately embedded in 3D models to study how they interact with physics. 
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1. Introduction 

1.1 Background 

Iron is a crucial limiting micronutrient for phytoplankton, and it has been linked to processes such 

as photosynthesis, respiration and nitrogen fixation (Morel & Price 2003). Iron was showcased to be 

an important limiting nutrient for productivity in the 1980’s; however, it was only in the early 2000’s 

that iron was included as a variable in global ocean models (Tagliabue et al. 2017). In describing the 

dynamics of iron, biogeochemical models employ a host of partial differential equations (PDEs) to 

represent various chemical, physical and biological processes. However, there is no generally 

accepted set of equations to model a marine ecosystem and thus a variety of parameterisations 

(refer to Sec. 2.2.1 for meaning) can be utilised to describe a single process (Tian 2006). 

Consequently, there are inter-model differences in the description of key processes related to iron 

(Tagliabue et al. 2016). Therefore, there is a need to understand the implications of different iron 

parameterisations in effecting biogeochemical model outputs. 

1.2 Scope of project 

The thesis work will focus on the inorganic iron parameterisations of two biogeochemical models. 

The idea is to test the various parameterisations and understand their impact on the model outputs. 

However, the work does not intend to validate the respective iron parameterisations, instead, it aims 

to showcase the different biogeochemical responses that occur due to the choice of iron 

parameterisations. In no way is this work an exhaustive assessment of all the inorganic iron 

parameterisations that are used in current biogeochemical models. However, the chosen formalisms 

are commonly employed in most biogeochemical models capable of representing iron (Tagliabue et 

al. 2016). 

1.3 Aims and objectives 

The aim of the thesis is to compare two sets of iron parameterisations within a background 

numerical model to understand the implications of the choice of iron parameterisations have on the 

functioning of a biogeochemical model. Focus will be given to the parameterisations of scavenging 

(refer to Sec. 2.1.1 and 2.2.3) as it is an important process in the iron cycle and is poorly constrained 

in current ocean biogeochemical models (Tagliabue et al. 2016, Yao et al. 2019) which reflects a lack 

of knowledge and scientific consensus on the process itself. To accomplish this, the second chapter 
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presents a literature review which focusses on the description of the iron cycle as well as exploring 

the various iron parameterisations employed in current biogeochemical models. The third chapter 

is the methodology and it describes the background biogeochemical model, the various numerical 

experiments and the statistical test utilised on the model outputs. The results and discussion 

chapters will explain and interrogate the modelling repercussions for the choice of iron 

parameterisations while the conclusion will answer two important questions: 1) Is the choice of iron 

parameterisations significant when running a biogeochemical model? 2) Can 0D models be used as 

spaces to test and understand accurately the modelling repercussions for different 

parameterisations?    
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2. Literature review 

Iron is one of the most commonly studied trace metals as it exerts a significant influence on 

ocean productivity, carbon sequestration as well as modulating atmospheric CO2 

concentrations (Boyd & Ellwood 2010). As iron is such a vital nutrient for biogeochemical 

processes it is often included as a variable in biogeochemical models (Tagliabue et al. 2017). 

The literature review is divided into two main sections: biogeochemistry of iron and 

biogeochemical modelling. The first section introduces the iron cycle (Gledhill & Buck 2012) 

and explores the major components of: sources of iron, biogeochemical processes and organic 

ligands. This is necessary in order to highlight the variety of biological, physical and chemical 

interactions that have to be modelled and parameterised in biogeochemical models. 

Consequently, the second section introduces the concept of a biogeochemical model before 

addressing the various parameterisations and mathematical formalisms utilised to describe 

key biogeochemical processes related to iron such as scavenging and complexation to organic 

ligand. 

2.1 Biogeochemistry of iron 

2.1.1 Iron Cycle 

The earth system comprises of chemical, physical, biological and human influences that 

manifest themselves as multiple non-linear responses and linkages between the different 

components (Jickells et al. 2005). The iron cycle is one such process (Fig. 1) and it involves the 

complex interactions between lithogenic inputs, dissolution, precipitation, scavenging, 

biological uptake, remineralisation and sedimentation dynamics (Gledhill & Buck 2012). 

Martin & Fitzwater (1988) showcased iron to be an important limiting nutrient for 

phytoplankton growth in the High Nutrient Low Chlorophyll (HNLC) regions of the North-east 

Pacific (NEP) as well as the Southern Ocean (SO) (Martin, Gordon & Fitzwater 1991). It has 

been estimated that HNLC regions constitute 25% of the world’s ocean (Boyd & Ellwood 2010) 

and represent places of potential CO2 drawdown. Martin & Fitzwater (1988) only did bottle 

iron-enrichment studies to showcase the increased utilization of excess nitrate in HNLC 

regions and noted the link between increased iron supply and elevated CO2 drawdown known 

as the iron hypothesis. 
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Consequently, the iron hypothesis spurred on the need for mesoscale iron fertilisation 

experiments such as the IronEx project in the east Equatorial Pacific (EP) (Martin et al. 1994; 

Coale et al. 1996; Landry et al. 2000) and the Southern Ocean Iron-Release Experiment 

(SOIREE) (Boyd et al. 2000) to assess the viability of HNLC regions as being places to sequester 

CO2 from the atmosphere. Both IronEx and SOIREE corroborated the ideas of Martin et al. 

(1991) with elevated phytoplankton growth and increased chlorophyll concentrations 

occurring as a result of iron fertilisation (Martin et al. 1994; Coale et al. 1996; Boyd et al. 2000; 

Landry et al. 2000). However, Boyd et al. (2000) cautioned about the viability of iron-

enrichment leading to elevated carbon sequestration. A follow up model study by Aumont & 

Bopp (2006) stressed that iron fertilisation was not the solution for stemming the rise in 

atmospheric CO2 concentrations, citing the large uncertainties relating to the fate of 

sequestered carbon as a major barrier. 

Sources of iron 

As first noted by Martin & Fitzwater (1988), the supply of iron is a limiting factor to 

phytoplankton growth over most areas of the ocean. Exogenous iron reaches the ocean in 

three major ways (Fig. 1): river and fluvial deposits, hydrothermal vents and aeolian 

deposition (Jickells et al. 2005; Boyd & Ellwood 2010). River and fluvial deposits as well as 

sedimentary and glacial particulate iron only nourish the coastal and near coastal 

environments (Jickells et al. 2005, Rijkenberg et al. 2014). Consequently, iron is found at 100 

to 1000 times greater concentrations within coastal environments compared to the open 

ocean (Sunda & Huntsman 1995). This strong horizontal gradient in concentration has a 

profound effect on the respective biological communities. Sunda & Huntsman (1995) showed 

that oceanic phytoplankton species tended to be smaller in cell size, had decreased demand 

for iron containing enzymes and had lower growth requirements for cellular iron when 

compared to coastal phytoplankton. However, the high iron availability in coastal waters could 

permit luxury uptake; which is the ability to take up and store iron in excess levels needed for 

immediate metabolic requirements. Therefore, it is hypothesised that luxury uptake would be 

advantageous to coastal species where iron concentrations are high but temporally variable 

(Sunda & Huntsman 1995). 
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Figure 1: The iron-cycle involves the interplay of multiple biotic and abiotic components that manifest 

themselves within the land, atmosphere and ocean. A transect along the Southern Ocean to the North 

Atlantic reveals the spatial disparities within the iron cycle between these two regions. Most pertinent 

being the high aerosol flux received in the North Atlantic in contrast to the Southern Ocean; resulting 

in the North Atlantic being nitrogen/phosphorous limited. In addition to aerosols, hydrothermal vents 

and fluvial deposits act as sources of iron to the ocean.  Excess ligand production occurs in the Southern 

Ocean owing to the high biological productivity. Dust particles play a part in the scavenging of 

bioavailable iron while bacteria remineralise the particulate organic iron. (Source: Tagliabue et al. 

2017)       

Hydrothermal vents have their iron inputs rapidly dissipated at depth but can act as an 

important source for the deep ocean (Tagliabue et al. 2010), especially along the Mid-Atlantic 

Ridge (Lough et al. 2019). However, the most important exogenous source of iron to the open 

ocean is aeolian dust (Jickells et al. 2005). Hyper-arid regions comprise nearly a third of global 

land area and are the major sources for dust particles. Desert dust comprises of µm sized 

particles that can have lifetimes of hours to weeks in the atmosphere, allowing them to be 

transported great distances (Duce & Tindale 1991). However, dust particle production, 

transportation and deposition are a function of multiple non-linear factors such as climate, 

topography and vegetation cover (Duce & Tindale 1991; Jickells et al. 2005). There is a large 

spatial disparity between ocean basins in terms of aerosol fluxes with regions such as the 

North Atlantic receiving large quantities of dust as a result of the Sahara (Jickells et al. 2005; 
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Anderson et al. 2016) while the SO is characterised by a low aerosol flux (Martin & Fitzwater 

1988; Boyd & Ellwood 2010). 

In addition to exogenous sources of iron, vertical mixing and upwelling also act as important 

sources of new iron to the photic zone (Falkowski, Barber & Smetacek 1998; Fung et al. 2000). 

Furthermore, iron can also be made biologically available to phytoplankton through recycling 

(regenerated production) in the upper layers of the ocean. Fung et al. (2000) studied the 

cycling dynamics of iron in the upper-ocean and explored the recycling efficiency of iron in the 

major HNLC regions of the SO, EP and NEP as well as the high atmospheric deposition region 

of the North-west Pacific (NWP). Using numerical simulations, Fung et al. (2000) calculated 

the recycled iron flux as being the difference between fixed iron and supplied iron, noting 

uncertainties relating to preferential consumption of recycled or new iron for phytoplankton. 

Consequently, for regions such as the SO, which have a small aeolian input, >95% (Fung et al. 

2000) of production had to be supported by regenerated iron. Whereas for the NWP, the high 

atmospheric deposition precluded the need to regenerate large quantities of iron to sustain 

production. The EP differed to the SO and NEP as the EP is a prominent upwelling region which 

results in an additional source of iron for the upper-ocean, ensuring lower levels (<30%) of 

regenerated production (Fung et al. 2000).   

Therefore, exogenous sources of iron as well as upwelled and regenerated production of iron 

act as important sources for phytoplankton. Once iron is made available, it is transformed by 

multiple biogeochemical processes.     

Biogeochemical processes 

Iron is the fourth most abundant element in the Earth’s crust (Falkowski, et al. 1998) and is an 

essential micronutrient for phytoplankton as it has been linked to key processes such as 

photosynthesis, respiration and nitrogen fixation (Morel & Price 2003). However, iron occurs 

at concentrations less than 1 nM in most surface oceanic waters (Martin et al. 1991) due to 

iron’s low solubility in seawater (Falkowski et al. 1998) and rapid scavenging, utilisation and 

complexation (Rue & Bruland 1995) by biotic and abiotic mechanisms (Boyd & Ellwood 2010). 

Therefore, from a biogeochemical context, the key flux to the ocean is not particulate iron but 

rather soluble or dissolved iron. 
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Dissolved iron is unique among nutrients as it has a short residence time, 100-200 years, 

(Johnson, Gordan & Coale 1997) when compared to the time scale of the thermohaline 

circulation (1000 years). As exhibited by Martin et al. (1991), dissolved iron has a nutrient-like 

profile (Fig. 2) indicative of a biological influence. Subsequently, low dissolved iron 

concentrations occur in the surface waters as a result of uptake by phytoplankton and 

increasing concentrations are observed with depth as a consequence of remineralisation, 

mainly by heterotrophic bacteria (Morel & Price 2003). However, Johnson et al. (1997) noted 

that this simple uptake and remineralisation scheme cannot account for the rapid formation 

of a nutrient-like profile (Fig. 2) and suggested that iron concentrations were maintained by 

organic ligands that complexed iron which limited scavenging. Consequently, the 

complexation to organic iron-binding ligands plays a significant role in controlling the 

concentration of dissolved iron in the ocean (Gledhill & Buck 2012). 

 

 

 

 

 

 

 

 

 

Figure 2: The dissolved iron profiles for the North Atlantic, North East Pacific and Southern Ocean 

observe low concentrations of dissolved iron in the surface waters due to uptake by phytoplankton 

while increasing concentrations with depth are associated with remineralisation. (Source: Boyd & 

Ellwood 2010)   
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Organic ligands 

Dissolved iron (< 0.4 µm) can take on multiple physio-chemical forms which include: Fe(III), 

Fe(II), colloidal (0.02-0.4 µm), truly soluble (< 0.02 µm), organically complexed iron and 

inorganic iron (Boyd & Ellwood 2010). However, almost 99% of dissolved iron is complexed to 

organic iron-binding ligands (Fig. 3b) (Rue & Bruland 1995) which act to buffer dissolved iron 

concentrations in seawater, limiting hydrolysis, precipitation and particle scavenging (Gledhill 

& Buck 2012). Organic ligands are molecules that can bind to, and form stable complexes with 

trace metals in the aquatic dissolved phase (Völker & Tagliabue 2015) and they are an 

important component in the Dissolved Organic Carbon (DOC) pool as they act to increase the 

solubility of iron and hence the availability to phytoplankton (Hassler, van den Berg & Boyd 

2017). Traditionally, electrochemical detection methods distinguish between two types of 

organic ligands, a ‘strong’ binding ligand (L1) and a ‘weaker’ ligand (L2) which have different 

affinities for iron (Hunter & Boyd 2007). However, the production of organics ligands by 

various biological processes lends itself to the existence of multiple species of ligands. 

Over most regions of the ocean, organic ligand concentrations exceed that of dissolved iron 

on average by 1 nM (Gledhill & Buck 2012). In the upper ocean, bacteria can produce L1 

binding siderophores, which is an iron-chelating compound, to acquire iron (Tortell et al. 1999; 

Barbeau et al. 2001) while phytoplankton can release several L2 ligands such as domoic acid, 

saccharides and exopolymetric substances (EPS) (Hassler et al. 2017). In addition, L2 ligands 

are produced by passive processes linked to exudate or remineralisation of cellular debris 

(Gledhill & Buck 2012) which leaves behind less labile dissolved organic matter as a humic like 

material. (Hassler et al. 2017). Furthermore, Fig. (3b) shows that iron-binding ligands are 

found in most iron sources such as: glacial-ice, dust and hydrothermal vents, highlighting the 

tight coupling between iron and its complexing pair. 

Iron-binding ligands are not likely to be long-lived on the scale of the thermohaline circulation 

as they are affected by bacterial as well as photochemical degradation in the surface layers 

(Barbeau et al. 2001; Hunter & Boyd 2007) and aggregation onto sinking particles (Völker & 

Tagliabue 2015) (Fig. 3b). Consequently, the interplay of sources and sinks for ligands result in 

the surface waters (upper 100 m) having the greatest and most variable concentration of 

ligands (Fig. 3A), with a peak occurring around the subsurface chlorophyll maximum, 

corresponding to high biomass accumulation (Gledhill & Buck 2012). However, processes such 
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as remineralisation and photochemistry may be dualistic as being sources and or loss terms 

for organic ligand, showcasing the complexity of ligand cycling (Hassler et al. 2017).      

 

Figure 3: A, vertical profile of organic ligands taken in the North Atlantic showing the distribution of 

strong (L1), weak (L2) and total (Ltotal) concentrations. B, illustration of the cycling of ligands in the 

ocean highlighting the various sources (black bold) and loss terms (red bold) as well as the flow of 

matter indicated by the arrows. Humics are subdivided into two categories: terrestrial based (HS) and 

marine based (HS-like). While siderophores and various biological excretions (EPS) are shown in 

association with the accumulation of organic matter. (Source: Hassler et al. 2017)        

2.1.2 Summary 

A dynamic relationship exists between ocean biota and iron as phytoplankton and bacteria 

control the chemistry and cycling of iron while iron controls the growth of the organisms, and 

in turn, the cycling of other major nutrients such as carbon and nitrogen. An appreciation of 

the iron cycle in the world's oceans requires the integration of diverse fields of knowledge, 

ranging from global geochemistry to cellular-scale genetics. Consequently, the iron cycle is 

incredibly complex as it involves the interplay of numerous physical and biological 

components resulting in multiple uncertainties. Although decades of research have improved 

our understanding of the iron cycle, quantification of the fluxes of iron to the ocean (Jickells 

et al. 2005) as well as understanding the spectrum of iron-binding ligands and their 

interactions with different iron species (Gledhill & Buck 2012) are required. Therefore, an 
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integrated view of the iron cycle places additional challenges on biogeochemical models that 

are utilised for hypothesis testing and climate change projections.   

2.2 Biogeochemical modelling of the iron cycle 

2.2.1 What is a biogeochemical model? 

At present, a quantitative appreciation of marine ecosystems requires two major research 

components: marine biology and physical oceanography. In contrast to physical 

oceanography, where the basic hydrodynamic equations have their origins in mathematical 

formulas of fundamental laws, biological models cannot be derived from first principles 

because ecological dynamics play a significant role (Fennel & Neumann 2001; Fulton, Smith & 

Johnson 2003; Tian 2006). Therefore, a biological model consists of a number of PDEs that are 

formulated mathematically by translating observations into formulas that are consistent with 

ecological principles. In doing so, a spectrum of biogeochemical models that describe a marine 

ecosystem exist and they encompass a variety of parameterisations, spatial as well as process 

resolutions. 

Parameterisations 

A parameterisation refers to a formula or set of formulas that are used to describe and 

quantify a controlling process (Fennel & Neumann 2001); however, some authors use the 

word ‘model formalism’ synonymously. With relevance to marine ecosystems, this basically 

manifests itself as the description of gains and losses in a state variable. Therefore, let 𝑋𝑖 be a 

state variable that can be described in terms of concentration per unit volume of water and 

thus the change in 𝑋𝑖 by a marine ecosystem can be expressed in Eq. (1.1): 

  
𝑑

𝑑𝑡
𝑋𝑖 = (𝑔𝑎𝑖𝑛(𝑋𝑗) − 𝑙𝑜𝑠𝑠(𝑋𝑗))𝑋𝑖 + 𝑄𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙    (1.1) 

where the processes that control the change in 𝑋𝑖 may depend on another state variable 𝑋𝑗 

as well as external variables which can be both physical and/or biological. Consequently, 

processes such as the uptake of nutrients or ingestion are representative of gain terms while 

cell lysis, respiration and egestion are loss terms. However, there is no generally accepted set 

of equations to model a marine ecosystem and thus a variety of parametrisations can be 

utilised to describe a single controlling process (Pereira, Duarte & Norro 2006; Tian 2006). In 

addition, different biogeochemical models may model the same processes, but with different 



11 

 

degrees of detail. Inherently, the degree of detail for a process is predicated on its importance 

as well as available knowledge (Pereira et al. 2006). 

A common example is phytoplankton growth which can be parameterised with three different 

models: Monod, quota and mechanistic (Flynn 2003). The Monod model is the simplest as it 

relates the growth of phytoplankton as a function of the external dissolved concentration of 

the limiting nutrient (Sommer 1991). Therefore, if 𝑋 is the limiting nutrient and 𝐾𝑋 is the half-

saturation constant for growth, then the Monod model can be written in Eq. (1.2) as: 

                 𝜇 = 𝜇𝑚𝑎𝑥
𝑋

𝑋+𝐾𝑋
     (1.2) 

Where 𝜇𝑚𝑎𝑥 is the maximum specific growth rate for a set of temperature and light conditions 

while 𝜇 is the actual growth rate. Though simple, the Monod model is only suited to steady-

state simulations and struggles to represent systems with multi-nutrient interactions. In 

addition, the Monod model does not permit phytoplankton to utilise their internal quotas of 

nutrients in the absence of external concentrations (Flynn 2003). 

Consequently, the quota model improves upon the Monod by relating phytoplankton growth 

to the internal availability of nutrients (Flynn 2003). Thus the quota model is an intrinsic 

function, where phytoplankton growth is a function of internal nutrient content and this in 

turn is a function of the external nutrient concentration in the ocean. Typically, the quota 

model uses nutrient ratios in terms of carbon (𝐶) and two of the most commonly used quotas 

models are the Droop (Eq. 1.3) and Caperon & Meyer (Eq. 1.4) (Sommer 1991). 

             𝐶𝜇 = 𝜇𝑚𝑋
𝑋𝐶−𝑋𝐶0

𝑋𝐶
   (1.3) 

            𝐶𝜇 = 𝜇𝑚𝑋
𝑋𝐶−𝑋𝐶0

𝑋𝐶−𝑋𝐶0+𝐾𝑋
   (1.4) 

Therefore, let 𝐶𝜇 be the carbon related growth rate while 𝑋𝐶  is the nutrient:C quota and 𝑋𝐶0  

is the minimum quota at which phytoplankton can survive. In addition, 𝐾𝑋 is a curve fitting 

constant and 𝜇𝑚𝑋 is the maximum specific growth rate when using nutrient 𝑋 as substrate. 

The trend in biogeochemical modelling is to develop more mechanistic descriptions of 

biogeochemical processes based on physiological and biological dynamics rather than relying 

on empirically derived functions as seen in Eq. (1.2-4) (McDonald & Urban 2010). However, 
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Crout, Taritano & Wood (2009) state that mechanistic models are likely to be less detailed 

than the system they seek to describe which inevitably results in them becoming over-

parameterised. In addition, Flynn (2003) notes that though mechanistic models attempt to 

include more biologically meaningful interactions, we lack the necessary knowledge to 

construct them. 

Consequently, as biogeochemical parameterisations become more complex, greater 

uncertainty is incurred in model formalisms due to the increase in the number of parameter 

values. Though some parameter values can be constrained, insufficient data exists to deal with 

all parameters, even in simple models (Ward et al. 2010). Incidentally, efforts can be made to 

reduce model uncertainty by reducing the number of model variables (Crout et al. 2009) or 

adopt parameter optimization techniques (Annan et al. 2005; Ward et al. 2010) that assign 

optimal values. Parameter optimisation is advantageous as it can reduce model error, relative 

to observational data, compared to hand-tuned models (Yao et al. 2019) and from a 

methodological perspective, assigning optimal parameter values makes inter-model 

comparisons more fair as the true difference in model behaviour can be attributed to model 

structure rather than the relevant parameter values (Ward et al. 2010). 

Iron parameterisations 

In current global biogeochemical models, the iron cycle is usually resolved into a 

phytoplankton, dissolved and particulate component (Fig. 4) (Moore et al. 2002; Vichi, Pinardi 

& Masina 2007b; Aumont et al. 2015). Typically, the dissolved component is seen as 

completely bioavailable to phytoplankton (Vichi et al. 2007b) while the particulate component 

can be divided into separate species along particle size (Moore et al. 2002; Aumont et al. 2015) 

or dissolution state (Vichi et al. 2007b). Most biogeochemical models consider iron as an 

essential nutrient for phytoplankton growth (Tagliabue et al. 2016) but unlike carbon, nitrogen 

and phosphorous; iron is typically added as a separate multi-nutrient limitation term within 

phytoplankton (Vichi et al. 2007b). 

In representing the iron cycle, biogeochemical models must parameterise the major processes 

of: uptake by phytoplankton, remineralisation and scavenging (Fig. 4). Dissolved iron is 

typically modelled using the quota model for phytoplankton growth (Vichi et al. 2007b; 

Aumont et al. 2015) while the process of remineralisation is generally coupled to the dynamics 
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of organic matter by multiplying the concentration of particulate carbon by a fixed iron:carbon 

ratio and this early approach to iron remineralisation has been employed by several other 

authors (Archer & Johnson 2000, Parekh, Follows & Boyle 2004). Even in more advanced 

biogeochemical models, remineralisation is generalised as a linear process (Moore et al. 2002; 

Vichi et al. 2007b; Aumont et al. 2015). Multiple parameterisations can be utilised to model 

the scavenging of iron (Archer & Johnson 2000; Parekh et al. 2004) and the process is one of 

the least constrained in the biogeochemical modelling of the iron cycle (Tagliabue et al. 2016, 

Yao et al. 2019). Consequently, Sec. (2.2.2) explores the current generation of global 

biogeochemical models, with Tagliabue et al. (2016) noting that the inter-model differences 

in the scavenging parameterisations as well as the dynamics of organic ligands play a 

significant role in dictating the concentration of dissolved iron in the global ocean. As the 

scavenging regime exerts a significant influence on the concentration of dissolved iron, the 

various scavenging parameterisations employed in current biogeochemical models are 

explored in detail in Sec. (2.2.3). 

Figure 4: Flow diagram of the PISCES biogeochemical model. Arrows represent the flow of matter and 

energy between the state variables which is governed by various processes such as uptake, lysis, 

remineralisation and scavenging. (Source: Aumont et al. 2015) 
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Spatial resolution 

Biogeochemical models can be run as simple box models or be coupled to 3D global-

circulation models. Box models assume instantaneous homogeneity of all state variables in 

the given spatial enclosure. According to Fennel & Neumann (2001), they are useful for 

theoretical studies with multiple state variables and to explore as well as identify key 

processes that drive a biogeochemical system. Whereas coupled 3D ocean models are used 

extensively in modelling large scale dynamics such as the large scale distribution of plankton 

(McKiver et al. 2015). In addition, coupled models are used as forecasting tools, most notably 

being projections of change relating to rising atmospheric CO2 concentrations (Bonan & Doney 

2018). 

A general trend in ecosystem modelling is to improve spatial resolution by shifting from box 

and low resolution models (Ménesguen et al. 2007) to fine grid, high resolution 3D models 

(McKiver et al. 2015). However, conflicting arguments exist regarding the use of finer 

resolution models as being solutions to resolve discrepancies between coupled 

biogeochemical model outputs and observational data. Though increasing the complexity of 

a biogeochemical model may result in improved representations of the ecosystem dynamics, 

under-resolving the physical processes that have a direct influence on the biogeochemical 

system will also significantly affect model outputs. McKiver et al. (2015) used a coupled 

biogeochemical model to investigate the impact of mesoscale processes on the global marine 

biogeochemical system by utilising a low (2°) and high (¼°) resolution model. By improving the 

vertical and spatial resolution, McKiver et al. (2015) saw improvements in representing the 

chlorophyll dynamics of: coastal regions, subtropical gyres and the SO due to the high-

resolution model better resolving the vertical physics.          

Ménesguen et al. (2007) had a similar methodology to McKiver et al. (2015) where a 

biogeochemical model of pelagic primary production was coupled to a physical ocean model 

of differing spatial resolutions. Using a two and three-layered box model as well as a fine 

resolution 3D model, Ménesguen et al. (2007) assessed their differing capabilities in 

representing the biogeochemistry of the English Channel. With relevance to annual primary 

productivity, both the box and 3D models showed similar results; with all the models having 

an inadequate phasing of the chlorophyll maximum. Therefore, Ménesguen et al. (2007) 

suggested that improved representations of the biogeochemical system would only be 
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accomplished with better biogeochemical parameterisations rather than more refined spatial 

resolutions. 

Consequently, the principle of parsimony would require a balance between the complexity of 

the biogeochemical parameterisations and the spatial resolution. Therefore, for 

biogeochemical tracers that have a global valence, such as iron, their ultimate implementation 

should be within coupled 3D models. However, owing to large uncertainties relating to the 

parameterisations of the iron cycle in biogeochemical models (Yao et al. 2019), box or low 

resolution models can provide an ideal environment for testing and refining biogeochemical 

processes before they are embedded in fine resolution 3D simulations.   

Process resolution 

A marine ecosystem can be modelled with varying degrees of complexity by altering the 

number of state variables as well as the detail of the biogeochemical parameterisations used 

to model individual processes. Consequently, the structural complexity of a model will 

influence the resolution of the processes that wish to be studied and this is dependent on the 

scientific question that needs to be addressed. 

The state variables of nutrients, phytoplankton, zooplankton, dissolved and particulate 

organic matter in themselves can have varying degrees of process resolutions in relation to 

the required modelling scenario. Nutrients can be envisaged as a single limiting nutrient or 

consist of a host of macronutrients (nitrate, phosphate and silicate) as well as micronutrients 

such as iron (Flynn 2003). In addition, phytoplankton can be represented as a single bulk 

biomass for showing general patterns of biological activity. In more advanced models, 

phytoplankton can be resolved into separate functional groups corresponding to: diatoms, 

flagellates and cyanobacteria to account for their differing uptake rates, sinking speeds and 

nutrient preferences (Vichi et al. 2007b). Similarly, zooplankton can simply be parameterised 

as a grazing pressure term on phytoplankton or be modelled as a separate functional groups 

with different levels of predation rates. Pegged to phytoplankton-nutrient dynamics, detritus 

can be partitioned in correspondence with the phytoplankton variables or be considered as a 

single bulk variable (Fennel & Neumann 2001). 
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Intuitively, the increase in the structural complexity of a model should lead to a reduction in 

model error with observational data. Kriest et al. (2010) used a biogeochemical model based 

on phosphorous and set-up a hierarchy of models with increasing structural complexity. The 

simplest only considered the nutrient phosphate while the most complex included the 

interactions of particulate and dissolved organic phosphate, phytoplankton and zooplankton. 

However, Kriest et al. (2010) found that merely increasing the number of model components 

does not necessarily lead to improved correspondence with observational data. Following a 

similar methodology to Kriest et al. (2010), Yao et al. (2019) used a calibrated coupled 

biogeochemical model and adjusted the structural complexity of the iron module to 

investigate whether explicitly representing the processes of iron would lead to a reduction in 

model-data misfits. Three variants of an iron module were used, with the first explicitly 

resolving the iron cycle while the second considered iron limitation in primary productivity by 

utilising an iron mask of prescribed monthly concentrations of dissolved iron and the third 

variant did not represent the iron cycle. Yao et al. (2019) found that using an explicit module 

for the iron cycle lead to improvements in representing the distribution of macronutrients 

(phosphate, nitrate and silicate) as well as oxygen in the global ocean. 

Therefore, Yao et al. (2019) concluded that increasing the process resolution of iron in a 

biogeochemical model was important as it lead to improved representations of global 

biogeochemical nutrient cycles. Consequently, process resolution encompasses multiple 

facets of biogeochemical modelling and thus the choice of complexity regarding state 

variables and parameterisations must compliment the system being modelled. 

2.2.2 Current state of biogeochemical models in representing iron dynamics 

The iron cycle plays an important role in ocean biogeochemistry and received extensive 

academic attention in the 1980’s; however, it was not until the early 2000’s that iron was 

included as a variable in major biogeochemical models (Tagliabue et al. 2017). At present, a 

host of biogeochemical models exist such as: Biogeochemical Flux Model (BFM) (Vichi et al. 

2007b), Biogeochemical Elemental Cycling (BEC) (Moore et al. 2002; Moore, Doney, & Lindsay 

2004) and the Pelagic Interactions Scheme for Carbon and Ecosystem Studies (PISCES) 

(Aumont et al. 2015) (Fig. 4) to list a few. All of these models simulate marine biological 

productivity and describe the cycling of major nutrients such as: C, P, N, Si and Fe. 
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In comparison to the early iron models of Archer & Johnson (2000) and Parekh et al. (2004), 

the current suite of biogeochemical models has integrated iron into the living functional 

groups. They have also improved the process resolution of the iron cycle by incorporating 

multiple iron sources, including: riverine, dust and hydrothermal (Tagliabue et al. 2016) as well 

as refining the parameterisations of key processes such as scavenging (Moore & Braucher 

2008) and ligand dynamics (Tagliabue & Völker 2011, Völker & Tagliabue 2015) (refer to Sec. 

2.2.3). 

Inter-comparison of biogeochemical models that represent dissolved iron 

The increased observational data provided through the GEOTRACES programme (Mawji et al. 

2015; Schlitzer et al. 2018) has allowed a more rigorous assessment of the current suite of 

biogeochemical models that are capable of representing the cycling of iron. Subsequently, 

Tagliabue et al. (2016) conducted a comparison of 13 major biogeochemical models (Fig. 5) 

that represent iron dynamics with the 2015 GEOTRACES data (Mawji et al. 2015) known as the 

Iron Model Inter-comparison Project (FeMIP). Fig. (5) highlights the inter-model differences in 

representing the distribution of surface dissolved iron with models such as the BFM and BLING 

having significantly lower concentrations of dissolved iron in the polar regions while TOPAZ, 

MEDUSA1 and MEDUSA2 have higher dissolved iron concentrations in the ocean gyres. 

The study revealed that contemporary models contain a greater array of iron sources, with 

most including a dust and sediment source; but fewer models having hydrothermal and river 

inputs. Even for a given source, there was still significant inter-model differences in the 

strength of the iron flux, the most prevalent being the dust source (Tagliabue et al. 2016). 

However, though the range of total iron inputs between the various FeMIP models varied 

substantially (66.9 ± 67.1 Gmol Fe yr-1), the mean dissolved iron concentration was similar 

(0.58 ± 0.14 nM) (Tagliabue et al. 2016). From Fig. (5) it is clear that the current suite of FeMIP 

models struggle to replicate the observational patterns of dissolved iron in the surface, owing 

to the intricacies of the iron cycle and the inherit knowledge gaps therein. Therefore, 

Tagliabue et al. (2016) attributed the similar mean dissolved iron content to the various 

scavenging regimes employed in the respective models with most using the formalism of 

Parekh et al. (2004) except for BFM, COBALT, BEC, MEDUSA1 and MEDUSA2. However, 

Tagliabue et al. (2016) acknowledged that the various iron parameterisations for each 

respective model were not evaluated and instead their coupled physical-biogeochemical 
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framework was compared. Consequently, there is a necessity to evaluate and constrain the 

various scavenging parameterisations and rates to improve the comparability as well as the 

functionality of biogeochemical models in the representation of ocean iron dynamics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Comparison of annual mean surface dissolved iron concentration (nM) across 13 

biogeochemical models with cruise data from the GEOTRACES programme. (Source Tagliabue et al. 

2016) 
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Furthermore, there is a limit to which more advanced parametrisations can reduce model 

error without any fundamental changes in the understanding of the biogeochemistry of iron. 

Subsequently, more complexity does not necessarily lead to better results as increasing the 

complexity of a system increases the uncertainty by adding more degrees of freedom. 

Although multiple uncertainties exist in the cycling of iron, biogeochemical models that 

include the iron cycle will produce more realistic outputs than models without. 

2.2.3 Different iron parameterisations for scavenging 

Iron bioavailability is altered by several key processes: scavenging by inorganic and organic 

particles, remineralisation and biological uptake. Consequently, the parameterisations of 

these various processes have evolved in tandem with increased observational measurements. 

Tagliabue et al. (2016) as well as Yao et al. (2019) have showed that the iron scavenging 

parameters are not well constrained and significant inter-model differences exist in the 

parametrisation of the scavenging regime. Consequently, this section will focus on the process 

of scavenging and explore two different complexation formulations: a constant ligand model 

(Johnson et al. 1997, Archer & Johnson 2000) and a free scavenging model (Rue & Bruland 

1995, Parekh et al. 2004). In addition, focus will be given to how current biogeochemical 

models have made improvements regarding scavenging rates and ligand dynamics.   

Constant ligand model 

Iron differs from other scavenged metals such as lead, aluminium and thorium because iron 

is utilised by biota for growth (Gledhill & Buck 2012). Johnson et al. (1997) utilised sample 

data from the North and South Pacific, SO as well as the North Atlantic to quantify the 

processes that controlled the distribution of dissolved iron by means of a numerical model. 

Based on the consistency of deep dissolved iron concentrations, Johnson et al. (1997) 

suggested that the removal rates of dissolved iron must decrease below concentrations of 0.6 

nM and this was maintained by a mechanism of strong iron-binding ligands (Rue & Bruland 

1995). Therefore, Johnson et al. (1997) parameterised scavenging 𝐽𝐹𝑒 as a first-order process 

(Eq. 1.5): 

               𝐽𝐹𝑒 = 𝑘𝐹𝑒[𝐹𝑒𝑇 − 𝐿𝑇]  (1.5) 
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Where 𝐹𝑒𝑇 is the total dissolved iron concentration and 𝐿𝑇 is the total ligand concentration 

(Archer & Johnson 2000), set to 0.6 nM. A switch function was employed whereby the 

scavenging rate constant 𝑘𝐹𝑒 = 0 when 𝐹𝑒 ≤ 𝐿𝑇 and the value of 𝑘𝐹𝑒 was treated as an 

adjustable parameter for dissolved iron concentrations > 𝐿𝑇.  After calibrating the scavenging 

rate, Johnson et al. (1997) used their model to reproduce vertical profiles of dissolved iron 

from stations in the North Atlantic, SO as well as the Pacific. To accomplish this, Johnson et al. 

(1997) prescribed the export flux of carbon in the various regions to account for the differing 

levels of biological productivity. Consequently, the model was able to resolve many of the 

open ocean stations with careful calibration of the carbon export rate but struggled to 

represent coastal systems which are influenced by additional iron sources such as riverine 

deposits. 

A follow up model study by Archer & Johnson (2000) sought to contextualize the iron 

parameterisations of Johnson et al. (1997) in a global circulation model where primary 

production was limited by the availability of phosphate and iron using a Monod approach. In 

addition, the formalism of Johnson et al. (1997) was applied with two ligands, a weak and 

strong, using the depth-dependent concentration of the respective iron-binding ligands 

measured by Rue & Bruland (1995). Unlike the single ligand model of Johnson et al. (1997), 

scavenging was permissible with the two-ligand model at concentrations below 0.6 nM. The 

study did not seek to validate the various scavenging parameterisations and instead 

showcased the global distribution of dissolved iron using a coupled ocean model; noting 

excess dissolved iron concentrations near coastal and upwelling regions and the deficiency of 

dissolved iron in the SO.      

Free scavenging model 

The bulk concentration of dissolved iron exists in a non-reactive colloidal state due to the 

binding to organic ligands (Morel & Price 2003). To understand how organic complexation by 

ligands influenced the speciation of dissolved iron, Rue & Bruland (1995) constructed a 

theoretical mass balance equation (Eq. 1.6): 

                 [𝐹𝑒𝑇] = [𝐹𝑒′] + [𝐹𝑒𝐿]  (1.6) 

In Eq. (1.6), 𝐹𝑒𝑇 is the total concentration of dissolved iron consisting of: 𝐹𝑒′ which represents 

the sum of all inorganic species while 𝐹𝑒𝐿 represents the organically complexed fraction. Using 
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this model, Rue & Bruland (1995) showed that 99.9% of dissolved iron exists in a complexed 

form with a marginal fraction existing as uncomplexed or ‘free iron’. Embedding the study in 

a six-box ocean model with the tracer elements of dissolved iron, particulate iron and 

phosphate, Parekh et al. (2004) sought to improve upon the work of Archer & Johnson (2000) 

by including a more mechanistic description of iron complexation to organic ligands by 

incorporating the idea of free iron. Where Archer & Johnson (2000) used 𝐿𝑇 equivalent to 0.6 

nM, Parekh et al. (2004) assigned 𝐿𝑇 being equal to the sum of complexed iron and 

uncomplexed ligands 𝐿′ (Eq. 1.7): 

                    𝐿𝑇 = [𝐹𝑒𝐿] + [𝐿′]   (1.7) 

Using Eq. (1.6) and (1.7), Parekh et al. (2004) assumed that only the free form of iron was 

susceptible to scavenging: 

   𝐽𝐹𝑒 = 𝑘𝐹𝑒𝐹𝑒′   (1.8) 

The parameterisations of Parekh et al. (2004) allow for the representation of free ligands as 

well as highlighting the inverse relationship between 𝐹𝑒𝑇 and 𝐿𝑇. Therefore, the presence of 

a strong binding ligand ensures 𝐹𝑒𝑇 ≈ 𝐹𝑒𝐿 which is the limit modelled in Archer & Johnson 

(2000). However, 𝐹𝑒𝑇 is highly sensitive to the choice of the 𝐿𝑇 which means the scavenging 

constant 𝑘𝐹𝑒 must be increased significantly to prevent elevated concentrations of 𝐹𝑒𝑇. In 

applying the scavenging parameterisation, Parekh et al. (2004) noted improved reproduction 

of the deep dissolved concentration of iron as well as the observed presence of uncomplexed 

organic ligands. Consequently, Parekh et al. (2004) suggested that the use of a weaker ligand 

and a greater total ligand concentration was more appropriate in reproducing the broad 

patterns of dissolved iron. 

Therefore, the two models of Johnson et al. (1997) and Parekh et al. (2004) both acknowledge 

the importance of complexation by ligands in controlling the scavenging rate of dissolved iron. 

However, both parameterisations are still employed in sophisticated biogeochemical models; 

highlighting the variability present in the iron modelling community.     

Improved process resolution of iron dynamics 

Numerical models typically have parameters and constants that need to be assigned values in 

order to produce results (Rykiel 1996). The early models of Archer & Johnson (2000) and 



22 

 

Parekh et al. (2004) treated organic ligand concentrations (𝐿𝑇) and the scavenging rate 

constant (𝑘𝐹𝑒) as adjustable parameters that were spatially calibrated to agree with 

observational measurements. However, increased observational data has shown that ligands 

are spatially variable (Tagliabue & Völker 2011) and that the process of scavenging can include 

the interaction of lithogenic and biogenic particles (Moore & Braucher 2008). Consequently, 

a more prognostic parameterisation of scavenging rates and ligand dynamics was required to 

include more biologically meaningful processes. 

Scavenging rate constant 

Typically, the scavenging rate of dissolved iron (𝑘𝐹𝑒 in Eq. 1.5 and 1.8) is parameterised as a 

constant value around 0.005 year-1 to represent an estimated residence time of 200 years in 

the ocean (Johnson et al. 1997). In attempting to include a prognostic appreciation of 

scavenging, Moore & Braucher (2008) altered the iron scavenging rate (Moore et al. 2004) in 

BEC (Eq. 1.9), which was determined by a base scavenging coefficient (𝑘𝑏) and scaled by the 

sinking particle flux of Particulate Organic Carbon (𝑃𝑂𝐶) and mineral dust (𝐷𝑢𝑠𝑡). 

Furthermore, 𝑘𝐹𝑒 could be adjusted by multiplying it by a coefficient to account for different 

concentrations of dissolved iron. 

          𝑘𝐹𝑒 = 𝑘𝑏(𝑃𝑂𝐶 + 𝐷𝑢𝑠𝑡)  (1.9) 

Moore & Braucher (2008) changed the definition of the scavenging rate constant (Eq. 1.10) to 

include biogenic silica (𝑏𝑆𝑖), calcium carbonate (𝐶𝑎𝐶𝑂3) as well as arbitrarily scaling 𝑃𝑂𝐶 to 

represent a larger weight of the particulate organic carbon fraction. 

                     𝑘𝐹𝑒 = 𝑘𝑏[(𝑃𝑂𝐶 × 6) + 𝐷𝑢𝑠𝑡 + 𝑏𝑆𝑖 + 𝐶𝑎𝐶𝑂3] (1.10) 

The parameterisations of Moore et al. (2004) and Moore & Braucher (2008) allow for 

variability in the scavenging rate, which is dictated by aeolian deposition of dust particles as 

well as biological activity. Consequently, this prognostic approach permits variable scavenging 

rates, acknowledging the spatial variance in biological activity and dust flux between regions 

such as the SO and North Atlantic. By making the scavenging rate constant a variable, Moore 

& Braucher (2008) improved the representation of dissolved iron, especially in low iron 

regions. In addition, improved correlations with observational data were present for the 

surface and deep ocean. 
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Ligand dynamics    

Most biogeochemical models assume a constant iron-binding ligand concentration, fixed 

between 0.6-1 nM (Tagliabue & Völker 2011). However, ligands observe spatial-temporal 

variations in their concentrations, prompting a prognostic approach to ligands in numerical 

models. As ligands have a biological origin, Tagliabue & Völker (2011) related the total ligand 

concentration to vary as a function of total DOC (Eq. 1.11) based on the observational work of 

Wagener, Pulido-Villena & Guieu (2008). 

       𝐿𝑇 = (𝐷𝑂𝐶 × 0.09) − 3.2  (1.11) 

In a follow up model study, Völker & Tagliabue (2015) included the prognostic ligand 

parameterisation in two biogeochemical models, PISCES and REcoM. Comparisons with 

observational data showed that a prognostic ligand parameterisation yielded more nutrient-

like profiles for dissolved iron than the explicit ligand formalisms. However, the elevated ligand 

concentrations resulted in increased dissolved iron concentrations in non-iron limited regions 

such as the Atlantic and Indian Oceans (Völker & Tagliabue 2015). This was due in part to the 

low scavenging rates of uncomplexed iron; prompting the need to re-evaluate the scavenging 

rates in the respective models. 

2.2.4 Final remarks 

Biogeochemical models are an abstraction of the complex ecosystem processes and they have 

grown in sophistication as well as complexity in tandem with our knowledge of the biosphere. 

They can be run with varying temporal, spatial and process resolutions in accordance with the 

scientific question that needs to be addressed. Within biogeochemical models, the iron cycle 

can be described with an array of parameterisations. Consequently, the early iron models of 

Archer & Johnson (2000) and Parekh et al. (2004) showcased different conceptualisations of 

scavenging and ligand dynamics. Further study has been dedicated to improving the 

description of these processes by adopting a prognostic approach which has seen positive 

results in subsequent model studies. However, the current suite of FeMIP models still struggle 

to model the iron system. 

Consequently, there is a limit to which more advanced parametrisations can reduce model 

error and uncertainty without any fundamental changes in the understanding of the 
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biogeochemistry of iron. Increasing model complexity through the addition of more advanced 

parameterisations reduces model error relative to observational data by improving the 

process realism of the model. However, the addition of more complex parameterisations 

inherently increases the overall model uncertainty by increasing the degrees of freedom. 

Although multiple uncertainties exist in the cycling of iron, biogeochemical models that 

include the iron cycle will produce more realistic outputs than models without (Yao et al. 

2019).        
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3. Methodology 

This chapter is divided into two main sections: model description and experimental set-up. 

The first section addresses the reference biogeochemical model as well as describing the 

representation of iron in phytoplankton and the various iron parameterisations implemented. 

The second section will explore the multiple numerical experiments undertaken and the 

diagnostics utilised for the analysis. 

3.1  Model Description 

3.1.1  The reference biogeochemical model 

Tagliabue et al. (2016) only had datasets of existing simulations of various biogeochemical 

model systems available and the authors could only compare the outputs of these different 

model formulations and speculate to which degree inter-model differences were due to detail 

in the iron parameterisations, mainly the scavenging parameterisations. Therefore, the thesis 

was constrained and focussed only on biogeochemical models that implemented the 

parameterisations of Johnson et al. (1997) or Parekh et al. (2004). To standardise the study, a 

single biogeochemical model was used and subsequently acted as a testing bench wherein 

the various parameterisations were embedded. This removed the need to run multiple 

biogeochemical models and eliminated the issue of inter-model differences in representing 

other major biogeochemical processes such as carbon uptake or nitrification which have 

ramifications on the cycling of iron. Therefore, the use of a single model allowed for a more 

focussed analysis of the various iron parameterisations.    

Consequently, the BFM (Vichi et al. 2007b, Vichi et al. 2015) was chosen to be the main 

biogeochemical model as its’ modular structure allows for the easy inclusion of additional 

state variables (Vichi et al. 2015). The BFM utilises the simpler iron parameterisation of 

Johnson et al. (1997) and employs a hybrid of Monod and quota models in representing the 

cycling of major nutrients (Vichi et al. 2007b), which are present in several current models. In 

order to analyse the effects of a free scavenging model, like the one described by Parekh et 

al. (2004), a variant of that model employed in a current biogeochemical model was sought. 

Since a number of biogeochemical models use the scavenging regime of Parekh et al. (2004), 

each with varying alterations and calibrated constants, the iron parameterisations of PISCES 
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(Aumont et al. 2015) were chosen. PISCES uses a free scavenging model and also employs a 

prognostic appreciation towards ligand concentrations (Tagliabue & Völker 2011). This is an 

additional facet to describe the scavenging regime that many biogeochemical models do not 

include yet (Tagliabue et al. 2016). In addition to the scavenging scheme, the remineralisation 

equations of PISCES were also utilised. 

BFM description 

The BFM stems from the European Regional Seas Ecosystem model (ERSEM) (Baretta, 

Ebenhöh & Raurdij 1995) and improves upon it by including additional biogeochemical 

constituents such as iron and chlorophyll which are important components in ocean 

biogeochemistry (Vichi et al. 2007b). The model has been included in several coupled 

simulations studies (Vichi, Masina & Navarra 2007a; Vichi & Masina 2009; Epicoco et al. 2016) 

which have focused on validating the skill of the BFM. The premise of the BFM is that the 

functions of producers, decomposers and consumers as well as their respective trophic 

interactions can be represented in term of material flow of basic elements such as C, N and P.  

Taking a functional approach, the BFM defines Chemical Functional Families (CFF) and Living 

Functional Groups (LFG) which are theoretical constructs used to describe the flow of matter 

in marine biogeochemistry (Vich et al. 2007b). The standard model (Fig. 6) resolves 4 different 

phytoplankton groups 𝑃(𝑗) = 1,2,3,4 (diatoms, autotrophic nanoflagellates, 

picophytoplankton and large phytoplankton), 4 zooplankton 𝑍(𝑗) = 3,4,5,6 (carnivorous and 

omnivorous mesozooplankton, micozooplankton and heterotrophic nanoflagellates), 1 

bacteria, 7 inorganic variables for nutrients and gases (phosphate, nitrate, ammonium, 

silicate, reduction equivalents, oxygen and carbon dioxide) and 10 organic non-living 

components for dissolved and particulate detritus (Vichi et al. 2015).   



27 

 

Figure 6: The flow scheme illustrates the interactions of LFGs with organic and inorganic species. CFFs 

are indicated with bold-line boxes, non-living organic CFFs with thin-line boxes and inorganic CFFs with 

rounded boxes. (Source: Vichi et al. 2015) 

Using a theoretical approach, a marine biogeochemical system can be described by the 

concentrations of CFFs in living and non-living components. Consequently, if 𝐶𝑖 indicates a 

given CFF then the conservation equation for an infinitesimal volume can be written as: 

     
𝜕𝐶𝑖

𝜕𝑡
= −𝛻

→

⋅ 𝐹
→

                (2.1)  

In Eq. (2.1), 𝐶𝑖 is continuous in space and time while 𝐹
→

 is the generalised divergence flux of 𝐶𝑖 

within a fluid. Therefore, Eq. (2.1) can be separated into a physical and biological component:    

     
𝜕𝐶𝑖

𝜕𝑡
= −𝛻 ⋅ 𝐹

→

𝑝ℎ𝑦𝑠 − 𝛻
→

⋅ 𝐹
→

𝑏𝑖𝑜     (2.2) 

The second term on the right hand side of Eq. (2.2) cannot be quantified directly and so the 

biological component is approximated as follows: 
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     𝛻
→

⋅ 𝐹
→

𝑏𝑖𝑜 = −ω𝐵
𝜕𝐶𝑖

𝜕𝑧
+

𝜕𝐶𝑖

𝜕𝑡
∣𝑏𝑖𝑜     (2.3) 

with the first term parameterising the divergence flux due to sinking of biological particulate 

matter and the second being the local rate of change of a given 𝐶𝑖 by biological processes. 

Therefore, Eq. (2.3) can be contextualised in the advection-diffusion-reaction equation:    

     
𝜕𝐶𝑖

𝜕𝑡
= −𝛻 ⋅ (𝑢𝐶𝑖) + 𝛻𝐻 ⋅ (𝐴𝐻𝛻𝐻𝐶𝑖)

⏟

ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑓𝑜𝑟𝑐𝑖𝑛𝑔

+     
𝜕

𝜕𝑧
𝐴𝑉

𝜕𝐶𝑖

𝜕𝑧
⏟

𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑓𝑜𝑟𝑐𝑖𝑛𝑔

−    ω𝐵
𝜕𝐶𝑖

𝜕𝑧
+

𝜕𝐶𝑖

𝜕𝑡
∣𝑏𝑖𝑜

⏟

𝑏𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑓𝑜𝑟𝑐𝑖𝑛𝑔

 (2.4) 

Where 𝑢 ≡ (𝑢, 𝑣, 𝑤) is the three-dimensional current velocity and (𝐴𝐻 , 𝐴𝑣) are the horizontal 

and vertical turbulent diffusivity coefficients. Eq. (2.4) is at the basis of biomass based 

ecosystem modelling where there is the non-local physical forcing of mass by currents and 

horizontal advection as well as local physical forcing in the form of vertical turbulence. In 

addition, 𝐶𝑖 is altered by various biogeochemical processes. 

In the BFM, each variable can be expressed as a multi-dimensional array that contains the 

concentration of the reference chemical constituents (Vichi et al. 2007b). Consequently, a 

superscript notation indicates the desired CFF for a specific living functional group while a 

subscript denotes the basic constituent. The example below shows the 6 living CFFs for 

diatoms:   

     𝑃𝑖
(1)

≡ (𝑃𝑐
(1)

, 𝑃𝑛
(1)

, 𝑃𝑝
(1)

, 𝑃𝑠
(1)

, 𝑃𝑙
(1)

, 𝑃𝑓
(1)

) 

Following Vichi et al. (2007b), the biogeochemical equations represented in Eq. (2.4) can be 

written in two forms: 1) rates of change; and 2) explicit functional form. For “rates of change” 

a given CFF state variable 𝐶 is written as: 

     
𝜕𝐶

𝜕𝑡
∣

𝑏𝑖𝑜
= ∑ ∑

𝜕𝐶

𝜕𝑡
∣

𝑉𝑖

𝑒𝑗

𝑗=1,𝑚𝑖=1,𝑛      (2.5) 

where the right hand side contains the terms representing significant processes for each living 

and non-living component (Eq. 2.5). The superscript 𝑒𝑗 are the abbreviations indicating a 

specific biogeochemical process (Tab. 1) while the subscript 𝑉𝑖 indicates the state variable 

involved in the process. If a term is present as a source in one equation and a sink in another, 

the following notation is used: 
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𝜕𝐶

𝜕𝑡
∣
𝑉

𝑒

= −
𝜕𝑉

𝜕𝑡
∣
𝐶

𝑒

      (2.6) 

 

 

 

 

 

 

 

 

 

 

 

 

In “functional process form” the biogeochemical processes and dependencies are made 

explicit. Consequently, for ease of reading and understanding, the biogeochemical equations 

are written in both forms. 

3.1.2  Iron dynamics in phytoplankton 

Within the BFM, iron is included as an inorganic CFF (𝑁(7)), a living organic CFF for 

phytoplankton as well as a non-living organic CFF for particulate (𝑅𝑓
(6)

) and dissolved (𝑅𝑓
(1)

) 

organic iron (Vichi et al. 2015). The iron content of phytoplankton 𝑃𝑓 is governed by three 

primary processes: uptake of bioavailable iron, loss due to lysis as well as predation by 

zooplankton (Eq. 2.7).    

    
𝜕𝑃𝑓

𝜕𝑡
=

𝜕𝑃𝑓

𝜕𝑡
∣

𝑁(7)

𝑢𝑝𝑡

−
𝜕𝑃𝑓

𝜕𝑡
∣

𝑅
𝑓
(6)

𝑙𝑦𝑠

−
𝑃𝑓

𝑃𝑐
∑

𝜕𝑃𝑐

𝜕𝑡
∣

𝑍𝑐
(𝑘)

𝑝𝑟𝑑
6
𝑘=3     (2.7) 

Table 1: Showing the various biogeochemical processes 

in the BFM Source (Vichi et al. 2007b) 

Abbreviation Process 

gpp Gross primary production 

rsp Respiration 

prd Predation 

rel Biological release: Egestion, Excretion 

exu Exudation 

lys Lysis 

syn Biochemical synthesis 

nit/denit Nitrification, denitrification 

scv Scavenging 

rmn Biochemical remineralisation 
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The iron uptake shown in Eq. (2.8) is computed according to Droop kinetics by taking the 

minimum of two rates, a linear function of the ambient concentration representing the 

membrane through-flow at low concentrations and a balancing flux linked to carbon 

assimilation. The second term pertains more to coastal systems/upwelling sites where high 

macronutrient concentrations occur; facilitating high biological productivity. Consequently, 

the iron:carbon quota for phytoplankton varies between a maximum ( ϕ𝑃
𝑚𝑎𝑥) and minimum 

(ϕ𝑃
𝑚𝑖𝑛) threshold where ϕ𝑃

𝑚𝑖𝑛 represents the adaptive ability of each functional group at 

prevailing iron concentrations and ϕ𝑃
𝑜𝑝𝑡

 is the optimal ratio for growth.    

   
𝜕𝑃𝑓

𝜕𝑡
∣

𝑁(7)

𝑢𝑝𝑡

= 𝑚𝑖𝑛(𝑎𝑝
7𝑁(7)𝑃𝑐 , ϕ𝑝

𝑜𝑝𝑡
𝐺𝑝 + 𝑓𝑝

𝑇𝑟𝑝
0(ϕ𝑝

𝑚𝑎𝑥 −
𝑃𝑓

𝑃𝑐
)𝑃𝑐)  (2.8) 

Meanwhile, it is assumed that the only physiological iron loss from phytoplankton is due to 

cell disruption and that when a cell is about to die, it has the minimum quota of iron ϕ𝑃
𝑚𝑖𝑛 

present. Consequently, iron loss is computed according to carbon lysis multiplied by ϕ𝑃
𝑚𝑖𝑛 as 

shown in Eq. (2.9). 

     
𝜕𝑃𝑓

𝜕𝑡
∣

𝑅
𝑓
(6)

𝑙𝑦𝑠

= ϕ𝑝
𝑚𝑖𝑛 𝜕𝑃𝑐

𝜕𝑡
∣

𝑅𝑐
(6)

𝑙𝑦𝑠

      (2.9) 

Therefore, the phytoplankton processes of uptake and cell lysis form an important part in 

utilising 𝑁(7) and controlling the flux of 𝑅𝑓
(6)

 and 𝑅𝑓
(1)

.   

With regards to the work of Wagner et al. (2008), refer to Eq. (2.17), the production of DOC is 

an important parameterisation for determining the concentration of organic ligands. 

Consequently, the production pathway of DOC (𝑅𝑐
(1)

) is governed by three primary processes: 

exudation of carbohydrates from phytoplankton, uptake by bacteria as well as release of 𝑅𝑐
(1)

 

by zooplankton (Eq. 2.10). 

   
𝜕𝑅𝑐

(1)

𝜕𝑡
∣

𝑏𝑖𝑜
= ∑

𝜕𝑃𝑐
(𝑗)

𝜕𝑡

3
𝑗=1 ∣

𝑅1
(1)

𝑒𝑥𝑢

−
𝜕𝐵𝑐

𝜕𝑡
∣

𝑅𝑐
(1)

𝑢𝑝𝑡

+ ∑
𝜕𝑍𝑐

(𝑘)

𝜕𝑡
∣

𝑅𝑐
(1)

𝑟𝑒𝑙

𝑘=5,6    (2.10) 

Focussing on the first term of Eq. (2.10), it is assumed that when there are intra-cellular 

nutrient shortages, not all photosynthesised carbon can be assimilated. Consequently, the 



31 

 

non-assimilated portion is released as DOC. Therefore, increased exudation is observed under 

nutrient-stress conditions when the nutrient:carbon ratio becomes low (Vichi et al. 2007b).     

3.1.3  Iron parameterisations 

Similar to BFM, PISCES simulates marine biological productivity and describes the 

biogeochemical cyclings of major nutrients (P, N, Si, Fe). There are 24 prognostic variables in 

PISCES; encompassing phytoplankton, zooplankton, inorganic and organic nutrients (refer to 

Aumont et al. 2015). As well as representing the major processes of the iron cycle such as 

scavenging, remineralisation and uptake by phytoplankton, PISCES incorporates several 

additional processes that are not present in the BFM such as: uptake of iron by bacteria, 

colloidal fractions and aggregation (Aumont et al. 2015). In addition, PISCES has two chemistry 

models for iron: a simple model based on one ligand and one inorganic iron species and a 

complex model that uses five iron species and two ligand classes. To amalgamate the PISCES 

parameterisations into BFM, the simple model was used for ease of translation. 

To compare the iron formalisms of scavenging and remineralisation between the two models, 

the PISCES equations, as shown in Aumont et al. (2015), were written in an explicit functional 

form. For consistency, the PISCES equations were translated into the format of the BFM, 

substituting the PISCES variables for the appropriate BFM variable and only adding additional 

variables and diagnostics where necessary. Furthermore, the parameter values for the 

scavenging and remineralisation rates for PISCES were conserved when translating the model 

formalisms.     

BFM iron dynamics 

The concentration of bioavailable iron for the BFM, shown in Eq. (2.11), is influenced by: the 

uptake of iron by phytoplankton, the remineralisation of particulate and labile dissolved 

organic material as well as the scavenging of dissolved iron. Consequently, Eq. (2.11) forms 

the basis of the iron cycling model within BFM. 

    
𝜕𝑁(7)

𝜕𝑡
= −

𝜕𝑃𝑓

𝜕𝑡
∣

𝑁(7)

𝑢𝑝𝑡

+ ∑
𝜕𝑅𝑓

(𝑖)

𝜕𝑡
∣

𝑁(7)

𝑟𝑚𝑛

−
𝜕𝑁(7)

𝜕𝑡𝑖=1,6 ∣
𝑠𝑖𝑛𝑘𝑓

𝑠𝑐𝑣

    (2.11) 
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Remineralisation 

In a marine ecosystem, the remineralisation of particulate and dissolved organic matter is 

facilitated by autotrophic and heterotrophic bacteria. The remineralisation scheme for the 

BFM is a linear function for both particulate and labile (dissolved) organic iron (Eq. 2.12). 

     
𝜕𝑅𝑓

(𝑖)

𝜕𝑡
𝑖=1,6

∣
𝑁(7)

𝑟𝑚𝑛

= Λ𝑓
𝑟𝑚𝑛𝑓

𝑅𝑓
(6)

𝑇 𝑅𝑓
(𝑖)

     (2.12) 

There is a temperature dependence term 𝑓
𝑅𝑓

(6)
𝑇  and a constant remineralisation rate Λ𝑓

𝑟𝑚𝑛, 

where the remineralisation rate of dissolved iron is an order of magnitude greater than the 

particulate. However, a drawback is that the linear formulation decouples iron from other 

major nutrients such as N and P, which are instead dynamically remineralised by bacteria. 

Consequently, Eq. (2.13) shows that the concentration of non-living organic iron species in the 

BFM are influenced by the lysis of phytoplankton and coupled to this, the predation of 

phytoplankton by zooplankton as well as the remineralisation of non-living organic iron 

species (Eq. 2.12). It is important to note that iron is not tracked within zooplankton and it is 

assumed that zooplankton is never iron-limited, with the iron fraction of ingested 

phytoplankton being egested as particulate detritus (Vichi et al. 2007b).   

   
𝜕𝑅𝑓

(𝑖)

𝜕𝑡
𝑖=1,6

∣
𝑏𝑖𝑜

=
𝜕𝑃𝑓

𝜕𝑡
∣

𝑅
𝑓
(𝑖)

𝑙𝑦𝑠

+
𝑃𝑓

𝑃𝑐
∑

𝜕𝑃𝑐

𝜕𝑡
∣

𝑍𝑐
(𝑘)

𝑝𝑟𝑑
6
𝑘=3 − ∑

𝜕𝑅𝑓
(𝑖)

𝜕𝑡
∣

𝑁(7)

𝑟𝑚𝑛

𝑖=1,6    (2.13) 

Scavenging 

The scavenging dynamics for BFM consider inorganic and organic mechanisms as well as the 

buffering effect of ligands (Eq. 2.14). Consequently, the formalism follows that of Johnson et 

al. (1997), assuming a single strong iron binding ligand that controls the solubility of iron when 

𝑁(7) exceeds 0.6 nM. In addition, the BFM also considers the scavenging effect of sinking 

detrital matter, represented by particulate organic carbon (𝑅𝑐
(6)

), that acts to absorb dissolved 

iron and transport it into the deep ocean.  

Two scavenging constants are used: Λ𝑓
𝑠𝑐𝑣𝑜𝑟𝑔

 for scavenging and absorption onto particles and 

Λ𝑓
𝑠𝑐𝑣 for the buffering effect of ligands. Under the current formulation, scavenging is always 
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larger than zero, permitting scavenging at any concentration of dissolved inorganic iron even 

if there is no particulate detritus.       

    
𝜕𝑁(7)

𝜕𝑡
∣

𝑠𝑖𝑛𝑘𝑓

𝑠𝑐𝑣

= 𝑚𝑎𝑥(0, Λ𝑓
𝑠𝑐𝑣𝑜𝑟𝑔

𝑁(7)𝑅𝑐
(6)0.58

) + Λ𝑓
𝑠𝑐𝑣𝑚𝑎𝑥(0, 𝑁(7) − 0.6) (2.14) 

PISCES iron dynamics 

The iron parameterisations of PISCES were translated and added as a separate module within 

the BFM. The objective in creating the PISCES iron module was to conserve as much of the 

BFM source code as possible while incorporating as many elements of the PISCES iron 

dynamics. However, PISCES included several processes not present in the BFM such as 

colloidal interactions, which were not added, but are important as they affect both free and 

complexed species of iron and can be a significant abiotic loss term (Aumont et al. 2015).          

Remineralisation 

The PISCES formalism for the remineralisation of particulate organic iron (Eq. 2.15a) is similar 

to that of BFM's (Eq. 2.12) as both schemes are simple linear functions. 

   
𝜕𝑅𝑓

(6)

𝜕𝑡
∣

𝑁(7)

𝑟𝑚𝑛

= Λ𝑓
𝑟𝑚𝑛𝑓

𝑅𝑓
(6)

𝑇 (1 − 0.45Δ(𝑂(2)))𝑅𝑓
(6)

    (2.15a) 

   Δ(𝑂2) = 𝑚𝑖𝑛(1, 𝑚𝑎𝑥(0,0.4
𝑂2

𝑚𝑖𝑛,1−𝑂(2)

𝑂2
𝑚𝑖𝑛,2+𝑂(2)

))     (2.15b) 

An additional facet to the remineralisation scheme for PISCES is an environmental oxygen 

dependency term Δ(𝑂(2)).  Δ(𝑂(2)) was added as a diagnostic into the BFM (Eq. 2.15b) and it 

can vary between 0 (oxic) and 1 (anoxia). During oxic conditions, the rate of remineralisation 

would be greater for a given temperature. To account for the fact that PISCES does not include 

a tracer variable for dissolved organic iron, the BFM scheme of 𝑅𝑓
(1)

was maintained. 

Scavenging 

The simple PISCES iron chemistry model (Aumont et al. 2015) uses one ligand class and two 

dissolved iron species: dissolved inorganic iron and dissolved complexed iron, in accordance 

with the free scavenging model of Parekh et al. (2004). Both forms of iron are susceptible to 

consumption by phytoplankton and the total bioavailable iron concentration is the sum of the 
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non-complexed and complexed dissolved iron species. To represent the free scavenging model 

in the BFM, an additional diagnostic was created, 𝑁𝑓𝑟𝑒𝑒
(7)

 and only this species of iron would be 

susceptible to scavenging. 

Δ = 1 + 𝐾
𝑁(7)
𝑒𝑞

𝐿𝑇 − 𝐾
𝑁(7)
𝑒𝑞

𝑁(7)      

          (2.16) 

     𝑁𝑓𝑟𝑒𝑒
(7)

=
−Δ+√(Δ2+4𝐾

𝑁(7)
𝑒𝑞

𝑁(7))

2𝐾
𝑁(7)
𝑒𝑞      

The concentration of 𝑁𝑓𝑟𝑒𝑒
(7)

 (Eq. 2.16) is computed using a chemical equilibrium constant for 

iron in seawater (𝐾
𝑁(7)
𝑒𝑞

 adopted from PISCES) as well the total ligand concentration 𝐿𝑇. 

Unlike the BFM that assumes a constant ligand concentration, PISCES allows for a prognostic 

(Eq. 2.17) as well as an explicit concentration (Aumont et al. 2015) using the relationship from 

Tagliabue & Völker (2015). Eq. (2.17) is built upon the work of Wagener et al. (2008) who 

showed a relationship between DOC and ligand concentrations. Consequently, a switch 

function is employed to ensure that even under low biological activity, 𝐿𝑇 will be at least 0.6 

nM.       

     𝐿𝑇 = 𝑚𝑎𝑥(0.09(𝑅𝑐
(1)

+ 40) − 3, 0.6)            (2.17) 

Similar to BFM, PISCES uses organic and inorganic mechanisms in the scavenging regime as 

shown in Eq. (2.18). 

   Λ𝑓
𝑠𝑐𝑣𝑡𝑜𝑡 = Λ𝑓

𝑠𝑐𝑣𝑚𝑖𝑛 + Λ𝑓
𝑠𝑐𝑣𝑜𝑟𝑔

(𝑅𝑐
(6)

+ 𝑂𝑐
(5)

+ 𝑅𝑠
(6)

) + Λ𝑓
𝑑𝑢𝑠𝑡𝐷𝑢𝑠𝑡 (2.18) 

      
𝜕𝑁(7)

𝜕𝑡
∣

𝑠𝑖𝑛𝑘𝑓

𝑠𝑐𝑣

= Λ𝑓
𝑠𝑐𝑣𝑡𝑜𝑡𝑁𝑓𝑟𝑒𝑒

(7)
     (2.19) 

Unlike the BFM, the scavenging rate constant is treated as a variable in PISCES (Λ𝑓
𝑠𝑐𝑣𝑡𝑜𝑡) and 

consists of a minimum scavenging rate (Λ𝑓
𝑠𝑐𝑣𝑚𝑖𝑛) as well as the total particulate load of the 

seawater which is separated into biogenic and lithogenic particles. This approach of including 

biogenic and lithogenic particles is similar to that of Moore & Braucher (2008) in the BEC 

model. It is assumed that the scavenging rates of biogenic (Λ𝑓
𝑠𝑐𝑣𝑜𝑟𝑔

) and lithogenic (Λ𝑓
𝑑𝑢𝑠𝑡) 

particles are different because they have dissimilar affinities for iron.  
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The amount of iron scavenged is heavily influenced by biological activity which will determine 

the total ligand concentration as well as the biogenic particulate load of the water. 

Consequently, PISCES employs a more dynamic range of interactions than the BFM, facilitating 

a wider range of modelling capabilities.    

3.2  Experimental set-up 

3.2.1  Model set-up 

The diverse physical, chemical and biological conditions in the oceans lend themselves to 

harbouring unique biogeochemical systems. Consequently, four disparate regions were 

selected for study: North Atlantic gyre (NAG), SO, EP and the NEP under typical mixed layer 

conditions. The oligotrophic NAG is of interest as it experiences some of the highest rates of 

dust deposition (Fig. 7) in the global ocean (Jickells et al. 2005; Anderson et al. 2016) as well 

as being a region where phosphorous is a limiting nutrient for N2 fixation (Mills et al. 2004). 

Whereas the SO (Martin et al. 1991), NEP (Martin & Fitzwater 1988) and EP (Fitzwater et al. 

1996) are the major HNLC regions (Fig. 7) and are iron deficient due to low rates of dust 

deposition (Jickells et al. 2005) which is a limiting factor for primary productivity. Although the 

SO, NEP and EP are similar in terms of excess major nutrients, they differ in their physical 

oceanographic properties of Sea-Surface Temperature (SST), light availability, salinity and 

Mixed-Layer Depth (MLD) which will influence their respective biogeochemical processes. 

Modifications to standard BFM 

In order to assess the response of the two iron parameterisations, the BFM was configured to 

run in a standalone 0D/box-model format. Fennel & Neumann (2001) highlighted that simple 

box-models allow for the identification of key processes in a biogeochemical system which 

was exactly of interest. In addition, biogeochemical parametrisations are independent of 

spatial resolution. However, a major shortfall in using a 0D configuration was the inability to 

represent the key physical processes of horizontal and vertical advection of nutrients as well 

as surface-boundary layer fluxes such as dust deposition. Consequently, the standard forcing 

functions and boundary conditions of the BFM model as described by Vichi et al. (2015) were 

extended. Three additional components were added to the model: a variable MLD as well as 

a boundary condition for dust deposition and a dust particle state variable. This was done with 
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the intention of facilitating the inclusion of the PISCES formalisms into BFM as well as to add 

some important physical dynamics to the 0D simulations. 

 Figure 7: The annual surface mean values for: dust deposition rate (Jickells et al. 2005), nitrate 

(WOA18) and phosphate (WOA18) concentrations. Several cruises from the GEOTRACES programme 

(Schlitzer et al. 2018) are shown; with a grey dot representing a location where a full depth CTD iron 

profile was taken. Red stars indicate the location where the BFM was run. 
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Figure 8: Climatology of surface dust deposition (left) (Jickells et al. 2005) and MLD (right) for the NAG, 

EP, SO (de Boyer Montégut et al. 2004) and NEP (Holte et al. 2017). 

Dust deposition model 

In selecting the regions for the study (Fig. 7), only open ocean locations were chosen as coastal 

regions have additional sources of iron such as riverine and sediment deposits (Boyd & 

Ellwood 2010) which are difficult to constrain in a 0D simulation. Consequently, for the various 

regions, atmospheric dust was the principle source of iron. For each location the surface-

boundary flux for mineral dust (Fig. 8) was taken from the climatological model of Jickells et 

al. (2005) where it was assumed that the average iron content of mineral dust was 2% with a 

dissolution fraction of 3.5%. To complement the surface-boundary flux of atmospheric dust, a 

state variable for dust was added to the BFM as it plays a role in the scavenging of dissolved 

iron. The concentration of 𝐷𝑢𝑠𝑡 was computed using the formalism (Eq. 2.20) of Aumont et 

al. (2015) which used the surface deposition 𝐷𝑑𝑢𝑠𝑡 and sinking speed ω𝑑𝑢𝑠𝑡 of dust. In a 0D 

model, this assumes a homogeneous distribution of dust within the box, independently of its 

depth. 

       𝐷𝑢𝑠𝑡 =
𝐷𝑑𝑢𝑠𝑡

ω𝑑𝑢𝑠𝑡
     (2.20) 

Variable MLD 

The standalone configuration for the BFM focussed on representing the biogeochemical 

dynamics for the upper-ocean which was constrained to the depth of the MLD. By using a box-

model approach, it is assumed that the processes of uptake, remineralisation and scavenging 

are confined to the upper-ocean and thus the biogeochemical system is sustained through 

recycled nutrients. However, for the upper-ocean, vertical mixing and upwelling act as 

important sources of new nutrients (Falkowski et al. 1998; Fung et al. 2000). The inclusion of 
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additional sources of preformed iron would however influence the rigorous investigation of 

the parameterisations. Acknowledging the fact that the shoaling and deepening of the MLD 

also plays an important role in influencing the nutrient concentrations for the euphotic zone, 

the addition of a variable MLD in the BFM was done to take into consideration the changes in 

light availability to phytoplankton and the length scale of sinking particles. Rudimental 

methods to scale the input of organic nutrients based on the gradient of the MLD would result 

in the addition of spurious modes of variability which would be counter-productive in efforts 

to identify the main processes that control the iron dynamics. Therefore, the inability to 

represent the physical dynamics of upwelling of nutrients would be a major shortfall when 

modelling the EP as the region is heavily influenced by episodic upwelling events which are 

driven by the easterly trade winds (Bidigare & Ondrusek 1996).  

For each location (Fig. 8), the MLD data was extracted from the monthly climatology data of 

de Boyer Montégut et al. (2004) (available at  www.ifremer.fr) for the NAG, EP and SO while 

data for the NEP was sourced from Holte et al. (2017) (available at mixedlayer.ucsd). The main 

reason the NEP used a different data set to the other regions was due to the MLD climatology 

of de Boyer Montégut et al. (2004) poorly resolving the depth and temporal extent of the 

Winter time MLD for the region while Holte et al. (2017) produced more consistent results 

with other observational works, such as with Ohno et al. (2009). 

3.2.2  Model analysis    

In the following, the use of the term “FeBFM” will refer to the BFM model with the iron 

dynamics of Vichi et al. (2015) while “FePISCES” to the iron parameterisations of Aumont et 

al. (2015) that have been adjusted to be compatible with the BFM source code. Once the 

PISCES iron parameterisations were embedded into the BFM; a total of eight simulations were 

run. Each simulation was initialised in January and ran for 10 years to allow the 

biogeochemical system to reach a steady state. FeBFM and FePISCES were each run once in 

four locations, representative of the: NAG, SO, NEP and EP (Fig. 7). 

Model initialisation 

For each configuration, FeBFM and FePISCES, the initial conditions for the macronutrient 

concentrations and physical forcing were identical. The World Ocean Atlas 2018 (WOA18) was 

http://www.ifremer.fr/
http://mixedlayer.ucsd.edu/
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used for the macronutrient concentrations of: oxygen, (Garcia et al. 2018a) nitrate, phosphate 

and silicate (Garcia et al. 2018b) while the physical forcing conditions of light intensity, wind 

speed, SST and salinity are shown in Tab. (2). For the WOA18 and physical forcing data sets, 

the Climate Data Operators (Schulzweida 2019) (CDO) program was used to create the forcing 

files for the simulations.       

       Table 2: List of data sets used for the physical forcing conditions in the BFM   

Variable Data set Reference 

   

SST NOAA_OI_SST_V2 www.esrl.noaa.gov 

Light NCEP/DOE 2 Reanalysis data www.esrl.noaa.gov 

Wind NCEP/DOE 2 Reanalysis data www.esrl.noaa.gov 

Salinity World Ocean Atlas 2013 www.nodc.noaa.gov 

 

The iron data was sourced from the GEOTRACES IDP2017v1 (Schlitzer et al. 2018) with the 

NAG, SO, NEP and EP corresponding to the: GA03, GIPY05, GP02 and GP16 GEOTRACES’ 

cruises (Fig. 7). Owing to the scarcity of iron data, from each location, surface iron data was 

extracted from stations within a 400 km radius, corresponding to the resolution of 2° earth 

system models (McKiver et al. 2015). Each configuration was initialised with homogeneous 

initial conditions for all the LFGs and the BFM state variables were the same ones as used in 

the global simulations by Vichi et al. (2007a, b).      

Metrics utilised 

A wide variety of methods can be employed to analyse model outputs; however, choosing the 

best metrics as well as understanding the score itself is not trivial (Stow et al. 2009). Taylor 

diagrams (Taylor 2001) are ideal for juxtaposing observational data with model outputs; 

however, in comparing and contrasting the model runs of FeBFM and FePISCES, the objective 

was not to validate either configuration but to assess the representation of dissolved iron as 

well as the cascading effect on the wider biogeochemical community. Consequently, two 

methods were used: time series plots and Principal Component Analysis (PCA). 

https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.gaussian.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.gaussian.html
https://www.nodc.noaa.gov/cgi-bin/OC5/woa13/woa13.pl
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Time series 

Stow et al. (2009) noted that a major feature in comparing ecosystem models was to identify 

the appearance of specific features and/or patterns in the model outputs and observational 

data. Consequently, the model outputs of FeBFM and FePISCES were compared against 

climatology data from the WOA18 and Ocean Colour Data from the European Space Agency 

(ESA) (available at esa cci). The objective in using the time series plots was to assess whether 

altering the iron parameterisations would affect the seasonal cycling of nutrients. However, 

no climatology data existed for dissolved iron, so only the macronutrients of: nitrate, 

phosphate and silicate were studied as well as chlorophyll. 

PCA plots 

In 1901, Pearson developed PCA as an explanatory technique aimed at identifying unknown 

trends in multidimensional data sets (Abdi & Williams 2010). PCA utilises singular value 

decomposition from linear algebra to decompose a square correlation matrix. The left and 

right eigenvectors as well as singular values allow for the relationship between two variables 

in multidimensional space to be assessed using a smaller number of principal components. 

The power of PCA is in its ability to reduce the number of dimensions in a data set. 

Consequently, for multi-variable systems, PCA allows for the relationship between variables 

to be determined by their relative position in a lower dimension space (usually 2D). This allows 

for an easy assessment of how the different iron parameterisations affect the whole 

biogeochemical system without relying on multiple time series plots. However, unlike the time 

series plots, PCA was reserved for the model outputs as insufficient observational data limited 

its’ application. Therefore, the application was aimed at conducting an inter-comparison 

between FeBFM and FePISCES. 

When conducting a PCA, the correlation matrix requires that data be sampled from a normal 

distribution. Inherently, natural systems and model outputs struggle to be Gaussian owing to 

the high number of non-linear interactions. Therefore, non-Gaussian distributed data must be 

transformed before applying PCA. On analysing the distribution types for the various state 

variables in the model outputs, the most observed were: normal, log-normal, generalised 

Pareto and extreme value. Subsequently, applying a transformation such as the box-cox to all 

the non-Gaussian state variables seemed excessive. Instead, noting that most of the variables 

https://esa-oceancolour-cci.org/
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were positively skewed, it was assumed that the dominant distribution was log-normal and 

thus taking the natural logarithm of the model output data would transform the state 

variables to a normal distribution.    

To illustrate how to read and understand a PCA plot, an example is shown in Fig. (9), but this 

does not intend to be an exhaustive explanation about PCA and instead aims to showcases 

the basics that will become important in Sec. (4.2.3). 

The example plot shows various characteristics pertinent to cars. The data matrix is 

decomposed using two principal components (PC1-2) with the horizontal axis showing the 

projections to PC1 while the vertical axis is PC2. The percentage explained for each PC is an 

indication of the percentage of the total variance each PC explains. Therefore, from Fig. (8), 

PC1 explains 62.8% of the total variance while PC2 explains 23.1%. The variables are plotted 

as vectors from the origin and their orientation is an indication of their influence by a specific 

PC. For example, the number of gears in a car is strongly influenced by PC2 while miles per 

gallon (mpg) is influenced by PC1. In addition, the cosine of the angles between the vectors is 

an indication of the correlation between each variable. Therefore, there is a strong positive 

correlation between the number of cylinders a car has (cyl) and the combined volume of an 

engine’s cylinders (disp), while there is a negative correlation between the number of 

cylinders and the mpg of a car and no correlation between the number of gears and number 

of carburettors (carb) a car has. The black dots are the scores which in this example 

correspond to the various car models. The proximity of a score relative to the head of a vector 

indicates how much variance a single vector describes. A good example is for mpg, where 

there are three scores in close proximity. This means that those three cars share similar 

characteristics and are strongly influenced by mpg.        
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Figure 9: Example PCA plot showing characteristics of various cars (Source: www.datacamp.com) 

 

 

 

 

 

 

https://www.datacamp.com/community/tutorials/pca-analysis-r
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4. Results 

The results chapter is divided into two main sections: iron cycling of FeBFM vs FePISCES and 

biogeochemical impact. The first section compares and contrasts the cycling of iron between the 

two formulations described in Sec. (3.1.3). The objective is to highlight the implications of the 

different scavenging parameterisations between the two configurations. The second section then 

builds upon the first by exploring the impacts of the different iron configurations on the model 

states, such as: community composition, macronutrient cycling as well as state variable relationships 

as described in Sec (3.2.2). 

4.1  Iron cycling of FeBFM vs FePISCES 

The biogeochemical cycling of iron involves multiple abiotic and biotic processes such as scavenging, 

remineralisation, lithogenic inputs and biological uptake (see Sec. 2.1.1) and these processes need 

to be modelled and parameterised in biogeochemical models. To assess the broad impacts of the 

iron parameterisations on the dynamics of iron between the two configurations, the residence times 

and annual mean concentrations of dissolved iron as well as the annual mean flux of dust for the 

various modelled regions are shown in Tab. (3). The residence times were calculated by dividing the 

depth integrated mean iron concentration over ten years by the mean flux of atmospheric dust over 

the same period. Consequently, the residence times provided an important metric in gauging how 

rapidly iron was cycled in the various locations, which would be a reflection upon the behaviour of 

the different iron parameterisations. Short residence times are associated with high dust deposition 

regions with high scavenging rates while long residence times occur in low deposition regions. 

 Table 3: Concentration and residence time of iron in the modelled regions   

 FeBFM  FePISCES 

 Residence time 

(years) 

Mean iron 

(nM) 

Mean dust flux 

(g/m2/year) 

Residence time 

(years) 

Mean iron 

(nM) 

SO 10.37 0.17 0.15 21.27 0.33 

EP 4.0 0.19 0.21 10.08 0.47 

NAG 0.72 1.07 3.87 1.12 1.65 

NEP 3.08 0.34 0.52 4.88 0.55 

 

For all the modelled regions, FePISCES observed longer residence times as well as dissolved iron 

concentrations that were two to three times greater than FeBFM’s. As both configurations had an 
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identical dust flux, only the differences in their scavenging and remineralisation parameterisations 

(Sec. 4.1.2) were responsible for affecting the concentration and cycling of iron. Both configurations 

showed low dissolved iron concentrations occurring in the HNLC regions of the SO, EP and NEP and 

elevated concentrations in the high dust deposition region of the NAG. As expected, the low dust 

deposition regions of the SO and EP had longer residence times compared to the NEP and NAG, with 

both configurations having residence times that were comparable to the work of Moore et al. (2004).    

4.1.1  Iron time-series analysis 

To appreciate how the different iron parameterisations affected the concentration of iron, it was 

necessary to visualise the seasonal cycle as well as the long-term evolution of iron in the model runs. 

Fig. (10) compares and contrasts the seasonal and ten-year cycling of iron between FePISCES and 

FeBFM in the modelled regions. Starting with the climatologies, FePISCES had a greater seasonal 

variability of iron than FeBFM in all the model locations. However, both configurations showed 

similar seasonal cycles for iron with both capturing the maxima of iron in September for the NAG as 

well as the relatively constant iron concentrations of the EP. In the SO, the seasonal variability was 

greater in FePISCES, but both configurations showed a summertime minimum (December-January) 

and a winter maximum (June-August), following the trend of biological productivity for the region. 

For the NEP, both configurations showed a minimum iron concentration in March and a maximum 

in August which was anomalous because the NEP is in the northern hemisphere and it was expected 

that the minimum concentration of iron would occur in September, corresponding to the summer 

months and a maximum in winter, around January, due to accumulation and remineralisation.    

Figure 10: (upper row) Annual climatology of iron. (lower row) Ten-year time-series of iron   
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To further understand the cycling dynamics for each region, it was necessary to isolate the processes 

responsible for controlling the seasonal variability. Of importance was the influence of the dust flux 

in controlling the seasonal cycle of iron. Tab. (3) shows the mean annual flux of dust and it was 

expected that in regions of high atmospheric deposition, there would be a good correspondence 

between dissolved iron concentrations and lithogenic inputs. Conducting a Pearson’s correlation 

between iron and the dust flux revealed a surprising result. For the SO, both FeBFM and FePISCES 

had strong negative correlations (-0.71 and -0.60) while the highest positive correlation occurred in 

the EP (0.55 and 0.43). Meanwhile, the NAG had a moderate correlation of 0.45 with FeBFM but a 

significantly lower one of 0.26 in FePISCES. In the NEP, the correlations were the smallest of any 

regions at 0.18 for FeBFM and 0.16 for FePISCES.  

Therefore, in the low to moderate correlation regions of the EP, NAG and NEP, the deposition of dust 

was not playing a significant role in driving the cycling of iron. However, in the SO, the strong negative 

correlation could be significant as the onset of high dust deposition in the summer months could 

seed elevated levels of biological activity and hence result in the consumption of available iron. 

Consequently, the assumption that high dust deposition regions would have elevated correlations 

with iron was unfounded, as this was exemplified in the NEP as well as the NAG for the FePISCES 

configuration. Thus, the cycling of iron for the respective regions must be driven by the chosen 

parameterisations (scavenging and remineralisation dynamics of the respective configurations). 

While appreciating the seasonal cycling of iron, it was necessary to understand the long-term 

variability of iron in the box-model simulations, because this set-up is a coarse approximation of 

what may happen in reality and in 3D coupled models. Similar to the climatology plots, FePISCES 

observed greater variability than FeBFM, especially in the NAG. A key difference between FeBFM 

and FePISCES was that FeBFM reached a steady-state in all the modelled regions except in the NEP, 

while FePISCES did not reach a state of equilibrium in any location. Fig. (10) shows that in all the 

modelled regions, FePISCES had a steady upward gradient for the SO, EP and NEP while the NAG 

displayed a biennial oscillation. The biennial oscillation in the NAG is likely to stem from a 

mathematical feedback in the system of PDEs since it isn’t forced by any external iron. However, the 

lack of a steady state may have been responsible for the lower correlations with atmospheric dust 

in comparison with FeBFM. It should also be noted that spurious trends and long-term cycles may 

create local artificial gradients in a coupled configuration with a transport model. Therefore, the 

long-term variability of iron was influenced by the iron configuration that was used. Since all the 

inputs and initial conditions were the same, variability in the iron cycles between FeBFM and 
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FePISCES can be attributed to the respective scavenging and remineralisation parameterisations. 

Consequently, the next section explores the role of the scavenging and remineralisation processes 

and how they affect the seasonality and cycling of iron.   

 4.1.2  Scavenging and remineralisation dynamics 

The contrast in the time-series plots for the two configurations (Fig. 10) was attributed to the 

differences in the respective remineralisation and scavenging parameterisations. Thus, Fig. (11) 

compares the scavenging and remineralisation rates for FeBFM and FePISCES in the modelled 

regions to ascertain what implications the parameterisations had on controlling the cycling of iron. 

In reality, the true scavenging and remineralisation rates are unknown and therefore this is a 

theoretical exercise to understand the functions. 

The HNLC regions, especially the SO and NEP, had higher remineralisation rates than the NAG due 

to elevated levels of biological activity and nutrient availability. Whereas the scavenging rate was 

proportional to the concentration of dissolved iron and thus the NAG had the greatest scavenging 

rate compared to the SO and EP. Referring back to Sec. (3.1.3), the main difference between FeBFM 

and FePISCES stemmed from their different formulations regarding the scavenging and 

remineralisation dynamics of iron. Consequently, Fig. (11) highlights the difference in behaviour 

between the two configurations.   

Figure 11: The remineralisation (left) and scavenging (right) rates for FeBFM (blue) and FePISCES (red) 
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Starting in the SO, both configurations observed higher remineralisation rates in summer and lower 

in winter; however, FeBFM maintained a lower but steady-state remineralisation rate in comparison 

to FePISCES; which grew in magnitude with time. As for the scavenging rate, FePISCES had little to 

no scavenging throughout the entire simulation while FeBFM observed a scavenging trend 

consistent with the seasonality of iron. Consequently, the lack of scavenging resulted in the 

accumulation of iron in the SO for FePISCES. As for the remineralisation rate, the steady increase in 

FePISCES reflected an increase in the production of particulate matter which could only be induced 

by increasing levels of primary productivity as the simulation evolved (See Fig. 13). The EP was 

similar to the SO as FePISCES maintained a greater remineralisation rate than FeBFM but in contrast 

to the SO, FePISCES did not have an increasing rate as the simulation evolved. Instead, the EP saw a 

convex shape regarding the evolution of the maxima for FePISCES. Again, FePISCES had little to no 

scavenging throughout the simulation which caused iron to accumulate while FeBFM maintained a 

relatively steady-state at lower ambient iron concentrations. 

The NAG presented more of a challenge when interpreting the results as the oligotrophic state of 

the region resulted in very little primary productivity in the model simulations (refer to Fig. 12 and 

13). For the remineralisation regime, both configurations had near identical time-series, very close 

to zero. The lack of biological activity due to limited nutrient availability inherently resulted in little 

particulate matter production and thus low remineralisation rates. However, a large contrast was 

observed in the scavenging regime linked to the substantial dust flux in the region (Tab. 3). The 

biennial oscillation of scavenging for FePISCES is out of phase with the seasonal cycle of iron for the 

region (Fig. 10). Consequently, when dissolved iron reaches a threshold concentration, scavenging is 

activated and reduces the dissolved iron concentration. Despite the repeating seasonal cycle of dust 

deposition (Fig. 8), which does not have any biennial oscillation, the scavenging rate seems to have 

a threshold response that triggers the cycle. As for FeBFM, the scavenging rate remained relatively 

constant throughout the simulation. 

The NEP saw FeBFM and FePISCES following a very similar remineralisation time-series. However, 

two features stand-out, the amplitude of FePISCES was greater than FeBFM and the phasing of the 

two configurations were not directly in sync. The relatively steady-state of the remineralisation 

regime for FePISCES was in contrast to the behaviour of the EP and SO which had underlying trends. 

Focussing on the scavenging regime, for FePISCES in the NEP, the fluctuation was similar to the NAG, 

where there were periods of intense scavenging followed by a lull period of little to no scavenging. 

While FeBFM maintained a lower steady-state scavenging rate compared to FePISCES, FePISCES was 
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punctuated by annual events of intensive scavenging. Similar to the NAG, the onset of scavenging 

occurred when dissolved iron concentrations reached a threshold value. 

It was apparent that the remineralisation rates for FeBFM and FePISCES were more similar than that 

of the scavenging. However, the scavenging regimes of FePISCES and FeBFM differ significantly in-

terms of their representation of organic ligands as well as the scavenging model employed. 

Therefore, it was apparent that the choice of scavenging dynamics had distinct behaviours and these 

inherently altered the cycling of iron in the modelled regions. However, what implications would 

different iron cycling have on the general behaviour of the biological community? 

4.2  Biogeochemical impact 

To understand the implications of the iron cycling on the other biogeochemical state variables within 

the BFM, this section is divided into four parts. The first will analyse phytoplankton biomasses and 

assemblages while the second section will explore the differences in the cycling of macronutrients. 

The third section will attempt to identify what impact the iron parameterisations have on the state 

variable relationships within the BFM. Finally, the last section will investigate the effect of ligands in 

driving the cycling dynamics of iron (refer to Sec. 3.1.3).   

4.2.1  Impact on phytoplankton community composition 

Fig. (12) summarises the differences between FeBFM and FePISCES in terms of phytoplankton 

community composition and cumulative biological productivity for the four selected regions over 

the ten-year model simulation.      

The HNLC regions had the most biological activity, with the SO having the highest biomass of any 

location. Between FeBFM and FePISCES, there was not a considerable difference in the total biomass 

in each region, considering that iron concentrations were nearly double in FePISCES compared to 

FeBFM (Tab. 3). These observations suggest that iron may not have been the limiting nutrient for 

growth in some regions, thus additional nutrient limitations may have been responsible for 

hindering significant biological activity. In the SO, FePISCES observed a greater abundance of diatoms 

than FeBFM; however, this was accompanied by smaller picophytoplanton and flagellate 

communities. In the EP, FeBFM had a slightly greater biomass than FePISCES even though the iron 

concentration in FePISCES were greater than FeBFM. Furthermore, unlike the other HNLC 

environments, the EP was dominated by picophytoplankton in both configurations but FePISCES 

observed a greater biomass of diatoms than FeBFM. Though not much visible in the figure, the 
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community compositions for the NAG were identical for both configurations with flagellates 

dominating the system. The NEP also saw both iron configurations attaining a similar total biomass 

and very similar community compositions. The only marginal difference was that FePISCES had a 

greater biomass of diatoms than FeBFM. Consequently, the elevated proliferation of diatoms in the 

HNLC environments could be attributed to the elevated iron concentrations. However, in order to 

understand the phytoplankton dynamics in more detail, it was necessary to analyse the time-series 

for the various species in order to understand how the community composition changed as the 

model simulations evolved.    

Figure 12: Cumulative carbon biomass for diatoms, flagellates and picophytoplankton after 10 years with 

FeBFM (left bars) and FePISCES (right bars) 

Fig. (13) illustrates the differences in the phytoplankton groups between FeBFM and FePISCES in the 

modelled regions and complements Fig. (12) by illustrating the time evolution of biomass. Beginning 

in the SO, FeBFM reached an equilibrium state whereby the various phytoplankton groups 

maintained a similar seasonal cycle as the simulation progressed. While FePISCES saw a continued 

shift in the phytoplankton assemblage as diatoms grew in concentration which reduced the 

abundance of flagellates and picophytoplankton. The growing biomass of diatoms incidentally 

explained the trend in the remineralisation rate for FePISCES (Fig. 11), whereby a greater abundance 

of diatoms resulted in the elevated production of particulate organic matter as the model run 

progressed. To explain the overall elevated biomass in FeBFM compared to FePISCES in the EP (Fig. 
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12) it is important to note that, diatoms are the only phytoplankton group which require silicate as 

a macronutrient. In contrast to the SO and NEP (see Fig. 14 and 17), the EP had significantly lower 

concentrations of silicate (Fig. 15). Consequently, the elevated iron concentration in FePISCES 

spurred on a greater biomass of diatoms in comparison to the other phytoplankton groups. Whereas 

in FeBFM, the lower concentration of iron did not favour the proliferation of diatoms and instead 

favoured picophytoplankton. As picophytoplankton were not limited by silicate availability, this 

allowed FeBFM to achieve a greater biomass than FePISCES.   

For the NAG, FeBFM and FePISCES had identical time-series for all the phytoplankton groups even 

though there was a stark difference in the ten-year iron time-series for the region (Fig. 10). This 

suggested that the behaviour of iron in the NAG for both configurations was controlled by similar 

biogeochemical processes (refer Sec. 4.2.3). Unlike the other HNLC regions, the NEP had a near 

identical phytoplankton biomass for FeBFM and FePISCES despite differences in dissolved iron (Tab. 

3 and Fig. 10). Though the total biological productivity does not differ significantly between the two 

iron configurations, some regions observed changes in their dominance of a certain phytoplankton 

species. In addition, the non-linear response in biological productivity relative to the abundance of 

iron reflected the influence of additional nutrient limitations. Consequently, the next section 

evaluates the impact of the iron configurations on the cycling of macronutrients. 

Figure 13: The time-series of the biomasses of diatoms, flagellates and picophytoplankton for FeBFM and 

FePISCES 
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4.2.2  Influence on the seasonality of macronutrients 

As nutrients do not cycle independent of each other in a biogeochemical system it was important to 

understand whether changing the iron configuration would affect the seasonality of other major 

macronutrients such as nitrate, phosphate and silicate as well as chlorophyll. Therefore, each region 

would be analysed separately and the macronutrient as well as chlorophyll dynamics would be 

compared against observational data from the WOA18 and ESA. This was not intended for validation 

purposes but to understand whether changing the iron configuration would lead to a better 

correspondence with observational measurements.   

Southern Ocean 

Fig. (14) illustrated the typical HNLC conditions for the SO where there was an excess concentration 

of macronutrients accompanied by little chlorophyll due to limited iron availability (refer to Sec. 

3.2.2). Both configurations had greater chlorophyll concentrations than the observed with FePISCES 

having a greater chlorophyll concentration than FeBFM due to the greater quantities of iron that 

were available (Tab. 3) which allowed diatoms to flourish (Fig. 13). Furthermore, both configurations 

showed a chlorophyll minimum in June/July, corresponding to the winter months and periods of 

little biological activity, but neither configuration accurately resolved the timing of the chlorophyll 

maximum. Because of the diatom growth in FePISCES: nitrate, phosphate and silicate were utilised 

for primary production which reduced their concentrations, but no nutrient was entirely depleted 

which permitted diatoms to continually grow throughout the model run (Fig. 13). This facet 

regarding nutrient depletion will become important in subsequent regions.           

Figure 14: Monthly climatologies of: chlorophyll, nitrate, phosphate and silicate in the SO for FeBFM (blue) 

and FePISCES (red). The iron configurations were compared against observational data (black) from the 

WOA18 as well as the ESA   
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Furthermore, FePISCES saw greater seasonal variations in the macronutrient cycles than FeBFM. 

Though neither configuration captured the observed nutrient concentrations, FeBFM had more 

similar seasonal cycles for phosphate and nitrate relative to the observations. This was in major part 

due to FeBFM maintaining a low iron concentration (Fig. 10) consistent with observational 

measurements (Martin et al. 1991; Schlitzer et al. 2018). 

Equatorial Pacific 

Fig. (15) highlights the HNLC conditions prevalent in the EP, although the nutrient concentrations are 

lower than in the SO. The EP is a region heavily influenced by episodic upwelling events which are 

driven by the easterly trade winds (Sec. 3.2.1). As the BFM was run in its 0D, uncoupled state, this 

physical dynamic could not be captured. As a result of being unable to resolve the upwelling 

dynamics, the seasonality for chlorophyll for both the configurations were completely out of phase 

with the observations. In addition, neither of the iron configuration could resolve the observed 

seasonal cycle of nutrients, but they both developed a seasonal cycle of primary producers despite 

the low nutrient standing stock (Fig. 13). FeBFM maintained a slightly greater chlorophyll 

concentration which was reflected in the greater total biomass in Fig. (12). Referring back to Sec. 

(3.2.1), the premise of the simulations was to assume all the biological processes were constrained 

within the MLD. Consequently, the complete consumption of nitrate did not terminate biological 

productivity (Fig. 13) due to the system being sustained through regenerated production of 

ammonium. Therefore, though the EP attained almost double the iron concentration in the FePISCES 

configuration than in FeBFM, the limited availability of preformed nitrate hindered the biological 

productivity of both configurations.           

Figure 15: Monthly climatologies of: chlorophyll, nitrate, phosphate and silicate in the EP for FeBFM and 

FePISCES. 
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North Atlantic Gyre 

The NAG is an oligotrophic region and has small nutrient concentrations and little biological activity 

at the surface as seen in Fig. (16). Both iron configuration showed nitrate and phosphate to be 

depleted for the entire duration of the simulation. As a consequence of the low macronutrient 

concentrations, the biological productivity was very low in both configurations (Fig. 13). Though the 

NAG is phosphate limited (refer to Sec. 3.2.1) which reduces biological productivity, the lack of 

seasonality in either the nitrate or phosphate concentration for both configurations suggests that 

the model was not directly capturing the nutrient dynamics for the region. Instead, the oligotrophic 

nature was observed due to the model being unable to simulate productivity at low nutrient levels. 

The NAG does illustrate the phenomenon that additional nutrient stresses affect the biological 

productivity of the region independent of the iron concentration.    

Figure 16: Monthly climatologies of: chlorophyll, nitrate, phosphate and silicate in the NAG for FeBFM and 

FePISCES. 

North-east Pacific 

The NEP was an interesting HNLC region (Fig. 17) as it had similar nutrient concentration to the SO 

but had a moderate flux of atmospheric dust. As expressed in Sec. (4.1.1), it was odd that the peak 

period of biological activity occurred in February/March, corresponding to winter, while in the 

observations this occurs in the summer months (Anderson 1969). According to the prescribed 

climatological boundary condition, the NEP region is characterised by a sharp increase in iron 

deposition from February (Fig. 8) which corresponds to the period of increased biological activity in 

the model. Consequently, the early onset of the chlorophyll maximum could have been due to the 

winter deposition of atmospheric dust that spurred on biological activity. Similar to the SO, both 

configurations struggled to capture the trend of chlorophyll. However, the NEP is a region which has 
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a subsurface chlorophyll maximum that occurs at 55-65 m (Anderson 1969). Though within the range 

of the modelled MLD, satellite products would struggle to capture this feature. Again, the similar 

phytoplankton dynamics for both configurations could be attributed to the depletion of nitrate but 

the slightly higher concentration in diatoms in FePISCES could be seen in the lower concentration of 

silicate 

Figure 17: Monthly climatologies of: chlorophyll, nitrate, phosphate and silicate in the NEP for FeBFM and 

FePISCES. 

4.2.3  Principal component analysis on key state variable relationships 

In summarising the findings thus far, the various scavenging and remineralisation schemes employed 

in FeBFM and FePISCES did have a definite impact on the cycling dynamics of iron in the modelled 

regions. A major feature that distinguished the two configurations was the greater concentration of 

iron in FePISCES than FeBFM. However, besides for the SO, the elevated iron concentration had little 

impact on affecting the overall biological productivity in the remaining regions. This was due to the 

influence of additional nutrient limitations which resulted in similar biomasses. Consequently, as the 

phytoplankton assemblages were similar between FeBFM and FePISCES, this resulted in similar 

macronutrient cycles which corresponded poorly with observational data. Incidentally, the use of 

time-series plots was a useful technique in understanding how state variables evolved in the model 

simulations. But it was difficult to understand the relationship of one state when contextualized in 

the whole model system. Consequently, PCA (see Sec. 3.2.2) was chosen as a useful tool for 

identifying changes in key state variable relationships in a multi-variable system. When reading the 

PCA plots, refer to the list of in Tab. (4) and note that the scores represent monthly mean states. 

Furthermore, the DOC (𝑅𝑐
(1)

) variable was used as a proxy in FePISCES for the influence of ligands.  
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      Table 4: List of symbols used in the PCA plots 

 

 

 

 

 

Southern Ocean 

Using two principal components (PCs), 78% of the total model variance was explained in FeBFM 

while 87% was explained in FePISCES (Fig. 18), with both configurations being strongly influenced by 

the first PC. In comparing the variable relationships between the two configurations, there was not 

a significant shift between FeBFM and FePISCES. Both configurations showed: nitrate, phosphate 

and silicate to be strongly correlated with each other; however, they were poorly correlated to iron. 

In addition, both configurations highlighted the poor correlation between bioavailable iron and its 

particulate organic species, however, it was strongly negatively correlated with its dissolved organic 

component. There was no shift in the relationship between DOC and iron from FeBFM to FePISCES. 

Treating the DOC content as a proxy for ligand concentrations, for FePISCES, ligands were not playing 

a major role in controlling the cycling of iron as there was no correlation between iron and DOC; 

however, DOC was strongly related to PC1 in FePISCES. Of significance was the fact that in FeBFM, 

iron explained a greater proportion of the model variance than in FePISCES where it was far removed 

from the other state variables. Focussing on the scores, FePISCES observed more clustering than in 

FeBFM.   

Equatorial Pacific 

Like the SO, the EP (Fig. 19) saw the macronutrients maintaining a similar relationship in both 

configurations. Both FeBFM and FePISCES were strongly influenced by PC1 with 91.5% of the total 

variance being explained by both PCs in FeBFM and 89.46% in FePISCES. Unlike the SO, both the 

organic iron species in FeBFM showed a positive correlation with iron which was odd considering 

that the production of particulate iron is accompanied by the consumption of bioavailable iron. 

However, DOC became more correlated with iron in FePISCES which suggested that organic ligands 

may have played a role in controlling the dynamics of the iron cycling. Instead, there is a decoupling 

between bioavailable iron and its dissolved organic species in FePISCES. Similar to the SO, FePISCES 

Symbol Description 

Fe Dissolved iron 
POFe Particulate organic iron 
DOFe Dissolved organic iron 
DOC Dissolved organic carbon 
Chla Chlorophyll 
O2 Oxygen 
N Nitrate 
P Phosphate 
Si Silicate 
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saw iron being far removed from the other state variables, suggesting that it did not play a significant 

part in influencing the function of the system.          

Figure 18: PCA plot for the SO with the variables indicated by a blue dot and the scores are shown with black 

dots with the orientation of each PC being arbitrary. 

Figure 19: PCA plot for the EP 
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North Atlantic Gyre 

For the NAG (Fig. 20), the PC1 and 2 explained approximately 78% of the variance in FeBFM and 82% 

in FePISCES, with both configurations being strongly influenced by PC1. In addition, the distribution 

pattern of the scores was very similar (the sign of PCs is arbitrary and it can be changed without 

affecting the decomposition) in both the configurations. From Fig. (20), bioavailable iron is not 

correlated with any of the other state variables in FeBFM and is not well explained by the first two 

PCs. However, in FePISCES, iron becomes strongly coupled to DOC and decoupled from both organic 

species as they are orthogonal to each other. This suggests that ligands were playing a role in 

affecting the cycling of iron; however, it was unclear whether ligands were responsible for the 

biennial cycle of iron seen in Fig. (10). 

Figure 20: PCA plot for the NAG 

North-east Pacific 

The NEP (Fig. 21) was an interesting HNLC region because unlike the EP and SO, the NEP had a 

moderate dust deposition flux (Fig. 8) which resulted in a greater iron content for the region. In both 

FeBFM and FePISCES, the value of the respective PCs was similar which suggests that both 

configurations were constrained by the same biogeochemical processes. Both configurations saw a 

similar pattern for the distribution of the scores and there was no discernible difference between 

FePISCES and FeBFM in terms of the variable relationships. Focussing on iron, both configurations 

saw dissolved iron being negatively correlated with the particulate and dissolved organic species. 

However, the relationship between iron and DOC does not change from FeBFM to FePISCES. Noting 
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the fact that the DOC content only affects the ligand concentration in FePISCES, it was unclear why 

the variable relationship remained the same.    

Figure 21: PCA plot for the NEP 

4.2.4  Impact of ligands on the cycling of iron 

The parameterisation of ligand dynamics were significantly different between the configurations 

(Sec. 3.1.3) and owing to their importance in affecting the scavenging regime, it was necessary to 

appreciate what affect the ligands were having on the cycling of iron. The PCA results hinted that 

the shift in the DOC variable to become more correlated with iron in FePISCES was due to the 

influence of organic ligands. However, the shift may have also been caused by the slight differences 

in the phytoplankton assemblages between the configurations which would result in different levels 

of DOC production (Eq. 2.10). Consequently, Fig. (22) shows the time-series evolution of DOC for 

each region and it will be used to further understand the implications of DOC on the cycling of iron. 

Fig. (23) will then be used to explore the relation between DOC on the scavenging regimes of both 

parameterisations. The section will end with an analysis of the scavenging parameterisation used in 

FePISCES in order to contextualise the implication of DOC on the free scavenging regime. 

DOC time-series   

Starting in the SO, it was anomalous that FeBFM maintained a small and stable DOC concentration 

while FePISCES maintained a similar DOC content to FeBFM until 2006. At this point the 

concentration spiked and continued to grow. Unlike FeBFM which established a steady-state 
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regarding the concentration of diatoms (Fig. 13), FePISCES had continued growth. Therefore, the 

increase in the DOC content may have been due to the system accumulating DOC which is linked to 

the non-linear relationship of the PDEs. An explanation may be due to the system becoming nutrient 

stressed, implying that the greater iron abundance in FePISCES resulted in the overconsumption of 

key macronutrients, such as phosphate and nitrate, which resulted in the increased production of 

DOC due to the parameterisations of DOC in the BFM (refer to Eq. 2.10). Incidentally, the idea of 

nutrient stress was also seen in the EP, as the DOC content was greater than that of the SO. This 

suggested that most of the assimilated carbon existed in the dissolved pool rather than the 

particulate. Both configurations had similar phasing to each other with FePISCES maintaining a 

greater DOC content throughout the simulation than FeBFM. Consequently, the greater 

concentration of iron in FePISCES for the EP may have spurred on a greater diatom biomass resulting 

in a greater production of DOC. 

Figure 22: Time-series plot of DOC with FeBFM (red) and FePISCES (blue) represented for the four modelled 

regions 

In Fig. (22) for the NAG, the DOC time-series for FeBFM cannot be seen as it is overlapped by 

FePISCES’s.  The DOC content of the NAG showed the same biennial oscillation for both FeBFM and 

FePISCES. Comparing the DOC time-series of FePISCES with the ten-year time-series of iron in Fig. 

(10) revealed a plausible relationship between the two variables as both exhibited a biennial 

oscillation. On closer inspection, the time-series of DOC is not perfectly in phase with that of iron, 

which suggests that there is not a linear relationship between the two variables, but this is 
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understandable concerning the multiple non-linear relationships that affect both iron and DOC. 

Therefore, as both configurations had the same DOC time-series it provides some evidence that DOC 

may have been a major variable influencing the behaviour of iron in FePISCES. Consequently, the 

nutrient stressed environment of the NAG in the modelled regions resulted in almost all assimilated 

carbon being transferred to the dissolved pool (Eq. 2.10) which resulted in the largest concentrations 

of DOC for any region. The NEP had similar DOC concentrations to the EP with both FeBFM and 

FePISCES having a similar DOC time-series after the simulations adjusted (FeBFM was slower). The 

similar phytoplankton community structures between the two configurations (Fig. 12) would result 

in the near identical production of DOC (Eq. 2.10). Consequently, if DOC content was similar in 

FeBFM and FePISCES and as there was no shift in relationship between DOC and iron in the PCA 

analysis (Fig. 21), this does not suggest that ligands were not playing a role in affecting the iron 

cycling for FePISCES in the NEP. Instead, the moderate deposition of dust in the region would 

promote high iron concentrations (Tab. 3) and at the same time high biological productivity (Fig. 12 

and 13) which could result in iron and DOC varying together regardless of the iron parameterisations.   

Implications of DOC on the scavenging regimes 

To further improve the understanding between the DOC dynamics and iron, Fig. (23) complements 

Fig. (22) by showing a correlation heatmap between DOC, iron and iron scavenging for the various 

modelled regions. 

Figure 23: Correlation heatmap showing the relationships for: DOC, iron and scavenging (Scav) for FeBFM 

(left) and FePISCES (right) in the four modelled regions 
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In the SO, iron observed a small negative correlation with DOC and a strong positive relationship 

with scavenging in FeBFM. Furthermore, DOC was weakly correlated with scavenging which is 

understandable because the DOC dynamics do not implicate the scavenging regime in FeBFM. 

Contrasting FeBFM with FePISCES, there was a marginal shift in the correlation between DOC and 

iron as it became positive while DOC became negatively correlated with scavenging. Furthermore, 

there was a slight reduction in the correlation between scavenging and iron.  

Like the SO, the EP also saw the correlation between DOC and scavenging becoming more negative 

from FeBFM to FePISCES but unlike the SO, the iron to DOC correlation decreased. However, the 

scavenging to DOC relationship became more negative from FeBFM to FePISCES. In the NAG, DOC 

was poorly related to iron and scavenging in FeBFM which was also seen in Fig. (20) for the PCA 

plots; while iron was strongly related to the scavenging rate. However, in FePISCES, DOC became 

significantly more related with iron but there was a major decoupling in the relationship between 

scavenging and iron. In addition, the scavenging to DOC relationship became more negative. Similar 

to the NAG, the NEP showed a strong positive relationship between DOC and iron for FeBFM as well 

as a positive relation to scavenging. In FePISCES, scavenging became negatively correlated with DOC 

and there was a reduction in the correlation between scavenging and iron. 

From Fig. (23), a recurring phenomenon is the negative correlation observed between DOC and 

scavenging in FePISCES as well as a poorer relationship between iron and scavenging. Referring to 

Sec. (3.1.3), the concentration of ligands was calculated in relation to the DOC content using Eq. 

(2.17). Consequently, though the DOC content was similar in both configurations, the implications 

would be elevated ligand concentrations in the FePISCES configuration. Using Eq. (2.17), the mean 

ligand concentration over the ten-year period of the model simulations could be calculated for each 

region. The NAG had the highest mean concentration of ligands at 3.81 nM while the SO had the 

lowest (0.86 nM). The EP and NEP were similar with mean concentrations of 1.87 nM and 1.37 nM. 

Though the ligand concentration was merely proportional to the DOC content, the implications of a 

greater ligand concentration would influence the scavenging regime. 

Starting with Eq. (2.16), 𝑁(7) can be made the subject of the formula of the quadratic by rearranging 

the equation to the following: 

     𝑁(7) = 𝐾
𝑁(7)
𝑒𝑞

(𝑁𝑓𝑟𝑒𝑒
(7)

)2 + Δ𝑁𝑓𝑟𝑒𝑒
(7)

     (2.21) 

Noting that 𝑁𝑓𝑟𝑒𝑒
(7)

≪ 𝑁(7), Eq. (2.21) could be simplified by removing the squared term. 
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      𝑁𝑓𝑟𝑒𝑒
(7)

≈
𝑁(7)

Δ
       (2.22) 

Expanding Δ in Eq. (2.22) gives: 

     𝑁𝑓𝑟𝑒𝑒
(7)

≈
𝑁(7)

1+𝐾
𝑁(7)
𝑒𝑞

(𝐿𝑇−𝑁
(7))

      (2.23) 

The simplified relation shown in Eq. (2.23) shows that the amount of iron available to scavenging is 

inversely proportional to the ligand concentration. Therefore, when the ligand concentration is high, 

the amount of iron that can be scavenged is small. But, when 𝐿𝑇 ≈ 𝑁(7) then the amount of iron 

that can be scavenged is directly proportional to the concentration of dissolved iron. Therefore, a 

greater ligand concentration should limit the ability of scavenging and inherently allow iron to 

accumulate as seen in Fig. (10). This idea is corroborated from Fig. (23) as the negative relationship 

between DOC and scavenging in FePISCES highlights that elevated ligand concentrations result in 

most bioavailable iron being complexed and thus unavailable to scavenging. While when the DOC 

content drops, the scavenging rate can elevate due to less bioavailable iron being complexed. 

Consequently, the DOC content for a region was indirectly driving the iron system by altering the 

scavenging regime of FePISCES. 
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5. Discussion 

Multiple parameterisations and mathematical formalisms can be utilised to describe the iron cycle 

in biogeochemical models (Sec. 2.2.3) and therefore it is important to understand what implications 

different parametrisations have on the functional behaviour of a biogeochemical model in its ability 

to represent major processes such as: dissolved iron concentrations, macronutrient cycling and 

phytoplankton assemblages (Sec. 4). Therefore, this chapter is divided into two sections, with the 

first discussing whether the choice of iron parameterisations is significant when running a 

biogeochemical model and the second section exploring how useful 0D models are as spaces for 

testing different parameterisations. 

5.1 Does the choice of iron parameterisations matter 

In a biogeochemical model, the various PDEs used to describe key biogeochemical processes do not 

function in isolation. Instead they mathematically interact and influence each other which can result 

in non-linear behaviours and feedbacks. Consequently, by altering the iron parameterisations in 

BFM, it was expected that the functional behaviour of the BFM would change but to what degree 

could not be determined prior to performing the various experiments. It is important to note that 

when undertaking the thesis work, any free scavenging model variant from a different 

biogeochemical model could have been used. Therefore, this discussion does not constrain itself to 

solely comparing the inorganic iron dynamics of BFM and PISCES but also intends to be a general 

commentary on translating parameterisations into different biogeochemical models. 

5.1.1 Inorganic iron parameterisations 

From Sec. (4) the parameterisations of FePISCES produced dissimilar results to FeBFM when 

comparing the: concentration and seasonality of dissolved iron, scavenging and remineralisation 

rates, phytoplankton community compositions and macronutrient cycles in all the modelled regions. 

Contrasting the inorganic iron parameterisations of FeBFM and FePISCES, it was clear that the 

remineralisation schemes were more similar than the scavenging. Both configurations 

parameterised remineralisation as a linear process, which is the simplest form one can choose when 

data are not available to better constrain the parameterisations, with FePISCES including additional 

environmental stresses such as an oxygen dependency term which just modulated the intensity of 

the remineralisation scheme. The similarity in the remineralisation schemes was seen when 

analysing the rates in Fig. (11) as both configurations showed similar seasonal cycles for the 
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remineralisation rates, with FePISCES having a higher rate than FeBFM which could be attributed to 

the parameter value used for the remineralisation rate constant.   

In contrast, the scavenging regimes between FeBFM and FePISCES differed significantly and this was 

due to FePISCES employing a different model formalism for scavenging as well as including a 

prognostic appreciation of organic ligands which was linked to the concentration of DOC (refer to 

Sec. 3.13). The free scavenging model of FePISCES resulted in the low iron regions of the SO and EP 

having almost zero scavenging while in the high iron regions of the NAG and NEP, there was 

intermittent periods of intense scavenging followed by little to no scavenging (Fig. 11). The simpler 

model of FeBFM reached a steady-state in all the modelled regions and produced a clear seasonal 

cycle. The disparate scavenging regimes for the two configurations highlight the importance of 

constraining the scavenging rates which is a sentiment shared by other authors such as Tagliabue et 

al. (2016) and Yao et al. (2019). Especially in a free scavenging model like FePISCES, constraining the 

scavenging regime is necessary to avoid accumulation of iron, mainly in HNLC regions. A major 

reason for this is that in a 3D coupled model simulation, regions with excess iron concentrations 

would seed productivity in adjacent regions as iron would be advected and transported by the 

physical model. Incidentally, this could bias the modelled distribution of primary production since 

iron is a limiting nutrient in large regions of the global ocean. 

A prognostic appreciation of organic ligands is a feature that is not common in current 

biogeochemical models (Tagliabue et al. 2016) and therefore it acted as an additional facet in the 

free scavenging model of FePISCES. Though the parameterisation of ligands was basic, the ligand 

concentrations in FePISCES were on average 1.4 nM greater than the prevailing iron concentrations 

in each region which reflects well with the observations of Gledhill & Buck (2012) in terms of 

representing the feature of uncomplexed ligands. However, coupling the ligand concentration to 

DOC resulted in the NAG having a greater ligand concentration than the SO. This result is not 

supported by observational evidence because the SO has greater biological activity than the NAG 

and owing to the production pathways of ligands (Hassler et al. 2017), the SO should have a greater 

concentration than the NAG. This highlights an issue with the DOC dynamics of the BFM. Therefore, 

the feedback in the model is one of mathematics which does not represent the biological behaviours 

of the modelled regions.  

When adding new parameterisations to a model it is important to disseminate between 

mathematical feedbacks in the model system and process-based responses that would be expected 

in a real biogeochemical system. The PCA plots presented a useful tool in understanding how the 
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variable relationships shifted with the choice of iron parameterisations. In general, for both iron 

configurations there was a decoupling of iron from the major macronutrients in the modelled 

regions. This could be due to the fact that iron is typically added as an additional multiple-nutrient 

limitation term within numerical models (Vichi et al. 2007b) and is not coupled to the functioning of 

other major nutrients. Not only was dissolved iron poorly related with the macronutrients but in 

most of the regions, it was weakly associated to its own organic species. In the SO, both iron 

configurations saw dissolved iron uncorrelated with its particulate organic species and negatively 

correlated with the dissolved organic species. Whereas in the EP, the improved relation of DOC to 

dissolved iron in FePISCES resulted in a decoupling of dissolved iron from its organic species. This 

same situation was seen in the NAG but not in the NEP as there was no shift in the relation of DOC 

and dissolved iron from FeBFM to FePISCES. Consequently, the ligand parameterisation of FePISCES 

caused a decoupling of dissolved iron to its organic species in some regions but both iron 

configurations struggled to resolve the biogeochemical relationships in the iron cycle. 

As expressed in Eq. (2.23), the ligand concentration dictated the amount of iron available for 

scavenging in FePISCES. Using PCA, there was a strong relationship between DOC in the high iron 

regions of the NAG and NEP and from the similar biennial time-series of DOC (Fig. 22) and iron (Fig. 

10) in the NAG, it could be inferred that DOC was indirectly driving the iron system by altering the 

scavenging regimes. This observation was corroborated using Fig. (23) where DOC became 

negatively correlated with iron scavenging in FePISCES. Therefore, as the DOC content increased, the 

amount of iron available to scavenging decreased. Furthermore, except for the EP, there was a 

reduction in the relationship between iron and scavenging in FePISCES which could have been due 

to the additional influence of DOC on the iron system. However, it is important to note that the study 

did not use the full PISCES model, but only the inorganic cycling of iron. Consequently, the spurious 

trends in iron observed for the FePISCES configuration may not occur in PISCES as the biology has 

been tuned appropriately and the production pathway of DOC may be suited to the free scavenging 

model. Furthermore, the formulation of iron dynamics in the full PISCES model of Aumont et al. 

(2015) contains full colloidal interactions and these parameterisations were not included in the test 

experiments of FePISCES. Incidentally, the accumulation of iron in the HNLC regions in the FePISCES 

configurations may have been due to the absence of a colloidal component.   

5.1.2 Challenges of translating parameterisations into biogeochemical models 

In addressing the question whether the choice of iron parametrisations is significant, the answer is 

yes. Using a different set of iron parameterisations will alter the biogeochemical behaviour of a 
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model. Indeed, a major shortcoming of the thesis was that no parameter optimisation was done 

when translating the inorganic iron equations of PISCES into BFM so how much of the variance in 

dissolved iron concentrations could be attributed to the various model constants vs. model structure 

was unknown. This highlights a major challenge in translating parametrisations as not only the 

model formalisms need to be reconfigured to be suitable within a different model but also the 

various parameters may need to be appropriately tuned. However, appropriately tuning parameters 

will be difficult if there is not the necessary data to contain them which is a prevalent issue for iron 

parameterisations.  In addition, if a parameterisation is sensitive to another state variable, such as 

ligands to DOC concentration, those facets may not be easily translated into a different model which 

means that the parameterisation may be a source error in model outputs. This further exemplifies 

the inflexibility in translating iron parameterisations between models.   

When embedding new parametrisations, it is important to appreciate that a different model 

formalism of a biological process may not lead to improved model results. This does not disparage 

the fact that a more detailed parameterisation includes more meaningful biological interactions, 

instead, if the equations are not contextualised properly within a model, then the model 

performance could be worse off. Therefore, when translating parameterisations it would be 

advantageous to use parameter optimisation techniques to constrain parameters to optimal values 

(Ward et al. 2010) if sufficient data are available, but not the case for iron as well as conducting 

sensitivity tests to appreciate the various non-linear behaviours and responses. Ideally, the inclusion 

of more sophisticated parameterisations should be done only if they will lead to improved 

representations of a biological system, which become prevalent in coupled 3D simulations used for 

hypothesis testing. 

5.2 Suitability of 0D models as spaces for testing parameterisations 

The ultimate implementation of iron, which has a global valence, should be within coupled 3D 

models. However, large uncertainties are prevalent in describing the iron cycle in biogeochemical 

models (Yao et al. 2019). Furthermore, a wide variety of different parameterisations for processes 

such as scavenging and ligand dynamics are employed across the modelling community (Tagliabue 

et al. 2016). Acknowledging the work of Ménesguen et al. (2007) and McKiver et al. (2015), the 

choice of spatial resolution is not trivial when conducting biogeochemical modelling. Therefore, 0D 

models are dichotomous as their simplicity aids in the identification of non-linear processes and 

functional responses of parameterisations. However, a caveat to the simplicity of 0D models is the 



67 

 

inability to include important physical processes which influence biology (McKiver et al. 2015). 

Therefore, this section wishes to explore the advantages and disadvantages of using 0D models for 

testing biogeochemical parameterisations by using the results of iron as a case study. 

5.2.1 Advantages and disadvantages to 0D models for testing parameterisations 

Running the BFM in its 0D configuration meant that important physical dynamics which implicate 

biological activity could not be included; however, this was to be expected given the limitations of a 

box-model set-up. For each region, it was assumed that the main source of exogenous iron was from 

atmospheric deposition and that the respective biogeochemical systems were sustained through 

regenerated production of nutrients, including iron, in the upper ocean, which was bounded 

between the surface and MLD.  

Though some of the physical dynamics for the modelled regions could be accounted for with 

rudimental physical forcing functions and biological assumptions, the lack of a coupled physical 

model severely influenced the seasonal cycle of macronutrients, especially in the EP and NEP. In the 

EP, the chlorophyll and phosphate concentrations for the two iron configurations were out of phase 

with the WOA18 observations (Fig. 15) due to the inability to capture the upwelling dynamics of the 

regions. While for the NEP, the onset of a winter bloom in chlorophyll was attributed to the basic 

dust forcing function used in the model (Fig. 17). In addition, the NEP is a region with a sub-

chlorophyll maximum (Anderson 1969) and this feature could not be represented in a mixed layer 

model. Furthermore, in all the modelled regions, nitrate and phosphate concentrations were drawn 

down below observed levels; however, in the 3D simulations of Vichi et al. (2007a, b), this same 

phenomenon was not prevalent. Low macronutrient concentrations will feedback onto iron as they 

will enhance N and P limitation in a system. Consequently, a weakness of 0D simulations seems to 

be the over utilisation of key macronutrients and this issue could be addressed by initialising the 0D 

model with greater macronutrient concentrations so that the steady-state resembles observational 

measurements.    

0D models can be useful for testing and illustrating fundamental principles and ideas, with a good 

example being Daisyworld (Watson & Lovelock 1983). Though the 0D configuration of the BFM 

limited its ability to represent important physical dynamics, for the various modelled regions, a lot 

of iron features could be captured. This was accomplished through the addition of: a boundary flux 

for atmospheric dust, a particle tracer for dust and a variable MLD. However, the addition of multiple 

new components at once did not permit a step-wise assessment of the respective influence of each 
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component on the modelling system. Consequently, a step-wise approach would involve multiple 

model runs whereby the various iron parameterisations are assessed while the number of additional 

modelling components such as a dust flux or variable MLD are incrementally added to assess the 

impact of the added modelling components on the iron system and to better disseminate the 

responses of the iron parameterisations. 

 Incidentally, as numerical models become more complicated by increasing the number of: 

dimensions or coupled components (physical, climate and ice models); the modelling system 

becomes more complex and thus more resilient to non-linear behaviours in parameterisations. 

Consequently, the complexity of a 3D model would make it difficult to test such sensitive 

parameterisations as iron and the different responses of the biogeochemical parameterisations may 

be diluted by the interactions with the physical model. In comparison, 0D simulations have a simpler 

structure which helps to better understand the sensitivity to different parameterisations. As seen 

with the identification of the variable relationships between FeBFM and FePISCES, it is unclear 

whether a 3D model would be able to identify the non-linear responses in the iron system, but within 

a 0D context, the identification of non-linear behaviours was aided due to the simpler model 

structure. At present, the only method to improve both 0D and 3D representations of iron and its 

impact on the wider biogeochemical systems of the ocean lies in improved observational data. At 

present, the GEOTRACES program has successfully increased the number of iron observations but 

what is lacking are seasonal measurements of dissolved iron. Having seasonal observations of iron 

would allow an assessment of how iron evolves with other key macronutrients. From increased 

observational data, existing iron parameterisations could be improved, with 0D models being an 

ideal space to test and refine them before being implemented in coupled 3D simulations.  
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6. Conclusion 

6.1 Conclusion 

This thesis has compared and contrasted the functional behaviour of iron parameterisations 

implemented in current biogeochemical models. The iron cycle has only recently been included in 

biogeochemical models and the parameterisations that describe key processes such as scavenging 

and ligand dynamics are not well constrained by available observations. Therefore, there is a need 

to understand the biogeochemical modelling implications of using different iron parameterisations 

while new data are being collected. Using the BFM as the background numerical model the iron 

parameterisations of BFM and PISCES were tested in four regions: Southern Ocean, Equatorial 

Pacific, North Atlantic gyre and North-east Pacific; encompassing a diverse array of biogeochemical 

environments. From Sec. (4), the disparate functioning of FeBFM and FePISCES was evident as 

FePISCES observed significantly greater iron concentrations than FeBFM in all the modelled regions. 

This had implications on the phytoplankton assemblages as well as the macronutrient cycles of 

FePISCES in all the modelled regions. The main difference in the iron formalisms of FeBFM and 

FePISCES was the scavenging regime and thus the scavenging model of FePISCES was implicated in 

the dissimilar iron concentrations. Furthermore, the ligand parameterisations of FePISCES lead to an 

apparent decoupling of dissolved iron from its organic species where in fact the inclusion of 

dynamical ligands should have led to the opposite. 

Though the thesis did not aim to validate the various parameterisations, it is important to note that 

neither of the iron parameterisations was able to represent the key variable relationships involved 

in the iron cycle, namely the relationship of dissolved inorganic iron to its organic species. This 

represents a shortcoming in the application of these parameterisations in higher order models. In 

addition, the diverse behaviour of the different iron parameterisations potentially showcases a lack 

of consensus in the modelling community in the representation of dissolved iron because if the 

parameterisations are drawn from the same scientific knowledge, it would be expected that they 

would behave in a similar or near similar manner. Another facet to the study was acknowledging the 

difficulty in testing and translating iron parameterisations from one model to another, noting that 

various parameter values may need to be tuned appropriately as well as the sensitivity of 

parameterisations to other biogeochemical processes which may not become apparent until 

sensitivity tests are conducted. Therefore, the testing of parameterisations should be done within 

0D models in order to assess any non-linear behaviours and ultimately embedded in 3D models to 
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study how they interact with physics. Therefore, the choice of iron parameterisations in a 

biogeochemical model is significant as they will have different implications on model outputs. 

 6.2 Future work 

In the thesis, no parameter optimisation techniques were applied when translating the PISCES iron 

parameterisations into BFM. Incidentally, how much of the variation in the outputs could be 

attributed to inappropriately tuned model parameters vs. model structure was unknown. 

Consequently, future studies could use the work of Ward et al. (2010) or Annan et al. (2005) in 

applying parameter optimisation schemes to numerical models. If parameter optimisation was done 

on the translated parameterisations, then with greater certainty, variations in model outputs could 

be attributed to the differences in model formalisms which would aid in the improvement of 

parameterisation schemes. 

Another interesting metric that could be applied in testing different parameterisations is the 

computation of Lyapunov exponents. Lyapunov exponents are used in the study of non-linear 

systems (Wolf et al. 1985; Das 2012) to quantify how model trajectories diverge in phase space 

whose initial states are slightly different. Therefore, perturbing a biogeochemical model with a 

different set of iron parameterisations and understanding the time evolution and divergence of the 

whole model system would allow for a greater appreciation of the impact of different iron 

parameterisations on a biogeochemical model.    
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