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Abstract

The apparent fluorescence quantum yield of chlorophyll-a (ΦF ), i.e. the ratio of pho-
tons emitted as chlorophyll-a fluorescence to those absorbed by phytoplankton, serves as
a first order measure of photosynthetic efficiency and a photophysiological indicator of
the resident phytoplankton community. Drivers of ΦF variability, including taxonomy,
nutrient availability, and light history, differ in magnitude of influence across various bio-
geographic provinces and seasons. A Multi-Exciter Fluorometer (MFL, JFE Advantech
Co., Ltd.) was selected for use in in situ ΦF derivation and underwent an extensive radio-
metric calibration for this purpose. Wavelength-specific ΦF was determined for 66 in situ
field stations, sampled in the Atlantic Southern Ocean during the austral winter of 2012
and summer of 2013/ 2014. Phytoplankton pigments, macronutrient concentrations, and
light levels were simultaneously measured to investigate their influence on ΦF . While no
relationship was observed between macronutrient levels and ΦF , an inverse relationship
between light and ΦF was apparent. This was likely due to the influence of species-
specific fluorescence quenching mechanisms employed by local populations. ΦF derived
from ocean colour products (Φsat) from the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) were compared to in situ ΦF to assess the performance of three existing Φsat

algorithms. Results indicate that accounting for chlorophyll-a fluorescence reabsorption,
the inherent optical properties of the surrounding water column, and the sensor angle of
observation, is crucial to reducing Φsat uncertainty. A hybrid combination of two of the
algorithms performed best, and was used to derive Φsat for stations co-located to in situ
iron measurements in the Atlantic Southern Ocean. A significant negative relationship
was observed, indicative of the effects of iron availability on quantum yield and its po-
tential as a proxy for iron limitation. However, separating the individual contributions of
light, taxonomy, and iron limitation to Φsat variability remains a challenge. A time se-
ries analysis of Φsat was also undertaken, which revealed a prominent Φsat seasonal cycle.
Ultimately, increased in situ sampling would expedite the development of improved Φsat

algorithms; the routine retrieval of Φsat would offer insight into phytoplankton dynamics
in undersampled regions such as the climate relevant Southern Ocean.
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List of Notation

a - Absorption (m−1)
ad - Detrital absorption (m−1)
aij - Absorption coefficient of fluorophore i over LED j spectrum (cm−1)
a∗j - Phytoplankton-specific absorption coefficient, LED j (cm−1)
ap - Total particulate absorption (m−1)
aph - Phytoplankton-specific absorption (m−1)
a∗ph - Chl-a-specific absorption (m2 mg chl-a−1)
a∗φ - Mean chl-a-specific absorption (m2 mg chl-a−1)
as - Absorption by dissolved material (m−1)
aw - Absorption by water (0.461 m−1 Pope and Fry (1997))
ACC - Antarctic Circumpolar Current
Allo. - Alloxanthin
AOP - Apparent optical properties
AVISO - Archiving, Validation, and Interpretation of Satellite Oceanographic data
AZ - Antarctic zone
BRx - Buoy Run (SANAE53)
C - Carbon
c - Speed of light (3e8 m s−1)
Cf - MODIS proportionality factor (43.38 nm)
CDOM - Coloured dissolved organic material
CEF - Cyclic electron flow
CHEMTAX - CHEMical TAXonomy
chl-a - Chlorophyll-a (mg m−3)
chlor_a - MODIS OC3M [chl-a] estimate (mg m−3)
CLS - Collecte Localisation Satellites
CO2 - Carbon dioxide
CZCS - Coastal Zone Color Scanner (NASA)
Dd - Diadinoxanthin
DFe - Dissolved iron (nM)
dH2O - Distilled water
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DP - Diagnostic pigments
Dt - Diatoxanthin
ENSO - El Niño-Southern Oscillation
EOF - Empirical orthogonal function
Fe - Iron
FOV - Field-of-view
FQY - Fluorescence quantum yield
FTU - Formazine Turbidity Units
Fuco. - Fucoxanthin
gj(z) - Distance calibration functions for MFL, LED j

Gj - MFL calibration factors for LED j

GHNx - GoodHope North leg (SANAE53)
GHSx - GoodHope South leg (SANAE53)
GMT - Greenwich Mean Time
h - Planck’s constant (6.63e−34)
H2O - Water
Hex. - 19’Hexanoyloxyfucoxanthin
HNLC - High nutrient low chlorophyll
HPLC - High performance liquid chromatography
IOP - Inherent optical properties
iPAR - MODIS instantaneous PAR (mol m−2 s−1)
Kd_490 - (Kd(490)) Diffuse attenuation coefficient for downwelling irradiance at 490 nm (m−1)
kij - MFL calibration constant for fluorophore i, LED j

kj - MFL calibration constant, LED j

LED - Light emitting diode
LET - Linear electron transport
LHC - Light-harvesting complex
MADT - Maps of absolute dynamic topography
MARD - Mean absolute relative difference
MFL - Multi-Exciter Fluorometer (JFE Advantech, Co., Ltd.)
MIZ - Marginal ice zone
mLD - Mixed layer depth
MODIS - Moderate Resolution Imaging Spectroradiometer
N - Nitrogen
NASA - National Aeronautics and Space Administration
NetCDF - Network common data form
nflh - (FLH) MODIS normalised fluorescence line height (W m−2 µm−1 sr−1)
NO−3 - Nitrate (µM)
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O2 - Oxygen
P - Phosphorous
PO3−

4 - Phosphate
pc - MFL-relative partial quantum yield factor for chl-a
pi - MFL-relative partial quantum yield factor for fluorophore i
PAR - Photosynthetically available radiation (400-700 nm)
PC - Phycocyanin
PE - Phycoerythrin
Per. - Peridinin
PF - Polar front
PFZ - Polar frontal zone
POC - Particulate organic carbon
POOZ - Permanently open ocean zone
ppb - Parts-per-billion
PS - Photosystem
Q∗a - Chl-a fluorescence reabsorption factor (unitless)
qE - qN: Energy dependent quenching
qI - qN: Photoinhibition
qN - Non-photochemical quenching of chl-a fluorescence
qP - Photochemical quenching of chl-a fluorescence
qT - qN: State transitions
Rij - MFL output response to fluorophore i, LED j

Rj - MFL output response in LED j

rs - Spearman’s rho
RMSD - Root mean square difference
RMSE - Root mean square error
Rrs - Remote sensing reflectance
RWT - Rhodamine-WT
S - Detrital absorption slope value (nm−1)
Sbeh - Correction factor (Behrenfeld et al. (2009) Φsat algorithm, 100 mW cm−2 µm−1 sr−1)
Si(λ) - Relative fluorescent emission spectrum for solution i
SACCf - Southern Antarctic Circumpolar Current front
SAF - Sub-Antarctic front
SAM - Southern Annular Mode
SANAE - South African National Antarctic Expedition 53
SAZ - Sub-Antarctic zone
SBdy - Southern boundary of the ACC
SCF - Spectral correction factor
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SDS - Scientific Data System
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SICF - Sun-induced chlorophyll fluorescence
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SIZ - Seasonal ice zone
SST - Sea-surface temperature (◦C)
STF - Sub-tropical front
STZ - Sub-tropical zone
t - Physical thickness (cm)
T (λ) - Spectral transmittance
Tfj - Effective filter transmittance for LED j

Tij - Effective fluorophore transmittance for LED j

TOA - Top of the atmosphere
XC - Xanthophyll cycle
z - Distance
Zea. - Zeaxanthin
∆ - Change
Γ(λ) - MFL sensor relative quantum spectral response
λ - Wavelength (nm)
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Chapter 1

Introduction

1.1 The Southern Ocean and the Global Carbon Cy-
cle

1.1.1 The Southern Ocean

The Southern Ocean constitutes ∼20% of the world oceans and plays a significant role in
global climate regulation (Boyd, 2002; Frölicher et al., 2015; Sarmiento et al., 1998). These
waters connect the Atlantic, Indian, and Pacific Oceans and are defined by meridional
gradients in surface characteristics that separate the Southern Ocean from the warmer
and saltier waters of the subtropical circulation (Orsi et al., 1995). The Southern Ocean
exists south of ∼30◦S, with the northern boundary ∼5◦ of latitude north of the mean
position of the northern Subtropical Front, as defined by Belkin and Gordon (1996).

The Southern Ocean comprises several zones separated by circumpolar fronts, sub-
dividing water masses with different physicochemical features including density, salinity,
temperature, and nutrients (Figure 1.1) (Pollard et al., 2002; Sokolov and Rintoul, 2002).
These fronts vary temporally and with longitude (Orsi et al., 1995). From north to south
the major fronts are the Subtropical Front (STF), the Subantarctic Front (SAF), the
Polar Front (PF), the Southern Antarctic Circumpolar Current Front (SACCf), and the
Southern Boundary of the ACC (SBdy). The Subantarctic Zone (SAZ) lies between the
STF and the SAF, the Polar Frontal Zone (PFZ) between the SAF and the PF, and the
Antarctic Zone (AZ) between the PF and the SBdy.

1



1.1. The Southern Ocean and the Global Carbon Cycle 2
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Figure 1.1: Composite map of Moderate Resolution Imaging Spectroradiometer (MODIS)-
Aqua-derived sea-surface temperature (SST, monthly, 9 km) for December 2013 and Jan-
uary 2014. The Southern Ocean fronts for this point in time were determined by maps of
absolute dynamic topography (MADT) from the CLS/AVISO product (Rio et al., 2011;
Swart et al., 2010). The fronts are listed from north to south as follows: the Subtropical
Front (STF), the Subantarctic Front SAF), the Polar Front (PF), Southern Antarctic
Circumpolar Current Front (SACCf), and the Southern Boundary of the ACC (SBdy).

1.1.2 Climate change and carbon cycling

Human activity is responsible for the rapid restructuring of the earth’s atmosphere, con-
tributing to warming from excess carbon dioxide (CO2), along with other greenhouse
gases including water vapour, chlorofluorocarbons, and methane. These trace gases in-
crease the infrared opacity of the atmosphere and regulate the earth’s climate (Feely et al.,
2001). The rate of change of atmospheric CO2 is indicative of the equilibrium that exists
between natural and anthropogenic carbon emissions and various terrestrial and ocean
processes that remove or emit CO2 (Sabine et al., 2004). The release of CO2 from fossil
consumption and other human activities contributes about 7 Pg C (1 Pg = 1 X 1015 g) to
the atmosphere annually, with 3 Pg C accumulating in the atmosphere and the residual
4 Pg C being sequestered by the terrestrial biosphere and the oceans (Feely et al., 2001);
the Southern Ocean alone accounts for 43±3% of the global anthropogenic CO2 up-take
from the atmosphere from 1870 to 1995 (Frölicher et al., 2015), signifying its importance
in buffering the impact of climate change. The ocean acts as a significant reservoir that
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efficiently exchanges carbon with the atmosphere, with CO2 reacting with seawater to
form carbonic acid and carbonate ions. This process, known as ocean acidification, leads
to a decrease in ocean pH, which has important consequences for calcifying organisms
such as coccolithophores (Orr et al., 2005).

There are two fundamental mechanisms responsible for the uptake and storage of
atmospheric CO2 in the ocean, namely the physical solubility and biological carbon pumps
(Figure 1.2). The solubility pump involves the exchange of CO2 at the surface ocean and
export of its chemical species through thermohaline circulation. The biological pump is
a collective property of an intricate phytoplankton-based food web, contingent on the
drawdown of CO2 by phytoplankton photosynthesis and vertical transport of biologically
sequestered carbon to depth.

vivorship and seed mass over two generations.
Biomass was almost always greater in the

first-generation offspring of crosses involv-
ing foreign material, but declined in the 
second generation. Mortality was higher in
both generations. Seed weight, like biomass,
was generally higher in the first generation
and lower in the second generation of foreign
crosses. So it seems that, in the long term, the
introduction of foreign genes into these
weed populations is likely to make them less
fit — that is, less able to survive and repro-
duce effectively. Relative reductions in fit-
ness were estimated to be between 8% and
23%. The overall message is that the intro-
duction of genes from distant populations is
likely to do lasting harm to the native weed
flora of an area.

These findings have broader implica-
tions. The introduction of fresh breeding
stock into fragmented and isolated popula-
tions is often seen as a way of increasing
genetic diversity, and has been attempted in
organisms ranging from butterflies to birds2.
The merits of such a policy can vary with the
geographical distance from which intro-
duced material is obtained and with the 
spatial variability in the genetic constitution
of the species concerned. Geographical 
distance might not always correspond to
genetic distance: it will also vary with the
type of organism involved.

The effects of genetic distance have been
tested on a Californian shrub, Lotus scopar-
ius, the deerweed3, using degrees of enzyme
variation as the genetic measure. Deerweed
is a variable shrub of the coastal sage com-
munity of the west coast of North America,
being found in both arid and well-watered
habitats. In an experiment involving 12 
populations, there was only weak correla-
tion between geographical and genetic dis-
tances. But in transplant experiments the
cumulative fitness of plants showed an
inverse relationship to genetic distance. The
closer the relationship is, the more likely 
it is that the individual will survive well in
similar situations. So the introduction of
this shrub should be determined by an
analysis of genetic or ecological similarity
(or both): geographical proximity of a seed
source will not necessarily provide the most
appropriate material for translocation.

A further complication with flowering
plants arises from their different breeding
strategies. The corncockle, for example,
often self-pollinates, so its genetic constitu-
tion is likely to be patchy on a local scale.
Deerweed is pollinated by insects, which
might also restrict the distances over which
outbreeding is possible.

How does this relate to wind-pollinated,
outbreeding plants such as birch, poplar,
alder and elm? A modelling exercise, based
on data concerning the timing of flowering
and its response to climate4, has shown 
that there is little evidence of local genetic

news and views
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Figure 1 The ‘biological pump’ is a collective property of a complex phytoplankton-based food web.
Together with the ‘solubility pump’ (right), which is driven by chemical and physical processes, it
maintains a sharp gradient of CO2 between the atmosphere and the deep oceans where 38!1018 g of
carbon is stored. Using sunlight for energy and dissolved inorganic nutrients, phytoplankton convert
CO2 to organic carbon, which forms the base of the marine food web. As the carbon passes through
consumers in surface waters, most of it is converted back to CO2 and released to the atmosphere. But
some finds its way to the deep ocean where it is remineralized back to CO2 by bacteria. The net result
is transport of CO2 from the atmosphere to the deep ocean, where it stays, on average, for roughly
1,000 years. The food web’s structure and the relative abundance of species influences how much CO2

will be pumped to the deep ocean. This structure is dictated largely by the availability of inorganic
nutrients such as nitrogen, phosphorus, silicon and iron. Iron is the main limiting nutrient in the
Southern Ocean, which is why the SOIREE experiment1–3 was conducted there. (Figure modified from
a graphic by Z. Johnson.)

variation in these and other tree species
across Europe. The production of large
amounts of pollen and the potential for 
distant dispersal in these species ensures
rapid gene flow and little opportunity 
for local isolation and adaptation. In such 
outbreeding species, one could argue, the
problems of selecting appropriate stock for
sowing or transplanting in new locations are
less serious.

The history of plant and animal intro-
ductions is littered with catastrophes5. These
reports concerning the implications of mov-

ing genes between populations suggests that
caution is needed here also. ■

Peter D. Moore is in the Division of Life Sciences,
King’s College London, Franklin–Wilkins Building,
150 Stamford Street, London SE1 8WA, UK.
e-mail: peter.moore@kcl.ac.uk
1. Keller, M., Kollmann, J. & Edwards, P. J. J. Appl. Ecol. 37,

647–659 (2000).
2. Evans, E. I. et al. Br. Birds 90, 123–138 (1997).
3. Montalvo, A. M. & Ellstrand, N. C. Conserv. Biol. 14, 1034–1045

(2000).
4. Chiune, I., Belmonte, J. & Mignot, A. J. Ecol. 88, 561–570 (2000).
5. Macdonald, I. A. in Biodiversity and Global Change (eds Solbrig,

O. T., van Emden, H. M. & van Oordt, P. G. W. J.) 199–209
(CABI, Wallingford, Oxon, 1994).

Almost half of the photosynthesis on
Earth is carried out by phytoplankton
in the sea. So these tiny cells play a huge

part in the global carbon cycle, and in regu-
lating climate by controlling the amount of

the greenhouse gas CO2 in the atmosphere.
Phytoplankton are the engine of the ‘biologi-
cal pump’ (Fig. 1) that helps maintain a steep
gradient of CO2 between the atmosphere and
deep ocean. It has been suggested that we
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Figure 1.2: Graphic depicting the biological carbon pump (left) and the physical solubility
carbon pump (right), reproduced from Chisholm (2000).

1.1.3 The role of the Southern Ocean in carbon uptake

The Southern Ocean has been described as the earth’s most important anthropogenic
CO2 sink (Frölicher et al., 2015; Mikaloff Fletcher et al., 2006), with model predictions
indicating that it will dominate the ocean’s CO2 exchange over the next few decades (De-
Vries et al., 2017; Orr et al., 2005; Sarmiento et al., 1998). The global oceans have taken
up between 25 and 30% of the anthropogenic CO2 released into the atmosphere, with ∼
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40% of this uptake occurring in the Southern Ocean (Frölicher et al., 2015; Sabine et al.,
2004; Takahashi et al., 2009). The biological pump is believed to account for 10% of this
export (Cox et al., 2000; Siegel et al., 2014), with the physical solubility pump proving to
be of substantial importance (Caldeira and Duffy, 2000; Gruber et al., 2009). The solu-
bility pump is largely influenced by the Southern Ocean overturning circulation. In brief,
Circumpolar Deep Water (CDW) is upwelled, aided by the strong westerly winds that
circulate around Antarctica, and carried northwards across the SAZ by Ekman transport.
This water comprises a lower partial pressure of CO2 than the surrounding atmosphere,
allowing for the uptake of CO2 into the ocean. North of the SAF, surface water is sub-
ducted to depth as Antarctic Intermediate Water (AAIW) and Subantarctic Mode Water
(SAMW) (Rintoul et al., 2001). This process is responsible for exporting ∼1 Gt C yr−1 to
the oceans interior and connects the upper and lower components of the global overturn-
ing circulation (Metzl et al., 1999; Sloyan and Rintoul, 2001a,b). Regarding the biological
carbon pump, phytoplankton production and associated seasonal blooms play an impor-
tant role in biogeochemical cycling, mediating the transport of organic material from the
surface sunlit waters to the ocean’s interior. The export flux when this biomass sinks to
depth contributes to the net annual uptake of atmospheric CO2 (Takahashi et al., 2009).
Remineralisation of particulate organic carbon (POC) to CO2 by bacteria and zooplank-
ton means that only a small fraction of this flux reaches the interior, with the depth
distribution of remineralisation controlling atmospheric CO2 levels (Kwon et al., 2009).
Phytoplankton production has originally been proposed to be the highest in the region
between 30-50◦S (Banse, 1996; Moore and Abbott, 2000), however, as climate change
advances, regions contributing to the greatest carbon export are expected to shift (Hauck
et al., 2015). Le Quéré et al. (2007) demonstrated a reduction in Southern Ocean carbon
uptake between the early 1980s and early 2000s, with Landschützer et al. (2015) show-
ing a strengthening in the rate of carbon uptake south of 35◦S from 2002 to 2012; this
discrepancy may in part be explained by changes in upper-ocean overturning circulation
(DeVries et al., 2017) or through variation in the interannual seasonal cycle of CO2 in
the region (Gregor et al., 2018). Opinion on the fate of future Southern Ocean carbon
uptake remains mixed, with studies reporting either a diminished (Le Quéré et al., 2007;
Lovenduski et al., 2007, 2008; Roy et al., 2003) or increased (DeVries et al., 2017; Hauck
et al., 2015; Landschützer et al., 2015; Munro et al., 2015) carbon carrying capacity.
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1.2 Nutrient Signatures in the Southern Ocean

1.2.1 The High-Nutrient Low-Chlorophyll condition

Nutrient limitation in the ocean is based upon two central theories, namely that nutri-
ent availability can limit rate processes such as photosynthesis and growth (Blackman,
1905), as well as the overall yield of a phytoplankton population (von Liebig, 1841). Red-
field (1934) examined the specific stoichiometry of the fundamental macronutrients within
phytoplankton, from which the fundamental Redfield ratio evolved (C106:N16:P1). The el-
ement present in the lowest quantity relative to the growth requirements of phytoplankton
will become the limiting factor (Redfield, 1958), in accordance with Liebig’s law of the
minimum (von Liebig, 1841).

Oceanic High-Nutrient Low-Chlorophyll (HNLC) regions are characterised primarily
by the persistence of major macronutrients and concomitant low biomass. The Southern
Ocean is the largest HNLC region in the world (Minas and Minas, 1992), and is de-
fined by an abundance of unused macronutrients (Levitus et al., 1993) and unexpectedly
low average phytoplankton biomass that is widely variable in its spatial and temporal
distribution (Arrigo et al., 2008; Moore and Abbott, 2000; Sullivan et al., 1993). The
low phytoplankton standing stocks have been attributed to multiple factors (Boyd, 2002;
Boyd et al., 1999), including the limitation of phytoplankton growth by low iron (Fe)
levels (de Baar et al., 1995; Martin et al., 1990a), light limitation (Mitchell et al., 1991),
and silicate (Si(OH)4) availability (Dugdale et al., 1995; Hutchins et al., 2001; Zentara
and Kamykowski, 1981). In addition, top-down control by zooplankton predation has also
been implicated (Behrenfeld, 2010; Le Quéré et al., 2015; Smetacek et al., 2004).

1.2.2 Iron availability

Numerous early studies proposed that limitation of the micronutrient Fe may be respon-
sible for limiting macronutrient uptake in HNLC regions (Brand, 1991; Brand et al.,
1983; Gran, 1933; Harvey, 1937; Menzel and Ryther, 1961; Ryther and Kramer, 1961). It
wasn’t until the advent of trace metal clean techniques that Fe was confirmed to be the
physiological rate- and biomass-limiting nutrient in HNLC oceans, significantly influenc-
ing regional phytoplankton dynamics (de Baar et al., 1990, 1995; Martin et al., 1990a,b,
1991). In conjunction with these detailed in situ studies, early remote sensing observa-
tions further hinted at Fe availability as a key regulator of phytoplankton abundance and
distribution. Both Comiso et al. (1993) and Sullivan et al. (1993) examined Coastal Zone
Color Scanner (CZCS) ocean colour data for the Southern Ocean and noticed a large
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accumulation of phytoplankton biomass (blooms) occurring in localised regions linked to
sea ice retreat, shallow waters, strong upwelling areas, hydrographic frontal zones, and
coastal/ shelf regions, both relating the locale to replete Fe levels. Furthermore, the role of
Fe-limited biological productivity has been evidenced in various Fe-addition experiments
(Boyd et al., 2001, 2000; Coale et al., 2004; Gervais et al., 2016; Ryan-Keogh et al., 2018),
and observed in naturally Fe-fertilised regions, such as those in the lee of Sub-Antarctic
islands, e.g. South Georgia (Korb et al., 2004), the Crozet Plateau (Pollard and Read,
2001; Poulton et al., 2007; Salter et al., 2007), and the Kerguelen Plateau (Blain et al.,
2007). The Southern Ocean has a diverse range of Fe supply mechanisms, ranging from
aerosol dust and eddy shedding to sea-ice and iceberg meltwaters (Boyd and Ellwood,
2010; Lancelot et al., 2009; Shaw et al., 2011). Boyd et al. (2012) recently mapped Fe
utilisation in the Southern Ocean to better understand the supply-and-demand dynamics
that govern the region; all sectors of the Southern Ocean displayed small inter-annual
variability in Fe utilisation, with the Atlantic sector displaying the most, largely due to
variation in the high latitudes.

1.3 Phytoplankton

1.3.1 Background

Coined in 1897, the term phytoplankton transpires from Greek origin, comprising the
words phyton (plant) and planktos (wanderer or drifter) (Falkowski and Raven, 2007).
Phytoplankton are a diverse group of aquatic photoautotrophs, that essentially use sun-
light and the chromophoric pigment chlorophyll to convert CO2 to carbohydrates through
a process known as photosynthesis. While phytoplankton account for less than 1% of
the world’s photosynthetic biomass, they are accountable for ∼50% of annual global net
primary production (Field et al., 1998). There are ∼25 000 morphologically distinct
types of phytoplankton, arranged into eight distinct phyla that span nine orders of mag-
nitude in cell size (Falkowski et al., 2004; Finkel et al., 2010; Sieburth et al., 1978). The
phyla Cyanophyta is composed of the earliest oxygenic photosynthetic organisms, the
Cyanobacteria, while the others comprise more recently evolved eukaryotes. The largest
and most prominent phytoplankton are represented by the phyla Bacillariophyta (di-
atoms), Dinophyta (dinoflagellates), and Haptophyta (golden-brown flagellates). Smaller
phytoplankton are typically represented by picoeukaryotes and the prokaryotic classes of
Cyanophyceae (cyanobacteria) and Prochlorophyceae (prochlorophytes). These different
phytoplankton groups are typically well suited to the light and nutrient conditions of their
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surrounding environments (Falkowski et al., 2004).
Phytoplankton cell size and elemental stoichiometry impose fundamental constraints

on growth rates, food web structure, and the biogeochemical cycling of carbon (Finkel
et al., 2010; Moore et al., 2013). Exogenous nitrates are consumed by large phytoplank-
ton (microphytoplankton), which contribute to new production (Goldman, 1993), while
regenerated forms of nitrogen, such as ammonia and urea, are the likely source for small
phytoplankton (nano- and picoplankton). On the basis of the size of the primary produc-
ers, two types of food web pathways can be resolved (Legendre and Rassoulzadegan, 1995),
namely the herbivorous food web, based on large phytoplankton, herbivorous zooplankton
and fish, and the microbial food web, consisting of small phytoplankton, heterotrophic
bacteria and protozoa. When large phytoplankton and the herbivorous food chain dom-
inates there is an efficient export of particulate organic matter to depth, whereas the
microbial chain, comprising recycling and many more steps in the food chain, leads to the
weak export of organic materials (Michaels and Silver, 1988), negatively influencing the
biological carbon pump.

1.3.2 Determining species composition of natural assemblages

Numerous techniques exist to discern phytoplankton species within a mixed population;
these include both remote sensing approaches (e.g. Brewin et al. (2011); Moisan et al.
(2013)) and in situ methods, such as microscopy (e.g. Patil et al. (2013)), flow cytom-
etry (e.g. Hutchins et al. (2001)), genetic assessments (e.g. Moon-van der Staay et al.
(2000)), bio-optical investigations (e.g. Organelli et al. (2017)), and pigment analysis
through High-Performance Liquid Chromatography (HPLC) (e.g. Zapata et al. (2004)).
All methods have their pros and cons; while microscopy allows for identification of certain
taxa down to the genus and species level, it is a time consuming process with questionable
sample preservation techniques (Gieskes and Kraay, 1983; Modigh and Castaldo, 2005;
Stoecker et al., 1994). The development of species-specific genetic markers has proven
useful (Moon-van der Staay et al., 2000), however these highly specific probes will only
identify their target species, excluding additional community members. Flow cytometry
has numerous applications, yet is best used in conjunction with complementary techniques
when examining assemblage composition (Veldhuis and Kraay, 2000). The ideal approach
to determining species composition would be using a combination of available techniques
(Gall et al., 2001). Isolating specific phytoplankton pigments through HPLC and using
signature diagnostic pigments as taxonomic markers is perhaps the most time-effective
and reliable method for determining the relative contribution of a species to a mixed
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assemblage. The amount of different pigments identified through HPLC is extensive, al-
lowing for the implementation of computational algorithms to effectively derive species
present (Mackey et al., 1996). However, the reliability of such data is dependant upon
the quality of HPLC sample retrieval and processing.

In the late 1980s and early 1990s, there were numerous attempts to estimate the
abundances of various phytoplankton classes quantitatively from marker pigment concen-
trations (Claustre, 1994; Everitt et al., 1990; Gieskes and Kraay, 1986; Gieskes et al., 1988;
Letelier et al., 1993). Mackey et al. (1996) developed a computation program to calculate
phytoplankton class abundances from HPLC-derived chlorophyll and carotenoid pigments.
The program uses factor analysis and a steepest decent algorithm to establish the optimal
fit to the data based on a preliminary estimate of the pigment ratios for the classes to
be determined. The program is called CHEMTAX (CHEMical TAXonomy) and has suc-
cessfully been used in multiple Southern Ocean studies with satisfactory results (Gibberd
et al., 2013; Kozlowski et al., 2011; Mendes et al., 2012; Rozema et al., 2017; Ryan-Keogh
et al., 2018, 2017b; Wright et al., 2010; Wulff and Wängberg, 2004). CHEMTAX re-
sults have correlated strongly with those from microscopy and in some instances revealed
the presence of groups not detected by other more traditional enumeration techniques,
for example cryptophytes (Wright et al., 1996) and Phaeocystis (Kozlowski et al., 2011).
Primary concerns centre around the use of non-unique pigment markers (Zapata et al.,
2004) and potential fluctuations of pigment ratios both at a species and a cellular level
to various physiological stressors (DiTullio et al., 2007; Goericke and Montoya, 1998). In
addition, there have been reports of CHEMTAX underestimating cyanobacteria popula-
tions (Havskum et al., 2004), however, prior knowledge of potential populations within the
sample region will reduce such under-representations (Irigoien et al., 2004). CHEMTAX
is considered appropriate for regions of low pigment concentrations and demonstrates
a good overall performance within the Atlantic Southern Ocean (Gibberd et al., 2013;
Mendes et al., 2012; Ryan-Keogh et al., 2018, 2017b).

Another approach to population deconstruction was devised by Vidussi et al. (2001),
who used diagnostic pigments as size class markers of phytoplankton groups. Vidussi
et al. (2001) had a large data set (804 stations) and sought to condense the information
contained within the full suite of available pigments, with the objective of identifying tax-
onomic composition through the use of a minimal set of marker pigments. Seven suitable
pigments were selected, allowing for the extraction of relevant, comparable information,
whilst emphasising the importance of phytoplankton size structure over community com-
position (Table 1.1).
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Table 1.1: Diagnostic pigments used as biomarkers and their respective taxonomic sig-
nificance, reproduced from Vidussi et al. (2001). The taxonomic significance of pigments
to the following taxa include cyanobacteria (cyano.), prochlorophytes (prochloro.), green
flagellates (green flag.), chromophytes (chromo.), nanoflagellates (nanoflag.), crytophtes,
diatoms, and dinoflagellates. The Chl-aZeu: PZeu ratio refers to the chl-a content relative
to the seven DPs, vertically integrated across the euphotic depth, as per Uitz et al. (2006).

Pigments Abbr. Taxonomic significance Size (µm) Chl-aZeu: PZeu
Zeaxanthin Zea cyano. & prochloro. < 2 0.86±0.09
Chl-b + Dv-Chl-b TChl-b green flag. & prochloro. < 2 1.01±0.10
19’hexanoyloxyfucoxanthin 19’HF chromo. & nanoflag. 2- 20 1.27±0.02
19’butanoyloxyfucoxanthin 19’BF chromo. & nanoflag. 2- 20 0.35±0.25
Alloxanthin Allo cryptophytes 2- 20 0.6±0.16
Fucoxanthin Fuco diatoms > 20 1.41±0.02
Peridinin Peri dinoflagellates > 20 1.41±0.10

The size classes are based on the classification of Sieburth et al. (1978), i.e. picophy-
toplankton are between 0 and 2 µm, nanophytoplankton are between 2 and 20 µm, and
microphytoplankton are between 20 and 200 µm. One limitation of the DP approach is
that the pigment grouping may not strictly reflect the true size of phytoplankton popu-
lations; this is due to the fact that some chlorophylls and carotenoids are shared by algal
classes, to the potential presence of certain phytoplankton group spanning more than one
size class and that pigment composition and ratios are affected by certain environmental
conditions (DiTullio et al., 2007, 2003). Despite these limitations, the pigment-derived
indices are useful tools to extract ecologically relevant information from pigment records
across a variety of oceanic environments (Babin et al., 2003). Gieskes et al. (1988) carried
out a multiple regression analysis of chl-a concentration ([chl-a]) and the concentration
of key pigments, with the partial slopes of their analysis providing the best estimates of
chl-a to DP ratios. Uitz et al. (2006) combined the multiple regression approach and the
three size class groupings proposed by Vidussi et al. (2001). The group performed multi-
ple regression analysis on 2419 samples, between the chl-a content and the seven marker
pigments content, over a vertically integrated euphotic depth. This regression was found
to be highly significant (p < 0.001), with the coefficients representing the best estimates
of the seven ratios listed in Table 1.1 (see Chapter 2, Section 2.2.3 for equations).

1.3.3 Phytoplankton distribution across Southern Ocean
provinces

Both numerical models (Hauck et al., 2015; Sarmiento et al., 2004; Schlitzer, 2002) and
remote sensing observations (Arrigo et al., 2008; Behrenfeld and Falkowski, 1997; Moore
and Abbott, 2000) have highlighted the complex spatial and temporal distribution of
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phytoplankton in the Southern Ocean. Factors controlling phytoplankton biomass, dis-
tribution, and community structure in the Southern Ocean include the light environment
(Alderkamp et al., 2013; Arrigo et al., 2010; Helbling et al., 1996; Kropuenske et al., 2009;
van de Poll et al., 2009, 2005), macronutrient availability (Closset et al., 2014; Dugdale
et al., 1995; Redfield, 1958; Timmermans et al., 2004), Fe availability (Boyd and Abra-
ham, 2001; Martin et al., 1991; Russo et al., 2015; Sosik and Olson, 2002; Strzepek et al.,
2011), zooplankton grazing (Banse, 1994; Le Quéré et al., 2015; Smetacek et al., 2004),
the seasonal cycle (Llort et al., 2015; Ryan-Keogh et al., 2018; Thomalla et al., 2011), as
well as certain hydrographic feature e.g. wind and temperature (Patil et al., 2013), verti-
cal mixing (Fauchereau et al., 2011; Llort et al., 2015; Sverdrup, 1953), storms (Carranza
and Gille, 2015; Nicholson et al., 2016), and eddies (du Plessis et al., 2017; Swart et al.,
2015). It is likely that not just one factor is responsible for phytoplankton distribution
in the Southern Ocean, but rather a dynamic mix with different combinations operating
over space and time (Boyd et al., 2001, 1999; Cassar et al., 2011; Hickman et al., 2010;
Hutchins et al., 2001; Russo et al., 2015; Strzepek et al., 2012). In the austral winter,
across the Southern Ocean, light is considered to be the limiting factor of phytoplankton
growth, with increased light limitation due to geometrically thicker cloud systems (Haynes
et al., 2011) and deep mixed layers caused by high rates of convective overturning (de
Boyer Montégut et al., 2004). The austral summer is more complex, with zonal variability
driving phytoplankton production, biomass, and species composition.

A simplified schematic showing a summary of the broad distribution of Southern Ocean
phytoplankton across different zones is shown in Fig. 1.3.

39°S 57°S 52°S 50°S 45°S 

STF SAF PF SACCf SBdy Antarctica   

70°S 30°S 

e.g.  
cyanobacteria 

silicate & iron silicate, iron, & light silicate & nitrate 

e.g. 
coccolithophores 

e.g.  
diatoms 

e.g.  
diatoms, Phaeocycstis, & cryptophytes 

STZ SAZ PFZ AZ AZ CZ 

N-STF 

Figure 1.3: The zonal separation of Southern Ocean phytoplankton. The factors listed
along the top of the zones are considered limiting in their respective regions. Examples of
species known to populate the different zones are listed along the bottom. All latitudes
are approximate values. N-STF: Northern-Subtropical Front; STF: Subtropical Front;
SAF: Subantarctic Front; PF: Polar Front; SACCf: Southern Antarctic Circumpolar
Current Front; SBdy: Southern Boundary of the ACC; SAZ: Subantarctic Zone; PFZ:
Polar Frontal Zone; AZ: Antarctic Zone; CZ: Continental Zone.
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1.3.3.1 The Subtropical Zone

The STZ, located north of the STF, is typically considered an oligotrophic region, i.e.
low levels of macronutrients (Chever et al., 2010). Cyanobacteria sub-types Prochloro-
coccus and Synechoccocus have been observed in the STZ, SAZ, and extending, in low
abundance, to the Antarctic continent (Wilkins et al., 2013). Cyanobacterial abundances
in the Southern Ocean decrease over four orders of magnitude between latitudes 45◦S and
60◦S (Marchant et al., 1987). Prochlorococcus are present from the surface to depth (∼150
m) in the open ocean between 40◦N and 40◦S, with the population being latitudinally lim-
ited to warmer waters (Johnson et al., 2006). While Prochlorococcus has been observed in
small amounts in the STZ as far south as 42◦S (Gibberd et al., 2013), they have seldom
been detected south of the STF in the Indian (Fouilland et al., 1999) and Atlantic sectors
(Doolittle et al., 2008) of the Southern Ocean, and are believed to be absent from polar
waters (Partensky et al., 1999b). Synechoccocus exhibit a shallower vertical distribution
than Prochloroccocus, but they are more wide spread, covering a larger geographic and
thermal area, including high-nutrient waters and occasionally reaching polar latitudes
(Letelier and Karl, 1989; Marchant et al., 1987; Partensky et al., 1999a). The photosyn-
thetic pigments of most cyanobacteria includes chl-a, carotenoids, and phycobiliproteins,
including phycocyanin (PC), allophycocyanin (APC), and phycoerythrin (PE). Synechoc-
cocus are easily recognisable through fluorescence techniques due to the intense orange
fluorescence emitted by PE under blue light (Letelier and Karl, 1989; Olson et al., 1988).
The smaller Prochloroccocus uniquely comprise divinyl derivatives of chl-a and b, and
contain low or absent amounts of PE, PC, and APC (Hess et al., 1996).

1.3.3.2 The Subantarctic Zone

In the SAZ, irradiance levels, through alteration of phytoplankton Fe requirements, is
a key determinant of phytoplankton growth rate, when Si(OH)4 is non-limiting (Boyd
et al., 2001). While concentrations of nitrate (NO−3 ) are considered replete in the South-
ern Ocean (∼25 µM, (Dafner and Mordasova, 1994; Tréguer and Jacques, 1992)), dissolved
Si(OH)4 concentrations are typically low (1-15 µM) north of the PFZ (Coale et al., 2004;
Franck et al., 2000; Tréguer and Jacques, 1992). As such, spring and summer phytoplank-
ton populations in the SAZ are regulated by an interplay of Si(OH)4, Fe, and light levels
(Boyd et al., 2001, 1999; Hoffmann et al., 2008; Hutchins et al., 2001). As the mean irradi-
ance increases over the growing season, both Si(OH)4 and Fe concentrations are depleted
and levels become insufficient to meet biological demand, resulting in growth limitation by
Fe, Si, or Fe/ Si(OH)4 (Boyd et al., 1999; Martin et al., 2013; Ryan-Keogh et al., 2018).
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Silicate limitation is known to result in species succession from large, heavily silicified
diatoms to other species and/ or smaller taxa such as coccolithophores, dinoflagellates,
nanoflagellates, cyanobacteria, and small or lightly silicified diatoms (Balch et al., 2016;
de Salas et al., 2011; Odate and Fukuchi, 1995; Salter et al., 2007). Species succession
from diatoms to haptophytes has also been observed under Fe-limiting conditions in the
SAZ (Ryan-Keogh et al., 2018). In the summer, the mLD plays a vital role in regulating
light and nutrient supply to resident phytoplankton (Joubert et al., 2014; Swart et al.,
2015), with mesoscale features (du Plessis et al., 2017) and storms (Carranza and Gille,
2015; Nicholson et al., 2016) facilitating mixing regimes.

A representative species of SAZ resident phytoplankton include the coccolithophores.
These phytoplankton are characterised by calcium carbonate (CaCO3)-containing, exter-
nal armoured plates, known as coccoliths. While belonging to a single functional group of
phytoplankton, i.e. calcifying phytoplankton, they populate numerous hydrographic and
light conditions (Balch et al., 2011), and have been identified in the higher-latitude regions
of both hemispheres (Brown and Yoder, 1994; Buma et al., 1992). The coccolithophore
Emiliania huxleyi is responsible for blooms occurring within a few weeks of summer sol-
stice in the respective hemispheres (Balch, 2004). Blooms, identified from various remote
sensing platforms (Moore et al., 2012), are known to occur over consecutive summers in
the SAZ (Balch et al., 2005), with bloom locations consistent across the Atlantic (Balch
et al., 2016; Balch and Utgoff, 2009; Gibberd et al., 2013), Pacific (Gravalosa et al., 2008),
Indian (Mohan et al., 2008) and Australian (Cubillos et al., 2007) sectors of the Southern
Ocean. The southern boundary of coccolithophore extent, across the Southern Ocean, is
roughly considered to be the PFZ (Bathmann et al., 1997; Cubillos et al., 2007; Gravalosa
et al., 2008; Mohan et al., 2008).

1.3.3.3 The Polar Frontal Zone

The PFZ forms an important transitional boundary where coccolithophores typically dom-
inate to the north and diatoms to the south (Honjo, 2004; Tremblay et al., 2002; Trull
et al., 2001a,b). Phytoplankton dynamics in the PFZ are predominantly influenced by
light, Si(OH)4, and Fe levels (Boyd et al., 2001; Cassar et al., 2011; Franck et al., 2000).
Franck et al. (2000) demonstrated the addition of Fe had little effect on Si(OH)4 uptake
rates in low-Si(OH)4 conditions north of the PFZ, while it significantly increased Si(OH)4

uptakes rates in the high-Si(OH)4 environment south of the PFZ. The high Si(OH)4 con-
centrations that typically prevail south of the PF create a favourable environment for
diatoms (Coale et al., 2004), which require Si(OH)4 to synthesise their siliceous frustules,
and are thus responsible for Si(OH)4 uptake. In the Atlantic sector, blooms of large di-
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atoms develop in the PFZ, during late spring (Bathmann et al., 1997) and summer (Trem-
blay et al., 2002), leading to a depletion in Si(OH)4 (Le Moigne et al., 2013; Quéguiner
and Brzezinski, 2002) and subsequent reduction in biogenic silica export (DeMaster, 1981;
Le Moigne et al., 2013). Diatoms dominate primary production in the ACC, particularly
south of the PF where their productivity results in a third of the global marine silica
production (Buesseler et al., 2001; Pondaven et al., 2000). Along with Si(OH)4 concen-
trations regulating the local diatom populations, light and Fe availability are critical in
mediating carbon export from the region (Cassar et al., 2011), with diatoms displaying
high inter-species variability in response to varying Fe, Si(OH)4 and light regimes (Hoff-
mann et al., 2008; Strzepek et al., 2012; Sunda and Huntsman, 1995; Timmermans et al.,
2001). In the summer, mLDs are deepest in the PFZ (> 70 m) and shallowest south of
the SACCf (30 m) (Trull et al., 2001b), with wind stress mixing in the PFZ leading to
persistently deep mLDs and fluctuating light and Fe levels (Chever et al., 2010; Klunder
et al., 2011).

1.3.3.4 The Antarctic Zone

The Antarctic Zone (AZ) stretches approximately from south of the PF to the SBdy (Pol-
lard et al., 2002). There may be overlap with the Permanently Open Ocean Zone (POOZ),
including subsections such as the Seasonal Ice Zone (SIZ) and MIZ. The POOZ forms a
natural barrier between the temperate conditions to the north (5-10◦C) and the cold
Antarctic waters to the south (< 2◦C) (Pollard et al., 2002; Sokolov and Rintoul, 2009).
Phytoplankton populations in the AZ are mixed and often show a seasonal succession of
species (Arrigo, 1999). Tremblay et al. (2002) showed that during mid-December, in the
Atlantic sector of the Southern Ocean, that the total chl-a concentration in the POOZ
and SIZ was low, with the contribution of pico-, nano-, and microplankton averaging at
18%, 44%, and 38% of the total, respectively. By mid-January chl-a levels increased in the
southern SIZ, which coincided with a mixed diatom- Phaeocystis bloom. Microplankton
comprised 63% of total chl-a, followed by nanoplankton (26%), and picoplankton (11%).

The MIZ is the ice-covered portion of (sea) ice that seasonally advances and retreats,
and is affected by metocean processes, i.e. waves. It has been estimated that MIZ
blooms account for 15% of net primary production in the Southern Ocean, with a pro-
posed two-thirds occurring under partial ice coverage (Taylor et al., 2013), indicating that
remote-sensing estimates might underestimate their contribution. The stability of a shal-
low pycnocline, associated with melting sea ice, is key in the development of phytoplank-
ton blooms in the MIZ, relating specifically to PAR availability associated with shallow
mLDs (Taylor et al., 2013). Iron supply to the ocean surface is typically dominated glob-
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ally by atmospheric deposition (Mahowald et al., 2005), however, in the Southern Ocean
this component is small, so that interactions between the ACC and bottom topography,
upwelling, vertical diffusion, and melting of ice and icebergs provide comparatively im-
portant sources of bioavailable Fe (Fung et al., 2000; Holm-Hansen et al., 2005; Law et al.,
2003; Sedwick and Ditullio, 1997; Shaw et al., 2011). Some of the interannual variability
in the region relate ice coverage to anomalous forcings associated with El Niño-Southern
Oscillation (ENSO) and the Southern Annular Mode (SAM), which are major modes of
coupled climatic variability that impact this part of the Southern Ocean (DeVries et al.,
2017; Liu et al., 2004; Stammerjohn et al., 2008). The termination of blooms in this
region coincide with a reduction in partial sea ice coverage and a deepening of the mLD
in response to wind-driven mixing (Fitch and Moore, 2007).

Examples of resident phytoplankton include Phaeocystis (Prymnesiophyceae)
(Alderkamp et al., 2013; Arrigo, 1999; Arrigo et al., 2010) and cryptophytes (Crypto-
phyceae) (Bathmann et al., 1997; Becquevort et al., 1992; Buma et al., 1992). Phaeocystis
exhibit a heteromorphic life cycle, alternating between free-living, flagellated zoospores
and a gelatinous aggregation of non-motile, colonial cells (Rousseau et al., 1994). These
phytoplankton act as an important intermediary in carbon (DiTullio et al., 2000) and
sulphur (Koga et al., 2014) flux between the ocean and atmosphere. Phaeocystis produce
dimethylsulfoniopropionate (DMSP) before enzymatically breaking it down into dimethyl-
sulfide (DMS) and acrylate (Stefels and Van Boekel, 1993). Aside from its role in cloud
formation (Wang et al., 2018), DMS is known to impact the chemical quality of the at-
mosphere and global climate regulation (Gondwe et al., 2003). Phaeocystis and diatoms
often compete for ice-edge bloom dominance in the Southern Ocean, with irradiance levels
and vertical stability often driving the population composition (Alderkamp et al., 2013;
Arrigo, 1999; Kropuenske et al., 2010; Moisan and Mitchell, 2001; van de Poll et al., 2011).
In the Ross Sea, for example, Arrigo et al. (2010) observed that diatoms dominated strat-
ified waters and Phaeocystis antarctica dominated regions of deep mixing. Furthermore,
the seasonal depletion of Fe in this region is thought to play a role in the succession
from Phaeocystis to diatoms, the latter species being more adept to dealing with low Fe
(Boyd, 2002; Ryan-Keogh et al., 2017a; Strzepek et al., 2012). In the MIZ, during the
summer months, diatom blooms are often succeeded by cryptophyte dominance (Buma
et al., 1992; Garibotti et al., 2005; Jacques and Panouse, 1991; Rozema et al., 2017). The
grazing pressure on the diatoms and the little appetance of the herbivorous zooplankton
for cryptophytes plays strongly in their favour (Alder et al., 1989). Cryptophytes populate
waters as far north as the SAZ, but are typically found south of the PF and in the MIZ
(Buma et al., 1992; Jacques and Panouse, 1991; Mendes et al., 2013; Wright et al., 1996;
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Wulff and Wängberg, 2004). They are believed to populate offshore regions, following the
summer sea-ice retreat towards the Antarctic continent (Garibotti et al., 2005). Cryp-
tophytes are typically identified through the presence of their signature photoprotective
pigment, alloxanthin (Jeffrey and Vesk, 1997). In terms of light harvesting they comprise
both chl-a/c and the phycobilipigment PE (absmax = 545-567 nm) and/ or PC (absmax
= 585-620 nm) (Doust et al., 2004, 2006).

1.4 Photosynthesis and Related Photochemistry

1.4.1 Intracellular pigment arrangement

Photosynthetic pigments, responsible for efficiently capturing light energy between 400
and 700 nm, consist of three chemically distinguished classes of molecules including the
chlorophylls, the carotenoids, and the biliproteins. All photosynthetic plants contain
chlorophylls and carotenoids, with red algae, Cyanophyta, and Chryptophyta additionally
containing biliproteins. The light reactions of photosynthesis take place in two character-
istic pigment-protein/ electron carrier systems, known as photosystem (PS) I and II. Each
PS is equipped with a network of light harvesting pigment-proteins that function purely
to extend the range of light collection for photosynthesis, funnelling received radiation to
the reaction centre core. These pigments are referred to as antennae pigments, which,
when associated with PSI and II collectively form light harvesting complexes (LHCs).
These LHCs are arranged within the thylakoid membranes, either free-standing in the
cytoplasm (Cyanophyta) or bound within chloroplasts (Fig. 1.4).

1.4.2 Photoacclimation and photoadaptation

Phytoplankton are constantly adjusting their photosynthetic apparatus to the surrounding
light environment, optimising the capture of photons while mitigating potential photo-
damage. Photoacclimation describes the phenotypic response of phytoplankton to changes
in irradiance and can be measured in the photosynthetic physiology or biochemistry of a
given species in response to growth at a range of light intensities (Falkowski and LaRoche,
1991). Photoacclimation involves compensatory changes in certain components of the
photosynthetic apparatus, for example, under increased irradiation there is typically a
decrease in photosynthetic pigment across all taxa (MacIntyre et al., 2002). Photoadap-
tation describes the genotypic response of phytoplankton to irradiance that has developed
during evolution (Falkowski and LaRoche, 1991). Photoadaptation may be examined
by observing differences in the photosynthetic physiology or biochemistry of different
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taxa grown under identical light environments. Two basic strategies for photoacclima-
tion are typically observed, namely a change in the absorption cross-section area of PSII
(σPSII) and a change in the number of PSII reaction centres (Falkowski and Kolber, 1993;
Falkowski and Owens, 1980; Moore et al., 2006; Suggett et al., 2009). Changes in the num-
ber of PSII reaction centres changes the Fe requirements of the phytoplankton (Section
1.4.4.2), while changes in σPSII leads to an adjustment in the amount of chlorophyll-to-
carbon (Chl:Cphyto) present in their cells, with no change to Fe requirement. Hence, in
Fe-limiting conditions there is a preference for phytoplankton to photoacclimate to low
light conditions by adjusting σPSII . Under low irradiance phytoplankton increase the
amount of chl-a to enhance energy capture, while under high irradiance they decrease
their chl-a content to balance energy availability with downstream carbon fixation rates
(Halsey and Jones, 2015). While this quantifiable shift in Chl:Cphyto may be used to
study the light environment, the species composition must be taken in to consideration,
as, for example, diatoms that are well adapted to fluctuating light environments display
limited flexibility in their Chl:Cphyto, rather investing energy into the upregulation of their
photoprotection mechanisms (Talmy et al., 2013).

1.4.3 Chloroplast ultrastructure

Taxonomic variability in fluorescence-based parameters reflects differences in antennae
size, arrangement, and functioning in particular regions of the photosynthetically active
spectrum (Suggett et al., 2009); the site of these light-driven dynamics are housed within
chloroplasts. In eukaryotic plants, photosynthesis occurs within these cellular organelles,
which are the best known member of the plastids family (Lodish, 2004). Chloroplasts are
double-membraned organelles, which contain the green pigment chlorophyll. The outer
membrane and inner membrane are separated by an intervening intermembrane space.
The inner membrane surrounds the stroma, which is the site of carbohydrate synthesis.
Chloroplasts contain a third membrane known as the thylakoid membrane. The thylakoid
membrane folds up upon itself to enclose the thylakoid lumen, further forming flattened
sacs, or grana, linked together by stromal lamellae (all components labelled in Figure 1.4).
This distinct lipid bilayer is the site of photosynthesis and is dynamic in nature, with
some species known to structurally re-organise their membranes in response to various
light conditions (Moisan et al., 2006).
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Figure 1.4: Simplified diagram of a chloroplast.

1.4.4 Photosynthesis

Phytoplankton typically perform as oxygenic photoautotrophs, converting sunlight into
chemical energy through a complex series of reactions that essentially utilise H2O and CO2

to produce O2 and simple sugars. Chl-a is used to catalyse the photooxidation of H2O,
generating molecular O2. This process serves as one half of oxygenic photosynthesis,
termed the light reactions (Eq. 1.1). The second half, the so-called dark reactions or
Calvin-Benson-Bassham cycle, do not require light to proceed and involve the reduction
of CO2 to simple carbohydrates (Eq. 1.2).

Light reaction:

H2O + NADP sunlight + chlorophyll−−−−−−−−−−−−−−−−−−→ O2 + NADPH + H+ (1.1)

Dark reaction:

CO2 + NADPH + H+ Rubisco−−−−−−→ [CH2O]n + H2O + NADP (1.2)

1.4.4.1 Linear electron transport

Phytoplankton regulate the linear electron transport (LET) from water to the reductant
nicotinamide adenine dinucleotide phosphate (NADPH) through PSI and PSII. Central
to both photosystems are specialised chlorophyll dimers (P700 in PSI and P680 in PSII),
surrounded by an intricate network of pigment-protein complexes forming an energetically
efficient LHC. The coupling of these photosystems in a LET chain forms the basis of the
Z-scheme, first proposed by Hill and Bendall (1960), which depicts the system in terms
of electropotential energy of the various components (Fig. 1.5).
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Figure 1.5: The z-scheme of linear electron transport in photosynthesis. Photons of light
are received by the chl-a dimer P680 in PSII, resulting in excitation to a higher energy
level (P680*). Water is electron donor for this reaction, undergoing photolysis in the
oxygen evolving centre (OEC) on the donor side of PSII. Pheophytin (Phaeo) is the pri-
mary electron acceptor molecule of P680*, transporting electrons to plastoquinone-a (Qa),
which subsequently donates to plastoquinone-b (Qb), which in turn passes electrons into
the plastoquinone pool (PQ) before reaching cytochrome b6f (Cyt b6f). Electrons are
then shuttled to oxidised P700 molecules via plastocyanin (PC) on the donor side of PSI.
Light received by P700 elevates the molecule (P700*), with chlorophyll-A0 serving as the
primary electron acceptor. Electrons move from A0 to a phylloquinone, A1, and subse-
quently to iron-sulphur (FeS)-containing complexes FX , FA, and FB. The FB complex
reduces ferredoxin (Fd), which in turn reduces NADP+ to NADPH.
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Photosystem II is a plastoquinone:water oxidoreductase and a key regulator of LET
(Zavafer et al., 2015). When P680 receives sufficient excitation energy, be it directly
from sunlight or through the resonance transfer of electrons from antennae pigments, it
transfers this energy to the primary-electron acceptor molecule, phaeophytin, through a
process known as photoinduced charge separation. Water, the principal electron donor for
this process, undergoes photolysis to yield O2 and four protons (H+). This process involves
the oxygen evolving complex (OEC), located on the donor side of PSII and comprises two
redox active tyrosine residues, YZ and YD (Styring et al., 2012), a metalloenzyme core
cluster of Mn4Ca (Davis and Pushkar, 2015), and the primary electron accepting quinone
Qa (Zavafer et al., 2015). The electron received by phaeophytin is subsequently donated
to Qa before being transferred to another mobile quinone, Qb, at the acceptor side of
PSII. Once Qb is fully reduced it is protonated from the stroma and released from PSII as
plastoquinol (PQH2) to bind with cytochrome (Cyt) b6f . From Cyt b6f the protons are
released into the thylakoid lumen and the electrons are shuttled via a copper-containing
plastocyanin to PSI (Hope, 2000). The chlorophyll dimer in the reaction centre of PSI
(P700) must be oxidised prior to accepting the electrons from plastocyanin. This occurs
during a second light reaction in which the absorption of a photon by P700 leads to
the transfer of an electron to the PSI’s primary-electron acceptor, chlorophyll-A0. From
chlorophyll-A0 the electron is transferred to phylloquinone A1 (Itoh and Iwaki, 1989). The
secondary electron acceptors are a group of iron-sulphur containing complexes, namely
FX , FA, and FB (Vassiliev et al., 2001). It is ultimately FB that reduces ferredoxin (Fd)
(Vassiliev et al., 2001), the soluble protein that reduces NADP+ to NADPH.

The net outcome of LET, when four photons are used by each photosystem, is one O2,
two NADPHs, and an accumulation of 12 H+ ions in the lumen, the latter of which drives
adenosine triphosphate (ATP) synthase (Junge, 1999) to produce approximately three
ATP molecules (Behrenfeld and Milligan, 2013). Both ATP and NADPH are utilised
during the dark reactions of photosynthesis, as energy and reducing power respectively.
Together with a host of enzymes, including Rubisco (ribulose-1,5-bisphosphate carboxy-
lase/oxygenase), they are used to fix CO2 and convert it to simple sugars to be used in
cellular respiration (Falkowski and Raven, 2007).

1.4.4.2 Iron requirements of the photosynthetic apparatus

Iron is a key trace metal component of various compounds and physiological processes,
and is an irreplaceable piece of the protein puzzle that constitutes the photosynthetic
electron transport chain (Chereskin and Castelfranco, 1982). Nearly every aspect of the
thylakoid electron transport is Fe-dependent, with PSI having the highest Fe-requirement
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(12 atoms), followed by Cyt b6f (5 atoms), and PSII (3-4 atoms) (Behrenfeld and Mil-
ligan, 2013). Low levels of Fe affect physiological responses in natural phytoplankton
assemblages, significantly decreasing their photosynthetic capacity (Cheah et al., 2013;
Chereskin and Castelfranco, 1982). The SAZ and PFZ, two regions characterised as
HNLC, have reported that Fe plays a key role in limiting phytoplankton growth (de Baar
et al., 2005; Martin et al., 1990a), with light modulating the response to Fe supply (Boyd
et al., 2001; Cassar et al., 2011; de Baar et al., 2005). Light modulates the response to
Fe fertilisation (de Baar et al., 2005), partly because Fe demand increases under low light
availability (i.e. Fe-light co-limitation) (Raven, 1990; Strzepek et al., 2012; Strzepek and
Price, 2000). Under low light conditions phytoplankton can maximise photosynthesis by
either increasing the size or the number of their photosynthetic units, the latter leading
to higher requirements due to the increase in Fe-rich PSI reaction centres (Raven, 1990;
Strzepek et al., 2012, 2011; Sunda and Huntsman, 1997).

1.4.5 Chl-a fluorescence quenching

Light absorption results in singlet-state excitation of a chl-a molecule (1Chl∗) which can
return to the ground state through one of several pathways including (1) photochem-
istry, (2) de-excitation through thermal dissipation, (3) re-emission as chl-a fluorescence
or (4) decay via the triplet state (3Chl∗) (Muller et al., 2001) (Fig. 1.6). While the
triplet pathway can be a significant release of excess energy (4-25% of absorbed photons
(Foyer and Harbinson, 1999)), 3Chl∗ can transfer energy to ground-state O2 generating
highly reactive singlet oxygen (1O2). Singlet oxygen, although short-lived, can decay to
other reactive oxygen species that target various macromolecules including DNA, lipids
and proteins (Lesser, 2006). At room temperature, chlorophyll fluorescence is primarily
emitted from PSII and typically at low yields (0.6-3% (Krause and Weis, 1991)). The
amount of energy dissipated as 3Chl∗ and fluorescence vary in proportion to the average
lifetime of 1Chl∗, which is subsequently dependent upon the other de-excitation pathways.
The high efficiency of photochemistry in a low light environment results in a reduction,
or quenching, of fluorescence that is termed photochemical quenching (qP). The thermal
dissipation of excess photon energy in the PSII antennae under high light conditions also
decreases chl-a fluorescence in a process termed non-photochemical quenching (qN). Phy-
toplankton are able to maintain a low steady-state fluorescence yield and 3Chl∗ over a
wide spectrum of light conditions due to these quenching pathways, resulting in limited
production of 1O2 and decreased potential for free radical damage.
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Figure 1.6: The de-excitation pathways of solar stimulated chl-a. When chl-a absorbs
a photon it is elevated to singlet-state chl-a (1Chl∗), and returns to its ground state
through decay via triplet chl-a (3Chl∗), photochemical quenching (qP), non-photochemical
quenching (qN), i.e. heat, or photon re-emission as chl-a fluorescence (flu). Figure adapted
from Muller et al. (2001).

In addition to the linear flow of electrons in oxygenic photosynthesis where electrons
flow from PSII to PSI and NADP+, additional pathways exist, referred to as alterna-
tive electron flow, and serve to dissipate excess excitation energy and balance the ATP/
NADPH demands of the cell (Hughes et al., 2018). These pathways include the cyclic
flow of electrons around PSII and PSI, and the controlled photoreduction of O2 at the
level of the plastoquinone (PQ) pool (chlororespiration) or the PSI electron acceptor side
(Mehler reaction), the latter two processes substituting for CO2 to maintain electron flow
and prevent photoinhibition (Ort and Baker, 2002; Peltier et al., 2010).

1.4.5.1 Alternative electron flow

Cyclic electron flow (CEF) around PSI serves to manufacture additional ATP to main-
tain the correct ATP/ NADPH ration needed for CO2 fixation (Joliot and Joliot, 2002;
Munekage et al., 2004), and CEF around PSII serves as a photoprotective slip mecha-
nism that short-circuits photosynthetic charge separations when the PQ pool is reduced
more rapidly than it can be oxidised (Feikema et al., 2006). The Mehler reaction involves
the photoreduction of O2 to water in PSI, by electrons generated by the photolysis of
water in PSII (Asada, 1999, 2000, 2006; Mehler, 1951). The Mehler reaction effectively
protects against photoinhibition by rapidly reducing the lifespan of photoproduced active
oxygen species through the use of oxygen as an alternative electron acceptor. In addi-
tion to safely dissipating excess excitation energy, a pH gradient is maintained across the
thylakoid membrane driving ATP production (Asada, 2000). Chlororespiration involves
the reduction of the PQ pool by a stromal reductant (NAD(P)H) and the subsequent
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oxidation of the PQ pool through the activity of a plastoquinol terminal oxidase (PTOX)
located upstream of the Cyt b6f complex (Cournac et al., 2000; Peltier and Cournac,
2002). It has been proposed that this alternative cycling serves to alleviate an over-
reduced PQ pool, thus preventing photoinhibition and subsequent photosystem damage.
In addition, under low light or dark conditions, chlororespiration promotes the formation
of a pH gradient across the thylakoid lumen, which is essential in ATP synthesis and the
photoprotective xanthophyll cycle (XC) (Jakob et al., 1999).

1.4.5.2 Non-photochemical quenching (qN)

The non-photochemical quenching of chl-a fluorescence is the term used to describe all
thermal processes involved in the dissipation of excess excitation energy. While the prin-
ciple of qN is the same throughout all phytoplankton, crucial differences exist in its regu-
lation and the mechanisms employed. It encompasses a range of actions that collectively
contribute to the reduction in fluorescence; while numerous qN mechanisms exist, the
three main processes include the energy-dependent formation of a trans-thylakoid proton
gradient (qE), state transitions of photosystem components (qT), and photoinhibition
(qI).

Energy dependent quenching (qE)
The XC in chromophytes, including diatoms, dinoflagellates, and haptophytes, was

first observed in the 1970s (Hager and Stransky, 1970; Stransky and Hager, 1970). It
involves the interconversion of diadinoxanthin (Dd) and diatoxanthin (Dt) in response
to changing light conditions (Eq. 1.3) (Demers et al., 1991; Goss and Lepetit, 2015;
Liaaen-Jensen, 1978). Under high light conditions, Dd is converted to Dt through a
photo-dependent de-epoxidation reaction, trigged by a ∆pH gradient across the thylakoid
membrane (Lavaud and Kroth, 2006). The de-epoxidation of Dd to Dt occurs at a higher
lumenal pH in diatoms than in higher plants, allowing for the accumulation of Dt in the
dark through chlororespiratory electron flow (Grouneva et al., 2009; Jakob et al., 1999,
2001). In the absence of a proton gradient, typically in low light or dark conditions, the
epoxy group is reintroduced to Dt via diatoxanthin epoxidase (DEP).

Diadinoxanthin DEP−−−⇀↽−−−
DDE

Diatoxanthin (1.3)

The conversion of Dd to Dt occurs rapidly, typically on the time scale of seconds to
minutes (Lavaud et al., 2002b; Olaizola et al., 1994; Welschmeyer and Hoepffner, 1986;
Wu et al., 2012; Zhu and Green, 2010), sometimes up to 1 h (Demers et al., 1991), with the



1.4. Photosynthesis and Related Photochemistry 23

feasibility of capturing such a rapid reaction in situ remaining uncertain (Brunet et al.,
1993). Exposure to constant increased growth irradiance leads to increases in both the
Dd and Dt pool, occurring over longer time periods (Casper-Lindley and Björkman, 1998;
Demers et al., 1991; Lavaud et al., 2002b; Meyer et al., 2000; Moisan et al., 1998).

State transitions (qT)
Photosynthetic organisms are continuously acclimating to a changing light environ-

ment and can balance energy input with consumption by reversibly redistributing the
energy between the two photosystems through state transitions (qT). In the green al-
gae Chlamydomonas reinhardtii, a reduction of the PQ pool leads to activation of
the thylakoid-associated serine-threonine kinase (Stt7), which phosphorylates the light-
harvesting complex II (LHCII) (Depège et al., 2003). The phosporylated LHCII is then
translocated from PSII to PSI (state II), in a Cyt b6f -dependent manner (Delosme et al.,
1996). When the photosystems are in a state II arrangement there is a switch from LEF
to CEF around PSI, resulting in oxidation of the PQ pool, and a return to state I (Finazzi
et al., 1999, 2002). C. reinhardtii is a good model organism to study qT, as its transi-
tion from state I to state II is accompanied by a large, detectable drop in fluorescence
(Wollman, 1984). While this reversible chromatic adaptation plays a role in balancing the
light absorption between PSI and PSII in multiple photosynthetic organisms (Bellafiore
et al., 2005), it has yet to be identified in numerous photosynthetic organisms, including
diatoms (Owens, 1986). In addition, qT may not be a strict transition between states;
energy may not be redirected to another photosystem, and one or other photosystem
is simply decoupled to result in high dissipation, creating a high fluorescence state that
impacts the quantum yield.

Photoinihibition (qI)
Photoinhibition (qI) is an unavoidable consequence of oxygenic photosynthesis, a fea-

ture that phytoplankton try to mitigate through alternative electron flow and thermal
quenching mechanisms including qE and qT. In terms of relaxation kinetics in darkness
following a period of illumination, qI occurs on a timescale of hours, distinguishable from
the faster relaxation kinetics of qE (Alderkamp et al., 2013). Damage to the D1 protein
and the loss of functional PSII reaction centres leads to a decrease in photosynthetic ac-
tivity and subsequent drop in NADPH production, limiting antioxidant activity, resulting
in increased ROS and a loss of viability (van de Poll et al., 2006, 2007). Photoinhibi-
tion is reversible, with damaged D1 reaction centre protein degraded and replaced with
D1 synthesised de novo (Hazzard et al., 1997). An active D1 repair cycle is crucial for
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maintaining photosynthetic efficiency and cell viability (van de Poll et al., 2007).

1.4.5.3 Non-photochemical quenching in Southern Ocean phytoplankton

In cyanobacteria, the orange carotenoid protein (OCP), which binds the xanthophyll 3’-
hydroxyechinenone (Kerfeld et al., 2003), is essential for qN (Wilson et al., 2006). This
carotenoid is activated through absorption of blue-green light, which triggers conforma-
tional changes that render OCP activated (Wilson et al., 2008). This activated state of
OCP is able to bind to the phycobilisomes and quench excess excitation energy (Gwizdala
et al., 2011).

Diatoms have hyper-efficient photoprotective responses to fluctuating light environ-
ments and often dominate the phytoplankton community in turbulent conditions (Harris,
1986), where vertical mixing continuously exposes them to changing light levels on time
scales of minutes to days (Lewis et al., 1984). They have adapted to survive long periods
of darkness when carried below the euphotic zone as well as brief periods of full surface
sunlight (Lavaud et al., 2002c). Photoprotection of PSII through dissipation of excess ex-
citation energy and the related XC are of particular importance to diatoms (Lavaud et al.,
2002a), with the xanthophyll pigment concentration relative to chl-a often greater than
in higher plants (Wilhelm, 1990). Non-photochemical quenching in diatoms is very im-
portant under high light conditions, and generally involves three interacting components,
namely (1) the formation of a trans-thylakoid proton gradient during light exposure, (2)
the xanthophyll Dt is synthesised from Dd by DDE in the presence of the formed proton
gradient, and (3) the Lhcx antenna proteins (Goss and Lepetit, 2015). The acidification
of the thylakoid lumen is necessary to activate DDE (Goss et al., 2007), with chlorores-
piration and CEF around PSI responsible for the establishment of a pH gradient under
conditions not conducive to LET (Jakob et al., 2001; Ting and Owens, 1993). Additional
qN mechanisms found in diatoms include the regulation of the PQ redox state (Lep-
etit et al., 2013) and structural rearrangements reminiscent of state transitions (Fujita
and Ohki, 2004; Schaller-Laudel et al., 2015). Certain species attempt to mitigate qI
through CEF around PSII (Feikema et al., 2006) and/ or through an active D1-repair
cycle (Domingues et al., 2012).

P. antarctica is well adapted to low irradiance (Moisan and Mitchell, 1999) and typi-
cally responds by increasing the number of thylakoid membranes per cell (Moisan et al.,
2006). It is also well adapted to a high light environment, reducing thylakoid stacking
(Moisan et al., 2006) and implementing effective qN (Moisan et al., 1998). Moisan et al.
(1998) first described the presence of a rapidly induced Dd-Dt cycle in P. antarctica,
with initial conditions of acclimation determining the size of the xanthophyll pool. How-
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ever, photoprotection in Pheaocystis appears to be inferior to that of diatoms (Alderkamp
et al., 2013; Arrigo et al., 2010; van de Poll et al., 2011). Kropuenske et al. (2010) ob-
served that P. antarctica acclimated to changes in irradiance more rapidly than diatoms,
but were more sensitive to photoinhibition, with diatoms displaying extensive photopro-
tection and low photoinhibition, highlighting their adaptations to mixed and stratified
environments respectively. van de Poll et al. (2011) showed that populations present in
stratified Antarctic coastal waters were dominated by diatoms (∼74%) and P. antarctica
(∼13%), which is largely due to the higher photoprotective: photosynthetic pigment ratio
in diatoms relative to P. antarctica (Alderkamp et al., 2013; Arrigo et al., 2010; van de
Poll et al., 2011).

Cryptophytes are able to elicit both qT-type quenching (Cheregi et al., 2015) and
qE-type quenching (Kana et al., 2012). However, crytophytes do not exhibit a XC nor
contain the photoprotective pigments Dd, Dt, and zeaxanthin (Funk et al., 2011; Kana
et al., 2012). Non-photochemical quenching is reported to occur at the site of the chl-a/c
antennae and not the phycobiliproteins (Kana et al., 2012), and may involve increased
amounts of the photoprotective pigment alloxanthin (Funk et al., 2011). Alloxanthin is
the dedicated marker pigment for cryptophytes (Jeffrey and Vesk, 1997), and exhibits
an absmax at 496 nm (Kana et al., 2009). Under high light conditions the increased
concentration of alloxanthin would lead to increased absorption in the blue part of the
light spectrum, akin to an increased concentration of Dt in phytoplankton that employ a
XC.

1.5 Chlorophyll-a

1.5.1 Chlorophyll-a absorption

Absorption (a(λ)), an inherent optical property (Preisendorfer, 1976), is best described
in terms of its constituent components as in Eq. 1.4, where aw(λ) is absorption by
water, ap(λ) is the total particulate absorption and as(λ) is the absorption by dissolved
material in the water. Light absorption by phytoplankton alone is a complex process
requiring numerous considerations, as summarised by Eq. 1.5 and Eq. 1.6, where aph(λ)
is phytoplankton-specific absorption, ad(λ) is the non-algal, or detrital, absorption, aps(λ)
is absorption by photosynthetic pigments in phytoplankton, and anps(λ) is the absorption
by non-photosynthetic pigments.

a(λ) = aw(λ) + ap(λ) + as(λ) (1.4)
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and
ap(λ) = aph(λ) + ad(λ), (1.5)

where
aph(λ) = aps(λ) + anps(λ). (1.6)

Absorption of light by phytoplankton is governed by complex mechanisms. Through
numerous laboratory (Sathyendranath et al., 1987; Sosik and Mitchell, 1991) and field
studies (Bricaud et al., 1995, 2004; Bricaud and Stramski, 1990; Hoepffner and Sathyen-
dranath, 1992; Lohrenz et al., 2003; Nelson and Robertson, 1993; Stuart et al., 1998),
it has been consistently shown that variation in in vivo specific absorption coefficients
(400-700 nm) is due to pigment composition and packaging. The absorption spectrum of
phytoplankton is representative of the total absorption by all pigments within the cell,
including photoprotective pigments. Chlorophyll-a absorbs light in the blue and red parts
of the visible electromagnetic spectrum, and when dissolved in acetone, the blue band,
also known as the B or Soret band, is centred around 430 nm and the red band, or Q band,
is centred at 662 nm (Fig. 1.7) (Huot and Babin, 2010). Upon excitation, chl-a molecules
may return to the ground state through one of four pathways (Fig. 1.6), one of which
is through the re-emission of light at a longer wavelength, a process termed fluorescence.
Fluorescence emitted by chl-a, extracted in acetone, is characterised by a dominant peak
centred at 668 nm. As the red chl-a absorption band partly overlaps its fluorescence band
(Figure 1.7), the fluorescence emission may be partly reabsorbed before leaving the cell
(Collins et al., 1985).
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Figure 1.7: Spectra of light absorption and fluorescence emission by pure chl-a dissolved
in acetone. Chl-a absorbs in the blue part of the spectrum (centred around 430 nm)
and in the red part of the spectrum (centred around 662 nm). The overlap between the
red spectral absorption of chl-a and fluorescence emission (centred around 688 nm) is
clearly evident, occasionally allowing for re-absorption of fluoresced light by chl-a. Figure
reproduced from Huot and Babin (2010).

The aph(λ) of a population is typically calculated by the subtracting ad(λ) from ap(λ),
with the total contribution of ad(λ) known to vary (Bricaud et al., 1998). Kishino et al.
(1985) presented a methanol extraction method to eliminate phytoplankton pigments from
the filtered material so that ad(λ) could be estimated; the efficiency of this treatment was
proposed to be 90-95%. The occurrence of incomplete extraction, due to non-pigmented
particles and non-extractable pigments (phycobilins), may lead to an overestimation of
ad(λ) and should be considered. Other approaches include statistical and numerical mod-
elling techniques to isolate the aph(λ) and ad(λ) components from ap(λ) (Bricaud and
Stramski, 1990; Roesler et al., 1989). Babin et al. (1996a) performed both methanol ex-
traction (Kishino et al., 1985) and spectral decomposition (Bricaud and Stramski, 1990)
techniques to derive aph(λ), whereby both methods lead to convergent results when ap-
plied to the same sample.
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Fig. 10. a. Comparison of the spectral values of absorption by nonalgal material, a,(A), and by living 
phytoplankton, a,(A), as experimentally obtained with the method of Kishino et al. (1985) (solid lines), and 
computed by applying the indirect decomposition method to a,(X) (dashed lines; see text) for a surface-layer 
sample of the Sargasso Sea. The value obtained for the exponent S in a&) is indicated. Both experimental and 
computed values of a,(A) have been adjusted so that ~~(750) equals the measured value of ~~(750). b. (Chl a 4 
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applying the decomposition method to q,(X) vs. the same coefficient experimentally obtained with the method 
of Kishino et al. (1985) for the surface-layer samples (5-60 m) of the Sargasso Sea. 

method was tested on the Chlomax surface 
layer samples for which direct determina- 
tions of a,(A) were made. The experimental 
and computed values of a,(X) and therefore 
of a,,(X) were found to be in excellent agree- 
ment for most of the samples (Fig. 10). The 
mean square error on a,,*(440) is 0.0039 
m2 mg-‘, i.e. 3-8% of a,,*(440). Because the 
spectral criteria used, in the decomposition 
were established on these samples, the 
agreement between computed and experi- 
mental values suggests that, for this set of 
data, absorption by detrital matter is prop- 
erly represented as the sum of a term ex- 
ponentially decreasing with increasing X and 
a constant background. 

The partition of the aP spectra was also 
tested on samples from the Sargasso Sea 
taken in or under the deep Chl maximum 
(100-200 m). In this layer, phytoplankton 
populations as identified by flow cytometry 
are different from those present in the sur- 
face layer (mainly cells belonging to the di- 
vision of Prochlorophyta instead of cyano- 
bacteria and larger eucaryotic cells; see 
Neveux et al. 1989), and ap,, for these sam- 
ples exhibits a distinct behavior (see Fig. 
16). The ratios a,,(505) : a,,(380) and 
a,,(580) : a,,(692.5) are on average equal to 
0.78 (SD 0.12, N = 33) and 1.37 (SD 0.60), 

which represents significant divergence from 
the assumptions made for partitioning ap. 
For these samples, then, the discrepancies 
between computed and experimental spec- 
tra result from deviations both in the as- 
sumptions concerning the spectral behavior 
of ad and in those concerning the aph ratios. 

As expected, small deformations occur in 
the shapes of the recomputed aph and ad 
spectra (Fig. 11 a). Nevertheless, application 
of the decomposition method leads to ac- 
ceptable agreement between measured and 
computed values of a,,*(440) (Fig. 11 b), 
with a mean square error of 0.0032 m2 [mg 
(Chl a + pheo a)]-‘, i.e. 4-l 3% of aph*(440). 
We believe therefore that the use of the same 
assumptions for partitioning aP in the Pe- 
ruvian upwelling area and in the Sargasso 
Sea is justified as an approximation because 
changes in the pigment composition of phy- 
toplankton populations seem to have only 
small effects on the retrieval of aBh. Further, 
the exponential spectral dependency of ab- 
sorption by nonalgal particles does not ap- 
pear to be a serious constraint as long as the 
exponent S is allowed to vary. The predom- 
inant source of uncertainty in the computed 
values of aPh*(X) and a,(X) remains the p 
factor. 
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Figure 1.8: Comparison of the spectral values of detrital absorption (ad(λ)) and
phytoplankton-specific absorption (aph(λ)), experimentally obtained with the method of
Kishino et al. (1985) (solid lines) and numerically computed through the decomposition
method of Bricaud and Stramski (1990) (dashed lines). The exponent value S is 0.011
nm−1. This example of a surface sample in the Sargasso Sea has been reproduced from
Bricaud and Stramski (1990)

The numerical decomposition approach designed by Bricaud and Stramski (1990)
makes use of the shape of the ap(λ) spectrum. This method is based on a green-to-
violet and a yellow-to-red ratio of the ap(λ), where the ratios are typically ∼1 for living
phytoplankton. The criteria for selecting the wavelengths used in these ratios stipulate
that the absorption by accessory pigments must be minimal, the ratios selected must
be close to ∼1 for living phytoplankton and that the wavelengths in each ratio must be
adequately spaced to reliably estimate the ad(λ) slope. Avoiding accessory pigment ab-
sorption removes the influence of pigment composition variations, making this approach
universal across phytoplankton taxa. Selecting ratios close to ∼1 eliminates the effect
of pigment packaging and the resultant flattening of the absorption spectrum that oc-
curs due to an increase in cell size or pigment concentration (Morel and Bricaud, 1981).
Ratios that best fit these criteria were aph(505):aph(380) and aph(580):aph(692.5), which
were found to be nearly constant, 0.99 and 0.92 respectively, in surface samples in the
Sargasso Sea (Bricaud and Stramski, 1990). A station example from Bricaud and Stram-
ski (1990) is illustrated in Figure 1.8, where the value of the slope exponent S was 0.011
nm−1. The spectral dependency of ad(λ) has been shown to vary experimentally, with a
varying exponent S ranging from 0.005-0.014 nm−1(Table 1.2). Values that deviate from
∼1 may be detected through anomalous S values (close to 0 or '0.02). This method
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of Bricaud and Stramski (1990) was used to effectively deconvolve ap(λ) into algal and
non-algal components by Babin et al. (1993, 1995), demonstrating the reproducibility of
this approach.

Table 1.2: Examples of average slope exponent values from previous studies.

Reference Site Average S (nm−1)
Yentsch (1962) New Jersey coast 0.007
Okami et al. (1982) Tokyo Bay 0.005
Kishino et al. (1985) Shimodo coast 0.006
Iturriaga and Siegel (1989) Sargasso Sea 0.011
Morrow et al. (1989) Sargasso Sea 0.009
Roesler et al. (1989) San Juan Islands 0.011
Bricaud and Stramski (1990) Sargasso Sea 0.011

Peruvian upwelling 0.010
Babin et al. (1993) Gulf of St. Lawrence (1989) 0.011

Gulf of St. Lawrence (1990) 0.014
Babin et al. (2003) UK surrounding seas 0.012
Published mean 0.010 ±0.003

1.5.1.1 Phytoplankton accessory pigment absorption

Phytoplankton-specific absorption comprises the total absorption of intracellular pigments
(Fig. 1.9), including those that effectively transfer excitation energy to the photochem-
ical reaction centres (photosynthetic pigments) and those that function as photoprotec-
tive accessory pigments or other cell components not coupled to photochemistry (non-
photosynthetic pigments) (Eq. 1.6). It should be noted that all pigments transfer energy
to other pigments or reaction centres, but they do so with either high or less than high
transfer efficiency (Suggett et al., 2004). Accessory pigments, such as the carotenoids
zeaxanthin and β-carotene, function in photoprotection and do not transfer received pho-
ton energy to the reaction centre cores, yet still contribute to the aph (Bidigare et al., 1989;
Sosik and Mitchell, 1995). Carotenoids are capable of quenching triplet state molecules,
singlet oxygen, and free radical intermediates, all of which are potentially destructive to
phytoplankton (Rau, 1988). Attempts have been made to separate the photosynthetic
(aps) and non-photosynthetic (anps) pigments through pigment reconstruction methods
(Bidigare et al., 1989; Letelier et al., 2017), spectral decomposition techniques (Allali
et al., 1997; Babin et al., 1996a) and through fluorescence excitation spectra analyses
(Johnsen et al., 1997; Lutz and Sathyendaranath, 2001; Sakshaug et al., 1991; Sosik and
Mitchell, 1995). It has been conclusively shown that the majority of variation in aph, in
the upper layers of the water column, is due to changes in the contributions of photo-
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protective pigments relative to chl-a (Allali et al., 1997; Letelier et al., 2017; Sosik and
Mitchell, 1995).

reconstructing the in vivo absorption spectrum of natural
populations from pigment concentrations. The existence
and formulation of this ‘‘missing term’’ are discussed in
more detail in Appendix A. Equation (4) was thus
modified as follows:

asol lð Þ ¼ apigm lð Þ þ amiss lð Þ; ð40Þ

with

apigm lð Þ ¼ S Ci asol;i* ðlÞ ð400Þ

and

amiss 440ð Þ ¼ 0:0525 Tchl a½ &0:855; ð4000Þ

(see Appendix A). The package effect index at 440 nm,
Qa*(440), was therefore derived from equations (3) and (40).
Because this correction is empirical and was derived from
measurements on a limited number of samples, it is
acknowledged that the absolute values of Qa* have to be
considered with precaution. The relative variations of Qa*
which will be discussed hereafter, however, are only weakly
affected by the above correction.

3. Results and Discussion
3.1. Phytoplanktonic Absorption as Related to
Chlorophyll a Concentration: Average Relationships
and Deviations

[13] The variations of the af coefficient at 440 nm, as a
function of [Tchl a], are shown in Figure 2a. As previously
observed [Bricaud et al., 1995, 1998], af(440) increases
with [Tchl a] according to a power function, and a least
square fit provides the following relationship:

af 440ð Þ ¼ 0:0654 Tchl a½ &0:728 r2 ¼ 0:934; N ¼ 596
! "

: ð5Þ

This relationship can be compared to that obtained when the
Bricaud et al. [1995] data set is restricted to samples
collected within the first optical depth:

af 440ð Þ ¼ 0:0383 Tchl a½ &0:651: ð50Þ

It appears that the af (440) values for the present data set are
shifted toward higher values, by approximately 60% (note
that the data sets in these two studies are almost
independent, as only 14 samples, from the TOMOFRONT
and EUMELI 3 cruises, are common to both). This shift is
partly, but not exclusively, due to the fact that in the present
data set, [Tchl a] was measured only by HPLC. Actually,
equations (5) and (50) are representative of two groups of
cruises: (1) one group which includes FLUPAC, OLIPAC,
POMME 1, POMME 2, and BENCAL cruises, and is well
represented by equation (5), (2) another group, including
mainly MINOS and ALMOFRONT 2 samples, and is closer
to equation (50). The values corresponding to the PROSOPE
and POMME 3 cruises fall mostly between the two
regression lines and represent intermediate situations (while
those for TOMOFRONT and EUMELI 3 cruises are
scattered). Note that these features, which are still observed
for the wavelength 490 nm (Figure 2b), practically
disappear at 676 nm (Figure 2c).
[14] Therefore some deviations from the global ‘‘average

relationship’’ (represented by equation (5)) appear, which can
be examined by considering specific [Tchl a] ranges. For sake
of simplification, we will call hereafter ‘‘oligotrophic’’ those
waters with [Tchl a] < 0.2mgm' 3, ‘‘mesotrophic’’ those with
[Tchl a] between 0.2 and 2 mg m' 3, and ‘‘eutrophic’’ those
with [Tchl a] > 2 mg m' 3. In the domain of ‘‘eutrophic’’
waters, the af(440) values for the PROSOPE cruise
(Morocco upwelling site) are lower, by 20–30%, than

Figure 1. Assumed in vivo weight-specific absorption
spectra of the main pigments, asol,i* (l) (in m2 mg' 1), as
derived from absorption spectra of individual pigments in
solvent (see text). Absorption spectra of photosynthetic and
nonphotosynthetic carotenoids are shown in red and blue,
respectively.

Figure 2a. Variations of the absorption coefficients of
phytoplankton at 440 nm as a function of the Tchl a
concentration, for the various cruises (see Table 1). Only
samples collected within the first optical depth have been
considered in these figures and all following ones. The
regression line (equation (5)) is shown as a solid line. The
relationship obtained by Bricaud et al. [1995] (equation (50))
is shown for comparison as a dashed line.
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Figure 1.9: Weight-specific absorption spectra of key pigments, a∗sol (m2 mg−1), as derived
from absorption spectra of individual pigments in solvent. The absorption spectra of
photosynthetic and non-photosynthetic carotenoids are shown in blue and red respectively.
Figure reproduced from Bricaud et al. (2004)

.

1.5.1.2 The package effect

Increasing intracellular pigment concentration or enlarging cell size diminishes the ab-
sorption efficiency of a cell (Qa). The absorption efficiency refers to the ratio of light
absorbed by a cell relative to the total incident light on that cell (Morel and Bricaud,
1981). This non-linearity is due to the "package effect", the reduction of the light absorbed
by intact phytoplankton relative to the same amount of pigment in solution (Kirk, 2011).
The package effect occurs due to the fact pigments are not uniformLy distributed and are
arranged within chloroplasts, which themselves are arranged within the cell. The effect
of pigment packaging on the absorption spectra of algal suspensions was first described
by Duysens (1956), in a pioneering study that showed the package effect varies with the
size, shape, and optical density of the particles. Further pivotal studies were undertaken,
including work done by Kirk (1975a,b, 1976), who considered the impact of cell size,
shape, and pigment content on packaging and the subsequent effect on light attenuation
within natural waters. While Duysens (1956) and Kirk (1975a,b, 1976) examined par-
ticles of various shape, Morel and Bricaud (1981) described the same flattening of the
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Figure 1.10: Chl-a-specific absorption spectra of living phytoplankton for various values
of [chl-a], clearly illustrating spectral flattening as a result of increasing [chl-a] and the
subsequent package effect. Figure reproduced from Bricaud et al. (1995).

absorption spectrum through the Mie theory of scattering. Pigment packaging reduces
the capacity to effectively capture light from the surrounding environment, contributing
to the reabsorption of chl-a fluorescence (Babin et al., 1993), lowering a∗ph, and flattening
the resulting spectra (Fig. 1.10).

Chl-a-specific absorption in the red absorption maximum peak is negligibly influenced
by pigment packaging. Johnsen et al. (1994) established the maximum, unpackaged
a∗ph(675) to be 0.027 m2 mg chl-a−1 in two dinoflagellate species. Stuart et al. (1998)
found that the mean a∗ph(676), with HPLC-derived [chl-a], varied widely (∼0.028-0.039
m2 mg chl-a−1) across different environments. Organelli et al. (2017) recorded a∗ph(675)
values up to 0.057 m2 mg chl-a−1 for mixed assemblages in culture studies, surpassing
those of 0.038 m2 mg chl-a−1 observed for simulated mixed assemblages (Bricaud et al.,
1995; Organelli et al., 2016), suggesting a weaker pigment packaging effect of chl-a in
natural assemblages.

1.5.2 Chlorophyll-a fluorescence

The phenomenon of the re-emission of absorbed radiation, known as fluorescence, was
first observed and detailed by Sir George Stokes in 1852 (Stokes, 1852). Fluorescence is
more recently described as the re-emission of energy as a photon, observed when excited
singlet-state molecules return to the ground state. When a chl-a molecule absorbs a
photon of light less than 670 nm (Bolhàr-Nordenkampf and Öquist, 1993), either in the
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blue Soret bands or red Q-bands of the visible electromagnetic spectrum, the molecule
will be elevated to an excited singlet-state. The return of chl-a to the ground state occurs
through photochemistry, resonance-energy transfer, non-radiative decay, or re-emission
of light, i.e. fluorescence (Mathis and Pailloton, 1981). When chl-a absorbs light in the
Q-bands, the molecule is raised to the first excited state, S1, which rapidly returns to
ground state through energy dissipation as heat and fluorescence. When chl-a absorbs
a photon in the higher-energy Soret bands, the chl-a molecule is elevated to the second
excited state, S2, which thermally decays to S1, before returning to ground state as heat
and fluorescence (Figure 1.11).
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Figure 1.11: Jablonski diagram depicting the relationships between excited states, absorp-
tion bands and fluorescence in chl-a (figure reproduced from Huot and Babin (2010)). The
higher excitation states achieved by Soret band photon absorption (Bx and By), rapidly
decay to lower excitation states (Qx and Qy) through heat dissipation. The Qy band,
centred around 678 nm in vivo, is the lowest singlet excited state. Decay from the lowest
excited state to the ground state occurs through thermal and fluorescence emission. In
algae, the peak wavelength of the lower-energy fluorescence band is centred around 685
nm in vivo (Krause and Weis, 1991).

At room temperature, chl-a fluorescence is predominantly emitted by PSII (Falkowski
and Kiefer, 1985; Vredenberg and Slooten, 1967) as a typically conserved distribution
around 685 nm (Krause and Weis, 1991). While phytoplankton absorption spectra de-
scribe total absorption by all pigments within a cell, the fluorescence excitation spectra, at
room temperature, are derived exclusively from the re-emission of light reaching chl-a of
PSII. The fixed waveband of fluorescence varies with incident light as a function of wave-
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length. The shape of excitation spectra can appear very different to absorption spectra
as the contribution from anps is removed, and can be more meaningful when examining
how light absorption contributes to LEF (Suggett et al., 2004).

1.5.2.1 Chlorophyll-a fluorescence applications

In 1931, Kautsky and Hirsch were the first to report on the chl-a fluorescence induc-
tion kinetics in dark-adapted leaves following light exposure (Kautsky and Hirsch, 1931).
This phenomenon is referred to as the Kautsky effect, also termed variable fluorescence,
and forms the premise of many modern fluorescence studies. In the 1960s, the use of
in vitro (Yentsch and Menzel, 1963) and in vivo (Lorenzen, 1966) chl-a fluorescence to
determine chl-a concentration ([chl a]) was introduced to biological oceanography. The
use of variable fluorescent techniques for in vitro and in vivo studies has proven valu-
able in understanding the fundamentals of phytoplankton photophysiology. Interestingly,
recent attempts have been made to account for the package effect through fluorescence re-
absorption corrections derived from variable fluorescence measurements (Boatman et al.,
2019). However, while variable fluorescence measurements offer insight into light utilisa-
tion, they do not provide full closure on the fate of absorbed photons (Lin et al., 2016),
and are not easily related to satellite observations. During the daytime, phytoplankton
emit low but detectable levels of chl-a fluorescence, referred to as natural fluorescence,
also known as passive, solar or sun-induced chlorophyll fluorescence (SICF). Natural flu-
orescence can be detected in situ using radiometers mounted on moorings (Dickey et al.,
1993, 1998), profilers or drifters (Letelier et al., 1997; Schallenberg et al., 2008), ships
(Dandonneau and Neveux, 1997; Kiefer et al., 1989), aircraft (Neville and Gower, 1977),
or satellites (Babin et al., 1996b; Huot et al., 2005). Satellite-derived ocean colour prod-
ucts are desirable, providing cost-effective, routine measurements on a global scale. The
launch of the Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua sensor
(National Aeronautics and Space Administration (NASA)), with a dedicated chl-a fluo-
rescence waveband, has expanded ocean colour opportunities (Esaias et al., 1998).

1.5.3 Chlorophyll-a fluorescence quantum yield

The fluorescence quantum yield of chl-a (ΦF ) of acetone-extracted chl-a in vitro, i.e. the
ratio of photons emitted as fluorescence to those absorbed by chl-a (the absolute ΦF ), is
∼30%, with the remaining ∼70% of photons being dissipated as heat (Huot and Babin,
2010). The absorption of excitation energy by chl-a of intact phytoplankton is largely
dependent upon pigment composition and the package effect. The in situ ΦF , often
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termed apparent ΦF , is defined as the ratio of light fluoresced by chl-a to total light
absorbed by phytoplankton (Browning et al., 2014a), which accounts for the absorption
by chromophores that do not participate in the fluorescence emission (Miller et al., 2002).
The derivation of ΦF requires, in addition to the accurate quantification of fluorescence,
the spectral composition of the excitation energy and the spectral absorption capacity
of the phytoplankton present. Variability in ΦF will be discussed in depth throughout
this thesis. Previous studies examining ΦF , both through in situ and remotely sensing
investigations, have reported ΦF values between 0.001-0.15 (Table 1.3).

Table 1.3: Examples of chl-a fluorescence quantum yield values and proxies thereof from
previous studies (ΦF , quanta emitted (quanta absorbed)−1).

Reference Site ΦF

In situ studies
Roesler and Perry (1995) Misc. environments ∼0.008-0.09
Letelier et al. (1997) Drake Passage ∼0.001-0.003
Ostrowska et al. (1997) Baltic Sea ∼0.001-0.03
Maritorena et al. (2000) Tropical Pacific & Peru upwelling ∼0.01-0.06
Morrison (2003) NE coast of the UK ∼0.004-0.063
Westberry and Siegel (2003) Sargasso Sea ∼0.01-0.05
Schallenberg et al. (2008) Bering Sea ∼0.003-0.1
Ostrowska (2012) Baltic Sea & Atlantic Ocean ∼0.002-0.1
Ostrowska et al. (2012) Global waters (modelled study) ∼0.001-0.1
Remote sensing studies
Babin et al. (1996b) Global oceans ∼0.01-0.05
Huot et al. (2005) Arabian Sea ∼0.01-0.035
Behrenfeld et al. (2009) Global oceans ∼0.00-0.028
Morrison and Goodwin (2010) Gulf of Maine ∼0.003-0.018
Westberry et al. (2013) Pacific Southern Ocean ∼0.01-0.04
Browning et al. (2014a) Atlantic Southern Ocean ∼0.01-0.10
Lin et al. (2016) Global oceans ∼0.02-0.15

1.6 Satellite Remote Sensing of Ocean Colour

1.6.1 Light in the ocean and bio-optical principles

Light that enters the ocean can either be absorbed or scattered by the material in the
water. The amount of absorption and scattering are dependent on the concentration
and characteristics of the seawater constituents and are independent of the radiant light
field; these are known as the inherent optical properties (IOPs). The IOPs of seawater
include the absorption (a), scattering (b), and attenuation coefficients (c, where c = a +
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b) (Preisendorfer, 1976). The scattering coefficient, b, is divided into forward (bf ) and
backward (bb) components. While both bf and bb are representative of the scattering
by water and particulate material, a is affected by the absorption of numerous optically
active components, including water, coloured dissolved organic material (CDOM), algal
and non-algal components. The apparent optical properties (AOPs) are reliant on both
the IOPs and the geometric structure of the light field and include radiance and/ or
irradiance ratios, i.e. reflectances, as well as diffuse attenuation coefficients (Mobley,
1994).

The processes of scattering and absorption by dissolved and particulate matter in the
ocean affect the spectrum and light field of the water-leaving reflectance and are crucial
to explicating remote sensing data, with Gordon et al. (1975) describing the relationship
between such bio-optical features and the remote sensing reflectance (Rrs) as follows:

Rrs ∝
bb

a+ bb
(1.7)

Both algal and non-algal particulate biological material dominate the optical vari-
ability of the open ocean (Bricaud and Stramski, 1990). The most significant, optically
active constituents can be separated into three categories (Lapucci et al., 2012): phyto-
plankton and other microscopic organisms (e.g. zooplankton, heterotrophic bacteria and
viruses); non-algal particles (NAP), suspended detrital material of organic and inorganic
matter; and CDOM, dissolved compounds derived from the disruption of organic matter
(IOCCG, 2000; Morel and Prieur, 1977). Chlorophyll-a, serving as a marker for phyto-
plankton, has an absorption maxima in the blue and red wavelengths (Bidigare et al.,
1989). Phytoplankton-related bb coefficients are generally very low at the relatively low
concentrations of biomass found in the open ocean (Bricaud et al., 1983). NAP absorption
follows a decreasing exponential function of wavelength, with an absorption maximum in
the blue (Bricaud et al., 1998). NAP bb is remarkable, and considered a major source
of ocean bb (Stramski et al., 2001). CDOM absorption is also notable and follows a de-
creasing trend with wavelength (Prieur and Sathyendranath, 1981), while its contribution
to bb is negligible. The partly common absorption and scattering properties of the three
main constituents tend to create ambiguous spectral situations, particularly when present
in similar low concentrations (Mobley, 1994). A broad optical classification scheme was
introduced by Morel and Prieur (1977), partitioning seawater types into Case 1 and Case
2 waters. In Case 1 waters, phytoplankton and their accompanying biogenous material
are primarily responsible for variation in the optical properties of the water. Case 2 wa-
ters are not only influenced by phytoplankton and related particles, but also by NAP and
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CDOM that vary independently of the phytoplankton (IOCCG, 2000).
Bio-optical characterisation can provide qualitative and quantitative information per-

taining to variability in phytoplankton biomass, species composition, and physiological
responses. Measurements of ocean colour and the fate of solar radiation in the ocean
have long since been exploited as effective indicators of the biological activity in surface
waters (Lorenzen, 1972; Yentsch, 1960). The principal approach to obtaining information
on phytoplankton dynamics, over a wide range of spatial and temporal scales, has been
through the estimation of chl-a from satellite-derived water-leaving radiance or equiva-
lents such as Rrs. A satellite ocean-colour sensor measures spectral radiance (Lsat, W
m−2 nm−1 sr−1), which is dependent upon solar irradiance, atmospheric transmission and
scattering, sea-surface reflection and the optical properties of the water (Cullen et al.,
1997). The removal of surface reflection and various atmospheric factors results in the
water-leaving radiance (Lw(λ)), the spectral variation of which defines ocean colour (Gor-
don et al., 1988). Variation in Lw(λ) is largely driven by changes in the downwelling solar
irradiance (Ed(λ), W m−2 nm−1), with Rrs representing the ratio of Lw(λ) to Ed(λ).

1.6.2 Satellite-derived [chl-a] and fluorescence

As the biomass of phytoplankton in the surface water of the ocean increases, the colour
of the water changes from violet-blue to green-olive. This shift in colour is the result
of the strong absorption of blue wavelengths by phytoplankton as well as their weaker
absorption of green wavelengths (Morel, 1988; Yentsch, 1960), reducing the amount of
blue light backscattered out of the ocean relative to green light. These shifts in hues
of water are quantifiable through remote sensing measurements of the spectra of light
leaving the ocean surface and can be used to infer the phytoplankton biomass (Clarke
et al., 1970). Such empirical algorithms were first developed by functionally relating the
ratio of blue-to-green reflectance (blue light near 440 or 490 nm, green light near 550 nm)
leaving the ocean surface to the phytoplankton [chl-a] measured in situ. The launch of
the Nimbus-7 satellite (NASA) saw the first ever dedicated ocean colour sensor being sent
into space, the CZCS (1978-1986), for which an empirical blue-to-green ratio algorithm
was successfully developed to estimate [chl-a] (Gordon et al., 1983). These blue-green
algorithms are still used today as the default method of deriving [chl-a] from ocean colour
sensors (O’Reilly et al., 2000). Whilst the empirical approaches used to derive [chl-a]
are generally robust (Morel, 2009), it has been established that second order variability,
such as assemblage composition, can affect [chl-a] retrieval by up to 50% (Alvain et al.,
2006). This may be accounted for and exploited to provide a more holistic description of
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the in-water constituents, through the development of model-based approaches such as
semi-analytical algorithms (Brown et al., 2008; Sauer et al., 2012). These models apply
inversion techniques to the satellite-retrieved AOPs, such as Rrs, in order to derive the
IOPs of seawater, and have the advantage of simultaneously retrieving several bio-optical
markers from a single set of Rrs data (Hoge and Lyon, 1996; Lee et al., 2002; Maritorena
et al., 2002; Roesler and Perry, 1995).

Satellite-detected SICF has been utilised as an indicator of [chl-a] and subsequent
proxy for phytoplankton biomass (Hu et al., 2005), in addition to being used to provide
insight into the photophysiological status of phytoplankton (Abbott et al., 2001; Behren-
feld et al., 2009; Huot et al., 2005, 2013; Laney et al., 2005; Letelier et al., 1997; Morrison
and Goodwin, 2010; Schallenberg et al., 2008; Westberry et al., 2013). The in vivo fluores-
cence of chl-a in phytoplankton was first described as a red peak centred around 685 nm
in subsurface reflectance (Morel and Prieur, 1977) and nadir radiance signal (Neville and
Gower, 1977). This characteristic red peak has since been exploited to examine variations
in phytoplankton biomass, and is detected in both in-water (Babin et al., 1996b; Gor-
don, 1979; Kiefer et al., 1989; Maritorena et al., 2000; Morrison, 2003; Roesler and Perry,
1995) and water-leaving (Doerffer, 1981; Gower, 1980; Neville and Gower, 1977) radiance
spectra. The MODIS sensor, launched into orbit by NASA onboard the Terra (1999) and
Aqua (2002) satellites (Savtchenko et al., 2004), comprises wavebands necessary for SICF
extraction. Compared to the traditional blue-green algorithms, SICF retrievals are less
likely to be contaminated by coloured dissolved and detrital organic material absorption
or by highly scattering mineral particles (Hoge et al., 2003). It is representative of chl-a
fluorescence, incident irradiance, and the optical and fluorescence traits of the resident
phytoplankton (Babin et al., 1996b), and has been used in estimates of satellite-derived
ΦF (Φsat), providing a useful tool for evaluating physiological responses to various envi-
ronmental forces i.e. light and Fe conditions (Babin et al., 1996b; Behrenfeld et al., 2009;
Browning et al., 2014a; Huot et al., 2005, 2013; Laney et al., 2005; Letelier et al., 1997;
Lin et al., 2016; Morrison and Goodwin, 2010; Schallenberg et al., 2008).
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1.7 Thesis Outline

The Southern Ocean is a highly productive region and yet little is known about its
variance, what drives it over space and time, and how it affects global carbon cycling.
Exploiting ΦF serves as a unique and novel opportunity to expand on current under-
standing. This thesis serves to derive in situ ΦF , to investigate the drivers of vari-
ability, and to validate existing satellite ocean colour Φsat algorithms, with the overall
aim of increasing insight into phytoplankton dynamics in this climate-relevant ocean.

The thesis objectives are threefold:

1. Develop an existing multi-excitation fluorometer for use in in situ ΦF determination.

2. Investigate the drivers of in situ ΦF variability.

3. Validate existing satellite Φsat algorithms with in situ ΦF .

Chapter 2 details the general oceanographic methods followed, the materials used,
and the data quality control techniques employed in this study. Chapter 3 is a technical
chapter, describing the radiometric characterisation and calibration of a multi-excitation
fluorometer identified for use in in situ ΦF determination. A Multi-Exciter Fluorometer
(JFE Advantech, Co., Ltd.) undergoes a full instrument characterisation prior to being
subjected to two different calibration approaches. Chapter 4 explores the potential drivers
of in situ ΦF variability. Wavelength-specific ΦF measurements are derived for various
stations sampled in the Atlantic sector of the Southern Ocean during the austral winter
of 2012 and summer of 2013/ 2014. Potential drivers investigated include community
structure, light history, and surrounding macronutrient conditions. Chapter 5 uses the in
situ ΦF measurements of Chapter 4 to validate three existing Φsat algorithms. Chapter 6
provides a synthesis of all the work contributing to this study and details the key findings
of the individual chapters.



Chapter 2

General Methods and Data Quality
Control

2.1 Research Cruise Participation

Data were obtained over five cruises destined to various Southern Ocean latitudes over
a course of three years, as listed in Table 2.1. Certain cruises were affected by rust con-
tamination in the underway scientific seawater supply, which occurred due to rouging, a
form of stainless steel corrosion; the Winter Cruise and South African National Antarctic
Expedition 53 (SANAE53) cruise were the only two cruises free from such contamination.
Nonetheless, full sampling occurred across all 5 cruises, followed by subsequent attempts
at data recovery from the contaminated cruises. The influence of rust on various un-
derway measurements was too great to accurately account for, specifically regarding the
absorbance samples where the influence of rust in the visible spectrum (up to 450 nm)
rendered data unusable.

Table 2.1: Summary of research cruise participation. The Winter Cruise and SANAE53
cruises were the only rust-free cruises, the rest having a rust-contaminated underway
water supply (grey). SOSCEx: Southern Ocean Seasonal Cycle Experiment; SANAE53:
South African National Antarctic Expedition 53; No. und: number of underway stations;
No. dis: number of discrete stations.

Cruise name Date Marine vessel No. und No. dis
Winter Cruise 9 Jul - 1 Aug 2012 S.A. Agulhas II 90 32
Expedition Cruise 7 Jul - 11 Feb 2013 S.A. Agulhas I 119 -
SOSCEx I 15 Feb to 11 Mar 2013 S.A. Agulhas I1 107 16
SANAE53 28 Nov 2013 - 13 Feb 2014 S.A. Agulhas II 149 5
SOSCEx III 20 Jul - 15 Aug 2015 S.A. Agulhas II2 83 29

39
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The historic GoodHope Line monitoring programme was implemented in 2004, serving
as a region of ongoing physical and biogeochemical sampling (Swart et al., 2012). The
Winter Cruise sampling track spans a portion of the GoodHope Line as well as the coast of
Marion Island (Fig.2.1 (a)). The SANAE53 summer cruise was separated into three legs
effectively capturing the different regions in advancing stages of the summer. Leg 1 is the
GoodHope-South leg from Cape Town to Antarctica (early summer); leg 2, the Buoy Run
from Antarctica to South Georgia, return (mid-summer); and leg 3, the GoodHope-North
leg from Antarctica to Cape Town (late summer) (Fig.2.1 (b)). The position of the fronts
was determined using sea surface height data from maps of absolute dynamic topography
(MADT) from the CLS/AVISO product (Rio et al., 2011; Swart et al., 2010).
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Figure 2.1: The Winter Cruise (winter 2012) and SANAE53 voyage (summer 2013/ 2014)
S.A. Agulhas II cruise tracks.

2.2 Pigment Extraction and Analysis

2.2.1 High performance liquid chromatography

High-performance liquid chromatography (HPLC) separates phytoplankton pigments in
order of polarity upon passage through a reverse phase column (Ras et al., 2008), allowing
for the quantification of a wide range of carotenoids, chlorophylls, and their degradation

1The SOSCEx I cruise was the final scientific research voyage of the S.A. Agulhas, which has since
been commissioned as a maritime training vessel.

2The SOSCEx III cruise was the only voyage to date that has seen the S.A. Agulhas II underway
water supply contaminated with rust; this dedicated polar research vessel has since been refurbished with
epoxy coated stainless steel inflow pipes to mitigate future rust contamination.
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products. Pigment samples collected for this project were personally processed through
HPLC at the Laboratoire d’Oceanographie de Villefranche (LOV, Villefranche-sur-Mer,
France, July 2014), following the procedure described by Ras et al. (2008). All [chl-a]
values used in this study constitute HPLC-derived total [chl-a] measurements (the sum
of chl-a, divinyl-chl-a and chlorophillide-a), apart from the total [chl-a] less divinyl-chl-a
used in CHEMTAX analysis (see Section 2.2.2).

Approximately 2 L of seawater was filtered through 0.7 µm Whatman GF/F glass-
fibre filters (25 mm) under less than 10 mmHg. The filters were folded in half and placed
within labelled cryovials before being immediately stored in liquid nitrogen or at -80◦C
(cruise dependent). Upon arrival at LOV samples were sorted, on ice, and transferred to
labelled, 14 mL Falcon tubes (Corning). Pigments were then extracted using methanol.
Acetone is typically used for pigment extraction as it is less toxic and allows for a longer
storage time at -80◦C, however, methanol extraction allows for the rapid degradation of
pigments, has a higher extraction efficiency and greater injection volume. Three millilitres
of extraction solvent, containing vitamin E acetate as an internal standard, was added
prior to incubation at -20◦C for 1 h (extraction stock solution: 250 mg DL-α-tocopherol
acetate (Sigma-Aldrich Fluka) + 100 mL methanol; extraction working solution: 3 mL
stock solution + 1000 mL methanol, stored at -20◦C in the dark). Inclusion of an internal
standard allows for the monitoring of instrument drift.

Samples were then sonicated, on ice, for 10 s, before a further incubation period of 1
h at -20◦C. The sonicator (Bandelin SONOPULS HD 2070) was thoroughly cleaned with
ethanol between samples. Samples were clarified by filtration through 0.7 µm Whatman
GF/Fs placed on a Millipore filtration rig. A glass pestle was used to ensure all sample
was released from the GF/F slurry. Clarified samples were immediately transferred to
HPLC glass vials (Agilent Technologies) using pasteur pipettes (VWR International).

The HPLC (Agilent Technologies 1200 series) consists of multiple units, including the
de-gasser, binary pump, injection unit and refrigerated sample compartment, Pelletier
refrigeration unit, thermostatted column compartment, and DAD detector unit. The
column used was an Agilent Technologies Zorbax Eclipse XBD-C8 (150 × 3 mm, 3.5 µm,
PN 963954-306). Samples, standards and methanol were loaded in a specific sequence.
Following every ten samples the internal standard was measured to assess the overall
stability of the run, with methanol used to clean the injection needle between every
sample. The elution time for one sample was 28 min, with 30 samples being analysed in
one run.

Analysis of samples was performed using ChemStation software (Agilent Technologies).
Sample signals were detected at 450 nm (carotenoids, chl-c and -b), 667 nm (chl-a and
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related allomers and epimers, chlorophyllide-a, pheophorbide-a and pheophytin-a), 770
nm (bacteriochlorophyll-a), and at 222 nm (internal standard). Peaks were identified
using a library constructed from various pigment standards, which are run on an annual
basis and at varying concentrations to determine the detection threshold of the HPLC
system. The integration values of sample peaks were multiplied by the unique extinction
co-efficient of each pigment and divided by the original volume of seawater filtered to give
the resultant concentrations.

2.2.2 CHEMTAX analysis

The relative abundance of phytoplankton groups was determined using CHEMTAX, a
mathematical tool that allows for the taxonomic interpretation of pigment data (Mackey
et al., 1996). The CHEMTAX software (v1.95, run in Microsoft Excel), requires the
user to define an initial matrix of pigment ratios representative of the taxonomic classes
anticipated in the study area. The program can adjust these ratios, within boundaries set
by the user, to better match the ratios present in the community. It involves an iterative
process of matrix factorisation to optimise pigment ratios to estimate the contribution
of phytoplankton groups to total chl-a. Starting ratios are important and have a large
influence on the final output. The software may not discover the best solution if it
encounters local minima in the process, which is circumvented by using multiple starting
points (Wright et al., 2009). Sixty additional pigment ratio tables were generated by
multiplying each cell with a randomLy determined factor F , where

F =1+ s ·(R−0.5) (2.1)

The scaling factor s is 0.7 and the random number R is generated between 0 and 1
using the Microsoft Excel RAND function. Each of the sixty ratio matrices was used
as the starting point for a CHEMTAX optimisation, with the solution with the smallest
residual favoured as the most reliable.

As there was no microscopy data available to pre-determine the taxa selected for
this study, functional types were chosen based on work done by Gibberd et al. (2013),
who followed a similar cruise track (SANAE48) to the SANAE53 summer cruise. These
authors defined ten taxonomic groups of phytoplankton: Prasinophytes, chlorophytes,
cryptophytes, diatoms-subtype A (containing Chls c1, c2, fucoxanthin, and diadinox-
anthin), diatoms-B (chl-b replaces chl-c1, typified by Pseudonitzschia sp.), dinoflagel-
lates, haptophytes-subtype 6 (coccolithophores), haptophytes-subtype 8 (Phaeocystis sp.),
Synechoccocus sp. and Prochlorococcus sp. The seed ratio of pigments defined by Gibberd
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et al. (2013) was used for both clusters of SANAE53 and Winter Cruise data (Table 2.2.2).
The CHEMTAX software was set up for all runs as per DiTullio et al. (2003). The

pigment ratios were allowed to vary up to a maximum limit of 500%, i.e. 1/ 6 to 6 times
the initial value. Other settings included the iteration limit (500), epsilon (residual) limit
(0.005), initial step size (10), step ratio (1.3), cutoff step (1000), elements varied (5),
subiterations (5), weighting (3), and weight bound (30). The optimised ratios obtained
for each of the cruises were comparable to those obtained for other Southern Ocean studies
(Table 2.2.2) (DiTullio et al., 2003; Higgins et al., 2011; Wright et al., 2010).

The CHEMTAX outputs are the fraction of total chl-a contained in each algal group
specified in the matrix. Through HPLC pigment extraction, 5 derivatives of chl-a are iso-
lated, namely monovinyl-a, a chl-a allomer, a chl-a epimer, chlorophyllide-a, and divinyl-
chl-a. For this study, the sum of the first 4 chl-a subtypes constitute total chl-a, with
divinyl-chl-a being exclusively allocated to Prochlorococcus. All final CHEMTAX out-
put was subjected, per cruise, to K-means clustering, to assign similar phytoplankton
populations to groups for an optimised assessment (Section 2.7.2).

Table 2.2: Table depicting the initial seed matrix used and the final optimised matrices
for SANAE53 and Winter Cruise cluster groups 1 and 2, denoted S(G1), S(G2), W(G1)
and W(G2) respectively. The seed ratios were obtained from Gibberd et al. (2013),
as their region of interest was almost identical to this study. Final optimised matrices
were selected based on the lowest residual of the original seed matrix following factori-
sation. The phytoplankton classes for this region of this study include Prasinophytes
(Prasin.), Chlorophytes (Chlor.), Cryptophytes (Crypt.), Diatom-subtype A (Dia.-A),
Diatom-subtype B (Dia.-B), Dinoflagellate (Dino.), Haptophyte-subtype 6 (represent-
ing coccolithophores, Hap.-6), Haptophyte-subtype 8 (representing Phaeocystis, Hap.-8),
Synechococcus (Syn), and Prochlorococcus (Pro). Pigments used to characterise the phy-
toplankton types included Chlorophyll-a (Chla), Divinyl-Chl-a (Dv-Chla), Chlorophyll-b
(Chlb), Chlorophyll-c3 (Chl3c), Peridinin (Per), Fucoxanthin (Fuco), Violaxanthin (Viol),
Prasinoxanthin (Pras), 19’Hexanoyloxyfucoxanthin (19’HF), Alloxanthin (Allo), Lutein
(Lut), Zeaxanthin (Zea), and Chlorophyll-c1c2 (Chlc1c2).

Seed

Class Chla
Dv-
Chla Chlb Chlc3 Per Fuco Viol Pras 19’HF Allo Lut Zea

Chl
c1c2

Prasin. 1 0 1.114 0 0 0 0.104 0.096 0 0 0.011 0.062 0
Chlor. 1 0 0.451 0 0 0 0.183 0 0 0 0.062 0.039 0
Crypt. 1 0 0 0 0 0 0 0 0 0.274 0 0 0.134
Dia.-A 1 0 0 0 0 0.732 0.001 0 0 0 0 0.002 0.317
Dia.-B 1 0 0 0.109 0 1.144 0 0 0 0 0 0 0.235
Dino. 1 0 0 0 0.848 0 0 0 0 0 0 0 0.258
Hap.-6 1 0 0 0.133 0 0.142 0 0 1.092 0 0 0 0.135
Hap.-8 1 0 0 0.286 0 0.249 0 0 0.763 0 0 0 0.368
Syn. 1 0 0 0 0 0 0 0 0 0 0 0.882 0
Pro. 0 1 0.322 0 0 0 0 0 0 0 0 0.287 0
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S(G1) RMSE = 0.045

Class Chla
Dv-
Chla Chlb Chlc3 Per Fuco Viol Pras 19’HF Allo Lut Zea

Chl
c1c2

Prasin. 1 0 0.444 0 0 0 0.077 0.122 0 0 0.010 0.079 0
Chlor. 1 0 0.560 0 0 0 0.074 0 0 0 0.096 0.043 0
Crypt. 1 0 0 0 0 0 0 0 0 0.344 0 0 0.130
Dia.-A 1 0 0 0 0 0.389 0.001 0 0 0 0 0.001 0.097
Dia.-B 1 0 0 0.130 0 0.830 0 0 0 0 0 0 0.246
Dino. 1 0 0 0 1.139 0 0 0 0 0 0 0 0.234
Hap.-6 1 0 0 0.089 0 0.093 0 0 1.131 0 0 0 0.090
Hap.-8 1 0 0 0.271 0 0.136 0 0 0.708 0 0 0 0.294
Syn. 1 0 0 0 0 0 0 0 0 0 0 0.918 0
Pro. 0 1 0.244 0 0 0 0 0 0 0 0 0.472 0

S(G2) RMSE = 0.024

Class Chla
Dv-
Chla Chlb Chlc3 Per Fuco Viol Pras 19’HF Allo Lut Zea

Chl
c1c2

Prasin. 1 0 0.400 0 0 0 0.077 0.128 0 0 0.015 0.045 0
Chlor. 1 0 0.597 0 0 0 0.201 0 0 0 0.079 0.048 0
Crypt. 1 0 0 0 0 0 0 0 0 0.184 0 0 0.089
Dia.-A 1 0 0 0 0 0.867 0.001 0 0 0 0 0.001 0.326
Dia.-B 1 0 0 0.052 0 0.512 0 0 0 0 0 0 0.102
Dino. 1 0 0 0 1.074 0 0 0 0 0 0 0 0.346
Hap.-6 1 0 0 0.090 0 0.113 0 0 0.788 0 0 0 0.117
Hap.-8 1 0 0 0.402 0 0.274 0 0 0.299 0 0 0 0.497
Syn. 1 0 0 0 0 0 0 0 0 0 0 0.985 0
Pro. 0 1 0.428 0 0 0 0 0 0 0 0 0.339 0

W(G1) RMSE = 0.014

Class Chla
Dv-
Chla Chlb Chlc3 Per Fuco Viol Pras 19’HF Allo Lut Zea

Chl
c1c2

Prasin. 1 0 0.789 0 0 0 0.136 0.269 0 0 0.008 0.033 0
Chlor. 1 0 1.004 0 0 0 0.095 0 0 0 0.041 0.027 0
Crypt. 1 0 0 0 0 0 0 0 0 0.111 0 0 0.151
Dia.-A 1 0 0 0 0 0.489 0.001 0 0 0 0 0.002 0.373
Dia.-B 1 0 0 0.182 0 0.491 0 0 0 0 0 0 0.101
Dino. 1 0 0 0 1.004 0 0 0 0 0 0 0 0.176
Hap.-6 1 0 0 0.105 0 0.161 0 0 1.427 0 0 0 0.124
Hap.-8 1 0 0 0.283 0 0.261 0 0 0.860 0 0 0 0.400
Syn. 1 0 0 0 0 0 0 0 0 0 0 0.652 0
Pro. 0 1 0.504 0 0 0 0 0 0 0 0 0.292 0

W(G2) RMSE = 0.031

Class Chla
Dv-
Chla Chlb Chlc3 Per Fuco Viol Pras 19’HF Allo Lut Zea

Chl
c1c2

Prasin. 1 0 0.438 0 0 0 0.058 0.155 0 0 0.006 0.030 0
Chlor. 1 0 0.700 0 0 0 0.083 0 0 0 0.092 0.028 0
Crypt. 1 0 0 0 0 0 0 0 0 0.185 0 0 0.151
Dia.-A 1 0 0 0 0 0.489 0.001 0 0 0 0 0.002 0.373
Dia.-B 1 0 0 0.136 0 1.094 0 0 0 0 0 0 0.175
Dino. 1 0 0 0 1.004 0 0 0 0 0 0 0 0.176
Hap.-6 1 0 0 0.099 0 0.151 0 0 1.337 0 0 0 0.116
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Hap.-8 1 0 0 0.261 0 0.125 0 0 0.563 0 0 0 0.209
Syn. 1 0 0 0 0 0 0 0 0 0 0 0.309 0
Pro. 0 1 0.504 0 0 0 0 0 0 0 0 0.292 0

2.2.3 Diagnostic pigment analysis

Uitz et al. (2006) described a method of using weighted diagnostic phytoplankton pigments
to estimate the size class of phytoplankton in a mixed population; this group assessed 2419
pigment profiles taken from Case 1 waters of various trophic states (0.03-6 mg Chla m−3),
including the Southern Ocean. The seven marker pigments and respective weightings are
illustrated in the equations below. HPLC-extracted pigment data was used to determine
the size classes for all stations.

% picoplankton = 100 * (0.86[zeaxanthin] + 1.01[chl-b + divinyl-chl-b])/ DP (2.2)

% nanoplankton = 100 * (0.60[alloxanthin] + 0.35[19’-BF] + 1.27[19’-HF])/ DP (2.3)

% microplankton = 100 * (1.41[fucoxanthin] + 1.41[peridinin])/ DP , (2.4)

where DP is the sum of the weighted concentrations of all diagnostic pigments:

DP = (0.86[zeaxanthin] + 1.01[chl−b+divinyl-chl−b]

+ 0.60[alloxanthin] + 0.35[19’-BF] + 1.27[19’-HF]

+ 1.41[fucoxanthin] + 1.41[peridinin]).

(2.5)

2.3 Macronutrient Sampling

Underway macronutrient samples were collected directly from the ship’s uncontaminated
scientific seawater supply into 50 mL Falcon tubes, every 2 h. These samples were stored
at -20◦C until analysis on land. Nitrate and silicate were measured using a Lachat Flow
Injection Analyser (FIA) (Egan, 2008; Wolters, 2002). All NO−3 and Si(OH)4 concentra-
tions used in this study are listed in Appendix B.1.
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2.4 Light History

2.4.1 Assessment of available PAR data

The Scientific Data System (SDS) on board the S.A. Agulhas II reported photosynthet-
ically active radiation (PAR, 400-700 nm) through a Biospherical 2π PAR sensor (µmol
m−2 s−1). It was imperative to validate the data from this sensor, as it was last calibrated
prior to 2012. In 2015, subsequent to data collection for this thesis, the S.A. Agulhas
II was fitted with a newly-calibrated CMP 21 pyranometer to measure incoming short
wavelength radiation (W m−2). The new sensor was fitted in parallel to the existing SDS
PAR sensor, allowing for a comparison between the two; data recorded over the SANAE55
cruise (austral summer 2015/ 2016) was selected for inter-sensor comparison. The PAR
measurements recorded by the SDS PAR sensor and the pyranometer, were compared
through an analysis of time-averaged rolling mean observations over the austral summer
of 2015/ 2016 (Fig. 2.2), and regression analysis of time-averaged PAR measurements
(Fig. 2.3). The 95% confidence intervals for the regressions at 20 min, 6 h, 12 h, and 24
h are (0.63, 0.67), (0.64, 0.77), (0.56, 0.83), and (0.58, 0.85), respectively. The degree of
similarity between the two PAR sensors, p < 0.001 for all binned time points, validated
the use of the SDS PAR data for light history analysis on the Winter and SANAE53
cruises. All cumulative PAR values, over 20 min, 6, 12, and 24 h, used in this study, are
listed in Appendix B.1.
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Figure 2.2: Rolling mean comparison for SDS and pyranometer (Pyra) PAR data, over
different temporal ranges (20 min, 6 h, 12 h, and 24 h).
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Figure 2.3: Regression analysis of SDS and pyranometer (Pyra) PAR data, over different
temporal ranges (20 min, 6 h, 12 h, and 24 h).
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2.5 Absorbance Measurements

Total particulate absorption was measured following the quantitative filter technique
(Yentsch, 1962), whereby approximately 2 L of seawater was filtered through 0.7 µm
Whatman GF/F glass-fibre filters (25 mm) under less than 10 mmHg. Total particu-
late absorbance of the filters was determined spectrophotometrically (Shimadzu UV-2501
PC, ISR-2200 internal integrating sphere) over a wavelength range of 350-750 nm, in 1
nm increments. To determine the detrital absorbance, filters were subsequently soaked
in methanol for 24 h to extract phytoplankton pigments (Kishino et al., 1985). Excess
methanol was removed through filtration prior to spectral analysis. One litre of deionised
water (Milli-Q) was perfused through an identical filter to serve as the blank.

Absorption coefficients were calculated from the absorbance data using Eq. 2.6, where
λ denotes wavelength, 2.303 is the coefficient representing the transformation from log10

to loge, D
′
f (λ) is the measured optical density of the particles on the filter, D′750 is the

null point correction (set at 750 nm), B′ is the path-length amplification factor, set at 2
(Roesler, 1998), and l is the ratio of the volume filtered to the effective area of the filter
pad.

a(λ) = 2.303
D
′
f (λ)−D′750

B′l
(2.6)

Phytoplankton-specific absorption is typically calculated by subtracting ad(λ) from
ap(λ). In this instance, the methanol extraction method of Kishino et al. (1985) proved
unfavourable for accurate quantification of ad(λ). At higher biomass stations ([chl-a]
> 1 mg.m−3) the extractions were incomplete and residual phytoplanton-specific features
remained, notably between 400-540 nm and at the 676 nm peak (Fig. 2.4). The incomplete
extraction of pigments resulted in an underestimation of aph(λ), such that the Bricaud
and Stramski (1990) spectral decomposition technique was used to derive ad(λ) for all
stations. The exponential slope values (S) generated through the Bricaud and Stramski
(1990) method were individually determined through an iterative, best-fit approach. The
a∗ph was derived by normalising the aph to the HPLC-derived total [chl-a].
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Figure 2.4: Comparison of deriving the non-algal component (ad) of total particulate ab-
sorption (ap) from either methanol extraction (Kishino_ad) (Kishino et al., 1985) or spec-
tral decomposition (Bricaud_ad) (Bricaud and Stramski, 1990). Phytoplankton-specific
absorption (aph) is determined by subtracting ad from ap. Incomplete methanol extraction
of phytoplankton pigments is evidenced by spectral features present in the Kishino_ad
between 400-450 nm and around 676 nm. These features are removed through spectral
decomposition (Bricaud_ad), with an exponential slope value of S = 0.011 nm−1. In this
example, [Chl-a] = 1.1862 mg m−3 and a∗ph(676) = 0.029 m2 mg chl-a−1.

2.5.1 Quality control of absorption data

Two quality control checks were applied to the absorption data; the first made use of
the aph(440):aph(675) ratio, which, in line with published literature, was allowed to vary
between 1-4 (Bricaud and Stramski, 1990; Lohrenz et al., 2003; Nelson and Robertson,
1993; Neukermans et al., 2016; Roesler et al., 1989; Sosik and Mitchell, 1995). The second
quality control check looked at a∗ph at 675 nm, where chl-a absorption at this wavelength
is fairly constrained and the effects of pigment packaging are considered minimal (Nelson
and Robertson, 1993; Stuart et al., 1998). The present study allowed a∗ph(675) to vary
between 0.014 and 0.045 m2 mg TChl-a−1, to account for differences in taxonomy, cell size
and [chl-a] (Johnsen et al., 1994; Meler et al., 2017; Organelli et al., 2017; Stuart et al.,
1998). All aph(440):aph(675) and a∗ph(675) values are listed in Appendix A.1.

2.5.1.1 Results of absorption quality control

The average the aph(440):aph(675) ratio across all stations was 1.922±0.276, and demon-
strated is a strongly positive, linear relationship between aph(440) and aph(675) (rs = 0.97,
p < 0.001) (Fig. 2.5). Regarding the second quality control measure, measurements of



2.5. Absorbance Measurements 51

a∗ph(675), the summer a∗ph(675) data, as a collective, shows a significant negative relation-
ship with increasing [chl-a] (rs = -0.78, p < 0.001). During winter, the biomass remained
relatively similar across stations, with an average [chl-a] of 0.22±0.06 mg m−3, yet the
a∗ph(675) ranged from 0.014-0.040 m2 mg chl-a−1.
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Figure 2.5: Quality assessments of absorption data. The lefthand panel depicts aph(440)
(m−1) versus aph(675) (m−1), and the righthand panel a∗ph(675) (m2 mg chl-a−1) relative
to HPLC-derived [chl-a] (mg m−3).

2.5.1.2 Discussion of absorption quality control

The first quality control of absorption data examined the aph(440):aph(675) ratio. An
average the aph(440):aph(675) of 1.92±0.28, across all stations, was slightly below the
range obtained in a previous study by Sosik and Mitchell (1995), which was 2-4.5. Sosik
and Mitchell (1995) reported the higher the ratio, the more likely the population was
to be dominated by small phytoplankton, including prokaryotes; this would mean the
populations examined in this study had an appreciable amount of larger species.

The second approach to investigating the quality of absorption data was to calculate
a∗ph(675). A pioneering study by Johnsen et al. (1994), established the maximum, unpack-
aged a∗ph(675) to be 0.027 m2 mg chl-a−1 in two dinoflagellate species. While this value has
often been the benchmark for a∗ph(675) measurements, other studies have demonstrated
a wider range of measured values. Culture studies have reported a range of 0.013-0.057
m2 mg chl-a−1 (Mitchell and Kiefer, 1988b; Organelli et al., 2017). In situ studies, such
as that by Meler et al. (2017), have reported values, in the Baltic Sea, of 0.067 m2 mg
chl-a−1 for [chl-a] of 0.8 mg m−3. Ferreira et al. (2017) measured a∗ph(675) up to 0.045
m2 mg chl-a−1 off the Antarctic Peninsula, which was attributed to small cell size, low
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pigment concentration and/ or the presence of chl-b. All a∗ph(675) values for this study
were between 0.014 and 0.045 m2 mg chl-a−1. All summer cruise values for a∗ph(675) and
their respective [chl-a] values behaved in a typical manner, i.e. the smaller the value of
a∗ph(675) the higher the [chl-a] and/ or larger the cell volume, due to the greater the effect
of pigment packaging (Fig. 2.5). All Winter Cruise a∗ph(675) values varied widely from
0.014-0.040 m2 mg chl-a−1, for a relatively consistent [chl-a] of an average of 0.22±0.06
mg m−3. As the [chl-a] remains constant, this range in a∗ph(675) would indicate a change
in cell size and/ or taxonomy, which is feasible as the Winter Cruise covers a latitude
of approximately 20 degrees and a longitude of approximately 40 degrees (Fig. 2.12),
encompassing a variable range of community characteristics and species dominance.

2.6 Fluorescence Measurements

2.6.1 MFL setup and data collection

The Multi-Exciter Fluorometer (MFL, JFE Advantech, Co., Ltd.) was positioned in
parallel with multiple optical instruments as part of an on-board, flow-through optics
suite (Fig. 2.6). The MFL was orientated with the optical-window facing down, in a
non-fluorescent, black perspex bucket, with light-excluding inflow and outflow tubing, at
a distance z ≈ 60 mm from the bottom. The scientific seawater supply used to sustain the
suite was taken from the ship’s intake system, located approximately 7 m below the sea
surface. The seawater supply was passed through a debubbler, which limited the influence
of bubbles on all optical measurements. However, this system was not completely failsafe
due to occasional periods of rough seas where the bow intake rose above the sea level
or was high enough to draw in highly aerated seawater. In addition, the possibility of
shear caused by the ship’s pump, plumbing, debubblers, and the MFL setup, as well as
bio-fouling of both the plumbing and the MFL, were taken into consideration.
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 Vortex debubbler 

 Multi-Exciter Fluorometer 

Figure 2.6: The underway seawater flowboard and MFL set-up on the S.A. Agulhas II.

The MFL was directly connected to a laptop loaded with the MFL software (sup-
plied by the manufacturers). Measurements were continuously recorded for 10 sec every
1 min. Post-processing saw the measurements averaged into 20 min bins (station ±10
min), in order to capture the same population present in overlapping station measure-
ments, including absorbance and HPLC. The standard deviations (SD) of data binned
over different temporal ranges were compared; bins with an average time of 10 min had
an average SD of 0.017, while bins averaged over 20 min had an average SD of 0.027 and
30 min an average of 0.038 (Fig. 2.7). The sampling window of 20 min averaged over the
station time was considered ideal, allowing for minor inconsistencies in station sampling
time without covering too much travel distance.

Wavelength (nm) 

Fl
uo

re
sc

en
ce

 (p
pb

 R
ho

da
m

in
e 

W
T)

 

Figure 2.7: Time-averaged measurements of raw MFL output.
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2.6.2 Instrument drift

Intermittent dark measurements were performed to monitor the MFL for potential in-
strument drift. The values for two nominal dark measurements are presented in Table
2.3. As evident, there are negligible differences in dark readings between 2014 and 2018,
demonstrating that instrument drift is of minor importance when processing current MFL
data. However, the use of a suitable fluorescence standard may be employed to monitor
instrument drift in the future. In addition, frequent baseline measurements of filtered
seawater would allow for a more robust assessment of the influence of biofouling, such as
measurements performed by Bibby et al. (2008).

Table 2.3: Values for two nominal dark readings (ppb Rhodamine WT).

MFL LED June 2014 2014 SD February 2018 2018 SD
375 nm -0.007 ±0.007 -0.010 ±0.006
400 nm 0.003 ±0.007 0.001 ±0.004
420 nm -0.004 ±0.005 -0.005 ±0.004
435 nm -0.007 ±0.006 -0.007 ±0.005
470 nm 0.006 ±0.006 0.006 ±0.004
505 nm -0.003 ±0.004 -0.004 ±0.004
525 nm 0.068 ±0.006 0.068 ±0.005
570 nm -0.082 ±0.031 -0.087 ±0.019
590 nm -0.003 ±0.005 -0.004 ±0.004
880 nm -0.023 ±0.005 -0.032 ±0.005
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2.6.3 Quality control of MFL fluorescence data

MFL fluorescence data underwent multiple steps of rigorous quality control. From the
outset, the manual inspection of the data recorded over the 20 min sampling period for
each individual station was performed. Outliers were detected and removed with an upper
and lower outlier limit of the mean ± SD×3. An example of acceptable raw fluorescence
data is shown in Fig. 2.8, where relative consistency in spectral shape was retained
between channels.
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Figure 2.8: These data represent an acceptable MFL fluorescence recording (station
GHN05). Of the 20 min time period sample, the blue points represent data lying outside
of the chosen SD and time constraints, while orange points represent usable data that lies
within the specified limits.

Manual inspection of the data collected for each of the stations identified spectral
anomalies. The influence of bubbles was clearly visible (Fig. 2.9), affecting the MFL
LED channels differently. Such stations were omitted from further processing.
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Figure 2.9: An example of an MFL raw fluorescence measurement influenced by the
presence of bubbles on the optical window.

Another observed anomaly was an unexpected instrument surge that occurred every
59:30 min (Fig. 2.10). The spike was not observed in any of the other instrument detectors
(i.e. temperature, depth and turbidity), demonstrating the surge was not due to the ship’s
power supply but rather due to a possible instrument flaw. This feature was apparent in
both SANAE53 and Winter Cruise data. Stations influenced by instrument surges were
similarly omitted from further processing.
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Figure 2.10: An example of an MFL raw fluorescence measurement situated over the
observed spiking of the MFL. It is apparent, in this instance, that the 570, 590, and 880
nm channels behave in an inverse manner to the other channels.
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The 880 nm MFL LED was identified as a flag for highly scattering environments and
proved to be significantly (p < 0.001) related to the 570 nm LED fluorescence output (Fig.
2.11); the 95% confidence interval for the slope is (11.88, 16.88). The 570 nm channel is
the most sensitive to noise and turbidity, caused by, for example, bubbles. The validity
of both of the MFL calibration models (Chapter 3) are contingent upon deployment in
a low scattering environment. Fluorescence samples considered to be contaminated with
scattering elements were excluded i.e. stations with a turbidity value greater than 10
Formazine Turbidity Units (FTU).
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Figure 2.11: The MFL 570 nm output is positively, significantly (p < 0.001) correlated
to the 880 nm turbidity output; FTU: formazine turbidity units.

The application of these MFL fluorescence quality control saw the loss of approxi-
mately 50% of measured stations that had previously passed the absorption quality con-
trol. The remaining stations, where both the absorption and MFL-fluorescence passed
the quality control checks, were used to derive ΦF (λ) in Chapter 3, and can be seen on
the cruise maps in Figure 2.12.
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(b) SANAE53: GoodHope - southbound leg
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Figure 2.12: Quality-controlled stations selected for work in this thesis on (a) the Win-
ter Cruise during the austral winter of 2012, (b) the GoodHope-South transect of the
SANAE53 cruise during the austral summer of 2013/ 2014, (c) the Buoy Run transect of
SANAE53, and (d) the GoodHope-North transect of SANAE53. Frontal positions, Sub-
Tropical Front (STF), the Sub-Antarctic Front (SAF), the Polar Front (PF), the Southern
Antarctic Circumpolar Current Front (SACCf), and the Southern Boundary (SBdy) of
the ACC, were determined through Maps of Absolute Dynamic Topography (MADT).
The position of the fronts was determined using sea surface height data from maps of
absolute dynamic topography (MADT) from the CLS/AVISO product (Rio et al., 2011;
Swart et al., 2010).
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2.7 Data Clustering

Clustering is the unsupervised classification of unlabelled patterns into meaningful groups,
or clusters. This is an important tool in exploratory data analysis, whereby the appropri-
ate algorithm, parameter setting and number of clusters depends upon the nature of input
data as well as the intended use of the outcome (Jain et al., 1999). K-means clustering par-
titions a given dataset, of n data points, into a user-specified number of clusters, k. This
hard clustering algorithm allocates each pattern to a single cluster during its operation
and in its output. This approach was followed for both ΦF (λ) spectra and pigment data
for CHEMTAX analysis, using the Python Scikit-learn package (sklearn.cluster.KMeans
algorithm).

2.7.1 K-means clustering of ΦF(λ) spectra

With a small total sample size of n = 66, the ideal number of clusters was needed to
be as low as possible, to maintain statistical integrity for further analysis. Visually, four
was the lowest number of clusters to satisfactorily separate ΦF (λ) spectra, isolating the
three stations with exceptionally large ΦF (570) values (GHS78, GHS80, and GHS90),
which may have skewed subsequent interpretation (Appendix B.3). Silhouette analysis
was performed on the total dataset to validate the choice in cluster number, where cluster
numbers 2-5 were 0.56, 0.38, 0.41, and 0.44 respectively. The silhouette value is a measure
of how similar each spectrum is to its own cluster compared to other clusters. This value
lies between + 1 and - 1, the former being optimal and the latter being suboptimal, with
values close to zero indicating overlap between clusters. The distance metric used in this
study was Euclidean distance. The silhouette score for 2 clusters was the highest (0.56),
however, two clusters severely limited the range of spectral separation. Based on sample/
cluster size, visual separation of spectra and with an acceptable silhouette score of 0.41,
four was selected as the optimum number of clusters.

2.7.2 K-means clustering of pigment data for CHEMTAX

Clustering of the entire dataset into similar pigment groups allowed for a more directed
application of CHEMTAX. Extracted pigments, quantified by HPLC, were normalised to
total [chl-a], prior to root square transformation. Multi-dimensional scaling was then used
to cluster out similar samples, and silhouette analysis was used to examine the separation
distance between resulting clusters. The highest silhouette coefficients obtained were used
to identify the optimum number of clusters for all data, which in this instance proved to
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be 2 clusters per cruise.

2.8 Empirical Orthogonal Function Analysis

Empirical orthogonal function (EOF) analysis was used to assess the variance of ΦF (λ)
spectral structure within the cluster datasets. Intra-cluster ΦF (λ) spectra were sepa-
rated into a set of geometrically independent (orthogonal) modes of oscillation, which
represented all the variance in the data (Craig et al., 2012). The modes, generated by
computation of the eigenvectors of the covariance matrix of the dataset, were selected
to be different from each other and to account for as much variance as possible. The
first mode captured the largest portion of total variance and subsequent modes cap-
tured progressively less. The first three modes were used for analysis of the ΦF (λ)
dataset. All data were non-normally distributed (Shapiro-Wilk test), necessitating the
use of Spearman’s rho (rs) to investigate statistical significance. The analysis was only
performed on cluster numbers 1-3, as the sample size of cluster number 4 was statistically
unreliable (n = 3). All data were standardised using the Python Scikit-learn package
(sklearn.preprocessing.StandardScaler) and all statistical analyses were performed using
the Python SciPy library.



Chapter 3

Calibration of a Multi-Excitation
Fluorometer for use in Apparent
Fluorescence Quantum Yield
Determination

The radiometric calibration of a Multi-Exciter Fluorometer (JFE Advantech, Co., Ltd.)
for use in fluorescence quantum yield determination forms content published in Griffith
et al. (2018): Griffith, D.J., Bone, E.L., Thomalla, S.J., and Bernard, S. (2018). Cali-
bration of an in-water multi-excitation fluorometer for the measurement of phytoplankton
chlorophyll-a fluorescence quantum yield. Optics Express, 26(15):18863-18877.

3.1 Introduction

3.1.1 Background

The derivation of ΦF requires, besides accurate quantification of the fluorescence signal,
that the spectral composition of excitation energy and the spectral absorption properties
of phytoplankton be known. Not all received excitation energy is transferred to chl-a
in intact phytoplankton, with light absorption largely influenced by a combination of
pigment composition, concentration, and packaging (Bricaud et al., 1998; Hoepffner and
Sathyendranath, 1991; Lohrenz et al., 2003; Nelson and Robertson, 1993; Sathyendranath
et al., 1987). As such, in situ ΦF is considered an apparent ΦF , as opposed to an ab-
solute ΦF . In situ studies investigating ΦF are limited, both in the Southern Ocean
and globally, with existing studies typically making use of SICF near the ocean surface

61
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(Table 1.3). SICF can be detected as red peaks in both in-water (Babin et al., 1996b)
and water-leaving radiance spectra (Neville and Gower, 1977). Derivation of in situ ΦF

requires knowledge of aph together with a fully characterised light field. The downwelling
irradiance and upwelling radiance are typically quantified through the use of spectrora-
diometers. Examples used in existing studies include a PRR-600 underwater radiometer
(Biospherical Instruments) (Morrison, 2003), a LI-1800 UW spectroradiometer (LI-COR
Instruments) (Maritorena et al., 2000), and a MER-2040 spectroradiometer (Biospherical
Instruments) (Ostrowska et al., 1997; Westberry and Siegel, 2003). A different approach
to deriving in situ ΦF , involving linear parameterisation, has been utilised in various La-
grangian studies. For example, Letelier et al. (1997) defined an apparent ΦF as the slope
of the relationship between FLH/ chl-a (fluorescence line height normalised to the con-
centration of chlorophyll, as estimated using ocean colour measurements from a drifter)
and the incident irradiance at 490 nm; this same approach was followed by Abbott et al.
(2001). Schallenberg et al. (2008) performed a similar study, however, instead of normal-
ising fluorescence to chl-a, they normalised fluorescence to absorption. All three studies
made use of METOCEAN Data Systems optical drifters, equipped with a 7-channel up-
welling radiance sensor (412, 443, 490, 510, 555, 670, and 683 nm) and a downwelling
irradiance sensor (490 nm). A third approach to deriving in situ ΦF was put forward
by Ostrowska (2011), who made use of a BBE Moldaenke FluoroProbe multi-excitation
fluorometer. Multi-excitation fluorometers exploit fluorescence excitation spectra to de-
fine phytoplankton taxonomic groups based on signature accessory pigment composition
(Johnsen et al., 1997; Sosik and Mitchell, 1995; Yentsch and Yentsch, 1979), which are
typically used to discriminate between phytoplankton species in mixed assemblages (Beut-
ler et al., 2003, 1998, 2002; Cowles, 1993; Desiderio et al., 1997; Kolbowski and Schreiber,
1995; Yoshida et al., 2011). While Ostrowska (2011) did not radiometrically characterise
the excitation LEDs, nor the emission detector of the instrument, they still derived an
apparent, wavelength-specific ΦF . If such an instrument was accurately calibrated for ΦF

measurements, routine deployments would increase the number of global ΦF observations,
which would in turn improve current understanding of the drivers of variability of ΦF ,
and play a crucial role in validating existing satellite-derived ΦF algorithms.

3.1.2 Chapter objectives

This chapter sees the calibration of a Multi-Exciter Fluorometer (MFL, JFE Advantech
Co., Ltd.), for use in wavelength-specific, apparent ΦF determination. The MFL under-
goes an extensive characterisation to investigate instrument functionality, and a subse-
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quent radiometric calibration for use in ΦF derivation. Two distinct calibration models
are employed, the first of which incorporates the use of fluorescent dye solutions with
known quantum yield and spectral traits. The second model adds a degree of complexity
to the calibration, making use of fluorescent acrylic plaques and films to determine the
MFL response as a function of distance.

3.2 Radiometric Calibration of the Multi-Exciter
Fluorometer

Please refer to the List of Notation (p.iv) for specific symbols and units used throughout
this chapter.

3.2.1 The Multi-Exciter Fluorometer

A MFL, was originally designed to discriminate between phytoplankton species in popu-
lation, through exploitation of signature accessory pigments (Yoshida et al., 2011), was
purchased from JFE Advantech, Co., Ltd. (MFL10W-CAD model, serial number 0013).
The instrument consists of nine excitation LEDs, centred at 375, 400, 420, 435, 470, 505,
525, 570, and 590 nm. The LEDs at 375 and 590 nm are present in duplicate, and 570 nm
in triplicate, to account for differences in LED intensity (Fig. 3.1). In addition, the MFL
also contains a turbidity LED at 880 nm, and temperature and pressure sensors. The
MFL detector, fitted with a cut-on filter at 640 nm, receives emitted light in the 640-1000
nm region.
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shows a schematic of the optical filter characteristics used in 
the Multi-Exciter. 

The Multi-Exciter has temperature, depth, and turbidity 
sensors. In addition, this instrument has a mechanical wiper to 
prevent bio-fouling on the optical window. Consequently, the 
instrument provides stable and accurate optical data during the 
deployment period. Figure 3 shows the exterior appearance of 
the Multi-Exciter. 
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Figure 1.  Spectral distributions of the nine LEDs. 
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Figure 2.  Characteristics of the optical filters. 

III. PROCESSING OF PHYTOPLANKTON GROUPS 

A. Modeling of the excitation spectra 
The Multi-Exciter measures the nine-wavelength excitation 

fluorescence spectrum, y , in the water sample. The spectrum 
is described as the following vector form: 

9
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where t  is the transpose of a vector, and 9R  is the set of nine-
dimensional real-valued vectors.  

 
(a) Multi-Exciter overview 

 
(b) Sensors top view 

Figure 3.  Appearance of the Multi-Exciter. 

It is assumed that there are m  groups of phytoplankton in 
the water sample. Each group has a different spectral 
characteristic. Here, we defined the specific spectrum as the 
spectrum normalized by the corresponding chlorophyll-a 
concentration. The specific spectra of m  groups are expressed 
as follows: 
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The excitation spectrum in the water sample, y , is 
reconstructed using the specific spectrum and the 
corresponding chlorophyll-a concentrations: 
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where ic  indicates the chlorophyll-a concentration of each 
phytoplankton species in the water sample. The chlorophyll-a 
concentrations, c , and the excitation spectra of the 
phytoplankton groups,  S , are described as: 
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where m$9R indicates the set of m$9 matrices. 
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(a) The Multi-Exciter Fluorometer (b) LED positions and groupings

Figure 3.1: (a) The JFE Advantech, Co., Ltd, Multi-Exciter Fluorometer (Yoshida et al.,
2011). (b) Depicts the MFL LED layout and grouping for the flashlet sequence (1-4).

3.2.2 Characterisation of the Multi-Exciter Fluorometer

Prior to the calibration of the MFL, the instrument required a full optical characteri-
sation. A thorough investigation, including characterisation of the LED spectral band-
widths, LED temporal cycles, detector field-of-view (FOV), and bias over temperature,
was performed.

3.2.2.1 LED temporal cycle

The MFL was initially placed in an integrating sphere, where it was discovered that
an ambient background reading is automatically subtracted from the measured signal
prior to output. The grouping and sequence in which the LEDs flash was determined
through the use of a Tektronix oscilloscope. Each group (1-4) flashes sequentially, with
each group measuring the stimulated signal for 2 ms followed by an ambient background
measurement for another 2 ms, making each group flashlet last a total of 4 ms. The
ambient measurement is automatically subtracted from the stimulated measurement. One
complete LED measurement is 16 ms (Fig. 3.1).
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3.2.2.2 Spectral distribution of the LEDs

It was necessary to determine the spectral distribution of the LEDs for weighting of both
the MFL signal response and absorption measurements. The absolute irradiance of the
individual LEDs was measured with a B&W Tek, Inc. SpectraRad irradiance meter (Fig.
3.2).
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Figure 3.2: MFL LED spectral bandwidths (nm).

3.2.2.3 Detector field of view

The MFL distance response calibration (Section 3.2.5) is contingent upon the assump-
tion that the MFL has a relatively narrow FOV. To assess the FOV, a small rectangle
of strongly fluorescing film was placed on an opaque, black substrate and submerged in
distilled water (dH2O). The lateral response of the MFL was measured, in two perpendic-
ular orientations, at various distances above the film. The "full-width at half maximum"
refers to the total field of view determined by finding angles at which the signal from the
instrument drops to half the peak signal established when the piece of film was near the
centre of the FOV. The full-width at half maximum was established to be 16 mm at a
distance z = 40 mm and 24.3 mm at z = 60 mm. The half-width at half maximum of the
angular FOV was hence estimated to be 11.4◦.
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3.2.2.4 Negligible bias over temperature

The stability of the MFL over time and temperature was investigated. Black, non-
fluorescent tape was placed over the optical face of the MFL, until no visible LED exci-
tation radiation was observed. The instrument was positioned in a black, plastic bucket,
and filled with H2O and ice. The temperature increased from 2-21℃ over a period of 24
h, with the results presented in Fig. 3.3. While almost all LEDs remain close to zero
throughout the 24 h period, 570 and 525 nm are consistently lower and higher, respec-
tively, over time. It is evident from the output that the 570 nm channel is very sensitive
to noise. In addition to the 570 nm LED being the only LED present in triplicate (Fig.
3.1), the internal gain factor has also been set higher than other LEDs to increase signal
detection, which is typically low at this wavelength.
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Figure 3.3: Fluorescence output per LED over a temporal range of 24 h and temperature
range of 2-21℃.

3.2.3 Absolute radiometric calibration of the Multi-Exciter Flu-
orometer

The MFL was originally factory calibrated against Rhodamine-WT (RWT) fluorescent
dye, with the raw instrument output in parts-per-billion (ppb) RWT. Limited quantitative
information on the fluorescence characteristics of RWT meant this calibration could not
be exploited in the quest to derive ΦF from the MFL. This led to the development of
two novel calibration techniques. The first method was the most direct and involved the
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use of fluorescent dyes of known quantum yields and spectral traits. The second method
made use of fluorescent acrylic plaques and plastic films to determine the MFL response
as a function of distance.

3.2.4 Fluorescent dye calibration

Ideal quantum yield standards should have minimal overlap between absorption and emis-
sion, i.e. a large Stoke’s Shift, be soluble in the same solvent as the compound being inves-
tigated, and have high photostability. The excitation and emission spectra should also be
similar to the compound being studied, and most importantly have an accurately known
quantum yield (Demas and Crosby, 1971). As such, water-soluble, photostable dyes were
obtained with a similar emission spectrum as chl-a and excitation spectrum covering the
full excitation range of the MFL (350-610 nm). The carboxy-derivatives of two suitable
ATTO-TEC (ATTO Technology, Inc.) dyes with dissimilar spectral traits were selected,
namely ATTO655 and ATTO490LS. ATTO490LS has an exceptionally large Stoke’s shift,
which is preferential when avoiding second order excitation light field effects. Both dyes
have a specified quantum yield of 0.3, however, uncertainty data were not available from
the manufacturer.

3.2.4.1 Fluorescent dye model

The linear calibration model for the MFL output signal response to a fluorescent solution
with index i was defined as

Rij = kijaijpiΦi (3.1)

where

• Rij is the MFL signal response to the fluorescent solution i exposed to the spectral
distribution of LED wavelength j,

• kij is a calibration constant for solution i, LED j, expected to be independent of solution
i, leaving kj,

• aij is the absorption coefficient of solution i, a mean value weighted by the spectral
photon distribution of LED j,

• pi is the MFL-relative partial quantum yield factor for the fluorophore in solution i and

• Φi is the total fluorescence quantum yield (FQY) for the fluorophore in solution i.
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Calibration constants kij were determined through the rearrangement of Eq. 3.1:

kij =
Rij

aijpiΦi
(3.2)

3.2.4.2 Derivation of dye calibration constants

The fluorescent dye calibration comprised five key components, the first of which was to
determine the spectral molar absorptivity of the fluorescent dye stock solutions. A Varian
(now Agilent) Cary 500 spectrophotometer, with long pathlength cuvettes (10 cm), was
used to determine the spectral molar absorptivity of the dyes (Fig. 3.4), and as such the
spectral molar absorption coefficient of any dye solutions used during the calibration.

• ai j is the absorption coe�cient of solution i, a mean value weighted by the spectral photon
distribution of LED j,

• ki j is a calibration constant for solution i, LED j, expected to be independent of solution i,
leaving k j ,

• pi is the MFL-relative partial quantum yield factor for the fluorophore in solution i
(described in Section 2.1.3) and

• �i is the total FQY for the fluorophore in solution i.
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Fig. 1. MFL LED normalized photon spectra, plotted on a log scale with ATTO-TEC Dye
and Perspex 4T56 relative spectral absorptivity.

The linear calibration process establishes the calibration constants ki j determined as

ki j =
Ri j

ai jpi�i
. (2)

A stepwise description of the linear calibration is as follows: (1) The spectral molar absorptivity
"i(�) of the working dye stock solutions was determined using a Varian (now Agilent) Cary 500
spectrophotometer and compared to the data supplied by the manufacturer. (2) The MFL was
immersed in solutions of the working stock at known dilution ratios under the assumption that
the absorption coe�cients were linearly related to concentration. The Ri j values were established
by immersing the MFL in a fluorescent solution index i (the dyes ATTO655 or ATTO490LS
dissolved in deionized water (dH2O)), where the equivalent absorption coe�cient ai j for each
LED spectral photon distribution had been established. A time-averaged response Ri j of the MFL
was measured for each solution. (3) The LED-specific absorption coe�cients of the calibration
dye solutions were calculated using spectral weighted averaging. To get good signal on all
channels of the MFL, solutions of the dyes at various concentrations were used. A stock dye
solution of known spectral absorption coe�cient was made up using dH2O, from which we
could calculate ai j for any diluted solution of the stock (see Section 2.1.2). (4) The MFL partial
quantum yield was determined (see Section 2.1.3). This was necessary as part of the dye emission
spectrum is filtered out by the MFL cut-on filter. (5) Finally, the calibration coe�cient for each
LED wavelength was computed using Eq. (2).

Figure 3.4: Derived MFL LED normalised photon spectra, plotted on a log scale with the
relative spectral absorptivity of fluorophores used in the various calibration approaches.

Next, the MFL was immersed in solutions of the working stock at known dilution
ratios under the premise that the absorption coefficients were linearly related to the
concentration. The ATTO490LS and ATTO655 fluorescent dyes were dissolved in dH2O
to yield fluorescent solutions with index i. The MFL response (Rij) values were established
by placing the MFL in the solutions, where the equivalent absorption coefficient (aij) for
each LED spectral photon distribution had been established; Rij was thence determined
for each LED.

The LED-specific absorption coefficients of the dye solutions were calculated using
spectral weighted averaging. Various concentrations of the dye solutions were used to
ensure good signal on all channels of the MFL. A stock dye solution with a known spectral
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absorption coefficient was made up, from which aij for any dilution of the stock could be
calculated.

As part of the dye emission spectrum is filtered out by the MFL detector cut-on filter,
derivation of the MFL-relative partial quantum yield was required. The MFL-relative
partial quantum yield lies between 0 and 1 and takes into account the spectral response
of the MFL detector channel. If the relative spectral quantum response of the MFL
is denoted Γ(λ) and the emission spectrum of fluorescent solution i is Si(λ), then the
MFL-relative partial quantum yield factors over depth dλ can be defined as

pi ≡
∫
Si(λ)Γ(λ)dλ∫
Si(λ)dλ . (3.3)

The quantum response of the MFL (Γ(λ)) and the dye emission spectra (Si(λ)) were
provided by the manufacturers, as shown in Fig. 3.5. The MFL-relative partial quantum
yield factors calculated this way and used in the calibration are listed in Table 3.1. For
chl-a, the MFL-relative partial quantum yield factor comprised the mean values for chl-a
in ether and methanol, that is pc = 0.851.

Table 2. MFL-Relative Partial Quantum Yield Factors

Fluorophore pi Photon-Based

ATTO 490LS 0.624
ATTO 655 0.893

Chl-a in Ether 0.827
Chl-a in MeOH 0.875
Perspex 4T56 0.319

phytoplankton-specific absorption coe�cients a?j have come from independent field measurements
of the sample spectral absorption, determined spectrophotometrically as per the quantitative
filterpad method [21]. The partial yield factor for chlorophyll pc is used from Section 2.1.3.
Since we no longer expect the FQY to be wavelength-independent, the field application of the
calibration is written as

�j =
Rj

k ja?j pc
. (8)
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Fig. 2. Fluorophore normalized emission photon spectra plotted together with MFL normal-
ized e�ective quantum detection e�ciency.

2.3. MFL Distance Calibration

The distance calibration adds one dimension of complexity to the simple linear calibration model
described above. Here we assume the observed fluid medium to be isotropic and homogeneous
but now consider the primary stimulating radiation from the MFL arriving at and returned
fluorescence signal from elementary plane-parallel layers of fluorescent medium as illustrated in
Fig. 3.

The di�erential response dR of the MFL to a plane parallel layer of thickness dz at distance z
was written as the product

dR = a�g(z)dz, (9)

Figure 3.5: Fluorophore normalised emission photon spectra plotted together with the
MFL normalised effective quantum detection efficiency.
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Table 3.1: MFL-relative partial quantum yield factors. The mean factor for chl-a in ether
and in methanol was used in Eq. 3.4, where pc = 0.851

Fluorophore pi Photon-based
ATTO 490LS 0.624
ATTO 655 0.893
Perspex 4T56 0.319
Chl-a in ether 0.827
Chl-a in methanol 0.875

As the fluorescence quantum yield of the dyes, Φi, was supplied by the manufacturer,
the final step was to determine the calibration coefficient for each LED wavelength using
Eq. 3.2.

3.2.4.3 Fluorescent dye calibration: Field application

Field measurements require that Φ be solved through manipulation of Eq. 3.2. In situ
raw MFL output was recorded for 10 sec every 1 min, for a total of 20 min over the
station time (Section 2.6.1). These data were time-averaged (Rj) and input into Eq.
3.2. The LED channel phytoplankton-specific absorption coefficients (a∗j) were deter-
mined spectrophotometrically as per the quantitative filterpad technique (Yentsch, 1962)
(Section 2.5). The calibration factor (kj) and partial yield factor for chl-a (pc) were ex-
perimentally determined. As the fluorescence quantum yield was no longer expected to
be wavelength-independent, the field application equation was defined by

Φj =
Rj

kja∗jpc
. (3.4)

3.2.5 Fluorescent acrylic plaque calibration

The MFL fluorescent acrylic plaque calibration, also referred to as the distance-response
calibration, added another dimension of complexity to the fluorescent dye calibration
model. While the dyes were regarded as isotropic and homogeneous, the MFL stimulating
radiation and returned fluorescence from elementary plane-parallel layers of the fluorescent
plaque was now considered (Fig. 3.6).
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Fig. 3. MFL LED and detector viewing geometry. The angle at which the LED illumination
intersects the fluorescent layer at distance z at the center of the MFL field of view (FOV) is ✓.

where a is the absorption coe�cient, � is the FQY and g(z) is a function of distance z from the
window of the MFL. The calibration function g(z) subsumes all geometrical aspects of LED
illumination and detector field of view, including the variation in illumination with distance. It was
assumed to be unique and stable for each LED spectrum and independent of the characteristics
of the fluorophore. Note that this is for an isolated layer of fluorescent material in an otherwise
perfectly pure, transparent and infinite water body. The distance calibration setup was made as
close to this ideal scenario as possible.

As in the case of the simple calibration model above, we introduced an indexing scheme to
deal with di�erent fluorophores with index i and di�erent LED illumination spectra with index j.
The di�erential MFL response was then written as

dRi j = ai jpi�igj(z)dz, (10)

which exhibits the assumption that the geometrical calibration function gj(z) is independent of
fluorophore characteristics. The absorption coe�cient ai j is for fluorophore i and for LED j
computed as a weighted integral as exemplified in Eq. (5). The MFL-relative partial quantum
yield pi�i is used to take the actual MFL spectral response into account.

In practice, attenuation of the stimulating radiation in the layers preceding the layer under
consideration must be considered, as well as the attenuation of the emitted fluorescence radiation
which is returned to the detector. If scattering is neglected, on the outward path, the transmittance
of the excitation radiation through the prior layers is

Ti j(z) = exp
⇥�ai j z sec ✓(z)⇤ (11)

and on the return path, the transmittance of the emitted radiation is

T0
i (z) = exp

⇥�a0
i z
⇤

(12)

where a0
i is the e�ective absorption coe�cient of the medium for the fluorophore emission

Figure 3.6: MFL LED and detector viewing geometry, supplied from personal communi-
cation with JFE Advantech Co., Ltd. The angle at which the LED illumination intersects
the fluorescent layer at distance z at the centre of the MFL FOV is θ. The thickness of
the fluorescent plaque is denoted dz.

As in the case of the fluorescent dye calibration, an indexing scheme was used to denote
different fluorophores (i) and different LED illumination spectra (j). It followed that the
differential response of the MFL to a plane parallel layer of thickness dz at distance z was
defined as

dRij = aijpiΦigj(z)dz (3.5)

where

• dRij is the differential MFL signal response to the fluorescent plaque i exposed to the
spectral distribution of LED wavelength j,

• aij is the absorption coefficient of the fluorescent plaque i, a mean value weighted by
the spectral photon distribution of LED j,

• pi is the MFL-relative partial quantum yield factor for the fluorescent plaque i,

• Φi is the total FQY for the fluorescent plaque i,

• gj(z) is the calibration function of distance z from the MFL window, for LED j,

The geometric calibration function gj(z) subsumes all geometrical aspects of LED il-
lumination and detector FOV, including the variation in illumination with distance. It
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was assumed that gj(z) was independent of the characteristics of the fluorescent plaque.
This would hold true for an isolated layer of fluorescent material in an otherwise uncon-
taminated, transparent and infinite body of water. The distance calibration was set up
to closely mimic this ideal scenario. Attenuation of the excitation radiation in the layers
preceding the layer under consideration must be accounted for, as well as the attenuation
of the return path of emitted fluorescence radiation. If scattering is neglected, on the
outward path, the transmittance of the stimulation radiation is

T ij(z) =exp[−aijzsecθ(z)] (3.6)

and the return path is
T
′
i(z) =exp[−a′iz] (3.7)

where a′i is the absorption coefficient of the medium at the fluorophore emission wave-
length. Taking the outward and return light attenuation into account, the differential
MFL response becomes

dRij = aijpiΦigj(z)Tij(z)T ′i (z)dz

= aijpiΦigj(z)exp[−aijzsecθ(z)]exp[−a′iz]dz

= aijpiΦigj(z)exp[−(aijsecθ(z) + a
′
i)z]dz. (3.8)

Integrating to derive the total signal for a fluorescent medium layer of finite thickness t
provides

Rij = aijpiΦi

t∫
0

gj(z)exp[−(aijsecθ(z) + a
′
i)z]dz. (3.9)

A red-orange fluorescent acrylic (Perspex 4T56) plaque, given index i = 0 and physical
thickness = 3 mm, formed the basis of the distance calibration. The spectral absorption
coefficient of the plaque, a0, was measured on a Varian Cary 500 spectrophotometer (Fig.
3.4) and the emission spectrum and quantum yield of the plaque, Φ0, and MFL-relative
partial quantum yield factor, p0, were determined as described below in Section 3.2.5.1.
The fluorescent plaque was found to saturate one or more MFL channels, necessitating
the use of a neutral absorption filter, free from fluorescence, to attenuate excess radiation
departing from and returning to the MFL (Fig. 3.7).
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Fig. 4. Calibration setup using fluorescent acrylic plaque and neutral gray filter.

and
R2j(z) = d2jgj(z), (17)

where d1j and d2j are proportionality constants. Thus

gj(z) =
R1j(z)

d1j
=

R2j(z)
d2j
. (18)

The typical shape of the gj(z) functions was log-normal in character, starting at zero for z = 0,
peaking roughly at z ⇡ 15 mm and then falling exponentially. For the 570 and 590 nm channels,
the gj(z) functions exhibited an additional peak at closer range (z ⇡ 6 mm). The LED/detector
geometry shown in Fig. 3 may suggest that the gj(z) should peak at z ⇡ 24 mm where the LED
axes intersect the detector axis. However, the distance of peak response depends on this geometry
as well as potential inverse-square decline in LED irradiance.

2.3.3. MFL Calibration with Fluorescent Plaque

By measuring the response of the MFL to the gray filter with fluorescent plaque at di�erent
distances z0, it is possible to obtain multiple simultaneous equations from Eq. (15), and rearranging
to obtain the unknown scaling constant di . Substituting an option from Eq. (18) into Eq. (15) and
solving for d provides

d1j =
a0jp0�0T0

f

R0j(z0)

z0+t f +tπ
z0+t f

R1j(z)Tsec ✓(z)
f j

exp
⇥� �

a0j sec ✓(z) + a0
i

� (z � z0 � t f )
⇤

dz. (19)

Everything on the right-hand side of Eq. (19) is known or measured, allowing calculation of d1j
and similarly d2j or for further thin fluorescent films. It was found advisable to use larger z0 as
the calibration at close range became problematic, possibly due to detector nonlinearities and
saturation e�ects as well as geometry errors. Since the detector is common to all LED channels, it
is possible that if any LED produced measurements near or beyond saturation, this could impact
the quality of other LED channel measurements. Any such MFL data were therefore discarded.

e 

Figure 3.7: Calibration setup using a fluorescent acrylic plaque and neutral grey filter.

The absorption filter, of thickness tf and transmission, Tfj, respectively T
′
f , was placed

over the fluorescent plaque, as illustrated in Fig. 3.7. The outward signal was reduced by
T
secθ(z)
fj and the return signal by T ′f , providing

R0j(z) = a0jp0Φ0T
′
f

z0+tf +t∫
z0+tf

gj(z)T secθ(z)fj exp[−(a0jsecθ(z) + a
′
i)(z − z0 − tf )]dz. (3.10)

The spectral transmittance of this grey filter was measured using a Varian Cary 500
spectrophotometer, allowing for the calculation of Tfj and T

′
f by weighted averaging. The

MFL response to the fluorescent plaque, R0j, with the grey filter, was measured, leaving
gj(z) as the only unknown.

3.2.5.1 Derivation of distance calibration constants

Derivation of gj(z)
The calibration functions gj(z) were calculated to within a scaling constant di by using

a thin film of fluorescent plastic bonded onto a flat, black, opaque, solid substrate. The
experiment was performed in dH2O, where the response of the MFL was recorded as a
function of distance z between the fluorescent film and the optical window of the MFL
using a z-axis mechanical motion stage (Fig. 3.8).
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Figure 3.8: MFL setup for gj(z) determination. The MFL was positioned on a z-axis
translation stage and submerged in dH2O. The response of the MFL to a weakly fluores-
cent plastic film fixed onto a black, solid substrate was recorded as a function of distance
between the film and the optical window of the MFL.

Two weakly fluorescent plastics films, one pink and one yellow, were compared to verify
independence of gj(z) from the fluorophore. The weakly fluorescent films were optically
thin enough for the total fluorescence signal to be considered arising at a single distance
z of the film from the MFL. The first film was given index i = 1, the second i = 2, so
that

R1j = d1jgj(z) (3.11)

and
R2j = d2jgj(z) (3.12)

where d1j and d2j are proportionality constants. Therefore

gj(z) = R1j(z)
d1j

= R2j(z)
d2j

. (3.13)

The typical shape of the gj(z) functions were considered log-normal, starting at zero for
z = 0 mm, with the majority of channels peaking at z ≈ 15 mm before dropping off
exponentially (Fig. 3.9). The 570 and 590 nm channels comprised a notable peak at z ≈
6 mm, with the LED output displaying a bimodal shape in response to the dull pink film
and a single 6 mm peak in response to the dull yellow film. The geometric arrangement
of the LEDs and detector shown in Fig. 3.6 imply that the gj(z) should peak at z ≈ 23.9
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mm, where the LED axes intercept the detector axis. However, while the distance of peak
response depends on this geometry, the reduced z maximum may be a result of dilution
of LED energy over distance, as per the inverse-square law.
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Figure 3.9: The calibration functions gj(z) were established to within a scaling constant
using a thin film of weakly fluorescing film bonded to a flat, black, solid substrate. The
MFL LED responses peak at ∼15 mm aside from the 570 and 590 nm channels, which
display a notable peak at ∼ 6 mm.

By measuring the MFL response to the fluorescent plaque (with grey filter), at different
distances z0, it is possible to derive the unknown scaling constant di by substituting an
option from Eq. 3.13 into Eq. 3.10, written as

d1j =
a0jp0Φ0T

′
f

R0j(z0)

z0+tf +t∫
z0+tf

R1j(z)T secθ(z)fj
exp[−(a0jsecθ(z) + a

′
i)(z − z0 − tf )]dz. (3.14)
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Figure 3.10: The MFL response over distance z to the exposed fluorescent acrylic plaque
(left) and with the addition of a neutral, grey filter (right).
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The MFL LED response to the weakly fluorescing films was only considered reliable
after z ≈ 1.5-2 mm (Fig. 3.9), due to low signal and potential back-reflections of stimulat-
ing radiation from the MFL. However, the instrument response to the fluorescent plaque
allowed for good separation of signal at these distances, up to z ≈ 1 mm without the grey
filter (Fig. 3.10). The limiting factor in the plaque response is that the 570 nm channel
saturates very quickly (z ≈ 1 mm). As the MFL detector is common to all LEDs it is
feasible that any LED measurements near or beyond saturation may impact the integrity
of the other LEDs. To derive the highest resolution gj(z), the fluorescent plaque mea-
surements were used from 0-1 mm, the fluorescent plaque with the grey filter from 1-6
mm and the weakly fluorescing films for distances greater than 6 mm.

Derivation of Φi and pi

Unlike the dye calibration model, where the quantum yields of ATTO490LS and
ATTO655 were provided by the manufacturer, the emission spectrum and quantum yield
of the fluorescent plaque needed to be derived experimentally. The photon emission
spectrum and quantum yield (Φi) were measured by irradiating the plaque with quasi-
monochromatic light in the excitation region and subsequently measuring the spectral
radiance of the plaque with a spectroradiometer (Fig. 3.11). While the MFL was eas-
ily saturated at moderate light intensities, the spectroradiometers used in this exercise
required a very high intensity light source to produce a detectable response. Two ap-
propriate light sources were selected, the first was a high intensity blue LED (Osram
OSTAR LE B Q8WP), with peak emission centred around 455 nm, and the second was
a high intensity green LED (Osram OSLON LT CP7P) with an emission peak centred
around 521 nm. The spectral irradiance (E(λ), s−1 cm−2 nm−1) from the Osram LEDs
on the plaque were measured with a B&W Tek SpectraRad spectral irradiance metre.
Fresnel reflectance, the phenomenon that occurs when changing between media of differ-
ent refractive indices, was effectively accounted for when performing these measurements,
as detailed by Griffith et al. (2018). The emergent photon radiance (L, s−1 sr−1 cm−2)
was measured using an ASD Inc. FieldSpec 3 spectroradiometer. The photon emission
spectrum of the fluorescent plaque is plotted in Fig. 3.5.
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Figure 3.11: The MFL-setup for derivation of the photon emission spectrum of the fluo-
rescent plaque. The plaque response to the high intensity blue LED was measured with
an ASD Inc. FieldSpec 3 spectroradiometer.

The fluorescence emitted from the plaque at the known blue and green stimulation
wavebands, and the spectral absorption coefficient of the plaque, allowed for derivation of
Φi. The quantum yield was calculated to be 0.50 for the blue LED and 0.54 for the green
LED. The slight discrepancy between FQYs may have arisen due to the presence of more
than one fluorophore in the acrylic plaque, a slight wavelength dependence, or simply due
to technical error. An average value of 0.52 was used in further calculations.

The MFL-relative partial quantum yield of the fluorescent plaque, pi, was determined
as per Eq. 3.3, where the Si(λ) represents the plaque, illustrated in Fig. 3.5 and listed in
Table 3.1.

3.2.5.2 Fluorescent plaque calibration: Field application

The distance calibration process was used to establish data for gj(z) through application
of Eq. 3.14 and then returning to Eq. 3.13. In the field, the calculated MFL-relative
partial quantum yield factor for chl-a (pc) and measured absorption (aj), made it possible
to apply the calibration to MFL field measurements (Rj), and derive the chl-a fluorescence
quantum yield (Φj). The instrument calibration factors are computed using aj from each
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field station, as follows

Gj =
∞∫
0

gj(z)exp[−(ajsecθ(z) + a
′)z]dz. (3.15)

The unknown Φj was determined by solving Eq. 3.9, arriving at

Φj = Rj

Gja∗jpc
(3.16)

where a∗j is the phytoplankton-specific absorption.

3.3 Results

Two distinct calibration models were applied to the MFL, for use in in situ apparent
ΦF determination. The first approach made use of fluorescent dye solutions of known
quantum yields and the second utilised fluorescent plastic plaques and films. At low
attenuation, the dye calibration factors kj are related to plaque calibration factors gj(z)
as

kj =
∞∫
0

gj(z)dz. (3.17)

The ΦF (λ) derived through both calibration approaches were in good agreement, par-
ticularly for the ATTO490LS dye and the fluorescent plaque methods (Fig. 3.12). All
methods display a similar output up until 525 nm, and display the largest standard de-
viation of MFL measurements at 570 nm. The ATTO655 calibration output increases
exponentially after 525 nm, and the ATTO490LS and fluorescent plaque outputs diverge
at 570 nm.
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Figure 3.12: Derived ΦF (λ) for field station GHS21, as per the fluorescent dye and plaque
calibration models. The error bars represent the standard deviation of the time-averaged
MFL measurements, accounting for temporal variability.

3.4 Discussion

3.4.1 Calibration comparison

Field sample GHS21 (Appendix A.1) was selected as a proof-of-concept dataset to compare
the output of the two calibration approaches. Uncertainty in the quantum yield of the
reference dyes and acrylic plaque, as well as other direct inputs to the calibration, feed
directly into in situ ΦF output. It is thus imperative to ascertain the most accurate
approach available. Both calibration approaches displayed congruent results up until
525 nm (Fig. 3.12), whereafter the ATTO655 calibration output increased exponentially.
This was likely due to the strong absorptivity of this dye over this region (Fig. 3.4),
increasing the fluorescence response and overestimating of ΦF at these wavelengths. The
low absorptivity of ATTO490LS over the 590 nm LED was likely responsible for the
downward trend from 570 nm to 590 nm, compared to the plaque calibration output (Fig.
3.12). A negative component to the fluorescent plaque calibration is that the plaque
has a high optical depth resulting in strong spectral variation, causing a failure of the
Beer-Lambert Law. The Beer-Lambert Law relates the transmittance of a substance to
its optical depth and its absorbance, and fails at high concentrations and/ or when the
substance is highly scattering, leading to changes in attenuation. This was of particular
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concern when the plaque was used in close proximity to the optical window of the MFL.
The ATTO490LS dye calibration was ultimately selected as the most reliable calibration
for in situ ΦF derivation. Motivating factors included the large Stoke’s shift of the dye,
compliance with the Beer-Lambert Law, and the similar instrument set-up during the
calibration and when deployed at sea.

3.4.2 Calibration considerations

While both calibration approaches are assumed to be valid in low scattering environments,
they may be potentially compromised if field samples have high optical attenuation or
scattering. An important consideration when quantifying chl-a fluorescence is that of
Raman scattering by water (Maritorena et al., 2000; Morrison, 2003; Westberry and Siegel,
2003). Scattering of light, both elastic and inelastic, is responsible for redirecting incident
photons into the upwelling light stream (Mobley, 1994). Elastic scattering reflects ambient
solar radiation, whereas inelastic scattering involves a shift in wavelength and includes chl-
a fluorescence and Raman scattering by water (excitation wavelength around 550 nm). To
obtain the upwelling radiance from fluorescence, it is necessary to quantify the amount of
elastic scattering of ambient solar radiation and inelastic Raman scattering, so these may
be subtracted from the total upwelling radiance. Excitation wavelengths of importance to
scattering to the range of chl-a fluorescence output lie between 510 and 600 nm. In this
study, Raman scattering was not accounted for, possibly resulting in an overestimation
of chl-a fluorescence, notably in the 525, 570, and 590 nm channels. Anomalously high
chl-a fluorescence will be carried through to ΦF , leading to the exaggeration of signal.
In an attempt to minimise the number of stations that displayed high scattering, from
Raman, bubbles, or otherwise, the MFL 880 nm turbidity LED was used as a flag for
highly scattering environments. Stations displaying an MFL880 value above 10 FTU were
discarded (Section 2.6.3). The extensive quality control of the MFL data ensured that
samples subjected to highly scattering environments were omitted. Furthermore, the MFL
recordings for individual stations were visually examined and the presence of bubbles
(Section 2.9) or instrument artefacts (Section 2.10) led to further station elimination.
Another concern is that of fluorescence reabsorption. When the absorption spectrum and
the emission spectrum of a fluorophore overlap, there is a chance the emitted light will
be reabsorbed by the fluorophore. All fluorophores used in this study were potentially
susceptible to fluorescence reabsorption, with ATTO490LS being the least affected due
to its large Stoke’s shift.
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3.5 Conclusion

The MFL, originally designed to discriminate between phytoplankton species within a
population by exploiting accessory pigment composition, was redirected for use in appar-
ent ΦF determination. The instrument underwent an in-depth optical characterisation of
all relevant components. In order to derive ΦF , it was vital to have detailed knowledge of
the incident irradiance and returned fluorescence, as well as the absorption properties of
the medium being examined. Two calibration approaches were implemented in this study,
the first made use of fluorescent dyes and the second of a fluorescent perspex plaque.

The first approach utilised two fluorescent dyes with different spectral properties and
known quantum yields (ATTO655 and ATTO490LS). All other components necessary for
ΦF (λ) derivation were determined experimentally, and a series of wavelength-specific cali-
bration factors were generated. The second approach, also known as the distance-response
calibration, made use, primarily, of a fluorescent perspex plaque. While the dyes were re-
garded as homogenous solutions, the MFL stimulating radiation and returned fluorescence
from elementary plane-parallel layers was investigated in this process. Wavelength-specific
calibration factors were derived for both calibration approaches. The respective calibra-
tion factors were applied to an in situ field sample, and the resultant outputs demonstrated
satisfactory agreement, apart from at 570 and 590 nm. The green-to-orange LEDs are
highly sensitive and susceptible to anomalous outputs in highly scattering and/or low
signal-to-noise environments, which may have been the case in the field sample. The dye
calibration, through use of ATTO490LS, was selected as the optimal calibration to apply
to in situ Southern Ocean samples for derivation of ΦF (λ).

The greater aim of expanding the functionality of the MFL was to allow for increased
in situ ΦF observations in the under-sampled Southern Ocean. The routine deployment
of the MFL and subsequent implementation of the novel dye calibration, will allow for
more in situ ΦF measurements in this ecologically significant region. Furthermore, in
principle, other spectrally-resolved fluorometers could be employed to derive ΦF following
the calibration approaches detailed in this chapter. This important physiological index
serves as a proxy of the health of the surrounding environment. An increase in in situ
ΦF measurements will lead to an improved understanding of the mechanisms governing
the variability in signal, which will ultimately aid in the validation and improvement of
existing satellite ΦF algorithms.



Chapter 4

Investigation of in situ Fluorescence
Quantum Yield Variability in the
Southern Ocean

4.1 Introduction

4.1.1 Overview

Variability in ΦF is due to changes in energy distribution within the photosynthetic appa-
ratus, through changes in light absorption and fluorescence emission. These physiological
responses to environmental variability are adaptive features that can primarily be at-
tributed to three principal drivers, namely the light environment, nutrient availability,
and community structure (Babin et al., 1996b; Behrenfeld et al., 2009; Browning et al.,
2014a; Huot et al., 2005; Letelier et al., 1997; Maritorena et al., 2000; Morrison, 2003;
Morrison and Goodwin, 2010; Schallenberg et al., 2008). The Southern Ocean seasonal
cycle has been established as the dominant mode of variability that couples the physical
mechanisms of climate forcing to ecosystem response in production, diversity, and carbon
export (Monteiro et al., 2011; Thomalla et al., 2011). The seasonal evolution of phy-
toplankton biomass has typically been ascribed to the seasonal cycle of solar radiation,
impacting vertical stability through net heat flux, influencing vertical light and nutrient
distribution (Arrigo et al., 2008; Boyd, 2002; Sverdrup, 1953). Resident phytoplankton
display characteristic photophysiological responses to changes in incident irradiance and
Fe availability, which is detectable through ΦF observations (Letelier et al., 1997; Lin
et al., 2016; Schallenberg et al., 2008).

82
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4.1.2 The light environment as a driver of ΦF variability

Phytoplankton fluorescence in vivo is derived almost entirely from PSII (Falkowski and
Kiefer, 1985), with a number of processes acting to alter ΦF . A brief recap of Section 1.4.5
is as follows; photochemical quenching (qP) occurs at low irradiance levels and decreases
as light levels increase, with reaction centres progressively closing due to photochem-
istry (Kiefer and Reynolds, 1992). Under high light conditions, a variety of mechanisms,
collectively known as non-photochemical quenching (qN), act to regulate exciton energy
transfer to PSII reaction centres by balancing photochemical utilisation and excess energy
dissipation (Horton and Ruban, 2005; Krause and Weis, 1991). Antenna quenching (qE)
is a rapid (seconds to minutes), energy-dependent mechanism that typically dissipates
excess energy through the xanthophyll cycle (XC) (Demmig-Adams, 1990; Lavaud et al.,
2002b). Implementation of reaction centre quenching (qI) occurs over a longer timescale,
through the reversible down-regulation of PSII reaction centres (Morrison, 2003). Under
high irradiance levels ΦF is typically low, due to qN, and under low light conditions ΦF is
typically high, subject to qP (Behrenfeld et al., 2009; Laney et al., 2005; Maritorena et al.,
2000; Morrison, 2003; Morrison and Goodwin, 2010; Ostrowska, 2012; Schallenberg et al.,
2008; Westberry and Siegel, 2003). This pattern is observed at both diel (Babin et al.,
1996b; Dandonneau and Neveux, 1997) and seasonal scales (Babin et al., 1996b; Morrison
and Goodwin, 2010), and over depth when sampling vertically through the water column
(Maritorena et al., 2000; Morrison, 2003).

For example, work by Maritorena et al. (2000) showed a minimum ΦF in surface,
sunlit waters (1-2%, < 10 m) and a maximum at depth (5-6%, > 50 m). This light-
related discrepancy in ΦF was corroborated by Morrison (2003), who derived in situ ΦF

measurements through aph(400-700 nm) and an underwater, bi-directional radiometer,
and reported surface values ranging from 0.027 under low light conditions, to 0.004 under
high light conditions (Fig. 4.1). Two distinct patterns were observed in the variation of
ΦF with depth, and thus irradiance; an increase in ΦF from the surface to a subsurface
maximum, and a subsequent decrease with increasing depth. The increase in ΦF to the
subsurface maximum was ascribed to a decrease in qN, whereas the decrease below the
subsurface maximum was indicative of increasing qP.
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Fig. 7. (A) Spectrally weighted absorption, a ph, from direct QFT
measurements and those from the reflectance inversion from both
cruises. There was good agreement between the two (a 5inv

ph

1.21a 1 0.00, r2 5 0.83). (B) The quantum yield of fluorescence,QFT
ph

ff, calculated using absorptions from QFT measurements and those
derived from the reflectance inversion for both cruises. There was
a significant relationship between the two that was not significantly
different from 1 : 1 (f 5 1.06f 1 0.00, r2 5 0.86). For bothinv QFT

f f

panels, the dashed line is 1 : 1 and the solid line represents the best
fit to the data.

Fig. 8. Variation in the quantum yield of fluorescence with
depth and surface irradiance. Two distinct regions were apparent in
the variation of ff with depth: an increase from a low surface value
to a subsurface maximum followed by an decrease with depth. Both
regions were only present in casts before 1000 h local time (open
symbols), which generally had low surface irradiance. Casts after
1000 h had depressed ff values compared with those earlier in the
day, independent of surface irradiance conditions. The increase in
ff to the subsurface maximum was indicative of decreased nonpho-
tochemical quenching, whereas the decrease below the subsurface
maximum indicated increasing photochemical quenching.

with wavelength, leading to inaccuracies in the retrieved in-
herent optical properties. For example, with a high-chloro-
phyll surface layer above lower chlorophyll waters, the
change in the spectral quality of the upwelling light as the
interface is approached may lead to an underestimation of
a ph immediately above the boundary of the two waters. This
would tend to raise the quantum yield of fluorescence. For

the discussion of the variability of ff below, the affect of
this potential error was minimized by limiting the data to
areas absent of sharp changes in biomass.
Two distinct regimes were observed in the variation of ff

with depth and, hence, irradiance. An initial increase in the
quantum yield with depth to a subsurface maximum was
followed by a decrease with depth (Fig. 8, Table 3). The
depth of the subsurface maximum was not constant and
ranged from a minimum of 6 m during the first profile of
cast 7 from CD93 to 18 m during the second profile of the
same cast. After 1000 h local time, only the increase in ff

with depth was observed. For the casts shown in Fig. 8, near-
surface values of ff varied from 0.4% from midday, high-
irradiance conditions of cast 19 of CH126 to 2.7% during
the early morning, low light conditions of the cast 5 of
CD93. The magnitude of ff at the subsurface maxima, where
clearly discernable, ranged from 4.0% (profile 1 of cast 17
of CD93) to 6.3% (profile 1 of cast 7 from the same cruise).
There is some evidence that ff from cast 13, profile 1, of
CH126 reached a maximum at ;19 m of only 1.9%.
The two regimes of quantum yield of fluorescence were

also discernable in the distribution with irradiance (Fig. 9,
Table 3). Increasing irradiance initially led to an increase in
the quantum yield of fluorescence to a maximum value be-
tween Eo(PAR) values of 94 and 164 mmol quanta m22 s21.
Further increasing irradiance decreased the quantum yield of
fluorescence to ;0.5% at irradiances around 2,000 mmol
quanta m22 s21. The inflection irradiance and the quantum
yield at maximal irradiances appeared to be well conserved.
Casts with large changes in the surface irradiance between

Figure 4.1: Variation in the quantum yield of fluorescence with depth and surface irradi-
ance. Two distinct regimes were apparent in the variation of ΦF with depth (panel A), an
initial increase from low surface values to a subsurface maximum, followed by a decrease
with depth. This was observed only in station casts that were performed before 10:00 am
(open symbols), which had typically low surface irradiance (panel B). Casts sampled after
10:00 am (closed symbols) had comparably depressed ΦF values, irrespective of surface
irradiance. Figure reproduced from Morrison (2003).

The XC in phytoplankton mediates the interconversion of diadinoxanthin (Dd) and
diatoxanthin (Dt) in response to changing light conditions (Demers et al., 1991). The
amount of Dt present is linearly related to the amount of qE taking place (Alderkamp
et al., 2010; Lavaud et al., 2004), and is often expressed as a de-epoxidation state ratio,
i.e. Dt/ Dd + Dt (Brunet et al., 1993; Demers et al., 1991; Grouneva et al., 2009; van de
Poll et al., 2011). While this is measurable in the laboratory setting (Arrigo et al., 2010;
Demers et al., 1991; Kropuenske et al., 2010, 2009; Lavaud et al., 2004, 2007; Olaizola et al.,
1994; Wu et al., 2012), the possibility of accurately capturing such a rapid reaction in situ
is yet to be effectively achieved. The time lag between sample collection and shipboard
measurements, as well as the preconditioning of the sample, must be considered. In
addition, it is difficult to measure the concentration of Dt at sea unless the biomass is
sufficiently high (Olaizola et al., 1992). Previous studies have alternatively looked at the
combined total concentration of Dd and Dt (Brunet et al., 1993; Cheah et al., 2013), as
an indicator of qE levels. In addition to qN, the photoacclimation state of phytoplankton
to their ambient surroundings must be considered when investigating the light response
of a population. The influence of photoacclimation on qN is likely to be species-specific
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(Kropuenske et al., 2009; van de Poll et al., 2011, 2007), with studies reporting high-light
acclimated cells to have superior qN responses (Lavaud et al., 2002b; Ragni et al., 2008;
van de Poll et al., 2006), and others reporting the same result for low light acclimated
cells (Milligan et al., 2012). Irrespective of the underlying photoacclimation status of a
community, fluorescence quenching corrections for ΦF measurements have been proposed,
in an attempt to resolve additional physiological information, for example, Fe-limitation
(Behrenfeld et al., 2009; Browning et al., 2014a).

4.1.3 Nutrient availability as a driver of ΦF variability

The highly productive Southern Ocean is driven in part by the high macronutrient avail-
ability, with phytoplankton growth and productivity constrained by the availability of
light and Fe (de Baar et al., 1990; Martin et al., 1990b). While the macronutrients NO−3
and phosphate (PO3−

4 ) are not considered limiting in the Southern Ocean (Dafner and
Mordasova, 1994; Tréguer and Jacques, 1992), any potential fluctuations in their concen-
trations would have negligible effect on ΦF , as ΦF is not considered an ideal proxy for
macronutrient limitation, particularly in the surface ocean where the influence of light
is the dominant driver of variability (Schallenberg et al., 2008). Macronutrient avail-
ability sets a limit on phytoplankton standing stocks, with intracellular chl-a to carbon
(chl:Cphyto) scaling linearly with growth rate (Laws and Bannister, 1980), reflecting a bal-
ance between light harvesting capacity and metabolic demand; i.e. there is no change in
fluorescence properties across growth rates under steady-state limiting conditions (Behren-
feld et al., 2006; Moore et al., 2008; Parkhill et al., 2001; Schrader et al., 2011). Behren-
feld et al. (2009) conducted a global analysis study on MODIS-derived Φsat and found no
significant relationship between Φsat and NO−3 and PO3−

4 concentrations. They instead
attributed 82% of the elevated Φsat (0.015-0.028) to limitation of the micronutrient Fe.

Southern Ocean phytoplankton populations are broadly regulated by an interplay of
Si(OH)4, Fe, and light levels (Boyd et al., 2001, 1999; Hutchins et al., 2001; Le Moigne
et al., 2013; Martin et al., 2013; Ryan-Keogh et al., 2018). Silicate concentrations regulate
the distribution of diatoms, and is not specifically linked to a characteristic ΦF response.
Dissolved Si(OH)4 concentrations, ranging from 1-15 µM north of the PFZ to 40-60 µM
south of the PFZ (Coale et al., 2004; Franck et al., 2000; Tréguer and Jacques, 1992), reg-
ulates local diatom populations, which display high inter-species variability in response to
varying Fe, Si(OH)4 and light regimes (Hoffmann et al., 2008; Timmermans et al., 2001).
The fluctuating Fe levels in the Southern Ocean, in part, also affects phytoplankton com-
munity composition, with different phytoplankton exhibiting species-specific photoadap-
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tive traits (Arrigo et al., 2010; Kropuenske et al., 2009) that impact the local ΦF . For
example, in terms of photoacclimation, Fe-light co-limited diatoms typically favour an
increase in the antenna size of PSII rather than the number of reaction centres, allowing
for the maximum capture of light energy with the minimal Fe requirement, resulting in a
reduced ΦF (Strzepek et al., 2012). Understanding the seasonal Fe-cycling dynamics over
the different Southern Ocean provinces is imperative to isolating its contribution to ΦF

variability.

4.1.4 Taxonomy as a driver of ΦF variability

Phytoplankton speciation and growth in the Southern Ocean is regulated by a multitude
of factors (Abbott et al., 2000; Boyd et al., 2001, 1999; de Baar et al., 1990; Strzepek
et al., 2012), with different species exhibiting specific nutrient requirements and employ-
ing characteristic photoadaptive strategies to changing light conditions, which mechanis-
tically affect ΦF . Phytoplankton that employ xanthophyll cycling as their first defence
to increasing light levels will see a reduction in ΦF , due to the rapid de-epoxidation of
Dd to Dt, operating in the blue part of the light spectrum (Kropuenske et al., 2009).
As such, both diatoms (Lavaud et al., 2002c) and P. antarctica (Moisan et al., 1998),
which are known to employ an effective XC, typically exhibit reduced ΦF under high light
conditions. In the Southern Ocean MIZ, diatoms prefer stable environments with shallow
mixed layers, coping with high light by maintaining low levels of photosynthetic pigments
and high levels of photoprotective pigments, rendering them less susceptible to photoin-
hibition than P. antarctica. P. antarctica focuses more on the repair of photodamage and
thrives in areas characterised by deep mixed layers (Arrigo et al., 2010).

4.1.5 Chapter objectives

Given the preceding evidence, it is expected that in situ ΦF will show a strong seasonal
variance as a result of changes in both the community structure and the surrounding
environment. The novel calibration of the MFL (Chapter 3) is employed to derive ΦF (λ)
for 66 in situ field stations located in the Atlantic sector of the Southern Ocean. These
stations were sampled during the austral winter of 2012 and the austral summer of 2013/
2014. Spectral cluster analysis is performed on all derived ΦF (λ), to collate similar spectra
into groups for statistical analysis, such that potential relationships between ΦF (λ) and
the possible drivers of variability can be determined.
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4.2 Results

Please refer to the List of Notation (p.iv) for specific symbols and units used throughout
this chapter.

4.2.1 Pigment analysis

4.2.1.1 Chl-a concentrations

Chl-a concentrations were derived through HPLC extraction (Section 2.2.1) and are dis-
played in Fig. 4.2. Stations sampled during the Winter Cruise (0.23±0.05 mg m−3) had
the lowest average [chl-a], while stations sampled in the early summer (GoodHope South,
0.66±0.22 mg m−3) and mid-summer (Buoy Run, 0.72±0.34 mg m−3) had higher average
[chl-a] than those sampled in the late summer (GoodHope-North, 0.39±0.17 mg m−3).

Winter Cruise GoodHope-South Buoy Run GoodHope-North
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Figure 4.2: Boxplots showing HPLC-derived median [chl-a] per cruise leg (mg m−3).
Minimum outlier (5%), first quartile (Q1, 25%), median, third quartile (Q3, 75%), and
maximum outlier (95%).

4.2.1.2 CHEMTAX

Output from the CHEMTAX analysis of various phytoplankton pigments is shown in Fig.
4.3, subdivided into the various cruise legs. Diatom-subtypes A and B, and Haptophyte-
subtypes 6 and 8, were grouped together for better visualisation of the overall phyto-
plankton taxa. The percentages of the different phytoplankton groups for each station
are listed in Appendix B.2.

The Winter Cruise comprised a mix of phytoplankton assemblages, dominated by hap-
tophytes north of the SACCf and diatoms to the south. The largest diatom population was
at station W101 (65.7%). Populations of prasinophytes and Synechoccocus were observed
towards the northern latitudes. Cryptophytes were present in varying amounts at all sta-
tions, with a small increase in the prevalence towards the south. The GoodHope-South
cruise leg (early summer) was dominated by diatoms, followed by haptophytes, across
all latitudes. The station with the largest diatom population was GHS78 (78.4%) and
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Figure 4.3: CHEMTAX analysis of all stations sampled. Stations are grouped into cruise
legs, the station numbers and latitudes of which are specified, and are arranged in order
of increasing latitude, moving poleward from left to right. Approximate positions of the
fronts are indicated by the red dashed line; From left to right: For Winter, STF (38◦S),
SAF (45◦S), PF (50◦S), SACCf (52◦S), SBdy (54◦S ), For summer, STF (39◦S), SAF
(45◦S), PF (49◦S), SACCf (52◦S), SBdy (57◦S ).The position of the fronts was determined
using sea surface height data from maps of absolute dynamic topography (MADT) from
the CLS/AVISO product (Rio et al., 2011; Swart et al., 2010).

that with the largest haptophyte population was GHS90 (62.1%), two adjacent stations.
Small populations of Synechoccocus were found north of the STF, and there was a decreas-
ing population of prasinophytes from north to south. There were small populations of
chlorophytes present at GHS21, GHS25, and GHS29, north of the STF. Small populations
of cryptophytes existed at most stations, with negligible quantities at the four stations
south of the SBdy. The six stations of the Buoy Run (mid summer) were largely domi-
nated by diatoms and haptophytes, with the largest populations of each found at BR53
(78.2%) and BR49 (77.3%) respectively. Interestingly, there was no correlation between
haptophytes and highly scattering stations, as might be expected with an abundance of
reflective coccolithophores. A small population of prasinophytes was present at BR51
(4.6%). Mixed populations dominated the GoodHope-North leg (late summer) north of
the PF, with Synechoccocus featuring north of the STF (64.4% for station GHN77), and
prasinophytes near the SAF (36% for station GHN60). Station GHN41, located on the
SACCf, contained a dinoflagellate component (24.4%). All stations south of the PF were
primarily governed by haptophyte and diatom populations.

4.2.1.3 Diagnostic pigment ratios

The use of weighted diagnostic pigment ratios to estimate the size classes present within
stations was performed as per Uitz et al. (2006), the results of which are shown in Fig.
4.4. The percentages of the different phytoplankton size classes for each station are listed
in Appendix B.2.

All stations across the summer cruise legs appeared to be dominated by micro- and
nanoplankton populations (Fig. 4.4), with picoplankton being consistently present dur-
ing the Winter Cruise, but still only occupying a small percentage of each station. The
GoodHope-South leg had the largest populations of picoplankton present north of the
STF (GHS15 and GHS21), decreasing in number before becoming obsolete south of the
SBdy (GHS78), where microplankton dominated. The Buoy Run comprised only mi-
cro and nanoplankton, apart from a small population of picoplankton at BR51 (4.6%).
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Figure 4.4: Weighted diagnostic pigment ratios, following the method of Uitz et al. (2006).
The size classes are represented as a percentage of the total population for each station.
Stations are grouped into cruise legs, the station numbers and latitudes of which are
specified, and are arranged in order of increasing latitude, moving poleward from left to
right. Approximate positions of the fronts are indicated by the red dashed lines; From
left to right: For Winter, STF (38◦S), SAF (45◦S), PF (50◦S), SACCf (52◦S), SBdy (54◦S
), For summer, STF (39◦S), SAF (45◦S), PF (49◦S), SACCf (52◦S), SBdy (57◦S ). The
position of the fronts was determined using sea surface height data from maps of absolute
dynamic topography (MADT) from the CLS/AVISO product (Rio et al., 2011; Swart
et al., 2010).

Stations BR49 and BR51, with prominent populations of nanoplankton, were positioned
over the frontal position of the SBdy, with subsequent stations positioned directly to the
south (BR53 and BR55) demonstrating a size transition to larger microplankton. Sta-
tion GHN77 displayed a dominant population of picophytoplankton (65%), which may
be representative of Synechoccocus known to exist in the STZ. On the GoodHope-North
leg, stations GHN58 and GHN60 were indicative of the smaller species that occurs in the
late summer. Stations south of the SACCf front (GHN41), were notably dominated by
microplankton.

4.2.2 Absorption, fluorescence, and ΦF(λ)

4.2.2.1 Absorption

While aph is used in the derivation of ΦF (λ), presenting the a∗ph data removed biomass-
related variance across time and stations, to better resolve physiological differences (Fig.
4.5). The fact that both the Winter Cruise and SANAE53 were dominated by haptophytes
and diatoms (Fig. 4.3) is evidenced in the similar a∗ph spectral shapes. However, a
difference in phytoplankton size is apparent between the Winter Cruise and the Buoy
Run; the Buoy Run phytoplankton are of a much larger size than those present in Winter
2012, as observed by the spectral flattening of the 400-500 nm region (Ciotti et al., 2002),
and verified by the diagnostic pigment size classifications (Fig. 4.4). All individual station
S values, [chl-a], and absorption quality control data are found in Appendix A.1.
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Figure 4.5: Chl-a-specific absorption (a∗ph) for all field stations sampled, measured in m2

mg chl-a−1. Note the difference in magnitude between plots.
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4.2.2.2 Fluorescence measurements

The raw MFL fluorescence measurements were subjected to quality control (Section 2.6.3),
with any sub-standard output discarded. Furthermore, due to the presence of unexplained
spectral artefacts in some samples, it was important to confirm with the manufacturers
that the raw fluorescence data was of an acceptable quality; the MFL raw fluorescence
output was deemed satisfactory through personal communication with the manufacturers
(JFE Advantech, Co. Ltd., date of communication: 21/05/2014).The spectral diversity
between the various stations sampled is apparent in the fluorescence data measured across
various cruise legs (Fig. 4.6). The magnitude of the MFL fluorescence measurements for
the Winter Cruise were low relative to summer stations. The effect of the chl-a Soret
absorption wavebands was observed by the higher fluorescence values achieved in the blue
part of the spectrum, notably at 435 nm.
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Figure 4.6: Raw MFL fluorescence measurements for all stations sampled. Note the
difference in magnitude between plots.
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4.2.2.3 Apparent fluorescence quantum yield of chl-a

Apparent ΦF (λ) was derived for each of the MFL excitation wavelengths (Fig. 4.7), using
wavelength-specific fluorescence, spectrally-averaged in situ aph measurements, and the
MFL calibration coefficients obtained from the ATTO490LS dye calibration (Chapter 3).

Values of ΦF (λ) ranged from the overall lowest station at GHS15 (ΦF (435) =
0.006±0.0002, ΦF (570) = 0.021±0.003) to the overall highest station at GHS80 (ΦF (435)
= 0.101±0.009, ΦF (570) = 0.351±0.015). Both stations were sampled in the early sum-
mer, with GHS15 located in the STZ and GHS80 in the MIZ. The GoodHope-North leg,
i.e. late summer, displayed the largest average ΦF (λ) values (ΦF (435) = 0.061±0.029,
ΦF (570) = 0.120±0.027), followed by the GoodHope-South leg (early summer, ΦF (435)
= 0.046±0.034, ΦF (570) = 0.118±0.101), the Winter Cruise (ΦF (435) = 0.033±0.017,
ΦF (570) = 0.077±0.026), and the Buoy Run (mid summer, ΦF (435) = 0.021±0.017,
ΦF (570) = 0.039±0.020). The standard deviations were high for the average ΦF (λ) per
cruise leg, emphasising the high degree of variability between stations. All MFL-derived
ΦF (λ) measurements are listed in Appendix A.2.
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Figure 4.7: Wavelength-specific apparent fluorescence quantum yields (ΦF (λ)). Note the
difference in magnitude between plots.
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4.2.3 Statistical analysis of the drivers of ΦF(λ) variability

4.2.3.1 K-means clustering ΦF (λ) spectra

The variability in ΦF (λ) spectral shape between individual stations required a more dy-
namic approach than grouping data according to cruise legs. Numerous background analy-
ses were initially performed in an attempt to assign ΦF (λ) spectra/ values into taxonomic-
relevant groups (taxonomic/ size groups); further attempts were made to assign ΦF (λ)
spectra/ values to Southern Ocean zones (latitude), nutrient regimes (high vs. low sili-
cate), light conditions (day vs. night), and season (summer vs. winter). However, no clear
cluster assignments/ relationships were apparent; this may be improved by a larger study
cohort. As such, k-means spectral clustering of all stations was employed (Section 2.7.1)
to resolve the drivers of ΦF (λ) variability. The mean spectral shapes of cluster 1-3 were
similar (represented by the black dashed lines in Fig. 4.8), with the clusters being largely
distinguishable by different orders of magnitude. This was separation by magnitude was
further evidenced in the boxplot analysis (Fig. 4.9). The shape of the ΦF spectra across
all clusters was uniform for 375-505 nm, with the average ranging from 0.0 to 0.1, before
increasing after 525 nm. The anomalous ΦF (570) of cluster 4 (0.331±0.026) was clearly
apparent.
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Figure 4.8: Wavelength-specific apparent fluorescence quantum yields ΦF (λ). The black
dashed lines represents the mean spectral shape for each cluster. Note the difference in
magnitude between plots.
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4.2.3.2 Boxplots of possible drivers of ΦF (λ) variability

Inter-cluster boxplot analysis of the median values of potential drivers of variability are
presented in Figs. 4.10, 4.11 and 4.12. Cluster 1 had the highest average macronu-
trient concentrations (NO−3 = 21.68±14.34 µM, Si(OH)4 = 27.27±30.80 µM), despite
large intra-cluster variability. In addition, this cluster was dominated by microplank-
ton (59.2±18.2%) and displayed the highest Dt/ Dd + Dt ratio out of all clusters
(0.10±0.042). Cluster 2 was characterised by populations of mixed size (microplankton
= 41.2±23.2%, nanoplankton = 42.7±12%, picoplankton = 16.3±15.6%), with an even
distribution between phytoplankton type and taxonomic marker pigments. Cluster 3
had a large microplankton component (79.7±7.6%) dominated by diatoms (57.9±8.5%),
corroborated with a high fucoxanthin content (0.5±0.1%). This cluster had the high-
est pool of photoprotective pigments (Dd + Dt) (0.2±0.02%). Cluster 4 was charac-
terised by a high biomass (0.83±0.09 mg m−3), microplankton dominated population
(74±22.8%), with high fucoxanthin concentrations (0.51±0.14) and corresponding di-
atom levels (63.1±23.6%). This cluster showed a high degree of photoacclimation (Dd
+ Dt) (0.16±0.01), possibly to the high cumulative PAR over 12 h prior to the stations
(0.357±0.038 mol m−2 s−1).
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Figure 4.10: Boxplot analysis of the median values of possible environmental and
taxonomy-related drivers of ΦF (λ) variability. Minimum outlier (5%), first quartile (Q1,
25%), median, third quartile (Q3, 75%), and maximum outlier (95%).
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Figure 4.12: Boxplot analysis of the median values of possible light environment-related
drivers of ΦF (λ) variability. Minimum outlier (5%), first quartile (Q1, 25%), median,
third quartile (Q3, 75%), and maximum outlier (95%).

4.2.3.3 Empirical orthogonal function analysis

Empirical orthogonal function (EOF) analysis was used to assess the variance of ΦF (λ)
spectral structure within the cluster datasets (Section 2.8). The first three modes of
spectral variance were assessed. The significance of the Spearman’s rho (rs) values gen-
erated were evaluated using a Spearman Rank significance table (Ramsey, 1989), where
the critical values were set at the 95% confidence level. EOF analysis was not performed
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Figure 4.13: EOF analysis of ΦF (λ) for cluster number 1 (n = 23). The grey ΦF (λ) spectra
plotted on the left are overlaid with the top three modes of the analysis. The correlation
coefficients (Spearman’s rho (rs)), calculated between the EOF amplitude factors and a
selection of possible drivers of ΦF (λ) variability, are displayed on the right; The dashed,
grey horizontal lines represent the 95% confidence level.

on cluster 4, due to the low sample number (n = 3) and limited statistical viability.
For cluster 1 (Fig. 4.13), where n = 23, the critical value was determined to be 0.416

(Ramsey, 1989). Mode 1 described 81% of the variance in the dataset, which appeared to
be an amplitude effect, where silicate concentration had a significant positive relationship
(rs = 0.509, p < 0.05), and dinoflagellates (Dinos) a significant negative relationship (rs
= -0.447, p < 0.05). Mode 2 explained 11% of the variance in spectral shape, showing the
spectral shift between the shorter and longer wavelengths, with significant negative drivers
including temperature (Temp)(rs = -0.461, p < 0.05), [chl-a] (rs = -0.667, p < 0.05), the
photoprotective pigments Dd + Dt (rs = -0.442, p < 0.05), and the cumulative sum of
PAR over 12 h and 24 h (ΣPAR12h and ΣPAR24h) (rs = -0.418 and -0.708 respectively,
p < 0.05). The presence of cryptophytes (Cryptos) was significantly positively related to
mode 2 (rs = 0.581, p < 0.05). Mode 3 accounted for 6.2% of the variance and explains
the 570 to 525 and 590 ratio change, with significant positive drivers including nitrate (rs
= 0.427, p < 0.05), Dd + Dt (rs = 0.436, p < 0.05), and ΣPAR12h (rs = 0.466, p <
0.05).

For cluster 2 (Fig. 4.14), where n = 32, the critical value was determined to be
0.350. Mode 1 described 74% of the variance in the dataset, showing the spectral shift
between the shorter and longer wavelengths; however, there were no significant drivers
of the variance for this mode. Mode 2 accounted for 17% of the variance in spectral
shape, reflecting the magnitude changes in the long wavelengths, with significant positive
drivers including silicate (rs = 0.471, p < 0.05), alloxanthin (Allo) (rs = 0.592, p <
0.05), and cryptophytes (rs = 0.597, p < 0.05). Significant negative drivers included 19’-
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Figure 4.14: EOF analysis of ΦF (λ) for cluster number 2 (n = 32). The grey ΦF (λ) spectra
plotted on the left are overlaid with the top three modes of the analysis. The correlation
coefficients (Spearman’s rho (rs)), calculated between the EOF amplitude factors and a
selection of possible drivers of ΦF (λ) variability, are displayed on the right; The dashed,
grey horizontal lines represent the 95% confidence level.

hexanoyloxyfucoxanthin (Hex) (rs = -0.434, p < 0.05), haptophytes (Haptos) (rs = -0.573,
p < 0.05), and ΣPAR12h (rs = -0.477, p < 0.05). Mode 3 described 6.3% of the spectral
variance and explains the 570 to 525 and 590 ratio change, with nitrate (rs = -0.439, p <
0.05) and [chl-a] (rs = -0.408, p < 0.05) being significantly negatively correlated to the
spectral shape.

For cluster 3 (Fig. 4.15), where n = 8, the critical value was set at 0.738. Mode 1
described 74% of the spectral variance in the dataset, with Allo (rs = -0.743, p < 0.05)
and Dt/ ( Dd + Dt) (rs = -0.881, p < 0.05) being significantly negatively correlated.
Mode 2 explained 20% of the variance in spectral shape, with ΣPAR6h (rs = 0.738, p <
0.05) being significantly positively related. Mode 3 accounted for 4.7% of the variance in
the spectral shape, with significant positive relationships to Hex (rs = 0.762, p < 0.05)
and to Synechococcus (Syn) (rs = 0.756, p < 0.05), and significant negative relationships
to silicate (rs = -0.833, p < 0.05), Cryptos (rs = -0.786, p < 0.05), and ΣPAR24h (rs
= -0.905, p < 0.05). The shape of Mode 1 is driven by the changes in amplitude at
wavelengths < 525 nm, while Mode 2 is related to changes in magnitude > 525 nm, and
Mode 3 once again describes the 570 to 525 and 590 ratio change.
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Figure 4.15: EOF analysis of ΦF (λ) for cluster number 3 (n = 8). The grey ΦF (λ) spectra
plotted on the left are overlaid with the top three modes of the analysis. The correlation
coefficients (Spearman’s rho (rs)), calculated between the EOF amplitude factors and a
selection of possible drivers of ΦF (λ) variability, are displayed on the right; The dashed,
grey horizontal lines represent the 95% confidence level.

4.2.3.4 Correlation matrices of clustered ΦF (λ) and drivers of variability

From Fig. 4.8, it was apparent the ΦF values obtained from LEDs 375-505 nm were fairly
constrained, whereas ΦF values of 525-590 nm showed greater variability. For the majority
of stations, the fluorescence emission peaked at 435 nm, with a small fraction of stations
displaying 570 nm peaks (Fig. 4.6). The 435 nm fluorescence peak is likely due to the
maximum aph absorption at 435 nm (Fig. 4.5). For correlation matrix analyses, ΦF (435)
was selected as a suitable representative of the MFL 375-505 nm LEDs, and ΦF (570) as
a representative of the 525-590 nm LEDs. In addition, ΦF (435) will be used for future
remote sensing application (Chapter 5). The mean ΦF (435) and ΦF (570) values for each
cluster are listed in Table 4.1.

Table 4.1: Mean ΦF (435) and ΦF (570) values for all cluster numbers.

Cluster No. Mean ΦF (435) Mean ΦF (570)
1 0.022±0.012 0.042±0.016
2 0.039±0.015 0.101±0.028
3 0.095±0.027 0.141±0.012
4 0.088±0.012 0.331±0.026

The data were determined to be non-normally distributed, as confirmed by the
Shapiro-Wilk test of normality. As such, the nonparametric approach of Spearman’s
rho (rs) was used for statistical analysis. A Spearman’s rank correlation matrix was cal-
culated for ΦF (435) and ΦF (570), against possible drivers of ΦF variability. Twenty-four
potential drivers of ΦF variability were selected, the same as those examined in Section



4.2. Results 107

F
(4

35
)

S
ili

ca
te

D
in

os

P
A

R
12 C
hl

D
d 

+ 
D

t

F(435)

Silicate

Dinos

PAR12

Chl

Dd + Dt

0.018 0.000

0.023 0.041

0.041 0.249 0.209

0.075 0.044 0.188 0.003

0.103 0.996 0.673 0.005 0.046

F
(5

70
)

P
A

R
6

P
A

R
12

P
A

R
20

C
ry

pt
os A
llo

F(570)

PAR6

PAR12

PAR20

Cryptos

Allo

0.220

0.227 0.000

0.283 0.000 0.062

0.378 0.254 0.011 0.597

0.393 0.267 0.078 0.745 0.000 0.000

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Figure 4.16: Spearman’s correlation matrix of ΦF (435) (left) and ΦF (570) (right) versus
potential drivers of variability, for cluster 1. The matrices display the five drivers of vari-
ability that exhibit the highest correlation to ΦF (435) and to ΦF (570). Dinos- dinoflag-
ellates, Cryptos- cryptophytes, Allo- alloxanthin, Chl- chl-a concentration, ΣPAR20/ 6/
12 (20 min/ 6 h/ 12 h)- cumulative sum of photosynthetically available radiation for the
time period stipulated prior to the station, Dd + Dt- sum of photoprotective pigments Dd
and Dt. Colours of the blocks represent negative and positive rs values, with the p-values
for each variable listed within.

4.2.3.3. The matrices presented are representative of the top five drivers of variability
that exhibited the lowest p-values (Figs. 4.16, 4.17, and 4.18). Figure 4.16 shows the
correlation matrices of cluster 1, ΦF (435) and ΦF (570) against possible drivers of ΦF

variability. From this plot it is apparent that silicate (p = 0.018) was significantly neg-
atively correlated to ΦF (435) variability, with dinoflagellates (p = 0.023) and ΣPAR12h
(p = 0.041) being significantly positively correlated. There were no statistically signifi-
cant correlations for ΦF (570) in this cluster. The output from cluster 2 is shown in Fig.
4.17. The only significantly correlated driver of ΦF (435) variability was the presence of
prasinophytes (p = 0.043). Alloxanthin (p = 0.038), Dd + Dt (p = 0.033), cryptophytes
(p = 0.034), haptophytes (p = 0.053), Synechococcus (p = 0.033), ΣPAR6h (p = 0.030),
and ΣPAR12h (p = 0.002) were all significantly correlated to ΦF (570) signal. The cluster
3 matrix is displayed in Fig. 4.18. In this cluster, significantly correlated drivers of signal
variability for ΦF (435) included alloxanthin (p = 0.045) and the Dt/ Dd + Dt ratio (p =
0.002), with no significantly correlated drivers of ΦF (570) observed.
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Figure 4.17: Spearman’s correlation matrix of ΦF (435) (left) and ΦF (570) (right) versus
potential drivers of variability, for cluster 2. The matrices display the five drivers of
variability that exhibit the highest correlation to ΦF (435) and to ΦF (570). Prasinos-
prasinophytes, Haptos- haptophytes, Dinos- dinoflagellates, Cryptos- cryptophytes, Syn-
Synechococcus, Hex- 19’ hexanoyloxyfucoxanthin, Chl- chl-a concentration, ΣPAR6/ 12
(6/ 12 h) - cumulative sum of photosynthetically available radiation for the time period
stipulated prior to the station, Dd + Dt- sum of photoprotective pigments Dd and Dt.
Colours of the blocks represent negative and positive rs values, with the p-values for each
variable listed within.
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Figure 4.18: Spearman’s correlation matrix of ΦF (435) (left) and ΦF (570) (right) ver-
sus potential drivers of variability, for cluster 3. The matrices display the five drivers
of variability that exhibit the highest correlation to ΦF (435) and to ΦF (570). Cryptos-
cryptophytes, Haptos- haptophytes, Dinos- dinoflagellates, Prasinos- prasinophytes, Allo-
alloxanthin, Temp- temperature, ΣPAR6h- cumulative sum of photosynthetically avail-
able radiation over 6 h prior to the station, Dd + Dt- sum of photoprotective pigments
Dd and Dt, Dt/ Dd + Dt- ratio of Dt to the sum of Dd and Dt. Colours of the blocks
represent negative and positive rs values, with the p-values for each variable listed within.
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4.3 Discussion

4.3.1 Interpretation of MFL-fluorescence spectral shape

Chlorophyll-a absorbs maximally in the blue Soret bands, resulting in peak fluorescence
emission, subject to other de-excitation pathways (Huot and Babin, 2010; Muller et al.,
2001). This is apparent for the MFL fluorescence at 435 nm, where the maximum peaks
are observed (Fig. 4.6). Fluorescence values for the Winter Cruise are notably lower
than those of the summer stations (Fig. 4.6), a likely effect of the low [chl-a] conditions
that exist in the Southern Ocean during the winter months (Thomalla et al., 2011). This
is due to phytoplankton growth being primarily limited by light during this time of the
year (Boyd et al., 1999), as a result of low solar zenith angle and deep mixed layers.
The majority of stations sampled on the Buoy Run are also of lower magnitude than
the other summer stations (Fig. 4.6). All Buoy Run ΦF (λ) spectra, apart from BR55,
were separated out into cluster 1 (Fig. 4.8), which was representative of microplankton
dominance (59.2±18.2%) and high amounts of Dt/ Dd + Dt (0.10±0.042). As such, the
low fluorescence values for this cruise leg are likely due to qN, specifically the XC, which
is present in local microplankton species such as diatoms (Alderkamp et al., 2013).

Throughout this study, the occurrence of fluorescence peaks at 570 nm is more chal-
lenging to understand. Below are a number proposed possible explanations:

[1] The increased gain settings of the MFL 570 nm LEDs. The instrument gain settings
at this wavelength are enhanced to account for low absorption in the green-orange region,
where absorption by phytoplankton is minimal (Mitchell and Kiefer, 1988a). In addition
to having heightened sensitivity, this is the only LED to exist in triplicate (Fig. 3.1).
Furthermore, the MFL 570 nm LEDs are incredibly sensitive to noise relative to the other
wavebands (Fig. 3.3), which is problematic when the phytoplankton signal is low.

[2] Fluorescence contamination by the Raman scattering of water. Raman scattering,
which displays peak excitation at 550 nm, should be considered when quantifying chl-a
fluorescence (Maritorena et al., 2000; Morrison, 2003). Scattering of light, both elastic and
inelastic, is responsible for redirecting incident photons into the upwelling light stream
(Mobley, 1994). Elastic scattering reflects ambient solar radiation, whereas inelastic scat-
tering involves a shift in wavelength and includes chl-a fluorescence and Raman scattering
by water. To obtain the upwelling radiance from fluorescence, it is necessary to quantify
the amount of elastic scattering of ambient solar radiation and inelastic Raman scattering,
so these may be subtracted from the total upwelling radiance. Excitation wavelengths of
importance to scattering to the range of chl-a fluorescence lie between 510 and 600 nm; in
this study, as Raman scattering was not accounted for, it is possible that fluorescence in
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the 525-590 nm range is overestimated by the MFL. Anomalously high chl-a fluorescence
will be propagated to ΦF , leading to an exaggeration of signal.

[3] The presence of phycobiliprotein-containing cyanobacteria (Yoshida et al., 2011) or
cryptophytes (Doust et al., 2004, 2006). Cyanobacteria, including Synechococcus (Gibberd
et al., 2013), and cryptophytes (Garibotti et al., 2005; Mendes et al., 2013), are known
to occupy various Southern Ocean provinces throughout the year. Phycoerythrin absorbs
strongly in the green-orange part of the spectrum (Ting et al., 2002), which would lead
to subsequent increase in ΦF at these wavelengths.

4.3.2 MFL-Derived ΦF(λ)

Whilst phytoplankton absorption and fluorescence provide insight into photophysiology
and the surrounding light levels, they paint a far greater picture when investigated as ΦF ,
which serves as an important ecological proxy for various environmental conditions. While
the use of SICF in the derivation of Φsat is fairly well established (for example, Behrenfeld
et al. (2009); Browning et al. (2014a); Huot et al. (2005)), in situ studies remain limited
globally. This may in part be due to a lack of dedicated instrumentation and/ or the
requirement of multiple instruments to accurately record the incident and return light
levels in the field. In this study, the PAR values used to determine ΦF (λ) represent the
spectral bandwidth of the individual excitation LEDs on the MFL. While this adds a
layer of complexity when interpreting the output, wavelength specific-ΦF provides a more
detailed overview on the fate of absorbed photons. ΦF (435) and ΦF (570) were selected as
the representative wavelengths for investigation during this study, representing the effects
of both blue and green-orange stimulating radiation.

Summer stations as a collective displayed a higher average ΦF (435) and ΦF (570) than
winter stations; summer ΦF (435) = 0.047±0.032 and ΦF (570) = 0.110±0.078, and winter
ΦF (435) = 0.033±0.017 and ΦF (570) = 0.077±0.026. The lower ΦF (λ) estimates quan-
tified in winter are possibly due to the low ambient light levels leading phytoplankton
to direct all available light energy to photosynthesis, i.e. qP is reducing the ΦF (λ) sig-
nal. As the stations sampled in the summer months are unlikely to be light limited, the
higher ΦF (λ) may be due to photoinhibition, or indicative of Fe-limitation (Behrenfeld
et al., 2009; Browning et al., 2014b); 40% of summer stations in NO−3 -replete waters (>
10 µM) had a relatively low biomass (< 0.5 mg.m−3), suggesting potential Fe-limitation
(all [NO−3 ] and [chl-a] values are listed in Appendix B.1).

While the majority of stations fall within an acceptable range of published ΦF values
(approximately 0.001 to 0.15 (Table 1.3)), the outliers may be a result of a particular
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environmental cue, a sampling artefact or a combination of both. It is apparent, regard-
less of season, that ΦF (570) is substantially larger than ΦF (435), with a greater standard
deviation (ΦF (570) = 0.096±0.066, ΦF (435) = 0.042±0.029). This is likely due to a
combination of reasons discussed in Section 4.3.1. A similar study by Ostrowska (2011)
showed a relatable result, using a BBE Moldaenke FluoroProbe multi-excitation fluorom-
eter to derive ΦF (λ) from 5 different excitation LEDs. While they did not radiometrically
characterise the multi-excitation fluorometer, there was a similar increase in ΦF (λ) from
470-610 nm.

4.3.3 Variability in ΦF(λ) spectral shape: Cluster analysis

This is the first study investigating in situ, wavelength-specific ΦF (λ) variability. All
derived ΦF (λ) spectra were subjected to k-means clustering, statistically separating data
into clusters to assist in the investigation of potential drivers of variability.

Cluster 1 comprises 23 stations from the GHS, BR, and the Winter Cruise (Fig.
4.8). This cluster encompasses a range of seasons and regions, including the GoodHope
Line and regions south of South Georgia and the Prince Edward Islands. Across all
statistical analyses, Si(OH)4, dinoflagellate populations, and ΣPAR12h appeared to be
significant influencers of the ΦF (λ) spectral shape (Fig. 4.13), as well as the ΦF (435)
signal (Fig. 4.16). Boxplot analysis of cluster 1 visually corroborates the importance
of Si(OH)4 within this cluster (Fig. 4.10), which has an expected inverse relationship to
ΦF (λ) spectral shape (Fig. 4.13), as well as ΦF (435) (Fig. 4.16). While the macronutrient
Si(OH)4 is not considered essential to all phytoplankton (Redfield, 1934), it is fundamental
for the growth of diatoms (Martin-Jézéquel et al., 2000). Silicate levels can be used to
infer diatom abundance in specific Southern Ocean provinces, with concentrations closely
linked to natural assemblage composition (de Salas et al., 2011; Salter et al., 2007). As
such, any relationship derived between Si(OH)4 and ΦF is likely to be representative
of the underlying community structure rather than physiology. High [Si(OH)4] may be
indicative of large diatom cells, which would exhibit a low ΦF due to pigment packaging.
However, the same can be said for low [Si(OH)4], having been recently consumed by
large diatoms, and soon to be surpassed by another community with little to no Si(OH)4

demand. Ultimately, ΦF is not a good proxy for [Si(OH)4]. An interplay between micro
and nanoplankton occurred across all stations, with populations of picoplankton present
in the STZ and two winter stations (W118 and W119). The latter two stations lie to
the south-west of the Prince Edward Islands, a region identified as having low [chl-a] and
a large picoplankton component during the austral autumn (Pakhomov and Froneman,
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1999; Perissinotto et al., 2000). The mixed sized classes of the stations within this cluster
make it difficult to interpret the influence of taxonomy on ΦF (λ) spectral shape. Whilst
dinoflagellates have been shown to be positively significantly correlated to ΦF (435), their
abundance remained fairly low throughout all stations, with an average of 2.3±1.8%
(excluding GHS37 which was 14%) (Fig. 4.3). Boxplot analysis showed that the Dt/ Dd
+ Dt ratio was the highest for cluster 1 relative to other clusters (Fig. 4.12), which would
indicate a high level of qN resulting in a reduced ΦF . This may, in part, explain why this
cluster has the lowest ΦF values relative to the other clusters.

Cluster 2 comprises 32 stations from both summer and winter (Fig. 4.8). The segrega-
tion of ΦF (λ) spectra into cluster 2 appeared to be based upon the mixed phytoplankton
assemblage that dominates the dataset. While mode 1 in the EOF analysis failed to yield
any significant drivers of spectral shape, mode 2, accounting for 17% of the variance, was
significantly influenced by Si(OH)4, alloxanthin, 19-hex, cryptophytes, haptophytes, and
ΣPAR12h (Fig. 4.14). The Spearman’s rank correlation matrix identified prasinophytes as
being significantly positively correlated to ΦF (435), along with ΣPAR12h, ΣPAR6h, and
Dd + Dt, and Syn and Cryptos being significantly negatively correlated to ΦF (570) (Fig.
4.17). Boxplot analysis of cluster 2 further highlights the probability of this cluster having
a highly mixed population assemblage, as evidenced by size class, pigment concentrations
and species composition means (Figs. 4.10, 4.11 and 4.12). Silicate concentrations were
low for all GHS, GHN, and Winter Cruise (north of the PF) stations (2.02±1.39 µM),
whilst stations south of the SBdy were considered Si(OH)4-replete (54.35±8.34 µM). This
region north of PF is known for being periodically Si(OH)4 limited, allowing smaller phy-
toplankton species to propagate (de Salas et al., 2011). Stations in both cluster 1 and
cluster 2 have mixed assemblages, variable Si(OH)4 concentrations, and are correlated to
ΣPAR12. One distinguishing feature between these two clusters is the larger picoplank-
ton component present in cluster 2 (16.3±15.6%, versus 6.9±8.3% for cluster 1), which
includes small prasinophytes (13.8±13.6%). These smaller cells would exhibit a greater
ΦF than a population comprised of larger species, which is apparent when comparing the
magnitude of cluster 1 ΦF to that of cluster 2 (Fig. 4.8).

Cluster 3 has a limited number of stations (n = 8) and is composed almost entirely
of GHN stations, apart from GHS45 (Fig. 4.8). Boxplot analysis revealed that stations
in cluster 3 are exposed to moderate light levels (ΣPAR6h and ΣPAR12h), and may be
photoacclimated to their surrounding environment based on the fairly high Dd + Dt value
(Fig. 4.11). Some studies have reported a greater qN capacity in high-light acclimated
cells, which typically involves an increase in the Dd and Dt pool size (Ragni et al., 2008;
van de Poll et al., 2006). While stations in cluster 3 appear to be high-light acclimated,
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it is unlikely they are experiencing qN. Upon exposure to increased light, Dd is rapidly
de-epoxidised to Dt on the timescale of seconds to minutes, and it is Dt that is believed to
have the fluorescence quenching effect (Olaizola et al., 1994). Boxplot analysis revealed
a small amount of Dt/ Dd + Dt relative to other the clusters (Fig. 4.11), indicating
that qN is possibly acting at a low level. However, the correlation matrix showed Dt/
Dd + Dt to be significantly positively correlated to ΦF (435) (p = 0.043, Fig. 4.18).
This result is doubtful, and the small sample size of this cluster, together with the rapid
timescale of the XC and the feasibility of accurately capturing the individual pigment
components in situ must be considered. Mode 1 of the EOF analysis, accounting for
74% of the ΦF (λ) spectral variance, has a significantly inverse correlation to alloxanthin
and Dt/ Dd + Dt (rs = -0.743 and -0.881 respectively, p < 0.05, Fig. 4.15), i.e. a
low concentration of photoprotective pigments would result in an increase in ΦF . This
relationship has been reported previously (Maritorena et al., 2000; Morrison, 2003). In
addition to the fairly low amount of Dt/ Dd + Dt, boxplot analysis revealed that the mean
alloxanthin concentration was the lowest across all clusters (0.003±0.003, Fig. 4.11). The
low concentration of alloxanthin and Dt suggests a low activity of qN, which may, in part,
be the reason for the high magnitude of ΦF (λ) in this cluster.

Cluster 4 comprises three GHS stations with anomalous ΦF (570) values of 0.331±0.026
(Fig. 4.8). No statistical analyses were performed on this cluster due to the small sample
size, and as such only relative relationships derived from boxplot analysis are reported.
While a ΦF of approximately 35% has never been reported, the result should be investi-
gated regardless, as all data used for these three stations underwent strict quality control
and were deemed to be acceptable. Trends in boxplot analysis (Figs. 4.10, 4.11, and 4.12)
reveal that cluster 4 is characterised, relative to the other three clusters, by a high biomass
(0.83±0.09 mg m−3), largely microplankton dominated population (74±22.8%), with high
fucoxanthin concentrations (0.51±0.14) and corresponding diatom levels (63.1±23.6%).
This cluster shows a high degree of photoacclimation (Dd + Dt) (0.16±0.01), possibly
due to the high ΣPAR12h (0.357±0.038 mol m−2 s−1). For all three stations, while the
ΦF (375- 525) portion of the spectra are relatively low compared to the high ΦF (570), they
still average a substantial ΦF (375-525) of 0.085±0.010. The overall high ΦF (λ) response
is likely a result of a large seasonal bloom of photoadapted phytoplankton. It would seem
that the bloom event at the position of the SBdy front (GHS78 and GHS80) was separate
to that of GHS90, which was positioned in the southern MIZ (Fig. 2.12). GHS78 and
GHS80 are dominated by microplankton (87.2±0.5%), specifically diatoms (76.7±2.4%),
while GHS90 is located in the MIZ and dominated by nanoplankton (52.4%), likely hap-
tophytes (62.1%), specifically Phaeocystis (Arrigo, 1999; Arrigo et al., 2000; Arrigo and
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McClain, 1994). There is a clear absence of PE-containing cryptophytes or Synechococcus
at all three stations, which could partially explain the high ΦF (570) values. This commu-
nity structure is typical of the diatom/ P. antarctica ice-edge interplay that occurs during
the austral summer (Alderkamp et al., 2013; Arrigo, 1999; Arrigo et al., 2010). All three
stations exhibit near-identical spectral shapes (Fig. 4.8), hinting at the likelihood of the
ΦF (λ) being controlled by a similar feature. These stations would have been grouped into
cluster 3 had it not been for the outlier ΦF (570) values (Fig. B.1). Boxplot analysis shows
a similar, fairly low amount of Dt/ Dd + Dt to that of cluster 3. This would imply at low
levels of qN and higher ΦF (λ), barring other electron dissipation pathways. Boyd et al.
(2001) reported stations south of 54◦S to be Fe/ light co-limited in the early summer,
which would contribute to the high ΦF (λ). The community composition, bloom progres-
sion and high ΦF (λ) values obtained in this region are likely due to an interplay between
sea ice, light and nutrient conditions. However, this is still not reason enough to explain
the exorbitant ΦF (570) values specifically, which are likely a result of a combination of
the factors described above, as well as those in Section 4.3.1. If the sample number were
higher for this cluster, the reason for the high ΦF (570) would likely be more apparent,
highlighting the benefits of increased sampling resolution for improved understanding of
the drivers of ΦF variability, not just in this study but on a global scale.

It is apparent that the drivers of both spectral and discrete ΦF (λ) variability are
extensive. A larger overall dataset would potentially provide more reliable insight and
allow for more definitive conclusions to be made; a broad-brush summary of the main
drivers of cluster assignment are listed in Table 4.2.

Table 4.2: The drivers of cluster assignment

Cluster No. Dominant driver
1 Silicate
2 Mixed species composition
3 Light and qE
4 High biomass and large microplankton

4.4 Conclusion and future recommendations

Application of the MFL-calibration (Chapter 3) to in situ data has allowed for the deriva-
tion of wavelength-specific ΦF (λ). This is the first time such a calibration has been
performed, and subsequently applied to in situ samples.

Absorption and MFL fluorescence measurements underwent extensive quality control
to limit the propagation of errors when deriving ΦF (λ). The result was 66 in situ mea-
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surements, obtained from the Atlantic sector of the Southern Ocean over the austral
winter of 2012 and austral summer of 2013/ 2014. Statistically clustering the wavelength-
specific ΦF (λ) spectra was considered a strong starting point for identification of drivers
of spectral variability. ΦF (λ) spectra provided high resolution detail of the phytoplankton
response to different excitation wavelengths. While ΦF (570) was anticipated to provide
new insight into the photosynthetic efficiency of populations comprising PE-containing
cryptophytes and cyanobacteria, this waveband was fraught with background noise and
possible Raman scattering contamination, masking any potential species-specific signal.

The effect of light levels and fluorescence quenching on ΦF (λ) were distinguishable
between clusters, with high light exposure being related to a reduced ΦF (λ) due to qN,
depending on the photoacclimation state of the resident phytoplankton population. Re-
duced ΦF (λ) under moderate to low light levels may be indicative of qP, where all avail-
able photons are devoted to photochemistry. The possibility of constraining the effects
of fluorescence quenching to extract information of additional physiological drivers, e.g.
Fe availability, is complicated by the fact that there is no accurate way to account for
the photoacclimation state of the local phytoplankton, without drastically narrowing the
spatial and temporal range of sampling.

While ΦF (λ) is not considered a good proxy for macronutrient limitation, the relation-
ship between ΦF (λ) and Si(OH)4 was briefly explored to investigate possible taxonomic
relationships, specifically relating to diatoms. Si(OH)4 concentrations were typically low
to north of the PFZ and replete to the south. These two distinct regions are influenced by
different environmental conditions and physical processes, and as the dataset presented
in this study was a combination of these regions, it was not possible to accurately infer
the underlying mechanisms driving any relationships between Si(OH)4 and ΦF (λ).

While the results of this chapter emphasise the important role of taxonomy and light
levels on ΦF (λ) measurements, a larger sample size and measurements of dissolved Fe
(DFe) would have added a far greater depth of understanding to the observed ΦF (λ)
responses, considering the two key drivers of photophysiological regulation in Southern
Ocean phytoplankton, irrespective of community structure, are light and Fe (Cassar et al.,
2011; Lin et al., 2016; Strzepek et al., 2012). In addition, while the spectral clustering of
data was a good initial approach to investigating drivers of variability, future approaches
will need to better define ways of grouping data if this work is to be expanded for routine
use with potential remote sensing application. The comparison of ΦF (435) and ΦF (570)
to possible drivers of variability was a good bridge in moving from broad spectral analysis
to key waveband determinants.

To conclude, the newly calibrated MFL was deployed in the Southern Ocean and used
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to successfully derive wavelength-specific ΦF (λ) measurements, with the majority of val-
ues falling within the range of previous studies (0.001-0.15, Table 1.3). Outlier values
were typically obtained in the green-orange excitation LEDs, notably at 570 nm, due to
increased instrument sensitivity, a low signal-to-noise ratio, and possible Raman contam-
ination; it is a possibility that the 525-590 nm wavebands may be omitted from future
analyses if reliable constraints cannot be developed. Both taxonomy and light were found
to impact ΦF (λ) in characteristic ways, which were largely dependent on the photoaccli-
mation state of the phytoplankton community. The potential routine deployment of the
MFL will provide unprecedented insight into processes governing in situ ΦF (λ), expediting
the investigation into the interplay between taxonomy, light levels, and Fe-availability, and
their influences on associated phytoplankton photophysiology. Through increased sam-
pling frequency and generation of a larger in situ ΦF (λ) database, improved understanding
of signal variability will facilitate ΦF satellite ocean colour algorithm development, and
allow for improved monitoring capabilities in the globally important Southern Ocean.

Recommendations for future work are listed below:

• The implementation of a Raman scattering correction. Studies have stressed the im-
portance of such a correction (Maritorena et al., 2000; Morrison, 2003), with Raman
scattering known to account for approximately 20% of the upwelling radiance in the
red part of the spectrum, leading to an overestimation of chl-a fluorescence.

• Account for chl-a fluorescence reabsorption. As the red chl-a absorption band partly
overlaps its fluorescence band, the fluorescence emission may be partly reabsorbed
before leaving the cell (Collins et al., 1985). This would result in diminished chl-a
fluorescence and ΦF (Babin et al., 1996b).

• Measure local DFe concentrations. As this micronutrient is a key regulator of Southern
Ocean phytoplankton dynamics (Boyd, 2002), it is imperative for future studies to
account for Fe-availability when examining ΦF values and the drivers of its variabil-
ity.

• In situ sampling should include depth measurements. In the Southern Ocean, the
mixed layer depth is an important physical feature, regulating the amount of light
and nutrients supplied to resident phytoplankton. Sampling over a range of depths
will capture potential deep chl-a maxima and species transitions that may have
been overlooked with exclusive surface sampling (Bathmann et al., 1997; Detmer
and Bathmann, 1997; Gervais et al., 2016; Holm-Hansen and Hewes, 2004).
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• Apply additional taxonomic methods when examining community structure. While
the use of diagnostic pigment ratios (Uitz et al., 2006) and CHEMTAX analysis
(Mackey et al., 1996) have their advantages and dis-advantages, the incorporation
of additional enumeration techniques would improve the taxonomic resolution of
natural assemblages. For example, size-fractionated chl-a analysis would aid in size
structure determination (Rozema et al., 2017) and microscopy analysis in species
identification (Patil et al., 2013).

• One approach to disentangling the influence of individual phytoplankton species on
ΦF (λ), would be through the use of nutrient and light-regulated mono-specific phy-
toplankton cultures. Submerging the MFL in pure cultures of known conditions,
would allow for the derivation of species-specific ΦF (λ). Further manipulation would
allow for the effects of light and nutrient levels on phytoplankton-specific ΦF (λ) to
be examined.

• Separate photosynthetic and non-photosynthetic absorption components to examine
their individual contributions to the shape of the quantum yield spectra.



Chapter 5

Remote Sensing of Fluorescence
Quantum Yield in the Southern
Ocean

5.1 Introduction

5.1.1 Overview of satellite-derived ΦF

The advent of satellite remote sensing has proven to be especially useful in remote ar-
eas, such as the high-latitude polar regions, where traditional data collection methods
are logistically difficult. The launch of remote sensors such as MODIS and the Medium
Resolution Imaging Spectrometer (MERIS, European Space Agency), with spectral bands
in the red-wavelengths, has allowed for the estimation of SICF (Gower et al., 2004; Lete-
lier and Abbott, 1996). Algorithms have been proposed (Abbott and Letelier, 1999;
Babin et al., 1996b) and applied, to interpret this measurement in terms of phytoplank-
ton biomass or satellite-derived estimates of Φsat (Behrenfeld et al., 2009; Browning et al.,
2014a; Huot et al., 2005, 2013; Laney et al., 2005; Lin et al., 2016; Morrison and Goodwin,
2010). Observations of SICF near the sea surface reveal substantial variability in space
and time that may reflect environmental controls on the photosynthetic and physiological
status of phytoplankton (Abbott et al., 2001; Letelier et al., 1997; Schallenberg et al.,
2008). Laboratory and field experiments, using passive and stimulated measurements of
fluorescence, have reported that metrics or proxies of ΦF are influenced by the nutritional
state of the phytoplankton (Abbott et al., 2000; Cleveland and Perry, 1987; Laney et al.,
2005; Timmermans et al., 2008). The use of satellite-derived fluorescence as a diagnos-
tic for nutrient stress is complicated by the fact phytoplankton near the ocean surface

119
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can experience physiological stress due to excess irradiance as well as nutrient limitation
(Babin et al., 1996b; Behrenfeld et al., 2009; Browning et al., 2014a; Huot et al., 2005,
2013; Schallenberg et al., 2008). The combined effect of these stressors on ΦF is poorly
understood (Cullen et al., 1997; Cullen and Lewis, 1995; Laney et al., 2005). It has been
shown that under high light levels near the ocean surface, ΦF is subject to qN (Mari-
torena et al., 2000; Morrison, 2003; Schallenberg et al., 2008). Variability in qP and qN is
a crucial consideration when deriving Φsat under ambient light conditions (Falkowski and
Kiefer, 1985), as satellite ocean colour products are typically generated from surface wa-
ters at times near local noon (Savtchenko et al., 2004), when Φsat values are significantly
impacted by qN (Behrenfeld et al., 2009; Browning et al., 2014a; Morrison and Goodwin,
2010).

The interplay between nutrient limitation and excess-irradiance dissipation is yet to
be properly elucidated (Laney et al., 2005). Attempts have been made to parameterise
the effects of qN in order to elucidate surrounding nutrient conditions; for example, qE-
corrections were implemented by Behrenfeld et al. (2009) using iPAR, and Browning et al.
(2014a) using SST. The development of a suitable qN-correction for Φsat is a complex task,
further complicated by the strong dependence of qN on the phytoplankton community
structure and the photoacclimation state of the population (Graff and Behrenfeld, 2018;
Milligan et al., 2012). Phytoplankton-specific photoacclimation strategies, including al-
tering the size of the absorption cross-section of PSII and adjusting the amount of PSII
reaction centres (Falkowski and Owens, 1980), affect Φsat and have been shown to be
responsible for up to 89% of Φsat variability in certain regions (Morrison and Goodwin,
2010). Photoprotective mechanisms employed by phytoplankton are further influenced
by upper ocean turbulence affecting the surrounding light field (Alderkamp et al., 2010)
and nutrient distribution (Moore et al., 2013; Strzepek et al., 2012).

A major obstacle for remote sensing at high latitudes is the need for acquisition of
appropriate validation data sets, particularly for ocean colour applications. Current at-
tempts to validate Φsat algorithms remain limited, predominantly as there is a shortage
of in situ ΦF measurements; instruments that measure a continuous fluorescence yields,
for example, the MFL, provide more relatable outputs to satellite-derived SICF than
those derived from variable fluorescence measurements. While instruments that measure
variable fluorescence have provided unprecedented information on the photochemical con-
version in phytoplankton in situ, they are unable to measure absolute quantum yields of
fluorescence. Browning et al. (2014a) derived relative ΦF from variable fluorescence mea-
surements, and compared their in situ values to remotely sensed Φsat in the Atlantic sector
of the Southern Ocean. However, there are limitations to using variable fluorescence to
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reliably derive ΦF . Kuzminov and Gorbunov (2016) constructed a custom picosecond
fluorescence lifetime fluorometer to quantify picosecond fluorescence decay kinetics; such
measurements are quantitatively relatable to ΦF (Falkowski et al., 2017; Lakowicz and
Masters, 2008). Long fluorescence lifetimes, i.e. high ΦF , have been observed in the
Southern Ocean, and attributed to Fe-limitation (Lin et al., 2016; Park et al., 2017).

5.1.2 Chapter objectives

Detection of ΦF from satellite ocean colour products will provide routine, synoptic obser-
vations and, as such, improve understanding of phytoplankton dynamics and offer insight
into surrounding environmental conditions. The in situ measurements of ΦF (435), calcu-
lated in Chapter 4, are used to validate three existing Φsat algorithms. From an available
in situ dataset of 66 stations, there are six MODIS level 2 match-ups, all occurring in
the austral summer of 2013/ 2014. A sensitivity analysis, over varying ranges of [chl-a]
and irradiance, is undertaken to assess algorithm performance. A preliminary, optimised
hybrid Φsat algorithm is used to investigate the influence of [DFe] on Φsat. The algorithm
is also used to perform a decadal study in the Atlantic Southern Ocean, as an initial
demonstration of the value of the validated Φsat product.

5.2 Methods

Please refer to the List of Notation (p.iv) for specific symbols and units used throughout
this chapter.

5.2.1 Spectral correction of MFL-derived ΦF(λ)

To account for differences in the spectral distribution of MFL LEDs, all ΦF (λ) values were
multiplied by a spectral correction factor (SCF), making the output more comparable to
Φsat, which comprises an integrated iPAR measurement. A solar irradiance spectrum
resembling typical Southern Ocean, noon-day, conditions was generated using a solar
spectrum calculator (https://www2.pvlighthouse.com.au/), to create a range of irradiance
values over 350-700 nm (1 nm intervals); conditions selected were 12:00 GMT, 2 December
2013, at 50◦S. All spectra used in the derivation of the SCF, i.e. the solar irradiance, the
MFL LED response and the phytoplankton-specific absorption (for each station), were
normalised to their respective highest values. A unique SCF was generated for each MFL
LED, for every field station (Eq. 5.1).
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SCF =
∑700

350 a
∗
phEinsitu ·

∑700
350ELED∑700

350 a
∗
phELED ·

∑700
350Einsitu

(5.1)

Equation 5.1 is an adaptation of that used by Suggett et al. (2001), where Einsitu
specifies the normalised solar irradiance, ELED the normalised MFL LED response and
a∗ph (m2 mg chl−1) the chl-a-specific phytoplankton absorption for each station.

5.2.2 MODIS-Aqua ocean colour products

All ocean colour products were obtained from the NASA MODIS-Aqua R2018.0 archive
(https://oceancolor.gsfc.nasa.gov/). MODIS-Aqua level 2 data (daily, 1 km) were used
for the in situ match-ups, with the applied level 2 flags listed in Table 5.1. Data were as-
sessed in 3×3 megapixel grids over a period of 24 h (station time ±12 h) for the match-ups.
All stations had a minimum of 8 valid pixels, with the megapixel mean used in further
calculations. All level 2 product means and standard deviations used for the match-up
analysis are listed in Appendix C.1. For the derivation of Φsat at stations with co-located
in situ DFe measurements (obtained from the GEOTRACES Intermediate Data Prod-
uct (IDP) 2017 database, http://www.geotraces.org/dp/idp2017, Schlitzer et al. (2018)),
MODIS-Aqua level 2 data (daily, 1 km) was used. Slightly less demanding criteria, i.e.
the use of 5×5 megapixel boxes over a period of 24 h, were implemented. All stations
had a minimum of 15 valid pixels, with the megapixel mean used in further analyses. All
level 2 product means, standard deviations, Φsat values, and [DFe] are listed in Appendix
C.3. MODIS-Aqua level 3 data (monthly, 4 km) data was used for Φsat derivation in the
decadal analysis.

Table 5.1: MODIS-Aqua level 2 flags.

Bit Flag name Description
01 LAND Pixel is over land
04 HILT Observed radiance very high or saturated
05 HISATZEN Sensor view zenith angle exceeds threshold
09 CLDICE Probable cloud or ice contamination

5.2.2.1 Chl-a concentration

The near-surface concentration of chl-a (chlor_a) in mg m−3, is calculated through an
empirical relationship derived from in situ measurements of chl-a and Rrs in the blue-
green visible spectrum. The chlor_a product combines two algorithms, the O’Reilly band
ratio OCx algorithm (O’Reilly et al., 1998, 2000) and the Hu et al. (2012) colour index
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(CI) algorithm (https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/). The CI algorithm is a
three-band reflectance difference algorithm employing the difference between Rrs in the
green band (547 nm) and a reference formed linearly between Rrs in the blue (443 nm) and
red (667 nm) bands (Eq. 5.2). The OCx algorithm, referred to as OC3M, is a fourth-order
polynomial relationship between a ratio of Rrs and chlor_a (Eq. 5.3).

CI = Rrs(547) - [Rrs(443) + (547− 443)
(667− 443) · (Rrs(667) - Rrs(443))] (5.2)

log10(chlor_a) = a0 +
4∑
i=1

ai

(
log10

(
Rrs(blue)
Rrs(547)

))i
(5.3)

The coefficients a0-a4 (Table 5.2) were derived specifically for MODIS using version
2 of the NASA bio-Optical Marine Algorithm Data set (NOMAD) (Werdell and Bailey,
2005). For chl-a retrievals below 0.15 mg m−3 the CI algorithm is used, for CI retrievals
above 0.2 mg m−3 the OC3M algorithm is used, and in between these values the algorithms
are blended using a weighted approach.

Table 5.2: MODIS-specific chlor_a and Kd_490 algorithm coefficients.

MODIS product Algorithm Blue λ Green λ a0 a1 a2 a3 a4
chlor_a OC3M 443>488 547 0.2424 -2.7423 1.8017 0.0015 -1.2280
Kd_490 KD2M 488 547 -0.8813 -2.0584 2.5878 -3.4885 -1.5061

5.2.2.2 Diffuse attenuation coefficient

Kd_490 refers to the diffuse attenuation coefficient for downwelling irradiance at 490
nm (m−1). NASA’s standard algorithm (KD2M) takes the format of a fourth-order
polynomial relationship between a blue-green ratio of Rrs and Kd_490 (Eq. 5.4,
https://oceancolor.gsfc.nasa.gov/atbd/kd_490/).

log10(Kbio(490)) = a0 +
4∑
i=1

ai

(
log10

(
Rrs(443)
Rrs(547)

))i
(5.4)

where
Kd_490 = Kbio(490) + 0.0166 (5.5)

The coefficients a0-a4, listed in Table 5.2, were derived specifically for MODIS using
version 2 of the NOMAD (Werdell and Bailey, 2005).
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5.2.2.3 Normalised fluorescence line height

The normalised fluorescence line height (nflh, W m−2 µm−1 sr−1) is calculated
as the difference between the observed normalised water-leaving radiance (nLw)
at 678 nm and a linearly interpolated nLw(678) between nLw(667) and nLw(748)
(https://oceancolor.gsfc.nasa.gov/atbd/nflh/). The theoretical basis of nflh is explained
in detail by Abbott and Letelier (1999) and implemented in work by Behrenfeld et al.
(2009) (Eq. A2), and is generically described as follows:

nflh = nLw(678) - nLw(667) -
[
(nLw(748) - nLw(667)) ·

(678− 667
748− 667

) ]
(5.6)

5.2.2.4 Instantaneous photosynthetically available radiation

The instantaneous photosynthetically available radiation (iPAR, Einstein m−2 s−1), rep-
resents the total PAR incident on the ocean surface at the time of the satellite observation
(https://oceancolor.gsfc.nasa.gov/atbd/ipar/). The theoretical basis of iPAR is explained
in detail by Carder et al. (2003), and the algorithm is generically defined as:

iPAR = 1
hc

∫ 400

700
λEd(λ, 0−)dλ, (5.7)

where h = 6.63e−34 (Planck’s constant), c = 3e8 (speed of light) and Ed(λ, 0−) is the
spectral downwelling irradiance just below the sea surface.

5.2.3 General considerations

The MODIS-Aqua products chlor_a, Kd_490, and nflh are denoted as Chla, Kd(490),
and FLH, respectively, hereforth. The satellite products Chla, iPAR, and Kd(490) are
standardly processed to lie just below the sea surface (as per their respective NetCDF
metadata), whereas FLH is processed just above the sea surface and had to be converted
to subsurface values (E0(0−),λ). This was performed by multiplying FLH by t/ n2

w, where
t is the transmission of nadir radiance across the sea surface (t = 0.97, (Mobley, 1994))
and nw is the index of refraction of sea water (nw = 1.34). In some instances, i.e. for the
Babin et al. (1996b) and Huot et al. (2005) equations, FLH radiance units were converted
to moles of photons by multiplying FLH by λ (m−1)/ hc, and subsequently dividing by
Avogadro’s number (6.02e23).

Huot et al. (2013) determined the detection limit for FLH at the top of the atmosphere
(TOA) to be 0.003 mW cm−2 µm−1 sr−1, and warned the integrity of satellite-detected
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chl-a may be compromised at values of [chl-a] < 0.1 mg m−3. The positioning of the
MODIS FLH detection bands mean FLH is estimated to be 0.6 (Gower et al., 2004) and
0.7 (Huot et al., 2005) of the actual emission at 685 nm. MODIS band 15 is positioned
more than 60 nm from the fluorescence emission maximum, leading to the baseline being
slightly overestimated at low [chl-a], which results in negative FLH values (Letelier and
Abbott, 1996). For this study, all stations had [chl-a] > 0.1 mg m−3 and positive FLH
pixels well above the detection limit proposed by Huot et al. (2013).

5.2.4 Φsat Algorithms

The three algorithms used in this study were considered best suited to our in situ dataset
and included relevant factors thought to be of importance, particularly in the high lat-
itude, low [chl-a] Southern Ocean. The first algorithm used to derive Φsat from SICF
measurements was that of Babin et al. (1996b):

ΦBab =
FLH

iPAR · Chla · a∗φ ·Q∗a(685) · dz (5.8)

where

• ΦBab is Φsat derived using the algorithm of Babin et al. (1996b),

• FLH is the MODIS fluorescence line height product (mol m−2 s−1 nm−1 sr−1) emitted
by a thin seawater layer of thickness dz(m),

• iPAR is the instantaneous scalar PAR irradiance just below the sea surface (mol m−2

s−1),

• Chla is the MODIS OC3M estimate of [chl-a] (mg m−3),

• a∗φ is the mean chl-a-specific absorption coefficient, and is calculated as a∗φ = 0.0161
·Chla−0.257 (m2 mg chl−1), and

• Q∗a(685) is a dimensionless factor accounting for intracellular reabsorption of fluores-
cence within the spectral emission band centred at 685 nm and is calculated as
Q∗a(685) = 0.549 ·Chla−0.173.

Babin et al. (1996b) originally made use of PAR (mol m−2 s−1), the scalar irradi-
ance (

0
E(λ)) integrated between 400 and 700 nm. The MODIS PAR product is mea-

sured just above the sea surface (E0(0+), λ), in units of mol m−2 d−1. The MODIS
iPAR product is taken from just below the sea surface (E0(0−), λ), and is in mol m−2
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s−1. In this study, the iPAR product satisfied the requirements for Φsat derivation.

The Φsat algorithm of Huot et al. (2005) was selected as the second algorithm to be
investigated. While the author proclaims the Φsat algorithm developed in Huot et al.
(2013) should supersede the 2005 version, the earlier version was better suited to this
study; the Huot et al. (2013) algorithm did not provide quantum yields in absolute values,
which was necessary for the comparison to the in situ absolute ΦF values. Furthermore,
the Huot et al. (2013) algorithm was developed using level 3 data, which does not provide
the sensor angle of observation (θ′), an important consideration in Φsat retrieval. The
Huot et al. (2005) algorithm is as follows:

ΦHuo =
FLH · βΦ

iPAR · Chla
(5.9)

where

• ΦHuo is Φsat derived using the algorithm of Huot et al. (2005),

• FLH is the MODIS fluorescence line height product (mol m−2 s−1 nm−1 sr−1),

• iPAR is the instantaneous scalar PAR irradiance just below the sea surface (mol m−2

s−1),

• Chla is the MODIS OC3M estimate of [chl-a] (mg m−3), and

• βΦ is a correction factor that accounts for the viewing geometry and optical properties
associated with FLH, and is described in Eq. 5.10.

To retrieve Φsat, the surface fluorescence was corrected for bio-optical sources of variability
through the derivation of the βΦ factor:

βΦ = 4π · Cf · [K
τf

abs + (af/cosθ
′)]

a∗φ ·Q∗a
, (5.10)

where

• 4π converts isotropic fluorescence field to radiance (sr),

• Cf is the proportionality factor for MODIS bands, converting fluorescence measure-
ments made at 678 nm to the whole fluorescence band (43.38 nm),

• Kτf

abs is the attenuation coefficient for downwelling absorbed irradiance at 490 nm, eval-
uated to depth (z90), above which 90% of the fluorescence radiance at the surface
originates, and is calculated as Kτf

abs = -0.00831 + 0.908 ·Kd(490)0.781 (m−1),
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• af is the attenuation of upwelling fluorescence radiance, af = aw(678) + aΦ(678),
with af and aΦ being the absorption coefficients for water and phytoplankton
respectively. aw(678) = 0.461 m−1 (Pope and Fry, 1997) and aΦ(678) = 0.4762
·(Kd(490)−0.016)1.22 m−1,

• θ′ is the zenith angle of observation in water, provided by the MODIS MYD03 product
(radians),

• a∗φ is the irradiance-weighted chl-a-specific absorption coefficient, and is calculated as
a∗φ = 0.00663 ·(Kd(490) - 0.016)−0.3611 (m2 mg chl−1), and

• Q∗a is a parameter accounting for the fraction of emitted radiation at λem not reabsorbed
within the cell. Q∗a is set to 1 (unitless) for Kd(490) < 0.11 m−1.

The Φsat algorithm of Huot et al. (2005) inspired subsequent variations (Behrenfeld et al.,
2009; Morrison and Goodwin, 2010). The final equation selected for derivation of Φsat

from SICF was that of Behrenfeld et al. (2009), adapted from Huot et al. (2005) as follows:

ΦBeh = FLH

Chla· < a∗ph > ·Sbeh
(5.11)

where

• ΦBeh is Φsat derived using the algorithm of Behrenfeld et al. (2009),

• FLH is the satellite-derived surface chl-a fluorescence (mW cm−2 µm−1 sr−1),

• Chla is the MODIS OC3M estimate of [chl-a] (mg m−3),

• < a∗ph > is the spectrally-weighted chl-a-specific absorption coefficient, and is calculated
as < a∗ph > = 0.0147 ·Chla0.684(m2 mg chl−1), and

• Sbeh is a correction factor of 100 mW cm−2 µm−1 sr−1.

Behrenfeld et al. (2009) included an inverse-light function to describe qN, specifically qE.
The quenching correction, which used an iPAR/iPAR ratio (where iPAR is the global
average iPAR for MODIS, 1590 µmol m−2 s−1), was found to be appropriate for phyto-
plankton acclimated to a single light level, however, the actual reduction in Φsat due to
qN expressed at any given saturating iPAR differs between phytoplankton acclimated to
different light levels. As Southern Ocean phytoplankton experience vastly different light
regimes across the latitudinal provinces, the photo-acclimation states of resident phyto-
plankton are too varied to employ this type of qN-correction. For consistency between all
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three algorithms, the Behrenfeld et al. (2009) equation used in this study did not include
their qN-correction. (When the qN-correction was included in the Φsat calculation the
difference was negligible (Appendix C.2)).

5.2.4.1 FLH constants

Huot et al. (2005) add a small value, FLH0, to FLH to avoid negative radiances encoun-
tered. This constant, FLH0 = 0.05 W m−2 µm−1 sr−1, corresponds to the minimum
amount of fluorescence expected based on historical measurements (Abbott and Letelier,
1999). In contrast, Behrenfeld et al. (2009) subtract a small value (0.001 mW cm−2 µm−1

sr−1) from the FLH product, to further separate out negative values, before completely
removing any negative pixels from their dataset. Their justification of this treatment was
that the negative pixels only represented 0.2% of their MODIS data, they were randomly
distributed globally and likely represented pixels with unflagged atmospheric correction
problems.

5.2.5 Statistical metrics

While both r and regression slopes, representative of goodness of fit, have their merits,
they do not provide a full description of algorithm performance, including accuracy and
bias (Seegers et al., 2018). As such, a full suite of statistical metrics were applied to the
satellite-derived chl-a and Φsat data. The statistical descriptors included the bias (the av-
erage difference), the mean absolute relative difference (MARD) and the root-mean-square
difference (RMSD). The bias is determined for logarithmically transformed (base 10) data,
an accepted approach considering chl-a follows a lognormal distribution (Campbell, 1995).
The bias is computed as per Seegers et al. (2018):

Bias = 10

(∑N
i=1 log10Si − log10Ii

N

)
(5.12)

the mean absolute relative difference (MARD), expressed in percentage, as per Gerbi et al.
(2016):

MARD (%) = 100 · 1
N

N∑
i=1

| Si − Ii |
Ii

(5.13)

and the root-mean-square difference (RMSD) as per Gerbi et al. (2016):

RMSD =
√

1
N

N∑
i=1

(Si − Ii)2 (5.14)
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where N is the sample size, Si are the satellite derived values and Ii are the in situ
measured values. Note, the bias calculated through Eq. 5.12 is centred at a value of 1,
e.g. if the bias = 1, the satellite is unbiased, if the bias = 0.5, there is a negative bias/
underestimate of 50% etc.

5.3 Results

5.3.1 Φsat Algorithm evaluation

Three existing Φsat algorithms, namely that of Babin et al. (1996b), Huot et al. (2005),
and Behrenfeld et al. (2009), were used to derive Φsat (ΦBab, ΦHuo, and ΦBeh, respectively)
for stations that matched the in situ MFL-derived ΦF (435). As chl-a absorbs maximally
in the blue, the 435 nm MFL waveband was specifically selected to provide the maximal
signal and most relatable ΦF values to that derived from satellites. ΦF (435) data were
spectrally corrected to further improve the relationship to Φsat (Section 5.2.1), with ΦF (sc)
values listed in Table 5.3.

Table 5.3: In situ MFL-derived ΦF (435) and spectrally corrected ΦF (sc) values.

ΦF GHS39 GHS43 GHS45 GHN09 GHN35 GHN41
ΦF (435) 0.0207 0.0384 0.1495 0.0527 0.0281 0.1005
ΦF (sc) 0.0089 0.0173 0.0719 0.0235 0.0114 0.0489

The in situ ΦF (sc) of the 6 satellite match-up stations were regressed against Φsat

derived through the three selected algorithms and variations thereof (Fig. 5.0, Table
5.4). For all algorithms and their variants, the in situ ΦF (sc) measurements were higher
than their respective Φsat estimates. The original algorithms, with treatment of the data
followed verbatim, did not show any significant relationships to the in situ ΦF (sc) (row
1). In row 2, the FLH used in all algorithms was kept the same, i.e. the constants used by
Huot et al. (2005) and (Behrenfeld et al., 2009) were omitted, and the a∗φ and Q∗a terms
of Babin et al. (1996b) were substituted in to the Huot et al. (2005) and (Behrenfeld
et al., 2009) equations, where applicable. This led to a minor improvement between ΦBeh

and ΦF (sc), and a more substantial improvement between ΦHuo and ΦF (sc); this change
to the original Huot et al. (2005) algorithm decreased the bias, MARD and r from 0.38,
52.1% and 0.11, respectively, to 0.65, 50.8% and 0.47, with an improvement in p from
0.83 to 0.35. This is the version of the Huot et al. (2005) algorithm (Fig. 2b) that forms
the hybrid ΦHuo/ ΦBab (ΦHB) algorithm in Section 5.5. Up until this point, all results are
congruent. Row 3 incorporates the same algorithms used in row 2 Φsat derivation, with
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the exception of substituting the satellite chl-a with that of in situ chl-a. This led to an
improvement in relationships across the full suite of stats for ΦBab and ΦHuo, yet increased
the bias and uncertainty for that of ΦBeh. The Φsat algorithms, with the same treatment
of FLH, the Q∗a term of Babin et al. (1996b) and in situ chl-a, were further manipulated
through substitution of the Babin et al. (1996b) a∗φ term with in situ a∗φ, averaged over
the visible spectrum (400-700 nm) (row 4). This improved the r and p values for all
algorithms, however, there was an increase in bias and uncertainty for ΦHuo and ΦBeh.
This strengthening of the linear relationship between all Φsat and in situ ΦF (sc) r and p
values continued when the waveband range of the in situ a∗φ was narrowed to 415-455 nm
(row 5); ΦBab r = 0.90, p = 0.01, ΦHuo r = 0.88, p = 0.02 and ΦBeh r = 0.87, p = 0.02.
This version of the Babin et al. (1996b) algorithm further resulted in the least bias and
lowest uncertainty out of all versions, with a bias of 0.58 and an MARD of 37.4%. This
version of the Huot et al. (2005) algorithm resulted in the largest negative bias (0.21)
and uncertainty (76.4%) out of all their versions, likewise for the Behrenfeld et al. (2009)
algorithm, which underestimated ΦBeh by approximately 90%.

In summary; in case of the Babin et al. (1996b) model, adding the in situ chl-a and
a∗φ(415-455) decreased the overall uncertainty, and incrementally brought down the bias
from a severe overestimation to a moderate underestimation. For Huot et al. (2005)
equation, adding the a∗φ and Q∗a terms of Babin et al. (1996b) improved the bias, MARD,
and RMSD, whereas adding the in situ a∗φ tended to increase the negative bias and
generally increase the uncertainty. For the Behrenfeld et al. (2009) equation, the addition
of the a∗φ and Q∗a terms of Babin et al. (1996b) improved the bias and MARD, and the
addition of in situ chl-a and a∗φ increased the negative bias, the uncertainty, and the
RMSD. Overall, almost all algorithms returned good linear agreement but poor accuracy
compared to the in situ ΦF (sc); Φsat derived through the Babin et al. (1996b) model, with
in situ chl-a and a∗φ(415- 455 nm), showed the strongest overall statistical relationship to
in situ ΦF (sc) (r = 0.90, p = 0.01), with bias = 0.58, MARD = 37.6%, and RMSD =
0.026. All Φsat values are listed in Appendix C.2.
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Figure 5.0: Algorithm comparison for Φsat derivation. Algorithms from Babin et al.
(1996b), Huot et al. (2005) and Behrenfeld et al. (2009) were used to derive Φsat, for 6
satellite match-up points for the spectrally corrected in situ ΦF (435). Φsat in row 1 was
derived through the original algorithms, with treatment of the data followed verbatim.
Φsat in row 2 was derived using all algorithms with no additional FLH constants, and
the a∗φ and Q∗a terms of Babin et al. (1996b). Φsat in row 3 is derived as previous, with
satellite chl-a substituted for in situ chl-a. Φsat in row 4 is derived as that reported in row
3, with a∗φ replaced with in situ a∗φ, over 400-700 nm. Row 5 shows Φsat derived as above,
with in situ a∗φ(400- 700 nm) replaced with in situ a∗φ, over 415-755 nm. The grey, dashed
1:1 line is inserted to illustrate satellite bias, with the black, dotted line representing the
regression slope between satellite and in situ ΦF .

Table 5.4: Statistical metrics used to compare MODIS-derived Φsat and in situ ΦF (sc).
Reference to the sub-plots in Fig. 5.0 and the statistical metrics employed are shown.
The Φsat original values are derived through the original algorithms, with treatment of
the data followed verbatim; Φsat & is chl-a values make use of in situ chl-a measurements;
Φsat & Bab a∗φ, Q∗a values include the Babin et al. (1996b) a∗φ and Q∗a terms; Φsat & Bab
a∗φ & is chl-a, a∗φ(400-700) are the values derived through the original algorithms, with
the Babin et al. (1996b) Q∗a term, in situ chl-a and in situ a∗φ over 400-700 nm; Φsat &
Bab a∗φ & is chl-a, a∗φ(415-455) is as previous, apart from the inclusion of in situ a∗φ over
415-455 nm instead of the entire visible spectrum.

Φsat algorithm Fig. Bias MARD RMSD r p

ΦBab original 1/2(a) 1.85 140.7 0.024 0.45 0.37
ΦBab & is chl-a 3(a) 1.42 93.7 0.019 0.66 0.15
ΦBab & is chl-a, a∗φ(400-700) 4(a) 1.17 67.8 0.020 0.79 0.06
ΦBab & is chl-a, a∗φ(415-455) 5(a) 0.58 37.6 0.026 0.90 0.01

ΦHuo original 1(b) 0.38 52.11 0.031 0.11 0.83
ΦHuo & Bab a∗φ, Q∗a 2(b) 0.65 50.8 0.026 0.47 0.35
ΦHuo & Bab a∗φ, Q∗a & is chl-a 3(b) 0.5 42.9 0.028 0.76 0.08
ΦHuo & Bab a∗φ & is chl-a, a∗φ(400-700) 4(b) 0.41 52.0 0.030 0.80 0.06
ΦHuo & Bab a∗φ & is chl-a, a∗φ(415-455) 5(b) 0.21 76.4 0.034 0.88 0.02

ΦBeh original 1(c) 0.75 102.98 0.03 -0.17 0.75
ΦBeh & Bab a∗φ, Q∗a 2(c) 0.34 56.4 0.032 0.24 0.64
ΦBeh & Bab a∗φ, Q∗a & is chl-a 3(c) 0.24 71.1 0.033 0.66 0.15
ΦBeh & Bab a∗φ & is chl-a, a∗φ(400-700) 4(c) 0.2 76.3 0.034 0.70 0.12
ΦBeh & Bab a∗φ & is chl-a, a∗φ(415-455) 5(c) 0.1 88.6 0.036 0.87 0.02
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5.3.2 Φsat Algorithm sensitivity analysis

A sensitivity analysis of the original three Φsat algorithms was performed (Fig. 5.1). An
average Kd(490) value of 0.07±0.02 m−1 was applied, and the FLH values were allowed
to scale linearly with [chl-a], in that FLH = 0.2 × [chl-a] (W m−2 µm−1 sr−1), as a rough
approximation derived through linear regression of FLH and [chl-a]. Chl-a concentrations
ranged from 0.05 to 10 mg m−3 and iPAR values were selected to represent high (1590
µmol m−2 s−1), medium (795 µmol m−2 s−1), and low (397 µmol m−2 s−1) light conditions.
The ΦBeh values decreased with increasing [chl-a], and remain identical across all three
light levels, as there is no iPAR term used in ΦBeh derivation (at [chl-a] = 1 mg m−3, ΦBeh

= 0.073 across all light regimes). The ΦBab and ΦHuo overall spectra were lowest under
high light and increased as light decreased; at [chl-a] = 1 mg m−3, under high light, ΦBab

= 0.433 and ΦHuo = 0.078, medium light ΦBab = 0.866 and ΦHuo = 0.156 and low light
ΦBab = 1.734 and ΦHuo = 0.313. ΦBab values were consistently higher than ΦHuo, with
the largest difference between the two observed at high [chl-a].
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Figure 5.1: Performance analysis of the original Babin et al. (1996b), Huot et al. (2005)
and Behrenfeld et al. (2009) Φsat algorithms. An average Kd(490) value of 0.07±0.02
m−1 was applied, FLH values varied with [chl-a], in that FLH = 0.2 × [chl-a] (W m−2

µm−1 sr−1), and [chl-a] ranged between 0.005-10 mg m−3 and iPAR values were selected
to represent high (1590 µmol m−2 s−1), medium (795 µmol m−2 s−1), and low (397 µmol
m−2 s−1) light conditions.
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5.3.3 Uncertainty introduced by θ
′ in ΦHuo

Huot et al. (2005) incorporates θ′ in their βΦ term, which represents the sensor viewing
angle of observation. In this study, θ′ is obtained from MODIS level 1A MYD03 products
(https://ladsweb.modaps.eosdis.nasa.gov/), for all in situ match-up stations and those
co-located to in situ [DFe]. A sensitivity study is performed to determine the percent
error introduced to ΦHuo over a range of θ′ values (Fig. 5.2). ΦHuo was calculated over a
[chl-a] range of 0.1-2 mg m−3, over a constant light level of 795 µmol m−2 s−1, an average
Kd(490) value of 0.07±0.02 m−1, and FLH values that varied with [chl-a], according to
FLH = 0.2 × [chl-a] (W m−2 µm−1 sr−1). Different values of θ′ were applied (0-60◦).
Results show the percent difference in ΦHuo generated between nadir (θ′(0◦)) and the
various angles are as follows: θ′(10◦) = 1%, θ′(20◦) = 5%, θ′(30◦) = 13%, θ′(40◦) = 25%,
θ
′(50◦) = 45%, and θ′(60◦) = 81%. For example, there is an 81% difference between ΦHuo

derived from a nadir viewing angle to that positioned at the edge of the swath (θ′(60◦).
This has impact on the use of composite MODIS level 3 products used in Φsat derivation,
and emphasises the need to produce Φsat from level 2 products with appropriate per-pixel
θ
′ values. In addition, this discrepancy is exaggerated at very low [chl-a] (< 0.25 mg m−3,
Fig. 5.2), which are typical of the Southern Ocean.
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Figure 5.2: Sensitivity analysis of θ′ in ΦHuo. An average Kd(490) value of 0.07±0.02
m−1 and constant light level of 795 µmol m−2 s−1 were applied, FLH values varied with
[chl-a], in that FLH = 0.2 × [chl-a] (W m−2 µm−1 sr−1), and [chl-a] ranged between 0.1-2
mg m−3.

5.3.4 Comparison of satellite- and in situ-derived chl-a

Chl-a validation is not the key focus of this study, and the small size of the dataset
precludes highly quantitative conclusions. This investigation was performed to better
understand why the inclusion of in situ chl-a in the Φsat models improved the fit of the
satellite derived estimates to the that of in situ ΦF (Section 5.3.1). The comparison
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between satellite- and in situ-derived [chl-a] is shown in Fig. 5.3. While the linear rela-
tionship between the two [chl-a] values was relatively strong (r = 0.79, p = 0.06), with a
good uncertainty estimate (MARD = 33.4%, RMSD = 0.230), the MODIS OC3M algo-
rithm was shown to underestimate [chl-a] (bias = 0.63). Satellite estimates are coloured
according to the time difference between the overpass and the in situ station time. Sta-
tion GHN09 was the only station to fall on the grey 1:1 line, and had the largest ∆time
(approx.17 h prior to the station time) of all stations. All ∆time values are listed in
Appendix C.1.
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Figure 5.3: Comparison between MODIS OC3M-derived and in situ HPLC-derived chl-a.
Satellite estimates are coloured according to the time difference between the overpass and
the in situ station time.

5.4 Discussion

5.4.1 Φsat Algorithm validation and performance

Studies that seek to validate Φsat algorithms typically make use of relative ΦF prox-
ies derived from, for example, passive fluorescence measurements (Letelier et al., 1997;
Schallenberg et al., 2008), variable fluorescence measurements (Browning et al., 2014a),
or through investigation of fluorescence lifetimes (Lin et al., 2016). This is the first study
to use in situ ΦF data to validate Φsat measurements and evaluate existing algorithm per-
formance. To account for differences in the spectral distribution of the MFL LEDs and
in situ light, the ΦF (435) values were multiplied by a spectral correction factor (Section
5.2.1), which allowed for the comparison of in situ ΦF (435) to Φsat. The spectral correc-
tion of in situ ΦF (435) led to minor changes in the data distribution and an appropriate
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scaling of the magnitude (Table 5.3).
The lower magnitude of all Φsat values, compared to in situ ΦF (sc), were likely a result

of qN on the satellite-retrieved signal. Satellite ocean colour measurements are typically
obtained under local noon day conditions (Savtchenko et al., 2004), and fluorescence
measurements are reduced as a result of increased heat dissipation processes employed
by resident phytoplankton, i.e. qN (Behrenfeld et al., 2009; Browning et al., 2014a;
Morrison and Goodwin, 2010). In this study, the in situ measurement of MFL fluorescence
involved sampling seawater from the ship’s underway supply, with an inflow at ∼7 m
below the surface, before being fed through black tubing into a sealed, black bucket
where measurements were recorded (Chapter 2, Section 2.6.1). The match-up Φsat values
were estimated from surface phytoplankton, which experience much higher PAR levels
than those at any depth deeper than a few centimetres from the surface (Gerbi et al.,
2016; Zhai et al., 2018). A study by Zhai et al. (2018) used radiative transfer modelling
to simulate phytoplankton fluorescence over a range of known drivers of variability. The
group performed a sensitivity analysis on iPAR and ΦF as a function of depth for a set
[chl-a]; at [chl-a] = 1 mg m−3, surface iPAR = 1500 µmol m−2 s−1 and at ∼7 m iPAR <
500 µmol m−2 s−1, with ΦF increasing from surface to ∼7 m depth, from approximately
0.005 to 0.024. This difference between ΦF at the surface and ΦF at∼7 m depth effectively
explains the values reported in the current study. The approximate 40% underestimation
in ΦHB relative to ΦF (sc) is likely due to the difference in iPAR levels (Fig. 5.0(2b)).

The three Φsat algorithms under investigation, were manipulated in an effort to, firstly,
use as similar terms as possible for accurate comparison, and secondly, to assess whether
the cumulative inclusion of in situ data (with much lower uncertainties that satellite-
derived products) substantially improved performance. Both Huot et al. (2005) and
Behrenfeld et al. (2009) use constants to mitigate negative FLH pixels (Section 5.2.4.1).
The six in situ ΦF (sc) match-up points did not comprise any negative FLH pixels, and
the first step in normalising the data was to eliminate these constants. Secondly, while
Babin et al. (1996b) and Behrenfeld et al. (2009) use chl-a-weighted a∗φ terms, Huot et al.
(2005) estimates a∗φ through Kd(490). As the Behrenfeld et al. (2009) a∗φ derivation was
based upon that of Babin et al. (1996b), the a∗φ term of Babin et al. (1996b) was selected
to be used for all algorithms. Regarding the chl-a reabsorption factor, Q∗a, Behrenfeld
et al. (2009) omitted it and Huot et al. (2005) constrained it to 1 at Kd(490) < 0.11 m−1

(which was the instance in all in situ match-ups in this study). This dimensionless factor
accounts for the reabsorption of chl-a fluorescence within the cell, and ranges from 0-1
(Collins et al., 1985; Morel and Bricaud, 1981). MODIS measures the upwelling radi-
ance at 676.7 nm (bandwidth 673-683 nm, referred to as the 678 nm waveband), whereas
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the maximum emission of fluorescence is around 683-685 nm. This offset was selected
to avoid an atmospheric oxygen absorption band at 687 nm (Abbott and Letelier, 1999;
Gower et al., 2004; Letelier and Abbott, 1996). However, this offset reduces the sensitivity
and places the measurement closer to the chl-a absorption peak at approximately 676 nm,
which may reduce measured fluorescence by up to 40% due to intracellular re-absorption
(Babin et al., 1996b). Babin et al. (1996b) include a Q∗a(685) term in their Φsat equation,
that is dynamically scaled to [chl-a]; for example if chl-a = 0.1 mg m−3 then Q∗a = 0.818,
and if chl-a = 1 mg m−3 then Q∗a = 0.549 (Section 5.2.4, Eq. 5.8). This variable Q∗a term
was substituted in to the Φsat equation of Huot et al. (2005). All of these changes led to
improvements in the relationships between both ΦHuo and ΦBeh, and the in situ ΦF (sc)
(Fig. 5.0).

To compare the performance of the three algorithms, a sensitivity analysis was carried
out over a range of [chl-a] and light levels (Fig. 5.1). Due to the absence of an iPAR
term in the ΦBeh equation, no change was observed over the different light levels, which
revealed the strong influence of pigment packaging on ΦBeh, with an increase in chl-a
leading to an increase in packaging and an expected decrease in ΦBeh. Pigment packag-
ing is driven by changes in intracellular pigment concentration or cell size, and is a key
contributor to variation in specific absorption coefficients (from 400-700 nm). Changes in
intracellular pigment concentration can be triggered by species-specific photoadaptation
strategies. The algorithms of Babin et al. (1996b) and Huot et al. (2005) both demon-
strated decreasing Φsat with increasing light, which is in accordance with Schallenberg
et al. (2008) who reported high light-derived ΦF to be approximately threefold lower than
low light-derived ΦF . The difference between the performance of the algorithms devel-
oped by Babin et al. (1996b) and Huot et al. (2005) appears to be due to the different
processing of light absorption variables, specifically through the βΦ term described by
Huot et al. (2005) (Section 5.2.4, Eq. 5.10). While both Babin et al. (1996b) and Huot
et al. (2005) account for a∗φ and Q∗a, Huot et al. (2005) expands this to accommodate
sensor viewing geometry, the absorption of light by water and phytoplankton, and the
attenuation coefficient for absorbed radiance. These combined attributes contribute to a
lower Φsat than that derived through the Babin et al. (1996b) equation.

The substitution of satellite-derived chl-a and a∗φ with in situ values greatly improved
the relationships between in situ ΦF (sc) and that of ΦHuo and ΦBab, suggesting a dis-
crepancy between satellite-derived chl-a and the in situ, HPLC-derived chl-a. There is
naturally larger uncertainty in the satellite-derived chl-a and any absorption terms de-
rived from it, so the result is not surprising. However, there may also be systematic bias
for satellite algorithms in high latitude regions such as the Southern Ocean (IOCCG,
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2015). It has been reported, that in the Southern Ocean, the globally derived empir-
ical chl-a algorithms are biased. Mitchell and Holm-Hansen (1991) and Sullivan et al.
(1993) reported an underestimate, by a factor of 2.4, of Southern Ocean chl-a derived
from the CZCS algorithm, and Dierssen and Smith (2000) reported a similar bias with
the SeaWiFS algorithm for [chl-a] > 1 mg m−3. These studies were based on a large
dataset of fluorometrically extracted chl-a. Further investigations have corroborated this
finding through MODIS-derived chl-a (Guinet et al., 2013; Johnson et al., 2013; Pereira
and Garcia, 2018). In contrast, Haëntjens et al. (2017) found no statistically significant
bias between HPLC-derived chl-a and that of MODIS-derived chl-a (apart from an over-
estimation in the SIZ), which was in agreement with Moutier et al. (2019) (in press).
Although the dataset was limited to 6 points, a comparison of the relationship between
MODIS OC3M-derived chl-a and in situ HPLC-derived chl-a data used in this study was
performed (Fig. 5.3), where it was found the MODIS OC3M underestimated [chl-a] by
approximately 40% (bias = 0.63, MARD = 33.4%, RMSD = 0.23). As such, the improved
relationships between Φsat and ΦF (sc) was due to the higher in situ chl-a concentrations
bringing the data closer together.

ΦBab combined with in situ chl-a and a∗φ(415-455) reported the strongest statistical
relationship (bias = 0.58, MARD = 37.6%, RMSD = 0.026, r = 0.90, p = 0.01). However,
with the intention of applying an existing Φsat algorithm to various Southern Ocean data,
as a provisional proof-of-concept, the inclusion of in situ data was not feasible. While both
the original and modified Huot et al. (2005) algorithms did not display a strong linear
relationship to the in situ data (r = 0.11, p = 0.83 and r = 0.47, p = 0.35, respectively),
they did report acceptable algorithm performance metrics; the original Huot et al. (2005)
algorithm reported a bias of 0.38, a MARD of 52.1% and a RMSD of 0.031, and the Huot
et al. (2005) algorithm, with the omitted FLH constant and included Babin et al. (1996b)
a∗φ and Q∗a terms, reported a bias of 0.65, a MARD of 50.8%, and a RMSD of 0.026,
when compared to in situ ΦF (sc) (Table 5.4). While the MARD was relatively high,
at approximately 50% for both versions of the Huot et al. (2005) algorithm, previous
studies with similar MARD values and smaller sample size have been performed (Smith
and Pitcher, 2015). As such, it was decided to put forward a combined Huot et al. (2005)/
Babin et al. (1996b) algorithm to demonstrate possible downstream applications of Φsat.
The Huot et al. (2005) Φsat together with the Babin et al. (1996b) a∗φ and Q∗a terms, was
used to calculate ΦHuo/Bab (ΦHB) for stations co-located to in situ DFe measurements, as
well as for a time series analysis, in the Atlantic Southern Ocean.
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5.5 Preliminary Φsat Application

5.5.1 The relationship between ΦHB and [DFe]

To demonstrate the potential use of optimal Φsat products for first order examination of Fe
stress, the preliminary hybrid ΦHB algorithm (Section 5.4.1) was used to derive ΦHB for
various points in the Southern Ocean that were co-located to in situ DFe measurements
obtained from the Geotraces IDP 2017 database. The relationship between ΦHB and
[DFe] in austral summer was investigated (n = 26), with respect to light levels (iPAR,
µmol m−2 s−1) (Fig. 5.4). While there is no obvious relationship to the light environment,
there is a small, statistically significant negative relationship between ΦHB and [DFe] (r
= -0.39, p < 0.05). The [DFe] ranged from 0.06-0.74 nM, and the ΦHB ranged from
0.001-0.037 (Appendix C.3).
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Figure 5.4: Regression analysis of ΦHB and [DFe] in the austral summer, with respect to
light levels (iPAR, µmol m−2 s−1).

The relationship between Fe availability and chl-a fluorescence is well established
(Behrenfeld and Milligan, 2013), with laboratory and field experiments demonstrating
that phytoplankton living under Fe-deplete conditions exhibit higher chl-a fluorescence
relative to those in Fe-replete environments (Behrenfeld et al., 1996, 2006; Boyd and Abra-
ham, 2001; Greene et al., 1994; Schrader et al., 2011). With this in mind, satellite SICF
has been investigated as an indicator of the photophysiological status of phytoplankton
(Abbott et al., 2001; Huot et al., 2013; Morrison, 2003; Morrison and Goodwin, 2010;
Schallenberg et al., 2008; Westberry et al., 2013), with multiple studies proposing the use
of Φsat as a proxy for phytoplankton nutrient stress (Huot et al., 2005; Letelier et al.,
1997), particularly under Fe-limiting conditions (Behrenfeld et al., 2009; Browning et al.,
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2014a; Westberry et al., 2013). In accordance with prior investigations, this study re-
ported a significant, inverse relationship (r = -0.39, p = 0.05) between in situ [DFe] and
remotely sensed ΦHB, for stations located in the STZ and SAZ of the Atlantic Southern
Ocean (Fig. 5.4). Bearing in mind that with only 26 stations the range of DFe vari-
ability was low, such that an improved relationship would be expected with more data
spanning a greater range of ambient [DFe]. While this study demonstrated a clear inverse
relationship between Φsat and in situ DFe, the influence of light and related fluorescence
quenching cannot be disentangled. Attempts have been made to correct for the influence
of light and related fluorescence quenching on Φsat, in an effort to resolve Fe-related sig-
nal (Behrenfeld et al., 2009; Browning et al., 2014a). The dynamic seasonal and zonal
mixing regimes of the Southern Ocean makes the possibility of a one-size-fits-all fluores-
cence quenching correction unlikely. Future development of regionally targeted quenching
corrections may lead to improved retrieval of the specific Fe-related signal, however, the
extent of the influence of community structure, i.e. pigment composition, concentration,
and arrangement, and the photoacclimation state of resident phytoplankton on Φsat re-
mains uncertain, implying the use of Φsat as a direct proxy for any one driver will remain
a challenge.

5.5.2 Decadal study of ΦHB

A decadal study of ΦHB was undertaken along the GoodHope line for the period of
2008-2018 (latitude 35-65◦S, longitude 5◦W to 5◦E). The θ′ angle incorporated in the
algorithm was an average θ′ angle obtained from all MODIS level 1A ocean colour data
used to obtain ΦHuo in this study (θ′ ≈ 26◦, or 0.45 radians). The ΦHB was averaged
longitudinally and plotted over time using MODIS level 3 (monthly, 4 km) ocean colour
products. The resulting Hovmöller diagram is displayed in Fig. 5.5. A clear seasonal
cycle is apparent, with ΦHB showing increased values over austral winter, and minima in
summer. Peak values of ΦHB are observed south of ∼52◦S, typically in autumn.
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Figure 5.5: A decadal study of ΦHB (2008-2018, latitude 35-65◦S, longitude 5◦W to 5◦E),
compiled using MODIS level 3 (monthly, 4 km) ocean colour products.

The decadal ΦHB dataset was divided into Southern Ocean zones separated by the
dominant fronts, namely the STZ (40-45◦S), SAZ (45-50◦S), PFZ (50-55◦S), and AZ (55-
70◦S) (Fig. 5.6). The overall annual cycle of ΦHB is fairly consistent, notably in the STZ,
where winter data were limited to, due to the seasonal sea ice coverage. Peak ΦHB was
observed in the PFZ (summer 2013) and in the AZ, in the autumn of 2013 and 2014 and
the spring 2016. Variability in summer minima in the SAZ and the PFZ are similar, but
higher the AZ, representative of high intra-seasonal summer variability in ΦHB.

2009
2011

2013
2015

2017
2019

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

sa
t

STZ
SAZ
PFZ
AZ

Figure 5.6: Inter-annual variability in ΦHB across different Southern Ocean zones (STZ,
SAZ, PFZ and AZ), between 2008 and 2018. ΦHB was generated using MODIS level 3
monthly 4km ocean colour products.

The derivation of Φsat from monthly MODIS level 3 data should be seen as a first



5.5. Preliminary Φsat Application 142

order demonstration of application rather than an in-depth study, bearing in mind that
uncertainty is being introduced from satellite-derived [chl-a] (Fig. 5.3) and through the use
of an average θ′ value (Fig. 5.2). However, there is currently no way of obtaining θ′ from
level 3 data, and its importance having been realised, a recommendation would be to focus
on derivation of Φsat from level 2 data, with exact sensor viewing angles obtained from
the associated level 1A products. Furthermore, it is important to note that as MODIS is
not tilted, its maximum scan angle is about 50◦ as opposed to 60◦ (Zibordi et al., 2014),
which implies an uncertainty maximum of approximately 45% (Section 5.3.3).

Monthly ΦHB observations, over the period of 2008-2018, revealed a clear seasonal
cycle of ΦHB (Fig. 5.5), similar to that of Lin et al. (2016). In the Southern Ocean, the
seasonal cycle is an established mode of variability, coupling physical mechanisms of cli-
mate forcing to ecosystem response in production, diversity and carbon export (Monteiro
et al., 2011). Observations of ΦHB in the SAZ displayed higher values over the austral
winter than the summer. The seasonal evolution of phytoplankton biomass in the South-
ern Ocean has typically been ascribed to the seasonal cycle of solar radiation, impacting
vertical stability through net heat flux, influencing vertical light and nutrient distribution
(Arrigo et al., 2008; Boyd, 2002; Sverdrup, 1953). The amount of incident irradiance
reaching the ocean surface is substantially greater in summer than winter, resulting in
higher levels of qN employed by the resident phytoplankton and a lower ΦHB. The effect of
qN on ΦF is well established (Maritorena et al., 2000; Morrison, 2003; Schallenberg et al.,
2008), with research being undertaken to parameterise the influence of qN on Φsat in order
to resolve remaining physiological information (Behrenfeld et al., 2009; Browning et al.,
2014a). For example, in the Atlantic Southern Ocean, DFe levels are considered deplete
during the summer and replete in the winter (Mtshali et al., 2019), however, due to the
intense levels of qN experienced by summer populations, the anticipated low DFe/ high
Φsat response is completely masked. As there is no current way to account for the pho-
toacclimation state of the resident phytoplankton, which affects qN in a species-specific
manner (Graff and Behrenfeld, 2018), a reliable qN-correction remains to be elucidated.

While there is a seasonal bias in satellite ocean colour observations over certain South-
ern Ocean zones, for example, due to limited coverage in the winter months as a result of
increased ice and/or cloud cover, a good separation of inter-zonal variability was achieved
(Fig. 5.6). The STZ, SAZ, and PFZ showed minor inter-annual variability, apart from a
peak in the PFZ in the autumn of 2013. The MLD is known to control phytoplankton
biomass over the summer months in the SAZ, through regulation of light and nutrient
levels (Swart et al., 2015). Due to the impact of qN on Φsat during the summer months,
fine scale events such as submesoscale features (du Plessis et al., 2017) or subseasonal
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storms (Nicholson et al., 2016), deepening the MLD and leading to nutrient entrainment
from depth (Ryan-Keogh et al., 2018), are not resolved. During the autumn months,
peaks of Φsat are observed in the PFZ and AZ, which may in part be due to a reduction
in light levels and alleviation of fluorescence quenching. This may also be reminiscent
of late summer blooms, associated with highly stratified waters and diatom dominance
(Arrigo et al., 2000; Arrigo and McClain, 1994; Arrigo et al., 1998; Goffart et al., 2000).
In general, years characterised by heavy sea-ice coverage are associated with increased
cloudiness, delayed phytoplankton blooms and lower annual production than years with
lighter sea ice (Arrigo and van Dijken, 2004). The community composition, bloom pro-
gression and high ΦHB values obtained for the Atlantic Southern Ocean AZ are likely due
to an interplay between the sea ice, light, and nutrient conditions.

5.6 Conclusion and future recommendations

In situ MFL-derived ΦF (435) (Chapter 4) was used to validate three existing Φsat al-
gorithms, developed by Babin et al. (1996b), Huot et al. (2005), and Behrenfeld et al.
(2009). The Φsat algorithms, and their associated variants, highlighted two important fea-
tures that need to be addressed in future Φsat algorithm development, the first being the
need for a dynamic Q∗a factor (Babin et al., 1996b); if Φsat is to be obtained accurately,
careful corrections are required to account for the absorption of the emitted radiation
both inside the cell and within the water column. The behaviour of light absorption and
attenuation in the water column was accounted for through the inclusion of the βΦ term
by Huot et al. (2005) (and during processing by (Behrenfeld et al., 2009)). An inclusive
Φsat algorithm would ideally comprise both of these factors. Furthermore, an increase in
in situ ΦF (sc) sampling frequency would afford the possibility of more satellite match-
ups, providing much needed insight into the development and improvement of existing
Φsat algorithms. Increased in situ sampling in general would aid in the advancement of
additional standard ocean colour algorithms, particularly with those that lose accuracy
at high latitudes.

The sensitivity analysis revealed that the Φsat of all three algorithms decreased with
increasing chl-a, a likely result of the package effect. While it is apparent from the sen-
sitivity study that light levels are inversely related to Φsat, changes in magnitude of Φsat

detected in the field can not solely be attributed to fluorescence quenching. Specifically, a
reduction in Φsat from qN expressed at any given saturating iPAR differs between phyto-
plankton acclimated to different light environments. Photoacclimation plays an important
role as the physical environment changes (e.g. incident light, mixing depth), as well as
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in response to self-shading that occurs under bloom conditions. While attempts have
been made to constrain qN, in order to extract additional photophysiological signals such
as Fe limitation (Behrenfeld et al., 2009; Browning et al., 2014a), it is not yet possible
to account for species-specific acclimation. The significant inverse relationship observed
between Fe and ΦHB in this study was in accordance with previous studies, however,
before Φsat can be used to identify Fe-limited regions, the effects of incident irradiance on
resident phytoplankton, in terms of photoacclimation and qN, needs to be properly char-
acterised. Future work would include the development of a photoacclimation-dependent
qN-correction for satellite fluorescence data, which will involve narrowing the spatial and
temporal range of Φsat measurements.

While serving as a proof-of-concept study, the decadal analysis of ΦHB (derived from
MODIS monthly level 3 products), over the GoodHope Line in the Atlantic Southern
Ocean, revealed a strong seasonal cycle of ΦHB. The lower ΦHB values reported over
the austral summer are likely related to the solar seasonal cycle, with qN suppressing
the summer signal in response to high incident irradiance. The MIZ showed the greatest
variability in ΦHB out of all the Southern Ocean provinces, potentially due to inter-annual
variation in sea ice extent and associated release of bioavailable Fe. As the cryosphere is
implicit to seasonal dynamics, climate-mediated changes to Fe supply will thus influence
the overall extent of phytoplankton growth, macronutrient drawdown and ultimately the
strength and efficiency of the biological carbon pump. While the routine derivation of Φsat

will allow for consistent monitoring of this globally important region, it is recommended
that future Φsat algorithms in the region stem from well characterised level 2 ocean colour
data, with particular emphasis on accounting for θ′ at the time of measurement.

To conclude, for the first time, in situ ΦF measurements were used to validate three
existing Φsat algorithms. While only a limited number of match-ups were retrieved (n =
6), results indicate a combined Babin et al. (1996b)/ Huot et al. (2005) approach would
be well suited to the Southern Ocean. There is a critical need for overall increased in
situ sampling in the region, to better understand the processes governing phytoplankton
photophysiology and ultimately improve regional Φsat algorithms. The possibility of a
global solution to deriving accurate Φsat measurements seems unlikely as the temporal
and spatial variability in Φsat appears to be sufficiently large to preclude SICF-based in-
vestigations of phytoplankton dynamics over all but the smallest time and space windows.



Chapter 6

Thesis Summary

This study presents the novel calibration of a multi-excitation fluorometer for use in
apparent ΦF determination, the subsequent derivation of in situ ΦF , and finally the
validation of existing Φsat algorithms (Fig. 6.1).

Chapter 3 reported the re-direction of a Multi-Exciter Fluorometer (MFL, JFE Ad-
vantech Co., Ltd.) for use in in situ ΦF derivation. The MFL, comprising 9 excitation
LEDs (375, 400, 420, 435, 470, 505, 525, 570, and 590 nm), was originally designed to
discriminate between phytoplankton species within a population based on their accessory
pigment composition. The MFL was selected as a suitable option to obtain wavelength-
specific ΦF , and initially underwent an extensive radiometric characterisation to assess its
precise functioning. The LEDs at waveband 570 nm, present in triplicate, were very sen-
sitive to noise as they had intrinsically high internal gain settings to account for typically
low absorption by phytoplankton at this wavelength. Two novel calibration approaches
were applied to the the MFL, the first made use of fluorescent dyes of known quantum
yields and spectral traits (ATTO665 and ATTO490LS), the second method made use of
fluorescent plaques (Perspex 4T56) and plastic films to determine the MFL response as a
function of distance. The apparent ΦF (λ) derived through both approaches were in good
agreement, with the dye calibration of ATTO490LS ultimately providing the most reliable
results. Concerns were raised over the influence of scattering of light, both through elastic
and inelastic processes. Contamination of the fluorescence signal by Raman scattering by
water, particularly in the 525, 570, and 590 nm wavebands, will need to be accounted for
in future studies.

Chapter 4 saw the derivation of in situ ΦF from 66 stations in the Atlantic sector
of the Southern Ocean, during the austral winter of 2012 and summer of 2013/ 2014.
Both MFL-derived fluorescence measurements and processed absorption data underwent
rigorous quality control before being utilised, together with the dye calibration factors ob-
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tained in Chapter 3, in ΦF derivation. All raw fluorescence and absorbance measurements
were collected alongside a range of useful parameters that were used to investigate poten-
tial drivers of ΦF variability, including pigment, macronutrient, and light measurements.
The wavelength-specific ΦF (λ) obtained for all stations were initially subjected to cluster
analysis to identify statistically related spectral shapes and possible drivers of variabil-
ity. While the influence of light and taxonomy on ΦF was apparent, due to the limited
dataset, it was not possible to ascertain the contribution of each component to variation
in spectral shape. A similar conclusion was deduced from a statistical examination of
the drivers of two representative ΦF wavebands, namely ΦF (435) and ΦF (570). This is
the first time in situ, wavelength-specific ΦF (λ) has been derived in absolute units; the
prospect of routine deployment of the MFL, combined with increased sampling frequency
and inclusion of additional biogeochemical measurements (for example, [DFe]), will facil-
itate future investigations into a more comprehensive understanding of the drivers of ΦF

variability.
Chapter 5 detailed the validation of existing Φsat algorithms with in situ ΦF mea-

surements. Different versions of the Φsat algorithms were employed, to varying degrees
of success. It was apparent that accounting for chl-a fluorescence reabsorption, the IOPs
in the surrounding water column, and the sensor angle of observation was imperative to
obtaining reliable Φsat measurements. A hybrid algorithm comprising these components
was used to derive Φsat for stations co-located to in situ [DFe] measurements, revealing a
significant negative relationship between the two. While the current focus is on utilising
Φsat measurements as a proxy for Fe-limitation, separating the effects of light conditions
on surface phytoplankton, which is dependent on the species composition and photoaccli-
mation state of the population, remains to be fully elucidated. A proof-of-concept decadal
study on MODIS level 3 data, using the hybrid Φsat algorithm, depicted a clear seasonal
Φsat cycle in the Southern Ocean. To properly explore this observation, the effects of
photoacclimation and fluorescence quenching need to be better characterised.
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Chapter 3 Chapter 4 Chapter 5 
ü  Developed a Multi-Exciter 

Fluorometer (MFL) for use 
in in situ ΦF derivation  

ü  Absolute measurements of 
ΦF in the Atlantic Southern 
Ocean  

ü  Validation of satellite Φsat 
algorithms with absolute in 
situ ΦF measurements   

Ø  Correct for Raman 
scattering and potentially 
drop ΦF(525-590) from 
future analyses  

Ø  Increase the sample size 
and possible culture 
studies to obtain species-
specific ΦF signatures 

Ø  Increase the no. of in situ 
ΦF match-ups and better 
constrain the influence of 
light on photophysiology 

Figure 6.1: Thesis summary showing the novel output of each chapter (light blue) and
examples of future considerations (dark blue).

This thesis reports a new capability for in situ ΦF derivation. The MFL can be
routinely deployed to increase the amount of in situ measurements, which will enhance
the understanding of causal variability. The development of improved satellite products
and more effective ecological, physiological and biogeochemical interpretation of satellite-
observed phytoplankton fluorescence, will prove vastly beneficial to typically undersam-
pled regions such as the climate relevant Southern Ocean.



Appendix A

Chapter 3 & 4

A.1 Station locations and absorption ancillary data

Table A.1: The date, time (GMT), specific co-ordinates, and ancillary absorption data of
all stations used in this study are listed below. All measurements were collected from the
ship’s uncontaminated underway seawater supply (∼7 m below the surface). [chl-a] is in
mg m−3 and a∗ph(675) is in m2 mg chl−1.

Station Date & Time Lat Lon [chl-a] S-value
aph(440)/
aph(675) a∗ph(675)

W013 12/07/11 04:58 -36.362 12.888 0.212 0.008 2.125 0.033
W015 12/07/11 08:56 -36.972 12.499 0.277 0.006 2.121 0.014
W017 12/07/11 12:57 -37.631 12.374 0.289 0.006 2.139 0.030
W036 12/07/13 07:59 -42.526 8.003 0.274 0.003 2.109 0.023
W042 12/07/14 01:50 -44.573 6.277 0.267 0.003 2.303 0.026
W045 12/07/14 08:57 -45.576 5.408 0.310 0.004 2.146 0.023
W050 12/07/14 20:04 -46.739 4.381 0.297 0.008 2.119 0.032
W052 12/07/15 01:59 -47.475 3.721 0.258 0.004 2.075 0.034
W055 12/07/15 08:57 -48.604 2.689 0.258 0.008 1.922 0.033
W056 12/07/15 20:07 -49.739 1.628 0.251 0.008 2.086 0.038
W062 12/07/16 02:00 -50.559 0.845 0.283 0.008 1.965 0.035
W064 12/07/16 08:57 -51.594 0.035 0.243 0.007 1.788 0.031
W074 12/07/17 06:58 -53.851 -0.101 0.168 0.007 1.940 0.035
W095 12/07/20 18:01 -56.198 8.871 0.132 0.006 2.073 0.028
W098 12/07/21 03:00 -55.421 12.417 0.169 0.005 2.085 0.024
W101 12/07/21 12:00 -54.711 15.859 0.186 0.008 2.020 0.032
W103 12/07/21 18:00 -54.211 18.152 0.175 0.011 1.879 0.037
W107 12/07/22 06:00 -52.974 23.027 0.149 0.004 1.899 0.035
W109 12/07/22 18:00 -52.198 24.893 0.154 0.002 1.970 0.029
W118 12/07/24 09:00 -50.655 34.559 0.195 0.006 1.961 0.032
W119 12/07/24 12:00 -50.817 35.695 0.189 0.008 2.064 0.040
W128 12/07/26 19:30 -46.502 41.844 0.201 0.006 2.035 0.038
W139 12/07/30 04:00 -44.919 36.496 0.270 0.004 2.137 0.035
GHS15 13/11/30 02:55 -37.032 12.379 0.712 0.007 2.068 0.034
GHS21 13/11/30 15:00 -38.955 10.883 0.761 0.012 2.164 0.036
GHS25 13/11/30 23:54 -40.721 9.483 0.316 0.007 2.294 0.033
GHS29 13/12/01 08:08 -42.398 8.113 0.510 0.010 1.834 0.032
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GHS37 13/12/01 04:03 -44.192 7.472 0.539 0.008 1.878 0.033
GHS39 13/12/02 08:04 -44.78 6.909 0.690 0.009 1.713 0.029
GHS43 13/12/02 15:55 -45.932 5.774 1.093 0.009 1.543 0.025
GHS45 13/12/02 20:03 -46.519 5.187 1.015 0.015 1.666 0.024
GHS53 13/12/03 12:03 -48.195 3.524 0.484 0.009 1.805 0.033
GHS63 13/12/04 08:04 -50.232 1.313 0.802 0.011 1.645 0.029
GHS67 13/12/04 15:59 -51.204 0.198 0.669 0.010 1.656 0.031
GHS69 13/12/04 19:55 -51.882 0.049 0.449 0.009 1.748 0.036
GHS71 13/12/04 23:56 -52.588 0.191 0.276 0.011 1.835 0.032
GHS73 13/12/05 04:14 -53.38 0.01 0.380 0.012 2.114 0.033
GHS75 13/12/05 08:04 -54.147 -0.002 0.617 0.012 1.759 0.031
GHS77 13/12/05 15:15 -54.776 -0.007 0.407 0.010 1.913 0.028
GHS78 13/12/05 19:57 -55.515 -0.011 0.815 0.018 1.692 0.030
GHS80 13/12/05 23:55 -56.286 0 0.752 0.018 1.667 0.036
GHS84 13/12/06 08:06 -57.846 0.004 0.797 0.017 1.640 0.025
GHS88 13/12/06 15:58 -59.414 -0.011 0.790 0.009 1.637 0.026
GHS90 13/12/06 19:57 -60.117 0.112 0.929 0.008 1.604 0.027
BR14 14/01/05 15:59 -56.381 -32.903 0.405 0.009 2.001 0.038
BR25 14/01/07 16:02 -52.289 -30.057 1.174 0.010 1.415 0.030
BR35 14/01/08 12:09 -55.027 -23.982 0.756 0.011 1.578 0.029
BR49 14/01/09 16:02 -58.932 -15.284 0.487 0.009 1.890 0.034
BR51 14/01/09 19:50 -59.376 -14.308 0.651 0.010 1.848 0.032
BR53 14/01/10 00:01 -59.948 -12.961 0.363 0.009 1.910 0.037
BR55 14/01/10 04:05 -60.515 -11.655 1.186 0.011 1.684 0.029
GHN05 14/02/02 00:02 -65.028 -3.899 0.335 0.009 1.713 0.044
GHN07 14/02/02 04:05 -64.999 -3.432 0.314 0.010 1.826 0.040
GHN09 14/02/02 07:58 -64.184 -2.852 0.352 0.010 1.739 0.038
GHN11 14/02/02 12:00 -63.339 -2.239 0.417 0.010 1.718 0.031
GHN13 14/02/02 16:00 -62.525 -1.009 0.342 0.010 1.937 0.039
GHN21 14/02/03 08:01 -59.311 0 0.294 0.009 1.658 0.037
GHN23 14/02/03 12:00 -58.485 -0.01 0.713 0.007 1.786 0.028
GHN35 14/02/04 12:03 -54.054 -0.014 0.413 0.007 1.823 0.032
GHN37 14/02/04 20:03 -53.377 0 0.326 0.007 2.031 0.036
GHN39 14/02/05 00:04 -52.561 0 0.422 0.010 1.817 0.034
GHN41 14/02/05 04:04 -51.729 0 0.849 0.011 1.422 0.025
GHN58 14/02/07 16:04 -46.45 4.641 0.330 0.010 2.176 0.037
GHN60 14/02/07 20:04 -45.644 5.353 0.266 0.005 2.258 0.040
GHN77 14/02/10 22:01 -38.516 11.248 0.172 0.008 3.213 0.040
GHN79 14/02/11 02:03 -37.498 12.021 0.255 0.007 2.576 0.042
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Appendix B

Chapter 4

B.1 Drivers of ΦF variability: Table 1

Table B.1: Values of the potential drivers of ΦF (λ) variability are listed below (part
1/2). All measurements were collected from the ship’s uncontaminated underway
seawater supply (∼7 m below the surface). Temp is in ◦C, NO3 and Si(OH)4 in µM,
chl-a in mg m−3, and PAR in mol m−2 s−1.

Station Temp NO3 Si(OH)4 chl-a Dd + Dt
Dt /

Dd + Dt
Σ

PAR20
Σ

PAR6
Σ

PAR12
Σ

PAR24
W013 17.05 1.80 3.00 0.21 0.03 0.00 0.000 0.000 0.004 0.504
W015 16.52 1.40 2.70 0.28 0.04 0.00 0.007 0.002 0.002 0.503
W017 15.74 1.40 2.30 0.29 0.05 0.09 0.050 0.216 0.216 0.400
W036 10.68 9.70 2.00 0.27 0.05 0.08 0.000 0.000 0.000 0.540
W042 7.75 16.90 3.00 0.27 0.05 0.07 0.000 0.000 0.217 0.576
W045 8.33 16.20 2.90 0.31 0.05 0.07 0.000 0.000 0.000 0.576
W050 6.33 17.90 3.30 0.30 0.05 0.07 0.000 0.044 0.120 0.120
W052 5.60 19.40 3.70 0.26 0.05 0.00 0.000 0.000 0.047 0.120
W055 4.60 18.40 6.70 0.26 0.05 0.06 0.000 0.000 0.000 0.120
W056 3.96 18.60 6.90 0.25 0.05 0.06 0.000 0.057 0.133 0.133
W062 2.84 18.90 15.60 0.28 0.06 0.07 0.000 0.000 0.061 0.133
W064 2.74 19.20 20.30 0.24 0.05 0.00 0.000 0.000 0.000 0.133
W074 0.99 25.00 43.40 0.17 0.05 0.09 0.000 0.000 0.000 0.112
W095 -1.13 24.9 6 9.60 0.13 0.06 0.00 0.000 0.028 0.032 0.032
W098 -0.69 22.69 62.25 0.17 0.05 0.06 0.000 0.000 0.013 0.032
W101 -0.09 20.09 55.60 0.19 0.06 0.09 0.006 0.019 0.019 0.046
W103 0.23 24.47 64.00 0.18 0.06 0.11 0.000 0.053 0.072 0.072
W107 0.62 28.83 61.50 0.15 0.06 0.08 0.000 0.000 0.000 0.072
W109 0.72 28.87 59.12 0.15 0.07 0.10 0.000 0.035 0.063 0.063
W118 2.91 21.68 22.40 0.20 0.06 0.16 0.007 0.006 0.006 0.158
W119 2.69 20.14 18.60 0.19 0.06 0.13 0.017 0.079 0.079 0.172
W128 5.00 20.31 5.84 0.20 0.07 0.09 0.000 0.025 0.132 0.134
W139 7.15 15.89 4.76 0.27 0.05 0.12 0.000 0.000 0.000 0.362
GHS15 21.55 0.53 0.09 0.71 0.05 0.07 0.000 0.000 0.155 0.978
GHS21 20.45 0.66 0.33 0.76 0.13 0.15 0.034 0.444 0.623 0.771
GHS25 16.06 4.03 0.83 0.32 0.17 0.09 0.000 0.002 0.344 0.723
GHS29 11.73 7.94 0.89 0.51 0.14 0.13 0.023 0.059 0.059 0.671
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GHS37 8.49 19.76 1.13 0.54 0.12 0.06 0.001 0.000 0.060 0.723
GHS39 7.80 20.31 1.40 0.69 0.16 0.12 0.019 0.085 0.085 0.574
GHS43 6.78 19.58 1.46 1.09 0.22 0.11 0.061 0.563 0.801 0.855
GHS45 6.71 13.08 1.26 1.01 0.16 0.03 0.000 0.331 0.870 0.953
GHS53 5.64 22.80 1.11 0.48 0.16 0.14 0.047 0.377 0.419 0.940
GHS63 3.55 25.86 0.95 0.80 0.11 0.09 0.011 0.029 0.029 0.617
GHS67 3.53 24.53 1.25 0.67 0.11 0.12 0.032 0.384 0.470 0.554
GHS69 2.66 29.72 2.26 0.45 0.13 0.08 0.001 0.203 0.521 0.547
GHS71 2.23 29.21 1.46 0.28 0.12 0.00 0.000 0.015 0.347 0.547
GHS73 1.30 19.39 1.22 0.38 0.13 0.08 0.002 0.001 0.067 0.548
GHS75 0.81 29.48 1.51 0.62 0.14 0.14 0.016 0.079 0.079 0.597
GHS77 0.91 29.85 1.37 0.41 0.17 0.13 0.017 0.322 0.468 0.586
GHS78 0.60 31.10 1.43 0.81 0.15 0.06 0.001 0.115 0.468 0.542
GHS80 0.53 32.23 1.66 0.75 0.17 0.06 0.000 0.015 0.198 0.542
GHS84 0.07 31.39 1.52 0.80 0.14 0.14 0.028 0.076 0.077 0.538
GHS88 -0.15 24.97 1.44 0.79 0.20 0.13 0.020 0.256 0.419 0.476
GHS90 -0.31 13.48 1.56 0.93 0.16 0.06 0.002 0.122 0.405 0.476
BR14 2.33 34.21 28.05 0.41 0.22 0.16 0.056 0.361 0.411 0.519
BR25 4.24 51.40 33.86 1.17 0.12 0.11 0.020 0.395 0.470 0.764
BR35 2.53 16.13 25.38 0.76 0.12 0.11 0.019 0.198 0.199 1.915
BR49 1.28 34.42 73.57 0.49 0.13 0.11 0.019 0.225 0.326 0.381
BR51 1.04 58.92 92.14 0.65 0.19 0.09 0.005 0.147 0.371 0.395
BR53 1.11 48.54 69.40 0.36 0.30 0.08 0.000 0.027 0.217 0.396
BR55 1.63 28.55 57.40 1.19 0.23 0.07 0.001 0.000 0.069 0.396
GHN05 2.34 19.94 0.89 0.33 0.15 0.06 0.000 0.009 0.066 0.174
GHN07 2.53 20.73 0.95 0.31 0.17 0.05 0.001 0.001 0.028 0.175
GHN09 2.34 20.25 1.07 0.35 0.16 0.09 0.010 0.036 0.038 0.199
GHN11 2.03 21.13 1.17 0.42 0.20 0.13 0.031 0.131 0.138 0.204
GHN13 2.25 14.00 0.98 0.34 0.17 0.09 0.006 0.182 0.258 0.288
GHN21 2.41 20.84 1.16 0.29 0.17 0.10 0.014 0.044 0.045 0.312
GHN23 2.45 21.64 1.16 0.71 0.19 0.11 0.027 0.171 0.184 0.350
GHN35 2.98 18.16 1.53 0.41 0.17 0.22 0.027 0.178 0.187 0.333
GHN37 2.97 29.12 1.56 0.33 0.20 0.08 0.000 0.138 0.482 0.495
GHN39 3.51 31.33 1.26 0.42 0.16 0.07 0.000 0.009 0.307 0.495
GHN41 4.10 25.71 1.35 0.85 0.12 0.05 0.000 0.000 0.042 0.495
GHN58 8.30 14.96 1.62 0.33 0.13 0.11 0.013 0.267 0.361 0.421
GHN60 8.37 16.12 0.92 0.27 0.11 0.00 0.000 0.081 0.375 0.386
GHN77 20.74 1.03 0.31 0.17 0.04 0.00 0.000 0.012 0.361 0.603
GHN79 20.36 1.17 0.31 0.25 0.05 0.00 0.000 0.000 0.059 0.603
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B.3 K-means clustering
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Figure B.1: K-means clustering of ΦF (λ) spectra. All ΦF (λ) were subjected to hard
clustering into 2, 3, or 4 groups, with the y-scale illustrating the magnitude of ΦF (λ), and
the x-scale depicting the 9 MFL LED excitation wavebands for which the wavelength-
specific ΦF (λ) was derived (λ (nm)).
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C.2 Statistical metrics of Φsat algorithm
performance

Table C.2: Φsat values derived from Babin et al. (1996b), Huot et al. (2005), and Behren-
feld et al. (2009) are listed below; All Φsat "original" values are from the original models,
with data treated as stated in their respective papers; "is chl" refers to addition of in situ
chl-a, "a∗φ(full)" refers to the addition of in situ a∗φ over the full visible spectrum (400-700
nm); "a∗φ(nar.)" refers to the addition of in situ a∗φ over the portion of the spectrum cover-
ing the 435 nm region (415-455 nm). Φsat "Babin" values are the output of the Huot et al.
(2005) and Behrenfeld et al. (2009) equations substituted with the Babin et al. (1996b)
a∗φ and Q∗a terms. The addition of the qN correction employed by Behrenfeld et al. (2009)
generates "qN cor." values, and the difference between the inclusion of the correction and
original values are listed under "SD".

Babin

Station
Φsat

original
Φsat
is chl

Φsat
a∗φ(full)

Φsat
a∗φ(nar.)

GHN09 0.0382 0.0392 0.0274 0.0134
GHN35 0.0492 0.0337 0.0283 0.0128
GHN41 0.0605 0.0328 0.0313 0.0169
GHS39 0.0358 0.0230 0.0185 0.0090
GHS43 0.0320 0.0287 0.0249 0.0125
GHS45 0.0440 0.0413 0.0329 0.0174

Huot

Station
Φsat

original
Φsat
Babin

Φsat
is chl

Φsat
a∗φ(full)

Φsat
a∗φ(nar.)

GHN09 0.0141 0.0122 0.0126 0.0088 0.0043
GHN35 0.0101 0.0174 0.012 0.01 0.0046
GHN41 0.0075 0.022 0.0119 0.0114 0.0062
GHS39 0.006 0.0123 0.0079 0.0063 0.0031
GHS43 0.0073 0.0116 0.0105 0.0091 0.0046
GHS45 0.0099 0.0157 0.0148 0.0118 0.0062

Beh.

Station
Φsat

original
Φsat

qN cor.
Φsat
SD

Φsat
Babin

Φsat
is chl

Φsat
a∗φ(full)

Φsat
a∗φ(nar.)

GHN09 0.0139 0.0139 0.00001 0.0057 0.0058 0.0041 0.002
GHN35 0.0423 0.0423 0.00001 0.0101 0.0062 0.0052 0.0023
GHN41 0.0397 0.0397 0.00001 0.0121 0.0055 0.0052 0.0028
GHS39 0.0209 0.0209 0.00003 0.0073 0.0041 0.0033 0.0016
GHS43 0.0062 0.0062 0.00003 0.0055 0.0047 0.0041 0.0021
GHS45 0.0085 0.0085 0.00002 0.0075 0.0069 0.0055 0.0029
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