# Recalibrating the breakup history of SW Gondwana: The first U-Pb chronostratigraphy for the Uitenhage Group, South Africa



## **Robert Anthony Muir**

A thesis submitted to the Faculty of Science, University of Cape Town, in fulfilment of the requirements for the degree of Doctor of Philosophy

December 2018

Supervisor: Assoc. Prof. Emese Bordy



The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.

# Declaration

I declare that this thesis is my own, unaided work, except where specified in the text. It is being submitted for the Degree of Doctor of Philosophy in the University of Cape Town and has not been previously submitted to any other University or academic institution.

(Signature of candidate)

27<sup>th</sup> day of December 2018



I confirm that I have been granted permission by the University of Cape Town's Doctoral Degrees Board to include the following publication(s) in my thesis, and where co-authorships are involved, my co-authors have agreed that I may include the publication(s):

#### **Publication 1:**

Muir, R., Bordy, E.M., Reddering, J.S.V.; Viljoen, J.H.A. 2017. Lithostratigraphy of the Enon
Formation (Uitenhage Group), South Africa. South African Journal of Geology 120.2: 273–280 •
doi:10.2113/gssajg.120.2.273

#### **Publication 2:**

Muir, R., Bordy, E.M., Reddering, J.S.V.; Viljoen, J.H.A. 2017. Lithostratigraphy of the Kirkwood Formation (Uitenhage Group), including the Bethelsdorp, Colchester and Swartkops members, South Africa. South African Journal of Geology 120.2: 281–293 • doi:10.2113/gssajg.120.2.281

The papers form sections 2.2.1 and 2.2.2 of this thesis respectively and are found after the appendices.

## Abstract

Syn-rift deposits often provide the only means to determine the processes for initiation and evolution of rift basins and passive margins. The structurally preserved erosional remnants of several rift basins that formed during the Mesozoic breakup of Gondwana are located within the southern Cape region of South Africa. These onshore basins contain the Suurberg and Uitenhage Groups, which are predominantly continental, taphrogenic, fossiliferous strata interbedded with volcaniclastics. Their significance in the Gondwanan breakup events is poorly understood due to a lack of precise and accurate radioisotopic ages. The development of SW Gondwana into the modern passive margins of southern Africa, South America and Antarctica, as well as the evolution of life recorded in the regional strata are difficult to evaluate without a high resolution chronostratigraphic framework. By integrating field observations with U-Pb geochronology of over 4000 detrital and primary volcanic zircons from pyroclastic, mixed-origin volcaniclastic and sedimentary rocks by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS), this thesis presents the first radioisotopic ages for the Uitenhage Group and provides a new chronostratigraphic framework for the onshore Jurassic - Cretaceous in the southern Cape. To further improve precision and accuracy, a selection of crystals from four pyroclastic deposits in key stratigraphic positions were selected for single-zircon Chemical Abrasion - Thermal Ionisation Mass Spectrometry (CA-TIMS) analysis to minimize the effects of Pb-loss and constrain depositional age uncertainties to < 1%. These new age constraints show that the Suurberg Group was deposited rapidly during the emplacement of the Karoo and Ferrar Large Igneous Province in the Early Jurassic (Pliensbachian) and likely predates the main phase of rifting in the southern Cape, whereas the Uitenhage Group was deposited over a prolonged (> 40 Ma) period from the Early Jurassic into the Early Cretaceous and records two phases of rifting: an initial Jurassic episode that roughly coincides with the separation of East and West Gondwna and is contemporaneous with widespread volcanism in SW Gondwana; and a subsequent period of renewed rifting during the Early Cretaceous opening of the South Atlantic. Trace element geochemical and zircon morphological assessments indicate that the volcanic source that supplied ash into the growing rift basins in the southern Cape during Gondwana breakup was situated in modern-day Patagonia and the Antarctic Peninsula, which were proximal to the southern Cape in the Jurassic and Early Cretaceous. The valuable geological framework presented in this dissertation illustrates the complexity of long-lived, rift-basin sedimentation and highlights the importance of high-resolution chronostratigraphy when investigating the tectonic, palaeontological and palaeogeographical records from the final moments of a unified Gondwana.

# Acknowledgements

I would never have completed this thesis if it were not for the wealth of support I am privileged to have around me. Firstly, I thank my supervisor, Emese Bordy, who was with me from beginning to end through times both joyous and stressful. Your guidance in scientific matters, mentorship and encouragement throughout my postgraduate studies at UCT are deeply appreciated. Thanks for always believing in me, listening to me, and for your wholehearted commitment to this endeavor.

Enduring the most taxing aspects of this research journey would have been impossible without the support of my dear family and friends – Thank you all for your encouragement, kindness and patience. Special thanks go to my father, Andy, and brother, Matt, my aunt, Irene, and friend, Mieng, who were unwavering in thier belief that I would complete this task.

This research benefitted from the numerous discussions I had with academics at UCT and elsewhere. I will not mention everyone by name because I pestered so many, but I do want to specifically thank Goonie Marsh for being a wealth of knowledge on the Suurberg Group and the Karoo Large Igneous Province; Alastair Sloan for insightful discussions concerning tectonics; Robyn Pickering, for helping improve aspects of the thesis; and Laura Bracciali, Clarisa Vorster, Dirk Frei and Roland Mundil for chats about the U-Pb radioisotopic system.

I also thank Jurie Viljoen, who helped me immensely in this project. Indeed, your work mapping the Uitenhage Group and its volcaniclastic component is the foundation upon which this research is based. You did a superb job and a great service to South African geoscience during your long career at the Council. Enjoy your well-deserved retirement!

A word of thanks goes to all the field assistants with whom I had the pleasure of working: Yambi, Mieng, Devon, Chris, John, Isabel, Bakang, Travis and Chelsea. I had tons of fun working with each of you in some beautiful places. For lab assistance, I thank Lorena, Genna, Brent, Shaakirah and Mareli.

I was lucky to encounter those in the field that would become invaluable guides. To this end I thank: Yoann Hoibian, a geologist working at Cape Bentonite in Heidelberg; Stephen Drew from Vantell brickworks in Plettenberg Bay; Francoir Whittle and Kieth Barbier, who guided me to exposures of the Suurberg Group; and Jono Berry from the Gondwana Nature Reserve near Mossel Bay. I also appreciate the remote guidance I received on several occasions from John Almond, who has great experience conducting fieldwork in the Western Cape.

Finally, I appreciate the generosity of the various funders that chose to support me over the last few years. This research was conducted through grants awarded by the National Research Foundation (NRF) and the DST-NRF Centre of Excellence in Palaeosciences (CoE-Pal) and I personally relied on bursaries from these same sources too, for which I am grateful. The support of the NRF, Palaeontological Scientific Trust (PAST), and the UCT in covering travel expenses to the USA and Australia are also appreciated.

To my mother, Pam

# Contents

| Chapter 1: Introduction                                                            |
|------------------------------------------------------------------------------------|
| 1.1 Motivation and aims1                                                           |
| 1.2 Layout of the thesis                                                           |
| Chapter 2: Geological background7                                                  |
| 2.1 Tectonic setting7                                                              |
| 2.2 Lithostratigraphy of the Uitenhage Group12                                     |
| 2.2.1 Enon Formation (see published, peer-reviewed paper 1 after appendices)13     |
| 2.2.2 Kirkwood Formation (see published, peer-reviewed paper 2 after appendices)13 |
| 2.2.3 Sundays River Formation13                                                    |
| 2.2.4 Brenton Formation                                                            |
| 2.2.5 Buffelskloof Formation                                                       |
| 2.2.6 Hartenbos Formation                                                          |
| 2.2.7 Robberg Formation                                                            |
| 2.2.8 Infanta Formation                                                            |
| 2.3 Summary of historic chronostratigraphic information                            |
| Chapter 3: Methods                                                                 |
| 3.1 U-Pb system in zircons                                                         |
| 3.1.1 Analytical techniques                                                        |
| 3.2 Methods employed in this study40                                               |
| 3.2.1 Field observations                                                           |
| 3.2.2 U-Pb zircon geochronology41                                                  |

| Chapter 4: Geochronology of the Suurberg Group                     |
|--------------------------------------------------------------------|
| 4.1 Introduction                                                   |
| 4.2 Results                                                        |
| 4.2.1 Field observations                                           |
| 4.2.2 U-Pb Geochronology                                           |
| 4.3 Discussion                                                     |
| Chapter 5: Chronostratigraphic framework for the Uitenhage Group73 |
| 5.1 Introduction73                                                 |
| 5.2 Basin-by-basin chronostratigraphy76                            |
| 5.2.1 Robertson Basin                                              |
| 5.2.2 Heidelberg Basin                                             |
| 5.2.3 Mossel Bay Basin and Vlees Bay104                            |
| 5.2.4 Oudtshoorn Basin                                             |
| 5.2.5 Knysna Basin                                                 |
| 5.2.6 Plettenberg Bay Basin                                        |
| 5.2.7 Gamtoos Basin                                                |
| 5.2.8 Algoa Basin                                                  |
| 5.2.9 Other basins                                                 |
| 5.3 Discussion: Chronostratigraphy of the Uitenhage Group          |
| 5.3.1 Western basins                                               |
| 5.3.2 Eastern basins                                               |
| 5.3.3 The South African stratigraphic record                       |
| 5.4 Discussion: Jurassic tectonic setting in SW Gondwana           |

| Chapter 6: Volcanic provenance considerations         |     |
|-------------------------------------------------------|-----|
| 6.1 Introduction                                      |     |
| 6.2 Analytical procedures                             | 239 |
| 6.2.1 Trace element geochemistry                      | 239 |
| 6.2.2 Zircon morphological assessments                | 239 |
| 6.3 Results and discussion                            | 241 |
| 6.3.1 Trace element geochemistry                      | 241 |
| 6.3.2 Zircon morphology                               |     |
| 6.3.3 Volcanic provenance                             |     |
| Chapter 7: Conclusions                                | 257 |
| 7.1 Mesozoic geological history of the southern Cape: | 259 |
| Chapter 8: References                                 |     |
| Appendices                                            |     |

# **Chapter 1: Introduction**

## 1.1 Motivation and aims

The breakup of Gondwana into the present-day continental configuration of the Southern Hemisphere and India began shortly after the extensive Pliensbachian - Toarcian outpouring of continental flood basalts of the Karoo and Ferrar large igneous provinces (LIP) (Storey, 1995; Encarnación et al., 1996; Svensen et al., 2012; Burgess et al., 2015). Initially, a seaward transfer of magmatism from continental sites occurred in the Early Jurassic (Seton et al., 2012; Gaina et al., 2013) as spreading centres developed between East (Antarctica, India, Australia) and West Gondwana (Africa and South America). However, it was not until the Early Cretaceous that West Gondwana itself separated with the emplacement of the Parana-Etendeka LIP (Renne et al., 1996; de Assis Janasi at al., 2011) and the onset of ocean spreading between South America and Africa (Koopman et al., 2014). Conversely, the present-day region of South Africa, specifically its southern Cape region, which incorporates the southernmost extremity of Africa and the continental shelf (Fig. 1.1), did not experience the same pattern of voluminous magmatic outpouring proceeded by ocean floor spreading (Torsvik and Cocks, 2013; Will and Frimmel, 2018). Instead, there was little to no igneous activity in the southern Cape, where several rift basins developed sometime between the breakup of E and W Gondwana and the eventual separation of Africa and South America (Dingle et al., 1983; McMillan et al., 1997). Compared to adjacent spreading centres to the northeast and northwest from the southern Cape, this lack of incipient magmatic activity and subsequent datable igneous rocks limits the assessment of the a timing of rift initiation; the movement and rotation of the Falkland Islands (Aide, 1952; Ben-Avraham et al., 1993; Marshall, 1994); and the role of crustal anisotropy in rifting (Fouché et al., 1992; Paton & Underhill, 2004; Paton, 2006; Will and Frimmel, 2018).

The rifting of Gondwana coincided with important evolutionary changes in fauna and flora. Of special interest are the evolutionary trends in: a) angiosperms (flowering plants) in a 'fiery' Cretaceous (Bond

and Scott, 2010; Brown et al., 2012; Lamont and He, 2012; Muir et al., 2015; He et al., 2016), and b) sauropodomorph dinosaurs, which suffer a global decrease in diversity across the Jurassic – Cretaceous boundary globally (Mannion et al., 2011), but potentially with exceptions (McPhee et al., 2016). The syn-rift deposits of the southern Cape, the Uitenhage Group comprising the Enon, Kirkwood and Sundays River formations, offer an opportunity to further our understanding in these fields, however a lack of robust age constraints for this continental unit severely hinders the establishment of any time-sensitive geological trends. Characterizing and providing the first ever radiometric ages for these strata allow detailed considerations of the evolution of landscape and life in SW Gondwana during the Jurassic – Cretaceous.

The Uitenhage Group is confined to the erosional remnants of numerous rift basins onshore of the southern Cape and has subsurface distributions in basins offshore (Dingle et al., 1983; McMillan et al., 1997; Muir et al., 2017a, b). It comprises primarily continental conglomerates and red beds in its lower part (i.e., Enon and Kirkwood formations), as well as marine mud- and sandstones in its upper part (i.e., Sundays River Formation). The marine deposits of the Uitenhage Group have garnered much attention for their chronostratigraphic and palaeoenvironmental significance in aid of hydrocarbon exploration efforts in the southern Cape, while their continental counterparts have to date yielded few datable rocks and are therefore poorly constrained in age by comparison. Vertebrate and plant macrofossils from the Kirkwood Formation can only be used to ascribe a broadly Latest Jurassic (145 Ma) - Early Cretaceous (134 Ma) depositional age (McLachlan and McMillan, 1976; McLachlan and McMillan 1979; Gomez et al., 2002; McMillan, 2003; Shone, 2006), and although the youngest age is more accepted for the majority of the Kirkwood Formation, this has been inferred from biostratigraphic constrains of the overlying Sundays River Formation based on ammonites (Kitchin, 1908; Spath, 1930; McLachlan and McMillan, 1976, McLachlan and McMillan, 1979; Cooper, 1983) and foraminifera (McMillan, 2003). These invertebrate biostratigraphic results provide only relative age control and may not be accurate due to uncertainty about the stratigraphic nature of the contact that separates the two formations. If a stratigraphic gap exists, then the validity of the age for the Kirkwood Formation is brought into question (Gomez et al., 2002; Shone, 2006). Additionally, the foraminiferally dated uppermost Tithonian (~145

Numerous boreholes drilled and seismic surveys conducted across the offshore depocentres in the southern Cape, collectively known as the Outeniqua Basin (McMillan et al., 1997), have provided sparse insights into the age continental deposits of the Uitenhage Group with micropalaeontological biostratigraphic models being entirely restricted to marine units. The oldest of such deposits is dated Tithonian, although workers acknowledge that in some cases a significant thickness of continental deposits that are barren of microfossils, or remain entirely undrilled, lie below (McMillan et al., 1997). Most authors agree that these basal deposits are Upper Jurassic with oldest estimates being either Kimmeridgian (Dingle, 1983; Shone, 2006; Green et al., 2016) or Oxfordian (McMillan et al., 1997; Broad et al., 2012). Unfortunately, these estimates of the maximum age of the Uitenhage Group are influenced by dubious and unpublished K-Ar age of  $162 \pm 7$  Ma for basalts from the underlying Suurberg Group that was quoted in McLachlan and McMillan (1976). However, the age of the Suurberg Group has not been established reliably and further, may be separated from the overlying Uitenhage Group by a hiatus of unknown duration (Hill, 1972; Marsh et al., 1979; Dingle, 1983; McMillan, 2010). Without a robust age and depositional model, the role of the Suurberg Group in the Mesozoic breakup of SW Gondwana and use as a lower limit of Uitenhage Group deposition are cautioned.

Despite the poorly age-diagnostic continental fossils in the Uitenhage Group and the uncertainty of its relationship with the underlying Suurberg Group, there is great potential for accurately and directly dating this unit using the volcaniclastic deposits hosted in primarily the Kirkwood Formation (Muir et al., 2017b). Several bentonite deposits are described from the Heidelberg and Plettenberg Bay basins, which were, and in the former case still are, sites of bentonite mining. There are also brief mentions of 'tuffaceous material' from the Worcester, Oudtshoorn, Robertson and Mossel Bay basins (Dingle et al., 1983; Rigassi and Dixon, 1972) that were seldom mapped apart from efforts of Malan and Viljoen (1990) and Viljoen (1992). Volcaniclastic deposits are also reported from the Suurberg Group in the northern Algoa Basin both below and interbedded with the basalts of the Mimosa Formation (Hill, 1972), and thus offer an opportunity to verify the depositional age of these enigmatic rocks using the U-Pb system in zircons. A robust chronology of the Uitenhage Group will help establish the physical evolution of rifting in the Jurassic – Cretaceous; improve tectonostratigraphic models relied upon for

Ma) Bethelsdorp Member, a < 300 m thick, marine intercalation in the basal Kirkwood Formation that was deposited during a transgressive event in the southern Cape (Dingle, 1973; McMillan, 2010), cannot be extrapolated throughout the > 2000 m thickness of the Kirkwood Formation (McLachlan and McMillan, 1979; McMillan et al., 1997; Muir et al., 2017b). Moreover, Bethelsdorp Member, similar to the Sundays River Formation, is only present in the Algoa Basin and therefore provides no reliable chronostratigraphic constraint to the other continental deposits in the isolated rift basins elsewhere in the southern Cape (Fig. 2.1).



Fig. 1.1. Gondwana 200 MA ago as it was still largely united within Pangea. Red toothed lines are subduction zones, red solid line represent approximate position of Plume Generation Zone (PGZ) on the edge of the Large Low-Shear-Velocity Province (LLSVP) and red dotted circle delineates approximate position of plume responsible for the Karoo-Ferrar LIP. White dashed lines indicate regions of future rifting to form North Atlantic, Indian and South Atlantic Oceans ~195 Ma, ~175 Ma and ~135 Ma ago, respectively. Black line delineates the Gastre Fault Zone (GFZ) and Aghulas Falkland Transform (AFT). Green rectangle highlights the study area in modern day southern Cape of South Africa. Island arcs and minor terranes have been omitted (modified after Torsvick and Cocks, 2013 with additional information from White and McKenzie, 1989).

hydrocarbon exploration; and finally, place non-age-diagnostic fossils hosted in the syn-rift deposits of the southern Cape in the radiometrically-dated chronostratigraphic context needed to determine evolutionary trends in Mesozoic ecosystems of SW Gondwana. The overall aims of this study are as follows:

- Locate poorly described and new volcaniclastic deposits in the Uitenhage and Suurberg Groups and assess whether they are primary (pyroclastic) or of mixed volcanogenic and detrital origin (reworked/resedimented).
- 2. Date volcaniclastic deposits of the Uitenhage and Suurberg groups using the U-Pb system in zircons by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) and Chemical Abrasion Thermal Ionisation Mass Spectrometry (CA-TIMS) to determine an age of deposition (if primary) or maximum deposition (if reworked). These methods will be used to test the hypothesis that the entire Uitenhage Group is Upper Jurassic Lower Cretaceous with ages that algin with existing constraints from the Algoa Basin.
- 3. Date detrital zircons through the U-Pb system by LA-ICPMS from sedimentary samples of the fossiliferous deposits, and some non-fossiliferous but stratigraphically important sites, to improve their geochronological context and compile a combined U-Pb-based and bio-chronostratigraphic framework for the Uitenhage Group.
- Determine the volcanic provenance of the volcaniclastic deposits in the Uitenhage and Suurberg groups.

## 1.2 Layout of the thesis

The multidisciplinary nature of this study, involving isotope geochemical techniques and geological fieldwork requires a unique layout in order to improve the flow of the thesis. Chapter 2 includes the necessary geological background for this study. Firstly, the regional geological context to the Mesozoic of SW Gondwana is provided, with a special emphasis on the Uitenhage Group of the southern Cape in South Africa. Inevitably such an overview of the relevant stratigraphy will require both a review of literature published, but also incorporates the observations from the several fieldtrips to each rift basin. Special care will be taken to differentiate previously established geological characteristics and those established through undertaking this doctoral research project. The background of the Uitenhage Group lithostratigraphy in this chapter follows the layout recommended by the South African Committee for Stratigraphy (SACS) and includes two published, peer-reviewed journal articles that cover the lithostratigraphy of the Enon and Kirkwood formations, which are the most widespread deposits of the onshore Uitenhage Group and the principal units investigated in this thesis. Following this, in *Chapter* 3, the methods used in the subsequent chapters are described in detail. This includes a review of U-Pb geochronology in general as well as the specific U-Pb analytical techniques applied. However, the methods used in Chapter 6 are not included here, because it comprises a stand-alone assessment that does not apply geochronological techniques. Chapter 4 concerns the age of the Suurberg Group, which underlies the Uitenhage Group and has traditionally provided a maximum age constraint for the overlying strata. Chapter 5 follows this with a basin-by-basin evaluation of the age of the Uitenhage Group, a discussion on the chronostratigraphy of the Jurassic - Cretaceous southern Cape, and implications for the tectonic setting during the breakup of Gondwana. Chapter 6 is a stand-alone investigation of the volcanic provenance of the volcaniclastic deposits in the Uitenhage and Suurberg Groups by applying both geochemical and zircon morphological assessments. Finally, Chapter 7 summarises key findings of this study in the form of a concise geological history of the southern Cape within SW Gondwana during the Jurassic and Early Cretaceous. <u>Chapters 8</u> and <u>9</u> include a reference list and appendices, respectively.

# **Chapter 2: Geological background**

## 2.1 Tectonic setting

East and West Gondwana, which comprise the Gondwanan superterrane that formed a part of Pangea, separated in the Early Jurassic due to their position above the African Large Low Shear-Wave Velocity Province (LLSVP) and associated Plume Generation Zone (PGZ) (Fig. 1.1; Burke et al., 2008; Gaina et al., 2013; Torsvik and Cocks, 2013). The extensive Lower Jurassic magmatic rocks of the Karoo, Ferrar, and Chon Aike large igneous provinces were emplaced across much of the supercontinent, heralding the subsequent breakup Gondwana (Pankhurst et al., 1998; Torsvik and Cocks, 2013; Burgess et al., 2015). However, it was only in the Early Cretaceous that separation began between Africa and South America (e.g., Renne et al., 1996; de Assis Janasi at al., 2011; Koopman et al., 2014; Will and Frimmel, 2018). Sometime during, or between, these two significant events during continental breakup, a series of normal faults developed in the southern Cape, which provided accommodation space for the Uitenhage Group to accumulate in numerous rift basins (Fig. 2.1), commonly referred to as the Outeniqua Basin (used here to refer to the offshore Bredasdorp, Pletmos, Gamtoos and Algoa Basin depocentres their southern extension, the Southern Outeniqua Basin) and its onshore basin inliers (McLachlan and McMillan, 1976; McMillan et al., 1997; Richardson et al., 2017). During the entire Jurassic and into the Early Cretaceous the southern Cape region was fixed at around 44° S based on three Global Apparent Polar Wonder Path models retrieved from www.paeleolatitude.org (using data from Besse and Courtillot, 2002; Kent and Irving, 2010; Torsvik et al., 2012).

Regional E-W orientation of gravity and positive magnetic anomalies, foliations, fold axes and trust planes (Dingle et al., 1983; Hälbich, 1983; De Beer, 1989; Booth and Shone, 1999; Pits et al., 1992; Hälbich, 1992); E-W stratigraphic continuity in the Cape Supergroup (Tankard et al., 1982; Veevers et al., 1994); and congruous crustal depth profiles (Parsiegla et al., 2009; Lindique et al., 2011) all evidence deep crustal anisotropy in the southern part of South Africa inherited from Palaeozoic compression and earlier. In turn, Mesozoic extensional normal faults of the southern Cape were

influenced by this crustal anisotropy and propagated along pre-existing weaknesses in the Cape Fold Belt (Fig. 2.1; Fig. 2.2A), specifically, exploiting Permian – Triassic thrust planes (e.g., Lock et al., 1975; Dingle et al., 1983; Fouché et al., 1992; McMillan et al., 1997; Paton and Underhill, 2004; Paton, 2006). The resulting fault-bounded rift basins of the Outeniqua Basin and onshore inliers are therefore roughly parallel and follow the structural grain of the Cape Fold Belt, E-W in the central southern Cape and NW-SE to N-S in the Eastern Cape (Lock et al., 1975; Paton and Underhill, 2004; Paton, 2006) and are, with the exceptions of the Algoa and Bredasdorp basins, bounded by two exceptionally long series of normal faults (Paton, 2006), namely the Worcester and the Cango-Baviaanskloof-Gamtoos Fault Arrays (Fig. 2.1).

With improved constraints on the timing of regionally significant Gondwanan rifting events, such as the emplacement of Chon Aike, Karoo and Ferrar large igneous provinces (LIPs), the Early Jurassic onset of spreading between E and W Gondwana and Early Cretaceous opening of the South Atlantic, the formation of rift basins in the southern Cape can be placed into broader tectonic contexts. Importantly, only once the timing of movement along the Aghulas Falkland Transform was established, which coincides with the opening of the South Atlantic (Ben-Avraham et al., 1993; Marshall, 1994; Ben-Avraham et al., 1997) in the Early Cretaceous, did it become clear that rifting in the southern Cape began, at least in part, as an earlier event. McMillan et al. (1997) was the first to be more specific than simply ascribing their opening to *the breakup of Gondwana* and speculated that the rifting occurred during the opening of the Riiser Larson and Weddell Seas. Although others also noted that rifting initiated before the onset of the Aghulas Falkland Transform, they did not offer any specific event that accounted for the extension witnessed in the southern Cape in the Jurassic (Jungslager, 1996; Parsiegla et al., 2009; Broad et al., 2012).



Fig. 2.1. Mesozoic rift basins in the southern Cape of South Africa and major onshore units of the Uitenhage Group. The offshore extension of the Uitenhage Group is only shown schematically in light orange. The Worcester-Pletmos basin line links the Worcester, Robertson, Swellendam, Heidelberg, Mossel Bay, Knysna and Plettenberg Bay basins, whereas the Gamtoos-Oudtshoorn basin line links the Oudtshoorn, Vlakteplaas, Georgida, Baviaanskloof and Gamtoos basins. The exceptionally long, parallel fault arrays (Cango-Baviaans-Gamtoos and Worcester faults) exploit pre-existing weaknesses in the Cape Fold Belt (Fouche et al., 1992; Paton, 2006). The Jurassic Suurberg Group is shown in the Algoa Basin, but the contentious Suurberg Fault, supposedly bounding the Algoa Basin to the north, is not included (Toerien, 1991). The Robberg, Hartenbos and Brenton formations, which are also constituents of the Uitenhage Group, are not shown due to their small aerial extent although the areas where they outcrop are indicated by stars. Abbreviations: AFT = Aghulas-Falkland Transform; E = Enon; B = Bredasdorp; BT = Bethelsdorp; C = Calitzdorp; CO = Colchester; G = George; H = Heidelberg; HN = Hankey; HR = Herbertsdale; I = Cape Infanta; K = Kirkwood; M = Mossel Bay; O = Oudtshoorn; P = Paterson; PE = Port Elizabeth; R = Robertson; U = Uitenhage; W=Worcester.

Low-temperature thermochronological studies conducted along transects in the Western and Eastern Cape provinces reveal periods of intensive denudation since at least the Early Cretaceous (Tinker, et al., 2008a, b; Guillocheau et al., 2012; Wildman et al., 2015; Green et al., 2016). From these data, periods of cooling-uplift have been identified, and point to Mesozoic movement along normal fault arrays during the breakup of Gondwana followed by several periods of regional uplift during the 'drift' stages of breakup in the Late Cretaceous and Cenozoic. Post-rifting uplift lead to the deep erosion of rift basins and in some cases entirely removed the sedimentary packages that were accommodated onshore (Wildman et al., 2015; Green et al., 2016).

Fig. 2.2 (following page). Generalized stratigraphic and structural context of the Mesozoic strata in the southern Cape of South Africa. (A) Schematic N-S cross-section through the southern Cape, perpendicular to Cape Fold Belt structures demonstrating the structural inversion of compressional features such as thrust planes during Mesozoic extension in the modern day on- and off-shore regions of the southern Cape. Reproduced from Paton, 2006. (B) Highly schematic graphic summary of the lithostratigraphy of the southern part of South Africa including the pre-cape groups and intrusive Cape Granite Suite; the overlying Cape and Karoo Supergroups including the volcanics and pervasive network of dykes and sills of the Karoo LIP (shown in red and purple); the Uitenhage and Suurberg groups, which outcrop in the southern Cape only, are the focus of this study. Folds, thrust, and normal faults are included schematically only. Modified from Linol and de Wit (2016). (C) Schematic representation of the main units of the Uitenhage Group and their stratigraphic positions in Mesozoic rift basins (not to scale). Not all these units or the volcaniclastic deposits (vvvv) are present in all basins. Suurberg Group is excluded and detailed in chapter 4 (Fig. 4.1).



## 2.2 Lithostratigraphy of the Uitenhage Group

The lithostratigraphy of the southern parts of South Africa are referenced widely in this section and is summaries schematically (Fig. 2.2B). The lithostratigraphy of the Enon and Kirkwood formations (Fig. 2.2.C) is of particular importance to this study and will be detailed in the following two sections (2.2.1 and 2.2.2). These two units garner priority in importance in this study for several reasons. Firstly, the Enon and Kirkwood formations have a widespread occurrence all rift basins and therefore demand much more thorough descriptions than other, locally restricted units (e.g., the Robberg, Brenton and Hartenbos formations). Additionally, all previous descriptions of these units are focused on borehole and outcrop observations from the Algoa Basin, which introduces a spatial bias in formal descriptions (Shone, 1976; Dingle et al., 1983; McMillan et al., 1997; Shone, 2006). The new lithostratigraphic descriptions of these two units attempt to rectify this by introducing descriptions from a wide range of rift basins. Secondly, the Kirkwood Formation contains abundant zircon-bearing volcaniclastic deposits that can be dated by U-Pb methods and provide the potential means to determine Uitenhage Group deposition. It also contains all the important continental palaeontological discoveries in the Uitenhage Group and therefore has elevated palaeoenvironmental significance over the fossil-poor Enon Formation. Finally, the basal position that the Enon and Kirkwood formations occupy in rift basin stratigraphy means that depositional ages acquired from these units will be the closest approximation of rift-initiation in the southern Cape, which is important for understanding the tectonic evolution SW Gondwana. It is with these factors in mind that in this section emphasis has been placed on describing the Enon and Kirkwood formations above other lithostratigraphic units in the Uitenhage Group. Further, considerable input has been paced on characterizing these two units as a part of this PhD research and their descriptions therefore contain a combination of previously established characteristics and those described for the first time. The format of these lithostratigraphic descriptions below follows the SACS (South African Committee of Stratigraphy) guidelines ascribed by Johnson (1987). This chapter begins with two published manuscripts that comprise the lithostratigraphy of the Enon and Kirkwood formations respectively, which are followed by similar lithostratigraphic reviews of more localized formations of the Uitenhage Group that are unpublished but adopt an identical layout.

### **2.2.1 Enon Formation (see published, peer-reviewed paper 1 after appendices)**

2.2.2 Kirkwood Formation (see published, peer-reviewed paper 2 after appendices)

### 2.2.3 Sundays River Formation

#### Stratigraphic position and age

The Sundays River Formation occupies the uppermost part of the Uitenhage Group in the Algoa Basin, overlying and possibly also interfingering with parts of the Kirkwood Formation. The relationship between these units remains unclear and the possibility that an unconformity separates them cannot be disregarded (Winter, 1973; McLachlan and McMillan, 1976; Shone, 1978 for contrasting theories). Despite the stratigraphic relations of this unit being uncertain, its depositional age is well-constrained to Lowermost Valanginian – Hauterivian based on foraminiferal (McMillan, 2003), and ammonite assemblages (Kitchin, 1908; Spath, 1930; McMillan and McLachlan, 1976, 1979; Cooper, 1983).

#### **Geological description**

**Basic unifying features:** The Sundays River Formation is distinguished from the underlying and partial lateral equivalent, the Kirkwood Formation, by consisting of predominantly green-grey laminated mudstones compared to the red-mottled palaeosol-rich mudstones of the latter. The Sundays River Formation also contains abundant marine invertebrate fossils that are absent from the Kirkwood Formation. The unconformably overlying Cenozoic Algoa Group is generally sandstone and conglomerate-dominated as opposed to the primarily argillaceous Sundays River Formation and can easily be distinguished based on this grain size difference.

**Thickness:** The thickness of the Sundays River Formation is highly variable, due to the shape of the Algoa Basin and erosion. Boreholes intersect up to 1860 m of the unit near the depositional center of the Algoa Basin, constituting the maximum recorded thickness. Alternatively, a stratigraphic thickness of just 108 m is reported in a borehole near Paterson (Shone, 1976).

**Lithology:** Sandstone (10 - 30%): Grey to olive grey very fine- to medium-grained sandstone beds interbedded with mudstones that dominate the unit (Fig. 2.3A). Typically these beds are thinly interlaminated with light grey siltstone lenses with abundant soft sediment deformation features. Rip-up mudclasts, shells (or fragments thereof), charcoal and scour marks occur at the base of some of the sandstone beds, which usually also exhibit ripple cross-laminations, flaser bedding, or cross-bedding (both planar and trough cross-beds). From a distance the sandstone units, which are positive features in outcrops due to preferential weathering of interbedded mudstones, appear laterally continuous for hundreds of meters although on closer inspection actually grade laterally into the mudstones or pinch out entirely only to reappear several cm laterally at a similar stratigraphic level (Shone, 1976).

*Mudstones* (70 - 90%): Grey, olive green, dark green and mottled purple/green mudstones dominate the unit and give an overall grey weathering appearance. Mudstones are typically thinly interlaminated with light grey very fine sand lenses with soft sediment deformation, localized slumping structures, ripple-cross lamination (Fig. 2.3B) and fine-grained or carbonaceous material (?charcoal). Massive mudstone units are much rarer, and are generally thinner than 1m before being truncated by a sandstone bed or lens.

*Calcareous layers* (0 - 5%): Shell fragments and whole calcareous invertebrate body fossils are found both scattered throughout and as discrete calcareous interbeds in the sand- and mudstones that dominate the Sundays River Formation.

**Palaeontology:** The Sundays River Formation hosts diverse shallow-marine and estuarine macrofossils including Early Cretaceous ammonites, belemnites, bivalves, gastropods, echinoids, crustaceans, polychaetes, corals and fragmentary reptile remains (Rogers and Swartz, 1901; Kitchin, 1908; Haughton,

1928; Spath, 1930; Cooper, 1970; McLachlan and McMillan, 1976; Dingle et al., 1983). Numerous studies of the microfossil assemblages in the Sundays River Formation were conducted during hydrocarbon explorations and record spores, pollen, dinoflagellates, ostracods and foraminifera (Dingle, 1969; McLachlan and McMillan, 1976 and 1979; McMillan, 2003).

**Genesis:** The Sundays River Formation was deposited during a marine transgression in SW Gondwana evidenced by the abundant shallow marine, estuarine and tidal-flat fossil invertebrate taxa. A bimodal palaeocurrent direction measured from sandstone cross-beds also supports a tidally influenced shallow marine depositional environment (Shone, 1976). Supplementary information comes from the study of microfossil assemblages of the Formation that describe a wide range of both shallow and deep water taxa, pointing to a broader depositional environment that extends to the continental shelf and even slope settings (McMillan, 2003).

Fig. 2.3. (Following page). Representative photographs of the locally distributed formations in the Uitenhage Group. (A) Laterally continuous green-grey mudstones overlain by pale green sandstones typical of the Sundays River Formation in the Algoa Basin. Cenozoic terrace gravel deposits of the Kudus Kloof Formation overlie unconformably, delineated by the red dashed line. Photo courtesy of the late K. Reddering. (B) Thinly alternating mudstone (green-grey) and very fine sandstone (pale grey) that exhibit ripple-cross lamination from a core sample of the Sundays River Formation. (C) Clayey sandstones of the Brenton Formation, near Knysna unconformably (dashed line) overlain by poorly consolidated sediment and soil. (D) Sandstone and mudstone units of the Hartenbos Formation in the Mossel Bay Basin (blue line separates the two facies). White dashed line delineates scree from *in-situ* outcrop. (E) Conglomerates with subordinate sandstone lenses of the Buffelskloof Formation in the Mossel Bay Basin. Green dashed lines delineate a clastic dyke (*CD*), which are a common secondary dewatering feature. (F) Tilted quartzites of the Table Mountain Group unconformably overlain by the Robberg Formation breccias and conglomerates (below blue dotted line) and sandstones and mudstones (above). Red dashed line highlights the angular unconformity. Blue dotted line is ~80 m above sea level.



#### **Boundaries**

Lower and lateral: Numerous boreholes drilled in the Algoa Basin pass through the green-grey Sundays River Formation before reaching the red beds of the Kirkwood Formation (e.g., CO1/67 but see McMillan et al., 1997 for others). This contact was described as unconformable by Winter (1973), although both the duration of the hiatus and the lateral extent had been brought into question (McLachlan and McMillan, 1976). Evidence has since been presented that the two units are conformable and interfinger, at least in part (Shone, 1978). The lower contact of the Sundays River Formation remains unresolved despite it being of considerable stratigraphic importance because most authors infer an Early Cretaceous age for the Kirkwood Formation in the Algoa Basin based on a lateral continuity between the units (Shone, 2006; McPhee et al., 2016; Muir et al., 2015). To this end, the lateral contact is not readily seen in the field, nor previously documented. Outcrops at Dunbrody in the Algoa Basin, and in some areas near Uitenhage offer the best expression of the gradational nature of the contact, with marine sandstone beds intersecting red mudstones that contain palaeosols. These outcrops likely represent an isolated snapshot of the transitional zone (where facies that are characteristic of both the Kirkwood and Sundays River formations are present) that exists between the two units, the full extent of which is not exposed anywhere.

**Upper:** The upper contact of the Sundays River Formation is always unconformable. In the southern parts of the Algoa Basin it is overlain by the Cenozoic Algoa Group (both the Alexandra and Salnova formations), while Cenozoic terrace-gravel deposits of the Kudus Kloof Formation overly it in the basin interior.

#### Subdivision

Four members of the Sundays River Formation are formally accepted by SACS (Joubert and Johnson, 1998) although they are seldom referred to in the literature, probably because their entirely subsurface descriptions. Venter (1972) identified four units in the Sundays River Formation, which he assigned Member status, from boreholes. From stratigraphically bottom to top these are the: Amsterdamhoek (337 m), Soetgenoeg (358 m), Addo (182 m) and Vetmaak (105 m) members. Each of the units is defined by the proportion and grain sizes of sandstone beds and shale beds with distinctive down-hole geophysical

properties selected as physical boundaries (Winter, 1979). A separate subdivision that is unrecognized by SACS includes 'Upper', 'Middle' and 'Lower' members that are defined by their proportion of sandstone beds (Rigassi and Dixon, 1972). None of these members of particularly useful for the present study except for the following reasons: 1) there is consensus is that if there is lateral boundary shared with the Kirkwood Formation, it would exist in the bottommost portions of the Sundays River Formation (Rigassi and Dixon, 1972; McLachlan and McMillan, 1976; Dingle et al., 1983); 2) Two thin 'tuff beds' ranging from 1 - 10 cm thick are mentioned in a brief description of the Sundays River Formation (Rigassi and Dixon, 1972), although on review (during this study) of numerous cores and outcrop that span the interval no volcaniclastic beds can be confirmed.

#### **Regional aspects**

**Geographic distribution:** The Sundays River Formation outcrops exclusively in the onshore sector of the Algoa Basin in both the Sundays River and Uitenhage Troughs, but also exists in the subsurface in each of the offshore basins along the southern Cape (Bredasdorp, Pletmos, Gamtoos and Algoa basins). However, it is seldom referred to by its lithostratigraphic name by authors working on the Mesozoic successions offshore, who tend to prefer a sequence stratigraphic classification (Dingle et al., 1983; McMillan et al., 1997; Broad et al., 2012). Its onshore occurrences are best seen on the banks of the Sundays River, in road and railway cuttings, and at brick quarries near Coega, ~20 km north of Port Elizabeth.

**Criteria for lateral extension:** The green-grey mudstone and sandstone units that host marine fossils can be extended between isolated outcrops in the Algoa Basin only.

**Correlation:** In addition to correlations between onshore Sundays River Formation outcrops in the Algoa Basin with numerous boreholes that intersect the unit offshore, there is a probable correlation between it and several onshore Uitenhage Group formations. Firstly, the Robberg Formation that outcrops at Robberg (Plettenberg Bay) contains poorly preserved marine fossils in sandstones that have been correlated to the Sundays River Formation (Reddering, 2000; 2003), although several authors consider the fossil assemblage

as Late Jurassic in age, and therefore preclude this correlation (Rigassi and Dixon, 1972; Cooper, 1974). Further, the speculative temporal correlation with the Sundays River Formation may not apply to other isolated Robbberg Formation outcrops (Mossel Bay and Cape Infanta) which are fossil-poor. Secondly, the Brenton Formation, which only outcrops in Knysna, has been correlated with the Sundays River Formation based on foraminiferal evidence (McLachlan et al., 1976), although likewise, there are alternate age interpretations based on the recovery of a single Late Jurassic ammonite specimen and ostracod assemblages (Dingle and Klinger, 1971). Finally, it is speculated that the continental Buffelskloof Formation also correlates with the Sundays River Formation (Viljoen, personal communication 2016, 27 June) although this argument, which is based entirely on lithostratigraphic grounds, only points out that the conglomeratic unit, like the Sunday River Formation, occupies an uppermost position of respective rift basin stratigraphy.

### **2.2.4 Brenton Formation**

#### Stratigraphic position and age

The Brenton Formation is a fully marine unit in the Uitenhage Group that is a suspected chronostratigraphic correlative of the Sundays River Formation based on the Late Valanginian foraminiferal assemblages, especially *Reinholdella valendisnsis* and *Astacolus gibber* (McLachlan et al., 1976). Alternatively, the unit is Upper Jurassic, a view based on ostracod assemblages and a single ammonite specimen (*Hybonoticeras aff. hildebrandti*). that was recovered from these rocks (Dingle and Klinger, 1972). Nevertheless, the Brenton Formation is often regarded as Lower Cretaceous, with authors arguing that the Jurassic ostracods and the single fragmentary ammonite fossil described in Dingle and Klinger (1972) are either miss-identified or reworked (McLachlan et al., 1976). Since neither alternative can be regarded as unequivocal, its age remains inconclusive. Similarly, there is uncertainty regarding the stratigraphic relation of the marine beds that outcrop on the southern banks of the Knysna Estuary and the continental Enon Formation that outcrops ~3.5 km away on its northern margin (Fig. 2.1).

#### **Geological description**

**Basic unifying features:** Greenish grey and beige sand- and mudstones with predominantly marine fossils and rare pebble conglomerate interbeds.

**Thickness:** 6 - 20 m of the Brenton Formation is exposed along the southern margin of the Knysna Estuary at low tide (Dingle and Klinger, 1972; Rigassi and Dixon, 1972).

**Lithology:** *Mudstone (40 – 100%):* Green-grey massive claystones, siltstones and sandy siltstones with marine fossils confined to calcareous concretions, disseminated throughout or forming defined layers of shell-fragments. The mudstones are generally exposed on flat-lying surfaces but are also found as grey-weathering vertical cliffs up to 5 m thick. The true extent of the mudstone is unknown due to poor vertical and lateral exposure, and lack of boreholes intersecting the unit in subsurface. One borehole was drilled at Brenton in 2012 by the Council for Geoscience with the aim of determining the exact thickness and stratigraphy of the Brenton Formation but unfortunately the core and its unpublished description have since been lost.

Sandstone (0 - 50%): Grey-green and beige sandstone beds (Fig. 2.3C) that are massive or exhibit crossbedding, soft sediment deformation structures and rare well-rounded quartzite pebbles and charcoal fragments. The sandstone beds often form at least 3 m high vertical cliffs along the estuary banks, in contrast to the above-mentioned mudstone-dominated units that are preferentially eroded and form flat-lying surfaces. Sandstone units are generally clay-rich and have discrete layers of shell-fragments and subordinate conglomerates.

*Conglomerates* (0 - 5%): Grey oligomictic clast-supported conglomerates with a sandy matrix are present in the northwestern extremity of the Brenton Formation outcrops. The conglomerates are confined to a channel-shaped body that cuts into sandstone strata.

**Palaeontology:** The Brenton Formation has drawn much attention because of its marine fossils that have important chronostratigraphic implications. A diversity of bivalves, a single ammonite specimen, echinoid

spines, reptile teeth and a diversity of microfossils (foraminifera, ostracoda and coccoliths) are reported from the unit (Kitchin, 1908; Schwarz, 1915; Dingle and Klinger, 1972; Rigassi and Dixon, 1972; Beer, 1972; McLachlan et al., 1976). The majority of these specimens were found in either the lowermost greenish-grey mudstone unit, or as fallen blocks eroded from poorly exposed overlying conglomeratic layers (McLachlan et al., 1976).

**Genesis:** As attested by its marine faunal assemblage, the Brenton Formation was deposited during a marine transgressive event either in the Late Jurassic or Early Cretaceous. Without high resolution sedimentological studies, the depositional setting of the Brenton Formation remains poorly understood. However, its shallow marine faunal assemblage suggests that the deposition occurred during a marine transgressive event either in the Late Jurassic or Early Cretaceous. Common vertical and lateral grain-size variations indicate fluctuating energy levels in a nearshore setting.

#### **Boundaries**

Lower and lateral: The limited lateral and vertical extent of the Brenton Formation outcrops makes understanding its position in Uitenhage Group stratigraphy of the Knysna Basin difficult. Specifically, the Knysna Estuary covers the contact between the mudstone-dominated marine strata in Brenton, and its continental, conglomeratic counterparts in the northern parts of the Knysna Basin, ~3.5 km to the north (Fig. 2.1). Most authors prefer a gradational lateral contact between the two facies based on the rare conglomerate beds in the Brenton Formation (at the western extent of the exposures) that resemble those of the Enon Formation (Rogers 1909; Dingle and Klinger, 1972; Rigassi and Dixon, 1972; McLachlan et al., 1976). The unfortunate loss of the only stratigraphic borehole drilled at Brenton has hampered investigations of the Uitenhage Group stratigraphy in the Knysna Basin and because the outcrop extent is severely limited, all boundaries for the unit can only be inferred.

**Upper:** Unconsolidated sediments of the post-Cretaceous overlie the Brenton Formation near Featherbed, and these indicate that an unconformity exists at the top of the Brenton Formation, at least where visible.

#### Subdivision

There are no official subdivisions of the Brenton Formation, although McLachlan et al. (1976) described 7 discrete lithostratigraphic units based mainly on grainsize and colour variation along the southern banks of the Knysna Estuary, although due to landscape changes and the loss of outcrop some of the exposures visited in that study no longer exist.

#### **Regional aspects**

**Geographic distribution:** The Brenton Formation is a highly localized unit, only outcropping in the southern banks of the Knysna Estuary at Brenton, Western Cape. Its subsurface extent is unknown, due to the lack of boreholes near Knysna (and missing reference material and core from the 2012 drilling efforts) and may be distributed offshore and beneath the modern estuarine sediments at Knysna.

**Criteria for lateral extension:** The green-grey mudstone, sandstone and minor conglomerate with marine fossils.

**Correlation:** Correlation of the Brenton Formation with other Uitenhage Group deposits remains contentious. The stratigraphy in the Knysna Basin itself is unclear because the unit has limited outcrops and poor constraints on its subsurface extent. Further, the age of the Brenton Formation is yet unresolved, making correlations based on marine fossils with either the Colchester Member of the Kirkwood Formation (Dingle and Kinger, 1972) or the Sundays River Formation possible (McLachlan et al., 1976). A correlation with the latter is supported by a similarity of foraminiferal assemblages between the Brenton Formation formation and the upper portions of the PB A/1 offshore well, which is assigned to the Sundays River Formation (McLachlan et al., 1976).

### 2.2.5 Buffelskloof Formation

#### Stratigraphic position and age

The Buffelskloof Formation is a locally restricted conglomerate-dominated unit in the Jurassic – Cretaceous Uitenhage Group, and is separated from the underlying the Enon and Kirkwood formations with an angular unconformity (Theron et al., 1991; Malan and Viljoen, 1990; Malan et al., 1994). Consequently, the unit occupies an upper portion of the Uitenhage Group and is probably Lower Cretaceous. It laterally interfingers with the Hartenbos Formation in the Mossel Bay Basin (Malan and Viljoen, 1990) and is sporadically overlain by post-Cretaceous silcretes of the Grahamstown Formation, various clastic rocks of the Eocene to Holocene Algoa Group and the Miocene to Holocene Bredasdorp Group in the Mossel Bay Basin (Malan and Viljoen, 1990).

#### **Geological description**

**Basic unifying features:** A conglomerate-dominated massive or crudely bedded unit that unconformably overlies the Enon and Kirwkwood formations.

**Thickness:** The thickness of the Buffelskloof Formation is highly variable, probably due to post-Cretaceous erosion that partially (or entirely) removed the unit. In the northern Oudtshoorn Basin, in the Buffelskloof farming district, it reaches a maximum thickness of ~450 m, but becomes thinner towards south and southwest in the Mossel Bay and Heidelberg basins, where its maximum thickness is ~150 and ~100 m, respectively (Du Plessis, 1947; Malan and Viljoen, 1990; Fig. 2.1).

**Lithology:** *Conglomerate (80 – 100%):* Mostly sandstone and quartzitic clasts derived from the Table Mountain Group (Fig. 2.3D) with the addition of phyllites and quartzites from the Cango Group in the Oudtshoorn Basin (Dinis, 2018). Rare intra-basinal sandstone, mudstone and volcaniclastic clasts are present in the Mossel Bay Basin, and, on lithological grounds, appear to be derived from the underlying Kirkwood Formation. Clast sizes range from granules to very large boulders, and sorting is highly variable ranging from very poor, especially in parts of the northern Oudtshoorn Basin where matrix supported

breccias are exposed, to well-sorted clast-supported conglomerates in other parts of the Oudtshoorn Basin, the Mossel Bay and Heidelberg basins (Fig. 2.1).

Sandstone (0 - 10%): Very fine- to very coarse-grained grey, white, red and beige sandstone lenses and beds are commonly interbedded with conglomerates. The larger lenses and beds often contain cross-bedding, pebble stringers and fine upwards.

*Mudstones* (0 - 10%): Sandy grey, white, red small (< 1 m) mudstone lenses are found in conglomerates, or at upper portions of fining-upward sand lenses and beds.

**Palaeontology:** Rare silicified logs, wood fragments and charcoal were reported from the conglomerate and sandstone beds.

#### Genesis

This conglomerate-dominated unit was likely deposited on high energy alluvial fans and braided rivers in proximal regions of the subsiding rift basins. This is indicated by the coarse clast sizes, and a general decrease in clast size along palaeocurrents, which point away from basin marginal faults (Malan and Viljoen, 1990; Holzforster, 2007). The angular unconformity with underlying Enon and Kirkwood formations suggests that the Buffelskloof Formation was deposited subsequent or during movement along the Worcester and Cango faults (Fig. 2.1).

#### **Boundaries**

**Lower:** Unconformable and with an angular relation to the underlying Enon and Kirkwood formations, however this contact is far more easily noticeable where it overlies the latter, a strongly contrasting lithological unit. Where it overlies the Enon Formation in the Mossel Bay and Heidelberg basins and perhaps in the subsurface of the Oudtshoorn Basin, the unconformable relationship at the boundary of the two conglomeratic units is usually only apparent as contrasting clast compositions.

**Upper:** Conformably overlain by the Hartenbos Formation in the Mossel Bay Basin, with which it also shares a partial lateral contact, and unconformably overlain by unconsolidated gravels, soil in many places in the Oudtshoorn and Heidelberg basins. In the latter, the Buffelskloof Formation is sometimes overlain unconformably by silcretes of the Grahamstown Formation (Viljoen, 1992; Viljoen, personal communication 2016, 27 June).

**Lateral:** Shares a lateral, gradational, interfingering boundary with the Hartenbos Formation in the Mossel Bay Basin. Although this contact is gradational and poorly exposed in the vicinity of Hartenbos (Fig. 2.1), it exists where the conglomerates give way to sandstone and mudstone dominated lithologies (Viljoen, 1992).

#### Subdivision

There are no established subdivisions of the Buffelskloof Formation although matrix-supported breccia and clast-supported conglomerate facies are present in the Oudtshoorn Basin.

#### **Regional aspects**

**Geographic distribution:** Outcrops in the Oudtshoorn, Mossel Bay and Heidelberg basins (Fig. 2.1) and may have a subsurface distribution in offshore basins. Although the Buffelskloof Formation is at present only mapped in three of the onshore basins, it is possible that it was deposited in other onshore rift basins in the southern Cape too, but it is either unrecognized (e.g., lumped with the lithologically similar Enon Formation) or entirely removed through by erosion. Offshore boreholes do not intersect the Buffelskloof Formation per se, although there remains uncertainty whether or not conglomerates that overlie mudstones and sandstones of the Kirkwood Formation, and are possibly equivalent to the Buffelskloof Formation, although without exposures or quality seismic profiles that display an angular unconformity below the interval of interest and adequate lateral resolution, these conglomerates could equally be coarser-grained facies of the Hartenbos or Kirkwood formations or a tongue of the laterally interfingering Enon Formation.

**Criteria for lateral extension:** Conglomerate-dominated unit with minor sandstone and mudstone interbeds overlying the Enon and Kirkwood Formation unconformably.

**Correlation:** Tentative correlation with the Sundays River Formation of the Algoa Basin has been proposed (Viljoen, personal communication 2016, 27 June), although this argument is based solely on both units occupying an upper portion of the Uitenhage Group in their respective basins. Similarly, the reliance of an angular relationship with the underlying, lithologically similar Enon Formation leaves a possibility for correlation between it and uppermost Enon Formation in some basins where no angular unconformity is identified within the thick conglomeratic units of the Uitenhage Group (e.g., the Knysna and Gamtoos basins).

### 2.2.6 Hartenbos Formation

#### Stratigraphic position and age

The Hartenbos Formation conformably overlies and interfingers with the Buffelskloof Formation in the Mossel Bay Basin (Theron et al., 1991; Malan and Viljoen, 1990; Viljoen, personal communication 2016, 27 June). Although the lower contact of the Hartenbos Formation is not exposed in outcrops, the Buffelskloof Formation, which is its partial lateral correlative, overlies the Kirkwood Formation with an angular unconformity. The Hartenbos Formation is therefore considered younger than the Kirkwood Formation and is probably Lower Cretaceous, although there is no direct chronostratigraphic evidence to constrain a depositional age for this unit. The Pliocene De Hoopvlei Formation (of the Miocene to Holocene Bredasdorp Group) para-unconformably overlie the Hartenbos Formation in some areas (Malan and Viljoen, 1990).

#### **Geological description**

**Basic unifying features:** Often poorly consolidated fine- to medium-grained sandstones and clay-rich sandstones interbedded with sandy mudstones, subordinate conglomerates and sporadic carbonaceous layers (Viljoen, personal communication 2016, 27 June).
**Thickness:** Due to limited outcrop, the thickness of the Hartenbos Formation cannot accurately be estimated although at least 100 m was recorded in stratigraphic borehole HA1/88 (Malan and Viljoen, 1990; Viljoen, personal communication 2016, 27 June).

**Lithology:** Sandstone (70 - 90%): Moderately consolidated, upward fining, fine- to coarse-grained yellowish grey to greyish orange sandstones (Fig. 2.3E) that are either massive or contain horizontal laminations and rip-up mudclasts.

*Mudstones* (~20%): Poorly consolidated and friable clayey and sandy siltstones that are medium to light grey with pale red mottles or yellowish brown to medium brown with greenish grey mottles. Mudstones are mostly massive, or contain poorly developed horizontal laminations. Weathers to both a light grey or reddish brown colour and dark grey-brown where carbonaceous layers are present.

*Conglomerate* (<2%): Very coarse pebble- to granule-sized quartzite clasts that occur as pebble stringers in sandstone units, often at the base of upward fining successions that are xxx m thick.

Palaeontology: Rare silicified wood fragments and charcoalified plant material in association with laminated carbonaceous mudstones.

**Genesis:** Likely represents a fluvial or estuarine deposition although poor lateral and vertical extent of the rare outcrops and an absence of diagnostic fossils make a reliable depositional environment reconstruction for the Hartenbos Formation difficult.

#### **Boundaries:**

**Lower and lateral:** Conformable and gradational with the Buffelskloof Formation, with which it also shares a lateral boundary in places. This contact is defined by the abundance of conglomerates, where the Hartenbos Formation is sandstone and mudstone-dominated, while the Buffelskloof Formation comprises predominantly conglomerates. Presumably, the Hartenbos Formation unconformably overlies the Kirkwood and/or Enon formations in places where the Buffelskloof Formation is not developed.

**Upper:** The Hartenbos Formation is unconformably overlain by the Dehoop and Klein Brak formations of the Miocene to Holocene Bredasdorp Group although outcrops of this contact are not commonly seen in the field. However, borehole HA1/88 shows an abrupt change in lithology at around 20 m depth, which can be interpreted as an unconformity (Viljoen, personal communication 2016, 27 June).

#### Subdivision

No subdivision can be applied to the Hartenbos Formation except for a change from coarsening-upward to fining-upward vertical grain size trends at around 44 m depth in the HA1/88 borehole (Viljoen, personal communication 2016, 27 June).

### **Regional aspects**

**Geographic distribution:** Restricted exclusively to the Mossel Bay Basin in the vicinity of Hartenbos (Fig. 2.1) but may also have an offshore distribution.

**Criteria for lateral extension:** Fine- to medium-grained sandstones, clay-rich sandstones and sandy mudstones with subordinate conglomerates that occupy a stratigraphically higher position than the lithologically similar Kirkwood Formation in the Mossel Bay Basin.

### **Correlation:**

No definite correlations can be made due to the poor geochronological constraints for the Hartenbos Formation, which is only recognized in the Mossel Bay Basin. However, the parts of the Sundays River Formation that overly the Kirkwood Formation in the Algoa Basin may be a correlative because both units occur in the upper part of the Uitenhage Group stratigraphy in their respective basins.

## 2.2.7 Robberg Formation

### Stratigraphic position and age

The Robberg Formation is a constituent of the Jurassic – Cretaceous Uitenhage Group with outcrops in three isolated coastal locations in the Bredasdorp and Pletmos basins at Cape Infanta, Mossel Bay and

Robberg. In each case, it unconformably overlies the Peninsula Formation of the Palaeozoic Table Mountain Group and is overlain by recent unconsolidated sand and colluvium that caps Cenozoic wave-cut terraces. Traditionally, the Robberg Formation was considered Upper Jurassic (Rigassi and Dixon, 1972; Tankard et al., 1982; Dingle, 1983) based on the presence of recrystallized coccoliths, although more recent biostratigraphic evidence based on poorly preserved ammonites, a Spatangoid echinoid, and microfossil assemblages suggests that it is Lower Cretaceous, albeit tentatively (Reddering, 2000; 2003; McMillan, personal communications 2017, 19 June). The generally poor preservation of fossils from this unit renders all these biostratigraphically determined ages tentative. Additionally, the three spatially isolated Robberg Formation outcrops have not been conclusively demonstrated as coeval, further complicating the chronostratigraphy of the Robberg Formation.

### **Geological description**

**Basic unifying features:** Sandstone with subordinate conglomerate and breccia layers and minor mudstone interbeds. These form southward-thickening wedges in three isolated localities, each containing a basalmost breccio-conglomerate layer (Reddering, 2003).

**Thickness:** Maximum recorded thicknesses are: 94 m at Robberg, 69 m at Mossel Bay and 60 m at Cape Infanta and thins towards the north (Reddering, 2003).

**Lithology:** Sandstone (7 - 100%): Thick litho- packages (up to 42 m) are composed of 0.5 - 2 m thick beds and lenses of very fine- to medium-grained sandstone that in places contains planar and trough cross-bedding, flaser bedding, ripple marks and soft sediment deformation (Reddering, 2003).

*Conglomerate & breccia* (0 - 93%): 2 – 8 m thick beds of yellow – red, very poorly sorted conglomerates and breccias are common. Clasts range from very angular to subrounded granules to boulders of quartzite, and rare rip-up mudclast pebbles. At Cape Infanta and Robberg, these beds form 30 m thick litho-packages comprising 1.5 m tabular beds and lenses, well-sorted, imbricated conglomerates with well-rounded clasts are exposed at Cape Infanta and Robberg.

*Mudstone* (0 - 40%): < 1 cm – 5 m thick units of thinly bedded, lenticular and laminated mudstones (mostly siltstones) that are light grey, pale yellow or pale orange in colour. Laminations are parallel, lenticular and wavy.

**Palaeontology:** The Robberg Formation contains poorly preserved macrofossils as casts in sandstone, microfossils, and trace fossils, none of which are strongly age-diagnostic, although tentatively suggest Early Cretaceous deposition.

*Macrofossils:* Poorly preserved invertebrate casts of molluscs (mostly trigonod bivalves), two ammonite casts, and one spatangoid echinoid have been described (Reddering, 2000; 2003). Casts of logs and wood fragments are common, as are coalified plant remains. Plant taxa include cycadophytes, coniferophytes, pteridophytes and sphenophytes, which are all continental, age undiagnostic and mostly lack features necessary for detailed taxanomic classification. However, some fossils from Cape Infanta that are better preserved have been identified as *Zamites* sp. (cycad) and *Cladophlebis browinia* (fern) by Malan and Viljoen (1990).

*Microfossils:* Marine dinoflagellates and acritarchs have been recovered, along with spores and pollen that correspond with the floral assemblages represented by plant macrofossils (Reddering, 2000). The dinoflagellates recovered are somewhat age-diagnostic and suggest a Berrisian – Valanginian (Early Cretaceous) age. Rigassi and Dixon (1972) describe recrystallized coccoliths, although their occurrence is not well documented and is rather speculative (McLachlan and McMillan, 1976). A single sample of grey mudstone at Robberg yielded a diverse assemblage of foraminifera (McMillan, personal communications 2017, 19 June).

*Trace fossils:* Sandstones commonly bare trace fossils at Robberg, which are scarcely preserved elsewhere. They consist primarily of feeding and dwelling traces, while crawling and escape traces are rare (Reddering, 2000). **Genesis:** The Robberg Formation was deposited in a coastal setting with significant palaeoenvironmental variability. The breccia/conglomerates at the base of the unit (St Sebastian Point Member) were deposited by mass-flow processes in rough topography, whereas rounded conglomerate units were deposited as beach and gravel barriers. Some sandstone-dominated portions show evidence of tidal influence (bimodal palaeocurrents, marine invertebrate and trace fossils, and flaser bedding), and thus were interpreted as estuarine deposits (Reddering, 2003).

### **Boundaries:**

**Lower:** Always unconformable, mostly expressed as an angular unconformity but in places as a paraconformity (e.g., at Robberg) atop the Peninsula Formation of the Palaeozoic Table Mountain Group (Fig. 2.3F).

**Upper:** Always unconformable, as the unit is truncated by wave-cut terraces and overlain by recent unconsolidated sand.

### Subdivision

Comprising of subangular clasts, the basal conglomerate and breccia unit with subordinate sandstone and mudstones is assigned to the St Sebastian Point Member. This 0.5 - 60-m-thick member rests on the Table Mountain Group with an angular unconformity, and is overlain, supposedly unconformably by other units of the Robberg Formation (Reddering, 2003).

#### **Regional aspects**

**Geographic distribution:** The Robberg Formation outcrops in coastal cliffs at Cape Infanta, Mossel Bay and Robberg (Plettenberg Bay) in the Bredasdorp and Pletmos basins (Fig. 2.1).

**Criteria for lateral extension:** Predominantly sandstone with subordinate conglomerate and breccia layers, especially at the base of the Formation, and minor mudstone interbeds that unconformably overlie the Table Mountain Group. The Robberg Formation is distinguished from other lithologically similar units in the Uitenhage Group by the presence of tidally- influenced facies characteristics.

### **Correlation:**

Invertebrate palaeontological evidence affords some tentative correlation of sandstone units in the Robberg Formation at Robberg with the Sundays River Formation (Reddering, 2000; 2003).

### 2.2.8 Infanta Formation

### Stratigraphic position and age

Unlike all other formations in the Uitenhage Group, the Infanta Formation has an entirely subsurface distribution in the Outeniqua Basin (Dingle et al., 1983) and is infrequently referenced in the literature, presumably falling away to the more favoured tectonostratigraphic 'syn-rift' nomenclature adopted by McMillan et al. (1997) and subsequent workers. The poorly described grey mudstone-dominated unit is regarded as the offshore equivalent of the Kirkwood Formation in the Bredasdorp and Pletmos basins underlying the Sundays River Formation (Du Toit, 1976; Dingle et al., 1983; Johnson, 1998).

### **Geological description**

**Basic unifying features:** Light to dark grey mudstones with rare calcareous and sandstone horizons in the offshore Bredasdorp and Pletmos basins only (Du Toit, 1976).

**Thickness:** Highly varied from 1132 m in the Gb-Gemsbok 1 borehole (Pletmos Basin) to 82 m in the northern Bredasdorp Basin (Dingle et al., 1983).

Lithology: *Mudstones* (>95%): Homogenous light, medium and occasionally dark grey siltstones, claystones and shales.

*Sandstones* (<5%): Rare, minor sandstones occur in the northern Bredasdorp Basin and above the Superior Ridge, SW Pletmos Basin, where they are calcareous.

**Palaeontology:** Generally described as poorly fossiliferous (Du Toit, 1976; Winter, 1979; Dingle et al., 1983), and although foraminifera have been recovered in syn-rift deposits from numerous boreholes in the

Bredasdorp Basin from shallow marine intervals that presumably correspond to the Infanta Formation, those workers do not recognize those unnamed units as the Infanta Formation (Broad et al., 2012).

**Genesis:** The Infanta Formation was deposited in a shallow marine setting, possibly in a low-energy estuarine, lagoonal environment (Du Toit, 1975; Broad et al., 2012).

### **Boundaries:**

**Lower and lateral:** possibly conformable with the Enon Formation in some boreholes (e.g., Winter, 1979; Dingle et al., 1983). Presumably, it shares a lateral gradational, interfingering contact with the Kirkwood Formation.

**Upper:** possibly unconformable with the Sundays River Formation (Dingle et al., 1983).

### Subdivision

No subdivisions are described.

### **Regional aspects**

Geographic distribution: Restricted to the offshore Bredasdorp and Pletmos basins only (Fig. 2.1).

**Criteria for lateral extension:** Grey mudstones with rare calcareous and sandstone horizons in the offshore Bredasdorp and Pletmos basins overlying the Enon Formation and underlying the Sundays River formations.

### **Correlation:**

The Infanta Formation is described as the probable marine correlative of the continental Kirkwood Formation (Du Toit, 1975; Dingle et al., 1983) although this is at odds with lithostratigraphic description of the Kirkwood Formation, which clearly contains the Bethelsdorp Member (in the Algoa Basin – see Muir et al., 2017b). It is likely that the Infanta Formation is more reasonably considered the lithostratigraphic equivalent of the Bethelsdorp Member and may warrant a review in future SACS descriptions of this unit.

# 2.3 Summary of historic chronostratigraphic information

The stratigraphic units in the Uitenhage Group suffer from poor chronostratigraphic constraints that depend solely on rare age-diagnostic marine fossils. The only undisputed age constraints come from dated foraminifera and ammonite assemblages recovered from the Sundays River Formation and Bethelsdorp Member of the Kirkwood Formation in the Algoa Basin, while other marine units (i.e., Robberg and Brenton formations) have contentious and poorly-defined ages. Ages for the rest of the Group, which is largely continental and therefore does not have datable marine fossils, are only inferred from these ages. The continental Enon and Kirkwood formations are especially poorly constrained in age yet have the most widespread occurrence across rift basins in which they occupy basalmost stratigraphic positions.

Table 2.1. Summary of the sparse chronostratigraphic constraints of the Uitenhage Group. formations are ordered from oldest (bottom) to youngest (top) where chronostratigraphic constraints allow.

| Formation        | Geological age                                                      | Source of age determination                                                                                                                                                                                                                | References                                                                                                                                         |
|------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Hartenbos        | Lower Cretaceous                                                    | None. Inferred from lateral correlation with Buffelskloof Formation <sup>a</sup>                                                                                                                                                           | <sup>a</sup> Malan and Viljoen, 1990                                                                                                               |
| Buffelskloof     | Lower Cretaceous                                                    | None. Inferred from the basal angular unconformity with the Kirkwood Formation <sup>a</sup>                                                                                                                                                | <sup>a</sup> Malan and Viljoen, 1990                                                                                                               |
| Robberg          | Lower Cretaceous                                                    | Poorly preserved cast fossils of two ammonites and<br>an echinoid from sandstone units at Robberg,<br>Plettenberg Bay <sup>b</sup>                                                                                                         | <sup>b</sup> Reddering, 2000                                                                                                                       |
| Sundays<br>River | Lower Cretaceous:<br>Valanginian – Hauterivian                      | Valanginian foraminifera <sup>c</sup> and ammonite assemblages <sup>d</sup> in the lower parts of the Formation.                                                                                                                           | <sup>c</sup> McMillan, 2003;<br><sup>d</sup> Kitchin, 1908; Spath, 1930;<br>McMillan and McLachlan,<br>1976; 1979; Cooper, 1983.                   |
| Brenton          | Upper Jurassic OR Lower<br>Cretaceous: Valanginian –<br>Hauterivian | Controversial. Upper Jurassic ostrocods and an ammonite fragment <sup>e</sup> from Brenton, Knysna, and Valanginian ostrocods and foraminifera <sup>f</sup> from borehole PB-A/1, with which the outcrops at Brenton are correlated.       | <sup>e</sup> Dingle and Klinger, 1972;<br><sup>f</sup> McLachlan et al., 1976                                                                      |
| Infanta          | Upper Jurassic – Lower<br>Cretaceous                                | None. Correlation with Kirkwood Formation is based on lithostratigraphy only <sup>g</sup> .                                                                                                                                                | <sup>g</sup> Du Toit, 1976                                                                                                                         |
| Kirkwood         | Upper Jurassic – Lower<br>Cretaceous: Tithonian –<br>Valanginian    | Tithonian foraminifera from the basal Bethelsdorp<br>Member, Algoa Basin <sup>h</sup> . Valanginian age inferred by<br>correlation with lower Sundays River Formation,<br>Algoa Basin <sup>i</sup>                                         | <sup>h</sup> McMillan, 2010;<br><sup>i</sup> McLachlan and McMillan,<br>1976; Shone, 1978                                                          |
| Enon             | Upper Jurassic – Lower<br>Cretaceous                                | None. Age is inferred by correlation with Kirkwood Formation <sup>j</sup> , and appearing below the Kirkwood Formation in numerous boreholes in the Algoa Basin <sup>k</sup> and above the contentiously dated Suurberg Group <sup>l</sup> | <sup>j</sup> Dingle et al., 1983;<br><sup>k</sup> McMillan, 2010;<br><sup>1</sup> McLachlan and McMillan,<br>1976; Kirstein, 1997; Marsh,<br>2016. |

# **Chapter 3: Methods**

# **3.1 U-Pb system in zircons**

Zircon, ZrSiO<sub>4</sub>, is a silicate mineral of extreme importance to the earth sciences and has enabled giant leaps in understanding of geological time, and the occurrence and nature of important events in Earth's history. These include amongst others, mass extinction events (e.g., Bowring, 1998; Mundil et al., 2004), the onset and evolution of plate tectonics (e.g., Hawkesworth and Kemp, 2006; Spencer et al., 2014), and the formation of the earliest crustal material (e.g., Maas, et al., 1992; Dhuime et al., 2012; Dhuime et al., 2015). What makes zircon so special in these cases are its abundance as an accessory mineral in various rock types, its chemical and physical resilience, and trace element diversity (e.g., Bowring et al., 2006; Harley and Kelly, 2007). Geochronologists rely on the tendency of zircon crystals to incorporate the element uranium  $(U^{4+/6+})$  as a substitute for zirconium (Zr<sup>4+</sup>) in the crystal lattice during crystallization, but exclude lead (Pb<sup>2+</sup>), which enables it as an excellent geochronometer that has been utilized to date rocks since the midtwentieth century (Tilton et al., 1955).

What makes U-Pb a particularly good chronometer compared to other radiogenic isotope systems is that it involves two independent decay schemes,  $^{235}$ U to  $^{207}$ Pb and  $^{238}$ U to  $^{206}$ Pb. These two decay schemes have different half-lives but involve the same chemical elements, allowing for a means to assess whether the zircons exhibit 'closed system behavior' through time – in a closed system all the Pb in a crystal comes from the radiogenic decay of U (through the two decay schemes), and no Pb was able to exit the system (Parrish and Noble, 2003; Bowring et al., 2006). In such an ideal system, the age of crystallization (t) can be calculated using either of the following two equations for the  $^{238}$ U/ $^{206}$ Pb and  $^{235}$ U/ $^{207}$ Pb systems:

$$t_{206} = \frac{1}{\lambda_{238}} ln \left( \frac{{}^{206}Pb}{{}^{238}U} + 1 \right)$$
(1)

$$t_{207} = \frac{1}{\lambda_{235}} ln \left( \frac{2^{07} Pb}{2^{35} U} + 1 \right)$$
(2)

where  $\lambda_{238}$  and  $\lambda_{235}$  represent decay constants 1.55125 e<sup>-10</sup> and 9.8485 e<sup>-10</sup> per year for the <sup>238</sup>U and <sup>235</sup>U systems, respectively (Jaffey et al., 1971). Typically, these notations are simply referred to as either the (1) <sup>206</sup>Pb/<sup>238</sup>U age or (2) <sup>207</sup>Pb/<sup>235</sup>U age and because the <sup>235</sup>U/<sup>238</sup>U ratio is a natural constant = 137.818 (Hiess et al., 2012), a third <sup>207</sup>Pb/<sup>206</sup>Pb age can be determined.

In reality, zircon crystals seldom behave as perfect closed systems and are prone to Pb-loss, especially at sites in the crystal lattice that have suffered radiation damage (e.g., Parrish and Nobel, 2003; Mundil et al., 2004; Bowring et al., 2006). In order to assess closed system behavior, Wetherill (1956) combined the two decay schemes to create the equation:

$$\frac{207Pb}{206Pb} = \frac{235U}{238U} \frac{(e^{\lambda 235t} - 1)}{(e^{\lambda 238t} - 1)}$$
(3)

This can be plotted as the 'concordia curve', a line on the graphical plot of <sup>206</sup>Pb/<sup>238</sup>U vs. <sup>207</sup>Pb/<sup>235</sup>U (the concordia diagram) where the <sup>206</sup>Pb/<sup>238</sup>U age is equal to the <sup>207</sup>Pb/<sup>235</sup>U age (Wetherill, 1956). When <sup>206</sup>Pb/<sup>238</sup>U and <sup>207</sup>Pb/<sup>235</sup>U ratios from a zircon analysis is plotted on the concordia diagram, it should lie on the concordia curve, or in other words is *concordant*. If however the point lies off the curve, as when the calculated ages from each ratio are not equal, then the zircon age is *discordant*. Concordance can also be quantified (as a %) with the following equation:

Concordance = 
$$100 [^{206}\text{Pb}/^{238}\text{U} \text{ age} / ^{207}\text{Pb}/^{206}\text{Pb} \text{ age}]$$
 (4)

Or

Concordance = 
$$100 [^{206}Pb/^{238}U \text{ age } / {}^{207}Pb/^{235}U \text{ age}]$$
 (5)

An alternate form of data presentation is the Tera-Wasserburg concordia diagram, where <sup>207</sup>Pb/<sup>206</sup>Pb is plotted vs. <sup>238</sup>U/<sup>206</sup>Pb. In this plot, the gradient of the line, along which ages calculated from each system are equal, is less steep for young ages than in the conventional concordia diagram and therefore provides a better visualization of young zircon ages (Gehrels, 2011).

A common alternate way in which detrital U-Pb zircon data are displayed, especially when datasets are large and varied in age is the probability density diagram (e.g., Ludwig, 2000; Gehrels, 2011), which are often accompanied by a frequency histogram of zircon ages. In the probability density diagram: (1) concordant zircon ages are each assigned a normal (Gaussian) distribution based on age and analytical uncertainty; (2) the probability distribution of each analysis is summed into a singl curve. A normalized probability density diagram is simply a probability density diagram that is normalized to the number of dates used so that the area under each graph is equivalent, which can sometimes aid comparisons (Gehrels, 2011). Cumulative age probability diagrams can also aid detrital zircon comparisons, and these are constructed by plotting the cumulative probability vs. age for a set of U-Pb dates (Gehrels, 2011).

### **3.1.1 Analytical techniques**

There are two approaches to U-Pb zircon geochronology, both of which are utilized in this study: Microbeam techniques and thermal ionization mass spectrometry (TIMS). The 'conventional' method of U-Pb dating zircons is by TIMS and involves isolating single crystals and dissolving them prior to analysis, whereas microbeam techniques, specifically, Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) for the purposes of this study rather than Secondary Ionisation Mass Spectrometry (SIMS), are relatively new methods that allow rapid *in-situ* analysis and have revolutionized geochronology in the last several decades (Bowring et al., 2006; Schoene, 2014). The development of improved and cheaper ICPMS and laser ablation instrumentation and the characterization of several zircon standards (Jackson et al., 2004) have propelled this method of U-Pb geochronology to become the most widely used among earth scientists. In short, this method utilizes a focused laser to vaporize a small volume of a crystal in a thin section or mounted in epoxy resin and then flushes the aerosol from the ablation stage into the ICPMS where isotopic masses are analysed. Typically, a relatively small spot size (typically  $10-60 \,\mu\text{m}$  in diameter and up to  $20 \,\mu\text{m}$  deep) is used and allows high spatial resolution when analyzing a crystal (Fig. 3.1). In this way, specific sites of interest in the polished zircon (e.g., xenocrystic cores, secondary growth rims and inclusions) can be targeted or avoided based on the user's interest (Corfu et al., 2003). In addition, analyses can be performed very rapidly, usually hundreds in a day in a highly automated protocol without much concern for contamination. However, the high special resolution and short analytical times come at a cost of analytical precision. Even the most sophisticated microbeam methods achieve analytical uncertainties an order of magnitude greater than modern TIMS methods (e.g., Ireland and Williams, 2003; Kosler and Sylvester, 2003; Karlstrom et al., 2018). Where 1 – 8% (2-σ) uncertainties are expected for LA-ICPMS U-Pb zircon dates (e.g., Bowring et al., 2006; Dickinson and Gehrels, 2009; Gehrels, 2011; Karlstrom et al., 2018), uncertainties of ~0.1 % (2- $\sigma$ ) are regularly achieved by TIMS (e.g., Mundil et al., 2004). The relatively low-precision of microbeam techniques present additional problems – zircons dates with large uncertainties cannot easily be resolved from one another and subtle Pb loss or inheritance cannot be identified using tests of concordance. It thus is possible to attain relatively inaccurate zircon U-Pb dates, as well as imprecise ones and severely limits the practicality of microbeam techniques in high-precision geochronology (Ireland and Williams, 2003; Bowring et al., 2006). However, due to the rapid analytical times (and higher cost efficiency), they remain the principal method for analyzing large sets of detrital zircons to reveal a maximum depositional age (Dickinson and Gehrels, 2009), or a low-precision depositional age of a pyroclastic deposit (e.g., Han, 2006; Roberts et al., 2012; McKay et al., 2015).



Fig. 3.1. Relative volumes of zircon, time and precision achieved by TIMS and LA-ICPMS analysis (modified from Bowring et al., 2006). Uncertainties quoted are at the  $2\sigma$  level.

U-Pb dating zircons by TIMS has also seen massive improvements over the last half century (e.g., Parrish and Noble, 2003; Mattinson, 2005; Schoene et al., 2015). This method involves dissolving individual crystals (Fig. 3.1) in ultra-clean environments prior to performing a comparatively time-consuming analysis with minimal automation. By dissolving the crystals, any significant spatial resolution is precluded, but what is gained is a much higher precision analysis. This allows for more thorough scrutiny of concordance and overall more accurate and precise ages. Further, improvements to the method have come from subjecting crystals to a number of pre-dissolution treatments such as chemical abrasion (CA-TIMS). This method involves thermal annealing and partial dissolution of the crystals in HF followed by sequential cleaning (Mattinson, 2005). The parts of crystal that has had radiation damage and Pb loss are dissolved at a higher rate than other low U zones and the remaining crystal is more likely to be concordant. The success of chemical abrasion over other pretreatment methods such as air abrasion, which removes the outermost layer of a crystal, is that the HF affectively 'mines out' high U damaged zones that are often irregular and in central portions of a crystal's volume (e.g., Mundil et al., 2004; Bowring et al., 2006).

# 3.2 Methods employed in this study

## 3.2.1 Field observations

Extensive field work was undertaken in order to locate/discover and describe the poorly documented volcaniclastic deposits in the Uitenhage Group. Once found in the field, local evidence was collected in the form of stratigraphic and sedimentological macroscopic observations to document the vertical and horizontal distributions of sedimentary characteristics not only of the sampled layer but also of the host strata. In this chapter, field observations were limited to those that directly relate to characterizing the deposit as detrital or primary volcaniclastic following the recommendations of Bohor and Triplehorn (1993), Koniger and Stollhofen (2001), White and Houghton (2006) and Nemeth and Martin (2007) and recent volcaniclastic classifications (White and Houghton, 2006; Brown et al., 2012). Specifically, sedimentological characteristics that were used to help identify volcaniclastic material in the field were the presence of: 1) laterally continuous uniform bed character; 2) clay-dominated lithologies with rare (<5%) phenocrysts that are sand-silt sized; 3) No visible detrital quartz grains or lithic fragments; 4) 'Popcorn texture' surficial weathering that indicate an abundance of smectite clays such as montmorillonite; 5) Accretionary pellets; 6) Amorphous silica within unit or in adjacent beds that may indicate devitrification of original glass components during alteration to clay; 7) lack of sedimentological structures that may indicate lateral transport of material before deposition. This was done by systematically documenting the vertical and lateral sedimentological facies changes, including grain size, sediment colour and composition, bedding geometries and boundary surfaces at each site. Further, thin sections were made of competent specimens in order to determine if there was sedimentary rounding of constituent minerals or glass shards were present.

## 3.2.2 U-Pb zircon geochronology

### 3.2.2.1 LA-ICPMS

Approximately 2 kg of fresh, unweathered rock was collected from each sampled unit, regardless of its suspected origin (i.e., pyroclastic, volcaniclastic, or detrital). Slightly different mineral separation protocols were adhered to depending on the physical properties of the sampled lithology. Clay-rich bentonites disintegrated when left in water, and therefore all bentonitic samples were submerged in water in clean containers and periodically stirred to aid the breaking-down process and generation of a slurry. In some cases where stirring was insufficient, an ultrasonicator was used to ensure that the clay fraction of sample disintegrated and entered suspension. Following these steps, the slurries were removed of their clay fraction by successively stirring and pouring-off of the suspended fraction until only silt and sand sized particles remained. Samples that were composed of sandstone were more competent, and required being crushed instead of simply disintegration by mixing with water. This was done by first drying the samples overnight in an oven set at 60 °C and then crushing the samples in a Sturtevant Model 4 rock crusher at the University of Cape Town, before being milled in a disc-mill at Central Analytical Facility (CAF) of Stellenbosch University. All subsequent sample preparation procedures for LA-ICPMS were conducted at CAF. The crushed, milled sample was subsequently sieved using 355 µm aperture mesh, to concentrate liberated crystals. The sieved material was then mixed with water and successively washed following the same procedure as the uncrushed bentonitic samples until the clay fraction was effectively removed and silt- and sand-sized grains remained. This fraction was then processed to concentrate heavy minerals by gravitational separation using an automatic panner and a handheld pipette. The heavy mineral separate was oven-dried in a petri-dish overnight before being subject to magnetic separation. Magnetic separation was achieved by running a small handheld magnet that was wrapped in clean paper over the sample several times until all ferromagnetic minerals were removed from the sample. The non-magnetic heavy mineral separate was further processed using standard heavy mineral separation techniques utilizing tetrabromoethane (TBE)

 $(\text{density} = 2.97 \text{ g/cm}^3)$  to concentrate heavy minerals on filter paper by removing light minerals. The heavy mineral separate was then washed thoroughly using water and acetone to remove excess TBE and help dry the sample. Once dried, the crystals were tipped onto a petri-dish for handpicking under the binocular light microscope. In order to minimize human-induced bias in the selection of zircons, and attain a representative selection of grains, crystals were picked from a defined field-of-view that was only moved once all zircons within were placed onto a strip of double-sided tape. Once ~80 crystals were picked, a focused effort was made to find and select the most pristine zircon crystals that were euhedral and contain no obvious blemishes until a total of  $\sim 100$  crystals were picked. This was done to maximize the chance that the mounted sub-population contained a young volcanic proportion that could be suitably dated by LA-ICPMS (Gehrels, 2011). The picked zircons were then mounted onto a 25 mm epoxy resin puck that was polished so that their mid-sections were exposed. The polished mounts were then coated with a fine layer of carbon before being inserted into the Carl Zeiss: MERLIN-Field Emission Scanning Electron Microscope (SEM). Images of the zircons were attained using the cathodoluminescence (CL) detector that allowed the visualization of xenocrystic cores, microtextures, cracks and inclusions within the crystals and were used in the selection of appropriate analytical spots during LA-ICPMS analysis. Avoiding these features both enhances the chance of producing a successful analysis by excluding damaged parts of the crystal, areas with mixed ages, or inherited portions that clearly do not reflect the youngest crystallization event experienced.

LA-ICPMS analysis of zircons at the CAF happened over a period of four years from 2015 to 2018 in four discrete analytical campaigns. The first three campaigns were analysed at the CAF under the supervision of Dr. Dirk Frei and the final campaign was overseen by Dr. Laura Bracialli. During this time the analytical equipment, namely a 193 nm wavelength ASI Resolution laser ablation system coupled to a Thermo Scientific Element 2 single collector magnetic sector field inductively coupled plasma mass spectrometer (SC-SF-ICP-MS), remained unchanged. The procedures followed were almost identical too excluding a few subtle changes between the first three and the final campaigns, although all procedures closely follow the established procedural framework for U-Pb geochronological LA-ICPMS analysis described by Jackson

et al. (2004). The metadata for LA-ICPMS analyses are given in Tables 2 and 3 and comprise the laser ablation, mass-spectrometry and data reduction methods. The principal differences between the first three campaigns and the last are the laser parameters, secondary reference zircons used for quality control, data reduction procedures and calculation of concordance. Importantly, all data in the first three campaigns are corrected for common Pb using the composition projected from the age following Stacey and Kramers (1975), whereas no common Pb correction was applied for data from campaign 4. This was due to Mercury contamination in the gas-line, precluding common Pb correction. All LA-ICPMS isotopic data for reference materials are plotted in Appendix A, Fig. A1. The resulting isotopic data for the samples from the Suurberg Group are tabulated in Appendix B, Tables B1 – B5. The data for samples from the Uitenhage Group are tabulated in Appendix D, Tables D1 – D24, and Appendix E, Table E1. For more information about and access to these data please direct an email to robert.muir@uct.ac.za.

Table 3.1. Metadata for LA-ICPMS U-Pb geochronological method employed for campaigns 1, 2 and 3, from 2015 - 2017 at the CAF, Stellenbosch University, South Africa

| Laser ablation system                                 |                                                                                                                                                    |  |  |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Make, Model & type                                    | ASI Resolution M-50-LR Excimer laser                                                                                                               |  |  |
| Ablation cell & volume                                | Laurin Technic M-50 dual-volume cell                                                                                                               |  |  |
| Laser wavelength                                      | 193 nm                                                                                                                                             |  |  |
| Pulse width                                           | 15 ns                                                                                                                                              |  |  |
| Fluence                                               | 2.0 J/cm <sup>-2</sup>                                                                                                                             |  |  |
| Repetition rate                                       | 7 Hz                                                                                                                                               |  |  |
| Spot size                                             | 26 μm                                                                                                                                              |  |  |
| Sampling mode / pattern                               | Static spot ablation                                                                                                                               |  |  |
| Carrier gas                                           | 100% He in the cell, Ar make-up gas combined using a T-connector close to sample cell                                                              |  |  |
| Pre-ablation background                               | 3 cleaning shots followed by 20 seconds background collection                                                                                      |  |  |
| Ablation duration                                     | 20 seconds                                                                                                                                         |  |  |
| Wash-out delay                                        | 15 c                                                                                                                                               |  |  |
| Cell carrier gas flow                                 | 0.35 1/min He                                                                                                                                      |  |  |
| ICP-MS Instrument                                     |                                                                                                                                                    |  |  |
| Ter - Wib Histi untent                                |                                                                                                                                                    |  |  |
| Make, Model & type                                    | Thermo Scientific Element2 single collector HR-SF-ICP-MS                                                                                           |  |  |
| Sample introduction                                   | Ablation aerosol via conventional tubing                                                                                                           |  |  |
| RF power                                              | 1350 W                                                                                                                                             |  |  |
| Make-up gas flow                                      | 1.0 l/min Ar                                                                                                                                       |  |  |
| Detection system                                      | Single collector secondary electron multiplier                                                                                                     |  |  |
| Masses measured                                       | 202, 204, 206, 207, 208, 232, 235, 238                                                                                                             |  |  |
| Integration time per peak                             | 7, 14, 15, 18, 8, 8, 1, 13 ms, respectively                                                                                                        |  |  |
| (segment duration)                                    |                                                                                                                                                    |  |  |
| Total integration time per output                     | 0.1 s                                                                                                                                              |  |  |
| datapoint                                             |                                                                                                                                                    |  |  |
| Sensitivity                                           | 30000 cps/ppm Pb                                                                                                                                   |  |  |
| Dead time                                             | 6 ns                                                                                                                                               |  |  |
| Data Processing                                       |                                                                                                                                                    |  |  |
| Gas blank                                             | 20 s on peak prior to each measurement                                                                                                             |  |  |
| Calibration strategy                                  | GJ-1 used as primary reference material, Plešovice & M127 used as secondary reference mat                                                          |  |  |
|                                                       | (Quality Control). 91500 used in campaign 3 only.                                                                                                  |  |  |
| Reference Material info                               | M127 (Nasdala et al. 2008; Mattinson 2010), 91500 (Wiedenbeck et al. 1995), GJ-1 (Jackson et al. 2004), Plešovice (Slama et al. 2008)              |  |  |
| Data processing package used /<br>Correction for LIEF | In-house spreadsheet data processing using intercept method for LIEF correction                                                                    |  |  |
| Mass discrimination                                   | Standard-sample bracketing with <sup>207</sup> Pb/ <sup>206</sup> Pb and <sup>206</sup> Pb/ <sup>238</sup> U normalized to reference material GI-1 |  |  |
| Common-Pb correction                                  | 204-method, Stacey & Kramers (1975) composition at the projected age of the mineral, 5% uncertainty assigned                                       |  |  |
| Uncertainty level & propagation                       | Ages are quoted at 2 sigma absolute propagation is by quadratic addition. Reproducibility and                                                      |  |  |
| encertainty level & propagation                       | age uncertainty of reference material and common-Pb composition uncertainty are propagated.                                                        |  |  |
| Quality control / Validation                          | See Appendix A for quality control.                                                                                                                |  |  |
| Determination of concordance                          | Concordance = $100 [^{206}\text{Pb}/^{238}\text{U} \text{ age} / ^{207}\text{Pb}/^{206}\text{Pb} \text{ age}]$                                     |  |  |

Table 3.2. Metadata for LA-ICPMS U-Pb geochronological method employed for campaign 4 in 2018 at the CAF, Stellenbosch University, South Africa.

| Laser ablation system                        |                                                                                                                                                  |  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Make, Model & type                           | ASI Resolution M-50-LR Excimer laser                                                                                                             |  |
| Ablation cell & volume                       | Laurin Technic M-50 dual-volume cell                                                                                                             |  |
| Laser wavelength                             | 193 nm                                                                                                                                           |  |
| Pulse width                                  | 15 ns                                                                                                                                            |  |
| Fluence                                      | 2.0 J/cm <sup>-2</sup>                                                                                                                           |  |
| Repetition rate                              | 7 Hz                                                                                                                                             |  |
| Spot size                                    | 26 µm                                                                                                                                            |  |
| Sampling mode / pattern                      | Static spot ablation                                                                                                                             |  |
| Carrier gas                                  | 100% He in the cell, Ar make-up gas combined using a T-connector close to sample cell                                                            |  |
| Pre-ablation background                      | 13 s                                                                                                                                             |  |
| collection                                   |                                                                                                                                                  |  |
| Ablation duration                            | 29 s                                                                                                                                             |  |
| Wash-out delay                               | 20 s                                                                                                                                             |  |
| Cell carrier gas flow                        | 0.35 l/min He                                                                                                                                    |  |
| ICP-MS Instrument                            |                                                                                                                                                  |  |
| Make, Model & type                           | Thermo Scientific Element2 single collector HR-SF-ICP-MS                                                                                         |  |
| Sample introduction                          | Ablation aerosol via conventional tubing                                                                                                         |  |
| RF power                                     | 1325 W                                                                                                                                           |  |
| Make-up gas flow                             | 0.9 l/min Ar                                                                                                                                     |  |
| Detection system                             | Single collector secondary electron multiplier                                                                                                   |  |
| Masses measured                              | 202, 204, 206, 207, 208, 232, 235, 238                                                                                                           |  |
| Integration time per peak (segment duration) | 7, 14, 15, 18, 8, 8, 1, 13 ms, respectively                                                                                                      |  |
| Total integration time per output            | 01s                                                                                                                                              |  |
| datapoint                                    |                                                                                                                                                  |  |
| Sensitivity                                  | 0.3% U                                                                                                                                           |  |
| Dead time                                    | 6 ns                                                                                                                                             |  |
| Data Processing                              |                                                                                                                                                  |  |
| Gas blank                                    | 13 s on peak prior to each measurement                                                                                                           |  |
| Calibration strategy                         | GJ-1 used as primary reference material                                                                                                          |  |
| Reference Material info                      | GJ-1 (Jackson et al. 2004): Plešovice (Slama et al. 2008): Mud Tank (Black and Gulson 1978:                                                      |  |
|                                              | Horstwood et al. 2016)                                                                                                                           |  |
| Data processing package used /               | Iolite data reduction software package (Paton et al., 2011) in combination with the Visual Age                                                   |  |
| Correction for LIEF                          | add-on (Petrus and Kamber, 2012); LIEF modelled within each analytical session on the basis                                                      |  |
|                                              | of combined analyses of the main reference material. LIEF correction assumes reference                                                           |  |
|                                              | material and samples behave identically                                                                                                          |  |
| Mass discrimination                          | Reference material-sample bracketing with <sup>207</sup> Pb/ <sup>206</sup> Pb and <sup>206</sup> Pb/ <sup>238</sup> U normalized to zircon GI-1 |  |
| Common-Pb correction                         | No common Pb correction applied to the data                                                                                                      |  |
| Uncertainty level & propagation              | Decay constant uncertainties, ratio uncertainty of primary reference material and long-term                                                      |  |
|                                              | excess variance of secondary reference material are propagated by quadratic addition. Age                                                        |  |
|                                              | uncertainties are quoted at the 2s absolute level.                                                                                               |  |
| Quality control / Validation                 | Plešovice: Wtd avg ${}^{206}$ Pb/ ${}^{238}$ U age = 337.0 ± 0.7 (95%, MSWD = 0.9; n = 109); Mud Tank                                            |  |
|                                              | Wtd avg ${}^{206}$ Pb/ ${}^{238}$ U age = 729.3 ± 2.1 (95%, MSWD = 0.8; n = 65);                                                                 |  |
| Determination of concordance                 | Concordance = $100 [^{206}\text{Pb}/^{238}\text{U} \text{ age} / ^{207}\text{Pb}/^{235}\text{U} \text{ age}]$                                    |  |

### 3.2.2.2 CA-TIMS

Four pyroclasic samples analysed by LA-ICPMS that are in key stratigraphic positions were selected for secondary analysis by CA-TIMS. This was done by selecting the youngest and least complex zircons based on <sup>206</sup>Pb/<sup>238</sup>U dates derived from the LA-ICPMS analysis and CL images. These were individually chiseled out of the epoxy mounts for pretreatment before final analysis following the procedure outlined in Mundil et al. (2004) and developed by Mattinson (2005). The selected zircons were placed within quartz crucibles in a high-temperature oven to be chemically annealed for 850°C for 36 hours. Following this, the crystals were removed from the crucibles and placed into a concentrated solution of HF within individual Teflon capsules. These were place into pressurized containers that were heated to 220°C for 16 hours, during which time the crystals were partially digested, or chemically abraded. The regions of each crystal that have suffered the most severe radiation damage, which are also typically regions of open system behavior and Pb-loss (Mundil et al., 2004; Mattinson, 2005) were preferentially dissolved. This minimized the effects of Pb-loss and the calculation of spuriously young dates during TIMS analysis. After this process was completed, each zircon was cleaned thoroughly by repeated exposure to aqua regia. Finally, the zircons were dissolved in their respective capsules, within a pressurized vessel for 6 days at 220 °C along with a drop of phosphoric acid and the EARTHTIME spike standard. The resulting solution was placed onto rhenium filaments and analysed with a Micromass Sector54 thermal-ionization mass spectrometer. All CA-TIMS procedures were carried out at the Berkeley Geochronology Centre during October, November and December 2016 under the supervision of Dr. Roland Mundil, who reduced the data using in-house Excel protocols. The graphical determination of concordance of dates was followed for all samples acquired by CA-TIMS following laboratory preferences. The CA-TIMS isotopic data tabulated Table G1 in Appendix G, and all concordant data are plotted in Fig. H1 in Applendix H. For more information about and access to these data please direct an email to robert.muir@uct.ac.za.

### 3.2.2.3 Zircon geochronology statistical considerations

In this study, we use zircon as a chronometer in detrital sedimentary rocks, which include both terrigenous clastic and volcaniclastic rocks. In order to distinguish the types of volcaniclastic deposits sampled for zircons in this study, the terminology used is that of White and Houghton (2006), who reserve the term 'pyroclastic' for *primary* volcaniclastic deposits that do not involve any interim storage (e.g., layer of volcanic ash that fell from an eruption cloud), while non-primary volcaniclastic deposits (e.g., a reworked/resedimented volcanic ash layer) are named using sedimentary terminology with a prefix modifier that indicates a partial volcanic origin (e.g., tuffaceous sandstone). Deviation from this scheme is taken when describing a highly altered rock such as *bentonite*, which is a commonly used term for smectiterich altered volcanic ash and continues to be employed in numerous geochronological studies (e.g., Bowring and Schmitz, 2003; Mundil et al., 2004; Wang et al., 2016; Rocholl et al., 2018). Nevertheless, because the way in which U-Pb zircon data are handled depends on the interpretation of a deposit being primary or reworked, each sampled deposit in this study will be clearly classified on a case-by-case basis based on sedimentary observations and zircon age distributions following methods outlined in Bohor and Triplehorn (1993) and Nemeth and Martin (2007) and listed in section 3.2.1. Further, CL and secondary election images were also colsulted along with the U-Pb data to make the final assessment of whether a specific sampled unit is primary or reworked. For terrigenous clastic and resedimented (detrital) volcaniclastic deposits, a maximum depositional age is calculated based on the age of the youngest age component in the zircon age distribution, while zircons in pyroclastic deposits can be used to determine the age of crystallization/eruption, which is assumed to be the true depositional age of the deposit. This geological classification therefore greatly affects the interpretation of the age of the sampled unit but there are also statistical considerations that warrant mention.

There are multiple approaches to defining a maximum depositional age from a given detrital zircon age population that is derived from a terrigenous clastic and resedimented volcaniclastic rocks. Dickinson and

Gehrels (2009) outline several of the commonly used metrics and compare their reliability and accuracy. The youngest concordant date in the sample, or youngest single grain (YSG), should reflect the maximum depositional age because inherently a rock cannot be older than its constituents assuming no metamorphic overprinting. However, the lack of reproducibility of the age of just a single zircon grain is a concern especially since subtle Pb-loss can occur resulting in spuriously young crystals that are still concordant (Bowring et al., 2006). However, in settings near where syn-depositional igneous activity occurs this metric can be a close reflection of the actual depositional age of the deposit (Dickinson and Gehrels, 2009). An alternate method used to define the youngest age component in a sample and therefore its maximum depositional age is the graphical approach – selecting the age that corresponds to the youngest graphical peak (supported by two or more dates) on a probability density diagram (YPP). This is a more robust measure of the maximum depositional age of the rock because it incorporates more than one date and is therefore at least somewhat reproducible, unlike the YSG metric (Dickinson and Gehrels, 2009). The downside of this metric is that no uncertainty can be quantified for the graphically-defined quantity. Nevertheless, YPP is a commonly used approach to defining a maximum depositional age of the detrital rock (e.g., Dickinson and Gehrels, 2009; Lawton and Bradford, 2011; Tucker et al., 2013). It should be noted that there are, however, quantifiable uncertainties associated with the individual dates that constitute the graphical peak (that are typically 2 - 8 % for LA-ICPMS) and therefore the uncertainty of this metric – although not itself quantifiable – should not be considered less than about half of this value (Ireland and Williams, 2003; Bowring et al., 2006). Other methods attempt to retain a measure of uncertainty and employ a metric that uses more than one date (thereby improving reproducibility) by calculating weighted averages of a section of overlapping dates. For instance, a weighted mean of the youngest cluster of ages that overlap at  $1\sigma$  or  $2\sigma$  error, and comprise 2, 3 or more dates is sometimes used to define the maximum depositional age (e.g., Dickinson and Gehrels, 2009; Tucker et al., 2013). Although these metrics do retain a quantified uncertainty, they assume that the dates used to calculate the mean are co-genetic, and this assumption is especially tenuous when considering a detrital rock sample that clearly has multiple sources for constituent zircons (Bowring et al., 2006). Another approach is to run Monte Carlo statistical simulations to determine

what the most likely youngest detrital age component is in the sample, which can be automatically performed using the *Youngest Detrital Zircon* (YDZ) operation within the Isoplot software package (Ludwig, 2000). Due to the array of different metrics used in determining the maximum depositional age of a detrital sample, each with their own merits, some authors prefer to quote multiple different metrics (e.g., Dickinson and Gehrels, 2009). Each of these metrics attamept to quantify the youngest age component in a detrital zircon population, which represents the maximum depositional age of the unit sampled. Importantly however, in most cases this does not approximate the actual depositional age of the sample at all, because the youngest zircons may long-predate their final incorporation into the final sedimentary host rock sampled. For a more robust constraining of depositional age, it is more useful to assess the U-Pb zircon geochronology of pyroclastic rocks.

There are also statistical considerations concerning zircon data from the numerous pyroclastic samples used in this study. In pyroclastic deposits, the dates attained for analyzing constituent zircons more closely reflect the age of the crystallization event and the true depositional age of the sampled horizon than in a detrital sample. Ideally, the constituent zircons in such a deposit are of equivalent age, form a single population, and are normally distributed around a mean value (the age of the rock). However, it is common that dates are skewed from this normal distribution, possibly due to subtle post-depositional Pb-loss (e.g., Mundil et al., 2004) or inheritance (e.g., Landing et al., 1998) and a create complex distributions of dates that are not simply caused by the analytical precision of the instrumentation used. This makes interpretations of an age of the rock difficult (Bowring et al., 2006). A statistical parameter that helps give an indication of whether the scatter of dates can be entirely attributed to the analytical imprecision, the mean square of the weighted deviates, or MSWD, is usually quoted with weighted average calculations. Simply put, when the MSWD is >> 1, then the scatter observed cannot be entirely attributed to analytical uncertainty and there could be real geological processes affecting the spread of dates. When the MSWD is ~1, the spread of dates used to calculate the weighted mean can be explained by the analytical uncertainties alone (Bowring et al., 2006). Finally, a MSWD value that is << 1 indicates that the analytical uncertainties are overestimated. When the

data do not form a coherent cluster (MSWD = 1), assigning an age for the pyroclastic rock become challenging. Selecting dates from a highly scattered population (MSWD >>1) often requires the trimming of data to arrive at a reasonable age (for instance the recognition an omission of dates effected by inheritance or Pb-loss). Generally, these decisions can only confidently be made with high-precision data produced by CA-TIMS, because the selection of a geological meaningful age from a population of scattered, imprecisely determined dates can become subjective (Bowring et al., 2006). In this study, weighted mean ages for zircon populations in pyroclastic rocks are therefore limited to data that are produced by the CA-TIMS method. These dates are generally higher-precision than those aquired by LA-ICPMS and have more varied uncertainties. However, most pyroclastic deposits analysed in this study have been dated using LA-ICPMS (yielding lower-precision U-Pb dates) and instead, a more automated approach of selecting a robust geological age is applied for these samples. In these cases, the TuffZirc algorithm in Isoplot (Ludwig, 2000) is employed to calculate an age in a scattered population without requiring extreme subjectivity. It works by selecting an age that incorporates the most coherent cluster of dates and therefore ignores inherited dates and is robust against spuriously young outliers that have likely been affected by Pb-loss. It should be noted that the TuffZirc algorithm is used for dates aquired from LA-ICPMS that have individual uncertainties that are typically ~3%, and any uncertainty quoted with the TuffZirc-calculated age should not be viewed as a high-precision age (c.f. those aquired from CA-TIMS) and is realistically no less that half that of the individual uncertainties of dates that constitute the coherent cluster (Ireland and Williams, 2003; Bowring et al., 2006). Further, where the individual U-Pb dates in a pyroclastic deposit are approximately continuous and no coherent cluster dominates the distribution, the TuffZirc age calculated has not been accepted as an adequate interpretation of depositional age.

Finally, the aims of this study relate to constraining the depositional age of the units sampled, and this also affects how the data are presented. Two standard graphical representations of U-Pb data are given – probability density diagrams and concordia plots. These are used widely throughout this thesis, but data older than 1.5 Ga are not included in these plots because: 1) these old crystals contribute nothing to

determining the depositional age of the sampled unit; 2) it is not within the scope of the thesis to fully characterize the detrital zircon provenance of the Uitenhage or Suurberg Groups; 3) the number of > 1.5 Ga zircons never exceeds more than 5 grains in any given sample and therefore constitutes a very small proportion of each sample. Nevertheless, these data are included in all data sheets and are therefore fully accessible to the inquisitive reader (Appendices C, D and E).

In summary, there are lithological and statistical nuances that require attention throughout this thesis. These are navigated in the following way: firstly, an assessment of the origin of each sample is made (i.e., either detrital, be that terrigenous clastic or resedimented volcaniclastic, or pyroclastic). In the case of detrital samples, only maximum depositional ages are considered unless there are compelling, case-specific reasons to interpret that data differently. The YSG, YDZ and YPP metrics are given, although the most robust of the three is preferred (i.e., YPP), as it is the least likely to reflect a spuriously young maximum depositional age. Pyroclastic samples are treated differently. The TuffZirc algorithm is preferred for extracting a meaningful depositional age for the unit when lower-precision LA-ICPMS data are available, whereas a weighted mean is preferred for higher-precision CA-TIMS data. In all cases the final age interpretations are made using the dates derived from the <sup>206</sup>Pb/<sup>238</sup>U isotopic system unless otherwise stated.

# **Chapter 4: Geochronology of the Suurberg Group**

# **4.1 Introduction**

Continental rifting is often accompanied, or closely proceeded by extensional volcanism, either as voluminous flood basaltic outpourings, as in the Karoo and Ferrar large igneous provinces (LIPs) and Central Atlantic Magmatic Province (CAMP), or less voluminous volcanism along weaknesses in the thinned crust incipient with rift-basin formation (Gust et al., 1985; Ebinger et al., 1993; Abebe et al., 2003; Will and Frimmel, 2018). However, volcanism can also be entirely absent during extensional basin

formation (e.g., Wernicke and Burchfiel, 1982; Dewey, 1988). It is unclear which of these scenarios existed during the Jurassic - Cretaceous rifting of the southern Cape. The enigmatic volcaniclastic and volcanicdominated Suurberg Group, which outcrops at the margin of the northern Algoa Basin in the Eastern Cape Province of South Africa (Fig. 4.1), has been attributed to volcanism prior to rifting (Hill, 1972), incipient with it (Roux and Davids, 2016) or instead largely unrelated to rifting (Marsh, 2016). An unequivocal view of its deposition and significance for Gondwanan rifting has been elusive largely due to extremely poor outcrops that hinder confident field observations, but also because existing radiometric ages for its constituent basalts are not reproducible, have large uncertainties and are of questionable accuracy. Literature report ages that include 'absolute age dating' of 80 to 100 Ma and 'early Upper Cretaceous' (sic), although no data nor the analytical dating technique used to derive these ages are mentioned. K-Ar analysis of a basaltic sample yielded an age of  $162 \pm 7$  Ma (McLachlan and McMillan, 1976), and a single sample of plagioclase mineral separates is dated to  $194 \pm 11.9$  Ma by Ar-Ar methods (Kirstein, 1997). However, none of these contrasting ages or the requisite datasets have been published nor sufficiently validated, and all of which are derived from just a single basaltic interval that may not represent the entire Suurberg Group. Improving the depositional age constraints of this stratigraphic unit would lend insights into the geodynamic evolution during the Jurassic – Cretaceous of SW Gondwana.

The Suurberg Group has also played an important role in pinning the physical evolution of rifting in the southern Cape to a chronological timeframe because it has (and continues to be) a datum used to infer the maximum age of the overlying, taphrogenic Uitenhage Group (Hill, 1972; McLachlan and McMillan, 1976; Wildman et al., 2015; Green et al., 2016; Richardson et al., 2017). Therefore knowing the age of the Suurberg Group would enable the robust determination of the maximum age for the Uitenhage Group that overlies it and by inference help constrain the timing of rift initiation in the southern Cape, which plays into one of the aims of this thesis.

The Suurberg Group consists of three discrete stratigraphic units that have a cumulative thickness generally less than ~200 m (Hill, 1972; Joubert and Johnson, 1998) that include the basalmost breccia and

conglomerates of the Slagboom Formation, an overlying volcaniclastic-dominated Coerney Formation, comprising various discrete tuffaceous intervals, and the uppermost Mimosa Formation, which consists of basalts and rare tuffaceous interbeds (Hill, 1972; Fig. 4.1). The Group overlies the Palaeozoic Cape Supergroup and lowermost Karoo Supergroup with an angular unconformity and is separated from the overlying Uitenhage Group by a stratigraphic contact that is poorly understood and rarely exposed. Some authors regard the contact conformable (Dingle et al., 1983; McMillan et al., 1997) whereas others consider the two groups to be separated by an unconformity that is either very 'weak' (sic), with a short hiatus (Rigassi and Dixon, 1972), or possibly lengthier (McLachlan and McMillan, 1976; McMillan, 2010).

It remains unclear how any of these lithological units were deposited. The breccia-dominated Slagboom Formation has been attributed to explosive incipient volcanism (Hill, 1972), although the presence of rounded clasts in some areas, making the unit a conglomerate rather than a breccia, and no outcrops in the Suurberg Group that unequivocally exhibits cross-cutting dikes or volcanic pipes, leave the possibility that the unit has a sedimentary origin. Further, the clast composition of a volcanic breccia that erupts upward through country rock stratigraphy is expected to be heterolithic, or at least contain some juvenile components, but observations show that clasts are composed exclusively of quartzites from the Cape Supergroup, which outcrops widely in the basement that surrounds the Algoa Basin (Hill, 1972; Toerien, 1991). None of these observations bring absolute clarity on the petrogenesis of these deposits, yet it seems that the Slagboom Formation need not have a volcanic origin and may equally be attributed to talus-slope and alluvial fan deposition where such coarse-grained facies commonly result from colluvial and alluvial depositional processes. The deposition of ash is also expected if there was violent volcanism nearby, and Hill (1972) suggests such an origin for the tuffaceous strata in the Coerney and Mimosa formations. However, a distal, yet unknown, origin for the ash may also be possible (Marsh, 2016), especially since there is no strong evidence for volcanic 'vents' that are filled by tuffaceous rocks first proposed by Hill (1972). Finally, the origin of the basalts in the Mimosa Formation is also rather enigmatic. Geochemically, they are identical to the Karoo continental flood basalts of the Lesotho Formation in the Drakensberg Group

(Marsh et al., 1979; Marsh, 2016), but their position within the Cape Fold Belt – disconnected from the main body of the Karoo LIP volcanics and subvolcanics in the interior of South Africa – is unique (Marsh, 2016). The crust underlying the Cape Fold Belt is thickened and deformed (Paton, 2006; Lindique et al., 2011) and likely acted as a barrier preventing upward moving melts to reach the surface (Marsh, 2016). It therefore seems unlikely that the basalts in the Suurberg Group are derived from local dolerite intrusions as is the case further north. Instead of speculating on feeder dykes anomalously penetrating the Cape Fold Belt in the Algoa Basin, an alternate explanation is that the flood basalts that extruded during the Karoo LIP extended as far south as the Cape Fold Belt, flowing far from their original feeder dykes (fissures) and overstepping any potential topographic barriers presented by the Cape Mountains in the Early Jurassic (Pliensbachian-Toarcian), but are only preserved in rare instances such as in the northern Algoa Basin (Marsh, 2016). One of the main assumptions held by this depositional model for the basalts is that they are the same age as the ~183 Ma Drakensberg Group (Svensen et al., 2012; Burgess et al., 2015), which is to date unconfirmed.



Fig. 4.1. Distribution of the Suurberg Group in the northern Algoa Basin. (A) Simplified geology of the Algoa Basin, the eastern most rift basin in the southern Cape (inset). Unshaded regions are basement and blue shaded regions are where the Suurberg Group outcrops. White dashed rectangles are the regions enlarged in figures B and C. (B) Geology of the Algoa Basin panhandle, where the Suurberg Group occupies the southern margin of the Basin. (C) Geology of the central northern Algoa Basin, where the Suurberg Group outcrops along the northern edge of the Basin. (D) Simplified stratigraphic log of the Suurberg Group at Slagboom after Hill (1972). Base map A is modified from the 1: 250 000 geological map sheets 3324 (Toerien, 1991) and 3326 (Roby and Johnson, 1995) of the Council for Geoscience overlain on ESRI satellite imagery; Maps B and C modified after Hill (1972).

There is a clear need for robust geochronological constraints for the Suurberg Group in order to assess possible connections with other Mesozoic LIPs that occurred shortly before the fragmentation of Gondwana; resolve how it was deposited; and to provide a maximum age constraint to the overlying Uitenhage Group. This study aims to achieve this by dating zircons separated from five volcaniclastic deposits (Table 4.1) in different locations and at separate stratigraphic intervals throughout the Suurberg Group using U-Pb isotopic system by LA-ICPMS. Additionally, field observations will accompany this geochronological study because it is important to assess whether the units are primary volcaniclastics (i.e., pyroclastics) originating directly from explosive or effusive eruption, or are secondary volcaniclastics originating from post-volcanic re-sedimentation process.

Table 4.1. All five samples from the Suurberg Group collected from the different formations and locations and analysed between 2016 - 2017 in two annual analytical campaigns.

| Sample<br>code | Location            | Formation | Analytical<br>campaign |
|----------------|---------------------|-----------|------------------------|
| ASP1           | Beyers Vlei Outspan | Mimosa    | 2                      |
| ASP2           | Gorie Laaghte       | Mimosa    | 3                      |
| ASC3*          | Slagboom            | Unknown   | 3                      |
| ASUP*          | Slagboom            | Coerney   | 3                      |
| ASLO           | Slagboom            | Coerney   | 3                      |

# 4.2 Results

### 4.2.1 Field observations

### Beyers Vlei Outspan (sample ASP1)

The Suurberg Group exposures at Beyers Vlei Outspan, in the panhandle of the Algoa Basin (Fig. 4.1) are limited to cuttings along an unnamed farm road, adjacent a small ephemeral stream, and at several 'koppies' or ridges that punctuate the otherwise relatively flat topography. There is a general dip of 10 - 25 ° N in the Suurberg Group in the region and a subsequent northward younging direction with the basalmost Slagboom Formation resting on Cape Supergroup basement (Fig. 4.2A). The Coerney Formation does not outcrop at Beyers Vlei Outspan as it is entirely covered by alluvium and loose scree, presumably because its less competent tuffaceous-dominated rock types are preferentially eroded. The overlying Mimosa Formation is also not well exposed, apart from several of the volcaniclastic interbeds in the mostly basaltic unit. These form positive features that protrude through scree and highly weathered basalt and are all comprise of massive pink tuffaceous sandstones, one of which was sampled (Fig. 4.2B).

### Gorie Laaghte (sample ASP2)

The Suurberg Group sparsely outcrops at Gorie Laaghte, situated 12 km ESE of Beyers Vlei Outspan, also along the southern margin of the panhandle (Fig. 4.1). However, a few roadside cuttings can be found along a farm road that expose the Slagboom Formation and the lower part of the Coerney Formation, although the latter unit is extremely weathered. Stratigraphically overlying these, and further to the north, the Mimosa Formation is similarly poorly exposed. However, there are abundant loose, *ex situ* cobbles and boulders of pink tuffaceous sandstones adjacent the road that were clearly excavated during its construction and maintenance (Fig. 4.2C). The absence of a river or steep slope that could have aided the transportation of these boulders by more recent alluvial or colluvial processes suggest indeed that the boulders are likely derived from the immediate underlying volcaniclastic interbeds in the Mimosa Formation (Fig. 4.1). They exhibit surficial white staining, which was removed with the hammer during sampling, and are otherwise unweathered (Fig. 4.2D). 2 kg of this material was collected from three lithologically identical boulders.

### Slagboom (samples ASLO, ASLUP and C3)

The Suurberg Group is exposed at Slagboom farm in the northern Algoa Basin (Fig. 4.1). Unfortunately, due to the recent construction of a game fence the historical roadside outcrops visited by Hill (1972) are completely destroyed and the only evidence that remains of the strata there are *ex situ* fragments of basalt and various tuffaceous rocks. One 45 cm boulder of unweathered light brown, massive tuffaceous sandstone was collected (sample C3), although it is unclear whether it was derived from the Coerney Formation or a volcaniclastic interval in the overlying Mimosa Formation. Fortunately, newly discovered superior exposures of the Suurberg Group exist nearby. A small farm track ~700 m east of the main Slagboom road intersects the Coerney Formation and exposes various unweathered volcaniclastic lithologies that are rarely exposed elsewhere (Fig. 4.2E). Three lithologies, each forming discrete layers, are exhibited in the outcrop, which overlie quarzitic breccias of the Slagboom Formation. These include: i) a basal, massive, beige and orange tuffaceous sandstone with poorly structured accretionary pellets and rare quarzitic pebbles (Fig. 4.2E, F); ii) an overlying breccia bed of variable thickness with angular clasts that are comprised of the same lithology that occupies the lower tuffaceous interval, as well as quarzitic clasts; iii) an uppermost pale green-white tuffaceous interval with extremely rare accretionary pellets and no quartzite clasts. The lower and upper tuffaceous intervals were collected (samples ASLO and ASUP, respectively) because they appear predominantly volcanic origin with minimal detrital input. Further, these two units are typical lithologies intersected by boreholes drilled through the Coerney Formation (Hill, 1972; Marsh, 2016).

Fig. 4.2. (Following page). Geological context of the Suurberg Group samples in the northern Algoa Basin. (A) N-S cross section along service road at Beyers Vlei Outspan, where the Suurberg Group is exposed (inset). Yellow star indicates the position of the ASP1 sample in map-view. Blue dashed line indicates a perennial river. (B) Field appearance of the raised koppies and ridges are composed of tuffaceous rocks that are more resistant to erosion than surrounding basalts. White arrow indicates sampled unit. (C) Roadside occurrence of *ex situ* tuffaceous boulders and cobbles Gorie Laaghte. (D) Close-up photograph of one of the sampled cobbles in Fig. 2C, exhibiting the unweathered pink tuffaceous lithology and white weathered surface. (E) Fresh outcrop of three lithological units in the Coerney Formation exposed along a farm road at Slagboom. The deposit consists of a light grey massive tuffaceous sandstone (i), breccia (ii) and massive silty sandstone with accretionary pellets (iii). White arrows point to the two sampled units. (F) Close-up of the lowermost interval in Fig. 2E exhibiting constituent accretionary pellets and quartzite clasts. White arrows point to accretionary pellets and the colourless arrow indicates a quartzite clast



### 4.2.2 U-Pb Geochronology

### Beyers Vlei Outspan (sample ASP1)

Zircon crystals from this sample vary in size ( $\sim$ 50 -  $\sim$ 100 µm) and shape, with common angular fragments or rounded grains and are rarely euhedral. Most are colourless although some were orange-pink presumably due to oxide staining that gives the entire rock a pinkish hue. Internally, their CL images show a great diversity of morphologies, with oscillatory zonation being common, although not always present (e.g., crystal 99 in Fig.4.3). Most Jurassic crystals show bright luminescence. The highest number of concordant dates (73 out of 105) of all five samples from the Suurberg Group is found in this sample. These range from Mesozoic ( $\sim$ 36 %), Palaeozoic (36 %) and Precambrian ( $\sim$ 28 %) and occupy a single youngest Jurassic peak at  $\sim$ 181 Ma (YPP) and several older subordinate peaks (Fig. 4.5; Table B1 in Appendix B; Fig. C1 in Appendix C). The youngest date in this dataset is 175 ± 4 Ma (YSG), while the youngest modelled date (YDZ) is at 172 +3.2/ -4.7 Ma (95% conf.). The presence of a few zircons that appear younger than the peak age of the youngest population is likely a reflection of subtle Pb-loss and not interpreted as actual younger components. We therefore consider  $\sim$ 181 Ma the most robust measure of the maximum deposition of this unit.



Fig. 4.3. Composite diagram of CL images of zircons that yield concordant dates from sample ASP1, Suurberg Group. Individual zircon indicated by white number; analytical spot (26  $\mu$ m diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are in red.

### Gorie Laaghte (sample ASP2)

Zircon crystals from this sample vary in size (~60 - ~120  $\mu$ m) and shape, with common angular fragments or rounded grains and are rarely euhedral. Crystals were either colourless, beige or light orange. Internally, the crystals also show diversity, with common oscillatory zonation (e.g. crystals 1.2 and 1.10 in Fig. 4.4), although not always present (e.g., crystal 1.12 and 2.2 in Fig. 4.4) and in some cases CL images were too obscured to adequately determine the internal morphological character (e.g., crystal 2.41 and 2.50 in Fig. 4.4). Of the 88 zircons analysed, 64 yield concordant dates that span the Mesozoic (~34 %), Palaeozoic (~42 %) and Precambrian (~24 %) and comprise multiple age peaks. The youngest and largest population peaks at 181 Ma (YPP), with additional smaller Mesozoic peaks, and numerous Palaeozoic and Precambrian peaks (Fig. 4.5; Table B2 in Appendix B; Fig. C2 in Appendix C). The youngest population is attributable to the volcanic source inherent to the tuffaceous rock, while older peaks likely reflect detrital input during post- or syn-depositional resedimentation. Other analytical metrics are: YSG = 174 ± 3 Ma; YDZ = 173.5 + 2.5 / -3.5 Ma at (95% conf.). We consider the ~181 Ma graphical peak (YPP) as a robust measure of the youngest age component and maximum depositional age of unit.



Fig. 4.4. Composite diagram of CL images of zircons that yield concordant dates from sample ASP2, Suurberg Group. Individual zircon indicated by white number following the system in Table B2 in Appendix B, analytical spot ( $26 \mu m$  diameter) with respective  ${}^{206}Pb/{}^{238}U$  date are in red.

Fig. 4.5. (following page) Concordant  ${}^{206}Pb/{}^{238}U$  dates for the five volcaniclastic deposits displayed as cumulative age probability diagrams (above) and as normalized probability density diagrams (below), where such that the coloured areas are equivalent for each sample. The age depicted for each sample is that which corresponds to the youngest graphically defined peak in this distribution (YPP). n = number of concordant dates.


#### Slagboom, central northern Algoa Basin

#### ASC3

Zircon crystals from this sample vary in size from 80 to 200 µm and have predominantly prismatic and some stalky habits. They are commonly angular fragments or show significant rounding and are rarely euhedral. Most crystals are colourless although some are orange-pink presumably due to oxide staining that gives the entire rock a pinkish hue. Internally, their CL images show a great diversity of morphologies, with oscillatory zonation being common (e.g., crystal 1, Fig. 4.6), although not always present (e.g., crystals 36 and 37, Fig. 4.6). In most cases, Jurassic aged zircons show typically brighter luminescence than older crystals (Fig. 4.6).



Fig. 4.6. Composite diagram of CL images of zircons that yield concordant dates from sample ASC3, Suurberg Group. Individual zircon indicated by white number; analytical spot (26 µm diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are in red.

Of the 54 zircons analysed, 36 yield concordant dates that span the Mesozoic (~17 %), Palaeozoic (~39 %) and Precambrian (~44 %) and comprise multiple age peaks. The youngest and largest population peaks at 181 Ma (YPP), with additional smaller Mesozoic peaks, and numerous Palaeozoic and Precambrian peaks

(Fig. 4.5; Table B3 in Appendix B; Fig. C3 in Appendix C). The youngest population of zircons with a peak at ~182 Ma is attributable to the volcanic source inherent to the tuffaceous rock, and older populations are likely derived from detrital input during post or syn-depositional resedimentation. Other analytical metrics are:  $YSG = 182 \pm 3$  Ma; YDZ = 181.9 + 3.1 / -3.3 Ma (95% conf.). We consider the ~182 Ma graphical peak (YPP) as a robust measure of the youngest age component and maximum depositional age of unit. This estimation is corroborated by other metrics, which suggests that Pb-loss is negligible in this sample.

#### ASUP

Zircons from this sample have considerable morphological variation, both externally and internally. Small, rounded, euhedral and fragmentary ~50  $\mu$ m crystals are common, and sizes range to ~120  $\mu$ m. Most of the euhedral crystals occupy either stubby or stalky habits, and are rarely prismatic. All crystals were colourless or pale beige and have fine or medium oscillatory zoning (e.g., crystals 13 and 23 in Fig. 4.7) and rarely with inclusions (e.g., crystal 74 in Fig. 4.7).

Fig. 4.7. (Following page). Composite diagram of CL images of zircons that yield concordant dates from sample ASUP, Suurberg Group. Individual zircon indicated by white number; analytical spot (26  $\mu$ m diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are in red.



Of the 64 analysed crystals, 29 yield concordant dates, which are Mesozoic (~34 %), Palaeozoic (41 %) and Precambrian (25 %), occupying multiple age populations (Fig. 4.5; Table B4 in Appendix B; Fig. C4 in Appendix C). Of these, the largest and youngest age population is Jurassic and peaks at ~183 Ma (YPP), while older populations are subordinate. The youngest zircon in the sample is  $182 \pm 2$  Ma (YSG) and the youngest modelled detrital zircon (YDZ) is 181.5 + 2.5 / -2.9 Ma (95% conf.). All of these metrics overlap and definitively point to maximum deposition at ~183 Ma (YPP).

# ASLO

Crystals are very similar in shape, colour and size to those found in the overlying sample ASUP (Fig. 4.2E). They range from 50 to 110  $\mu$ m, and show either stubby or stalky elongation with rare short prisms. Some crystals are rounded (e.g., crystal 107 in Fig. 4.8), others fragmentary (e.g., crystal 99 in Fig. 4.8), and some euhedral. Internally, they show fine to medium oscillatory zoning, or the zoning is poorly developed. Some crystals have complex growth histories with inherited xenocrystic cores, inclusions and later overgrowths (e.g., crystal 107 in Fig. 4.8), while many do not show any of these features (e.g., crystal 46 in Fig. 4.8).



Fig. 4.8. Composite diagram of CL images of zircons that yield concordant dates from sample ASLO, Suurberg Group. Individual zircon indicated by white number; analytical spot (26  $\mu$ m diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are in red.

Most of the 85 crystals analysed in this sample are discordant, leaving just 24 concordant dates, ranging from Mesozoic (25 %), Palaeozoic (~33 %) and Precambrian (~42 %). The youngest graphical population (YPP) is Jurassic and peaks around ~187 Ma (Fig. 4.5; Table B5 in Appendix B; Fig. C5 in Appendix C), although it is noted that a large number of discordant 178 - 191 Ma zircons are present in the sample but failed to pass the concordance threshold (Table B5 in Appendix B). The youngest date is  $186 \pm 3$  Ma (YSG), and modelling yields a youngest detrital age (YDZ) of 185.2 + 2.4 / -3 Ma (95% conf.). Both these metrics are compatible with a ~187 Ma (YPP) period of maximum deposition for the tuffaceous unit.

# **4.3 Discussion**

Since samples were taken from tuffaceous interbeds within the dated basalts (ASP1 and ASP2), and from below them – in the Coerney Formation (ASC3, ASUP and ASLO) – it can be reasonably assumed that the youngest populations of these clearly mixed-origin volcaniclastic deposits are roughly equivalent to their actual depositional age. We are therefore able to definitively date the Suurberg Group as a Lower Jurassic and possibly Pliensbachian-Toarcian unit, based on the youngest populations of zircons from five volcaniclastic intervals in the Coerney and Mimosa formations that range from ~187 to ~181 Ma (Fig. 4.9). This is compatible with the highly uncertain  $194 \pm 11.9$  Ma Ar-Ar age for basalts from the Mimosa Formation (Kirstein, 1997) and strongly suggests that the previously held notions of a younger age for the Suurberg Group based on K-Ar whole rock techniques reported by McLachlan and McMillan (1976) are spurious (Fig. 4.9).

Given the relatively imprecise U-Pb techniques employed here and the lack of primary pyroclastic deposits recovered from the Suurberg Group volcaniclastic intervals and the use of a graphically-defined youngest age component, there still remains a fairly large yet quantitatively undefined uncertainty associated with its Lower Jurassic age interpretation. Nevertheless, these new ages are compatible with the emplacement of the volumetric Karoo ( $183.0 \pm 0.5 - 182.3 \pm 0.6$  Ma) and Ferrar ( $182.779 \pm 0.033$ Ma –  $182.430 \pm 0.036$  Ma) large igneous provinces (Svensen et al., 2012; Burgess et al., 2015). The new ages for the Suurberg Group are also compatible with an imprecisely dated dolerite swarm (188-178 Ma) exposed on the Falkland Islands (Richards et al., 1996; Richards et al., 2013), which was also relatively close to the northern Algoa Basin during the Early Jurassic (Jokat et at., 2003; Macdonald et al., 2003).



Fig. 4.9. Youngest age populations for each of the five samples plotted as a probability density diagrams along the timescale of Cohen et al., (2013) for the Jurassic, with corresponding graphically defined peaks (YPP). Crystallization ages for the Karoo and Ferrar large igneous provinces, and two historic ages of the Suurberg Group are plotted as horizontal black rectangles representing the associated  $2\sigma$  error. a = McLachlan and McMillan, (1976); b = Burgess et al. (2015); c = Svensen et al. (2012); d = Moulin et al. (2017); e = Kirstein (1997).

Although dating the Suurberg Group by U-Pb methods has been a success, and this enables a definitive Lower Jurassic ~187 to ~181 Ma age determination, its exact age and correlation is still somewhat ambiguous based on the U-Pb data alone. However, it seems that the most parsimonious interpretation is that of Marsh (2016), who poroposes that the basalts in the Mimosa Formation are the distal expression of

Karoo continental flood basalts rather than the result of incipient volcanism in the Cape Fold Belt based on geochemical evidence. These new U-Pb data are consistent with the correlation between the Suurberg and Drakensberg groups and the most likey age for the Suurberg Group is therefore Pliensbachian – Toarcian, a time when there was extensive volcanism in SW Gondwana (e.g., Svenson et al., 2012; Burgess et al., 2015).

While there appears to be an association of the Suurberg Group with the contemporaneous Karoo and Ferrar large igneous provinces, its genesis and significance in the Mesozoic breakup of SW Gondwana remains somewhat enigmatic. In order to assess these aspects of the Group, its field relationships need to be described in detail, something that remains extremely challenging considering the exceptionally poor outcrop quality in the basin. An important question that remains unanswered is whether the Suurberg Group is a pre-rift or syn-rift succession within the Algoa Basin. The new U-Pb ages reported here are consistent with geochemical correlations with basalts of the Drakensberg Group of Marsh (2016) who proposed that the basalts in the Mimosa Formation are the distal expression of Karoo continental flood basalts rather than the result of incipient volcanism in the Cape Fold Belt. Nevertheless, this does not lend insights into whether the basalts were deposited into an actively subsiding Algoa Basin, or on a land surface that was downfaulted by subsequent rifting – either situation is possible. In order to answer this question, which relates to the overall significance of the Lower Jurassic unit in Gondwanan breakup, it needs to be determined whether: 1) the volcaniclastic units in the Coerney Formation underlying the basalts and those within them are derived from the same mafic volcanic source during the Karoo or Ferrar LIP events, or are entirely unrelated contemporaneous units; and 2) there is a hiatus between the Suurberg Group and the overlying clearly riftrelated Uitenhage Group. Neither of these questions can be answered unequivocally in this chapter, although some thoughts are shared below.

The volcaniclastic interbeds found in the principally basaltic Mimosa Formation are considered especially important in determining the mechanism for the Suurberg Group deposition but the lack of quality outcrop makes describing field relationships difficult. Hill (1972) initially considered some of these units as 'tuff

dykes' that postdate and cross-cut basaltic intervals. Marsh (2016) suggests instead that flood basalts sourced from the north invaded poorly consolidated and recently deposited volcanicalstics to simply give the appearance of dykes, which removes the necessity for an incipient volcanic genesis for the Group. The new U-Pb data from five volcaniclastic deposits throughout the Mimosa and Coerney formations show that they are all roughly contemporaneous Pliensbachian - Toarcian. However, in order to assess whether any of the volcaniclastic interbeds in the Mimosa Formation are in fact dykes that postdate the deposition of basalt one needs to attain higher precision geochronological constraints on each of the lithologies, excavate a region in order to assess relative stratigraphic context and field relations, and date primary ash beds that have not been resedimented. Each of these tasks requires considerable effort and is beyond the scope of this study. One of the concerns raised by Marsh (2016) is that the source of the volcaniclastic material. The presence of ash beds in the upper Karoo Supergroup that have a Patagonian silicic volcanic source (e.g., Bordy and Abrahams, 2016), and outcrop commonly in the main Karoo Basin, invokes the possibility that the same volcanic source is responsible for the tuffaceous lithologies of the Suurberg Group (Marsh, 2016). Another distal origin for the ash is from the Karoo LIP, where volcaniclastic rocks are formed by explosive mafic volcanism under certain phreatic conditions (e.g., Lock et al., 1974; Holzförster, 2007; McClintock et al., 2008). Perhaps the volcaniclastic material was transported south from sites in the main Karoo Basin at ~183 Ma both before and during the flood basalt deposition. One of the problems with the Karoo LIP being a source for the tuffaceous rocks is that they contain an abundance of young, syn-depositional zircons, which is not the case in the zircon-poor flood basalts in the Drakensberg Group (Svensen et al., 2012). Nevertheless, the youngest zircons do look superficially similar to those recovered from rare intervals in the mafic subvolcanics of the Karoo LIP (see fig. 2 in Svensen et al., 2012), although morphological characterization of zircons of the Karoo LIP has not been carried out and would be necessary for a robust comparison to be made. Instead, future researchers interested in ascertaining whether the volcaniclastics of the Suurberg Group are derived from the Karoo LIP, or elsewhere might consider geochemical fingerprinting of the youngest zircons analysed in this study using trace element (Belousova et al., 2002) and Hf isotopes (Anderson et al., 2009).

In order to determine whether there is a hiatus between the Suurberg and Uitenhage Groups, improved chronology of the latter strata needs to be established. If the age of the lowermost Uitenhage Group were known, then the difference in age may be used to assess their stratigraphic relationship. If they are unconformable, differing in age to a large extent, then it is likely that rifting and subsidence in the Algoa Basin, and by inference extension in the southern Cape, occurred after the Karoo and Ferrar LIPs and not during it. Alternatively, if they are conformable, then it is probable that extension began during the emplacement of the Suurberg Group in the late Early Jurassic. Unfortunately, the lack of quality outcrops, especially of the contact between the two Groups, hinders any direct geological assessment of the contact. Further, it is not possible to determine whether the Suurberg Group was deposited during normal faulting or prior to it, whereas the deposition of the Uitenhage Group clearly coincides with active faulting evidenced by the presence of syn-depositional faults (e.g., Shone, 1976, 2006; Tankard et al., 1982). The geochronology of the clearly rift-related Uitenhage Group follows in Chapter 5, which provides the basis for determining the breakup-history of SW Gondwana in the southern Cape. The new U-Pb data presented here has conclusively demonstrated a late Early Jurassic (Pliensbachian – Toarcian) age for the Suurberg Group and hopefully puts to rest the quoting of spuriously young and poorly recorded historic ages for the unit. Further, because the Suurberg Group underlies and is therefore older than the Uitenhage Group, its confirmed late Early Jurassic age pushes back the maximum age constraint for the Uitenhage Group from the frequently quoted Upper Jurassic (e.g., Green et al., 2016; Richardson et al., 2017; Baby et al., 2018) and raises the new possibility that the Uitenhage Group is older than previously envisioned.

# Chapter 5: Chronostratigraphic framework for the Uitenhage Group

# **5.1 Introduction**

Syn-rift deposits provide the only means to determine the processes for initiation and early history of fragmenting continental plates that led to the formation aulacogens, rift basins, and potentially even passive continental margins. Dating these early rift-related successions in various extensional settings has enabled considerable progress in understanding important tectonic, plate kinematic and geodynamic processes (e.g., Roberts et al., 2012). Unlike in other well-studied Mesozoic rift-related settings where syn-rift strata contain contemporaneous fault bound volcanic units, such as in the Newark basins of eastern North America (e.g., Sutter, 1988; Olsen, 1997), volcanism did not occur in the southern Cape during extension, and therefore there is a scarcity of datable volcanic interbeds that might have conveniently provided a means to determine the chronological evolution of rifting in this region. Although the Suurberg Group has been demonstrated to be Lower Jurassic, and contemporaneous with the Karoo and Ferrar LIPs (Encarnación et al., 1996; Burgess et al., 2015; see Chapter 4), its relation to the overlying syn-rift Uitenhage Group remains unclear (Hill., 1972; McMillan et al., 1997) and therefore can only provide a maximum age constraint to the Mesozoic rifting in the southern Cape. These U-Pb age constraints, presented in Chapter 4, already challenge previous assertions that the Uitenhage Group is no older the Upper Jurassic, and open the possibility that rifting in the southern Cape began earlier that previously understood. Here, we date zircons from the syn-rift Uitenhage Group in a number of onshore basins in the southern Cape using the U-Pb decay system with LA-ICPMS and CA-TIMS analytical methods in order to directly assess the age of the accommodated syn-rift strata and elucidate the evolution of rifting recorded in these strata.

Necessarily, this chapter presents a large database of U-Pb ages from zircons from pyroclastic, volcaniclastic and terrigenous clastic rock samples in order to constrain the timing of deposition of the Uitenhage Group in eight isolated basins and between isolated outcrops within each. These data are integrated with all other available chronostratigraphic information where possible in order to synthesize the chronostratigraphy of each basin (section 5.3) and then later build a chronostratigraphic framework for the entire southern Cape (section 5.4). As a cautionary note, pyroclastic deposits, due to their primary volcanic origin, are considered here as the most reliable means to determine a true depositional age, while volcaniclastic and terrigenous clastic rock samples are secondary as they can only provide maximum depositional ages of strata. This is an important distinction that will be reflected in the results section of this chapter where data is presented strictly on a basin-by-basin basis regardless of the medley of data types (detrital U-Pb and primary volcanic U-Pb). The decision to lay out the data in this fashion has been made following two practical considerations: 1) future workers considering palaeoenvironmental, palaeontological or lithological changes through time and depth benefit from considering individual basins rather than the entire Uitenhage Group across discontinuous basins; 2) the data are integrated closely on stratigraphic grounds, so that where one sample defines an age of maximum deposition, a sample from an overlying deposit with a true depositional age (in this or future studies) may provide constraints on the enveloped interval by stratigraphic bracketing.

The intensive Late Cretaceous and Cenozoic erosion of the southern Cape (e.g., Tinker et al., 2008a; Wildman et al., 2015; Green et al., 2016) has resulted in the severely discontinuous exposures of the Uitenhage Group that are themselves contained in the isolated erosional remnants of rift basins (Muir et al., 2017a, b). Therefore, it is deemed necessary to sample from a wide area, in as many parts of as many basins as possible in order to minimize potential geographical biases. In accordance, the dataset presented below consist of 33 samples spanning eight basins in the southern Cape (Table 5.1). Three of the tabled samples (i.e., AK5, ASH1 and RAE) were investigated by Isabel van Breda, under my close supervision from data collection to processing, as part of her BSc honours project at the University of the Western Cape in 2017

(van Breda, 2017). Sample processing procedures and equipment used in analyzing these three samples are identical to those described in section 3.2.2.1 of Chapter 3, and can therefore be meaningfully integrated with the rest of the samples presented in this section for a more complete and robust chronostratigraphic framework across the southern Cape.

Table 5.1. All samples from the Uitenhage Group collected from eight basins in the southern Cape and analysed from 2015 - 2018 in four annual analytical campaigns. \* = van Breda (2017).

| Sample | Basin           | Analytical |
|--------|-----------------|------------|
| code   |                 | campaign   |
| ROBE   | Robertson       | 3          |
| AK5*   | Robertson       | 3          |
| ASH1*  | Robertson       | 3          |
| RAE*   | Robertson       | 3          |
| HBUP   | Heidelberg      | 1          |
| HBMB   | Heidelberg      | 1          |
| HBMill | Heidelberg      | 3          |
| HBUE1  | Heidelberg      | 3          |
| KLIP   | Mossel Bay      | 2          |
| MATJ   | Mossel Bay      | 3          |
| SITT2  | Mossel Bay      | 1          |
| SITT3  | Mossel Bay      | 1          |
| VOEL   | Mossel Bay      | 1          |
| MBHF   | Mossel Bay      | 4          |
| OES1   | Oudtshoorn      | 4          |
| CALI   | Oudtshoorn      | 2          |
| DERU   | Oudtshoorn      | 1          |
| DERC1  | Oudtshoorn      | 3          |
| OKT1   | Oudtshoorn      | 4          |
| KNYE   | Knysna          | 4          |
| BREN2  | Knysna          | 3          |
| PLETT  | Plettenberg Bay | 1          |
| RBGS1  | Plettenberg Bay | 4          |
| GKT1   | Gamtoos         | 4          |
| GES3   | Gamtoos         | 4          |
| AECOC  | Algoa           | 3          |
| AKIRK  | Algoa           | 3          |
| AKSTR  | Algoa           | 3          |
| KDUNS  | Algoa           | 3          |
| KBCS2  | Algoa           | 4          |
| KBEZS1 | Algoa           | 4          |
| KWAS3  | Algoa           | 4          |
| SRFS1  | Algoa           | 3          |

# 5.2 Basin-by-basin chronostratigraphy

# 5.2.1 Robertson Basin

The Robertson Basin is located in the vicinity of Robertson and Ashton in the Western Cape Province (Fig. 5.1). It is situated along the Worcester-Pletmos basin line and bounded to the north by the Worcester Fault. The Mesozoic rift strata that occupy the basin, the Enon and Kirkwood formations, rest unconformably atop the Cape Supergroup (Fig. 5.1), which occupies the southern downthrown side of the Worcester Fault immediately surrounding the basin. The presence of the uppermost Cape Supergroup (Witteberg Group) along the southern margin of the Basin and heterolithic diamictite clasts within the conglomerates in the Uitenhage Group indicates that the Dwyka Group probably exists in the subsurface basement beneath the basin depocentre. A ~3 km zone of Precambrian Malmesbury Group outcrops north of the Worcester Fault and beyond this, further north, lie erosion-resistant sandstone and quartzite of the Cape Supergroup that form the Langeberg Mountains. The Robertson Pluton, an easterly outlier of the Cape Granite Suite, lies immediately west of Robertson in the footwall of the Worcester Fault.

Outcrops of the Uitenhage Group are very sparse in the Robertson Basin and limited to several river-cut cliffs in and around Ashton along the banks of the Kogmanskloof River, road-cuttings along the R60, and furrows, road-cuttings and construction sites in the north of Robertson. No formal mapping of sedimentary facies variation was undertaken in the Robertson Basin although our limited observations indicate that finer-grained deposits occupy the central region of the basin, while conglomeratic deposits are closer to the edges. Despite a lack of exposures hindering our understanding of the basin-fill stratigraphy, it is estimated that 1.2 km of Uitenhage Group occupy the basin (Rigassi and Dixon, 1972; Dingle et al., 1983). Although no specific evidence is quoted by these authors, the 215.9 m deep W202 borehole did not reach basement before terminating and thus provides a compatible minimum thickness (see Fig. 8 of Muir et al., 2017b in section 2.2.2 of this thesis).



Fig. 5.1. Simplified geological map of the Robertson Basin. Letters and colours are lithostratigraphic units and unshaded areas are recent alluvium. Abbreviations: Towns: A = Ashton; M = Montagu; R = Robertson. Stratigraphic units arranged from oldest to youngest: MG = Malmesbury Group; CGS = Cape Granite Suite; TMG = Table Mountain Group; BkG = Bokkeveld Group; WtG = Witteberg Group; DG = Dwyka Group; UG = undifferentiated Uitenhage Group. Base maps modified from the 1: 250 000 geological maps sheets 3319 (Gresse ,1997) and 3320 (Theron ,1991) of the Council for Geoscience overlain on ESRI satellite imagery.

# 5.2.1.1 Outcrop description

#### Central Robertson Basin (samples ROBE and Ak5)

The roadside outcrop  $(33^{\circ}49'10.39"S; 19^{\circ}58'12.35"E;$  Fig. 5.1) is dominated by 50 cm to 3 m thick laminated red-grey mudstones and poorly developed varicoloured palaeosols and interbedded with subordinate 10 cm to 1 m thick medium-grained red-grey sandstone and massive ~ 2 m thick red oligomitic orthoconglomerate that all dip at ~ 20° to the NW (Fig. 5.2A). A massive, 10 – 50 cm thick, pink montmorillonite-rich bentonite (from which sample ROBE was taken) is interbedded with the laminated mudstones and was sampled. The bentonite is laterally extensive for 10 m before being lost due to outcrop limitations although it presumably extends well beyond the outcrop in the subsurface and is intersected by the nearby borehole W202 at ~17 m depth (Fig. 5.1; see Fig. 8 of Muir et al., 2017b in section 2.2.2 of this thesis for detailed log).

A second road-cutting approximately 1 km to the west of this locality along the R60 ( $33^{\circ}49'5.09''S$ ;  $19^{\circ}57'28.24''E$ ; Fig. 5.1) comprises predominately 2 – 5 m thick horizontally laminated to massive siltymudstone beds with subordinate 10 - 30 cm thick grey-brown silty-sandstone and red pebble conglomerate interbeds (Fig. 5.2B). All units dip ~  $45^{\circ}$  NE and are largely covered by scree. One of the more prominent silty-sandstone beds was sampled (sample Ak5).

#### River cutting in Ashton (sample ASH1)

Crudely-bedded conglomerates outcrop in river-cut cliffs in Ashton (33°49'45.08"S; 20° 3'48.12"E; Fig. 5.1) with an overall red colour (Fig. 5.2C, D). Although unmapped previously, these outcrops are assigned here as the Enon Formation given their > 90% conglomeratic content. These predominately clast-supported conglomerates are polymictic with clasts consisting of diamictite, shale, quartzite, gneiss, granitoid, quartz and various other rock types reflecting a source from the Dwyka Group, which outcrops ~10 km to the east and probably exists in the in the basement beneath the Uitenhage Group. Additionally, some of the

sandstone, quartzite and shale clasts are probably also derived from the Cape Supergroup. Clasts range from granule to cobble size and are in a coarse-grained sandstone matrix. In some places the conglomerate is matrix-supported, or entirely void of clasts, forming subordinate sandstone lenses, one of which was sampled.

Fig. 5.2. (Following page). Geological context of the Uitenhage Group samples in the Robertson Basin. (A) Laterally continuous sandstones and mudstone beds, with subordinate conglomerate deposits and a bentonite bed exposed at a roadside outcrop in the central Robertson Basin. (B) Sandstones and mudstones exposed in the central Robertson Basin. (C) River-cut cliff face exposing conglomerates of the Enon Formation in Ashton. White dashed line highlights the area enlarged in D. (D) Sandstone lens that was sampled in the conglomerate-dominated deposit. Inset: Typical disc-shaped clast composed of diamictite. (E) Conglomerate deposit exposed NE of Robertson in a weathered road-cutting. Pink arrows point to the precise location from where samples were extracted.



#### Road-cutting NE of Robertson (sample RAE)

Massive to crudely bedded oligomictic clast-supported conglomerates outcrop in an isolated roadside outcrop (Fig. 5.2E) north of Robertson that are assigned the Enon Formation (33°47'36.88"S; 19°54'1.50"E; Fig. 5.1). The sub- to well-rounded cobble clasts are composed of sandstone and quartzites and are probably sourced from Palaeozoic Table Mountain Group. The coarse-grained sandstone matrix of the conglomerate was sampled for its detrital zircon content.

# 5.2.1.2 U-Pb geochronology

#### ROBE

The crystals from the ROBE bentonite sample are strongly euhedral and range from needle to shortprismatic in shape, are colourless and have rare inclusions. Overall their lengths range from  $50 - 200 \,\mu\text{m}$ although the short end of this range is predominately comprised of fragmentary grains. Internal crystal morphology revealed from CL images (Fig. 5.3) show fine to medium oscillatory zoning in all grains with very few exceptions where xenocrystic cores are present (e.g., crystal 8 in Fig. 5.3).

Of the 102 crystals analysed only 42 were concordant and yielded 90% Mesozoic, 7% Palaeozoic, and 3% Precambrian dates (Fig. 5.4; Table D1 in Appendix D; Fig. F1 in Appendix F). The lack of any significant detrital zircons, along with the purity of the massive montmorillonite that makes up the deposit suggests a primary volcanic origin. A single population of around ~ 152 Ma on the probability density diagram (Fig. 5.4) is formed by 38 Mesozoic dates. No concordia age can be calculated when plotted on the concordia diagram because of the relatively large spread of dates that do not all intersect at  $2\sigma$  error (Fig. 5.5). The TuffZirc algorithm identifies the most coherent population of 35 dates at 151.6 +0.9/-1.0 Ma with 95% confidence (Fig. 5.5), which is considered a reasonable estimate for the age of the bentonite based on the LA-ICPMS data alone. CA-TIMS analyses of 9 crystals yield 6 concordant dates (Fig. 5.6; Table G1 in Appendix G), 5 are within error of each other (at  $2\sigma$ ) and have a weighted mean age of 150.3 ± 0.2 Ma with

minimal scatter (MSWD = 0.61). This is interpreted as a depositional age of the pyroclastic deposit despite a single younger date of  $141.8 \pm 1.3$  Ma. This crystal is excluded from the weighted mean calculation because it yielded a non-reproducible result and is interpreted as an outlier that suffered Pb loss due the imperfect chemical abrasion. More aggressive pretreatment and additional analyses would be needed to assess if there is actually a young ~142 Ma component to this deposit that is subordinate to the one at ~150 Ma but there remains a possibility that the unit was deposited approximately at this time. Notably, the weighted ean from the CA-TIMS U-Pb data is slightly younger than the age calculated using TuffZirc, which suggests that the TuffZirc algorithm is affected by subtle inheritance and is slightly too old.



Fig. 5.3. (Following page). Composite diagram of CL images of zircons that yield concordant dates. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are red.

Fig. 5.4. (Following page). U-Pb dates of zircons from all samples in the Robertson Basin shown as age probability density diagrams (blue area) combined with frequency histograms (grey bars) with 20 Ma intervals. Only concordant data are shown: n = x/y means that x out of a total of y zircons yielded concordant dates. Youngest graphically-defined peak (YPP) is indicated. Note that data for samples AK5, ASH1 and RAE are extracted from van Breda (2016).







Fig. 5.5. Concordia diagram (left) and concordant  $^{206}$ Pb/ $^{238}$ U dates arranged by age. Horizontal grey line is the age calculated by TuffZirc with vertical grey lines representing dates rejected from the age calculation. All individual errors are  $2\sigma$ .



Fig. 5.6. U-Pb dates from LA-ICPMS (left) and CA-TIMS (right) analytical procedures ordered by age. Grey uncertainty ranges are dates that are excluded from age calculations. Both the TuffZirc age (red) and the weighted mean (green) calculated using 5 dates acquired by CA-TIMS are indistinguishable.

Of the 99 analyses, 64 yield concordant dates of which 6% are Mesozoic, 48% Palaeozoic and 46% Precambrian (Fig. 5.4; Table D3 in Appendix D; van Breda, 2017). The wide range of dates with multiple peak ages on the probability density diagram is typical of a detrital zircon sample, and therefore dates are assessed to constrain maximum deposition of the sandstone sample. Analytical metrics are as follows: YSG =  $145 \pm 2$  Ma; YDZ = 144.4 + 3.0/-4.4 Ma (95% conf.); YPP = 145 Ma. An additional metric is included here because a concordia age can be calculated from the youngest 7 grains that intersect the concordia plot (Fig. F1A in Appendix F). These grains both define an equivalent population and are graphically concordant (Ludwig, 2003), and therefore provide a reliable concordia age of  $147.0 \pm 1.1$  Ma. Following convention, the preferred maximum depositional age is 145 Ma (YPP), which is within error of YSG and YDZ ages, and is only slightly younger than the concordia age. Realistically however, the latter is roughly compatible with the graphically-derived YPP age given that no associated uncertainty is quoted with this metric.

# ASH1

Of the 99 analyses, 95 yield concordant dates of that are 80 % Palaeozoic and 20% Precambrian (Fig. 5.4; Table D3 in Appendix D; Fig. F1B in Appendix F; van Breda, 2017). The wide range of dates with multiple peak ages on the probability density diagram is typical of a detrital zircon sample, and therefore dates are assessed to constrain maximum deposition. Analytical metrics are as follows:  $YSG = 374 \pm 6$ ;  $YDZ = 373.7 \pm 5.1/-7.0$  Ma (95% conf.); YPP = 375 Ma. The absence of Mesozoic grains precludes these data from helping refine the chronostratigraphy of the Robertson Basin and all metrics are older than the ~Jurassic – Cretaceous age range for the Uitenhage Group.

## RAE

Of the 47 analyses, 50 yield concordant dates of that are 32 % Palaeozoic and 68% Precambrian (Fig. 5.4; Table D4 in Appendix D; Fig. F1C in Appendix F; van Breda, 2017). The wide range of dates with multiple peak ages on the probability density diagram is typical of a detrital zircon sample, and therefore dates are assessed to constrain maximum deposition. Analytical metrics are as follows:  $YSG = 505 \pm 8$  Ma; YDZ = 504.6 + 7.4/-8.3 Ma (95% conf.); YPP = 535 Ma. Since there are no Mesozoic grains in the sample, it cannot aid in refining the depositional age of the unit.

## 5.2.1.3 Basin synthesis

The U-Pb data from the Robertson Basin are somewhat helpful in determining the age of the Uitenhage Group fill in the Robertson Basin. The Tithonian primary ash deposit (sample ROBE) in the Kirkwood Formation and nearby sandstones that were not deposited before the latest Jurassic (~145 Ma) suggest that much of the exposed strata are Upper Jurassic to Lower Cretaceous. This correlates with the accepted, yet unconfirmed age for the Kirkwood Formation in the Algoa Basin. However, there is potentially > 1 km of Uitenhage Group buried in the depocentre of the basin, 215.9 m of which is intersected by borehole W202 (Fig. 8 of Muir et al., 2017b in section 2.2.2 of this thesis) suggesting that there are older, Middle and perhaps even Lower Jurassic deposits in the subsurface. The location of the borehole W202 and the outcropping Tithonian bentonite less than 300 m away (Fig. 5.1) also informs the chronostratigraphy of the basin. The dated bentonite (ROBE) probably correlates with the middle to upper parts of the borehole log (Fig. 5.7) based on bedding that dips 20° NW. Following this, it is probable that there are considerably older deposits that underlie the Tithonian interval in the Robertson Basin.



Fig. 5.7 Sketch diagram of the central Robertson Basin showing how the Tithonian bentonite (sample ROBE) correlates with the interval intersected by borehole W202 based on a consistent tilt of bedding ~20° NW. The two samples from conglomeratic units close to the basin margin do not help resolve the intra-basin stratigraphy, because neither contain young, Jurassic – Cretaceous zircon populations. Perhaps the only noteworthy differences between the zircon distribution in these two samples is the proportion of Cambrian zircons that correspond to the Cape Supergroup, which is greater in the Enon Formation in the east of the basin compared to the west, and the presence of a younger, Devonian population present in the west but absent in the east. These subtle differences are probably caused by the local sourcing of detritus during their deposition, with the conglomerates in the west having an exclusively Table Mountain Group and Cape Granite Suite source and those in the east containing younger source rocks. Field observations corroborate these findings, as the conglomerates at Ashton contain clasts of diamictite, most probably derived from the Dwyka Group, that are absent in the conglomerates at Robertson (Fig. 2C, D, E).

# 5.2.2 Heidelberg Basin

The Heidelberg Basin is situated south of the Langeberg Range in the vicinity of Heidelberg and Riversdale in the Western Cape Province (Fig. 5.8). The Uitenhage Group exposures are confined to an ovoid-shaped area in map view spanning 70 km in the E-W direction, following the orientation of the Worchester Fault, and 10 to 15 km N-S. In this region, Uitenhage Group contains the Enon, Kirkwood and Buffelskloof formations, although the stratigraphic relationship between isolated outcrops of these formations is highly uncertain. The presence of horizontally bedded, conglomerate-dominated Buffeslkloof Formation overlying the Enon and Kirkwood formations, which generally dip shallowly to the north (Viljoen, 1992), remains the only reliable stratigraphic constraint and this angular, and likely unconformable stratigraphic relationship provides no quantitative assessment of the chronology of the units. Fortunately, the lacustrine facies of the Kirkwood Formation contain abundant bentonite layers that are previously undated and active bentonite mining provides excellent quality outcrops, which otherwise would be restricted to road- and river-cuttings.

#### 5.2.2.1 Outcrop description

# Upper Horizon bentonite (sample HBUP)

A grey-white massive bentonite layer is exposed in an active quarry ~ 8.5 km NE of Heidelberg on the northern side of the R322 (34° 3'33.83"S; 20°52'42.72"E; Fig. 5.8) within the lacustrine facies association of the Kirkwood Formation. It is overlain by horizontally laminated grey mudstones, subordinate sandstones and rare conglomerates, which form shallow troughs that truncate underlying strata. The laterally extensive bentonite, named the 'Upper Horizon' by mining geologists at Cape Bentonite, has a constant thickness of 1.5 m over the 30 m lateral extent of the quarry and dips 15° to the N (Fig. 5.9A). The high purity and constant dimensions of the montmorillonite-rich bentonite bed suggest a primary ash-fall origin. Conglomerates of the Buffelskloof Formation down-cut into the Kirkwood Formation, and the two formations are separated by an angular unconformity in the vicinity of the sample locality.



Fig. 5.8. Simplified geology of the Heidelberg (left) and Mossel Bay (right) basins. Letters and colours are stratigraphic units and unshaded areas are recent alluvium and Cenozoic deposits. Abbreviations: Towns: H = Heidelberg; Ha = Hartenbos; He = Herbertsdale; M = Mossel Bay; R = Riversdale; V = Vlees Bay. Stratigraphic units arranged from oldest to youngest: KG = Kaaimans Group; MGS = Maalgaten Granite Suite; TMG = Table Mountain Group; BkG = Bokkeveld Group; UE = Enon Formation; UK = Kirkwood Formation; UB = Buffelskloof Formation; UH = Hartenbos Formation. Base maps modified from the 1: 250 000 geological maps sheets 3420 (Malan, 1993), 3320 (Theron ,1991) and 3322 (Toerien and Roby, 1979) of the Council for Geoscience overlain on ESRI satellite imagery.

#### Main Bentonite Horizon (sample HBMB)

Quarries around the Cape Bentonite processing factory ~ 3 km NE of Heidelberg along the R322 expose a massive green-grey bentonite named the 'Main Horizon' ( $34^{\circ} 4'11.37"S$ ;  $20^{\circ}55'33.56"E$ ; Fig. 5.8). It ranges between 1 and 1.5 m in thickness and is capped by either siltstones, conglomerates or a white or green zeolitic layer, all interpreted to form part of the lacustrine facies association of the Kirkwood Formation. The particular quarry from which this sample was taken has since been backfilled. (Fig. 5.9B).

#### Millenium Bentonite Horizon (Sample HBMill)

A quarry ~4.5 km west of Heidelberg (34° 5'22.60"S; 20°54'24.31"E; Fig. 5.8) exposes a 1.7 m thick light grey to white bentonite layer (aka the 'Millenium Horizon'; Fig. 5.9C). Although the bottommost ~1 m of the bentonite is a generally massive claystones, its upper part is horizontally laminated and comprises alternating white claystones and grey siltstone interlaminae. Locally, rare ripple-cross laminations replace the horizontal laminations. There are also lateral variations in grain-size in the bentonite, with subordinate silt, sand and granules occurring commonly in its eastern section but mostly absent further to the west. This grain size variation indicates syn-sedimentary reworking and significant detrital input. A sample was extracted from the massive claystone away from laminae.

#### Moordenaarskop road-cutting (Sample HBUE1)

The few isolated road-cuttings in the southern and southwestern margins of the Heidelberg Basin expose the Enon Formation. In one of these, at Moordenaarskop ~3 km SW of Heidelberg along the R322 south of the N2 highway (34° 7'1.85"S; 20°55'56.88"E; Fig. 5.8), crudely bedded red conglomerate beds have an overall dip of ~30° N, are composed principally of shale clasts from the Bokkeveld Group (Cape Supergroup) and contain rare lensoid sandstones (Fig. 5.9D). One of these rare red sandstone interbeds was sampled.



Fig. 5.9. Geological context of the Uitenhage Group samples in the Heidelberg Basin. (A) The Kirkwood Formation and overlying Buffelskloof Formation, separated by an angular unconformity (red dashed line), exposed in a bentontie quarry. Blue dashed lines highlight the 'Upper horizon' bentonite from which HBUP sample was taken. (B) Quarry that exposes the 'Main horizon' bentonite (outlined in blue dashed lines) within the Kirkwood Formation. It is overlain by conglomerates, sandstones and laminated mudstones. (C) Quarry exposure of the 'Millennium horizon' bentonite (outlined in blue dashed lines) within the Kirkwood Formation. (D) Conglomerate-dominated deposits at Moordenaarskop exposed in a road-side outcrop. Pink arrows indicate the position from which respective samples were extracted.

## 5.2.2.2 U-Pb geochronology

# HBUP

Zircon crystals from the HMUP sample are strongly euhedral and range from 100 to 500  $\mu$ m needles, prismatic and stalky-shaped crystals with very few fragmentary stubby grains. Internally, they exhibit consistent fine and medium oscillatory zoning with very rare inclusions and cores when imaged using the CL detector (Fig. 5.10). Of the 98 analyses, 56 are concordant and overwhelmingly (~95%) yield Mesozoic dates, with only 3 Proterozoic dates (Fig. 5.11). The Mesozoic dates form a single cluster around 162 Ma. The synchronicity of zircon crystal dates, lack of significant detritus, and similarity of crystal morphology and internal zonation are in agreement with the sedimentological classification of the deposit as pyroclastic. Analytical metrics are as follows: YSG =  $159 \pm 2$  Ma; YDZ = 157.4 + 1.4/-2.5 Ma (95% conf.); YPP = 162 Ma. The TuffZirc algorithm identifies the most coherent cluster around 162.3 + 0.7/-0.9 Ma (at the 95% confidence interval) using 49 crystals and accounts for minor inheritance (Fig. 5.12). This earliest Oxfordian age is considered the best estimate of the depositional age of the pyroclastic deposit.



Fig. 5.10. Composite diagram of CL images of zircons that yield concordant dates in sample HBUP from the Heidelberg Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective  $^{206}Pb/^{238}U$  date are red.

Fig. 5.11. (Following page). U-Pb dates of zircons from all samples in the Heidelberg Basin shown as age probability density diagrams (blue area) combined with frequency histograms (grey bars) with 20 Ma intervals. Only concordant data are shown: n = x/y means that x out of a total of y zircons yielded concordant dates. Youngest graphically-defined peak (YPP) are indicated.





Fig. 5.12. Concordia diagrams (left) and concordant  ${}^{206}Pb/{}^{238}U$  dates arranged by age (right) for the three pyroclastic deposits in the Heidelberg Basin. Horizontal grey line is the age calculated by TuffZirc with vertical grey lines representing dates rejected from the age calculation. All individual errors are  $2\sigma$ .

## HBMB

Zircon crystals in HBMB are similarly euhedral and range from 60 to 350 µm with prismatic and stalky habits, but unlike HBUP, the crystals are rarely needle-like. The smallest crystals generally comprise broken grain fragments. Overall the crystals were uniformly colourless except for infrequent inclusions and showed either medium to fine oscillatory zoning (e.g., crystal 9 and 39 in Fig. 5.13) or no visible zoning (e.g., crystal 1 in Fig. 5.13) when imaged though the CL detector.



Fig. 5.13. Composite diagram of CL images of zircons that yield concordant dates in sample HBMB from the Heidelberg Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are red.

Of the 91 crystals analysed, 35 are concordant, 34 of which occupy a single Mesozoic population around 172 Ma, and just 1 Palaeozoic crystal. Such a limited detrital component supports the pyroclastic interpretation for the bentonite (Fig. 5.11). Analytical metrics are:  $YSG = 169 \pm 2$  Ma;  $YDZ = 166.9 \pm 1.6/-2.9$  Ma (95% conf.); YPP 172 Ma. A concordia age can (Ludwig, 2000) be calculated as  $172.4 \pm 0.5$  Ma using graphically concordant data-points that have overlapping uncertainties, and the TuffZirc algorithm yields a  $171.1 \pm 1.0/-1.1$  Ma age from the most coherent cluster of 29 crystals (Fig. 5.12). This is indistinguishable from the concordia age, and both are fairly robust estimates for the depositional age of

the ash. Further analysis of 15 zircons using the CA-TIMS method yield 15 concordant dates (Fig. 5.14; Table G1 in Appendix G). The higher precision associated with these dates compared to those acquired by LA-ICPMS suggests that there are multiple closely spaced crystallization events recorded in the zircon population. All 14 dates yield a weighted mean of  $170.5 \pm 0.6$  Ma, which is regarded as the best estimate of the depositional age of the unit despite the excess scatter (MSWD = 3.8). The youngest crystal is 169.6  $\pm$  0.8 Ma, which is the minimum depositional age of the unit, and there is probably also an inherited component at ~171 Ma, although interpretations of specific crystallization episodes would be subjective due to the indiscrete clustering of dates around the mean (Fig. 5.14). The 170.5  $\pm$  0.6 Ma mean is probably a reasonable refelction of the age of this deposit because it is within error of the TuffZirc-defined age, although there may be slightly younger and older age components that are indecernable at the precision attained.



Fig. 5.14. U-Pb dates from LA-ICPMS (left) and CA-TIMS (right) analytical procedures ordered by age. Grey uncertainty ranges are dates that are excluded from age calculations. Both the TuffZirc age (red) and the weighted mean (green) of 14 dates acquired by CA-TIMS are indistinguishable.

# HBMIL

The zircons extracted from the sample range in size from  $\sim 60 - 170 \,\mu\text{m}$  and are primarily prismatic to needle-like, with few stalky and stubby habits. All crystals exhibit fine oscillatory zonation under the CL detector. Some of the needle-shaped crystals were too narrow to analyse effectively and regularly yielded discordant ages presumably because ablation pits failed to fall entirely within the exposed crystal. Some of the youngest dates are derived from small stubby crystals that have pure oscillatory zoning and show no evidence of undergoing multiple episodes of crystallization (e.g., crystals 72 and 78 in Fig. 5.15). Conversely, some of the older dates are from the centres of zircons that have thin rims of sharply contrasting intensity under the CL detector (e.g., 4 and 10 in Fig. 5.15). This microtextural observation suggests a complex zircon crystallization history prior to eruption that is resolvable at  $2\sigma$  error.



Fig. 5.15. Composite diagram of CL images of zircons that yield concordant dates in sample MBMill from the Heidelberg Basin. Individual zircon indicated by white number and analytical spot (26 µm diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are red.

Nevertheless, of the 77 crystals analysed, 31 yield concordant dates that are exclusively Mesozoic but occupied two discrete populations with peaks at 165 Ma and 171 Ma on the probability density diagram
(Fig. 5.11). Analytical metrics are as follows:  $YSG = 165 \pm 3$  Ma;  $YDZ = 163.8 \pm 1.8/-2.4$  Ma (95% conf.); YPP = 165 Ma. Although there are multiple age components present within the Mesozoic zircon dates, the lack of significant detrital zircons in the sample confirm limited or no reworking and a pyroclastic origin for the bentonite. Although the actual sampling site yielded no sedimentological evidence for reworking, there are clear signs of detrital mixing elsewhere within the bed. It is possible that the spread in dates can be accounted for by extremely subtle resedimentation during which older zircons are included into younger ash deposits during deposition. Alternatively, zircons of varying ages may have been incorporated into the same eruptive event by magmatic processes (i.e., prolonged or multiple zircon crystallization episodes within the magmatic system prior to an eruption; Reid et al., 1997; Reid and Coath, 2000; Bowring et al., 2006) or explosive processes (i.e., zircon inheritance derived from the pulverization or assimilation of slightly older igneous rocks located near the volcanically active site; Landing et al., 1998; Bowring et al., 2006). Although subtle inheritance can occur, equally cryptic Pb loss likely also played a role in broadening the distribution of zircon dates in this sample. The TuffZirc algorithm identifies the most coherent cluster of 14 dates at 171.6 +1.2/-1.4 Ma, although this age is unsatisfactory (nore reported in Fig. 5.12) because there is both an older ~175 Ma coherent grouping of dates and a younger ~165 Ma component which are almost as likely. Without resampling the deposit in a different area to minimize the chance of including old zircons derived from detrital input or using a CA-TIMS analytical procedure to improve precision and reduce the effect of lead-loss and therefore spuriously young dates, reporting a reliable depositional age for this unit without extreme subjectivity is not possible. Therefore, this bentonite should instead be considered simply as broadly Middle Jurassic, to reflect the large uncertainty associated with determining its deposition and no numeric age can be deduced from the data reliably (Fig. 5.12).

## HBUE1

Zircons vary in length from 60 to 170  $\mu$ m and have stubby to needle-like habits, with most crystals being prismatic and euhedral. They are frequently stained pale red, presumably due to the same secondary iron oxide weathering product that gives the whole outcrop a red hue. Typically, the crystals have fine oscillatory

zoning without obvious core inheritance (e.g., crystal 97 in Fig. 5.16) or with subtle, poorly defined secondary growth rims (e.g., crystal 106 in Fig. 5.16) and some contain small opaque inclusions (e.g., crystal 106 in Fig. 5.16).



Fig. 5.16. Composite diagram of CL images of zircons that yield concordant dates in sample HBUE1 from the Heidelberg Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are red.

A total of 98 zircons were analysed yielding 53 concordant dates. Zircons vary in age from Mesozoic (~4 %), Palaeozoic (~53 %) and Precambrian (43 %) defining multiple age peaks on a probability distribution diagram (Fig. 5.11). Analytical metrics are as follows:  $YSG = 183 \pm 3$  Ma;  $YDZ = 182.8 \pm 3.1/-3.7$  Ma (95% conf.); YPP = 265 Ma. Only 1 single zircon that passed the concordance test produced a Jurassic date. However, two additional dates that are below the concordance threshold lie along the concordia diagram when plotted in  $U^{238}/Pb^{206}$  vs.  $U^{235}/Pb^{207}$  space and yield a concordia age of 179.5 ± 5.0 Ma (Fig. F1 D). Following convention, the metric used to describe the maximum depositional age of the deposit is the YPP age of 265 Ma although a less repeatable, but perhaps geological meaningful constraint on maximum deposition is 179.5 ± 5.0 Ma because a young cluster of three dates exists when plotted along concordia that supports this age component.

### 5.2.2.3 Basin synthesis

Bentonite deposits that are well-exposed in the Heidelberg Basin are considered pyroclastic and allow for robust assessments of the depositional ages of the Uitenhage Group. The results show that much of the Kirkwood Formation in this basin was deposited in the Middle Jurassic indicated by  $170.5 \pm 0.6$  Ma and 162.3 +0.7/-0.9 Ma depositional ages of the HBMB and HBUP bentonite layers, respectively. This strongly contrasts previous age estimates for the bentonitic mudstones, which were considered Portlandian (Viljoen, 1992) or younger (Rigassi and Dixon, 1972) and also contradicts all previous estimates for a maximum age of the Uitenhage Group (McLachlan and McMillan, 1976; Dingle et al., 1983; McMillan et al., 1997; Shone, 2006). Not only are  $170.5 \pm 0.6$  Ma deposits more than 10 Ma older than any of these estimates, but further, the HBMB bentonite is not at the base of the Heidelberg Basin stratigraphy and therefore does not represent the absolute oldest syn-rift accumulations. In fact, we estimate that ~500 m of mudstones, sandstones and conglomerates underlie the unit based on a consistent northwards dip direction (Viljoen, 1992) and 5 km apparent thickness before the edge of southern end of the basin is reached (Fig. 5.9). This approximation is also supported by descriptions of a borehole log drilled in the basin near Riversdale, in which > 600 m of Uitenhage Group underlie the grey bentonitic facies of the Kirkwood Formation (Rigassi and Dixon, 1972). These underlying strata are older than  $170.5 \pm 0.6$  Ma by an unknown period of time. If this thickness accumulated quickly, then the oldest strata in the basin are considerably older than the oldest dated bentonite; else, if the average sedimentation rate was slow,  $170.5 \pm 0.6$  Ma is a good approximation of when accommodation began. In reality we do not know how much time this basal most 500 - 600 m sedimentary package represents but it is not unreasonable to assume a latest early Jurassic age for the lowermost beds of the Uitenhage Group in Heidelberg Basin. Further, since there are Lower Jurassic zircons in the HBUE1 sample at Moordenaarskop, which is on the southern margin of the half-graben and therefore probably occupies a basalmost position in the stratigraphy, it is likely that extension began between  $179.5 \pm 5.0$  Ma and  $170.5 \pm 0.6$  Ma, possibly as early as the Pliensbachian – Toarcian.

The Enon and Kirkwood formations exposed within the Heidelberg Basin therefore constitute some of the oldest parts of the Uitenhage Group in the southern Cape, and represent deposition that occurred soon after rifting began. Sometime in the Early Jurassic at ~183 Ma (an age compatible with the 179.5  $\pm$  5.0 Ma maximum age of deposition of the basalmost dated strata at Moordenaarskop) normal faults developed through inversion of compressional weaknesses (cf. the Late Jurassic; Fouché et al., 1992; Viljoen, 1992; McMillan et al., 1997; Paton, 2006; Green et al., 2016) near present-day Heidelberg and Riversdale (Fig. 5.17). Continental conglomerates, sandstones and mudstones began to accumulate in the newly created, growing accommodation space. As extension continued into the Middle and Upper Jurassic, faults grew, became linked and continued to accumulate displacement. Deposition of terrigenous clastic sediments continued throughout this time but was interrupted by volcanic ash fall events that resulted in l pyroclastic layers that settled in intermountain lakes. There is no evidence for deposits that are younger than Oxfordian beneath the angular unconformity that separates the lower Enon and Kirkwood formations from the overlying Buffelskloof Formation. Nevertheless, it is reasonable to assume that deposition did continue into the Early Cretaceous, only that all Oxfordian to Lower Cretaceous deposits were removed subsequent to or during a reinvigoration of rifting and displacement along normal faults (Fig. 5.17). By the time this happened, probably sometime in the Early Cretaceous, the Worcester Fault had become the principal fault that accommodated extensional stress and therefore accumulated the most displacement (Paton, 2006). However, subordinate fault planes also remained active, especially at transfer zones between noncontiguous segments of the Worcester Fault (Viljoen, 2000). This tectonic reinvigoration steepened topographic gradients at the scarp and at nearby transfer zones, and generated new accommodation space south of the Worcester Fault in which the sediments that constitute the Buffelskloof Formation were deposited. Finally, as the landscape continued to evolve through the Upper Cretaceous and Cenozoic, much of the Buffelskloof Formation was removed, leaving behind just a few isolated koppies around Heidelberg and exposed the older, tilted Enon and Kirkwood Formation strata beneath (Fig. 5.17).



Fig. 5.17. Evolution of the Heidelberg Basin from the late Early Jurassic to present with inferred stratigraphic relationships and an overall northward dip direction of strata described by Viljoen (1992) and confirmed by U-Pb data. See text for details.

# 5.2.3 Mossel Bay Basin and Vlees Bay

The Mossel Bay Basin contains Uitenhage Group that outcrop around Mossel Bay and Herbertsdale. A few isolated outcrops at Vlees Bay, some ~25 km west of Mossel Bay are also considered part of the Basin (Fig. 5.8). The Uitenhage Group comprises the Enon, Kirkwood, Buffelskloof and Hartenbos formations in these areas and the latter two, the Buffelskloof and Hartenbos formations, are separated by an angular unconformity from the tilted strata of the underlying Enon and Kirkwood formations (Malan and Viljoen, 1990). Outcrops of the Enon and Kirkwood formations are mostly restricted to river valley and road-cuttings throughout the basin, whereas the Buffelskloof Formation is quarried for building material and is therefore well-exposed near Hartenbos, but also in natural cliff faces along the Nouga and Heuningklip rivers SE of Herbertsdale. Rare outcrops of its finer-grained lateral equivalent, the Hartenbos Formation, exist near Hartenbos and Kleinbrak in erosional gullies. The Mossel Bay Basin is bounded in the north by the Worcester Fault, which changes strike from ~ E-W at Herbertsdale, to ENE-WSW further east, controlled by the position of the George Pluton, where the Maalgaten Granite Suite outcrops (Fig. 5.8).

## 5.2.3.1 Outcrop description

### Klipkop road-cutting (sample KLIP)

An upward fining package of conglomerate, sandstone and mudstone beds are exposed at Klipkop, 4.5 km west of Hartenbos, in a road-cutting (34° 7'38.00"S; 22° 2'58.66"E; Fig. 5.8). The upward-fining beds dip shallowly northwards and comprise a quart breccia-conglomerate overlain by clast-rich sandstone, which in turn is overlain by a clast rich sandy-mudstone bed. Each unit is roughly 1 m thick, and the uppermost tuffaceous sandy-mudstone exhibits popcorn texture weathering in places despite containing a fraction of sand-size grains (Fig. 5.18A, B, C). A sample was extracted from this bed based on it likely containing at least a partial volcanogenic fraction. Overall the unit falls within the Kirkwood Formation, attested by the mudstone-dominated lithologies in the few scattered outcrops within 100 m of the sample site on the gentle slopes north of Klipkop.

## Matjiesdrift hill (sample MATJ)

A bentonite layer is poorly exposed at Matjiesdrift farmstead ~20 km NW of Mossel Bay and 2.3 km NE of the R327 in a hillside gully and in recent excavations (34° 5'56.98"S; 21°56'39.33"E; Fig. 5.8). Surficial popcorn texture and absence of significant sand-sized grains in the pure claystone are field evidence for a pyroclastic origin. The mottled pink and grey bentonite (Fig. 5.18 D) is interbedded with light grey massive mudstones and subordinate sandstone and conglomerate beds. Unfortunately, the lack of good exposure of this unit inhibits thorough description of its bedding geometry other than that it has at least 20 cm thick in places (blocks of such thickness were encountered eroding from recent excavation tailings) and that the bedding planes defined by erosion-resistant sandstone interbeds dip consistently at 25° N in the area

Fig. 5.18. Geological context of the Uitenhage Group samples in the Mossel Bay Basin. (A) Roadside outcrop exposing volcaniclastics at Klipkop. Conglomerate/breccia deposits pictured in B are to the left of the photograph, region enlarged in C is delineated by white dashed lines. (B) Sporadic conlgomerate/breccias that occur at Klipkop. (C) Clay-rich sandy bentonite with rare quarzite granules (inset). (D) Mottled grey and pink bentonite in a disturbed hillside exposure at Matjiesdrift. (E) Volcaniclastic deposit exposed on Sittingbourne Farm in a small quarry. (F) Well-rounded quartz pebble (white arrow), which are common in the volcaniclstic deposit at Sittingbourne. (G) *Exsitu* fragments of red-black siliceous veins that weather to white in the in the outcrop. (H) Volcaniclastics exposed at Voëlvlei with white accretionary pellet-rich tuff outlined in blue dashed lines. (I) Clast-rich tuffaceous sandstone that overlies accretionary pellet-rich tuff. White arrow points to subrounded quartzite pebbles. (J) White, accretionary pellet-rich tuff with white arrows pointing to vertically compressed ovoid accretionary pellets that are preferentially weathered. (K) Sandstone and mudstone units of the Hartenbos Formation (blue line separates the two facies). White dashed line delineates scree from *in-situ* outcrop. Pink arrows indicate the exact position from which respective samples were extracted.





Sittingbourne small quarry (samples SITT2 and SITT3)

Accretionary pellet-rich tuffaceous sandstones commonly outcrop on the Sittingbourne Farm ~2 km west of Hartenbos along the R328 (Fig. 5.18), and in borehole SI 2/89 that was drilled there. Undifferentiated 'tuffaceous deposits' occupy most of the 80 m borehole (Viljoen, pers. com.), which no doubt correlate to the scattered outcrops around the aggregate-processing plant there. A 30 m long, 4 m high outcrop of poorly differentiated brown accretionary pellet-rich tuffaceous sandstone, with rare quartzite clasts, exists in a

small farm quarry (34° 7'1.74"S; 22° 4'31.54"E). The light brown volcaniclastic deposit is composed of two crude beds of equal (~2 m) thickness (Fig. 5.18E). The basal unit is massive and rich in poorly-structured accretionary pellets, while the upper bed contains fewer pellets, although rare well-rounded quartzite clasts were found throughout both (Fig. 5.18F). Both white calcareous and red-black siliceous veining (Fig. 5.18F, G) are present in some areas that likely formed from during transport of mineral-rich fluids during devitrification of the ash deposit. Microscopic assessment revealed abundant glass-shards (Fig. 5.19) indicating that the unit has not undergone full alteration into clay minerals. A sample was extracted from the basal accretionary pellet-rich unit from an area that contained no visible quartzite clasts.

A second outcrop on the Sittingbourne Farm 500 m north of the previous site (34° 6'43.27"S; 22° 4'27.71"E; Fig. 5.8) exposes a similar tuffaceous sandstone deposit at approximately the same stratigraphic interval as SITT2, although here the proportion of accretionary pellets was reduced in comparison and the unit had an overall orange-brown colour.



Fig. 5.19. Photomicrograph of a thin section produced from the volcaniclastic rock exposed in the small quarry at Sittingbourne Farm in the Mossel Bay Basin. White arrows point to tricuspate class shards.

## Voëlvlei (sample VOEL)

Scattered outcrops of the Uitenhage Group exist near Vlees Bay and on the eastern banks of the Vogel valley, comprising the Enon and Kirkwood formations. Mudstone-dominated lithologies of fluvial origin outcrop around Voëlvlei and a distinctive volcaniclastic deposit outcrops in a river cutting there (34°16'1.13"S; 21°50'23.95"E; Fig. 5.8). The outcrop is 3 m high and comprises a 2.7 m brown-grey tuffaceous sandstone bed with rare quartzite pebbles overlying a 30 cm thick white and light-grey accretionary pellet-rich ash layer, which contains clay-sized particles that are powdery and friable (Fig. 5.18H, I J) and poorly structured accretionary pellets. The upper bed is likely re-sedimented ash mixed with siliciclastic detritus, whereas the basal bed is probably of pyroclastic origin, evidenced by the preservation of accretionary pellets, the consistently clay-sized grain constituents and the lack of any quartzite pebbles or grit (Fig. 5.18J).

### Hartenbos parastratotype (sample MBHF)

The Hartenbos Formation is exposed in an old excavation east of the N2 highway at its parastratotype near Hartenbos (34° 7'8.63"S; 22° 6'30.57"E; Fig. 5.8). These sandstone and mudstone units (Fig. 5.18K) are the distal, finer-grained equivalent of the Buffelskloof Formation, which together overlie the Enon and Kirkwood formations in the Mossel Bay Basin (Muir et al., 2017b in section 2.2.2 of this thesis). Medium-to coarse-grained beige sandstone was sampled from this outcrop in order to constrain its age using detrital zircon U-Pb geochronology.

# 5.2.3.2 U-Pb geochronology

#### KLIP

Zircon crystals extracted from the sandy-mudstone bed range considerably in size from 50 to 225 µm and shape. Many of the crystals are rounded or are angular fragments, with only a small fraction that are unbroken euhedral. Both the euhedral and abraded/broken grains have stubby to prismatic habits. Internal structures revealed by CL imagery are diverse, with predominately fine and medium oscillatory zoning, but

there also unzoned crystals (e.g., crystal 75 in Fig. 5.20). Core-and-rim textures are common in the sample suggesting multiple crystallization episodes (e.g., crystal 99 in Fig. 5.20).



Fig. 5.20. Composite diagram of CL images of zircons that yield concordant dates in sample KLIP from the Mossel Bay Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective  $^{206}Pb/^{238}U$  date are red.

A total of 87 concordant analyses were obtained from the 129 crystals analysed. Crystals range in age from Mesozoic (33 %), Palaeozoic (30 %) to Precambrian (37 %) (Fig. 5.21; Table D9 in Appendix D; Fig. F2A in Appendix F). Mesozoic dates occupied several peaks on the probability density diagram (Fig. 5.21) including a largest, youngest peak around 150 Ma, which is considered a robust estimate of the maximum depositional age of this reworked volcaniclastic sample. Analytical metrics are as follows:  $YSG = 145 \pm 4$  Ma; YDZ = 144.5 + 2.2/-3.8 Ma (95% conf.); YPP = 150 Ma.





Fig. 5.21. U-Pb dates of zircons from all samples in the Mossel Bay Basin shown as age probability density diagrams (blue area) combined with frequency histograms (grey bars) with 20 Ma intervals. Only concordant data are shown: n = x/y means that x out of a total of y zircons yielded concordant dates. Youngest graphically-defined peak (YPP) are indicated.

#### MATJ

Zircons are strongly euhedral and range from 80 to 250 µm with predominantly stalky and prismatic habits, and also rare needle-shaped grains. All crystals are colourless and some contained inclusions. CL images reveal fine and medium oscillatory zoning patters usually without core-and-rim textures (e.g., crystals 3, 8 and 12 in Fig. 5.22), but some crystals have possible xenocrystic cores (e.g., crystal 35 in Fig. 5.22).



Fig. 5.22. Composite diagram of CL images of zircons that yield concordant dates in sample MATJ from the Mossel Bay Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective  $^{206}Pb/^{238}U$  date are red.

In this sample, 49 of the 72 analyses are concordant and mostly yield Mesozoic dates (~96 %), with just 1 Palaeozoic and 1 Precambrian dates (Fig. 5.21; Table D10 in Appendix D; Fig. F2B in Appendix F). The Mesozoic zircons farm a single population on the probability density diagram (Fig. 5.21) that contains a large peak at 172 Ma and subordinate peak at 179 Ma. The lack of significant detrital input, narrow distribution of zircon dates and the similarity of internal and external crystal morphologies further support the interpretation that this unit is of pyroclastic origin. Analytical metrics are as follows: YSG =  $167 \pm 3$  Ma; YDZ = 166.9 + 1.9/-3.1 Ma (95% conf.); YPP = 172 Ma. The most coherent grouping of 32 zircons identified by TuffZirc occurs at 172.62 + 0.56/-0.94 Ma, which is a best estimate for the depositional age of the deposit (Fig. 5.23). It is likely that the youngest two dates that are excluded by the algorithm are spuriously young due to subtle Pb-loss, while there is clearly also an inherited ~180 Ma component in these data.



Fig. 5.23. Concordia diagrams (left) and concordant Mesozoic  $^{206}Pb/^{238}U$  zircon dates arranged by age (right) for two pyroclastic deposits in the Mossel Bay Basin. Horizontal grey line is the age calculated by TuffZirc with vertical grey lines representing dates rejected from the age calculation. All individual errors are  $2\sigma$ .

# SITT2

Zircons from this sample vary in size and shape, ranging from 60 to 230 µm. They occur as small angular fragmentary and rounded grains and as larger crystals with varied degrees of elongation from stubby to prismatic. Internal textures included fine, medium and rarely broad oscillatory zoning (Fig. 5.24), some crystals had no clear zoning (e.g., crystal 8 in Fig. 5.24) and some contained xenocrystic cores (e.g., crystal 105 in Fig. 5.24). Some crystals contain inclusions and some are severely cracked.



Fig. 5.24. Composite diagram of CL images of zircons that yield concordant dates in sample SITT2 from the Mossel Bay Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective<sup>206</sup>Pb/<sup>238</sup>U date are red.

Zircons are clearly derived from a variety of sources and concordant analyses span the Mesozoic (14 %), Palaeozoic (49 %) and Precambrian (37 %), with multiple age peaks (Fig. 5.21; Table D11 in Appendix D; Fig. F2C in Appendix F). Mesozoic dates form a youngest peak on the probability density diagram at 142 Ma, with an older and larger peak at 150 Ma (Fig. 5.21). The youngest (142 Ma) peak is supported by two grains, it is probably a robust reflection of the youngest age component and maximum depositional age of this mixed-origin volcaniclastic unit. Other analytical metrics are:  $YSG = 141 \pm 3$  Ma; YDZ = 141 + 2.7-3.5 Ma (95% conf.).

# SITT3

As in SITT2, zircons are morphologically diverse ranging from 70  $\mu$ m stubby grains to crystals with a needle habit (and fragments thereof) that are up to 190  $\mu$ m. Inclusions (e.g., crystals 31, 44 and 48 in Fig. 5.25) and xenocrystic cores (e.g., crystal 48 in Fig. 5.25) are common when imaged using the CL detector (Fig. 5.22) and fine to medium oscillatory zoning prevailed. The youngest concordant analysis (crystal 48

in Fig. 5.22) clearly reveals at least two periods of crystallization with contrasting zonation textures, however most crystal rims are too narrow for analysis using an analytical spot size of  $26 \,\mu$ m.



Fig. 5.25. Composite diagram of CL images of zircons that yield concordant dates in sample SITT3 from the Mossel Bay Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are red.

Based on 46 concordant analyses (out of a total of 106), zircons are Mesozoic (17 %), Palaeozoic (45 %) and Precambrian (38 %) in age, and distributed into multiple age peaks on the probability density diagram (Fig. 5.21 Table D12 in Appendix D; Fig. F2D in Appendix F). The youngest peak with more than 1 date is 143 Ma (YPP), although older Mesozoic peaks also occur at 149 Ma, 154 Ma and 174 Ma. Other analytical metrics are:  $YSG = 141 \pm 3$  Ma; YDZ = 141.5 + 3.1/-3.7 Ma (95% conf.). Although young crystals are rare in both SITT2 and SITT3, they show approximately equivalent youngest components and based on their close proximity and lithological similarity ought to be considered a single volcaniclastic package that was deposited shortly after the ~145 Ma Jurassic – Cretaceous transition.

## **VOEL**

Zircon crystals range in size from 60 to 200  $\mu$ m, with stalky and prismatic habits and the longest grains typically exhibiting a needle habit. Morphologies are compatible with the interpretation that the deposit is pyroclastic in that they are mostly euhedral with either fine or medium oscillatory zoning (e.g., crystals 46, 60 and 62), or no zoning at all (e.g., crystal 6 in Fig. 5.26). Under plain light they are all colourless except for a few opaque inclusions present in some of the grains.



Fig. 5.26. Composite diagram of CL images of zircons that yield concordant dates in sample VOEL from the Mossel Bay Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are red.

The 43 concordant dates (from a total of 110) show that all zircons are roughly of the same age ~156 Ma (Fig. 5.21; Fig. 5.23; Table D13 in Appendix D), which is the youngest (and only) graphical age component in the sample (YPP), with a youngest crystal (YSG) =  $151 \pm 3$  Ma and YDZ =  $150.2 \pm 2.2/-3.1$  Ma (95% conf.). The approximate equivalence of all zircons supports a single ash-fall event origin for the deposit, which dates to  $156.4 \pm 0.7/-0.9$  Ma (Kimmeridgian), calculated using the most coherent clustering of dates identified by TuffZirc assuming minor inheritance and Pb-loss (Fig. 5.23).

## **MBHF**

Zircons from this sample are some of the largest in the entire dataset. Most are over 100  $\mu$ m long, and some reach 300  $\mu$ m (e.g., crystal 56 in Fig. 5.27). Crystals that are < 100  $\mu$ m long are typically fragments of larger grains (e.g., crystal 79 in Fig. 5.27). They range from colourless to beige and have prismatic and stalky habits that are usually euhedral and rarely rounded (e.g., crystals 49 and 73 in Fig. 5.27). Internally, they show fine oscillatory zoning that is simple, or with inherited cores and inclusions (e.g., crystals 55, 82 and 49 in Fig. 5.27).



Fig. 5.27. Composite diagram of CL images of zircons that yield concordant date in sample MBHF from the Mossel Bay Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are red.

A total of 67 concordant dates are Mesozoic (~7 %), Palaeozoic (~50 %) and Precambrian (~43 %) and occupy multiple complex populations most notably at ~260 Ma and ~500 Ma with subordinate Precambrian populations (Fig. 5.21; Table E1 in Appendix E; Fig. F3B in Appendix B). The youngest graphically-defined age component is at ~187 Ma (YPP), which is a robust measure of the maximum deposition of this unit. Other metrics are:  $YSG = 179 \pm 4$  Ma;  $YDZ = 178.3 \pm 4.6 / -4.4$  Ma (95% conf.). Stratigraphic field relationships dictate that the Hartenbos Formation is younger than the underlying Enon and Kirkwood

formations (Malan and Viljoen, 1990), but the lack of young, Cretaceous zircons hampers further chronostratigraphic relationships between these strata. Furthermore, major Late Permian and Cambrian populations simply indicate Karoo and Cape Supergroups are likely sources, either directly or through recycling of the underlying Enon and Kirkwood formations. The presence of large, euhedral Cambrian zircons in the Hartenbos Formation may reflect a direct Maalgaten Granite Suite source because crystals are unlikely to have maintained such morphologies if they were significantly transported during Palaeozoic recycling episodes. The Maalgaten Granite Suite is a known source for the Uitenhage Group in parts of the Mossel Bay Basin nearby, where boulder-sized granitic clasts in conglomerate beds are described (Bordy and America, 2016).

## 5.2.3.3 Basin synthesis

The Mossel Bay Basin provides one of the best case studies for the onshore Uitenhage Group deposition because there are ample means to assess the depositional age of the accommodated strata. Firstly, there is an angular unconformity that separates the basal Enon and Kirkwood formations from the overlying Buffelskloof and Hartenbos formations. This implies that these strata record at least two phases of rift-related tectonism, and establishes relative age constraints – the Enon and Kirkwood predate the Buffelskloof and Hartenbos formations (Malan and Viljoen, 1990). Secondly, there are abundant volcaniclastic deposits in the Kirkwood Formation in the Mossel Bay Basin that provide a means to constrain the age of deposition.

The oldest dated deposits in the Mossel Bay Basin are Aalenian (sample MATJ), rough time-equivalents of those exposed in Heidelberg to the west and > 10 Ma older than all previous age estimates for the Kirkwood Formation (McLachlan and McMillan, 1976; Dingle et al., 1983; McMillan et al., 1997; Shone, 2006). These lowermost Middle Jurassic deposits presumably occupy a relatively basal position in the stratigraphic succession of the Uitenhage Group in the Mossel Bay Basin and were deposited shortly after the onset of rifting (Fig. 5.28). Subsidence and deposition continued throughout the Jurassic, with the majority of extension being taken up by displacement along the Worcester Fault, which follows the southern

margin of the George Granite Pluton (Fig. 5.8), but also by subordinate intra-basinal faults (Fig. 5.28) and at fault transfer zones NE of Herbersdale (Fig. 5.8; Viljoen, 2000). Deposition continued into the Early Cretaceous, evidenced by Lower Cretaceous volcaniclastic interbeds in the Kirkwood Formation. Following this, also during the Early Cretaceous, displacement along boundary faults accelerated during a second phase of extension that generated additional accommodation space into which the Buffelskloof and Hartenbos formations were deposited (Fig. 5.28).

Importantly however, the dated volcaniclastics are not equally distributed across the areal extent of the Mossel Bay Basin, which complicates models of basin stratigraphy. The 172.6 + 0.6 - 0.9 Ma bentonite at Matjiesdrift is isolated from other dated strata in the east by a large ridge of Table Mountain Group basement on the Hartebeeskuil Farm (from here referred to as Hartebeeskuil Ridge). Conversely, the Kirkwood Formation exposures east of Hartebeeskuil Ridge at Kipkop (KLIP) and Sittingbourne (SITT2&3) are no older than Upper Jurassic – Lower Cretaceous, as indicated by their respective maximum depositional ages. Such an age discrepancy of the volcaniclastic interbeds might be explained by the differential erosion of the western and eastern portions of the Mossel Bay Basin (Fig. 26). If subsidence initiated during the Early Jurassic, as evidenced by the presence of lowermost Middle Jurassic strata, then greater denudation of the Uitenhage Group west of Hartebeeskuil Ridge would explain why the deposits that outcrop there are older than those to the east. However, the thick package of overlying Buffelskloof Formation in the west, and that the MATJ bentonite is exposed on a land surface that is not particularly incised compared to the those further east suggests that recent erosion does not account for the age discrepancy in the exposed volcaniclastic interbeds. Instead, the western Mossel Bay Basin may have experienced greater exhumation during the Early Cretaceous during a second phase of subsidence, when the Buffelskloof and Hartenbos formations were deposited. During this time, the underlying Enon and Kirkwood formations may have been more deeply truncated in the west than in the east. If displacement along boundary faults was greater in the east than west during the Early Cretaceous deposition of the Buffelskloof and Hartenbos formations (i.e., the depocentre was in the east), then more of the underlying

strata would have been preserved there subsequent to incision by high-energy processes that acted during their deposition. Such a scenario in the Mossel Bay Basin does not seem unlikely considering that basin depocentres in the offshore Gamtoos Basin also migrated during the late Valanginian (Paton and Underhill, 2004).

Fig. 5.28. Evolution of the Mossel Bay Basin east of Hartebeeskuil Ridge from the Early Jurassic onset of rifting to present (see text for details). Map based on the 1: 50 000 Council for Geoscience map sheet 3422AA (Viljoen and Malan, 1993).



# 5.2.4 Oudtshoorn Basin

The Oudtshoorn Basin is situated in the interior of the Western Cape south in the 'Little Karoo' district, between the Outeniqua and Swartberg Mountain ranges (Fig. 5.29). This, half-graben, is bounded to the north by the Cango Fault, which is part of a larger Cango-Baviaans-Gamtoos fault array along which exist several Mesozoic rift basins - the Vlakteplaas, Goergida, Baviaanskloof and Gamtoos basins (Fig. 2.1). The Oudtshoorn Basin is 80 km long and ~ 20 km wide in the E-W and N-S directions, respectively. Just like the other Mesozoic rift basins along the southern Cape, it is an erosional and/or structural relict with its long axis running parallel to structural trends in the Palaeozoic basement. The basement rocks to the Oudtshoorn Basin are principally the Cape Supergroup, and in a few isolated localities directly north of the Basin, along Cango Fault. Apart from the rare occurrence of Cape Supergroup basement directly north of the Basin, this region is dominated by the Cango Group, which occupies the interior strata of a large anticline that formed in the Cape Orogenic episode, and acted as a separate structural block during the Mesozoic and Cenozoic (Green et al., 2016). The Basin is filled with an unknown thickness of Uitenhage Group deposits, although an estimated 3.1 km composite thickness is exposed in isolated outcrops of predominately conglomerates/breccias, sandstones and mudstones (Du Toit, 1974; Dingle et al., 1983). Some previous efforts have been made to map out sedimentary facies across the basin (Du Preez, 1944; Holzförster, 2007; Dinis, 2018), although it remains unclear how the isolated outcrops relate to each other stratigraphically limiting the usefulness of such mapping efforts in understanding basin dynamics through time. Despite this, the Uitenhage Group in the Oudtshoorn Basin can be divided into three discrete stratigraphic units fairly confidently: the Enon, Kirkwood and Buffelskloof formations. Although the Enon Formation comprises primarily conglomerates along the southern margin as well as the eastern and western flanks of the basin, a second conglomerate-breccia unit is mapped as the Buffelskloof Formation along the northern boundary of the Basin. This division is based purely on grainsize and facies differences (Lock et al., 1975) and an apparent angular relationship between the upper Buffelskloof Formation and the lower Enon and Kirkwood formations. Although a clear field example of the angular unconformity remains

elusive, bedding is varied but often significantly tilted in the Enon and Kirkwood formations, while retaining subhorizontal to horizontal attitudes in the Buffelskloof Formation (Dingle et al., 1983; Malan and Viljoen, 1990). The sandstone and mudstone-dominated Kirkwood Formation generally occupies the central portion of the basin (Du Preez, 1944; Lock et al., 1975; Holzförster, 2007; Dinis, 2018) where the landscape is topographically flatter and outcrop is relatively sparse in comparison with the flanks of the basin. Apart from the topographically rough terrain along the basin margins, where natural exposures of the conglomerates in the Enon and Buffelskloof formations are very common (Lock et al., 1975; Dinis, 2018), outcrops can be found in quarries, road-, railway- and river-cuttings.

# 5.2.4.1 Outcrop description

### Buffelskloof Formation cliffs (sample OES1)

A 30 m high cliff is accessible at a railway cutting in the north eastern part of the Oudtshoorn Basin adjacent the N12 roadway (33°32'17.74"S; 22°27'13.26"E; Fig. 5.29). The outcrop typifies those of the topographically rugged terrain in the northern basin where the immature, poorly sorted, polymictic breccia of the Buffelskloof Formation is mapped. The subrounded to angular clasts range from small pebble to boulder. The mostly clast-supported conglomerate contains several 30 cm thick, 1 m long sandstone lenses, in a bed that has an anomalously low clast to matrix ratio (Fig. 5.30A, B). Overall the breccia and sandstone units are a deep red colour and dip shallowly northwards.



Fig. 5.29. Simplified geological map of the Oudtshoorn Basin. Sample localities are indicated by white circles. Letters and colours are lithostratigraphic units and inshaded areas are recent alluvium. Abbreviations: Towns: C = Calitzdorp; D = De Rust; O = Oudtshoorn. Stratigraphic units arranged from oldest to youngest: CG = Cango Group; TMG = Table Mountain Group; BkG = Bokkeveld Group; WtG = Witteberg Group; DG = Dwyka Group; UE = Enon Formation; UK = Kirkwood Formation; UB = Buffelskloof Formation; UH = Hartenbos Formation. Base maps modified from the 1: 250 000 geological maps sheets 3320 (Theron, 1991) and 3322 (Toerien, 1979) of the Council for Geoscience overlain on ESRI satellite imagery.

## Calitzdorp cutting (sample CALI)

A laterally and vertically extensive, northward dipping (at 20°) succession of mudstones, sandstones and conglomerates outcrop in a road-cutting along the R62 on the western side of Calitzdorp ( $33^{\circ}31'41.35''S$ ; 21°40'34.16"E; Fig. 5.29). The mudstone packages are 3 – 10 m-thick, massive or horizontally laminated and red in colour. Sandstones and congloemrates are typically less than 20 cm thick, tabular and red, grey or beige. A pink and olive green 20 cm thick bentonite bed is found within the mudstones (Fig. 5.29C, D) and is laterally continuous for 7 m before being obscured by fallen scree at the edge of the outcrop. This bentonite appears without a significant silt-sized component, exhibited popcorn texture weathering (due to the high proportion of smectite clays present in its composition) and is therefore considered of likely ash fall origin.

Fig. 5.30. (Following page). Geological context of the Uitenhage Group samples in the Oudtshoorn Basin. (A) Clastsupported conglomerate-dominated outcrop of the Buffelskloof Formation with a bed that contains fewer clasts outlined in blue dashed line. White dashed lines delineate the area depicted in B. (B) Sandstone lenses outlined in green dashed lines within the low clast to matrix ratio conglomerate bed, outlined in blue dashed lines. (C) Roadcutting in Calitzdorp that exposes mudstones, sandstones and rare conglomerates where not obscured by scree White arrow points to area where bentonite is exposed and depicted in D. (D) Pink bentonite interbed within beige mudstones at Calitzdorp. (E) Naturally eroding ravines in the southern part of the Oudtshoorn Basin. A prominent 1.8 m thick red and white sandstone unit within predominantly mudstones is outlined with blue dashed lines. A bentonite bed is exposed (green dashed lines) or covered by a veneer of scree (green dotted line). Pink arrows indicate the precise location from which samples were taken.



### Southern ravines (sample OKT1)

A natural ravine exposes laterally extensive mudstones and sandstones of the Kirkwood Formation in the south-central portions of the Oudtshoorn Basin (33°38'17.89"S; 21°59'0.18"E; Fig. 5.29). The subhorizontal attitude of bedding and steep sided gullies enables the lateral tracing out of deposits for 50 m or more. Most of the mudstones show palaeosol development with a mottled red-grey colouration and high silt content. A dark green, primarily massive 20 cm thick bentonite interbed can be traced for 50 m sandwiched between a yellow-beige sandstone bed and green-red siltstone, below and above, respectively (Fig. 5.29E). The bentonite is comprised of high purity clay particles with a very minor silt-sized grain component (less than 5%) and was sampled and is of probable pyroclastic origin.

### De Rust quarry (samples DERU and DERC1)

A unique succession of rocks (i.e., sandstone, chert, silicified accretionary pellet-rich tuff and silicified breccia) with complex stratigraphic relations are exposed in a roadside quarry along the N12 road, 1 km south west of central De Rust (33°29'37.67"S; 22°31'32.15"E; Fig. 5.29; Fig. 5.31) was first described by Lock et al. (1975). The southern wall of the quarry exposes a number of volcaniclastic and terrigenous clastic rocks (Fig. 5.31B – D). A well-consolidated conglomerate bed defines the lower limit of the exposure on the southern wall of the quarry where not entirely covered with loose scree (Fig. 5.31E). Overlying this is a 1.7 m thick very well consolidated, silicified, accretionary pellet-rich tuffaceous sandstone (Fig. 5.31D) that contains both abraded quartz grains and tricuspate glass shards, as well as structureless accretionary pellets (Lock et al., 1975). A sample of this layer was taken for U-Pb zircon geochronological analysis. This in turn is overlain by a 1.4 m thick, friable, accretionary pellet-rich pink-grey mudstone unit (Fig. 5.31B, C). Black joints and modern roots are pervasive in this highly weathered unit, and the proportion of constituent accretionary pellets appear to decrease upward (normal grading) – although this could be a function of weathering, which increases in severity upsection. To minimize the chance of contamination, a second sample of the least weathered portion (near the base) of this friable unit was also taken. Finally, the uppermost unit on the southern wall of the quarry is a yellow-grey, highly fractured medium-grained

sandstone that is separated from the underlying units by an undulating, erosive contact (Fig. 5.31B). On the eastern side of the quarry, green-grey sandstone beds dip in opposite directions, at 15° N and 25° S, over a short 3 m lateral distance, which gives the appearance of localized faulting and structural tilting (Fig. 5.31F). Such brittle deformation is not unexpected given the close proximity to the Cango Fault < 500 m north of the quarry (Fig. 5.29).

Fig. 5.31. (Following page). A) Roadside quarry south of De Rust exposing volcaniclastic deposits. Letters E and S refer to the eastern and southern walls of the quarry. Dashed white line indicates the location of log (Fig. 45C); B) Pink, friable accretionary pellet-rich mudstones overlain by fractured beige medium-grained sandstone. Red dashed line highlights the undulating, erosive contact that separates these units; C) Log of the various lithologies exposed on the southern wall of the quarry and location of DERU and DERC1 samples. Scale is in cm; D) Pink, accretionary pellet-rich tuffaceous sandstone; E) Silicified conglomerate with quartzite clasts; F) Dramatic change in dip angle and direction of beds (white dashed lines) and inferred fault plane (solid white line) on the eastern wall of the quarry.



# 5.2.4.2 U-Pb geochronology

# OES1

Zircons vary in colour and are pale brown, beige and colourless and size from 50 to 200  $\mu$ m. Crystal shapes are stubby, stalky and rarely prismatic and are in many cases well-rounded or completely rounded. Angular fragments and euhedral crystals are also present. CL images reveal a wide range of internal morphologies, with oscillatory zoning common in the mantle of most crystals (e.g., crystals10, 6 16 and 71), often with very thin rims indicating secondary growth. Such rims are commonest in Precambrian crystals, which also commonly contain inclusions (e.g., crystals 6, 16, 52 in Fig. 5.32).



Fig. 5.32. Composite diagram of CL images of zircons that yield concordant dates in sample OES1 from the Oudtshoorn Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective  $^{206}Pb/^{238}U$  date are red.

Of 56 dates, 53 are concordant that from multiple Mesozoic (~19 %), Palaeozoic (~15 %) and Precambrian (~66 %) age populations (Fig. 5.33; Table E1 in Appendix E; Fig. F3A in Appendix F). Two Jurassic and Cretaceous zircons form the youngest overlapping age component at ~145 Ma (YPP), each displaying similar prismatic habits and oscillatory zoning, and there is a larger Jurassic population at ~186 Ma consisting of 7 zircons (Fig. 5.33). In addition to populations around 520 - 535 Ma, numerous Precambrian clusters occur. Notably, there no Permian or Triassic zircons in this sample, which probably reflects sediment sources from mainly the Table Mountain and Cango Groups. Other analytical metrics are: YSG = 144 ± 7 Ma; YDZ = 144.3 +5.5/-5.7 Ma (95% conf.).

Fig. 5.33. (Following page). U-Pb dates of zircons from all samples in the Oudtshoorn Basin shown as age probability density diagrams (blue area) combined with frequency histograms (grey bars) with 20 Ma intervals. Only concordant data are shown: n = x/y means that x out of a total of y zircons yielded concordant dates. Youngest graphically-defined peak (YPP) are indicated.







Fig. 5.34. U-Pb zircon dates from two pyroclastic deposits in the Oudtshoorn Basin plotted on concordia (left) and as individual  $^{206}$ Pb/ $^{235}$ U dates arranged by age (right). Horizontal grey rectangles are the TuffZirc age, with quoted errors. Grey vertical rectangles are excluded from calculation. All individual dates have  $2\sigma$  error.

# CALI

Zircon crystals are strongly euhedral and stalky, with rare stubby and prismatic habits that range from 90 to 200  $\mu$ m. They are the shortest yet volumetrically the largest by comparison with all other pyroclastic samples. No elongate 'needle-like' crystals are present in this sample, nor any significant quantity of fragmentary grains. All crystals are colourless and exhibit fine oscillatory zoning under the CL detector (Fig. 5.35).


Fig. 5.35. Composite diagram of CL images of zircons that yield concordant dates in sample CALI from the Oudtshoorn Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are red.

Of the 83 crystals analysed, 52 yielded concordant dates, all of which are Mesozoic and formed a single population ranging from  $147 \pm 4$  Ma to  $160 \pm 4$  Ma with a peak around 152 Ma on a probability density diagram (Fig. 5.33; Table D14 in Appendix D). Analytical metrics are as follows: YSG =  $147 \pm 4$  Ma; YDZ =  $145.8 \pm 2.2/-4$  Ma (95% conf.); YPP = 152 Ma. The similarity of zircon morphology (internal and external) and coherence of individual dates confirm a pyroclastic origin for the bentonite. Of the 52 zircons analysed in the sample, 50 yield concordant dates that form a coherent cluster around  $152.7 \pm 1.2/-0.8$  Ma, as identified by the TuffZirc algorithm (Fig. 5.34). Further analysis of CA-TIMS analysis of 18 crystals yields 12 concordant dates that are indistinguishable from one another at  $2\sigma$  error and have a weighted mean age of  $153.8 \pm 0.2$  Ma (MSWD = 0.77), which is itself is indistinguishable from the TuffZirc age and provides the most reliable depositional age for the deposit (Fig. 5.36; Table G1 in Appendix G).



Fig. 5.36. U-Pb dates from LA-ICPMS (left) and CA-TIMS (right) analytical procedures ordered by age. Grey uncertainty ranges are dates that are excluded from age calculations. Both the TuffZirc age (red) and the weighted mean (green) calculated from 11 dates acquired by CA-TIMS are indistinguishable.

## OKT1

Zircon crystals range from 40 to 180 µm and are consistently euhedral, prismatic and elongated, with very few fragmentary grains. All crystals are colourless and exhibit fine oscillatory zoning (Fig. 5.37), and rarely contain inclusions or xenocrystic cores (e.g., crystals 11 and 60 in Fig. 5.37).

Of the 75 analysed crystals, only 23 yield concordant Mesozoic dates. The dates define a complex population on a probability density diagram with a large peak at 154 Ma and two smaller peaks at 140 and 164 Ma (Fig. 5.33; Table D15 in Appendix D). Analytical metrics are as follows:  $YSG = 140 \pm 2$  Ma; YDZ = 140.2 + 2.6/-2.3 Ma (95% conf.); YPP = 152 Ma; YPP = 154 Ma. Internal and external grain morphologies, sedimentological observations and individual dates confirm a pyroclastic origin. However,

the concordant analyses exhibit complex age components with a single date of  $140 \pm 2$  Ma that does not overlap with the larger subpopulation of 22 dates at  $2\sigma$ . The TuffZirc algorithm identifies the most coherent grouping of dates around 154.5 + 1.1 / -0.9 Ma with several discrete older and younger dates that also seem likely, making assigning an age for this deposit difficult (Fig. 5.34). A similarly wide spread of dates intersect concordia when plotted in  $^{207}$ Pb/ $^{235}$ U vs  $^{206}$ Pb/ $^{238}$ U space. Although the single young ~140 Ma date is considered unreliable, may have suffered from Pb-loss and is therefore not interpreted here as representing the youngest age component; the remaining dates, which show considerable overlap, probably reflect an inherited component and spuriously young dates that suffer from Pb loss. An exact depositional age is difficult to ascertain conclusively for this (~Upper Jurassic) sample because there is probably minor Pb loss and inheritance that cannot be resolved confidently at this precision (Fig. 5.34). To definitively date this deposit additional sampling and CA-TIMS analysis of the youngest crystals would be necessary.



Fig. 5.37. Composite diagram of CL images of zircons that yield concordant dates in sample OKT1 from the Oudtshoorn Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective  $^{206}Pb/^{238}U$  date are red.

#### DERU & DERC1

Crystal morphologies and sizes in this sample DERU are highly varied ranging from euhedral, to rounded and fragmentary grains that are angular and range from 30  $\mu$ m to 250  $\mu$ m. Colourless, yellow and yelloworange crystals are common and CL imagery reveals a diversity of fine to broad oscillatory zoning (Fig. 5.38), xenocrystic cores (e.g., crystal 12 in Fig. 5.38) and inclusions (crystals 70 and 31 in Fig. 5.38).



Fig. 5.38. Composite diagram of CL images of zircons that yield concordant dates in sample DERU from the Oudtshoorn Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are red.

Of the 88 crystals analysed, 35 yield concordant dates that are Mesozoic (43 %), Palaeozoic (46 %) and Precambrian (11 %). Mesozoic dates define a single peak on a probability density diagram at 185 Ma, while there are several Palaeozoic and Precambrian peaks (Fig. 5.33; Table D16 in Appendix D; Fig. F3B in Appendix D). Analytical metrics are as follows:  $YSG = 184 \pm 4$  Ma; YDZ = 182.8 + 3.1/ -3.8 Ma (95% conf.); YPP = 185 Ma. Variation in grain internal and external morphology and the wide spread of dates is compatible with a resedimented mixed-origin volcaniclastic deposit. However, the presence of glass shards and intact accretionary pellets suggest that reworking was likely not extensive because if there had been significant transport of ash prior to deposition, these delicate structures would probably have been

destroyed. Nevertheless, no true depositional age can be extracted from the sample with confidence, and a maximum depositional age of 185 Ma is preferred.



Fig. 5.39. Composite diagram of CL images of zircons that yield concordant dates in sample DERC1 from the Oudtshoorn Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are red.

Crystal morphology, size and colour in sample DECR1 show similar variation to sample DERU. External crystal morphologies were either euhedral, angular fragments or rounded, while internal morphologies showed fine and medium oscillatory zoning, xenocrystic cores and inclusions (Fig. 5.39). Of the 88 analyses, 61 yield concordant dates and most zircons in this sample are Mesozoic (67 %) forming two large peaks on the probability density diagram at 183 Ma and 199 Ma, and smaller Triassic peaks (Fig. 5.33; Table D17 in Appendix D; Fig. F3C in Appendix D). The remaining zircons (23 % Palaeozoic and 10 % Precambrian) constitute multiple small peaks. Analytical metrics are:  $YSG = 183 \pm 3$  Ma; YDZ = 181.4 + 1.8 / -2.6 Ma (95% conf.); YPP = 186 Ma. Like DERU, DERC1 is a mixed-origin volcaniclastic layer and not primary ash-fall deposit although in this case the proportion of young, volcanic zircons is greater, which may be a reflection of reduced detritus input in comparison to DERU. Alternatively, the lower proportion

of Palaeozoic and Precambrian zircons may be an artifact of the sampling procedure the sampled horizon was highly friable and may have been contaminated by sediment that worked its way into the weathered rock through the pervasive cracks. DERC1 on the other hand was extracted from well-consolidated, unweathered rock, which precludes sample contamination. Despite this, only a maximum depositional age of 186 Ma can be confidently established and should be considered more-or-less equivalent to the directly overlying DERU sample.

#### 5.2.4.3 Basin synthesis

The five samples presented above provide the first age constraint of the Uitenhage Group in the Oudtshoorn Basin, the lack of which hindered previous sedimentological (Du Preez, 1944; Holzförster, 2007; Richardson et al., 2017; Dinis, 2018), palaeontological (McLachlan and McMillan, 1976) and tectonic studies (Lock et al., 1975; Green et al., 2016).

The two bentonite layers, which are considered here as pyroclastic deposits, in the Kirkwood Formation near Calitzdorp (CALI) and in the south-central part of the Oudtshoorn Basin (OKT1) are both Late Jurassic. CALI has been dated with confidence, whereas OKT1 has a complicated spread of dates that are not easy to interpret beyond 'Late Jurassic'. Importantly, however, at least CALI and possibly also OKT1 are older than the oldest accepted (Portlandian) age for the Kirkwood Formation (McMillan et al., 1997). This is important for sedimentological assessments that rely on lithological correlations in order to assess models of basement infilling, and for dating no-age diagnostic fossils (De Klerk, 2000; Holzförster, 2007; Dinis, 2018). However, relative stratigraphic position of these bentonite layers within the basin fill succession remains unclear. Importantly, neither deposits seem to be near the base of the basin stratigraphy because there are considerble thicknesses of strata below each horizon evidenced by the numerous groundwater exploration boreholes that were drilled in each vicinity that failed to reach basement after 150 m (National Groundwater Archives, Department of Water and Sanitation). Therefore, these deposits are unlikely to have formed at the onset of rifting in the Oudtshoorn Basin and are underlain by an unknown >

150 m thickness of Uitenhage Group deposits. Further, conglomerates, sandstones and mudstones that outcrop on the eastern side of the basin that are not obviously contiguous (e.g., at Oudtshoorn) may also differ in age (i.e., can be pre- or syn- or post-Kimmeridgian).

The age of the oldest syn-rift units accommodated in the Oudtshoorn Basin may provide a minimum constraint of the onset of basin-forming tectonics. However, the depth at which these crucial deposits exist is presently unknown because neither deep drilling, nor seismic surveys have been conducted in any part of the Basin. Nevertheless, the complex history of the Cango Fault, which includes multiple periods of movement during the Mesozoic (Green et al., 2016), may yet give us access to these elusive deposits. It is likely that the volcaniclastic deposits at De Rust (from which samples DERU and DERC1 are derived) are rare portions of basal Uitenhage Group units that have been brought upward relative to surrounding younger strata by complex multi-phase faulting along the Cango Fault for three reasons.

Firstly, the volcaniclastic deposits at De Rust are Lower Jurassic basal portions of the Uitenhage Group based on lithological, geochronological, and zircon morphological characteristics. The presence of delicate glass shards and accretionary pellet structures preserved in these volcaniclastic deposits point to minimal reworking and transport as such structures would likely have been destroyed if significantly transported. Instead, the accretionary pellet-rich tuffaceous deposit is probably the result of a syn-depositional mixing of siliciclastic detritus with freshly deposited accretionary pellet-rich ash. If this is the case, then the Pliensbachian maximum depositional age of these strata roughly approximates its depositional age. This also implies that these deposits are age-correlatives of the Pliensbachian –Toarcian Suurberg Group, which outcrops in the Algoa Basin (see Chapter 4). The presence of constituent accretionary pellets, the overall silicification of the deposit, and proximity to these outcrops to the northern basin margin draw close similarity with the Pliensbachian tuffaceous deposits there. U-Pb zircon geochronology certainly supports such a correlation, with the De Rust samples (DERU and DERC1) showing identical detrital age components (albeit at different proportions) as tuffaceous units in the Suurberg Group (Fig. 5.40), although with noticeably different proportions of Jurassic aged zircons (a likely reflection of the degree of 'mixing'

with siliciclastic component during deposition). Youngest age components, which presumably comprise syn-depositonal late Early Jurassic zircons, are also indiscernible (Fig. 5.40).



Fig. 5.40. Comparison of detrital zircon signatures of the Suurberg Group (Chapter 4) with the two samples of the volcaniclastic deposits exposed near De Rust, Oudtshoorn Basin. Data are displayed as cumulative probability density diagrams.

Notwithstanding the lithological, geochronological and zircon morphological similarities of these tuffaceous beds, a cogenesis in the two basins need not necessarily be invoked in order to assign the De Rust deposits as Lower Jurassic. Moreover, these deposits have clearly been deformed, probably during displacement along the Cango Fault. This basin-bounding feature lies less than 500 m north of the quarry exposures, which can explain this deformation. Small-scale faults may have occurred either through the local widening of the Cango Fault into a deformation zone, or the off-shooting of subordinate antithetic faults from the Cango Fault during slip. Smaller fault blocks adjacent the Cango Fault could have developed at some point after initial rifting that incorporated a portion of the early basin fill. These blocks may have been caught within the region of deformation during a subsequent episode of normal faulting that caused highly localized strain, in the form of small faults and tilting, and brought them upwards relative to surrounding younger units (Fig. 5.41).

Finally, the Cango Fault has a complex episodic history of reactivation and displacement, which would have provided several opportunities for such a scenario to develop. Faulting appears to have been sustained during the deposition of the Uitenhage Group in the Oudtshoorn Basin because there is a progressive upward shallowing of dip angles and syn sedimentary faults in the Buffelskloof Formation (Holzförster, 2007). Furthermore, low temperature thermochronological data from a N-S transect across the Cango Group Inlier indicate that it moved as a discrete tectonic block in the Early Cretaceous (Green et al., 2016) implying that significant displacement occurred at this time, subsequent to Jurassic basin initiation and deposition. Such an episodic displacement history during the Mesozoic would have provided ample opportunity for basal units that were deposited adjacent the Cango Fault to be successively deformed during later episodes of normal faulting. This not to mention the Cango Fault remained active into the Quarternary, evidenced by recent pediment surfaces along the fault scarp (Malan and Viljoen, 2016 p. 63).

Based on these Upper and Lower Jurassic volcaniclastic deposits, subsidence of the Oudtshoorn Basin clearly began sometime during the Early Jurassic (Fig. 5.41). The lack of stratigraphic context of the De Rust volcaniclastics remains a problem for reconstructions of basin history – where are they positioned in the basin stratigraphy? The presence of lowermost Middle Jurassic deposits within the Uitenhage Group at Mossel Bay to the south and Heidelberg to the southwest indicates that an extensional stress regime had commenced by the Middle Jurassic, probably beginning earlier, and that rifting in at least parts of the southern Cape initiated as early as the Early Jurassic. By inference, this suggests that subsidence in the Oudtshoorn Basin begun in the Early Jurassic, shortly after or during the deposition of the De Rust volcaniclastic unit (Fig. 5.41). As with time fault(s) grew through linkage to form the Cango Fault (Paton, 2006), the rest of the Early Cretaceous (Fig. 5.41). The clast composition of conglomerates in these units are exclusively sandstone and quartzites of the Table Mountain Group (Dinis, 2018), although Permo-Triassic zircons do contribute to the detrital component of the De Rust volcaniclastics (Fig. 5.33), so a partial Karoo Supergroup source is also expected at least for the oldest deposits in the Oudtshoorn Basin.



Fig. 5.41. Evolution of the Oudtshoorn Basin from the Early Jurassic to modern day. Note the reactivation of the Cango Fault in the Early Cretaceous, which created the accommodation space for the Buffelskloof Formation and possibly brought deeply buried Lower Jurassic volcaniclastics closer to the surface. The progressive unroofing of the large anticline north of the basin is idealized as the true southern extent of the Karoo Supergroup during at Early Jurassic times is unknown.

After the deposition of the Enon and Kirkwood formations, in the post-Kimmeridgian, the Cango Fault was reinvigorated, and the basin entered a second phase of subsidence (Fig. 5.41). It was probably during this time that the uppermost breccia/conglomerates, the Buffelskloof Formation, were deposited as evidenced by a ~145 Ma maximum depositional age of sample OES1. The youngest zircons in this sample may have been derived from cannibalized older deposits or syn-depositional volcanic ash input. Either way, this youngest component reveals that the Buffelskloof Formation is discernably younger than the exposed, dated Kimmeridgian strata of the underlying Enon and Kirkwood formations. Although certainly the Buffelskloof Formation is equal to or younger than  $\sim$ 145 Ma (by virtue of containing  $\sim$ 145 Ma zircons), is it probably Lower Cretaceous, as opposed to say, Upper Cretaceous or Cenozoic because: 1) Apatite fission track analysis indicates that Cango Group Inlier, which occupies the northern footwall of the Cango Fault, was uplifted sometime between 145 Ma and 130 Ma (Green et al., 2016); and 2) similar aged deposits exist elsewhere in the rift basins of the southern Cape (e.g., the Sundays River Formation of the Algoa Basin). The considerable uplift and denudation of the region immediately north of the Cango Fault also brought the Cango Group to surface at this time. This is evidenced by the presence of phyllite and conglomerate clasts derived from the Cango Group in Buffelskloof Formation, which are entirely absent in the Enon and Kirkwood formations (Dinis, 2018). Further, the absence of Permian – Triassic zircons in the Buffelskloof Formation suggests that this unroofing process entirely removed the Karoo Supergroup from the scarp by the end of the Jurassic (Fig. 5.41). Further denudation occurred at the end of the Early Cretaceous and Cenozoic (Green et al., 2016) that removed much of the Buffelskloof Formation (and probably also its distal finer-grained equivalent) resulting in its restricted present-day distribution of the stratigraphic units of the Uitenhage Group in the Oudtshoorn Basin.

# 5.2.5 Knysna Basin

The Knysna Basin is situated around the town of Knysna in the Western Cape (Fig. 30). The Enon Formation is abundant around Knysna and outcrops in cliffs on the banks of the Knysna River and Estuary (Fig. 5.42; Fig. 5.43). The detailed sedimentology of these Enon Formation strata is to date unstudied, and the rocks have only been considered in relation to the Brenton Formation, which is exposed in a series of small, isolated outcrops on the southern banks of the Knysna Estuary from Featherbed to Lake Brenton (Fig. 5.43). The green-grey mudstone-dominated Brenton Formation hosts marine invertebrate fossils that carry chronostratigraphic significance in that the faunal assemblages have been dated through global correlations with dated horizons although their exact age interpretation remains unconfirmed (see Dingle and Klinger, 1972 and McLachlan et al., 1976 for opposing opinions; and summarized in Chapter 2 of this thesis). Importantly, the relationship between these marine mudstones and the continental conglomerates to the north of the Knysna Estuary has remained elusive to date (Fig. 5.43).



Fig. 5.42. Simplified Geology of the Knysna and Plettenberg Bay areas. Letters and colours are stratigraphic units and unshaded areas are recent alluvium and Cenozoic deposits. Abbreviations: Towns: K = Knysna; P = Plettenberg Bay. Stratigraphic units arranged from oldest to youngest: TMG = Table Mountain Group; BkG = Bokkeveld Group; UB = Brenton Formation; UE = Enon Formation; UK = Kirkwood Formation; UR = Robberg Formation. Base maps modified from the 1: 250 000 geological map sheet 3322 (Toerien and Roby, 1979) of the Council for Geoscience overlain on ESRI satellite imagery.



Fig. 5.43. Simplified geology of the southern part of the Knysna Basin based on McLachlan et al. (1976). Built-up regions are shaded dark grey.

## 5.2.5.1 Outcrop description

#### Salt River mouth (sample KNYE)

Most of the Uitenhage Group deposits around Knysna are conglomerate-dominated and mapped as the Enon Formation (Fig. 5.42; Fig. 5.43.). These are typified by the laterally extensive outcrops on the northern side of the Knysna Estuary along the N2 highway. Strata in one such outcrop (34° 2'12.96"S; 23° 1'28.27"E; Fig. 5.43) dip ~10° SW and comprise yellow-white sandstones and pebble conglomerates with sandstone and quartzite clasts identical to the rocks in the Table Mountain Group (Fig. 5.44B). A brown-orange medium-grained sandstone bed 20 cm thick that was sampled in the lower part of the outcrop, which predominantly exhibits conglomerates.

#### Estuary banks at Brenton (sample BREN2)

The best exposure of the Brenton Formation, which straddles the southern banks of the Knysna Estuary from Featherbed to Late Brenton, is at a ~ 5 high cliff face 800 m northwest of featherbed (Fig. 5.43.). The outcrop consists of a basal green-grey massive sandy mudstone unit that is only exposed at low tide. These are overlain by clay-rich grey-beige sandstones up to 3 m thick that are in paces horizontally laminated, massive or exhibit soft sediment deformation structures. This sandstone package was sampled for detrital zircon geochronological analysis. All bedding planes along the southern banks of the Knysna Estuary dip shallowly (8 – 18°) towards the NE (McLachlan et al., 1976).

Fig. 5.44. (Following page). Geological context of the Uitenhage Group samples in the Knysna and Plettenberg Bay basins. (A) Muddy sandstones of the Brenton Formation exposed between Fetherbed and Lake Brenton on the southern banks of the Knysna Esturay. (B) Sandstones and conglomerates of the Enon Formation exposed on the northern side of the Knysna Estuary at the mouth of the Salt River. (C) Vantell brickworks quarry with white dashed lines delineating the area shown in D where a bentonite layer is exposed. (D) Green bentonite lense that separates dark grey mudstones below the blue dashed line from the overlying matrix-supported polymictic conglomerates, above the red dashed line, which represents an erosive contact. (E) Sandstones at the uppermost interval of the Robberg Formation at the Robberg Peninsula. White arrow points to the signpost at 'The Gap'. Pink arrows indicate the exact position from which respective samples were extracted.



## 5.2.5.2 U-Pb geochronology

## KNYE

Zircons vary in colour from pale brown to beige and size from 50 to 200  $\mu$ m. Crystal are typically stubby, stalky and rarely prismatic and are in many cases well-rounded or completely rounded. Angular fragments and euhedral crystals are also present. The CL images reveal a wide range of internal morphologies, with oscillatory zoning common in the mantle of most crystals (e.g., crystals 5, 37 and 68 in Fig. 5.45). Many crystals contain inclusions (e.g., crystals 9 and 37 in Fig. 5.45) or have experienced zircon regrowth (e.g., crystal 25 in Fig. 5.45).



Fig. 5.45. Composite diagram of CL images of zircons that yield concordant dates in sample KNYE from the Knysna Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are red.

Of 35 dates, 28 are concordant and from multiple Palaeozoic (~7 %) and Precambrian (~66 %) age populations (Fig. 5.46; Table E1 in Appendix E; Fig. F4A in Appendix F). There are no Mesozoic zircons in this sample, and just two Palaeozoic crystals comprising the youngest population. The absence of syndepositional Jurassic or Cretaceous crystals makes constraining a depositional age for this unit impossible.

The presence of age populations at 500 - 600 Ma and 950 - 1200 Ma are expected for deposits that clearly are derived from the Cape Supergroup and contain exclusively quartzite to sandstone clasts of the Table Mountain Group, although the provenance has not been fully characterized given the small sample size of just 35 concordant dates. Analytical metrics are: YPP = 523 Ma; YSG =  $523 \pm 10$  Ma; YDZ = 523.3 + 5.2 / -6.6 Ma (95% conf.).



Fig. 5.46. U-Pb dates of zircons from the two samples in the Knysna Basin shown as age probability density diagrams (blue area) combined with frequency histograms (grey bars) with 20 Ma intervals. Only concordant data are shown: n = x/y means that x out of a total of y zircons yielded concordant dates. Youngest graphically-defined peak (YPP) are indicated.

#### BREN2

Crystal morphologies range in shape from euhedral and prismatic, with a number of long needle-shaped crystals, and a few that are rounded and fragmentary. Crystal sizes vary from 60 to 200  $\mu$ m, and range from

colourless to beige. Internally, fine and medium oscillatory zoning is almost unanimous, with (e.g., crystals 36 and 72 in Fig. 5.47) and without xenocrystic cores or inclusions (e.g., crystals 69 and 44 in Fig. 5.47).



Fig. 5.47. Composite diagram of CL images of zircons that yield concordant dates in sample BRENS2 from the Knysna Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are red.

Of the 117 crystals analysed, 91 yield concordant Mesozoic (18 %), Palaeozoic (54 %), and Precambrian (28 %) dates, forming multiple populations (Fig. 5.46; Table D18 in Appendix D; Fig. F4B in Appendix F). The majority of the Mesozoic dates are Jurassic. Analytical metrics are as follows:  $YSG = 146 \pm 2$  Ma; YDZ = 145.8 + 2.7 / -2.7 Ma (95% conf.); YPP = 152 Ma. The single  $146 \pm 2$  Ma date does not constitute a zircon population, and despite displaying concordance may have been affected by subtle Pb-loss and be spuriously young. Instead the 152 Ma graphically-defined peak age is regarded as a best estimate of the youngest reliable age component and therefore maximum depositional age of the unit. Therefore, it does not lend useful insights into the disputed age because it is compatible with both Early Cretaceous (McLachlan et al., 1976) and a Latest Jurassic (Dingle and Klinger, 1971) biostratigraphic age determinations.

#### 5.2.5.3 Basin synthesis

The exposed Uitenhage Group around Knysna is Upper Jurassic to Lower Cretaceous, but underlain by an unknown thickness of older strata. The Brenton Formation, which outcrops in the south banks of the Knysna Estuary, remains the most significant chronostratigraphic constraint for deposition yet these new U-Pb data do not help resolve its contentious age. If the Early Cretaceous age is accepted, then it is likely that a significant thickness of Uitenhage Group exists beneath the Knysna Estuary.

A newly drilled borehole at Thesen Island ('TI-01'), more-or-less in the centre of the Knysna Estuary (Fig. 5.43), gives the first confirmation of Uitenhage Group at depth, and provides some insights into the sedimentary fill and its stratigraphy in the Knysna Basin. During late 2017, efforts were made to reach an aquifer hosted in Table Mountain Group but the drilling stopped ~178 m from the surface, before reaching the aquifer. The borehole intersected ~34 m of surficial unconsolidated grey-brown mud, sand and gravel that are assigned to the Cenozoic (Fig. 5.48). These Cenozoic strata are underlain by 144 m of consolidated varicoloured, mostly red, siltstones and rare beige sandstones. This lower unit is interpreted as the Kirkwood Formation and supports the interpretations of Dingle et al. (1983) who placed fine-grained continental red beds as lateral equivalents of the Enon and Brenton formations in subsurface, below the south and north banks of the Knysna Estuary. At 98-105 m depth (Fig. 5.48), the drilling intersected several green-grey shelly mudstone units, one of which hosts rare for an infer at 98 - 105 m depth (Fig. 5.48), which imply a marine origin for these beds. If this interpretation is correct, then it supports a lateral interfingering of the Kirkwood Formation with the Brenton Formation in the subsurface. Although some authors have proposed that such a gradational relationship exists between the Enon, Kikwood and Brenton formations in Knysna (e.g., Dingle et al., 1983), borehole TI-01 provides the first evidence of the previously inferred stratigraphic relationships and the presence of fine-grained lateral equivalents of the conglomeratedominated strata that ourcrop around Knysna (Fig. 5.43). However, there still remains much uncertainty regarding the general subsurface structure and stratigraphic architecture of the Knysna Basin, although a complex and compartmentalized horst-and-graben structure is likely (Fig. 5.49). The total thickness of Uitenhage Group in the depocentre of the Knysna Basin remains unknown, as is the presence or absence of marine intervals that are older than the Brenton Formation (Fig. 5.49).



Fig. 5.48. Borehole log TI-01 from a groundwater borehole drilled in the Knysna Basin on Thesen Island with interpreted stratigraphic units on the right. Total depth is 178 m. For the location of the borehole in the Knysna Estuary, see Fig. 5.43.



Fig. 5.49. Simplified geological cross-section of the Knysna Basin from N to S. Note the vertical scale is exaggerated to twice that of the horizontal. The total thickness of Uitenhage Group are unknown, as are the structures at depth. If the Brenton Formation is Lower Cretaceous, then Tithonian Bethelsdorp/Colchester Member equivalents are expected in the Kirkwood Formation at depth. Modified after Dingle et al. (1983).

## 5.2.6 Plettenberg Bay Basin

Uitenhage Group outcrops in several locations in the Plettenberg Bay Basin (Fig. 5.42), which can be subdivided into the Piesang Valley and Bitou sectors, each one probably bounded by an individual unmapped fault, and the numerous associated outcrops on the Robberg Peninsula, which is not fault-bound (Reddering, 2000). Although no thorough mapping of sedimentary rocks has been undertaken in this area other than at the well-studied outcrops on the Robberg Peninsula, which is the type locality for the Robberg Formation (Reddering, 2000), red conglomerates (Enon Formation) and finer-grained grey and red sand-and mudstones (Kirkwood Formation) exist in both the Bitou and Piesang Valley sectors (Rigassi and Dixon, 1972; Dingle et al., 1983; McMillan, 2010). The Uitenhage Group is estimated to be 2100 m and 1500 m thick in these two sectors, respectively (McLachlan and McMillan, 1976).

Most of the outcrops in the Bitou sector are exposed along the banks of the Bitou River and its unnamed tributaries and as road-cuttings along the N2 highway. Outcrops in the Piesang Valley are restricted to active brickworks, rehabilitated quarries and erosional gullies north of the Airport Road. Although exposures are very sparse in these two areas and previously undescribed in any detail, the outcrops at the Robberg Peninsula, are excellently exposed as steep-sided cliffs along the wave-cut terrace and have been studied extensively (Rigassi and Dixon, 1972; Reddering, 2000; 2003). To date, no adequate correlation between the Robberg Formation outcrops in the peninsula and those of the Enon and Kirkwood formations further inland in the Plettenberg Bay area has been made, nor has its Early Cretaceous age, based on trace fossil and microfossil assemblages (Reddering, 2000; McMillan personal communication 2016, 19 June) been verified. Here, we only consider the Uitenhage Group in the Piesang Valley and Robberg Peninsula.

## 5.2.6.1 Outcrop description

#### Vantell brickworks quarry (sample PLET)

A brickworks quarry in the Piesang Valley exposes red, purple, green, brown and grey claystones of the Kirkwood Formation (34° 4'21.73"S; 23°18'42.23"E; Fig. 5.42; Fig. 5.44 C). These varicoloured claystones are intersected by channel-shaped sandstone packages, and are overlain by a matrix-supported breccia that contains intra- and extra-basinal clasts of quartzite, sandstone and mudstone (Fig. 5.44D). Two bentonitic claystone lenses (2 and 4 m in length and up to 40 cm thick) occupy the same horizon at the top of the claystone-dominated package, directly beneath the overlying breccia. These lenses can be differentiated from surrounding claystones by their distinctive weathering that crumbles and is very uneven (popcorn texture), unlike the comparatively smooth and cracked weathering of surrounding claystones (Fig. 5.44D). The bentonitic claystone lenses were sampled, because they are interpreted as pyroclastic deposits that have been altered to montmorillonite.

## Robberg Peninsula (sample RBGS1)

Excellent exposure of conglomerates, breccias, sandstones and mudstones of the Robberg Formation are displayed on the Robberg Peninsula (34° 6'3.42"S; 23°22'54.18"E; Fig. 5.42). In the upper portion of the Formation, medium to very fine-grained sandstones occur and are typified in an outcrop on the northern side of 'The Gap', which displays silty-sandstones with ripple cross laminations and soft-sediment deformation (Fig. 5.44E).

## 5.2.6.2 U-Pb geochronology

## PLET

Zircons range from small, stubby ~60  $\mu$ m long crystals to prismatic ones up to 150  $\mu$ m long. Almost all are euhedral and unrounded although some elongated crystals are broken fragments. These zircons are all colourless under plain light and exhibit fine oscillatory zoning when imaged using the CL detector (Fig. 5.50).



Fig. 5.50. Composite diagram of CL images of zircons that yield concordant dates in sample PLET from the Piesang Valley sector of the Plettenberg Basin Basin. Individual zircon indicated by white number and analytical spot ( $26 \mu m$  diameter) with respective  ${}^{206}Pb/{}^{238}U$  date are red.

Of the 81 analyses, 25 yield concordant Mesozoic dates that form a population with peaks at ~138 Ma (YPP) and ~147 Ma (Fig. 5.51; Table D19 in Appendix D). Only a single older, Precambrian crystal exists in this sample, so the detrital zircon contribution in this deposit is negligible. Other analytical metrics are: YSG =  $135 \pm 3$  Ma; YDZ =  $134.2 \pm 1.5 \pm 2.8$  Ma (95% conf.). Such a close clustering of zircon ages and ubiquitous oscillatory zonation are in agreement with field-based sedimentological interpretations of a pyroclastic origin for these bentonites. However, when plotted on the concordia diagram,  $2\sigma$  ellipses are not equivalent (Fig. 5.52). <sup>206</sup>Pb/<sup>238</sup>U dates yield a TuffZirc age of 137.9 +1.4/-0.9 Ma from a coherent cluster of 20, assuming minor inheritance (Fig. 5.52).



Fig. 5.51. U-Pb dates of zircons from the two samples in the Plettenberg Bay Basin shown as age probability density diagrams (blue area) combined with frequency histograms (grey bars) with 20 Ma intervals. Only concordant data are shown: n = x/y means that x out of a total of y zircons yielded concordant dates. Youngest graphically-defined peak (YPP) are indicated

CA-TIMS analysis of a selection of the youngest crystals yielded 11 concordant and reliable dates (Fig. 5.53; Table G1 in Appendix G). A weighted mean (139.9  $\pm$  0.6 Ma) that includes all of these dates is undesirable because of the associated excess degree of scatter (MSWD = 2.6). This is largely due to the single youngest date that is discernibly younger than most other dates (at  $2\sigma$  error). This 138.5  $\pm$  0.3 Ma date only overlaps with other dates that have relatively large errors and is therefore interpreted as a spuriously young outlier that suffers lead loss. Ideally, more aggressive chemical abrasion parameters are used in order to test if this single date is repeatable. If so, then a ~138.5 Ma depositional age would be preferable to an older weighted mean of  $140.2 \pm 0.4$  Ma (MSWD = 1.01), which is interpreted as the

depositional age of the bentonite. This weighted mean is discernably older than the TuffZirc-defined age, suggesting that there is sublte Pb-loss that is not accounted for in the LA-ICPMS data.



Fig. 5.52. Concordia diagram (left) and concordant  $^{206}$ Pb/ $^{238}$ U dates arranged by age (right) for the pyroclastic deposit in the Plettenberg Bay Basin. Horizontal grey line is the age calculated by TuffZirc with vertical grey lines representing dates rejected from the age calculation. All individual errors are  $2\sigma$ .



Fig. 5.53. U-Pb dates from LA-ICPMS (left) and CA-TIMS (right) analytical procedures ordered by age in sample PLET, Plettenberg Bay Basin. Grey uncertainty ranges are dates that are excluded from age calculations. The TuffZirc age (red) is younger than the weighted mean (green) calculated from 10 dates acquired by CA-TIMS.

## RBGS1

Zircon crystals range from 75 to 130  $\mu$ m in length and are primarily of euhedral stalky or stubby habit. Rarely, crystals displayed significant rounding and are mostly colourless or pale beige in colour. Internally, they all exhibit fine oscillatory zoning, commonly with inherited cores (e.g., crystals 17, 54 and 6 in Fig. 5.54).



Fig. 5.54. Composite diagram of CL images of zircons that yield concordant dates in sample RBGS1 from the Robberg Peninsula of the Plettenberg Bay Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are red.

Of the 54 crystals, 43 yielded concordant dates that form multiple Mesozoic (~10 %) and Palaeozoic (~90 %) populations on a probability density diagram (Fig. 5.51; Table E1 in Appendix E; Fig F4C in Appendix F). Only two non-overlapping (at  $2\sigma$  error) Jurassic dates are present in the sample and therefore do not constitute a population. Most zircons in this sample form a complex Palaeozoic peaks at 262 Ma (YPP) and 272 Ma while there are just six Middle – Late Palaeozoic zircons. The youngest modelled detrital zircon age (YDZ) is 175.6 +3.8/-3.3 Ma (95% conf.). A rigorous measure of maximum deposition of this deposit is the graphically defined ~262 Ma, although the presence of rare Jurassic zircons suggests that deposition occurred much later than the Triassic. The biostratigraphically defined Early Cretaceous age for the

Robberg Formation at its type locality (Reddering, 2000) therefore is not further refined by detrital zircon geochronology, and is still the best estimate for its depositional age. Interestingly, the large proportions of Permian and Triassic zircons in the Robberg Formation, which both outcrops more than 100 km from presently outcropping Karoo Supergroup source and contains quartzite and sandstone clasts that are clearly derived from the Cape Supergroup and none from Karoo Supergroup lithologies. This suggests that either the Karoo Supergroup was exposed much further south than its present-day distribution or that the total transport distances and energy levels were large and transported sediment in a north to south direction.

#### 5.2.6.3 Basin synthesis

With the exception of the Robberg Formation, the poorly exposed Uitenhage Group in the vicinity of Plettenberg Bay is scarcely considered in tectonostratigraphic models of the Mesozoic southern Cape (e.g., Dingle et al., 1983; McMillan et al., 1997; McMillan, 2010). This is largely because correlations with the Lower Cretaceous Robberg Formation have until now been impossible (Rigassi and Dixon, 1972).

The outcrops of Kirkwood Formation in the Piesang Valley are neither physically connected to those at Robberg, nor do they show the same transitional marine sedimentary facies that are described there (Reddering, 2000). However, a latest Berriasian to Valanginian pyroclastic deposit from the Piesang Valley sector (bentonite sample: PLET) allows for the first confident correlations to be made between the Kirkwood Formation in the Piesang Valley and elsewhere in the southern Cape and Robberg Formation at Robberg despite their contrasting lithological characteristics. This raises two interesting questions: 1) Why is the Robberg Formation well-cemented, while the coeval Kirkwood Formation just ~5 km from there coastal occurrence is poorly consolidated? 2) When did rift-related subsidence begin in the region of modern-day Plettenberg Bay?

To date, no suitable explanation has been provided for the unusually resistant nature of the Robberg Formation, a characteristic that is deemed highly significant by some authors (Rigassi and Dixon, 1972;

Reddering, 2000). In fact, its well-cemented nature, and lack of obvious fault planes at or near the outcrops has lead authors to believe that the deposition of the Robberg Formation predates the rifting in the southern Cape (Rigassi and Dixon, 1972). Here, we have shown that despite these differences in cementation (and thus resistance to weathering), the Robberg Formation can be considered coeval with the nearby Kirkwood Formation. This conclusively demonstrates that the two formations are facies equivalents with the Kirkwood Formation being the landward, continental equivalent of the Robberg Formation, which formed in the estuaries at the palaeocoastline in the Early Cretaceous. However, lateral sedimentary facies variations fail to account for the siliceous character of Robberg Formation. Reddering (2000) suggested that the silicification is a result of ~1 km burial and pointed out that the Robberg Formation is located on a horst structure, in contrast to the graben-fill units of the Kirkwood Formation in the Piesang Valley. However, how strata on a horst would have reached a greater burial depth than coeval graben-confined strata is unclear, especially since no later-stage fault seems to separate the Robberg Peninsula from the Piesang Valley. Perhaps a complex Cenozoic uplift and denudation history accounts for their present-day surface occurrence despite differential burial depths, or else silicious cementing is influenced by diagenetic factors other than burial depth such groundwater movement (Morad et al., 2002).

To date there is no definitive measure of the thickness of Uitenhage Group in the Piesang Valley sector, although 1500 m is estimated (McLachlan and McMillan, 1976). If the Berriasian – Valanginian bentonite horizon is near the up of this estimated section, then it is reasonable that Upper, Middle and possibly even Lower Jurassic deposits lie beneath. However, if this is an overestimation and the underlying strata have a much smaller cumulative thickness, then the earliest-deposited Uitenhage Group in the Piesang Valley sector likely is much younger. In order to properly asses the onset of rifting and Mesozoic accumulation at Plettenberg Bay, a better control of the stratigraphic position of the dated deposits need to be determined.

## 5.2.7 Gamtoos Basin

The Gamtoos Basin is an arcuate-shaped basin in the Eastern Cape Province that has both onshore and offshore distribution (Fig. 2.1). Its onshore sector is about 50 km in length and arcuate shape is strictly controlled by the Gamtoos Fault, which bounds the basin in the north and northeast (Fig. 5.55). Basement rocks comprise mostly of the Palaeozoic Table Mountain Group (Cape Supergroup) although an inlier of the Precambrian Gamtoos Group is exposed in the footwall of the Gamtoos Fault in the vicinity of Patensie (Fig. 5.55). The Gamtoos Fault has an extreme throw of ~12 km offshore (McMillan et al., 1997), but the total thickness of the Uitenhage Group onshore remains unknown (Dingle et al., 1983) and due to the lack of lithostratigraphic markers, the stratigraphic relationships between isolated outcrops are poorly established (van de Linde, 2017). The conglomerate-dominated Enon Formation and the sandstone-dominated Kirkwood Formation outcrop in the western and eastern part of the basin, respectively. These two outcrop regions are roughly separated by the Gamtoos River (Fig. 5.55).

Fig. 5.55. (Following page). Simplified Geology of the Algoa and Gamtoos basins. Letters and colours are lithostratigraphic units and unshaded areas are alluvium and Cenozoic cover sequences. Black stars with numbers are fossiliferous sites referred to in the text: 1 =Umlilo farm; 2 =Kirkwood Cliffs; 3 =Blue Cliffs; 4 =Bezuidenhouts River crossing; 5 =Dunbrody; 6 =Kwa Nobuhle township. Abbreviations: Towns: C = Colchester; E = Enon; H = Hankey; K = Kirkwood; P = Patensie; PE = Port Elizabeth; U = Uitenhage. Stratigraphic units arranged from oldest to youngest: GG = Gamtoos Group; TMG = Table Mountain Group; BkG = Bokkeveld Group; WtG = Witteberg Group; KSG = Karoo Supergroup; SG = Suurberg Group; UE = Enon Formation; UK = Kirkwood Formation; US = Sundays River Formation. Base maps modified from the 1: 250 000 geological maps sheets 3324 (Toerien, 1991) and 3326 (Roby and Johnson, 1995) of the Council for Geoscience overlain on ESRI satellite imagery.



#### 5.2.7.1 Outcrop description

#### Enon Formation stratotype quarry (sample GES3)

The Gamtoos Basin contains the newly proposed stratotype for the Enon Formation (see Fig. 5 in Muir et al., 2017a within section 2.2.1 of this thesis for details) in a roadside quarry (33°52'12.30"S; 24°51'15.31"E; Fig. 5.55) that presents high quality and easily accessible exposures of the unit, which otherwise show subtle lithofacies variations in the region (van de Linde, 2017). Overall, the Enon Formation is this quarry comprises massive to crudely bedded conglomerates with quartzite and sandstones clasts from the Table Mountain Group and white sandstone lenses, one of which was sampled for detrital zircons.

### Gamtoos River cutting south (sample GKT1)

Good exposures of the Kirkwood Formation are situated in the southeastern part of the onshore basin, particularly along the banks of the Gamtoos River. A river-cut cliffs ~ 200 m north of the N2 highway  $(33^{\circ}55'21.34"S; 25^{\circ} 1'41.23"E;$  Fig. 5.55) displays a thick succession of mainly sandstones, with a thin, laterally extensive grey claystone layer of possible, yet unconfirmed volcaniclastic affinity (Fig. 5.56). In order to maximize the chances of sampling volcanic zircons, the 5 – 10 cm thick claystone was excavated along with some of the overlying sandstone.

Fig. 5.56. (Following page). Geological context of the Uitenhage Group samples in the Gamtoos Basin. (A) White sandstone lenses in a conglomerate-dominated outcrop that forms part of the proposed new stratotype for the Enon Formation (see Fig. 5 in Muir et al., 2017a, section 2.2.1 of this thesis). (B) White sandy claystone beds (outlined by blue dashed lines) in a sandstone-dominated outcrop of the Kirkwood Formation at the southern Gamtoos River Banks. (C) The clay-rich sandstone bed sampled, which is ~2 m to the right of B. Pink arrows indicate the exact position from which respective samples were extracted.



# 5.2.7.2 U-Pb geochronology

#### GES3

Crystals are between 60 and 210  $\mu$ m, are well-rounded to euhedral, or are angular fragments. Commonly they take on prismatic and stalky habits, with rare, often broken needles (e.g., crystal 31 in Fig. 5.57). They are either beige, colourless, or deep orange in colour. Internally, the crystals show fine oscillatory zoning, sometimes with secondary recrystallization (e.g., 64 in Fig. 5.57). Many zircons contain xenocrystic cores (e.g., 58 and 72 in Fig. 5.57) and inclusions (e.g., 64 and 42 in Fig. 5.57), while others do not (e.g., 31 in Fig. 5.57).



Fig. 5.57. Composite diagram of CL images of zircons that yield concordant dates in sample GES1 from the Gamtoos Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are red.

Of the 64 zircons, 58 yield concordant dates, which are early Palaeozoic (~28 %) and Precambrian (~72%) and occupy complex age populations with notable Ordovician, Cambrian, and Neoproterozoic peaks (Fig. 5.58; Table E1 in Appendix E; Fig. F5A in Appendix F). The youngest age component is at ~445 Ma (YPP), which reflects a Late Ordovician maximum depositional age. However, this probably reflects a Cape Supergroup source and an absence, Mesozoic zircons. Other metrics are:  $YSG = 442 \pm 11$  Ma; YDZ = 441.3 + 6.6/-8.2 Ma (95% conf.).



Fig. 5.58. U-Pb dates of zircons from all samples in the Gamtoos Basin shown as age probability density diagrams (blue area) combined with frequency histograms (grey bars) with 20 Ma intervals. Only concordant data are shown: n = x/y means that x out of a total of y zircons yielded concordant dates. Youngest graphically-defined peak (YPP) are indicated.

#### GKT1

Zircons are similar to those in sample GKT1 in many respects, although in general are smaller, and range in size from 50 to 130  $\mu$ m. They likewise are colourless, beige, or deep orange under plain light. Typically, crystals are either stalky or prismatic and range from well-rounded (e.g., crystal 56 in Fig. 5.59) to euhedral (e.g., 5 in Fig. 5.59) with some angular fragments (e.g., 5 and 6 in Fig. 5.59). Internal textures under the CL detector are varied, with some crystals exhibiting clear signs of recrystallization (e.g., 14, 56 in Fig. 5.59) commonly with xenocrystic cores (e.g., 12 in Fig. 5.59). Fine oscillatory zoning is present in some grains (e.g., 5, 6 in Fig. 5.59) and absent in others (e.g., 60 in Fig. 5.59), as are inclusions.


Fig. 5.59. Composite diagram of CL images of zircons that yield concordant dates in sample GKT1 from the Gamtoos Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are red.

All 33 analytical dates are concordant in this sample, and comprise multiple populations, notably at ~505 Ma, which is the youngest and largest age component (YPP), as well as Neoproterozoic populations (Fig. 5.58; Table E1 in Appendix E; Fig. F5B in Appendix F). The detrital zircon age distribution is very similar to that of GES3 albeit a fewer number of analysed zircons make for a less representative age distribution. The absence of Mesozoic zircons and Cambrian maximum depositional age (YPP) is not consistent with the claystone interval being of volcanic origin and provides no means to refine deposition age. The youngest zircon (YSG) is  $486 \pm 15$  Ma and the youngest modelled age (YDZ) is 489.2 +7/-12 Ma (95% conf.).

## 5.2.7.3 Basin synthesis

The onshore Gamtoos Basin contains thick accumulations of sandstones and conglomerates of the lower Uitenhage Group. Unfortunately, there are no Mesozoic zircons present in either of the two samples and therefore they offer no refinement of the depositional age of the exposed strata, nor of the stratigraphic relationships between units within the Gamtoos Basin. Furthermore, the detrital zircon distributions do not add a new meaningful detail to the provenance history of these sediments either, because the Early Palaeozoic – Precambrian zircon populations simply confirm that both the Enon and Kirkwood formations in the basin were derived from sources that are locally outcropping in and around the basin (i.e., the Table Mountain and Gamtoos Groups).

In light of this, offshore borehole microfossil assessments of the Uitenhage Group remain the most reliable means to date the strata in the Gamtoos Basin. McMillan et al. (1997) assigned the oldest dated strata of the Enon Formation to the Kimmeridgian, and the youngest to the Valanginian, and this probably also reflects the age interval of the exposed units onshore. This is compatible with the Late Jurassic – Early Cretaceous plant macrofossil assemblages that occur in rare lignites in the Kirkwood Formation onshore (McLachlan and McMillan, 1976). However, because there remains a thick package of undrilled and undated continental strata below the deepest boreholes drilled in the offshore Gamtoos Basin, there could also be vast thicknesses underlying those exposed onshore, especially adjacent the Gamtoos Fault. Therefore, it is likely that initial basin subsidence occurred in the Middle Jurassic or earlier.

## 5.2.8 Algoa Basin

The Algoa Basin is situated in the Eastern Cape Province largest of the onshore Mesozoic basins. It takes on an arcuate shape and is composed of a number of half-grabens that are filled with the Uitenhage Group and to a lesser degree the Suurberg Group (see Chapter 4) within Cape and Karoo Supergroups as basement. It contains abundant outcrops of the Enon, Kirkwood and Sundays River formations, which have been studied, among others, for their palaeontological (e.g., McLachlan and McMillan, 1976; Rich et al., 1983; de Klerk et al., 2000; Choiniere et al., 2012; Muir et al., 2015; McPhee et al., 2016), hydrocarbon (McMillan et al., 1997; Broad et al., 2012), and carbon sequestration potential (Viljoen et al., 2010). These multifaceted inquiries require a at least some chronostratigraphic information and therefore the age of the strata in the Algoa Basin have been previously investigated with considerably more effort than strata in any other rift basin of the southern Cape. In aid of this, the marine units contained in the basin, the Tithonian Bethelsdorp Member of the Kirkwood Formation and the Valanginian – Hauterivian Sundays River Formation has provided the only sound biostratigraphic time constraints to the Uitenhage Group. These constraints, in combination with historic ages for the Mimosa Formation of the underlying Suurberg Group (McLachlan and McMillan, 1976) account for all the chronostratigraphic information in the Algoa Basin. However, with new U-Pb ages for the Suurberg Group that push back constraints for maximum deposition of the Uitenhage Group by ~20 Ma (see Chapter 4) and a large range of ages reported from ashes in the Uitenhage Group in other basins, existing estimated depositional ages from the Algoa Basin require careful scrutiny, especially its continental deposits that have never been dated directly. Specifically, the Tithonian – Valanginian age reported for the Kirkwood Formation, including an entirely Early Cretaceous age for its uppermost fossilbearing strata (e.g., McLachlan and McMillan, 1976; Shone, 2006), requires critical evaluation because this age determination is based on a correlation between the upper Kirkwood Formation and the Valanginian lower Sundays River Formation that is unconfirmed (contrast McLachlan and McMillan, 1976; Winter, 1979 and Shone, 1978). Further, if these units (i.e., upper Kirwoord and lower Sundays River formations)

are age correlatives, how much time does the full 2000 m thickness of the underlying Kirkwood Formation represent?

## 5.2.8.1 Fossiliferous deposits of Kirkwood Formation in the Algoa Basin

The diversity of non-age diagnostic continental fauna (e.g., sauropod, ornithopod and theropod dinosaurs, frogs, turtles, sphenodontids, crocodiles) in the Algoa Basin come from the mudstones and sandstones of the Kirkwood Formation, mostly as poorly articulated and fragmentary remains in channel lag deposits and palaeosols (McLachlan and McMillan, 1976; Rich et al., 1983; de Klerk et al., 2000; Almond 2009; Forster et al., 2009; McPhee et al., 2016) although rare articulated specimens have also been found (de Klerk et al., 2000). Plant fossil remains (e.g., bryophytes, ferns, bennettitaleans, cycads, conifers, fossil logs, amber and charcoal) are common although usually comprise abraded fragments or logs weathering out of sandstones (McLachlan and McMillan, 1976; Anderson and Anderson, 1985; Banford, 1986). An exception is near the Buizedenhouts River crossing (Bamford, 1986; Muir et al., 2015) where well-preserved specimens are common in the grey mudstones. Including this important plant fossil locality, there are essentially six fossil sites in the Formation that have been subjected to systematic palaeontological studies (McLachlan and McMillan, 1976; Rich et al., 1983; Bamford, 1986; McPhee et al., 2016) and account for the diversity of fossil assemblages in the Kirkwood Formation. These include five sites in the northern part of the Basin near Kirkwood, within the Sundays River Trough, and one in the vicinity of Kwa-Nobuhle in the Uitenhage Trough (see black stars in Fig. 5.55).

One of the most fossil-rich sites in the Kirkwood Formation is on Umlilo farm, ~15 km west of Kirkwood (Fig. 5.55). Here, laterally extensive outcrops of mudstones and sandstones outcrop in erosional gullies and ravines. The first ornithomimosaurian dinosaur taxon known from Africa and the most articulated of such specimens from the whole Gondwanan supercontinent, *Nqwebasaurus thwasi*, was excavated from red sandy mudstones exposed in a natural cliff in the late 1990's (de Klerk et al., 2000; Choiniere et al., 2012). In addition to yielding this important specimen, several other fragmentary sauropod remains have also been

excavated here that have contributed to our understanding of their diversity in the Early Cretaceous (McPhee et al., 2016). None of these fossils are age diagnostic, and have been assigned as Early Cretaceous (Berriasian –Valanginian) based on an assumed partial lateral continuity of its upper strata with the Valanginian Sundays River Formation (Shone et al., 1978; McMillan, 2003). However, the Sundays River Formation does not outcrop in the immediate vicinity of Umlilo (the nearest exposures are more than 23 km away) making a lateral correlation potentially erroneous, especially considering that there is no compelling evidence that the deposits at Umlilo are indeed in the upper part of the thick Kirkwood Formation. Additionally, the stratigraphic relationship between these two stratigraphic units in the Algoa Basin remains unclear. They appear to be at least partial lateral correlatives (Shone, 1978), although the lack of exposure that clearly demonstrates this leaves the possibility that a stratigraphic gap exists between them (Winter, 1973), and if so, then the correlative inference is brought into question.

The stratotype locality for the Kirkwood Formation on the banks of the Sundays River (Fig. 5.55; Fig. 5 of Muir et al., 2017b in section 2.2.2 of this thesis) is one of the most palaeontological productive sites in the Mesozoic of the southern Cape and has contributed immensely to the reconstruction of the continental ecosystem of this region. The site has yielded a diverse faunal assemblage with fragmentary remains of crocodilia, theropoda, sauropoda, ornithischia and osteichthyes fish (McLachlan and McMillan, 1976; Rich et al., 1983, Forster, 2009; McPhee et al., 2016). These vertebrate fossils are assigned broadly a Late Jurassic – Lower Cretaceous age by comparison with similar vertebrate assemblages in North America (Rich et al., 1983). These fossiliferous deposits are difficult to conclusively date because like those at Umlilo, the stratigraphic position of this spatially isolated fossil locality relative to the better dated Valanginian lowermost Sundays River Formation is not obvious.

Outcrops of the Kirkwood Formation on the banks of the Sundays River at Dunbrody (Fig. 5.55) have been pivotal in understanding the stratigraphy of the Uitenhage Group in the Algoa Basin, because of the marine bivalve fossils that are found there. Sandstones and mudstones there contain abundant shell fragments and whole oyster shells, which signify a (at least partial) marine influence during deposition. Two stratigraphic

interpretations can be invoked to satisfy there being marine conditions during deposition of the otherwise continental Kirkwood Formation at the Dunbrody site (Fig. 5.60). On the one hand, the thin marine Bethelsdorp Member of the Kirkwood Formation may extend laterally from its known coastal locality, 40 km south of Dunbrody with an entirely subsurface distribution to the Dunbrody area (Fig. 5.60). Alternatively, the presence of marine conditions could be attributed to thin 'tongues' of the marine Sundays River Formation that extend further north than the majority of the unit (Shone, 1978). After all, the Sundays River Formation does outcrop widely immediately south of Dunbrody (Fig. 5.55), so if the suspected gradational contact and lateral continuity occurs between the two units, then such thin marine interbeds are likely. The latter interpretation is generally accepted (McMillan et al., 1997) because nearby boreholes (AD1/68 and CK 1/68) intersect neither the Bethelsdorp nor the Colchester members of the Kirkwood Formation and therefore suggest a limited distribution for these units at least 10 km south of, rather than at, Dunbrody (McMillan, 2010; fig. 15 p. 42). However, there are no outcrops that display how the Kirkwood and Sundays River formations relate to each other. If the beds at Dunbrody represent an interfingering and lateral correlation between the units, then they should have a Valanginian age.

Good exposures of beige sandstones and grey mudstones are exposed in river cuttings along the Bezuindenhouts River around the Blue Cliffs railway station that have yielded freshwater bivalves and rare, fragmentary dinosaur remains (McLachlan and McMillan, 1976; Rich et al., 1983). Although this site has not significantly contributed to the fossil assemblages of the unit, its sedimentary characteristics and freshwater fossils indicate that lacustrine depositional settings did exist in the principally fluvial part of the Kirkwood Formation in the Algoa Basin (Muir et al., 2017b in section 2.2.2 of this thesis). However, how these lacustrine settings relate to the lacustrine Colchester Member and other stratigraphic units in the basin remains unclear.



Fig. 5.60. Schematic diagram exhibiting two alternate stratigraphic relationships in the Algoa Basin that honor a partial marine depositional setting in the Kirkwood Formation at Dunbrody (modified after McLachlan and McMillan, 1976).

Grey mudstones, beige sandstones and subordinate charcoal-rich breccia-conglomerates outcrop in a river cutting some ~50 km north of Port Elizabeth at the Bezuindenhouts River Bridge (Fig. 5.55). The mudstones here have yielded exceptionally well-preserved fossil plant remains (Bamford, 1986), and coarser deposits contain fossil logs with a charred appearance and abundant charcoal, indicating that wildfires were active during deposition (Muir et al., 2015). Due to the close proximity of the Sundays River Formation, which outcrops less than 200 m to the SE, these fossiliferous deposits have been regarded as Lower Cretaceous (Muir et al., 2015). The age of this deposit is particularly important for furthering work on the effect of wildfires on vegetation structure and plant evolution because rising atmospheric oxygen levels are considered an Early Cretaceous phenomenon of global significance (e.g., Brown et al., 2012). If the deposit

is Upper Jurassic, then the presence of intensive wildfires in the Algoa Basin may be driven by factors such as climate, vegetation structure or ignition source than it does with global atmospheric compositions.

Laterally extensive exposures of varicoloured palaeosol-rich mudstones are scattered at Kwa-Nobuhle township, 5 km south of Uitenhage, that have yielded important fragmentary sauropod vertebral remains (Broom, 1904; McPhee et al., 2016). These deposits have also been tentatively considered to be Lower Cretaceous (McPhee et al., 2016) although this remains unconfirmed. These outcrops of the Kirkwood Formation are unique because unlike those at the aforementioned sites in the northern Algoa Basin, the red bed here are underlain by the Tithonian marine Bethelsdorp Member, and are overlain (and possibly partially interfinger with) the Sundays River Formation (Fig. 5.55). As such, the red beds here are the only part of the Formation that can reasonably confidently be dated as probably post-Tithonian, and likely earliest Early Cretaceous by biostratigraphic methods.

## 5.2.8.2 Outcrop description

#### Roodekrans (sample AECOC)

Crudely-bedded conglomerates of the Enon Formation outcrop in a ~250 m long, and ~80 high river-cut cliff in the northern Algoa Basin Panhandle south of the R75at Roodekrans (33°22'31.86"S; 25° 2'14.90"E; Fig. 5.55). The crude beds dip 25°S and comprise well-rounded to sub-rounded quartzite conglomerates, subordinate sandstone lenses and rare sandstone beds that are laterally extensive for ~50 m (Fig. 5.61A, B). The lower of two prominent sandstone beds was sampled.

#### Umlilo farm (sample AKIRK)

A sample from a thin sandstone layer (Fig. 5.61C) that intersects red mudstones on Umlilo farm at the exact locality where Nqwebasaurus (de Klerk, et al., 2000) was discovered (33°24'45.11"S; 25°15'44.42"E; Fig. 5.55) was extracted in order to assess the maximum depositional age of the fossil-bearing site directly and potentially provide constraints on its age.

#### Kirkwood Cliffs (sample AKSTRAT)

Interbedded beige sandstones and varicoloured silty mudstones outcrop on a north-facing cliff-face ('Kirkwood cliffs') on the southern banks of the Sundays River and is the formal type locality of the Kirkwood Formation (see Figs 4 and 5 in Muir et al., 2017b in section 2.2.2 of this thesis). A sample of a prominent beige sandstone bed exposed in the cliff face was taken for detrital zircon geochronology (33°25'40.93"S; 25°26'6.71"E; Fig. 5.55; Fig. 5.61D).

#### Dunbrody (sample KDUNS)

Alternating ~5 cm beds of light brown mudstone and medium-grained beige sandstone are exposed at Dunbrody (33°28'28.29"S; 25°33'48.06"E; Fig. 5.55) that may reflect the gradational contact between the Kirkwood and Sundays River formations (McMillan et al., 1997) and a transition between continental and shallow marine deposition (McLachlan and McMillan, 1976). One of the sandstone interbeds (Fig. 5.61E) was sampled in order to constrain the deposition age.

Fig. 5.61. Geological context of the Uitenhage Group samples in the Algoa Basin. (A) Cliffs at Roodekrans consisting of the conglomerate-dominated Enon Formation. Bedding (white lines) is tilted towards the south. White dashed lines delineate the area depictedin B. (B) A sandstone bed, outlined by blue dashed lines, within the conglomeratedominated deposit at Roodekrans. (C) Sandstones and mudstones of the Kirkwood Formation on Umlilo farm at the Nqwebasuarus fossil locality. Blue dashed line separates the different facies. (D) Variagated mudstones and a sandstone bed (outlined with blue dashed lines) of the Kirkwood Formation at the 'Kirkwood Cliffs' stratotype locality. The conglomerate-dominated Kudus Kloof Formation overlies and is separated from underlying strata by an unconformity (red dashed line). Photo courtesey of Dr. Billy De Klerk. (E) Beige sandstones interbedded with grey mudstones that contain marine gastropod fossils within the Kirkwood Formation at Dunbrody. Blue dashed lines hilight some of the interbedded sandstones. (F) Cliffs composed of the sandstones, mudstones and conglomerates of the Kirkwood Formation near Blue Cliffs. White dashed line highlights the region depected in G and the white dotted line separates the underlying Kirkwood Formation from uncosolidated modern sediments and soil. (G) Prominent sandstone bed overlying mudstones. (H) Charcoal-rich fossiliferous interbed within beige sandstones at an outcrop of the Kirkwood Formation at the Bezuidenhouts River Bridge. (I) Charcoal-rich fossiliferous bed in H within a larger context at Bezuidenhouts River Bridge outcrop (adopted from Muir et al., 2015). (J) Red and grey mudstones and sandstones of the Kirkwood Foramtion on the outscirts of the Kwa-Nobuhle township near Uitenhage. Blue dashed line separate the different facies. (K) Sandstone lenses and bed (outlined in dashed blue lines) interbedded with mudstones in an outcropexposing the Sundays River Formation near Sunland. The Kudus Kloof Formation . Pink arrows indicate the exact position from which respective samples were extracted.





#### Blue Cliffs (sample KBCS2)

Beige sandstone beds with fossiliferous pebble lag deposits at their bases comprise much of the cliff faces along the Bezuidenhouts River near the Blue Cliffs railway station (33°29'33.44"S; 25°26'17.17"E; Fig. 5.55). These beds (of which one was sampled; Fig. 5.61) truncate either red or grey mudstones.

#### Bezuidenhouts River Bridge (sample KBEZS1)

A laterally extensive medium-grained beige sandstone bed overlies grey fossiliferous mudstones and underlies a charcoal-rich bed at a river cutting adjacent the Bezuidenhouts River Bridge, ~50 km north of Port Elizabeth (33°28'14.28"S; 25°32'7.16"E; Fig. 5.55). Beige sandstones directly overlying the charcoal-rich bed were sampled (Fig. 5.61H, I).

## Kwa-Nobuhle (KWAS3)

Laterally extensive varicoloured, principally red, mudstones are exposed in and around the Kwa-Nobuhle township, south of Uitenhage. A site on the eastern side of Kwa-Nobuhle, directly south of Nelson Mandela Bay Logistics Park exhibits the laterally extensive mudstones that typify the outcrops there (33°48'49.13"S; 25°25'27.76"E; Fig. 5.55) and one of the red/grey medium-grained sandstone interbed was sampled (Fig. 5.61J)

#### Sundays River Formation cutting (sample SRFS1)

Laterally extensive green-grey mudstones and sandstones of the Sundays River Formation outcrop widely in the Algoa Basin south of Dunbrody (Fig. 5.55). A roadside outcrop along the MR00470 near Sunland  $(33^{\circ}30'56.88"S; 25^{\circ}36'25.33"E;$  Fig. 5.55) exposes what is probably the lower part of the Sundays River Formation based on the close proximity of the underlying and/or laterally interfingering Kirkwood Formation. Rigassi and Dixon (1972) report two thin 'tuff bands' within the Sundays River Formation in exposed on the banks of the Sundays River, although no such deposits were confirmed in our field investigation. Several 10 – 50 cm thick green-grey sandstone interbeds are exposed in a sandy-mudstonedominated deposit, one of which was sampled (Fig. 5.61K).

## 5.2.8.3 U-Pb Geochronology

Unfortunately, no volcaniclastic deposits were discovered in the Algoa Basin despite intensive fieldwork and reviewing of several cores housed at the South African National Core Library of the Council for Geoscience in Gauteng. Instead, eight sandstones samples from the Kirkwood, Enon and Sundays River formations of the Algoa basin were dated in order to constrain maximum depositional age of these units. Of the eight samples, one was extracted from the fossil-poor Enon Formation, one from the biostratigraphically well-constrained Valanginian – Hauterivian Sundays River Formation (McMillan, 2003) and seven samples were taken from the Kirkwood Formation at each of the above-mentioned fossil localities. The objective of sampling efforts in the Algoa Basin is to use detrital zircon geochronology to contextualize these important fossil localities of the Kirkwood Formation in terms of their maximum age of deposition. This will not only be the first attempt to place the vertebrate fauna and flora of the Kirkwood Formation in the Algoa Basin into a chronostratigraphic framework (with potential ramifications for evolutionary trends), but also help improve intrabasinal correlations between isolated outcrops and between other basins in the southern Cape that contain pyroclastic deposits and therefore better-constrained depositional ages.

#### AECOCS

Zircons were vary in shape and colour, including small, often colourless grain fragments and larger colourless, orange and beige crystals that were euhedral to subrounded. Sizes range from  $40\mu$ m to  $170\mu$ m. Prismatic crystals regularly have broken terminations, while stubbier grains frequently preserve their original crystal habit, presumably due to their comparative resilience during transport. Internally, the crystals exhibit fine and medium oscillatory zoning (e.g., crystals 73, 77 and 81 in Fig. 5.62) and rare, black inclusions (e.g., crystal 70 in Fig. 5.62). Inherited cores were present too, although the width of the rims was seldom large enough to analyze separately (e.g., crystal 81 in Fig. 5.62).



Fig. 5.62. Composite diagram of CL images of zircons that yield concordant dates in sample AECOCS from the Algoa Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are red.

Of the 91 analyses performed on zircon in this sample, 71 have acceptable concordance and are considered further. Zircons were mostly Palaeozoic (78 %) although smaller contributions of Mesozoic (6 %) and Precambrian (16 %) grains occupy the distribution (Fig. 5.63; Table D20 in Appendix D; Fig. F6A), each with multiple age peaks. The largest peak is around 264 Ma although a smaller, younger peak at 248 Ma also exists, which is also the youngest age component in the sample (YPP). The zircons in this sample clearly are reflective of detrital input only, with no syn-depositional zircons present. The main source for the Palaeozoic zircons is probably the nearby Karoo Supergroup, which outcrops widely on the northern side of the Suurberg Mountains. Other analytical metrics are:  $YSG = 246 \pm 4$ ; YDZ = 245.2 + 3.2/-4.6 Ma (95% conf.). The lack of younger Jurassic and/or Cretaceous zircons limits the usefulness of this dataset in meaningfully constraining the depositional age.

Fig. 5.63. (Following page). U-Pb dates of zircons from all samples in the Algoa Basin shown as age probability density diagrams (blue area) combined with frequency histograms (grey bars) with 20 Ma intervals. Only concordant data are shown: n = x/y means that x out of a total of y zircons yielded concordant dates. Youngest graphically-defined peak (YPP) are indicated.





## AKIRK



Fig. 5.64. Composite diagram of CL images of zircons that yield concordant dates in sample AKIRK from the Algoa Basin. Individual zircon indicated by white number and analytical spot (26 µm diameter) with respective 206Pb/238U date are red.

Zircons extracted are 50 to 120  $\mu$ m in length and are usually fragmentary or rounded with only rare whole euhedral crystals. Colours vary from beige to deep orange although colourless grains are also present in the sample. Internally, the crystals exhibit fine oscillatory zoning, inclusions and rare inherited cores, especially in the stumpy crystals (e.g., crystals 17 and 36 in Fig. 5.64). Of the 109 crystals analysed, 92 yield concordant Mesozoic (15 %), Palaeozoic (54 %) and Precambrian (31 %) dates with multiple peaks on the probability density diagram (Fig. 5.63; Table D21 in Appendix D; Fig. F6B). A youngest population comprising 9 crystals clusters around 185 Ma, which is the graphically-defined youngest age component in the sample (YPP). The youngest crystal in the sample (YSG) is  $183 \pm 4$  Ma and the youngest modelled zircon age is 182.5 + 1.9/-3.1 Ma (YDZ). All these metrics are compatible with a Suurberg (or Drakensberg Group source), the former of which outcrops in the northern Algoa Basin and probably contributed towards the Lower Jurassic zircon component.

## KSTRAT



Fig. 5.65. Composite diagram of CL images of zircons that yield concordant dates in sample AKSTRAT from the Algoa Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are red.

Zircons are morphologically diverse and include crystals with small, rounded habits as well as elongate crystals with varied degrees of rounding and many grain fragments. Typically, crystals are beige or colourless when viewed under the light microscope and range from 50 to 180  $\mu$ m. CL images of the zircons exhibit fine and broad oscillatory zoning with (e.g., crystal 84 in Fig. 5.65) and without xenocrystic cores (e.g., crystals 75 and 28 in Fig. 5.65) and rare inclusions (e.g., crystal 23 in Fig. 5.65). Of 110 analyses, 77 yielded concordant Mesozoic (9 %), Palaeozoic (26 %) and Precambrian (65 %) dates (Fig. 5.63; Table D22 in Appendix D; Fig. F6C in Appendix F). The wide range of ages likely reflects the known Cape and Karoo Supergroup sources exposed in the Suurberg Mountains to the north. The youngest population of zircons ranging from 183  $\pm$  3 Ma (YSG) to 186  $\pm$  3 Ma with a graphical peak at 185 Ma (YPP) is likely derived from the Suurberg Group, which also outcrops in the Suurberg Mountains, in the panhandle, and presumably underlies the Uitenhage Group in at least parts of the northern Algoa Basin (Fig. 5.55). This

youngest age component reflects maximum deposition but unfortunately does not allow any constraints beyond the known Tithonian – Valanginian biostratigraphic constraints.

## **KDUNS**

Zircons are 60 to 210  $\mu$ m long and range from stubby to needle-like, with most having a moderate stalky to prismatic elongation. Many of the grains are rounded or fragmentary, although some have euhedral habits. The crystals were either beige or colourless under plain light and have diverse internal structures (Fig. 5.66). Most grains exhibit fine and medium oscillatory zoning, often with inherited xenocrystic cores (e.g., crystals 50, 89 and 6 in Fig. 5.66). Inclusions are rare (e.g., crystals 44 and 89 in Fig. 5.66).



Fig. 5.66. Composite diagram of CL images of zircons that yield concordant dates in sample KDUNS from the Algoa Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are red.

The 88 concordant zircon dates (out of 114) include multiple Mesozoic (9 %), Palaeozoic (60 %) and Precambrian (31 %) populations (Fig. 5.63; Table D23 in Appendix D; Fig. F6D in Appendix F). The majority of zircons form a complex set of peaks between 230 and 300 Ma. There are only 2 crystals that yield concordant Jurassic dates at  $159 \pm 7$  Ma (YSG) and another at  $177 \pm 4$  Ma while the youngest modelled

detrital zircon age (YDZ) is 159.6 +7.9/-8.5 Ma (95% conf.). Neither of these grains constitute a youngest graphical population, which is 233 Ma in this sample (YPP) because they are singular dates that do not overlap (at  $2\sigma$  error). Nevertheless, the presences of these two concordant dates, in addition to two zircons that yield only slightly discordant dates, suggest that a Middle Jurassic maximum depositional age is likely. Nevertheless, these data, with a Triassic (233 Ma) or Middle Jurassic youngest age component do not refine the depositional age of the strata at Dunbrody beyond the already established, albeit tentative Late Jurassic – Early Cretaceous age.

#### KBCS2

Zircon crystals extracted from the pebble-rich sandstones range in size from 90 to 140  $\mu$ m and are either stalky or prismatic. Generally, they are colourless or pale beige. CL images reveal that fine oscillatory zoning dominates (e.g., crystals 60, 54 and 47 in Fig. 5.67), with rare xenocrystic cores and inclusions (crystals 55 and 66 in Fig. 5.67). Of 74 analyses, 65 yield concordant dates that are Mesozoic (~14 %), Palaeozoic (~78 %) and Precambrian (~8 %). Most zircons are Permian – Triassic and define the dominant population (Fig. 5.63; Table D24 in Appendix D; Fig. F6E in Appendix F). In most cases they are stalky and have fine oscillatory zoning. Two Jurassic dates of  $160 \pm 4$  Ma (YSG) and  $182 \pm 6$  Ma, as well as the modelled age (YDZ) of 160.2 + 3.2 - 3.7 Ma (95% conf.) are not unexpected since the ~256 Ma maximum depositional age defined graphically on the probability density diagram (YPP) certainly predates the true depositional age of the unit. A single date of  $132 \pm 4$  Ma that is slightly discordant (2% lower than the 90% threshold) suggests that deposition was even earlier than the youngest concordant zircons reflect. In all likelihood this unit is Lower Cretaceous in age although the current detrial zircon signature from this unit does not definitively constrain the age of deposition.



Fig. 5.67. Composite diagram of CL images of zircons that yield concordant dates in sample KBCS2 from the Algoa Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are red.

## KBEZ

Zircon crystals are generally euhedral and unbroken with stalky to prismatic elongation, ranging from 70 to 150  $\mu$ m in length and are all colourless to very pale transparent beige. CL images of the crystals reveal a dominant fine oscillatory zonation on most of the crystals (Fig. 5.68), with fairly common inherited xenocrystic cores (e.g., crystals 2 and 31 in Fig. 5.68) inclusions (e.g., crystal 17 in Fig. 5.68). Of the 48 zircons analysed, 40 yield concordant dates that are mostly Palaeozoic (~85 %), with only a few Mesozoic (15 %) dates (Fig. 5.58; Table E1 in Appendix E; Fig. F6F in Appendix F). Most dates cluster around 258 Ma to form a largest youngest age population (YPP) with minor populations only supported by one or two dates. A single Jurassic zircon at 176 ± 6 Ma (YSG) and 176.3 +5.7 -7.3 Ma (95% conf.) youngest modelled detrital date (YDZ) do not provide a robust measure of maximum deposition, although the deposit is most likely younger still and contains no syn-depositional zircons.



Fig. 5.68. Composite diagram of CL images of zircons that yield concordant dates in sample KBEZS from the Algoa Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are red.

## KWAS3

Zircons ranged from colourless transparent to pale beige in colour and ranged in length from 80 µm stubby to 200 µm stalky crystals. There are approximately equal parts whole crystals and crystal fragments, with few grains exhibiting any appreciable degree of roundness. CL images reveal that most of the crystals show medium to coarse oscillatory zoning, with fine oscillatory zoning a less common feature that is restricted to Precambrian aged components (Fig. 5.69). Many crystals had clearly inherited cores (e.g., crystal 36 and 34 in Fig. 5.69) and small inclusions (e.g., crystal 30 in Fig. 5.69). U-Pb dates are mostly concordant (78 out of 81) and either Palaeozoic (~26 %) or Precambrian (~74 %), with no Mesozoic aged crystals (Fig. 5.58; Table E1 in Appendix E; Fig. F6G in Appendix F). These dates occupy multiple age components with major population peaks on the probability density diagram at 508 Ma, 629 Ma and 1064 Ma. The absence of the common Permo-Triassic populations probably reflects the minimal contribution of the Karoo Supergroup as a detrital source for this deposit, which is not unexpected considering its distal location from

any present-day outcrops of the Karoo Supergroup. Further, the lack of Early Jurassic ~183 Ma dates also likely reflects the absence of detritus derived from the Suurberg Group. Most likely the sediments in the Uitenhage Trough were entirely derived from the locally outcropping Cape Supergroup, although it should be cautioned this study has not fully characterized the zircon population for detailed provenance assessments. Two dates, at 445  $\pm$  12 Ma (YSG) and 475  $\pm$  12 Ma are discrete from the largest ~508 Ma population (YPP), although neither of these dates constitute a robust population. The youngest modelled detrital date (YDZ) is 444.2 +14/-13 Ma (95% conf.). The absence of young Jurassic – Cretaceous zircons makes it impossible to constrain the depositional age of these strata beyond what is already established from biostratigraphic and field relations.



Fig. 5.69. Composite diagram of CL images of zircons that yield concordant dates in sample KWAS3 from the Algoa Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are red.

## SRFS1

Crystals from this unit of the Sundays River Formation are primarily colourless or pale transparent beige. They range from  $100 - 140 \,\mu\text{m}$  and are euhedral to rounded. They are ubiquitously stubby and exhibit fine oscillatory zoning under the CL detector (Fig. 5.70), sometimes with complexities that appear to be from secondary crystallization (e.g., crystal 30 in Fig. 5.70).



Fig. 5.70. Composite diagram of CL images of zircons that yield concordant dates in sample SRFS1 from the Algoa Basin. Individual zircon indicated by white number and analytical spot (26  $\mu$ m diameter) with respective <sup>206</sup>Pb/<sup>238</sup>U date are red.

Of the 104 analyses, 68 yield concordant dates with a dominant early Mesozoic – Late Palaeozoic population (18 % Mesozoic, 61 % Palaeozoic) with a minor Precambrian (~21 %) contribution (Fig. 5.58; Table D24 in Appendix D; Fig. F6H in Appendix F). None of the zircons were syn-depositional and therefore the age distribution entirely reflects a detrital source, which is likely the Karoo, and to a lesser extent Cape Supergroups. Analytical metrics are:  $YSG = 231 \pm 4$  Ma;  $YDZ = 229.8 \pm 2.7/$  -3.3 Ma (95% conf.); YPP = 244 Ma. To establish a maximum depositional age of ~244 Ma does not help constrain the age of this unit beyond the previously established Valanginian – Hauterivian age derived from foraminiferal assemblages (McMillan, 2003). Although the provenance of the unit is not fully characterized, there appears

to be no change in detrital zircon provenance across the Sundays River Formation and the Kirkwood Formation at Dunbrody (Fig. 5.63), which supports a lateral continuity between the units.

## 5.2.8.4 Basin synthesis

The Algoa Basin is the largest of all onshore rift basins, is the best studied, and contains the most extensive exposures of Uitenhage Group. However, unlike most of the basins further to the west, it seems to contain neither primary nor reworked volcaniclastic deposits, and further, sedimentary strata rarely contain any volcanically-derived Jurassic – Cretaceous syn-depositional zircons. This makes drawing any depositional age interpretations from U-Pb zircon geochronology in the Algoa Basin rather impractical. However, based on a new Early Jurassic age for the underlying Suurberg Group, and well-dated Uitenhage Group in other rift basins, some insights into the geological evolution of the basin, and the age of its fossiliferous deposits can be made.

Shone (1976), using 2D seismic data from SOEKOR's earlier exploration efforts and measurements of bedding attitude, was the first to visualize the structure of the Algoa Basin, as a composite accumulation of graben and half-graben structures (Fig. 5.71). This sets it apart from other, more structurally simple, half-graben onshore basins. Nevertheless, the oldest exposed strata in the numerous half-graben sectors of the Algoa Basin are expected to be on the opposite side of large normal faults. This appears to be the case in the northern Algoa Basin east of Enon, where the underlying Suurberg Group is exposed. The lack of any direct depositional ages from the immediately overlying strata of the Uitenhage Group there, or anywhere else in the basin for that matter, makes assessing whether there is a hiatus separating these two groups and therefore the onset of rifting difficult. Two possibilities may be considered with both alternatives requiring a degree of inference: 1) the oldest Uitenhage Group were deposited in actively subsiding depocentres shortly after or during the onset of the Karoo and Ferrar LIPs; 2) there is a large unconformity separating the two Groups implying that initial extension occurred long after the Suurberg Group was deposited.

In order to evaluate the merits of each scenario, we must describe what we know about the age of the Uitenhage Group in the Algoa Basin. The youngest, most robust detrital zircon age across all the samples from the Uitenhage Group of the Algoa Basin is ~185 Ma, from sandstones in the Kirkwood Formation at the Umlilo Farm and Kirkwood Cliffs (Fig. 5.55). This does not help constrain the age of deposition any better than the well-dated underlying Suurberg Group, which is the probable source of the Jurassic zircons in overlying strata. The only other constraints in the northern Algoa Basin come from the Valanginian – Hauterivian Sundays River Formation based on foraminiferal assemblages (McMillan, 2003). Although this age may reasonably be extrapolated across the apparent interfingering lateral contact into the Kirkwood Formation at nearby sites such as Dunbrody and Bezuidenhouts Bridge, extrapolating this relationship for distal sites is doubtful considering the vast > 2000 m thickness of the Kirkwood Formation (Shone, 2006; Muir et al., 2017b in section 2.2.2 of this thesis). This is especially the case considering that much of this total thickness underlies (and is therefore older than) the Sundays River Formation. Useful constraints come from the Bethelsdorp Member that outcrops in the Uitenhage Trough and is intersected in boreholes. This 480 m thick Tithonian (McMillan, 2010) marine interval helps constrain an oldest age for the Kirkwood Formation. Further, there is only <100 m of Uitenhage Group beneath this unit, composed of the Swartkops Member and Enon Formation, which in borehole SW 1/08 (see Fig. 7 in Muir et al., 2017b in section 2.2.2 of this thesis) rest directly on Table Mountain Group basement rocks. Based on the near basal position of the Bethelsdorp Member in the SW 1/08 borehole, and the spuriously young age for the Suurberg Group (McLachlan and McMillan, 1976), McMillan et al. (1997) assigned the oldest age of the Uitenhage Group as Kimmeridgian.

If we accept a Kimmeridgian age for the earliest infill of the Algoa Basin, then > 25 Ma separates the Suurberg Group from the overlying Uitenhage Group. In this scenario, basaltic lava would have flowed south from the center, or centers, of the Karoo LIP in the north and filled low-lying areas and intermountain valleys within the Early Jurassic Cape Fold Belt (Marsh, 2016), in the present-day region of the Suurberg Mountains (Fig. 5.71). Following this, erosion or non-deposition ensued for > 25 Ma during which there

was no appreciable accumulation of sediments atop the crystalline basalts of the Mimosa Formation, Suurberg Group. During the Kimmeridgian, extension around the incipient Algoa Basin commenced and a series of normal faults developed and formed the accommodation space in which continental deposits began accumulating and was interrupted by intermittent marine incursions from the south (deposition of the Tithonian Bethelsdorp Member). As rifting continued in the Berriasian, predominantly continental deposition occurred in much of the Algoa Basin before widespread marine conditions began to develop, reflected by the deposition of the Valanginian – Hauterivian Sundays River Formation.



Fig. 5.71. Schematic cross section through the Sundays River and Uitenhage Troughs of the onshore Algoa Basin showing its Early Jurassic – Early Cretaceous evolution. See text for details.

However, there are three concerns with the assertion of a Kimmeridgian maximum age constraint for the Uitenhage Group in the Algoa Basin. Firstly, there is a distinct possibility that the SW 1/08 borehole used to ascertain the relative position of the Tithonian Bethelsdorp Member in relation to basement does not

intersect the Uitenhage Group at its thickest. Instead there may be great thicknesses of undrilled Uitenhage Group elsewhere in the Uitenhage Trough as is certainly the case for many of the offshore boreholes (Dingle et al., 1983; McMillan et al., 1997), and possibly also in the CO 1/67 and CO 3/71 boreholes (Muir et al., 2017b in section 2.2.2 of this thesis), which do not intersect basement. Secondly, the Bethelsdorp Member does not exist in the subsurface in the northern Algoa Basin, and therefore cannot be used to assign an age to the strata there. It is possible that there are older elements of the Uitenhage Group in that part of the basin that do not exist further south. Finally, and importantly, there are unequivocally dated lowermost Middle Jurassic Uitenhage Group deposits in the Heidelberg and Mossel Bay basins that suggest that the onset of rifting was in the Early Jurassic and the extensional stress was wide-spread, it would be parsimonious to assume that rifting also began in the Early Jurassic deposits of the Uitenhage Group in subsurface of the deepest parts of the Algoa Basin.

If there are yet undetected Lower Jurassic deposits in the subsurface of the Algoa Basin, then we can assume a relatively short-lived hiatus, if any, between the Suurberg Group and overlying Uitenhage Group. Instead of erosion/non-deposition after the igneous actives associated with the Karoo LIP, active normal faulting closely followed, or was contemporaneous with widespread Lower Jurassic Karoo volcanism. Basaltic lava flows would have overstepped the Cape Fold Belt, which was already subdued in topography, and occupied low-lying areas in the incipient northern Algoa Basin (Marsh, 2016). As normal faults developed, conglomerates, sandstones and mudstones of the Uitenhage Group began to accumulate atop the basalts of the Mimosa Formation. Since we know that rifting was well underway by the Middle Jurassic in the west (evidenced by Middle Jurassic bentonites in the Uitenhage Group at Mossel Bay and Heidelberg) an Early Jurassic initial formation of the Algoa Basin is preferred. This honours a roughly synchronous initiation of rifting throughout the southern Cape by the inversion of structural weaknesses within the Cape Fold Belt (e.g., Fouché et al., 1991; Paton, 2006). For further discussion that considers the tectonic setting for the

Jurassic rift initiation throughout the southern Cape, see section 5.4. In order to fully ascertain whether rifting began at roughly the same time throughout the southern Cape in the Early Jurassic, more geochronological assessments of the lowermost Uitenhage Group in the Algoa Basin are needed, particularly from boreholes that reach basement near depocentres. Such future studies should also place emphasis on locating primary volcaniclastic deposits in the Algoa Basin strata to constrain depositional ages empirically because there remains a dire need for radiometric constraints of the vast continental deposits that are not in close stratigraphic and spatial proximity to the biostratigraphically-dated, marine Tithonian Bethelsdorp Member and the Valanginian – Hauterivian Sundays River Formation.

## Age of fossiliferous deposits of the Algoa Basin

The lack of volcaniclastic deposits in the Algoa Basin, and scarcity of Jurassic – Cretaceous zircons in the detrital record mean that the fossiliferous strata of the Algoa Basin remain poorly constrained in age. However, the new Early Jurassic age for the underlying Suurberg Group and confirmation of Middle and even Lower Jurassic deposits in the depocentres of the rift basins in the southern Cape do tell us that the Uitenhage Group, including its fossiliferous Kirkwood Formation is older than previously accepted. Further, the continental deposits of the Uitenhage Group that are lithologically fairly homogenous, lack regional marker beds and are accessible in spatially isolated outcrops make establishing the age of a given fossiliferous deposit difficult. Perhaps the only way to adequately date any specific outcrop is to find volcaniclastic deposits to date nearby, and that can accurately be traced to the outcrop of interest. In the Algoa Basin, this appears to be impractical until volcaniclastic deposits are located. If datable ash beds are found, then fossiliferous outcrops of interest should be placed into the stratigraphic context specific to that part of the Algoa Basin that can be stratigraphically tied to the dated horizon. The Kirkwood Formation deposits at Dunbrody and the Bezuidenhouts River Bridge are geographically close to the region where Sundays River Formation outcrops and are therefore easier to envision as laterally interfingering with the Sundays River Formation if they are lateral correlatives (Fig. 50), whereas those more distal from the nearest outcrops of the Sundays River Formation, such as the fossiliferous deposits at Umlilo have

comparatively poor age constraints and could be anything from Lower Jurassic to Early Cretaceous. Conversely, the fossil-bearing outcrops of the Kirkwood Formation near the Kwa Nobuhle township in the Uitenhage Trough are bracketed by the Tithonian Bethelsdorp Member and the Valanginian lower Sundays River Formation and therefore confidently placed in this time period (i.e., probably being Tithonian– Valanginian, and thus likely containing the Jurassic –Cretaceous boundary).

# 5.2.9 Other basins

A number of onshore basins that host Uitenhage Group are not considered in this study due to the lack of quality exposure in many, and the exceptionally large U-Pb zircon dataset that has been assembled from just these eight most prominent basins. There are certainly additional volcaniclastic deposits near Worcester and Swellendam, where bentonitic clays outcrop scarcely, and in the shallow subsurface of the Jubilee Hill Basin intersected by borehole DJH-I (Viljoen, personal communication, 2016). The various depocentres in the Baviaanskloof area have not been thoroughly examined although that region is dominated by conglomerates and are unlikely to contain datable pyroclastic deposits nor age-diagnostic fossils. Nevertheless, any meaningful comparisons between those conglomerates and the Buffelskloof Formation in the northern Oudtshoorn Basin, either chrono- or lithostratigraphic, might be useful in modelling the history of displacement along the Cango-Baviaans-Gamtoos Fault array and testing predictions made by Paton (2006).

# 5.3 Discussion: Chronostratigraphy of the Uitenhage Group

The extensive database of U-Pb zircon data marks the first radiometric constraints for the Uitenhage Group and the only direct constraints for the previously undated continental component that constitutes each basin. Pyroclastic deposits in the Robertson, Heidelberg, Mossel Bay, Oudtshoorn and Plettenberg Bay basins range in depositional age from 172.62 +0.56/-0.94 Ma (Aalenian) to  $140.2 \pm 0.36$  Ma (Berriasian) from the fine-grained Kirkwood Formation. The presence of an estimated ~500 m of undated Uitenhage Group lying beneath the Aalenian bentonites in Mossel Bay and Heidelberg, points to an even earlier onset of deposition, conceivably in the latest Pliensbachian – Toarcian. The Uitenhage Group has therefore been demonstrated to be in part much older than previously thought and represents up to ~35 Ma of Mesozoic geological record in the southern Cape region. The hypothesis that the Uitenhage Group is entirely Late Jurassic – Early Cretaceous is therefore rejected based on these findings. This raises interesting questions about the tectonic setting that presided throughout the Jurassic of SW Gondwana and the palaeogeographic configuration during its breakup. Here, these topics and how they are informed by the new chronostratigraphic constraints for the southern Cape rift-related strata are addressed.



Fig. 5.72. Simplified structure and geology of the continental margin in the southern Cape modified after Paton (2006). Note that the connectivity of faults at depth is highly uncertain.

In order to draw suitable chronostratigraphic comparisons between the offshore syn-rift strata, imaged by seismic methods and intersected in boreholes, and those exposed onshore (Fig. 5.72), one needs to establish a common language to describe portions of the relevant stratigraphy. Up until this point, the use of conventional SACS-approved stratigraphic terminology has been strictly adhered to, which are easily applied to outcropping strata. However, the offshore Uitenhage Group, those continental and shallow marine strata confined to the Bredasdorp, Pletmos, Gamtoos and Algoa basins (collectively the Outeniqua Basin) are commonly described using tectonostratigraphic terminology (e.g., Dingle et al., 1983; Jungslager, 1996; McMillan et al., 1997; Broad et al., 2012), which will be discussed from this point forwards. Typically, these include: *syn-rift 1* for units that span from the basement seismic reflector and unconformity 'D' to a prominent, laterally continuous seismic reflector and unconformity named '1At1' (McMillan, et al., 1997), and *syn-rift 2* (Jungslager, 1996) for units that lie above 1At1 and are fault-

bounded (i.e., are strictly controlled by availability of accommodation space related to movement along normal faults). These terms are useful when considering time-equivalent packages that exist across multiple basins and for describing how basin development responds to tectonic changes. In order to assess how the onshore stratigraphy relates to those offshore, a chronostratigraphic framework for the Uitenhage Group is constructed, which incorporates biostratigraphic data (McMillan et al., 1997; McMillan, 2003; McMillan, 2010) with new U-Pb ages. This enables the first interbasinal correlations of continental strata in the Uitenhage Group and robust comparisons with existing offshore chronostratigraphic frameworks. Two main chronostratigraphic frameworks exist for the offshore Mesozoic strata of the southern Cape, which are representative of the Bredasdorp Basin in the west (Jungslager, 1996; Broad et al., 2012) and the Algoa and Gamtoos basins in the east (McMillan et al., 1997; Broad et al., 2012). Both are commonly used as a basis for ongoing hydrocarbon exploration efforts (e.g., Roux and Davids, 2016; van Bloemenstein, 2016; Makhubele and Bordy, 2018), landscape evolution (e.g., Tinker et al., 2008b; Wildman et al., 2015; Green et al., 2016; Richardson et al., 2017) and palaeoenvironmental studies (e.g., Muir et al., 2015; Van de Linde, 2017; Dinis, 2018); yet they have a strong bias favouring the marine strata that provide biostratigraphic age constraints. However, most of the boreholes that penetrate the offshore syn-rift sequences do not reach basement (Fig. 5.72) and datable marine units from associated cores become increasingly rare with depth (e.g., Jungslager, 1996; McMillan, et al., 1997) because the first marine conditions in SW Gondwana occurred during the Tithonian (Dingle, 1973). Therefore the earliest syn-rift deposits, which are both thick and invariably continental, have been largely overlooked. One of the main contributions of this thesis is correcting this bias by adding chronostratigraphic information from the exposed units onshore that are partial equivalents of the scarcely accessible basal strata of the offshore basins (Fig. 5.72).

## 5.3.1 Western basins

## Syn-rift 1

The western basins that are included in this study, namely the Robertson, Heidelberg, Mossel Bay and Oudtshoorn basins, are well-constrained in comparison to those that are further east because of the abundance of pyroclastic deposits in the Uitenhage Group seems to decrease eastward in the southern Cape. Each of these four basins contains Jurassic – Lower Cretaceous deposits that are assigned the Enon and Kirkwood formations.

Syn-rift 1 deposits outcrop widely in each of the four western basins and the range of depositional ages from continental pyroclastic beds are mostly Jurassic. Near Robertson, the exposed units are Tithonian – Berriasian although there certainly are older, undated deposits below as evidenced by borehole W202 (Fig. 5.7; Fig. 8 in Muir et al., 2017b in section 2.2.2. of this thesis for detailed log). There is no evidence for the unconformity-bound syn-rift 2 deposits exposed here although such a package would go undetected in the absence of specific outcrops exhibiting the diagnostic angular relationship. The Heidelberg Basin contains deposits that span the Middle Jurassic, with elements that are probably Lower and Upper Jurassic as well and there is a very protracted hiatus separating syn-rift 1 and syn-rift 2 deposits in this basin, probably reflecting a renewed gradients and energy levels during the onset of transform motion along the AFT (Jungslager, 1996) and erosion of most Upper Jurassic – Lower Cretaceous deposits. This is also the case for the western Mossel Bay Basin, where exposed syn-rift 1 deposits are Lower to Middle Jurassic, as opposed to the Upper Jurassic – Lower Cretaceous components in the eastern part of the basin. The Oudtshoorn Basin contains Lower – Upper Jurassic and potentially Lower Cretaceous syn-rift 1 deposits, although the lower age constraint depends heavily on the interpretation of the highly deformed Lower Jurassic volcaniclastic deposits near De Rust.



Fig. 5.73. Chronostratigraphy of the onshore Robertson, Heidelberg, Mossel Bay and Oudtshoorn basins compared to existing framework of Jungslager et al. (1994) from the Bredasdorp Basin (second from right) and an updated chronostratigraphy for the Bredasdorp Basin (far right). The main events that presided across the southern Cape during the Jurassic – Cretaceous are listed on the right. All charts are adjusted to the geologic time scale of Cohen et al. (2013) and post syn-rift 2 deposits are included for completeness. White shaded regions indicate areas with poor age and thickness constraints and white stars represent the depositional age information from pyroclastic deposits in this study.

The chronostratigraphic chart of the Bredasdorp Basin, which was initially constructed by Jungslager et al. (1996), includes two intervals that they describes as 'fluvial' - units intersected near the bottom of the abundant boreholes drilled in the basin that contain red mudstones, sandstones and conglomerates – which are assigned to the Upper Jurassic and Lower Cretaceous (Fig. 5.73). Most boreholes do not penetrate below the lower of these fluvial intervals, and none reach basement in the basin depocentre. These intervals are equated to the Enon and Kirkwood formations, and based on the prevalence of Middle and even Lower Jurassic syn-rift 1 deposits in the onshore basins, we propose that similarly aged continental deposits exist at depth in the Bredasdorp Basin, or in other words the lower fluvial unit of Jungslager et al. (1996) began to be deposited as early as the latest Pliensbachian – Toarcian, during the earliest rifting in the southern Cape (Fig. 5.73). Continental conditions were interrupted in the Tithonian, during which the southern Cape experienced the first marine transgressive events (Dingle, 1973). After a transition into marine conditions in the Bredasdorp Basin during the Late Jurassic, which occurred haphazardly due to complex relative sea level fluctuations and a rough pre-existing topography (Jungslager et al., 1996), renewed rifting occurred. This renewal conincides well with the onset of movement along the AFT, was widespread, and caused rapid accumulations on land and at sea (syn-rift 2). Following a period of transitional tectonics that saw a waning of normal fault movement, thermal subsidence caused the offshore syn-rift units to be draped in marine deposits (McMillan et al., 1997; McMillan, 2003). Any evidence of deposition onshore during this time has since been lost during extensive erosion that has clearly left different stratigraphic intervals of individual onshore basin stratigraphy exposed.

#### Syn-rift 2

All western basins of the southern Cape, except the Robertson Basin, contain the Buffelskloof Formation, which is younger than these basal Enon and Kirkwood formations, and represents a renewed pulse of rifting (Fig. 5.73). In Oudtshoorn, these stratigraphically higher strata are no older than ~145 Ma (Tithonian) and are probably Lower Cretaceous, based on the presence of a ~145 Ma youngest zircon age population. This is the only absolute age constraint for the Buffelskloof Formation, however based on the angular

relationship between these and the underlying units in each basin, along with the generally coarse-grained nature of the deposits, they likely reflect a period of widespread renewed rifting in the Early Cretaceous. Further, In the Bredasdorp Basin a similar period of renewed rifting is identified from seismic and borehole data and those units that lie above the 1At1 unconformity there contain Hauterivian foraminiferal assemblages (Junglslager et al., 1996). In the onshore basins, this unconformity appears to correspond with the angular unconformity that separates the Buffelskloof and Hartenbos formations from the underlying Enon and Kirkwood formations. Therefore, in tectonostratigraphic terms, we tentatively assign the Buffelskloof and Hartenbos formations to syn-rift 2, and those below, the Enon and Kirkwood formations, to syn-rift 1 (Fig. 5.73). Although admittedly the former units are not well constrained in age, the fact that renewed rifting was a widespread and contemporaneous phenomenon across all offshore basins (Broad et al., 2012) supports the assertion that the syn-rift 2 strata (i.e., the Buffelskloof and Hartenbos formations) are Hauterivian and synchronous.
### **5.3.2 Eastern basins**

The Algoa, Gamtoos, Plettenberg Bay and Knysna basins, referred to here as the eastern basins, contain continental deposits that have less well-constrained depositional ages than those in the west because they contain fewer dated volcaniclastic deposits. However, unlike in the western basins, in the Algoa, Plettenberg Bay and Knysna basins marine units that outcrop have been dated biostratigraphically. Therefore, despite the absence of abundant U-Pb constraints, biostratigraphy, a single well-constrained depositional age from Plettenberg Bay, and a revised age of the Suurberg Group allows for considerable reassessment of the chronostratigraphy of these basins.

#### Syn-rift 1

The Knysna, Plettenberg Bay, Gamtoos and Algoa basins each contain thick, primarily continental accumulations of syn-rift 1 deposits (Fig. 5.74). In the Algoa Basin, the maximum age constraint for the Uitenhage Group comes from the underlying Suurberg Group, which has confidently been dated to the Lower Jurassic (Pliensbachian – Toarcian) in this study (see Chapter 4). It should also be noted that boreholes drilled in the Algoa Basin seldom reach basement in basin depocentres and therefore rarely, if ever, intersect the basal most strata (McMillan et al., 1997). For instance, the SW1/08 borehole reaches basement in a shallow part of the Uitenhage Trough, where the Tithonian Bethelsdorp Member of the Kirkwood Formation is underlain by a relatively thin unit of sandstone (Swartkops Member) and conglomerate (Enon Formation) that probably are not much older than Kimmeridgian (McMillan, 2010). However, elsewhere in the basin, for instance in the offshore parts of the Uitenhage and Port Elizabeth Troughs, the thickness of strata beneath the Tithonian interval is much greater (McMillan et al., 1997) and presumably older. Similarly, it can be expected that in parts of the Sundays River Trough there are thick pre-Tithonian accumulations that are Middle Jurassic or even Lower Jurassic and were deposited soon after the Suurberg Group. Such is also the case for the Gamtoos Basin where the throw along sections of the Gamtoos Fault is ~12 km and there are ~7 km of undrilled syn-rift strata (McMillan et al., 1997). Deposition

of the syn-rift 1 strata probably began in the Early Jurassic, coeval with the initial magmatic events of the Karoo-Ferrar LIP, and continued into the Early Cretaceous.

Much uncertainty surrounds the onshore deposits in Plettenberg Bay and Knysna. The Lower Cretaceous deposits exposed in Plettenberg Bay may be underlain by thick accumulations of Jurassic strata in the Piesang Valley, although there is no definitive geochronological or borehole data to test this. Similarly, the marine Brenton Formation at Knysna, which is probably Lower Cretaceous (McLachlan et al., 1976) but might be older (Dingle and Klinger, 1973), points to a Latest Jurassic (Tithonian) to Early Cretaceous age. Perhaps the Knysna Basin is much deeper than the minimum 178 m from the (TI-01) borehole on Thesen Island (Fig. 5.48) and Middle or even Lower Jurassic deposits lie deeply buried. Nevertheless, even if accurate assessments of the depth of the Knysna Basin were attained, the buried package of sediment would itself need to be dated in order to determine when it formed. If the oldest strata are young (e.g., Oxfordian) and the Knysna Basin formed long after the initial rifting in the latest Pliensbachian – Toarcian then there are certainly deep, undrilled sections at the depocentres of the contiguous offshore Pletmos Basin (McMillan et al., 1997) that probably Lower and Middle Jurassic.

#### Syn-rift 2

Syn-rfit 2 deposits are markedly different in the east compared to in the west. Whereas the 1At1 unconformity that defines the base of the late syn-rift units is a clear feature of the Bredasdorp Basin, and is expressed onshore as an angular unconformity in Heidelberg, Mossel Bay and Oudtshoorn, it is often absent, or is cryptic further eastwards. In the Port Elizabeth Trough of the Algoa Basin Hauterivian deposits are entirely absent due to erosive canyoning in the Aptian – Albian (Fig. 5.75). In the Sundays River and Uitenhage Troughs, the chronostratigraphic interval that corresponds with the 1At1 unconformity is present in the lower parts of the Sundays River Formation (McMillan et al., 1997; Broad et al., 2012), although a significant unconformity is absent there (McMillan et al., 1997). Equally, there is no evidence for an angular unconformity at this interval where it is exposed onshore, neither in the Sundays River Formation nor in

the parts of the Kirkwood Formation that might be lateral correlatives, such as in exposures at Dunbrody. Conversely, syn-rift 2 deposits are present in the offshore Gamtoos and parts of the Pletmos Basin (McMillan et al., 1997).

The onshore exposures in Knysna and Plettenberg Bay are difficult to place chronostratigraphically, and it remains uncertain whether the conglomerates, sandstones and mudstones there are entirely syn-rift 1 packages, or whether there are younger elements. Notably, it remains unknown whether the Brenton Formation in Knysna, which may be correlated with the Sundays River Formation (McLachlan et al., 1976) would correlate with the lower, pre 1At1 parts of the latter, or the upper parts that correspond to the syn-rift 2 package (Fig. 5.75).

This uncertainty is fairly common in the onshore basins in the east and is not restricted to the Knysna area alone. Wherever there are neither chronostratigraphic markers, nor relative-age indicators (such as the angular unconformities seen in the west), it becomes impossible to discriminate between syn-rift 1 and 2. For instance, there are *probably* upper Valanginian – Hauterivian sandstones, mudstones and conglomerates in the onshore Algoa and Gamtoos basins, but without any strong evidence for an unconformity or datable horizons, such intervals are undetected. Therefore the purely lithostratigraphic terms favoured when describing strata onshore should not be equated directly to tectonostratigraphic terms; a point that future workers should heed carefully until the Early Cretaceous chronology of continental deposits in eastern basins is improved.



Fig. 5.74. Chronostratigraphy of the onshore Knysna, Plettenberg Bay, Gamtoos and Algoa basins. The main events that presided across the southern Cape during the Jurassic – Cretaceous are listed on the right. All charts are adjusted to the geologic time scale of Cohen et al. (2013). White shaded regions indicate areas with poor age and thickness constraints and white star represent the depositional age information from pyroclastic deposits in this study.



Fig. 5.75. Revised chronostratigraphy for the onshore and offshore sectors of the Algoa and Gamtoos basins. New chronostratigraphy proposed in this study (right) compared to the previously established framework Broad et al. (2012). The main events that presided across the southern Cape during the Jurassic – Cretaceous are listed on the right. All charts are adjusted to the geologic time scale of Cohen et al. (2013) and post syn-rift 2 deposits are included for completeness. White shaded regions indicate areas with poor age and thickness constraints. White dashed line indicates the unconfirmed extension of the 1At1 unconformity, or the time interval with which it is associated, into the Enon and Kirkwood formations. Sedimentary packages in the Gamtoos, and parts of the Algoa Basin are depicted in blue-green after (Broad et al. 2012) because information is derived purely from offshore seismic studies and boreholes where both continental and marine packages have been identified but not depicted separately.

### 5.3.3 The South African stratigraphic record

The revised age of the Uitenhage Group in the southern Cape contributes towards a revision of the established record of South African stratigraphy. Not only does the Uitenhage Group span a protracted > 40 Ma period of geological time, but also convention has the Uitenhage Group separated from the Karoo Supergroup by a large hiatus representing more than 30 Ma. This is determined from the difference between the ~183 Ma age of the youngest Karoo LIP strata of the uppermost Drakensburg Group and the Latest Jurassic – Early Cretaceous age for the Uitenhage Group (Svenson et al., 2012; McMillan et al., 1997; Shone, 2006). This long stratigraphic gap has been attributed to a period of erosion and/or prolonged nondeposition after the outpourings of flood basalts of the Karoo LIP. Instead, the data in this study show that there is no large hiatus between the emplacement of the Karoo LIP and the earliest deposition of the Uitenhage Group in the southern Cape if any at all. Tectonically, this implies a rapid and more-or-less unbroken transition from the Karoo retroarc forland basin and Cape Orogeny compressional tectonics to an extensional stress regime and rift basin formation in the southern Cape. Such a transition has been identified in the spreading centres that opened up during the separation of East and West Gondwana, namely the West Somali Basin and the Mozambique basins (Gaina et al., 2013, Torsvik and Cocks, 2013) but extension as early as this has never been unambiguously tracked to the southern Cape until now. The mechanisms for this Jurassic extension in the southern Cape are investigated in the next section (5.4), while here we consider only the early and protracted period of deposition, a revised stratigraphic record, and how this is hoped to influence future investigations into various aspects of the SW Gondwanan rock record.

### 5.3.3.1 Suurberg Group

The oldest units dated are those of the Suurberg Group in the northern Algoa Basin, and a still poorly understood volcaniclastic deposit near De Rust in the Oudtshoorn Basin. These units are of comparable age to the vast volcanics of the Drakensberg Group, although a source for the tuffaceous intervals, which are not common in the Drakensberg Group except for those derived from localized phreatic volcanism that occurred when mafic lavas interacted with groundwaters (McClintock et al., 2008). There is obvious scope for two investigations in aid of answering this question: 1) a high-precision geochronologically based investigation of the youngest zircons in the tuffaceous intervals, or Ar-Ar of feldspar crystals that may co-exist as well as a re-assessment of the poorly dated basalts in the Mimosa Formation of the Suurberg Group. This may resolve uncertainties that relate to the petrogenesis of the entire package and further, allow robust comparisons with the precisely dated Karoo and Ferrar LIPs. Additionally, trace element and Hf isotopes of these young zircons could help trace them back to a source, be that distal and simply interbedded with basalts as a mere coincidence or reveal a co-genesis; 2) stratigraphic investigations of the contact between the Suurberg and Uitenhage Group in the Algoa Basin, and the stratigraphic relationships of the De Rust volcaniclastic deposits. The lack of quality outcrop is still a major setback here, but expanded drill core database might help assess the nature of the contact and its subsurface distribution. A final assessment of whether or not there is an appreciable amount of time missing between the two units will help constrain how extension in the southern Cape progressed.

### 5.3.3.2 J-K transition

The addition of a number of precisely-dated pyroclastic deposits in the Uitenhage Group open up possibility of pinning down important chronostratigraphic boundaries. The Jurassic – Cretaceous transition contains an important record of global oceanographic and climatic changes (e.g., Gröcke et al., 2003; Weissert and Erba, 2004; Föllmi, 2012) as well as disruptions in continental and marine ecosystems that coincide with elevated extension rates (e. g., Hallam, 1986; Alroy, 2010; Upchurch et al., 2011; Butler et al., 2013; Tennant et al., 2017). Interestingly, while these global changes were underway, the Morokweng bolide impact occurred in the interior of South Africa (Hart et al., 1997; Koeberl et al., 1997), although it remains unclear how extensive the effects of this impact were on Late Jurassic – Early Cretaceous environments. Since the southern Cape is ~ 800 km south of the impact crater, the contemporaneous deposits of the

Uitenhage Group would be a good place to assess potential effects. At present there is very little known about the J-K transition from the South African rock record and it is hoped that this new chronostratigraphy may help pinpoint the interval in the Uitenhage Group and propel investigations into this important time in earth history. Previous chronostratigraphic assessments of the Uitenhage Group indicate that the Kirkwood Formation contains the interval because it spans the Latest Jurassic to Early Cretaceous (McLachlan and McMillan, 1976; Shone, 2006; McMillan, 2010; Muir et al., 2017b), but no further refinement of its position can be made based on the rare biostratigraphic markers. From the data presented in this chapter, the J-K boundary can be placed in many of the onshore basins, and is likely exposed in the central parts of the Roberson Basin, near the ROBE bentonite (150.3  $\pm$  0.2 Ma) and sample Ak5 (which is younger than ~145 Ma based on detrital zircon geochronology), and in the W202 core, which is currently housed in the National Core Library also intersects this stratigraphic interval. A systematic sampling of the numerous volcaniclastic deposits along the length of the W202 core for high-precision geochronological analyses would help pin down the J-K boundary there provided the fluvial deposits contain a relatively unbroken sedimentary record. The Oudtshoorn, Mossel Bay, Plettenberg Bay and Knysna basins probably also contain the J-K boundary, although the absence of core and lateral discontinuity of outcrops makes locating the stratum that is most likely to contain the J-K boundary difficult. Nevertheless, the subhorizontal beds in the southern ravines of the Oudtshoorn Basin that host apoorly dated ~Upper Jurassic bentontie (OKT1), are a reasonable place to search for the J-K interval because there is a significant thickness of strata that clearly overly (and are therefore younger than) the dated horizon. In the Mossel Bay Basin the critical interval is somewhere near the Sittingbourne Farm based on the volcaniclastic deposits that are younger than the J-K interval (SITT2&3). One can also expect the interval to be exposed or in the subsurface in the Knysna and Plettenberg Bay basins, in the Upper Jurassic - Lower Cretaceous strata there. Additional high precision U-Pb zircon analyses in specific areas, or Ar-Ar geochronology on feldspars in selected volcaniclastics may help refine the J-K boundary further.

#### 5.3.3.3 Sediment accumulation patterns

The new U-Pb chronostratigraphy of the Uitenhage Group presented here may help refine models of onshore denudation and offshore accumulation during the evolution of southern Africa since continental breakup. Low-temperature thermochronology to constrain two periods of major onshore denudation in the Cretaceous (Tinker et al. 2008a, b; Wildman et al., 2015; Green et al., 2016), the timing of which coincide well with periods of rapid accumulation in the offshore Outeniqua basins (Tinker et al., 2008b; Guillocheau et al., 2012). The calculated sum of denuded material onshore is an order of magnitude greater than the sediment volume preserved sinks offshore (Tinker et al., 2008b), although the 'missing' sediment may be traced to once contiguous basins that have been separated during breakup, specifically in the North Falkland Basin (Richardson et al., 2017). The data here highlights that deposition in the southern Cape – in the present-day onshore areas and in a wider region that encompasses the Outeniqua, and North Falklands basins – began in the late Early Jurassic. Initially, this would have been in small, isolated basins that are now the depocentres of larger basins with thick sedimentary accumulations. All the calculations of presentday sedimentary thicknesses only include the Lower Cretaceous and younger sedimentary packages, because they are: 1) well-dated using the established marine microfossil biostratigraphic framework; 2) are commonly intersected by boreholes offshore and are laterally extensive providing robust thickness estimates (Tinker et al., 2008). This is not the case for the Jurassic strata below, which are fault-bounded and therefore of variable and poorly defined thicknesses (leading to unreliable thickness estimations), suffer from poor age control, and are rarely intersected by boreholes. For accurate calculations of the total accumulated sediment, necessary to compare with estimates of the total denuded material in the interior of South Africa, not only should contiguous basins be considered (as in Richardson et al., 2017), but the Jurassic depositional record should be investigated in conjunction with the comparatively well-understood Cretaceous succession. For instance, one of the findings that the present study has brought to bear is that much of the sedimentary strata in the onshore basins are older than previously envisioned, which means that we have a record of landscape evolution and denudation of the interior of southern Africa that extends

from the Early Jurassic into the Early Cretaceous. Additionally, the correlation of the base of the Buffelskloof and Hartenbos formations within onshore basins with the 1At1 unconformity described from core and seismic profiles offshore indicates that there are packages of Lower Cretaceous deposits preserved onshore that have been overlooked in previous calculations of the sediment budget that might be significant. It is hoped that the chronostratigraphy presented here will allow refinement of existing models and the sedimentary source-to-sink calculations upon which they are based.

The unconformities represented in the Uitenhage Group at the base of the Buffelskloof and Hartenbos formations in several basins remain quite ambiguous and interesting. A new question that has emerged from the chronology presented in this chapter is that there appears to be variation in the amount of time represented by this unconformity in different areas (named the 1At1 unconformity in offshore sequences). This could be simply because they renewed rifting steepened gradients and more energetic currents eroded the underlying Kirkwood and Enon formations during the deposition of the Buffelskloof and Hartenbos formations somewhat haphazardly. It may later be realized that this unconformity represents the systematic shifting of extension tectonism in the southern Cape, although currently there is no evidence for such inferences. For instance there appears to be a southerly sift in depocentres at this time in the Mossel Bay basin while a contemporaneous northerly shift is recorded in the Gamtoos Basin (Paton and Underhill, 2004). It would be intereting to interegate the lenth of the hiatus of the 1At1 unconformity across the southern Cape using evidence from the on- and off-shore data and compare with South American exhumation periods that are identified in several basins there that appear to correspond to periods of intermittent compression (Navarrette et al., 2016).

Finally, there is also great scope to further investigate the detrital zircon signature of the numerous detrital samples presented in this study. A robust characterization of the provenance of the Uitenhage Group is not the objective of this thesis although where possible some inferences are made. It appears that the majority of the detrital zircons dated are derived from recycling of the Cape and Karoo Supergroups with very few Jurassic – Cretaceous zircons included. This interpretation of sediment provenance has been mentioned by

previous authors over the last several decades before detrital zircon studies became popular tools used to decifer provenance because the clasts in the conglomerates of the Uitenhage Group are primarily from the Cape and to a lesser extent the Karoo supergroups (e.g., Rigassi and Dixon, 1972; Dingle et al., 1983, Viljoen, 1992; Muir et al., 2017a, b) with a strong correlation to basement rocks that immediately surround the respective basin. Nevertheless, there is considerable scope to study the detrital record of these basins further, especially in combination with palaeocurrent observations and an improved chronology based on the true depositional age of the Uitenhage Group (see section 5.3.3.4).

#### 5.3.3.4 Palaeoenvironmental considerations

Various attempts at reconstructing the palaeoenvironments recorded in the Uitenhage Group have been conducted, although none have done so with the chronostratigraphic framework necessary to elucidate evolutionary trends. Commonly, palaeontological studies that account for the fossil assemblages found in the Uitenhage Group, especially its Kirkwood Formation, have very limited chronostratigraphic constraints by nature of the fossil assemblages in the continental deposits being non-age-diagnostic (e.g., Gomez et al., 2002; McPhee et al., 2016). This study greatly assists workers assessing the fossiliferous Kirkwood Formation in western basins, which for the first time have a robust chronology. For instance, a recent discovery of dinosaur bones in the Heidelberg Basin (Almond, personal communication 2018, 12 September) can be placed to the Mid Jurassic by inference from a nearby dated bentonite deposit. The findings presented here also warn against the drawing of evolutionary trends through time without knowing the age of the strata from which palaeontological sampling occurred. For example, McPhee et al. (2016) describe sauropod dinosaur diversity in the Kirkwood Formation (of the Algoa Basin) that is elevated compared to other Lower Cretaceous localities worldwide, and hence tentatively propose a less dramatic decline in sauropod diversity at the J-K transition that evidenced elsewhere. However, they do not have a strong basis for confirming that the palaeontological samples all come from Lower Cretaceous stratigraphic intervals within the Kirkwood Formation, and follow the often-quoted Early Cretaceous age that is based

on lithostratigraphic correlations. They do however acknowledge that this inference is unconfirmed and recognise that "Dating the Kirkwood Formation has proven problematic, especially given the absence of chronometric age determinations" (McPhee et al., 2016, p. 230). Although this study lacks absolute age constraints for Uitenhage Group in the Algoa Basin, and therefore cannot refute or confirm inferred Early Cretaceous age for the Kirkwood Formation there, the wealth of constraints from the unit in other basins and the Lower Jurassic maximum age constraint provided by the underlying Suurberg Group both highlight its long-lived nature. This raises additional concerns as to whether all the fossiliferous units investigated in that study (McPee et al., 2016) and others (e.g., Rich et al., 1983; Forster et al., 2009) are indeed coeval and Lower Cretaceous.

Palaeoecological changes triggered by wildfires in an increasingly oxygenated Early Cretaceous atmosphere (Bergman et al., 2004; Belcher and McElwain, 2008; Berner, 2009; Belcher et al., 2010; Glasspool and Scott, 2010) have been investigated at a single locality in the Kirkwood Formation (Muir et al., 2015), although any attempts to build on this work by establishing patterns of wildfire occurrence through time, and if indeed wildfire abundance increases with observed increases in atmospheric oxygen concentrations, will need to adhere to these new chronostratigraphic constraints. The presence of charcoal material in the Middle Jurassic strata of Kirkwood Formation in the Heidelberg Basin raises the possibility that wildfire frequency was no more frequent in the Jurassic southern Cape when compared to the Cretaceous, despite elevated atmospheric oxygen concentrations. Although wildfires were generally more frequent at intense in the Cretaceous worldwide (Brown et al., 2012), this pattern remains unconfirmed in the South African rock record and remains an interesting aspect of the Mesozoic strata that warrants further study.

There is scope to expand on the notable presence of cyclicity preserved in parts of the Kirkwood Formation. Borehole W202 in the Robertson Basin (Fig. 8 in section 2.2.2.), and the outcrops in the Heidelberg and Mossel Bay basins exhibit cyclicity in grain size that ought to be studied further. Such patterns have been well-studied in other continental deposits around the globe (e.g., Olsen 1996; Kent et al., 2017), primarily in the Northern Hemisphere, to determine astronomically-placed climate fluctuations (e.g., Milankovitch cycles). With the new chronostratigraphic constraints provided in this thesis, coupled with additional high-precision ages from a relatively unbroken section and detailed sedimentological investigations, one could contribute towards improving the understanding of how mid-latitude continental environments and ecosystems in greenhouse worlds respond to astronomically-placed changes in climate. Information from the southern Cape of South Africa would be an especially welcome new perspective on this pressing issue, which requires a global perspective to uncover.

Finally, the characteristics of the sedimentary deposits that constitute the Enon and Kirkwood formations have been studied in an attempt to reconstruct drainage pattern evolution during and after rifting (Dingle et al., 1983; Malan and Viljoen, 1990; Richardson et al., 2017), but failed to take into account the chronostratigraphic relationships between isolated outcrops used to make these assessments. Each of these studies draw the same conclusion, that sediments in the Late Jurassic southern Cape are transported axially, along the Worcester-Pletmos and Cango-Baviaans-Gamtoos basin lines to the newly developed Jurassic coastline (Fig. 5.76). Each study includes some measure of palaeocurrent, which corroborates this transport direction, although never are the full palaeocurrent datasets made available, nor are the exact location and number of outcrops visited mentioned. Such assessments of palaeocurrent direction are not adequate by modern sedimentological standards, and additionally, fail to consider that deposits exposed in an isolated outcrop from which data are collected may not correlate at all with the next. Although these studies may resolve highly generalized transport directions, not only are averages from different localities been made, but also unknowingly the averages are calculated using data from highly varied snaps of geological time. The best way to reliably determine the sediment transport directions in the Uitenhage Group is to systematically measure palaeocurrent indicators from several different sedimentary facies and compare coeval deposits. At present this may only be viable for a few basins that have the greatest number of age constraints, and a full characterization of the palaeocurrent directions for the entire Uitenhage Group necessitates additional age determinations, coupled with stratigraphic control provided by borehole and

seismic/geophysical data. Neither do such databases already exist, nor are there many deep boreholes from the onshore basins in the southern Cape, making the task one of considerable difficulty. Nevertheless, cognizance of the exceptionally long-lived nature of the Enon and Kirkwood formations and varied age of these units from one isolated outcrop to the next is necessary before sediment transport directions of the entire Mesozoic southern Cape can be confidently established.



Fig. 5.76. Palaeogeography and sediment dispersion patterns of the southern Cape basins during the Tithonian (Late Jurassic). Black dashed line indicatesapproximate position of the present-day cpastline. Grey shaded areas are where the Uitenhage Group presently outcrops as erosional reminants. Map is based on Dingle et al. (1983) which was reproduced in Malan and Viljoen (2010) and share basic concepts with Richardson et al. (2017).

# 5.4 Discussion: Jurassic tectonic setting in SW Gondwana

The new chronostratigraphy presented highlight that deposition of the Uitenhage Group began earlier than previously envisioned and that accumulation in growing rift basins spanned a protracted >40 Ma. However, the tectonic setting of the Jurassic SW Gondwana, and specifically the driving mechanism behind the extensional stress necessary to create the rift basins during this time is yet unknown. Seismic and geophysical studies across once-contiguous margins enable ever-imporoving descriptions of the extensional history of SW Gondwana (e.g., Jungslager, 1996; McMillan et al., 1997; Macdonald; 2003; Parsiegla et al., 2009; Lindeque et al., 2011; Broad et al., 2012; Baby et al., 2018), however, a repeated shortcoming of these studies is the lack of robust chronostratigraphic constraints for continental units that are deeply buried in grabens and half grabens and therefore record the onset of rifting. The lack of robust age constraints from the initial rift-related deposits have slowed our understanding of the breakup history and this hindrance is largely because marine deposition in SW Gondwana only began when the first incursion occurred in the Late Jurassic, and therefore until now all dated horizons in the Uitenhage Group postdate this time period (Dingle, 1973; Dingle et al., 1983; McMillan et al., 1997). Until now we therefore have had little understanding of when extensional tectonics began during breakup. Initially, there was Permo-Triassic extension in South America before Gondwana breakup initiated, due to the steepening of the subducting slab (Ramos et al., 2011; Rocher et al., 2015; Riel et al., 2018). Following this rift-related extension began as early as the Latest Triassic in some parts of SW Gondwana, such as in the Neuquén Basin of Chile and Argentina (e.g., Uliana and Biddle, 1987; Uliana et al., 1989; Zerfaas et al., 2003) and the Colorado Basin offshore Argentina (Lovecchio et al., 2018). Conversely, new U-Pb data presented in this study indicate that extension begun the Early Jurassic (~latest Pliensbachian – Toarcian) in the southern Cape, before the opening of the South Atlantic (e.g., Koopman et al., 2014; Will and Frimmel, 2018) and associated strikeslip movement along the AFT (e.g., Ben-Avraham et al., 1997). There remains uncertainty surrounding what drove this Jurassic extension, with prominent workers preferring far-field stresses (McMillan et al., 1997; Broad et al., 2012). The onset of rifting and deposition of syn-rfit 1 packages may indeed have been

caused by yet-unknown far-field stress regime change in accordance with these authors, or perhaps are attributable to other mechanisms. For instance, Thomson (1999) alludes to a geodynamically-driven cause for extension in the Gamtoos Basin and the gravitational collapse (Dewey, 1988) of the Cape Fold Belt may offer another often-overlooked driving force for extension. These two mechanisms might better explain the Jurassic rifting experienced in the southern Cape and are explored with respect to the broad tectonic setting of SW Gondwana during the Jurassic and in light of the new U-Pb ages presented in this thesis that indicate a late Early Jurassic (~latest Pliensbachian – Toarcian) onset of prolonged rifting.

Far-field stresses related to plate tectonic motion during continental breakup are tentatively proposed as the driving force behind the extensional rifting experienced in the southern Cape, although a consensus on the details of these stresses has not been reached (McMillan et al., 1997; Broad et al., 2012; Tankard et al., 2012). Tankard et al. (2012) proposes that there was strike-slip movement along inherited structures in the Cape Fold Belt in response to dextral movement along the Agulhas Falkland Transform (AFT), a view shared by others (Ben-Avraham et al., 1993; Roux and Davids, 2016). However, the arcuate shape of these basins need not necessarily have been derived by transtensional shear stresses, and instead can be attributed to a preexisting change in orientation of the Cape Fold Belt structures offshore the Eastern Cape (Johnston, 2000, Paton and Underhill, 2004; Paton, 2006). Further, the new U-Pb ages presented in this thesis also provide direct evidence that much of the Uitenhage Group, and therefore the rift basins that accommodate it, long predate strike-slip movement along the AFT, which only initiated in the Early Cretaceous (Ben-Avraham et al., 1997). Tankard et al. (2012) nevertheless mentions that 'strike-slip basins formed along the Cango and Worcester faults (see their fig. 23.20, p 920), yet cite no direct evidence in support of that sense of movement. Indeed the Oudtshoorn Basin has long been understood to be a half-graben, or composite of several half-grabens, that relate to normal faulting along the Cango Fault (Lock et al., 1975; Holzförster, 2007; Dinis, 2018). This view is preferred over a dextral pull-apart model for the basin because there is a good match between the location of the Oudtshoorn Basin directly south of a large anticline that exposes pre-Cape Supergroup stratigraphy of the Cango Group – a pattern that exists for several other rift basins in

the southern Cape too (e.g., the Gamtoos and Mossel Bay basins) – suggesting a dip-slip rather than strikeslip sense displacement. The most likely scenario is that the Oudtshoorn Basin exists in its present location *because* the inherited compressional structures along the southern limb of the anticline were more prone to being reactivated there (Hälbich et al., 1983; Fouché et al., 1992; Paton, 2006). If there were instead strikeslip movement, and the Oudtshoorn Basin were a dextral pull-apart feature, then the position of the basin would be offset to the east relative to the exposed Cango Group in the centre of the anticline. We therefore are of the view that the sense of movement along the reactivated faults in the southern Cape was strictly dip-slip during the Jurassic, at least until the Early Cretaceous onset of strike-slip movement along the AFT.

McMillan et al. (1997), recognizing that the rift basins of the southern Cape began to develop prior to transform movement along the AFT, suggested instead that ~N-S orientated relative plate tectonic motion associated with East and West Gondwana separation and the opening of the Riiser-Larsen Sea might have provided the far-field stress that lead to rifting in the southern Cape. Although this seems more likely than dextral strike-slip movement, the new ages presented here that point to a Pliensbachian – Toarcian onset of rifting (far older than the Kimmeridgian age for rift initiation quoted by those authors) suggest that the timing and orientation of faulting in the southern Cape are not compatible with this interpretation. Flood basalt volcanism of the Karoo and Ferrar LIPs began at ~189 Ma (Moulin et al., 2017) and peaked at ~183 Ma (Encarnación et al., 1996; Duncan et al., 1997; Sevenson et al., 2012; Burgess et al., 2015), and there was a seaward transfer of spreading loci during the Early – Middle Jurassic commencing either at 170 Ma (Gaina et al., 2013) or 165 Ma (Seton et al., 2012) in the Riiser-Larson Sea, Western Somali and Mozambique basins. New radiometric age determinations for the Uitenhage Group presented here indicate that these spreading centres postdate the onset of rifting in the southern Cape, and that extensional stresses existed prior to the separation of East and West Gondwana. Further, the N-S relative plate motion and orientation of far-field stresses associated with this spreading is not consistent with the diverse orientation of normal faults in the southern Cape, which are tightly controlled by preexisting weaknesses in the crust that were developed during the Cape Orogeny (e.g., Fouche et al., 1991; Paton and Underhill, 2004; Paton

et al., 2006). These large normal fault arrays strictly follow the inherited structural grain of the Cape Fold Belt, which is predominantly E-W orientated in the central southern Cape but approach a N-S orientation at the western syntaxis (de Beer, 1992) and the antitaxis (Johnston, 2000) in the east (Fig. 2.1), yet the fault displacement along N-S orientated fault planes are no less severe than those orientated E-W despite plate kinematics during East and West Gondwana dictating a N-S extension. The presence of N-S striking extensional faults that in places reached more than 12 km of throw (Dingle et al., 1983; McMillan et al., 1997) is at odds with a regional N-S extension transferred from spreading centers further north and extensional basins in the western margin of the Cape Fold Belt, since destroyed by uplift and erosion (Wildman et al., 2015), formed at equally incongruous E-W orientations. Perhaps the structural anisotropy in the Cape Fold Belt (Paton and Underhill, 2004) meant that extension was always confined to pre-existing weaknesses in the crust, even if they were not at obviously suitable orientations perpendicular to regional extension, however this mismatch may have an alternate explanation entirely. Instead of far-field stresses manifesting in normal faults with varied orientations in the southern Cape, is plausible that that a different source of stress central to the orogeny itself could have driven rifting. This might have happened either through the gravitational collapse of the Cape Orogeny, or by the introduction of hot, impinging asthenosphere during the Jurassic SW Gondwana. The merits of these non-mutually exclusive mechanisms are considered below.



Fig. 5.77. Palaeogeographic reconstruction of the SW Gondwana in the Early Jurassic modified from Jokat et al. (2003) with additions from Gust et al. (1985), Pankhurst et al. (2000), Ghidella et al. (2002), Jourdan et al. (2005), Milani and de Wit (2008) and Hervé et al. (2006). Abbreviations and corresponding colours signify present-day distribution of Lower Jurassic extrusive rocks: AP, Antarctic Peninsula; K, Karoo LIP; F, Ferrar LIP; NPM, North Patagonian Massif. Circles highlight volcanic centres. FI, Falkland Islands.

#### Gravitational collapse of the Cape Orogeny

An explanation for varied orientation of strain during the rifting southern Cape in the Jurassic is that the Cape Orogeny itself, in the absence of the compressive stress regime that ceased in the Early Jurassic (Bordy et al., 2004) entered a phase of gravitational collapse largely independent of distal spreading centres (Dewey, 1988; Rey et al., 2001). In this case the Jurassic Cape Mountains were simply no longer held up by the compressive stresses and essentially relaxed into a setting of inversion. Numerous authors have indeed noted that the normal faults responsible for extension in the Cape Fold Belt are reactivated compressional thrust planes (Lock et al., 1975; Fouché et al., 1992), although offer no driving mechanism for this inversion. Such rejuvenation of compressional fault planes as extensional is regularly observed in the post-orogenic collapse of mountain belts (Dewey, 1988) and it is likely that extensional stress emplaced by gravity played a significant role, or was entirely responsible for the phenomenon during the Jurassic southern Cape, which may have had conditions suitable for collapse, as had other parts of the Gondwanides.

Much of SW Gondwana, particularly the southern Cape and contiguous terranes were a part of a compressive belt that was suitable for orogenic collapse in the Early Jurassic. Plate reconstructions of the Jurassic SW Gondwana are in close agreement and place the Falkland Islands adjacent to the southern Cape (e.g., Martin and Hartnady, 1986; Jokat et al., 2003; Macdonald et al., 2003; Torsvik & Cocks, 2013), which allowed several authors to infer a lateral connectivity between the Outeniqua, North Falkland and Falkland Plateau basins (e.g., Martin et al., 1981; Parsiegla et al., 2009; Richardson et al., 2017; Baby et al., 2018). Importantly, all of these once contiguous offshore basins and the exposed onshore rift basins covered in this study directly overlie the deformed Palaeozoic basement rocks of the Cape Fold Belt as evidenced by deep boreholes (McMillan et al., 1997) and crustal thickness estimates (Parsiegla et al., 2009) and in turn corresponds well with the location of the Cape Orogeny within the greater Gondwanides (Catuneanu et al., 1998; Pankhurst et al., 2006; Ramos, 2006; Milani and De Wit, 2008). This broad region of SW Gondwana, when reconstructed, can be envisioned as an elevated region with rugged, mountainous topography that arose during Late Carboniferous to Early Triassic compression (e.g., Pankhurst et al., 2006; Milani and De

Wit, 2008; Pángaro et al., 2015). An intensive perod of Permian – Triassic compression occurred in the Cape of south Africa that was driven by low angle subduction (Lock, 1980) or transpression (Johnston, 2000; Fig. 5.77) that gave rise to the Cape Fold Belt. During this time, the Cape Orogeny, the vast lithospheric load that accumulated by thrusting (Hälbich, 1992; Newton, 1992; Booth and Shone, 1999) and buckling (Cloetingh et al., 1992) had far reaching flexural effects on the southern margin of Gondwana (i.e., Namaqua-Natal Mobile Belt and Kaapvaal Craton further north) in generating the retroarc foreland Karoo Basin (Cole, 1992; De Beer, 1992; Catuneanu et al., 1998; Pysklywec and Mitrovica, 1999; Scheiber-Enslin, 2015). This region would had to have had a crustal thickness far greater than the present-day 42 km calculated using P-wave velocity models (Parsiegla et al., 2009) and seismic studies of the adjacent Namaqua-Natal terrane (Green and Durrheim, 1990). Reliable estimates of the maximum crustal thickness accumulated during the Cape Orogeny, which realistically fluctuated during periods of lithospheric loading and unloading, remain elusive although forward modeling suggests that at least 60 km of crust had accumulated by the Triassic (Cloetingh et al., 1992), an estimate corroborated by lithospheric flexural models of the Karoo Basin that incorporate a 80 km thick crust in the southern Cape Fold Belt (Scheiber-Enslin, 2015). Such an elevated crustal thickness certainly meets prerequisites for gravity-driven extensional stress and approaches that of the present-day Himalayas in which the phenomenon is welldocumented (Dewey, 1988).

Gravitational collapse as an extensional phenomenon was not limited to the Cape Fold Belt. Palaeogeographic reconstructions of the Early Jurassic of SW Gondwana (Fig. 5.77) include a number of elongated grabens and half-grabens that follow a NNW – SSE orientations (Gust et al., 1985; Uliana and Biddle, 1988). Despite there being contemporaneous mechanisms that might have caused the Late Triassic – Jurassic extension that initiated these basins (Mosquera and Ramos, 2006; D'Elia et al., 2015; Lovecchio et al., 2018) such as: A mantle plume that caused uplift, extension and volcanism in Patagonia and the Antarctic Peninsula (e.g., Gust et al., 1985; Pankhurst and Rapela, 1995; Pankhurst et al., 2000; D'Elia et al., 2015); and the active margin arc in the SW of SW Gondwana (e.g., Gust et al., 1985, Howell et al., 2005; Fig. 5.77), there is also evidence for Late Triassic – Early Jurassic extension for which the gravitational collapse of the Palaeozoic Ventania orogenic belt is entirely responsible (Franzese and Spalletti, 2001). These basins (e.g., the Nuequen, San Jorge and Magallanes basins of southern Argentina) are filled with thick, diachronous syn-rift red beds, conglomerates and volcaniclastic deposits deposited in mostly continental settings (Stipanicic et al., 1968; Gust et al., 1985; Uliana et al., 1999) that broadly resemble the Enon and Kirkwood formations in South Africa, albeit with significantly more volcanic successions given their close proximity to sites of coeval silicic volcanism (see Franzese and Spalletti, 2001 fig 4 for a summary of stratigraphy). It therefore would not be an exceptional case if the phenomenon also occurred in parts of the Gondwanides that were not directly affected by extensive extensional volcanism, such as the southern Cape.

There are however some observations that do not fit the gravitational collapse model for rifting in the southern Cape. Thorough revisiting the chronology of compression of the Cape Orogeny suggests that there were perhaps only as few as two principal compressional events at ~270 Ma and ~250 Ma (Blewett and Phillips, 2016; Hansma et al., 2016) rather than the more complex episodic compressional history previously envisioned (e.g., Hälbich, 1983; Gresse and Theron, 1992; Catuneanu et al., 1998). If this new model of the compressional history is to be fully accepted – indeed there are numerous features of the Karoo Basin that still need to be explained within this new framework – it implies that the main phase of compression ended in the earliest Triassic, more than 50 Ma before the initiation off rifting in the southern Cape in the late Early Jurassic. If the cessation of compression alone allowed for relaxation and inversion of Cape Fold Belt structures under gravitational forces, then we expect Triassic strata hosted in the depocentres of the rift basins in the southern Cape, which is not observed. Instead the oldest deposits in the syn-rift southern Cape are no older than latest Pliensbachian – Toarcian (Lower Jurassic). The findings of these two recent studies are yet to be fully understood in the context of the Cape Orogeny and Karoo Basin flexural tectonics, nevertheless, investigating when compression of the Orogeny ended is encouraged because such investigations will further elucidate the tectonic history of Mesozoic southern Africa,

including the rifting of the southern Cape. Secondly, the normal fault arrays that are seen in the Cape Fold Belt are not the only expression of extensional strain at this time, as there are some smaller, syn-depositional normal faults with 10s of m total displacement in the southern main Karoo Basin within the Lower Jurassic (Hettangian to Pliensbachian) upper Elliot and Clarens formations too (e.g., Bordy et al., 2004; Haupt, 2018). If gravitational collapse were the sole driver of extension, then the extension is expected to be somewhat restricted to the Cape Fold Belt and not in areas > 600 km to the northeast.

#### Geodynamically-derived extension

A second possible cause for extension in the Jurassic Southern Cape is derived from the upwelling and hot mantle asthenosphere across SW Gondwana. Thomson (1999) invokes a plume-model for extension in the Gamtoos Basin, although some of the views presented there are rather antiquated. In accordance with plume-generated continental breakup (White and McKenzie, 1989), he attributes the Early Jurassic Karoo flood basalts to a 'Karoo mantle plume' that was centered to the northeast of the southern Cape, beneath Mozambique (White and McKenzie, 1989; Cox, 1992; Thomson, 1999). Since neither the age of the Karoo LIP, nor the timing of rift initiation in the Gamtoos Basin were well-constrained until recently, he explains that the plume head that caused volcanism from 193 - 162 Ma (sic), generated a topographic anomaly that provided extension in the Gamtoos Basin immediately afterwards. Nowadays with the benefits of more robust geochronological constraints we know that the Karoo LIP emplacement was at ~183 Ma (Svensen et al., 2012; Burgess et al., 2015), with some minor volcanism occurring prior to this (Moulin et al., 2017), and that spreading between East and West Gondwana occurred soon thereafter at  $\sim 170 - 165$  Ma (Gaina et al., 2013). Meanwhile the Gamtoos Basin probably initiated in the latest Pliensbachian – Toarcian (Early Jurassic), and not the Late Jurassic as described by Thomson (1999). Despite the chronology of these two events being entirely revised since their relationship was proposed, both the age of Karoo LIP and of the initiation of rifting in the southern Cape have been pushed back to the Early Jurassic, and are still roughly contemporaneous events. This is compatible with a geodynamically initiated rifting for the Jurassic southern Cape, because the intensive heat introduced by the impinging asthenosphere associated with the Karoo-LIP, coupled with the inherent long-wavelength positive topographic anomaly that accompanied it (White and McKenzie, 1989) may have provided the extensional stresses in the southern Cape that prompted the reactivation of compressional structures. This seems especially likely since new geochronological evidence and palaeogeographic reconstructions places the locus of the Lower Jurassic Karoo and Farrar LIPs, and the contemporaneous silicic volcanism in Patagonia and Antarctica near the southern Cape, essentially surrounding the Cape Fold Belt in the Early Jurassic (Fig. 5.77). Further, there is evidence from some areas that these volcanic events were accompanied with regional uplift (Dopico et al., 2016). Since such vast areas of SW Gondwana experienced volcanism at this time, to the SW, S, E and NE of the Cape Fold Belt, it follows that the thick lithosphere accumulated during Permo-Triassic orogenesis (Lindeque, et al., 2011) would have experienced elevated heat too, which may have further weakened deep-seated structures and promoted extension. We therefore propose that during this time of elevated lithospheric geothermal gradients and raised topography, rifting began in the southern Cape. This model for rift initiation better fits the observed normal faulting in regions that do not correspond to the Cape Fold Belt, for instance in SW Lesotho (Haupt, 2018), and instead dictates simply that the southern Cape experienced an extensional stress regime for the first time in the Early Jurassic, roughly contemporaneous with widespread volcanism across SW Gondwana and due to elevated temperatures and associated uplift. Due to this stress regime change, reactivation of weaknesses in the Cape Fold Belt occurred, resulting in major displacement (at the km scale) at a variety of orientations, while areas that had less inherited weaknesses, such as in regions of the main Karoo Basin only accommodated a small amount of the extensional strain and resulted in just 10s of meters of displacement along normal faults there (Bordy et al., 2004; Haupt, 2018).

Extension in the Jurassic southern Cape and across SW Gondwana as a whole was likely caused by a combination of these two factors. Gravitational collapse certainly occurred in other parts of the Gondwanides (Franzese and Spelletti, 2001), and likely also occurred in the southern Cape, but the sudden introduction of heat and associated topographic uplift that occurred during the late Early Jurassic in various

regions of southern Gondwana would undoubtedly have impacted the region significantly and at least partly triggered onset of rifting in the southern Cape. In summary, these conditions caused extension that began around the Pliensbachian-Toarcian boundary, contemporaneously with the Karoo and Ferrar LIP, and also with volcanic events to the SW, and drove localized reactivation of compressive structures, which correspond to the oldest depocentres of each basin. Onshore, these old strata are exposed in the Heidelberg and Mossel Bay basins, but chronostratigraphic correlatives are expected at depth in many of the other basins as well, including the Oudtshoorn, Roberson, Worcester basins onshore, and the Bredasdorp, Pletmos, Gamtoos, Algoa, Outeniqua, North Falklands and Falkland Plateau basins offshore. As normal faulting progressed through the Jurassic under this stress regime, faults grew through linkage (Gupta et al., 1998) and progressively younger strata were deposited in expanding accommodation space (Paton, 2006). Conceivably, once thermal gradients beneath the Cape Fold Belt normalized, there was a period of widespread subsidence, probably in the Late Jurassic. The data presented in this thesis do not lend insights into this time period except that we know accommodation space in the rift basins of the southern Cape were still being filled at this time (evidenced by vast Upper Jurassic deposits of the Uitenhage Group). This period of tectonic quiescence was finally disrupted in the Late Valanginian - Hauterivian, when there was renewed rifting along the same structures that now relate to the onset of movement along the AFT (e.g., Ben-Avraham et al., 1997; Parsiegla et al., 2009) during which syn-rift 2 strata of the Uitenhage Group were deposited across basins in the southern Cape. Although there are still many unanswered questions relating to the tectonic setting across the Jurassic SW Gondwana, these extensional mechanisms seem to better fit the observed history of rifting in the Jurassic of SW Gondwana that previous models, and it is hoped that the ideas presented here, along with the improved chronology of events, provide a framework upon which to build.

# **Chapter 6: Volcanic provenance considerations**

# **6.1 Introduction**

The focal point of many of the findings in this thesis hinges on the presence of volcaniclastic deposits in the Uitenhage and Suurberg Groups, however these rocks have never been traced back to their volcanic source. During this research, it has become clear that the distribution of the volcaniclastics throughout the onshore Mesozoic appears to be far greater than previously thought, with outcropping volcaniclastic units appearing in most rift basins of the southern Cape. Moreover, as demonstrated in the previous two chapters, these southern Cape volcaniclastics span the Lower Jurassic and Lower Cretaceous. This wide range of ages of ash beds means that ash-fall events punctuated clastic rift-basin sedimentation, but it remains unclear where the volcanic activity was centered during this time or even if there was a singular or multiple volcanic sources.

The new age data presented in Chapters 4 and 5 already allow constraints on the provenance of the volcaniclastic deposits in the Jurassic – Cretaceous strata of the southern Cape. One scenario that was first outlined by Dingle et al. (1983) is that all the volcaniclastics in the Uitenhage Group are equivalent in age and can be correlated to the volcaniclastics in the northern Algoa Basin (now referred to as the Coerney Formation of the Suurberg Group). This parsimonious scenario – of a single eruptive episode that draped the entire southern Cape with ash – is not supported by new U-Pb ages, which demonstrate that multiple eruptive episodes are responsible for the volcaniclastic deposits in the Uitenhage Group, all of which (except for a deposit at De Rust) are younger than the Suurberg Group. During the Early Cretaceous opening of the South Atlantic at  $130 \pm 5$  Ma (Koopman et al., 2014) a number contemporaneous dyke swarms were emplaced in Namibia and the Western Cape of South Africa (Day, 1987; Reid et al., 1991, Will and Frimmel, 2013) but all of these postdate the youngest dated volcaniclastic deposit in the Uitenhage Group are and responsible for the volcaniclastic deposits of the Uitenhage Group, a relationship tentatively

proposed by Viljoen (1996). Clearly, the new ages reported reveal that none of the previously suggested and more localized volcanic sources are traceable to the volcaniclastic deposits considered in this study, which begs the question – *where was the volcanic source?* Investigating the petrogenesis of highly altered volcaniclastic deposits may help answer this question.

Petrological studies that attempt to understand the volcanic provenance of such deposits quote the grain size of minerals or lithic fragments within the volcaniclastic rock, or its thickness as measures of proximity to a volcano (Fischer and Schminchke, 1984; Pyle, 1989). Naturally, the presence of bombs that are derived from explosive volcanism is the consequence of extreme proximity to the volcanic source, but none of the volcaniclastics in this study contain any clasts that cannot be adequately explained by normal siliciclastic input during or after deposition of fine ash. The assessment of grain size and mineral densities of finer grained volcaniclastic deposits (tuffs and their altered equivalents, which are found in the Mesozoic southern Cape) have been used to constrain a maximum distance from a volcanic eruption based on transport medium-grain size relationships (Fischer and Schmincke, 1984; Pyle, 1989; Carey and Sigurdsson, 2000; Rocha-Campos et al., 2011). However, these studies are often oversimplified because they generally fail to take into account the elevated winds and jet-stream conditions that volcanic ash may encounter in the stratosphere and overlook the unusual atmospheric conditions within a pyroclastic plume, in which there is a reduced particle-medium density differential and unusual particle motion (Fung, 1998; Barham et al., 2016). Further, the thickness of primary ash-fall deposits is also not a very reliable proxy for determining the distance from the source volcano, because heterogeneities in the depositional environment - both topographic and preservational - and small-scale syn-depositional faulting can cause localized thickness variations (Königer and Stollhofen, 2001). These factors were certainly at play during the deposition of volcanic ash in the Jurassic – Cretaceous southern Cape and therefore the thicknesses of preserved volcaniclastic beds in the Uitenhage Group, making it a poor indicator of source proximity.

Geochemical characterization is more widely used and is considered more reliable in constraining the volcanic source of the volcaniclastic deposit (Bohor and Triplehorn, 1993; Bangert et al., 1999; Jones et

al., 2016); however, these methods are also not without their problems. Volcanic ash derived from an eruption is often exceptionally fine-grained consisting of various components including pulverized rock and usually very small juvenile magmatic crystals that crystallize in rapidly cooling ejected lava. This finegrained groundmass, coupled with the generally chemically unstable minerals present in ash (e.g., volcanic glass), are highly susceptible to alteration and therefore the geochemical composition of the sampled volcaniclastic rock is rarely reflective of parental lava composition. Nevertheless, some trace elements that are fairly immobile and therefore least affected by alteration processes can be representative of the original magmatic conditions and are widely used to discriminate lava types (Winchester and Floyd, 1977) and their volcanic setting (Pearce et al., 1984). However, just slight reworking and inclusion of siliciclastic detritus into the volcaniclastic unit can greatly affect the trace element signature measured so whole rock trace element geochemistry only works for primary ash deposits. Trace elements of specific minerals in the volcaniclastic deposit, such as zircon, can also be applied although their usefulness in discerning between the broadly granitic magma types is limited and best used in conjunction with other methods (Belousova, 2002; Belousova et al., 2006).

An alternative to using geochemical techniques to discern petrogenesis is to assess the morphological appearance of zircon (Fig. 6.1), a common accessory mineral that is present in all the volcaniclastic deposits considered in this study. Pupin (1980) developed a classification system for common zircon habits found in igneous rocks based on empirical observations that the thermal and chemical characteristics of the magma, affects zircon crystal habit, or *typology*. Zircons that crystallized in peraluminous conditions have distinct {211} pyramids, whereas those grown in perialkaline magmas have well-developed {101} pyramids. Therefore the alkalinity, represented by the ratio Al/(Na + K) and termed 'index A', is responsible for the development of pyramids in zircons and is depicted as the X axis on the typological classification diagram (Fig. 1A). In this system, the temperature of the magma during which zircons crystallized is considered the principal factor controlling the relative development of various prisms and is plotted on the Y-axis in the typological classification. This geothermal and chemical compositional scheme is represented

by a grid in which each constituent square contains a zircon crystal subtype (Fig. 6.1A). The distribution of zircon subtypes in a given granitic rock can be placed into the petrogenetic classification system that distinguishes its crustal, mixed crustal and mantle, or mantle origin (Fig. 6.1B) and is extended to several non-granitic rocks (Fig. 6.1C).



Fig. 6.1. A. Zircon typological classification system of Pupin (1980). Types (letters) and subtypes (numbers) of zircon crystals and corresponding geothermometric scale. Index A represents Al/Alkali ratio, which controls the development of pyramids, and temperature, which affects the development of prisms, follows the calibration of Pupin and Turco (1972). B. Zircon crystal morphological distributions for granites proposed by Pupin (1980). <u>Granites of mainly crustal origin</u>: (1) aluminous leucogranites; (2) (sub)autochthonous monzogranites and granodiorites; (3) intrusive aluminous monzogranites and granodiorites. <u>Granites of mixed crustal and mantle origin</u>: (4a – c, clear area) monzogranites and alkaline granites; (4a – c, shaded area) granodiorites and monzonites; (5) sub-alkaline series granites. <u>Granites of mainly crustal of mainly mantle origin</u>: (6) alkaline series granites; (7) tholeiitic series granites. (Ch) Magmatic charnockite area; (Mu)

limit of muscovite granites (T < 725°C). C. Zircon crystal morphological distributions for some non-granitic rocks after Pupin (1980): (AR) alkaline series rhyolites; (CAR) calc-alkalines series rhyolites; (M) migmatites; (t) trachyandesites; (T) tonalities.

In reality, assessing the volcanic source of volcaniclastic deposits is not straightforward and should best be attempted using multiple lines of evidence. Where geochemical techniques suffer from post-depositional alteration or reworking, zircon morphological assessments described by Pupin (1980) may be too simplistic (Varva, 1993; Benisek and Finger, 1993). Therefore, in the current study two independent methods, whole-rock trace element geochemistry and zircon typology, are used to assess the volcanic origin of the Mesozoic volcaniclastic deposits in the southern Cape. However, because a large number of such units are clearly of mixed detrital and volcanic origin (see Chapters 4 and 5), only pyroclastic deposits are assessed (Table 6.1) as they are most likely to best represent the volcanic source.

Table 6.1. Pyroclastic samples from Chapters 4 and 5 analysed for geochemical and zircon morphological characterization.

| Sample<br>name | Basin           | Lithology            | Geological age   | Geochemical<br>analysis | Zircon<br>typological<br>assessment |
|----------------|-----------------|----------------------|------------------|-------------------------|-------------------------------------|
| PLET           | Plettenberg Bay | Bentonite            | Lower Cretaceous | Х                       | Х                                   |
| ROBE           | Robertson       | Bentonite            | Upper Jurassic   | X                       | Х                                   |
| OKT1           | Oudtshoorn      | Bentonite            | Upper Jurassic   | Х                       | Х                                   |
| CALI           | Oudtshoorn      | Bentonite            | Upper Jurassic   | Х                       | Х                                   |
| HBUP           | Heidelberg      | Bentonite            | Upper Jurassic   | X                       | Х                                   |
| HBMZ           | Heidelberg      | Zeolite              | Middle Jurassic  | Х                       |                                     |
| HBMB           | Heidelberg      | Bentonite            | Middle Jurassic  | Х                       | Х                                   |
| HBMill         | Heidelberg      | Bentonite            | Middle Jurassic  | Х                       | Х                                   |
| MATJ           | Mossel Bay      | Bentonite            | Middle Jurassic  | X                       | Χ                                   |
| ASP1           | N Algoa Basin   | Tuffaceous sandstone | Lower Jurassic   |                         | Χ                                   |
| ASLO           | N Algoa Basin   | Tuffaceous sandstone | Lower Jurassic   |                         | X                                   |

# **6.2 Analytical procedures**

### 6.2.1 Trace element geochemistry

All trace element geochemical analyses were conducted at the Department of Geological Sciences, University of Cape Town in clean laboratory conditions using the following procedure outlined below. About 500 g from each of the nine samples (Table 6.1) was milled to a fine homogeneous powder using a swing mill. Following this, 50 mg of each sample powder was digested using a three-step dissolution procedure in a 4:1 HF/HNO<sub>3</sub> acid mixture in sealed Savilex beakers on a hotplate over a 48 h period. The sample solutions were then dried and each product taken up in a 5% HNO<sub>3</sub> solution containing 10 ppb Re, Rh, In and Bi, which were used as internal standards and calibration curves were obtained using artificial multi-element standards, from which standard solutions were made. Along with the nine samples, *JA-2* and *JR-2* rock standards and a blank (*TPB*) were analysed using a Thermo-Fisher X-Series II quadrupole ICP-MS with a solution autosampler in order to determine the precision and accuracy of analyses (Table 6.2). Compositional data are presented in Table 6.3.

### **6.2.2 Zircon morphological assessments**

Zircons were picked from ten mineral separates attained following the protocols outlined in Chapters 4 and 5, and placed onto a circular disk mount coated with a carbon-glue paste. Roughly 90 zircons were picked per sample and placed side-by side onto the paste very lightly to prevent the zircons getting pressed into the soft paste, which helped to maximize the surface area exposed. The sample mounts and zircons were then coated with a fine film of gold before being loaded into the NovaNano Scanning Electron Microscope (SEM) at the Aaron Klug Centre for Imaging and Analysis, University of Cape Town. The magnification was adjusted so that each zircon filled most of the field of view before a secondary electron image of each was attained. This allowed for unobscured visualization of the crystal faces of most of the zircons and unambiguous typological classification.

|    | JA-2        | JA-2     |       | JR-2        | JR-2     |       | TDR   |
|----|-------------|----------|-------|-------------|----------|-------|-------|
|    | Recommended | Analysed | %RSD  | Recommended | Analysed | %RSD  | (nnh) |
|    | (ppm)       | (ppm)    |       | (ppm)       | (ppm)    |       | (իիս) |
| Ti | 4020        | 3749     | 0.504 | 400         | 337.4    | 1.141 | 3.058 |
| Rb | 69.8        | 69.08    | 0.294 | 303         | 318.3    | 0.840 | 0.004 |
| Y  | 16.89       | 15.15    | 0.156 | 51.1        | 43.25    | 0.397 | 0.001 |
| Zr | 108.5       | 107.2    | 0.348 | 96.3        | 83.43    | 0.358 | 0.176 |
| Nb | 9.3         | 8.830    | 0.887 | 20.4        | 16.67    | 0.925 | 0.024 |
| La | 15.47       | 14.76    | 0.499 | 16.3        | 13.73    | 0.549 | 0.002 |
| Ce | 32.86       | 30.53    | 0.207 | 38.8        | 33.99    | 0.667 | 0.002 |
| Pr | 3.691       | 3.520    | 0.704 | 4.75        | 4.410    | 0.477 | 0.001 |
| Nd | 14.04       | 13.17    | 0.664 | 20.4        | 17.72    | 0.481 | 0.002 |
| Sm | 3.032       | 2.891    | 0.811 | 5.63        | 5.034    | 0.708 | 0.001 |
| Eu | 0.893       | 0.841    | 1.341 | 0.14        | 0.095    | 0.628 | 0.001 |
| Tb | 0.4786      | 0.455    | 1.048 | 1.1         | 0.982    | 0.361 | 0.001 |
| Gd | 3.013       | 2.896    | 0.482 | 5.83        | 5.533    | 0.795 | 0.001 |
| Dy | 2.851       | 2.796    | 0.395 | 6.63        | 6.564    | 0.358 | 0.001 |
| Но | 0.591       | 0.581    | 0.226 | 1.39        | 1.405    | 0.837 | 0.001 |
| Er | 1.676       | 1.688    | 0.987 | 4.36        | 4.459    | 0.240 | 0.001 |
| Tm | 0.2546      | 0.236    | 0.829 | 0.74        | 0.774    | 0.613 | 0.001 |
| Yb | 1.645       | 1.598    | 0.570 | 5.33        | 5.200    | 0.244 | 0.001 |
| Lu | 0.2549      | 0.253    | 0.872 | 0.88        | 0.857    | 0.574 | 0.001 |

Table 6.2. Immobile trace element values of JA-2 and JR-2 standards and total procedure blank (TPB) obtained by LA-ICPMS in this study compared to their recommended compositions outlined in Jochum et al. (2016) and Imai et al. (1995). %RSD = relative standard deviation in percent.

# 6.3 Results and discussion

## 6.3.1 Trace element geochemistry

Relatively immobile trace elements including the REE, are presented for each of the nine pyroclastic units in the Kirkwood Formation (Table 6.3). There are fairly large variations in REE patterns across each of the nine samples with respect to the total elemental concentrations, Eu anomalies, and heavy REE when normalized to chondrite composition (Fig. 6.2). Sample CALI contains the lowest REE concentration, while PLET has the highest, with all samples having roughly parallel light REE patters that diverge at the medium and heavy REE. Strongly negative Eu anomalies exist for samples HBMZ and HBMill; Eu in samples ROBE, HBUP and HBMB are moderately anomalously negative and the remaining samples have very small negative Eu anomalies. This likely reflects the varied eruptive magmatic compositions and fractionation during the crystallization of plagioclase. In general, the samples exhibit a relative enrichment in the light REE compared to medium and heavy REE with respect to chondrite composition although sample ROBE is an exception and is enriched in TM, Yb and Lu. Overall there appears to be no trends through time expressed in REE patterns.

Ratios of immobile trace elements that are least likely to be affected by the alteration all the ash deposits experienced and can be used to discriminate the composition (Winchester and Floyd, 1977) and tectonic setting (Pearce et al., 1984) are preferred over conventional methods that rely on mobile elements (e.g., La Bas et al., 1986). Samples plot in the rhyodacite-dacite, rhyolite and commendite-pantellerite fields on the Zr/Ti-Nb/Y diagram (Fig. 6.3A), suggesting a predominantly felsic to intermediate parental magma composition for all bentonites. The youngest and only Cretaceous sample (PLET) has a lower Nb/Y ratio compared to other samples. All but two samples plot within the volcanic arc field in Rb-Y+Nb space (Fig. 6.3B), with one occupying the intersection of three fields and therefore impossible to confidently assign to a tectonomagmatic setting, and one sample, again the youngest, plotting within the ocean ridge field.

|    | PLET  | ROBE  | CALI  | OKT1  | HBUP  | HBMZ  | MHMB  | HBMill | MATJ  |
|----|-------|-------|-------|-------|-------|-------|-------|--------|-------|
| Ti | 1361  | 1036  | 2119  | 1740  | 580.2 | 574.3 | 1447  | 688.3  | 1357  |
| Rb | 7.272 | 11.34 | 10.66 | 24.56 | 4.201 | 28.13 | 9.014 | 13.27  | 9.756 |
| Y  | 57.17 | 19.79 | 12.52 | 37.74 | 17.24 | 10.65 | 18.10 | 14.79  | 37.08 |
| Zr | 151.7 | 205.2 | 203.0 | 117.8 | 154.0 | 99.20 | 181.4 | 151.2  | 187.4 |
| Nb | 5.182 | 14.22 | 7.864 | 14.64 | 11.04 | 11.70 | 16.05 | 16.19  | 17.46 |
| La | 88.40 | 39.31 | 14.17 | 46.78 | 40.06 | 24.53 | 34.51 | 23.83  | 37.74 |
| Ce | 191.1 | 84.97 | 27.32 | 100.5 | 92.96 | 49.55 | 81.12 | 60.03  | 105.4 |
| Pr | 24.97 | 10.15 | 3.569 | 10.86 | 10.19 | 6.216 | 9.177 | 7.139  | 13.91 |
| Nd | 100.8 | 37.20 | 13.49 | 40.62 | 38.76 | 23.29 | 34.90 | 26.98  | 61.44 |
| Sm | 21.87 | 7.491 | 2.882 | 8.741 | 8.409 | 5.126 | 7.248 | 5.831  | 13.36 |
| Eu | 4.259 | 0.862 | 0.513 | 1.749 | 0.832 | 0.389 | 1.165 | 0.345  | 2.653 |
| Tb | 2.779 | 0.900 | 0.433 | 1.226 | 0.985 | 0.638 | 0.846 | 0.672  | 1.658 |
| Gd | 20.11 | 5.782 | 2.864 | 8.395 | 6.915 | 4.498 | 5.908 | 4.269  | 12.43 |
| Dy | 14.69 | 5.026 | 2.489 | 6.992 | 5.364 | 3.349 | 4.448 | 4.022  | 8.955 |
| Но | 2.516 | 0.901 | 0.474 | 1.367 | 0.874 | 0.564 | 0.798 | 0.759  | 1.550 |
| Er | 6.256 | 2.557 | 1.297 | 3.978 | 2.107 | 1.377 | 1.998 | 2.477  | 3.936 |
| Tm | 0.844 | 0.431 | 0.185 | 0.626 | 0.284 | 0.204 | 0.272 | 0.430  | 0.507 |
| Yb | 4.934 | 3.329 | 1.278 | 4.126 | 1.797 | 1.532 | 1.742 | 3.465  | 3.030 |
| Lu | 0.717 | 0.559 | 0.212 | 0.690 | 0.252 | 0.241 | 0.270 | 0.582  | 0.453 |

Table 6.3. Whole-rock trace element geochemistry values of nine pyroclastic deposits in the Uitenhage Group given in ppm.


Fig. 6.2. Chondrite normalized rare earth element diagram of pyroclastic deposits. Dashed lines are Middle Jurassic deposits, solid lines are Upper Jurassic and open markers highlight the single Lower Cretaceous deposit. Chondrite normalization factors are taken from McDonough and Sun (1995).



Fig. 6.3. Geochemical classification plots based on immobile element geochemistry. A) Composition of parental magma based on Zr/Ti-Nb/Y ratios of pyroclastic deposits after Winchester and Floyd (1977). B) Tectonomagmatic setting of volcanism based on Rb, Y and Nb concentrations after Pearce et al. (1984).

#### 6.3.2 Zircon morphology

The majority of zircon crystals extracted from each of the four bentonitic Kirkwood Formation samples could be successfully categorized into subtypes based on secondary election SEM imagery. Almost all crystals were strongly euhedral and preserved the pyramidal and prismatic habits suitably for confident typological classification (Pupin, 1980) with the exception of some of the most fragile, elongated, needle-shaped grains that regularly preserved only one crystal termination.

Zircon typological distributions, when the size of the crystal is not considered, are very similar for samples PLET, CALI, ROBE, OKT1 and HBUP (Fig. 6.4). The majority of zircons are 'S'-type, with S24 being the most represented subtype in these samples with the exception of OKT1, in which S17 is the commonest subtype. The respective distributions indicate that each of these pyroclastic deposits are derived from magmas of mixed mantle and crustal origin, corresponding to the calc-alkaline granodiorites and monzogranite fields or the tonalite (T), trachyandesite (t) and to a lesser degree the calc-alkaline rhyolite (CAR) fields for non-granitic rocks (Fig. 6.1A, B, C, 4). However, ROBE is less easily categorized because zircons display a bimodal distribution of subtypes, with 'P'-type crystals forming a subordinate subpopulation along with the dominant 'S'-types.

There is a significantly larger spread of zircon types in samples MATJ and HBMill than in in the other samples (Fig. 6.4) that cannot be simply be attributed to detritus because of the purely pyroclastic nature of the deposit. Most zircons are 'S'-types, with S23 being the commonest subtype, although 'J', 'P' and 'G' types are also present in significant numbers. This diversity of zircon types makes assessing the characteristics of the parental magma nearly impossible. Nevertheless, because zircons are most commonly 'S' type, these two bentonites are probably derived from eruptions involving lavas of mixed mantle and crustal origin, corresponding to the calc-alkaline granodiorites and monzogranite fields or the tonalite (T), trachyandesite (t) and to a lesser degree the calc-alkaline rhyolite (CAR) fields for non-granitic rocks (Fig. 6.1A, B, C, 4). The complex zircon distribution may have arisen from rapid changes in the magma chamber

prior to- or during eruption, sediment mixing and subtle detrital input during deposition of the volcanic ash, or zircon crystallization may have been affected by other parameters that are not accounted for by this classification (Benisek and Finger, 1993; Vavra, 1993).

Two of the samples, which are from the Lower Jurassic Suurberg Group, ASP1 and ASLO, are not pyroclastic in origin and contain a significant detrital component that is evidenced by a wide range of zircon ages, rounded quartz grains and rare quarzitic clasts (see Chapter 4 for details). Therefore the distributions of zircon morphologies in these samples are expectedly widespread (Fig. 6.4), as a reflection of the variety of zircon sources and both samples contain a significant proportion of grains that are too rounded for confident typological assessments, further corroborating a transported detrital origin. Nevertheless, most of the zircons in either samples are 'S'-types, of which S19 is the commonest subtype in ASP1 and S24 the commonest in ASLO. 'P'-type and 'G'-type crystals are also common in both samples, with rare 'Q'-type and 'J'-type grains in ASLO. Due to the mixed origin of these units, it is not possible to attribute their morphological distributions to a specific parental magma source.

Fig. 6.4. (Following three pages). Zircon typological distributions and secondary electron image of common zircon subtypes, labelled in blue above each crystal image, for each respective sample.







#### **6.3.3 Volcanic provenance**

Both the trace element geochemical signature and zircon typological distributions indicate a felsic – intermediate parental magma for the pyroclastic deposits in the Uitenhage Group derived principally from a volcanic arc setting. This finding, coupled with new ages reported from pyroclastic beds in the Uitenhage Group, is strong evidence for a volcanic source to the SW of the southern Cape in modern-day Patagonia and the Antarctic Peninsula. Felsic to intermediate volcanic rocks are a common feature of Jurassic successions in these regions (Fig. 6.5), where they record a prolonged episodic period of silicic volcanism (Gust et al., 1985; Féraud et al., 1999; Pankhurst et al., 2000; González et al., 2019) with a volcanic arc geochemical signature, collectively referred to as the Chon Aike Large Igneous Province (Pankhurst et al., 1998; Riley et al., 2001). Additionally, comparatively minor silicic volcanism also occurred to the NE around the Lebombo region during the culmination of the Karoo LIP (Duncan et al., 1997; Riley et al., 2004; Miller and Harris, 2005), although it is unclear if this short-lived and laterally restricted, localized volcanism contributed at all to volcaniclastic deposition in the southern Cape. The collation of a large number of dated volcanic rocks and geochemical datasets has uncovered spatio-temporal trends in volcanic activity in the Jurassic SW Gondwana (Féraud et al., 1999; Pankhurst et al., 2000) that are relevant to volcanic provenance considerations.

Initially, silicic volcanism immediately followed the emplacement of the mostly mafic Karoo LIP through anatexis of the lower crust in South America (Pankhurst and Rapela, 1995), and magma underplating and re-melting of the shallow crust in the Lebombo region (Riley et al., 2004; Miller and Harris, 2005) during the Early Jurassic. Pankhurst et al. (2000) names this initial episode of silicic volcanism, lasting from 188 – 178 Ma, 'V1' (Fig. 6.6). The only volcaniclastic deposits dated to this period are those found in the Suurberg Group and the nature of their deposition remains rather unclear. Increasingly, evidence accumulates for a Karoo LIP affinity for the Suurberg Group, at least for its basaltic units (Marsh, 2016). Conceivably, the volcaniclastic deposits of the Suurberg Group may have been derived from the silicic volcanoes evidenced at Lebombo, ~1000 km to the N (Fig. 6.5). However, the contemporaneous

volcaniclastics of the Group may equally have been derived from centres to the south on the modern-day Antarctic Peninsula, which was roughly equidistant from the southern Cape in the Early Jurassic (Fig. 6.5) A definitive provenancing of the volcanic zircons in the Suurberg Group remains elusive because all the units sampled are of resedimented volcaniclastic deposits and therefore provide unclear zircon typological distributions (ASP1 and ASLO) and are unsuitable for whole-rock geochemical characterization. Perhaps the analysis of the youngest volcanic zircons for trace elements or Hf isotopes would be useful and is recommended to future workers determined to resolve the matter.

Following this, southern Patagonia continued to experience crustal thinning and anatexis although volcanism began to migrate toward the proto-Pacific subducting margin in the SW (Féraud et al., 1999; Pankhurst et al., 2000), where volcanic rocks incorporate a subduction geochemical signature (Pankhurst et al., 2000). A particularly active period of volcanism occurred between 162 - 172 Ma ('V2' of Pankhurst et al., 2000; Fig. 6.6) in the Antarctic Peninsula and eastern Deseado Massif (Fig. 6.6) that would have provided suitable sources for the thick (> 1.5 m) bentonites and zeolites hosted in lacustrine deposits of the Kirkwood Formation in the Heidelberg and Mossel Bay basins of southern Cape (samples HBMB, HBMill and HBUP, MBMZ and MATJ). Following this, another peak of volcanic activity occurred in the Andean Cordilleras between 153 - 157 Ma evidenced by abundant ignimbrites of these ages ('V3' of Pankhurst et al., 2000; González et al., 2019). This pulse of Late Jurassic volcanism corresponds well with numerous bentonites dated in the Mossel Bay, Roberston and Oudtshoorn basins (samples VOEL, ROBE, CALI, OKT1). The precisely dated bentonite near Robertson ( $150.3 \pm 0.2$  Ma) postdates the youngest dated ignimbrite that corresponds to this volcanic episode (Pankhurst et al., 2000) from within the Ibáñez Formation ( $153 \pm 1$  Ma), but this unit has not been dated with the same level of accuracy or precision and a correlation cannot be ruled out based on these data.



Fig. 6.5. Palaeogeocgraphic reconstruction of the Late Jurassic SW Gondwana. The proposed wind-blown ash transport directions from volcanic source areas in Patagonia, the Antarctic Peninsula and Lebombo, towards the modern-day southern Cape are shown. The distribution of fault-controlled Mesozoic basins and spreading centers are included. Abbreviations and colours signify present-day distribution of Jurassic extrusive rocks: AP, Antarctic Peninsula; CA, Andean Cordillera; DM, Deseado Massif; K, Karoo Igneous Province; NPM, North Patagonian Massif. Modified from Jokat et al. (2003) with additions from Gust et al. (1985), Pankhurst et al. (2000), Ghidella et al. (2002), Jourdan et al. (2005), Milani and de Wit (2008) and Hervé et al. (2006).

The youngest (140.2  $\pm$  0.4 Ma) bentonite dated in from Plettenberg Bay (PLET) is not within error of any U-Pb dated volcanic rocks in Patagonia and cannot be attributed to any of the three periods of peak volcanism (Fig. 6.6). This bentonite is also the only one that has an ocean arc trace element geochemical signature (Fig. 6.3), which may indicate a different source area and tectonic setting entirely. Nevertheless, there are rhyolites dated to 144.2  $\pm$  0.4 Ma in Patagonia by Ar-Ar techniques (Féraud et al., 1999) evidencing younger volcanism in the region that could account for Early Cretaceous volcaniclastics in the Uitenhage Group. Volcanics of the Paraná-Etendeka LIP, which predate the opening of the South Atlantic, are dated to between 131.7  $\pm$  0.7 Ma and 132.3  $\pm$  0.7 Ma (Renne et al., 1996) and because no volcaniclastic deposits of this age have been dated, either there was highly restricted delivery of ash from these volcanoes, or erosion has removed the associated volcaniclastic units from the Uitenhage Group. Indeed, the latter seems likely since the Early Cretaceous is poorly represented in the western parts of the onshore southern Cape, and where it is, the deposits are mostly coarse-grained (Buffelskloof Formation) and deposited in high energy conditions not suitable for ash preservation. Even its finer-grained distal correlative (Hartenbos Formation), which was deposited in low-energy conditions, contains no obvious volcaniclastic deposits nor any syn-depositional Early Cretaceous zircons.



Fig. 6.6. Timing of Jurassic igneous activity in SW Gondwana compared to the age of robustly-dated primary ash beds of the Uitenhage Group. Three episodes of volcanism (V1 - 3) are identified in the probability density curve of crystallization ages reported by Pankhurst et al. (2000) for the Antarctic Peninsula and Patagonian silicic volcanics and subvolcanics and there are contemporaneous pyroclastic deposits for each. V1 episode corresponds to the Suurberg Group and correlatives, V2 weakly corresponds to middle Jurassic bentonites and V3 corresponds well with Late Jurassic bentonites.

The observed distribution of volcaniclastic deposits in the Jurassic – Cretaceous of the southern Cape, with more volcaniclastic material observed in the West compared to the East, supports a volcanic source to the W or SW of the southern Cape for most of the Jurassic. Although many volcaniclastic beds probably remain unmapped or entirely in the subsurface, making their distribution in space a rather weak line of argument for a source region, it is worth considering until proven otherwise. Perhaps future workers find volcaniclastic deposits in the Uitenhage Group of the Algoa or Gamtoos basins, the two most easterly basins in the southern Cape, but to date no such deposits have been found there. This contrasts with the western basins in which volcaniclastic deposits are a common feature (e.g., Robertson, Heidleberg and Mossel Bay basins). An overall pattern of eastward decreasing volcaniclastic occurrences in the Uitenhage Group seems to hold despite the Algoa Basin having by far the greatest areal extent and best quality exposures (not to mention considerable time spent unsuccessfully scouring outcrops and borehole cores for volcaniclastic deposits). Such a pattern is not unexpected considering a Patagonian and Antarctic Peninsula volcanic source, which was to the W and SW of the southern Cape in Jurassic plate reconstructions (Fig. 6.5). Further, wind patterns for the Late Jurassic and Early Cretaceous generated using global circulation models indicate that palaeowinds across the southern Cape region were seasonal from the SW, S and SE during December – February and from the W during June – August (Moore et al., 1992), which is strongly compatible with a Chon Aike LIP source. The absence of observed volcaniclastics in the Algoa and Gamtoos Basins may be because wind-blown volcanic ash did not reach these most distal basins. However, the oldest volcaniclastic material at De Rust in the Oudtshoorn Basin (DERU and DERC1) and in the Suurberg Group of the Algoa Basin both occur in the extreme north of their respective basins. It may not be a coincidence that these ~183 Ma strata only appear to occur in those regions closest to the contemporaneous Karoo LIP. If vast quantities of ash were ejected during Karoo LIP volcanism perhaps winds were unable to carry ejecta across Cape Mountains in the late Early Jurassic resulting in restricted Lower Jurassic volcaniclastic deposition in the northernmost basins of the southern Cape. Importantly, however the large majority of the extensive volcanism that constitutes the Karoo LIP is of mafic composition and the resulting volcanics very rarely contain any zircon as an accessory mineral constituent

(Svenson et al., 2012) raising doubts as to how zircon-rich ashes were distributed to the southern Cape. Rare silicic volcanism, zircon-bearing volcanism did occur at Lebombo at this time (Riley et al., 2004; Miller and Harris, 2005) and may be source for the lower Jurassic volcaniclastics of the Suurberg Group and at De Rust. Nevertheless, the volcaniclastic distribution patterns currently observed in the southern Cape could in the future be refined and adapted as new deposits are located. If significantly more volcaniclastic deposits are found in the east of the southern Cape that balance out the current skewed distribution, then this should not detract from the geochemical and zircon morphological arguments for a Patagonian and Antarctic Peninsula volcanic source during the Jurassic.

A distal origin for the volcaniclastics of the Uitenhage Group, and probably also for the Suurberg Group, is that the rifting of the southern Cape was not accompanied by volcanism at all. This is at odds with previous models of the rifting margin that incorporate incipient volcanism along structural weaknesses reactivated during extension (Lock et al., 1975; Dingle et al., 1983) and makes the setting quite unlike the Newark rift basins to which it is often compared (Lock et al., 1975). Instead, the Jurassic – Early Cretaceous rifting occurred at or closely after the Lower Jurassic Karoo and Ferrar LIPs, which were both centered near but not at the southern Cape site of rifting. Following this, volcanism picked up in the Antarctic Peninsula and Patagonia, on the opposite side of the Cape Fold Belt, in the Early-Middle Jurassic and migrated to the SW (Féraud et al., 1999; Pankhurst et al., 2000). The occurrence of volcanic centres on either side of the Cape Fold Belt but not evidenced in the basins of the southern Cape is probably because of the thickened lithosphere inherited from Permo-Triassic orogenesis-related compression (Lindeque, et al., 2011) prevented magma from rising to the surface (Marsh, 2016). Instead, the lithosphere below the Cape Fold Belt would have been heated, weakening lithosphere beneath the Cape Mountains in the Jurassic, and the presence of impinging asthenosphere probably also caused an uplifted topography (Thomson, 1999). These factors (detailed in section 5.4) may have contributed to the extensional regime experienced in the Jurassic long before the opening of the South Atlantic and initiation of the AFT.

In summary, the most likely provenance for the abundant volcaniclastics of the Uitenhage Group, especially in the western basins of the southern Cape, is the episodic Jurassic volcanism that occurred in the presentday Antarctic Peninsula and Patagonia. Wind-blow ejecta from these large eruptions supplied volcanic ash to the southern Cape during the deposition of the Uitenhage Group. However, the Lower Jurassic volcaniclastic beds in the Suurberg Group and near De Rust may equally have been delivered from the same distant source region or from silicic volcanism of the Karoo LIP. Cretaceous volcaniclastics of the Uitenhage Group predate the well-constrained Paraná-Etendeka LIP (Renne et al., 1996) and are more probably derived from the proto-Pacific subduction margin in southern Patagonia, which remained volcanically active into the Early Cretaceous (Féraud et al., 1999). It is likely that the volcanism that was common in the Jurassic of SW Gondwna affected the lithosphere in SW Gondwana and promoted an extensional stress regime, but there remains no evidence for incipient volcanism in the southern Cape during rifting and distal sources can adequately account for the numerous volcaniclastic deposits in the Uitenhage and Suurberg Groups.

# **Chapter 7: Conclusions**

The findings presented in this thesis are a major contribution to the South African stratigraphic record and greatly improve understanding of the physical evolution of rifting during the breakup of Gondwana. This study also provides the first robust chronological framework upon which future investigations into the Jurassic – Cretaceous tectonics, landscape evolution and palaeoecology of SW Gondwana can be based. These contributions are each discussed in section 5.3, whereas in this short chapter the explicit assessment of whether the thesis achieves the aims stipulated in section 1.1 and its shortcomings. Following this, due to the time-sensitive nature of the data and findings presented throughout the thesis, a geological history of the Early Jurassic – Early Cretaceous is presented.

The first aim of this study is to locate and characterize the volcaniclastic deposits of the Uitenhage and Suurberg Groups. This was a successful endeavor, which builds on the previous work of Malan and Viljoen (1990), Viljoen (1992), who were the first geologists to map out the outcropping volcaniclastics in the Uitenhage Group during the 90's. These maps were used extensively but also several new deposits were located throughout the southern Cape. Volcaniclastic deposits are comparatively common in the Suurberg Group, although the limiting factor in locating adequate sampling locations there is the exposure quality. Fortunately, the work of Hill (1992) aided discoveries during fieldwork in the Algoa Basin. There also reports of volcaniclastic deposits in various historic literature, notably Rigassi and Dixon (1972) who claim that there are 'tuff bands' in the Lower Sundays River and in the lower parts of the Robberg Formation. On review of these sites no such deposits were found and neither field observations nor thin-sections produced from the suspected tuffaceous material yielded any sign of a volcanic origin and they were therefore not processed. Throughout the thesis, each sampled deposit is accompanied by a description of the outcrop and the nature of the volcaniclastic deposit. Where material was clearly mixed with clastic detritus (resedimented), the zircon age distribution was accordingly widespread, and therefore field observations

were a good indication of whether the deposit was primary or not. Generally, but not always, the bentonites investigated in this study are of primary origin, while non-bentonitic units are resedimented.

Dating the zircons using the U-Pb system and LA-ICPMS and CA-TIMS techniques showed that both primary and mixed-origin volcaniclastics are common in the Uitenhage Group, and help establish the first ever ages for the syn-rift strata of the southern Cape (Chapter 5). Further, the age of the Suurberg Group was conclusively pinned to the Karoo and Ferrar LIPs at ~183 Ma for the first time based on the geochronological efforts detailed in Chapter 4. Not only is the Uitenhage Group considerably older than previous Late Jurassic – Early Cretaceous estimates (e.g., McMillan et al., 1997), but the group is long-lived, and spans a > 40 Ma depositional age range.

Finally, non-volcaniclastic deposits from key stratigraphic and fossiliferous deposits in the Uitenhage Group were sampled in an attempt to place the palaeontological findings in the Group into the U-Pb chronostratigraphic framework. This was moderately successful. In some instances, such as samples BRENS1 and OES1 in the Knysna and Oudtshoorn basins respectively, there were significant young zircons that helped pin-down constraints on the maximum depositional ages. This was not the case for the majority of terrigenous clastic deposits sampled, which instead contained no syn-depositional volcanic zircons and therefore had maximum depositional age constraints that were not useful beyond the already established Jurassic – Cretaceous ages established for the Uitenhage Group. The integration of these units into the chronostratigraphic framework has not been possible, although the new constraints established from the numerous primary volcaniclastics, and the new ages for the Suurberg Group do caution against a simple Late Jurassic – Early Cretaceous assumption for the age of the Kirkwood Formation in the Algoa Basin, because we know that rifting and deposition long-precedes this time.

### 7.1 Mesozoic geological history of the southern Cape:

180 – 170 Ma: There is new uncertainty with regard to the cessation of compression of the Cape Orogeny, the possibility that just one or two discrete periods of compression occurred (e.g., Blewett and Phillips, 2016; Hansma et al., 2016), which contrasts with the established episodic compressive regime (e.g., Hälbich, 1983; Gresse and Theron, 1992; Catuneanu et al., 1998). Nevertheless, by the late Early Jurassic Karoo and Ferrar Large igneous province events, SW Gondwana had switched into a regional extensional stress regime. This extension was probably caused by several combined factors: 1) the introduction of heat and topographic uplift during various volcanic events in SW Gondwana. Specifically, the large igneous provinces in the main Karoo Basin (Karoo LIP) and across Antarctica (Ferrar LIP), and silicic volcanic events in Patagonia and the Antarctic Peninsula (e.g., Féraud et al., 1999; Pankhurst et al., 2000; González et al., 2019); 2) the gravitational collapse of the Cape Orogeny; 3) possible far-field stress regime effects relating to the separation of East and West Gondwana. The extensional strain associated with this stress regime is centred at inherited weaknesses within the Cape Fold Belt that were reactivated as dip-slip normal faults, which followed the inherited structural orientations (Fouché et al., 1992; Paton, 2006). Initially, the faults were localized, and the first continental deposits (syn-rift 1) began to accumulate in the newly formed accommodation space (Fig. 7.1) overlying the basement rocks of principally the Cape Supergroup, but in places probably comprise the Karoo Supergroup (Dwyka Group in basement of the Robertson and Worcester basins) and the Suurberg Group in the northern Algoa Basin.



Fig. 7.1. Schematic illustration of the simplified geological evolution of the southern Cape in the Mesozoic from 180 Ma to present day. See text for details about each time period. Orange dots represent syn-rift 1 deposits and dark brown dots represent syn-rift 2 deposits. Blue arrows represent wind-blown ash input (see chapter 6 for details). Base map adopted from Jokat et al. (2013).

*170 – 150 Ma:* Normal faults continued to accumulate displacement and grew laterally resulting in vertical and lateral increases in accommodation space in which conglomerates, sandstones and mudstones of the Enon and Kirkwood formations were deposited (Fig. 7.1). Generally, steep gradients were maintained close to the scarp and therefore higher energy depositional environments existed there, whereas lower gradients and lower energy depositional environments were maintained distal from the fault scarps. Deposition in these settings was punctuated by wind-blown ash-fall deposition derived from violent silicic eruptions at volcanoes in Patagonia and the Antarctic Peninsula (e.g., Pankhurst et al., 2000).

*150 – 140 Ma:* As faults continued to grow through linkage (Paton, 2006) in the late Jurassic (Fig. 7.1), the first marine incursion events occurred in the southern Cape (Dingle, 1971; Jungslager, 1996), which caused the interruption of the purely continental deposition in the growing accommodation space. At this time the lowermost marine units in parts of the Bredasdorp Basin (Jungslager, 1996) and Bethelsdorp Member of the Kirkwood Formation in the Algoa Basin (McMillan, 2010; Muir et al., 2017b) were deposited. Marine deposition in other seaward basins also probably occurred at this time, such as the Pletmos, Gamtoos, Outeniqua, North Falkland and Falkland Plateau Basin. Conversely, continental deposition was maintained in the landward basins, in which the Enon and Kirkwood formations continued to be deposited. A second period of particularly large eruptions occurred in the region of Patagonia (e.g., Pankhurst et al., 2000), which supplied wind-blown ash across SW Gondwana and punctuated deposition in these basins – evidenced by the numerous Upper Jurassic volcaniclastic deposits in the Uitenhage Group. By the earliest Cretaceous the region was possibly in a period of tectonic quiescence (Jungslager, 1996).

140 Ma – 130 Ma: A second regional marine incursion occurred in which the Sundays River, Robberg and Brenton Formation sediments and their correlatives were deposited in the now large, interconnected rift basins (Fig. 7.1). It is unclear whether the same driving mechanisms that initiated extension were still causing fault-bound accommodation space to accumulate or if new extensional mechanisms had commenced (see Jungslager, 1996 and McMillan et al., 1997 for contrasting models).

 $\sim$ 130 – 125 Ma: The South Atlantic began to open, which marks the separation of Africa from South America (Fig. 7.1). During this time movement along the AFT occurred and the southern Cape became a transverse margin. This new plate tectonic motion caused the reinvigoration of rifting in the southern Cape, renewed movement along preexisting boundary faults and increased denudation (e.g., Tinker et al., 2008b; Guillocheau; 2012; Wildman et al., 2015; Green et al., 2016). The sudden increase in accommodation space and steepened depositional gradients caused the shifting of depocentres (Paton and Underhill, 2004) and the deposition of Hauterivian deposits (syn-rift 2) atop the underlying, generally tilted Jurassic – Valanginian syn-rift 1 deposits. Deposition was marine where basins where inundated by the ocean (e.g., the southern Gamtoos Basin and the Bredasdorp Basin) and therefore syn-rift deposition was entirely marine there (Jungslager, 1996; McMillan et al., 1997; Paton and Underhill, 2004). Conversely, where basins were exposed on land, deposition of the Buffelskloof and Hartenbos formations occurred in continental and coastal/transitional marine settings.

*post ~130 Ma:* Subsequent to syn-rift 2 sedimentation, the basins of the southern Cape underwent periods of thermally-induced subsidence and deposition of sediments in what had become a passive margin setting. However, deposition was punctuated by periods of erosion or non-deposition controlled by relative sea level change and particularly intensive uplift in the Late Cretaceous (Tinker et al., 2008b; Guillocheau; 2012; Wildman et al., 2015; Green et al., 2016). Erosion of the southern Cape left remnants of once larger and probably continuous basins we have today, with varied stratigraphic levels of the syn-rift deposits exposed.

# **Chapter 8: References**

- Abebe, B., Acocella, V., Korme, T. and Ayalew, D., 2007. Quaternary faulting and volcanism in the Main Ethiopian Rift. Journal of African Earth Sciences, 48(2–3), 115–124.
- Aide, R.J. ,1952. The position of the Falkland Islands in a reconstruction of Gondwananland. Geological Magazine 89, 401–410.
- Almond, J.E., de Klerk, W.J. and Gess, R., 2009. Palaeontological heritage of the Eastern Cape. Interim SAHRA technical report, Natura Viva cc, Cape Town 51 p.
- Alroy, J. (2010a). Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53, 1211–1235.
- Andersen, T., Andersson, U.B., Graham, S., Åberg, G. and Simonsen, S.L., 2009. Granitic magmatism by melting of juvenile continental crust: new constraints on the source of Palaeoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon. Journal of the Geological Society, 166(2), 233–247.
- Baby, G., Guillocheau, F., Boulogne, C., Robin, C. and Dall'Asta, M., 2018. Uplift history of a transform continental margin revealed by the stratigraphic record: The case of the Agulhas transform margin along the Southern African Plateau. Tectonophysics, 731, 104–130.
- Bamford, M.K., 1986. Aspects of the palaeoflora of the Kirkwood and Sundays River formations, AlgoaBasin, South Africa. M.Sc. thesis, University of Witwatersrand, 160pp. (Unpublished).
- Bangert, B., Stollhofen, H., Lorenz, V. and Armstrong, R., 1999. The geochronology and significance of ash-fall tuffs in the glaciogenic Carboniferous-Permian Dwyka Group of Namibia and South Africa. Journal of African Earth Sciences, 29 (1), 33–49.
- Barham, M., Kirkland, C.L., Reynolds, S., O'Leary, M.J., Evans, N.J., Allen, H., Haines, P.W., Hocking,R.M., McDonald, B.J., Belousova, E. and Goodall, J., 2016. The answers are blowin'in the wind: Ultra-

distal ashfall zircons, indicators of Cretaceous super-eruptions in eastern Gondwana. Geology, 44(8), 643–646.

- Belcher, C.M. and McElwain, J.C., 2008. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science, 321(5893), 1197–1200.
- Belcher, C.M., Yearsley, J.M., Hadden, R.M., McElwain, J.C. and Rein, G., 2010. Baseline intrinsic flammability of Earth's ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proceedings of the National Academy of Sciences. DOI: 10.1073/pnas.1011974107
- Belousova, E., Griffin, W.L., O'Reilly, S.Y. and Fisher, N.L., 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to mineralogy and petrology, 143(5), 602–622.
- Belousova, E.A., Griffin, W.L. and O'reilly, S.Y., 2005. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from Eastern Australian granitoids. Journal of Petrology, 47(2), 329–353.
- Ben-Avraham, Z., Hartnady, C.J.H. and Kitchin, K.A., 1997. Structure and tectonics of the Agulhas-Falkland fracture zone. Tectonophysics, 282(1–4), 83–98.
- Ben-Avraham, Z., Hartnady, C.J.H. and Malan, J.A., 1993. Early tectonic extension between the Agulhas Bank and the Falkland Plate due to the rotation of the Lafonia microplate. Earth and Planetary Science Letters, 117, 43–58.
- Benisek, A. and Finger, F., 1993. Factors controlling the development of prism faces in granite zircons: a microprobe study. Contributions to Mineralogy and Petrology, 114(4), 441–451.
- Bergman, N.M., Lenton, T.M., Watson, A.J., 2004. COPSE: a new model of biogeochemical cycling over Phanerozoic time. American Journal of Science, 304, 397–437.

- Berner, R.A., 2009. Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model. American Journal of Science, 309, 603–606.
- Besse, J. and Courtillot, V., 2002. Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr. Journal of Geophysical Research: Solid Earth, 107(B11), pp. EPM-6.
- Black L.P. and Gulson B.L., 1978. The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. Bureau of Mineral Resources Journal of Australian Geology and Geophysics, 3, 227–232.
- Blewett, S.C., Phillips, D., 2016. An overview of cape fold belt geochronology: implications for sediment provenance and the timing of orogenesis. In: Linol, B. and de Wit, M. (Eds.), Origin and Evolution of the Cape Mountains and Karoo Basin. Springer, pp. 45–55.
- Bohor, B.F., Triplehorn, D.M., 1993. Tonsteins: altered volcanic-ash layers in coal-bearing sequences. Geological Society of America, Special Paper 285, 56 p.
- Bond, W.J. and Scott, A.C., 2010. Fire and the spread of flowering plants in the Cretaceous. New Phytologist, 188(4), 1137–1150.
- Booth, P.W.K., Shone, R.W., 1999. Complex thrusting at Uniondale, eastern sector of the Cape fold belt, Republic of South Africa: structural evidence for the need to revise the lithostratigraphy. Journal of African Earth Sciences 29, 125–133.
- Bordy, E. M., America, T., 2016. Sedimentology of granite boulder conglomerates and associated clastics in the onshore section of the late Mesozoic Pletmos Basin (Western Cape, South Africa). Journal of African Earth Sciences 119, 67–77.
- Bordy, E.M. and Abrahams, M., 2016. Geochemistry of the Pronksberg Bentonite of the Upper Elliot Formation (Early Jurassic), Eastern Cape, South Africa. In: Linol, B. and de Wit, M. (Eds.), Origin and Evolution of the Cape Mountains and Karoo Basin. Springer, pp. 119–127.

- Bordy, E.M., Hancox, P.J. and Rubidge, B.S., 2004. Basin development during the deposition of the Elliot Formation (Late Triassic-Early Jurassic), Karoo Supergroup, South Africa. South African Journal of Geology, 107(3), 397–412.
- Bowring, S.A. and Schmitz, M.D., 2003. High-precision U-Pb zircon geochronology and the stratigraphic record. Reviews in Mineralogy and Geochemistry, 53(1), 305–326.
- Bowring, S.A., Erwin, D.H., Jin, Y.G., Martin, M.W., Davidek, K. and Wang, W., 1998. U/Pb zircon geochronology and tempo of the end-Permian mass extinction. Science, 280(5366), 1039–1045.
- Bowring, S.A., Schoene, B., Crowley, J.L., Ramezani, J. and Condon, D.J., 2006. High-precision U-Pb zircon geochronology and the stratigraphic record: Progress and promise. The Paleontological Society Papers, 12, 25–45.
- Broad, D.S., Jungslager, E.H.A., McLachlan, I.R., Roux, J. and Van der Spuy, D., 2012. South Africa's offshore Mesozoic basins. In: Roberts, D.G. and Bally, A.W. (Eds.), Regional Geology and Tectonics:
  Phanerozoic Passive Margins, Cratonic basins and Global Tectonic Maps, pp. 534–564.
- Broom, R., 1904. V.—On the Occurrence of an Opisthocœlian Dinosaur (Algoasaurus Bauri) in the Cretaceous Beds of South Africa. Geological Magazine, 1(9), 445–447.
- Brown, R.J., Bonadonna, C. and Durant, A.J., 2012. A review of volcanic ash aggregation. Physics and Chemistry of the Earth, Parts A/B/C, 45, 65–78.
- Brown, S.A., Scott, A.C., Glasspool, I.J. and Collinson, M.E., 2012. Cretaceous wildfires and their impact on the Earth system. Cretaceous research, 36, 162–190.
- Burgess, S. D., Bowring, S. A., Fleming, T. H., Elliot, D. H., 2015. High-precision geochronology links the Ferrar large igneous province with early-Jurassic ocean anoxia and biotic crisis. Earth and Planetary Science Letters 415, 90–99.

- Burke, K., Steinberger, B., Torsvik, T.H. and Smethurst, M.A., 2008. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth and Planetary Science Letters, 265(1-2), 49–60.
- Butler, R. J., Benson, R. B. J. & Barrett, P. M. (2013). Pterosaur diversity: untangling the influence of sampling biases, Lagerstätten, and genuine biodiversity signals. Palaeogeography, Palaeoclimatology, Palaeoecology 372, 78–87.
- Carey, S. and Sigurdsson, H., 2000. Grain size of Miocene volcanic ash layers from Sites 998, 999, and 1000: Implications for source areas and dispersal. In Proceedings of the Ocean Drilling Program, Scientific Results, 165, 101–113.
- Catuneanu, O., Hancox, P.J. and Rubidge, B.S., 1998. Reciprocal flexural behaviour and contrasting stratigraphies: a new basin development model for the Karoo retroarc foreland system, South Africa. Basin Research, 10(4), 417–439.
- Catuneanu, O., Hancox, P.J. and Rubidge, B.S., 1998. Reciprocal flexural behaviour and contrasting stratigraphies: a new basin development model for the Karoo retroarc foreland system, South Africa. Basin Research, 10(4), 417–439.
- Choiniere, J.N., Forster, C.A. and de Klerk, W.J., 2012. New information on Nqwebasaurus thwazi, a coelurosaurian theropod from the Early Cretaceous Kirkwood Formation in South Africa. Journal of African Earth Sciences, 71, 1–17.
- Cloetingh, S.A.P.L., Lankreijer, A.C., de Wit, M.J. and Martinez, I., 1992. Subsidence history analysis and forward modelling of the Cape and Karoo Supergroups. In: De Wit, M.J., Ransome, I.G.D. (Eds.),
  Inversion Tectonics of the Cape Fold Belt. Karoo and Cretaceous basins of Southern Africa. A.A.
  Balkema, Rotterdam, pp. 239–249.

- Cohen, K.M., Finney, S.C., Gibbard, P.L. and Fan, J.X., 2013 (updated). The ICS international chronostratigraphic chart. Episodes, 36(3), 199–204.
- Cole, D.I., 1992. Evolution and development of the Karoo Basin. In: De Wit, M.J., Ransome, I.G.D. (Eds.), Inversion Tectonics of the Cape Fold Belt. A.A. Balkema, Rotterdam, pp. 87–99.
- Cooper, M.R. 1983. The ammonite genus Umgazaniceras in the Sundays River Formation. Transactions of the Geological Society of South Africa, 86, 63–64.
- Corfu, F., Hanchar, J.M., Hoskin, P.W. and Kinny, P., 2003. Atlas of zircon textures. Reviews in mineralogy and geochemistry, 53(1), 469–500.
- Cox, K.G., 1992. Karoo igneous activity, and the early stages of the break-up of Gondwanaland. Geological Society, London, Special Publications, 68(1), 137–148.
- Day, R.W., 1987. False Bay dolerites. Annals Geological Survey of South Africa, 21, 1-7.
- de Assis Janasi, V., de Freitas, V.A. and Heaman, L.H., 2011. The onset of flood basalt volcanism, Northern Paraná Basin, Brazil: A precise U–Pb baddeleyite/zircon age for a Chapecó-type dacite. Earth and Planetary Science Letters, 302(1–2), 147–153.
- De Beer, C.H., 1989. Structure of the Cape Fold Belt in the Ceres Syntaxis. Msc. Thesis, University of Stellenbosch (Unpublished).
- De Beer, C.H., 1992. Structural evolution of the Cape Fold Belt syntaxis and its influence on syntectonic sedimentation in the SW Karoo Basin. In: De Wit, M.J., Ransome, I.G.D. (Eds.), Inversion Tectonics of the Cape Fold Belt. A.A. Balkema, Rotterdam, pp. 197–206.
- De Klerk, W.J., Forster, C.A., Sampson, S.D., Chinsamy, A. and Ross, C.F., 2000. A new coelurosaurian dinosaur from the Early Cretaceous of South Africa. Journal of Vertebrate Paleontology, 20(2), 324–332.

- D'Elia, L., Bilmes, A., Franzese, J.R., Veiga, G.D., Hernández, M. and Muravchik, M., 2015. Early evolution of the southern margin of the Neuquén Basin, Argentina: tectono-stratigraphic implications for rift evolution and exploration of hydrocarbon plays. Journal of South American Earth Sciences, 64, 42– 57.
- Dewey, J.F., 1988. Extensional collapse of orogens. Tectonics, 7(6), 1123–1139.
- Dhuime, B., Hawkesworth, C.J., Cawood, P.A. and Storey, C.D., 2012. A change in the geodynamics of continental growth 3 billion years ago. Science, 335(6074), 1334–1336.
- Dhuime, B., Wuestefeld, A. and Hawkesworth, C.J., 2015. Emergence of modern continental crust about 3 billion years ago. Nature Geoscience, 8(7), 552–555.
- Dickinson, W.R. and Gehrels, G.E., 2009. Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288(1-2), 115–125.
- Dingle, R.V. and Klinger, H.C., 1971. Significance of Upper Jurassic sediments in the Knysna outlier (Cape Province) for timing of the breakup of Gondwanaland. Nature Physical Science, 232(28), 37.
- Dingle, R.V., 1973. Mesozoic palaeogeography of the southern Cape, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 13(3), 203–213.
- Dingle, R.V., Siesser, W.G. and Newton, A.R., 1983. Mesozoic and Tertiary geology of southern Africa. A.A. Balkema, Rotterdam, 375 pp.
- Dinis, 2018. Sedimentology of the lower Uitenhage Group in the Middle to Late Mesozoic Oudtshoorn Basin, South Africa. MSc thesis, University of Cape Town (unpublished).

Dopico, C.I.M., Tohver, E., De Luchi, M.G.L., Wemmer, K., Rapalini, A.E. and Cawood, P.A., 2017. Jurassic cooling ages in Paleozoic to early Mesozoic granitoids of northeastern Patagonia: 40 Ar/39 Ar, 40 K–40 Ar mica and U–Pb zircon evidence. International Journal of Earth Sciences, 106(7), 2343–2357.

Du Plessis, P.G., 1947. Vlakteplaas Basin. Geological Survey of South Africa, unpublished report.

- Du Preez, J.W., 1944. Lithology, structure and mode of deposition of the Cretaceous deposits in the Oudtshoorn area. Annals University of Stellenbosch 22A: 209-237.
- Du Toit, 1974. Lithostratigraphy and correlation of rocks encountered in boreholes on the Agulhas Basnk, Republic of South Africa. Unpublished Soekor Report. 22 pp.
- Du Toit, 1976. Mesozoic geology of the Agulhas Basnk, South Africa. PhD thesis, University of Cape Town, (Unpublished).
- Duncan, R.A., Hooper, P.R., Rehacek, J., Marsh, J. and Duncan, A.R., 1997. The timing and duration of the Karoo igneous event, southern Gondwana. Journal of Geophysical Research: Solid Earth, 102(B8), 18,127–18,138.
- Ebinger, C.J., Yemane, T., Woldegabriel, G., Aronson, J.L. and Walter, R.C., 1993. Late Eocene–Recent volcanism and faulting in the southern main Ethiopian rift. Journal of the Geological Society, 150(1), 99–108.
- Encarnación, J., Fleming, T.H., Elliot, D.H. and Eales, H.V., 1996. Synchronous emplacement of Ferrar and Karoo dolerites and the early breakup of Gondwana. Geology, 24(6), 535–538.
- Féraud, G., Alric, V., Fornari, M., Bertrand, H. and Haller, M., 1999. 40Ar/39Ar dating of the Jurassic volcanic province of Patagonia: migrating magmatism related to Gondwana break-up and subduction. Earth and Planetary Science Letters, 172(1–2), 83–96.

Fisher, R.V. and Schmincke, H.U., 1984. Submarine volcaniclastic rocks. In: Fisher, R.V. and Schmincke,H.U. (Eds.), Pyroclastic Rocks, Springer, pp. 265–296.

Föllmi, K.B., 2012. Early Cretaceous life, climate and anoxia. Cretaceous Research, 35, 230–257.

- Forster, C. A., Farke, A. A., McCartney, J. A., De Klerk, W. J., Ross, C. F., 2009. A "basal" tetanuran from the Lower Cretaceous Kirkwood Formation of South Africa. Journal of Vertebrate Paleontology 29, 283– 285.
- Fouché, J., Bate, K.J. and Van de Merwe, R., 1992. Plate tectonic setting of the Mesozoic basins, southern offshore, South Africa: A review. In: De Wit, M.J., Ransome, I.G.D. (Eds.), Inversion Tectonics of the Cape Fold Belt. Karoo and Cretaceous basins of Southern Africa. A.A. Balkema, Rotterdam, pp. 33–48.
- Franzese, J.R. and Spalletti, L.A., 2001. Late Triassic–early Jurassic continental extension in southwestern Gondwana: tectonic segmentation and pre-break-up rifting. Journal of South American Earth Sciences, 14(3), 257–270.
- Fung, J.C.H., 1998. Effect of nonlinear drag on the settling velocity of particles in homogeneous isotropic turbulence. Journal of Geophysical Research: Oceans, 103(C12), 905–917.
- Gaina, C., Torsvik, T.H., van Hinsbergen, D.J.J., Medvedev, S., Werner, S.C. and Labails, C., 2013. The
  African Plate: a history of oceanic crust accretion and subduction since the Jurassic. Tectonophysics, 604, 4–25.
- Gehrels, G., 2011. Detrital zircon U-Pb geochronology: Current methods and new opportunities. In: Busby,C. and Azor, A. (Eds.), Tectonics of sedimentary basins: Recent advances, pp. 45–62.
- Ghidella, M.E., Yáñez, G. and LaBrecque, J.L., 2002. Revised tectonic implications for the magnetic anomalies of the western Weddell Sea. Tectonophysics, 347(1–3), pp.65–86.

- Glasspool, I.J. and Scott, A.C., 2010. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nature Geoscience, 3(9), 627–630.
- Gomez, B., Martxxnez-Delclos, X., Bamford, M. and Philippe, M., 2002. Taphonomy and palaeoecology of plant remains from the oldest African Early Cretaceous amber locality. Lethaia 35, 300–308.
- González, V.R., Puigdomenech, C.G., Renda, E.M., Boltshauser, B., Somoza, R., Vizán, H., Zaffarana, C.B., Taylor, G.K., Haller, M. and Fernández, R., 2019. New paleomagnetic pole for the Upper Jurassic Chon Aike Formation of southern Argentina (South America): Testing the tectonic stability of Patagonia with respect to South America, and implications to Middle Jurassic-Early Cretaceous true polar wander. Tectonophysics, 750, 45–55.
- Green, P.F., Duddy, I.R., Japsen, P., Bonow, J.M. and Malan, J.A., 2016. Post-breakup burial and exhumation of the southern margin of Africa. Basin Research, 29(1), 96–127.
- Green, R.W.E. and Durrheim, R.J., 1990. A seismic refraction investigation of the Namaqualand Metamorphic Complex, South Africa. Journal of Geophysical Research: Solid Earth, 95(B12), 19927– 19932.
- Gresse, P.G. (compiler), 1997. Geological Map 3319 Worcester. 1:250 000 Geological Map Series, Geological Survey of South Africa.
- Gresse, P.G. and Theron, J.N., 1992. Tectonic inversion and radiometric resetting of the basement in the Cape Fold Belt. In: De Wit, M.J., Ransome, I.G.D. (Eds.), Inversion tectonics of the Cape Fold Belt, Karoo and Cretaceous basins of Southern Africa. Balkema, Rotterdam, pp. 217 – 228.
- Gröcke, D. R., Price, G. D., Ruffell, A. H., Mutterlose, J. and Baraboshkin, E., 2003. Isotopic evidence for Late Jurassic–Early Cretaceous climate change. Palaeogeography, Palaeoclimatology, Palaeoecology 202, 97–118.

- Guillocheau, F., Rouby, D., Robin, C., Helm, C. and Rolland, N., 2012. Quantification and causes of the terrigeneous sediment budget at the scale of a continental margin: a new method applied to the Namibia-South Africa margin. Basin Research, 24(1), 3–30.
- Gupta, S., Cowie, P.A., Dawers, N.H. and Underhill, J.R., 1998. A mechanism to explain rift-basin subsidence and stratigraphic patterns through fault-array evolution. Geology, 26(7), 595–598.
- Gust, D.A., Biddle, K.T., Phelps, D.W. and Uliana, M.A., 1985. Associated Middle to Late Jurassic volcanism and extension in southern South America. Tectonophysics, 116(3-4), 223–253.
- Hälbich, I.W., 1992. The Cape fold belt orogeny: State of the art 1970s–1980s. In: De Wit, M.J. and Ransome, I.G.D. (Eds.), Inversion tectonics of the Cape Fold Belt, Karoo and Cretaceous basins of southern Africa. Balkema, Rotterdam, pp. 141–158.
- Hälbich, I.W., Fitch, F.J., Miller, J.A., 1983. Dating the Cape Orogeny. In: Söhnge, A.P.G. and Hälbich,I.W. (Eds.), Geodynamics of the Cape Fold Belt. The Geological Society of South Africa, Johannesburg,pp. 149–164.
- Hallam, A., 1986. The Pliensbachian and Tithonian extinction events. Nature 319, 765–768.
- Han, R., Ree, J.H., Cho, D.L., Kwon, S.T. and Armstrong, R., 2006. SHRIMP U–Pb zircon ages of pyroclastic rocks in the Bansong Group, Taebaeksan Basin, South Korea and their implication for the Mesozoic tectonics. Gondwana Research, 9(1–2), 106–117.
- Hansma, J., Tohver, E., Schrank, C., Jourdan, F. and Adams, D., 2016. The timing of the Cape Orogeny: New <sup>40</sup>Ar/<sup>39</sup>Ar age constraints on deformation and cooling of the Cape Fold Belt, South Africa. Gondwana Research, 32, 122–137.
- Harley, S.L. and Kelly, N.M., 2007. Zircon tiny but timely. Elements, 3(1), 13–18.

- Hart, R.J., Andreoli, M.A., Tredoux, M., Moser, D., Ashwal, L.D., Eide, E.A., Webb, S.J. and Brandt, D.,
  1997. Late Jurassic age for the Morokweng impact structure, southern Africa. Earth and Planetary
  Science Letters, 147(1–4), 25–35.
- Haughton, S.H., 1928. The geology of the country between Grahamstown and Port Elizabeth: Explanation of Cape Sheet 9 (Port Elizabeth), Geological Survey of South Africa, 50 pp.
- Haupt, T. 2018. Palaeoenvironmental change from the Hettangian to the Toarcian in Moyeni (Quthing District), southwestern Lesotho. MSc thesis, University of Cape Town (unpublished).
- Hawkesworth, C.J. and Kemp, A.I.S., 2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology, 226(3–4), 144–162.
- He, T., Lamont, B.B. and Manning, J., 2016. A Cretaceous origin for fire adaptations in the Cape flora. Scientific Reports, 6, 34880.
- Hervé, F., Miller, H. and Pimpirev, C., 2006. Patagonia–Antarctica connections before Gondwana break-up.In: Fütterer, D.K., Damaske, D., Kleinschmidt, G., Miller, H. and Tessensohn, F. (Eds.), Antarctica.Springer, Berlin, Heidelberg, pp. 217–227.
- Hiess, J., Condon, D.J., McLean, N. and Noble, S.R., 2012. <sup>238</sup>U/<sup>235</sup>U systematics in terrestrial uraniumbearing minerals. Science, 335(6076), 1610–1614.
- Hill, R.S., 1972. The Geology of the Northern Algoa Basin, Port Elizabeth. M.Sc. thesis. University of Stellenbosch (unpublished).
- Hölzforster, F., 2007. Lithology and depositional environments of the Lower Jurassic Clarens Formation in the Eastern Cape, South Africa. South African Journal of Geology, 110(4), 543–560.
- Horstwood, M.S.A., Košler, J., Gehrels, G., Jackson, S.E., McLean, N.M., Paton, C., Pearson, N.J., Sircombe, K., Sylvester, P., Vermeesch, P., Bowring, J.F., Condon, D.J., Schoene, B., 2016, Community-

Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology – Uncertainty Propagation, Age Interpretation and Data Reporting, Geostandards and Geoanalytical Research, 40, 3, 301–332.

- Howell, J.A., Schwarz, E., Spalletti, L.A. and Veiga, G.D., 2005. The Neuquén basin: an overview. Geological Society, London, Special Publications, 252(1), 1–14.
- Imai, N., Terashima, S., Itoh, S. and Ando, A., 1995. 1994 compilation values for GSJ reference samples, Igneous rock series. Geochemical Journal, 29(1), 91–95.
- Ireland, T.R. and Williams, I.S., 2003. Considerations in zircon geochronology by SIMS. Reviews in mineralogy and geochemistry, 53(1), 215–241.
- Jackson, S.E., Pearson, N.J., Griffin, W.L. and Belousova, E.A., 2004. The application of laser ablationinductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology, 211(1-2), 47–69.
- Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004, The application of laser ablationinductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology, Chemical Geology, 211, 47–69.
- Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.T. and Essling, A.M., 1971. Precision measurement of half-lives and specific activities of U 235 and U 238. Physical Review C, 4(5), 1889–1906.
- Jochum, K.P., Weis, U., Schwager, B., Stoll, B., Wilson, S.A., Haug, G.H., Andreae, M.O. and Enzweiler, J., 2016. Reference values following ISO guidelines for frequently requested rock reference materials. Geostandards and Geoanalytical Research, 40(3), 333–350.
- Johnson, 1987. Guidelines for the standardized lithostratigraphic descriptions. South African Committee for stratigraphy (SACS). Circular 1, 19 pp.

- Johnston, S.T., 2000. The Cape Fold Belt and Syntaxis and the rotated Falkland Islands: dextral transpressional tectonics along the southwest margin of Gondwana. Journal of African Earth Sciences, 31(1), 51–63.
- Jokat, W., Boebel, T., König, M. and Meyer, U., 2003. Timing and geometry of early Gondwana breakup. Journal of Geophysical Research: Solid Earth, 108(B9).
- Jones, M.T., Eliassen, G.T., Shephard, G.E., Svensen, H.H., Jochmann, M., Friis, B., Augland, L.E., Jerram,
  D.A. and Planke, S., 2016. Provenance of bentonite layers in the Palaeocene strata of the Central Basin,
  Svalbard: implications for magmatism and rifting events around the onset of the North Atlantic Igneous
  Province. Journal of Volcanology and Geothermal Research, 327, 571–584.
- Joubert, P. and Johnson, M.R. 1998. Abridged lexicon of South African stratigraphy. South African Committee for Stratigraphy (SACS), Council for Geoscience, Pretoria, 160 pp.
- Joubert, P. and Johnson, M.R., 1998. Abridged Lexicon of South African Stratigraphy. South African Committee for Stratigraphy, Council for Geosciences, Pretoria.
- Jungslager, E.H.A., 1996. Geological evaluation of the remaining prospectivity for oil and gas of the pre-1At1 "synrift" succession in Block 9, Republic of South Africa. Unpubl. SOEKOR Rep.
- Karlstrom, K., Hagadorn, J., Gehrels, G., Matthews, W., Schmitz, M., Madronich, L., Mulder, J., Pecha, M., Giesler, D. and Crossey, L., 2018. Cambrian Sauk transgression in the Grand Canyon region redefined by detrital zircons. Nature Geoscience, 438–443.
- Kent, D.V. and Irving, E., 2010. Influence of inclination error in sedimentary rocks on the Triassic and Jurassic apparent pole wander path for North America and implications for Cordilleran tectonics. Journal of Geophysical Research: Solid Earth, 115(B10103).

- Kent, D.V., Olsen, P.E. and Muttoni, G., 2017. Astrochronostratigraphic polarity time scale (APTS) for the Late Triassic and Early Jurassic from continental sediments and correlation with standard marine stages. Earth-Science Reviews, 166, 153–180.
- Ketzer, J.M., Morad, S., Evans, R. and Al-Aasm, I.S., 2002. Distribution of diagenetic alterations in fluvial, deltaic, and shallow marine sandstones within a sequence stratigraphic framework: evidence from the Mullaghmore Formation (Carboniferous), NW Ireland. Journal of Sedimentary Research, 72(6), 760–774.
- Kirstein, L.A., 1997. Magmatism in southern Uruguay and the early rifting of the South Atlantic. Ph.D. thesis, The Open University (unpublished).
- Kitchin, F.L., 1908. The invertebrate fauna and palaeontological relations of the Uitenhage Series. Annuls of South African Museum, 7, 21–250.
- Koeberl, C., Armstrong, R.A. and Uwe Reimold, W., 1997. Morokweng, South Africa: A large impact structure of Jurassic-Cretaceous boundary age. Geology, 25(8), 731–734.
- Königer, S. and Stollhofen, H., 2001. Environmental and tectonic controls on preservation potential of distal fallout ashes in fluvio-lacustrine settings: the Carboniferous–Permian Saar–Nahe Basin, south-west Germany. In: White, J.D.L. and Riggs, N.R. (Eds.), Volcaniclastic sedimentation in lacustrine settings, Blackwell Science, pp. 263–284.
- Koopmann, H., Franke, D., Schreckenberger, B., Schulz, H., Hartwig, A., Stollhofen, H. and di Primio, R., 2014. Segmentation and volcano-tectonic characteristics along the SW African continental margin, South Atlantic, as derived from multichannel seismic and potential field data. Marine and Petroleum Geology, 50, 22–39.
- Košler, J. and Sylvester, P.J., 2003. Present trends and the future of zircon in geochronology: laser ablation ICPMS. Reviews in mineralogy and geochemistry, 53(1), 243–275.

- Lamont, B.B. and He, T., 2012. Fire-adapted Gondwanan angiosperm floras evolved in the Cretaceous. BMC Evolutionary Biology, 12, 223.
- Landing, E., Bowring, S.A., Davidek, K.L., Westrop, S.R., Geyer, G. and Heldmaier, W., 1998. Duration of the Early Cambrian: U-Pb ages of volcanic ashes from Avalon and Gondwana. Canadian Journal of Earth Sciences, 35(4), 329–338.
- Landing, E., Bowring, S.A., Davidek, K.L., Westrop, S.R., Geyer, G. and Heldmaier, W., 1998. Duration of the Early Cambrian: U-Pb ages of volcanic ashes from Avalon and Gondwana. Canadian Journal of Earth Sciences, 35(4), 329–338.
- Lawton, T.F. and Bradford, B.A., 2011. Correlation and provenance of Upper Cretaceous (Campanian) fluvial strata, Utah, USA, from zircon U-Pb geochronology and petrography. Journal of Sedimentary Research, 81(7), 495–512.
- Le Bas, M.L., Maitre, R.L., Streckeisen, A. and Zanettin, B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3), 745–750.
- Legarreta, L. and Uliana, M.A., 1999. El Jurásico y Cretácico de la Cordillera Principal y la Cuenca Neuquina. Geología Argentina (Caminos, R.; editor). Servicio Geológico Minero Argentino, Anales, 29(16), 399–416.
- Lindeque, A., de Wit, M.J., Ryberg, T., Weber, M. and Chevallier, L., 2011. Deep crustal profile across the southern Karoo Basin and Beattie Magnetic Anomaly, South Africa: an integrated interpretation with tectonic implications. South African Journal of Geology, 114(3–4), 265–292.
- Linol, B. and de Wit, M.J., 2016. Origin and Evolution of the Cape Mountains and Karoo Basin. Springer. pp. 193.
- Lock, B.E., 1980. Flat-plate subduction and the Cape Fold belt of South Africa. Geology, 8(1), 35–39.
- Lock, B.E., Shone, R., Coates, A.T. and Hatton, C.J., 1975. Mesozoic Newark-Type sedimentary basins within the Cape Fold Belt of South Africa. Proceedings of the 9th International Congress of Sedimentology, Nice, 2, 217–225.
- Lovecchio, J.P., Rohais, S., Joseph, P., Bolatti, N.D., Kress, P.R., Gerster, R. and Ramos, V.A., 2018. Multistage rifting evolution of the Colorado basin (offshore Argentina): Evidence for extensional settings prior to the South Atlantic opening. Terra Nova, 30(5), 359–368.
- Ludwig, K.R., 2000. Isoplot/Ex, A geochronological tool kit for Microsoft Excel version 2.2. Berkeley Geochronology Center, Special Publication 1a.
- Maas, R., Kinny, P.D., Williams, I.S., Froude, D.O. and Compston, W., 1992. The Earth's oldest known crust: a geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochimica et Cosmochimica Acta, 56(3), 1281–1300.
- Macdonald, D., Gomez-Perez, I., Franzese, J., Spalletti, L., Lawver, L., Gahagan, L., Dalziel, I., Thomas,
  C., Trewin, N., Hole, M. and Paton, D., 2003. Mesozoic break-up of SW Gondwana: implications for
  regional hydrocarbon potential of the southern South Atlantic. Marine and Petroleum Geology, 20(3–4),
  287–308.
- Macdonald, D., Gomez-Perez, I., Franzese, J., Spalletti, L., Lawver, L., Gahagan, L., Dalziel, I., Thomas,
  C., Trewin, N., Hole, M. and Paton, D., 2003. Mesozoic break-up of SW Gondwana: implications for
  regional hydrocarbon potential of the southern South Atlantic. Marine and Petroleum Geology, 20(3–4),
  287–308.
- Makhubele, M.H and Bordy, E.M. 2018. Sequence stratigraphy of the post-Jurassic in the Algoa and Gamtoos basins: Implication for hydrocarbon potential in the Eastern Cape, South Africa. 2018 AAPG ICE Conference, Cape Town, Poster presentation.

- Malan, J.A. (compiler), 1993. Geological Map 3420 Riversdale. 1:250 000 Geological Map Series, Geological Survey of South Africa.
- Malan, J.A. and Viljoen, J.H.A., 1990. Mesozoic and Cenozoic geology of the Cape South Coast. Guidebook Geocongress '90, Geological Society of South Africa, PO3, 81 pp.
- Malan, J.A. and Viljoen, J.H.A., 2016. Southern Cape Geology: Evolution of a rifted margin. Field Trip Guide, 35th International Geological Congress, Cape Town, Post11, 64 pp.
- Malan, J.A., Viljoen, J.H.A., Siegfried, H.P. and Wickens, H. de V., 1994. Die geologie van die gebied Riversdale: Explanation of sheet 3420 Riversdale, Council for Geoscience, 63 pp.
- Mannion, P.D., Upchurch, P., Carrano, M.T. and Barrett, P.M., 2011. Testing the effect of the rock record on diversity: a multidisciplinary approach to elucidating the generic richness of sauropodomorph dinosaurs through time. Biological Reviews, 86(1), 157–181.
- Marsh, J.S., Lock, B.E. and Fuchter, W.H., 1979. New chemical analyses of the Suurberg volcanic rocks and their significance in relation to Mesozoic volcanism in southern Africa. South African Journal of Science, 75(5), 227–229.
- Marsh, J.S., Lock, B.E. and Fuchter, W.H., 1979. New Chemical Analyses of the Suurberg Volcanic Rocks and Their Significance in Relation to Mesozoic Volcanism in Southern Africa. South African Journal of Science, 75, 227–229.
- Marsh, J.S.G., 2016. New Evidence for the Correlation of Basalts of the Suurberg Group with the Upper Part of the Karoo Basalt Sequence of Lesotho. In: Linol, B. and de Wit, M. (Eds.) Origin and Evolution of the Cape Mountains and Karoo Basin, Springer, pp.59–65.
- Marshall, J.E.A., 1994. The Falkland Islands: a key element in Gondwana paleogeography. Tectonics, 13(2), 499–514.

- Martin, A.K. and Hartnady, C.J.H., 1986. Plate tectonic development of the South West Indian Ocean: a revised reconstruction of East Antarctica and Africa. Journal of Geophysical Research: Solid Earth, 91(B5), 4767–4786.
- Martin, A.K., Hartnady, C.J. and Goodlad, S.W., 1981. A revised fit of South America and south central Africa. Earth and Planetary Science Letters, 54(2), 293–305.
- Martin, U. and Nemeth, K., 2007. Practical volcanology-Lecture notes for understanding volcanic rocks from field based studies. Occasional Papers of the Geological Institute of Hungary, 207, pp. 221.
- Mattinson, J.M., 2010. Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples. Chemical Geology, 275(3–4), 186–198.
- McClintock, M., Marsh, J.S. and White, J.D., 2008. Compositionally diverse magmas erupted close together in space and time within a Karoo flood basalt crater complex. Bulletin of Volcanology, 70(8), 923–946.
- McDonough, W.F. and Sun, S.S., 1995. The composition of the Earth. Chemical geology, 120(3–4), 223–253.
- McKay, M.P., Weislogel, A.L., Fildani, A., Brunt, R.L., Hodgson, D.M. and Flint, S.S., 2015. U-PB zircon tuff geochronology from the Karoo Basin, South Africa: implications of zircon recycling on stratigraphic age controls. International Geology Review, 57(4), 393–410.
- McLachlan, I.R. and McMillan, I.K., 1976. Review and stratigraphic significance of southern Cape Mesozoic palaeontology. Transactions of the Geological Society of South Africa, 79, 197–212.
- McLachlan, I.R. and McMillan, I.K., 1979. Microfaunal biostratigraphy, chronostratigraphy and history of Mesozoic and Cenozoic deposits on the coastal margin of South Africa. Geological Society of South Africa Special Publication, 6, 161–181.

- McLachlan, I.R., Brenner, P.W. and McMillan, I.K., 1976. The Stratigraphy and Micropalaeontology of the Cretaceous Brenton Formation and the PB-A/1 well, near Knysna, Cape Province. Transaction of the Geological Society of South Africa, 79, 341–370.
- McMillan, I.K., 2003. The Foraminifera of the Late Valanginian to Hauterivian (Early Cretaceous) Sundays River Formation of the Algoa Basin, Eastern Cape Province, South Africa. Annals of the South Africa Museum, 106, 1–274.
- McMillan, I.K., 2010. The Foraminifera of the Portlandian (Late Jurassic) Bethelsdorp Formation of the onshore Algoa Basin, Eastern Cape Province. Les Rosalines Press, Clovelly, 176 pp.
- McMillan, I.K., Brink, G.I., Broad, D.S. and Maier, J.J., 1997. Late Mesozoic sedimentary basins off the south coast of South Africa. In: Selley, R.C. (Ed.), Sedimentary basins of the World, Elsevier, 3, pp. 319– 376.
- McPhee, B.W., Mannion, P.D., de Klerk, W.J. and Choiniere, J.N., 2016. High diversity in the sauropod dinosaur fauna of the Lower Cretaceous Kirkwood Formation of South Africa: implications for the Jurassic – Cretaceous transition. Cretaceous Research, 59, 228–248.
- Milani, E.J. and De Wit, M.J., 2008. Correlations between the classic Paraná and Cape–Karoo sequences of South America and southern Africa and their basin infills flanking the Gondwanides: du Toit revisited. Geological Society, London, Special Publications, 294(1), 319–342.
- Miller, J.A. and Harris, C., 2006. Petrogenesis of the Swaziland and northern Natal rhyolites of the Lebombo rifted volcanic margin, south east Africa. Journal of Petrology, 48(1), 185–218.
- Moore, G.T., Hayashida, D.N., Ross, C.A. and Jacobson, S.R., 1992. Paleoclimate of the Kimmeridgian/Tithonian (Late Jurassic) world: I. Results using a general circulation model.
  Palaeogeography, Palaeoclimatology, Palaeoecology, 93(1–2), 113–150.

- Mosquera, A. and Ramos, V.A., 2006. Intraplate deformation in the Neuquén Embayment. In: Kay, S.M. and Ramos, V.A. (Eds.), Evolution of an Andean margin: A tectonic and magmatic view from the Andies to the Neuquén Basin (35°–39°S lat). Geological Society of America Special Paper 407, pp. 97–123.
- Moulin, M., Fluteau, F., Courtillot, V., Marsh, J., Delpech, G., Quidelleur, X. and Gérard, M., 2017. Eruptive history of the Karoo lava flows and their impact on early Jurassic environmental change. Journal of Geophysical Research: Solid Earth, 122(2), 738–772.
- Muir, R.A., Bordy, E.M. and Prevec, R., 2015. Lower Cretaceous deposit reveals first evidence of a postwildfire debris flow in the Kirkwood Formation, Algoa Basin, Eastern Cape, South Africa. Cretaceous Research, 56, 161–179.
- Muir, R.A., Bordy, E.M., Reddering, J.S.V. and Viljoen, J.H.A., 2017a. Lithostratigraphy of the Enon Formation (Uitenhage Group), South Africa. South African Journal of Geology 2017, 120(2), 273–280.
- Muir, R.A., Bordy, E.M., Reddering, J.S.V. and Viljoen, J.H.A. 2017b. Lithostratigraphy of the Kirkwood Formation (Uitenhage Group), including the Bethelsdorp, Colchester and Swartkops members, South Africa. South African Journal of Geology 120(2), 281–293.
- Mundil, R., Ludwig, K.R., Metcalfe, I. and Renne, P.R., 2004. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science, 305(5691), 1760–1763.
- Nasdala, L., Hofmeister, W., Norberg, N., Martinson, J.M., Corfu, F., Dörr, W., Kamo, S.L., Kennedy,
  A.K., Kronz, A., Reiners, P.W. and Frei, D., 2008. Zircon M257-a homogeneous natural reference
  material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research, 32(3), 247–265.
- Navarrete, C., Gianni, G., Echaurren, A., Kingler, F.L. and Folguera, A., 2016. Episodic Jurassic to lower Cretaceous intraplate compression in Central Patagonia during Gondwana breakup. Journal of Geodynamics, 102, 185–201.

- Newton, 1992. Thrusting on the northern margin of the Cape Fold Belt, near Laingsburg. In: e Wit, M.J. and Ransome, I.G.D. (Eds.), Inversion tectonics of the Cape Fold Belt, Karoo and Cretaceous basins of southern Africa, pp. 193–195.
- Olsen, P.E., 1997. Stratigraphic record of the early Mesozoic breakup of Pangea in the Laurasia-Gondwana rift system. Annual Review of Earth and Planetary Sciences, 25(1), 337–401.
- Olsen, P.E., Kent, D.V., Cornet, B., Witte, W.K. and Schlische, R.W., 1996. High-resolution stratigraphy of the Newark rift basin (early Mesozoic, eastern North America). Geological Society of America Bulletin, 108(1), 40–77.
- Pángaro, F., Ramos, V.A. and Pazos, P.J., 2016. The Hesperides basin: a continental-scale upper Palaeozoic to Triassic basin in southern Gondwana. Basin Research, 28(5), 685–711.
- Pankhurst, R.J. and Rapela, C.R., 1995. Production of Jurassic rhyolite by anatexis of the lower crust of Patagonia. Earth and Planetary Science Letters, 134(1–2) 23–36.
- Pankhurst, R.J., Leat, P.T., Sruoga, P., Rapela, C.W., Márquez, M., Storey, B.C. and Riley, T.R., 1998. The Chon Aike province of Patagonia and related rocks in West Antarctica: a silicic large igneous province. Journal of volcanology and geothermal research, 81(1–2), 113–136.
- Pankhurst, R.J., Rapela, C.W., Fanning, C.M. and Márquez, M., 2006. Gondwanide continental collision and the origin of Patagonia. Earth-Science Reviews, 76(3–4), 235–257.
- Pankhurst, R.J., Riley, T.R., Fanning, C.M. and Kelley, S.P., 2000. Episodic silicic volcanism in Patagonia and the Antarctic Peninsula: chronology of magmatism associated with the break-up of Gondwana. Journal of Petrology, 41(5), 605–625.

- Parrish, R.R., Parrish, R.R. and Noble, S.R., 2003. Zircon U-Th-Pb geochronology by isotope dilution thermal ionization mass spectrometry (ID-TIMS). Reviews in Mineralogy and Geochemistry, 53(1), 183– 213.
- Parsiegla, N., Stankiewicz, J., Gohl, K., Ryberg, T. and Uenzelmann-Neben, G., 2009. Southern African continental margin: Dynamic processes of a transform margin. Geochemistry, Geophysics, Geosystems, 10(3).
- Paton, C., Hellstrom, J., Paul, B., Woodhead, J., Hergt, J., 2011, Iolite: freeware for the visualisation and processing of mass spectrometric data, J. Anal. At. Spectrom., 26, 2508–2518.
- Paton, D.A., 2006. Influence of crustal heterogeneity on normal fault dimensions and evolution: southern South Africa extensional system. Journal of Structural Geology, 28, 868–886.
- Paton, D.A., Underhill, J.R., 2004. Role of crustal anisotropy inmodifying the structural and sedimentological evolution of extensional basins: the Gamtoos Basin, South Africa. Basin Res. 16, 339– 359.
- Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983.
- Pearce, J.A., Harris, N.B. and Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of petrology, 25(4), 956–983.
- Petrus, J.A., Kamber, B.S., 2012, VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction, Geostandards and Geoanalytical Research, 36, 247–270.
- Pitts, B., Maher, M.J., De Beer, J.H., Gough, D.I., 1992. Interpretation of magnetic, gravity and magnetotelluric data across the Cape Fold Belt and Karoo Basin. In: De Wit, M.J. and Ransome, I.D.G. (Eds.) Inversion tectonics of the cape fold belt, Karoo and cretaceous basins of Southern Africa, 27–32.

- Pupin, J.P. and Turco, G., 1972. Le zircon accessoire en géothermométrie. CR Acad. Sci. Paris, 274(2), 212-214.
- Pupin, J.P., 1980. Zircon and granite petrology. Contributions to Mineralogy and Petrology, 73(3), 207-220.
- Pyle, D.M., 1989. The thickness, volume and grainsize of tephra fall deposits. Bulletin of Volcanology, 51(1), pp.1-15.
- Pysklywec, R.N. and Mitrovica, J.X., 1999. The role of subduction-induced subsidence in the evolution of the Karoo Basin. The Journal of geology, 107(2), 155–164.
- Ramos, V.A., Mosquera, A., Folguera, A. and García Morabito, E., 2011. Evolución tectónica de los Andes y del Engolfamiento Neuquino adyacente. In Geología y Recursos Naturales de la Provincia de Neuquén.
  Relatorio del VXIII Congreso Geológico Argentino, Buenos Aires, 335–348.
- Reddering, J.S.V., 2000. Sedimentary facies, sequences and depositional environments of the Mesozoic Robberg formation in its type area, South Africa. Council for Geoscience Bulletin 126, 212 pp.
- Reddering, J.S.V., 2003. Lithostratigraphy of the Robberg formation(Uitenhage group), including the St Sebastian point member. Lithostratigraphic series. 18 pp.
- Reid, M.R. and Coath, C.D., 2000. In situ U-Pb ages of zircons from the Bishop Tuff: No evidence for long crystal residence times. Geology, 28(5), 443–446.
- Reid, M.R., Coath, C.D., Harrison, T.M. and McKeegan, K.D., 1997. Prolonged residence times for the youngest rhyolites associated with Long Valley Caldera: <sup>230</sup>Th–<sup>238</sup>U ion microprobe dating of young zircons. Earth and Planetary Science Letters, 150(1), 27–39.
- Reid., D.L., Erlank, A.J. and Rex, D.C, 1991. Age and correlation of the False Bay dolerite dyke swarm, south-western Cape, Cape Province. South African Journal of Geology, 94, 155–158.

- Renne, P.R., Glen, J.M., Milner, S.C. and Duncan, A.R., 1996. Age of Etendeka flood volcanism and associated intrusions in southwestern Africa. Geology, 24 (7): 659–662.
- Rex, D.C., 1991. Age and correlation of the False Bay dolerite dyke swarm, south-western Cape, Cape Province. South African Jounnal of Geology, 94(2–3) 155–158.
- Rey, P., Vanderhaeghe, O. and Teyssier, C., 2001. Gravitational collapse of the continental crust: definition, regimes and modes. Tectonophysics, 342(3–4), 435–449.
- Rich, T.H.V., Molnar, R.E. and Rich, P.V., 1983. Fossil vertebrates from the Late Jurassic or Early Cretaceous Kirkwood Formation, Algoa Basin, Southern Africa. Transactions of the Geological Society of South Africa, 86(3), 281–291.
- Richards, P.C., Gatliff, R.W., Quinn, M.F. and Fannin, N.G.T., 1996. Petroleum potential of the Falkland Islands offshore area. Journal of Petroleum Geology, 19(2), 161–182.
- Richards, P.C., Stone, P., Kimbell, G.S., McIntosh, W.C. and Phillips, E.R., 2013. Mesozoic magmatism in the Falkland Islands (South Atlantic) and their offshore sedimentary basins. Journal of Petroleum Geology, 36(1), 61–73.
- Richardson, J.C., Hodgson, D.M., Paton, D., Craven, B., Rawcliffe, A. and Lang, A., 2017. Where is my sink? Reconstruction of landscape development in southwestern Africa since the Late Jurassic. Gondwana Research 45, 43–64.
- Riel, N., Jaillard, E., Martelat, J.E., Guillot, S. and Braun, J., 2018. Permian-Triassic Tethyan realm reorganization: Implications for the outward Pangea margin. Journal of South American Earth Sciences, 81, 78–86.

- Rigassi, D.A. and Dixon, G.E., 1972. Cretaceous of the Cape Province, Republic of South Africa. In: Dessauvagie, T.F.J., Whiteman, A.J. (Eds.), African Geology. Geology Department, University of Ibadan, Nigeria, pp. 513–527
- Riley, T.R., Leat, P.T., Pankhurst, R.J. and Harris, C., 2001. Origins of large volume rhyolitic volcanism in the Antarctic Peninsula and Patagonia by crustal melting. Journal of petrology, 42(6), 1043–1065.
- Riley, T.R., Millar, I.L., Watkeys, M.K., Curtis, M.L., Leat, P.T., Klausen, M.B. and Fanning, C.M., 2004.
  U–Pb zircon (SHRIMP) ages for the Lebombo rhyolites, South Africa: refining the duration of Karoo volcanism. Journal of the Geological Society, 161(4), 547–550.
- Roberts, E.M., Stevens, N.J., O'Connor, P.M., Dirks, P.H.G.M., Gottfried, M.D., Clyde, W.C., Armstrong,
  R.A., Kemp, A.I.S. and Hemming, S., 2012. Initiation of the western branch of the East African Rift
  coeval with the eastern branch. Nature Geoscience, 5(4), 289–294.
- Roby, D.J. and Johnson, M.R. (compiles), 1995. Geological Map 3326 Grahamstown. 1:250 000 GeologicalMap Series, Geological Survey of South Africa.
- Rocha-Campos, A.C., Basei, M.A., Nutman, A.P., Kleiman, L.E., Varela, R., Llambias, E., Canile, F.M. and Da Rosa, O.D.C., 2011. 30 million years of Permian volcanism recorded in the Choiyoi igneous province (W Argentina) and their source for younger ash fall deposits in the Paraná Basin: SHRIMP U– Pb zircon geochronology evidence. Gondwana Research, 19(2), 509–523.
- Rocher, S., Vallecillo, G., Castro de Machuca, B. and Alasino, P., 2015. El Grupo Choiyoi (Pérmico temprano-medio) en la Cordillera Frontal de Calingasta, San Juan, Argentina: volcanismo de arco asociado a extensión. Revista mexicana de ciencias geológicas, 32(3), 415–432.
- Rocholl, A., Schaltegger, U., Gilg, H.A., Wijbrans, J. and Böhme, M., 2018. The age of volcanic tuffs from the Upper Freshwater Molasse (North Alpine Foreland Basin) and their possible use for

tephrostratigraphic correlations across Europe for the Middle Miocene. International Journal of Earth Sciences, 107(2), 387–407.

- Rogers, A.W. 1905. Geological survey of parts of the Divisions of Uitenhage and Alexandria. Annual report of the Geological Commission of the Cape of Good Hope, pp. 1–18.
- Rogers, A.W. and Schwarz, E.H.L. 1901. Report on parts of the Uitenhage and Port Elizabeth Divisions. Annual report of the Geological Commission of the Cape of Good Hope, pp. 1–18.
- Roux, J. and Davids, A., 2016. Structural Evolution of the Gamtoos Basin, based on 2D seismic data, 35th IGC Conference, Cape Town, Poster Abstract.
- Scheiber-Enslin, 2015. Integrated geophysical investigation of the Karoo Basin, South Africa. PhD thesis, University of the Witwatersrand, (unpublished).

Schoene, B., 2014. 4.10-U–Th–Pb Geochronology. Treatise on geochemistry, 4, 341–378.

- Schoene, B., Samperton, K.M., Eddy, M.P., Keller, G., Adatte, T., Bowring, S.A., Khadri, S.F. and Gertsch,
  B., 2015. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass
  extinction. Science, 347(6218), 182–184.
- Schwarz, E.H.L., 1915. New Cretaceous fossils from Brenton, Knysna. Records of the Albany Mus, pp. 120-126.
- Seton, M., Müller, R.D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S. and Chandler, M., 2012. Global continental and ocean basin reconstructions since 200 Ma. Earth-Science Reviews, 113(3–4), 212–270.
- Shone, R.W., 1976. The sedimentology of the Mesozoic Algoa Basin. MSc. thesis. University of Port Elizabeth (unpublished).

- Shone, R.W., 1978. A case for lateral gradation between the Kirkwood and Sundays River formations, Algoa Basin. Transactions of the Geological Society of South Africa, 81, 319–326.
- Shone, R.W., 2006. Onshore post-Karoo Mesozoic deposits. In: Johnson, M.R., Anhaeusser, C.R., and Thomas, R.J., (Eds.), The Geology of South Africa. Geological Society of South Africa, Johannesburg, and Council for Geoscience, Pretoria, 541–571.
- Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., Whitehouse, M.J., 2008, Plešovice zircon a new natural reference material for U-Pb and Hf isotopic microanalysis, Chemical Geology, 241, 1–35.
- Spath, L.F., 1930. On the Cephalopoda of the Uitenhage beds. Annuls of the South Arican Museum, 28, 131–157.
- Spencer, C.J., Cawood, P.A., Hawkesworth, C.J., Raub, T.D., Prave, A.R. and Roberts, N.M., 2014.
  Proterozoic onset of crustal reworking and collisional tectonics: Reappraisal of the zircon oxygen isotope record. Geology, 42(5), 451–454.
- Stacey, J.T. and Kramers, 1., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and planetary science letters, 26(2), 207–221.
- Stipanicic, P.N., Rodrigo, F., Baulies, O.L. and Martínez, C.G., 1968. Las formaciones presenonianas en el denominado Macizo Nordpatagónico y regiones adyacentes. Revista de la Asociación Geológica Argentina, 23(2), 67–98.
- Storey, B.C., 1995. The role of mantle plumes in continental breakup: case histories from Gondwanaland. Nature, 377(6547), 301–308.

- Sutter, J.F., 1988. Innovative approaches to the dating of igneous events in the early Mesozoic basins of the eastern United States. US Geological Survey Bulletin, 1776, 194–200.
- Svensen, H., Corfu, F., Polteau, S., Hammer, Ø. and Planke, S., 2012. Rapid magma emplacement in the Karoo large igneous province. Earth and Planetary Science Letters, 325, 1–9.
- Tankard, A., Welsink, H., Aukes, P., Newton, R. and Stettler, E., 2012. Geodynamic interpretation of the Cape and Karoo basins, South Africa. In: Roberts, D.G. and Bally, A.W. (Eds.), Regional Geology and Tectonics: Phanerozoic Passive Margins, Cratonic basins and Global Tectonic Maps, pp. 869–945.
- Tankard, A.J., Jackson, M.P.A., Eriksson, K.A., Hobday, D.K., Hunter, D.R. and Minter, W.E.L., 1982. Crustal Evolution of Southern Africa, Springer-Verlag, New York, 523 pp.
- Tennant, J.P., Mannion, P.D., Upchurch, P., Sutton, M.D. and Price, G.D., 2017. Biotic and environmental dynamics through the Late Jurassic–Early Cretaceous transition: evidence for protracted faunal and ecological turnover. Biological Reviews, 92(2), 776–814.
- Theron, J.N. (compiler), 1991. Geological Map 3320 Ladismith. 1:250 000 Geological Map Series, Geological Survey of South Africa.
- Thomson, K., 1999. Role of continental break-up, mantle plume development and fault reactivation in the evolution of the Gamtoos Basin, South Africa. Marine and petroleum geology, 16(5), 409–429.
- Tilton, G.R., Patterson, C., Brown, H., Inghram, M., Hayden, R., Hess, D. and Larsen Jr, E., 1955. Isotopic composition and distribution of lead, uranium, and thorium in a Precambrian granite. Geological Society of America Bulletin, 66(9), 1131–1148.
- Tinker, J., de Wit, M. and Brown, R., 2008a. Mesozoic exhumation of the southern Cape, South Africa, quantified using apatite fission track thermochronology. Tectonophysics 455, 77–93.

- Tinker, J., de Wit, M. and Brown, R., 2008b. Linking source and sink: Evaluating the balance between onshore erosion and offshore sediment accumulation since Gondwana break-up, South Africa. Tectonophysics, 455, 94–103.
- Toerien, D.K. (compiler), 1991. Geological Map 3324 Port Elizabeth. 1:250 000 Geological Map Series, Geological Survey of South Africa.
- Toerien, D.K. and Roby, D.J. (compilers), 1979. Geological Map 3322 Oudtshoorn. 1:250 000 Geological Map Series, Geological Survey of South Africa.
- Torsvik, T.H. and Cocks, L.R.M., 2013. Gondwana from top to base in space and time. Gondwana Research, 24 (3): 999–1030.
- Torsvik, T.H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P.V., Van Hinsbergen, D.J., Domeier, M., Gaina, C., Tohver, E. and Meert, J.G., 2012. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 114(3–4), pp. 325–368.
- Tucker, R.T., Roberts, E.M., Hu, Y., Kemp, A.I. and Salisbury, S.W., 2013. Detrital zircon age constraints for the Winton Formation, Queensland: contextualizing Australia's Late Cretaceous dinosaur faunas. Gondwana Research, 24(2), 767–779.
- Uliana, M.A., Biddle, K.T., 1987. Permian to Late Cenozoic evolution of Patagonia, main tectonic events, magmatic activity, and depositional trends. In: McKenzie, G.D. (Ed.), Gondwana Six: Structure, Tectonics, and Geophysics. AGU Monograph, Washington, D.C., pp. 271–286.
- Uliana, M.A., Biddle, K.T., Cerdan, J., 1989. Mesozoic extension and the formation of Argentine sedimentary basins. In: Tankard, A.J., Balkwill, H.R. (Eds.), Extensional Tectonics and Stratigraphy of the North Atlantic Margins, AAPG Memoir, vol. 46. American Association of Petroleum Geologists, pp. 599–614.

- Upchurch, P., Mannion, P. D., Benson, R. B. J., Butler, R. J. & Carrano, M. T., 2011. Geological and anthropogenic controls on the sampling of the terrestrial fossils record: a case study from the Dinosauria.
  In: Mcgowan, A.J. and Smith, A.B. (Eds.), Comparing the Geological and Fossil Records: Implications for Biodiversity Studies, Geological Society of London, Special Publications, pp. 209–240.
- Van Bloemenstein, C.B., 2016. A tectonostratigraphic comparison of the eastern and western parts of the Gamtoos Basin, South Africa. Poster presentation at the 35<sup>th</sup> IGC Conference, Cape Town. DOI: 10.13140/RG.2.2.27227.77606.
- Van Breda, I,K, 2017. Chronostratigraphy of the Mesozoic Uitenhage Group in the Robertson-Ashton rift basin, South Africa. BSc (hons) thesis, University of the Western Cape (unpublished).
- Van der Linde, C., 2017. Sediment supply processes and platterns in the Enon Formation, Gamtoos Basin, Eastern Cape, South Africa. MSc. thesis, University of Cape Town (unpublished).
- Vavra, G., 1993. A guide to quantitative morphology of accessory zircon. Chemical Geology, 110(1-3), 15–28.
- Venter, J.J., 1972. Type stratigraphy of the Sundays River Formation: Report of the Southern Oil Exploration Corporation (SEOKOR) (unpublished).
- Viljoen, J.H.A., 1992. The stratigraphy of the Heidelberg/Riversdale Mesozoic Basin. In: De Wit, M.J., Ransome, I.G.D. (Eds.), Inversion Tectonics of the Cape Fold Belt. Karoo and Cretaceous basins of Southern Africa. A.A. Balkema, Rotterdam, 77–84.
- Viljoen, J.H.A., 2000. Transfer zones: main conduits for sedimentation of the Buffelskloof Formation in the Heidelberg and Mossel Bay Mesozoic basins, Western Cape, South Africa: Abstracts, Geocongress 2000, Geological Society of South Africa, University of Stellenbosch, Journal of African Earth Sciences, 31, 87–88.

- Viljoen, J.H.A., 2009. Hartenbos Formation (Uitenhage Group) In: M.R. Johnson (Eds.), Catalogue of South African Lithostratigraphic Units. South African Committee for Stratigraphy, 10, 9–10.
- Viljoen, J.H.A., Malan, J.A. (compilers), 1993. Geological Map 3422AA Mosselbaai. 1:50 000 GeologicalMap Series, Geological Survey of South Africa.
- Viljoen, J.H.A., Stapelberg, F.D.J. and Cloete, M., 2010. Technical report on the geological storage of carbon dioxide in South Africa. Report, Council for Geoscience, 236 pp.
- Viljoen., J.H.A., 1996. Geology of Heidelberg (Cape) and vicinity. Council for Geoscience Excursion Guide. 11 pp.
- Wang, T., Ramezani, J., Wang, C., Wu, H., He, H. and Bowring, S.A., 2016. High-precision U–Pb geochronologic constraints on the Late Cretaceous terrestrial cyclostratigraphy and geomagnetic polarity from the Songliao Basin, Northeast China. Earth and Planetary Science Letters, 446, 37–44.
- Weissert, H. and Erba, E., 2004. Volcanism, CO2 and palaeoclimate: a Late Jurassic–Early Cretaceous carbon and oxygen isotope record. Journal of the Geological Society 161, 695–702.
- Wernicke, B. and Burchfiel, B.C., 1982. Modes of extensional tectonics. Journal of Structural Geology, 4(2), 105–115.
- Wetherill, G.W., 1956. Discordant uranium-lead ages, I. Eos, Transactions American Geophysical Union, 37(3), 320–326.
- White, J.D.L. and Houghton, B.F., 2006. Primary volcaniclastic rocks. Geology, 34(8), 677–680.
- White, R. and McKenzie, D., 1989. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. Journal of Geophysical Research: Solid Earth, 94(B6), 7685–7729.

- Wiedenbeck, M.A.P.C., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F.V., Quadt, A.V., Roddick, J.C. and Spiegel, W., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards newsletter, 19(1), 1–23.
- Wildman, M., Brown, R., Watkins, R., Carter, A., Gleadow, A. and Summerfield, M., 2015. Post break-up tectonic inversion across the southwestern cape of South Africa: New insights from apatite and zircon fission track thermochronometry. Tectonophysics 654, 30–55.
- Will, T.M. and Frimmel, H.E., 2013. The influence of inherited structures on dike emplacement during Gondwana breakup in southwestern Africa. The Journal of Geology, 121(5), 455–474.
- Will, T.M. and Frimmel, H.E., 2018. Where does a continent prefer to break up? Some lessons from the South Atlantic margins. Gondwana Research, 53, 9–19.
- Winchester, J.A. and Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical geology, 20, 325–343.
- Winter, H. de la R., 1973. Geology of the Algoa Basin, South Africa, In: Blant, G. (Editor), Sedimentary basins of the African coasts, Part 2, South and East Coast. Association of African Geological Surveys, Paris, 17–48.
- Winter, H. de la R., 1979. Application of basic principles of stratigraphy to the Jurassic-Cretaceous interval in southern Africa. In: A.M. Anderson and W.A. Van Biljon (Eds.), Geocongress 77: Some Sedimentary Ore Deposits in South Africa. Special Publication, Geological Society of South Africa, 6, 183–196.
- Zerfass, H., Lavina, E.L., Schultz, C.L., Garcia, A.J.V., Faccini, U.F. and Chemale Jr, F., 2003. Sequence stratigraphy of continental Triassic strata of Southernmost Brazil: a contribution to Southwestern Gondwana palaeogeography and palaeoclimate. Sedimentary Geology, 161(1-2), 85–105.

## Appendices

Appendices A–H are followed by two published papers referred to in section 2.2.2 and 2.2.3 of this thesis.

# **Appendix A.** Isotopic data acquired by LA-ICPMS analysis of reference zircons





Fig. A1. Reference zircons M127, Mudtank, Plešovice and 91500 used across 4 analytical campaigns. Border colours indicate the respective campaign in which data were used to process unknowns. In the case of campaign 3, two analytical runs were conducted several weeks apart, run A and run B, and reference zircons are labeled accordingly.

## Appendix B. LA-ICPMS isotopic data for samples from the Suurberg Group Table B1. LA-ICPMS isotopic data for sample ASP1 from the Suurberg Group in the northern Algoa Basin

| ASD1   |                      |                       |                         | 1              |                                     | 1    |                |       | 0              |        |                  | C             |                  |            |     |           | Mal |               |      | Conc |
|--------|----------------------|-----------------------|-------------------------|----------------|-------------------------------------|------|----------------|-------|----------------|--------|------------------|---------------|------------------|------------|-----|-----------|-----|---------------|------|------|
| Sample | Analysis             | II Innm1 <sup>a</sup> | Dh [nnm] <sup>a</sup> T | <sup>a 2</sup> | <sup>06</sup> ph/ <sup>204</sup> ph | тьша | 207 pb(235 LIb | 2 -d  | 206 pb/238 j b | 2 =4   | rbo <sup>c</sup> | 207 ph/206 ph | 2 = <sup>d</sup> | 207 pb/235 | 2 9 | 206pb/238 | 2 7 | 207 pb/206 pb | 2 9  | %    |
| ASP1   | ASP1-1               | 181                   | 25                      | 48             | 1198                                | 0.26 | 1 7/1 9        | 0.066 | n 1959         | 0.0034 | 0.66             | n nas4        | 0.0026           | 1027       | 20  | 821       | 20  | 1/106         | 53   | 55   |
| ASP1   | ASP1-2               | 215                   | 20                      | 120            | 1460                                | 0.56 | 0.834          | 0.000 | 0.1003         | 0.0004 | 0.63             | 0.0603        | 0.0020           | 616        | 24  | 616       | 15  | 615           | 67   | 100  |
| ASP1   | ASP1-3               | 142                   | 7                       | 69             | 668                                 | 0.49 | 0.333          | 0.000 | 0.0463         | 0.0020 | 0.00<br>N 44     | 0.0521        | 0.0078           | 291        | 17  | 292       | 8   | 290           | 123  | 101  |
| ASP1   | ASP1.4               | 532                   | 26                      | 1/18           | 7054                                | 0.28 | 0.366          | 0.020 | 0.0485         | 0.0012 | 0.44             | 0.0527        | 0.0018           | 201        | 13  | 311       | 8   | 368           | 77   | 87   |
| ASP1   | ASP1-5               | 390                   | 16                      | 251            | 1728                                | 0.64 | 0.388          | 0.010 | 0.0400         | 0.0012 | 0.55             | 0.0512        | 0.0010           | 251        | 11  | 252       | 6   | 248           | 86   | 102  |
| ASP1   | ASP1-6               | 193                   | 64                      | 52             | 15340                               | 0.27 | 5.833          | 0.010 | 0.3304         | 0.0010 | 0.00             | 0.1280        | 0.0013           | 1951       | 89  | 1840      | 45  | 245           | 45   | 89   |
| A011   | ACD1 7               | 60                    | 4                       | 26             | 467                                 | 0.62 | 0.000          | 0.066 | 0.0070         | 0.0026 | 0.10             | 0.0500        | 0.0040           | 620        | 40  | 620       | 16  | £96           | 160  | 101  |
| ASP1   | ASP1-8               | 161                   | 16                      | 168            | 1825                                | 1.05 | 0.869          | 0.000 | 0.0012         | 0.0025 | 0.61             | 0.0502        | 0.0042           | 635        | 74  | 618       | 15  | 694           | 70   | 89   |
| ASP1   | ASP1.9               | 367                   | 16                      | 211            | 1517                                | 0.58 | 0.307          | 0.000 | 0.1001         | 0.0011 | 0.51             | 0.0520        | 0.0021           | 222        | 13  | 271       | 7   | 284           | 03   | 95   |
| ASP1   | ASP1 10              | 202                   | 22                      | 65             | 1250                                | 0.21 | 0.501          | 0.010 | 0.0729         | 0.0019 | 0.00             | 0.0528        | 0.0021           | 472        | 10  | 454       | 11  | 560           | 70   | 91   |
| ASP1   | ASP1-11              | 934                   | 30                      | 24.00          | 2791                                | 2.58 | 0.001          | 0.024 | 0.0723         | 0.0010 | 0.53             | 0.0503        | 0.0013           | 205        | 10  | 205       | 5   | 207           | 94   | 99   |
| ASP1   | ASP1 12              | 260                   | 0                       | /12            | ane                                 | 1.53 | 0.224          | 0.011 | 0.03/1         | 0.0000 | 0.00             | 0.0521        | 0.0044           | 200        | 20  | 216       | e   | 289           | 10/  | 75   |
| ASP1   | AGD1 12              | 203                   | 11                      | 01             | 1494                                | 0.25 | 0.244          | 0.022 | 0.0341         | 0.0003 | 0.20             | 0.0555        | 0.0026           | 222        | 15  | 261       | 7   | 491           | 105  | 60   |
| ASP1   | ASP1-14              | 204                   | 19                      | 219            | 1287                                | 0.95 | 0.205          | 0.011 | 0.0418         | 0.0011 | 0.90             | 0.0626        | 0.0020           | 542        | 22  | 507       | 13  | 693           | 70   | 73   |
| ASP1   | ASP1 15              | 109                   | 40                      | 179            | 5992                                | 0.99 | 2 202          | 0.020 | 0.2019         | 0.0050 | 0.69             | 0.0791        | 0.0021           | 1192       | 49  | 1196      | 20  | 1175          | 59   | 101  |
| ASP1   | ASP1 16              | 100                   |                         | 517            | 200                                 | 2.60 | 2.203          | 0.000 | 0.2013         | 0.0000 | 0.00             | 0.0506        | 0.0021           | 177        | 70  | 174       | 5   | 222           | 270  | 70   |
| ASP1   | ASP1 17              | 210                   | 22                      | 0R             | 1378                                | 2.03 | 0.131          | 0.024 | 0.0274         | 0.0000 | 0.22             | 0.0500        | 0.0050           | B41        | 54  | 640       | 16  | 22J<br>843    | 175  | 100  |
| ASP1   | ASP1 19              | 447                   | 19                      | 240            | 1120                                | 0.79 | 0.196          | 0.010 | 0.0294         | 0.0020 | 0.23             | 0.0500        | 0.0037           | 19.2       | 11  | 191       | 5   | 194           | 107  | 02   |
| ACD1   | ACD1 10              | 150                   | 13                      | 01             | 1120                                | 0.78 | 0.190          | 0.012 | 0.0284         | 0.0007 | 0.42             | 0.0500        | 0.0027           | 102        | 21  | 181       | 14  | 194           | 127  | 100  |
| AGE1   | AGE 1-18<br>AGE 1-10 | 617                   | 21                      | 214            | 2020                                | 0.00 | 0.031          | 0.040 | 0.0004         | 0.0022 | 0.43             | 0.0569        | 0.0032           | 487        | 16  | 499       | 7   | 400           | 100  | 84   |
| ASP1   | AGD1 21              | 75                    | 21                      | 00             | 205                                 | 1.17 | 0.010          | 0.017 | 0.0413         | 0.0011 | 0.47             | 0.0500        | 0.0021           | 196        | 20  | 106       | 5   | 195           | 460  | 101  |
| AOF1   | AGE 1-21             | 100                   | 2                       | 41             | 200                                 | 0.00 | 0.212          | 0.042 | 0.0308         | 0.0000 | 0.14             | 0.0500        | 0.0088           | 130        | 38  | 190       | 15  | 185           | 400  | 100  |
| AOF1   | AGE 1-22             | 205                   | 21                      | 91             | 1000                                | 0.23 | 0.035          | 0.033 | 0.1003         | 0.0025 | 0.03             | 0.0604        | 0.0013           | 466        | 24  | 467       | 10  | 460           | 07   | 101  |
| ACD1   | AGE 1-24             | 200                   | 21                      | 005            | 1200                                | 0.12 | 0.062          | 0.027 | 0.0751         | 0.0018 | 0.00             | 0.0503        | 0.0022           | 400        | 22  | 407       | 12  | 402           | 101  | 70   |
| AGE1   | AGE 1-20<br>AGE 1-20 | 179                   | 40                      | 70             | 4048                                | 0.42 | 0.558          | 0.037 | 0.0078         | 0.0018 | 0.41             | 0.0590        | 0.0030           | 400        | 20  | 423       | 12  | 468           | 05   | 00   |
| AOF1   | AGE 1-20             | 620                   | 12                      | 400            | 1010                                | 0.42 | 0.002          | 0.025 | 0.0714         | 0.0010 | 0.50             | 0.0501        | 0.0021           | 440        | 20  | 445       |     | 450           | 100  | 98   |
| AOD1   | AGE 1-27             | 020                   | 23                      | 480            | 3078                                | 0.79 | 1.704          | 0.004 | 0.0376         | 0.0010 | 0.41             | 0.0013        | 0.0031           | 241        | 20  | 238       | 0   | 204           | 130  | 34   |
| AOF1   | AOF 1-20             | 230                   | 41                      | 1000           | 1040                                | 0.40 | 0.132          | 0.004 | 0.1710         | 0.0043 | 0.07             | 0.0732        | 0.0020           | 1021       | 30  | 1022      | 20  | 1019          | 100  | 100  |
| AGE1   | AGE 1-29             | 500                   | 20                      | 70             | 1240                                | 1.03 | 0.173          | 0.010 | 0.0252         | 0.0000 | 0.43             | 0.0499        | 0.0027           | 102        | 10  | 160       | 4   | 192           | T 20 | 64   |
| ASP1   | ASP1-30              | 03                    | 2                       | 12             | 100                                 | 1.30 | 0.205          | 0.000 | 0.0288         | 0.0008 | 0.12             | 0.0018        | 0.0124           | 180        | 40  | 183       | 0   | 278           | 048  | 00   |
| A5P1   | A5P1-31              | 29                    | r<br>r                  | 64             | 215                                 | 2.24 | 0.262          | 0.104 | 0.0282         | 0.0009 | 0.08             | 0.0675        | 0.0266           | 237        | 93  | 179       | 6   | 854           | 818  | 21   |
| ASPI   | A5P1-32              | 171                   | 5                       | 233            | 1232                                | 1.37 | 0.208          | 0.014 | 0.0300         | 0.0008 | 0.38             | 0.0502        | 0.0032           | 192        | 13  | 191       | 5   | 206           | 146  | 92   |
| ASP1   | ASP1-33              | 288                   | 13                      | 184            | 1969                                | 0.64 | 0.310          | 0.015 | 0.0436         | 0.0011 | 0.54             | 0.0515        | 0.0020           | 274        | 13  | 275       |     | 263           | 91   | 105  |
| ASP1   | ASP1-34              | 779                   | 56                      | 1357           | 4339                                | 1.74 | 0.554          | 0.026 | 0.0718         | 0.0018 | 0.54             | 0.0559        | 0.0023           | 447        | 21  | 447       | 11  | 450           | 90   | 99   |
| ASPI   | A5P1-35              | 417                   | 22                      | 134            | 6067                                | 0.32 | 0.385          | 0.020 | 0.0524         | 0.0014 | 0.49             | 0.0532        | 0.0025           | 331        | 18  | 329       | 9   | 339           | 105  | 97   |
| ASP1   | ASP1-36              | 183                   | 19                      | 159            | 44917                               | 0.87 | U.854          | 0.034 | 0.1022         | 0.0025 | 0.63             | 0.0606        | 0.0019           | 627        | 25  | 628       | 16  | 624           | 66   | 101  |
| ASP1   | ASP1-37              | 288                   | 22                      | 101            | 4355                                | 0.35 | 0.591          | 0.023 | 0.0754         | 0.0019 | 0.64             | 0.0569        | 0.0017           | 472        | 18  | 468       | 12  | 488           | 67   | 96   |
| ASP1   | ASP1-38              | 150                   | 11                      | 163            | 1361                                | 1.09 | 0.555          | 0.032 | 0.0719         | 0.0018 | 0.44             | 0.0560        | 0.0029           | 448        | 25  | 447       | -   | 454           | 113  | 99   |
| ASP1   | ASP1-39              | 640                   | 30                      | 292            | 6788                                | 0.46 | 0.338          | 0.015 | 0.0470         | 0.0012 | 0.56             | 0.0522        | 0.0019           | 296        | 13  | 296       |     | 292           | 84   | 101  |
| ASPI   | A5P1-40              | 381                   | 18                      | 150            | 3879                                | 0.39 | 0.347          | 0.014 | 0.0479         | 0.0012 | U.62             | 0.0525        | 0.0017           | 302        | 12  | 302       | 8   | 309           | 72   | 98   |
| ASP1   | ASP1-41              | 162                   | (                       | 30             | 1010                                | 0.19 | 0.312          | 0.021 | 0.0433         | 0.0012 | U.41             | 0.0523        | 0.0032           | 276        | 18  | 273       | -   | 299           | 140  | 91   |
| ASP1   | ASP1-42              | 288                   | 13                      | 230            | 2363                                | 0.80 | 0.336          | 0.015 | 0.0466         | 0.0012 | 0.56             | 0.0523        | 0.0020           | 294        | 13  | 294       | 7   | 299           | 86   | 98   |
| ASP1   | ASP1-43              | 50                    | 1                       | 65             | 136                                 | 1.31 | 0.190          | 0.044 | U.U276         | 0.0009 | 0.13             | 0.0498        | 0.0114           | 176        | 41  | 176       | 5   | 188           | 632  | 94   |
| ASP1   | ASP1-44              | 206                   | 16                      | 144            | 1413                                | 0.70 | 0.593          | 0.024 | U.U78U         | 0.0019 | U.B1             | 0.0566        | 0.0018           | 4/3        | 19  | 472       | 12  | 4 /4          | (1   | 100  |
| ASP1   | ASP1-45              | 136                   | 14                      | 76             | 1032                                | 0.56 | 0.843          | 0.038 | 0.0999         | 0.0025 | 0.56             | 0.0612        | 0.0023           | 621        | 28  | 614       | 16  | 647           | 80   | 95   |
| ASP1   | ASP1-46              | 27                    | 1                       | 53             | 108                                 | 1.95 | 0.189          | 0.049 | 0.0275         | 0.0009 | U.12             | 0.0497        | 0.0128           | 175        | 45  | 175       | 6   | 182           | 598  | 96   |
| ASP1   | ASP1-47              | 323                   | 15                      | 209            | 3328                                | 0.65 | 0.334          | 0.014 | 0.0458         | 0.0011 | 0.60             | 0.0529        | 0.0018           | 293        | 12  | 288       | 7   | 326           | 76   | 89   |
| ASP1   | ASP1-48              | 568                   | 61                      | 231            | 5618                                | 0.41 | 0.903          | 0.034 | 0.1069         | 0.0027 | 0.66             | 0.0613        | 0.0017           | 653        | 25  | 655       | 16  | 648           | 61   | 101  |
| ASP1   | ASP1-49              | 100                   | 8                       | 85             | 1289                                | 0.85 | 0.628          | 0.031 | 0.0767         | 0.0020 | 0.53             | 0.0594        | 0.0025           | 495        | 24  | 476       | 12  | 583           | 91   | 82   |
| ASP1   | ASP1-50              | 1106                  | 60                      | 514            | 9019                                | 0.46 | 0.398          | 0.021 | 0.0543         | 0.0014 | 0.49             | 0.0532        | 0.0024           | 340        | 18  | 341       | 9   | 336           | 104  | 101  |
| ASP1   | ASP1-51              | 272                   | 12                      | 166            | 1179                                | 0.61 | 0.324          | 0.014 | 0.0445         | 0.0011 | 0.57             | 0.0527        | 0.0019           | 285        | 13  | 281       | 7   | 315           | 82   | 89   |
| ASP1   | ASP1-52              | 24                    | 1                       | 29             | 97                                  | 1.21 | 0.219          | 0.044 | 0.0316         | 0.0010 | 0.16             | 0.0504        | 0.0099           | 201        | 40  | 200       | 6   | 213           | 454  | 94   |
| ASP1   | ASP1-53              | 256                   | 12                      | 163            | 2856                                | 0.64 | 0.347          | 0.015 | 0.0479         | 0.0012 | 0.58             | 0.0525        | 0.0018           | 302        | 13  | 302       | 8   | 306           | 80   | 99   |
| ASP1   | ASP1-54              | 832                   | 23                      | 1051           | 1461                                | 1.26 | 0.192          | 0.008 | 0.0280         | 0.0007 | 0.59             | 0.0498        | 0.0017           | 178        | 8   | 178       | 4   | 185           | 80   | 96   |
| ASP1   | ASP1-55              | 33                    | 1                       | 60             | 291                                 | 1.84 | 0.215          | 0.068 | 0.0310         | 0.0009 | 0.10             | 0.0503        | 0.0158           | 198        | 62  | 197       | 6   | 209           | 727  | 94   |
| ASP1   | ASP1-56              | 350                   | 10                      | 277            | 2102                                | 0.79 | 0.201          | 0.012 | 0.0291         | 0.0007 | 0.42             | 0.0500        | 0.0028           | 186        | 11  | 185       | 5   | 194           | 128  | 96   |
| ASP1   | ASP1-57              | 343                   | 83                      | 141            | 10179                               | 0.41 | 3.030          | 0.110 | 0.2431         | 0.0060 | 0.68             | 0.0904        | 0.0024           | 1415       | 52  | 1403      | 35  | 1434          | 51   | 98   |
| ASP1   | ASP1-58              | 42                    | 1                       | 48             | 110                                 | 1.14 | 0.187          | 0.051 | 0.0266         | 0.0009 | 0.13             | 0.0509        | 0.0137           | 174        | 47  | 169       | 6   | 235           | 621  | 72   |

| ASP1  | ASP1-59   | 177 | 37  | 60   | 2916  | 0.34 | 2.356 | 0.087 | 0.2101 | 0.0052 | 0.67 | 0.0813 | 0.0022  | 1 | 1229 | 45 | 1229 | 31 | 1230 | 54         | 100      |
|-------|-----------|-----|-----|------|-------|------|-------|-------|--------|--------|------|--------|---------|---|------|----|------|----|------|------------|----------|
| ASP1  | ASP1-60   | 99  | 3   | 156  | 531   | 1.56 | 0.201 | 0.019 | 0.0289 | 0.0008 | 0.28 | 0.0505 | 0.0045  |   | 186  | 17 | 183  | 5  | 219  | 208        | 84       |
| ASP1  | ASP1-61   | 159 | 30  | 62   | 3179  | 0.39 | 2.635 | 0.100 | 0.1884 | 0.0047 | 0.66 | 0.1014 | 0.0029  | 1 | 1311 | 50 | 1113 | 28 | 1651 | 53         | 67       |
| ASP1  | ASP1-62   | 252 | 7   | 881  | 342   | 3.50 | 0.198 | 0.021 | 0.0264 | 0.0007 | 0.25 | 0.0545 | 0.0055  |   | 184  | 19 | 168  | 4  | 392  | 227        | 43       |
| ASP1  | ASP1-63   | 258 | 23  | 82   | 2430  | 0.32 | 0.721 | 0.028 | 0.0889 | 0.0022 | 0.64 | 0.0588 | 0.0018  |   | 551  | 22 | 549  | 14 | 559  | 66         | 98       |
| ASP1  | ASP1-64   | 43  | 1   | 61   | 187   | 1 41 | 0.228 | 0.057 | 0.0265 | 0.0010 | 0.15 | 0.0626 | 0.0155  |   | 209  | 52 | 168  | 6  | 695  | 527        | 24       |
| ASP1  | ASP1-65   | 351 | 55  | 33   | 7494  | 0.09 | 1.671 | 0.058 | 0.1589 | 0.0010 | 0.68 | 0.0726 | 0.0100  |   | 959  | 35 | 940  | 23 | 1003 | 55         | 94       |
| ASP1  | ASP1.66   | 45  | 1   | 57   | 478   | 1.25 | 0.212 | 0.000 | 0.1303 | 0.0000 | 0.00 | 0.0120 | 0.0020  |   | 106  | 70 | 195  | 20 | 200  | 3/3        | 09       |
| A6011 | ASD 1 87  | 222 | 10  | 106  | 2000  | 0.61 | 0.212 | 0.032 | 0.0300 | 0.0010 | 0.10 | 0.0514 | 0.0014  |   | 750  | 14 | 155  | 6  | 200  | 100        | 07       |
| AGE1  | AGE 1-07  | 522 | 10  | 51   | 1510  | 0.00 | 0.204 | 0.010 | 0.0400 | 0.0010 | 0.47 | 0.0514 | 0.0024  |   | 204  | 70 | 200  | 7  | 201  | 108<br>040 | 97<br>00 |
| AGEI  | ASP 1-08  | 03  | 40  | 105  | 1012  | 0.30 | 0.282 | 0.000 | 0.0383 | 0.0012 | 0.10 | 0.0521 | 0.0148  |   | 202  | 12 | 240  | 10 | 290  | 049        | 70       |
| ADEL  | ASF 1-09  | 134 | 10  | 105  | 080   | 0.78 | 0.812 | 0.039 | 0.0743 | 0.0020 | 0.43 | 0.0597 | 0.0034  |   | 400  | 31 | 402  | 13 | 592  | 124        | 10       |
| ASPI  | ASP1-70   | 181 | 5   | 258  | /33   | 1.43 | U.188 | 0.013 | 0.0276 | 0.0007 | 0.37 | 0.0496 | 0.0032  |   | 1/5  | 12 | 1/5  | 5  | 174  | 151        | 101      |
| ASP1  | ASP1-71   | 74  | 6   | 48   | 974   | 0.65 | 0.706 | 0.034 | 0.0878 | 0.0023 | 0.53 | 0.0583 | 0.0024  |   | 542  | 26 | 542  | 14 | 541  | 90         | 100      |
| ASPT  | ASP1-72   | /34 | 21  | 1355 | 21349 | 1.85 | 0.196 | 0.014 | 0.0283 | 0.0007 | 0.36 | 0.0502 | 0.0033  |   | 181  | 13 | 180  | 5  | 205  | 152        | 88       |
| ASP1  | ASP1-73   | 263 | 20  | 133  | 3493  | 0.51 | 0.633 | 0.028 | 0.0757 | 0.0019 | 0.58 | 0.0607 | 0.0022  |   | 498  | 22 | 470  | 12 | 627  | 77         | 75       |
| ASP1  | ASP1-74   | 367 | 14  | 195  | 2404  | 0.53 | 0.276 | 0.012 | 0.0391 | 0.0010 | 0.57 | 0.0511 | 0.0019  |   | 247  | 11 | 247  | 6  | 246  | 84         | 100      |
| ASP1  | ASP1-75   | 443 | 12  | 646  | 1309  | 1.46 | 0.189 | 0.012 | 0.0275 | 0.0007 | 0.39 | 0.0499 | 0.0030  |   | 176  | 12 | 175  | 4  | 188  | 142        | 93       |
| ASP1  | ASP1-76   | 135 | 14  | 68   | 2203  | 0.51 | 0.906 | 0.037 | 0.1069 | 0.0027 | 0.61 | 0.0615 | 0.0020  |   | 655  | 27 | 654  | 16 | 656  | 70         | 100      |
| ASP1  | ASP1-77   | 48  | 1   | 42   | 3359  | 0.88 | 0.200 | 0.040 | 0.0292 | 0.0008 | 0.15 | 0.0498 | 0.0098  |   | 186  | 37 | 185  | 5  | 186  | 456        | 100      |
| ASP1  | ASP1-78   | 116 | 8   | 92   | 1085  | 0.80 | 0.548 | 0.026 | 0.0662 | 0.0017 | 0.54 | 0.0600 | 0.0024  |   | 444  | 21 | 413  | 11 | 605  | 87         | 68       |
| ASP1  | ASP1-79   | 70  | 3   | 74   | 205   | 1.06 | 0.286 | 0.060 | 0.0390 | 0.0011 | 0.14 | 0.0532 | 0.0111  |   | 255  | 54 | 247  | 7  | 335  | 475        | 74       |
| ASP1  | ASP1-80   | 89  | 3   | 126  | 139   | 1.42 | 0.220 | 0.040 | 0.0298 | 0.0009 | 0.16 | 0.0535 | 0.0096  |   | 202  | 37 | 189  | 5  | 350  | 405        | 54       |
| ASP1  | ASP1-81   | 220 | 10  | 145  | 2240  | 0.66 | 0.313 | 0.014 | 0.0438 | 0.0011 | 0.55 | 0.0520 | 0.0020  |   | 277  | 13 | 276  | 7  | 283  | 86         | 97       |
| ASP1  | ASP1-82   | 261 | 22  | 155  | 3326  | 0.59 | 0.661 | 0.026 | 0.0831 | 0.0021 | 0.63 | 0.0577 | 0.0018  |   | 515  | 20 | 515  | 13 | 518  | 68         | 99       |
| ASP1  | ASP1-83   | 574 | 98  | 157  | 12554 | 0.27 | 1.789 | 0.064 | 0.1700 | 0.0042 | 0.69 | 0.0763 | 0.0020  | 1 | 1041 | 38 | 1012 | 25 | 1103 | 52         | 92       |
| ASP1  | ASP1-84   | 90  | 3   | 127  | 280   | 1.41 | 0.198 | 0.027 | 0.0290 | 0.0008 | 0.20 | 0.0495 | 0.0065  |   | 183  | 25 | 184  | 5  | 171  | 308        | 108      |
| ASP1  | ASP 1-85  | 217 | 38  | 58   | 2750  | 0.27 | 1.798 | 0.067 | 0.1760 | 0.0044 | 0.67 | 0.0741 | 0.0021  | 1 | 1045 | 39 | 1045 | 26 | 1044 | 56         | 100      |
| ASP1  | ASP1-86   | 110 | 19  | 42   | 1279  | 0.38 | 1.722 | 0.068 | 0.1709 | 0.0043 | 0.64 | 0.0731 | 0.0022  | 1 | 1017 | 40 | 1017 | 25 | 1016 | 62         | 100      |
| ASP1  | ASP1-87   | 331 | 150 | 195  | 5930  | 0.59 | 9.976 | 0.370 | 0.4529 | 0.0113 | 0.67 | 0.1598 | 0.0044  | 2 | 2433 | 90 | 2408 | 60 | 2453 | 46         | 98       |
| ASP1  | ASP1-89   | 88  | 3   | 118  | 319   | 1.34 | 0.198 | 0.027 | 0.0287 | 0.0008 | 0.20 | 0.0500 | 0.0066  |   | 183  | 25 | 182  | 5  | 196  | 307        | 93       |
| ASP1  | ASP1-90   | 233 | 23  | 263  | 5422  | 1.13 | 0.836 | 0.033 | 0.1002 | 0.0025 | 0.64 | 0.0605 | 0.0018  |   | 617  | 24 | 616  | 15 | 622  | 65         | 99       |
| ASP1  | ASP1-91   | 433 | 35  | 88   | 5638  | 0.20 | 0.646 | 0.025 | 0.0814 | 0.0020 | 0.65 | 0.0576 | 0.0017  |   | 506  | 19 | 504  | 13 | 513  | 64         | 98       |
| ASP1  | ASP1-92   | 458 | 39  | 288  | 3005  | 0.63 | 0.693 | 0.034 | 0.0857 | 0.0022 | 0.53 | 0.0587 | 0.0024  |   | 535  | 26 | 530  | 14 | 554  | 90         | 96       |
| ASP1  | ASP1-93   | 39  | 1   | 35   | 156   | 0.90 | 0.211 | 0.049 | 0.0295 | 0.0009 | 0.13 | 0.0521 | 0.0119  |   | 195  | 45 | 187  | 6  | 288  | 522        | 65       |
| ASP1  | ASP1-94   | 174 | 5   | 180  | 668   | 1.04 | 0.202 | 0.011 | 0.0294 | 0.0008 | 0.48 | 0.0499 | 0.0023  |   | 187  | 10 | 187  | 5  | 189  | 109        | 99       |
| ASP1  | ASP1-95   | 35  | 3   | 20   | 482   | 0.57 | 0.643 | 0.043 | 0.0729 | 0.0020 | 0.41 | 0.0640 | 0.0039  |   | 504  | 34 | 453  | 13 | 740  | 130        | 61       |
| ASP1  | ASP1-96   | 150 | 4   | 259  | 30.9  | 1.72 | 0 193 | 0.015 | 0.0283 | 0.0007 | 0.33 | 0.0497 | 0.0037  |   | 180  | 14 | 180  | 5  | 179  | 173        | 100      |
| ASP1  | ASP 1-97  | 160 | 5   | 275  | 869   | 1.72 | 0.197 | 0.015 | 0.0287 | 0.0007 | 0.35 | 0.0500 | 0.0001  |   | 183  | 13 | 182  | 5  | 194  | 160        | 94       |
| ASP1  | ASP1 08   | 523 | 73  | 200  | 4415  | 0.76 | 0.101 | 0.010 | 0.0434 | 0.0001 | 0.60 | 0.0517 | 0.00017 |   | 774  | 11 | 274  | 7  | 274  | 7/         | 100      |
| ASP1  | ASP1 00   | 250 | 10  | 420  | 570   | 1.99 | 0.303 | 0.013 | 0.0404 | 0.0007 | 0.01 | 0.0311 | 0.0011  |   | 106  | 12 | 107  | 5  | 170  | 150        | 105      |
| A601  | AGE 1 100 | 330 | 11  | 420  | G14   | 0.50 | 0.201 | 0.014 | 0.0284 | 0.0007 | 0.50 | 0.0480 | 0.0032  |   | 211  | 10 | 257  | 6  | 705  | 70         | 25       |
| ASP1  | ASP1-100  | 210 | 100 | 103  | 014   | 0.08 | 0.358 | 0.010 | 0.0407 | 0.0010 | 0.08 | 0.0038 | 0.0022  |   | 311  | 13 | 207  | 0  | 130  | 13         | 30       |
| ASPI  | ASP1-102  | 956 | 182 | 242  | 4345  | 0.25 | 2.448 | 0.088 | 0.1901 | 0.0047 | 0.69 | 0.0934 | 0.0024  |   | 1257 | 45 | 1122 | 28 | 1496 | 49         | 75       |
| ASPI  | ASP1-103  | 236 | 21  | 217  | 2369  | 0.92 | 0.709 | 0.028 | 0.0880 | 0.0022 | 0.63 | 0.0585 | 0.0018  |   | 544  | 22 | 543  | 14 | 548  | 68         | 99       |
| ASP1  | ASP1-104  | 134 | 21  | 25   | /6/0  | 0.18 | 1.613 | 0.070 | 0.1593 | U.UU41 | 0.58 | 0.0735 | 0.0026  |   | 975  | 43 | 953  | 24 | 1026 | 72         | 93       |
| ASP1  | ASP1-105  | 429 | 12  | 363  | 1427  | 0.85 | U.194 | 0.009 | 0.0282 | 0.0007 | 0.57 | 0.0498 | 0.0018  |   | 180  | 8  | 179  | 5  | 187  | 85         | 96       |
| ASP1  | ASP1-106  | 74  | 2   | 115  | 98    | 1.54 | 0.206 | 0.018 | 0.0300 | 0.0008 | 0.31 | 0.0498 | 0.0041  |   | 191  | 17 | 191  | 5  | 188  | 193        | 102      |
| ASP1  | ASP1-107  | 285 | 49  | 113  | 5467  | 0.39 | 1.724 | 0.068 | 0.1705 | 0.0043 | 0.63 | 0.0733 | 0.0022  | 1 | 1018 | 40 | 1015 | 25 | 1023 | 62         | 99       |
| ASP1  | ASP1-108  | 250 | 7   | 218  | 414   | 0.87 | 0.196 | 0.010 | 0.0286 | 0.0007 | 0.49 | 0.0497 | 0.0023  |   | 182  | 10 | 182  | 5  | 182  | 109        | 100      |
| ASP1  | ASP1-109  | 458 | 35  | 49   | 5937  | 0.11 | 0.594 | 0.030 | 0.0757 | 0.0020 | 0.52 | 0.0570 | 0.0024  |   | 474  | 24 | 470  | 12 | 490  | 94         | 96       |
| ASP1  | ASP1-110  | 155 | 6   | 69   | 757   | 0.45 | 0.289 | 0.030 | 0.0409 | 0.0013 | 0.30 | 0.0512 | 0.0050  |   | 257  | 27 | 258  | 8  | 248  | 226        | 104      |
| ASP1  | ASP1-111  | 263 | 12  | 141  | 1044  | 0.54 | 0.334 | 0.019 | 0.0463 | 0.0012 | 0.46 | 0.0522 | 0.0027  |   | 292  | 17 | 292  | 8  | 295  | 116        | 99       |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup>Pb/<sup>236</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb)/(<sup>228</sup>U/<sup>206</sup>Pb \* 1/137.88)

°Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>236</sup>U and the <sup>207</sup>/<sup>235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

<sup>e</sup>Corrected for mass-bias by normalising to GJ-1 reference zircon (~0.6 per atomic mass unit) and common Pb using the model Pb composition of Stacey & Kramers (1975)

#### Table B2. LA-ICPMS isotopic data for sample ASP2 from the Suurberg Group in the northern Algoa Basin

| ASP2   |                        |          |                  |                                        |                 |                                                  |                  |                                                  | RATIOS                  |      |                                       |                  |                                     |           | AGES                                | [Ma]     |                                      |           | Conc.     |
|--------|------------------------|----------|------------------|----------------------------------------|-----------------|--------------------------------------------------|------------------|--------------------------------------------------|-------------------------|------|---------------------------------------|------------------|-------------------------------------|-----------|-------------------------------------|----------|--------------------------------------|-----------|-----------|
| Sample | Analysis               | U [ppm]* | Pb [ppm]         | <sup>a 206</sup> Pb/ <sup>204</sup> Pb | Th/Uª           | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 <del>o</del> " | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 <b>o</b> <sup>d</sup> | rho° | <sup>207</sup> Pb/ <sup>206</sup> Pb' | 2 σ <sup>d</sup> | <sup>207</sup> Pb/ <sup>235</sup> U | 2 🕫       | <sup>206</sup> Pb/ <sup>238</sup> U | 2σ       | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ        | %         |
| ASP2   | C4-1-1                 | 264      | 26               | 1983                                   | 0.20            | 0.825                                            | 0.031            | 0.0973                                           | 0.0016                  | 0.44 | 0.0615                                | 0.0021           | £11                                 | 23        | 598                                 | 10       | 658                                  | 72        | 91        |
| ASP2   | C4-1-2                 | 139      | 5                | 24340                                  | 0.39            | 0.232                                            | 0.015            | 0.0334                                           | 0.0007                  | 0.32 | 0.0504                                | 0.0030           | 212                                 | 13        | 211                                 | 4        | 213                                  | 133       | 99        |
| ASP2   | C4-1-3                 | 109      | 4                | 1129                                   | 0.97            | 0.239                                            | 0.045            | 0.6335                                           | 0.0015                  | U 24 | 0.0518                                | 0.0096           | 217                                 | 41        | 212                                 | 10       | 274                                  | 423       | 11        |
| ASP2   | C4-1-6                 | 45       | 1                | 302                                    | 1.94            | 0.198                                            | 0.048            | 0.0292                                           | 0.0017                  | 0.24 | 0.0493                                | Ú.0 I 15         | 134                                 | 44        | 136                                 | 11       | 160                                  | 547       | 116       |
| ASP2   | C4-1-7                 | 111      | 5                | 406                                    | 0.39            | 0.320                                            | 0.031            | U.L4U≿                                           | 0.0011                  | 0.28 | 0.0570                                | U.0054           | 282                                 | 28        | 258                                 | 1        | 491                                  | 207       | 52        |
| ASP2   | C4-1-8                 | JUt      | 13               | 2933                                   | U 3U            | U.316                                            | U.U15            | U.6440                                           | 0.0003                  | 037  | 0.0522                                | 0.0023           | 279                                 | 13        | 277                                 | 5        | 293                                  | 102       | 95        |
| ASP2   | C4-1-9                 | 138      | 11               | 576                                    | 0.57            | 0.629                                            | 0.031            | U.L/99                                           | 0.0015                  | 037  | 0.0571                                | 0.0026           | 496                                 | 25        | 496                                 | y        | 495                                  | 102       | 100       |
| ASP2   | J4-1-10                | 465      | 21               | 1318                                   | U 46            | U.332                                            | 0.015            | U.6463                                           | 0.0008                  | 85 U | 0.0521                                | 0.0021           | 291                                 | 13        | 292                                 | 5        | 290                                  | 93        | 101       |
| ASP2   | C4-1-12                | 59       | 6                | 1439                                   | 0.50            | 0.861                                            | 0.041            | 0.1023                                           | 0.0019                  | 0.38 | 0.0611                                | 0.0027           | £31                                 | 3C        | 628                                 | 11       | 642                                  | 95        | 98        |
| ASP2   | C4-1-13                | 77       | 8                | 43993                                  | 0.43            | 0.930                                            | 0.043            | Ū. 1Ū86                                          | 0.0019                  | 0.39 | 0.0621                                | 0.0026           | 668                                 | 31        | 665                                 | 12       | 679                                  | 91        | 98        |
| ASP2   | C4-1-14                | 93       | 4                | 20677                                  | 0.93            | 0.314                                            | 0.037            | 0.6420                                           | 0.0013                  | 0.27 | 0.0542                                | 0.0062           | 277                                 | 33        | 265                                 | s        | 381                                  | 257       | 70        |
| ASP2   | C4 1- 15               | 78       | 3                | 17167                                  | 172             | 0.319                                            | 0.045            | 0.6416                                           | 0.0016                  | 0.27 | 0.0556                                | 0.0076           | 281                                 | 40        | 263                                 | 10       | 436                                  | 303       | 60        |
| ASP2   | C4-2-1                 | 163      | 7                | 3053                                   | 0.52            | 0.295                                            | 0.035            | 0.0408                                           | 0.0014                  | 0.28 | 0.0524                                | 0.0060           | 262                                 | 31        | 258                                 | 9        | 301                                  | 261       | \$6       |
| ASP2   | C4-2-2                 | 581      | 16               | 1802                                   | 0 74            | 0.156                                            | 0.011            | 0.0274                                           | 0.0005                  | 0 34 | 0.0494                                | 0.0027           | 173                                 | 1C        | 174                                 | з        | 165                                  | 125       | 105       |
| ASP2   | C4-2-3                 | 591      | 51               | 57153                                  | 0.25            | 0.692                                            | 0.021            | 0.0859                                           | 0.0016                  | 062  | 0.0584                                | 0.0014           | 534                                 | 16        | 531                                 | 10       | 545                                  | 52        | 98        |
| ASP2   | C4-2-4                 | 375      | 64               | 262659                                 | 0.20            | 1.746                                            | 0.053            | 0.1703                                           | 0.0032                  | 0.63 | 0.0744                                | 0.0017           | 1026                                | 31        | 1014                                | 19       | 1051                                 | 47        | 96        |
| ASP2   | C4-2-5                 | 617      | 1S               | 73109                                  | 1 13            | 801.0                                            | 0.008            | 0.0289                                           | 0.0006                  | 0.46 | 0.0497                                | 5100.0           | 153                                 | S         | 153                                 | 4        | 181                                  | 65        | 101       |
| ASP2   | C4-2-6                 | 200      | 6                | 2056                                   | 1.27            | 0.197                                            | 0.016            | 0.0290                                           | 0.0006                  | 0 26 | 0.0494                                | \$500.0          | 183                                 | 15        | 154                                 | 4        | 164                                  | 181       | 112       |
| ASP2   | C4-2-7                 | 232      | 21               | 1777                                   | 039             | 0.749                                            | 0.029            | 0.0925                                           | 0.001S                  | 051  | 0.0587                                | 0.0020           | 567                                 | 22        | 570                                 | 11       | 556                                  | 7.5       | 102       |
| ASP2   | C4-2-8                 | 160      | 7                | 451                                    | 0.45            | 0.293                                            | 0.029            | 0.6411                                           | 0.000S                  | 0.21 | 0.0518                                | 0.0050           | 261                                 | 26        | 259                                 | 5        | 275                                  | 221       | 94        |
| ASP2   | C4-2-9                 | 187      | 5                | 21290                                  | 0 50            | 0.192                                            | 0.020            | 0.0277                                           | 0.0006                  | 0.21 | 0.0501                                | 0.0051           | 178                                 | 19        | 176                                 | 4        | 200                                  | 235       | 58        |
| ASP2   | C4 2-10                | 211      | 23               | 94631                                  | 0 27            | 0.931                                            | 0.042            | 0.1090                                           | 0.0023                  | 0.46 | 0.0620                                | 0.0025           | 668                                 | 30        | 667                                 | 14       | 673                                  | 66        | 99        |
| ASP2   | C4 2-11                | 372      | 11               | 43352                                  | 109             | 0.194                                            | 0.016            | 0.0284                                           | 0.0006                  | 0.25 | 0.0495                                | 0.0039           | 150                                 | 14        | 150                                 | 4        | 171                                  | 182       | 105       |
| ASP2   | C4 2-12                | 475      | 33               | 2326                                   | 0.26            | 0.535                                            | 0.021            | 0.0689                                           | 0.0014                  | 051  | 0.0564                                | 0.0019           | 435                                 | 17        | 429                                 | 3        | 466                                  | 74        | 92        |
| ASP2   | C4 2-13                | 202      | 6                | 1310                                   | 0.75            | 0.195                                            | 0.012            | 0.0284                                           | 0.0006                  | 0.34 | 0.0499                                | 0.0030           | 15.1                                | 11        | 150                                 | 4        | 191                                  | 135       | 94        |
| ASP2   | C4 2-14                | 580      | 17               | 27126                                  | 0 39            | 0.196                                            | 0.003            | 0.0285                                           | 0.0006                  | 0.46 | 0.0499                                | 0.0019           | 132                                 | 3         | 131                                 | 4        | 138                                  | 63        | 96        |
| ASP2   | C4 2-15                | 271      | 8                | 320.32                                 | 0.45            | 0.197                                            | 0.020            | 0.0237                                           | 0.0006                  | 0 19 | 0.0497                                | 0.0051           | 132                                 | 19        | 133                                 | 4        | 179                                  | 233       | 102       |
| ASP2   | C4 2-16                | 269      | 7                | 2166                                   | 0.99            | 0.190                                            | 0.017            | 0.0276                                           | 0.0006                  | 0.23 | 0.0499                                | 0.0042           | 177                                 | 15        | 176                                 | 4        | 191                                  | 197       | 92        |
| ASP2   | 04.3-17                | 458      | 39               | 161646                                 | 0.19            | 0.691                                            | 0.025            | 0.0359                                           | 0.0017                  | 0.54 | 0.0583                                | 0.0018           | 533                                 | 19        | 531                                 | 10       | 541                                  | 67        | 98        |
| ASP2   | 04-2-18                | 162      | 7                | 23777                                  | 0.12            | 0.308                                            | 0.014            | 0.6432                                           | 0.0009                  | 0.46 | 0.0517                                | 0.0021           | 272                                 | 12        | 272                                 | 6        | 272                                  | 91        | 100       |
| AGP2   | 04.2.19                | 216      | 37               | 152612                                 | 0.31            | 1 751                                            | 0.057            | 0 1719                                           | 0.0033                  | 0.59 | 0.07.39                               | 0.0020           | 1027                                | 34        | 1023                                | 20       | 10.38                                | 54        | 99        |
| AGP2   | C4 3-20                | 59       | 11               | 1178                                   | 0.36            | 2.024                                            | 0.003            | 0.190.3                                          | 0.0040                  | 0.49 | 0.0771                                | 0.0029           | 1124                                | 49        | 1123                                | 24       | 1125                                 | 75        | 100       |
| AGP 2  | 0422                   | 430      | 30               | 3256                                   | 0.27            | 0.709                                            | 0.025            | 0.0300                                           | 0.0017                  | 0.55 | 0.0585                                | 0.0017           | -44                                 | 19        | 544                                 | - 11     | 547                                  | 64        | 99        |
| AGP2   | 01221                  | 375      | 11               | 43644                                  | 1.05            | 0.204                                            | 0.010            | 0.0000                                           | 0.0006                  | 0.44 | 0.0522                                | 0.0022           | 130                                 | 9         | 130                                 | 4        | 294                                  | 95        | 61        |
| AGE 2  | 04222                  | 114      | 5                | 314                                    | 0.32            | 0.290                                            | 0.027            | 0.6411                                           | 0.0012                  | 0.30 | 0.0512                                | 0.0046           | 259                                 | 24        | 260                                 | 7        | 248                                  | 205       | 105       |
| AGP2   | 04.3.25                | 625      |                  | 7264                                   | 0.11            | 0.712                                            | 0.022            | 0.0303                                           | 0.0017                  | 0.61 | 0.0585                                | 0.0014           | 546                                 | 17        | 545                                 | 10       | 549                                  | 53        | 99        |
| AGE 2  | 04226                  | 533      | 46               | 6973                                   | 0.59            | 0.708                                            | 0.026            | 0.0271                                           | 0.0017                  | 0.53 | 0.0589                                | 0.0018           | 543                                 | 20        | 538                                 | 11       | 564                                  | 68        | 96        |
| AGE 2  | 04.3-27                | 211      | 6                | 770                                    | 1.07            | 0.215                                            | 0.011            | 0.0283                                           | 0.0006                  | 0.43 | 0.0551                                | 0.0025           | 198                                 | 10        | 130                                 | 4        | 415                                  | 100       | 43        |
| AGE 2  | 04 3-31                | 326      | - 24             | 4368                                   | 0.43            | 0.673                                            | 0.043            | 0.0739                                           | 0.0013                  | 0.35 | 0.0661                                | 0.0039           | 503                                 | 32        | 459                                 | 11       | 809                                  | 123       | 57        |
| AGE 2  | 04.3-33                | 375      | 30               | 3757                                   | 0.51            | 0.637                                            | 0.026            | 0.0343                                           | 0.0017                  | 0.53 | 0.0591                                | 0.0019           | 531                                 | 20        | 502                                 | 10       | 569                                  | 69        | 92        |
| AGE2   | 04.2-34                | 603      | 17               | 73.3                                   | 0.59            | 0.473                                            | 0.017            | 0.0281                                           | 0.0006                  | 0.52 | ú 1094                                | 0.0037           | 358                                 | 14        | 178                                 | 4        | 1789                                 | 62        | 10        |
| AGE 2  | 04.3.25                | 727      | 62               | 255853                                 | 0.40            | 0.692                                            | 0.022            | 0.0356                                           | a.00.0                  | 0.59 | 0.0586                                | 0.0015           | 53.4                                | 17        | 579                                 | 10       | 550                                  | 57        | 96        |
| ASP2   | 04.2.36                | 10.94    | 109              | 5483                                   | 0.14            | 0.872                                            | 0.022            | 0.0000                                           | 0.0013                  | 0.56 | 0.0601                                | 0.0017           | 609                                 | 21        | 609                                 | 12       | 607                                  | 62        | 100       |
| ASP2   | 04.2-37                | 030      | 69               | 5997                                   | 0.38            | 0.568                                            | 0.019            | 0.001                                            | 0.0014                  | 0.58 | 0.0564                                | 0.0015           | 457                                 | 15        | 455                                 | 9        | 469                                  | 59        | 97        |
| ASP2   | 04.235                 | 682      | n                | 1501                                   | 0.77            | 0.196                                            | 0.010            | 0.0786                                           | 3000.0                  | 0.40 | 0.0498                                | 0.0023           | 182                                 | 9         | 182                                 | ر<br>د   | 126                                  | 105       | 98        |
| AGE 7  | C4 2.30                | 456      | 20               | 7589                                   | 0.18            | 0.677                                            | 0.021            | 0.0200                                           | 0.0016                  | 080  | 0.0577                                | 0.0015           | 575                                 | 17        | 576                                 | -<br>1ŭ  | 519                                  | 56        | 101       |
| 43P)   | C4 2 40                | 682      | 115              | 171684                                 | 0.17            | 1.776                                            | 0.059            | 0.1682                                           | 0.0032                  | 0.58 | 0.0766                                | 0.0021           | 1037                                | 21        | 1002                                | 10       | 1111                                 | 50        | 20        |
| 40P3   | C4 2 41                | 0.02     | 164              | 15412                                  | 0.11            | 1 \$ 4 4                                         | 0.054            | 0 177-1                                          | 0.0022                  | 0.64 | 0.0752                                | 0.0047           | 1060                                | 21        | 1052                                | 20       | 1076                                 | 45        | 00        |
|        | 04.2.42                | 30       | <del>ب</del> تن، | 7258                                   | 1.76            | 0.129                                            | 0.026            | 0.0280                                           | 0.0007                  | 0.17 | 0.07.00                               | 0.0066           | 176                                 | 2.1       | 178                                 | 29<br>.4 | 151                                  | 317       | 118       |
| 400 A  | C4 7 /2                | 377      | 15               | 62597                                  | 0.33            | 0,00                                             | 0.020            | 0.0446                                           | 0.0002                  | 0.10 | 0.0524                                | 0.0027           | 165                                 | 15        | 169                                 | 5        | 129                                  | 117       | 01        |
| ACE 2  | C-4-2-44-2<br>C-4-2-44 | 250      | 20               | 110255                                 | 0.16            | 0.230                                            | 0.005            | 0.0410                                           | 0.0006                  | 0.50 | 0.0521                                | 0.0019           | -00<br>510                          | 10        | 200                                 | 40       | 5,44                                 | 60        | 05        |
| AGE 2  | CH 2 HH<br>CA 0 45     | 105      | 23<br>5          | 297                                    | 0.52            | 0.007                                            | 0.045            | 0.030                                            | 0.0000                  | 0.00 | 0.0536                                | 0.0079           | 260                                 | 18<br>210 | 214                                 | 01<br>A  | 210                                  | 332       | 20        |
| 40E0   | CH 2-40<br>CA 3-46     | 142      | . 11             | .16760                                 | 0.02            | 0.505                                            | 0.040            | 0.0415                                           | 0.0003                  | 0.40 | 0.0520                                | 0.0030           | .06<br>70A                          | ್         | -04<br>309                          | 11       | 520                                  | 112       | 04<br>05  |
| 400 2  | C4 2-40                | 200      |                  | 27661                                  | -9 444<br>1 5 9 | 0.000                                            | 0.053            | 0.035                                            | 0.0000                  | 040  | 0.0406                                | 0.0037           | 177                                 | 20        | 177                                 | 4        | 120                                  | 100       | au<br>104 |
| AGE 2  | C4 2-41                | 150      | ب<br>دد          | 126000                                 | 0.85            | 0 180                                            | 0.011            | 0.0276                                           | 0.0000                  | 0.54 | 0.0490                                | 0.0017           | 11.1                                | 15        | 111                                 | ч<br>0   | 110                                  | 123<br>E0 | 00        |
| AGE 2  | C4 2.40                | 472      | 30<br>E          | 100296                                 | 0.00            | 0.102                                            | 0.010            | 0.0735                                           | 0.0014                  | 0.25 | 0.0502                                | 0.0045           | -57                                 | 13        | - 30                                | 9        | 400                                  | 200       | 39<br>01  |
| A SH 2 | _++ Z-49               | 174      | 0                | 200.53                                 | 0.30            | 0.193                                            | 0.018            | 0.027.9                                          | 0.0000                  | 0.23 | 0.0000                                | 0.0040           | 11.8                                | 1.7       | 17.0                                | 4        | 1.30                                 | 209       | 3.1       |

| ASP2  | C4 2-50  | 90   | 3   | 5235   | 0.93  | 0.195   | 0.019 | 0.0286  | 0.0007 | 0.24 | 0.0495  | 0.0047  | 151  | 18 | 182  | 4  | 171   | 222 | 107 |
|-------|----------|------|-----|--------|-------|---------|-------|---------|--------|------|---------|---------|------|----|------|----|-------|-----|-----|
| ASP2  | C4 2-51  | 252  | ô   | 1106   | 1 44  | 0.214   | 0.011 | 0.0310  | 0.0007 | 0.40 | 0.0502  | 0.0024  | 197  | 10 | 197  | 4  | 202   | 113 | 97  |
| ASP2  | C4-2-52  | 543  | 24  | 641    | 0 76  | 0.313   | 0.016 | 0.6433  | 0.0008 | 0.36 | 0.0525  | 0.0026  | 277  | 14 | 273  | 5  | 306   | 111 | S9  |
| ASP2  | C4-2-53  | 52   | 2   | 193    | 0 \$4 | 0.282   | 0.035 | 5060.0  | 0.0010 | 0 19 | 0.0514  | 6.000.0 | 253  | 32 | 252  | ĉ  | 259   | 282 | 97  |
| ASP2  | C4 2-54  | 264  | 11  | 44369  | 071   | 0.269   | 0.013 | 0.0360  | 0.0003 | 0 44 | 0.0513  | 0.0022  | 242  | 11 | 240  | 5  | 255   | 97  | 94  |
| ASP2  | C4-2-55  | 461  | 13  | 2181   | 0 45  | 0.197   | 0.011 | 0.0285  | 0.0006 | 0.37 | 0.0500  | 0.0025  | 182  | 10 | 151  | 4  | 195   | 115 | 93  |
| ASP2  | C4 2-56  | 665  | 23  | 661    | 0 37  | 0.314   | 0.019 | 0.6421  | 0.0003 | 0 32 | 0.0542  | 0.0031  | 276  | 17 | 266  | 5  | 378   | 123 | 70  |
| ASP2  | C4-2-57  | 538  | 92  | 5022   | 0 37  | 1.854   | 0.056 | 0.1701  | 0.0032 | 0.62 | 0.0790  | 0.0019  | 1065 | 32 | 1013 | 19 | 1173  | 47  | 36  |
| ASP2  | C4 2-56  | 290  | 24  | 99372  | 0 43  | 0.672   | 0.024 | 0.0333  | 0.0016 | 0.56 | 0.0585  | 0.0017  | 522  | 16 | 516  | 10 | 549   | 6.3 | 94  |
| ASP2  | C4 2-59  | 669  | 49  | 200394 | 0 19  | 0.571   | 0.013 | 0.0728  | 0.0014 | 0.60 | 0.0569  | 0.0014  | 459  | 15 | 453  | 9  | 437   | 56  | 93  |
| AGP2  | C4 2-60  | 448  | 19  | 3058   | 0.21  | 0.300   | 0.013 | 0.6429  | 0.0009 | 0.49 | 0.0522  | 0.0019  | 273  | 11 | 271  | 5  | 293   | 61  | 92  |
| AGP2  | C4 2-61  | 709  | 32  | 12031  | 0 74  | 0.234   | 0.012 | 0.0399  | 0.0003 | 0.47 | 0.0515  | 0.0019  | 253  | 11 | 252  | 5  | 263   | 66  | 96  |
| AGP2  | C4-2-62  | 163  | 31  | 2054   | 0 37  | 1 993   | 0.073 | 0.1300  | 0.0037 | 0 54 | 0.0769  | 0.0024  | 1113 | 41 | 1111 | 22 | 1119  | 61  | 99  |
| AGM2  | €42-63   | 1072 | 89  | 10517  | 0 10  | 0.634   | 0.021 | 0.0334  | 0.0016 | 062  | 0.0595  | 0.0014  | 529  | 16 | 517  | 10 | 534   | 5.3 | 39  |
| AGP2  | C.4.2-64 | 409  | 15  | 60606  | 0 23  | 0.200   | 0.003 | 0.0301  | 0.0006 | 0 50 | 0.0500  | 0.0017  | 192  | 3  | 191  | 4  | 196   | 61  | 97  |
| AGM2  | C 4 2-65 | 450  | 40  | 40389  | 0 29  | 0 7 2 2 | 0.023 | 0.0391  | 0.0017 | 0 59 | 0.0583  | 0.0015  | 552  | 18 | 550  | 10 | 560   | 56  | 98  |
| AGM2  | 042-66   | 213  | 13  | 1660   | 0 35  | 0.637   | 0.026 | 0.0356  | 0.0017 | 0.52 | 0.0582  | 0.0019  | 531  | 20 | 530  | 10 | 538   | 71  | 98  |
| AGP 2 | €4-2-67  | 324  | 125 | 12543  | 0 17  | 1 536   | 0.047 | 0.1517  | 0.0029 | 061  | 0.0734  | 0.0018  | 945  | 29 | 911  | 17 | 10:25 | 49  | 39  |
| AGM2  | 042-66   | 213  | 9   | 35470  | 0 74  | 0 237   | 0.022 | 0.6405  | 0.0003 | 0 27 | 0.0514  | 0.0036  | 256  | 19 | 256  | 5  | 259   | 163 | 99  |
| ASP2  | C4 2-69  | 30S  | 27  | 9117   | 0.38  | 0.695   | 0.024 | 0.0265  | 0.0017 | 0.55 | 0.0583  | 0.0017  | 536  | 19 | 535  | 10 | 542   | 6.3 | 99  |
| AGM2  | C4 2-70  | 99   | 3   | 418    | 1 15  | 0.216   | 0.035 | 0.0286  | 0.0007 | 0 14 | 0 0543  | 0.0088  | 199  | 32 | 132  | 4  | 405   | 353 | 45  |
| ASP2  | C4 2-71  | 361  | 15  | 60687  | 0 40  | 0 290   | 0.019 | 0.640\$ | 0.0008 | 0.31 | 0.0515  | 0.0031  | 259  | 17 | 258  | 5  | 263   | 140 | 98  |
| ASP2  | 04-2-72  | 213  | 6   | 2542   | 1 03  | 0 130   | 0.011 | 0.0277  | 0.0006 | 0.37 | 0.0499  | 0.0026  | 177  | 10 | 176  | 4  | 188   | 123 | 03  |
| ASP2  | 042-73   | 18S  | 5   | 21667  | 0.34  | 0 192   | 0.011 | 0.0281  | 0.0006 | 037  | 0.0496  | 0.0027  | 178  | 10 | 179  | 4  | 174   | 127 | 102 |
| ASP2  | C4 2-74  | 24S  | 15  | 2292   | 0 44  | 0 456   | 0.017 | 0.0588  | 0.0012 | 0.52 | 0.0562  | 0.0018  | 381  | 14 | 369  | 7  | 461   | 71  | S0  |
| ASP 2 | C4 2 75  | 36S  | 10  | 41157  | 1 18  | 0 130   | 0.003 | 0 0272  | 0.0006 | 0.42 | 0.020.0 | 0.0023  | 177  | 9  | 173  | 4  | 231   | 104 | 75  |
| ASP2  | 04-2-76  | 2893 | 237 | 973 15 | 0 11  | 0.655   | 0.021 | 0.021\$ | 0.0016 | 0.59 | 0.0581  | 0.0015  | 512  | 17 | 507  | 10 | 535   | 57  | 95  |
| ASP2  | C4 2 77  | 70S  | 27  | 3500   | 0 56  | 0 270   | 0.010 | 0 0384  | 0.0007 | 0.54 | 0.0510  | 0.0015  | 242  | 9  | 243  | 5  | 240   | 69  | 101 |
| AGP 2 | C4 2 78  | 991  | 68  | 6469   | 0 52  | 0 572   | 0.018 | 0.0689  | 0.0013 | 0.60 | 0.0602  | 0.0015  | -459 | 14 | -430 | S  | 611   | 54  | 70  |
| ASP2  | C4 2 79  | 351  | 13  | 2606   | 0 55  | 0 265   | 0.013 | 0.0374  | 0.0008 | 0.42 | 0.0513  | 0.0023  | 238  | 12 | 237  | 5  | 253   | 104 | 93  |
| AGP 2 | C4 2 80  | 491  | 38  | 8843   | 0 35  | 0.634   | 0.025 | 0 0778  | 0.0015 | 0 50 | 0.0591  | 0.0020  | -139 | 20 | 483  | 10 | 570   | 74  | 85  |
| ASP2  | C4 2 81  | 634  | 24  | 100604 | 0.86  | 0 274   | 0.010 | 0 0386  | 0.0007 | 0.53 | 0.0515  | 0.0016  | 246  | 9  | 244  | 5  | 261   | 71  | 94  |
| ASP2  | 04-2-82  | S6   | 2   | 9776   | 1 51  | 0 191   | 0.033 | 0 0277  | 0.0007 | 0 14 | 0.0501  | 0.0086  | 178  | 31 | 176  | 4  | 201   | 399 | S8  |
|       |          |      |     |        |       |         |       |         |        |      |         |         |      |    |      |    |       |     |     |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup> Pb/<sup>205</sup>U calculated using (<sup>207</sup> Pb/<sup>206</sup> Pb)/(<sup>238</sup>U/<sup>206</sup> Pb \* 1/137.88)

<sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>236</sup>U and the <sup>207</sup>/<sup>235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

\*Corrected for mass-bias by normalising to GJ-1 reference zircon (~0.6 per atomic mass unit) and common Pb using the model Pb composition of Stacey & Kramers (1975)

Table B3. LA-ICPMS isotopic data for sample ASC3 from the Suurberg Group in the northern Algoa Basin

| ASC3   |          |                      |                         | 1                                    |                   | ·                                                |                  |                                                  | NATIUS           |      |                                      |                  |                                     |     | AGES                                | լյուց |                                      |     | Conc. |
|--------|----------|----------------------|-------------------------|--------------------------------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------|--------------------------------------|------------------|-------------------------------------|-----|-------------------------------------|-------|--------------------------------------|-----|-------|
| Sample | Analysis | U [ppm] <sup>a</sup> | Pb [ppm] <sup>a 2</sup> | <sup>206</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>ª</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho° | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2 σ <sup>d</sup> | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ  | <sup>206</sup> Pb/ <sup>238</sup> U | 2σ    | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ  | %     |
| ASC3   | C3-1     | 216                  | 18                      | 77783                                | 0.62              | 0.641                                            | 0.024            | 0.0811                                           | 0.0013           | 0.43 | 0.0574                               | 0.0019           | 503                                 | 19  | 502                                 | 8     | 506                                  | 74  | 99    |
| ASC3   | C3-2     | 242                  | 11                      | 47564                                | 1.51              | 0.320                                            | 0.014            | 0.0444                                           | 0.0007           | 0.39 | 0.0522                               | 0.0021           | 282                                 | 12  | 280                                 | 5     | 296                                  | 90  | 95    |
| ASC3   | C3-3     | 53                   | 10                      | 45331                                | 0.23              | 2.059                                            | 0.098            | 0.1921                                           | 0.0037           | 0.40 | 0.0777                               | 0.0034           | 1135                                | 54  | 1133                                | 22    | 1140                                 | 86  | 99    |
| ASC3   | C3-4     | 224                  | 18                      | 81949                                | 0.53              | 0.656                                            | 0.030            | 0.0824                                           | 0.0015           | 0.38 | 0.0578                               | 0.0025           | 512                                 | 24  | 511                                 | 9     | 521                                  | 94  | 98    |
| ASC3   | C3-5     | 183                  | 5                       | 445                                  | 1.69              | 0.213                                            | 0.023            | 0.0294                                           | 0.0006           | 0.18 | 0.0527                               | 0.0056           | 196                                 | 21  | 187                                 | 4     | 315                                  | 241 | 59    |
| ASC3   | C3-6     | 68                   | 4                       | 19868                                | 0.75              | 0.507                                            | 0.028            | 0.0660                                           | 0.0013           | 0.35 | 0.0558                               | 0.0029           | 417                                 | 23  | 412                                 | 8     | 443                                  | 115 | 93    |
| ASC3   | C3-7     | 188                  | 6                       | 4905                                 | 0.81              | 0.205                                            | 0.025            | 0.0297                                           | 0.0005           | 0.14 | 0.0502                               | 0.0062           | 190                                 | 24  | 189                                 | 3     | 202                                  | 285 | 93    |
| ASC3   | C3-8     | 315                  | 13                      | 2838                                 | 0.99              | 0.291                                            | 0.011            | 0.0407                                           | 0.0007           | 0.41 | 0.0519                               | 0.0019           | 260                                 | 10  | 257                                 | 4     | 282                                  | 82  | 91    |
| ASC3   | C3-9     | 338                  | 43                      | 188603                               | 0.08              | 1.183                                            | 0.043            | 0.1259                                           | 0.0020           | 0.45 | 0.0682                               | 0.0022           | 793                                 | 29  | 765                                 | 12    | 873                                  | 67  | 88    |
| ASC3   | C3-10    | 252                  | 11                      | 4434                                 | 0.51              | 0.313                                            | 0.013            | 0.0438                                           | 0.0007           | 0.41 | 0.0519                               | 0.0019           | 276                                 | 11  | 276                                 | 5     | 279                                  | 84  | 99    |
| ASC3   | C3-11    | 279                  | 20                      | 89579                                | 0.32              | 0.558                                            | 0.026            | 0.0726                                           | 0.0013           | 0.38 | 0.0557                               | 0.0024           | 450                                 | 21  | 452                                 | 8     | 441                                  | 94  | 102   |
| ASC3   | C3-12    | 333                  | 30                      | 132346                               | 0.52              | 0.728                                            | 0.022            | 0.0897                                           | 0.0014           | 0.51 | 0.0589                               | 0.0015           | 555                                 | 17  | 554                                 | 8     | 562                                  | 56  | 99    |
| ASC3   | C3-13    | 60                   | 11                      | 47993                                | 0.48              | 1.859                                            | 0.070            | 0.1802                                           | 0.0030           | 0.45 | 0.0748                               | 0.0025           | 1067                                | 40  | 1068                                | 18    | 1064                                 | 68  | 100   |
| ASC3   | C3-15    | 133                  | 13                      | 58426                                | 0.28              | 0.824                                            | 0.034            | 0.0993                                           | 0.0017           | 0.41 | 0.0602                               | 0.0023           | 610                                 | 25  | 610                                 | 10    | 611                                  | 81  | 100   |
| ASC3   | C3-16    | 230                  | 7                       | 29524                                | 1.06              | 0.209                                            | 0.009            | 0.0291                                           | 0.0005           | 0.39 | 0.0521                               | 0.0021           | 192                                 | 8   | 185                                 | 3     | 288                                  | 90  | 64    |
| ASC3   | C3-17    | 162                  | 23                      | 100302                               | 0.44              | 1.329                                            | 0.043            | 0.1398                                           | 0.0022           | 0.48 | 0.0690                               | 0.0020           | 859                                 | 28  | 844                                 | 13    | 897                                  | 59  | 94    |
| ASC3   | C3-18    | 213                  | 22                      | 97345                                | 0.37              | 0.862                                            | 0.029            | 0.1033                                           | 0.0016           | 0.46 | 0.0605                               | 0.0018           | 631                                 | 21  | 634                                 | 10    | 622                                  | 65  | 102   |
| ASC3   | C3-19    | 108                  | 3                       | 138                                  | 2.01              | 0.269                                            | 0.056            | 0.0294                                           | 0.0007           | 0.11 | 0.0663                               | 0.0137           | 242                                 | 50  | 187                                 | 4     | 816                                  | 432 | 23    |
| ASC3   | C3-20    | 166                  | 15                      | 6947                                 | 0.55              | 0.724                                            | 0.024            | 0.0872                                           | 0.0014           | 0.46 | 0.0602                               | 0.0018           | 553                                 | 19  | 539                                 | 8     | 609                                  | 65  | 88    |
| ASC3   | C3-21    | 68                   | 7                       | 28926                                | 0.02              | 0.803                                            | 0.034            | 0.0969                                           | 0.0017           | 0.40 | 0.0601                               | 0.0024           | 599                                 | 26  | 596                                 | 10    | 608                                  | 85  | 98    |
| ASC3   | C3-22    | 140                  | 13                      | 5567                                 | 0.57              | 0.749                                            | 0.029            | 0.0920                                           | 0.0015           | 0.42 | 0.0591                               | 0.0021           | 568                                 | 22  | 567                                 | 9     | 570                                  | 77  | 99    |
| ASC3   | C3-23    | 385                  | 30                      | 9375                                 | 0.37              | 0.631                                            | 0.044            | 0.0772                                           | 0.0017           | 0.32 | 0.0592                               | 0.0039           | 497                                 | 34  | 480                                 | 11    | 576                                  | 142 | 83    |
| ASC3   | C3-24    | 242                  | 25                      | 7873                                 | 0.46              | 0.853                                            | 0.029            | 0.1013                                           | 0.0016           | 0.46 | 0.0610                               | 0.0018           | 626                                 | 21  | 622                                 | 10    | 640                                  | 65  | 97    |
| ASC3   | C3-25    | 187                  | 5                       | 676                                  | 0.56              | 0.197                                            | 0.031            | 0.0286                                           | 0.0005           | 0.11 | 0.0500                               | 0.0079           | 183                                 | 29  | 182                                 | 3     | 194                                  | 367 | 94    |
| ASC3   | C3-26    | 294                  | 26                      | 10713                                | 0.48              | 0.716                                            | 0.022            | 0.0889                                           | 0.0014           | 0.49 | 0.0584                               | 0.0016           | 549                                 | 17  | 549                                 | 8     | 546                                  | 59  | 101   |
| ASC3   | C3-27    | 163                  | 5                       | 450                                  | 0.89              | 0.205                                            | 0.022            | 0.0299                                           | 0.0005           | 0.16 | 0.0499                               | 0.0054           | 190                                 | 21  | 190                                 | 3     | 190                                  | 251 | 100   |
| ASC3   | C3-28    | 118                  | 7                       | 723                                  | 0.41              | 0.496                                            | 0.036            | 0.0619                                           | 0.0014           | 0.31 | 0.0581                               | 0.0040           | 409                                 | 30  | 387                                 | 9     | 534                                  | 152 | 72    |
| ASC3   | C3-29    | 186                  | 16                      | 1205                                 | 0.47              | 0.665                                            | 0.023            | 0.0835                                           | 0.0013           | 0.46 | 0.0577                               | 0.0018           | 518                                 | 18  | 517                                 | 8     | 520                                  | 68  | 99    |
| ASC3   | C3-30    | 151                  | 7                       | 1295                                 | 0.39              | 0.317                                            | 0.063            | 0.0442                                           | 0.0007           | 0.08 | 0.0521                               | 0.0104           | 280                                 | 56  | 279                                 | 5     | 292                                  | 455 | 96    |
| ASC3   | C3-32    | 142                  | 11                      | 50481                                | 0.35              | 0.641                                            | 0.026            | 0.0808                                           | 0.0014           | 0.41 | 0.0576                               | 0.0022           | 503                                 | 21  | 501                                 | 8     | 513                                  | 82  | 98    |
| ASC3   | C3-33    | 502                  | 39                      | 2946                                 | 0.15              | 0.674                                            | 0.023            | 0.0781                                           | 0.0012           | 0.46 | 0.0625                               | 0.0019           | 523                                 | 18  | 485                                 | 8     | 693                                  | 65  | 70    |
| ASC3   | C3-34    | 246                  | 10                      | 3050                                 | 0.97              | 0.288                                            | 0.023            | 0.0402                                           | 0.0007           | 0.20 | 0.0520                               | 0.0041           | 257                                 | 21  | 254                                 | 4     | 283                                  | 181 | 90    |
| ASC3   | C3-35    | 44                   | 1                       | 169                                  | 1.22              | 0.228                                            | 0.089            | 0.0300                                           | 0.0007           | 0.06 | 0.0552                               | 0.0216           | 209                                 | 82  | 190                                 | 5     | 420                                  | 874 | 45    |
| ASC3   | C3-36    | 90                   | 3                       | 11776                                | 1.58              | 0.203                                            | 0.038            | 0.0297                                           | 0.0006           | 0.10 | 0.0497                               | 0.0093           | 188                                 | 35  | 189                                 | 4     | 180                                  | 436 | 105   |
| ASC3   | C3-37    | 60                   | 2                       | 318                                  | 1.20              | 0.207                                            | 0.035            | 0.0301                                           | 0.0007           | 0.15 | 0.0498                               | 0.0083           | 191                                 | 32  | 191                                 | 5     | 187                                  | 386 | 103   |
| ASC3   | C3-38    | 177                  | 25                      | 5514                                 | 0.62              | 1.344                                            | 0.041            | 0.1434                                           | 0.0022           | 0.50 | 0.0680                               | 0.0018           | 865                                 | 26  | 864                                 | 13    | 869                                  | 55  | 99    |
| ASC3   | C3-40    | 81                   | 7                       | 1127                                 | 0.39              | 0.960                                            | 0.082            | 0.0881                                           | 0.0025           | 0.33 | 0.0790                               | 0.0064           | 683                                 | 59  | 544                                 | 16    | 1172                                 | 160 | 46    |
| ASC3   | C3-41    | 147                  | 8                       | 549                                  | 0.37              | 0.447                                            | 0.035            | 0.0565                                           | 0.0013           | 0.31 | 0.0574                               | 0.0042           | 375                                 | 29  | 354                                 | 8     | 506                                  | 162 | 70    |
| ASC3   | C3-42    | 160                  | 13                      | 1769                                 | 0.57              | 0.686                                            | 0.059            | 0.0835                                           | 0.0022           | 0.31 | 0.0596                               | 0.0049           | 530                                 | 45  | 517                                 | 13    | 589                                  | 177 | 88    |
| ASC3   | C3-43    | 116                  | 11                      | 902                                  | 0.73              | 0.746                                            | 0.034            | 0.0922                                           | 0.0016           | 0.39 | 0.0587                               | 0.0025           | 566                                 | 26  | 569                                 | 10    | 554                                  | 92  | 103   |
| ASC3   | C3-44    | 220                  | 18                      | 3216                                 | 0.79              | 0.666                                            | 0.027            | 0.0831                                           | 0.0014           | 0.41 | 0.0581                               | 0.0021           | 518                                 | 21  | 515                                 | 9     | 535                                  | 81  | 96    |
| ASC3   | C3-45    | 302                  | 27                      | 7426                                 | 0.28              | 0.729                                            | 0.023            | 0.0893                                           | 0.0014           | 0.49 | 0.0592                               | 0.0016           | 556                                 | 17  | 552                                 | 8     | 573                                  | 59  | 96    |
| ASC3   | C3-46    | 58                   | 2                       | 77                                   | 1.29              | 0.410                                            | 0.125            | 0.0427                                           | 0.0010           | 0.07 | 0.0697                               | 0.0213           | 349                                 | 107 | 269                                 | 6     | 919                                  | 628 | 29    |
| ASC3   | C3-47    | 103                  | 3                       | 442                                  | 1.08              | 0.200                                            | 0.030            | 0.0292                                           | 0.0007           | 0.16 | 0.0497                               | 0.0074           | 185                                 | 28  | 185                                 | 5     | 180                                  | 345 | 103   |
| ASC3   | C3-49    | 251                  | 21                      | 2161                                 | 0.48              | 0.650                                            | 0.024            | 0.0821                                           | 0.0013           | 0.44 | 0.0574                               | 0.0019           | 508                                 | 19  | 508                                 | 8     | 508                                  | 73  | 100   |
| ASC3   | C3-50    | 171                  | 14                      | 62656                                | 0.47              | 0.670                                            | 0.030            | 0.0834                                           | 0.0015           | 0.39 | 0.0583                               | 0.0024           | 521                                 | 24  | 516                                 | 9     | 540                                  | 92  | 96    |
| ASC3   | C3-51    | 151                  | 12                      | 407                                  | 0.29              | 0.777                                            | 0.072            | 0.0779                                           | 0.0023           | 0.32 | 0.0723                               | 0.0063           | 584                                 | 54  | 484                                 | 14    | 993                                  | 178 | 49    |
| ASC3   | C3-52    | 257                  | 44                      | 192830                               | 0.13              | 1.710                                            | 0.050            | 0.1705                                           | 0.0026           | 0.52 | 0.0728                               | 0.0018           | 1012                                | 30  | 1015                                | 15    | 1007                                 | 51  | 101   |
| ASC3   | C3-53    | 174                  | 5                       | 439                                  | 0.67              | 0.198                                            | 0.040            | 0.0292                                           | 0.0005           | 0.09 | 0.0492                               | 0.0100           | 183                                 | 37  | 185                                 | 3     | 155                                  | 474 | 120   |
| ASC3   | C3-55    | 225                  | 20                      | 86674                                | 0.24              | 0.710                                            | 0.027            | 0.0876                                           | 0.0014           | 0.43 | 0.0588                               | 0.0020           | 545                                 | 21  | 542                                 | 9     | 559                                  | 74  | 97    |

| ASC3 | C3-56 | 261 | 25 | 110974 | 0.69 | 0.797 | 0 030 | \$660.0 | 0.0016 | 0.43 | 5653.0 | 0.0021 | 5 | 95  | 23 | 596 | 10 | 595  | 75  | 100 |
|------|-------|-----|----|--------|------|-------|-------|---------|--------|------|--------|--------|---|-----|----|-----|----|------|-----|-----|
| ASC3 | C3-57 | 102 | 4  | 13273  | 1 23 | 0.292 | 0.041 | 0.0407  | 0.0007 | 0.13 | 0.0519 | 0.0073 | 2 | 16U | 37 | 257 | 5  | 282  | 322 | 91  |
| ASC3 | C3-58 | 225 | 7  | 29034  | 0.73 | 0.203 | 0 025 | 0.0293  | 0.0005 | 0.15 | 0.0503 | 0.0062 |   | 88  | 23 | 186 | 3  | 208  | 284 | 90  |
| ASC3 | C3-59 | 558 | 43 | 310    | 0.07 | 0.809 | 0.029 | 0.0778  | 0.0013 | 0.46 | 0.0754 | 0.0024 | 6 | 02  | 21 | 483 | 8  | 1079 | 63  | 45  |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value): <sup>207</sup>Pb/<sup>235</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb)/(<sup>258</sup>U/<sup>206</sup>Pb \* 1/137.88)

<sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>38</sup>U and the <sup>207</sup>/<sup>235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

<sup>6</sup>Corrected for mass-bias by normalising to GJ-1 reference zircon (~0.6 per atomic mass unit) and common Pb using the model Pb composition of Stacey & Kramers (1975)

#### Table B4. LA-ICPMS isotopic data for sample ASUP from the Suurberg Group in the northern Algoa Basin

| ASUP   |                    |             |                       |                       |                                      |                   |                                                  |                  |               | RATIOS           |                   |                                       |                  |                                     |    | AGES                                | [Ma]   |                                      |     | Conc.    |
|--------|--------------------|-------------|-----------------------|-----------------------|--------------------------------------|-------------------|--------------------------------------------------|------------------|---------------|------------------|-------------------|---------------------------------------|------------------|-------------------------------------|----|-------------------------------------|--------|--------------------------------------|-----|----------|
| Sample | Analysis           | U [ppm]ª    | Pb [ppm] <sup>a</sup> | Th [ppm] <sup>a</sup> | <sup>206</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>a</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | 206 Pb/238 Ub | 2 σ <sup>d</sup> | rtho <sup>c</sup> | <sup>207</sup> Pb/ <sup>206</sup> Pb' | 2 g <sup>d</sup> | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ | <sup>206</sup> Pb/ <sup>238</sup> U | 2 σ    | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ  | %        |
| ASUP   | ASUP-2             | 304         | 23                    | 96                    | 188423                               | Ú.31              | 0.591                                            | 0.017            | 007511        | 0.00108          | 0.51              | 0.0571                                | 0.0014           | 472                                 | 13 | 467                                 | 7      | 495                                  | 53  | 94       |
| ASUP   | ASUP-3             | 264         | 8                     | 303                   | 1679                                 | I.15              | 0.210                                            | 0.008            | 0 02930       | 0.00046          | 0.43              | 0.0519                                | 0.0017           | 193                                 | 7  | 186                                 | 3      | 282                                  | 76  | 66       |
| ASUP   | ASUP-4             | 380         | 15                    | 182                   | 126938                               | 0.48              | 0.285                                            | 0.009            | 0 04043       | 0.00060          | 0.49              | U.0511                                | 0.0013           | 254                                 | 3  | 255                                 | 4      | 243                                  | សីប | 105      |
| ASUP   | ASUP-6             | 366         | 16                    | 175                   | 4477                                 | Ù.48              | 0.329                                            | 0.019            | 0 04269       | 0.00082          | 0.33              | Ú.0560                                | 0.0030           | 289                                 | 17 | 269                                 | 5      | 451                                  | 121 | 60       |
| ASUP   | ASUP-8             | <i>2</i> ⊳1 | 20                    | 29                    | 4663                                 | U.11              | 0.594                                            | 0.026            | 007559        | 0.00128          | 0.38              | 0.0570                                | 0.0023           | 4/4                                 | 21 | 4/0                                 | з      | 493                                  | 90  | 95       |
| ASUP   | ASUP-9             | 149         | 11                    | 69                    | 94200                                | U.46              | 0.622                                            | 0.039            | 007659        | 0.00158          | 0.33              | 0.0589                                | 0.0035           | 491                                 | 31 | 4/6                                 | ΙU     | 562                                  | 129 | 85       |
| ASUP   | ASUP-12            | Jut         | 12                    | 233                   | 2024                                 | 0.59              | 0.201                                            | 0.011            | 0.02920       | 0.00046          | 0.30              | 0.0499                                | 0.0025           | 186                                 | IU | 186                                 | 3      | 192                                  | 118 | 97       |
| ASUP   | ASUP-13            | 289         | 8                     | 351                   | 84SU                                 | 1.21              | 0.196                                            | 0.008            | 0 02865       | 0.00044          | 0.38              | 0.0497                                | 0.0018           | 182                                 | 7  | 182                                 | 3      | 182                                  | 36  | 1ω       |
| ASUP   | ASUP-14            | 135         | 4                     | 167                   | 878                                  | 1.24              | 0.203                                            | 0.011            | 0 02959       | 0.00050          | 0.32              | 0.0498                                | 0.0025           | 881                                 | 10 | 881                                 | 3      | 631                                  | 117 | 101      |
| ASUP   | ASUP-15            | 396         | 15                    | 311                   | 11356                                | 0.78              | 0.303                                            | 0.015            | 0 03874       | 0.00068          | 0.35              | 0.0567                                | 0.0026           | 268                                 | 13 | 245                                 | 4      | 475                                  | 103 | 51       |
| ASUP   | ASUP-17            | 162         | 14                    | 67                    | 29812                                | ŭ 41              | 0.712                                            | 0.021            | 0.08872       | 0.00132          | 0.49              | 0.0582                                | 0.0015           | 546                                 | lő | 548                                 | s      | 537                                  | 57  | 102      |
| ASUP   | ASUP-18            | 126         | 12                    | 94                    | 99587                                | 0.74              | 0.785                                            | 0.025            | 0 09545       | 0.00142          | 0.48              | 0.0596                                | 0.0016           | 588                                 | 18 | 588                                 | 9      | 589                                  | 60  | 100      |
| ASLIP  | ASUP-19            | 97          | 4                     | 49                    | 1375                                 | 0.51              | 0.272                                            | 0.037            | 0.03698       | 0.00132          | 0.26              | 0.0533                                | 0.0070           | 744                                 | 33 | 234                                 | 8      | 347                                  | 296 | 68       |
| ASUE   | ASUP-20            | 210         | ń                     | 225                   | 963                                  | 1.07              | 0.203                                            | 0.011            | 0.02938       | 0.00048          | 0.31              | 0.0501                                | 0.0075           | 188                                 | 10 | 187                                 | 3      | 200                                  | 117 | 94       |
| ASLIE  | ASUE-21            | 79          | 15                    | 22                    | 1220.18                              | 0.28              | 1.982                                            | 0.072            | 0.18762       | 0.00308          | 0.45              | 0.0766                                | 0.0025           | 1109                                | 40 | 1105                                | 18     | 1111                                 | 65  | 100      |
| ASUE   | ASUP.22            | 156         | 28                    | 50                    | 227646                               | 0.32              | 1.823                                            | 0.052            | 0 17750       | 0.00260          | 0.52              | 0.0745                                | 0.0018           | 1054                                | 30 | 1053                                | 15     | 1055                                 | -19 | 100      |
| ASUE   | ASUE-73            | 1.10        | 1                     | GF.                   | 27059                                | 0.87              | 0.207                                            | 0.002            | 0.02983       | 0.000200         | 0.37              | 0.0504                                | 0.0071           | 191                                 | G  | 120                                 | 3      | 212                                  | 98  | 90       |
| ASUE   | ASUP.24            | 789         | n                     | 14 2                  | 165290                               | 0.49              | 0.529                                            | 0.000            | 0.06931       | 0.00000          | 0.39              | 0.0617                                | 0.0021           | 471                                 | 21 | 437                                 | 7      | 663                                  | 50  | 65       |
|        | ASUD 25            | 132         | 7                     | 110                   | F66                                  | 0.96              | 0.400                                            | 0.020            | 0.05172       | 0.00116          | 0.32              | 0.0572                                | 0.0040           | 3/18                                |    | 325                                 | 7      | 501                                  | 152 | 65       |
| ASUP   | AGUT-20<br>AGUD 06 | 224         | 16                    | 179                   | 1459                                 | 0.50              | 0.409                                            | 0.030            | 0.06259       | 0.00136          | 0.31              | 0.0075                                | 0.0040           | 420                                 |    | 439                                 | ,<br>c | 435                                  | 110 | 0.5      |
| ASUD   | AGUT-20            | _074<br>E 0 | -                     | 0.5                   | 12002                                | 1.41              | 0.020                                            | 0.020            | 0.000000      | 0.00120          | 0.55              | 0.0500                                | 0.0027           | 429                                 |    | 420                                 | 4      | 900                                  | NE  | 30       |
| ASUD   | AGUT-20            | 501         | -                     | 02                    | 10190                                | 0.20              | 0.200                                            | 0.025            | 0.02303       | 0.00000          | 0.10              | 0.0511                                | 0.0007           | 109                                 | -1 | 160<br>E10                          | -      | 244                                  | 200 | 70       |
| AGUE   | AGUT-29            | 201         | 2.5                   | 04                    | 400                                  | 0.30              | 0.070                                            | 0.036            | 0.002/2       | 0.00140          | 0.40              | 0.0770                                | 0.0031           | 040                                 | -0 | 512                                 | 9      | <u> </u>                             |     | 40       |
| ASUP   | ASU~-30            | 101         | 10                    | 125                   | 105305                               | 0.63              | 0.000                                            | 0.026            | 0.06298       | 0.00140          | 0.40              | 0.0562                                | 0.0023           | 010                                 | -2 | 514                                 | 9      | 537                                  | 30  | 96       |
| ASUF   | A 5052             | 330         | -                     | -30                   | 17.529                               | 0.70              | 0.559                                            | 0.016            | 0.04014       | 0.00076          | 0.50              | 0.0612                                | 0.0031           | 230                                 | 10 | 204                                 | 5      | 047                                  | 109 | 59       |
| ASUP   | ASUP-33            | 223         | (<br>10               | 430                   | 2956                                 | 1.95              | 0.207                                            | 0.013            | 0.02977       | 0.00046          | 0.25              | 0.0504                                | 0.0030           | 191                                 | 12 | 189                                 | 3      | 215                                  | 136 | 60<br>•7 |
| ASUP   | A 5U-1-34          | 220         | 12                    | 133                   | 414                                  | 0.09              | 0.440                                            | 0.030            | 0.05120       | 0.00112          | 0.32              | 0.0623                                | 0.0040           | 370                                 | _5 | 322                                 | 1      | 684                                  | 130 | 4;       |
| ASUP   | ASUP-30            | 166         | 14                    | 107                   | 115156                               | 0.65              | 0.846                                            | 0.042            | 0.06434       | 0.00158          | 0.38              | 0.0727                                | 0.0033           | 622                                 | 31 | 522                                 | 10     | 1006                                 | 93  | 52       |
| ASUP   | ASUP-37            | 113         | 3                     | 136                   | 27457                                | 1.21              | 0.205                                            | 0.021            | 0.02961       | 0.00050          | 0.17              | 0.0501                                | 0.0050           | 189                                 | 19 | 168                                 | 3      | 201                                  | 238 | 94       |
| ASUP   | ASUP-38            | 194         | 29                    | 126                   | 1069                                 | 0.65              | 1.573                                            | 0.058            | 0 14600       | 0.00242          | 0.44              | 0.0771                                | 0.0025           | 959                                 | 35 | 390                                 | 15     | 1123                                 | 66  | 79       |
| ASUP   | ASUP-39            | 431         | 26                    | 67                    | 459                                  | 0.16              | 0.767                                            | 0.027            | 0 06 09 3     | 0.00098          | 0.45              | 0.0913                                | 0.0029           | 578                                 | 21 | 361                                 | 6      | 1454                                 | 60  | 26       |
| AGUP   | AGUP-42            | 147         | 6                     | 93                    | 48516                                | 0.63              | 0.267                                            | 0.033            | 0.04013       | 0.00122          | 0.27              | 0.0518                                | 0.0057           | 256                                 | 29 | 254                                 | 3      | 277                                  | 252 | 92       |
| AGUP   | AGUP-43            | 251         | 19                    | 126                   | 24822                                | 0.50              | 0.634                                            | 0.036            | 0 07432       | 0.00152          | 0.34              | 0.0619                                | 0.0035           | 499                                 | 30 | 462                                 | 9      | 670                                  | 121 | 69       |
| AGUP   | AGUP-44            | 457         | 13                    | 200                   | 687                                  | 0.44              | 0.203                                            | 0.012            | 0 02 943      | 0.00044          | 0.26              | 0.0513                                | 0.0029           | 192                                 | 11 | 167                                 | 3      | 255                                  | 130 | 73       |
| AGUP   | AGUP-46            | 334         | 25                    | 14.3                  | 3116                                 | 0.43              | 0.610                                            | 0.024            | 0.07601       | 0.00124          | 0.42              | 0.0562                                | 0.0021           | 464                                 | 19 | 472                                 | 3      | 533                                  | 70  | 63       |
| AGUP   | AGUP-47            | 321         | 9                     | 26.3                  | 1640                                 | 0.82              | 0.209                                            | 0.013            | 0.02869       | 0.00044          | 0.24              | 0.0529                                | 0 0033           | 193                                 | 12 | 162                                 | 3      | 323                                  | 142 | 56       |
| AGUP   | AGUP-49            | 212         | 16                    | 121                   | 120173                               | 0.57              | 0.579                                            | 0.036            | 0 07 3 4 5    | 0.00150          | 0.33              | 0.0572                                | 0.0033           | 464                                 | 29 | 457                                 | 9      | 500                                  | 120 | 91       |
| AGUP   | AGUP-50            | 596         | 17                    | 328                   | 6420                                 | 0.55              | 0.199                                            | 0.006            | 0 02930       | 0.00044          | 0.50              | 0 0492                                | 0 0013           | 184                                 | 6  | 186                                 | 3      | 155                                  | 61  | 1.20     |
| AGUP   | AGUP-51            | 118         | 22                    | 105                   | 12076                                | 0.89              | 2 023                                            | 0.069            | 0 18333       | 0.00294          | 0.47              | 0.0300                                | 0.0024           | 1125                                | 33 | 1083                                | 17     | 1196                                 | 59  | 91       |
| AGUP   | AGUP-52            | 374         | 13                    | 209                   | 1050                                 | 0.56              | 0.353                                            | 0.020            | 0.04631       | 0.00092          | 0.33              | 0.0532                                | 0.0029           | 311                                 | 13 | 307                                 | 6      | 335                                  | 122 | 91       |
| AGUP   | ACUP-53            | 164         | 14                    | 11.3                  | 4830                                 | 0.69              | 0.813                                            | 0.042            | 0.08333       | 0.00160          | 0.37              | 0.0708                                | 0.0034           | 607                                 | 31 | 519                                 | 10     | 951                                  | 98  | 55       |
| AGUP   | AGUP-54            | 243         | 20                    | 105                   | 1670                                 | 0.43              | 0.725                                            | 0.039            | 0 08405       | 0.00160          | 0.36              | 0.0625                                | 0.0031           | 553                                 | 30 | 520                                 | 10     | 692                                  | 106 | 75       |
| AGUP   | ACUP-55            | 274         | 12                    | 127                   | 95697                                | 0.46              | 0.314                                            | 0.022            | 0.04250       | 0.00090          | 0.31              | 0.0536                                | 0.0035           | 277                                 | 19 | 268                                 | 6      | 355                                  | 147 | 75       |
| AGUP   | AGU⊐-56            | 40S         | 15                    | 223                   | 1347                                 | 0.55              | 0.265                                            | 0.014            | 0 03645       | 0.00066          | 0.34              | 0.0527                                | 0.0027           | 238                                 | 13 | 231                                 | 4      | 314                                  | 115 | 73       |
| AGUP   | AGU⊇-57            | 280         | 8                     | 372                   | 458                                  | 1.33              | 0 225                                            | 0.016            | 0 02917       | 0.00048          | 0.24              | 0.0560                                | 0.0038           | 206                                 | 14 | 185                                 | 3      | 451                                  | 149 | 41       |
| AGUP   | AGUP-58            | 163         | 11                    | 120                   | 2015                                 | 0.74              | 0 572                                            | 0.032            | 0 06-124      | 0.00128          | 0.35              | 0.0639                                | 0.0034           | 459                                 | 26 | 405                                 | S      | 733                                  | 112 | 55       |
| AGUP   | AGUP-59            | 194         | 30                    | 59                    | 994                                  | 0.30              | 2 159                                            | 0.063            | 0 20 175      | 0.00292          | 0.50              | 0.0776                                | 0.0020           | 1168                                | 34 | 1185                                | 17     | 1137                                 | 50  | 104      |
| AGUP   | AGUP 60            | 301         | 26                    | 140                   | 213670                               | 0.46              | 0.689                                            | 0.020            | 0 08628       | 0.00126          | 0.50              | 0.0579                                | 0.0015           | 532                                 | 16 | 533                                 | S      | 527                                  | 55  | 101      |
| AGUP   | AGU⊐-62            | 361         | 17                    | 109                   | 13196                                | 0.30              | 0.370                                            | 0.023            | 0.04712       | 0.00094          | 0.32              | 0.0569                                | 0 0033           | 320                                 | 20 | 297                                 | 6      | 483                                  | 129 | 61       |
| ASUP   | AGUP 63            | 359         | 15                    | 128                   | 1442                                 | 0.36              | 0.355                                            | 0.023            | 0 04 169      | 0.00090          | 0.33              | 0.0615                                | 0.0039           | 309                                 | 20 | 263                                 | 6      | 663                                  | 134 | 39       |
| AGUP   | AGUP-65            | 125         | 24                    | 27                    | 198981                               | 0.22              | 2 065                                            | 0.076            | 0 19298       | 0.00320          | 0.45              | 0.0776                                | 0.0026           | 1137                                | 42 | 11.37                               | 19     | 1137                                 | 66  | 100      |
| AGUP   | AGUP 66            | 442         | 31                    | 47                    | 5166                                 | 0.11              | 0.566                                            | 0.020            | 0 06 993      | 0.00108          | 0.43              | 0.0587                                | 0.0019           | 455                                 | 16 | 436                                 | 7      | 558                                  | 71  | 78       |
| AGUP   | AGUP.67            | 397         | 12                    | 312                   | S89                                  | 0.79              | 0.203                                            | 0.016            | 0 02927       | 0.00048          | 0.21              | 0.0503                                | 0.0039           | 158                                 | 15 | 186                                 | 3      | 210                                  | 180 | 88       |
| AGUP   | ASUP-68            | 166         | 5                     | 259                   | 39194                                | 1 56              | 0 197                                            | 0.014            | 0 02671       | 0.00048          | 0.23              | 0.0499                                | 0.0035           | 183                                 | 13 | 162                                 | 3      | 163                                  | 164 | 97       |
| ASUP   | AGUP.69            | 300         | 12                    | 341                   | 352                                  | 1.14              | 0.368                                            | 0.022            | 0.03862       | 0.00078          | 0.34              | 0.0691                                | 0.0038           | 318                                 | 19 | 244                                 | 5      | 902                                  | 113 | 27       |
| AGUP   | ASUP-70            | 405         | 12                    | 387                   | 2173                                 | 0.95              | 0.210                                            | 0.007            | 0 03051       | 0.00046          | 0.45              | 0.0499                                | 0.0015           | 193                                 | 6  | 194                                 | 3      | 163                                  | 69  | 103      |
| AGUP   | ASUP.71            | 160         | 5                     | 224                   | 661                                  | 140               | 0.205                                            | 0.023            | 0 02990       | 0.00078          | 0.23              | 0.0497                                | 0.0055           | 189                                 | 21 | 190                                 | 5      | 180                                  | 256 | 106      |

| ASUP | ASUP-72 | 549 | 40 | 19  | 23032  | 0.03 | 0.559 | 0.021 | 0 07 217 | 0.00116 | 0.42 | 0.0562 | 0.0019 | 4  | 51  | 17 | 449 | 7  | 461  | 76  | 97  |
|------|---------|-----|----|-----|--------|------|-------|-------|----------|---------|------|--------|--------|----|-----|----|-----|----|------|-----|-----|
| ASUP | ASUP-73 | 215 | 18 | 93  | 611    | 0.43 | 0.790 | 0.032 | 0 08374  | 0.00140 | 0.42 | 0.0684 | 0.0025 | 5  | 91  | 24 | 518 | 9  | CS8  | 76  | 59  |
| ASUP | ASUP-74 | 207 | 15 | 129 | 126582 | 0.62 | 0.576 | 0.033 | 0 07438  | 0.00146 | 0.34 | 0.0562 | 0.0031 | 4  | 62  | 27 | 462 | 9  | 461  | 121 | 100 |
| ASUP | ASUP-75 | 120 | 12 | 29  | 2457   | 0.24 | 0.856 | 0.052 | 0 09872  | 0.00204 | 0.34 | 0.0629 | 0.0036 | 6  | 26  | 3S | 607 | 13 | 705  | 120 | 65  |
| ASUP | ASUP-78 | 307 | 13 | 168 | 1981   | 0.61 | 0.307 | 0.013 | 0 04 235 | 0.00070 | 0.40 | 0.0519 | 0.0020 | 2  | 72  | 11 | 270 | 4  | 262  | 36  | 96  |
| ASUP | ASUP-79 | 506 | 16 | 170 | 1635   | 0.30 | 0.202 | S00.0 | 865200   | 0.00042 | 65.0 | 0.0517 | 0.0019 | 1  | 87  | 7  | 180 | 3  | 270  | \$3 | 67  |
| ASUP | ASUP-80 | 112 | 19 | 66  | 1646   | 0.59 | 1.866 | 330.0 | 0 16654  | 0.00274 | 0.45 | 0.0313 | 0.0026 | 10 | 069 | 39 | 993 | 16 | 1227 | 63  | 61  |
| ASUP | ASUP-61 | 157 | 5  | 152 | 1526   | 0.97 | 0.206 | 0.010 | 0 02 995 | 0.00050 | 0.35 | 0.0500 | 0.0022 | 1  | 91  | 9  | 190 | 3  | 194  | 104 | 98  |
| ASUP | ASUP-82 | 247 | 7  | 262 | 60090  | 1.14 | 0.204 | 0.015 | 0 02957  | 0.00048 | 0.23 | 0.0501 | 0.0035 | 1  | 69  | 14 | 168 | 3  | 201  | 163 | 93  |
| ASUP | ASUP-84 | 148 | 13 | 91  | 105521 | 0.62 | 0.735 | 0.048 | 0 08662  | 0.00186 | 0.33 | 0.0616 | 0.0033 | 5  | 60  | 36 | 536 | 11 | 659  | 132 | 13  |
| AGUP | AGUP-05 | 574 | 13 | 391 | 143300 | 0.68 | 0.213 | 0.012 | 0.03050  | 0.00056 | 0.33 | 0.0519 | 0.0027 | 2  | 00  | 11 | 194 | 4  | 260  | 110 | 69  |
|      |         |     |    |     |        |      |       |       |          |         |      |        |        |    |     |    |     |    |      |     |     |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value);<sup>207</sup> Pb/<sup>255</sup>U calculated using (<sup>307</sup> Pb/<sup>205</sup> Pb)/(<sup>255</sup> U/Pb)<sup>255</sup> Pb/<sup>255</sup> Pb/<sup>2</sup>

<sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>236</sup>U and the <sup>207</sup>/<sup>235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

<sup>e</sup>Corrected for mass-bias by normalising to GJ-1 reference zircon (~0.6 per atomic mass unit) and common Pb using the model Pb composition of Stacey & Kramers (1975)

#### Table B5. LA-ICPMS isotopic data for sample ASLO from the Suurberg Group in the northern Algoa Basin

| ASLO      |             |          |                       |                       |                                      |                   |                                                  |                  |                                                  | RATIOS           |       |                                       |                  |                                     |     | AGES                                | [Ma] |                                      |     | Сопс.    |
|-----------|-------------|----------|-----------------------|-----------------------|--------------------------------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|-------|---------------------------------------|------------------|-------------------------------------|-----|-------------------------------------|------|--------------------------------------|-----|----------|
| Sample    | Analysis    | U [ppm]ª | Pb [ppm] <sup>a</sup> | Th [ppm] <sup>a</sup> | <sup>206</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>a</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho°  | <sup>207</sup> Pb/ <sup>206</sup> Pb' | 2 g <sup>d</sup> | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ  | <sup>206</sup> Pb/ <sup>238</sup> U | 2 σ  | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ  | %        |
| ASLO      | ASLO-1      | 189      | Ģ                     | 265                   | 53616                                | 1.40              | 0.208                                            | 0.011            | 0.0303                                           | 0.0005           | 0.30  | 0.0499                                | 0.0024           | 192                                 | ΙÛ  | 192                                 | 3    | 192                                  | 114 | 1ω       |
| ASLO      | ASLO-2      | 372      | 32                    | 220                   | 3120                                 | 0.59              | 0.741                                            | 0.023            | 0.0856                                           | 0.0012           | 0.47  | 0.0628                                | 0.0017           | 563                                 | 17  | 529                                 | 8    | 702                                  | 58  | 75       |
| ASLO      | ASLO-3      | 270      | 10                    | 111                   | 4731                                 | U.41              | 0.333                                            | 0.022            | 0.0353                                           | 0.0007           | 0.31  | U.0694                                | 0.0044           | 295                                 | 20  | 224                                 | 5    | ษ11                                  | 130 | 25       |
| ASLO      | ASLO-6      | 88       | ġ                     | 39                    | 462                                  | 0.45              | 1.049                                            | 0.065            | 0.1047                                           | 0.0023           | 0.35  | 0.0726                                | 0.0042           | 728                                 | 45  | 642                                 | 14   | 1004                                 | 118 | 64       |
| ASLO      | ASLO-7      | 161      | 29                    | 68                    | 275807                               | 0.42              | 1.918                                            | 0.053            | 0.1829                                           | 0.0026           | 0.52  | U.0761                                | 0.0018           | 1087                                | 30  | 1083                                | 15   | 1097                                 | 47  | 99       |
| ASLO      | ASLO-9      | 26       | 1                     | б1                    | 1357                                 | 2.32              | 0.214                                            | U.057            | 0.0301                                           | 0.0007           | 0.09  | U.0516                                | 0.0136           | 197                                 | 52  | 191                                 | 5    | 263                                  | 603 | 12       |
| ASLO      | ASLO-10     | 110      | 4                     | 2/4                   | 237                                  | 2.48              | 0.450                                            | 0.037            | 0.0354                                           | 0.0010           | 0.34  | 0.0921                                | 0.0071           | 317                                 | 31  | 224                                 | б    | 14/0                                 | 147 | 15       |
| ASLO      | ASLO-11     | 291      | 12                    | 134                   | 114.268                              | 0.46              | 0.304                                            | 0.019            | 0.0420                                           | 0.000%           | 0.31  | 0.0525                                | 0.0032           | 270                                 | 17  | 265                                 | 5    | 307                                  | 138 | 86       |
| ASLO      | ASLO-12     | 472      | 42                    | 76                    | 3208                                 | 0.16              | 0.731                                            | 0.026            | 0.0900                                           | 0.0014           | 0.43  | 0.0590                                | 0.0019           | 557                                 | 20  | 555                                 | 9    | 565                                  | 70  | 98       |
| ASLO      | ASLO-13     | 481      | 20                    | 379                   | 185322                               | 0.79              | 0.315                                            | 0.015            | 0.0412                                           | 0.0007           | 0.36  | 0.0555                                | 0.0025           | 278                                 | 14  | 260                                 | 5    | 432                                  | 101 | 60       |
| ASLO      | ASLO-14     | 304      | 13                    | 166                   | 256                                  | 0.55              | 0.456                                            | 0.027            | 0.0415                                           | 0.0009           | 0.35  | 0.0797                                | 0.0044           | 361                                 | 22  | 262                                 | 5    | 1189                                 | 108 | 22       |
| ASLO      | ASLO-15     | 216      | 40                    | 39                    | 371308                               | 0.18              | 1.926                                            | 860.0            | 0.1837                                           | 0.0029           | 0.45  | 0.0761                                | 0.0024           | 1090                                | 38  | 1087                                | 17   | 1097                                 | 63  | 99       |
| ASLO      | ASLO-16     | 281      | 15                    | 114                   | 2508                                 | 0.41              | 0.411                                            | 0.020            | 0.0552                                           | 0.0009           | 0.35  | 0.0540                                | 0.0024           | 349                                 | 17  | 346                                 | 6    | 369                                  | 101 | 94       |
| ASLO      | ASLO-17     | 181      | 13                    | 43                    | 1057                                 | 0.24              | 0.713                                            | 0.032            | 0.0733                                           | 0.0013           | 0.39  | 0.0705                                | 0.0029           | 547                                 | 25  | 456                                 | s    | 943                                  | S5  | 48       |
| ASLO      | ASL0+18     | 221      | 11                    | 92                    | 12676                                | 0.42              | 0.375                                            | 0.012            | 0.0519                                           | \$000.0          | 0.45  | 0.0528                                | 0.0015           | 3.26                                | 11  | 325                                 | 5    | 322                                  | 66  | 101      |
| ASLO      | ASL 0-20    | 145      | 4                     | 124                   | 39366                                | 0.86              | 0.203                                            | 0.014            | 0.0292                                           | 0.0005           | 0.24  | 0.0504                                | 0.0033           | 188                                 | 13  | 186                                 | 3    | 213                                  | 151 | 75       |
| ASLO      | ASL0-21     | 158      | 16                    | 127                   | 12456                                | 03.0              | 0.854                                            | 0.026            | 0.1024                                           | 0.0015           | 0.46  | 0.0605                                | 0.0016           | 627                                 | 19  | 625                                 | 9    | 620                                  | 57  | 101      |
| ASLO      | ASL0-22     | 220      | 15                    | 116                   | 2272                                 | 0.53              | 0.663                                            | 0.032            | 0.0225                                           | 0.0015           | 0.37  | 0.0583                                | 0.0026           | 516                                 | 25  | 511                                 | 9    | 540                                  | 98  | 95       |
| ASLO      | ASL0-23     | 182      | 5                     | 184                   | 4670                                 | 1.01              | 0.218                                            | 0.019            | 0.0281                                           | 0.0004           | 0.17  | 0.0563                                | 0.0049           | 200                                 | 18  | 175                                 | 3    | 462                                  | 194 | 39       |
| ASLO      | ASL0-24     | 203      | 7                     | 203                   | 1817                                 | 1.00              | 0.298                                            | 0.025            | 0.0369                                           | 0.0009           | 0.30  | 0.0586                                | 0.0046           | 265                                 | 22  | 234                                 | 6    | 553                                  | 172 | 42       |
| ASLO      | ASL0-26     | 271      | 24                    | 200                   | 2355                                 | 0.74              | 0.812                                            | 0.032            | 0.0892                                           | 0.0015           | 0.41  | 0.0661                                | 0.0024           | 604                                 | 24  | 551                                 | 9    | 809                                  | 75  | 68       |
| ASLO      | ASL 0-27    | 8        | Ú.                    | 10                    | 2856                                 | 1.26              | 0.394                                            | 0.154            | 0.0376                                           | 0.0042           | 0.29  | 0.0762                                | 0.0284           | 336                                 | 132 | 236                                 | 27   | 1.100                                | 746 | 22       |
| ASLO      | ASLO-28     | 267      | 141                   | 143                   | 3834                                 | 0.54              | 13.8.26                                          | 0.342            | 0.5295                                           | 0.0074           | 0.56  | 0.1594                                | 0.0039           | 27.38                               | 55  | 27.39                               | 38   | 2737                                 | 34  | 100      |
| ASLO      | ASL0-29     | 169      | 6                     | 107                   | 317                                  | 0.64              | 0.392                                            | 0.021            | 0.0362                                           | 0.0007           | 0.36  | 0.0786                                | 0.0040           | 336                                 | 13  | 229                                 | 5    | 1 163                                | 101 | 20       |
| ASLO      | ASL 0-30    | 169      | ń                     | 96                    | 1351                                 | 0.57              | ŭ 283                                            | 0.023            | 0.0363                                           | 0.0003           | 0.29  | 0.0536                                | 0.0042           | 253                                 | 21  | 24.7                                | 6    | 355                                  | 175 | 68       |
| ASLO      | ASL0-32     | 155      | 23                    | 59                    | 262259                               | 0.38              | 1.913                                            | 0.052            | 0 1822                                           | 0.0026           | 0.52  | 0.0761                                | 0.0013           | 1086                                | 30  | 1079                                | 15   | 1093                                 | 47  | 98       |
| ASLO      | ASI 0-33    | 205      | 19                    | 47                    | 172328                               | 0.25              | ŭ 720                                            | 0.020            | 0.0693                                           | 0.0013           | 0.51  | 0.0585                                | <u>0014</u>      | 551                                 | 16  | 551                                 | 3    | 549                                  | 53  | 100      |
| ASLO      | ASLO-34     | 266      | 49                    | 16.2                  | 2448                                 | 0.56              | 1.627                                            | 0.058            | 0 1695                                           | 0.0026           | 0.48  | 0.0782                                | 0.0022           | 1005                                | 33  | 1009                                | 15   | 1151                                 | 55  | 83       |
| ASLO      | ASL 0-35    | 206      | 25                    | 63                    | 667                                  | 0.30              | 1 353                                            | 0.051            | 0.1214                                           | 0.020            | 0.43  | 0.0309                                | 0.0073           | 369                                 | 33  | 738                                 | 12   | 1213                                 | 67  | 61       |
| ASLO      | ASL 0-36    | 273      | 11                    | 222                   | 1031                                 | 0.61              | 0.336                                            | 0.020            | 0.0397                                           | 3000.0           | 0.33  | 0.0614                                | 0.0034           | 294                                 | 17  | 251                                 | 5    | 652                                  | 120 | 39       |
| AGLO      | AGE 0+38    | 542      | 40                    | 216                   | 3020                                 | 0.40              | 0.616                                            | 0.022            | 0.0772                                           | 0.0012           | 0.43  | 0.0578                                | 0.0019           | 467                                 | 17  | 480                                 | 7    | 523                                  | 71  | 92       |
| AGLO      | AGLO-40     | 330      | 60                    | 190                   | 747                                  | 0.23              | 0.722                                            | 0.025            | 0.0711                                           | 0.0011           | 0.45  | 0.0737                                | 0.0023           | 552                                 | 19  | 44.2                                | 7    | 10.3-4                               | 62  | 43       |
| AGLO      | AGL0-41     | 412      | 16                    | 76.3                  | 667                                  | 0.64              | 0.361                                            | 0.020            | 0.0380                                           | 0.0007           | 0.35  | 0.0690                                | 0.0035           | 313                                 | 17  | 240                                 | 5    | 093                                  | 105 | 27       |
| AGLO      | AGL 0-42    | 254      | 23                    | 129                   | 12137                                | 0.51              | 0.761                                            | 0.035            | 0.0904                                           | 0.0016           | 0.38  | 0.0611                                | 0.0076           | 575                                 | 26  | 553                                 | 10   | 643                                  | 91  | 67       |
| AGLO      | AGLO-43     | 354      | 14                    | 220                   | 4954                                 | 0.62              | 0.390                                            | 0.019            | 0.0395                                           | 0.0007           | 0.37  | 0.0716                                | 0.0033           | 334                                 | 17  | 249                                 | 5    | 975                                  | 95  | 26       |
| AGLO      | AGL0-44     | 111      | 3                     | 124                   | 30634                                | 1.12              | ŭ 216                                            | 0.025            | 0.0299                                           | 0.0007           | 0.22  | 0.0526                                | 0.0053           | 199                                 | 23  | 190                                 | 5    | 310                                  | 252 | 61       |
| AGLO      | AGLO-45     | 225      | 7                     | 348                   | 413                                  | 1.55              | 0.280                                            | 0.028            | 0.0293                                           | 0.0004           | 0.15  | 0.0692                                | 0.0069           | 251                                 | 25  | 186                                 | 3    | 905                                  | 204 | 21       |
| AGLO      | AGL 0-46    | 30       |                       | 43                    | 212                                  | 1.44              | 0.204                                            | 0.026            | 0.0295                                           | 0.0006           | 0.16  | 0.0502                                | 0 0064           | 189                                 | 24  | 188                                 | 4    | 204                                  | 297 | 92       |
| AGLO      | AGL 0-47    | 240      | 7                     | 38.3                  | 1816                                 | 1.60              | 0.202                                            | 0.010            | 0.0292                                           | 0.0004           | 0.30  | 0.0501                                | 0.0024           | 187                                 | 9   | 186                                 | 3    | 201                                  | 110 | 93       |
| AGLO      | AGL0-48     | 177      | 5                     | 124                   | 48145                                | 0.70              | 0 203                                            | 0.013            | 0.0294                                           | 0.0005           | 0.24  | 0.0500                                | 0.0032           | 188                                 | 12  | 187                                 | 3    | 195                                  | 149 | 95       |
| AGLO      | AGL0-49     | 209      | *                     | 167                   | 907                                  | 0.S0              | 0.254                                            | 0.013            | 0.0360                                           | 0.0006           | 0.34  | 0.0511                                | 0 0025           | 230                                 | 12  | 228                                 | 4    | 244                                  | 114 | 94       |
| AGLO      | AGL 0+50    | 101      | 8                     | 58                    | 75749                                | 0.58              | 0.710                                            | 0.058            | 0.0813                                           | 0.0021           | 0.31  | 0.0633                                | 0.0049           | 545                                 | 44  | 504                                 | 13   | 719                                  | 164 | 70       |
| ASLO      | ASL 0-54    | 204      | 6                     | 191                   | 402                                  | 0.94              | 0.250                                            | 0.015            | 0.0289                                           | 0.0004           | 0.26  | 0.0628                                | 0.0035           | 227                                 | 13  | 184                                 | 3    | 701                                  | 120 | 26       |
| ASLO      | AGLO-55     | 64       | 3                     | 36                    | 244                                  | 0.55              | 0.315                                            | 0.035            | 0.0429                                           | 0.0013           | 0.27  | 0.0532                                | 0.0057           | 278                                 | 31  | 271                                 | 8    | 337                                  | 241 | S0       |
| ASLO      | ASL 0-55    | 761      | 21                    | 777                   | 643                                  | 0.36              | 0.251                                            | 0.014            | 0.0281                                           | 0.0004           | 0.26  | 0.0646                                | 0.0034           | 227                                 | 12  | 179                                 | 3    | 761                                  | 110 | 24       |
| ASLO      | AGLO-57     | 221      | ġ                     | 98                    | 29866                                | 0.44              | 0.359                                            | 0.025            | 0.0411                                           | 0.0009           | 0.32  | 0.0633                                | 0.0042           | 311                                 | 22  | 260                                 | 6    | 713                                  | 142 | 36       |
| ASLO      | AGLO 58     | 120      | 4                     | 73                    | 2059                                 | 0.61              | 0.228                                            | 0.026            | 0.0292                                           | 0.0005           | 0.15  | 0.0566                                | 0.0064           | 208                                 | 24  | 185                                 | 3    | 475                                  | 250 | 39       |
| ASLO      | ASL 0-60    | 103      | 15                    | 26                    | 4874                                 | 0.45              | ŭ 714                                            | 0.037            | 0.0778                                           | 0.0015           | 0.37  | 0.0665                                | 0.0032           | 547                                 | 28  | 483                                 | 9    | 823                                  | 100 | 59       |
| ASLO      | AGLO 62     | 44       | 2                     | 83                    | 13964                                | 1.89              | 0.242                                            | 0.027            | 0.0313                                           | 0.0010           | 0.27  | 0.0511                                | 0.0055           | 220                                 | 24  | 217                                 | 6    | 247                                  | 247 | \$8      |
| AGLO      | AGL0-63     | 278      | 8                     | 286                   | 1218                                 | 1.03              | 0 223                                            | 0.020            | 0.0293                                           | 0.0004           | 0.17  | 0.0551                                | 0.0049           | 204                                 | 18  | 155                                 | 3    | 417                                  | 198 | 45       |
| ASLO      | ASLO 64     | 400      |                       | 139                   | 602                                  | 0.35              | 0.756                                            | 0.032            | 0.0709                                           | 0.0012           | 0.41  | 0.0773                                | 0.0030           | 572                                 | 24  | 417                                 | 2    | 1130                                 | 77  | 34       |
| ASLO      | ASL 0.65    | 366      | 13                    | 241                   | 752                                  | 0.66              | 0.312                                            | 0.012            | 0.0346                                           | 0.0005           | 0.42  | 0.0667                                | 0.0072           | 281                                 | 10  | 219                                 | 3    | 873                                  | 70  | 26       |
| ASLO      | ASL0-67     | 461      | 17                    | 189                   | 158225                               | 0.41              | ñ 792                                            | 0.019            | 0.0374                                           | 20000            | 0.32  | 0.0579                                | 0.0035           | 265                                 | 17  | 236                                 | 5    | 527                                  | 132 | 20<br>45 |
| ASLO      | ASL DL68    | 231      | ú                     | 100                   | 515                                  | 0.82              | ñ 425                                            | 0.026            | 0.0405                                           | 0.0009           | 0.35  | 0.0761                                | 0.0043           | 360                                 | 22  | 256                                 | 5    | 1092                                 | 114 | 23       |
| ASLO      | ASL 0.70    | 460      | 35                    | 66                    | 3854                                 | 0.14              | 0.420<br>0.612                                   | 0.022            | 0.0768                                           | 0.0012           | 0.43  | 0.0578                                | 0.0019           | 485                                 | 17  | 477                                 | 7    | 522                                  | 71  | 91       |
| AGLO      | ASLO 71     | 153      | 15                    | 48                    | 6152                                 | 0.31              | 0.789                                            | 0.057            | 0.0963                                           | 0.0022           | 0.32  | 0.0595                                | ú 0041           | 591                                 | 43  | 593                                 | 14   | 584                                  | 148 | 101      |
| · · · · · | · · · · · - |          | 1.65                  |                       |                                      |                   | the state of                                     |                  |                                                  | = =              | A.V.A |                                       |                  |                                     |     | **                                  |      |                                      |     |          |

| ASLO | ASL0-73  | 78   | 14  | 23   | 3759   | 0.30 | 1.855   | 0.054 | 0.1795    | 0.0027  | 0.50  | 0.0750 | 0.0019 | 1065 | 31 | 1064 | 16 | 1067 | 51  | 100 |
|------|----------|------|-----|------|--------|------|---------|-------|-----------|---------|-------|--------|--------|------|----|------|----|------|-----|-----|
| ASLO | ASL0-74  | 576  | 25  | 97   | 1777   | 0.17 | 0.40\$  | 0.019 | 0.0430    | 0.0007  | 0.37  | 0.0690 | 0.0029 | 348  | 16 | 271  | 5  | 895  | \$8 | 30  |
| ASL0 | ASL0-75  | 125  | 11  | 31   | 06759  | 0.25 | 0.698   | 0.033 | 0.0862    | 0.0015  | 65.0  | 0.0587 | 0.0025 | 538  | 25 | 533  | 9  | 557  | 94  | 96  |
| ASLO | ASL0-76  | 431  | 12  | 341  | 660    | 0.79 | 0.207   | 0.015 | 0.0267    | 0.0004  | 0.21  | 0.0524 | 0.0036 | 191  | 13 | 182  | 3  | 302  | 157 | 60  |
| ASLO | ASLO-77  | 275  | 8   | 267  | 422    | 0.97 | 0.213   | 0.020 | 0.0283    | 0.0004  | 0.16  | 0.0547 | 0.0049 | 196  | 13 | 180  | 3  | 400  | 202 | 45  |
| ASLO | ASL0-76  | 241  | 32  | 50   | 1222   | 0.21 | 1.372   | 0.042 | 0.1343    | 0.0020  | 0.49  | 0.0741 | 0.0020 | \$77 | 27 | 812  | 12 | 1044 | 54  | 76  |
| ASLO | ASLO-61  | 165  | 5   | 90   | 501    | 0.54 | 0.203   | 0.016 | 0.0286    | 0.0005  | 0.22  | 0.0527 | 0.0033 | 192  | 14 | 182  | 3  | 315  | 166 | 58  |
| ASL0 | ASL0-62  | 132  | 13  | 30   | 7 15   | 0.44 | 1.251   | 0.052 | 0.0967    | 0.0017  | 0.4.2 | 0.0939 | 0.0036 | 324  | 35 | 595  | 11 | 1505 | 72  | 40  |
| ASLO | ASLO-63  | 138  | 5   | 173  | 586    | 1.25 | 0.252   | 0.027 | 0.0360    | 0.0010  | 0.27  | 0.0509 | 0.0052 | 228  | 24 | 228  | 6  | 234  | 237 | 97  |
| ASL0 | ASLO-84  | 134  | 14  | 252  | 129405 | 1.37 | 0.684   | 0.030 | 0 0773    | 0.0013  | 0.39  | 0.0643 | 0.0026 | 529  | 23 | 480  | 3  | 750  | 35  | 64  |
| AGLO | AGLO-05  | 232  | 13  | 39   | 1941   | 0.36 | 0.017   | 0.032 | 0.0783    | 0.0013  | 0.4.3 | 0.0752 | 0.0027 | 606  | 24 | 469  | 3  | 1073 | 71  | 46  |
| AGLO | AGLO-05  | 315  | 70  | 277  | 7730   | 0.34 | 0.705   | 0.021 | 0.0659    | 0.0013  | 0.50  | 0.0595 | 0.0015 | 542  | 16 | 531  | З  | 505  | 55  | 91  |
| AGLO | AGL0+87  | 266  | 22  | 100  | 402    | 0.36 | 1.013   | 0.032 | 0.0623    | 0.0013  | 0.49  | 0.0393 | 0.0024 | 7.13 | 22 | 513  | 3  | 1410 | 52  | 36  |
| AGLO | AGLO-68  | 153  | 4   | 137  | 333    | 0.90 | 0.296   | 0.021 | 0.0283    | 0.0005  | 0.2.3 | 0.0744 | 0.0051 | 263  | 13 | 183  | 3  | 1053 | 137 | 17  |
| AGL0 | AGL0-09  | 147  | 52  | 75   | 3126   | 0.51 | 6.217   | 0 191 | 0.3542    | 0.0056  | 0.52  | 0.1273 | 0.0033 | 2007 | 52 | 1955 | 31 | 2061 | 46  | 95  |
| AGLO | AGLO-90  | 267  | 42  | 33   | 3433   | 0.13 | 1.712   | 0.049 | 0 1584    | 0.0023  | 0.51  | 0.0784 | 0.0019 | 1013 | 29 | 948  | 14 | 1157 | 49  | 82  |
| AGLO | ACLO-91  | 141  | 4   | 130  | 6.24   | 0.92 | 0.285   | 0.024 | 0.0300    | 0.0005  | 0.19  | 0.0690 | 0.0056 | 255  | 21 | 191  | 3  | 897  | 169 | 21  |
| AGLO | AGLO-92  | 191  | 14  | 128  | 6028   | 0.67 | 0.575   | 0.023 | 0.0716    | 0.0012  | 0.41  | 0.0583 | 0.0021 | 461  | 13 | 446  | 7  | 540  | 79  | 83  |
| AGLO | AGLO-94  | 174  | 13  | 22   | 15644  | 0.12 | 0.641   | 0.032 | 0.0741    | 0.0014  | 0.36  | 0.0627 | 0.0030 | 503  | 25 | 461  | 3  | 699  | 100 | 66  |
| ASLO | AGL0-95  | 157  | 16  | S0   | 953    | 0.51 | 0.927   | 0.038 | 0.1004    | 0.0017  | 0.41  | 0.0670 | 0.0025 | 666  | 27 | 617  | 10 | 835  | 77  | 74  |
| AGLO | AGLO-96  | 382  | -44 | 144  | 1653   | 0.38 | 1 209   | 0.044 | 0 1 1 4 6 | 0.0019  | 0.45  | 0.0765 | 0.0025 | 305  | 29 | 700  | 11 | 1103 | 65  | 63  |
| ASLO | AGL0-97  | 18S  | 27  | 55   | 5195   | 0.29 | 1 502   | 0.04S | 0.1437    | 0.0022  | 0.48  | 0.0758 | 0.0021 | 931  | 29 | 865  | 13 | 1091 | 55  | 79  |
| AGLO | AGL0-99  | 145  | 13  | 51   | 2448   | 0.35 | 0 734   | 0.045 | 0.0901    | 0.001\$ | 0.34  | 0.0591 | 0.0034 | 559  | 34 | 556  | 11 | 570  | 125 | 98  |
| ASLO | ASL0-100 | 122  | 4   | 10-4 | 205    | 0.85 | 0.260   | 0.021 | 0.0298    | 0 0005  | 0.22  | 0.0633 | 0.0051 | 235  | 19 | 189  | 3  | 713  | 171 | 26  |
| AGLO | AGL0-101 | Sð   | 4   | 57   | 923    | 0.64 | 0.404   | 0.039 | 0.0415    | 0.0012  | 0.31  | 0.0707 | 0.0064 | 345  | 33 | 262  | S  | 950  | 186 | 28  |
| AGLO | AGL0 102 | 334  | 12  | 377  | 697    | 1.13 | 0.366   | 0.015 | 0.0359    | 0.0006  | 0.41  | 0 0739 | 0.0027 | 317  | 13 | 227  | 4  | 1039 | 75  | 22  |
| ASLO | AGL0-103 | 164  | 21  | 40   | 1209   | 0.24 | 1 345   | 0.055 | 0 1283    | 0 0022  | 0.42  | 0.0760 | 0.0038 | 865  | 36 | 778  | 13 | 1096 | 75  | 71  |
| AGLO | AGL0 104 | 151  | 12  | 51   | -416   | 0.34 | 0.911   | 0.047 | 0.0816    | 0.0016  | 0.38  | 0 0809 | 0.0038 | 658  | 34 | 506  | 10 | 1220 | 93  | 41  |
| ASL0 | ASLO 105 | 20S  | 6   | 187  | 1184   | 0.90 | 0.215   | 0.015 | 0.0290    | 0 0005  | 0.23  | 0.0539 | 0 0037 | 198  | 14 | 1S-1 | 3  | 366  | 157 | 50  |
| AGLO | AGL0 107 | 283  | 64  | 121  | 1445   | 0.43 | 2 7 1 1 | 0.056 | 0 2275    | 0.0036  | 0.49  | 0.0865 | 0.0024 | 1332 | 42 | 1321 | 21 | 1348 | 54  | 98  |
| ASL0 | ASL0 109 | 320  | 13  | 23 1 | 998    | 0.72 | 0.3SS   | 0.018 | 0.0412    | 0.0007  | 0.39  | 0.0683 | 0.0029 | 333  | 15 | 260  | 5  | 879  | 88  | 30  |
| AGLO | AGL0 112 | 262  | 20  | 58   | 183471 | 0.22 | 0.616   | 0.039 | 0.0772    | 0 0016  | 0.33  | 0.0579 | 0.0035 | 4\$7 | 31 | 480  | 10 | 524  | 132 | 91  |
| AGLO | AGL0-113 | 195  | 13  | 105  | 1282   | 0.54 | 0 707   | 0.023 | 0.0694    | 0 0011  | 0.47  | 0.0740 | 0 0022 | 543  | 18 | 432  | 7  | 1040 | 59  | 42  |
| ASLO | AGL0-115 | 22\$ | 16  | 126  | 3357   | 0.55 | 0.620   | 0.034 | 0.0706    | 0 0014  | 0.35  | 0.0637 | 0.0032 | 490  | 27 | 440  | 8  | 732  | 108 | 60  |
| AGLO | AGL0-118 | 38   | I.  | 69   | 116    | 1.83 | 0.471   | 0.065 | 0.0339    | 0.0015  | 0.33  | 0'00\$ | 0 0131 | 392  | 54 | 215  | 10 | 1638 | 241 | 13  |
|      |          |      |     |      |        |      |         |       |           |         |       |        |        |      |    |      |    |      |     |     |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value);<sup>207</sup> Pb/<sup>236</sup>U calculated using (<sup>dJ/</sup> Pb/<sup>236</sup>D)/(<sup>236</sup>D)/(<sup>236</sup>D)/(<sup>236</sup>D)<sup>236</sup>Pb \* 1/137.88)

<sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>236</sup>U and the <sup>207</sup>/<sup>235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

<sup>©</sup>Corrected for mass-bias by normalising to GJ-1 reference zircon (~0.6 per atomic mass unit) and common Pb using the model Pb composition of Stacey & Kramers (1975)

**Appendix C**. LA-ICPMS detrital zircon isotopic data from samples in the Uitenhage Group plotted as concordia diagrams



Fig. 1 Isotopic ratios for zircons analysed in sample ASP1, Algoa Basin



Fig. 2 Isotopic ratios for zircons analysed in sample ASP2, Algoa Basin



Fig. 3. Isotopic ratios for zircons analysed in sample ASC3, Algoa Basin



Fig. 4. Isotopic ratios for zircons analysed in sample ASUP, Algoa Basin



Fig. 5. Isotopic ratios for zircons analysed in sample ASLO, Algoa Basin

### Appendix D. LA-ICPMS isotopic data for samples analysed during campaigns 1,2 and 3

Table D1. LA-ICPMS isotopic data for sample ROBE in the Robertson Basin

| ROBE   |                |                      |                       |                         |                                     |                   |                                                  |                  |                                                  | RATIOS           |                  |                                                   |                  |                                     |    | AGES                                | [Ma] |                                      |           | Conc. |
|--------|----------------|----------------------|-----------------------|-------------------------|-------------------------------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------------------|---------------------------------------------------|------------------|-------------------------------------|----|-------------------------------------|------|--------------------------------------|-----------|-------|
| Sample | Analysis       | U [ppm] <sup>a</sup> | Pb [ppm] <sup>a</sup> | Th [ppm] <sup>a 2</sup> | <sup>06</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>a</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho <sup>c</sup> | <sup>207</sup> Pb/ <sup>206</sup> Pb <sup>6</sup> | 2 σ <sup>d</sup> | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ | <sup>206</sup> Pb/ <sup>238</sup> U | 2σ   | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ        | %     |
| ROBE   | BE-1           | 223                  | 5                     | 110                     | 1411                                | 0.49              | 0.163                                            | 0.007            | 0.02394                                          | 0.00050          | 0.49             | 0.0493                                            | 0.0018           | 153                                 | 6  | 153                                 | 3    | 160                                  | 86        | 95    |
| ROBE   | BE-2           | 264                  | 6                     | 168                     | 799                                 | 0.64              | 0.171                                            | 0.015            | 0.02391                                          | 0.00050          | 0.23             | 0.0520                                            | 0.0045           | 161                                 | 14 | 152                                 | 3    | 284                                  | 199       | 54    |
| ROBE   | BE-3           | 449                  | 11                    | 260                     | 98467                               | 0.58              | 0.163                                            | 0.006            | 0.02344                                          | 0.00048          | 0.58             | 0.0503                                            | 0.0015           | 153                                 | 5  | 149                                 | 3    | 209                                  | 67        | 72    |
| ROBE   | BE-4           | 263                  | 6                     | 153                     | 1972                                | 0.58              | 0.158                                            | 0.006            | 0.02351                                          | 0.00048          | 0.50             | 0.0488                                            | 0.0017           | 149                                 | 6  | 150                                 | 3    | 140                                  | 83        | 107   |
| ROBE   | BE-5           | 386                  | 9                     | 175                     | 2979                                | 0.45              | 0.159                                            | 0.006            | 0.02351                                          | 0.00048          | 0.56             | 0.0490                                            | 0.0015           | 150                                 | 6  | 150                                 | 3    | 149                                  | 72        | 100   |
| ROBE   | BE-7           | 311                  | 7                     | 193                     | 68638                               | 0.62              | 0.161                                            | 0.008            | 0.02361                                          | 0.00048          | 0.43             | 0.0493                                            | 0.0021           | 151                                 | 7  | 150                                 | 3    | 164                                  | 99        | 92    |
| ROBE   | BE-8           | 334                  | 8                     | 181                     | 6519                                | 0.54              | 0.173                                            | 0.008            | 0.02536                                          | 0.00052          | 0.45             | 0.0495                                            | 0.0020           | 162                                 | 7  | 161                                 | 3    | 170                                  | 94        | 95    |
| ROBE   | BE-10          | 680                  | 16                    | 541                     | 2167                                | 0.80              | 0.159                                            | 0.009            | 0.02296                                          | 0.00046          | 0.34             | 0.0504                                            | 0.0028           | 150                                 | 9  | 146                                 | 3    | 211                                  | 130       | 69    |
| ROBE   | BE-11          | 863                  | 20                    | 670                     | 7745                                | 0.78              | 0.161                                            | 0.009            | 0.02295                                          | 0.00046          | 0.35             | 0.0508                                            | 0.0027           | 151                                 | 9  | 146                                 | 3    | 232                                  | 124       | 63    |
| ROBE   | BE-13          | 630                  | 15                    | 439                     | 226                                 | 0.70              | 0.199                                            | 0.011            | 0.02386                                          | 0.00048          | 0.36             | 0.0604                                            | 0.0032           | 184                                 | 10 | 152                                 | 3    | 619                                  | 113       | 25    |
| ROBE   | BE-14          | 278                  | 7                     | 141                     | 1320                                | 0.51              | 0.159                                            | 0.011            | 0.02364                                          | 0.00050          | 0.30             | 0.0488                                            | 0.0033           | 150                                 | 11 | 151                                 | 3    | 138                                  | 161       | 109   |
| ROBE   | BE-15          | 624                  | 15                    | 440                     | 7240                                | 0.71              | 0.168                                            | 0.006            | 0.02401                                          | 0.00048          | 0.52             | 0.0507                                            | 0.0017           | 158                                 | 6  | 153                                 | 3    | 228                                  | 76        | 67    |
| ROBE   | BE-16          | 838                  | 19                    | 609                     | /5/                                 | 0.73              | 0.156                                            | 0.011            | 0.02244                                          | 0.00046          | 0.29             | 0.0505                                            | 0.0034           | 147                                 | 10 | 143                                 | 3    | 219                                  | 156       | 65    |
| ROBE   | BE-17          | 485                  | 11                    | 354                     | 41985                               | 0.73              | 0.161                                            | 0.006            | 0.02360                                          | 0.00048          | 0.57             | 0.0494                                            | 0.0015           | 151                                 | 5  | 150                                 | 3    | 105                                  | 69        | 91    |
| ROBE   | BE-18<br>BE 10 | 559<br>901           | 13                    | 417                     | 8/22                                | 0.75              | 0.161                                            | 0.007            | 0.02351                                          | 0.00048          | 0.48             | 0.0495                                            | 0.0019           | 151                                 | 0  | 150                                 | 3    | 173                                  | 88<br>119 | 87    |
| ROBE   | BE-19<br>BE-20 | 543                  | 19                    | 156                     | 117633                              | 0.07              | 0.100                                            | 0.010            | 0.02080                                          | 0.00042          | 0.55             | 0.0378                                            | 0.0031           | 1/8                                 | 5  | 1/18                                | 3    | 146                                  | 66        | 101   |
| ROBE   | BE-20<br>BE-21 | 267                  | 6                     | 114                     | 1573                                | 0.29              | 0.157                                            | 0.000            | 0.02329                                          | 0.00048          | 0.35             | 0.0490                                            | 0.0014           | 140                                 | 9  | 140                                 | 3    | 196                                  | 126       | 76    |
| ROBE   | BE-22          | 207                  | 5                     | 144                     | 705                                 | 0.40              | 0.161                                            | 0.000            | 0.02394                                          | 0.00040          | 0.00             | 0.0489                                            | 0.0027           | 152                                 | 7  | 153                                 | 3    | 142                                  | 104       | 108   |
| ROBE   | BE-23          | 249                  | 6                     | 134                     | 54569                               | 0.54              | 0.159                                            | 0.008            | 0.02358                                          | 0.00050          | 0.43             | 0.0488                                            | 0.0022           | 150                                 | 7  | 150                                 | 3    | 138                                  | 104       | 109   |
| ROBE   | BE-25          | 232                  | 5                     | 162                     | 1732                                | 0.70              | 0.162                                            | 0.010            | 0.02338                                          | 0.00050          | 0.35             | 0.0503                                            | 0.0029           | 153                                 | 9  | 149                                 | 3    | 209                                  | 132       | 71    |
| ROBE   | BE-26          | 1068                 | 24                    | 561                     | 3046                                | 0.53              | 0.158                                            | 0.009            | 0.02226                                          | 0.00044          | 0.33             | 0.0514                                            | 0.0029           | 149                                 | 9  | 142                                 | 3    | 260                                  | 128       | 55    |
| ROBE   | BE-27          | 291                  | 7                     | 163                     | 6756                                | 0.56              | 0.159                                            | 0.006            | 0.02353                                          | 0.00048          | 0.52             | 0.0490                                            | 0.0016           | 150                                 | 6  | 150                                 | 3    | 146                                  | 78        | 102   |
| ROBE   | BE-28          | 316                  | 7                     | 198                     | 232                                 | 0.63              | 0.175                                            | 0.014            | 0.02368                                          | 0.00050          | 0.27             | 0.0535                                            | 0.0041           | 164                                 | 13 | 151                                 | 3    | 352                                  | 171       | 43    |
| ROBE   | BE-31          | 208                  | 5                     | 122                     | 485                                 | 0.59              | 0.169                                            | 0.020            | 0.02356                                          | 0.00050          | 0.18             | 0.0522                                            | 0.0060           | 159                                 | 19 | 150                                 | 3    | 292                                  | 262       | 51    |
| ROBE   | BE-33          | 726                  | 17                    | 482                     | 160625                              | 0.66              | 0.163                                            | 0.006            | 0.02390                                          | 0.00048          | 0.56             | 0.0496                                            | 0.0015           | 154                                 | 5  | 152                                 | 3    | 177                                  | 69        | 86    |
| ROBE   | BE-34          | 172                  | 4                     | 76                      | 843                                 | 0.44              | 0.186                                            | 0.016            | 0.02324                                          | 0.00050          | 0.25             | 0.0581                                            | 0.0048           | 173                                 | 15 | 148                                 | 3    | 534                                  | 182       | 28    |
| ROBE   | BE-35          | 256                  | 6                     | 163                     | 784                                 | 0.64              | 0.204                                            | 0.015            | 0.02358                                          | 0.00050          | 0.29             | 0.0626                                            | 0.0044           | 188                                 | 14 | 150                                 | 3    | 695                                  | 151       | 22    |
| ROBE   | BE-36          | 884                  | 19                    | 657                     | 470                                 | 0.74              | 0.189                                            | 0.011            | 0.02100                                          | 0.00042          | 0.35             | 0.0654                                            | 0.0035           | 176                                 | 10 | 134                                 | 3    | 788                                  | 111       | 17    |
| ROBE   | BE-37          | 430                  | 43                    | 148                     | 1518                                | 0.34              | 0.973                                            | 0.034            | 0.10049                                          | 0.00204          | 0.58             | 0.0702                                            | 0.0020           | 690                                 | 24 | 617                                 | 13   | 935                                  | 59        | 66    |
| ROBE   | BE-38          | 325                  | 8                     | 188                     | 71108                               | 0.58              | 0.159                                            | 0.006            | 0.02365                                          | 0.00050          | 0.55             | 0.0488                                            | 0.0016           | 150                                 | 6  | 151                                 | 3    | 138                                  | 75        | 109   |
| ROBE   | BE-39          | 244                  | 6                     | 85                      | 389                                 | 0.35              | 0.173                                            | 0.011            | 0.02386                                          | 0.00052          | 0.33             | 0.0526                                            | 0.0033           | 162                                 | 11 | 152                                 | 3    | 313                                  | 141       | 49    |
| ROBE   | BE-40          | /12                  | 17                    | 662                     | 1449                                | 0.93              | 0.171                                            | 0.010            | 0.02358                                          | 0.00048          | 0.35             | 0.0525                                            | 0.0029           | 160                                 | 9  | 150                                 | 3    | 308                                  | 124       | 49    |
| ROBE   | BE-41          | 303                  | /                     | 201                     | 1405                                | 0.66              | 0.157                                            | 0.010            | 0.02310                                          | 0.00048          | 0.32             | 0.0492                                            | 0.0030           | 148                                 | 10 | 147                                 | 3    | 157                                  | 143       | 94    |
| ROBE   | BE-42          | 748                  | 17                    | 414                     | 2025                                | 0.55              | 0.156                                            | 0.009            | 0.02246                                          | 0.00046          | 0.34             | 0.0503                                            | 0.0028           | 147                                 | 9  | 143                                 | 3    | 210                                  | 131       | 68    |
| ROBE   | BE-43          | 208                  | 6                     | 164                     | 1019                                | 0.61              | 0.165                                            | 0.014            | 0.02401                                          | 0.00050          | 0.25             | 0.0497                                            | 0.0041           | 155                                 | 13 | 153                                 | 3    | 181                                  | 191       | 85    |
| ROBE   | DE-44          | 252                  | 0                     | 402                     | 2020                                | 0.00              | 0.165                                            | 0.007            | 0.02319                                          | 0.00046          | 0.49             | 0.0500                                            | 0.0019           | 150                                 | 16 | 140                                 | 3    | 195                                  | 240       | 56    |
| ROBE   | BE-46          | 365                  | 9                     | 250                     | 492                                 | 0.03              | 0.100                                            | 0.010            | 0.02320                                          | 0.00040          | 0.13             | 0.0582                                            | 0.0034           | 133                                 | 10 | 151                                 | 3    | 538                                  | 113       | 28    |
| ROBE   | BE-40          | 283                  | 7                     | 150                     | 1176                                | 0.53              | 0.130                                            | 0.011            | 0.02372                                          | 0.00050          | 0.30             | 0.0519                                            | 0.0030           | 159                                 | 8  | 151                                 | 3    | 280                                  | 106       | 54    |
| ROBE   | BE-49          | 309                  | 7                     | 194                     | 1916                                | 0.63              | 0.161                                            | 0.008            | 0.02380                                          | 0.00050          | 0.45             | 0.0491                                            | 0.0024           | 152                                 | 7  | 152                                 | 3    | 151                                  | 97        | 100   |
| ROBE   | BE-50          | 730                  | 17                    | 441                     | 2069                                | 0.60              | 0.158                                            | 0.006            | 0.02318                                          | 0.00048          | 0.53             | 0.0495                                            | 0.0017           | 149                                 | 6  | 148                                 | 3    | 170                                  | 78        | 87    |
| ROBE   | BE-51          | 270                  | 6                     | 170                     | 497                                 | 0.63              | 0.168                                            | 0.016            | 0.02312                                          | 0.00048          | 0.22             | 0.0526                                            | 0.0049           | 157                                 | 15 | 147                                 | 3    | 310                                  | 213       | 47    |
| ROBE   | BE-52          | 293                  | 7                     | 153                     | 61825                               | 0.52              | 0.156                                            | 0.006            | 0.02291                                          | 0.00048          | 0.51             | 0.0495                                            | 0.0018           | 147                                 | 6  | 146                                 | 3    | 169                                  | 83        | 86    |
| ROBE   | BE-53          | 250                  | 6                     | 127                     | 54078                               | 0.51              | 0.160                                            | 0.009            | 0.02348                                          | 0.00050          | 0.39             | 0.0495                                            | 0.0025           | 151                                 | 8  | 150                                 | 3    | 173                                  | 117       | 87    |
| ROBE   | BE-54          | 356                  | 8                     | 229                     | 1008                                | 0.64              | 0.165                                            | 0.008            | 0.02333                                          | 0.00048          | 0.42             | 0.0513                                            | 0.0023           | 155                                 | 8  | 149                                 | 3    | 252                                  | 102       | 59    |
| ROBE   | BE-55          | 295                  | 7                     | 175                     | 690                                 | 0.59              | 0.167                                            | 0.009            | 0.02397                                          | 0.00050          | 0.39             | 0.0504                                            | 0.0025           | 157                                 | 8  | 153                                 | 3    | 215                                  | 115       | 71    |
| ROBE   | BE-56          | 339                  | 8                     | 111                     | 74488                               | 0.33              | 0.164                                            | 0.007            | 0.02391                                          | 0.00050          | 0.47             | 0.0497                                            | 0.0020           | 154                                 | 7  | 152                                 | 3    | 179                                  | 92        | 85    |
| ROBE   | BE-57          | 1052                 | 25                    | 453                     | 1122                                | 0.43              | 0.161                                            | 0.007            | 0.02342                                          | 0.00048          | 0.45             | 0.0498                                            | 0.0020           | 151                                 | 7  | 149                                 | 3    | 186                                  | 94        | 80    |
| ROBE   | BE-58          | 275                  | 7                     | 197                     | 61033                               | 0.72              | 0.163                                            | 0.007            | 0.02419                                          | 0.00050          | 0.47             | 0.0490                                            | 0.0019           | 154                                 | 7  | 154                                 | 3    | 149                                  | 90        | 104   |
| ROBE   | BE-59          | 772                  | 18                    | 498                     | 2064                                | 0.64              | 0.161                                            | 0.006            | 0.02377                                          | 0.00048          | 0.57             | 0.0492                                            | 0.0014           | 152                                 | 5  | 151                                 | 3    | 155                                  | 69        | 98    |
| ROBE   | BE-60          | 232                  | 5                     | 150                     | 349                                 | 0.64              | 0.181                                            | 0.014            | 0.02326                                          | 0.00050          | 0.29             | 0.0566                                            | 0.0041           | 169                                 | 13 | 148                                 | 3    | 476                                  | 159       | 31    |
| ROBE   | BE-62          | 282                  | 7                     | 153                     | 3651                                | 0.54              | 0.162                                            | 0.010            | 0.02388                                          | 0.00050          | 0.35             | 0.0493                                            | 0.0027           | 153                                 | 9  | 152                                 | 3    | 160                                  | 129       | 95    |
| ROBE   | BE-63          | 451                  | 11                    | 190                     | 98668                               | 0.42              | 0.164                                            | 0.006            | 0.02394                                          | 0.00050          | 0.56             | 0.0496                                            | 0.0015           | 154                                 | 6  | 153                                 | 3    | 174                                  | 72        | 87    |
| ROBE   | BE-64          | 352                  | 8                     | 144                     | 75185                               | 0.41              | 0.158                                            | 0.006            | 0.02336                                          | 0.00048          | 0.54             | 0.0490                                            | 0.0016           | 149                                 | 6  | 149                                 | 3    | 146                                  | 75        | 102   |
| ROBE   | BE-65          | 279                  | 7                     | 200                     | 1488                                | 0.72              | 0.169                                            | 0.009            | 0.02362                                          | 0.00050          | 0.40             | 0.0520                                            | 0.0025           | 159                                 | 8  | 150                                 | 3    | 284                                  | 112       | 53    |
| RDEG      Lie of operational operatioperational operatioperatioperational operational opera | ROBE | BE-67  | 704  | 16  | 415  | 147872 | 0.59 | 0.152  | 0.005 | 0.02256 | 0.00046 | 0.60 | 0.0489 | 0.0013 | 144  | 5  | 144  | 3  | 143  | 63  | 101 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|------|-----|------|--------|------|--------|-------|---------|---------|------|--------|--------|------|----|------|----|------|-----|-----|
| PROFE      BE-6      S1      B      I      B      I      B      I      B      I      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B      B     B      B      B<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ROBE | BE-68  | 308  | 7   | 251  | 1493   | 0.81 | 0.164  | 0.006 | 0.02408 | 0.00050 | 0.53 | 0.0494 | 0.0017 | 154  | 6  | 153  | 3  | 164  | 79  | 93  |
| Refer      BE-70      DA1      DA1      DA10      DA10 <th< td=""><td>ROBE</td><td>BE-69</td><td>351</td><td>8</td><td>157</td><td>75614</td><td>0.45</td><td>0.161</td><td>0.009</td><td>0.02360</td><td>0.00050</td><td>0.38</td><td>0.0495</td><td>0.0025</td><td>151</td><td>8</td><td>150</td><td>3</td><td>169</td><td>120</td><td>89</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ROBE | BE-69  | 351  | 8   | 157  | 75614  | 0.45 | 0.161  | 0.009 | 0.02360 | 0.00050 | 0.38 | 0.0495 | 0.0025 | 151  | 8  | 150  | 3  | 169  | 120 | 89  |
| Relef88-7498-79898-790.000.0040.0070.0010.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ROBE | BE-70  | 321  | 7   | 164  | 1984   | 0.51 | 0.153  | 0.009 | 0.02189 | 0.00046 | 0.36 | 0.0507 | 0.0028 | 145  | 8  | 140  | 3  | 229  | 127 | 61  |
| Refer      Bis-7      310      7      211      636      617      619      616      616      6      614      6      614      6      614      6      614      6      614      6      614      63      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613      613     613     613 <th< td=""><td>ROBE</td><td>BE-71</td><td>89</td><td>8</td><td>42</td><td>991</td><td>0.47</td><td>0.676</td><td>0.026</td><td>0.08466</td><td>0.00178</td><td>0.55</td><td>0.0579</td><td>0.0018</td><td>524</td><td>20</td><td>524</td><td>11</td><td>527</td><td>70</td><td>99</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ROBE | BE-71  | 89   | 8   | 42   | 991    | 0.47 | 0.676  | 0.026 | 0.08466 | 0.00178 | 0.55 | 0.0579 | 0.0018 | 524  | 20 | 524  | 11 | 527  | 70  | 99  |
| Refer      Bir-73      Mod      F      Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ROBE | BE-72  | 316  | 8   | 188  | 69789  | 0.59 | 0.164  | 0.006 | 0.02424 | 0.00052 | 0.55 | 0.0491 | 0.0016 | 154  | 6  | 154  | 3  | 153  | 76  | 101 |
| RDRE      BE-74      V.27      5      H.24      133      0.02      0.0343      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344      0.0344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ROBE | BE-73  | 300  | 7   | 201  | 3056   | 0.67 | 0.158  | 0.007 | 0.02329 | 0.00050 | 0.51 | 0.0492 | 0.0018 | 149  | 6  | 148  | 3  | 159  | 84  | 93  |
| BACIE      BE-73      BAC      BACIA      B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ROBE | BE-74  | 227  | 5   | 142  | 1281   | 0.62 | 0.163  | 0.016 | 0.02327 | 0.00050 | 0.22 | 0.0508 | 0.0048 | 153  | 15 | 148  | 3  | 232  | 216 | 64  |
| Robie      BE-70      013      0.3      0.416      0.116      0.02349      0.0054      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.016      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169      0.0169     0.0169     0.0169    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ROBE | BE-75  | 257  | 6   | 146  | 1616   | 0.57 | 0.165  | 0.014 | 0.02359 | 0.00050 | 0.25 | 0.0507 | 0.0042 | 155  | 13 | 150  | 3  | 229  | 193 | 66  |
| FORE      BE-7      MB      V      ZO      MA      0,204      0.0248      0.0218      0.0244      0.0418      0.0244      0.0414      0.024      0.041      0.024      0.014      0.024      0.014      0.024      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014 <td>ROBE</td> <td>BE-76</td> <td>131</td> <td>3</td> <td>63</td> <td>28473</td> <td>0.48</td> <td>0.168</td> <td>0.013</td> <td>0.02395</td> <td>0.00054</td> <td>0.29</td> <td>0.0508</td> <td>0.0037</td> <td>158</td> <td>12</td> <td>153</td> <td>3</td> <td>234</td> <td>169</td> <td>65</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ROBE | BE-76  | 131  | 3   | 63   | 28473  | 0.48 | 0.168  | 0.013 | 0.02395 | 0.00054 | 0.29 | 0.0508 | 0.0037 | 158  | 12 | 153  | 3  | 234  | 169 | 65  |
| FORE      BE-70      28      24      149      96      0.01      0.014      0.026      0.003      147      120      140      9.88      69      477        FIGE      BE-40      28      8      10      0.023      0.0160      0.023      0.0050      0.03      0.0204      0.003      110      15      15      3      164      49        FIGE      BE-40      30      14      130      0.04      0.005      0.03      0.044      0.001      15      15      13      164      49      16        FIGE      BE-42      304      14      0.04      0.005      0.03      0.044      0.001      157      16      16      16      16      16      16      16      16      16      16      16      16      16      16      16      16      16      16      16      16      16      16      16      16      16      16      16      16      16      16      16      16      16     16     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ROBE | BE-77  | 693  | 17  | 270  | 204    | 0.39 | 0.204  | 0.015 | 0.02389 | 0.00050 | 0.28 | 0.0618 | 0.0044 | 188  | 14 | 152  | 3  | 668  | 152 | 23  |
| Proble      BE-70      V.78      V.78      V.72      V.4.83      0.130      0.0267      0.030      0.0128      0.0004      1711      151      130      0.84      0.94      0.0238      0.0007      0.030      0.0007      0.0007      12      13      130      164      93      964      93      964      93      964      93      964      93      964      93      964      93      964      93      964      93      964      93      964      93      964      93      964      93      964      93      964      93      964      93      964      96      93      964      93      964      93      964      93      964      93      964      93      964      93      964      93      964      93      964      93      964      93      964      93      964      93      964      964      93      964      964      964      964      964      964      964      964     964      964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ROBE | BE-78  | 366  | 24  | 145  | 986    | 0.40 | 0.631  | 0.025 | 0.06665 | 0.00142 | 0.54 | 0.0686 | 0.0023 | 497  | 20 | 416  | 9  | 888  | 69  | 47  |
| Flobe      BE-60      S8      8      2      8      60      0.02      0.033      0.022      0.003      17      12      13      3      162      131      22        FC0EE      BE-42      0.44      14      222      17877      0.04      0.014      0.023      0.004      0.004      0.004      153      5      152      3      164      0.05      0.03        FC0EE      BE-43      0.44      17      0.02      0.047      0.0040      0.0014      0.019      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.014      0.013      0.014      0.013      0.014      0.013      0.014      0.013      0.014      0.013      0.014      0.013      0.014      0.013      0.014      0.013      0.014      0.013      0.014      0.013      0.014      0.013      0.014      0.013      0.014      0.013      0.014      0.013      0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ROBE | BE-79  | 278  | 78  | 199  | 7890   | 0.72 | 4.393  | 0.130 | 0.28230 | 0.00578 | 0.69 | 0.1129 | 0.0024 | 1711 | 51 | 1603 | 33 | 1846 | 39  | 87  |
| FOCE      BE-61      300      8      133      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173      173 <td>ROBE</td> <td>BE-80</td> <td>338</td> <td>8</td> <td>218</td> <td>180</td> <td>0.64</td> <td>0.202</td> <td>0.013</td> <td>0.02366</td> <td>0.00050</td> <td>0.33</td> <td>0.0620</td> <td>0.0038</td> <td>187</td> <td>12</td> <td>151</td> <td>3</td> <td>672</td> <td>131</td> <td>22</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ROBE | BE-80  | 338  | 8   | 218  | 180    | 0.64 | 0.202  | 0.013 | 0.02366 | 0.00050 | 0.33 | 0.0620 | 0.0038 | 187  | 12 | 151  | 3  | 672  | 131 | 22  |
| FORE      BE-82      94*      14      232      1935      0.40      0.000      0.40      0.0014      1137      15      152      3      143      95      93        RCDE      BE-64      300      7      173      0.000      0.017      0.0052      0.023      0.0051      0.0157      7      156      3      167      64        RCDE      BE-64      740      7      173      0.001      0.011      0.0021      0.0001      0.0157      0.016      0.157      7      64      3<      267      64        RCDE      BE-64      738      8      176      173      0.01      0.023      0.0000      0.011      0.0020      153      16      173      3      161      173      133      161      173      133      161      173      133      161      173      133      161      173      133      161      173      133      161      173      133      161      173      133      161     173     133 <t< td=""><td>ROBE</td><td>BE-81</td><td>350</td><td>8</td><td>133</td><td>75275</td><td>0.38</td><td>0.161</td><td>0.006</td><td>0.02367</td><td>0.00050</td><td>0.53</td><td>0.0494</td><td>0.0017</td><td>152</td><td>6</td><td>151</td><td>3</td><td>164</td><td>80</td><td>92</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ROBE | BE-81  | 350  | 8   | 133  | 75275  | 0.38 | 0.161  | 0.006 | 0.02367 | 0.00050 | 0.53 | 0.0494 | 0.0017 | 152  | 6  | 151  | 3  | 164  | 80  | 92  |
| PAGE      BE-33      944      9      217      1139      0.01      0.017      0.00421      0.00000      0.02      0.0033      0.0031      157      10      154      3      209      145      74        ROBE      BE-64      300      17      100      0.052      0.053      0.0001      0.057      0.0016      157      7      156      3      226      74      B55        ROBE      BE-64      338      8      177      7430      0.052      0.011      0.0244      0.0000      0.0141      0.0002      152      7      148      3      151      157      10      153      6      153      6      153      6      153      6      153      6      153      6      153      153      14      149      3<      155      104      93        ROBE      BE-31      654      15      201      2256      0.014      0.0234      0.0060      0.023      0.053      153      14      149      3<      151 <t< td=""><td>ROBE</td><td>BE-82</td><td>584</td><td>14</td><td>232</td><td>126557</td><td>0.40</td><td>0.162</td><td>0.006</td><td>0.02384</td><td>0.00050</td><td>0.60</td><td>0.0493</td><td>0.0014</td><td>153</td><td>5</td><td>152</td><td>3</td><td>163</td><td>65</td><td>93</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ROBE | BE-82  | 584  | 14  | 232  | 126557 | 0.40 | 0.162  | 0.006 | 0.02384 | 0.00050 | 0.60 | 0.0493 | 0.0014 | 153  | 5  | 152  | 3  | 163  | 65  | 93  |
| RDEE      BE-4      300      7      77      78      3042      0.61      0.002      0.044      0.0019      175      7      156      3      176      78      88      94        RDEE      BE-46      338      8      178      7333      0.01      0.0044      0.0004      0.0044      0.0012      153      10      153      3      164      152      93        RDEE      BE-46      232      5      138      0.465      0.001      0.0023      0.0052      0.051      0.0001      0.023      0.0052      0.051      0.0003      152      7      149      3      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163     163     163      1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ROBE | BE-83  | 364  | 9   | 217  | 1139   | 0.60 | 0.167  | 0.011 | 0.02413 | 0.00050 | 0.32 | 0.0503 | 0.0031 | 157  | 10 | 154  | 3  | 209  | 145 | 73  |
| Robe      Be-5      740      17      522      15237      0.71      0.161      0.02311      0.00597      0.0071      0.016      152      6      147      3      28      74      65        ROBE      BE-7      392      9      168      274      0.01      0.0244      0.0059      0.0461      0.0050      154      77      154      3      168      172      178        ROBE      8E-8      222      5      118      2.026      0.33      0.0164      0.0039      0.0487      0.0039      0.0161      0.022      148      74      48      151      23      181      122      48      147      48      147      48      147      48      147      48      148      148      148      148      148      148      148      148      148      148      148      148      148      148      148      148      148      148      148      148      148      148      148      148      148      148      148 <t< td=""><td>ROBE</td><td>BE-84</td><td>300</td><td>7</td><td>176</td><td>3042</td><td>0.58</td><td>0.167</td><td>0.007</td><td>0.02457</td><td>0.00052</td><td>0.49</td><td>0.0494</td><td>0.0019</td><td>157</td><td>7</td><td>156</td><td>3</td><td>167</td><td>88</td><td>94</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ROBE | BE-84  | 300  | 7   | 176  | 3042   | 0.58 | 0.167  | 0.007 | 0.02457 | 0.00052 | 0.49 | 0.0494 | 0.0019 | 157  | 7  | 156  | 3  | 167  | 88  | 94  |
| HC6E      BE-6      338      6      176      7.349      0.52      0.163      0.0234      0.0030      0.31      0.0434      0.0032      153      10      153      3      144      152      93        HOBE      EE-8      22      5      133      4691      0.05      0.043      0.0021      152      7      149      3      181      91      75        HOBE      EE-8      222      5      133      4691      0.03      0.0331      0.0050      0.247      0.0021      153      6      153      3      181      91      75        HOBE      EE-9      328      8      141      1790      0.03      0.033      0.0050      0.043      0.0018      10.3      11      149      3      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ROBE | BE-85  | 740  | 17  | 522  | 155237 | 0.71 | 0.161  | 0.006 | 0.02311 | 0.00048 | 0.54 | 0.0507 | 0.0016 | 152  | 6  | 147  | 3  | 226  | 74  | 65  |
| HODE      BE-87      932      9      198      2154      0.43      0.144      0.007      0.02424      0.00052      0.56      0.016      154      7      154      3      151      87      102        ROBE      BE-88      222      5      118      2006      0.53      0.144      0.073      0.02380      0.00052      0.152      7      146      3      181      182      74        ROBE      BE-91      654      15      201      0.031      0.133      0.013      0.02380      0.00052      0.163      0.0012      148      7      148      3      155      149      96        ROBE      BE-91      654      15      0.013      0.011      0.02376      0.0050      0.22      0.065      0.0023      153      141      149      3      375      167      97      749      3      375      167      169      92      0.0053      0.0252      0.0454      0.0022      153      8      152      3      355      167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ROBE | BE-86  | 338  | 8   | 176  | 73439  | 0.52 | 0.163  | 0.011 | 0.02394 | 0.00050 | 0.31 | 0.0494 | 0.0032 | 153  | 10 | 153  | 3  | 164  | 152 | 93  |
| HORE      BE-88      222      5      133      44951      0.00      0.1011      0.00239      0.00230      0.0020      152      7      149      3      198      191      75        ROBE      BE-90      228      8      111      1790      0.43      0.163      0.0039      0.0047      0.0039      1044      10      133      6      153      3      162      143      94      94      94      94        ROBE      BE-90      228      84      141      1790      0.43      0.163      0.0034      0.0040      0.0441      0.0022      148      7      148      3      126      149      95      170        ROBE      BE-52      554      13      128      0.23      0.0050      0.42      0.0050      0.023      10.0023      154      18      13      216      170      170      170      170      170      170      170      170      170      170      170      170      170      170      170      170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ROBE | BE-87  | 392  | 9   | 168  | 2154   | 0.43 | 0.164  | 0.007 | 0.02424 | 0.00052 | 0.50 | 0.0491 | 0.0018 | 154  | 7  | 154  | 3  | 151  | 87  | 102 |
| ROBE      BE-89      322      5      118      2206      0.033      0.048      0.0032      0.0477      0.00477      0.00477      0.00477      164      12      152      3      118      182      84        ROBE      BE-91      654      15      201      2060      0.31      0.167      0.0234      0.0068      0.4041      0.0023      163      11      48      3      162      48        ROBE      BE-93      494      12      396      1352      0.616      0.014      0.0234      0.0050      0.023      154      48      151      3      165      164      96        ROBE      BE-93      494      12      398      1302      0.017      0.0237      0.0050      0.023      0.0042      152      6      152      3      165      106      92        ROBE      BE-96      436      10      213      0.042      0.0042      0.0033      157      10      142      3      385      130      36      36      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ROBE | BE-88  | 222  | 5   | 133  | 46951  | 0.60 | 0.161  | 0.007 | 0.02331 | 0.00050 | 0.48 | 0.0501 | 0.0020 | 152  | 7  | 149  | 3  | 198  | 91  | 75  |
| ROBE      BE-90      328      38      141      1700      0.43      0.0075      0.0233      0.0078      0.0433      0.0018      133      6      133      3      152      144      95        ROBE      BE-92      554      133      12      143      13      145      148      3      155      104      956        ROBE      BE-92      554      133      12      143      13      145      148      3      155      104      956        ROBE      BE-93      444      12      399      132      0.33      0.161      0.0050      0.23      0.0052      0.0052      0.0052      0.0052      0.0052      0.0052      0.0052      0.0052      0.0052      0.0052      0.0053      0.011      0.011      0.0238      0.0056      0.033      0.014      0.011      0.0238      0.0056      0.033      157      10      142      3      337      163      163      163      163      163      163      163      163      163      1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ROBE | BE-89  | 222  | 5   | 118  | 2206   | 0.53 | 0.164  | 0.013 | 0.02389 | 0.00052 | 0.27 | 0.0497 | 0.0039 | 154  | 12 | 152  | 3  | 181  | 182 | 84  |
| NOBE      BE-91      664      15      201      2060      0.31      0.103      0.003      0.002      148      7      148      3      155      104      98        NOBE      BE-93      444      12      309      1352      0.63      0.163      0.003      0.005      0.0023      154      8      151      3      163      107      777        NOBE      BE-93      494      12      309      1352      0.03      0.0023      0.0023      154      48      151      3      155      14      156      163      163      161      450      167      161      153      153      153      153      153      153      153      153      153      153      153      153      153      153      153      153      153      153      153      153      153      153      153      153      153      153      153      153      153      153      153      153      153      153      153      153      153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ROBE | BE-90  | 328  | 8   | 141  | 1790   | 0.43 | 0.163  | 0.007 | 0.02394 | 0.00050 | 0.50 | 0.0493 | 0.0018 | 153  | 6  | 153  | 3  | 162  | 84  | 94  |
| HOBE      BE-92      554      13      13      14      149      3      216      152      69        HOBE      BE-34      398      10      288      220      0.63      0.164      0.00267      0.0050      0.023      154      14      143      33      216      167      77        HOBE      BE-34      398      10      388      1024      0.053      0.0050      0.023      0.002      154      164      153      3      3      165      161      163      161      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163      163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ROBE | BE-91  | 654  | 15  | 201  | 2060   | 0.31 | 0.157  | 0.008 | 0.02318 | 0.00048 | 0.42 | 0.0491 | 0.0022 | 148  | 7  | 148  | 3  | 155  | 104 | 96  |
| ROBE      8E-43      494      12      309      132      0.63      0.027      0.0005      0.0033      0.023      154      48      151      3      165      177      777        ROBE      8E-45      476      11      308      1024      0.65      0.162      0.005      0.0050      0.022      153      8      152      3      165      168      926        ROBE      8E-46      436      10      213      1175      0.49      0.162      0.0050      0.015      0.0441      0.0022      153      8      152      3      165      168      93      93      133      0.21      0.007      0.0044      0.007      0.0033      151      6      154      3      163      36      163      36      163      36      363      163      36      363      163      36      363      163      36      363      163      36      163      36      363      363      363      161      36      363      363      363<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ROBE | BE-92  | 554  | 13  | 126  | 2287   | 0.23 | 0.163  | 0.011 | 0.02342 | 0.00052 | 0.32 | 0.0505 | 0.0033 | 153  | 11 | 149  | 3  | 216  | 152 | 69  |
| ROBE    8E-94    99    10    208    20    0.67    0.16    0.02397    0.002597    0.0052    0.022    163    14    153    3    337    161    455      ROBE    8E-96    476    11    308    1024    0.65    0.162    0.002    0.0238    0.0002    153    83    152    3    165    162    82      ROBE    8E-97    423    9    222    96    0.42    0.162    0.0028    0.0028    0.0017    153    10    142    3<    335    186    196      ROBE    8E-97    423    9    262    96    0.62    0.011    0.0022    0.0048    0.33    0.016    0.0033    157    10    13    33    161    436    3    935    137    166      ROBE    8E-101    531    13    172    1135    0.64    0.016    0.022    0.021    0.0017    155    66    151    3    161    43    161    43    161    43    161 <td>ROBE</td> <td>BE-93</td> <td>494</td> <td>12</td> <td>309</td> <td>1352</td> <td>0.63</td> <td>0.164</td> <td>0.008</td> <td>0.02376</td> <td>0.00050</td> <td>0.42</td> <td>0.0500</td> <td>0.0023</td> <td>154</td> <td>8</td> <td>151</td> <td>3</td> <td>195</td> <td>107</td> <td>77</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ROBE | BE-93  | 494  | 12  | 309  | 1352   | 0.63 | 0.164  | 0.008 | 0.02376 | 0.00050 | 0.42 | 0.0500 | 0.0023 | 154  | 8  | 151  | 3  | 195  | 107 | 77  |
| ROBE      BE-96      476      11      308      1024      0.662      0.0628      0.0050      0.42      0.0022      153      8      152      3      165      106      92        ROBE      BE-96      433      9      262      996      0.62      0.0238      0.0050      0.51      0.041      0.0022      0.0036      0.117      152      6      142      3      152      152      33      153      153      140      142      3      153      154      14      143      153      154      140      142      3      153      154      14      33      126      143      145      140      143      157      141      130      132      146      140      140      140      140      140      140      140      140      140      140      140      140      140      140      140      140      140      140      140      140      140      140      140      140      140      140      140      140 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ROBE | BE-94  | 399  | 10  | 268  | 220    | 0.67 | 0.176  | 0.014 | 0.02397 | 0.00050 | 0.25 | 0.0532 | 0.0042 | 164  | 14 | 153  | 3  | 337  | 181 | 45  |
| ROBE    BE-96    436    10    213    1175    0.49    0.162    0.007    0.0388    0.0017    152    6    152    3    152    152    3    152    152    152    152    152    152    152    152    152    152    152    152    152    152    152    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153    154    153   154   153  <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ROBE | BE-95  | 476  | 11  | 308  | 1024   | 0.65 | 0.162  | 0.008 | 0.02385 | 0.00050 | 0.42 | 0.0494 | 0.0022 | 153  | 8  | 152  | 3  | 165  | 106 | 92  |
| ROBE    BE-97    423    9    262    996    0.62    0.168    0.011    0.0229    0.0044    0.33    0.066    0.0033    157    10    142    3    395    136    36      ROBE    BE-99    270    7    18    317    0.53    0.024    0.0042    0.0042    0.003    0.017    211    10    130    3    126    935    137    16      ROBE    BE-99    270    71    134    5383    0.30    0.164    0.024    0.0052    0.51    0.0047    155    6    154    3    161    82.9    164    82.9    164    82.9    164    82.9    165    0.0077    155    6    151    6    151    6    151    6    151    6    151    53    157    143    157    143    156    151    55    151    55    151    55    151    56    151    56    151    56    151    56    151    56    151    56    151 <th< td=""><td>ROBE</td><td>BE-96</td><td>436</td><td>10</td><td>213</td><td>1175</td><td>0.49</td><td>0.162</td><td>0.007</td><td>0.02388</td><td>0.00050</td><td>0.51</td><td>0.0491</td><td>0.0017</td><td>152</td><td>6</td><td>152</td><td>3</td><td>152</td><td>82</td><td>100</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ROBE | BE-96  | 436  | 10  | 213  | 1175   | 0.49 | 0.162  | 0.007 | 0.02388 | 0.00050 | 0.51 | 0.0491 | 0.0017 | 152  | 6  | 152  | 3  | 152  | 82  | 100 |
| ROBE    BE-98    1960    40    2612    309    1.33    0.231    0.011    0.00241    0.00242    0.420    0.0036    211    10    130    3    1246    87    10      ROBE    BE-90    450    11    134    5383    0.30    0.231    0.014    0.0024    0.0052    0.14    0.007    115    6    154    3    955    137    16      ROBE    BE-101    531    13    172    11355    0.62    0.016    0.0052    0.052    0.0492    0.0016    151    6    154    3    157    15    6      ROBE    BE-102    335    8    214    233    0.46    0.02    0.005    0.458    0.0016    0.015    151    6    151    3    158    68    79      ROBE    BE-104    621    15    494    178    0.066    0.0237    0.0050    0.48    0.0015    154    6    151    3    158    63    79      ROBE    BE-104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ROBE | BE-97  | 423  | 9   | 262  | 996    | 0.62 | 0.168  | 0.011 | 0.02229 | 0.00048 | 0.33 | 0.0546 | 0.0033 | 157  | 10 | 142  | 3  | 395  | 136 | 36  |
| ROBE    BE-99    279    7    181    317    0.65    0.234    0.016    0.00242    0.00052    0.31    0.0702    0.0047    153    154    3    935    137    16      ROBE    BE-101    531    131    132    538    0.30    0.0164    0.007    0.0052    0.0163    0.0017    155    6    154    3    161    82    96      ROBE    BE-101    531    13    12    153    0.04    0.032    0.0050    0.55    0.0492    0.0161    151    6    151    3    155    154    3    145    158    168    166      ROBE    BE-102    335    8    214    2335    0.64    0.061    0.00210    0.0050    0.68    0.0049    0.0014    151    5    151    3    158    68    93      ROBE    BE-104    621    147    3083    0.35    0.162    0.0052    0.057    0.0491    0.0145    154    6    154    3    151    72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ROBE | BE-98  | 1960 | 40  | 2612 | 309    | 1.33 | 0.231  | 0.011 | 0.02041 | 0.00042 | 0.42 | 0.0820 | 0.0036 | 211  | 10 | 130  | 3  | 1246 | 87  | 10  |
| ROBE    BE-100    450    11    134    5383    0.30    0.164    0.007    0.02420    0.00052    0.52    0.0493    0.0017    155    6    154    3    161    82    96      ROBE    BE-100    531    13    172    113551    0.32    0.0161    0.0027    0.00050    0.55    0.0492    0.0016    151    6    151    3    157    74    96      ROBE    BE-102    335    8    214    2335    0.64    0.663    0.0217    0.00150    0.48    0.0019    156    7    154    3    195    89    79      ROBE    BE-104    621    15    494    1787    0.80    0.161    0.006    0.02470    0.0050    0.58    0.0492    0.0014    151    5    151    3    153    156    715    3    156    73    153    151    153    156    151    3    156    151    151    151    151    151    151    151    151    151    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ROBE | BE-99  | 279  | 7   | 181  | 317    | 0.65 | 0.234  | 0.016 | 0.02415 | 0.00052 | 0.31 | 0.0702 | 0.0047 | 213  | 15 | 154  | 3  | 935  | 137 | 16  |
| ROBE    BE-101    531    13    172    11351    0.32    0.161    0.006    0.02372    0.00050    0.55    0.0442    0.0016    151    6    151    3    157    74    96      ROBE    BE-103    35    8    214    2335    0.64    0.163    0.012    0.02415    0.00050    0.0489    0.0033    153    11    154    3    145    158    96      ROBE    BE-103    725    17    356    1946    0.49    0.060    0.02370    0.0050    0.58    0.0492    0.0014    151    5    151    3    158    68    95      ROBE    BE-104    621    15    494    1787    0.80    0.161    0.006    0.02370    0.0052    0.57    0.0491    0.015    154    6    151    3    173    71    87      ROBE    BE-107    519    12    200    110489    0.52    0.0052    0.37    0.052    0.0015    158    10    149    3    173    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ROBE | BE-100 | 450  | 11  | 134  | 5383   | 0.30 | 0.164  | 0.007 | 0.02420 | 0.00052 | 0.52 | 0.0493 | 0.0017 | 155  | 6  | 154  | 3  | 161  | 82  | 96  |
| ROBE    BE-102    335    8    214    2335    0.64    0.163    0.012    0.0215    0.0052    0.30    0.0489    0.0033    153    11    154    3    145    158    106      ROBE    BE-103    725    17    364    178    0.80    0.161    0.007    0.02411    0.0005    0.48    0.0030    0.161    5    11    154    3    145    158    89    79      ROBE    BE-104    621    15    494    1787    0.80    0.161    0.001    0.02455    0.0052    0.58    0.0492    0.0014    151    5    151    3    153    11    154    3    155    86    97      ROBE    BE-107    519    12    00    144    0.39    0.35    0.162    0.002    0.37    0.0495    0.0015    152    6    151    3    173    71    87      ROBE    BE-107    74    5    30    42647    0.40    0.02    0.00337    0.0072    0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ROBE | BE-101 | 531  | 13  | 172  | 113551 | 0.32 | 0.161  | 0.006 | 0.02372 | 0.00050 | 0.55 | 0.0492 | 0.0016 | 151  | 6  | 151  | 3  | 157  | 74  | 96  |
| ROBE    BE-103    725    17    356    1946    0.49    0.166    0.007    0.02411    0.0050    0.48    0.0500    0.0019    156    7    154    3    195    89    79      ROBE    BE-104    621    15    494    1787    0.80    0.161    0.006    0.02370    0.0050    0.58    0.0492    0.0014    151    5    151    3    158    68    95      ROBE    BE-106    422    10    147    3083    0.35    0.164    0.006    0.0236    0.0050    0.57    0.0495    0.0015    154    6    154    3    157    71    87      ROBE    BE-107    519    12    200    1144    0.52    0.068    0.0050    0.57    0.0495    0.0015    158    10    149    3    292    129    51    7    154    3    147    0.49    0.0057    0.029    158    10    149    3    292    129    51    5    55    151    5    15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ROBE | BE-102 | 335  | 8   | 214  | 2335   | 0.64 | 0.163  | 0.012 | 0.02415 | 0.00052 | 0.30 | 0.0489 | 0.0033 | 153  | 11 | 154  | 3  | 145  | 158 | 106 |
| ROBE    BE-104    621    15    494    1787    0.80    0.161    0.006    0.02370    0.00050    0.58    0.0492    0.0014    151    5    151    3    158    68    95      ROBE    BE-106    422    10    147    3083    0.35    0.164    0.006    0.02425    0.00050    0.57    0.0495    0.015    154    6    151    3    158    68    95      ROBE    BE-107    519    12    200    144    45904    0.39    0.162    0.006    0.0237    0.0052    0.37    0.0252    0.0055    152    6    151    3    158    68    95      ROBE    BE-107    74    5    30    42647    0.40    0.484    0.022    0.0337    0.0052    0.37    0.052    0.0021    401    18    399    9    414    86    96      ROBE    BE-109    74    560    1422    1.11    0.241    0.010    0.0337    0.0072    0.51    0.051    0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ROBE | BE-103 | 725  | 17  | 356  | 1946   | 0.49 | 0.166  | 0.007 | 0.02411 | 0.00050 | 0.48 | 0.0500 | 0.0019 | 156  | 7  | 154  | 3  | 195  | 89  | 79  |
| ROBE    BE-106    422    10    147    3083    0.35    0.164    0.006    0.02425    0.00952    0.57    0.0491    0.0015    154    6    154    3    151    72    102      ROBE    BE-107    519    12    200    110489    0.39    0.162    0.006    0.02366    0.00950    0.57    0.0491    0.0015    152    6    154    3    173    71    87      ROBE    BE-108    218    5    30    42647    0.40    0.484    0.022    0.0052    0.37    0.0521    0.0014    161    18    399    9    414    86    96      ROBE    BE-100    502    17    560    1422    1.11    0.241    0.010    0.0337    0.0072    0.51    0.051    0.0019    219    9    215    5    257    83    84      ROBE    BE-111    208    5    92    44692    0.44    0.62    0.007    0.0236    0.0019    0.051    0.019    152    7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ROBE | BE-104 | 621  | 15  | 494  | 1787   | 0.80 | 0.161  | 0.006 | 0.02370 | 0.00050 | 0.58 | 0.0492 | 0.0014 | 151  | 5  | 151  | 3  | 158  | 68  | 95  |
| ROBE    BE-107    519    12    200    110489    0.39    0.162    0.006    0.0236    0.0050    0.57    0.0495    0.0015    152    6    151    3    173    71    87      ROBE    BE-108    218    5    114    45904    0.52    0.168    0.010    0.02337    0.0052    0.37    0.0522    0.009    158    10    149    3    292    129    51      ROBE    BE-109    74    5    30    42647    0.404    0.424    0.022    0.00337    0.0052    0.37    0.0512    0.001    401    18    399    9    414    86    96      ROBE    BE-110    502    17    560    1422    0.11    0.241    0.010    0.0337    0.0072    0.51    0.0019    152    7    153    3    147    91    144      ROBE    BE-111    208    5    92    4462    0.44    0.162    0.007    0.0356    0.057    0.2865    0.0057    2864    86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ROBE | BE-106 | 422  | 10  | 147  | 3083   | 0.35 | 0.164  | 0.006 | 0.02425 | 0.00052 | 0.57 | 0.0491 | 0.0015 | 154  | 6  | 154  | 3  | 151  | 72  | 102 |
| ROBE    BE-108    218    5    114    45904    0.52    0.168    0.100    0.02337    0.0052    0.37    0.0522    0.0029    158    10    149    3    292    129    51      ROBE    BE-109    74    5    30    42647    0.40    0.484    0.022    0.00337    0.0052    0.051    0.0021    401    18    399    9    414    86    96      ROBE    BE-110    202    17    560    1422    1.11    0.241    0.010    0.0337    0.0072    0.51    0.0019    219    9    215    5    257    83    84      ROBE    BE-111    208    5    92    44692    0.44    0.62    0.007    0.0236    0.0054    0.051    0.019    215    7    53    3    247    94    94      ROBE    BE-112    241    104    57    9702    0.24    15.784    0.471    0.4295    0.0692    0.070    0.2665    0.0057    2864    86    2303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ROBE | BE-107 | 519  | 12  | 200  | 110489 | 0.39 | 0.162  | 0.006 | 0.02366 | 0.00050 | 0.57 | 0.0495 | 0.0015 | 152  | 6  | 151  | 3  | 173  | 71  | 87  |
| ROBE    BE-109    74    5    30    42647    0.40    0.484    0.022    0.06383    0.00144    0.51    0.0021    401    18    399    9    414    86    96      ROBE    BE-110    502    17    560    1422    1.11    0.241    0.010    0.03397    0.0072    0.51    0.0514    0.0019    219    9    215    5    257    83    84      ROBE    BE-111    208    5    92    44692    0.44    0.162    0.07    0.0236    0.0072    0.51    0.0510    0.019    219    9    215    5    257    83    84      ROBE    BE-112    241    104    57    9/2    0.44    0.162    0.07    0.0236    0.0057    0.865    0.007    2864    86    2303    48    326    34    70      ROBE    BE-112    241    104    57.8    0.47    0.425    0.0082    0.70    0.0265    0.0017    1024    32    1018    21    1036 <th< td=""><td>ROBE</td><td>BE-108</td><td>218</td><td>5</td><td>114</td><td>45904</td><td>0.52</td><td>0.168</td><td>0.010</td><td>0.02337</td><td>0.00052</td><td>0.37</td><td>0.0522</td><td>0.0029</td><td>158</td><td>10</td><td>149</td><td>3</td><td>292</td><td>129</td><td>51</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ROBE | BE-108 | 218  | 5   | 114  | 45904  | 0.52 | 0.168  | 0.010 | 0.02337 | 0.00052 | 0.37 | 0.0522 | 0.0029 | 158  | 10 | 149  | 3  | 292  | 129 | 51  |
| ROBE    BE-110    502    17    560    1422    1.11    0.241    0.010    0.03397    0.00072    0.51    0.0514    0.0019    219    9    215    5    257    83    84      ROBE    BE-111    208    5    92    44692    0.44    0.162    0.007    0.02396    0.00072    0.51    0.0514    0.0019    152    7    153    3    147    91    104      ROBE    BE-112    241    104    57    9702    0.24    15.784    0.471    0.42950    0.00892    0.70    0.2665    0.007    2864    86    2303    48    3286    34    97    9702    34    970    34    970    9702    9702    9702    9702    9702    0.24    9707    9703    9708    9709    9709    9702    9702    9709    9702    9702    9709    9709    9702    9709    9709    9709    9709    9709    9709    9709    9709    9709    9709    9709    9709    9709 <td>ROBE</td> <td>BE-109</td> <td>74</td> <td>5</td> <td>30</td> <td>42647</td> <td>0.40</td> <td>0.484</td> <td>0.022</td> <td>0.06383</td> <td>0.00144</td> <td>0.51</td> <td>0.0551</td> <td>0.0021</td> <td>401</td> <td>18</td> <td>399</td> <td>9</td> <td>414</td> <td>86</td> <td>96</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ROBE | BE-109 | 74   | 5   | 30   | 42647  | 0.40 | 0.484  | 0.022 | 0.06383 | 0.00144 | 0.51 | 0.0551 | 0.0021 | 401  | 18 | 399  | 9  | 414  | 86  | 96  |
| ROBE    BE-111    208    5    92    44692    0.44    0.162    0.007    0.02396    0.0054    0.50    0.0490    0.0019    152    7    153    3    147    91    104      ROBE    BE-112    241    104    57    9702    0.24    15.784    0.471    0.42950    0.00892    0.70    0.2665    0.0057    2864    86    2303    48    3286    34    70      ROBE    BE-113    268    46    61    17679    0.23    1.741    0.054    0.1717    0.00356    0.67    0.0738    0.0017    1024    32    1018    21    1036    46    98      ROBE    BE-114    1393    123    123    123    12    1036    46    98      ROBE    BE-114    1393    123    123    123    12    1036    46    98      ROBE    BE-114    1393    123    12    126    0.0162    0.009    0.0234    0.0052    0.38    0.0013    0.0163    103 </td <td>ROBE</td> <td>BE-110</td> <td>502</td> <td>17</td> <td>560</td> <td>1422</td> <td>1.11</td> <td>0.241</td> <td>0.010</td> <td>0.03397</td> <td>0.00072</td> <td>0.51</td> <td>0.0514</td> <td>0.0019</td> <td>219</td> <td>9</td> <td>215</td> <td>5</td> <td>257</td> <td>83</td> <td>84</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ROBE | BE-110 | 502  | 17  | 560  | 1422   | 1.11 | 0.241  | 0.010 | 0.03397 | 0.00072 | 0.51 | 0.0514 | 0.0019 | 219  | 9  | 215  | 5  | 257  | 83  | 84  |
| ROBE    BE-112    241    104    57    9702    0.24    15.784    0.471    0.42950    0.00892    0.70    0.265    0.0057    2864    86    2303    48    3286    34    70      ROBE    BE-113    268    46    61    17679    0.23    1.741    0.054    0.17107    0.00356    0.67    0.0738    0.0017    1024    32    1018    21    1036    46    98      ROBE    BE-114    1393    123    22    794255    0.02    0.718    0.022    0.00850    0.00184    0.69    0.0588    0.0013    549    17    547    11    561    48    97      ROBE    BE-115    331    8    197    6905    0.60    0.162    0.09    0.0234    0.0052    0.38    0.042    0.026    153    9    153    3    158    125    97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ROBE | BE-111 | 208  | 5   | 92   | 44692  | 0.44 | 0.162  | 0.007 | 0.02396 | 0.00054 | 0.50 | 0.0490 | 0.0019 | 152  | 7  | 153  | 3  | 147  | 91  | 104 |
| ROBE    BE-113    268    46    61    17679    0.23    1.741    0.054    0.17107    0.00356    0.67    0.0738    0.0017    1024    32    1018    21    1036    46    98      ROBE    BE-114    1393    123    22    794255    0.02    0.718    0.022    0.0850    0.0184    0.69    0.058    0.0013    549    17    547    11    561    48    97      ROBE    BE-115    331    8    197    6905    0.60    0.162    0.009    0.0234    0.0052    0.38    0.042    0.0026    153    9    153    3    158    125    97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ROBE | BE-112 | 241  | 104 | 57   | 9702   | 0.24 | 15.784 | 0.471 | 0.42950 | 0.00892 | 0.70 | 0.2665 | 0.0057 | 2864 | 86 | 2303 | 48 | 3286 | 34  | 70  |
| ROBE    BE-114    1393    123    22    794255    0.02    0.718    0.022    0.08850    0.00184    0.69    0.058    0.0013    549    17    547    11    561    48    97      ROBE    BE-115    331    8    197    6905    0.60    0.162    0.009    0.0234    0.0052    0.38    0.0492    0.0026    153    9    153    3    158    125    97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ROBE | BE-113 | 268  | 46  | 61   | 17679  | 0.23 | 1.741  | 0.054 | 0.17107 | 0.00356 | 0.67 | 0.0738 | 0.0017 | 1024 | 32 | 1018 | 21 | 1036 | 46  | 98  |
| ROBE      BE-115      331      8      197      6905      0.60      0.162      0.009      0.02394      0.00052      0.38      0.0492      0.0026      153      9      153      3      158      125      97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ROBE | BE-114 | 1393 | 123 | 22   | 794255 | 0.02 | 0.718  | 0.022 | 0.08850 | 0.00184 | 0.69 | 0.0588 | 0.0013 | 549  | 17 | 547  | 11 | 561  | 48  | 97  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ROBE | BE-115 | 331  | 8   | 197  | 6905   | 0.60 | 0.162  | 0.009 | 0.02394 | 0.00052 | 0.38 | 0.0492 | 0.0026 | 153  | 9  | 153  | 3  | 158  | 125 | 97  |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup>Pb/<sup>235</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb)/(<sup>238</sup>U)<sup>206</sup>Pb \* 1/137.88) <sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>238</sup>U and the <sup>207</sup>/<sup>235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

## Table D2. LA-ICPMS isotopic data for sample Ak5 in the Robertson Basin

| AK5    |          |                      |                        |                                     |                   |                                                  |                  |                                                  | RATIOS           |                  |                                      |                  |   |                                     |     | AGES                                | [Ma]    |                                      |     | Conc. |
|--------|----------|----------------------|------------------------|-------------------------------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------------------|--------------------------------------|------------------|---|-------------------------------------|-----|-------------------------------------|---------|--------------------------------------|-----|-------|
| Sample | Analvsis | U [ppm] <sup>a</sup> | b [ppm] <sup>a 2</sup> | <sup>06</sup> Ph/ <sup>204</sup> Ph | Th/U <sup>a</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 a <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 o <sup>d</sup> | rho <sup>c</sup> | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2 σ <sup>d</sup> | = | <sup>207</sup> Pb/ <sup>235</sup> U | 2 σ | <sup>206</sup> Pb/ <sup>238</sup> U | 2 σ     | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ  | %     |
| AK5    | AK5-1-1  | 124                  | 21                     | 96632                               | 0.31              | 1.705                                            | 0.056            | 0.1698                                           | 0.0027           | 0.49             | 0.0728                               | 0.0021           |   | 1010                                | 33  | 1011                                | 16      | 1009                                 | 58  | 100   |
| AK5    | AK5-1-3  | 122                  | 10                     | 1874                                | 0.27              | 0.676                                            | 0.026            | 0.0849                                           | 0.0014           | 0.43             | 0.0578                               | 0.0020           |   | 524                                 | 20  | 525                                 | 9       | 521                                  | 75  | 101   |
| AK5    | AK5-1-6  | 180                  | 16                     | 2693                                | 0.47              | 0.705                                            | 0.024            | 0.0875                                           | 0.0014           | 0.47             | 0.0584                               | 0.0017           |   | 542                                 | 18  | 541                                 | 9       | 546                                  | 64  | 99    |
| AK5    | AK5-1-7  | 97                   | 9                      | 40718                               | 0.41              | 0.746                                            | 0.028            | 0.0921                                           | 0.0015           | 0.44             | 0.0588                               | 0.0020           |   | 566                                 | 21  | 568                                 | 9       | 560                                  | 74  | 101   |
| AK5    | AK5-1-9  | 121                  | 44                     | 202541                              | 0.65              | 6.277                                            | 0.173            | 0.3665                                           | 0.0056           | 0.55             | 0.1242                               | 0.0029           |   | 2015                                | 56  | 2013                                | 31      | 2018                                 | 41  | 100   |
| AK5    | AK5-1-10 | 121                  | 18                     | 83342                               | 0.91              | 1.555                                            | 0.068            | 0.1511                                           | 0.0027           | 0.42             | 0.0747                               | 0.0030           |   | 952                                 | 42  | 907                                 | 16      | 1059                                 | 80  | 86    |
| AK5    | AK5-1-11 | 76                   | 8                      | 36654                               | 0.31              | 0.889                                            | 0.036            | 0.1054                                           | 0.0018           | 0.42             | 0.0612                               | 0.0022           |   | 646                                 | 26  | 646                                 | 11      | 646                                  | 79  | 100   |
| AK5    | AK5-1-12 | 80                   | 8                      | 37791                               | 0.22              | 0.860                                            | 0.033            | 0.1032                                           | 0.0017           | 0.43             | 0.0605                               | 0.0021           |   | 630                                 | 24  | 633                                 | 11      | 620                                  | 76  | 102   |
| AK5    | AK5-1-15 | 106                  | 19                     | 87305                               | 1.64              | 1.837                                            | 0.057            | 0.1799                                           | 0.0028           | 0.50             | 0.0740                               | 0.0020           |   | 1059                                | 33  | 1067                                | 17      | 1043                                 | 55  | 102   |
| AK5    | AK5-1-16 | 112                  | 20                     | 90184                               | 0.63              | 1.797                                            | 0.056            | 0.1754                                           | 0.0027           | 0.50             | 0.0743                               | 0.0020           |   | 1044                                | 33  | 1042                                | 16      | 1050                                 | 55  | 99    |
| AK5    | AK5-1-17 | 82                   | 10                     | 47908                               | 0.23              | 1.140                                            | 0.042            | 0.1280                                           | 0.0021           | 0.45             | 0.0646                               | 0.0021           |   | 773                                 | 28  | 777                                 | 13      | 761                                  | 69  | 102   |
| AK5    | AK5-1-18 | 215                  | 6                      | 565                                 | 0.60              | 0.189                                            | 0.017            | 0.0276                                           | 0.0007           | 0.28             | 0.0497                               | 0.0043           |   | 176                                 | 16  | 175                                 | 4       | 180                                  | 202 | 97    |
| AK5    | AK5-1-19 | 180                  | 14                     | 1934                                | 0.23              | 0.678                                            | 0.026            | 0.0778                                           | 0.0013           | 0.44             | 0.0632                               | 0.0021           |   | 525                                 | 20  | 483                                 | 8       | 716                                  | 72  | 67    |
| AK5    | AK5-1-20 | 331                  | 27                     | 123096                              | 0.58              | 0.644                                            | 0.021            | 0.0813                                           | 0.0013           | 0.48             | 0.0575                               | 0.0016           |   | 505                                 | 16  | 504                                 | 8       | 510                                  | 63  | 99    |
| AK5    | AK5-1-21 | 327                  | 23                     | 103050                              | 0.35              | 0.540                                            | 0.024            | 0.0690                                           | 0.0012           | 0.40             | 0.0568                               | 0.0023           |   | 439                                 | 19  | 430                                 | 7       | 485                                  | 89  | 89    |
| AK5    | AK5-1-22 | 132                  | 14                     | 63451                               | 0.32              | 0.885                                            | 0.030            | 0 1054                                           | 0.0017           | 0.46             | 0.0609                               | 0.0019           |   | 644                                 | 22  | 646                                 | 10      | 636                                  | 66  | 102   |
| AK5    | AK5-1-23 | 135                  | 11                     | 51552                               | 0.48              | 0.658                                            | 0.034            | 0.0833                                           | 0.0016           | 0.36             | 0.0573                               | 0.0028           |   | 513                                 | 27  | 516                                 | 10      | 503                                  | 108 | 103   |
| AK5    | AK5-1-24 | 427                  | 32                     | 11809                               | 0.80              | 0.599                                            | 0.019            | 0.0761                                           | 0.0012           | 0.49             | 0.0571                               | 0.0016           |   | 477                                 | 15  | 473                                 | 7       | 496                                  | 60  | 95    |
| AK5    | AK5-1-25 | 263                  | 27                     | 122941                              | 0.11              | 0.868                                            | 0.028            | 0 1021                                           | 0.0016           | 0.49             | 0.0617                               | 0.0017           |   | 635                                 | 20  | 627                                 | 10      | 663                                  | 60  | 95    |
| AK5    | AK5-1-26 | 587                  | 83                     | 7784                                | 0.35              | 1 336                                            | 0.020            | 0.1420                                           | 0.0010           | 0.40             | 0.0682                               | 0.0016           |   | 862                                 | 24  | 856                                 | 13      | 876                                  | 49  | 98    |
| AK5    | AK5-1-28 | 147                  | 27                     | 7282                                | 0.00              | 1 969                                            | 0.059            | 0 1846                                           | 0.0029           | 0.51             | 0.0774                               | 0.0020           |   | 1105                                | 33  | 1092                                | 17      | 1131                                 | 51  | 97    |
| AK5    | AK5-1-29 | 191                  | 13                     | 1272                                | 0.41              | 0.670                                            | 0.000            | 0.0692                                           | 0.0020           | 0.01             | 0.0702                               | 0.0020           |   | 521                                 | 18  | 431                                 | 7       | 935                                  | 62  | 46    |
| AK5    | AK5-1-31 | 2596                 | 181                    | 8622                                | 0.44              | 0.540                                            | 0.020            | 0.0697                                           | 0.0011           | 0.40             | 0.0563                               | 0.0016           |   | 439                                 | 14  | 434                                 | 7       | 462                                  | 63  | 94    |
| 4K5    | AK5-1-32 | 275                  | 21                     | 1676                                | 0.25              | 0.583                                            | 0.034            | 0.0749                                           | 0.0015           | 0.40             | 0.0565                               | 0.0031           |   | 467                                 | 28  | 466                                 | ،<br>٩  | 471                                  | 123 | 99    |
| AK5    | AK5-1-33 | 225                  | 18                     | 17056                               | 0.77              | 0.620                                            | 0.004            | 0.0791                                           | 0.0012           | 0.04             | 0.0569                               | 0.0017           |   | 490                                 | 16  | 400                                 | 8       | 487                                  | 64  | 101   |
|        | AK5-1-36 | 132                  | 10                     | 2056                                | 0.47              | 0.883                                            | 0.021            | 0.0030                                           | 0.0012           | 0.47             | 0.0503                               | 0.0017           |   | 642                                 | 30  | 578                                 | 11      | 875                                  | 90  | 66    |
|        | AK5-1-38 | /0                   | 16                     | 72864                               | 0.48              | 4 992                                            | 0.042            | 0.3253                                           | 0.0017           | 0.53             | 0.0002                               | 0.0030           |   | 1818                                | 56  | 1815                                | 20      | 1821                                 | 48  | 100   |
| AK5    | AK5-2-1  | 418                  | 32                     | 13206                               | 0.40              | 0.605                                            | 0.134            | 0.0764                                           | 0.0032           | 0.52             | 0.0575                               | 0.0025           |   | 481                                 | 16  | 474                                 | 9       | 510                                  | 57  | 93    |
| AK5    | AK5-2-2  | 246                  | 6                      | -848                                | 0.49              | 0.154                                            | 0.010            | 0.0227                                           | 0.0005           | 0.36             | 0.0492                               | 0.0029           |   | 146                                 | 9   | 145                                 | 3       | 159                                  | 139 | 91    |
| AK5    | AK5-2-3  | 254                  | 52                     | 433534                              | 0.19              | 2.320                                            | 0.071            | 0.2058                                           | 0.0039           | 0.63             | 0.0818                               | 0.0019           |   | 1218                                | 37  | 1206                                | 23      | 1240                                 | 46  | 97    |
| AK5    | AK5-2-4  | 252                  | 19                     | 2090                                | 0.54              | 0.603                                            | 0.026            | 0.0755                                           | 0.0015           | 0.48             | 0.0580                               | 0.0022           |   | 479                                 | 20  | 469                                 | 10      | 529                                  | 82  | 89    |
| AK5    | AK5-2-5  | 318                  | 25                     | 3211                                | 0.77              | 0.619                                            | 0.022            | 0.0788                                           | 0.0015           | 0.55             | 0.0570                               | 0.0017           |   | 489                                 | 17  | 489                                 | 10      | 493                                  | 65  | 99    |
| AK5    | AK5-2-6  | 441                  | 37                     | 13385                               | 0.12              | 0.675                                            | 0.021            | 0.0845                                           | 0.0016           | 0.62             | 0.0580                               | 0.0014           |   | 524                                 | 16  | 523                                 | 10      | 528                                  | 52  | 99    |
| AK5    | AK5-2-7  | 708                  | 51                     | 2658                                | 0.20              | 0.601                                            | 0.019            | 0.0713                                           | 0.0014           | 0.59             | 0.0611                               | 0.0016           |   | 478                                 | 15  | 444                                 | 8       | 642                                  | 56  | 69    |
| AK5    | AK5-2-8  | 355                  | 21                     | 5500                                | 0.61              | 0.433                                            | 0.014            | 0.0582                                           | 0.0011           | 0.58             | 0.0540                               | 0.0015           |   | 365                                 | 12  | 364                                 | 7       | 369                                  | 61  | 99    |
| AK5    | AK5-2-9  | 239                  | 6                      | 2332                                | 0.87              | 0.162                                            | 0.013            | 0.0234                                           | 0.0005           | 0.26             | 0.0503                               | 0.0038           |   | 153                                 | 12  | 149                                 | 3       | 209                                  | 173 | 71    |
| AK5    | AK5-2-10 | 541                  | 40                     | 3738                                | 0.63              | 0.569                                            | 0.025            | 0.0731                                           | 0.0015           | 0.47             | 0.0564                               | 0.0022           |   | 457                                 | 20  | 455                                 | 9       | 469                                  | 86  | 97    |
| AK5    | AK5-2-11 | 600                  | 25                     | 4844                                | 0.41              | 0.295                                            | 0.010            | 0.0417                                           | 0.0008           | 0.59             | 0.0513                               | 0.0013           |   | 262                                 | 9   | 263                                 | 5       | 256                                  | 60  | 103   |
| AK5    | AK5-2-12 | 481                  | 46                     | 6227                                | 0.79              | 0.783                                            | 0.026            | 0.0951                                           | 0.0018           | 0.59             | 0.0597                               | 0.0016           |   | 587                                 | 19  | 586                                 | 11      | 594                                  | 57  | 99    |
| AK5    | AK5-2-13 | 372                  | 27                     | 18165                               | 0.33              | 0.568                                            | 0.020            | 0.0736                                           | 0.0014           | 0.55             | 0.0560                               | 0.0017           |   | 457                                 | 16  | 458                                 | 9       | 453                                  | 67  | 101   |
| AK5    | AK5-2-14 | 114                  | 11                     | 1114                                | 0.61              | 0.768                                            | 0.045            | 0.0935                                           | 0.0022           | 0.39             | 0.0596                               | 0.0032           |   | 579                                 | 34  | 576                                 | 13      | 589                                  | 118 | 98    |
| AK5    | AK5-2-15 | 266                  | 6                      | 1765                                | 0.40              | 0.157                                            | 0.022            | 0.0230                                           | 0.0005           | 0.14             | 0.0494                               | 0.0069           |   | 148                                 | 21  | 147                                 | 3       | 168                                  | 324 | 87    |
| AK5    | AK5-2-16 | 341                  | 30                     | 3626                                | 0.64              | 0.737                                            | 0.033            | 0.0894                                           | 0.0019           | 0.47             | 0.0598                               | 0.0024           |   | 561                                 | 25  | 552                                 | 11      | 596                                  | 86  | 93    |
| AK5    | AK5-2-17 | 444                  | 35                     | 1773                                | 0.61              | 0.658                                            | 0.022            | 0.0778                                           | 0.0015           | 0.58             | 0.0613                               | 0.0017           |   | 513                                 | 17  | 483                                 | 9       | 649                                  | 58  | 74    |
| AK5    | AK5-2-18 | 387                  | 9                      | 724                                 | 0.86              | 0.164                                            | 0.021            | 0.0231                                           | 0.0005           | 0.16             | 0.0513                               | 0.0064           |   | 154                                 | 19  | 147                                 | 3       | 256                                  | 287 | 58    |
| AK5    | AK5-2-19 | 501                  | 86                     | 8937                                | 0.17              | 1.900                                            | 0.055            | 0.1713                                           | 0.0032           | 0.65             | 0.0804                               | 0.0018           |   | 1081                                | 31  | 1019                                | 19      | 1208                                 | 43  | 84    |
| AK5    | AK5-2-20 | 453                  | 33                     | 15527                               | 0.61              | 0.569                                            | 0.019            | 0.0733                                           | 0.0014           | 0.58             | 0.0563                               | 0.0015           |   | 457                                 | 15  | 456                                 | 9       | 464                                  | 60  | 98    |
| AK5    | AK5-2-21 | 356                  | 26                     | 2505                                | 0.56              | 0.553                                            | 0.025            | 0.0718                                           | 0.0015           | 0.46             | 0.0559                               | 0.0022           |   | 447                                 | 20  | 447                                 | 9       | 447                                  | 88  | 100   |
| AK5    | AK5-2-22 | 510                  | 37                     | 183776                              | 0.36              | 0.572                                            | 0.018            | 0.0731                                           | 0.0014           | 0.61             | 0.0568                               | 0.0014           |   | 459                                 | 14  | 455                                 | 9       | 482                                  | 54  | 94    |
| AK5    | AK5-2-22 | 236                  | 51                     | 7076                                | 0.00              | 2 415                                            | 0.010            | 0 2147                                           | 0.0044           | 0.54             | 0.0816                               | 0.0026           |   | 1247                                | 47  | 1254                                | 25      | 1235                                 | 62  | 102   |
| AK5    | AK5_2_24 | 157                  | 7                      | 17172                               | 0.78              | 0 300                                            | 0.020            | 0.0425                                           | 0.0009           | 0.30             | 0.0512                               | 0.0033           |   | 266                                 | 18  | 268                                 | 5       | 252                                  | 148 | 107   |
|        | AK5-2-24 | 297                  | 63                     | 7982                                | 0.43              | 2 37/                                            | 0.020            | 0.0420                                           | 0.0041           | 0.00             | 0.0312                               | 0.0021           |   | 1235                                | 40  | 1234                                | 24      | 1236                                 | 51  | 100   |
|        | AK5-2-23 | 201                  | 0.0<br>Q               | 1371                                | 1 10              | 0.209                                            | 0.077            | 0.2110                                           | 0.0041           | 0.00             | 0.0524                               | 0.0021           |   | 265                                 | 20  | 261                                 | 24<br>5 | 304                                  | 164 | 86    |
|        | AK5 2 27 | 292                  | 33                     | 2427                                | 0.44              | 0.290                                            | 0.022            | 0.0412                                           | 0.0000           | 0.21             | 0.0524                               | 0.0030           |   | 203                                 | 20  | 529                                 | 5<br>11 | 720                                  | 76  | 74    |
| AND    | MN0-2-21 | 302                  | 33                     | 2431                                | 0.44              | 0.764                                            | 0.031            | 0.0070                                           | 0.0010           | 0.49             | 0.0030                               | 0.0023           |   | 570                                 | 24  | 000                                 |         | 130                                  | 10  | 74    |

| AK5 | AK5-2-28  | 215  | 16  | 76648  | 0.31 | 0.569 | 0.026 | 0.0723 | 0.0015 | 0.46 | 0.0571 | 0.0023 | 457  | 21 | 450  | 9  | 493  | 89        | 91  |
|-----|-----------|------|-----|--------|------|-------|-------|--------|--------|------|--------|--------|------|----|------|----|------|-----------|-----|
| AK5 | AK5-2-29  | 654  | 53  | 15150  | 0.54 | 0.656 | 0.026 | 0.0818 | 0.0016 | 0.51 | 0.0582 | 0.0020 | 512  | 20 | 507  | 10 | 538  | 74        | 94  |
| AK5 | AK5-2-30  | 716  | 52  | 1978   | 0.63 | 0.572 | 0.026 | 0.0724 | 0.0015 | 0.46 | 0.0573 | 0.0023 | 459  | 21 | 450  | 9  | 503  | 88        | 90  |
| AK5 | AK5-2-31  | 483  | 28  | 2111   | 0.34 | 0.461 | 0.020 | 0.0575 | 0.0012 | 0.48 | 0.0581 | 0.0022 | 385  | 16 | 361  | 7  | 535  | 81        | 67  |
| AK5 | AK5-2-32  | 557  | 37  | 672    | 0.38 | 0.731 | 0.026 | 0.0659 | 0.0013 | 0.54 | 0.0804 | 0.0024 | 557  | 20 | 412  | 8  | 1208 | 60        | 34  |
| AK5 | AK5-2-34  | 95   | 6   | 30776  | 1.92 | 0.582 | 0.049 | 0.0655 | 0.0018 | 0.34 | 0.0645 | 0.0051 | 466  | 39 | 409  | 11 | 757  | 166       | 54  |
| AK5 | AK5-2-35  | 244  | 16  | 80071  | 0.70 | 0.518 | 0.036 | 0.0664 | 0.0016 | 0.36 | 0.0565 | 0.0036 | 424  | 29 | 415  | 10 | 473  | 142       | 88  |
| AK5 | AK5-2-36  | 249  | 18  | 1192   | 1 97 | 0.566 | 0.030 | 0.0711 | 0.0016 | 0.41 | 0.0578 | 0.0028 | 456  | 24 | 443  | 10 | 522  | 107       | 85  |
| AK5 | AK5-2-37  | 830  | 132 | 4469   | 0.42 | 1 730 | 0.051 | 0 1586 | 0.0030 | 0.64 | 0.0791 | 0.0018 | 1020 | 30 | 949  | 18 | 1174 | 45        | 81  |
|     | AK5 2 29  | 799  | 60  | 9352   | 0.42 | 0.595 | 0.030 | 0.1300 | 0.0030 | 0.59 | 0.0570 | 0.0016 | 1020 | 16 | 471  | 0  | 400  | 40<br>60  | 06  |
|     | AK5 2 20  | 292  | 25  | 123400 | 0.40 | 0.333 | 0.020 | 0.0757 | 0.0010 | 0.30 | 0.0500 | 0.0010 | 557  | 29 | 547  | 12 | 508  | 00        | 02  |
| AKJ | AK5-2-39  | 1050 | 23  | 123400 | 0.23 | 0.731 | 0.037 | 0.0000 | 0.0013 | 0.45 | 0.0599 | 0.0027 | 472  | 20 | 303  | 12 | 000  | 79        | 52  |
| AKS | AK5-2-40  | 1050 | 00  | 907    | 0.12 | 0.394 | 0.025 | 0.0626 | 0.0013 | 0.46 | 0.0000 | 0.0020 | 473  | 20 | 392  | 0  | 000  | 10        | 44  |
| AKO | AK5-2-41  | 390  | 22  | 1089   | 0.64 | 0.454 | 0.025 | 0.0575 | 0.0013 | 0.41 | 0.0572 | 0.0029 | 380  | 21 | 360  | 8  | 500  | 110       | 72  |
| AK5 | AK5-2-42  | 704  | 118 | 6949   | 0.50 | 1.808 | 0.052 | 0.1678 | 0.0031 | 0.65 | 0.0782 | 0.0017 | 1049 | 30 | 1000 | 19 | 1151 | 44        | 87  |
| AK5 | AK5-2-43  | 242  | 20  | 1271   | 0.36 | 0.638 | 0.025 | 0.0806 | 0.0016 | 0.51 | 0.0574 | 0.0019 | 501  | 20 | 500  | 10 | 506  | 74        | 99  |
| AK5 | AK5-2-44  | 784  | 55  | 50080  | 0.36 | 0.565 | 0.025 | 0.0705 | 0.0014 | 0.47 | 0.0581 | 0.0023 | 455  | 20 | 439  | 9  | 534  | 85        | 82  |
| AK5 | AK5-2-46  | 185  | 4   | 20845  | 0.47 | 0.155 | 0.009 | 0.0228 | 0.0005 | 0.38 | 0.0493 | 0.0025 | 146  | 8  | 145  | 3  | 160  | 121       | 91  |
| AK5 | AK5-2-47  | 275  | 48  | 238442 | 0.42 | 1.831 | 0.057 | 0.1757 | 0.0033 | 0.61 | 0.0756 | 0.0019 | 1057 | 33 | 1043 | 20 | 1085 | 49        | 96  |
| AK5 | AK5-2-48  | 84   | 6   | 1407   | 1.51 | 0.567 | 0.042 | 0.0707 | 0.0018 | 0.35 | 0.0582 | 0.0040 | 456  | 34 | 441  | 11 | 535  | 151       | 82  |
| AK5 | AK5-2-50  | 219  | 5   | 24955  | 0.48 | 0.158 | 0.013 | 0.0230 | 0.0005 | 0.25 | 0.0497 | 0.0040 | 149  | 12 | 147  | 3  | 179  | 189       | 82  |
| AK5 | AK5-2-51  | 479  | 35  | 4822   | 0.33 | 0.573 | 0.019 | 0.0732 | 0.0014 | 0.57 | 0.0568 | 0.0016 | 460  | 16 | 455  | 9  | 485  | 61        | 94  |
| AK5 | AK5-2-52  | 400  | 30  | 1973   | 0.47 | 0.584 | 0.022 | 0.0747 | 0.0015 | 0.53 | 0.0567 | 0.0018 | 467  | 17 | 464  | 9  | 479  | 69        | 97  |
| AK5 | AK5-2-53  | 189  | 5   | 400    | 1.16 | 0.189 | 0.020 | 0.0276 | 0.0006 | 0.21 | 0.0497 | 0.0050 | 176  | 18 | 175  | 4  | 182  | 236       | 96  |
| AK5 | AK5-2-54  | 473  | 34  | 3065   | 0.33 | 0.601 | 0.023 | 0.0716 | 0.0014 | 0.52 | 0.0609 | 0.0020 | 478  | 18 | 446  | 9  | 636  | 70        | 70  |
| AK5 | AK5-2-55  | 131  | 14  | 1957   | 0.68 | 0.876 | 0.032 | 0.1046 | 0.0021 | 0.54 | 0.0607 | 0.0019 | 639  | 23 | 642  | 13 | 630  | 67        | 102 |
| AK5 | AK5-2-56  | 195  | 15  | 2428   | 0.67 | 0.621 | 0.023 | 0.0787 | 0.0015 | 0.54 | 0.0572 | 0.0018 | 490  | 18 | 489  | 10 | 498  | 68        | 98  |
| AK5 | AK5-2-57  | 190  | 15  | 72549  | 0.57 | 0.608 | 0.028 | 0.0773 | 0.0016 | 0.45 | 0.0570 | 0.0024 | 482  | 22 | 480  | 10 | 492  | 91        | 98  |
| AK5 | AK5-2-58  | 322  | 24  | 2271   | 0.47 | 0.597 | 0.025 | 0.0752 | 0.0015 | 0.48 | 0.0576 | 0.0021 | 475  | 20 | 467  | 9  | 513  | 80        | 91  |
| AK5 | AK5-2-59  | 495  | 82  | 19381  | 0.06 | 1.659 | 0.050 | 0.1661 | 0.0031 | 0.63 | 0.0725 | 0.0017 | 993  | 30 | 991  | 19 | 999  | 48        | 99  |
| AK5 | AK5-2-60  | 265  | 23  | 112456 | 0.42 | 0.688 | 0.023 | 0.0856 | 0.0016 | 0.58 | 0.0583 | 0.0016 | 532  | 17 | 530  | 10 | 540  | 59        | 98  |
| AK5 | AK5-2-61  | 390  | 66  | 78093  | 0.55 | 1.691 | 0.051 | 0.1689 | 0.0032 | 0.62 | 0.0726 | 0.0017 | 1005 | 30 | 1006 | 19 | 1003 | 48        | 100 |
| AK5 | AK5-2-62  | 224  | 5   | 25876  | 0.54 | 0.159 | 0.011 | 0.0233 | 0.0005 | 0.29 | 0.0494 | 0.0034 | 150  | 11 | 149  | 3  | 166  | 161       | 90  |
| AK5 | AK5-2-63  | 570  | 41  | 3325   | 0.96 | 0.569 | 0.025 | 0.0719 | 0.0015 | 0.47 | 0.0575 | 0.0022 | 458  | 20 | 447  | 9  | 510  | 85        | 88  |
| AK5 | AK5-2-64  | 1218 | 219 | 8582   | 0.47 | 1.845 | 0.059 | 0.1795 | 0.0034 | 0.60 | 0.0746 | 0.0019 | 1062 | 34 | 1064 | 20 | 1056 | 51        | 101 |
| AK5 | AK5-2-65  | 543  | 94  | 9745   | 0.15 | 1 760 | 0.055 | 0 1728 | 0.0033 | 0.61 | 0.0739 | 0.0018 | 1031 | 32 | 1028 | 20 | 1037 | 50        | 99  |
| AK5 | AK5-2-66  | 392  | 33  | 66912  | 0.57 | 0.699 | 0.022 | 0.0829 | 0.0016 | 0.60 | 0.0612 | 0.0016 | 538  | 17 | 514  | 10 | 645  | 55        | 80  |
| AK5 | AK5-2-67  | 543  | 101 | 45707  | 0.07 | 1 979 | 0.059 | 0.0020 | 0.0010 | 0.63 | 0.0768 | 0.0018 | 1108 | 33 | 1104 | 21 | 1117 | 46        | 90  |
|     | AK5 2 69  | 124  | 16  | 4371   | 0.20 | 1.070 | 0.033 | 0.1315 | 0.0035 | 0.00 | 0.0655 | 0.0010 | 705  | 33 | 706  | 15 | 701  | -+0<br>60 | 101 |
| AKJ | AK5-2-00  | 124  | 20  | 4371   | 0.51 | 1.180 | 0.041 | 0.1313 | 0.0023 | 0.50 | 0.0000 | 0.0019 | 795  | 21 | 790  | 10 | 066  | 53        | 101 |
| AKS | AK5-2-70  | 179  | 29  | 143363 | 0.02 | 1.593 | 0.052 | 0.1020 | 0.0031 | 0.59 | 0.0713 | 0.0019 | 907  | 31 | 900  | 19 | 900  | 55        | 100 |
| AKS | AK5-2-7 1 | 340  | 30  | 2130   | 0.00 | 0.384 | 0.026 | 0.0090 | 0.0014 | 0.40 | 0.0009 | 0.0024 | 407  | 21 | 434  | 9  | 030  | 00        | 00  |
| AKO | AK5-2-72  | 417  | 10  | 1362   | 0.50 | 0.158 | 0.011 | 0.0232 | 0.0005 | 0.29 | 0.0495 | 0.0032 | 149  | 10 | 148  | 3  | 170  | 153       | 87  |
| AK5 | AK5-2-73  | 327  | 26  | 2007   | 0.44 | 0.638 | 0.026 | 0.0796 | 0.0016 | 0.49 | 0.0581 | 0.0021 | 501  | 20 | 494  | 10 | 535  | 78        | 92  |
| AK5 | AK5-2-75  | 123  | 22  | 17/68  | U.44 | 1.855 | 0.062 | 0.1791 | 0.0035 | 0.58 | 0.0751 | 0.0021 | 1065 | 36 | 1062 | 21 | 1072 | 55        | 99  |
| AK5 | AK5-2-76  | 1/9  | 39  | 2/669  | 0.36 | 2.457 | 0.078 | 0.2156 | 0.0041 | 0.60 | 0.0826 | 0.0021 | 1259 | 40 | 1259 | 24 | 1261 | 50        | 100 |
| AK5 | AK5-2-77  | 622  | 53  | 261585 | 0.34 | 0.678 | 0.025 | 0.0849 | 0.0017 | 0.52 | 0.0580 | 0.0019 | 526  | 20 | 525  | 10 | 529  | 70        | 99  |
| AK5 | AK5-2-79  | 495  | 27  | 919    | 0.25 | 0.558 | 0.022 | 0.0545 | 0.0011 | 0.50 | 0.0742 | 0.0026 | 450  | 18 | 342  | 7  | 1047 | 70        | 33  |
| AK5 | AK5-2-81  | 406  | 30  | 5562   | 0.65 | 0.708 | 0.026 | 0.0750 | 0.0015 | 0.53 | 0.0685 | 0.0022 | 543  | 20 | 466  | 9  | 883  | 65        | 53  |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup>Pb/<sup>235</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb)/(<sup>238</sup>U/<sup>206</sup>Pb \* 1/137.88) <sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>238</sup>U and the <sup>207</sup>/<sup>235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

## Table D3. LA-ICPMS isotopic data for sample ASH1 in the Robertson Basin

| ASH1 |  |
|------|--|
|      |  |

| ASH1   |          |                      |                         |                                      |                   |                                                  |                  |                                                  | RATIOS           |      |                                      |                  |                                     |    | AGES                                | [Ma]    |                                      |           | Conc. |
|--------|----------|----------------------|-------------------------|--------------------------------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------|--------------------------------------|------------------|-------------------------------------|----|-------------------------------------|---------|--------------------------------------|-----------|-------|
| Sample | Analysis | <sup>a</sup> [maa] U | Pb [ppm] <sup>a 2</sup> | <sup>206</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>a</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho℃ | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2 σ <sup>d</sup> | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ | <sup>206</sup> Pb/ <sup>238</sup> U | 2σ      | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ        | %     |
| ASH1   | ASH1-1   | 44                   | 4                       | 1198                                 | 0.50              | 0.746                                            | 0.045            | 0.0914                                           | 0.0019           | 0.34 | 0.0592                               | 0.0034           | 566                                 | 34 | 564                                 | 12      | 576                                  | 123       | 98    |
| ASH1   | ASH1-2   | 66                   | 12                      | 52054                                | 0.54              | 1.868                                            | 0.063            | 0.1803                                           | 0.0029           | 0.48 | 0.0752                               | 0.0022           | 1070                                | 36 | 1068                                | 17      | 1073                                 | 59        | 100   |
| ASH1   | ASH1-3   | 77                   | 8                       | 910                                  | 0.87              | 0.806                                            | 0.036            | 0.0975                                           | 0.0017           | 0.40 | 0.0599                               | 0.0024           | 600                                 | 27 | 600                                 | 11      | 601                                  | 88        | 100   |
| ASH1   | ASH1-4   | 35                   | 4                       | 17554                                | 0.78              | 0.996                                            | 0.056            | 0.1140                                           | 0.0023           | 0.36 | 0.0634                               | 0.0033           | 702                                 | 39 | 696                                 | 14      | 721                                  | 111       | 97    |
| ASH1   | ASH1-5   | 134                  | 24                      | 105069                               | 0.69              | 1.835                                            | 0.056            | 0.1788                                           | 0.0028           | 0.51 | 0.0745                               | 0.0020           | 1058                                | 32 | 1060                                | 17      | 1054                                 | 53        | 101   |
| ASH1   | ASH1-6   | 107                  | 19                      | 4069                                 | 0.36              | 1.772                                            | 0.073            | 0.1739                                           | 0.0031           | 0.43 | 0.0739                               | 0.0028           | 1035                                | 43 | 1033                                | 18      | 1039                                 | 75        | 99    |
| ASH1   | ASH1-7   | 260                  | 48                      | 211063                               | 0.70              | 1.941                                            | 0.054            | 0.1851                                           | 0.0028           | 0.54 | 0.0760                               | 0.0018           | 1095                                | 31 | 1095                                | 17      | 1096                                 | 47        | 100   |
| ASH1   | ASH1-8   | 290                  | 22                      | 97460                                | 0.33              | 0.599                                            | 0.019            | 0.0764                                           | 0.0012           | 0.49 | 0.0568                               | 0.0015           | 477                                 | 15 | 475                                 | 7       | 485                                  | 60        | 98    |
| ASH1   | ASH1-9   | 77                   | 15                      | 9293                                 | 0.43              | 2.049                                            | 0.096            | 0.1921                                           | 0.0037           | 0.41 | 0.0774                               | 0.0033           | 1132                                | 53 | 1133                                | 22      | 1130                                 | 85        | 100   |
| ASH1   | ASH1-10  | 193                  | 19                      | 5890                                 | 0.20              | 0.840                                            | 0.026            | 0.1006                                           | 0.0016           | 0.49 | 0.0606                               | 0.0017           | 619                                 | 19 | 618                                 | 10      | 624                                  | 59        | 99    |
| ASH1   | ASH1-11  | 61                   | 9                       | 40698                                | 0.46              | 1.451                                            | 0.053            | 0.1518                                           | 0.0025           | 0.46 | 0.0693                               | 0.0022           | 910                                 | 33 | 911                                 | 15      | 909                                  | 67        | 100   |
| ASH1   | ASH1-12  | 33                   | 4                       | 16544                                | 0.20              | 1.206                                            | 0.073            | 0.1296                                           | 0.0028           | 0.36 | 0.0675                               | 0.0038           | 803                                 | 49 | 785                                 | 17      | 853                                  | 118       | 92    |
| ASH1   | ASH1-13  | 42                   | 5                       | 1485                                 | 0.46              | 1.137                                            | 0.051            | 0.1261                                           | 0.0023           | 0.40 | 0.0654                               | 0.0027           | 771                                 | 34 | 765                                 | 14      | 787                                  | 85        | 97    |
| ASH1   | ASH1-14  | 183                  | 13                      | 771                                  | 0.60              | 0.575                                            | 0.043            | 0.0735                                           | 0.0017           | 0.31 | 0.0567                               | 0.0041           | 461                                 | 35 | 457                                 | 11      | 480                                  | 158       | 95    |
| ASH1   | ASH1-15  | 247                  | 19                      | 85134                                | 0.25              | 0.610                                            | 0.021            | 0.0782                                           | 0.0012           | 0.47 | 0.0566                               | 0.0017           | 484                                 | 16 | 485                                 | 8       | 476                                  | 66        | 102   |
| ASH1   | ASH1-16  | 383                  | 37                      | 4660                                 | 0.13              | 0.817                                            | 0.042            | 0.0967                                           | 0.0018           | 0.37 | 0.0613                               | 0.0029           | 606                                 | 31 | 595                                 | 11      | 648                                  | 102       | 92    |
| ASH1   | ASH1-17  | 247                  | 26                      | 114474                               | 0.43              | 0.900                                            | 0.030            | 0.1054                                           | 0.0017           | 0.48 | 0.0619                               | 0.0018           | 652                                 | 21 | 646                                 | 10      | 670                                  | 62        | 96    |
| ASH1   | ASH1-18  | 177                  | 11                      | 46564                                | 0.48              | 0.443                                            | 0.019            | 0.0597                                           | 0.0010           | 0.40 | 0.0538                               | 0.0021           | 372                                 | 16 | 374                                 | 6       | 362                                  | 89        | 103   |
| ASHI   | ASH1-19  | 223                  | 20                      | 175029                               | 0.45              | 0.724                                            | 0.027            | 0.0897                                           | 0.0015           | 0.44 | 0.0580                               | 0.0020           | 553                                 | 21 | 554                                 | 9       | 550                                  | 73        | 101   |
| ASH1   | ASH1-22  | 220                  | 40                      | 6794                                 | 0.09              | 1.502                                            | 0.021            | 0.0009                                           | 0.0013           | 0.52 | 0.0362                               | 0.0014           | 067                                 | 27 | 065                                 | 0<br>15 | 072                                  | 04<br>49  | 102   |
| ASH1   | ASH1-23  | 239                  | 39                      | 3063                                 | 0.20              | 1.092                                            | 0.045            | 0.1015                                           | 0.0024           | 0.54 | 0.0713                               | 0.0017           | 907                                 | 27 | 900                                 | 15      | 972                                  | 40<br>52  | 99    |
|        | ASH1-24  | 151                  | 22                      | 2102                                 | 0.40              | 1.042                                            | 0.030            | 0.1720                                           | 0.0027           | 0.31 | 0.0683                               | 0.0020           | 877                                 | 32 | 877                                 | 14      | 876                                  | 66        | 100   |
| ASH1   | ASH1-26  | 240                  | 51                      | 5363                                 | 0.20              | 2 516                                            | 0.043            | 0.2111                                           | 0.0024           | 0.40 | 0.0864                               | 0.0022           | 1277                                | 40 | 1235                                | 20      | 1348                                 | 52        | 92    |
| ASH1   | ASH1-27  | 83                   | 15                      | 5926                                 | 0.35              | 1 753                                            | 0.057            | 0.1738                                           | 0.0028           | 0.01 | 0.0731                               | 0.0020           | 1028                                | 33 | 1033                                | 16      | 1018                                 | 57        | 101   |
| ASH1   | ASH1-29  | 87                   | 12                      | 1552                                 | 0.26              | 1.206                                            | 0.043            | 0.1326                                           | 0.0022           | 0.45 | 0.0660                               | 0.0021           | 803                                 | 29 | 803                                 | 13      | 805                                  | 67        | 100   |
| ASH1   | ASH1-30  | 193                  | 17                      | 74453                                | 0.48              | 0.697                                            | 0.023            | 0.0871                                           | 0.0014           | 0.48 | 0.0580                               | 0.0017           | 537                                 | 18 | 539                                 | 8       | 530                                  | 63        | 102   |
| ASH1   | ASH1-31  | 419                  | 25                      | 3369                                 | 0.34              | 0.448                                            | 0.018            | 0.0601                                           | 0.0010           | 0.42 | 0.0541                               | 0.0019           | 376                                 | 15 | 376                                 | 6       | 376                                  | 80        | 100   |
| ASH1   | ASH1-32  | 121                  | 13                      | 59535                                | 0.38              | 0.955                                            | 0.032            | 0.1115                                           | 0.0018           | 0.47 | 0.0622                               | 0.0018           | 681                                 | 23 | 681                                 | 11      | 680                                  | 63        | 100   |
| ASH1   | ASH1-33  | 48                   | 4                       | 19505                                | 0.33              | 0.755                                            | 0.039            | 0.0920                                           | 0.0017           | 0.36 | 0.0595                               | 0.0028           | 571                                 | 29 | 567                                 | 11      | 587                                  | 104       | 97    |
| ASH1   | ASH1-34  | 67                   | 6                       | 886                                  | 0.58              | 0.672                                            | 0.030            | 0.0843                                           | 0.0015           | 0.39 | 0.0579                               | 0.0023           | 522                                 | 23 | 522                                 | 9       | 524                                  | 89        | 100   |
| ASH1   | ASH1-35  | 166                  | 17                      | 2594                                 | 1.05              | 0.868                                            | 0.029            | 0.1027                                           | 0.0016           | 0.48 | 0.0613                               | 0.0018           | 634                                 | 21 | 630                                 | 10      | 650                                  | 62        | 97    |
| ASH1   | ASH1-36  | 181                  | 31                      | 138126                               | 0.22              | 1.742                                            | 0.053            | 0.1720                                           | 0.0027           | 0.51 | 0.0734                               | 0.0019           | 1024                                | 31 | 1023                                | 16      | 1026                                 | 53        | 100   |
| ASH1   | ASH1-37  | 243                  | 25                      | 111470                               | 0.19              | 0.865                                            | 0.028            | 0.1035                                           | 0.0016           | 0.48 | 0.0606                               | 0.0017           | 633                                 | 21 | 635                                 | 10      | 625                                  | 62        | 102   |
| ASH1   | ASH1-38  | 105                  | 10                      | 1337                                 | 0.52              | 0.783                                            | 0.030            | 0.0949                                           | 0.0016           | 0.43 | 0.0598                               | 0.0021           | 587                                 | 23 | 585                                 | 10      | 598                                  | 75        | 98    |
| ASH1   | ASH1-39  | 54                   | 6                       | 1496                                 | 0.53              | 0.914                                            | 0.042            | 0.1072                                           | 0.0019           | 0.39 | 0.0618                               | 0.0026           | 659                                 | 30 | 657                                 | 12      | 668                                  | 90        | 98    |
| ASH1   | ASH1-40  | 125                  | 11                      | 47739                                | 0.45              | 0.701                                            | 0.040            | 0.0865                                           | 0.0017           | 0.35 | 0.0588                               | 0.0031           | 539                                 | 31 | 535                                 | 11      | 560                                  | 116       | 96    |
| ASH1   | ASH1-41  | 217                  | 27                      | 120466                               | 0.27              | 1.121                                            | 0.037            | 0.1255                                           | 0.0020           | 0.47 | 0.0648                               | 0.0019           | /63                                 | 25 | 762                                 | 12      | /6/                                  | 62        | 99    |
| ASH1   | ASH1-42  | 133                  | 11                      | 3132                                 | 0.41              | 0.628                                            | 0.044            | 0.0797                                           | 0.0018           | 0.32 | 0.0572                               | 0.0038           | 495                                 | 35 | 494                                 | 11      | 498                                  | 147       | 99    |
| ASH1   | ASH1-43  | 130                  | 25                      | 54325                                | 0.32              | 1.977                                            | 0.059            | 0.1882                                           | 0.0029           | 0.52 | 0.0762                               | 0.0019           | 1108                                | 33 | 1112                                | 17      | 1100                                 | 51        | 101   |
| ASHI   | ASH1-44  | 30                   | 14                      | 32197                                | 0.35              | 2.201                                            | 0.084            | 0.2040                                           | 0.0035           | 0.40 | 0.0801                               | 0.0026           | 1070                                | 44 | 1197                                | 20      | 1060                                 | 65        | 100   |
| ASHI   | ASH1-45  | 79                   | 14                      | 17840                                | 0.44              | 1.807                                            | 0.060            | 0.1813                                           | 0.0029           | 0.49 | 0.0747                               | 0.0021           | 1070                                | 34 | 1074                                | 0       | 1000                                 | 57<br>102 | 101   |
| ASHI   | ASH1-40  | 131                  | 0                       | 1032                                 | 0.25              | 0.629                                            | 0.031            | 0.0804                                           | 0.0015           | 0.37 | 0.0507                               | 0.0026           | 490                                 | 20 | 498                                 | 9       | 481                                  | 70        | 104   |
|        | ASH1-47  | 110                  | 10                      | 5232                                 | 0.33              | 1.421                                            | 0.055            | 0.1712                                           | 0.0023           | 0.44 | 0.0093                               | 0.0025           | 1033                                | 30 | 1019                                | 17      | 1063                                 | 68        | 96    |
|        | ASH1-40  | 34                   | 6                       | 26353                                | 0.24              | 1.705                                            | 0.007            | 0.1712                                           | 0.0029           | 0.45 | 0.0748                               | 0.0023           | 1033                                | 48 | 1019                                | 10      | 1003                                 | 85        | 90    |
| ASH1   | ASH1-50  | 133                  | 17                      | 77672                                | 0.56              | 1.700                                            | 0.002            | 0.1733                                           | 0.0000           | 0.49 | 0.0660                               | 0.0031           | 798                                 | 26 | 795                                 | 12      | 807                                  | 59        | 99    |
| ASH1   | ASH1-51  | 140                  | 13                      | 1857                                 | 0.36              | 0.718                                            | 0.024            | 0.0895                                           | 0.0014           | 0.46 | 0.0582                               | 0.0018           | 549                                 | 19 | 553                                 | .2      | 536                                  | 66        | 103   |
| ASH1   | ASH1-52  | 115                  | 12                      | 1511                                 | 0.46              | 0.880                                            | 0.032            | 0.1038                                           | 0.0017           | 0.45 | 0.0615                               | 0.0020           | 641                                 | 23 | 637                                 | 10      | 656                                  | 70        | 97    |
| ASH1   | ASH1-53  | 259                  | 46                      | 31829                                | 0.16              | 1.823                                            | 0.051            | 0.1777                                           | 0.0027           | 0.53 | 0.0744                               | 0.0018           | 1054                                | 29 | 1054                                | 16      | 1052                                 | 48        | 100   |
| ASH1   | ASH1-54  | 250                  | 19                      | 86281                                | 0.39              | 0.607                                            | 0.020            | 0.0776                                           | 0.0012           | 0.48 | 0.0567                               | 0.0016           | 481                                 | 16 | 482                                 | 7       | 479                                  | 63        | 101   |
| ASH1   | ASH1-55  | 86                   | 7                       | 1004                                 | 0.44              | 0.617                                            | 0.035            | 0.0787                                           | 0.0015           | 0.35 | 0.0569                               | 0.0030           | 488                                 | 28 | 488                                 | 10      | 488                                  | 117       | 100   |
| ASH1   | ASH1-56  | 48                   | 8                       | 37453                                | 1.17              | 1.776                                            | 0.065            | 0.1745                                           | 0.0029           | 0.46 | 0.0738                               | 0.0024           | 1037                                | 38 | 1037                                | 17      | 1036                                 | 66        | 100   |
| ASH1   | ASH1-57  | 220                  | 25                      | 4281                                 | 0.35              | 1.076                                            | 0.033            | 0.1150                                           | 0.0018           | 0.50 | 0.0679                               | 0.0018           | 742                                 | 23 | 702                                 | 11      | 865                                  | 55        | 81    |
|        |          |                      |                         |                                      |                   |                                                  |                  |                                                  |                  |      |                                      |                  |                                     |    |                                     |         |                                      |           |       |

| ASH1  | ASH1-58            | 277 | 23                   | 1162   | 0.36 | 0.647  | 0.036 | 0.0815 | 0.0016 | 0.35 | 0.0576 | 0.0030 | 507  | 28         | 505         | 10      | 513  | 115       | 98   |
|-------|--------------------|-----|----------------------|--------|------|--------|-------|--------|--------|------|--------|--------|------|------------|-------------|---------|------|-----------|------|
| ASH1  | ASH1-59            | 123 | 11                   | 47341  | 0.46 | 0.696  | 0.026 | 0.0868 | 0.0014 | 0.44 | 0.0582 | 0.0019 | 537  | 20         | 536         | 9       | 538  | 73        | 100  |
| ASH1  | ASH1-60            | 37  | 3                    | 1761   | 0.63 | 0.697  | 0.075 | 0.0869 | 0.0027 | 0.29 | 0.0582 | 0.0060 | 537  | 57         | 537         | 17      | 537  | 224       | 100  |
| ASH1  | ASH1-61            | 99  | 17                   | 19413  | 0.35 | 0.867  | 0.044 | 0.1761 | 0.0027 | 0.30 | 0.0357 | 0.0017 | 634  | 32         | 1045        | 16      | -654 | 134       | -160 |
| ASH1  | ASH1-62            | 72  | 21                   | 64330  | 0.28 | 4 102  | 0 122 | 0 2925 | 0.0045 | 0.52 | 0 1017 | 0.0026 | 1655 | 49         | 1654        | 26      | 1656 | 47        | 100  |
| ASH1  | ASH1-63            | 102 | 25                   | 6622   | 0.54 | 3 056  | 0.093 | 0.2469 | 0.0039 | 0.51 | 0.0898 | 0.0020 | 1422 | 43         | 1422        | 22      | 1421 | 50        | 100  |
| ASH1  | ASH1-64            | 40  | 4                    | 1144   | 0.62 | 0.931  | 0.046 | 0.1088 | 0.0020 | 0.38 | 0.0621 | 0.0028 | 668  | 33         | 665         | 12      | 678  | 98        | 98   |
| ASH1  | ASH1-65            | 155 | 29                   | 128144 | 0.35 | 1 943  | 0.057 | 0 1858 | 0.0028 | 0.52 | 0.0758 | 0.0019 | 1096 | 32         | 1099        | 17      | 1090 | 50        | 101  |
|       |                    | 01  | 16                   | 72147  | 0.32 | 1 923  | 0.050 | 0.1777 | 0.0020 | 0.02 | 0.0744 | 0.0010 | 1054 | 34         | 1053        | 17      | 1053 | 57        | 100  |
|       | ASI11-00           | 250 | 47                   | 10027  | 0.32 | 1.025  | 0.059 | 0.1777 | 0.0028 | 0.40 | 0.0744 | 0.0021 | 1004 | 20         | 1034        | 16      | 1000 | 47        | 100  |
| AOUIA | ASH1-07            | 259 | 47                   | 19237  | 0.17 | 1.908  | 0.055 | 0.1031 | 0.0027 | 0.54 | 0.0750 | 0.0018 | 1084 | 30         | 1064        | 10      | 1064 | 47        | 100  |
| ASH1  | ASH1-68            | 263 | 43                   | 192696 | 0.20 | 1.625  | 0.048 | 0.1642 | 0.0025 | 0.51 | 0.0718 | 0.0018 | 980  | 29         | 980         | 15      | 980  | 52        | 100  |
| ASH1  | ASH1-69            | 200 | 34                   | 150338 | 0.42 | 1.704  | 0.049 | 0.1686 | 0.0025 | 0.52 | 0.0733 | 0.0018 | 1010 | 29         | 1004        | 15      | 1022 | 50        | 98   |
| ASH1  | ASH1-70            | 176 | 18                   | 81056  | 0.64 | 0.864  | 0.028 | 0.1029 | 0.0016 | 0.48 | 0.0609 | 0.0017 | 632  | 20         | 632         | 10      | 635  | 61        | 99   |
| ASH1  | ASH1-71            | 119 | 9                    | 1632   | 0.32 | 0.632  | 0.026 | 0.0799 | 0.0013 | 0.41 | 0.0573 | 0.0022 | 497  | 20         | 495         | 8       | 505  | 83        | 98   |
| ASH1  | ASH1-72            | 150 | 26                   | 116104 | 0.44 | 1.731  | 0.052 | 0.1730 | 0.0026 | 0.51 | 0.0726 | 0.0019 | 1020 | 31         | 1029        | 16      | 1002 | 53        | 103  |
| ASH1  | ASH1-73            | 146 | 15                   | 68504  | 0.29 | 0.877  | 0.032 | 0.1048 | 0.0017 | 0.44 | 0.0607 | 0.0020 | 639  | 23         | 643         | 10      | 628  | 71        | 102  |
| ASH1  | ASH1-74            | 311 | 56                   | 77534  | 0.16 | 1.882  | 0.052 | 0.1804 | 0.0027 | 0.53 | 0.0756 | 0.0018 | 1075 | 30         | 1069        | 16      | 1086 | 47        | 99   |
| ASH1  | ASH1-75            | 118 | 22                   | 97682  | 0.36 | 1.943  | 0.060 | 0.1855 | 0.0029 | 0.50 | 0.0760 | 0.0020 | 1096 | 34         | 1097        | 17      | 1094 | 53        | 100  |
| ASH1  | ASH1-76            | 133 | 11                   | 1066   | 0.44 | 0.685  | 0.025 | 0.0859 | 0.0014 | 0.44 | 0.0579 | 0.0019 | 530  | 19         | 531         | 8       | 524  | 71        | 101  |
| ASH1  | ASH1-77            | 125 | 21                   | 93690  | 0.55 | 1.672  | 0.052 | 0.1677 | 0.0026 | 0.50 | 0.0723 | 0.0019 | 998  | 31         | 999         | 15      | 994  | 55        | 101  |
| ASH1  | ASH1-78            | 273 | 29                   | 11422  | 0.37 | 0.898  | 0.027 | 0 1057 | 0.0016 | 0.50 | 0.0616 | 0.0016 | 650  | 20         | 648         | 10      | 660  | 56        | 98   |
| ASH1  | ASH1-70            | 137 | 22                   | 8757   | 0.96 | 1 517  | 0.048 | 0 1564 | 0.0024 | 0.49 | 0.0704 | 0.0019 | 937  | 30         | 037         | 14      | 030  | 57        | 100  |
|       |                    | 150 | 20                   | 129527 | 0.30 | 1.017  | 0.040 | 0.1900 | 0.0024 | 0.51 | 0.0751 | 0.0019 | 1072 | 30         | 1072        | 16      | 1072 | 52        | 100  |
| ACUA  | AGI11-00           | 159 | 29                   | 120001 | 0.34 | 0.747  | 0.000 | 0.1009 | 0.0028 | 0.31 | 0.0731 | 0.0019 | 540  | 10         | 540         | 10      | 1072 | 52        | 100  |
|       |                    | 100 | 14                   | 4970   | 1.12 | 0.717  | 0.025 | 0.0888 | 0.0014 | 0.46 | 0.0586 | 0.0018 | 549  | 19         | 048<br>1007 | 9<br>10 | 221  | 67        | 99   |
|       | ASH1-02<br>ASH1 92 | 00  | 10                   | 4670   | 0.42 | 0.761  | 0.075 | 0.1000 | 0.0031 | 0.44 | 0.0705 | 0.0020 | 574  | 42         | 572         | 19      | 592  | 115       | 99   |
|       | ASH1-8/            | 118 | 22                   | 2351   | 0.42 | 2.014  | 0.043 | 0.0920 | 0.0018 | 0.35 | 0.0394 | 0.0031 | 1120 | 30         | 1110        | 18      | 11/0 | 62        | 90   |
|       |                    | 107 | 0                    | 2034   | 0.40 | 0.710  | 0.071 | 0.0901 | 0.0031 | 0.43 | 0.0595 | 0.0024 | 550  | 21         | 550         | 0       | 550  | 75        | 100  |
|       | ASI11-05           | 74  | 3                    | 100212 | 0.34 | 4 290  | 0.027 | 0.0091 | 0.0014 | 0.43 | 0.0303 | 0.0020 | 1700 | Z 1<br>E 4 | 1707        | 3       | 1710 | 7.5<br>E0 | 100  |
| ASHI  | ASH1-00            | 74  | 22                   | 100312 | 0.15 | 4.360  | 0.130 | 0.3032 | 0.0046 | 0.51 | 0.1046 | 0.0026 | 1709 | 34         | 1707        | 21      | 1710 | 50        | 100  |
| ASH1  | ASH1-87            | 184 | 16                   | 70664  | 0.36 | 0.686  | 0.027 | 0.0858 | 0.0014 | 0.41 | 0.0581 | 0.0021 | 531  | 21         | 530         | 9       | 532  | 80        | 100  |
| ASH1  | ASH1-88            | 311 | 56                   | 3530   | 0.31 | 1.862  | 0.054 | 0.1794 | 0.0027 | 0.52 | 0.0753 | 0.0019 | 1068 | 31         | 1064        | 16      | 1075 | 50        | 99   |
| ASH1  | ASH1-89            | 61  | 5                    | 22398  | 0.29 | 0.653  | 0.030 | 0.0820 | 0.0014 | 0.38 | 0.0578 | 0.0025 | 510  | 24         | 508         | 9       | 521  | 93        | 97   |
| ASH1  | ASH1-90            | 174 | 32                   | 4233   | 0.26 | 1.979  | 0.059 | 0.1868 | 0.0028 | 0.51 | 0.0769 | 0.0020 | 1108 | 33         | 1104        | 17      | 1118 | 51        | 99   |
| ASH1  | ASH1-91            | 97  | 15                   | 18049  | 0.41 | 1.537  | 0.053 | 0.1575 | 0.0025 | 0.46 | 0.0708 | 0.0022 | 945  | 33         | 943         | 15      | 950  | 63        | 99   |
| ASH1  | ASH1-92            | 186 | 31                   | 140939 | 0.54 | 1.686  | 0.050 | 0.1684 | 0.0025 | 0.51 | 0.0726 | 0.0019 | 1003 | 30         | 1003        | 15      | 1003 | 52        | 100  |
| ASH1  | ASH1-93            | 230 | 31                   | 138752 | 0.17 | 1.303  | 0.039 | 0.1341 | 0.0020 | 0.50 | 0.0705 | 0.0018 | 847  | 25         | 811         | 12      | 941  | 53        | 86   |
| ASH1  | ASH1-94            | 174 | 32                   | 145871 | 0.39 | 1.964  | 0.061 | 0.1859 | 0.0029 | 0.50 | 0.0766 | 0.0021 | 1103 | 34         | 1099        | 17      | 1111 | 54        | 99   |
| ASH1  | ASH1-95            | 84  | 7                    | 1301   | 0.52 | 0.687  | 0.028 | 0.0859 | 0.0014 | 0.41 | 0.0580 | 0.0022 | 531  | 22         | 531         | 9       | 529  | 82        | 100  |
| ASH1  | ASH1-96            | 163 | 91                   | 32304  | 0.61 | 19.226 | 0.518 | 0.5607 | 0.0083 | 0.55 | 0.2487 | 0.0056 | 3053 | 82         | 2869        | 42      | 3177 | 36        | 90   |
| ASH1  | ASH1-97            | 189 | 24                   | 106322 | 0.62 | 1.105  | 0.034 | 0.1250 | 0.0019 | 0.49 | 0.0641 | 0.0017 | 756  | 24         | 760         | 12      | 744  | 57        | 102  |
| ASH1  | ASH1-98            | 153 | 15                   | 69789  | 0.30 | 0.864  | 0.033 | 0.1013 | 0.0017 | 0.43 | 0.0618 | 0.0021 | 632  | 24         | 622         | 10      | 669  | 74        | 93   |
| ASH1  | ASH1-99            | 387 | 57                   | 14642  | 0.12 | 1.534  | 0.044 | 0.1466 | 0.0022 | 0.52 | 0.0759 | 0.0018 | 944  | 27         | 882         | 13      | 1093 | 49        | 81   |
| ASH1  | ASH1-100           | 125 | 12                   | 51952  | 0.62 | 0.756  | 0.034 | 0.0926 | 0.0016 | 0.39 | 0.0592 | 0.0024 | 571  | 26         | 571         | 10      | 574  | 90        | 99   |
| ASH1  | ASH1-101           | 283 | 54                   | 10554  | 0.39 | 2 032  | 0.059 | 0 1904 | 0.0028 | 0.52 | 0.0774 | 0.0019 | 1126 | 33         | 1124        | 17      | 1132 | 49        | 99   |
| ASH1  | ASH1-102           | 273 | 24                   | 1886   | 0.00 | 0.709  | 0.000 | 0.0874 | 0.0013 | 0.02 | 0.0587 | 0.0016 | 5/3  | 17         | 540         | 9.<br>2 | 556  | 61        | 07   |
| AGI11 | AGH1 102           | 125 | 4 <del>4</del><br>12 | 54409  | 0.33 | 0.700  | 0.022 | 0.0074 | 0.0015 | 0.40 | 0.0507 | 0.0010 | 500  | 22         | 507         | 10      | 606  | 74        | 31   |
| AODI  | ASH1 103           | 120 | 12                   | 34490  | 0.54 | 0.804  | 0.051 | 0.0971 | 0.0010 | 0.43 | 0.0001 | 0.0021 | 000  | 20         | 095         | 10      | 1002 | /4<br>52  | 90   |
| ASHI  | ASH1-104           | 422 | 70                   | 314294 | 0.55 | 1.052  | 0.000 | 0.1001 | 0.0025 | 0.50 | 0.0720 | 0.0019 | 990  | 30         | 980         | 10      | 1002 | 53        | 98   |
| ASH1  | ASH1-105           | 1/6 | 16                   | 3692   | 0.58 | 0.713  | 0.025 | 0.0885 | 0.0014 | 0.44 | 0.0584 | 0.0019 | 546  | 19         | 547         | 9       | 545  | 70        | 100  |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup>Pb/<sup>235</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb)/(<sup>238</sup>U/<sup>206</sup>Pb \* 1/137.88) <sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>238</sup>U and the <sup>207</sup>/<sup>235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

#### Table D4. LA-ICPMS isotopic data for sample RAE in the Robertson Basin

| RAE    |               |                      |                       |                                      |                   |                                                  |                  |                                                  | RATIOS           |                  |                                                   |                  |   |                                     |    | AGES                                | [Ma] |                                      |     | Conc. |
|--------|---------------|----------------------|-----------------------|--------------------------------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------------------|---------------------------------------------------|------------------|---|-------------------------------------|----|-------------------------------------|------|--------------------------------------|-----|-------|
| Sample | Analysis      | U [ppm] <sup>a</sup> | Pb [ppm] <sup>a</sup> | <sup>206</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>a</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho <sup>c</sup> | <sup>207</sup> Pb/ <sup>206</sup> Pb <sup>e</sup> | 2 σ <sup>d</sup> | = | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ | <sup>206</sup> Pb/ <sup>238</sup> U | 2σ   | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ  | %     |
| RAE    | RAE-1         | 938                  | 80                    | 366694                               | 0.38              | 0.683                                            | 0.019            | 0.0857                                           | 0.0013           | 0.54             | 0.0578                                            | 0.0014           |   | 529                                 | 15 | 530                                 | 8    | 522                                  | 52  | 101   |
| RAE    | RAE-2         | 275                  | 36                    | 7494                                 | 0.13              | 1.170                                            | 0.034            | 0.1292                                           | 0.0020           | 0.51             | 0.0657                                            | 0.0017           |   | 787                                 | 23 | 783                                 | 12   | 796                                  | 53  | 98    |
| RAE    | RAE-3         | 93                   | 9                     | 1125                                 | 0.50              | 0.764                                            | 0.039            | 0.0937                                           | 0.0018           | 0.37             | 0.0591                                            | 0.0028           |   | 576                                 | 29 | 578                                 | 11   | 571                                  | 103 | 101   |
| RAE    | RAE-4         | 31                   | 6                     | 26621                                | 1.40              | 2.051                                            | 0.094            | 0.1906                                           | 0.0036           | 0.42             | 0.0781                                            | 0.0032           |   | 1133                                | 52 | 1125                                | 21   | 1148                                 | 82  | 98    |
| RAE    | RAE-5         | 160                  | 29                    | 35762                                | 0.79              | 1.888                                            | 0.054            | 0.1816                                           | 0.0028           | 0.53             | 0.0754                                            | 0.0018           |   | 1077                                | 31 | 1075                                | 16   | 1080                                 | 49  | 100   |
| RAE    | RAE-6         | 204                  | 38                    | 173757                               | 0.40              | 1.963                                            | 0.055            | 0.1864                                           | 0.0028           | 0.54             | 0.0764                                            | 0.0018           |   | 1103                                | 31 | 1102                                | 17   | 1105                                 | 48  | 100   |
| RAE    | RAE-7         | 178                  | 20                    | 1615                                 | 0.39              | 0.957                                            | 0.040            | 0.1114                                           | 0.0019           | 0.41             | 0.0623                                            | 0.0024           |   | 682                                 | 29 | 681                                 | 12   | 685                                  | 82  | 99    |
| RAE    | RAE-8         | 57                   | 8                     | 1609                                 | 0.52              | 1.293                                            | 0.049            | 0.1397                                           | 0.0023           | 0.44             | 0.0671                                            | 0.0023           |   | 842                                 | 32 | 843                                 | 14   | 841                                  | 71  | 100   |
| RAE    | RAE-9         | 49                   | 4                     | 1605                                 | 0.63              | 0.674                                            | 0.034            | 0.0844                                           | 0.0016           | 0.37             | 0.0580                                            | 0.0027           |   | 523                                 | 26 | 522                                 | 10   | 528                                  | 101 | 99    |
| RAE    | <b>RAE-10</b> | 65                   | 6                     | 25258                                | 0.72              | 0.698                                            | 0.033            | 0.0854                                           | 0.0015           | 0.38             | 0.0593                                            | 0.0026           |   | 538                                 | 25 | 528                                 | 10   | 577                                  | 95  | 92    |
| RAE    | RAE-11        | 178                  | 28                    | 128387                               | 1.33              | 1.539                                            | 0.050            | 0.1582                                           | 0.0025           | 0.49             | 0.0706                                            | 0.0020           |   | 946                                 | 31 | 946                                 | 15   | 946                                  | 58  | 100   |
| RAE    | RAE-12        | 44                   | 4                     | 17711                                | 0.85              | 0.712                                            | 0.036            | 0.0881                                           | 0.0016           | 0.37             | 0.0586                                            | 0.0028           |   | 546                                 | 28 | 544                                 | 10   | 551                                  | 104 | 99    |
| RAE    | RAE-13        | 268                  | 26                    | 119899                               | 0.48              | 0.807                                            | 0.024            | 0.0980                                           | 0.0015           | 0.52             | 0.0598                                            | 0.0015           |   | 601                                 | 18 | 603                                 | 9    | 595                                  | 55  | 101   |
| RAE    | RAE-14        | 105                  | 12                    | 30322                                | 0.09              | 1.018                                            | 0.041            | 0.1167                                           | 0.0020           | 0.43             | 0.0633                                            | 0.0023           |   | 713                                 | 28 | 711                                 | 12   | 717                                  | 77  | 99    |
| RAE    | RAE-15        | 87                   | 8                     | 1955                                 | 0.37              | 0.732                                            | 0.030            | 0.0902                                           | 0.0015           | 0.41             | 0.0588                                            | 0.0022           |   | 557                                 | 23 | 557                                 | 10   | 561                                  | 82  | 99    |
| RAE    | RAE-16        | 314                  | 28                    | 128475                               | 0.37              | 0.722                                            | 0.022            | 0.0896                                           | 0.0014           | 0.49             | 0.0584                                            | 0.0016           |   | 552                                 | 17 | 553                                 | 9    | 546                                  | 59  | 101   |
| RAE    | RAE-17        | 95                   | 8                     | 38263                                | 0.36              | 0.717                                            | 0.028            | 0.0881                                           | 0.0015           | 0.42             | 0.0591                                            | 0.0021           |   | 549                                 | 22 | 544                                 | 9    | 570                                  | 78  | 95    |
| RAE    | <b>RAE-18</b> | 30                   | 6                     | 25515                                | 0.85              | 1.929                                            | 0.147            | 0.1839                                           | 0.0049           | 0.35             | 0.0761                                            | 0.0054           |   | 1091                                | 83 | 1088                                | 29   | 1097                                 | 143 | 99    |
| RAE    | <b>RAE-19</b> | 29                   | 5                     | 24655                                | 0.38              | 2.032                                            | 0.088            | 0.1880                                           | 0.0034           | 0.42             | 0.0784                                            | 0.0031           |   | 1126                                | 49 | 1110                                | 20   | 1157                                 | 77  | 96    |
| RAE    | RAE-20        | 88                   | 16                    | 8690                                 | 0.40              | 1.839                                            | 0.058            | 0.1789                                           | 0.0028           | 0.50             | 0.0745                                            | 0.0020           |   | 1059                                | 33 | 1061                                | 17   | 1056                                 | 55  | 100   |
| RAE    | RAE-21        | 220                  | 19                    | 84768                                | 0.34              | 0.671                                            | 0.024            | 0.0844                                           | 0.0013           | 0.45             | 0.0577                                            | 0.0018           |   | 521                                 | 18 | 522                                 | 8    | 518                                  | 69  | 101   |
| RAE    | RAE-22        | 167                  | 14                    | 66040                                | 0.50              | 0.694                                            | 0.023            | 0.0864                                           | 0.0014           | 0.47             | 0.0582                                            | 0.0017           |   | 535                                 | 18 | 534                                 | 8    | 538                                  | 65  | 99    |
| RAE    | RAE-23        | 61                   | 5                     | 23688                                | 1.01              | 0.715                                            | 0.032            | 0.0853                                           | 0.0015           | 0.40             | 0.0609                                            | 0.0025           |   | 548                                 | 24 | 527                                 | 9    | 635                                  | 88  | 83    |
| RAE    | RAE-24        | 57                   | 9                     | 3189                                 | 0.17              | 1.643                                            | 0.059            | 0.1605                                           | 0.0027           | 0.46             | 0.0743                                            | 0.0024           |   | 987                                 | 36 | 959                                 | 16   | 1049                                 | 65  | 92    |
| RAE    | RAE-25        | 562                  | 47                    | 71766                                | 0.01              | 0.660                                            | 0.019            | 0.0831                                           | 0.0012           | 0.53             | 0.0576                                            | 0.0014           |   | 515                                 | 15 | 515                                 | 8    | 514                                  | 53  | 100   |
| RAE    | RAE-26        | 219                  | 19                    | 84823                                | 0.06              | 0.681                                            | 0.022            | 0.0848                                           | 0.0013           | 0.48             | 0.0583                                            | 0.0017           |   | 527                                 | 17 | 525                                 | 8    | 540                                  | 62  | 97    |
| RAE    | RAE-27        | 80                   | 15                    | 20858                                | 0.60              | 2.072                                            | 0.067            | 0.1939                                           | 0.0031           | 0.49             | 0.0775                                            | 0.0022           |   | 1140                                | 37 | 1143                                | 18   | 1134                                 | 56  | 101   |
| RAE    | RAE-28        | 113                  | 11                    | 52460                                | 0.29              | 0.845                                            | 0.031            | 0.1014                                           | 0.0017           | 0.44             | 0.0604                                            | 0.0020           |   | 622                                 | 23 | 623                                 | 10   | 619                                  | 71  | 101   |
| RAE    | RAE-29        | 462                  | 38                    | 8194                                 | 0.32              | 0.645                                            | 0.020            | 0.0815                                           | 0.0013           | 0.49             | 0.0574                                            | 0.0016           |   | 505                                 | 16 | 505                                 | 8    | 507                                  | 60  | 100   |
| RAE    | RAE-30        | 237                  | 25                    | 113102                               | 0.14              | 0.879                                            | 0.026            | 0.1046                                           | 0.0016           | 0.51             | 0.0609                                            | 0.0016           |   | 640                                 | 19 | 641                                 | 10   | 637                                  | 56  | 101   |
| RAE    | RAE-31        | 268                  | 53                    | 241534                               | 0.44              | 2.137                                            | 0.059            | 0.1975                                           | 0.0030           | 0.55             | 0.0785                                            | 0.0018           |   | 1161                                | 32 | 1162                                | 17   | 1159                                 | 45  | 100   |
| RAE    | RAE-32        | 108                  | 9                     | 1777                                 | 0.45              | 0.698                                            | 0.030            | 0.0864                                           | 0.0015           | 0.40             | 0.0586                                            | 0.0023           |   | 538                                 | 23 | 534                                 | 9    | 551                                  | 87  | 97    |
| RAE    | RAE-34        | 326                  | 28                    | 4707                                 | 0.36              | 0.700                                            | 0.021            | 0.0869                                           | 0.0013           | 0.50             | 0.0584                                            | 0.0015           |   | 539                                 | 16 | 537                                 | 8    | 544                                  | 57  | 99    |
| RAE    | RAE-35        | 34                   | 7                     | 29999                                | 0.55              | 2.077                                            | 0.080            | 0.1929                                           | 0.0033           | 0.45             | 0.0781                                            | 0.0027           |   | 1141                                | 44 | 1137                                | 20   | 1148                                 | 69  | 99    |
| RAE    | RAE-36        | 239                  | 24                    | 111792                               | 0.13              | 0.867                                            | 0.033            | 0.1024                                           | 0.0017           | 0.44             | 0.0614                                            | 0.0021           |   | 634                                 | 24 | 629                                 | 10   | 654                                  | 73  | 96    |
| RAE    | RAE-37        | 146                  | 13                    | 58521                                | 0.38              | 0.710                                            | 0.025            | 0.0879                                           | 0.0014           | 0.46             | 0.0586                                            | 0.0018           |   | 545                                 | 19 | 543                                 | 9    | 550                                  | 67  | 99    |
| RAE    | RAE-38        | 71                   | 12                    | 3998                                 | 0.43              | 1.686                                            | 0.059            | 0.1676                                           | 0.0027           | 0.47             | 0.0730                                            | 0.0022           |   | 1003                                | 35 | 999                                 | 16   | 1013                                 | 62  | 99    |
| RAE    | RAE-39        | 95                   | 16                    | 75097                                | 0.15              | 1.754                                            | 0.062            | 0.1725                                           | 0.0028           | 0.46             | 0.0737                                            | 0.0023           |   | 1029                                | 37 | 1026                                | 17   | 1034                                 | 64  | 99    |
| RAE    | RAE-40        | 57                   | 5                     | 23631                                | 0.40              | 0.737                                            | 0.042            | 0.0905                                           | 0.0018           | 0.35             | 0.0591                                            | 0.0032           |   | 561                                 | 32 | 558                                 | 11   | 570                                  | 117 | 98    |
| RAE    | RAE-41        | 146                  | 22                    | 2132                                 | 0.14              | 1.617                                            | 0.050            | 0.1539                                           | 0.0024           | 0.50             | 0.0762                                            | 0.0020           |   | 977                                 | 30 | 923                                 | 14   | 1100                                 | 54  | 84    |
| RAE    | RAE-42        | 151                  | 13                    | 24451                                | 0.48              | 0.701                                            | 0.028            | 0.0867                                           | 0.0015           | 0.42             | 0.0587                                            | 0.0022           |   | 539                                 | 22 | 536                                 | 9    | 554                                  | 80  | 97    |
| RAE    | RAE-43        | 138                  | 16                    | 3504                                 | 0.70              | 1.093                                            | 0.035            | 0.1184                                           | 0.0018           | 0.49             | 0.0670                                            | 0.0019           |   | 750                                 | 24 | 721                                 | 11   | 838                                  | 58  | 86    |
| RAE    | RAE-44        | 183                  | 32                    | 146554                               | 0.14              | 1.775                                            | 0.053            | 0.1749                                           | 0.0027           | 0.52             | 0.0736                                            | 0.0019           |   | 1036                                | 31 | 1039                                | 16   | 1031                                 | 52  | 101   |
| RAE    | RAE-45        | 657                  | 54                    | 4295                                 | 0.53              | 0.661                                            | 0.025            | 0.0826                                           | 0.0014           | 0.43             | 0.0580                                            | 0.0020           |   | 515                                 | 20 | 512                                 | 8    | 529                                  | 76  | 97    |
| RAE    | RAE-46        | 138                  | 12                    | 1373                                 | 0.52              | 0.686                                            | 0.024            | 0.0851                                           | 0.0014           | 0.45             | 0.0585                                            | 0.0019           |   | 531                                 | 19 | 526                                 | 8    | 550                                  | 69  | 96    |
| RAE    | RAE-47        | 66                   | 6                     | 26377                                | 0.31              | 0.698                                            | 0.032            | 0.0869                                           | 0.0016           | 0.39             | 0.0582                                            | 0.0025           |   | 537                                 | 25 | 537                                 | 10   | 538                                  | 94  | 100   |
| RAE    | RAE-48        | 63                   | 6                     | 956                                  | 0.35              | 0.748                                            | 0.035            | 0.0907                                           | 0.0016           | 0.38             | 0.0598                                            | 0.0026           |   | 567                                 | 27 | 559                                 | 10   | 597                                  | 95  | 94    |
| RAE    | RAE-49        | 273                  | 23                    | 104734                               | 0.44              | 0.666                                            | 0.021            | 0.0839                                           | 0.0013           | 0.49             | 0.0576                                            | 0.0016           |   | 518                                 | 16 | 519                                 | 8    | 514                                  | 60  | 101   |
| RAE    | RAE-50        | 71                   | 12                    | 53306                                | 0.56              | 1.658                                            | 0.066            | 0.1639                                           | 0.0028           | 0.43             | 0.0734                                            | 0.0026           |   | 993                                 | 40 | 978                                 | 17   | 1025                                 | 73  | 95    |
| RAE    | RAE-51        | 79                   | 14                    | 65636                                | 1.74              | 1.937                                            | 0.098            | 0.1828                                           | 0.0037           | 0.39             | 0.0769                                            | 0.0036           |   | 1094                                | 55 | 1082                                | 22   | 1118                                 | 93  | 97    |

<sup>a</sup>U and Pb concentrations and Th/U ratios are calculated relative to GJ-1 reference zircon

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup>Pb/<sup>235</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb/(<sup>238</sup>U)<sup>206</sup>Pb \* 1/137.88)

<sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>238</sup>U and the <sup>207</sup>/<sup>235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

#### Table D5. LA-ICPMS isotopic data for sample HBUP in the Heidelberg Basin

| HBUP   |            |                        |                          |                        |                                      |                   |                                                  |                  |                                                  | RATIOS           |                  |             |                  |                                     |        | AGES                                | [Ma] |                                      |     | Conc. |
|--------|------------|------------------------|--------------------------|------------------------|--------------------------------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------------------|-------------|------------------|-------------------------------------|--------|-------------------------------------|------|--------------------------------------|-----|-------|
| Sample | Analysis   | U [ppm] <sup>a</sup> F | Pb [ppm] <sup>a</sup> Th | h [ppm] <sup>a 2</sup> | <sup>206</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>a</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho <sup>c</sup> | 207Pb/206Pb | 2 σ <sup>d</sup> | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ     | <sup>206</sup> Pb/ <sup>238</sup> U | 2 σ  | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ  | %     |
| HBUP   | HBUP-1     | 412                    | 10                       | 278                    | 50576                                | 0.68              | 0.170                                            | 0.007            | 0.02519                                          | 0.00048          | 0.43             | 0.0488      | 0.0019           | 159                                 | 7      | 160                                 | 3    | 140                                  | 93  | 115   |
| HBUP   | HBUP-2     | 374                    | 10                       | 241                    | 2089                                 | 0.64              | 0.176                                            | 0.008            | 0.02552                                          | 0.00048          | 0.43             | 0.0499      | 0.0020           | 164                                 | 7      | 162                                 | 3    | 190                                  | 92  | 86    |
| HBUP   | HBUP-3     | 275                    | 7                        | 139                    | 267                                  | 0.50              | 0.174                                            | 0.017            | 0.02500                                          | 0.00050          | 0.20             | 0.0505      | 0.0049           | 163                                 | 16     | 159                                 | 3    | 220                                  | 223 | 72    |
| HBUP   | HBUP-4     | 228                    | 6                        | 130                    | 767                                  | 0.57              | 0.174                                            | 0.010            | 0.02579                                          | 0.00050          | 0.36             | 0.0491      | 0.0025           | 163                                 | 9      | 164                                 | 3    | 151                                  | 119 | 109   |
| HBUP   | HBUP-5     | 247                    | 6                        | 165                    | 4248                                 | 0.67              | 0.174                                            | 0.010            | 0.02546                                          | 0.00050          | 0.34             | 0.0495      | 0.0027           | 163                                 | 9      | 162                                 | 3    | 170                                  | 128 | 96    |
| HBUP   | HBUP-6     | 203                    | 5                        | 93                     | 54036                                | 0.46              | 0.178                                            | 0.009            | 0.02586                                          | 0.00050          | 0.39             | 0.0499      | 0.0023           | 166                                 | 8      | 165                                 | 3    | 188                                  | 106 | 88    |
| HBUP   | HBUP-7     | 294                    | 8                        | 182                    | 1324                                 | 0.62              | 0.179                                            | 0.010            | 0.02593                                          | 0.00050          | 0.34             | 0.0499      | 0.0026           | 167                                 | 9      | 165                                 | 3    | 192                                  | 122 | 86    |
| HBUP   | HBUP-8     | 271                    | 7                        | 127                    | 573                                  | 0.47              | 0.179                                            | 0.013            | 0.02536                                          | 0.00048          | 0.27             | 0.0511      | 0.0035           | 167                                 | 12     | 161                                 | 3    | 245                                  | 157 | 66    |
| HBUP   | HBUP-9     | 765                    | 52                       | 73                     | 532195                               | 0.10              | 0.554                                            | 0.023            | 0.06740                                          | 0.00134          | 0.48             | 0.0597      | 0.0022           | 448                                 | 19     | 420                                 | 8    | 591                                  | 79  | 71    |
| HBUP   | HBUP-10    | 249                    | 6                        | 93                     | 359                                  | 0.37              | 0.196                                            | 0.029            | 0.02612                                          | 0.00050          | 0.13             | 0.0544      | 0.0080           | 182                                 | 27     | 166                                 | 3    | 389                                  | 331 | 43    |
| HBUP   | HBUP-11    | 299                    | 7                        | 144                    | 77108                                | 0.48              | 0.170                                            | 0.008            | 0.02500                                          | 0.00048          | 0.42             | 0.0493      | 0.0020           | 159                                 | 7      | 159                                 | 3    | 160                                  | 97  | 100   |
| HBUP   | HBUP-12    | 97                     | 2                        | 43                     | 25645                                | 0.45              | 0.176                                            | 0.021            | 0.02567                                          | 0.00054          | 0.17             | 0.0498      | 0.0060           | 165                                 | 20     | 163                                 | 3    | 188                                  | 278 | 87    |
| HBUP   | HBUP-13    | 307                    | 8                        | 152                    | 1030                                 | 0.50              | 0.184                                            | 0.027            | 0.02564                                          | 0.00054          | 0.14             | 0.0522      | 0.0077           | 172                                 | 25     | 163                                 | 3    | 293                                  | 335 | 56    |
| HBUP   | HBUP-14    | 342                    | 9                        | 99                     | 31267                                | 0.29              | 0.178                                            | 0.006            | 0.02598                                          | 0.00050          | 0.54             | 0.0496      | 0.0015           | 166                                 | 6      | 165                                 | 3    | 175                                  | 70  | 94    |
| HBUP   | HBUP-16    | 475                    | 12                       | 265                    | 1360                                 | 0.56              | 0.175                                            | 0.007            | 0.02552                                          | 0.00048          | 0.45             | 0.0498      | 0.0018           | 164                                 | 7      | 162                                 | 3    | 183                                  | 86  | 89    |
| HBUP   | HBUP-17    | 677                    | 18                       | 247                    | 292                                  | 0.37              | 0.191                                            | 0.016            | 0.02624                                          | 0.00050          | 0.23             | 0.0528      | 0.0042           | 177                                 | 15     | 167                                 | 3    | 318                                  | 181 | 52    |
| HBUP   | HBUP-18    | 2239                   | 104                      | 2517                   | 29                                   | 1.12              | 0.580                                            | 0.031            | 0.04639                                          | 0.00086          | 0.34             | 0.0907      | 0.0046           | 465                                 | 25     | 292                                 | 5    | 1441                                 | 97  | 20    |
| HBUP   | HBUP-19    | 355                    | 9                        | 150                    | 2171                                 | 0.42              | 0.174                                            | 0.009            | 0.02561                                          | 0.00048          | 0.37             | 0.0492      | 0.0023           | 163                                 | 8      | 163                                 | 3    | 156                                  | 110 | 104   |
| HBUP   | HBUP-20    | 200                    | 5                        | 135                    | 52244                                | 0.68              | 0.170                                            | 0.007            | 0.02540                                          | 0.00050          | 0.49             | 0.0486      | 0.0017           | 160                                 | 6      | 162                                 | 3    | 131                                  | 83  | 124   |
| HBUP   | HBUP-21    | 335                    | 9                        | 147                    | 882                                  | 0.44              | 0.192                                            | 0.017            | 0.02556                                          | 0.00048          | 0.22             | 0.0544      | 0.0046           | 178                                 | 16     | 163                                 | 3    | 389                                  | 191 | 42    |
| HBUP   | HBUP-22    | 583                    | 15                       | 201                    | 30297                                | 0.35              | 0.176                                            | 0.006            | 0.02593                                          | 0.00048          | 0.58             | 0.0491      | 0.0013           | 164                                 | 5      | 165                                 | 3    | 153                                  | 61  | 108   |
| HBUP   | HBUP-23    | 25                     | 5                        | 15                     | 777                                  | 0.62              | 2.121                                            | 0.151            | 0.19478                                          | 0.00512          | 0.37             | 0.0790      | 0.0052           | 1156                                | 82     | 1147                                | 30   | 1172                                 | 131 | 98    |
| HBUP   | HBUP-24    | 199                    | 5                        | 67                     | 2745                                 | 0.34              | 0.178                                            | 0.007            | 0.02596                                          | 0.00050          | 0.47             | 0.0496      | 0.0018           | 166                                 | 7      | 165                                 | 3    | 178                                  | 84  | 93    |
| HBUP   | HBUP-25    | 358                    | 9                        | 264                    | 13117                                | 0.74              | 0.176                                            | 0.006            | 0.02605                                          | 0.00050          | 0.55             | 0.0491      | 0.0014           | 165                                 | 6      | 166                                 | 3    | 150                                  | 69  | 110   |
| HBUP   | HBUP-26    | 292                    | 7                        | 113                    | 76244                                | 0.39              | 0.173                                            | 0.006            | 0.02535                                          | 0.00048          | 0.52             | 0.0494      | 0.0015           | 162                                 | 6      | 161                                 | 3    | 168                                  | 73  | 96    |
| HBUP   | HBUP-27    | 157                    | 4                        | 84                     | 40634                                | 0.54              | 0.172                                            | 0.008            | 0.02506                                          | 0.00050          | 0.44             | 0.0498      | 0.0020           | 161                                 | 7      | 160                                 | 3    | 187                                  | 95  | 85    |
| HBUP   | HBUP-28    | 288                    | 7                        | 132                    | 2766                                 | 0.46              | 0.176                                            | 0.007            | 0.02553                                          | 0.00050          | 0.47             | 0.0501      | 0.0019           | 165                                 | 7      | 163                                 | 3    | 199                                  | 86  | 82    |
| HBUP   | HBUP-29    | 374                    | 10                       | 255                    | 4282                                 | 0.68              | 0.174                                            | 0.006            | 0.02577                                          | 0.00050          | 0.56             | 0.0490      | 0.0014           | 163                                 | 6      | 164                                 | 3    | 148                                  | 68  | 111   |
| HBUP   | HBUP-30    | 167                    | 4                        | 65                     | 2105                                 | 0.39              | 0.173                                            | 0.011            | 0.02534                                          | 0.00050          | 0.31             | 0.0495      | 0.0030           | 162                                 | 10     | 161                                 | 3    | 171                                  | 143 | 94    |
| HBUP   | HBUP-31    | 335                    | 8                        | 195                    | 218                                  | 0.58              | 0.180                                            | 0.021            | 0.02526                                          | 0.00048          | 0.16             | 0.0518      | 0.0060           | 168                                 | 20     | 161                                 | 3    | 276                                  | 266 | 58    |
| HBUP   | HBUP-32    | 237                    | 6                        | 94                     | 1033                                 | 0.40              | 0.201                                            | 0.029            | 0.02590                                          | 0.00052          | 0.14             | 0.0564      | 0.0081           | 186                                 | 27     | 165                                 | 3    | 468                                  | 317 | 35    |
| HBUP   | HBUP-33    | 78                     | 27                       | 100                    | 65037                                | 1.28              | 5.479                                            | 0.159            | 0.34139                                          | 0.00642          | 0.65             | 0.1164      | 0.0026           | 1897                                | 55     | 1893                                | 36   | 1902                                 | 40  | 100   |
| HBUP   | HBUP-34    | 237                    | 6                        | 85                     | 61640                                | 0.36              | 0.173                                            | 0.007            | 0.02527                                          | 0.00048          | 0.49             | 0.0497      | 0.0017           | 162                                 | 0      | 161                                 | 3    | 179                                  | 78  | 90    |
| HBUP   | HBUP-35    | 193                    | 5                        | 12                     | 70402                                | 0.37              | 0.175                                            | 0.008            | 0.02568                                          | 0.00050          | 0.44             | 0.0495      | 0.0020           | 164                                 | 7      | 163                                 | 3    | 171                                  | 92  | 96    |
|        |            | 202                    | 7                        | 93                     | 70402                                | 0.50              | 0.179                                            | 0.007            | 0.02614                                          | 0.00050          | 0.49             | 0.0498      | 0.0017           | 100                                 | 1      | 166                                 | 3    | 100                                  | 00  | 90    |
| HBUP   | HBUP-39    | 84<br>070              | 2                        | 44                     | 2605                                 | 0.52              | 0.178                                            | 0.036            | 0.02503                                          | 0.00052          | 0.10             | 0.0515      | 0.0103           | 100                                 | 34     | 159                                 | 3    | 201                                  | 401 | 00    |
|        |            | 219                    | 10                       | 101                    | 3095                                 | 0.54              | 0.173                                            | 0.011            | 0.02520                                          | 0.00046          | 0.31             | 0.0497      | 0.0029           | 162                                 | 0      | 167                                 | 3    | 179                                  | 100 | 90    |
|        |            | 400                    | 6                        | 230                    | 4014                                 | 0.51              | 0.178                                            | 0.010            | 0.02623                                          | 0.00050          | 0.34             | 0.0493      | 0.0026           | 107                                 | 9      | 167                                 | 3    | 020                                  | 125 | 102   |
|        |            | 217                    | 10                       | 157                    | 0025                                 | 0.40              | 0.230                                            | 0.000            | 0.02599                                          | 0.00030          | 0.10             | 0.0097      | 0.0083           | 220                                 | 21     | 105                                 | 4    | 920                                  | 243 | 18    |
|        |            | 410                    | 7                        | 106                    | 9025                                 | 0.30              | 0.172                                            | 0.000            | 0.02513                                          | 0.00046          | 0.55             | 0.0498      | 0.0014           | 101                                 | 7      | 160                                 | 3    | 175                                  | 96  | 91    |
| HRID   | HBUD-44    | 212                    | 6                        | 155                    | 2000                                 | 0.72              | 0.173                                            | 0.007            | 0.02522                                          | 0.00050          | 0.47             | 0.0490      | 0.0010           | 102                                 | r<br>R | 162                                 | 3    | 164                                  | 112 | 00    |
| HRUP   | HBUP-46    | 150                    | 4                        | 61                     | 39570                                | 0.41              | 0.173                                            | 0.010            | 0.02560                                          | 0.00050          | 0.35             | 0.0403      | 0.0024           | 163                                 | ٩      | 163                                 | 3    | 160                                  | 122 | 102   |
| HRUP   | HBUP_47    | 312                    | - 8                      | 173                    | 2416                                 | 0.55              | 0.174                                            | 0.006            | 0.02552                                          | 0.00048          | 0.52             | 0.0493      | 0.0015           | 162                                 | 6      | 162                                 | 3    | 163                                  | 72  | 100   |
| HRUP   | HBUP-48    | 272                    | 7                        | 165                    | 71735                                | 0.55              | 0.174                                            | 0.000            | 0.02552                                          | 0.00040          | 0.52             | 0.0493      | 0.0016           | 102                                 | 6      | 163                                 | 3    | 154                                  | 74  | 106   |
| HRUP   | HBUP_40    | 200                    | 8                        | 134                    | 3824                                 | 0.45              | 0.173                                            | 0.000            | 0.02586                                          | 0.00050          | 0.52             | 0.0491      | 0.0015           | 102                                 | 6      | 165                                 | 3    | 137                                  | 73  | 120   |
| HRUP   | HBUP-50    | 209                    | 5                        | 116                    | 8616                                 | 0.55              | 0.174                                            | 0.011            | 0.02518                                          | 0.00050          | 0.30             | 0.0400      | 0.0029           | 162                                 | 10     | 160                                 | 3    | 189                                  | 135 | 85    |
| 11001  | . 1201 -00 | 200                    | 0                        | 110                    | 0010                                 | 0.00              | 0.170                                            | 0.011            | 0.02010                                          | 0.00000          | 0.02             | 0.0400      | 0.0020           | 102                                 | 10     | 100                                 | 0    | 100                                  | 100 | 00    |

| HBUP | HBUP-51  | 283 | 7   | 121 | 3253   | 0.43 | 0.1 | 71 0. | .007 | 0.02512 | 0.00048 | 0.44 | 0.0495 | 0.0019 | 161  | 7  | 160  | 3  | 172  | 91  | 93  |
|------|----------|-----|-----|-----|--------|------|-----|-------|------|---------|---------|------|--------|--------|------|----|------|----|------|-----|-----|
| HBUP | HBUP-52  | 244 | 6   | 126 | 166    | 0.52 | 0.1 | 77 0. | .015 | 0.02613 | 0.00054 | 0.24 | 0.0491 | 0.0041 | 166  | 14 | 166  | 3  | 155  | 197 | 108 |
| HBUP | HBUP-53  | 282 | 7   | 110 | 73395  | 0.39 | 0.1 | 74 0. | .006 | 0.02529 | 0.00048 | 0.51 | 0.0498 | 0.0016 | 163  | 6  | 161  | 3  | 185  | 74  | 87  |
| HBUP | HBUP-54  | 257 | 7   | 136 | 69240  | 0.53 | 0.1 | 77 0. | .007 | 0.02623 | 0.00050 | 0.51 | 0.0489 | 0.0016 | 165  | 6  | 167  | 3  | 142  | 76  | 118 |
| HBUP | HBUP-55  | 220 | 6   | 115 | 3317   | 0.52 | 0.1 | 78 0. | .008 | 0.02611 | 0.00050 | 0.43 | 0.0495 | 0.0020 | 166  | 7  | 166  | 3  | 170  | 93  | 98  |
| HBUP | HBUP-56  | 208 | 5   | 153 | 9104   | 0.74 | 0.1 | 74 0. | .007 | 0.02557 | 0.00050 | 0.49 | 0.0495 | 0.0017 | 163  | 7  | 163  | 3  | 170  | 81  | 96  |
| HBUP | HBUP-57  | 191 | 5   | 88  | 49329  | 0.46 | 0.1 | 70 0. | .007 | 0.02507 | 0.00050 | 0.48 | 0.0491 | 0.0018 | 159  | 7  | 160  | 3  | 152  | 86  | 105 |
| HBUP | HBUP-58  | 248 | 6   | 111 | 1665   | 0.45 | 0.1 | 69 0. | .007 | 0.02497 | 0.00048 | 0.49 | 0.0491 | 0.0017 | 158  | 6  | 159  | 3  | 151  | 79  | 105 |
| HBUP | HBUP-59  | 404 | 10  | 264 | 975    | 0.65 | 0.1 | 72 0. | .006 | 0.02511 | 0.00048 | 0.54 | 0.0496 | 0.0015 | 161  | 6  | 160  | 3  | 178  | 69  | 90  |
| HBUP | HBUP-61  | 243 | 6   | 123 | 2542   | 0.51 | 0.1 | 74 0. | .007 | 0.02558 | 0.00050 | 0.47 | 0.0494 | 0.0018 | 163  | 7  | 163  | 3  | 167  | 85  | 97  |
| HBUP | HBUP-62  | 231 | 6   | 100 | 774    | 0.43 | 0.1 | 74 0. | .007 | 0.02549 | 0.00050 | 0.47 | 0.0495 | 0.0018 | 163  | 7  | 162  | 3  | 173  | 85  | 94  |
| HBUP | HBUP-64  | 119 | 3   | 53  | 1086   | 0.44 | 0.1 | 74 0. | .008 | 0.02549 | 0.00052 | 0.42 | 0.0494 | 0.0022 | 162  | 8  | 162  | 3  | 166  | 102 | 98  |
| HBUP | HBUP-65  | 245 | 6   | 107 | 64599  | 0.44 | 0.1 | 77 0. | .007 | 0.02567 | 0.00050 | 0.49 | 0.0500 | 0.0017 | 165  | 7  | 163  | 3  | 193  | 80  | 85  |
| HBUP | HBUP-67  | 333 | 8   | 99  | 1292   | 0.30 | 0.1 | 72 0. | .006 | 0.02501 | 0.00048 | 0.51 | 0.0499 | 0.0016 | 161  | 6  | 159  | 3  | 189  | 76  | 84  |
| HBUP | HBUP-68  | 146 | 21  | 71  | 215845 | 0.48 | 1.3 | 45 0. | .041 | 0.14372 | 0.00270 | 0.62 | 0.0679 | 0.0016 | 866  | 26 | 866  | 16 | 865  | 49  | 100 |
| HBUP | HBUP-69  | 751 | 19  | 216 | 21493  | 0.29 | 0.1 | 72 0. | .006 | 0.02514 | 0.00048 | 0.51 | 0.0496 | 0.0016 | 161  | 6  | 160  | 3  | 177  | 75  | 90  |
| HBUP | HBUP-70  | 119 | 3   | 52  | 31142  | 0.43 | 0.1 | 72 0. | .012 | 0.02537 | 0.00052 | 0.29 | 0.0492 | 0.0033 | 161  | 11 | 162  | 3  | 158  | 158 | 102 |
| HBUP | HBUP-71  | 250 | 6   | 115 | 65589  | 0.46 | 0.1 | 73 0. | .007 | 0.02549 | 0.00050 | 0.52 | 0.0491 | 0.0016 | 162  | 6  | 162  | 3  | 152  | 76  | 107 |
| HBUP | HBUP-72  | 291 | 7   | 170 | 1564   | 0.59 | 0.1 | 74 0. | .008 | 0.02536 | 0.00048 | 0.42 | 0.0496 | 0.0020 | 162  | 7  | 161  | 3  | 177  | 95  | 91  |
| HBUP | HBUP-73  | 438 | 11  | 151 | 1732   | 0.34 | 0.1 | 71 0. | .007 | 0.02515 | 0.00048 | 0.46 | 0.0494 | 0.0018 | 160  | 7  | 160  | 3  | 164  | 85  | 97  |
| HBUP | HBUP-74  | 621 | 16  | 179 | 162086 | 0.29 | 0.1 | 75 0. | .006 | 0.02539 | 0.00048 | 0.58 | 0.0499 | 0.0013 | 163  | 5  | 162  | 3  | 188  | 62  | 86  |
| HBUP | HBUP-76  | 361 | 9   | 174 | 2250   | 0.48 | 0.1 | 78 0. | .007 | 0.02623 | 0.00050 | 0.45 | 0.0493 | 0.0018 | 167  | 7  | 167  | 3  | 163  | 87  | 103 |
| HBUP | HBUP-77  | 296 | 7   | 118 | 76677  | 0.40 | 0.1 | 72 0. | .008 | 0.02521 | 0.00048 | 0.41 | 0.0494 | 0.0021 | 161  | 7  | 160  | 3  | 164  | 99  | 98  |
| HBUP | HBUP-78  | 434 | 11  | 311 | 953    | 0.72 | 0.1 | 77 0. | .013 | 0.02585 | 0.00050 | 0.26 | 0.0498 | 0.0036 | 166  | 12 | 165  | 3  | 186  | 169 | 89  |
| HBUP | HBUP-79  | 177 | 5   | 106 | 890    | 0.60 | 0.1 | 76 0. | .009 | 0.02586 | 0.00052 | 0.39 | 0.0494 | 0.0023 | 165  | 8  | 165  | 3  | 165  | 110 | 99  |
| HBUP | HBUP-80  | 340 | 9   | 178 | 87893  | 0.52 | 0.1 | 72 0. | .013 | 0.02520 | 0.00048 | 0.26 | 0.0495 | 0.0036 | 161  | 12 | 160  | 3  | 171  | 168 | 94  |
| HBUP | HBUP-81  | 375 | 10  | 194 | 46989  | 0.52 | 0.1 | 74 0. | .006 | 0.02570 | 0.00050 | 0.55 | 0.0491 | 0.0014 | 163  | 6  | 164  | 3  | 152  | 69  | 108 |
| HBUP | HBUP-82  | 337 | 8   | 145 | 685    | 0.43 | 0.1 | 30 0. | .017 | 0.02507 | 0.00048 | 0.20 | 0.0521 | 0.0049 | 168  | 16 | 160  | 3  | 288  | 217 | 55  |
| HBUP | HBUP-83  | 216 | 6   | 91  | 56613  | 0.42 | 0.1 | 75 0. | .010 | 0.02549 | 0.00050 | 0.35 | 0.0497 | 0.0026 | 163  | 9  | 162  | 3  | 181  | 124 | 90  |
| HBUP | HBUP-84  | 396 | 10  | 167 | 102579 | 0.42 | 0.1 | 72 0. | .006 | 0.02522 | 0.00048 | 0.55 | 0.0494 | 0.0014 | 161  | 6  | 161  | 3  | 165  | 68  | 97  |
| HBUP | HBUP-85  | 171 | 4   | 63  | 44672  | 0.37 | 0.1 | 73 0. | .008 | 0.02541 | 0.00050 | 0.45 | 0.0494 | 0.0019 | 162  | 7  | 162  | 3  | 166  | 91  | 97  |
| HBUP | HBUP-86  | 338 | 9   | 130 | 392    | 0.38 | 0.1 | 78 0. | .009 | 0.02607 | 0.00052 | 0.39 | 0.0496 | 0.0023 | 167  | 8  | 166  | 3  | 178  | 109 | 93  |
| HBUP | HBUP-88  | 328 | 8   | 166 | 84531  | 0.51 | 0.1 | 72 0. | .010 | 0.02515 | 0.00048 | 0.32 | 0.0495 | 0.0028 | 161  | 10 | 160  | 3  | 173  | 131 | 93  |
| HBUP | HBUP-89  | 368 | 9   | 127 | 1337   | 0.35 | 0.1 | 76 0. | .007 | 0.02569 | 0.00050 | 0.47 | 0.0497 | 0.0018 | 165  | 7  | 164  | 3  | 181  | 84  | 91  |
| HBUP | HBUP-90  | 247 | 6   | 104 | 2057   | 0.42 | 0.1 | 74 0. | .007 | 0.02563 | 0.00050 | 0.46 | 0.0493 | 0.0019 | 163  | 7  | 163  | 3  | 161  | 89  | 102 |
| HBUP | HBUP-91  | 557 | 14  | 203 | 4672   | 0.36 | 0.1 | 71 0. | .007 | 0.02510 | 0.00048 | 0.49 | 0.0493 | 0.0017 | 160  | 6  | 160  | 3  | 161  | 79  | 99  |
| HBUP | HBUP-92  | 201 | 5   | 78  | 36359  | 0.39 | 0.1 | 69 0. | .008 | 0.02503 | 0.00050 | 0.43 | 0.0491 | 0.0021 | 159  | 7  | 159  | 3  | 153  | 98  | 104 |
| HBUP | HBUP-94  | 307 | 8   | 154 | 7955   | 0.50 | 0.1 | 76 0. | .010 | 0.02550 | 0.00050 | 0.35 | 0.0500 | 0.0026 | 164  | 9  | 162  | 3  | 196  | 122 | 83  |
| HBUP | HBUP-96  | 283 | 7   | 154 | 33708  | 0.54 | 0.1 | 72 0. | .009 | 0.02527 | 0.00048 | 0.38 | 0.0494 | 0.0023 | 161  | 8  | 161  | 3  | 165  | 107 | 98  |
| HBUP | HBUP-98  | 593 | 15  | 196 | 410    | 0.33 | 0.1 | 72 0. | .016 | 0.02513 | 0.00048 | 0.21 | 0.0496 | 0.0044 | 161  | 15 | 160  | 3  | 178  | 208 | 90  |
| HBUP | HBUP-99  | 355 | 23  | 252 | 2520   | 0.71 | 0.6 | 10 0. | .020 | 0.06334 | 0.00122 | 0.57 | 0.0698 | 0.0019 | 484  | 16 | 396  | 8  | 924  | 56  | 43  |
| HBUP | HBUP-103 | 302 | 8   | 162 | 572    | 0.53 | 0.1 | 75 0. | .008 | 0.02551 | 0.00050 | 0.46 | 0.0496 | 0.0019 | 163  | 7  | 162  | 3  | 177  | 89  | 92  |
| HBUP | HBUP-104 | 425 | 11  | 301 | 112320 | 0.71 | 0.1 | 75 0. | .008 | 0.02576 | 0.00050 | 0.45 | 0.0494 | 0.0019 | 164  | 7  | 164  | 3  | 165  | 90  | 99  |
| HBUP | HBUP-105 | 446 | 113 | 226 | 12027  | 0.51 | 3.5 | 92 0. | 103  | 0.25328 | 0.00474 | 0.66 | 0.1029 | 0.0022 | 1548 | 44 | 1455 | 27 | 1676 | 40  | 87  |
| HBUP | HBUP-106 | 258 | 7   | 106 | 2648   | 0.41 | 0.1 | 74 0. | .008 | 0.02562 | 0.00050 | 0.43 | 0.0491 | 0.0020 | 162  | 7  | 163  | 3  | 154  | 96  | 106 |
| HBUP | HBUP-108 | 304 | 8   | 174 | 2876   | 0.57 | 0.1 | 76 0. | .009 | 0.02588 | 0.00050 | 0.38 | 0.0494 | 0.0023 | 165  | 8  | 165  | 3  | 165  | 109 | 100 |
| HBUP | HBUP-109 | 421 | 11  | 304 | 2359   | 0.72 | 0.1 | 74 0. | .020 | 0.02536 | 0.00048 | 0.17 | 0.0498 | 0.0056 | 163  | 18 | 161  | 3  | 184  | 260 | 88  |
| HBUP | HBUP-110 | 137 | 3   | 46  | 1309   | 0.34 | 0.1 | 74 0. | .010 | 0.02556 | 0.00052 | 0.37 | 0.0494 | 0.0026 | 163  | 9  | 163  | 3  | 165  | 121 | 99  |
| HBUP | HBUP-111 | 86  | 2   | 38  | 22996  | 0.44 | 0.1 | 77 0. | .009 | 0.02596 | 0.00054 | 0.39 | 0.0494 | 0.0024 | 165  | 9  | 165  | 3  | 164  | 114 | 100 |
|      |          |     |     |     |        |      |     |       |      |         |         |      |        |        |      |    |      |    |      |     |     |

| HBUP | HBUP-112 | 331 | 29 | 99  | 5928 | 0.30 | 0.705 | 0.024 | 0.08804 | 0.00168 | 0.57 | 0.0581 | 0.0016 | 542 | 18 | 544 | 10 | 533 | 60  | 102 |
|------|----------|-----|----|-----|------|------|-------|-------|---------|---------|------|--------|--------|-----|----|-----|----|-----|-----|-----|
| HBUP | HBUP-113 | 242 | 6  | 97  | 358  | 0.40 | 0.182 | 0.016 | 0.02616 | 0.00050 | 0.22 | 0.0505 | 0.0042 | 170 | 15 | 166 | 3  | 218 | 194 | 76  |
| HBUP | HBUP-114 | 315 | 8  | 180 | 961  | 0.57 | 0.181 | 0.016 | 0.02625 | 0.00050 | 0.22 | 0.0500 | 0.0042 | 169 | 15 | 167 | 3  | 193 | 197 | 87  |
| HBUP | HBUP-115 | 118 | 3  | 63  | 409  | 0.53 | 0.176 | 0.017 | 0.02585 | 0.00052 | 0.21 | 0.0493 | 0.0047 | 164 | 16 | 165 | 3  | 160 | 224 | 103 |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup>Pb/<sup>235</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb)/(<sup>238</sup>U/<sup>206</sup>Pb \* 1/137.88)

<sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>238</sup>U and the <sup>207</sup>/<sup>235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

## Table D6. LA-ICPMS isotopic data for sample HBMB in the Heidelberg Basin

| HBMB   |          |                      |                          |                        |                                      |                   |                                                  |                  |                                                  | RATIOS           |                  |             |                  |                                     |    | AGES                                | [Ma] |                                      |     | Conc. |
|--------|----------|----------------------|--------------------------|------------------------|--------------------------------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------------------|-------------|------------------|-------------------------------------|----|-------------------------------------|------|--------------------------------------|-----|-------|
| Sample | Analysis | U [ppm] <sup>a</sup> | Pb [ppm] <sup>a</sup> Ti | h [ppm] <sup>a 2</sup> | <sup>206</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>a</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho <sup>c</sup> | 207Pb/206Pb | 2 σ <sup>d</sup> | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ | <sup>206</sup> Pb/ <sup>238</sup> U | 2 σ  | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2 σ | %     |
| HBMB   | MB-1     | 98                   | 3                        | 72                     | 642                                  | 0.73              | 0.183                                            | 0.014            | 0.02682                                          | 0.00058          | 0.29             | 0.0495      | 0.0036           | 171                                 | 13 | 171                                 | 4    | 170                                  | 169 | 100   |
| HBMB   | MB-2     | 91                   | 3                        | 57                     | 24083                                | 0.63              | 0.192                                            | 0.014            | 0.02765                                          | 0.00060          | 0.30             | 0.0504      | 0.0035           | 178                                 | 13 | 176                                 | 4    | 214                                  | 162 | 82    |
| HBMB   | MB-3     | 407                  | 11                       | 285                    | 771                                  | 0.70              | 0.198                                            | 0.013            | 0.02724                                          | 0.00054          | 0.29             | 0.0527      | 0.0034           | 183                                 | 12 | 173                                 | 3    | 315                                  | 147 | 55    |
| HBMB   | MB-5     | 389                  | 11                       | 214                    | 634                                  | 0.55              | 0.188                                            | 0.022            | 0.02750                                          | 0.00054          | 0.17             | 0.0495      | 0.0057           | 175                                 | 20 | 175                                 | 3    | 171                                  | 267 | 102   |
| HBMB   | MB-6     | 445                  | 12                       | 312                    | 341                                  | 0.70              | 0.185                                            | 0.013            | 0.02716                                          | 0.00054          | 0.29             | 0.0493      | 0.0033           | 172                                 | 12 | 173                                 | 3    | 162                                  | 156 | 107   |
| HBMB   | MB-7     | 258                  | 7                        | 181                    | 3934                                 | 0.70              | 0.188                                            | 0.009            | 0.02694                                          | 0.00054          | 0.43             | 0.0506      | 0.0021           | 175                                 | 8  | 171                                 | 3    | 220                                  | 98  | 78    |
| HBMB   | MB-8     | 451                  | 13                       | 305                    | 17385                                | 0.68              | 0.190                                            | 0.008            | 0.02778                                          | 0.00056          | 0.47             | 0.0496      | 0.0019           | 177                                 | 8  | 177                                 | 4    | 175                                  | 88  | 101   |
| HBMB   | MB-9     | 255                  | 7                        | 147                    | 4646                                 | 0.58              | 0.190                                            | 0.008            | 0.02761                                          | 0.00056          | 0.51             | 0.0499      | 0.0017           | 177                                 | 7  | 176                                 | 4    | 190                                  | 80  | 92    |
| HBMB   | MB-10    | 426                  | 11                       | 291                    | 1157                                 | 0.68              | 0.210                                            | 0.012            | 0.02678                                          | 0.00054          | 0.37             | 0.0569      | 0.0029           | 194                                 | 11 | 170                                 | 3    | 487                                  | 113 | 35    |
| HBMB   | MB-11    | 395                  | 11                       | 255                    | 1805                                 | 0.64              | 0.194                                            | 0.009            | 0.02768                                          | 0.00056          | 0.43             | 0.0509      | 0.0022           | 180                                 | 9  | 176                                 | 4    | 237                                  | 99  | 74    |
| HBMB   | MB-12    | 298                  | 8                        | 206                    | 522                                  | 0.69              | 0.192                                            | 0.015            | 0.02751                                          | 0.00056          | 0.26             | 0.0506      | 0.0038           | 178                                 | 14 | 175                                 | 4    | 224                                  | 174 | 78    |
| HBMB   | MB-13    | 395                  | 11                       | 251                    | 973                                  | 0.64              | 0.223                                            | 0.015            | 0.02769                                          | 0.00054          | 0.29             | 0.0584      | 0.0038           | 204                                 | 14 | 176                                 | 3    | 545                                  | 143 | 32    |
| HBMB   | MB-14    | 170                  | 5                        | 75                     | 4033                                 | 0.44              | 0.189                                            | 0.008            | 0.02760                                          | 0.00056          | 0.46             | 0.0498      | 0.0019           | 176                                 | 8  | 176                                 | 4    | 184                                  | 91  | 95    |
| HBMB   | MB-16    | 313                  | 8                        | 236                    | 152                                  | 0.76              | 0.237                                            | 0.021            | 0.02717                                          | 0.00056          | 0.23             | 0.0632      | 0.0054           | 216                                 | 19 | 173                                 | 4    | 716                                  | 182 | 24    |
| HBMB   | MB-17    | 249                  | 7                        | 146                    | 290                                  | 0.59              | 0.234                                            | 0.023            | 0.02785                                          | 0.00056          | 0.20             | 0.0610      | 0.0059           | 214                                 | 21 | 177                                 | 4    | 640                                  | 207 | 28    |
| HBMB   | MB-18    | 295                  | 8                        | 181                    | 241                                  | 0.61              | 0.303                                            | 0.015            | 0.02769                                          | 0.00056          | 0.40             | 0.0794      | 0.0037           | 269                                 | 14 | 176                                 | 4    | 1181                                 | 92  | 15    |
| HBMB   | MB-19    | 358                  | 10                       | 202                    | 854                                  | 0.56              | 0.200                                            | 0.021            | 0.02778                                          | 0.00056          | 0.19             | 0.0523      | 0.0055           | 185                                 | 20 | 177                                 | 4    | 298                                  | 238 | 59    |
| HBMB   | MB-20    | 298                  | 8                        | 171                    | -3340                                | 0.57              | 0.185                                            | 0.007            | 0.02712                                          | 0.00054          | 0.53             | 0.0495      | 0.0016           | 172                                 | 6  | 172                                 | 3    | 170                                  | 74  | 102   |
| HBMB   | MB-21    | 77                   | 2                        | 41                     | 398                                  | 0.54              | 0.200                                            | 0.037            | 0.02690                                          | 0.00060          | 0.12             | 0.0540      | 0.0100           | 185                                 | 35 | 171                                 | 4    | 371                                  | 417 | 46    |
| HBMB   | MB-22    | 219                  | 6                        | 121                    | 1010                                 | 0.55              | 0.193                                            | 0.008            | 0.02741                                          | 0.00056          | 0.51             | 0.0511      | 0.0017           | 179                                 | 7  | 174                                 | 4    | 243                                  | 79  | 72    |
| HBMB   | MB-23    | 188                  | 5                        | 88                     | 306                                  | 0.47              | 0.190                                            | 0.010            | 0.02779                                          | 0.00058          | 0.40             | 0.0495      | 0.0024           | 176                                 | 9  | 177                                 | 4    | 172                                  | 113 | 103   |
| HBMB   | MB-25    | 437                  | 12                       | 250                    | 16341                                | 0.57              | 0.182                                            | 0.007            | 0.02664                                          | 0.00052          | 0.53             | 0.0495      | 0.0015           | 170                                 | 6  | 169                                 | 3    | 173                                  | 73  | 98    |
| HBMB   | MB-26    | 173                  | 5                        | 96                     | 200                                  | 0.56              | 0.206                                            | 0.039            | 0.02716                                          | 0.00060          | 0.12             | 0.0549      | 0.0103           | 190                                 | 36 | 173                                 | 4    | 409                                  | 420 | 42    |
| HBMB   | MB-27    | 195                  | 5                        | 71                     | 374                                  | 0.37              | 0.198                                            | 0.023            | 0.02685                                          | 0.00054          | 0.17             | 0.0534      | 0.0061           | 183                                 | 21 | 171                                 | 3    | 346                                  | 258 | 49    |
| HBMB   | MB-28    | 328                  | 9                        | 192                    | 273                                  | 0.59              | 0.252                                            | 0.017            | 0.02705                                          | 0.00054          | 0.29             | 0.0677      | 0.0044           | 229                                 | 16 | 172                                 | 3    | 858                                  | 135 | 20    |
| HBMB   | MB-29    | 358                  | 10                       | 221                    | 116                                  | 0.62              | 0.190                                            | 0.019            | 0.02719                                          | 0.00058          | 0.22             | 0.0508      | 0.0049           | 177                                 | 17 | 173                                 | 4    | 232                                  | 223 | 74    |
| HBMB   | MB-30    | 403                  | 11                       | 228                    | 7532                                 | 0.57              | 0.192                                            | 0.014            | 0.02716                                          | 0.00054          | 0.27             | 0.0514      | 0.0037           | 179                                 | 13 | 173                                 | 3    | 259                                  | 165 | 67    |
| HBMB   | MB-31    | 276                  | 8                        | 188                    | 123                                  | 0.68              | 0.254                                            | 0.027            | 0.02755                                          | 0.00056          | 0.19             | 0.0669      | 0.0070           | 230                                 | 25 | 175                                 | 4    | 835                                  | 219 | 21    |
| HBMB   | MB-32    | 441                  | 12                       | 288                    | 2736                                 | 0.65              | 0.187                                            | 0.007            | 0.02724                                          | 0.00054          | 0.54             | 0.0497      | 0.0015           | 174                                 | 6  | 173                                 | 3    | 182                                  | 72  | 95    |
| HBMB   | MB-33    | 355                  | 10                       | 192                    | 258                                  | 0.54              | 0.288                                            | 0.018            | 0.02764                                          | 0.00056          | 0.32             | 0.0756      | 0.0045           | 257                                 | 16 | 176                                 | 4    | 1084                                 | 118 | 16    |
| HBMB   | MB-34    | 114                  | 3                        | 64                     | 262                                  | 0.56              | 0.238                                            | 0.040            | 0.02698                                          | 0.00058          | 0.13             | 0.0641      | 0.0106           | 217                                 | 36 | 172                                 | 4    | 745                                  | 351 | 23    |
| HBMB   | MB-37    | 130                  | 4                        | 102                    | 33850                                | 0.78              | 0.217                                            | 0.026            | 0.02713                                          | 0.00058          | 0.18             | 0.0579      | 0.0068           | 199                                 | 24 | 173                                 | 4    | 526                                  | 257 | 33    |
| HBMB   | MB-38    | 197                  | 5                        | 90                     | 417                                  | 0.46              | 0.274                                            | 0.020            | 0.02744                                          | 0.00056          | 0.28             | 0.0725      | 0.0050           | 246                                 | 18 | 175                                 | 4    | 999                                  | 141 | 17    |
| HBMB   | MB-39    | 209                  | 6                        | 126                    | 55719                                | 0.60              | 0.191                                            | 800.0            | 0.02787                                          | 0.00058          | 0.49             | 0.0497      | 0.0019           | 178                                 | 8  | 177                                 | 4    | 181                                  | 87  | 98    |
| HBMB   | MB-40    | 50                   | 1                        | 20                     | 12898                                | 0.39              | 0.196                                            | 0.046            | 0.02699                                          | 0.00070          | 0.11             | 0.0527      | 0.0124           | 182                                 | 43 | 172                                 | 4    | 314                                  | 537 | 55    |
| HBMB   | MB-41    | 92                   | 3                        | 31                     | 439                                  | 0.34              | 0.189                                            | 0.018            | 0.02764                                          | 0.00062          | 0.23             | 0.0495      | 0.0046           | 175                                 | 17 | 176                                 | 4    | 172                                  | 219 | 102   |
| HBMB   | MB-42    | 445                  | 12                       | 353                    | 115960                               | 0.79              | 0.191                                            | 0.009            | 0.02727                                          | 0.00054          | 0.41             | 0.0508      | 0.0022           | 178                                 | 9  | 173                                 | 3    | 233                                  | 101 | 75    |
| HBMB   | MB-43    | 143                  | 4                        | 61                     | 243                                  | 0.43              | 0.249                                            | 0.024            | 0.02738                                          | 0.00060          | 0.23             | 0.0661      | 0.0061           | 226                                 | 21 | 174                                 | 4    | 808                                  | 193 | 22    |
| HBMB   | MB-44    | 341                  | 9                        | 236                    | 5961                                 | 0.69              | 0.185                                            | 0.011            | 0.02682                                          | 0.00054          | 0.35             | 0.0500      | 0.0027           | 172                                 | 10 | 171                                 | 3    | 196                                  | 124 | 87    |
| HBMB   | MB-45    | 268                  | 7                        | 188                    | 69777                                | 0.70              | 0.189                                            | 0.010            | 0.02726                                          | 0.00056          | 0.39             | 0.0503      | 0.0024           | 176                                 | 9  | 173                                 | 4    | 208                                  | 112 | 83    |
| HBMB   | MB-46    | 241                  | 6                        | 118                    | 3754                                 | 0.49              | 0.185                                            | 0.007            | 0.02686                                          | 0.00054          | 0.50             | 0.0499      | 0.0017           | 172                                 | 7  | 171                                 | 3    | 190                                  | 80  | 90    |
| HBMB   | MB-47    | 549                  | 15                       | 388                    | 644                                  | 0.71              | 0.218                                            | 0.014            | 0.02673                                          | 0.00052          | 0.30             | 0.0592      | 0.0037           | 200                                 | 13 | 170                                 | 3    | 574                                  | 134 | 30    |
| HBMB   | MB-48    | 220                  | 6                        | 171                    | 976                                  | 0.78              | 0.183                                            | 0.007            | 0.02673                                          | 0.00054          | 0.51             | 0.0495      | 0.0017           | 170                                 | 7  | 170                                 | 3    | 173                                  | 80  | 98    |
| HBMB   | MB-49    | 152                  | 4                        | 96                     | 73465                                | 0.63              | 0.196                                            | 0.016            | 0.02705                                          | 0.00056          | 0.25             | 0.0526      | 0.0042           | 182                                 | 15 | 172                                 | 4    | 310                                  | 183 | 55    |
| HBMB   | MB-50    | 366                  | 10                       | 207                    | 94124                                | 0.57              | 0.184                                            | 0.007            | 0.02690                                          | 0.00054          | 0.56             | 0.0495      | 0.0015           | 171                                 | 6  | 171                                 | 3    | 173                                  | 70  | 99    |
| HBMB   | MB-51    | 208                  | 6                        | 129                    | 209                                  | 0.62              | 0.182                                            | 0.010            | 0.02654                                          | 0.00054          | 0.36             | 0.0496      | 0.0026           | 169                                 | 9  | 169                                 | 3    | 177                                  | 121 | 96    |
| HBMB   | MB-52    | 189                  | 5                        | 128                    | 328                                  | 0.68              | 0.190                                            | 0.011            | 0.02779                                          | 0.00058          | 0.38             | 0.0497      | 0.0025           | 177                                 | 10 | 177                                 | 4    | 180                                  | 119 | 98    |

| HBMB | MB-53  | 406 | 11 | 323 | 341    | 0.80 | 0.187 | 0.009 | 0.02657 | 0.00054 | 0.40 | 0.0509 | 0.0023 | 174 | 9  | 169 | 3 | 238 | 106 | 71  |
|------|--------|-----|----|-----|--------|------|-------|-------|---------|---------|------|--------|--------|-----|----|-----|---|-----|-----|-----|
| HBMB | MB-55  | 387 | 10 | 255 | 872    | 0.66 | 0.185 | 0.010 | 0.02694 | 0.00054 | 0.36 | 0.0498 | 0.0026 | 172 | 10 | 171 | 3 | 185 | 120 | 93  |
| HBMB | MB-57  | 437 | 12 | 288 | -7629  | 0.66 | 0.192 | 0.008 | 0.02767 | 0.00056 | 0.49 | 0.0504 | 0.0018 | 178 | 7  | 176 | 4 | 212 | 83  | 83  |
| HBMB | MB-59  | 144 | 4  | 87  | 614    | 0.61 | 0.184 | 0.011 | 0.02692 | 0.00056 | 0.36 | 0.0494 | 0.0027 | 171 | 10 | 171 | 4 | 169 | 127 | 101 |
| HBMB | MB-60  | 293 | 8  | 178 | 528    | 0.61 | 0.190 | 0.010 | 0.02762 | 0.00056 | 0.39 | 0.0499 | 0.0024 | 177 | 9  | 176 | 4 | 189 | 110 | 93  |
| HBMB | MB-61  | 128 | 4  | 63  | 1602   | 0.49 | 0.193 | 0.013 | 0.02792 | 0.00058 | 0.31 | 0.0501 | 0.0032 | 179 | 12 | 178 | 4 | 201 | 149 | 88  |
| HBMB | MB-62  | 184 | 5  | 104 | 553    | 0.56 | 0.181 | 0.009 | 0.02659 | 0.00054 | 0.40 | 0.0493 | 0.0023 | 169 | 8  | 169 | 3 | 160 | 107 | 106 |
| HBMB | MB-63  | 187 | 5  | 125 | 1434   | 0.67 | 0.181 | 0.008 | 0.02649 | 0.00054 | 0.48 | 0.0497 | 0.0019 | 169 | 7  | 169 | 3 | 179 | 87  | 94  |
| HBMB | MB-64  | 634 | 17 | 846 | 1616   | 1.33 | 0.188 | 0.009 | 0.02659 | 0.00052 | 0.42 | 0.0514 | 0.0022 | 175 | 8  | 169 | 3 | 258 | 97  | 65  |
| HBMB | MB-66  | 155 | 4  | 88  | 804    | 0.57 | 0.204 | 0.022 | 0.02757 | 0.00058 | 0.20 | 0.0537 | 0.0056 | 189 | 20 | 175 | 4 | 359 | 236 | 49  |
| HBMB | MB-68  | 356 | 10 | 241 | 357    | 0.68 | 0.253 | 0.015 | 0.02669 | 0.00054 | 0.33 | 0.0687 | 0.0039 | 229 | 14 | 170 | 3 | 889 | 119 | 19  |
| HBMB | MB-69  | 339 | 9  | 151 | 257    | 0.45 | 0.258 | 0.019 | 0.02782 | 0.00056 | 0.28 | 0.0674 | 0.0047 | 233 | 17 | 177 | 4 | 849 | 146 | 21  |
| HBMB | MB-70  | 309 | 19 | 119 | 182406 | 0.38 | 0.464 | 0.015 | 0.06177 | 0.00122 | 0.61 | 0.0545 | 0.0014 | 387 | 13 | 386 | 8 | 393 | 58  | 98  |
| HBMB | MB-71  | 331 | 9  | 195 | 85390  | 0.59 | 0.186 | 0.007 | 0.02706 | 0.00054 | 0.52 | 0.0498 | 0.0016 | 173 | 7  | 172 | 3 | 187 | 77  | 92  |
| HBMB | MB-73  | 184 | 5  | 92  | 548    | 0.50 | 0.205 | 0.018 | 0.02718 | 0.00056 | 0.24 | 0.0548 | 0.0045 | 190 | 16 | 173 | 4 | 404 | 185 | 43  |
| HBMB | MB-74  | 407 | 11 | 264 | 103948 | 0.65 | 0.183 | 0.007 | 0.02676 | 0.00054 | 0.55 | 0.0496 | 0.0015 | 170 | 6  | 170 | 3 | 174 | 72  | 98  |
| HBMB | MB-75  | 316 | 8  | 196 | 3255   | 0.62 | 0.183 | 0.008 | 0.02663 | 0.00054 | 0.45 | 0.0498 | 0.0020 | 170 | 8  | 169 | 3 | 184 | 93  | 92  |
| HBMB | MB-76  | 365 | 10 | 204 | 13993  | 0.56 | 0.183 | 0.007 | 0.02675 | 0.00054 | 0.55 | 0.0496 | 0.0015 | 170 | 6  | 170 | 3 | 175 | 71  | 97  |
| HBMB | MB-77  | 420 | 12 | 205 | 2740   | 0.49 | 0.189 | 0.010 | 0.02741 | 0.00054 | 0.39 | 0.0499 | 0.0023 | 176 | 9  | 174 | 3 | 192 | 109 | 91  |
| HBMB | MB-79  | 313 | 8  | 198 | 611    | 0.63 | 0.187 | 0.009 | 0.02688 | 0.00054 | 0.43 | 0.0504 | 0.0021 | 174 | 8  | 171 | 3 | 215 | 96  | 80  |
| HBMB | MB-80  | 429 | 11 | 315 | 8416   | 0.73 | 0.185 | 0.009 | 0.02675 | 0.00054 | 0.43 | 0.0501 | 0.0021 | 172 | 8  | 170 | 3 | 200 | 97  | 85  |
| HBMB | MB-81  | 261 | 7  | 138 | 1887   | 0.53 | 0.188 | 0.009 | 0.02747 | 0.00056 | 0.44 | 0.0497 | 0.0020 | 175 | 8  | 175 | 4 | 179 | 96  | 98  |
| HBMB | MB-82  | 282 | 7  | 151 | 70626  | 0.53 | 0.202 | 0.015 | 0.02622 | 0.00054 | 0.28 | 0.0560 | 0.0039 | 187 | 14 | 167 | 3 | 451 | 154 | 37  |
| HBMB | MB-83  | 136 | 4  | 97  | 34034  | 0.71 | 0.180 | 0.008 | 0.02621 | 0.00056 | 0.46 | 0.0498 | 0.0021 | 168 | 8  | 167 | 4 | 186 | 97  | 90  |
| HBMB | MB-85  | 320 | 9  | 160 | 36940  | 0.50 | 0.183 | 0.007 | 0.02672 | 0.00054 | 0.53 | 0.0496 | 0.0016 | 171 | 7  | 170 | 3 | 178 | 76  | 96  |
| HBMB | MB-86  | 331 | 9  | 216 | 2237   | 0.65 | 0.183 | 0.012 | 0.02677 | 0.00054 | 0.32 | 0.0495 | 0.0030 | 171 | 11 | 170 | 3 | 173 | 139 | 98  |
| HBMB | MB-88  | 327 | 9  | 185 | 512    | 0.56 | 0.182 | 0.008 | 0.02664 | 0.00054 | 0.47 | 0.0496 | 0.0019 | 170 | 7  | 169 | 3 | 174 | 89  | 97  |
| HBMB | MB-91  | 119 | 3  | 59  | 810    | 0.49 | 0.185 | 0.014 | 0.02697 | 0.00058 | 0.27 | 0.0497 | 0.0037 | 172 | 13 | 172 | 4 | 179 | 176 | 96  |
| HBMB | MB-92  | 68  | 2  | 21  | 17238  | 0.31 | 0.183 | 0.020 | 0.02671 | 0.00060 | 0.20 | 0.0496 | 0.0054 | 170 | 19 | 170 | 4 | 177 | 255 | 96  |
| HBMB | MB-95  | 111 | 3  | 93  | 745    | 0.84 | 0.186 | 0.018 | 0.02697 | 0.00058 | 0.22 | 0.0500 | 0.0047 | 173 | 17 | 172 | 4 | 194 | 220 | 89  |
| HBMB | MB-97  | 227 | 6  | 124 | 354    | 0.55 | 0.255 | 0.018 | 0.02793 | 0.00058 | 0.29 | 0.0662 | 0.0046 | 231 | 17 | 178 | 4 | 813 | 145 | 22  |
| HBMB | MB-98  | 278 | 8  | 156 | 440    | 0.56 | 0.220 | 0.017 | 0.02705 | 0.00054 | 0.27 | 0.0590 | 0.0043 | 202 | 15 | 172 | 3 | 567 | 158 | 30  |
| HBMB | MB-99  | 200 | 5  | 120 | 382    | 0.60 | 0.196 | 0.019 | 0.02729 | 0.00056 | 0.21 | 0.0520 | 0.0050 | 182 | 18 | 174 | 4 | 286 | 218 | 61  |
| HBMB | MB-101 | 581 | 16 | 429 | 3002   | 0.74 | 0.184 | 0.008 | 0.02691 | 0.00054 | 0.48 | 0.0497 | 0.0018 | 172 | 7  | 171 | 3 | 181 | 84  | 94  |
| HBMB | MB-102 | 380 | 10 | 208 | 2006   | 0.55 | 0.205 | 0.015 | 0.02740 | 0.00054 | 0.27 | 0.0542 | 0.0038 | 189 | 14 | 174 | 3 | 379 | 159 | 46  |
| HBMB | MB-103 | 46  | 1  | 25  | 11697  | 0.56 | 0.188 | 0.024 | 0.02685 | 0.00064 | 0.19 | 0.0508 | 0.0064 | 175 | 22 | 171 | 4 | 231 | 289 | 74  |
| HBMB | MB-104 | 381 | 10 | 259 | 162    | 0.68 | 0.193 | 0.021 | 0.02748 | 0.00056 | 0.18 | 0.0509 | 0.0056 | 179 | 20 | 175 | 4 | 236 | 252 | 74  |
| HBMB | MB-105 | 522 | 14 | 301 | 634    | 0.58 | 0.206 | 0.017 | 0.02700 | 0.00054 | 0.24 | 0.0553 | 0.0044 | 190 | 16 | 172 | 3 | 422 | 179 | 41  |
| HBMB | MB-108 | 266 | 7  | 95  | 291    | 0.36 | 0.213 | 0.019 | 0.02744 | 0.00058 | 0.23 | 0.0564 | 0.0049 | 196 | 18 | 175 | 4 | 467 | 194 | 37  |
| HBMB | MB-109 | 561 | 15 | 426 | 181    | 0.76 | 0.265 | 0.020 | 0.02746 | 0.00054 | 0.26 | 0.0700 | 0.0052 | 239 | 18 | 175 | 3 | 929 | 151 | 19  |
| HBMB | MB-110 | 453 | 12 | 278 | 1242   | 0.61 | 0.183 | 0.007 | 0.02671 | 0.00054 | 0.50 | 0.0496 | 0.0017 | 170 | 7  | 170 | 3 | 178 | 81  | 96  |
| HBMB | MB-111 | 234 | 6  | 135 | 672    | 0.58 | 0.196 | 0.026 | 0.02764 | 0.00056 | 0.15 | 0.0513 | 0.0067 | 181 | 24 | 176 | 4 | 256 | 300 | 69  |
| HBMB | MB-112 | 113 | 3  | 88  | 350    | 0.78 | 0.240 | 0.035 | 0.02727 | 0.00060 | 0.15 | 0.0639 | 0.0091 | 219 | 32 | 173 | 4 | 739 | 301 | 23  |
| HBMB | MB-115 | 384 | 10 | 239 | 464    | 0.62 | 0.237 | 0.019 | 0.02718 | 0.00054 | 0.25 | 0.0633 | 0.0050 | 216 | 17 | 173 | 3 | 717 | 167 | 24  |
|      |        |     |    |     |        |      |       |       |         |         |      |        |        |     |    |     |   |     |     |     |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup>Pb/<sup>235</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb)/(<sup>238</sup>U/<sup>206</sup>Pb \* 1/137.88)

<sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>238</sup>U and the <sup>207</sup>/<sup>235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

#### Table D7. LA-ICPMS isotopic data for sample HMill in the Heidelberg Basin

| HBMill  |          |                      |                         |                         |                                      |                   |                                                  |                  |                                                  | RATIOS           |                  |                                                   |                  |                                     |        | AGES                                | [Ma]   |                                      |           | Conc.    |
|---------|----------|----------------------|-------------------------|-------------------------|--------------------------------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------------------|---------------------------------------------------|------------------|-------------------------------------|--------|-------------------------------------|--------|--------------------------------------|-----------|----------|
| Sample  | Analysis | U [ppm] <sup>a</sup> | Pb [ppm] <sup>a</sup> T | [h [ppm] <sup>a 2</sup> | <sup>206</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>a</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho <sup>c</sup> | <sup>207</sup> Pb/ <sup>206</sup> Pb <sup>(</sup> | 2 σ <sup>d</sup> | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ     | <sup>206</sup> Pb/ <sup>238</sup> U | 2 σ    | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ        | %        |
| HBMill  | HBM-1    | 199                  | 6                       | 91                      | 51178                                | 0.46              | 0.190                                            | 0.007            | 0.0286                                           | 0.0004           | 0.41             | 0.0483                                            | 0.0016           | 177                                 | 7      | 182                                 | 3      | 115                                  | 80        | 157      |
| HBMill  | HBM-2    | 143                  | 4                       | 99                      | 269                                  | 0.69              | 0.417                                            | 0.017            | 0.0271                                           | 0.0005           | 0.44             | 0.1116                                            | 0.0041           | 354                                 | 14     | 172                                 | 3      | 1825                                 | 66        | 9        |
| HBMill  | HBM-3    | 311                  | 8                       | 208                     | 5804                                 | 0.67              | 0.185                                            | 0.011            | 0.0271                                           | 0.0004           | 0.26             | 0.0495                                            | 0.0027           | 172                                 | 10     | 172                                 | 3      | 171                                  | 129       | 101      |
| HBMill  | HBM-4    | 141                  | 4                       | 65                      | 427                                  | 0.47              | 0.188                                            | 0.009            | 0.0275                                           | 0.0004           | 0.32             | 0.0496                                            | 0.0023           | 175                                 | 9      | 175                                 | 3      | 174                                  | 110       | 100      |
| HBMill  | HBM-5    | 341                  | 9                       | 205                     | 747                                  | 0.60              | 0.200                                            | 0.017            | 0.0258                                           | 0.0004           | 0.18             | 0.0562                                            | 0.0047           | 185                                 | 16     | 164                                 | 3      | 461                                  | 185       | 36       |
| HBMill  | HBM-6    | 297                  | 8                       | 183                     | 448                                  | 0.61              | 0.193                                            | 0.016            | 0.0281                                           | 0.0004           | 0.19             | 0.0500                                            | 0.0040           | 180                                 | 14     | 179                                 | 3      | 193                                  | 184       | 93       |
| HBMill  | HBM-7    | 569                  | 16                      | 296                     | 986                                  | 0.52              | 0.218                                            | 0.018            | 0.0279                                           | 0.0004           | 0.17             | 0.0567                                            | 0.0047           | 201                                 | 17     | 178                                 | 3      | 481                                  | 182       | 37       |
| HBMill  | HBM-9    | 590                  | 16                      | 286                     | 9599                                 | 0.48              | 0.188                                            | 0.005            | 0.0275                                           | 0.0004           | 0.50             | 0.0496                                            | 0.0012           | 175                                 | 5      | 175                                 | 3      | 175                                  | 58        | 100      |
| HBMill  | HBM-10   | 780                  | 22                      | 337                     | 29558                                | 0.43              | 0.192                                            | 0.005            | 0.0282                                           | 0.0004           | 0.51             | 0.0495                                            | 0.0012           | 179                                 | 5      | 179                                 | 3      | 173                                  | 57        | 103      |
| HBMill  | HBM-12   | 217                  | 6                       | 188                     | 214                                  | 0.87              | 0.252                                            | 0.027            | 0.0271                                           | 0.0005           | 0.16             | 0.0674                                            | 0.0073           | 228                                 | 25     | 172                                 | 3      | 849                                  | 224       | 20       |
| HBMill  | HBM-13   | 220                  | 6                       | 99                      | 3299                                 | 0.45              | 0.187                                            | 0.013            | 0.0273                                           | 0.0004           | 0.23             | 0.0496                                            | 0.0033           | 174                                 | 12     | 174                                 | 3      | 178                                  | 155       | 98       |
| HBMill  | HBM-14   | 224                  | 6                       | 134                     | 238                                  | 0.60              | 0.215                                            | 0.015            | 0.0272                                           | 0.0004           | 0.23             | 0.0573                                            | 0.0040           | 198                                 | 14     | 173                                 | 3      | 503                                  | 153       | 34       |
| HBMill  | HBM-15   | 71                   | 2                       | 49                      | 182                                  | 0.69              | 0.488                                            | 0.061            | 0.0292                                           | 0.0005           | 0.14             | 0.1211                                            | 0.0151           | 404                                 | 51     | 186                                 | 3      | 1973                                 | 222       | 9        |
| HBMill  | HBM-16   | 363                  | 10                      | 176                     | 2943                                 | 0.48              | 0.203                                            | 0.018            | 0.0269                                           | 0.0004           | 0.17             | 0.0546                                            | 0.0047           | 187                                 | 16     | 171                                 | 3      | 394                                  | 192       | 43       |
| HBMill  | HBM-17   | 236                  | 6                       | 141                     | 55282                                | 0.60              | 0.176                                            | 0.018            | 0.0259                                           | 0.0004           | 0.16             | 0.0493                                            | 0.0049           | 165                                 | 17     | 165                                 | 3      | 162                                  | 232       | 102      |
| HBMill  | HBM-18   | 212                  | 6                       | 130                     | 1991                                 | 0.61              | 0.190                                            | 0.011            | 0.0276                                           | 0.0004           | 0.27             | 0.0498                                            | 0.0027           | 176                                 | 10     | 175                                 | 3      | 187                                  | 124       | 94       |
| HBMill  | HBM-19   | 382                  | 10                      | 246                     | 92631                                | 0.64              | 0.182                                            | 0.006            | 0.0268                                           | 0.0004           | 0.47             | 0.0493                                            | 0.0014           | 170                                 | 5      | 170                                 | 3      | 162                                  | 65        | 105      |
| HBMill  | HBM-20   | 650                  | 17                      | 310                     | 157563                               | 0.48              | 0.182                                            | 0.005            | 0.0268                                           | 0.0004           | 0.49             | 0.0494                                            | 0.0012           | 170                                 | 5      | 170                                 | 2      | 166                                  | 59        | 102      |
| HBMill  | HBM-21   | 826                  | 22                      | 366                     | 2218                                 | 0.44              | 0.187                                            | 0.005            | 0.0271                                           | 0.0004           | 0.48             | 0.0499                                            | 0.0013           | 174                                 | 5      | 173                                 | 2      | 188                                  | 59        | 92       |
| HBMill  | HBM-22   | 131                  | 4                       | 48                      | 32817                                | 0.36              | 0.188                                            | 0.009            | 0.0277                                           | 0.0004           | 0.32             | 0.0493                                            | 0.0023           | 175                                 | 9      | 176                                 | 3      | 163                                  | 110       | 108      |
| HBMill  | HBM-23   | 195                  | 5                       | 63                      | 368                                  | 0.33              | 0.209                                            | 0.028            | 0.0258                                           | 0.0004           | 0.13             | 0.0589                                            | 0.0077           | 193                                 | 25     | 164                                 | 3      | 562                                  | 285       | 29       |
| HBMill  | HBM-24   | 219                  | 6                       | 100                     | 56030                                | 0.46              | 0.194                                            | 0.007            | 0.0283                                           | 0.0004           | 0.42             | 0.0498                                            | 0.0017           | 180                                 | 7      | 180                                 | 3      | 186                                  | 78        | 97       |
| HBMill  | HBM-25   | 372                  | 10                      | 202                     | 1741                                 | 0.54              | 0.191                                            | 0.006            | 0.0279                                           | 0.0004           | 0.47             | 0.0496                                            | 0.0014           | 177                                 | 6      | 178                                 | 3      | 176                                  | 66        | 101      |
| HBMill  | HBM-27   | 257                  | 7                       | 153                     | 569                                  | 0.60              | 0.191                                            | 0.021            | 0.0257                                           | 0.0004           | 0.14             | 0.0540                                            | 0.0058           | 178                                 | 19     | 164                                 | 3      | 369                                  | 242       | 44       |
| HBMill  | HBM-28   | 537                  | 14                      | 301                     | 895                                  | 0.56              | 0.203                                            | 0.014            | 0.0260                                           | 0.0004           | 0.22             | 0.0566                                            | 0.0037           | 188                                 | 13     | 166                                 | 2      | 478                                  | 146       | 35       |
| HBMill  | HBM-29   | 372                  | 11                      | 124                     | 573                                  | 0.33              | 0.207                                            | 0.018            | 0.0295                                           | 0.0004           | 0.17             | 0.0508                                            | 0.0043           | 191                                 | 16     | 188                                 | 3      | 232                                  | 195       | 81       |
| HBMill  | HBM-30   | 363                  | 10                      | 167                     | 89673                                | 0.46              | 0.183                                            | 0.014            | 0.0272                                           | 0.0004           | 0.19             | 0.0487                                            | 0.0038           | 170                                 | 13     | 173                                 | 3      | 131                                  | 183       | 132      |
| HBMill  | HBM-31   | 375                  | 10                      | 233                     | 2621                                 | 0.62              | 0.181                                            | 0.012            | 0.0257                                           | 0.0004           | 0.24             | 0.0511                                            | 0.0032           | 169                                 | 11     | 164                                 | 3      | 247                                  | 143       | 66       |
| HBMill  | HBM-32   | 342                  | 9                       | 149                     | 500                                  | 0.44              | 0.262                                            | 0.026            | 0.0275                                           | 0.0004           | 0.16             | 0.0691                                            | 0.0067           | 236                                 | 23     | 175                                 | 3      | 903                                  | 200       | 19       |
| HBMill  | HBM-33   | 526                  | 15                      | 257                     | 446                                  | 0.49              | 0.243                                            | 0.020            | 0.0278                                           | 0.0004           | 0.18             | 0.0636                                            | 0.0051           | 221                                 | 18     | 177                                 | 3      | 728                                  | 169       | 24       |
| HBMill  | HBM-34   | 337                  | 9                       | 178                     | 831                                  | 0.53              | 0.176                                            | 0.007            | 0.0259                                           | 0.0004           | 0.41             | 0.0494                                            | 0.0017           | 165                                 | 6      | 165                                 | 3      | 165                                  | 80        | 100      |
| HBMill  | HBM-35   | 524                  | 14                      | 329                     | 678                                  | 0.63              | 0.200                                            | 0.017            | 0.0272                                           | 0.0004           | 0.18             | 0.0533                                            | 0.0043           | 185                                 | 15     | 173                                 | 3      | 343                                  | 184       | 51       |
| HBMIII  | HBM-36   | 312                  | 9                       | 235                     | 4795                                 | 0.75              | 0.197                                            | 0.009            | 0.0287                                           | 0.0004           | 0.31             | 0.0499                                            | 0.0022           | 183                                 | 9      | 182                                 | 3      | 190                                  | 104       | 96       |
| HBMIII  | HBM-37   | 328                  | 9                       | 187                     | 84726                                | 0.57              | 0.195                                            | 0.007            | 0.0284                                           | 0.0004           | 0.39             | 0.0497                                            | 0.0017           | 181                                 | 7      | 181                                 | 3      | 180                                  | 81        | 101      |
| HBMIII  | HBM-38   | 276                  | 14                      | 161                     | 1595                                 | 0.58              | 0.388                                            | 0.024            | 0.0518                                           | 0.0010           | 0.31             | 0.0542                                            | 0.0032           | 333                                 | 20     | 326                                 | 6      | 380                                  | 131       | 86       |
| HBMIII  | HBM-39   | 255                  | 7                       | 160                     | 466                                  | 0.63              | 0.280                                            | 0.025            | 0.0286                                           | 0.0004           | 0.17             | 0.0711                                            | 0.0062           | 251                                 | 22     | 181                                 | 3      | 960                                  | 179       | 19       |
| HBIMIII | HBIVI-40 | 223                  | 6                       | 133                     | 592                                  | 0.59              | 0.224                                            | 0.017            | 0.0271                                           | 0.0004           | 0.21             | 0.0600                                            | 0.0044           | 206                                 | 15     | 172                                 | 3      | 605                                  | 159       | 29       |
| HBIMIII |          | 303                  | 8                       | 200                     | 941                                  | 0.60              | 0.205                                            | 0.017            | 0.0270                                           | 0.0004           | 0.17             | 0.0550                                            | 0.0046           | 189                                 | 10     | 172                                 | 3      | 413                                  | 180       | 42       |
|         |          | 129                  | 4                       | 00                      | 740                                  | 0.62              | 0.079                                            | 0.003            | 0.0346                                           | 0.0006           | 0.22             | 0.1655                                            | 0.0129           | 172                                 | 40     | 220                                 | 4      | 2004                                 | 02        | 0        |
|         |          | 211                  | 9<br>6                  | ∠00<br>130              | 6205                                 | 0.70              | 0.100                                            | 0.000            | 0.0273                                           | 0.0004           | 0.33             | 0.0495                                            | 0.0019           | 173                                 | 10     | 174                                 | ა<br>ი | 170                                  | 92<br>122 | 102      |
| HBMI    | HBM-44   | 203                  | 6                       | 161                     | 1674                                 | 0.00              | 0.190                                            | 0.010            | 0.0270                                           | 0.0004           | 0.20             | 0.0490                                            | 0.0020           | 180                                 | 10     | 165                                 | 3      | 374                                  | 122       | 103      |
| HBMI    | HBM-45   | 220                  | 7                       | 1/1                     | 356                                  | 0.72              | 0.194                                            | 0.010            | 0.0200                                           | 0.0004           | 0.10             | 0.0041                                            | 0.0056           | 100                                 | 10     | 166                                 | 3      | 605                                  | 202       | 44<br>27 |
|         |          | 201                  | 0                       | 19/                     | 330                                  | 0.54              | 0.210                                            | 0.020            | 0.0201                                           | 0.0004           | 0.17             | 0.0000                                            | 0.0050           | 190                                 | 19     | 165                                 | о<br>2 | 422                                  | 202       | 20       |
| HBMI    | HBM-49   | 270                  | 9                       | 182                     | 408                                  | 0.54              | 0.190                                            | 0.019            | 0.0209                                           | 0.0004           | 0.10             | 0.0000                                            | 0.0036           | 104                                 | 10     | 173                                 | 3      | 432                                  | 160       | 102      |
| HRMII   | HBM-40   | 3/1                  | 10                      | 171                     | 400                                  | 0.50              | 0.100                                            | 0.014            | 0.0272                                           | 0.0004           | 0.21             | 0.0490                                            | 0.0030           | 1/3                                 | 6      | 182                                 | 2      | 195                                  | 66        | 9/       |
| HRMII   | HBM-50   | 591                  | 14                      | 335                     | 2534                                 | 0.50              | 0.190                                            | 0.000            | 0.0207                                           | 0.0004           | 0.40             | 0.0300                                            | 0.0023           | 170                                 | e<br>e | 172                                 | 2      | 179                                  | 109       | 96       |
| ווויוטה | 100-00   | 521                  | .+                      | 555                     | 2004                                 | 0.04              | 0.105                                            | 0.009            | 0.0210                                           | 0.0004           | 0.30             | 0.0437                                            | 0.0020           | 112                                 | 0      | 172                                 | 5      | 113                                  | 103       | 30       |

| HBMill | HBM-51 | 329  | 9  | 152 | 18582 | 0.46 | 0.189 | 0.008 | 0.0274 | 0.0004 | 0.33 | 0.0500 | 0.0021 | 176 | 8  | 174 | 3 | 195  | 99  | 89  |
|--------|--------|------|----|-----|-------|------|-------|-------|--------|--------|------|--------|--------|-----|----|-----|---|------|-----|-----|
| HBMill | HBM-52 | 194  | 5  | 106 | 5664  | 0.54 | 0.184 | 0.011 | 0.0268 | 0.0004 | 0.27 | 0.0498 | 0.0028 | 171 | 10 | 170 | 3 | 186  | 133 | 92  |
| HBMill | HBM-53 | 135  | 4  | 61  | 342   | 0.45 | 0.415 | 0.034 | 0.0295 | 0.0005 | 0.21 | 0.1020 | 0.0081 | 352 | 29 | 187 | 3 | 1661 | 147 | 11  |
| HBMill | HBM-54 | 190  | 5  | 104 | 299   | 0.55 | 0.252 | 0.022 | 0.0271 | 0.0004 | 0.17 | 0.0674 | 0.0059 | 228 | 20 | 172 | 3 | 850  | 181 | 20  |
| HBMill | HBM-55 | 156  | 4  | 62  | 254   | 0.40 | 0.304 | 0.037 | 0.0270 | 0.0004 | 0.13 | 0.0818 | 0.0099 | 270 | 33 | 171 | 3 | 1242 | 236 | 14  |
| HBMill | HBM-56 | 149  | 4  | 95  | 263   | 0.64 | 0.222 | 0.023 | 0.0260 | 0.0005 | 0.17 | 0.0621 | 0.0064 | 204 | 21 | 165 | 3 | 676  | 220 | 24  |
| HBMill | HBM-57 | 310  | 8  | 186 | 1139  | 0.60 | 0.178 | 0.010 | 0.0258 | 0.0004 | 0.27 | 0.0501 | 0.0028 | 167 | 10 | 164 | 3 | 199  | 131 | 83  |
| HBMill | HBM-58 | 300  | 8  | 142 | 6294  | 0.47 | 0.188 | 0.008 | 0.0273 | 0.0004 | 0.34 | 0.0501 | 0.0020 | 175 | 7  | 173 | 3 | 198  | 93  | 88  |
| HBMill | HBM-59 | 215  | 6  | 137 | 296   | 0.64 | 0.210 | 0.018 | 0.0283 | 0.0004 | 0.18 | 0.0539 | 0.0044 | 194 | 16 | 180 | 3 | 366  | 186 | 49  |
| HBMill | HBM-60 | 250  | 6  | 202 | 267   | 0.81 | 0.191 | 0.016 | 0.0259 | 0.0004 | 0.20 | 0.0534 | 0.0044 | 177 | 15 | 165 | 3 | 347  | 188 | 47  |
| HBMill | HBM-61 | 166  | 5  | 145 | 132   | 0.87 | 0.570 | 0.045 | 0.0289 | 0.0005 | 0.21 | 0.1432 | 0.0110 | 458 | 36 | 184 | 3 | 2267 | 132 | 8   |
| HBMill | HBM-63 | 420  | 11 | 229 | 1375  | 0.54 | 0.179 | 0.010 | 0.0260 | 0.0004 | 0.27 | 0.0498 | 0.0026 | 167 | 9  | 166 | 2 | 188  | 122 | 88  |
| HBMill | HBM-64 | 278  | 7  | 138 | 469   | 0.50 | 0.189 | 0.017 | 0.0268 | 0.0004 | 0.17 | 0.0514 | 0.0046 | 176 | 16 | 170 | 3 | 257  | 205 | 66  |
| HBMill | HBM-65 | 234  | 7  | 152 | 519   | 0.65 | 0.221 | 0.020 | 0.0280 | 0.0004 | 0.16 | 0.0573 | 0.0052 | 203 | 19 | 178 | 3 | 503  | 200 | 35  |
| HBMill | HBM-66 | 347  | 10 | 216 | 473   | 0.62 | 0.206 | 0.015 | 0.0282 | 0.0004 | 0.21 | 0.0531 | 0.0037 | 191 | 14 | 179 | 3 | 331  | 158 | 54  |
| HBMill | HBM-68 | 215  | 6  | 114 | 421   | 0.53 | 0.214 | 0.015 | 0.0267 | 0.0004 | 0.21 | 0.0581 | 0.0040 | 197 | 14 | 170 | 3 | 535  | 152 | 32  |
| HBMill | HBM-69 | 272  | 7  | 131 | 1953  | 0.48 | 0.182 | 0.015 | 0.0266 | 0.0004 | 0.19 | 0.0496 | 0.0039 | 170 | 14 | 169 | 3 | 178  | 183 | 95  |
| HBMill | HBM-70 | 276  | 8  | 160 | 598   | 0.58 | 0.182 | 0.013 | 0.0272 | 0.0004 | 0.21 | 0.0487 | 0.0034 | 170 | 12 | 173 | 3 | 131  | 164 | 131 |
| HBMill | HBM-71 | 165  | 5  | 88  | 290   | 0.53 | 0.301 | 0.027 | 0.0281 | 0.0004 | 0.17 | 0.0777 | 0.0069 | 268 | 24 | 179 | 3 | 1139 | 177 | 16  |
| HBMill | HBM-72 | 470  | 12 | 251 | 64626 | 0.54 | 0.177 | 0.008 | 0.0259 | 0.0004 | 0.32 | 0.0496 | 0.0022 | 166 | 8  | 165 | 2 | 175  | 103 | 94  |
| HBMill | HBM-73 | 350  | 9  | 330 | 791   | 0.94 | 0.218 | 0.018 | 0.0258 | 0.0004 | 0.18 | 0.0611 | 0.0050 | 200 | 17 | 164 | 2 | 642  | 175 | 26  |
| HBMill | HBM-74 | 206  | 6  | 104 | 406   | 0.51 | 0.183 | 0.008 | 0.0270 | 0.0004 | 0.35 | 0.0492 | 0.0021 | 171 | 8  | 172 | 3 | 156  | 98  | 110 |
| HBMill | HBM-75 | 545  | 14 | 285 | 4792  | 0.52 | 0.183 | 0.008 | 0.0259 | 0.0004 | 0.33 | 0.0514 | 0.0021 | 171 | 8  | 165 | 2 | 258  | 96  | 64  |
| HBMill | HBM-76 | 303  | 8  | 180 | 403   | 0.59 | 0.189 | 0.012 | 0.0258 | 0.0004 | 0.25 | 0.0532 | 0.0032 | 176 | 11 | 164 | 3 | 339  | 134 | 48  |
| HBMill | HBM-77 | 353  | 9  | 202 | 1883  | 0.57 | 0.187 | 0.011 | 0.0258 | 0.0004 | 0.25 | 0.0524 | 0.0030 | 174 | 10 | 164 | 2 | 304  | 130 | 54  |
| HBMill | HBM-78 | 382  | 10 | 331 | 2261  | 0.87 | 0.179 | 0.009 | 0.0261 | 0.0004 | 0.28 | 0.0497 | 0.0025 | 167 | 9  | 166 | 2 | 180  | 116 | 92  |
| HBMill | HBM-79 | 1219 | 40 | 425 | 82    | 0.35 | 0.498 | 0.020 | 0.0328 | 0.0005 | 0.34 | 0.1103 | 0.0042 | 411 | 17 | 208 | 3 | 1805 | 70  | 12  |
| HBMill | HBM-80 | 332  | 9  | 123 | 1763  | 0.37 | 0.203 | 0.015 | 0.0259 | 0.0004 | 0.21 | 0.0570 | 0.0042 | 188 | 14 | 165 | 3 | 490  | 163 | 34  |
| HBMill | HBM-81 | 248  | 7  | 99  | 62920 | 0.40 | 0.181 | 0.010 | 0.0266 | 0.0004 | 0.28 | 0.0493 | 0.0026 | 169 | 9  | 169 | 3 | 163  | 122 | 104 |
| HBMill | HBM-82 | 307  | 8  | 174 | 1231  | 0.57 | 0.182 | 0.008 | 0.0267 | 0.0004 | 0.35 | 0.0495 | 0.0020 | 170 | 7  | 170 | 3 | 170  | 94  | 100 |
| HBMill | HBM-84 | 351  | 10 | 133 | 472   | 0.38 | 0.224 | 0.012 | 0.0281 | 0.0004 | 0.28 | 0.0579 | 0.0030 | 205 | 11 | 179 | 3 | 527  | 112 | 34  |
| HBMill | HBM-86 | 302  | 8  | 159 | 435   | 0.53 | 0.240 | 0.022 | 0.0270 | 0.0005 | 0.19 | 0.0645 | 0.0057 | 218 | 20 | 172 | 3 | 757  | 186 | 23  |
| HBMill | HBM-87 | 196  | 6  | 80  | 576   | 0.41 | 0.194 | 0.008 | 0.0282 | 0.0004 | 0.36 | 0.0498 | 0.0020 | 180 | 8  | 179 | 3 | 188  | 94  | 96  |
| HBMill | HBM-88 | 212  | 6  | 122 | 1826  | 0.57 | 0.201 | 0.013 | 0.0289 | 0.0004 | 0.23 | 0.0503 | 0.0032 | 186 | 12 | 184 | 3 | 210  | 147 | 88  |
| HBMill | HBM-89 | 431  | 12 | 268 | 11157 | 0.62 | 0.190 | 0.008 | 0.0279 | 0.0004 | 0.35 | 0.0496 | 0.0019 | 177 | 7  | 177 | 3 | 175  | 88  | 101 |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup>Pb/<sup>205</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb/(<sup>238</sup>U/<sup>206</sup>Pb \* 1/137.88)

<sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>238</sup>U and the <sup>207</sup>/<sup>235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

# Table D8. LA-ICPMS isotopic data for sample HBUE1 in the Heidelberg Basin

| HBUE1  |          |                      |                       |                         |                                      |                   |                                                  |                  |                                                  | RATIOS           |      |             |                  |                                     |    | AGES                                | [Ma] |                                      |     | Conc. |
|--------|----------|----------------------|-----------------------|-------------------------|--------------------------------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------|-------------|------------------|-------------------------------------|----|-------------------------------------|------|--------------------------------------|-----|-------|
| Sample | Analysis | U [ppm] <sup>a</sup> | Pb [ppm] <sup>a</sup> | Th [ppm] <sup>a 2</sup> | <sup>206</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>a</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho℃ | 207Pb/206Pb | 2 σ <sup>d</sup> | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ | <sup>206</sup> Pb/ <sup>238</sup> U | 2 σ  | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2 σ | %     |
| HBUE1  | HBUE1-1  | 104                  | 4                     | 104                     | 4711                                 | 1.00              | 0.296                                            | 0.015            | 0.0418                                           | 0.0008           | 0.36 | 0.0514      | 0.0024           | 263                                 | 13 | 264                                 | 5    | 258                                  | 109 | 102   |
| HBUE1  | HBUE1-2  | 276                  | 13                    | 197                     | 2395                                 | 0.71              | 0.333                                            | 0.017            | 0.0462                                           | 0.0008           | 0.36 | 0.0523      | 0.0024           | 292                                 | 15 | 291                                 | 5    | 298                                  | 106 | 98    |
| HBUE1  | HBUE1-3  | 366                  | 24                    | 110                     | 160370                               | 0.30              | 0.512                                            | 0.016            | 0.0665                                           | 0.0010           | 0.49 | 0.0559      | 0.0015           | 420                                 | 13 | 415                                 | 6    | 447                                  | 59  | 93    |
| HBUE1  | HBUE1-4  | 407                  | 48                    | 85                      | 317149                               | 0.21              | 1.053                                            | 0.031            | 0.1182                                           | 0.0018           | 0.52 | 0.0646      | 0.0016           | 730                                 | 21 | 720                                 | 11   | 761                                  | 52  | 95    |
| HBUE1  | HBUE1-5  | 911                  | 162                   | 200                     | 13969                                | 0.22              | 1.837                                            | 0.047            | 0.1777                                           | 0.0026           | 0.57 | 0.0750      | 0.0016           | 1059                                | 27 | 1054                                | 15   | 1069                                 | 42  | 99    |
| HBUE1  | HBUE1-6  | 94                   | 9                     | 9                       | 507                                  | 0.09              | 1.001                                            | 0.071            | 0.0980                                           | 0.0024           | 0.34 | 0.0741      | 0.0050           | 704                                 | 50 | 603                                 | 15   | 1043                                 | 135 | 58    |
| HBUE1  | HBUE1-7  | 511                  | 23                    | 254                     | 151632                               | 0.50              | 0.323                                            | 0.011            | 0.0449                                           | 0.0007           | 0.45 | 0.0521      | 0.0016           | 284                                 | 10 | 283                                 | 4    | 288                                  | 71  | 98    |
| HBUE1  | HBUE1-8  | 188                  | 16                    | 77                      | 104816                               | 0.41              | 0.691                                            | 0.021            | 0.0847                                           | 0.0013           | 0.50 | 0.0592      | 0.0016           | 533                                 | 16 | 524                                 | 8    | 573                                  | 57  | 91    |
| HBUE1  | HBUE1-9  | 324                  | 21                    | 109                     | 3320                                 | 0.34              | 0.529                                            | 0.015            | 0.0635                                           | 0.0010           | 0.52 | 0.0604      | 0.0015           | 431                                 | 13 | 397                                 | 6    | 617                                  | 54  | 64    |
| HBUE1  | HBUE1-10 | 412                  | 83                    | 191                     | 8738                                 | 0.46              | 2.207                                            | 0.057            | 0.2017                                           | 0.0029           | 0.57 | 0.0794      | 0.0017           | 1183                                | 30 | 1184                                | 17   | 1181                                 | 42  | 100   |
| HBUE1  | HBUE1-11 | 136                  | 13                    | 156                     | 84695                                | 1.15              | 0.773                                            | 0.024            | 0.0946                                           | 0.0014           | 0.49 | 0.0593      | 0.0016           | 581                                 | 18 | 582                                 | 9    | 577                                  | 59  | 101   |
| HBUE1  | HBUE1-12 | 167                  | 8                     | 111                     | 50545                                | 0.67              | 0.334                                            | 0.029            | 0.0458                                           | 0.0011           | 0.29 | 0.0529      | 0.0043           | 293                                 | 25 | 289                                 | 7    | 324                                  | 185 | 89    |
| HBUE1  | HBUE1-13 | 535                  | 38                    | 101                     | 1774                                 | 0.19              | 0.576                                            | 0.018            | 0.0713                                           | 0.0011           | 0.48 | 0.0586      | 0.0016           | 462                                 | 15 | 444                                 | 7    | 551                                  | 61  | 81    |
| HBUE1  | HBUE1-14 | 129                  | 12                    | 138                     | 2402                                 | 1.07              | 0.744                                            | 0.027            | 0.0908                                           | 0.0015           | 0.44 | 0.0594      | 0.0020           | 565                                 | 21 | 561                                 | 9    | 581                                  | 72  | 97    |
| HBUE1  | HBUE1-15 | 191                  | 15                    | 132                     | 2754                                 | 0.69              | 0.619                                            | 0.019            | 0.0789                                           | 0.0012           | 0.49 | 0.0569      | 0.0016           | 489                                 | 15 | 489                                 | 7    | 489                                  | 60  | 100   |
| HBUE1  | HBUE1-16 | 499                  | 20                    | 286                     | 1371                                 | 0.57              | 0.348                                            | 0.014            | 0.0406                                           | 0.0007           | 0.41 | 0.0621      | 0.0023           | 303                                 | 12 | 257                                 | 4    | 678                                  | 78  | 38    |
| HBUE1  | HBUE1-17 | 575                  | 32                    | 239                     | 1933                                 | 0.42              | 0.524                                            | 0.015            | 0.0560                                           | 0.0008           | 0.51 | 0.0680      | 0.0017           | 428                                 | 13 | 351                                 | 5    | 868                                  | 52  | 40    |
| HBUE1  | HBUE1-18 | 406                  | 34                    | 39                      | 2949                                 | 0.10              | 0.668                                            | 0.021            | 0.0841                                           | 0.0013           | 0.48 | 0.0576      | 0.0016           | 519                                 | 16 | 520                                 | 8    | 515                                  | 61  | 101   |
| HBUE1  | HBUE1-19 | 202                  | 9                     | 73                      | 13994                                | 0.36              | 0.314                                            | 0.017            | 0.0442                                           | 0.0008           | 0.35 | 0.0517      | 0.0026           | 278                                 | 15 | 279                                 | 5    | 270                                  | 115 | 103   |
| HBUE1  | HBUE1-20 | 216                  | 6                     | 158                     | 39015                                | 0.73              | 0.188                                            | 0.016            | 0.0273                                           | 0.0006           | 0.28 | 0.0500      | 0.0040           | 175                                 | 15 | 173                                 | 4    | 195                                  | 186 | 89    |
| HBUE1  | HBUE1-21 | 174                  | 19                    | 23                      | 124435                               | 0.13              | 0.912                                            | 0.027            | 0.1077                                           | 0.0016           | 0.51 | 0.0614      | 0.0015           | 658                                 | 19 | 659                                 | 10   | 654                                  | 54  | 101   |
| HBUE1  | HBUE1-22 | 602                  | 30                    | 66                      | 4507                                 | 0.11              | 0.383                                            | 0.015            | 0.0491                                           | 0.0008           | 0.43 | 0.0566      | 0.0019           | 329                                 | 13 | 309                                 | 5    | 474                                  | 76  | 65    |
| HBUE1  | HBUE1-23 | 188                  | 16                    | 116                     | 109402                               | 0.62              | 0.706                                            | 0.022            | 0.0879                                           | 0.0013           | 0.49 | 0.0583      | 0.0016           | 543                                 | 17 | 543                                 | 8    | 541                                  | 59  | 100   |
| HBUE1  | HBUE1-24 | 405                  | 17                    | 172                     | 110866                               | 0.43              | 0.320                                            | 0.017            | 0.0413                                           | 0.0008           | 0.35 | 0.0563      | 0.0029           | 282                                 | 15 | 261                                 | 5    | 462                                  | 113 | 56    |
| HBUE1  | HBUE1-25 | 155                  | 13                    | 61                      | 21960                                | 0.40              | 0.656                                            | 0.022            | 0.0819                                           | 0.0013           | 0.46 | 0.0581      | 0.0017           | 512                                 | 17 | 507                                 | 8    | 533                                  | 66  | 95    |
| HBUE1  | HBUE1-26 | 269                  | 26                    | 173                     | 6426                                 | 0.64              | 0.796                                            | 0.023            | 0.0964                                           | 0.0014           | 0.53 | 0.0599      | 0.0014           | 595                                 | 17 | 593                                 | 9    | 600                                  | 52  | 99    |
| HBUE1  | HBUE1-27 | 123                  | 9                     | 72                      | 279                                  | 0.59              | 0.748                                            | 0.054            | 0.0694                                           | 0.0017           | 0.34 | 0.0782      | 0.0053           | 567                                 | 41 | 433                                 | 11   | 1151                                 | 135 | 38    |
| HBUE1  | HBUE1-28 | 256                  | 11                    | 242                     | 74530                                | 0.94              | 0.318                                            | 0.020            | 0.0438                                           | 0.0009           | 0.32 | 0.0527      | 0.0031           | 281                                 | 18 | 276                                 | 6    | 317                                  | 135 | 87    |
| HBUE1  | HBUE1-29 | 259                  | 17                    | 148                     | 701                                  | 0.57              | 0.799                                            | 0.035            | 0.0657                                           | 0.0012           | 0.42 | 0.0882      | 0.0035           | 596                                 | 26 | 410                                 | 7    | 1387                                 | 76  | 30    |
| HBUE1  | HBUE1-30 | 533                  | 36                    | 126                     | 649                                  | 0.24              | 0.784                                            | 0.031            | 0.0679                                           | 0.0012           | 0.43 | 0.0837      | 0.0030           | 587                                 | 23 | 423                                 | 7    | 1287                                 | 69  | 33    |
| HBUE1  | HBUE1-31 | 164                  | 7                     | 157                     | 2024                                 | 0.96              | 0.361                                            | 0.022            | 0.0405                                           | 0.0008           | 0.35 | 0.0646      | 0.0036           | 313                                 | 19 | 256                                 | 5    | 761                                  | 119 | 34    |
| HBUE1  | HBUE1-32 | 224                  | 9                     | 81                      | 62284                                | 0.36              | 0.326                                            | 0.029            | 0.0418                                           | 0.0011           | 0.29 | 0.0565      | 0.0048           | 286                                 | 25 | 264                                 | 7    | 473                                  | 186 | 56    |
| HBUE1  | HBUE1-33 | 202                  | 9                     | 138                     | 1342                                 | 0.69              | 0.311                                            | 0.011            | 0.0433                                           | 0.0007           | 0.44 | 0.0520      | 0.0017           | 275                                 | 10 | 273                                 | 4    | 287                                  | 74  | 95    |
| HBUE1  | HBUE1-34 | 426                  | 19                    | 235                     | 123339                               | 0.55              | 0.320                                            | 0.014            | 0.0436                                           | 0.0007           | 0.39 | 0.0532      | 0.0022           | 282                                 | 12 | 275                                 | 5    | 339                                  | 92  | 81    |
| HBUE1  | HBUE1-35 | 320                  | 14                    | 177                     | 94498                                | 0.55              | 0.323                                            | 0.016            | 0.0445                                           | 0.0008           | 0.36 | 0.0528      | 0.0024           | 285                                 | 14 | 280                                 | 5    | 319                                  | 104 | 88    |
| HBUE1  | HBUE1-36 | 939                  | 29                    | 678                     | 193721                               | 0.72              | 0.218                                            | 0.008            | 0.0310                                           | 0.0005           | 0.44 | 0.0510      | 0.0016           | 200                                 | 7  | 197                                 | 3    | 239                                  | 72  | 82    |
| HBUE1  | HBUE1-37 | 287                  | 21                    | 107                     | 1370                                 | 0.37              | 0.601                                            | 0.030            | 0.0738                                           | 0.0013           | 0.37 | 0.0591      | 0.0027           | 478                                 | 23 | 459                                 | 8    | 570                                  | 99  | 81    |
| HBUE1  | HBUE1-38 | 227                  | 39                    | 103                     | 2367                                 | 0.45              | 1.742                                            | 0.058            | 0.1699                                           | 0.0027           | 0.48 | 0.0743      | 0.0022           | 1024                                | 34 | 1012                                | 16   | 1050                                 | 59  | 96    |
| HBUE1  | HBUE1-39 | 140                  | 11                    | 92                      | 488                                  | 0.66              | 0.685                                            | 0.043            | 0.0819                                           | 0.0017           | 0.34 | 0.0607      | 0.0036           | 530                                 | 33 | 507                                 | 11   | 629                                  | 126 | 81    |
| HBUE1  | HBUE1-40 | 80                   | 3                     | 56                      | 429                                  | 0.70              | 0.309                                            | 0.022            | 0.0433                                           | 0.0009           | 0.30 | 0.0518      | 0.0034           | 274                                 | 19 | 274                                 | 6    | 276                                  | 152 | 99    |
| HBUE1  | HBUE1-41 | 102                  | 18                    | 23                      | 122649                               | 0.23              | 1.864                                            | 0.054            | 0.1798                                           | 0.0027           | 0.52 | 0.0752      | 0.0019           | 1068                                | 31 | 1066                                | 16   | 1074                                 | 50  | 99    |
| HBUE1  | HBUE1-43 | 418                  | 30                    | 140                     | 1786                                 | 0.34              | 0.580                                            | 0.020            | 0.0722                                           | 0.0011           | 0.46 | 0.0582      | 0.0018           | 464                                 | 16 | 450                                 | 7    | 539                                  | 66  | 83    |
| HBUE1  | HBUE1-44 | 263                  | 23                    | 69                      | 596                                  | 0.26              | 0.886                                            | 0.029            | 0.0861                                           | 0.0013           | 0.48 | 0.0746      | 0.0021           | 644                                 | 21 | 532                                 | 8    | 1059                                 | 58  | 50    |
| HBUE1  | HBUE1-45 | 559                  | 37                    | 121                     | 2827                                 | 0.22              | 0.520                                            | 0.019            | 0.0663                                           | 0.0010           | 0.44 | 0.0570      | 0.0018           | 425                                 | 15 | 414                                 | 6    | 490                                  | 71  | 84    |
| HBUE1  | HBUE1-46 | 143                  | 6                     | 252                     | 40963                                | 1.76              | 0.308                                            | 0.024            | 0.0428                                           | 0.0010           | 0.30 | 0.0521      | 0.0038           | 273                                 | 21 | 270                                 | 6    | 292                                  | 168 | 93    |
| HBUE1  | HBUE1-47 | 69                   | 3                     | 82                      | 1586                                 | 1.20              | 0.287                                            | 0.033            | 0.0370                                           | 0.0012           | 0.28 | 0.0563      | 0.0062           | 256                                 | 29 | 234                                 | 7    | 463                                  | 244 | 51    |
| HBUE1  | HBUE1-48 | 390                  | 31                    | 184                     | 1691                                 | 0.47              | 0.632                                            | 0.026            | 0.0783                                           | 0.0013           | 0.40 | 0.0586      | 0.0022           | 498                                 | 21 | 486                                 | 8    | 552                                  | 83  | 88    |

| HBUE1 | HBUE1-49  | 511 | 37  | 297 | 876    | 0.58 | 0.8 | 818  | 0.031 | 0.0720 | 0.0012 | 0.45 | 0.0824 | 0.0028 | 607  | 23 | 448  | 7  | 1255 | 66  | 36  |
|-------|-----------|-----|-----|-----|--------|------|-----|------|-------|--------|--------|------|--------|--------|------|----|------|----|------|-----|-----|
| HBUE1 | HBUE1-50  | 139 | 12  | 38  | 11613  | 0.27 | 0.  | 770  | 0.047 | 0.0867 | 0.0018 | 0.34 | 0.0644 | 0.0037 | 580  | 35 | 536  | 11 | 755  | 121 | 71  |
| HBUE1 | HBUE1-51  | 782 | 111 | 440 | 5092   | 0.56 | 1.  | 538  | 0.042 | 0.1425 | 0.0021 | 0.54 | 0.0783 | 0.0018 | 946  | 26 | 859  | 13 | 1154 | 46  | 74  |
| HBUE1 | HBUE1-52  | 115 | 5   | 85  | 34360  | 0.74 | 0.3 | 318  | 0.034 | 0.0446 | 0.0013 | 0.27 | 0.0518 | 0.0053 | 281  | 30 | 281  | 8  | 275  | 235 | 102 |
| HBUE1 | HBUE1-53  | 489 | 71  | 292 | 475467 | 0.60 | 1.4 | 482  | 0.044 | 0.1454 | 0.0022 | 0.51 | 0.0739 | 0.0019 | 923  | 28 | 875  | 13 | 1040 | 52  | 84  |
| HBUE1 | HBUE1-54  | 317 | 25  | 65  | 168840 | 0.21 | 0.0 | 626  | 0.019 | 0.0798 | 0.0012 | 0.50 | 0.0570 | 0.0015 | 494  | 15 | 495  | 7  | 490  | 58  | 101 |
| HBUE1 | HBUE1-55  | 94  | 3   | 159 | 17962  | 1.69 | 0.3 | 207  | 0.025 | 0.0285 | 0.0009 | 0.27 | 0.0526 | 0.0061 | 191  | 23 | 181  | 6  | 310  | 264 | 58  |
| HBUE1 | HBUE1-56  | 301 | 19  | 89  | 856    | 0.30 | 0.0 | 655  | 0.033 | 0.0641 | 0.0012 | 0.38 | 0.0741 | 0.0034 | 511  | 25 | 400  | 8  | 1045 | 93  | 38  |
| HBUE1 | HBUE1-57  | 366 | 20  | 210 | 2525   | 0.58 | 0.4 | 439  | 0.016 | 0.0554 | 0.0009 | 0.44 | 0.0574 | 0.0018 | 369  | 13 | 348  | 5  | 508  | 70  | 68  |
| HBUE1 | HBUE1-58  | 224 | 20  | 162 | 2461   | 0.72 | 0.  | 743  | 0.039 | 0.0884 | 0.0017 | 0.36 | 0.0610 | 0.0030 | 564  | 30 | 546  | 10 | 638  | 105 | 86  |
| HBUE1 | HBUE1-59  | 143 | 6   | 147 | 42758  | 1.03 | 0.3 | 324  | 0.027 | 0.0448 | 0.0011 | 0.29 | 0.0525 | 0.0043 | 285  | 24 | 282  | 7  | 307  | 185 | 92  |
| HBUE1 | HBUE1-60  | 268 | 23  | 118 | 3260   | 0.44 | 0.0 | 686  | 0.026 | 0.0854 | 0.0014 | 0.42 | 0.0583 | 0.0020 | 530  | 20 | 528  | 9  | 541  | 77  | 98  |
| HBUE1 | HBUE1-61  | 159 | 7   | 83  | 45173  | 0.52 | 0.3 | 301  | 0.026 | 0.0424 | 0.0010 | 0.29 | 0.0515 | 0.0042 | 267  | 23 | 267  | 7  | 263  | 188 | 102 |
| HBUE1 | HBUE1-62  | 409 | 34  | 278 | 476    | 0.68 | 0.9 | 963  | 0.041 | 0.0843 | 0.0015 | 0.42 | 0.0828 | 0.0032 | 685  | 29 | 522  | 9  | 1264 | 76  | 41  |
| HBUE1 | HBUE1-63  | 259 | 11  | 107 | 6785   | 0.41 | 0.3 | 311  | 0.012 | 0.0437 | 0.0007 | 0.41 | 0.0516 | 0.0019 | 275  | 11 | 276  | 4  | 270  | 83  | 102 |
| HBUE1 | HBUE1-64  | 261 | 92  | 96  | 19118  | 0.37 | 5.8 | 869  | 0.152 | 0.3521 | 0.0051 | 0.56 | 0.1209 | 0.0026 | 1957 | 51 | 1945 | 28 | 1969 | 38  | 99  |
| HBUE1 | HBUE1-65  | 307 | 14  | 212 | 91928  | 0.69 | 0.3 | 321  | 0.012 | 0.0446 | 0.0007 | 0.42 | 0.0522 | 0.0018 | 282  | 11 | 281  | 4  | 292  | 77  | 96  |
| HBUE1 | HBUE1-66  | 67  | 7   | 151 | 44966  | 2.26 | 0.8 | 837  | 0.035 | 0.1001 | 0.0017 | 0.40 | 0.0607 | 0.0023 | 617  | 26 | 615  | 10 | 627  | 83  | 98  |
| HBUE1 | HBUE1-69  | 531 | 28  | 309 | 582    | 0.58 | 0.9 | 566  | 0.022 | 0.0534 | 0.0009 | 0.43 | 0.0768 | 0.0026 | 455  | 17 | 336  | 6  | 1116 | 69  | 30  |
| HBUE1 | HBUE1-70  | 50  | 5   | 24  | 34329  | 0.48 | 0.8 | 857  | 0.054 | 0.1016 | 0.0022 | 0.33 | 0.0612 | 0.0037 | 628  | 40 | 624  | 13 | 645  | 129 | 97  |
| HBUE1 | HBUE1-71  | 396 | 17  | 416 | 116426 | 1.05 | 0.3 | 313  | 0.012 | 0.0438 | 0.0007 | 0.42 | 0.0519 | 0.0018 | 277  | 10 | 276  | 4  | 282  | 78  | 98  |
| HBUE1 | HBUE1-72  | 77  | 13  | 46  | 5139   | 0.59 | 1.1 | 729  | 0.055 | 0.1690 | 0.0026 | 0.48 | 0.0742 | 0.0021 | 1019 | 33 | 1007 | 16 | 1046 | 57  | 96  |
| HBUE1 | HBUE1-73  | 319 | 28  | 155 | 24967  | 0.49 | 0.  | 710  | 0.020 | 0.0884 | 0.0013 | 0.52 | 0.0582 | 0.0014 | 544  | 16 | 546  | 8  | 539  | 53  | 101 |
| HBUE1 | HBUE1-74  | 215 | 20  | 155 | 131272 | 0.72 | 0.  | 743  | 0.022 | 0.0909 | 0.0014 | 0.50 | 0.0593 | 0.0015 | 564  | 17 | 561  | 8  | 579  | 56  | 97  |
| HBUE1 | HBUE1-75  | 137 | 7   | 102 | 45474  | 0.75 | 0.3 | 359  | 0.017 | 0.0494 | 0.0008 | 0.37 | 0.0528 | 0.0023 | 312  | 14 | 311  | 5  | 318  | 97  | 98  |
| HBUE1 | HBUE1-76  | 37  | 2   | 56  | 2121   | 1.52 | 0.: | 296  | 0.053 | 0.0415 | 0.0019 | 0.25 | 0.0516 | 0.0089 | 263  | 47 | 262  | 12 | 269  | 397 | 98  |
| HBUE1 | HBUE1-77  | 133 | 5   | 60  | 627    | 0.45 | 0.: | 285  | 0.016 | 0.0401 | 0.0008 | 0.34 | 0.0515 | 0.0027 | 254  | 14 | 253  | 5  | 264  | 122 | 96  |
| HBUE1 | HBUE1-78  | 345 | 26  | 32  | 172017 | 0.09 | 0.4 | 578  | 0.018 | 0.0741 | 0.0011 | 0.49 | 0.0566 | 0.0015 | 463  | 14 | 461  | 7  | 475  | 59  | 97  |
| HBUE1 | HBUE1-79  | 488 | 40  | 327 | 5375   | 0.67 | 0.0 | 698  | 0.025 | 0.0818 | 0.0013 | 0.44 | 0.0619 | 0.0020 | 537  | 19 | 507  | 8  | 670  | 68  | 76  |
| HBUE1 | HBUE1-80  | 328 | 32  | 51  | 13189  | 0.16 | 0.8 | 820  | 0.032 | 0.0984 | 0.0016 | 0.42 | 0.0604 | 0.0021 | 608  | 24 | 605  | 10 | 618  | 76  | 98  |
| HBUE1 | HBUE1-81  | 477 | 21  | 448 | 1687   | 0.94 | 0.3 | 314  | 0.015 | 0.0437 | 0.0007 | 0.37 | 0.0521 | 0.0022 | 277  | 13 | 276  | 5  | 288  | 98  | 96  |
| HBUE1 | HBUE1-82  | 210 | 8   | 150 | 796    | 0.71 | 0.3 | 269  | 0.019 | 0.0372 | 0.0008 | 0.30 | 0.0525 | 0.0036 | 242  | 17 | 236  | 5  | 308  | 156 | 76  |
| HBUE1 | HBUE1-84  | 138 | 23  | 44  | 5404   | 0.32 | 1.8 | 877  | 0.061 | 0.1671 | 0.0026 | 0.48 | 0.0815 | 0.0023 | 1073 | 35 | 996  | 16 | 1233 | 56  | 81  |
| HBUE1 | HBUE1-85  | 409 | 27  | 141 | 1574   | 0.35 | 0.0 | 607  | 0.023 | 0.0660 | 0.0011 | 0.43 | 0.0667 | 0.0023 | 482  | 18 | 412  | 7  | 828  | 71  | 50  |
| HBUE1 | HBUE1-86  | 200 | 18  | 124 | 120822 | 0.62 | 0.  | 722  | 0.022 | 0.0895 | 0.0013 | 0.49 | 0.0585 | 0.0015 | 552  | 17 | 553  | 8  | 549  | 57  | 101 |
| HBUE1 | HBUE1-87  | 333 | 23  | 92  | 154005 | 0.28 | 0.4 | 528  | 0.015 | 0.0685 | 0.0010 | 0.50 | 0.0559 | 0.0014 | 430  | 13 | 427  | 6  | 448  | 56  | 95  |
| HBUE1 | HBUE1-88  | 207 | 14  | 71  | 1615   | 0.34 | 0.1 | 708  | 0.027 | 0.0678 | 0.0011 | 0.43 | 0.0757 | 0.0026 | 543  | 21 | 423  | 7  | 1087 | 69  | 39  |
| HBUE1 | HBUE1-89  | 356 | 18  | 236 | 121886 | 0.66 | 0.3 | 372  | 0.012 | 0.0508 | 0.0008 | 0.46 | 0.0531 | 0.0015 | 321  | 10 | 319  | 5  | 332  | 66  | 96  |
| HBUE1 | HBUE1-90  | 403 | 37  | 85  | 9498   | 0.21 | 0.  | 736  | 0.022 | 0.0910 | 0.0013 | 0.50 | 0.0586 | 0.0015 | 560  | 17 | 562  | 8  | 553  | 56  | 101 |
| HBUE1 | HBUE1-91  | 249 | 135 | 77  | 908077 | 0.31 | 14. | .942 | 0.394 | 0.5403 | 0.0079 | 0.56 | 0.2006 | 0.0044 | 2812 | 74 | 2785 | 41 | 2831 | 36  | 98  |
| HBUE1 | HBUE1-92  | 80  | 3   | 59  | 20749  | 0.74 | 0.3 | 268  | 0.028 | 0.0383 | 0.0011 | 0.27 | 0.0508 | 0.0051 | 241  | 25 | 242  | 7  | 234  | 232 | 104 |
| HBUE1 | HBUE1-93  | 169 | 28  | 65  | 50087  | 0.38 | 1.  | 709  | 0.057 | 0.1651 | 0.0026 | 0.47 | 0.0750 | 0.0022 | 1012 | 34 | 985  | 16 | 1070 | 59  | 92  |
| HBUE1 | HBUE1-94  | 228 | 17  | 54  | 1002   | 0.24 | 0.0 | 600  | 0.036 | 0.0761 | 0.0015 | 0.33 | 0.0572 | 0.0032 | 477  | 29 | 473  | 9  | 498  | 124 | 95  |
| HBUE1 | HBUE1-95  | 255 | 11  | 130 | 5983   | 0.51 | 0.3 | 324  | 0.011 | 0.0449 | 0.0007 | 0.45 | 0.0524 | 0.0016 | 285  | 10 | 283  | 4  | 304  | 69  | 93  |
| HBUE1 | HBUE1-96  | 246 | 19  | 43  | 1238   | 0.18 | 0.0 | 640  | 0.029 | 0.0775 | 0.0013 | 0.38 | 0.0599 | 0.0025 | 502  | 23 | 481  | 8  | 599  | 90  | 80  |
| HBUE1 | HBUE1-97  | 232 | 7   | 190 | 680    | 0.82 | 0.  | 198  | 0.009 | 0.0287 | 0.0005 | 0.36 | 0.0500 | 0.0022 | 184  | 9  | 183  | 3  | 196  | 102 | 93  |
| HBUE1 | HBUE1-98  | 377 | 34  | 129 | 232487 | 0.34 | 0.  | 763  | 0.023 | 0.0912 | 0.0014 | 0.49 | 0.0607 | 0.0016 | 576  | 18 | 562  | 8  | 630  | 57  | 89  |
| HBUE1 | HBUE1-99  | 244 | 22  | 194 | 6143   | 0.79 | 0.  | 731  | 0.022 | 0.0898 | 0.0013 | 0.49 | 0.0590 | 0.0016 | 557  | 17 | 554  | 8  | 569  | 58  | 97  |
| HBUE1 | HBUE1-100 | 792 | 33  | 160 | 1449   | 0.20 | 0.3 | 362  | 0.015 | 0.0417 | 0.0007 | 0.40 | 0.0631 | 0.0024 | 314  | 13 | 263  | 4  | 712  | 79  | 37  |
|       |           |     |     |     |        |      |     |      |       |        |        |      |        |        |      |    |      |    |      |     |     |

| HBUE1 | HBUE1-101 | 300 | 25 | 253 | 7673   | 0.84 | 0.674  | 0.021 | 0.0844 | 0.0013 | 0.48 | 0.0579 | 0.0016 | 523  | 16 | 522  | 8  | 527  | 61  | 99 |
|-------|-----------|-----|----|-----|--------|------|--------|-------|--------|--------|------|--------|--------|------|----|------|----|------|-----|----|
| HBUE1 | HBUE1-102 | 616 | 23 | 415 | 155857 | 0.67 | 0.270  | 0.014 | 0.0373 | 0.0007 | 0.34 | 0.0524 | 0.0026 | 242  | 13 | 236  | 4  | 303  | 115 | 78 |
| HBUE1 | HBUE1-104 | 216 | 9  | 141 | 13398  | 0.65 | 0.303  | 0.020 | 0.0414 | 0.0009 | 0.31 | 0.0531 | 0.0034 | 269  | 18 | 261  | 5  | 333  | 146 | 78 |
| HBUE1 | HBUE1-105 | 198 | 99 | 152 | 3535   | 0.77 | 12.285 | 0.323 | 0.4994 | 0.0072 | 0.55 | 0.1784 | 0.0039 | 2626 | 69 | 2611 | 38 | 2638 | 36  | 99 |
| HBUE1 | HBUE1-106 | 555 | 57 | 42  | 5327   | 0.08 | 0.861  | 0.028 | 0.1024 | 0.0016 | 0.47 | 0.0610 | 0.0018 | 630  | 21 | 628  | 10 | 638  | 62  | 99 |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup>Pb/<sup>235</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb)/(<sup>238</sup>U/<sup>206</sup>Pb \* 1/137.88)

<sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>238</sup>U and the <sup>207/235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

## Table D9. LA-ICPMS isotopic data for sample KLIP in the Mossel Bay Basin

| KI. | ID |  |
|-----|----|--|

| KLIP   |          |                      |                       |                       |                                      |                   |                                                  |                  | I                                                | RATIOS           |                  |                                       |                  |   |                                     |          | AGES                                | [Ma]   |                                      |      | Conc. |
|--------|----------|----------------------|-----------------------|-----------------------|--------------------------------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------------------|---------------------------------------|------------------|---|-------------------------------------|----------|-------------------------------------|--------|--------------------------------------|------|-------|
| Sample | Analysis | U [ppm] <sup>a</sup> | Pb [ppm] <sup>a</sup> | Th [ppm] <sup>a</sup> | <sup>206</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>a</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho <sup>c</sup> | <sup>207</sup> Pb/ <sup>206</sup> Pb' | 2 σ <sup>d</sup> | = | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ       | <sup>206</sup> Pb/ <sup>238</sup> U | 2σ     | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2 σ  | %     |
| KLIP   | KLIP-1   | 929                  | 24                    | 508                   | 141407                               | 0.55              | 0.177                                            | 0.008            | 0.0261                                           | 0.0006           | 0.58             | 0.0493                                | 0.0017           |   | 166                                 | 7        | 166                                 | 4      | 162                                  | 81   | 103   |
| KLIP   | KLIP-2   | 484                  | 86                    | 214                   | 18617                                | 0.44              | 1.847                                            | 0.065            | 0.1787                                           | 0.0043           | 0.69             | 0.0750                                | 0.0019           |   | 1062                                | 37       | 1060                                | 26     | 1068                                 | 51   | 99    |
| KLIP   | KLIP-3   | 329                  | 14                    | 65                    | 101650                               | 0.20              | 0.301                                            | 0.016            | 0.0422                                           | 0.0011           | 0.48             | 0.0518                                | 0.0024           |   | 267                                 | 14       | 267                                 | 7      | 274                                  | 107  | 97    |
| KLIP   | KLIP-4   | 267                  | 24                    | 161                   | 1737                                 | 0.60              | 0.706                                            | 0.034            | 0.0882                                           | 0.0022           | 0.53             | 0.0581                                | 0.0023           |   | 543                                 | 26       | 545                                 | 14     | 532                                  | 88   | 102   |
| KLIP   | KLIP-5   | 310                  | 8                     | 151                   | 13426                                | 0.49              | 0.186                                            | 0.013            | 0.0274                                           | 0.0007           | 0.40             | 0.0494                                | 0.0031           |   | 174                                 | 12       | 174                                 | 5      | 167                                  | 146  | 104   |
| KLIP   | KLIP-6   | 411                  | 35                    | 246                   | 233223                               | 0.60              | 0.725                                            | 0.037            | 0.0862                                           | 0.0022           | 0.50             | 0.0610                                | 0.0027           |   | 554                                 | 29       | 533                                 | 14     | 639                                  | 96   | 83    |
| KLIP   | KLIP-7   | 278                  | 19                    | 209                   | 38141                                | 0.75              | 0.522                                            | 0.022            | 0.0678                                           | 0.0017           | 0.59             | 0.0558                                | 0.0019           |   | 427                                 | 18       | 423                                 | 10     | 445                                  | 75   | 95    |
| KLIP   | KLIP-8   | 959                  | 23                    | 927                   | 247                                  | 0.97              | 0.165                                            | 0.015            | 0.0235                                           | 0.0006           | 0.28             | 0.0508                                | 0.0043           |   | 155                                 | 14       | 150                                 | 4      | 233                                  | 197  | 64    |
| KLIP   | KLIP-9   | 688                  | 15                    | 403                   | 8264                                 | 0.59              | 0.151                                            | 0.009            | 0.0222                                           | 0.0005           | 0.41             | 0.0495                                | 0.0027           |   | 143                                 | 9        | 142                                 | 3      | 170                                  | 127  | 83    |
| KLIP   | KLIP-10  | 183                  | 28                    | 46                    | 201067                               | 0.25              | 1.551                                            | 0.067            | 0.1505                                           | 0.0038           | 0.58             | 0.0747                                | 0.0026           |   | 951                                 | 41       | 904                                 | 23     | 1060                                 | 71   | 85    |
| KLIP   | KLIP-11  | 252                  | 7                     | 80                    | 51389                                | 0.32              | 0.190                                            | 0.011            | 0.0279                                           | 0.0007           | 0.42             | 0.0495                                | 0.0027           |   | 177                                 | 10       | 177                                 | 4      | 172                                  | 125  | 103   |
| KLIP   | KLIP-12  | 76                   | 2                     | 108                   | 15743                                | 1.42              | 0.199                                            | 0.023            | 0.0282                                           | 0.0008           | 0.23             | 0.0511                                | 0.0057           |   | 184                                 | 21       | 180                                 | 5      | 245                                  | 259  | 73    |
| KLIP   | KLIP-14  | 118                  | 18                    | 37                    | 132629                               | 0.32              | 1.488                                            | 0.059            | 0.1536                                           | 0.0038           | 0.62             | 0.0702                                | 0.0022           |   | 925                                 | 37       | 921                                 | 23     | 935                                  | 64   | 98    |
| KLIP   | KLIP-15  | 17                   | 0                     | 55                    | 3553                                 | 3.27              | 0.212                                            | 0.101            | 0.0290                                           | 0.0011           | 0.08             | 0.0531                                | 0.0253           |   | 195                                 | 93       | 184                                 | 7      | 333                                  | 1079 | 55    |
| KLIP   | KLIP-16  | 90                   | 9                     | 182                   | 63068                                | 2.02              | 0.788                                            | 0.063            | 0.0956                                           | 0.0028           | 0.36             | 0.0598                                | 0.0045           |   | 590                                 | 47       | 589                                 | 17     | 597                                  | 162  | 99    |
| KLIP   | KLIP-17  | 317                  | 19                    | 213                   | 3162                                 | 0.67              | 0.445                                            | 0.032            | 0.0585                                           | 0.0016           | 0.38             | 0.0551                                | 0.0037           |   | 373                                 | 27       | 366                                 | 10     | 417                                  | 151  | 88    |
| KLIP   | KLIP-18  | 270                  | 23                    | 101                   | 3190                                 | 0.37              | 0.739                                            | 0.043            | 0.0857                                           | 0.0023           | 0.46             | 0.0625                                | 0.0032           |   | 562                                 | 32       | 530                                 | 14     | 693                                  | 110  | 77    |
| KLIP   | KLIP-19  | 296                  | 8                     | 138                   | 14940                                | 0.47              | 0.177                                            | 0.008            | 0.0260                                           | 0.0007           | 0.54             | 0.0494                                | 0.0020           |   | 166                                 | 8        | 166                                 | 4      | 166                                  | 93   | 100   |
| KLIP   | KLIP-20  | 187                  | 6                     | 174                   | 1248                                 | 0.93              | 0.211                                            | 0.020            | 0.0295                                           | 0.0007           | 0.26             | 0.0519                                | 0.0048           |   | 194                                 | 19       | 187                                 | 5      | 281                                  | 212  | 67    |
| KLIP   | KLIP-21  | 862                  | 19                    | 733                   | 2747                                 | 0.85              | 0.160                                            | 0.007            | 0.0225                                           | 0.0006           | 0.55             | 0.0514                                | 0.0019           |   | 150                                 | 7        | 143                                 | 4      | 260                                  | 87   | 55    |
| KLIP   | KLIP-22  | 181                  | 8                     | 130                   | 5239                                 | 0.72              | 0.313                                            | 0.018            | 0.0439                                           | 0.0011           | 0.45             | 0.0517                                | 0.0027           |   | 276                                 | 16       | 277                                 | 7      | 271                                  | 120  | 102   |
| KLIP   | KLIP-23  | 418                  | 10                    | 255                   | 6941                                 | 0.61              | 0.164                                            | 0.012            | 0.0232                                           | 0.0006           | 0.34             | 0.0513                                | 0.0036           |   | 154                                 | 11       | 148                                 | 4      | 253                                  | 161  | 59    |
| KLIP   | KLIP-24  | 323                  | 9                     | 493                   | 1169                                 | 1.53              | 0.194                                            | 0.013            | 0.0280                                           | 0.0007           | 0.36             | 0.0504                                | 0.0032           |   | 180                                 | 12       | 178                                 | 4      | 214                                  | 149  | 83    |
| KLIP   | KLIP-25  | 394                  | 16                    | 371                   | 2067                                 | 0.94              | 0.285                                            | 0.019            | 0.0395                                           | 0.0011           | 0.40             | 0.0523                                | 0.0032           |   | 254                                 | 17       | 250                                 | 7      | 297                                  | 140  | 84    |
| KLIP   | KLIP-26  | 199                  | 5                     | 212                   | 1095                                 | 1.07              | 0.161                                            | 0.015            | 0.0239                                           | 0.0006           | 0.27             | 0.0489                                | 0.0043           |   | 152                                 | 14       | 152                                 | 4      | 145                                  | 208  | 105   |
| KLIP   | KLIP-27  | 276                  | 7                     | 194                   | 1470                                 | 0.70              | 0.189                                            | 0.016            | 0.0272                                           | 0.0007           | 0.30             | 0.0505                                | 0.0041           |   | 176                                 | 15       | 173                                 | 4      | 218                                  | 188  | 79    |
| KLIP   | KLIP-28  | 86                   | 16                    | 36                    | 114237                               | 0.41              | 1.923                                            | 0.089            | 0.1819                                           | 0.0046           | 0.55             | 0.0767                                | 0.0030           |   | 1089                                | 51       | 1077                                | 27     | 1113                                 | 78   | 97    |
| KLIP   | KLIP-29  | 405                  | 80                    | 99                    | 2860                                 | 0.25              | 2.137                                            | 0.084            | 0.1977                                           | 0.0049           | 0.63             | 0.0784                                | 0.0024           |   | 1161                                | 45       | 1163                                | 29     | 1157                                 | 60   | 101   |
| KLIP   | KLIP-30  | 231                  | 20                    | 66                    | 96261                                | 0.29              | 0.690                                            | 0.035            | 0.0848                                           | 0.0022           | 0.50             | 0.0590                                | 0.0026           |   | 533                                 | 27       | 524                                 | 13     | 568                                  | 97   | 92    |
| KLIP   | KLIP-31  | 518                  | 48                    | 246                   | 1091                                 | 0.47              | 0.958                                            | 0.034            | 0.0934                                           | 0.0023           | 0.68             | 0.0744                                | 0.0020           |   | 682                                 | 25       | 576                                 | 14     | 1052                                 | 53   | 55    |
| KLIP   | KLIP-32  | 359                  | 45                    | 126                   | 10990                                | 0.35              | 1.113                                            | 0.041            | 0.1250                                           | 0.0031           | 0.67             | 0.0646                                | 0.0018           |   | 760                                 | 28       | 759                                 | 19     | 761                                  | 57   | 100   |
| KLIP   | KLIP-33  | 233                  | 11                    | 175                   | 2190                                 | 0.75              | 0.338                                            | 0.021            | 0.0471                                           | 0.0012           | 0.43             | 0.0520                                | 0.0029           |   | 296                                 | 18       | 297                                 | 8      | 287                                  | 127  | 103   |
| KLIP   | KLIP-34  | 383                  | 18                    | 305                   | 129369                               | 0.80              | 0.334                                            | 0.014            | 0.0464                                           | 0.0011           | 0.59             | 0.0522                                | 0.0017           |   | 293                                 | 12       | 292                                 | 7      | 295                                  | 76   | 99    |
| KLIP   | KLIP-35  | 270                  | 12                    | 322                   | 86080                                | 1.19              | 0.313                                            | 0.018            | 0.0436                                           | 0.0011           | 0.45             | 0.0521                                | 0.0027           |   | 277                                 | 16       | 275                                 | 7      | 289                                  | 118  | 95    |
| KLIP   | KLIP-36  | 121                  | 3                     | 113                   | 1236                                 | 0.93              | 0.158                                            | 0.013            | 0.0235                                           | 0.0007           | 0.34             | 0.0488                                | 0.0037           |   | 149                                 | 12       | 149                                 | 4      | 140                                  | 180  | 107   |
| KLIP   | KLIP-37  | 1164                 | 33                    | 687                   | 242250                               | 0.59              | 0.196                                            | 0.011            | 0.0285                                           | 0.0007           | 0.43             | 0.0498                                | 0.0025           |   | 182                                 | 10       | 181                                 | 4      | 185                                  | 119  | 98    |
| KLIP   | KLIP-38  | 220                  | 44                    | 67                    | 2265                                 | 0.30              | 2.392                                            | 0.111            | 0.2017                                           | 0.0052           | 0.55             | 0.0860                                | 0.0033           |   | 1240                                | 57       | 1184                                | 30     | 1339                                 | 75   | 88    |
| KLIP   | KLIP-39  | 495                  | 12                    | 248                   | 1181                                 | 0.50              | 0.160                                            | 0.011            | 0.0235                                           | 0.0006           | 0.37             | 0.0492                                | 0.0030           |   | 150                                 | 10       | 150                                 | 4      | 159                                  | 144  | 94    |
| KLIP   | KLIP-40  | 443                  | 31                    | 373                   | 1273                                 | 0.84              | 0.551                                            | 0.029            | 0.0706                                           | 0.0018           | 0.50             | 0.0567                                | 0.0026           |   | 446                                 | 23       | 440                                 | 11     | 478                                  | 100  | 92    |
| KLIP   | KLIP-41  | 442                  | 71                    | 272                   | 10085                                | 0.61              | 1.791                                            | 0.074            | 0.1605                                           | 0.0040           | 0.60             | 0.0809                                | 0.0027           |   | 1042                                | 43       | 960                                 | 24     | 1220                                 | 65   | 79    |
| KLIP   | KLIP-43  | 483                  | 11                    | 399                   | /41                                  | 0.83              | 0.154                                            | 0.010            | 0.0221                                           | 0.0005           | 0.39             | 0.0505                                | 0.0030           |   | 145                                 | 9        | 141                                 | 3      | 218                                  | 136  | 65    |
| KLIP   | KLIP-44  | 217                  | 6                     | 200                   | 43686                                | 1.22              | 0.194                                            | 0.016            | 0.0276                                           | 0.0007           | 0.32             | 0.0511                                | 0.0039           |   | 180                                 | 14       | 1/6                                 | 4      | 244                                  | 1/5  | 72    |
| KLIP   | KLIP-45  | 536                  | 14                    | 299                   | 2370                                 | 0.56              | 0.172                                            | 0.007            | 0.0252                                           | 0.0006           | 0.59             | 0.0495                                | 0.0017           |   | 161                                 | 1        | 161                                 | 4      | 1/3                                  | 19   | 93    |
| KLIP   | KLIP-46  | 242                  | 11                    | 266                   | 2592                                 | 1.10              | 0.333                                            | 0.018            | 0.0460                                           | 0.0012           | 0.47             | 0.0524                                | 0.0025           |   | 292                                 | 16       | 290                                 | 1      | 303                                  | 109  | 96    |
| KLIP   | KLIP-47  | 220                  | 18                    | 100                   | 128/63                               | 0.46              | 0.631                                            | 0.025            | 0.0802                                           | 0.0020           | 0.61             | 0.0571                                | 0.0070           |   | 497                                 | 20       | 497                                 | 12     | 496                                  | 70   | 100   |
|        |          | 132                  | 4                     | 202                   | 27994                                | 1.53              | 0.220                                            | 0.029            | 0.0291                                           | 0.0007           | 0.20             | 0.0548                                | 0.0070           |   | 202                                 | 20<br>12 | 179                                 | S<br>∡ | 402                                  | 200  | 40    |
| NLIP   | NLIP-49  | 000                  | 19                    | 912                   | 441                                  | 1.42              | 0.191                                            | 0.014            | 0.0280                                           | 0.0007           | 0.34             | 0.0493                                | 0.0033           |   | 177                                 | 13       | 1/8                                 | 4      | 104                                  | 100  | 109   |

| KLIP | KLIP-50  | 105        | 70       | 62       | 17256  | 0.59 | 24.72 | .6 0.88            | 5 0.6         | 667 0  | 0.0165 | 0.69 | 0.2690 | 0.0069 | 3297 | 118      | 3293 | 82 | 3300       | 40  | 100       |
|------|----------|------------|----------|----------|--------|------|-------|--------------------|---------------|--------|--------|------|--------|--------|------|----------|------|----|------------|-----|-----------|
| KLIP | KLIP-51  | 296        | 7        | 241      | 51862  | 0.81 | 0.16  | 3 0.0              | 0.0           | 240 0  | .0006  | 0.43 | 0.0491 | 0.0026 | 153  | 9        | 153  | 4  | 152        | 124 | 101       |
| KLIP | KLIP-52  | 282        | 26       | 81       | 189803 | 0.29 | 0.75  | 4 0.02             | 9 0.0         | 926 0  | .0023  | 0.65 | 0.0591 | 0.0017 | 571  | 22       | 571  | 14 | 571        | 63  | 100       |
| KLIP | KLIP-53  | 278        | 6        | 246      | 44719  | 0.89 | 0.15  | 1 0.01             | 2 0.0         | 221 0  | .0006  | 0.32 | 0.0497 | 0.0037 | 143  | 11       | 141  | 4  | 181        | 174 | 78        |
| KLIP | KLIP-54  | 403        | 19       | 272      | 135255 | 0.67 | 0.33  | 2 0.0              | 3 0.0         | 461 0  | 0.0011 | 0.61 | 0.0523 | 0.0017 | 291  | 12       | 290  | 7  | 298        | 72  | 97        |
| KLIP | KLIP-56  | 138        | 15       | 43       | 19305  | 0.31 | 0.93  | 3 0.03             | 9 0.1         | 091 0  | .0027  | 0.59 | 0.0620 | 0.0021 | 669  | 28       | 667  | 17 | 675        | 72  | 99        |
| KLIP | KLIP-57  | 185        | 16       | 173      | 113570 | 0.94 | 0.67  | 0.03               | 0.0           | 845 0  | .0022  | 0.47 | 0.0576 | 0.0028 | 521  | 29       | 523  | 14 | 513        | 106 | 102       |
| KLIP | KLIP-58  | 134        | 16       | 26       | 2054   | 0.19 | 1.02  | 4 0.04             | 1 0.1         | 173 0  | .0029  | 0.62 | 0.0634 | 0.0020 | 716  | 29       | 715  | 18 | 720        | 66  | 99        |
| KLIP | KLIP-59  | 180        | 4        | 109      | 1677   | 0.61 | 0.16  | 0.0                | 2 0.0         | 236 0  | .0006  | 0.34 | 0.0490 | 0.0035 | 150  | 11       | 151  | 4  | 149        | 165 | 101       |
| KLIP | KLIP-61  | 231        | 20       | 136      | 3836   | 0.59 | 0.70  | 4 0.02             | 9 0.0         | 866 0  | .0021  | 0.61 | 0.0589 | 0.0019 | 541  | 22       | 536  | 13 | 564        | 70  | 95        |
| KLIP | KLIP-62  | 321        | 30       | 75       | 215728 | 0.24 | 0.75  | 6 0.02             | 9 0.0         | 925 0  | .0023  | 0.63 | 0.0593 | 0.0018 | 572  | 22       | 570  | 14 | 577        | 65  | 99        |
| KLIP | KLIP-63  | 339        | 26       | 156      | 2365   | 0.46 | 0.60  | B 0.04             | 0.0           | 764 C  | .0021  | 0.42 | 0.0577 | 0.0034 | 482  | 32       | 475  | 13 | 517        | 131 | 92        |
| KLIP | KLIP-64  | 156        | 5        | 100      | 568    | 0.64 | 0.23  | B 0.0 <sup>-</sup> | 9 0.0         | 342 0  | 0.0010 | 0.35 | 0.0505 | 0.0038 | 217  | 18       | 217  | 6  | 216        | 176 | 100       |
| KLIP | KLIP-65  | 348        | 8        | 141      | 58800  | 0.41 | 0.15  | 7 0.01             | 0 0.0         | 232 0  | .0006  | 0.41 | 0.0491 | 0.0028 | 148  | 9        | 148  | 4  | 155        | 132 | 96        |
| KLIP | KLIP-66  | 444        | 41       | 216      | 296308 | 0.49 | 0.74  | 5 0.03             | 0.0           | 918 C  | .0023  | 0.58 | 0.0588 | 0.0021 | 565  | 24       | 566  | 14 | 561        | 77  | 101       |
| KLIP | KLIP-67  | 365        | 64       | 219      | 17733  | 0.60 | 1.79  | 0.06               | 64 0.1        | 751 0  | .0043  | 0.69 | 0.0741 | 0.0019 | 1042 | 37       | 1040 | 25 | 1045       | 52  | 100       |
| KLIP | KLIP-68  | 643        | 59       | 383      | 7947   | 0.60 | 0.75  | 3 0.02             | .00           | 921 0  | .0023  | 0.65 | 0.0593 | 0.0017 | 570  | 22       | 568  | 14 | 579        | 62  | 98        |
| KLIP | KLIP-69  | 415        | 11       | 432      | 1082   | 1.04 | 0.18  | 7 0.0              | 5 0.0         | 266 0  | .0007  | 0.30 | 0.0508 | 0.0040 | 174  | 14       | 169  | 4  | 233        | 183 | 73        |
| KLIP | KLIP-71  | 294        | 7        | 180      | 50806  | 0.61 | 0.16  | 6 0.0 <sup>.</sup> | 3 0.0         | 238 0  | 0.0006 | 0.33 | 0.0505 | 0.0038 | 156  | 12       | 152  | 4  | 218        | 174 | 70        |
| KLIP | KLIP-72  | 437        | 10       | 180      | 73755  | 0.41 | 0.15  | 7 0.00             | 0.0           | 232 0  | 0.0006 | 0.47 | 0.0490 | 0.0023 | 148  | 8        | 148  | 4  | 146        | 110 | 101       |
| KLIP | KLIP-73  | 293        | 7        | 208      | 3038   | 0.71 | 0.16  | B 0.0 <sup>-</sup> | 2 0.0         | 248 0  | 0.0006 | 0.35 | 0.0491 | 0.0033 | 158  | 11       | 158  | 4  | 154        | 155 | 103       |
| KLIP | KLIP-74  | 292        | 48       | 77       | 8626   | 0.26 | 1.65  | 1 0.07             | 0 0.1         | 637 0  | 0.0041 | 0.59 | 0.0731 | 0.0025 | 990  | 42       | 977  | 25 | 1018       | 69  | 96        |
| KLIP | KLIP-75  | 73         | 7        | 49       | 67     | 0.67 | 0.74  | 9 0.04             | 3 0.0         | 915 C  | 0.0024 | 0.46 | 0.0594 | 0.0031 | 567  | 33       | 564  | 15 | 580        | 112 | 97        |
| KLIP | KLIP-76  | 124        | 22       | 62       | 16220  | 0.50 | 1.79  | 0.06               | 8 0.1         | 749 C  | 0.0043 | 0.65 | 0.0742 | 0.0021 | 1042 | 40       | 1039 | 26 | 1047       | 58  | 99        |
| KLIP | KLIP-77  | 252        | 31       | 124      | 5751   | 0.49 | 1.08  | 1 0.04             | 1 0.1         | 222 0  | 0.0030 | 0.65 | 0.0642 | 0.0018 | 744  | 28       | 743  | 18 | 747        | 60  | 100       |
| KLIP | KLIP-78  | 353        | 20       | 461      | 147815 | 1.31 | 0.42  | 6 0.02             | .0 0.0        | 576 C  | 0.0015 | 0.54 | 0.0537 | 0.0021 | 360  | 17       | 361  | 9  | 356        | 89  | 101       |
| KLIP | KLIP-79  | 122        | 3        | 157      | 580    | 1.29 | 0.17  | 4 0.01             | 8 0.0         | 248 0  | 0.0007 | 0.26 | 0.0511 | 0.0050 | 163  | 17       | 158  | 4  | 244        | 226 | 64        |
| KLIP | KLIP-80  | 260        | 15       | 96       | 3509   | 0.37 | 0.44  | D 0.0 <sup>,</sup> | 9 0.0         | 591 C  | 0.0015 | 0.58 | 0.0539 | 0.0019 | 370  | 16       | 370  | 9  | 369        | 79  | 100       |
| KLIP | KLIP-81  | 603        | 14       | 264      | 4882   | 0.44 | 0.15  | 3 0.00             | 6 0.0         | 227 0  | 0.0006 | 0.58 | 0.0489 | 0.0017 | 145  | 6        | 145  | 4  | 141        | 81  | 103       |
| KLIP | KLIP-82  | 728        | 95       | 215      | 3573   | 0.29 | 1.38  | 0.0                | 61 0.1        | 307 C  | 0.0032 | 0.67 | 0.0766 | 0.0021 | 881  | 32       | 792  | 20 | 1111       | 54  | 71        |
| KLIP | KLIP-84  | 151        | 4        | 108      | 2474   | 0.72 | 0.19  | 2 0.0              | 2 0.0         | 282 0  | 0.0007 | 0.44 | 0.0495 | 0.0027 | 179  | 11       | 179  | 5  | 172        | 126 | 104       |
| KLIP | KLIP-85  | 195        | 18       | 37       | 27698  | 0.19 | 0.76  | 2 0.03             | 2 0.0         | 927 0  | 0.0023 | 0.59 | 0.0597 | 0.0020 | 575  | 24       | 571  | 14 | 591        | 73  | 97        |
| KLIP | KLIP-86  | 283        | 7        | 152      | 1329   | 0.54 | 0.16  | 3 0.02             | 2 0.0         | 237 0  | 0.0006 | 0.18 | 0.0498 | 0.0067 | 153  | 21       | 151  | 4  | 188        | 315 | 80        |
| KLIP | KLIP-87  | 286        | 23       | 166      | 2158   | 0.58 | 0.62  | 5 0.02             | 9 0.0         | 794 C  | 0.0020 | 0.55 | 0.0570 | 0.0022 | 493  | 23       | 493  | 13 | 493        | 86  | 100       |
| KLIP | KLIP-88  | 528        | 12       | 431      | 856    | 0.82 | 0.15  | 5 0.00             | 0.0           | 230 0  | 0.0006 | 0.48 | 0.0489 | 0.0023 | 146  | 8        | 147  | 4  | 142        | 109 | 103       |
| KLIP | KLIP-89  | 1045       | 23       | 424      | 1456   | 0.41 | 0.14  | 5 0.00             | 19 0.0        | 1216 C | 0.0005 | 0.41 | 0.0493 | 0.0028 | 139  | 9        | 138  | 3  | 161        | 132 | 86        |
| KLIP | KLIP-90  | 372        | 28       | 97       | 4870   | 0.26 | 0.59  | 6 0.02             | 3 0.0         | 765 0  | 0.0019 | 0.63 | 0.0565 | 0.0017 | 475  | 19       | 4/5  | 12 | 473        | 67  | 100       |
| KLIP | KLIP-91  | 243        | 23       | 110      | 10566  | 0.45 | 0.76  | 4 0.0              | 0.0           | 937 (  | 0.0023 | 0.64 | 0.0592 | 0.0018 | 577  | 22       | 5//  | 14 | 574        | 65  | 101       |
| KLIP | KLIP-92  | 415        | 10       | 2/1      | 1344   | 0.65 | 0.16  | 9 0.00             | 0.0           | 250 0  | 0.0006 | 0.49 | 0.0490 | 0.0021 | 158  | 8        | 159  | 4  | 146        | 103 | 109       |
| KLIP | KLIP-93  | 151        | 25       | 157      | 17730  | 1.04 | 1.63  | 3 0.00             | 0.1           | 648 U  | 0.0041 | 0.65 | 0.0719 | 0.0021 | 983  | 37       | 983  | 24 | 983        | 58  | 100       |
| KLIP | KLIP-94  | 2//        | 26       | 102      | 5935   | 0.37 | 0.76  | 3 0.0              | 0.0           | 936 C  | 0.0023 | 0.61 | 0.0591 | 0.0019 | 576  | 23       | 5//  | 14 | 572        | 70  | 101       |
| KLIP | KLIP-96  | 214        | 38       | 38       | 25093  | 0.18 | 1.85  | 0.0                | 0 0.1         | 789 C  | 0.0044 | 0.66 | 0.0753 | 0.0021 | 1066 | 40       | 1061 | 26 | 1075       | 57  | 99        |
| KLIP | KLIP-97  | 1258       | 28       | 1435     | 147    | 1.14 | 0.18  | 5 0.0              | 4 0.0         | 223 U  | 0000   | 0.34 | 0.0611 | 0.0043 | 1/5  | 13       | 142  | 4  | 042        | 151 | 22        |
| KLIP | KLIP-98  | 305        | 8        | 264      | 6540   | 0.72 | 0.15  | 5 0.00             | 0.0           | 227 U  | 0.0006 | 0.48 | 0.0495 | 0.0023 | 140  | 8        | 144  | 4  | 171        | 109 | 85        |
| KLIP | KLIP-99  | 124        | 24<br>10 | 52       | 5011   | 0.42 | 2.04  | ∠ U.09             | 0.1           | 902 C  | 0022   | 0.57 | 0.0779 | 0.0028 | 1130 | 5U<br>26 | F60  | 29 | F62        | 12  | 98<br>100 |
|      | KLIP-100 | 129<br>20F | 7        | 209      | 54U8   | 1.02 | 0.73  | · 0.0              | e 0.0         | 1908 U | 00023  | 0.00 | 0.0089 | 0.0023 | 144  | 20<br>15 | 142  | 14 | 003<br>161 | 04  | 100       |
|      | KLIP-101 | 303        | 1        | 400      | 20404  | 1.49 | 0.15  | <u>د</u> 0.0       | U U.U         | 224 U  | 0000   | 0.24 | 0.0493 | 0.0000 | 144  | 10       | 140  | 4  | 171        | 201 | 00<br>02  |
|      |          | 167        | 4        | 90<br>70 | 1200   | 0.09 | 0.16  | 5 0.0              | 0.0<br>12 0.0 | 494 0  | 0012   | 0.20 | 0.0490 | 0.0043 | 200  | 14       | 107  | 4  | 220        | 200 | 92        |
| KLIP | KLIP-104 | 15/        | ŏ        | 73       | 1326   | 0.47 | 0.35  | o 0.02             | 0.0           | 464 (  | .0013  | 0.42 | 0.0532 | 0.0031 | 309  | 20       | 305  | ö  | 339        | 131 | 90        |

|      | KUD 105   | 279  | 6  | 125 | 20122  | 0.45 | 0.169 | 0.014 | 0 0227 | 0.0006 | 0.22 | 0.0527 | 0.0042 | 16 | 7 12        | 144  | 4   | 256  | 190 | 41  |
|------|-----------|------|----|-----|--------|------|-------|-------|--------|--------|------|--------|--------|----|-------------|------|-----|------|-----|-----|
|      | KLIP-105  | 270  | 0  | 125 | 2072   | 0.45 | 0.166 | 0.014 | 0.0227 | 0.0006 | 0.52 | 0.0557 | 0.0043 | 10 | / 13<br>6 7 | 144  | 4   | 140  | 100 | 41  |
| KLIP | KLIP-107  | 174  | 5  | 64  | 1217   | 0.32 | 0.103 | 0.000 | 0.0223 | 0.0000 | 0.00 | 0.0430 | 0.0020 | 15 | 0 /<br>3 10 | 176  | - 5 | 271  | 235 | 65  |
| KLIP | KLIP-108  | 157  | 4  | 151 | 1299   | 0.96 | 0.189 | 0.021 | 0.0270 | 0.0007 | 0.20 | 0.0496 | 0.0000 | 17 | 6 12        | 176  | 5   | 176  | 149 | 100 |
| KLIP | KI IP-109 | 286  | 25 | 135 | 181029 | 0.00 | 0.703 | 0.030 | 0.0277 | 0.0007 | 0.58 | 0.0583 | 0.0002 | 54 | 0 12        | 540  | 13  | 542  | 76  | 100 |
| KLIP | KLIP-110  | 457  | 36 | 244 | 2087   | 0.53 | 0.630 | 0.000 | 0.0784 | 0.0022 | 0.50 | 0.0583 | 0.0020 | 40 | 6 26        | 487  | 13  | 541  | 98  | 90  |
| KLIP | KLIP-111  | 312  | 10 | 6   | 3229   | 0.00 | 0.000 | 0.026 | 0.0326 | 0.0020 | 0.00 | 0.0544 | 0.0054 | 22 | 2 23        | 207  | 6   | 387  | 225 | 53  |
| KLIP | KLIP-112  | 53   | 1  | 21  | 333    | 0.40 | 0.166 | 0.044 | 0.0227 | 0.0008 | 0.13 | 0.0530 | 0.0140 |    | 6 41        | 145  | 5   | 327  | 598 | 44  |
| KLIP | KLIP-113  | 174  | 29 | 54  | 212166 | 0.31 | 1.681 | 0.064 | 0.1679 | 0.0042 | 0.65 | 0.0727 | 0.0021 | 10 | )1 38       | 1000 | 25  | 1004 | 58  | 100 |
| KLIP | KLIP-114  | 316  | 57 | 245 | 346791 | 0.78 | 1.947 | 0.072 | 0.1818 | 0.0045 | 0.67 | 0.0777 | 0.0021 | 10 | 97 40       | 1077 | 27  | 1138 | 54  | 95  |
| KLIP | KLIP-115  | 1136 | 27 | 487 | 1452   | 0.43 | 0.177 | 0.009 | 0.0237 | 0.0006 | 0.50 | 0.0543 | 0.0023 | 16 | 6 8         | 151  | 4   | 385  | 95  | 39  |
| KLIP | KLIP-116  | 159  | 15 | 81  | 1589   | 0.51 | 0.747 | 0.034 | 0.0918 | 0.0023 | 0.56 | 0.0590 | 0.0022 | 56 | 6 26        | 566  | 14  | 568  | 81  | 100 |
| KLIP | KLIP-117  | 361  | 9  | 129 | 61772  | 0.36 | 0.160 | 0.007 | 0.0236 | 0.0006 | 0.56 | 0.0491 | 0.0019 | 15 | 0 7         | 150  | 4   | 150  | 89  | 100 |
| KLIP | KLIP-118  | 582  | 14 | 208 | 1361   | 0.36 | 0.160 | 0.008 | 0.0237 | 0.0006 | 0.52 | 0.0491 | 0.0020 | 15 | 1 7         | 151  | 4   | 154  | 93  | 98  |
| KLIP | KLIP-119  | 407  | 31 | 147 | 227055 | 0.36 | 0.609 | 0.043 | 0.0770 | 0.0021 | 0.40 | 0.0573 | 0.0037 | 48 | 3 34        | 478  | 13  | 505  | 142 | 95  |
| KLIP | KLIP-120  | 197  | 39 | 49  | 280429 | 0.25 | 2.120 | 0.078 | 0.1964 | 0.0048 | 0.67 | 0.0783 | 0.0021 | 11 | 55 43       | 1156 | 28  | 1154 | 54  | 100 |
| KLIP | KLIP-121  | 312  | 30 | 201 | 5321   | 0.65 | 0.785 | 0.039 | 0.0958 | 0.0025 | 0.51 | 0.0594 | 0.0025 | 58 | 8 29        | 590  | 15  | 581  | 93  | 101 |
| KLIP | KLIP-122  | 283  | 6  | 202 | 1085   | 0.71 | 0.152 | 0.015 | 0.0227 | 0.0006 | 0.27 | 0.0487 | 0.0047 | 14 | 4 14        | 145  | 4   | 131  | 226 | 110 |
| KLIP | KLIP-123  | 562  | 25 | 403 | 49870  | 0.72 | 0.312 | 0.014 | 0.0436 | 0.0011 | 0.58 | 0.0519 | 0.0019 | 27 | 6 12        | 275  | 7   | 280  | 82  | 98  |
| KLIP | KLIP-124  | 29   | 1  | 36  | 283    | 1.23 | 0.201 | 0.034 | 0.0287 | 0.0009 | 0.18 | 0.0507 | 0.0085 | 18 | 6 32        | 182  | 6   | 228  | 385 | 80  |
| KLIP | KLIP-125  | 115  | 14 | 48  | 4877   | 0.42 | 1.067 | 0.044 | 0.1216 | 0.0030 | 0.61 | 0.0636 | 0.0021 | 73 | 7 30        | 740  | 18  | 729  | 69  | 102 |
| KLIP | KLIP-126  | 1082 | 25 | 844 | 579    | 0.78 | 0.172 | 0.011 | 0.0229 | 0.0006 | 0.37 | 0.0544 | 0.0034 | 16 | 1 11        | 146  | 4   | 386  | 140 | 38  |
| KLIP | KLIP-127  | 214  | 41 | 113 | 10170  | 0.53 | 2.082 | 0.083 | 0.1927 | 0.0048 | 0.63 | 0.0784 | 0.0024 | 11 | 13 45       | 1136 | 28  | 1156 | 61  | 98  |
| KLIP | KLIP-128  | 187  | 9  | 128 | 3721   | 0.68 | 0.360 | 0.017 | 0.0495 | 0.0013 | 0.55 | 0.0527 | 0.0020 | 31 | 2 14        | 312  | 8   | 318  | 88  | 98  |
| KLIP | KLIP-129  | 215  | 5  | 311 | 1319   | 1.44 | 0.162 | 0.010 | 0.0239 | 0.0006 | 0.40 | 0.0493 | 0.0029 | 15 | 3 10        | 152  | 4   | 164  | 138 | 93  |
| KLIP | KLIP-130  | 713  | 16 | 599 | 1544   | 0.84 | 0.154 | 0.008 | 0.0227 | 0.0006 | 0.46 | 0.0494 | 0.0024 | 14 | 6 8         | 145  | 4   | 164  | 113 | 88  |
| KLIP | KLIP-131  | 201  | 14 | 62  | 100976 | 0.31 | 0.531 | 0.040 | 0.0693 | 0.0020 | 0.37 | 0.0555 | 0.0039 | 43 | 2 33        | 432  | 12  | 434  | 157 | 100 |
| KLIP | KLIP-132  | 178  | 13 | 72  | 93043  | 0.40 | 0.564 | 0.033 | 0.0723 | 0.0019 | 0.45 | 0.0566 | 0.0030 | 45 | 4 27        | 450  | 12  | 476  | 116 | 94  |
| KLIP | KLIP-133  | 549  | 82 | 70  | 592961 | 0.13 | 1.501 | 0.054 | 0.1491 | 0.0037 | 0.68 | 0.0730 | 0.0019 | 93 | 1 33        | 896  | 22  | 1014 | 53  | 88  |
| KLIP | KLIP-134  | 495  | 13 | 269 | 93805  | 0.54 | 0.179 | 0.008 | 0.0262 | 0.0007 | 0.59 | 0.0496 | 0.0017 | 16 | 7 7         | 167  | 4   | 175  | 81  | 95  |
| KLIP | KLIP-135  | 112  | 3  | 224 | 1839   | 2.00 | 0.201 | 0.017 | 0.0291 | 0.0008 | 0.32 | 0.0501 | 0.0039 | 18 | 6 15        | 185  | 5   | 201  | 181 | 92  |
| KLIP | KLIP-136  | 244  | 10 | 200 | 1277   | 0.82 | 0.288 | 0.014 | 0.0407 | 0.0010 | 0.52 | 0.0514 | 0.0022 | 25 | 7 13        | 257  | 7   | 258  | 97  | 100 |
| KLIP | KLIP-137  | 79   | 2  | 72  | 16146  | 0.91 | 0.196 | 0.016 | 0.0284 | 0.0008 | 0.34 | 0.0501 | 0.0038 | 18 | 1 15        | 180  | 5   | 198  | 174 | 91  |
| KLIP | KLIP-138  | 172  | 5  | 69  | 6108   | 0.40 | 0.186 | 0.014 | 0.0269 | 0.0007 | 0.34 | 0.0500 | 0.0036 | 17 | 3 13        | 171  | 4   | 196  | 169 | 87  |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup>Pb/<sup>235</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb)/(<sup>238</sup>U)<sup>206</sup>Pb \* 1/137.88) <sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>238</sup>U and the <sup>207</sup>/<sup>235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

#### Table D10. LA-ICPMS isotopic data for sample MATJ in the Mossel Bay Basin

| MATJ   |          |                      |                       |             |                                      |                   |                                                  |                  |                                                  | RATIOS           |                  |                                                   |                  |                                     |    | AGES                                | [Ma] |                                      |     | Conc. |
|--------|----------|----------------------|-----------------------|-------------|--------------------------------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------------------|---------------------------------------------------|------------------|-------------------------------------|----|-------------------------------------|------|--------------------------------------|-----|-------|
| Sample | Analysis | U [ppm] <sup>a</sup> | Pb [ppm] <sup>6</sup> | " Th [ppm]" | <sup>206</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>a</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho <sup>c</sup> | <sup>207</sup> Pb/ <sup>206</sup> Pb <sup>(</sup> | 2 σ <sup>d</sup> | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ | <sup>206</sup> Pb/ <sup>238</sup> U | 2 σ  | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2 σ | %     |
| MATJ   | MATJ-2   | 57                   | 2                     | 48          | 493                                  | 0.84              | 0.267                                            | 0.036            | 0.02673                                          | 0.00052          | 0.14             | 0.0725                                            | 0.0097           | 240                                 | 32 | 170                                 | 3    | 999                                  | 271 | 17    |
| MATJ   | MATJ-3   | 98                   | 3                     | 133         | 20137                                | 1.35              | 0.187                                            | 0.013            | 0.02718                                          | 0.00048          | 0.26             | 0.0498                                            | 0.0032           | 174                                 | 12 | 173                                 | 3    | 187                                  | 150 | 93    |
| MATJ   | MATJ-4   | 32                   | 1                     | 49          | 6477                                 | 1.55              | 0.186                                            | 0.022            | 0.02718                                          | 0.00064          | 0.20             | 0.0497                                            | 0.0058           | 174                                 | 21 | 173                                 | 4    | 182                                  | 271 | 95    |
| MATJ   | MATJ-5   | 409                  | 11                    | 232         | 83309                                | 0.57              | 0.185                                            | 0.009            | 0.02699                                          | 0.00042          | 0.30             | 0.0498                                            | 0.0024           | 173                                 | 9  | 172                                 | 3    | 184                                  | 113 | 93    |
| MATJ   | MATJ-6   | 869                  | 24                    | 373         | 2836                                 | 0.43              | 0.185                                            | 0.006            | 0.02723                                          | 0.00040          | 0.49             | 0.0494                                            | 0.0013           | 173                                 | 5  | 173                                 | 3    | 166                                  | 62  | 104   |
| MATJ   | MATJ-7   | 101                  | 3                     | 145         | 20793                                | 1.43              | 0.189                                            | 0.024            | 0.02714                                          | 0.00048          | 0.14             | 0.0506                                            | 0.0063           | 176                                 | 22 | 173                                 | 3    | 222                                  | 286 | 78    |
| MATJ   | MATJ-8   | 198                  | 5                     | 105         | 2567                                 | 0.53              | 0.187                                            | 0.010            | 0.02712                                          | 0.00044          | 0.31             | 0.0499                                            | 0.0025           | 174                                 | 9  | 172                                 | 3    | 192                                  | 116 | 90    |
| MATJ   | MATJ-9   | 116                  | 3                     | 109         | 1237                                 | 0.93              | 0.193                                            | 0.027            | 0.02675                                          | 0.00046          | 0.12             | 0.0523                                            | 0.0071           | 179                                 | 25 | 170                                 | 3    | 297                                  | 312 | 57    |
| MATJ   | MATJ-10  | 109                  | 3                     | 59          | 22360                                | 0.55              | 0.190                                            | 0.010            | 0.02724                                          | 0.00048          | 0.33             | 0.0506                                            | 0.0026           | 177                                 | 9  | 173                                 | 3    | 222                                  | 117 | 78    |
| MATJ   | MATJ-11  | 231                  | 6                     | 240         | 1050                                 | 1.04              | 0.189                                            | 0.015            | 0.02728                                          | 0.00044          | 0.21             | 0.0501                                            | 0.0038           | 175                                 | 14 | 174                                 | 3    | 201                                  | 177 | 86    |
| MATJ   | MATJ-12  | 89                   | 2                     | 61          | 17779                                | 0.68              | 0.179                                            | 0.014            | 0.02626                                          | 0.00048          | 0.23             | 0.0495                                            | 0.0038           | 167                                 | 13 | 167                                 | 3    | 173                                  | 179 | 97    |
| MATJ   | MATJ-13  | 843                  | 22                    | 393         | 6593                                 | 0.47              | 0.182                                            | 0.006            | 0.02652                                          | 0.00040          | 0.49             | 0.0497                                            | 0.0013           | 169                                 | 5  | 169                                 | 3    | 180                                  | 62  | 94    |
| MATJ   | MATJ-14  | 113                  | 3                     | 137         | 7034                                 | 1.21              | 0.187                                            | 0.020            | 0.02728                                          | 0.00048          | 0.16             | 0.0497                                            | 0.0053           | 174                                 | 19 | 174                                 | 3    | 183                                  | 249 | 95    |
| MATJ   | MATJ-15  | 110                  | 3                     | 143         | 1248                                 | 1.31              | 0.188                                            | 0.018            | 0.02736                                          | 0.00048          | 0.19             | 0.0499                                            | 0.0046           | 175                                 | 17 | 174                                 | 3    | 190                                  | 216 | 91    |
| MATJ   | MATJ-16  | 240                  | 7                     | 206         | 1536                                 | 0.86              | 0.190                                            | 0.011            | 0.02767                                          | 0.00044          | 0.28             | 0.0499                                            | 0.0028           | 177                                 | 10 | 176                                 | 3    | 189                                  | 129 | 93    |
| MATJ   | MATJ-17  | 74                   | 2                     | 55          | 246                                  | 0.75              | 0.184                                            | 0.017            | 0.02684                                          | 0.00060          | 0.25             | 0.0498                                            | 0.0043           | 172                                 | 15 | 171                                 | 4    | 185                                  | 202 | 92    |
| MATJ   | MATJ-19  | 380                  | 11                    | 307         | 48581                                | 0.81              | 0.194                                            | 0.009            | 0.02845                                          | 0.00044          | 0.34             | 0.0495                                            | 0.0021           | 180                                 | 8  | 181                                 | 3    | 171                                  | 100 | 106   |
| MATJ   | MATJ-20  | 113                  | 3                     | 173         | 1179                                 | 1.53              | 0.188                                            | 0.010            | 0.02738                                          | 0.00048          | 0.32             | 0.0498                                            | 0.0026           | 175                                 | 10 | 174                                 | 3    | 183                                  | 120 | 95    |
| MATJ   | MATJ-21  | 275                  | 8                     | 136         | 4319                                 | 0.49              | 0.193                                            | 0.011            | 0.02832                                          | 0.00044          | 0.27             | 0.0495                                            | 0.0027           | 179                                 | 10 | 180                                 | 3    | 173                                  | 127 | 104   |
| MATJ   | MATJ-22  | 228                  | 6                     | 142         | 47889                                | 0.62              | 0.190                                            | 0.009            | 0.02768                                          | 0.00044          | 0.34             | 0.0497                                            | 0.0022           | 176                                 | 8  | 176                                 | 3    | 182                                  | 102 | 97    |
| MATJ   | MATJ-23  | 88                   | 2                     | 62          | 4687                                 | 0.70              | 0.186                                            | 0.010            | 0.02713                                          | 0.00048          | 0.34             | 0.0497                                            | 0.0024           | 173                                 | 9  | 173                                 | 3    | 179                                  | 115 | 97    |
| MATJ   | MATJ-24  | 71                   | 2                     | 70          | 8599                                 | 0.98              | 0.210                                            | 0.017            | 0.02813                                          | 0.00052          | 0.23             | 0.0541                                            | 0.0043           | 193                                 | 16 | 179                                 | 3    | 375                                  | 179 | 48    |
| MATJ   | MATJ-25  | 66                   | 2                     | 67          | 13330                                | 1.02              | 0.184                                            | 0.021            | 0.02657                                          | 0.00050          | 0.17             | 0.0502                                            | 0.0056           | 172                                 | 19 | 169                                 | 3    | 206                                  | 258 | 82    |
| MATJ   | MATJ-26  | 29                   | 1                     | 38          | 5883                                 | 1.33              | 0.199                                            | 0.037            | 0.02701                                          | 0.00066          | 0.13             | 0.0533                                            | 0.0100           | 184                                 | 35 | 172                                 | 4    | 342                                  | 423 | 50    |
| MATJ   | MATJ-27  | 195                  | 5                     | 167         | 40194                                | 0.86              | 0.185                                            | 0.014            | 0.02715                                          | 0.00044          | 0.22             | 0.0495                                            | 0.0036           | 173                                 | 13 | 173                                 | 3    | 171                                  | 171 | 101   |
| MATJ   | MATJ-28  | 552                  | 15                    | 199         | 114325                               | 0.36              | 0.184                                            | 0.006            | 0.02723                                          | 0.00040          | 0.48             | 0.0491                                            | 0.0013           | 172                                 | 5  | 173                                 | 3    | 152                                  | 62  | 114   |
| MATJ   | MATJ-29  | 117                  | 3                     | 155         | 874                                  | 1.32              | 0.186                                            | 0.015            | 0.02721                                          | 0.00046          | 0.21             | 0.0497                                            | 0.0039           | 173                                 | 14 | 173                                 | 3    | 179                                  | 182 | 97    |
| MATJ   | MATJ-30  | 125                  | 22                    | 27          | 328645                               | 0.22              | 1.833                                            | 0.053            | 0.17895                                          | 0.00268          | 0.52             | 0.0743                                            | 0.0018           | 1057                                | 31 | 1061                                | 16   | 1050                                 | 50  | 101   |
| MATJ   | MATJ-32  | 173                  | 5                     | 160         | 1161                                 | 0.92              | 0.195                                            | 0.015            | 0.02852                                          | 0.00046          | 0.21             | 0.0495                                            | 0.0037           | 181                                 | 14 | 181                                 | 3    | 173                                  | 174 | 105   |
| MATJ   | MATJ-33  | 147                  | 4                     | 91          | 31701                                | 0.62              | 0.193                                            | 0.010            | 0.02821                                          | 0.00046          | 0.31             | 0.0495                                            | 0.0025           | 179                                 | 10 | 179                                 | 3    | 173                                  | 119 | 104   |
| MATJ   | MATJ-34  | 63                   | 2                     | 45          | 13881                                | 0.71              | 0.197                                            | 0.017            | 0.02884                                          | 0.00054          | 0.21             | 0.0495                                            | 0.0042           | 182                                 | 16 | 183                                 | 3    | 172                                  | 199 | 107   |
| MATJ   | MATJ-35  | 461                  | 13                    | 261         | 98624                                | 0.57              | 0.191                                            | 0.006            | 0.02805                                          | 0.00042          | 0.47             | 0.0493                                            | 0.0014           | 177                                 | 6  | 178                                 | 3    | 164                                  | 65  | 109   |
| MATJ   | MATJ-36  | 45                   | 1                     | 21          | 950                                  | 0.47              | 0.186                                            | 0.027            | 0.02692                                          | 0.00056          | 0.14             | 0.0500                                            | 0.0071           | 173                                 | 25 | 171                                 | 4    | 194                                  | 331 | 88    |
| MATJ   | MATJ-37  | 127                  | 3                     | 119         | 2065                                 | 0.93              | 0.190                                            | 0.010            | 0.02753                                          | 0.00046          | 0.33             | 0.0500                                            | 0.0024           | 177                                 | 9  | 175                                 | 3    | 196                                  | 110 | 89    |
| MATJ   | MATJ-39  | 137                  | 4                     | 117         | 393                                  | 0.86              | 0.185                                            | 0.015            | 0.02686                                          | 0.00044          | 0.20             | 0.0501                                            | 0.0040           | 173                                 | 14 | 171                                 | 3    | 198                                  | 187 | 86    |
| MATJ   | MATJ-40  | 323                  | 9                     | 221         | 66196                                | 0.68              | 0.183                                            | 0.008            | 0.02682                                          | 0.00040          | 0.35             | 0.0495                                            | 0.0020           | 171                                 | 7  | 171                                 | 3    | 173                                  | 92  | 99    |
| MATJ   | MATJ-41  | 529                  | 15                    | 261         | 2944                                 | 0.49              | 0.195                                            | 0.007            | 0.02846                                          | 0.00042          | 0.42             | 0.0497                                            | 0.0016           | 181                                 | 6  | 181                                 | 3    | 182                                  | 74  | 99    |
| MATJ   | MATJ-44  | 125                  | 3                     | 181         | 9991                                 | 1.45              | 0.186                                            | 0.015            | 0.02736                                          | 0.00046          | 0.20             | 0.0493                                            | 0.0040           | 173                                 | 14 | 174                                 | 3    | 163                                  | 191 | 107   |
| MATJ   | MATJ-45  | 97                   | 3                     | 147         | 19673                                | 1.52              | 0.181                                            | 0.009            | 0.02660                                          | 0.00046          | 0.34             | 0.0492                                            | 0.0023           | 169                                 | 9  | 169                                 | 3    | 159                                  | 111 | 106   |
| MATJ   | MATJ-50  | 58                   | 2                     | 55          | 675                                  | 0.95              | 0.199                                            | 0.017            | 0.02801                                          | 0.00054          | 0.23             | 0.0515                                            | 0.0042           | 184                                 | 16 | 178                                 | 3    | 261                                  | 188 | 68    |
| MATJ   | MATJ-52  | 145                  | 4                     | 150         | 31247                                | 1.03              | 0.191                                            | 0.012            | 0.02804                                          | 0.00046          | 0.27             | 0.0494                                            | 0.0029           | 177                                 | 11 | 178                                 | 3    | 165                                  | 136 | 108   |
| MATJ   | MATJ-54  | 209                  | 6                     | 104         | 526                                  | 0.50              | 0.186                                            | 0.012            | 0.02735                                          | 0.00042          | 0.25             | 0.0494                                            | 0.0030           | 173                                 | 11 | 174                                 | 3    | 166                                  | 142 | 105   |
| MATJ   | MATJ-55  | 65                   | 2                     | 96          | 1010                                 | 1.48              | 0.198                                            | 0.018            | 0.02803                                          | 0.00052          | 0.20             | 0.0512                                            | 0.0046           | 183                                 | 17 | 178                                 | 3    | 252                                  | 205 | 71    |
| MATJ   | MATJ-57  | 323                  | 20                    | 130         | 19776                                | 0.40              | 0.454                                            | 0.014            | 0.06067                                          | 0.00090          | 0.49             | 0.0543                                            | 0.0014           | 380                                 | 11 | 380                                 | 6    | 384                                  | 59  | 99    |
| MATJ   | MATJ-58  | 311                  | 8                     | 176         | 63929                                | 0.57              | 0.183                                            | 0.007            | 0.02677                                          | 0.00042          | 0.41             | 0.0495                                            | 0.0017           | 170                                 | 7  | 170                                 | 3    | 169                                  | 82  | 101   |
| MATJ   | MATJ-60  | 270                  | 7                     | 215         | 56637                                | 0.79              | 0.184                                            | 0.008            | 0.02724                                          | 0.00042          | 0.38             | 0.0490                                            | 0.0019           | 172                                 | 7  | 173                                 | 3    | 149                                  | 89  | 116   |
| MATJ   | MATJ-61  | 32                   | 1                     | 63          | 6553                                 | 2.00              | 0.185                                            | 0.032            | 0.02686                                          | 0.00062          | 0.13             | 0.0500                                            | 0.0087           | 173                                 | 30 | 171                                 | 4    | 195                                  | 403 | 87    |

| MATJ | MATJ-63  | 141 | 4  | 138 | 1484  | 0.98 | 0.184 | 0.008 | 0.02684 | 0.00044 | 0.37 | 0.0498 | 0.0020 | 172 | 8  | 171 | 3 | 185 | 94  | 92  |
|------|----------|-----|----|-----|-------|------|-------|-------|---------|---------|------|--------|--------|-----|----|-----|---|-----|-----|-----|
| MATJ | MATJ-64  | 520 | 15 | 366 | 4008  | 0.70 | 0.192 | 0.006 | 0.02805 | 0.00042 | 0.46 | 0.0497 | 0.0014 | 179 | 6  | 178 | 3 | 181 | 67  | 98  |
| MATJ | MATJ-65  | 264 | 7  | 267 | 2123  | 1.01 | 0.184 | 0.008 | 0.02688 | 0.00042 | 0.34 | 0.0497 | 0.0021 | 172 | 8  | 171 | 3 | 183 | 100 | 94  |
| MATJ | MATJ-66  | 137 | 4  | 181 | 28417 | 1.33 | 0.184 | 0.010 | 0.02692 | 0.00044 | 0.31 | 0.0496 | 0.0025 | 171 | 9  | 171 | 3 | 174 | 117 | 98  |
| MATJ | MATJ-67  | 56  | 2  | 58  | 11604 | 1.05 | 0.183 | 0.024 | 0.02692 | 0.00052 | 0.15 | 0.0493 | 0.0064 | 171 | 22 | 171 | 3 | 161 | 303 | 106 |
| MATJ | MATJ-68  | 206 | 6  | 173 | 721   | 0.84 | 0.184 | 0.009 | 0.02703 | 0.00042 | 0.34 | 0.0495 | 0.0022 | 172 | 8  | 172 | 3 | 170 | 102 | 101 |
| MATJ | MATJ-69  | 69  | 2  | 81  | 21879 | 1.17 | 0.182 | 0.019 | 0.02671 | 0.00054 | 0.20 | 0.0496 | 0.0050 | 170 | 17 | 170 | 3 | 174 | 234 | 98  |
| MATJ | MATJ-70  | 112 | 3  | 100 | 841   | 0.89 | 0.185 | 0.015 | 0.02724 | 0.00046 | 0.21 | 0.0492 | 0.0038 | 172 | 14 | 173 | 3 | 156 | 180 | 111 |
| MATJ | MATJ-74  | 251 | 7  | 162 | 4213  | 0.64 | 0.188 | 0.009 | 0.02719 | 0.00044 | 0.35 | 0.0501 | 0.0022 | 175 | 8  | 173 | 3 | 198 | 100 | 87  |
| MATJ | MATJ-76  | 113 | 3  | 141 | 1388  | 1.25 | 0.191 | 0.014 | 0.02784 | 0.00046 | 0.23 | 0.0499 | 0.0035 | 178 | 13 | 177 | 3 | 188 | 164 | 94  |
| MATJ | MATJ-77  | 84  | 2  | 122 | 358   | 1.45 | 0.183 | 0.013 | 0.02678 | 0.00048 | 0.25 | 0.0494 | 0.0035 | 170 | 12 | 170 | 3 | 168 | 164 | 101 |
| MATJ | MATJ-83  | 333 | 9  | 285 | 1279  | 0.86 | 0.187 | 0.012 | 0.02704 | 0.00042 | 0.23 | 0.0503 | 0.0032 | 174 | 12 | 172 | 3 | 208 | 149 | 83  |
| MATJ | MATJ-85  | 159 | 4  | 173 | 513   | 1.09 | 0.184 | 0.010 | 0.02703 | 0.00044 | 0.31 | 0.0495 | 0.0024 | 172 | 9  | 172 | 3 | 172 | 115 | 100 |
| MATJ | MATJ-86  | 373 | 10 | 193 | 3288  | 0.52 | 0.188 | 0.006 | 0.02750 | 0.00040 | 0.44 | 0.0495 | 0.0015 | 175 | 6  | 175 | 3 | 173 | 70  | 101 |
| MATJ | MATJ-88  | 91  | 3  | 85  | 1629  | 0.94 | 0.193 | 0.013 | 0.02829 | 0.00050 | 0.25 | 0.0494 | 0.0033 | 179 | 12 | 180 | 3 | 166 | 157 | 108 |
| MATJ | MATJ-89  | 60  | 2  | 64  | 8998  | 1.08 | 0.186 | 0.019 | 0.02726 | 0.00052 | 0.19 | 0.0496 | 0.0050 | 174 | 18 | 173 | 3 | 175 | 235 | 99  |
| MATJ | MATJ-90  | 163 | 4  | 98  | 2153  | 0.60 | 0.189 | 0.014 | 0.02717 | 0.00044 | 0.22 | 0.0505 | 0.0037 | 176 | 13 | 173 | 3 | 218 | 168 | 79  |
| MATJ | MATJ-92  | 892 | 24 | 398 | 33753 | 0.45 | 0.186 | 0.005 | 0.02715 | 0.00040 | 0.50 | 0.0498 | 0.0013 | 173 | 5  | 173 | 3 | 183 | 59  | 94  |
| MATJ | MATJ-93  | 410 | 11 | 241 | 3592  | 0.59 | 0.191 | 0.007 | 0.02794 | 0.00042 | 0.41 | 0.0496 | 0.0016 | 177 | 6  | 178 | 3 | 174 | 77  | 102 |
| MATJ | MATJ-95  | 746 | 20 | 416 | 369   | 0.56 | 0.204 | 0.010 | 0.02665 | 0.00038 | 0.28 | 0.0555 | 0.0027 | 188 | 10 | 170 | 2 | 430 | 109 | 39  |
| MATJ | MATJ-96  | 202 | 6  | 141 | 4012  | 0.70 | 0.195 | 0.011 | 0.02829 | 0.00044 | 0.26 | 0.0499 | 0.0028 | 181 | 11 | 180 | 3 | 192 | 132 | 94  |
| MATJ | MATJ-97  | 153 | 4  | 106 | 11305 | 0.69 | 0.186 | 0.011 | 0.02706 | 0.00044 | 0.28 | 0.0498 | 0.0028 | 173 | 10 | 172 | 3 | 185 | 131 | 93  |
| MATJ | MATJ-101 | 128 | 3  | 139 | 1180  | 1.09 | 0.186 | 0.010 | 0.02712 | 0.00044 | 0.31 | 0.0499 | 0.0025 | 174 | 9  | 172 | 3 | 189 | 115 | 91  |
| MATJ | MATJ-102 | 60  | 2  | 59  | 325   | 0.99 | 0.191 | 0.021 | 0.02667 | 0.00050 | 0.17 | 0.0520 | 0.0056 | 178 | 19 | 170 | 3 | 283 | 247 | 60  |
| MATJ | MATJ-104 | 348 | 10 | 360 | 4045  | 1.04 | 0.187 | 0.010 | 0.02738 | 0.00040 | 0.27 | 0.0495 | 0.0026 | 174 | 9  | 174 | 3 | 172 | 121 | 101 |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup>Pb/<sup>235</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb)/(<sup>238</sup>U/<sup>206</sup>Pb \* 1/137.88) <sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>238</sup>U and the <sup>207</sup>/<sup>235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

## Table D11. LA-ICPMS isotopic data for sample SITT2 in the Mossel Bay Basin

| SI | T | т | 2 |  |
|----|---|---|---|--|

| SITT2            |          |                      |                       |                         |                                      |                   |                                                  |                  |                                                  | RATIOS           | i                |                                                   |                  |                |                      |    | AGES                                | [Ma] |                                      |     | Conc. |
|------------------|----------|----------------------|-----------------------|-------------------------|--------------------------------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------------------|---------------------------------------------------|------------------|----------------|----------------------|----|-------------------------------------|------|--------------------------------------|-----|-------|
| Sample           | Analysis | U [ppm] <sup>a</sup> | Pb [ppm] <sup>a</sup> | Th [ppm] <sup>a 2</sup> | <sup>206</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>a</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho <sup>c</sup> | <sup>207</sup> Pb/ <sup>206</sup> Pb <sup>(</sup> | 2 σ <sup>d</sup> | <sup>207</sup> | ₽b/ <sup>235</sup> U | 2σ | <sup>206</sup> Pb/ <sup>238</sup> U | 2σ   | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ  | %     |
| SITT2            | SITT2-1  | 441                  | 35                    | 125                     | 1230                                 | 0.28              | 0.72                                             | 0.03             | 0.079                                            | 0.002            | 0.49             | 0.066                                             | 0.003            |                | 549                  | 27 | 491                                 | 12   | 800                                  | 89  | 61    |
| SITT2            | SITT2-2  | 504                  | 12                    | 348                     | 771                                  | 0.69              | 0.20                                             | 0.02             | 0.024                                            | 0.001            | 0.27             | 0.059                                             | 0.005            |                | 183                  | 15 | 155                                 | 3    | 561                                  | 173 | 28    |
| SITT2            | SITT2-3  | 137                  | 16                    | 45                      | 141840                               | 0.33              | 0.98                                             | 0.06             | 0.114                                            | 0.003            | 0.39             | 0.062                                             | 0.004            |                | 691                  | 46 | 695                                 | 18   | 681                                  | 131 | 102   |
| SITT2            | SITT2-4  | 426                  | 76                    | 173                     | 10112                                | 0.41              | 1.83                                             | 0.06             | 0.178                                            | 0.004            | 0.70             | 0.075                                             | 0.002            |                | 1056                 | 33 | 1053                                | 23   | 1060                                 | 45  | 99    |
| SITT2            | SITT2-5  | 407                  | 35                    | 76                      | 28520                                | 0.19              | 0.69                                             | 0.02             | 0.086                                            | 0.002            | 0.68             | 0.058                                             | 0.001            |                | 534                  | 17 | 532                                 | 12   | 543                                  | 51  | 98    |
| SITT2            | SITT2-6  | 745                  | 18                    | 408                     | 1819                                 | 0.55              | 0.17                                             | 0.01             | 0.024                                            | 0.001            | 0.47             | 0.050                                             | 0.002            |                | 159                  | 7  | 155                                 | 3    | 215                                  | 96  | 72    |
| SITT2            | SITT2-7  | 227                  | 42                    | 79                      | 12267                                | 0.35              | 1.93                                             | 0.06             | 0.183                                            | 0.004            | 0.68             | 0.076                                             | 0.002            |                | 1091                 | 35 | 1084                                | 24   | 1106                                 | 47  | 98    |
| SITT2            | SITT2-8  | 326                  | 8                     | 153                     | 2284                                 | 0.47              | 0.16                                             | 0.01             | 0.024                                            | 0.001            | 0.38             | 0.049                                             | 0.003            |                | 154                  | 9  | 154                                 | 3    | 147                                  | 129 | 105   |
| SITT2            | SITT2-9  | 346                  | 10                    | 721                     | 396                                  | 2.08              | 0.24                                             | 0.01             | 0.029                                            | 0.001            | 0.38             | 0.060                                             | 0.003            |                | 220                  | 13 | 185                                 | 4    | 611                                  | 116 | 30    |
| SITT2            | SITT2-10 | 776                  | 18                    | 239                     | 2634                                 | 0.31              | 0.17                                             | 0.01             | 0.024                                            | 0.001            | 0.38             | 0.051                                             | 0.003            |                | 156                  | 9  | 150                                 | 3    | 253                                  | 122 | 59    |
| SITT2            | SITT2-11 | 284                  | 19                    | 133                     | 172570                               | 0.47              | 0.51                                             | 0.02             | 0.067                                            | 0.002            | 0.52             | 0.055                                             | 0.002            |                | 416                  | 18 | 416                                 | 9    | 415                                  | 83  | 100   |
| SITT2            | SITT2-12 | 662                  | 16                    | 309                     | 1748                                 | 0.47              | 0.17                                             | 0.01             | 0.024                                            | 0.001            | 0.44             | 0.052                                             | 0.002            |                | 162                  | 8  | 154                                 | 3    | 288                                  | 105 | 53    |
| SITT2            | SITT2-13 | 759                  | 18                    | 391                     | 1025                                 | 0.52              | 0.18                                             | 0.01             | 0.024                                            | 0.001            | 0.46             | 0.056                                             | 0.002            |                | 171                  | 8  | 152                                 | 3    | 444                                  | 93  | 34    |
| SITT2            | SITT2-14 | 216                  | 40                    | 103                     | 361682                               | 0.48              | 1.93                                             | 0.06             | 0.184                                            | 0.004            | 0.70             | 0.076                                             | 0.002            |                | 1090                 | 34 | 1090                                | 24   | 1090                                 | 45  | 100   |
| SITT2            | SITT2-15 | 191                  | 5                     | 85                      | 764                                  | 0.45              | 0.19                                             | 0.01             | 0.028                                            | 0.001            | 0.40             | 0.049                                             | 0.003            |                | 178                  | 10 | 179                                 | 4    | 161                                  | 125 | 111   |
| SITT2            | SITT2-16 | 555                  | 25                    | 343                     | 222586                               | 0.62              | 0.32                                             | 0.01             | 0.044                                            | 0.001            | 0.59             | 0.052                                             | 0.002            |                | 280                  | 11 | 279                                 | 6    | 288                                  | 69  | 97    |
| SITT2            | SITT2-17 | 544                  | 24                    | 191                     | 45581                                | 0.35              | 0.31                                             | 0.01             | 0.044                                            | 0.001            | 0.64             | 0.052                                             | 0.001            |                | 277                  | 9  | 276                                 | 6    | 282                                  | 60  | 98    |
| SITT2            | SITT2-18 | 537                  | 46                    | 117                     | 6865                                 | 0.22              | 0.69                                             | 0.02             | 0.085                                            | 0.002            | 0.66             | 0.058                                             | 0.001            |                | 532                  | 18 | 529                                 | 12   | 547                                  | 55  | 97    |
| SITT2            | SITT2-19 | 476                  | 11                    | 159                     | 1744                                 | 0.33              | 0.16                                             | 0.01             | 0.023                                            | 0.001            | 0.34             | 0.049                                             | 0.003            |                | 149                  | 10 | 148                                 | 3    | 156                                  | 146 | 95    |
| SITT2            | SITT2-20 | 249                  | 6                     | 155                     | 358                                  | 0.62              | 0.23                                             | 0.02             | 0.023                                            | 0.001            | 0.31             | 0.072                                             | 0.005            |                | 209                  | 15 | 148                                 | 3    | 972                                  | 141 | 15    |
| SITT2            | SITT2-21 | 340                  | 8                     | 140                     | 3394                                 | 0.41              | 0.16                                             | 0.02             | 0.023                                            | 0.001            | 0.24             | 0.051                                             | 0.005            |                | 149                  | 15 | 144                                 | 3    | 230                                  | 218 | 63    |
| SITT2            | SITT2-22 | 452                  | 10                    | 156                     | 1498                                 | 0.34              | 0.16                                             | 0.01             | 0.023                                            | 0.001            | 0.33             | 0.051                                             | 0.003            |                | 148                  | 10 | 144                                 | 3    | 220                                  | 145 | 65    |
| SITT2            | SITT2-23 | 541                  | 22                    | 132                     | 3323                                 | 0.24              | 0.29                                             | 0.01             | 0.041                                            | 0.001            | 0.49             | 0.052                                             | 0.002            |                | 259                  | 12 | 257                                 | 6    | 278                                  | 95  | 92    |
| SITT2            | SITT2-24 | 428                  | 11                    | 173                     | 310                                  | 0.41              | 0.20                                             | 0.02             | 0.026                                            | 0.001            | 0.20             | 0.055                                             | 0.006            |                | 182                  | 21 | 164                                 | 4    | 424                                  | 252 | 39    |
| SITT2            | SITT2-25 | 362                  | 8                     | 344                     | 1538                                 | 0.95              | 0.18                                             | 0.01             | 0.023                                            | 0.001            | 0.31             | 0.057                                             | 0.004            |                | 166                  | 12 | 144                                 | 3    | 501                                  | 151 | 29    |
| SITT2            | SITT2-26 | 330                  | 25                    | 234                     | 228481                               | 0.71              | 0.62                                             | 0.03             | 0.077                                            | 0.002            | 0.44             | 0.059                                             | 0.003            |                | 491                  | 27 | 475                                 | 12   | 564                                  | 107 | 84    |
| SIT12            | SIT12-30 | 1311                 | 31                    | 381                     | 427                                  | 0.29              | 0.18                                             | 0.01             | 0.023                                            | 0.001            | 0.47             | 0.057                                             | 0.002            |                | 1/1                  | 8  | 149                                 | 3    | 479                                  | 92  | 31    |
| SIT12            | SIT12-32 | 4//                  | 31                    | 206                     | 965                                  | 0.43              | 0.58                                             | 0.02             | 0.064                                            | 0.001            | 0.55             | 0.066                                             | 0.002            |                | 465                  | 19 | 400                                 | 9    | 798                                  | 73  | 50    |
| SITT2            | SIT12-34 | 432                  | 80                    | 135                     | 2798                                 | 0.31              | 1.92                                             | 0.07             | 0.185                                            | 0.004            | 0.63             | 0.075                                             | 0.002            |                | 1087                 | 39 | 1094                                | 25   | 1071                                 | 56  | 102   |
| SITT2            | SIT12-36 | 291                  | 6                     | 292                     | 1903                                 | 1.00              | 0.15                                             | 0.01             | 0.022                                            | 0.001            | 0.42             | 0.049                                             | 0.002            |                | 142                  | 8  | 141                                 | 3    | 161                                  | 115 | 88    |
| 51112            | SITT2-37 | 052                  | 15                    | 380                     | 3415                                 | 0.58              | 0.15                                             | 0.01             | 0.023                                            | 0.001            | 0.49             | 0.050                                             | 0.002            |                | 145                  | 1  | 143                                 | 3    | 177                                  | 91  | 81    |
| SIT 12           | SITT2-38 | 710                  | 33                    | 393                     | 2003                                 | 0.55              | 0.34                                             | 0.01             | 0.046                                            | 0.001            | 0.57             | 0.053                                             | 0.002            |                | 295                  | 12 | 290                                 | 7    | 339                                  | 73  | 85    |
| SIT 12<br>SIT 12 | SITT2 40 | 209                  | 7                     | 122                     | 0013                                 | 0.42              | 0.10                                             | 0.01             | 0.023                                            | 0.001            | 0.42             | 0.051                                             | 0.002            |                | 155                  | •  | 140                                 | 3    | 220                                  | 101 | 72    |
| SITT2            | SITT2 40 | 590                  | 14                    | 402                     | 909                                  | 0.00              | 0.17                                             | 0.01             | 0.024                                            | 0.001            | 0.47             | 0.050                                             | 0.002            |                | 190                  | 0  | 153                                 | 4    | 550                                  | 70  | 20    |
| SITT2            | SITT2 42 | 140                  | 20                    | 402                     | 302                                  | 0.09              | 0.19                                             | 0.01             | 0.024                                            | 0.001            | 0.55             | 0.039                                             | 0.002            |                | 100                  | 51 | 1005                                | 20   | 1010                                 | 60  | 20    |
| SITT2            | SITT2-42 | 670                  | 50<br>60              | 150                     | 536674                               | 0.20              | 0.71                                             | 0.10             | 0.205                                            | 0.003            | 0.50             | 0.058                                             | 0.003            |                | 5/3                  | 18 | 542                                 | 12   | 545                                  | 52  | 99    |
| SITT2            | SITT2-43 | 553                  | 15                    | 133                     | 1058                                 | 0.81              | 0.22                                             | 0.02             | 0.008                                            | 0.002            | 0.00             | 0.057                                             | 0.007            |                | 200                  | 10 | 175                                 | 12   | 503                                  | 03  | 35    |
| SITT2            | SITT2-45 | 419                  | 35                    | 224                     | 30829                                | 0.53              | 0.67                                             | 0.01             | 0.020                                            | 0.001            | 0.43             | 0.058                                             | 0.002            |                | 523                  | 19 | 521                                 | 12   | 535                                  | 64  | 97    |
| SITT2            | SITT2-46 | 405                  | 10                    | 302                     | 456                                  | 0.97              | 0.19                                             | 0.02             | 0.024                                            | 0.001            | 0.01             | 0.058                                             | 0.002            |                | 176                  | 9  | 150                                 | 3    | 531                                  | 100 | 28    |
| SITT2            | SITT2-47 | 263                  | 26                    | 156                     | 2371                                 | 0.59              | 0.81                                             | 0.03             | 0.024                                            | 0.002            | 0.57             | 0.060                                             | 0.002            |                | 605                  | 24 | 602                                 | 14   | 614                                  | 72  | 98    |
| SITT2            | SITT2-48 | 210                  | 18                    | 68                      | 163377                               | 0.32              | 0.70                                             | 0.03             | 0.087                                            | 0.002            | 0.61             | 0.059                                             | 0.002            |                | 539                  | 20 | 536                                 | 12   | 550                                  | 65  | 97    |
| SITT2            | SITT2-49 | 110                  | 3                     | 134                     | 317                                  | 1.22              | 0.24                                             | 0.03             | 0.029                                            | 0.001            | 0.20             | 0.059                                             | 0.007            |                | 215                  | 26 | 182                                 | 4    | 583                                  | 254 | 31    |
| SITT2            | SITT2-50 | 207                  | 18                    | 191                     | 158447                               | 0.92              | 0.68                                             | 0.03             | 0.085                                            | 0.002            | 0.50             | 0.058                                             | 0.002            |                | 530                  | 25 | 527                                 | 12   | 541                                  | 89  | 97    |
| SITT2            | SITT2-51 | 514                  | 42                    | 349                     | 1492                                 | 0.68              | 0.70                                             | 0.04             | 0.082                                            | 0.002            | 0.48             | 0.062                                             | 0.003            |                | 541                  | 27 | 510                                 | 12   | 670                                  | 93  | 76    |
| SITT2            | SITT2-52 | 599                  | 13                    | 184                     | 120304                               | 0.31              | 0.15                                             | 0.01             | 0.022                                            | 0.001            | 0.61             | 0.049                                             | 0.001            |                | 143                  | 5  | 143                                 | 3    | 151                                  | 69  | 94    |
| SITT2            | SITT2-53 | 191                  | 15                    | 45                      | 132106                               | 0.23              | 0.60                                             | 0.02             | 0.077                                            | 0.002            | 0.60             | 0.057                                             | 0.002            |                | 477                  | 18 | 478                                 | 11   | 473                                  | 67  | 101   |
|                  |          | -                    | -                     | -                       |                                      |                   |                                                  |                  |                                                  |                  |                  |                                                   |                  |                |                      |    | -                                   |      | -                                    | -   | -     |

| SITT2 | SITT2-55  | 1106 | 25  | 688  | 20609  | 0.62 | 0.16  | 0.01 | 0.023 | 0.001 | 0.65 | 0.050 | 0.001 | 148  | 5  | 146  | 3  | 188  | 60  | 77  |
|-------|-----------|------|-----|------|--------|------|-------|------|-------|-------|------|-------|-------|------|----|------|----|------|-----|-----|
| SITT2 | SITT2-56  | 421  | 9   | 298  | 3021   | 0.71 | 0.15  | 0.01 | 0.022 | 0.001 | 0.59 | 0.049 | 0.002 | 141  | 5  | 141  | 3  | 140  | 73  | 101 |
| SITT2 | SITT2-58  | 255  | 116 | 50   | 28630  | 0.20 | 9.71  | 0.30 | 0.455 | 0.010 | 0.72 | 0.155 | 0.003 | 2408 | 74 | 2416 | 54 | 2401 | 36  | 101 |
| SITT2 | SITT2-59  | 200  | 15  | 207  | 1273   | 1.03 | 0.59  | 0.03 | 0.075 | 0.002 | 0.43 | 0.057 | 0.003 | 474  | 27 | 469  | 12 | 497  | 114 | 94  |
| SITT2 | SITT2-60  | 237  | 23  | 134  | 3958   | 0.57 | 0.81  | 0.03 | 0.098 | 0.002 | 0.62 | 0.060 | 0.002 | 601  | 22 | 600  | 14 | 603  | 62  | 99  |
| SITT2 | SITT2-61  | 317  | 7   | 142  | 30974  | 0.45 | 0.16  | 0.01 | 0.024 | 0.001 | 0.56 | 0.049 | 0.002 | 151  | 6  | 151  | 3  | 155  | 80  | 97  |
| SITT2 | SITT2-62  | 109  | 5   | 81   | 2614   | 0.74 | 0.32  | 0.02 | 0.044 | 0.001 | 0.43 | 0.052 | 0.003 | 278  | 16 | 277  | 7  | 287  | 120 | 97  |
| SITT2 | SITT2-63  | 151  | 7   | 123  | 669    | 0.82 | 0.48  | 0.02 | 0.047 | 0.001 | 0.50 | 0.074 | 0.003 | 396  | 19 | 294  | 7  | 1043 | 83  | 28  |
| SITT2 | SITT2-64  | 344  | 8   | 216  | 845    | 0.63 | 0.17  | 0.01 | 0.024 | 0.001 | 0.39 | 0.052 | 0.003 | 162  | 10 | 155  | 4  | 265  | 125 | 59  |
| SITT2 | SITT2-65  | 294  | 8   | 157  | 989    | 0.53 | 0.18  | 0.01 | 0.026 | 0.001 | 0.41 | 0.050 | 0.003 | 169  | 9  | 165  | 4  | 217  | 117 | 76  |
| SITT2 | SITT2-66  | 171  | 4   | 50   | 570    | 0.29 | 0.20  | 0.02 | 0.026 | 0.001 | 0.25 | 0.056 | 0.005 | 184  | 17 | 164  | 4  | 452  | 202 | 36  |
| SITT2 | SITT2-67  | 677  | 267 | 159  | 4737   | 0.23 | 9.67  | 0.29 | 0.394 | 0.009 | 0.73 | 0.178 | 0.004 | 2404 | 73 | 2140 | 47 | 2636 | 35  | 81  |
| SITT2 | SITT2-68  | 545  | 39  | 541  | 720    | 0.99 | 0.75  | 0.03 | 0.072 | 0.002 | 0.67 | 0.075 | 0.002 | 566  | 19 | 447  | 10 | 1078 | 51  | 41  |
| SITT2 | SITT2-69  | 368  | 29  | 159  | 4874   | 0.43 | 0.61  | 0.02 | 0.078 | 0.002 | 0.57 | 0.057 | 0.002 | 486  | 20 | 483  | 11 | 499  | 73  | 97  |
| SITT2 | SITT2-70  | 520  | 12  | 201  | 1164   | 0.39 | 0.16  | 0.01 | 0.023 | 0.001 | 0.41 | 0.050 | 0.002 | 148  | 8  | 146  | 3  | 176  | 117 | 83  |
| SITT2 | SITT2-71  | 122  | 21  | 34   | 20402  | 0.28 | 1.80  | 0.07 | 0.173 | 0.004 | 0.61 | 0.075 | 0.002 | 1044 | 40 | 1031 | 24 | 1072 | 60  | 96  |
| SITT2 | SITT2-72  | 1237 | 29  | 1044 | 788    | 0.84 | 0.21  | 0.01 | 0.023 | 0.001 | 0.40 | 0.064 | 0.003 | 190  | 11 | 149  | 3  | 734  | 109 | 20  |
| SITT2 | SITT2-73  | 835  | 412 | 65   | 86005  | 0.08 | 11.79 | 0.36 | 0.493 | 0.011 | 0.72 | 0.173 | 0.004 | 2588 | 80 | 2585 | 58 | 2591 | 36  | 100 |
| SITT2 | SITT2-74  | 232  | 115 | 103  | 21388  | 0.45 | 12.19 | 0.37 | 0.498 | 0.011 | 0.72 | 0.178 | 0.004 | 2619 | 80 | 2604 | 58 | 2631 | 35  | 99  |
| SITT2 | SITT2-75  | 202  | 18  | 28   | 157378 | 0.14 | 0.71  | 0.03 | 0.088 | 0.002 | 0.63 | 0.058 | 0.002 | 542  | 20 | 542  | 12 | 542  | 61  | 100 |
| SITT2 | SITT2-76  | 225  | 9   | 318  | 13241  | 1.42 | 0.29  | 0.01 | 0.040 | 0.001 | 0.49 | 0.052 | 0.002 | 257  | 12 | 256  | 6  | 272  | 96  | 94  |
| SITT2 | SITT2-77  | 553  | 44  | 53   | 2802   | 0.10 | 0.65  | 0.02 | 0.079 | 0.002 | 0.64 | 0.059 | 0.002 | 506  | 18 | 490  | 11 | 577  | 59  | 85  |
| SITT2 | SITT2-78  | 635  | 14  | 278  | 655    | 0.44 | 0.18  | 0.01 | 0.022 | 0.001 | 0.34 | 0.059 | 0.004 | 167  | 11 | 141  | 3  | 556  | 138 | 25  |
| SITT2 | SITT2-79  | 689  | 16  | 1338 | 2450   | 1.94 | 0.16  | 0.01 | 0.023 | 0.001 | 0.44 | 0.051 | 0.002 | 149  | 8  | 145  | 3  | 223  | 108 | 65  |
| SITT2 | SITT2-80  | 720  | 15  | 522  | 467    | 0.73 | 0.16  | 0.01 | 0.021 | 0.000 | 0.39 | 0.055 | 0.003 | 152  | 9  | 136  | 3  | 419  | 119 | 32  |
| SITT2 | SITT2-81  | 373  | 29  | 248  | 1502   | 0.67 | 0.65  | 0.04 | 0.076 | 0.002 | 0.45 | 0.062 | 0.003 | 509  | 28 | 475  | 12 | 664  | 107 | 71  |
| SITT2 | SITT2-82  | 471  | 21  | 663  | 11937  | 1.41 | 0.33  | 0.01 | 0.045 | 0.001 | 0.52 | 0.052 | 0.002 | 286  | 13 | 286  | 7  | 285  | 88  | 100 |
| SITT2 | SITT2-83  | 590  | 13  | 212  | 1168   | 0.36 | 0.16  | 0.01 | 0.022 | 0.001 | 0.46 | 0.053 | 0.002 | 151  | 8  | 140  | 3  | 328  | 101 | 43  |
| SITT2 | SITT2-84  | 706  | 62  | 717  | 12696  | 1.02 | 0.71  | 0.02 | 0.089 | 0.002 | 0.68 | 0.058 | 0.001 | 547  | 18 | 547  | 12 | 548  | 52  | 100 |
| SITT2 | SITT2-85  | 222  | 10  | 164  | 434    | 0.74 | 0.46  | 0.03 | 0.045 | 0.001 | 0.41 | 0.074 | 0.005 | 386  | 26 | 286  | 8  | 1043 | 124 | 27  |
| SITT2 | SITT2-86  | 350  | 31  | 142  | 274821 | 0.41 | 0.72  | 0.02 | 0.089 | 0.002 | 0.67 | 0.059 | 0.001 | 550  | 19 | 548  | 12 | 562  | 55  | 97  |
| SITT2 | SITT2-87  | 608  | 27  | 319  | 3991   | 0.52 | 0.32  | 0.01 | 0.044 | 0.001 | 0.64 | 0.052 | 0.001 | 280  | 10 | 279  | 6  | 283  | 63  | 99  |
| SITT2 | SITT2-88  | 210  | 11  | 217  | 1221   | 1.03 | 0.55  | 0.03 | 0.053 | 0.001 | 0.42 | 0.075 | 0.004 | 444  | 28 | 332  | 9  | 1076 | 115 | 31  |
| SITT2 | SITT2-89  | 301  | 14  | 162  | 119834 | 0.54 | 0.32  | 0.01 | 0.045 | 0.001 | 0.63 | 0.052 | 0.001 | 282  | 10 | 283  | 6  | 274  | 64  | 103 |
| SITT2 | SITT2-90  | 366  | 9   | 126  | 1314   | 0.34 | 0.18  | 0.01 | 0.025 | 0.001 | 0.40 | 0.051 | 0.003 | 168  | 10 | 162  | 4  | 252  | 121 | 64  |
| SITT2 | SITT2-91  | 212  | 5   | 160  | 512    | 0.75 | 0.25  | 0.02 | 0.023 | 0.001 | 0.34 | 0.079 | 0.005 | 229  | 16 | 148  | 4  | 1168 | 132 | 13  |
| SITT2 | SITT2-92  | 272  | 21  | 98   | 2130   | 0.36 | 0.61  | 0.03 | 0.077 | 0.002 | 0.45 | 0.057 | 0.003 | 485  | 27 | 480  | 12 | 509  | 109 | 94  |
| SITT2 | SITT2-93  | 274  | 12  | 455  | 2367   | 1.66 | 0.30  | 0.01 | 0.042 | 0.001 | 0.49 | 0.052 | 0.002 | 268  | 13 | 267  | 6  | 272  | 99  | 98  |
| SITT2 | SITT2-94  | 399  | 34  | 131  | 44696  | 0.33 | 0.67  | 0.02 | 0.085 | 0.002 | 0.65 | 0.058 | 0.002 | 523  | 18 | 524  | 12 | 516  | 58  | 102 |
| SITT2 | SITT2-96  | 547  | 61  | 116  | 6457   | 0.21 | 0.97  | 0.04 | 0.111 | 0.003 | 0.55 | 0.063 | 0.002 | 689  | 30 | 681  | 16 | 714  | 77  | 95  |
| SITT2 | SITT2-97  | 434  | 19  | 232  | 4575   | 0.53 | 0.31  | 0.01 | 0.043 | 0.001 | 0.53 | 0.052 | 0.002 | 275  | 12 | 274  | 6  | 282  | 86  | 97  |
| SITT2 | SITT2-98  | 757  | 17  | 410  | 2644   | 0.54 | 0.16  | 0.01 | 0.023 | 0.001 | 0.57 | 0.052 | 0.002 | 153  | 6  | 146  | 3  | 267  | 76  | 55  |
| SITT2 | SITT2-99  | 162  | 4   | 78   | 2156   | 0.48 | 0.17  | 0.02 | 0.025 | 0.001 | 0.26 | 0.049 | 0.005 | 161  | 15 | 161  | 4  | 170  | 214 | 95  |
| SITT2 | SITT2-100 | 354  | 9   | 291  | 812    | 0.82 | 0.17  | 0.01 | 0.024 | 0.001 | 0.39 | 0.051 | 0.003 | 160  | 9  | 155  | 4  | 229  | 125 | 68  |
| SITT2 | SITT2-102 | 598  | 15  | 389  | 1585   | 0.65 | 0.18  | 0.01 | 0.024 | 0.001 | 0.39 | 0.052 | 0.003 | 166  | 10 | 156  | 4  | 306  | 122 | 51  |
| SITT2 | SITT2-103 | 197  | 27  | 76   | 8109   | 0.39 | 1.29  | 0.04 | 0.138 | 0.003 | 0.68 | 0.068 | 0.002 | 843  | 28 | 834  | 19 | 866  | 51  | 96  |
| SITT2 | SITT2-104 | 533  | 51  | 185  | 4076   | 0.35 | 0.84  | 0.03 | 0.095 | 0.002 | 0.66 | 0.064 | 0.002 | 618  | 21 | 588  | 13 | 732  | 54  | 80  |
| SITT2 | SITT2-105 | 62   | 5   | 25   | 40850  | 0.41 | 0.58  | 0.06 | 0.074 | 0.003 | 0.30 | 0.057 | 0.006 | 465  | 52 | 462  | 16 | 482  | 234 | 96  |
| SITT2 | SITT2-106 | 200  | 5   | 70   | 2143   | 0.35 | 0.16  | 0.01 | 0.024 | 0.001 | 0.47 | 0.049 | 0.002 | 150  | 8  | 150  | 4  | 146  | 103 | 103 |

| SITT2 | SITT2-107 | 192  | 6   | 73  | 383    | 0.38 | 0.2 | 2 0.02 | 0.029   | 9 0.001 | 0.24 | 0.055 | 0.005 | 202 | 19 | 186 | 4  | 393  | 207 | 47 |
|-------|-----------|------|-----|-----|--------|------|-----|--------|---------|---------|------|-------|-------|-----|----|-----|----|------|-----|----|
| SITT2 | SITT2-108 | 179  | 9   | 78  | 2589   | 0.43 | 0.3 | 5 0.02 | 0.049   | 9 0.001 | 0.48 | 0.053 | 0.002 | 308 | 16 | 307 | 7  | 310  | 101 | 99 |
| SITT2 | SITT2-109 | 389  | 34  | 158 | 295856 | 0.41 | 0.7 | 0.02   | 0.086   | 6 0.002 | 0.68 | 0.058 | 0.001 | 536 | 18 | 534 | 12 | 544  | 53  | 98 |
| SITT2 | SITT2-110 | 417  | 36  | 55  | 8310   | 0.13 | 0.6 | 0.03   | 0.086   | 6 0.002 | 0.61 | 0.058 | 0.002 | 532 | 20 | 531 | 12 | 540  | 66  | 98 |
| SITT2 | SITT2-111 | 426  | 10  | 234 | 2449   | 0.55 | 0.1 | 6 0.01 | 0.023   | 3 0.001 | 0.51 | 0.050 | 0.002 | 151 | 7  | 148 | 3  | 200  | 91  | 74 |
| SITT2 | SITT2-112 | 379  | 28  | 228 | 1535   | 0.60 | 0.6 | 0.02   | 2 0.074 | 4 0.002 | 0.65 | 0.064 | 0.002 | 505 | 18 | 458 | 10 | 726  | 56  | 63 |
| SITT2 | SITT2-113 | 459  | 34  | 271 | 838    | 0.59 | 0.7 | 5 0.02 | 0.073   | 3 0.002 | 0.68 | 0.074 | 0.002 | 566 | 19 | 457 | 10 | 1033 | 49  | 44 |
| SITT2 | SITT2-114 | 252  | 6   | 127 | 49743  | 0.51 | 0.1 | 0.01   | 0.022   | 2 0.001 | 0.33 | 0.050 | 0.003 | 145 | 10 | 143 | 3  | 172  | 153 | 83 |
| SITT2 | SITT2-115 | 1139 | 180 | 23  | 18708  | 0.02 | 1.5 | 0.05   | 5 0.158 | 3 0.004 | 0.69 | 0.072 | 0.002 | 960 | 32 | 946 | 21 | 993  | 48  | 95 |
|       |           |      |     |     |        |      |     |        |         |         |      |       |       |     |    |     |    |      |     |    |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup>Pb/<sup>235</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb)/(<sup>238</sup>U/<sup>206</sup>Pb \* 1/137.88)

<sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>238</sup>U and the <sup>207/235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

## Table D12. LA-ICPMS isotopic data for sample SITT3 in the Mossel Bay Basin

| 21 | Т | т | 3 |  |
|----|---|---|---|--|
| -  |   |   |   |  |

| SITT3  |          |                      |                       |                         |                                      |                   |                                                  |                  | I                                                | RATIOS           |                  |                                       |                  |   |                                     |    | AGES                                | [Ma] |                                      |     | Conc. |
|--------|----------|----------------------|-----------------------|-------------------------|--------------------------------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------------------|---------------------------------------|------------------|---|-------------------------------------|----|-------------------------------------|------|--------------------------------------|-----|-------|
| Sample | Analysis | U [ppm] <sup>a</sup> | Pb [ppm] <sup>a</sup> | Th [ppm] <sup>a 2</sup> | <sup>206</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>a</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho <sup>c</sup> | <sup>207</sup> Pb/ <sup>206</sup> Pb' | 2 σ <sup>d</sup> | = | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ | <sup>206</sup> Pb/ <sup>238</sup> U | 2σ   | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ  | %     |
| SITT3  | SITT3-1  | 270                  | 79                    | 199                     | 2016                                 | 0.73              | 4.741                                            | 0.148            | 0.2931                                           | 0.0066           | 0.72             | 0.1173                                | 0.0025           |   | 1775                                | 56 | 1657                                | 37   | 1916                                 | 39  | 86    |
| SITT3  | SITT3-2  | 264                  | 11                    | 223                     | 769                                  | 0.85              | 0.315                                            | 0.024            | 0.0401                                           | 0.0011           | 0.36             | 0.0570                                | 0.0041           |   | 278                                 | 22 | 254                                 | 7    | 492                                  | 159 | 52    |
| SITT3  | SITT3-3  | 360                  | 14                    | 228                     | 1665                                 | 0.63              | 0.314                                            | 0.021            | 0.0394                                           | 0.0010           | 0.40             | 0.0578                                | 0.0035           |   | 277                                 | 18 | 249                                 | 7    | 522                                  | 134 | 48    |
| SITT3  | SITT3-4  | 127                  | 4                     | 49                      | 348                                  | 0.38              | 0.287                                            | 0.024            | 0.0281                                           | 0.0007           | 0.29             | 0.0740                                | 0.0060           |   | 256                                 | 22 | 179                                 | 4    | 1041                                 | 164 | 17    |
| SITT3  | SITT3-5  | 146                  | 4                     | 221                     | 903                                  | 1.51              | 0.189                                            | 0.015            | 0.0275                                           | 0.0007           | 0.31             | 0.0498                                | 0.0036           |   | 176                                 | 14 | 175                                 | 4    | 186                                  | 170 | 94    |
| SITT3  | SITT3-6  | 378                  | 71                    | 87                      | 20845                                | 0.23              | 2.003                                            | 0.063            | 0.1870                                           | 0.0042           | 0.72             | 0.0777                                | 0.0017           |   | 1116                                | 35 | 1105                                | 25   | 1138                                 | 43  | 97    |
| SITT3  | SITT3-7  | 960                  | 62                    | 61                      | 539108                               | 0.06              | 0.495                                            | 0.016            | 0.0649                                           | 0.0015           | 0.69             | 0.0553                                | 0.0013           |   | 408                                 | 14 | 405                                 | 9    | 425                                  | 54  | 95    |
| SITT3  | SITT3-8  | 210                  | 5                     | 171                     | 250                                  | 0.81              | 0.327                                            | 0.033            | 0.0238                                           | 0.0006           | 0.24             | 0.0997                                | 0.0097           |   | 288                                 | 29 | 152                                 | 4    | 1619                                 | 182 | 9     |
| SITT3  | SITT3-9  | 220                  | 5                     | 170                     | 442                                  | 0.77              | 0.192                                            | 0.025            | 0.0231                                           | 0.0006           | 0.19             | 0.0603                                | 0.0076           |   | 178                                 | 23 | 147                                 | 4    | 613                                  | 273 | 24    |
| SITT3  | SITT3-10 | 199                  | 4                     | 101                     | 1607                                 | 0.51              | 0.176                                            | 0.017            | 0.0226                                           | 0.0005           | 0.25             | 0.0566                                | 0.0053           |   | 165                                 | 16 | 144                                 | 3    | 474                                  | 209 | 30    |
| SITT3  | SITT3-11 | 615                  | 55                    | 734                     | 5047                                 | 1.19              | 0.738                                            | 0.031            | 0.0898                                           | 0.0021           | 0.56             | 0.0596                                | 0.0021           |   | 561                                 | 23 | 554                                 | 13   | 589                                  | 75  | 94    |
| SITT3  | SITT3-12 | 415                  | 29                    | 475                     | 1466                                 | 1.15              | 0.624                                            | 0.029            | 0.0702                                           | 0.0017           | 0.51             | 0.0645                                | 0.0026           |   | 493                                 | 23 | 437                                 | 10   | 758                                  | 84  | 58    |
| SITT3  | SITT3-13 | 125                  | 6                     | 159                     | 1579                                 | 1.27              | 0.362                                            | 0.045            | 0.0467                                           | 0.0017           | 0.29             | 0.0563                                | 0.0067           |   | 314                                 | 39 | 294                                 | 10   | 466                                  | 263 | 63    |
| SITT3  | SITT3-14 | 244                  | 30                    | 60                      | 4260                                 | 0.24              | 1.174                                            | 0.054            | 0.1246                                           | 0.0029           | 0.50             | 0.0684                                | 0.0027           |   | 789                                 | 36 | 757                                 | 17   | 880                                  | 82  | 86    |
| SITT3  | SITT3-15 | 65                   | 2                     | 141                     | 242                                  | 2.17              | 0.195                                            | 0.034            | 0.0286                                           | 0.0007           | 0.15             | 0.0494                                | 0.0086           |   | 181                                 | 32 | 182                                 | 5    | 168                                  | 408 | 108   |
| SITT3  | SITT3-16 | 804                  | 135                   | 28                      | 24086                                | 0.03              | 1.702                                            | 0.055            | 0.1677                                           | 0.0038           | 0.70             | 0.0736                                | 0.0017           |   | 1009                                | 32 | 999                                 | 23   | 1031                                 | 46  | 97    |
| SITT3  | SITT3-17 | 2008                 | 246                   | 799                     | 9835                                 | 0.40              | 1.120                                            | 0.036            | 0.1227                                           | 0.0028           | 0.70             | 0.0662                                | 0.0015           |   | 763                                 | 25 | 746                                 | 17   | 813                                  | 49  | 92    |
| SITT3  | SITT3-18 | 429                  | 36                    | 453                     | 493                                  | 1.06              | 0.878                                            | 0.044            | 0.0833                                           | 0.0021           | 0.49             | 0.0765                                | 0.0034           |   | 640                                 | 32 | 516                                 | 13   | 1107                                 | 88  | 47    |
| SITT3  | SITT3-19 | 543                  | 49                    | 203                     | 13305                                | 0.37              | 0.746                                            | 0.025            | 0.0906                                           | 0.0021           | 0.69             | 0.0598                                | 0.0014           |   | 566                                 | 19 | 559                                 | 13   | 595                                  | 52  | 94    |
| SITT3  | SITT3-20 | 330                  | 23                    | 217                     | 30541                                | 0.66              | 0.538                                            | 0.024            | 0.0700                                           | 0.0017           | 0.53             | 0.0558                                | 0.0021           |   | 437                                 | 20 | 436                                 | 10   | 443                                  | 85  | 99    |
| SITT3  | SITT3-21 | 275                  | 24                    | 205                     | 27210                                | 0.75              | 0.729                                            | 0.027            | 0.0890                                           | 0.0021           | 0.62             | 0.0594                                | 0.0018           |   | 556                                 | 21 | 550                                 | 13   | 581                                  | 64  | 95    |
| SITT3  | SITT3-22 | 179                  | 10                    | 154                     | 719                                  | 0.86              | 0.488                                            | 0.042            | 0.0574                                           | 0.0013           | 0.26             | 0.0617                                | 0.0052           |   | 404                                 | 35 | 360                                 | 8    | 663                                  | 179 | 54    |
| SITT3  | SITT3-23 | 511                  | 25                    | 150                     | 319                                  | 0.29              | 0.610                                            | 0.027            | 0.0481                                           | 0.0012           | 0.55             | 0.0921                                | 0.0034           |   | 484                                 | 22 | 303                                 | 7    | 1469                                 | 71  | 21    |
| SITT3  | SITT3-24 | 552                  | 13                    | 497                     | 3815                                 | 0.90              | 0.163                                            | 0.008            | 0.0241                                           | 0.0006           | 0.50             | 0.0492                                | 0.0020           |   | 154                                 | 7  | 153                                 | 4    | 159                                  | 95  | 96    |
| SITT3  | SITT3-25 | 39                   | 3                     | 13                      | 324                                  | 0.33              | 0.610                                            | 0.086            | 0.0781                                           | 0.0031           | 0.28             | 0.0566                                | 0.0077           |   | 483                                 | 68 | 485                                 | 19   | 477                                  | 301 | 102   |
| SITT3  | SITT3-26 | 254                  | 6                     | 124                     | 1771                                 | 0.49              | 0.164                                            | 0.016            | 0.0243                                           | 0.0006           | 0.25             | 0.0491                                | 0.0046           |   | 154                                 | 15 | 155                                 | 4    | 151                                  | 220 | 103   |
| SITT3  | SITT3-27 | 258                  | 11                    | 222                     | 3067                                 | 0.86              | 0.318                                            | 0.017            | 0.0423                                           | 0.0010           | 0.46             | 0.0545                                | 0.0026           |   | 280                                 | 15 | 267                                 | 7    | 393                                  | 107 | 68    |
| SITT3  | SITT3-28 | 417                  | 12                    | 472                     | 887                                  | 1.13              | 0.206                                            | 0.012            | 0.0288                                           | 0.0007           | 0.40             | 0.0520                                | 0.0027           |   | 191                                 | 11 | 183                                 | 4    | 286                                  | 120 | 64    |
| SITT3  | SITT3-29 | 307                  | 24                    | 34                      | 1746                                 | 0.11              | 0.657                                            | 0.029            | 0.0780                                           | 0.0019           | 0.55             | 0.0610                                | 0.0022           |   | 513                                 | 22 | 484                                 | 12   | 640                                  | 78  | 76    |
| SITT3  | SITT3-30 | 333                  | 8                     | 274                     | 550                                  | 0.82              | 0.230                                            | 0.017            | 0.0242                                           | 0.0006           | 0.31             | 0.0688                                | 0.0049           |   | 210                                 | 16 | 154                                 | 4    | 891                                  | 147 | 17    |
| SITT3  | SITT3-31 | 304                  | 22                    | 92                      | 784                                  | 0.30              | 0.564                                            | 0.033            | 0.0729                                           | 0.0018           | 0.43             | 0.0561                                | 0.0029           |   | 454                                 | 26 | 454                                 | 11   | 457                                  | 116 | 99    |
| SITT3  | SITT3-32 | 868                  | 78                    | 427                     | 51132                                | 0.49              | 0.723                                            | 0.023            | 0.0896                                           | 0.0020           | 0.71             | 0.0586                                | 0.0013           |   | 553                                 | 18 | 553                                 | 13   | 552                                  | 50  | 100   |
| SITT3  | SITT3-33 | 358                  | 13                    | 406                     | 7224                                 | 1.13              | 0.277                                            | 0.017            | 0.0376                                           | 0.0011           | 0.45             | 0.0534                                | 0.0030           |   | 248                                 | 16 | 238                                 | 7    | 345                                  | 126 | 69    |
| SITT3  | SITT3-34 | 332                  | 31                    | 76                      | 963                                  | 0.23              | 0.794                                            | 0.039            | 0.0929                                           | 0.0023           | 0.50             | 0.0620                                | 0.0026           |   | 594                                 | 29 | 573                                 | 14   | 674                                  | 90  | 85    |
| SITT3  | SITT3-35 | 175                  | 16                    | 108                     | 11594                                | 0.61              | 0.721                                            | 0.037            | 0.0891                                           | 0.0022           | 0.48             | 0.0587                                | 0.0026           |   | 551                                 | 28 | 550                                 | 14   | 557                                  | 98  | 99    |
| SITT3  | SITT3-36 | 314                  | 7                     | 156                     | 644                                  | 0.50              | 0.180                                            | 0.013            | 0.0236                                           | 0.0006           | 0.32             | 0.0553                                | 0.0038           |   | 168                                 | 12 | 151                                 | 4    | 425                                  | 154 | 35    |
| SITT3  | SITT3-37 | 287                  | 7                     | 229                     | 236                                  | 0.80              | 0.223                                            | 0.019            | 0.0243                                           | 0.0006           | 0.28             | 0.0665                                | 0.0054           |   | 204                                 | 17 | 155                                 | 4    | 821                                  | 170 | 19    |
| SITT3  | SITT3-41 | 300                  | 7                     | 205                     | 802                                  | 0.68              | 0.150                                            | 0.009            | 0.0222                                           | 0.0005           | 0.40             | 0.0491                                | 0.0026           |   | 142                                 | 8  | 141                                 | 3    | 154                                  | 126 | 92    |
| SITT3  | SITT3-42 | 132                  | 6                     | 102                     | 5301                                 | 0.78              | 0.344                                            | 0.021            | 0.0472                                           | 0.0012           | 0.43             | 0.0528                                | 0.0029           |   | 300                                 | 18 | 297                                 | 8    | 322                                  | 123 | 92    |
| SITT3  | SITT3-43 | 430                  | 17                    | 231                     | 559                                  | 0.54              | 0.348                                            | 0.019            | 0.0405                                           | 0.0009           | 0.43             | 0.0623                                | 0.0030           |   | 303                                 | 16 | 256                                 | 6    | 685                                  | 103 | 37    |
| SITT3  | SITT3-44 | 156                  | 13                    | 71                      | 112405                               | 0.46              | 0.678                                            | 0.025            | 0.0840                                           | 0.0019           | 0.63             | 0.0586                                | 0.0017           |   | 526                                 | 19 | 520                                 | 12   | 551                                  | 62  | 94    |
| SITT3  | SITT3-45 | 1430                 | 122                   | 1012                    | 22979                                | 0.71              | 0.681                                            | 0.021            | 0.0851                                           | 0.0019           | 0.72             | 0.0581                                | 0.0013           |   | 527                                 | 17 | 526                                 | 12   | 532                                  | 48  | 99    |
| SITT3  | SITT3-46 | 226                  | 15                    | 170                     | 715                                  | 0.75              | 0.615                                            | 0.030            | 0.0644                                           | 0.0016           | 0.50             | 0.0693                                | 0.0030           |   | 487                                 | 24 | 402                                 | 10   | 908                                  | 88  | 44    |
| SITT3  | SITT3-47 | 151                  | 3                     | 132                     | 970                                  | 0.87              | 0.153                                            | 0.014            | 0.0225                                           | 0.0005           | 0.26             | 0.0493                                | 0.0043           |   | 145                                 | 13 | 144                                 | 3    | 164                                  | 206 | 88    |
| SITT3  | SITT3-48 | 754                  | 63                    | 124                     | 1824                                 | 0.16              | 0.771                                            | 0.025            | 0.0842                                           | 0.0019           | 0.71             | 0.0664                                | 0.0015           |   | 580                                 | 19 | 521                                 | 12   | 819                                  | 48  | 64    |
| SITT3  | SITT3-49 | 349                  | 31                    | 214                     | 4701                                 | 0.61              | 0.734                                            | 0.026            | 0.0900                                           | 0.0021           | 0.65             | 0.0592                                | 0.0016           |   | 559                                 | 20 | 555                                 | 13   | 575                                  | 59  | 97    |
| SITT3  | SITT3-50 | 591                  | 27                    | 362                     | 893                                  | 0.61              | 0.411                                            | 0.014            | 0.0449                                           | 0.0010           | 0.69             | 0.0664                                | 0.0016           |   | 350                                 | 12 | 283                                 | 6    | 820                                  | 50  | 35    |
|        |          |                      |                       |                         |                                      |                   |                                                  |                  |                                                  |                  |                  |                                       |                  |   |                                     |    |                                     |      |                                      |     |       |

| SITT3 | SITT3-51  | 1009 | 80 | 558  | 6906   | 0.55 | 0. | .677  | 0.028 | 0.0796 | 0.0019 | 0.57 | 0.0617 | 0.0021 | 525  | 22 | 494  | 12 | 663  | 74  | 74  |
|-------|-----------|------|----|------|--------|------|----|-------|-------|--------|--------|------|--------|--------|------|----|------|----|------|-----|-----|
| SITT3 | SITT3-52  | 70   | 6  | 30   | 2258   | 0.42 | 0. | .746  | 0.043 | 0.0899 | 0.0023 | 0.44 | 0.0602 | 0.0031 | 566  | 33 | 555  | 14 | 610  | 112 | 91  |
| SITT3 | SITT3-53  | 127  | 11 | 52   | 7660   | 0.41 | 0. | .681  | 0.049 | 0.0833 | 0.0022 | 0.37 | 0.0593 | 0.0039 | 528  | 38 | 516  | 14 | 579  | 144 | 89  |
| SITT3 | SITT3-54  | 862  | 42 | 1136 | 5345   | 1.32 | 0. | .358  | 0.013 | 0.0493 | 0.0011 | 0.64 | 0.0526 | 0.0015 | 310  | 11 | 310  | 7  | 312  | 64  | 99  |
| SITT3 | SITT3-55  | 338  | 27 | 337  | 3265   | 1.00 | 0. | .634  | 0.025 | 0.0802 | 0.0019 | 0.59 | 0.0573 | 0.0018 | 498  | 20 | 497  | 12 | 503  | 71  | 99  |
| SITT3 | SITT3-56  | 261  | 42 | 107  | 2003   | 0.41 | 1. | .652  | 0.068 | 0.1608 | 0.0038 | 0.58 | 0.0745 | 0.0025 | 990  | 41 | 961  | 23 | 1056 | 68  | 91  |
| SITT3 | SITT3-57  | 158  | 4  | 92   | 761    | 0.59 | 0. | .184  | 0.018 | 0.0270 | 0.0008 | 0.31 | 0.0493 | 0.0046 | 171  | 17 | 172  | 5  | 161  | 219 | 107 |
| SITT3 | SITT3-58  | 730  | 33 | 341  | 2060   | 0.47 | 0. | .356  | 0.013 | 0.0455 | 0.0010 | 0.65 | 0.0567 | 0.0015 | 309  | 11 | 287  | 7  | 480  | 59  | 60  |
| SITT3 | SITT3-59  | 131  | 11 | 76   | 96717  | 0.58 | 0. | .685  | 0.026 | 0.0860 | 0.0020 | 0.62 | 0.0578 | 0.0017 | 530  | 20 | 532  | 12 | 522  | 65  | 102 |
| SITT3 | SITT3-60  | 891  | 22 | 336  | 11258  | 0.38 | 0. | .168  | 0.009 | 0.0246 | 0.0006 | 0.45 | 0.0497 | 0.0023 | 158  | 8  | 156  | 4  | 182  | 107 | 86  |
| SITT3 | SITT3-61  | 384  | 58 | 136  | 8072   | 0.36 | 1. | .463  | 0.050 | 0.1509 | 0.0035 | 0.67 | 0.0703 | 0.0018 | 915  | 31 | 906  | 21 | 937  | 52  | 97  |
| SITT3 | SITT3-62  | 902  | 20 | 389  | 264    | 0.43 | 0. | .153  | 0.008 | 0.0226 | 0.0005 | 0.42 | 0.0491 | 0.0025 | 145  | 8  | 144  | 3  | 152  | 117 | 95  |
| SITT3 | SITT3-63  | 319  | 7  | 124  | 2551   | 0.39 | 0. | .159  | 0.008 | 0.0234 | 0.0006 | 0.48 | 0.0493 | 0.0022 | 150  | 8  | 149  | 4  | 161  | 105 | 92  |
| SITT3 | SITT3-64  | 1266 | 28 | 552  | 5432   | 0.44 | 0. | .152  | 0.008 | 0.0222 | 0.0005 | 0.42 | 0.0496 | 0.0025 | 143  | 8  | 141  | 3  | 174  | 118 | 81  |
| SITT3 | SITT3-65  | 303  | 25 | 185  | 2026   | 0.61 | 0. | .714  | 0.032 | 0.0838 | 0.0020 | 0.53 | 0.0618 | 0.0024 | 547  | 25 | 518  | 13 | 667  | 82  | 78  |
| SITT3 | SITT3-66  | 441  | 86 | 70   | 193556 | 0.16 | 2. | .115  | 0.069 | 0.1947 | 0.0045 | 0.70 | 0.0788 | 0.0018 | 1154 | 38 | 1147 | 26 | 1167 | 46  | 98  |
| SITT3 | SITT3-67  | 213  | 10 | 332  | 7088   | 1.56 | 0. | .341  | 0.016 | 0.0474 | 0.0011 | 0.51 | 0.0521 | 0.0021 | 298  | 14 | 299  | 7  | 290  | 92  | 103 |
| SITT3 | SITT3-68  | 969  | 42 | 417  | 537    | 0.43 | 0. | .394  | 0.017 | 0.0431 | 0.0010 | 0.52 | 0.0664 | 0.0025 | 337  | 15 | 272  | 6  | 818  | 79  | 33  |
| SITT3 | SITT3-69  | 228  | 10 | 228  | 13624  | 1.00 | 0. | .333  | 0.020 | 0.0439 | 0.0011 | 0.42 | 0.0551 | 0.0031 | 292  | 18 | 277  | 7  | 416  | 124 | 67  |
| SITT3 | SITT3-70  | 390  | 9  | 257  | 779    | 0.66 | 0. | .171  | 0.010 | 0.0242 | 0.0006 | 0.41 | 0.0514 | 0.0027 | 160  | 9  | 154  | 4  | 259  | 119 | 59  |
| SITT3 | SITT3-71  | 392  | 16 | 437  | 2226   | 1.11 | 0. | .326  | 0.021 | 0.0413 | 0.0011 | 0.41 | 0.0573 | 0.0033 | 287  | 18 | 261  | 7  | 503  | 128 | 52  |
| SITT3 | SITT3-74  | 461  | 10 | 286  | 355    | 0.62 | 0. | .188  | 0.013 | 0.0226 | 0.0005 | 0.32 | 0.0602 | 0.0041 | 175  | 13 | 144  | 3  | 612  | 147 | 24  |
| SITT3 | SITT3-75  | 324  | 8  | 268  | 216    | 0.83 | 0. | .205  | 0.015 | 0.0246 | 0.0006 | 0.34 | 0.0606 | 0.0040 | 190  | 13 | 157  | 4  | 624  | 144 | 25  |
| SITT3 | SITT3-76  | 482  | 29 | 279  | 776    | 0.58 | 0. | .556  | 0.023 | 0.0591 | 0.0014 | 0.57 | 0.0682 | 0.0024 | 449  | 19 | 370  | 9  | 876  | 72  | 42  |
| SITT3 | SITT3-78  | 382  | 9  | 261  | 1251   | 0.68 | 0. | .182  | 0.012 | 0.0240 | 0.0006 | 0.36 | 0.0550 | 0.0033 | 169  | 11 | 153  | 4  | 413  | 136 | 37  |
| SITT3 | SITT3-80  | 609  | 39 | 84   | 3337   | 0.14 | 0. | .526  | 0.022 | 0.0635 | 0.0015 | 0.57 | 0.0601 | 0.0021 | 429  | 18 | 397  | 9  | 606  | 74  | 65  |
| SITT3 | SITT3-81  | 985  | 74 | 304  | 36460  | 0.31 | 0. | .606  | 0.026 | 0.0754 | 0.0018 | 0.55 | 0.0583 | 0.0021 | 481  | 21 | 468  | 11 | 541  | 79  | 87  |
| SITT3 | SITT3-82  | 361  | 9  | 260  | 790    | 0.72 | 0. | .187  | 0.015 | 0.0242 | 0.0006 | 0.30 | 0.0562 | 0.0042 | 174  | 14 | 154  | 4  | 459  | 165 | 34  |
| SITT3 | SITT3-83  | 399  | 17 | 148  | 148606 | 0.37 | 0. | .310  | 0.011 | 0.0436 | 0.0010 | 0.65 | 0.0516 | 0.0014 | 274  | 10 | 275  | 6  | 268  | 62  | 103 |
| SITT3 | SITT3-84  | 965  | 41 | 405  | 4725   | 0.42 | 0. | .304  | 0.010 | 0.0424 | 0.0010 | 0.70 | 0.0520 | 0.0012 | 269  | 9  | 267  | 6  | 287  | 54  | 93  |
| SITT3 | SITT3-85  | 434  | 30 | 415  | 1767   | 0.96 | 0. | .571  | 0.025 | 0.0696 | 0.0017 | 0.55 | 0.0595 | 0.0022 | 459  | 20 | 434  | 10 | 587  | 79  | 74  |
| SITT3 | SITT3-86  | 450  | 60 | 26   | 1859   | 0.06 | 1. | .312  | 0.047 | 0.1334 | 0.0031 | 0.65 | 0.0713 | 0.0019 | 851  | 30 | 807  | 19 | 966  | 55  | 84  |
| SITT3 | SITT3-87  | 236  | 9  | 191  | 435    | 0.81 | 0. | .296  | 0.030 | 0.0396 | 0.0013 | 0.31 | 0.0543 | 0.0053 | 263  | 27 | 250  | 8  | 384  | 218 | 65  |
| SITT3 | SITT3-88  | 728  | 29 | 685  | 1899   | 0.94 | 0. | .341  | 0.014 | 0.0404 | 0.0010 | 0.59 | 0.0611 | 0.0020 | 298  | 12 | 256  | 6  | 644  | 70  | 40  |
| SITT3 | SITT3-89  | 454  | 23 | 219  | 1295   | 0.48 | 0. | .453  | 0.026 | 0.0501 | 0.0012 | 0.42 | 0.0656 | 0.0034 | 379  | 21 | 315  | 8  | 794  | 107 | 40  |
| SITT3 | SITT3-90  | 137  | 18 | 80   | 1171   | 0.59 | 1. | .398  | 0.071 | 0.1332 | 0.0034 | 0.50 | 0.0762 | 0.0034 | 888  | 45 | 806  | 20 | 1099 | 88  | 73  |
| SITT3 | SITT3-91  | 381  | 30 | 135  | 5005   | 0.35 | 0. | .621  | 0.030 | 0.0779 | 0.0019 | 0.50 | 0.0578 | 0.0024 | 491  | 24 | 484  | 12 | 523  | 93  | 93  |
| SITT3 | SITT3-92  | 234  | 10 | 160  | 89069  | 0.69 | 0. | .321  | 0.012 | 0.0447 | 0.0010 | 0.61 | 0.0521 | 0.0016 | 283  | 11 | 282  | 7  | 289  | 69  | 98  |
| SITT3 | SITT3-93  | 218  | 19 | 95   | 1913   | 0.44 | 0. | .761  | 0.036 | 0.0894 | 0.0022 | 0.51 | 0.0618 | 0.0025 | 575  | 27 | 552  | 13 | 665  | 87  | 83  |
| SITT3 | SITT3-94  | 343  | 70 | 189  | 6488   | 0.55 | 3. | .009  | 0.102 | 0.2029 | 0.0047 | 0.69 | 0.1075 | 0.0026 | 1410 | 48 | 1191 | 28 | 1758 | 45  | 68  |
| SITT3 | SITT3-95  | 220  | 5  | 351  | 300    | 1.60 | 0  | .260  | 0.020 | 0.0243 | 0.0006 | 0.31 | 0.0775 | 0.0058 | 234  | 18 | 155  | 4  | 1133 | 149 | 14  |
| SITT3 | SITT3-96  | 614  | 55 | 160  | 10150  | 0.26 | 0  | .721  | 0.025 | 0.0890 | 0.0021 | 0.67 | 0.0588 | 0.0015 | 551  | 19 | 550  | 13 | 559  | 56  | 98  |
| SITT3 | SITT3-97  | 223  | 24 | 67   | 205467 | 0.30 | 0  | .920  | 0.031 | 0.1082 | 0.0025 | 0.68 | 0.0616 | 0.0015 | 662  | 23 | 662  | 15 | 662  | 54  | 100 |
| SITT3 | SITT3-98  | 446  | 38 | 86   | 9012   | 0.19 | 0  | .678  | 0.022 | 0.0855 | 0.0020 | 0.70 | 0.0575 | 0.0014 | 525  | 17 | 529  | 12 | 510  | 52  | 104 |
| SITT3 | SITT3-99  | 285  | 24 | 67   | 51359  | 0.24 | 0. | .682  | 0.023 | 0.0852 | 0.0020 | 0.68 | 0.0581 | 0.0015 | 528  | 18 | 527  | 12 | 534  | 55  | 99  |
| SITT3 | SITT3-100 | 331  | 29 | 58   | 11012  | 0.17 | 0. | .720  | 0.026 | 0.0884 | 0.0021 | 0.66 | 0.0591 | 0.0016 | 551  | 20 | 546  | 13 | 569  | 58  | 96  |
| SITT3 | SITT3-101 | 286  | 16 | 135  | 874    | 0.47 | 0. | .440  | 0.024 | 0.0554 | 0.0014 | 0.46 | 0.0576 | 0.0028 | 370  | 20 | 348  | 9  | 513  | 108 | 68  |
| SITT3 | SITT3-102 | 186  | 93 | 94   | 7807   | 0.50 | 12 | 2.363 | 0.394 | 0.5006 | 0.0115 | 0.72 | 0.1791 | 0.0039 | 2632 | 84 | 2616 | 60 | 2645 | 37  | 99  |
| SITT3 | SITT3-103 | 140  | 5  | 236  | 1354   | 1.68 | 0. | .300  | 0.039 | 0.0383 | 0.0013 | 0.27 | 0.0570 | 0.0071 | 267  | 35 | 242  | 8  | 490  | 275 | 49  |
|       |           |      |    |      |        |      |    |       |       |        |        |      |        |        |      |    |      |    |      |     |     |

| SITT3 | SITT3-104 | 225  | 18 | 75   | 152889 | 0.34 | 0.680 | 0.042 | 0.0798 | 0.0021 | 0.43 | 0.0618 | 0.0034 | 527 | 32 | 495 | 13 | 666  | 119 | 74 |
|-------|-----------|------|----|------|--------|------|-------|-------|--------|--------|------|--------|--------|-----|----|-----|----|------|-----|----|
| SITT3 | SITT3-105 | 629  | 50 | 751  | 6576   | 1.19 | 0.625 | 0.021 | 0.0787 | 0.0018 | 0.69 | 0.0576 | 0.0014 | 493 | 16 | 488 | 11 | 515  | 53  | 95 |
| SITT3 | SITT3-106 | 1081 | 26 | 1257 | 1027   | 1.16 | 0.182 | 0.010 | 0.0240 | 0.0006 | 0.43 | 0.0552 | 0.0027 | 170 | 9  | 153 | 4  | 418  | 109 | 37 |
| SITT3 | SITT3-108 | 274  | 12 | 195  | 100513 | 0.71 | 0.308 | 0.012 | 0.0431 | 0.0010 | 0.62 | 0.0519 | 0.0015 | 273 | 10 | 272 | 6  | 280  | 68  | 97 |
| SITT3 | SITT3-109 | 225  | 10 | 154  | 40602  | 0.69 | 0.319 | 0.029 | 0.0441 | 0.0013 | 0.32 | 0.0525 | 0.0046 | 281 | 26 | 278 | 8  | 305  | 199 | 91 |
| SITT3 | SITT3-110 | 160  | 7  | 166  | 278    | 1.04 | 0.429 | 0.029 | 0.0415 | 0.0011 | 0.41 | 0.0750 | 0.0046 | 362 | 24 | 262 | 7  | 1068 | 122 | 25 |
| SITT3 | SITT3-111 | 281  | 12 | 282  | 5777   | 1.00 | 0.309 | 0.015 | 0.0433 | 0.0011 | 0.49 | 0.0519 | 0.0023 | 274 | 14 | 273 | 7  | 279  | 100 | 98 |
| SITT3 | SITT3-113 | 150  | 4  | 81   | 825    | 0.54 | 0.202 | 0.020 | 0.0276 | 0.0007 | 0.25 | 0.0530 | 0.0050 | 186 | 18 | 175 | 4  | 329  | 214 | 53 |
| SITT3 | SITT3-114 | 209  | 6  | 189  | 1386   | 0.90 | 0.194 | 0.015 | 0.0276 | 0.0007 | 0.31 | 0.0510 | 0.0038 | 180 | 14 | 176 | 4  | 239  | 170 | 74 |
| SITT3 | SITT3-115 | 352  | 19 | 215  | 815    | 0.61 | 0.463 | 0.021 | 0.0528 | 0.0013 | 0.54 | 0.0637 | 0.0024 | 386 | 17 | 331 | 8  | 731  | 79  | 45 |
|       |           |      |    |      |        |      |       |       |        |        |      |        |        |     |    |     |    |      |     |    |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup>Pb/<sup>235</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb)/(<sup>238</sup>U/<sup>206</sup>Pb \* 1/137.88) <sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>238</sup>U and the <sup>207</sup>/<sup>235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

## Table D13. LA-ICPMS isotopic data for sample VOEL in the Mossel Bay Basin

| VAEL |  |
|------|--|
| VUEL |  |

| VOEL   |          |                      |                          |                        |                                      |                   |                                                  |                  |                                                  | RATIOS           |                  |                                      |                  |                                     |    | AGES                                | [Ma] |                                      |     | Conc. |
|--------|----------|----------------------|--------------------------|------------------------|--------------------------------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------------------|--------------------------------------|------------------|-------------------------------------|----|-------------------------------------|------|--------------------------------------|-----|-------|
| Sample | Analysis | U [ppm] <sup>a</sup> | Pb [ppm] <sup>a</sup> Th | ו [ppm] <sup>a 2</sup> | <sup>206</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>a</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho <sup>c</sup> | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2 σ <sup>d</sup> | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ | <sup>206</sup> Pb/ <sup>238</sup> U | 2σ   | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ  | %     |
| VOEL   | VOEL-1   | 591                  | 14                       | 180                    | 477                                  | 0.30              | 0.206                                            | 0.016            | 0.0245                                           | 0.0005           | 0.27             | 0.0611                               | 0.0047           | 190                                 | 15 | 156                                 | 3    | 643                                  | 165 | 24    |
| VOEL   | VOEL-2   | 315                  | 8                        | 143                    | 1657                                 | 0.45              | 0.179                                            | 0.012            | 0.0248                                           | 0.0005           | 0.32             | 0.0522                               | 0.0033           | 167                                 | 11 | 158                                 | 3    | 293                                  | 144 | 54    |
| VOEL   | VOEL-3   | 860                  | 21                       | 587                    | 958                                  | 0.68              | 0.168                                            | 0.007            | 0.0247                                           | 0.0005           | 0.48             | 0.0493                               | 0.0018           | 157                                 | 7  | 157                                 | 3    | 162                                  | 86  | 97    |
| VOEL   | VOEL-4   | 1070                 | 26                       | 919                    | 239497                               | 0.86              | 0.168                                            | 0.006            | 0.0243                                           | 0.0005           | 0.54             | 0.0501                               | 0.0016           | 158                                 | 6  | 155                                 | 3    | 198                                  | 74  | 78    |
| VOEL   | VOEL-5   | 1179                 | 28                       | 1365                   | 563                                  | 1.16              | 0.163                                            | 0.008            | 0.0236                                           | 0.0005           | 0.39             | 0.0502                               | 0.0024           | 154                                 | 8  | 150                                 | 3    | 205                                  | 111 | 73    |
| VOEL   | VOEL-6   | 472                  | 12                       | 225                    | 2651                                 | 0.48              | 0.169                                            | 0.007            | 0.0249                                           | 0.0005           | 0.48             | 0.0491                               | 0.0019           | 158                                 | 7  | 158                                 | 3    | 154                                  | 90  | 103   |
| VOEL   | VOEL-7   | 413                  | 10                       | 221                    | 26199                                | 0.53              | 0.170                                            | 0.006            | 0.0249                                           | 0.0005           | 0.57             | 0.0493                               | 0.0015           | 159                                 | 6  | 159                                 | 3    | 163                                  | 71  | 98    |
| VOEL   | VOEL-8   | 448                  | 11                       | 215                    | 1365                                 | 0.48              | 0.173                                            | 0.008            | 0.0249                                           | 0.0005           | 0.43             | 0.0504                               | 0.0022           | 162                                 | 8  | 158                                 | 3    | 211                                  | 103 | 75    |
| VOEL   | VOEL-9   | 840                  | 20                       | 541                    | 1127                                 | 0.64              | 0.164                                            | 0.007            | 0.0241                                           | 0.0005           | 0.46             | 0.0495                               | 0.0020           | 154                                 | 7  | 153                                 | 3    | 170                                  | 93  | 90    |
| VOEL   | VOEL-10  | 563                  | 14                       | 264                    | 2514                                 | 0.47              | 0.166                                            | 0.008            | 0.0244                                           | 0.0005           | 0.44             | 0.0492                               | 0.0021           | 156                                 | 7  | 155                                 | 3    | 158                                  | 99  | 98    |
| VOEL   | VOEL-11  | 703                  | 17                       | 572                    | 1030                                 | 0.81              | 0.176                                            | 0.010            | 0.0240                                           | 0.0005           | 0.36             | 0.0531                               | 0.0029           | 164                                 | 10 | 153                                 | 3    | 334                                  | 123 | 46    |
| VOEL   | VOEL-12  | 319                  | 8                        | 181                    | 1231                                 | 0.57              | 0.164                                            | 0.010            | 0.0242                                           | 0.0005           | 0.35             | 0.0493                               | 0.0029           | 155                                 | 10 | 154                                 | 3    | 160                                  | 136 | 97    |
| VOEL   | VOEL-13  | 1016                 | 25                       | 771                    | 8156                                 | 0.76              | 0.167                                            | 0.006            | 0.0246                                           | 0.0005           | 0.62             | 0.0494                               | 0.0013           | 157                                 | 5  | 156                                 | 3    | 167                                  | 61  | 94    |
| VOEL   | VOEL-14  | 614                  | 16                       | 326                    | 2759                                 | 0.53              | 0.174                                            | 0.008            | 0.0256                                           | 0.0005           | 0.46             | 0.0494                               | 0.0020           | 163                                 | 7  | 163                                 | 3    | 164                                  | 95  | 99    |
| VOEL   | VOEL-15  | 452                  | 11                       | 309                    | 1972                                 | 0.68              | 0.168                                            | 0.007            | 0.0248                                           | 0.0005           | 0.47             | 0.0492                               | 0.0019           | 158                                 | 7  | 158                                 | 3    | 156                                  | 91  | 101   |
| VOEL   | VOEL-16  | 485                  | 12                       | 355                    | 3866                                 | 0.73              | 0.171                                            | 0.012            | 0.0241                                           | 0.0005           | 0.29             | 0.0515                               | 0.0035           | 160                                 | 11 | 153                                 | 3    | 265                                  | 158 | 58    |
| VOEL   | VOEL-17  | 507                  | 12                       | 257                    | 6594                                 | 0.51              | 0.169                                            | 0.012            | 0.0245                                           | 0.0005           | 0.31             | 0.0500                               | 0.0033           | 158                                 | 11 | 156                                 | 3    | 195                                  | 152 | 80    |
| VOEL   | VOEL-18  | 524                  | 13                       | 306                    | 4147                                 | 0.58              | 0.168                                            | 0.008            | 0.0243                                           | 0.0005           | 0.45             | 0.0502                               | 0.0021           | 158                                 | 7  | 155                                 | 3    | 206                                  | 95  | 75    |
| VOEL   | VOEL-19  | 409                  | 10                       | 189                    | 3184                                 | 0.46              | 0.170                                            | 0.007            | 0.0245                                           | 0.0005           | 0.49             | 0.0505                               | 0.0019           | 160                                 | 7  | 156                                 | 3    | 218                                  | 87  | 71    |
| VOEL   | VOEL-20  | 646                  | 16                       | 300                    | 7841                                 | 0.46              | 0.165                                            | 0.006            | 0.0243                                           | 0.0005           | 0.60             | 0.0493                               | 0.0014           | 155                                 | 5  | 155                                 | 3    | 164                                  | 64  | 95    |
| VOEL   | VOEL-21  | 267                  | 7                        | 122                    | 61642                                | 0.46              | 0.171                                            | 0.007            | 0.0252                                           | 0.0005           | 0.51             | 0.0493                               | 0.0018           | 160                                 | 7  | 160                                 | 3    | 163                                  | 84  | 99    |
| VOEL   | VOEL-22  | 712                  | 17                       | 573                    | 1606                                 | 0.80              | 0.167                                            | 0.006            | 0.0243                                           | 0.0005           | 0.53             | 0.0498                               | 0.0016           | 156                                 | 6  | 155                                 | 3    | 184                                  | 76  | 84    |
| VOEL   | VOEL-23  | 784                  | 19                       | 595                    | 4114                                 | 0.76              | 0.172                                            | 0.007            | 0.0249                                           | 0.0005           | 0.50             | 0.0502                               | 0.0018           | 161                                 | 7  | 158                                 | 3    | 206                                  | 85  | 77    |
| VOEL   | VOEL-24  | 527                  | 13                       | 336                    | 120569                               | 0.64              | 0.171                                            | 0.006            | 0.0250                                           | 0.0005           | 0.55             | 0.0496                               | 0.0016           | 160                                 | 6  | 159                                 | 3    | 175                                  | 73  | 91    |
| VOEL   | VOEL-26  | 412                  | 10                       | 306                    | 2481                                 | 0.74              | 0.171                                            | 0.009            | 0.0245                                           | 0.0005           | 0.39             | 0.0507                               | 0.0025           | 161                                 | 9  | 156                                 | 3    | 228                                  | 116 | 68    |
| VOEL   | VOEL-27  | 626                  | 15                       | 422                    | 2929                                 | 0.67              | 0.166                                            | 0.006            | 0.0242                                           | 0.0005           | 0.54             | 0.0497                               | 0.0016           | 156                                 | 6  | 154                                 | 3    | 181                                  | 74  | 85    |
| VOEL   | VOEL-28  | 542                  | 13                       | 228                    | 1124                                 | 0.42              | 0.183                                            | 0.012            | 0.0242                                           | 0.0005           | 0.32             | 0.0548                               | 0.0033           | 170                                 | 11 | 154                                 | 3    | 404                                  | 136 | 38    |
| VOEL   | VOEL-31  | 335                  | 8                        | 293                    | 1005                                 | 0.87              | 0.174                                            | 0.014            | 0.0243                                           | 0.0005           | 0.26             | 0.0520                               | 0.0041           | 163                                 | 13 | 155                                 | 3    | 285                                  | 180 | 54    |
| VOEL   | VOEL-32  | 898                  | 22                       | 625                    | 281                                  | 0.70              | 0.178                                            | 0.011            | 0.0249                                           | 0.0005           | 0.35             | 0.0519                               | 0.0029           | 166                                 | 10 | 158                                 | 3    | 279                                  | 129 | 57    |
| VOEL   | VOEL-33  | 908                  | 22                       | 515                    | 5507                                 | 0.57              | 0.165                                            | 0.005            | 0.0244                                           | 0.0005           | 0.63             | 0.0489                               | 0.0012           | 155                                 | 5  | 155                                 | 3    | 144                                  | 59  | 108   |
| VOEL   | VOEL-34  | 408                  | 10                       | 212                    | 3039                                 | 0.52              | 0.165                                            | 0.007            | 0.0245                                           | 0.0005           | 0.52             | 0.0490                               | 0.0017           | 155                                 | 6  | 156                                 | 3    | 150                                  | 81  | 104   |
| VOEL   | VOEL-35  | 876                  | 21                       | 565                    | 2309                                 | 0.65              | 0.162                                            | 0.007            | 0.0238                                           | 0.0005           | 0.49             | 0.0493                               | 0.0019           | 152                                 | 7  | 151                                 | 3    | 162                                  | 88  | 93    |
| VOEL   | VOEL-36  | 675                  | 17                       | 473                    | 153495                               | 0.70              | 0.170                                            | 0.007            | 0.0249                                           | 0.0005           | 0.51             | 0.0495                               | 0.0017           | 159                                 | 6  | 159                                 | 3    | 170                                  | 81  | 93    |
| VOEL   | VOEL-37  | 495                  | 12                       | 232                    | 1619                                 | 0.47              | 0.174                                            | 0.009            | 0.0245                                           | 0.0005           | 0.43             | 0.0514                               | 0.0023           | 163                                 | 8  | 156                                 | 3    | 257                                  | 103 | 61    |
| VOEL   | VOEL-38  | 774                  | 19                       | 511                    | 5318                                 | 0.66              | 0.168                                            | 0.007            | 0.0247                                           | 0.0005           | 0.50             | 0.0493                               | 0.0018           | 157                                 | 7  | 157                                 | 3    | 161                                  | 86  | 98    |
| VOEL   | VOEL-39  | 390                  | 9                        | 140                    | 1784                                 | 0.36              | 0.166                                            | 0.007            | 0.0243                                           | 0.0005           | 0.52             | 0.0495                               | 0.0017           | 156                                 | 6  | 155                                 | 3    | 170                                  | 81  | 91    |
| VOEL   | VOEL-40  | 978                  | 24                       | 565                    | 12131                                | 0.58              | 0.168                                            | 0.006            | 0.0248                                           | 0.0005           | 0.63             | 0.0492                               | 0.0013           | 158                                 | 5  | 158                                 | 3    | 158                                  | 61  | 100   |
| VOEL   | VOEL-41  | 469                  | 11                       | 263                    | 1415                                 | 0.56              | 0.170                                            | 0.011            | 0.0244                                           | 0.0005           | 0.34             | 0.0505                               | 0.0030           | 159                                 | 10 | 155                                 | 3    | 219                                  | 136 | 71    |
| VOEL   | VOEL-42  | 412                  | 10                       | 370                    | 545                                  | 0.90              | 0.186                                            | 0.016            | 0.0248                                           | 0.0005           | 0.25             | 0.0544                               | 0.0044           | 173                                 | 14 | 158                                 | 3    | 387                                  | 182 | 41    |
| VOEL   | VOEL-43  | 573                  | 14                       | 302                    | 2158                                 | 0.53              | 0.169                                            | 0.009            | 0.0248                                           | 0.0005           | 0.38             | 0.0496                               | 0.0025           | 159                                 | 9  | 158                                 | 3    | 177                                  | 119 | 89    |
| VOEL   | VOEL-44  | 380                  | 10                       | 246                    | 585                                  | 0.65              | 0.191                                            | 0.014            | 0.0252                                           | 0.0005           | 0.29             | 0.0550                               | 0.0039           | 177                                 | 13 | 160                                 | 3    | 410                                  | 157 | 39    |
| VOEL   | VOEL-45  | 816                  | 20                       | 512                    | 4674                                 | 0.63              | 0.177                                            | 0.007            | 0.0249                                           | 0.0005           | 0.55             | 0.0517                               | 0.0016           | 166                                 | 6  | 159                                 | 3    | 271                                  | 73  | 58    |
| VOEL   | VOEL-46  | 972                  | 24                       | 527                    | 221688                               | 0.54              | 0.169                                            | 0.005            | 0.0250                                           | 0.0005           | 0.64             | 0.0492                               | 0.0012           | 159                                 | 5  | 159                                 | 3    | 155                                  | 58  | 103   |
| VOEL   | VOEL-47  | 538                  | 13                       | 411                    | 120323                               | 0.76              | 0.172                                            | 0.010            | 0.0245                                           | 0.0005           | 0.38             | 0.0509                               | 0.0026           | 161                                 | 9  | 156                                 | 3    | 236                                  | 120 | 66    |
| VOEL   | VOEL-48  | 1008                 | 25                       | 498                    | 225386                               | 0.49              | 0.168                                            | 0.006            | 0.0246                                           | 0.0005           | 0.64             | 0.0497                               | 0.0013           | 158                                 | 5  | 156                                 | 3    | 183                                  | 60  | 86    |
| VOEL   | VOEL-49  | 443                  | 11                       | 228                    | 1473                                 | 0.52              | 0.172                                            | 0.011            | 0.0245                                           | 0.0005           | 0.33             | 0.0510                               | 0.0031           | 161                                 | 10 | 156                                 | 3    | 239                                  | 139 | 65    |
| VOEL   | VOEL-50  | 612                  | 15                       | 335                    | 2446                                 | 0.55              | 0.173                                            | 0.008            | 0.0245                                           | 0.0005           | 0.49             | 0.0510                               | 0.0019           | 162                                 | 7  | 156                                 | 3    | 241                                  | 88  | 65    |
|        |          |                      |                          |                        |                                      |                   |                                                  |                  |                                                  |                  |                  |                                      |                  |                                     |    |                                     |      |                                      |     |       |

| VOEL | VOEL-51  | 570  | 14 | 294  | 124824 | 0.52 | 0.165 | 0.006 | 0.0240 | 0.0005 | 0.54 | 0.0498 | 0.0016 | 1 | 155 | 6  | 153 | 3 | 186 | 75  | 82  |
|------|----------|------|----|------|--------|------|-------|-------|--------|--------|------|--------|--------|---|-----|----|-----|---|-----|-----|-----|
| VOEL | VOEL-52  | 1186 | 29 | 502  | 5559   | 0.42 | 0.168 | 0.006 | 0.0243 | 0.0005 | 0.57 | 0.0502 | 0.0015 | 1 | 158 | 6  | 155 | 3 | 204 | 68  | 76  |
| VOEL | VOEL-53  | 423  | 11 | 169  | 1596   | 0.40 | 0.172 | 0.010 | 0.0249 | 0.0005 | 0.38 | 0.0501 | 0.0027 | 1 | 161 | 9  | 158 | 3 | 197 | 124 | 80  |
| VOEL | VOEL-54  | 467  | 12 | 237  | 105261 | 0.51 | 0.168 | 0.007 | 0.0248 | 0.0005 | 0.47 | 0.0492 | 0.0019 | 1 | 158 | 7  | 158 | 3 | 156 | 91  | 101 |
| VOEL | VOEL-56  | 875  | 21 | 459  | 192153 | 0.52 | 0.164 | 0.006 | 0.0242 | 0.0005 | 0.62 | 0.0493 | 0.0013 | 1 | 154 | 5  | 154 | 3 | 162 | 62  | 95  |
| VOEL | VOEL-57  | 787  | 19 | 465  | 4756   | 0.59 | 0.167 | 0.006 | 0.0245 | 0.0005 | 0.58 | 0.0495 | 0.0015 | 1 | 157 | 6  | 156 | 3 | 171 | 70  | 91  |
| VOEL | VOEL-58  | 519  | 13 | 341  | 2159   | 0.66 | 0.167 | 0.006 | 0.0245 | 0.0005 | 0.58 | 0.0493 | 0.0015 | 1 | 156 | 6  | 156 | 3 | 161 | 69  | 97  |
| VOEL | VOEL-59  | 609  | 15 | 370  | 1173   | 0.61 | 0.166 | 0.010 | 0.0239 | 0.0005 | 0.36 | 0.0503 | 0.0027 | 1 | 156 | 9  | 153 | 3 | 211 | 126 | 72  |
| VOEL | VOEL-60  | 876  | 22 | 626  | 7350   | 0.71 | 0.168 | 0.006 | 0.0247 | 0.0005 | 0.63 | 0.0493 | 0.0013 | 1 | 157 | 5  | 157 | 3 | 162 | 61  | 97  |
| VOEL | VOEL-61  | 780  | 19 | 443  | 1864   | 0.57 | 0.178 | 0.010 | 0.0242 | 0.0005 | 0.38 | 0.0533 | 0.0027 | 1 | 166 | 9  | 154 | 3 | 341 | 113 | 45  |
| VOEL | VOEL-62  | 868  | 21 | 611  | 2529   | 0.70 | 0.166 | 0.007 | 0.0243 | 0.0005 | 0.49 | 0.0493 | 0.0018 | 1 | 156 | 6  | 155 | 3 | 164 | 84  | 95  |
| VOEL | VOEL-63  | 686  | 17 | 423  | 792    | 0.62 | 0.182 | 0.009 | 0.0250 | 0.0005 | 0.43 | 0.0530 | 0.0023 | 1 | 170 | 8  | 159 | 3 | 330 | 99  | 48  |
| VOEL | VOEL-64  | 871  | 21 | 540  | 1490   | 0.62 | 0.165 | 0.006 | 0.0244 | 0.0005 | 0.57 | 0.0492 | 0.0015 | 1 | 155 | 6  | 155 | 3 | 156 | 70  | 100 |
| VOEL | VOEL-65  | 450  | 11 | 282  | 2676   | 0.63 | 0.171 | 0.010 | 0.0247 | 0.0005 | 0.35 | 0.0503 | 0.0028 | 1 | 161 | 10 | 157 | 3 | 208 | 129 | 75  |
| VOEL | VOEL-66  | 872  | 21 | 572  | 194844 | 0.66 | 0.167 | 0.006 | 0.0246 | 0.0005 | 0.64 | 0.0491 | 0.0013 | 1 | 157 | 5  | 157 | 3 | 154 | 60  | 102 |
| VOEL | VOEL-67  | 928  | 23 | 548  | 3237   | 0.59 | 0.167 | 0.006 | 0.0246 | 0.0005 | 0.61 | 0.0495 | 0.0014 | 1 | 157 | 5  | 156 | 3 | 171 | 64  | 92  |
| VOEL | VOEL-68  | 626  | 15 | 259  | 1730   | 0.41 | 0.168 | 0.008 | 0.0241 | 0.0005 | 0.41 | 0.0504 | 0.0023 | 1 | 157 | 8  | 154 | 3 | 213 | 107 | 72  |
| VOEL | VOEL-69  | 571  | 14 | 337  | 124892 | 0.59 | 0.165 | 0.009 | 0.0241 | 0.0005 | 0.36 | 0.0495 | 0.0026 | 1 | 155 | 9  | 154 | 3 | 173 | 123 | 89  |
| VOEL | VOEL-70  | 1035 | 25 | 625  | 6652   | 0.60 | 0.165 | 0.008 | 0.0242 | 0.0005 | 0.43 | 0.0496 | 0.0022 | 1 | 155 | 8  | 154 | 3 | 177 | 102 | 87  |
| VOEL | VOEL-71  | 1022 | 24 | 661  | 874    | 0.65 | 0.196 | 0.008 | 0.0239 | 0.0005 | 0.51 | 0.0595 | 0.0021 | 1 | 182 | 7  | 152 | 3 | 585 | 76  | 26  |
| VOEL | VOEL-72  | 465  | 12 | 163  | 2274   | 0.35 | 0.174 | 0.010 | 0.0248 | 0.0005 | 0.38 | 0.0509 | 0.0026 | 1 | 163 | 9  | 158 | 3 | 237 | 119 | 67  |
| VOEL | VOEL-73  | 798  | 19 | 353  | 8033   | 0.44 | 0.163 | 0.006 | 0.0238 | 0.0005 | 0.57 | 0.0499 | 0.0015 | 1 | 154 | 6  | 152 | 3 | 188 | 71  | 80  |
| VOEL | VOEL-74  | 555  | 14 | 285  | 5202   | 0.51 | 0.166 | 0.006 | 0.0245 | 0.0005 | 0.60 | 0.0490 | 0.0014 | 1 | 156 | 6  | 156 | 3 | 148 | 67  | 105 |
| VOEL | VOEL-75  | 999  | 24 | 538  | 3954   | 0.54 | 0.161 | 0.007 | 0.0236 | 0.0005 | 0.48 | 0.0495 | 0.0019 | 1 | 152 | 7  | 151 | 3 | 173 | 90  | 87  |
| VOEL | VOEL-76  | 754  | 19 | 399  | 167625 | 0.53 | 0.166 | 0.007 | 0.0246 | 0.0005 | 0.48 | 0.0491 | 0.0019 | 1 | 156 | 7  | 157 | 3 | 152 | 92  | 103 |
| VOEL | VOEL-77  | 1334 | 32 | 1265 | 3185   | 0.95 | 0.166 | 0.008 | 0.0242 | 0.0005 | 0.42 | 0.0495 | 0.0022 | 1 | 156 | 8  | 154 | 3 | 173 | 104 | 89  |
| VOEL | VOEL-78  | 330  | 8  | 128  | 871    | 0.39 | 0.170 | 0.011 | 0.0249 | 0.0005 | 0.34 | 0.0495 | 0.0030 | 1 | 159 | 10 | 158 | 3 | 171 | 142 | 93  |
| VOEL | VOEL-79  | 966  | 24 | 725  | 1356   | 0.75 | 0.167 | 0.008 | 0.0243 | 0.0005 | 0.47 | 0.0497 | 0.0020 | 1 | 156 | 7  | 155 | 3 | 179 | 95  | 87  |
| VOEL | VOEL-80  | 873  | 21 | 515  | 191995 | 0.59 | 0.165 | 0.006 | 0.0243 | 0.0005 | 0.56 | 0.0493 | 0.0016 | 1 | 155 | 6  | 155 | 3 | 162 | 74  | 96  |
| VOEL | VOEL-81  | 433  | 11 | 406  | 97503  | 0.94 | 0.171 | 0.011 | 0.0249 | 0.0005 | 0.33 | 0.0499 | 0.0030 | 1 | 160 | 10 | 159 | 3 | 188 | 142 | 84  |
| VOEL | VOEL-82  | 394  | 10 | 155  | 1683   | 0.39 | 0.167 | 0.011 | 0.0241 | 0.0005 | 0.34 | 0.0501 | 0.0030 | 1 | 157 | 10 | 154 | 3 | 200 | 138 | 77  |
| VOEL | VOEL-83  | 1072 | 25 | 681  | 1876   | 0.64 | 0.164 | 0.007 | 0.0237 | 0.0005 | 0.50 | 0.0502 | 0.0019 | 1 | 154 | 7  | 151 | 3 | 205 | 86  | 73  |
| VOEL | VOEL-84  | 759  | 18 | 474  | 2445   | 0.62 | 0.162 | 0.009 | 0.0237 | 0.0005 | 0.38 | 0.0496 | 0.0026 | 1 | 152 | 9  | 151 | 3 | 174 | 121 | 87  |
| VOEL | VOEL-85  | 501  | 12 | 265  | 1619   | 0.53 | 0.168 | 0.010 | 0.0240 | 0.0005 | 0.34 | 0.0510 | 0.0029 | 1 | 158 | 10 | 153 | 3 | 241 | 133 | 63  |
| VOEL | VOEL-86  | 1149 | 27 | 621  | 667    | 0.54 | 0.173 | 0.010 | 0.0233 | 0.0005 | 0.37 | 0.0539 | 0.0028 | 1 | 162 | 9  | 149 | 3 | 367 | 115 | 40  |
| VOEL | VOEL-87  | 501  | 12 | 239  | 1326   | 0.48 | 0.161 | 0.008 | 0.0233 | 0.0005 | 0.41 | 0.0501 | 0.0024 | 1 | 152 | 8  | 149 | 3 | 198 | 109 | 75  |
| VOEL | VOEL-88  | 510  | 12 | 262  | 1764   | 0.51 | 0.164 | 0.010 | 0.0244 | 0.0005 | 0.36 | 0.0489 | 0.0027 | 1 | 154 | 9  | 155 | 3 | 143 | 130 | 109 |
| VOEL | VOEL-89  | 239  | 6  | 122  | 3506   | 0.51 | 0.173 | 0.012 | 0.0242 | 0.0005 | 0.31 | 0.0520 | 0.0034 | 1 | 162 | 11 | 154 | 3 | 285 | 149 | 54  |
| VOEL | VOEL-90  | 761  | 18 | 485  | 1719   | 0.64 | 0.165 | 0.007 | 0.0241 | 0.0005 | 0.50 | 0.0496 | 0.0018 | 1 | 155 | 6  | 153 | 3 | 176 | 85  | 87  |
| VOEL | VOEL-91  | 691  | 16 | 521  | 2460   | 0.75 | 0.163 | 0.007 | 0.0238 | 0.0005 | 0.47 | 0.0497 | 0.0020 | 1 | 154 | 7  | 152 | 3 | 181 | 93  | 84  |
| VOEL | VOEL-92  | 425  | 10 | 167  | 2443   | 0.39 | 0.172 | 0.008 | 0.0247 | 0.0005 | 0.43 | 0.0505 | 0.0022 | 1 | 161 | 8  | 157 | 3 | 217 | 102 | 72  |
| VOEL | VOEL-93  | 599  | 15 | 451  | 131134 | 0.75 | 0.165 | 0.006 | 0.0243 | 0.0005 | 0.61 | 0.0491 | 0.0014 | 1 | 155 | 5  | 155 | 3 | 153 | 66  | 101 |
| VOEL | VOEL-94  | 748  | 18 | 690  | 1141   | 0.92 | 0.169 | 0.008 | 0.0237 | 0.0005 | 0.45 | 0.0519 | 0.0022 | 1 | 159 | 8  | 151 | 3 | 281 | 97  | 54  |
| VOEL | VOEL-95  | 570  | 14 | 332  | 1154   | 0.58 | 0.179 | 0.011 | 0.0244 | 0.0005 | 0.34 | 0.0532 | 0.0032 | 1 | 167 | 11 | 155 | 3 | 339 | 134 | 46  |
| VOEL | VOEL-96  | 578  | 15 | 573  | 2261   | 0.99 | 0.172 | 0.007 | 0.0252 | 0.0005 | 0.50 | 0.0496 | 0.0018 | 1 | 161 | 7  | 160 | 3 | 175 | 86  | 92  |
| VOEL | VOEL-97  | 741  | 18 | 372  | 4495   | 0.50 | 0.171 | 0.007 | 0.0239 | 0.0005 | 0.50 | 0.0519 | 0.0019 | 1 | 160 | 7  | 152 | 3 | 280 | 84  | 54  |
| VOEL | VOEL-98  | 510  | 12 | 253  | 8337   | 0.50 | 0.165 | 0.006 | 0.0243 | 0.0005 | 0.56 | 0.0493 | 0.0016 | 1 | 155 | 6  | 155 | 3 | 163 | 74  | 95  |
| VOEL | VOEL-100 | 1295 | 30 | 725  | 525    | 0.56 | 0.158 | 0.012 | 0.0232 | 0.0005 | 0.29 | 0.0495 | 0.0036 | 1 | 149 | 11 | 148 | 3 | 171 | 169 | 87  |
| VOEL | VOEL-101 | 366  | 9  | 286  | 6316   | 0.78 | 0.169 | 0.007 | 0.0249 | 0.0005 | 0.49 | 0.0492 | 0.0019 | 1 | 158 | 7  | 158 | 3 | 159 | 90  | 99  |
|      |          |      |    |      |        |      |       |       |        |        |      |        |        |   |     |    |     |   |     |     |     |

| VOEL | VOEL-102 | 635  | 15 | 328  | 3531   | 0.52 | 0.171 | 0.008 | 0.0239 | 0.0005 | 0.43 | 0.0521 | 0.0023 | 161 | 8  | 152 | 3 | 288 | 100 | 53  |
|------|----------|------|----|------|--------|------|-------|-------|--------|--------|------|--------|--------|-----|----|-----|---|-----|-----|-----|
| VOEL | VOEL-103 | 911  | 22 | 584  | 8934   | 0.64 | 0.169 | 0.006 | 0.0246 | 0.0005 | 0.60 | 0.0499 | 0.0014 | 159 | 6  | 157 | 3 | 189 | 66  | 83  |
| VOEL | VOEL-104 | 759  | 18 | 475  | 2457   | 0.63 | 0.160 | 0.008 | 0.0233 | 0.0005 | 0.43 | 0.0498 | 0.0023 | 151 | 8  | 149 | 3 | 184 | 106 | 81  |
| VOEL | VOEL-105 | 679  | 16 | 365  | 4923   | 0.54 | 0.164 | 0.006 | 0.0241 | 0.0005 | 0.58 | 0.0495 | 0.0015 | 154 | 6  | 153 | 3 | 171 | 71  | 90  |
| VOEL | VOEL-106 | 1546 | 36 | 2393 | 730    | 1.55 | 0.175 | 0.010 | 0.0235 | 0.0005 | 0.39 | 0.0541 | 0.0028 | 164 | 9  | 150 | 3 | 377 | 115 | 40  |
| VOEL | VOEL-107 | 1159 | 27 | 598  | 1602   | 0.52 | 0.164 | 0.007 | 0.0230 | 0.0005 | 0.49 | 0.0520 | 0.0019 | 155 | 7  | 146 | 3 | 285 | 84  | 51  |
| VOEL | VOEL-108 | 458  | 11 | 191  | 101448 | 0.42 | 0.166 | 0.006 | 0.0246 | 0.0005 | 0.57 | 0.0490 | 0.0015 | 156 | 6  | 157 | 3 | 146 | 71  | 107 |
| VOEL | VOEL-109 | 1099 | 26 | 1227 | 2045   | 1.12 | 0.161 | 0.006 | 0.0237 | 0.0005 | 0.55 | 0.0493 | 0.0016 | 152 | 6  | 151 | 3 | 162 | 74  | 93  |
| VOEL | VOEL-110 | 431  | 11 | 171  | 1888   | 0.40 | 0.169 | 0.009 | 0.0246 | 0.0005 | 0.41 | 0.0498 | 0.0023 | 159 | 8  | 157 | 3 | 187 | 109 | 84  |
| VOEL | VOEL-111 | 820  | 20 | 476  | 179489 | 0.58 | 0.165 | 0.006 | 0.0244 | 0.0005 | 0.63 | 0.0491 | 0.0013 | 155 | 5  | 155 | 3 | 150 | 62  | 103 |
| VOEL | VOEL-112 | 758  | 19 | 502  | 5472   | 0.66 | 0.174 | 0.010 | 0.0254 | 0.0005 | 0.38 | 0.0496 | 0.0025 | 163 | 9  | 162 | 3 | 176 | 119 | 92  |
| VOEL | VOEL-113 | 517  | 13 | 249  | 113789 | 0.48 | 0.166 | 0.006 | 0.0245 | 0.0005 | 0.56 | 0.0491 | 0.0015 | 156 | 6  | 156 | 3 | 153 | 73  | 102 |
| VOEL | VOEL-114 | 225  | 5  | 116  | 834    | 0.51 | 0.171 | 0.013 | 0.0233 | 0.0005 | 0.29 | 0.0533 | 0.0039 | 161 | 12 | 149 | 3 | 343 | 165 | 43  |
| VOEL | VOEL-115 | 567  | 14 | 248  | 890    | 0.44 | 0.172 | 0.012 | 0.0239 | 0.0005 | 0.31 | 0.0521 | 0.0035 | 161 | 11 | 152 | 3 | 289 | 154 | 53  |
|      |          |      |    |      |        |      |       |       |        |        |      |        |        |     |    |     |   |     |     |     |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup>Pb/<sup>235</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb)/(<sup>238</sup>U)<sup>206</sup>Pb \* 1/137.88) <sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>238</sup>U and the <sup>207</sup>/<sup>235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

| CALI   |          |                |                      |                       |           |                                      |           | RATIOS                                           |                  |                                                  |                  |                  |                                                   |                  | <u> </u> | AGES [Ma]                           |    |                                     |    |                                      |     | Conc.    |
|--------|----------|----------------|----------------------|-----------------------|-----------|--------------------------------------|-----------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------------------|---------------------------------------------------|------------------|----------|-------------------------------------|----|-------------------------------------|----|--------------------------------------|-----|----------|
| Sample | Analysis | Analysis       | U [ppm] <sup>a</sup> | Pb [ppm] <sup>a</sup> | Th [ppm]  | <sup>206</sup> Pb/ <sup>204</sup> Pb | Th/U meas | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho <sup>c</sup> | <sup>207</sup> Pb/ <sup>206</sup> Pb <sup>e</sup> | 2 σ <sup>d</sup> | _        | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ | <sup>206</sup> Pb/ <sup>238</sup> U | 2σ | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ  | %        |
| CALI   | LI-1     | A_126          | 117                  | 3                     | 66        | 16403                                | 0.56      | 0.165                                            | 0.032            | 0.02428                                          | 0.00064          | 0.14             | 0.0494                                            | 0.0093           |          | 155                                 | 30 | 155                                 | 4  | 164                                  | 441 | 94       |
| CALI   | LI-2     | A_127          | 150                  | 4                     | 96        | 21379                                | 0.64      | 0.168                                            | 0.017            | 0.02468                                          | 0.00064          | 0.25             | 0.0494                                            | 0.0049           |          | 158                                 | 16 | 157                                 | 4  | 165                                  | 232 | 95       |
| CALI   | LI-3     | A_128          | 214                  | 5                     | 181       | 30426                                | 0.84      | 0.167                                            | 0.015            | 0.02460                                          | 0.00062          | 0.27             | 0.0493                                            | 0.0044           |          | 157                                 | 14 | 157                                 | 4  | 163                                  | 207 | 96       |
| CALI   | LI-4     | A_129          | 133                  | 3                     | 04        | 040                                  | 0.63      | 0.162                                            | 0.017            | 0.02375                                          | 0.00062          | 0.25             | 0.0495                                            | 0.0050           |          | 155                                 | 21 | 151                                 | 4  | 173                                  | 230 | 0/       |
| CALL   | 11-11    | A_134          | 298                  | 7                     | 222       | 41662                                | 0.03      | 0.165                                            | 0.032            | 0.02429                                          | 0.00004          | 0.13             | 0.0488                                            | 0.0090           |          | 154                                 | 11 | 153                                 | 4  | 158                                  | 402 | 98       |
| CALI   | LI-12    | A 137          | 323                  | 8                     | 290       | 548                                  | 0.90      | 0.160                                            | 0.012            | 0.02371                                          | 0.00060          | 0.21             | 0.0489                                            | 0.0056           |          | 151                                 | 18 | 151                                 | 4  | 142                                  | 270 | 106      |
| CALI   | LI-13    | A 140          | 177                  | 4                     | 120       | 1529                                 | 0.68      | 0.165                                            | 0.019            | 0.02400                                          | 0.00062          | 0.22             | 0.0498                                            | 0.0057           |          | 155                                 | 18 | 153                                 | 4  | 188                                  | 268 | 82       |
| CALI   | LI-14    | A 141          | 178                  | 4                     | 157       | 24509                                | 0.88      | 0.162                                            | 0.020            | 0.02392                                          | 0.00062          | 0.21             | 0.0492                                            | 0.0059           |          | 153                                 | 19 | 152                                 | 4  | 159                                  | 278 | 96       |
| CALI   | LI-15    | A_142          | 404                  | 10                    | 332       | 56583                                | 0.82      | 0.164                                            | 0.011            | 0.02431                                          | 0.00060          | 0.37             | 0.0489                                            | 0.0030           |          | 154                                 | 10 | 155                                 | 4  | 142                                  | 146 | 109      |
| CALI   | LI-16    | A_143          | 327                  | 8                     | 386       | 4233                                 | 1.18      | 0.166                                            | 0.010            | 0.02457                                          | 0.00062          | 0.40             | 0.0491                                            | 0.0028           |          | 156                                 | 10 | 156                                 | 4  | 150                                  | 134 | 104      |
| CALI   | LI-18    | A_145          | 160                  | 4                     | 137       | 1194                                 | 0.86      | 0.164                                            | 0.022            | 0.02409                                          | 0.00062          | 0.19             | 0.0493                                            | 0.0064           |          | 154                                 | 21 | 153                                 | 4  | 161                                  | 306 | 95       |
| CALI   | LI-19    | A_146          | 170                  | 4                     | 143       | 1425                                 | 0.84      | 0.165                                            | 0.011            | 0.02414                                          | 0.00062          | 0.39             | 0.0495                                            | 0.0030           |          | 155                                 | 10 | 154                                 | 4  | 169                                  | 144 | 91       |
| CALI   | LI-20    | A_147          | 888                  | 22                    | 835       | 124242                               | 0.94      | 0.166                                            | 0.009            | 0.02427                                          | 0.00060          | 0.46             | 0.0496                                            | 0.0024           |          | 156                                 | 8  | 155                                 | 4  | 177                                  | 113 | 87       |
| CALI   | LI-21    | A_148          | 87                   | 2                     | 74        | 12258                                | 0.85      | 0.164                                            | 0.043            | 0.02433                                          | 0.00068          | 0.11             | 0.0490                                            | 0.0128           |          | 154                                 | 41 | 155                                 | 4  | 147                                  | 615 | 106      |
| CALI   | LI-22    | A_149          | 131                  | 3                     | 91        | 17851                                | 0.69      | 0.161                                            | 0.028            | 0.02359                                          | 0.00062          | 0.15             | 0.0494                                            | 0.0084           |          | 151                                 | 26 | 150                                 | 4  | 167                                  | 396 | 90       |
| CALI   | LI-23    | A_150<br>A_151 | 144                  | 3                     | 102       | 19000                                | 0.71      | 0.163                                            | 0.016            | 0.02401                                          | 0.00064          | 0.27             | 0.0493                                            | 0.0047           |          | 153                                 | 15 | 155                                 | 4  | 153                                  | 223 | 96       |
| CALL   | 11-25    | A 152          | 126                  | 3                     | 74        | 324                                  | 0.59      | 0.160                                            | 0.010            | 0.02356                                          | 0.00002          | 0.27             | 0.0493                                            | 0.0040           |          | 152                                 | 24 | 150                                 | 4  | 160                                  | 361 | 94       |
| CALI   | LI-26    | A 153          | 146                  | 3                     | 88        | 20111                                | 0.60      | 0.163                                            | 0.014            | 0.02388                                          | 0.00062          | 0.30             | 0.0494                                            | 0.0041           |          | 153                                 | 13 | 152                                 | 4  | 166                                  | 195 | 91       |
| CALI   | LI-28    | A 161          | 210                  | 5                     | 179       | 2946                                 | 0.85      | 0.163                                            | 0.012            | 0.02392                                          | 0.00062          | 0.34             | 0.0495                                            | 0.0036           |          | 154                                 | 12 | 152                                 | 4  | 173                                  | 168 | 88       |
| CALI   | LI-29    | A 162          | 154                  | 4                     | 94        | 20997                                | 0.61      | 0.162                                            | 0.017            | 0.02373                                          | 0.00062          | 0.25             | 0.0495                                            | 0.0050           |          | 152                                 | 16 | 151                                 | 4  | 172                                  | 234 | 88       |
| CALI   | LI-31    | A_164          | 136                  | 3                     | 82        | 2166                                 | 0.60      | 0.163                                            | 0.015            | 0.02386                                          | 0.00064          | 0.30             | 0.0494                                            | 0.0042           |          | 153                                 | 14 | 152                                 | 4  | 168                                  | 200 | 91       |
| CALI   | LI-32    | A_165          | 200                  | 5                     | 132       | 2016                                 | 0.66      | 0.161                                            | 0.014            | 0.02375                                          | 0.00062          | 0.30             | 0.0493                                            | 0.0042           |          | 152                                 | 13 | 151                                 | 4  | 162                                  | 197 | 93       |
| CALI   | LI-33    | A_166          | 201                  | 5                     | 148       | 27311                                | 0.74      | 0.162                                            | 0.010            | 0.02367                                          | 0.00060          | 0.42             | 0.0497                                            | 0.0028           |          | 153                                 | 9  | 151                                 | 4  | 182                                  | 129 | 83       |
| CALI   | LI-34    | A_167          | 155                  | 4                     | 105       | 20542                                | 0.68      | 0.157                                            | 0.016            | 0.02305                                          | 0.00060          | 0.25             | 0.0495                                            | 0.0050           |          | 148                                 | 15 | 147                                 | 4  | 171                                  | 236 | 86       |
| CALI   | LI-35    | A_168          | 85                   | 2                     | 56        | 11696                                | 0.65      | 0.161                                            | 0.023            | 0.02384                                          | 0.00066          | 0.20             | 0.0489                                            | 0.0067           |          | 151                                 | 21 | 152                                 | 4  | 141                                  | 324 | 108      |
| CALI   | LI-36    | A_169          | 193                  | 5                     | 162       | 26528                                | 0.84      | 0.164                                            | 0.012            | 0.02389                                          | 0.00062          | 0.34             | 0.0497                                            | 0.0036           |          | 154                                 | 12 | 152                                 | 4  | 181                                  | 167 | 84       |
| CALI   | LI-37    | A_170          | 221                  | 5                     | 150       | 21147                                | 0.08      | 0.163                                            | 0.012            | 0.02387                                          | 0.00062          | 0.34             | 0.0495                                            | 0.0035           |          | 153                                 | 12 | 152                                 | 4  | 109                                  | 200 | 90       |
| CALL   | LI-30    | A_171          | 133                  | 3                     | 71        | 21147                                | 0.80      | 0.104                                            | 0.013            | 0.02408                                          | 0.00004          | 0.29             | 0.0495                                            | 0.0044           |          | 154                                 | 21 | 155                                 | 4  | 171                                  | 209 | 90       |
| CALL   | 11-41    | A 176          | 118                  | 3                     | 70        | 16642                                | 0.59      | 0.160                                            | 0.016            | 0.02454                                          | 0.00066          | 0.20             | 0.0493                                            | 0.0044           |          | 157                                 | 15 | 156                                 | 4  | 164                                  | 209 | 96       |
| CALI   | LI-42    | A 177          | 167                  | 4                     | 112       | 3133                                 | 0.67      | 0.161                                            | 0.013            | 0.02367                                          | 0.00062          | 0.33             | 0.0493                                            | 0.0036           |          | 151                                 | 12 | 151                                 | 4  | 162                                  | 173 | 93       |
| CALI   | LI-43    | A 178          | 490                  | 12                    | 439       | 26394                                | 0.90      | 0.164                                            | 0.008            | 0.02413                                          | 0.00060          | 0.50             | 0.0493                                            | 0.0021           |          | 154                                 | 8  | 154                                 | 4  | 161                                  | 101 | 95       |
| CALI   | LI-49    | A_184          | 135                  | 3                     | 85        | 778                                  | 0.63      | 0.160                                            | 0.015            | 0.02373                                          | 0.00062          | 0.28             | 0.0490                                            | 0.0044           |          | 151                                 | 14 | 151                                 | 4  | 147                                  | 212 | 103      |
| CALI   | LI-50    | A_185          | 120                  | 3                     | 68        | 16498                                | 0.57      | 0.163                                            | 0.013            | 0.02389                                          | 0.00064          | 0.33             | 0.0496                                            | 0.0039           |          | 154                                 | 13 | 152                                 | 4  | 177                                  | 181 | 86       |
| CALI   | LI-52    | A_187          | 188                  | 4                     | 130       | 25640                                | 0.69      | 0.162                                            | 0.015            | 0.02375                                          | 0.00062          | 0.28             | 0.0496                                            | 0.0045           |          | 153                                 | 14 | 151                                 | 4  | 174                                  | 211 | 87       |
| CALI   | LI-53    | A_188          | 182                  | 4                     | 137       | 24670                                | 0.75      | 0.161                                            | 0.018            | 0.02364                                          | 0.00062          | 0.24             | 0.0493                                            | 0.0053           |          | 151                                 | 17 | 151                                 | 4  | 160                                  | 251 | 94       |
| CALI   | LI-54    | A_191          | 70                   | 2                     | 34        | 632                                  | 0.49      | 0.162                                            | 0.028            | 0.02392                                          | 0.00068          | 0.16             | 0.0490                                            | 0.0083           |          | 152                                 | 26 | 152                                 | 4  | 146                                  | 399 | 104      |
| CALI   | LI-55    | A_192          | 100                  | 2                     | /0        | 140                                  | 0.76      | 0.155                                            | 0.029            | 0.02299                                          | 0.00064          | 0.15             | 0.0489                                            | 0.0091           |          | 140                                 | 28 | 147                                 | 4  | 144                                  | 437 | 102      |
| CALI   | LI-50    | A_193          | 105                  | 4                     | 120       | 24635                                | 0.72      | 0.161                                            | 0.014            | 0.02376                                          | 0.00062          | 0.29             | 0.0493                                            | 0.0042           |          | 152                                 | 13 | 151                                 | 4  | 101                                  | 248 | 94       |
| CALL   | 11-58    | A 195          | 206                  | 5                     | 166       | 28085                                | 0.81      | 0.161                                            | 0.010            | 0.02424                                          | 0.00002          | 0.25             | 0.0490                                            | 0.0034           |          | 150                                 | 11 | 152                                 | 4  | 154                                  | 164 | 99       |
| CALI   | LI-59    | A 196          | 125                  | 3                     | 74        | 866                                  | 0.59      | 0.165                                            | 0.012            | 0.02423                                          | 0.00064          | 0.38             | 0.0493                                            | 0.0032           |          | 155                                 | 11 | 154                                 | 4  | 160                                  | 152 | 97       |
| CALI   | LI-60    | A_197          | 281                  | 7                     | 303       | 1594                                 | 1.08      | 0.168                                            | 0.011            | 0.02456                                          | 0.00062          | 0.38             | 0.0495                                            | 0.0030           |          | 157                                 | 10 | 156                                 | 4  | 173                                  | 143 | 90       |
| CALI   | LI-61    | A_198          | 121                  | 3                     | 74        | 16320                                | 0.62      | 0.160                                            | 0.016            | 0.02352                                          | 0.00064          | 0.28             | 0.0494                                            | 0.0047           |          | 151                                 | 15 | 150                                 | 4  | 168                                  | 220 | 89       |
| CALI   | LI-62    | A_199          | 95                   | 2                     | 53        | 13114                                | 0.56      | 0.164                                            | 0.017            | 0.02406                                          | 0.00066          | 0.26             | 0.0496                                            | 0.0050           |          | 155                                 | 16 | 153                                 | 4  | 175                                  | 234 | 87       |
| CALI   | LI-63    | A_200          | 399                  | 10                    | 297       | 2377                                 | 0.74      | 0.171                                            | 0.009            | 0.02510                                          | 0.00062          | 0.47             | 0.0494                                            | 0.0023           |          | 160                                 | 9  | 160                                 | 4  | 166                                  | 110 | 96       |
| CALI   | LI-64    | A_201          | 592                  | 14                    | 452       | 79601                                | 0.76      | 0.161                                            | 0.007            | 0.02344                                          | 0.00058          | 0.53             | 0.0497                                            | 0.0020           |          | 151                                 | 7  | 149                                 | 4  | 180                                  | 92  | 83       |
| CALI   | LI-66    | A_203          | 124                  | 3                     | 71        | 1/258                                | 0.57      | 0.166                                            | 0.015            | 0.02437                                          | 0.00066          | 0.30             | 0.0494                                            | 0.0042           |          | 156                                 | 14 | 155                                 | 4  | 165                                  | 200 | 94       |
| CALL   | LI-07    | A_204          | 364                  | 10                    | 202       | 268                                  | 0.75      | 0.100                                            | 0.020            | 0.02479                                          | 0.00062          | 0.20             | 0.0465                                            | 0.0056           |          | 150                                 | 19 | 150                                 | 4  | 124                                  | 203 | 120      |
| CALL   | 11-69    | A_203<br>A_212 | 151                  | 4                     | 100       | 20872                                | 0.66      | 0.164                                            | 0.019            | 0.02371                                          | 0.00064          | 0.32             | 0.0492                                            | 0.0057           |          | 154                                 | 18 | 154                                 | 4  | 157                                  | 270 | 98       |
| CALL   | LI-79    | A 222          | 172                  | 4                     | 119       | 1433                                 | 0.70      | 0.163                                            | 0.021            | 0.02376                                          | 0.00062          | 0.21             | 0.0499                                            | 0.0062           |          | 154                                 | 19 | 151                                 | 4  | 188                                  | 288 | 80       |
| CALI   | LI-83    | A 228          | 122                  | 3                     | 78        | 386                                  | 0.64      | 0.166                                            | 0.029            | 0.02435                                          | 0.00066          | 0.16             | 0.0496                                            | 0.0085           |          | 156                                 | 27 | 155                                 | 4  | 174                                  | 402 | 89       |
| CALI   | LI-84    | A_229          | 103                  | 3                     | 61        | 7246                                 | 0.59      | 0.169                                            | 0.016            | 0.02461                                          | 0.00066          | 0.28             | 0.0499                                            | 0.0046           |          | 159                                 | 15 | 157                                 | 4  | 188                                  | 213 | 83       |
| CALI   | LI-85    | A_230          | 860                  | 21                    | 872       | 121654                               | 1.01      | 0.168                                            | 0.008            | 0.02475                                          | 0.00062          | 0.52             | 0.0491                                            | 0.0020           |          | 157                                 | 8  | 158                                 | 4  | 153                                  | 96  | 103      |
| CALI   | LI-86    | A_231          | 207                  | 5                     | 173       | 617                                  | 0.83      | 0.166                                            | 0.017            | 0.02460                                          | 0.00064          | 0.25             | 0.0490                                            | 0.0049           |          | 156                                 | 16 | 157                                 | 4  | 146                                  | 236 | 107      |
| CALI   | LI-90    | A_235          | 101                  | 2                     | 64        | 336                                  | 0.63      | 0.166                                            | 0.017            | 0.02421                                          | 0.00066          | 0.26             | 0.0498                                            | 0.0050           |          | 156                                 | 16 | 154                                 | 4  | 184                                  | 236 | 84       |
| CALI   | LI-92    | A_237          | 200                  | 5                     | 152       | 1209                                 | 0.76      | 0.165                                            | 0.010            | 0.02446                                          | 0.00064          | 0.45             | 0.0491                                            | 0.0026           |          | 155                                 | 9  | 156                                 | 4  | 150                                  | 123 | 104      |
| CALI   | LI-93    | A_238          | 108                  | 3                     | 62        | 1403                                 | 0.58      | 0.163                                            | 0.013            | 0.02391                                          | 0.00066          | 0.35             | 0.0493                                            | 0.0037           |          | 153                                 | 12 | 152                                 | 4  | 164                                  | 175 | 93       |
| CALI   | LI-94    | A_239          | 2/0                  | 0                     | 201       | 30492<br>1979                        | 0.74      | 0.101                                            | 0.015            | 0.02303                                          | 0.00060          | 0.27             | 0.0493                                            | 0.0044           |          | 151                                 | 14 | 151                                 | 4  | 102                                  | 210 | 93       |
| CALI   | 11-90    | A 242          | 90<br>153            | 2<br>4                | 02<br>103 | 592                                  | 0.03      | 0.160                                            | 0.024            | 0.02302                                          | 0.00000          | 0.19             | 0.0492                                            | 0.0071           |          | 154                                 | 15 | 150                                 | 4  | 100                                  | 217 | 90<br>76 |
| CALI   | LI-97    | A 244          | 247                  |                       | 177       | 34242                                | 0.71      | 0.165                                            | 0.014            | 0.02427                                          | 0.00062          | 0.30             | 0.0492                                            | 0.0040           |          | 155                                 | 13 | 155                                 | 4  | 159                                  | 189 | 97       |
| CALI   | LI-99    | A 246          | 115                  | 3                     | 72        | 1131                                 | 0.63      | 0.161                                            | 0.018            | 0.02376                                          | 0.00064          | 0.24             | 0.0493                                            | 0.0053           |          | 152                                 | 17 | 151                                 | 4  | 161                                  | 253 | 94       |
| -      |          |                | -                    |                       |           |                                      |           |                                                  |                  |                                                  |                  | -                |                                                   |                  |          |                                     |    | -                                   |    | -                                    |     |          |

| CALI | LI-100 | A_247 | 154 | 4  | 109 | 20452 | 0.71 | 0.159 | 0.015 | 0.02333 | 0.00062 | 0.27 | 0.0493 | 0.0046 | 149 | 15 | 149 | 4 | 162 | 218 | 92  |
|------|--------|-------|-----|----|-----|-------|------|-------|-------|---------|---------|------|--------|--------|-----|----|-----|---|-----|-----|-----|
| CALI | LI-101 | A_248 | 122 | 3  | 69  | 16956 | 0.57 | 0.164 | 0.015 | 0.02430 | 0.00066 | 0.30 | 0.0490 | 0.0042 | 154 | 14 | 155 | 4 | 148 | 200 | 105 |
| CALI | LI-102 | A_249 | 122 | 3  | 79  | 560   | 0.65 | 0.165 | 0.015 | 0.02410 | 0.00064 | 0.30 | 0.0496 | 0.0042 | 155 | 14 | 154 | 4 | 175 | 198 | 88  |
| CALI | LI-103 | A_250 | 157 | 4  | 95  | 21578 | 0.61 | 0.165 | 0.018 | 0.02405 | 0.00064 | 0.24 | 0.0496 | 0.0053 | 155 | 17 | 153 | 4 | 177 | 248 | 86  |
| CALI | LI-104 | A_251 | 735 | 18 | 737 | 62518 | 1.00 | 0.165 | 0.009 | 0.02433 | 0.00060 | 0.48 | 0.0492 | 0.0022 | 155 | 8  | 155 | 4 | 157 | 107 | 98  |
| CALI | LI-105 | A_252 | 127 | 3  | 84  | 626   | 0.66 | 0.164 | 0.017 | 0.02373 | 0.00064 | 0.26 | 0.0500 | 0.0050 | 154 | 16 | 151 | 4 | 194 | 233 | 78  |
| CALI | LI-106 | A_253 | 236 | 6  | 201 | 32908 | 0.85 | 0.168 | 0.021 | 0.02444 | 0.00062 | 0.20 | 0.0497 | 0.0061 | 157 | 20 | 156 | 4 | 181 | 287 | 86  |
| CALI | LI-108 | A_255 | 107 | 3  | 62  | 671   | 0.58 | 0.162 | 0.022 | 0.02388 | 0.00066 | 0.20 | 0.0492 | 0.0066 | 153 | 21 | 152 | 4 | 158 | 312 | 96  |
| CALI | LI-109 | A_256 | 119 | 3  | 66  | 917   | 0.55 | 0.164 | 0.012 | 0.02413 | 0.00066 | 0.38 | 0.0494 | 0.0033 | 154 | 11 | 154 | 4 | 164 | 154 | 93  |
| CALI | LI-110 | A_262 | 123 | 3  | 78  | 16950 | 0.63 | 0.165 | 0.023 | 0.02409 | 0.00064 | 0.19 | 0.0495 | 0.0069 | 155 | 22 | 153 | 4 | 173 | 326 | 89  |
| CALI | LI-111 | A_263 | 207 | 5  | 160 | 28401 | 0.77 | 0.162 | 0.014 | 0.02405 | 0.00062 | 0.30 | 0.0489 | 0.0040 | 153 | 13 | 153 | 4 | 143 | 192 | 107 |
| CALI | LI-114 | A_266 | 119 | 3  | 70  | 487   | 0.59 | 0.160 | 0.013 | 0.02360 | 0.00064 | 0.33 | 0.0491 | 0.0038 | 151 | 12 | 150 | 4 | 154 | 183 | 98  |
| CALI | LI-115 | A_267 | 168 | 4  | 117 | 22173 | 0.70 | 0.157 | 0.011 | 0.02322 | 0.00062 | 0.38 | 0.0490 | 0.0031 | 148 | 10 | 148 | 4 | 148 | 150 | 100 |
| CALI | LI-116 | A_268 | 96  | 2  | 53  | 13249 | 0.55 | 0.166 | 0.020 | 0.02414 | 0.00066 | 0.23 | 0.0499 | 0.0058 | 156 | 19 | 154 | 4 | 189 | 271 | 81  |
| CALI | LI-118 | A_270 | 180 | 4  | 150 | 403   | 0.83 | 0.166 | 0.018 | 0.02432 | 0.00064 | 0.24 | 0.0496 | 0.0052 | 156 | 17 | 155 | 4 | 175 | 246 | 89  |
| CALI | LI-119 | A_271 | 143 | 3  | 94  | 19334 | 0.66 | 0.161 | 0.013 | 0.02380 | 0.00064 | 0.33 | 0.0491 | 0.0038 | 152 | 12 | 152 | 4 | 152 | 179 | 100 |
| CALI | LI-120 | A_272 | 148 | 3  | 107 | 779   | 0.73 | 0.158 | 0.023 | 0.02330 | 0.00062 | 0.18 | 0.0493 | 0.0070 | 149 | 22 | 148 | 4 | 163 | 331 | 91  |
|      |        |       |     |    |     |       |      |       |       |         |         |      |        |        |     |    |     |   |     |     |     |

<sup>6</sup> Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value): <sup>207</sup>Pb/<sup>205</sup>U calculated using (<sup>207</sup>Pb/<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>Pb)(<sup>208</sup>P

<sup>a</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

## Table D15. LA-ICPMS isotopic data for sample DERU in the Oudsthoorn Basin

| IJ | ĸ | U |  |
|----|---|---|--|

| DERU   | U        |                      |                       |                         |                                      |                   |                                                  |                  |                                                  | RATIOS           |                  |             | AGES [Ma] Cor    |                                     |    |                                     |         |                                      |           |     |
|--------|----------|----------------------|-----------------------|-------------------------|--------------------------------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------------------|-------------|------------------|-------------------------------------|----|-------------------------------------|---------|--------------------------------------|-----------|-----|
| Sample | Analysis | U [ppm] <sup>a</sup> | Pb [ppm] <sup>a</sup> | Th [ppm] <sup>a 2</sup> | <sup>206</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>a</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho <sup>c</sup> | 207Pb/206Pb | 2 σ <sup>d</sup> | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ | <sup>206</sup> Pb/ <sup>238</sup> U | 2 σ     | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ        | %   |
| DERU   | DERU-1   | 117                  | 3                     | 69                      | 1088                                 | 0.59              | 0.206                                            | 0.014            | 0.0291                                           | 0.0007           | 0.32             | 0.0515      | 0.0034           | 190                                 | 13 | 185                                 | 4       | 261                                  | 153       | 71  |
| DERU   | DERU-2   | 237                  | 19                    | 122                     | 182887                               | 0.51              | 0.659                                            | 0.024            | 0.0819                                           | 0.0018           | 0.60             | 0.0583      | 0.0017           | 514                                 | 19 | 508                                 | 11      | 542                                  | 64        | 94  |
| DERU   | DERU-3   | 238                  | 7                     | 120                     | 1936                                 | 0.50              | 0.209                                            | 0.008            | 0.0304                                           | 0.0007           | 0.56             | 0.0498      | 0.0016           | 192                                 | 8  | 193                                 | 4       | 188                                  | 76        | 103 |
| DERU   | DERU-5   | 120                  | 4                     | 269                     | 227                                  | 2.24              | 0.290                                            | 0.047            | 0.0304                                           | 0.0007           | 0.14             | 0.0691      | 0.0110           | 259                                 | 42 | 193                                 | 4       | 902                                  | 328       | 21  |
| DERU   | DERU-6   | 101                  | 3                     | 180                     | 28429                                | 1.78              | 0.210                                            | 0.026            | 0.0299                                           | 0.0007           | 0.18             | 0.0509      | 0.0062           | 193                                 | 24 | 190                                 | 4       | 234                                  | 280       | 81  |
| DERU   | DERU-7   | 148                  | 4                     | 282                     | 40296                                | 1.91              | 0.214                                            | 0.017            | 0.0290                                           | 0.0006           | 0.27             | 0.0536      | 0.0042           | 197                                 | 16 | 184                                 | 4       | 356                                  | 176       | 52  |
| DERU   | DERU-8   | 211                  | 17                    | 73                      | 2666                                 | 0.35              | 0.647                                            | 0.033            | 0.0811                                           | 0.0019           | 0.46             | 0.0579      | 0.0026           | 507                                 | 26 | 503                                 | 12      | 525                                  | 99        | 96  |
| DERU   | DERU-9   | 121                  | 4                     | 248                     | 1125                                 | 2.04              | 0.226                                            | 0.035            | 0.0303                                           | 0.0007           | 0.14             | 0.0540      | 0.0084           | 207                                 | 32 | 193                                 | 4       | 371                                  | 350       | 52  |
| DERU   | DERU-10  | 287                  | 9                     | 260                     | 1011                                 | 0.91              | 0.214                                            | 0.012            | 0.0297                                           | 0.0006           | 0.39             | 0.0522      | 0.0026           | 197                                 | 11 | 189                                 | 4       | 292                                  | 116       | 65  |
| DERU   | DERU-11  | 684                  | 32                    | 483                     | 28485                                | 0.71              | 0.342                                            | 0.012            | 0.0464                                           | 0.0010           | 0.62             | 0.0534      | 0.0014           | 298                                 | 10 | 292                                 | 6       | 345                                  | 61        | 85  |
| DERU   | DERU-12  | 309                  | 12                    | 108                     | 113777                               | 0.35              | 0.276                                            | 0.017            | 0.0391                                           | 0.0010           | 0.39             | 0.0512      | 0.0030           | 247                                 | 16 | 247                                 | 6       | 251                                  | 134       | 99  |
| DERU   | DERU-13  | 463                  | 14                    | 251                     | 1809                                 | 0.54              | 0.218                                            | 0.011            | 0.0298                                           | 0.0006           | 0.43             | 0.0531      | 0.0024           | 200                                 | 10 | 189                                 | 4       | 333                                  | 103       | 57  |
| DERU   | DERU-14  | 387                  | 12                    | 490                     | 10176                                | 1.27              | 0.210                                            | 0.014            | 0.0305                                           | 0.0007           | 0.34             | 0.0500      | 0.0030           | 194                                 | 13 | 194                                 | 4       | 195                                  | 141       | 99  |
| DERU   | DERU-15  | 95                   | 4                     | 48                      | 1898                                 | 0.51              | 0.279                                            | 0.022            | 0.0392                                           | 0.0010           | 0.33             | 0.0517      | 0.0039           | 250                                 | 20 | 248                                 | 7       | 270                                  | 172       | 92  |
| DERU   | DERU-16  | 313                  | 23                    | 170                     | 219332                               | 0.55              | 0.611                                            | 0.028            | 0.0747                                           | 0.0017           | 0.50             | 0.0594      | 0.0023           | 484                                 | 22 | 464                                 | 11      | 580                                  | 85        | 80  |
| DERU   | DERU-17  | 254                  | 13                    | 192                     | 55967                                | 0.76              | 0.380                                            | 0.018            | 0.0512                                           | 0.0012           | 0.49             | 0.0539      | 0.0022           | 327                                 | 15 | 322                                 | 7       | 365                                  | 91        | 88  |
| DERU   | DERU-18  | 228                  | 37                    | 73                      | 2085                                 | 0.32              | 1.747                                            | 0.061            | 0.1613                                           | 0.0035           | 0.63             | 0.0786      | 0.0021           | 1026                                | 36 | 964                                 | 21      | 1161                                 | 54        | 83  |
| DERU   | DERU-19  | 225                  | 7                     | 86                      | 62053                                | 0.38              | 0.200                                            | 0.008            | 0.0294                                           | 0.0006           | 0.55             | 0.0494      | 0.0016           | 185                                 | 7  | 187                                 | 4       | 168                                  | 78        | 111 |
| DERU   | DERU-20  | 473                  | 14                    | 323                     | 1706                                 | 0.68              | 0.201                                            | 0.010            | 0.0288                                           | 0.0006           | 0.43             | 0.0506      | 0.0023           | 186                                 | 9  | 183                                 | 4       | 221                                  | 104       | 83  |
| DERU   | DERU-22  | 289                  | 8                     | 127                     | 2926                                 | 0.44              | 0.204                                            | 0.013            | 0.0294                                           | 0.0006           | 0.34             | 0.0505      | 0.0030           | 189                                 | 12 | 187                                 | 4       | 216                                  | 139       | 86  |
| DERU   | DERU-23  | 133                  | 4                     | 57                      | 1491                                 | 0.43              | 0.214                                            | 0.012            | 0.0307                                           | 0.0007           | 0.38             | 0.0507      | 0.0027           | 197                                 | 11 | 195                                 | 4       | 227                                  | 124       | 86  |
| DERU   | DERU-24  | 632                  | 25                    | 436                     | 234645                               | 0.69              | 0.280                                            | 0.011            | 0.0396                                           | 0.0009           | 0.55             | 0.0513      | 0.0017           | 251                                 | 10 | 250                                 | 5       | 255                                  | 75        | 98  |
| DERU   | DERU-25  | 228                  | 12                    | 183                     | 40910                                | 0.80              | 0.416                                            | 0.022            | 0.0543                                           | 0.0013           | 0.44             | 0.0555      | 0.0027           | 353                                 | 19 | 341                                 | 8       | 433                                  | 107       | 79  |
| DERU   | DERU-26  | 129                  | 4                     | 224                     | 1028                                 | 1.74              | 0.195                                            | 0.028            | 0.0288                                           | 0.0008           | 0.20             | 0.0491      | 0.0069           | 181                                 | 26 | 183                                 | 5       | 152                                  | 330       | 120 |
| DERU   | DERU-27  | 270                  | 12                    | 240                     | 626                                  | 0.89              | 0.371                                            | 0.022            | 0.0443                                           | 0.0011           | 0.41             | 0.0608      | 0.0033           | 320                                 | 19 | 279                                 | 7       | 630                                  | 116       | 44  |
| DERU   | DERU-28  | 250                  | 21                    | 80                      | 22674                                | 0.32              | 0.660                                            | 0.022            | 0.0825                                           | 0.0018           | 0.66             | 0.0580      | 0.0014           | 515                                 | 1/ | 511                                 | 11      | 531                                  | 54        | 96  |
| DERU   | DERU-29  | 331                  | 9                     | 165                     | 609                                  | 0.50              | 0.210                                            | 0.018            | 0.0284                                           | 0.0006           | 0.25             | 0.0537      | 0.0045           | 194                                 | 17 | 181                                 | 4       | 359                                  | 187       | 50  |
| DERU   | DERU-30  | 273                  | 17                    | 456                     | 157440                               | 1.67              | 0.461                                            | 0.015            | 0.0616                                           | 0.0013           | 0.64             | 0.0543      | 0.0014           | 385                                 | 13 | 385                                 | 8       | 384                                  | 58        | 100 |
| DERU   | DERU-31  | 372                  | 11                    | 132                     | 27042                                | 0.36              | 0.209                                            | 0.012            | 0.0303                                           | 0.0007           | 0.39             | 0.0501      | 0.0026           | 193                                 | 11 | 192                                 | 4       | 198                                  | 119       | 97  |
| DERU   | DERU-32  | 417                  | 37                    | 38                      | 43119                                | 0.09              | 0.713                                            | 0.024            | 0.0881                                           | 0.0019           | 0.03             | 0.0587      | 0.0015           | 546                                 | 19 | 544                                 | 12      | 555                                  | 57        | 98  |
| DERU   | DERU-33  | 242                  | 9                     | 09<br>205               | 113                                  | 0.60              | 0.000                                            | 0.045            | 0.0804                                           | 0.0021           | 0.30             | 0.0589      | 0.0036           | 510                                 | 17 | 498                                 | 13      | 564                                  | 140       | 00  |
| DERU   | DERU-34  | 570                  | 24                    | 205                     | 401                                  | 0.65              | 0.202                                            | 0.016            | 0.0305                                           | 0.0007           | 0.31             | 0.0622      | 0.0041           | 230                                 | 17 | 194                                 | 4       | 502                                  | 04        | 20  |
| DERU   | DERU-30  | 572                  | 24                    | 515                     | 2022                                 | 0.55              | 0.334                                            | 0.010            | 0.0421                                           | 0.0015           | 0.40             | 0.0519      | 0.0025           | 292                                 | 14 | 200                                 | 0       | 277                                  | 94<br>240 | 105 |
| DERU   | DERU-37  | 203                  | 16                    | 101                     | 1679                                 | 0.54              | 0.529                                            | 0.037            | 0.0401                                           | 0.0013           | 0.20             | 0.0582      | 0.0030           | 209                                 | 24 | 290                                 | 9<br>11 | 538                                  | 249       | 89  |
| DERU   |          | 469                  | 20                    | 253                     | 183115                               | 0.50              | 0.321                                            | 0.030            | 0.0/08                                           | 0.0010           | 0.47             | 0.0556      | 0.0023           | 282                                 | 15 | 264                                 | 6       | 438                                  | 107       | 60  |
| DERU   | DERU-40  | 92                   | 8                     | 50                      | 1373                                 | 0.54              | 0.666                                            | 0.047            | 0.0410                                           | 0.0010           | 0.44             | 0.0583      | 0.0027           | 518                                 | 36 | 514                                 | 13      | 540                                  | 143       | 95  |
| DERU   | DERU-43  | 59                   | 5                     | 25                      | 614                                  | 0.42              | 0.762                                            | 0.046            | 0.0904                                           | 0.0022           | 0.07             | 0.0612      | 0.0034           | 575                                 | 35 | 558                                 | 14      | 645                                  | 118       | 87  |
| DERU   | DERU-44  | 303                  | 27                    | 178                     | 1965                                 | 0.45              | 0.555                                            | 0.040            | 0.0685                                           | 0.0016           | 0.48             | 0.0588      | 0.0025           | 448                                 | 22 | 427                                 | 10      | 560                                  | 93        | 76  |
| DERU   | DERU-45  | 310                  | 9                     | 445                     | 84162                                | 1 43              | 0.202                                            | 0.010            | 0.0290                                           | 0.0006           | 0.40             | 0.0504      | 0.0020           | 186                                 | 9  | 185                                 | 4       | 211                                  | 103       | 87  |
| DERU   | DERU-46  | 415                  | 18                    | 138                     | 5812                                 | 0.33              | 0.308                                            | 0.010            | 0.0432                                           | 0.0009           | 0.64             | 0.0516      | 0.0013           | 272                                 | 9  | 273                                 | 6       | 268                                  | 60        | 102 |
| DERU   | DERU-47  | 522                  | 15                    | 191                     | 658                                  | 0.37              | 0.203                                            | 0.012            | 0.0290                                           | 0.0006           | 0.35             | 0.0507      | 0.0029           | 187                                 | 11 | 184                                 | 4       | 227                                  | 132       | 81  |
| DERU   | DERU-48  | 136                  | 4                     | 91                      | 1027                                 | 0.67              | 0.216                                            | 0.025            | 0.0302                                           | 0.0007           | 0.20             | 0.0518      | 0.0058           | 198                                 | 23 | 192                                 | 4       | 277                                  | 256       | 69  |
| DERU   | DERU-49  | 419                  | 18                    | 248                     | 860                                  | 0.59              | 0.336                                            | 0.015            | 0.0434                                           | 0.0010           | 0.49             | 0.0562      | 0.0022           | 294                                 | 13 | 274                                 | 6       | 459                                  | 88        | 60  |
| DERU   | DERU-50  | 156                  | 7                     | 108                     | 22379                                | 0.69              | 0.307                                            | 0.013            | 0.0429                                           | 0.0010           | 0.52             | 0.0518      | 0.0019           | 272                                 | 12 | 271                                 | 6       | 278                                  | 84        | 98  |
| DERU   | DERU-54  | 116                  | 3                     | 136                     | 312                                  | 1.17              | 0.240                                            | 0.041            | 0.0301                                           | 0.0007           | 0.13             | 0.0577      | 0.0099           | 218                                 | 38 | 191                                 | 4       | 520                                  | 375       | 37  |
| DERU   | DERU-57  | 346                  | 25                    | 118                     | 5385                                 | 0.34              | 0.554                                            | 0.020            | 0.0716                                           | 0.0016           | 0.60             | 0.0561      | 0.0016           | 447                                 | 16 | 446                                 | 10      | 455                                  | 65        | 98  |
|        |          |                      |                       |                         |                                      |                   |                                                  |                  |                                                  |                  |                  |             |                  |                                     |    |                                     |         |                                      |           |     |

| DERU | DERU-60  | 242 | 11 | 158 | 106009 | 0.65 | 0.349 | 0.021 | 0.0472 | 0.0011 | 0.41 | 0.0536 | 0.0029 | 304  | 18 | 297  | 7  | 355  | 121 | 84  |
|------|----------|-----|----|-----|--------|------|-------|-------|--------|--------|------|--------|--------|------|----|------|----|------|-----|-----|
| DERU | DERU-63  | 122 | 11 | 57  | 98427  | 0.47 | 0.701 | 0.036 | 0.0872 | 0.0021 | 0.46 | 0.0583 | 0.0027 | 539  | 28 | 539  | 13 | 539  | 100 | 100 |
| DERU | DERU-64  | 154 | 13 | 88  | 117688 | 0.57 | 0.652 | 0.023 | 0.0825 | 0.0018 | 0.62 | 0.0574 | 0.0016 | 510  | 18 | 511  | 11 | 505  | 61  | 101 |
| DERU | DERU-65  | 269 | 51 | 108 | 4779   | 0.40 | 2.011 | 0.063 | 0.1901 | 0.0041 | 0.69 | 0.0767 | 0.0017 | 1119 | 35 | 1122 | 24 | 1113 | 45  | 101 |
| DERU | DERU-66  | 678 | 20 | 412 | 905    | 0.61 | 0.200 | 0.010 | 0.0291 | 0.0006 | 0.44 | 0.0499 | 0.0023 | 185  | 9  | 185  | 4  | 192  | 105 | 96  |
| DERU | DERU-67  | 322 | 10 | 641 | 7090   | 1.99 | 0.211 | 0.019 | 0.0298 | 0.0007 | 0.25 | 0.0512 | 0.0044 | 194  | 17 | 189  | 4  | 250  | 200 | 76  |
| DERU | DERU-70  | 263 | 8  | 97  | 10507  | 0.37 | 0.200 | 0.008 | 0.0292 | 0.0006 | 0.52 | 0.0498 | 0.0018 | 185  | 8  | 185  | 4  | 186  | 83  | 100 |
| DERU | DERU-71  | 591 | 24 | 382 | 1555   | 0.65 | 0.324 | 0.016 | 0.0411 | 0.0010 | 0.47 | 0.0573 | 0.0025 | 285  | 14 | 259  | 6  | 502  | 97  | 52  |
| DERU | DERU-74  | 289 | 9  | 88  | 1904   | 0.30 | 0.204 | 0.015 | 0.0296 | 0.0007 | 0.30 | 0.0499 | 0.0035 | 188  | 14 | 188  | 4  | 191  | 164 | 98  |
| DERU | DERU-75  | 990 | 29 | 792 | 137    | 0.80 | 0.267 | 0.017 | 0.0295 | 0.0006 | 0.34 | 0.0657 | 0.0039 | 240  | 15 | 187  | 4  | 796  | 126 | 24  |
| DERU | DERU-76  | 344 | 29 | 64  | 1874   | 0.19 | 0.719 | 0.028 | 0.0847 | 0.0019 | 0.58 | 0.0616 | 0.0019 | 550  | 21 | 524  | 12 | 660  | 67  | 79  |
| DERU | DERU-77  | 164 | 7  | 66  | 65047  | 0.40 | 0.311 | 0.017 | 0.0428 | 0.0010 | 0.44 | 0.0527 | 0.0026 | 275  | 15 | 270  | 6  | 314  | 111 | 86  |
| DERU | DERU-78  | 254 | 8  | 233 | 70471  | 0.92 | 0.207 | 0.010 | 0.0300 | 0.0007 | 0.44 | 0.0501 | 0.0022 | 191  | 10 | 191  | 4  | 198  | 104 | 96  |
| DERU | DERU-79  | 128 | 4  | 214 | 882    | 1.67 | 0.212 | 0.018 | 0.0287 | 0.0007 | 0.28 | 0.0535 | 0.0043 | 195  | 16 | 182  | 4  | 350  | 180 | 52  |
| DERU | DERU-83  | 306 | 15 | 194 | 135289 | 0.63 | 0.349 | 0.020 | 0.0478 | 0.0012 | 0.43 | 0.0529 | 0.0027 | 304  | 17 | 301  | 7  | 324  | 117 | 93  |
| DERU | DERU-84  | 179 | 5  | 83  | 3212   | 0.46 | 0.205 | 0.010 | 0.0292 | 0.0007 | 0.45 | 0.0509 | 0.0023 | 189  | 10 | 185  | 4  | 234  | 104 | 79  |
| DERU | DERU-86  | 683 | 85 | 121 | 11508  | 0.18 | 1.115 | 0.035 | 0.1252 | 0.0027 | 0.70 | 0.0646 | 0.0014 | 761  | 24 | 760  | 17 | 762  | 47  | 100 |
| DERU | DERU-88  | 293 | 8  | 243 | 21032  | 0.83 | 0.198 | 0.008 | 0.0289 | 0.0006 | 0.56 | 0.0495 | 0.0016 | 183  | 7  | 184  | 4  | 173  | 76  | 106 |
| DERU | DERU-89  | 260 | 14 | 131 | 1069   | 0.50 | 0.484 | 0.028 | 0.0520 | 0.0013 | 0.43 | 0.0675 | 0.0035 | 401  | 23 | 327  | 8  | 854  | 107 | 38  |
| DERU | DERU-90  | 192 | 8  | 261 | 1944   | 1.36 | 0.302 | 0.024 | 0.0404 | 0.0011 | 0.35 | 0.0542 | 0.0040 | 268  | 21 | 255  | 7  | 379  | 166 | 67  |
| DERU | DERU-92  | 201 | 6  | 55  | 1645   | 0.27 | 0.206 | 0.010 | 0.0299 | 0.0007 | 0.48 | 0.0500 | 0.0021 | 191  | 9  | 190  | 4  | 197  | 98  | 97  |
| DERU | DERU-93  | 228 | 9  | 93  | 3903   | 0.41 | 0.308 | 0.025 | 0.0405 | 0.0011 | 0.34 | 0.0550 | 0.0042 | 272  | 22 | 256  | 7  | 414  | 170 | 62  |
| DERU | DERU-94  | 427 | 13 | 692 | 1804   | 1.62 | 0.204 | 0.010 | 0.0293 | 0.0006 | 0.46 | 0.0504 | 0.0021 | 188  | 9  | 186  | 4  | 212  | 97  | 88  |
| DERU | DERU-95  | 380 | 11 | 362 | 224    | 0.95 | 0.220 | 0.015 | 0.0287 | 0.0006 | 0.32 | 0.0556 | 0.0037 | 202  | 14 | 182  | 4  | 435  | 149 | 42  |
| DERU | DERU-96  | 432 | 19 | 327 | 3178   | 0.76 | 0.318 | 0.011 | 0.0442 | 0.0010 | 0.62 | 0.0521 | 0.0015 | 280  | 10 | 279  | 6  | 289  | 64  | 97  |
| DERU | DERU-98  | 455 | 14 | 241 | 607    | 0.53 | 0.233 | 0.014 | 0.0302 | 0.0007 | 0.37 | 0.0558 | 0.0031 | 212  | 13 | 192  | 4  | 445  | 123 | 43  |
| DERU | DERU-99  | 284 | 19 | 117 | 4875   | 0.41 | 0.563 | 0.037 | 0.0663 | 0.0017 | 0.39 | 0.0616 | 0.0038 | 454  | 30 | 414  | 11 | 662  | 131 | 63  |
| DERU | DERU-100 | 255 | 8  | 131 | 69041  | 0.51 | 0.207 | 0.012 | 0.0294 | 0.0007 | 0.37 | 0.0511 | 0.0029 | 191  | 12 | 187  | 4  | 246  | 129 | 76  |
| DERU | DERU-101 | 432 | 13 | 367 | 874    | 0.85 | 0.204 | 0.011 | 0.0291 | 0.0006 | 0.40 | 0.0507 | 0.0026 | 188  | 10 | 185  | 4  | 228  | 118 | 81  |
| DERU | DERU-102 | 379 | 15 | 175 | 2115   | 0.46 | 0.297 | 0.021 | 0.0404 | 0.0010 | 0.36 | 0.0533 | 0.0035 | 264  | 19 | 255  | 7  | 340  | 149 | 75  |
| DERU | DERU-103 | 338 | 14 | 196 | 2281   | 0.58 | 0.285 | 0.013 | 0.0401 | 0.0009 | 0.50 | 0.0515 | 0.0021 | 254  | 12 | 253  | 6  | 264  | 92  | 96  |
| DERU | DERU-104 | 92  | 3  | 163 | 719    | 1.77 | 0.229 | 0.029 | 0.0298 | 0.0007 | 0.19 | 0.0557 | 0.0069 | 209  | 26 | 189  | 4  | 440  | 274 | 43  |
| DERU | DERU-105 | 118 | 3  | 208 | 1767   | 1.77 | 0.205 | 0.011 | 0.0295 | 0.0007 | 0.43 | 0.0505 | 0.0024 | 190  | 10 | 187  | 4  | 220  | 112 | 85  |
| DERU | DERU-106 | 236 | 18 | 187 | 2956   | 0.79 | 0.604 | 0.026 | 0.0763 | 0.0017 | 0.53 | 0.0574 | 0.0021 | 479  | 21 | 474  | 11 | 507  | 81  | 93  |
| DERU | DERU-107 | 324 | 10 | 717 | 376    | 2.22 | 0.209 | 0.018 | 0.0302 | 0.0007 | 0.26 | 0.0501 | 0.0042 | 193  | 17 | 192  | 4  | 201  | 193 | 95  |
| DERU | DERU-109 | 195 | 38 | 171 | 349712 | 0.88 | 2.109 | 0.084 | 0.1951 | 0.0045 | 0.58 | 0.0784 | 0.0025 | 1152 | 46 | 1149 | 26 | 1158 | 64  | 99  |
| DERU | DERU-110 | 260 | 8  | 341 | 1988   | 1.31 | 0.201 | 0.008 | 0.0295 | 0.0007 | 0.55 | 0.0495 | 0.0017 | 186  | 8  | 188  | 4  | 170  | 79  | 110 |
| DERU | DERU-111 | 79  | 6  | 63  | 51908  | 0.80 | 0.561 | 0.053 | 0.0720 | 0.0022 | 0.32 | 0.0565 | 0.0050 | 452  | 42 | 448  | 13 | 474  | 196 | 95  |
| DERU | DERU-113 | 89  | 3  | 99  | 4068   | 1.10 | 0.197 | 0.023 | 0.0284 | 0.0007 | 0.20 | 0.0503 | 0.0058 | 182  | 22 | 180  | 4  | 210  | 269 | 86  |
| DERU | DERU-114 | 625 | 19 | 813 | 825    | 1.30 | 0.209 | 0.008 | 0.0304 | 0.0007 | 0.58 | 0.0499 | 0.0015 | 193  | 7  | 193  | 4  | 189  | 72  | 102 |
| DERU | DERU-115 | 495 | 15 | 449 | 2649   | 0.91 | 0.206 | 0.009 | 0.0300 | 0.0007 | 0.49 | 0.0497 | 0.0019 | 190  | 8  | 191  | 4  | 182  | 90  | 105 |
|      |          |     |    |     |        |      |       |       |        |        |      |        |        |      |    |      |    |      |     |     |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup>Pb/<sup>235</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb)/(<sup>238</sup>U)<sup>206</sup>Pb \* 1/137.88)

<sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>238</sup>U and the <sup>207/235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

| DERC1  | C1       |                      |                       |                         |                                     |                          |                                                  |                  | I                                                | RATIOS           |                  |                                       | AGES [Ma] Co     |                                     |          |                                     |        |                                      |           |           |
|--------|----------|----------------------|-----------------------|-------------------------|-------------------------------------|--------------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------------------|---------------------------------------|------------------|-------------------------------------|----------|-------------------------------------|--------|--------------------------------------|-----------|-----------|
| Sample | Analysis | U [ppm] <sup>a</sup> | Pb [ppm] <sup>a</sup> | Th [ppm] <sup>a 2</sup> | <sup>06</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>a</sup>        | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho <sup>c</sup> | <sup>207</sup> Pb/ <sup>206</sup> Pb' | 2 σ <sup>d</sup> | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ       | <sup>206</sup> Pb/ <sup>238</sup> U | 2σ     | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ        | %         |
| DERC1  | DERC1-2  | 146                  | 26                    | 47                      | 4888                                | 0.32                     | 1.836                                            | 0.050            | 0.1779                                           | 0.0026           | 0.53             | 0.0749                                | 0.0017           | 1058                                | 29       | 1055                                | 15     | 1064                                 | 47        | 99        |
| DERC1  | DERC1-3  | 212                  | 7                     | 389                     | 651                                 | 1.84                     | 0.218                                            | 0.008            | 0.0314                                           | 0.0005           | 0.42             | 0.0504                                | 0.0017           | 201                                 | 8        | 200                                 | 3      | 212                                  | 80        | 94        |
| DERC1  | DERC1-4  | 242                  | 10                    | 223                     | 83743                               | 0.92                     | 0.306                                            | 0.015            | 0.0426                                           | 0.0007           | 0.36             | 0.0521                                | 0.0024           | 271                                 | 13       | 269                                 | 5      | 288                                  | 104       | 93        |
| DERC1  | DERC1-5  | 479                  | 19                    | 345                     | 150689                              | 0.72                     | 0.307                                            | 0.017            | 0.0388                                           | 0.0007           | 0.31             | 0.0574                                | 0.0030           | 272                                 | 15       | 245                                 | 4      | 508                                  | 113       | 48        |
| DERC1  | DERC1-6  | 101                  | 3                     | 67                      | 344                                 | 0.66                     | 0.231                                            | 0.032            | 0.0296                                           | 0.0005           | 0.12             | 0.0566                                | 0.0077           | 211                                 | 29       | 188                                 | 3      | 475                                  | 303       | 40        |
| DERC1  | DERC1-7  | 399                  | 12                    | 314                     | 3400                                | 0.79                     | 0.201                                            | 0.008            | 0.0292                                           | 0.0004           | 0.37             | 0.0498                                | 0.0019           | 186                                 | 8        | 186                                 | 3      | 185                                  | 89        | 100       |
| DERC1  | DERC1-8  | 366                  | 11                    | 220                     | 1329                                | 0.60                     | 0.197                                            | 0.010            | 0.0288                                           | 0.0004           | 0.30             | 0.0497                                | 0.0025           | 183                                 | 9        | 183                                 | 3      | 183                                  | 115       | 100       |
| DERC1  | DERC1-9  | 111                  | 5                     | 127                     | 26628                               | 1.14                     | 0.294                                            | 0.018            | 0.0416                                           | 0.0008           | 0.32             | 0.0513                                | 0.0030           | 262                                 | 16       | 263                                 | 5      | 256                                  | 133       | 103       |
| DERC1  | DERC1-10 | 251                  | 7                     | 398                     | 692                                 | 1.59                     | 0.201                                            | 0.016            | 0.0292                                           | 0.0004           | 0.19             | 0.0499                                | 0.0040           | 186                                 | 15       | 185                                 | 3      | 192                                  | 185       | 96        |
| DERC1  | DERC1-12 | 136                  | 4                     | 174                     | 9536                                | 1.28                     | 0.219                                            | 0.015            | 0.0315                                           | 0.0005           | 0.23             | 0.0504                                | 0.0034           | 201                                 | 14       | 200                                 | 3      | 214                                  | 157       | 93        |
| DERC1  | DERC1-13 | 67                   | 6                     | 16                      | 2206                                | 0.24                     | 0.793                                            | 0.032            | 0.0967                                           | 0.0016           | 0.41             | 0.0595                                | 0.0022           | 593                                 | 24       | 595                                 | 10     | 585                                  | 80        | 102       |
| DERC1  | DERC1-14 | 78                   | 2                     | 141                     | 374                                 | 1.82                     | 0.203                                            | 0.032            | 0.0290                                           | 0.0005           | 0.12             | 0.0508                                | 0.0080           | 188                                 | 30       | 184                                 | 3      | 232                                  | 364       | 79        |
| DERC1  | DERC1-15 | 390                  | 12                    | 402                     | 98029                               | 1.03                     | 0.215                                            | 0.008            | 0.0310                                           | 0.0005           | 0.41             | 0.0503                                | 0.0017           | 198                                 | 7        | 197                                 | 3      | 209                                  | 77        | 94        |
| DERC1  | DERC1-17 | 464                  | 13                    | 275                     | 78226                               | 0.59                     | 0.199                                            | 0.007            | 0.0290                                           | 0.0004           | 0.44             | 0.0497                                | 0.0015           | 184                                 | 6        | 184                                 | 3      | 181                                  | 72        | 102       |
| DERC1  | DERC1-18 | 94                   | 3                     | 172                     | 740                                 | 1.83                     | 0.203                                            | 0.016            | 0.0294                                           | 0.0005           | 0.24             | 0.0500                                | 0.0037           | 188                                 | 14       | 187                                 | 3      | 196                                  | 174       | 95        |
| DERC1  | DERC1-19 | 243                  | 7                     | 242                     | 2006                                | 0.99                     | 0.207                                            | 0.012            | 0.0288                                           | 0.0004           | 0.25             | 0.0523                                | 0.0030           | 191                                 | 12       | 183                                 | 3      | 299                                  | 133       | 61        |
| DERC1  | DERC1-20 | 69                   | 2                     | 76                      | 17561                               | 1.10                     | 0.217                                            | 0.012            | 0.0313                                           | 0.0006           | 0.34             | 0.0502                                | 0.0026           | 199                                 | 11       | 198                                 | 4      | 205                                  | 120       | 97        |
| DERC1  | DERC1-21 | 296                  | 17                    | 140                     | 2707                                | 0.47                     | 0.432                                            | 0.014            | 0.0580                                           | 0.0009           | 0.46             | 0.0540                                | 0.0016           | 364                                 | 12       | 364                                 | 6      | 369                                  | 67        | 99        |
| DERC1  | DERC1-22 | 126                  | 5                     | 115                     | 1021                                | 0.91                     | 0.252                                            | 0.015            | 0.0360                                           | 0.0007           | 0.33             | 0.0509                                | 0.0028           | 228                                 | 13       | 228                                 | 4      | 234                                  | 126       | 97        |
| DERC1  | DERC1-23 | 79                   | 2                     | 88                      | 2511                                | 1.10                     | 0.199                                            | 0.017            | 0.0289                                           | 0.0005           | 0.21             | 0.0501                                | 0.0043           | 184                                 | 16       | 183                                 | 3      | 197                                  | 198       | 93        |
| DERC1  | DERC1-25 | 733                  | 27                    | 349                     | 219176                              | 0.48                     | 0.262                                            | 0.012            | 0.0369                                           | 0.0006           | 0.36             | 0.0516                                | 0.0022           | 236                                 | 11       | 233                                 | 4      | 266                                  | 100       | 88        |
| DERC1  | DERC1-26 | 346                  | 10                    | 348                     | 236                                 | 1.01                     | 0.237                                            | 0.022            | 0.0294                                           | 0.0004           | 0.16             | 0.0585                                | 0.0055           | 216                                 | 20       | 187                                 | 3      | 549                                  | 204       | 34        |
| DERC1  | DERC1-27 | 214                  | 6                     | 254                     | 51416                               | 1.19                     | 0.208                                            | 0.013            | 0.0297                                           | 0.0005           | 0.24             | 0.0509                                | 0.0032           | 192                                 | 12       | 188                                 | 3      | 235                                  | 143       | 80        |
| DERC1  | DERC1-28 | 322                  | 13                    | 252                     | 759                                 | 0.78                     | 0.347                                            | 0.028            | 0.0401                                           | 0.0006           | 0.19             | 0.0628                                | 0.0050           | 302                                 | 24       | 253                                 | 4      | 702                                  | 169       | 36        |
| DERC1  | DERC1-29 | 109                  | 3                     | 139                     | 3398                                | 1.28                     | 0.202                                            | 0.017            | 0.0294                                           | 0.0005           | 0.21             | 0.0498                                | 0.0040           | 187                                 | 15       | 187                                 | 3      | 186                                  | 186       | 101       |
| DERC1  | DERC1-30 | 280                  | 8                     | 295                     | 713                                 | 1.05                     | 0.198                                            | 0.015            | 0.0287                                           | 0.0004           | 0.20             | 0.0500                                | 0.0037           | 184                                 | 14       | 183                                 | 3      | 195                                  | 172       | 94        |
| DERC1  | DERC1-31 | 60                   | 2                     | 79                      | 14415                               | 1.32                     | 0.205                                            | 0.030            | 0.0297                                           | 0.0006           | 0.13             | 0.0502                                | 0.0073           | 190                                 | 28       | 189                                 | 4      | 203                                  | 338       | 93        |
| DERC1  | DERC1-32 | 270                  | 9                     | 362                     | 405                                 | 1.34                     | 0.222                                            | 0.014            | 0.0319                                           | 0.0005           | 0.24             | 0.0506                                | 0.0030           | 204                                 | 13       | 202                                 | 3      | 220                                  | 139       | 92        |
| DERC1  | DERC1-34 | 381                  | 11                    | 515                     | 90232                               | 1.35                     | 0.200                                            | 0.008            | 0.0292                                           | 0.0004           | 0.38             | 0.0498                                | 0.0018           | 186                                 | 7        | 186                                 | 3      | 186                                  | 85        | 100       |
| DERC1  | DERC1-35 | 165                  | 5                     | 296                     | 41812                               | 1.79                     | 0.216                                            | 0.013            | 0.0312                                           | 0.0005           | 0.26             | 0.0501                                | 0.0030           | 198                                 | 12       | 198                                 | 3      | 200                                  | 140       | 99        |
| DERC1  | DERC1-36 | 202                  | 6                     | 363                     | 923                                 | 1.80                     | 0.198                                            | 0.011            | 0.0289                                           | 0.0005           | 0.28             | 0.0498                                | 0.0027           | 184                                 | 10       | 184                                 | 3      | 187                                  | 127       | 98        |
| DERC1  | DERC1-37 | 122                  | 4                     | 190                     | 1239                                | 1.55                     | 0.218                                            | 0.012            | 0.0313                                           | 0.0005           | 0.29             | 0.0507                                | 0.0027           | 201                                 | 11       | 199                                 | 3      | 225                                  | 121       | 88        |
| DERC1  | DERC1-40 | 228                  | 17                    | 151                     | 134895                              | 0.66                     | 0.592                                            | 0.032            | 0.0730                                           | 0.0011           | 0.29             | 0.0589                                | 0.0031           | 472                                 | 26       | 454                                 | 7      | 563                                  | 114       | 81        |
| DERC1  | DERC1-42 | 210                  | 6                     | 329                     | 3262                                | 1.56                     | 0.200                                            | 0.011            | 0.0293                                           | 0.0005           | 0.30             | 0.0496                                | 0.0025           | 186                                 | 10       | 186                                 | 3      | 1/5                                  | 118       | 107       |
| DERC1  | DERC1-44 | 167                  | 5                     | 295                     | 7590                                | 1.77                     | 0.217                                            | 0.010            | 0.0313                                           | 0.0005           | 0.34             | 0.0503                                | 0.0022           | 199                                 | 9        | 198                                 | 3      | 209                                  | 101       | 95        |
| DERC1  | DERC1-45 | 145                  | 4                     | 224                     | 531                                 | 1.55                     | 0.213                                            | 0.016            | 0.0296                                           | 0.0005           | 0.21             | 0.0522                                | 0.0039           | 196                                 | 15       | 188                                 | 3      | 295                                  | 170       | 64        |
| DERCI  | DERC1-46 | 165                  | 5                     | 134                     | 889                                 | 0.81                     | 0.204                                            | 0.023            | 0.0295                                           | 0.0005           | 0.14             | 0.0502                                | 0.0056           | 188                                 | 21       | 187                                 | 3      | 203                                  | 260       | 92        |
| DERCI  | DERC1-47 | 109                  | 3                     | 171                     | 20027                               | 1.57                     | 0.202                                            | 0.026            | 0.0294                                           | 0.0005           | 0.13             | 0.0498                                | 0.0062           | 187                                 | 24       | 187                                 | 3      | 187                                  | 291       | 100       |
| DERCI  | DERC1-48 | 494                  | 15                    | 415                     | 1960                                | 0.84                     | 0.208                                            | 0.009            | 0.0302                                           | 0.0004           | 0.34             | 0.0498                                | 0.0020           | 191                                 | 8        | 192                                 | 3      | 184                                  | 94        | 104       |
| DERCI  | DERC1-49 | 231                  | 23                    | 29<br>224               | 23325                               | 0.25                     | 0.797                                            | 0.024            | 0.0973                                           | 0.0014           | 0.50             | 0.0594                                | 0.0015           | 292                                 | 10       | 204                                 | 9      | 280                                  | 00<br>177 | 103       |
| DERCI  | DERC1-51 | 242                  | 8<br>2                | 231                     | 400                                 | 0.95                     | 0.252                                            | 0.021            | 0.0322                                           | 0.0005           | 0.19             | 0.0509                                | 0.0040           | 229                                 | 19       | 204                                 | 3      | 489                                  | 1//       | 42<br>05  |
|        | DERC1-52 | 108                  | э<br>0                | 203                     | Z1Z/                                | ∠. <del>44</del><br>1.50 | 0.204                                            | 0.025            | 0.0295                                           | 0.0005           | 0.14             | 0.0501                                | 0.0001           | 100                                 | 23<br>6  | 10/                                 | 3      | 198                                  | 204<br>72 | 90<br>101 |
|        |          | 200                  | 0                     | 402                     | 020Z                                | 1.50                     | 0.201                                            | 0.007            | 0.0293                                           | 0.0004           | 0.43             | 0.0498                                | 0.0010           | 100                                 | 0        | 100                                 | 3      | 103                                  | 13        | 101       |
|        | DERC1-54 | 40                   | 1 22                  | 09                      | 9004<br>706                         | 0.20                     | 0.207                                            | 0.024            | 0.0303                                           | 0.0006           | 0.17             | 0.0490                                | 0.0030           | 191                                 | 22       | 193                                 | 4      | 972                                  | 209       | 109       |
| DERCI  | DERC1-00 | 260                  | ∠3<br>21              | 92<br>12                | 190                                 | 0.00                     | 0.700                                            | 0.031            | 0.0745                                           | 0.0011           | 0.34             | 0.0001                                | 0.0029           | 539                                 | 24       | 403                                 | /<br>0 | 609                                  | 07<br>82  | 55<br>70  |
| DERCI  | DERC1 57 | 209                  | 21                    | 1/7                     | 2/166                               | 1.48                     | 0.000                                            | 0.029            | 0.0792                                           | 0.0013           | 0.40             | 0.0027                                | 0.0024           | 100                                 | 22<br>11 | 431<br>101                          | 0<br>2 | 120                                  | 02<br>129 | 106       |
| DERGI  | DENGI-3/ | 59                   | J                     | 147                     | 24100                               | 1.40                     | 0.200                                            | 0.012            | 0.0300                                           | 0.0005           | 0.31             | 0.0497                                | 0.0021           | 190                                 | 11       | 191                                 | 3      | 100                                  | 120       | 100       |

| DERC1 | DERC1-58  | 137 | 4  | 167 | 953    | 1.22 | 0.206 | 0.012 | 0.0301 | 0.0005 | 0.28 | 0.0498 | 0.0028 | 190 | 11 | 191 | 3  | 186  | 133 | 103 |
|-------|-----------|-----|----|-----|--------|------|-------|-------|--------|--------|------|--------|--------|-----|----|-----|----|------|-----|-----|
| DERC1 | DERC1-59  | 192 | 21 | 102 | 249262 | 0.53 | 0.921 | 0.054 | 0.1076 | 0.0022 | 0.35 | 0.0621 | 0.0034 | 663 | 39 | 659 | 13 | 678  | 116 | 97  |
| DERC1 | DERC1-60  | 186 | 6  | 176 | 44803  | 0.94 | 0.205 | 0.015 | 0.0297 | 0.0005 | 0.22 | 0.0501 | 0.0037 | 189 | 14 | 189 | 3  | 198  | 171 | 95  |
| DERC1 | DERC1-61  | 44  | 1  | 63  | 11212  | 1.44 | 0.219 | 0.017 | 0.0314 | 0.0006 | 0.26 | 0.0505 | 0.0037 | 201 | 15 | 199 | 4  | 219  | 169 | 91  |
| DERC1 | DERC1-62  | 62  | 2  | 86  | 14762  | 1.38 | 0.201 | 0.017 | 0.0293 | 0.0005 | 0.22 | 0.0499 | 0.0040 | 186 | 15 | 186 | 3  | 188  | 189 | 99  |
| DERC1 | DERC1-65  | 363 | 14 | 294 | 109340 | 0.81 | 0.260 | 0.017 | 0.0372 | 0.0008 | 0.31 | 0.0507 | 0.0032 | 235 | 15 | 236 | 5  | 227  | 145 | 104 |
| DERC1 | DERC1-66  | 144 | 4  | 175 | 1673   | 1.21 | 0.216 | 0.009 | 0.0312 | 0.0005 | 0.39 | 0.0501 | 0.0019 | 198 | 8  | 198 | 3  | 200  | 87  | 99  |
| DERC1 | DERC1-67  | 402 | 18 | 235 | 3285   | 0.58 | 0.332 | 0.010 | 0.0460 | 0.0007 | 0.48 | 0.0523 | 0.0014 | 291 | 9  | 290 | 4  | 300  | 61  | 97  |
| DERC1 | DERC1-68  | 76  | 2  | 106 | 7852   | 1.39 | 0.208 | 0.026 | 0.0298 | 0.0005 | 0.14 | 0.0507 | 0.0064 | 192 | 24 | 189 | 3  | 228  | 291 | 83  |
| DERC1 | DERC1-71  | 483 | 32 | 263 | 4950   | 0.54 | 0.504 | 0.021 | 0.0659 | 0.0011 | 0.39 | 0.0555 | 0.0021 | 414 | 17 | 411 | 7  | 430  | 85  | 96  |
| DERC1 | DERC1-72  | 450 | 14 | 412 | 115307 | 0.92 | 0.219 | 0.010 | 0.0317 | 0.0005 | 0.38 | 0.0501 | 0.0020 | 201 | 9  | 201 | 3  | 201  | 94  | 100 |
| DERC1 | DERC1-74  | 348 | 17 | 359 | 1532   | 1.03 | 0.392 | 0.025 | 0.0486 | 0.0010 | 0.33 | 0.0585 | 0.0036 | 336 | 22 | 306 | 6  | 549  | 133 | 56  |
| DERC1 | DERC1-75  | 268 | 22 | 79  | 52108  | 0.29 | 0.667 | 0.019 | 0.0836 | 0.0012 | 0.51 | 0.0578 | 0.0014 | 519 | 15 | 518 | 8  | 524  | 54  | 99  |
| DERC1 | DERC1-76  | 153 | 5  | 383 | 922    | 2.50 | 0.210 | 0.012 | 0.0300 | 0.0005 | 0.27 | 0.0508 | 0.0029 | 193 | 11 | 190 | 3  | 232  | 131 | 82  |
| DERC1 | DERC1-77  | 49  | 2  | 87  | 626    | 1.77 | 0.222 | 0.035 | 0.0318 | 0.0006 | 0.12 | 0.0506 | 0.0078 | 204 | 32 | 202 | 4  | 224  | 357 | 90  |
| DERC1 | DERC1-78  | 537 | 16 | 543 | 128107 | 1.01 | 0.202 | 0.008 | 0.0295 | 0.0004 | 0.40 | 0.0496 | 0.0017 | 187 | 7  | 187 | 3  | 177  | 80  | 106 |
| DERC1 | DERC1-79  | 238 | 10 | 203 | 21086  | 0.85 | 0.300 | 0.010 | 0.0423 | 0.0006 | 0.46 | 0.0513 | 0.0015 | 266 | 9  | 267 | 4  | 256  | 67  | 105 |
| DERC1 | DERC1-80  | 137 | 13 | 61  | 105890 | 0.44 | 0.785 | 0.027 | 0.0957 | 0.0015 | 0.46 | 0.0595 | 0.0018 | 588 | 20 | 589 | 9  | 585  | 66  | 101 |
| DERC1 | DERC1-81  | 74  | 7  | 43  | 53722  | 0.58 | 0.723 | 0.025 | 0.0895 | 0.0014 | 0.45 | 0.0585 | 0.0018 | 552 | 19 | 553 | 9  | 550  | 69  | 100 |
| DERC1 | DERC1-82  | 432 | 32 | 25  | 260853 | 0.06 | 0.583 | 0.019 | 0.0746 | 0.0011 | 0.46 | 0.0567 | 0.0017 | 467 | 16 | 464 | 7  | 479  | 66  | 97  |
| DERC1 | DERC1-85  | 74  | 2  | 111 | 484    | 1.50 | 0.225 | 0.039 | 0.0298 | 0.0005 | 0.10 | 0.0548 | 0.0095 | 206 | 36 | 189 | 3  | 405  | 387 | 47  |
| DERC1 | DERC1-87  | 110 | 3  | 159 | 874    | 1.45 | 0.206 | 0.024 | 0.0297 | 0.0005 | 0.14 | 0.0503 | 0.0058 | 190 | 22 | 189 | 3  | 209  | 268 | 90  |
| DERC1 | DERC1-88  | 125 | 10 | 22  | 732    | 0.18 | 0.622 | 0.035 | 0.0779 | 0.0015 | 0.35 | 0.0579 | 0.0031 | 491 | 28 | 484 | 9  | 525  | 116 | 92  |
| DERC1 | DERC1-89  | 179 | 5  | 179 | 654    | 1.00 | 0.217 | 0.024 | 0.0297 | 0.0005 | 0.15 | 0.0529 | 0.0057 | 199 | 22 | 189 | 3  | 325  | 246 | 58  |
| DERC1 | DERC1-90  | 74  | 2  | 78  | 381    | 1.06 | 0.198 | 0.015 | 0.0288 | 0.0005 | 0.24 | 0.0499 | 0.0037 | 184 | 14 | 183 | 3  | 192  | 172 | 95  |
| DERC1 | DERC1-91  | 88  | 4  | 57  | 31387  | 0.64 | 0.315 | 0.021 | 0.0440 | 0.0009 | 0.31 | 0.0520 | 0.0033 | 278 | 19 | 277 | 6  | 287  | 147 | 97  |
| DERC1 | DERC1-92  | 12  | 0  | 19  | 3380   | 1.59 | 0.251 | 0.038 | 0.0358 | 0.0014 | 0.25 | 0.0510 | 0.0075 | 228 | 34 | 226 | 9  | 239  | 338 | 95  |
| DERC1 | DERC1-94  | 271 | 25 | 176 | 714    | 0.65 | 0.934 | 0.044 | 0.0929 | 0.0017 | 0.39 | 0.0730 | 0.0032 | 670 | 32 | 573 | 11 | 1013 | 89  | 57  |
| DERC1 | DERC1-95  | 158 | 5  | 205 | 546    | 1.30 | 0.237 | 0.016 | 0.0291 | 0.0005 | 0.24 | 0.0591 | 0.0039 | 216 | 15 | 185 | 3  | 570  | 143 | 32  |
| DERC1 | DERC1-96  | 74  | 6  | 99  | 45283  | 1.34 | 0.622 | 0.044 | 0.0758 | 0.0017 | 0.32 | 0.0596 | 0.0040 | 491 | 35 | 471 | 11 | 588  | 145 | 80  |
| DERC1 | DERC1-97  | 76  | 3  | 49  | 23573  | 0.65 | 0.275 | 0.042 | 0.0382 | 0.0015 | 0.26 | 0.0522 | 0.0077 | 246 | 38 | 242 | 9  | 292  | 336 | 83  |
| DERC1 | DERC1-99  | 186 | 20 | 115 | 891    | 0.62 | 1.149 | 0.043 | 0.1062 | 0.0018 | 0.44 | 0.0785 | 0.0026 | 777 | 29 | 651 | 11 | 1159 | 67  | 56  |
| DERC1 | DERC1-100 | 301 | 27 | 56  | 2048   | 0.19 | 0.793 | 0.040 | 0.0892 | 0.0017 | 0.37 | 0.0645 | 0.0030 | 593 | 30 | 551 | 10 | 758  | 98  | 73  |
| DERC1 | DERC1-101 | 386 | 13 | 458 | 949    | 1.19 | 0.237 | 0.019 | 0.0341 | 0.0008 | 0.29 | 0.0505 | 0.0039 | 216 | 17 | 216 | 5  | 217  | 178 | 100 |
| DERC1 | DERC1-102 | 97  | 3  | 181 | 23505  | 1.87 | 0.205 | 0.019 | 0.0300 | 0.0005 | 0.19 | 0.0496 | 0.0045 | 190 | 18 | 191 | 3  | 174  | 212 | 109 |
| DERC1 | DERC1-104 | 289 | 21 | 195 | 2835   | 0.67 | 0.659 | 0.032 | 0.0728 | 0.0013 | 0.37 | 0.0657 | 0.0030 | 514 | 25 | 453 | 8  | 795  | 96  | 57  |
| DERC1 | DERC1-105 | 262 | 23 | 79  | 21089  | 0.30 | 0.699 | 0.021 | 0.0871 | 0.0013 | 0.50 | 0.0582 | 0.0015 | 538 | 16 | 539 | 8  | 536  | 57  | 100 |
| DERC1 | DERC1-107 | 225 | 18 | 151 | 7766   | 0.67 | 0.650 | 0.045 | 0.0806 | 0.0018 | 0.32 | 0.0585 | 0.0039 | 509 | 36 | 500 | 11 | 549  | 145 | 91  |
| DERC1 | DERC1-108 | 393 | 18 | 214 | 144481 | 0.54 | 0.327 | 0.010 | 0.0455 | 0.0007 | 0.48 | 0.0521 | 0.0014 | 287 | 9  | 287 | 4  | 290  | 62  | 99  |
| DERC1 | DERC1-109 | 126 | 4  | 139 | 494    | 1.10 | 0.220 | 0.022 | 0.0292 | 0.0005 | 0.17 | 0.0547 | 0.0054 | 202 | 20 | 186 | 3  | 398  | 223 | 47  |
| DERC1 | DERC1-110 | 163 | 7  | 136 | 34197  | 0.84 | 0.315 | 0.012 | 0.0441 | 0.0007 | 0.42 | 0.0517 | 0.0018 | 278 | 11 | 278 | 4  | 274  | 80  | 102 |
|       |           |     |    |     |        |      |       |       |        |        |      |        |        |     |    |     |    |      |     |     |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup>Pb/<sup>235</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb)/(<sup>238</sup>U)<sup>206</sup>Pb \* 1/137.88)

<sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>238</sup>U and the <sup>207/235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)
### Table D17. LA-ICPMS isotopic data for sample OKT1 in the Oudsthoorn Basin

| n | K1 | Г1 |  |
|---|----|----|--|

| OKT1   |          |                      |                       |                         |                                      |                   |                                                  |                  |                                                  | RATIOS           |                  |                                       |                         |                                     |    | AGES                                | [Ma] |                                      |           | Conc.     |
|--------|----------|----------------------|-----------------------|-------------------------|--------------------------------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------------------|---------------------------------------|-------------------------|-------------------------------------|----|-------------------------------------|------|--------------------------------------|-----------|-----------|
| Sample | Analysis | U [ppm] <sup>a</sup> | Pb [ppm] <sup>a</sup> | Th [ppm] <sup>a 2</sup> | <sup>206</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>a</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho <sup>c</sup> | <sup>207</sup> Pb/ <sup>206</sup> Pb' | <b>2</b> σ <sup>d</sup> | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ | <sup>206</sup> Pb/ <sup>238</sup> U | 2σ   | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ        | %         |
| OKT1   | OKT1-1   | 688                  | 17                    | 567                     | 147123                               | 0.83              | 0.163                                            | 0.010            | 0.0241                                           | 0.0004           | 0.24             | 0.0490                                | 0.0029                  | 153                                 | 9  | 154                                 | 2    | 150                                  | 139       | 103       |
| OKT1   | OKT1-2   | 164                  | 4                     | 158                     | 342                                  | 0.96              | 0.191                                            | 0.016            | 0.0250                                           | 0.0004           | 0.19             | 0.0553                                | 0.0046                  | 177                                 | 15 | 159                                 | 3    | 423                                  | 187       | 38        |
| OKT1   | OKT1-3   | 155                  | 4                     | 89                      | 252                                  | 0.58              | 0.183                                            | 0.013            | 0.0249                                           | 0.0004           | 0.23             | 0.0532                                | 0.0035                  | 170                                 | 12 | 159                                 | 3    | 336                                  | 151       | 47        |
| OKT1   | OKT1-4   | 277                  | 7                     | 224                     | 7462                                 | 0.81              | 0.170                                            | 0.009            | 0.0248                                           | 0.0004           | 0.28             | 0.0498                                | 0.0026                  | 160                                 | 9  | 158                                 | 2    | 183                                  | 124       | 86        |
| OKT1   | OKT1-5   | 402                  | 10                    | 279                     | 304                                  | 0.69              | 0.173                                            | 0.012            | 0.0242                                           | 0.0004           | 0.22             | 0.0520                                | 0.0034                  | 162                                 | 11 | 154                                 | 2    | 284                                  | 150       | 54        |
| OKT1   | OKT1-6   | 312                  | 8                     | 121                     | 303                                  | 0.39              | 0.228                                            | 0.016            | 0.0251                                           | 0.0004           | 0.22             | 0.0658                                | 0.0044                  | 208                                 | 14 | 160                                 | 2    | 799                                  | 140       | 20        |
| OKT1   | OKT1-7   | 64                   | 2                     | 36                      | 4978                                 | 0.57              | 0.178                                            | 0.037            | 0.0240                                           | 0.0005           | 0.10             | 0.0538                                | 0.0111                  | 166                                 | 34 | 153                                 | 3    | 363                                  | 464       | 42        |
| OKT1   | OKT1-8   | 458                  | 11                    | 281                     | 1055                                 | 0.61              | 0.178                                            | 0.016            | 0.0238                                           | 0.0004           | 0.17             | 0.0544                                | 0.0049                  | 167                                 | 15 | 151                                 | 2    | 387                                  | 203       | 39        |
| OKT1   | OKT1-10  | 201                  | 5                     | 197                     | 855                                  | 0.98              | 0.168                                            | 0.016            | 0.0241                                           | 0.0004           | 0.17             | 0.0505                                | 0.0047                  | 157                                 | 15 | 153                                 | 2    | 219                                  | 216       | 70        |
| OKT1   | OKT1-11  | 250                  | 6                     | 234                     | 349                                  | 0.94              | 0.169                                            | 0.010            | 0.0249                                           | 0.0004           | 0.27             | 0.0493                                | 0.0027                  | 159                                 | 9  | 159                                 | 2    | 162                                  | 129       | 98        |
| OKT1   | OKT1-12  | 307                  | 7                     | 270                     | 3288                                 | 0.88              | 0.160                                            | 0.011            | 0.0236                                           | 0.0004           | 0.22             | 0.0490                                | 0.0034                  | 150                                 | 11 | 150                                 | 2    | 150                                  | 161       | 100       |
| OKT1   | OKT1-14  | 153                  | 4                     | 68                      | 706                                  | 0.44              | 0.175                                            | 0.023            | 0.0243                                           | 0.0004           | 0.13             | 0.0523                                | 0.0068                  | 164                                 | 21 | 155                                 | 3    | 298                                  | 297       | 52        |
| OKT1   | OKT1-15  | 356                  | 9                     | 203                     | 1257                                 | 0.57              | 0.170                                            | 0.013            | 0.0241                                           | 0.0004           | 0.19             | 0.0512                                | 0.0039                  | 159                                 | 12 | 153                                 | 2    | 249                                  | 175       | 61        |
| OKT1   | OKT1-16  | 277                  | 6                     | 309                     | 708                                  | 1.12              | 0.149                                            | 0.013            | 0.0220                                           | 0.0003           | 0.17             | 0.0490                                | 0.0043                  | 141                                 | 13 | 140                                 | 2    | 147                                  | 207       | 95        |
| OKT1   | OKT1-17  | 281                  | 7                     | 247                     | 589                                  | 0.88              | 0.170                                            | 0.012            | 0.0240                                           | 0.0004           | 0.21             | 0.0515                                | 0.0036                  | 160                                 | 11 | 153                                 | 2    | 263                                  | 160       | 58        |
| OKT1   | OKT1-18  | 505                  | 12                    | 425                     | 2887                                 | 0.84              | 0.166                                            | 0.009            | 0.0242                                           | 0.0004           | 0.26             | 0.0498                                | 0.0027                  | 156                                 | 9  | 154                                 | 2    | 186                                  | 128       | 83        |
| OKT1   | OKT1-19  | 350                  | 8                     | 232                     | 882                                  | 0.66              | 0.175                                            | 0.010            | 0.0243                                           | 0.0004           | 0.25             | 0.0525                                | 0.0030                  | 164                                 | 10 | 155                                 | 2    | 306                                  | 132       | 51        |
| OKT1   | OKT1-20  | 329                  | 8                     | 211                     | 35376                                | 0.64              | 0.165                                            | 0.007            | 0.0244                                           | 0.0004           | 0.37             | 0.0491                                | 0.0019                  | 155                                 | 7  | 155                                 | 2    | 154                                  | 93        | 101       |
| OKT1   | OKT1-22  | 289                  | 7                     | 298                     | 938                                  | 1.03              | 0.175                                            | 0.014            | 0.0249                                           | 0.0004           | 0.19             | 0.0509                                | 0.0040                  | 163                                 | 13 | 158                                 | 2    | 234                                  | 183       | 68        |
| OKT1   | OKT1-23  | 577                  | 14                    | 453                     | 122248                               | 0.79              | 0.165                                            | 0.006            | 0.0240                                           | 0.0004           | 0.41             | 0.0499                                | 0.0017                  | 155                                 | 6  | 153                                 | 2    | 188                                  | 78        | 81        |
| OKT1   | OKT1-24  | 437                  | 10                    | 340                     | 836                                  | 0.78              | 0.170                                            | 0.011            | 0.0237                                           | 0.0004           | 0.23             | 0.0519                                | 0.0033                  | 159                                 | 10 | 151                                 | 2    | 281                                  | 144       | 54        |
| OKT1   | OKT1-25  | 457                  | 12                    | 311                     | 2387                                 | 0.68              | 0.173                                            | 0.011            | 0.0252                                           | 0.0004           | 0.24             | 0.0498                                | 0.0031                  | 162                                 | 10 | 160                                 | 2    | 184                                  | 145       | 87        |
| OKT1   | OKT1-26  | 387                  | 9                     | 191                     | 6941                                 | 0.50              | 0.164                                            | 0.008            | 0.0243                                           | 0.0004           | 0.30             | 0.0489                                | 0.0023                  | 154                                 | 8  | 155                                 | 2    | 142                                  | 110       | 109       |
| OKT1   | OKT1-28  | 180                  | 4                     | 67                      | 2361                                 | 0.37              | 0.167                                            | 0.020            | 0.0241                                           | 0.0004           | 0.14             | 0.0503                                | 0.0061                  | 157                                 | 19 | 153                                 | 3    | 210                                  | 280       | 73        |
| OKT1   | OKT1-29  | 498                  | 12                    | 349                     | 107216                               | 0.70              | 0.168                                            | 0.007            | 0.0244                                           | 0.0004           | 0.34             | 0.0501                                | 0.0021                  | 158                                 | 7  | 155                                 | 2    | 199                                  | 96        | 78        |
| OKT1   | OKT1-30  | 244                  | 6                     | 160                     | 1948                                 | 0.65              | 0.174                                            | 0.018            | 0.0243                                           | 0.0004           | 0.15             | 0.0518                                | 0.0052                  | 162                                 | 17 | 155                                 | 2    | 274                                  | 231       | 56        |
| OKT1   | OKT1-31  | 238                  | 6                     | 220                     | 399                                  | 0.93              | 0.180                                            | 0.023            | 0.0240                                           | 0.0004           | 0.12             | 0.0542                                | 0.0069                  | 168                                 | 22 | 153                                 | 2    | 379                                  | 287       | 40        |
| OKT1   | OKT1-32  | 156                  | 4                     | 60                      | 733                                  | 0.39              | 0.163                                            | 0.018            | 0.0237                                           | 0.0004           | 0.15             | 0.0497                                | 0.0056                  | 153                                 | 17 | 151                                 | 3    | 179                                  | 262       | 85        |
| OKT1   | OKT1-33  | 177                  | 4                     | 97                      | 1735                                 | 0.55              | 0.163                                            | 0.008            | 0.0238                                           | 0.0004           | 0.34             | 0.0497                                | 0.0022                  | 153                                 | 7  | 151                                 | 2    | 181                                  | 102       | 84        |
| OKT1   | OKT1-34  | 193                  | 5                     | 150                     | 5728                                 | 0.78              | 0.165                                            | 0.012            | 0.0244                                           | 0.0004           | 0.21             | 0.0490                                | 0.0035                  | 155                                 | 11 | 155                                 | 2    | 150                                  | 167       | 104       |
| OKT1   | OKT1-35  | 824                  | 20                    | 502                     | 961                                  | 0.61              | 0.166                                            | 0.009            | 0.0244                                           | 0.0004           | 0.27             | 0.0494                                | 0.0026                  | 156                                 | 9  | 156                                 | 2    | 164                                  | 125       | 95        |
| OKT1   | OKT1-36  | 409                  | 10                    | 231                     | 609                                  | 0.56              | 0.165                                            | 0.011            | 0.0240                                           | 0.0004           | 0.23             | 0.0500                                | 0.0033                  | 155                                 | 11 | 153                                 | 2    | 195                                  | 155       | 78        |
| OKT1   | OKT1-37  | 341                  | 8                     | 214                     | 1978                                 | 0.63              | 0.175                                            | 0.011            | 0.0233                                           | 0.0004           | 0.24             | 0.0547                                | 0.0034                  | 164                                 | 11 | 148                                 | 2    | 401                                  | 140       | 37        |
| OKT1   | OKT1-38  | 246                  | 6                     | 159                     | 11502                                | 0.65              | 0.165                                            | 0.012            | 0.0232                                           | 0.0004           | 0.22             | 0.0516                                | 0.0035                  | 155                                 | 11 | 148                                 | 2    | 268                                  | 156       | 55        |
| OKT1   | OKT1-39  | 338                  | 8                     | 259                     | 1910                                 | 0.77              | 0.170                                            | 0.012            | 0.0230                                           | 0.0004           | 0.23             | 0.0535                                | 0.0036                  | 159                                 | 11 | 147                                 | 2    | 349                                  | 150       | 42        |
| OKT1   | OKT1-40  | 510                  | 12                    | 413                     | 4040                                 | 0.81              | 0.161                                            | 0.008            | 0.0236                                           | 0.0004           | 0.32             | 0.0495                                | 0.0022                  | 152                                 | 7  | 150                                 | 2    | 173                                  | 105       | 87        |
| OKT1   | OKT1-41  | 184                  | 4                     | 108                     | 816                                  | 0.59              | 0.180                                            | 0.014            | 0.0236                                           | 0.0004           | 0.21             | 0.0555                                | 0.0042                  | 168                                 | 13 | 150                                 | 2    | 431                                  | 169       | 35        |
| OKT1   | OKT1-42  | 153                  | 4                     | 135                     | 1471                                 | 0.88              | 0.168                                            | 0.015            | 0.0235                                           | 0.0005           | 0.22             | 0.0517                                | 0.0046                  | 157                                 | 14 | 150                                 | 3    | 273                                  | 202       | 55        |
| OKT1   | OKT1-44  | 270                  | 7                     | 191                     | 1576                                 | 0.71              | 0.167                                            | 0.013            | 0.0247                                           | 0.0004           | 0.20             | 0.0490                                | 0.0036                  | 157                                 | 12 | 157                                 | 2    | 147                                  | 172       | 107       |
| OKT1   | OKT1-46  | 167                  | 4                     | 101                     | 20516                                | 0.60              | 0.163                                            | 0.013            | 0.0242                                           | 0.0004           | 0.20             | 0.0489                                | 0.0039                  | 153                                 | 12 | 154                                 | 3    | 143                                  | 187       | 108       |
| OKT1   | OK 11-47 | 476                  | 11                    | 262                     | 467                                  | 0.55              | 0.164                                            | 0.018            | 0.0241                                           | 0.0004           | 0.14             | 0.0492                                | 0.0053                  | 154                                 | 17 | 154                                 | 2    | 157                                  | 251       | 98        |
| OK11   | OK11-48  | 209                  | 5                     | 138                     | 364                                  | 0.66              | 0.179                                            | 0.020            | 0.0259                                           | 0.0004           | 0.14             | 0.0500                                | 0.0055                  | 167                                 | 18 | 165                                 | 3    | 195                                  | 254       | 84        |
| UK11   | OK11-50  | 401                  | 9                     | 305                     | 452                                  | 0.76              | 0.181                                            | 0.015            | 0.0234                                           | 0.0004           | 0.18             | 0.0561                                | 0.0046                  | 169                                 | 14 | 149                                 | 2    | 455                                  | 183       | 33        |
|        | OK11-51  | 298                  | 1                     | 195                     | 1168                                 | 0.66              | 0.160                                            | 0.012            | 0.0237                                           | 0.0004           | 0.21             | 0.0491                                | 0.0037                  | 151                                 | 12 | 151                                 | 2    | 152                                  | 1/8       | 99        |
| OK11   | OKT1 52  | 116                  | 3<br>6                | 55                      | 3599                                 | 0.47              | 0.185                                            | 0.027            | 0.0236                                           | 0.0004           | 0.12             | 0.007                                 | 0.0018                  | 1/2                                 | 25 | 150                                 | 3    | 492                                  | 319       | 30        |
|        | OKT1 50  | 201                  | 0                     | 110                     | 4205                                 | 0.00              | 0.167                                            | 0.007            | 0.0240                                           | 0.0004           | 0.40             | 0.0497                                | 0.0016                  | 158                                 | 0  | 10/                                 | 2    | 100                                  | 04<br>124 | 0/<br>100 |
| UKII   | 0111-00  | 229                  | σ                     | 112                     | 29019                                | 0.49              | 0.107                                            | 0.009            | 0.0240                                           | 0.0004           | 0.20             | 0.0492                                | 0.0020                  | 100                                 | э  | 100                                 | 2    | 100                                  | 124       | 100       |

| OKT1 | OKT1-57 | 585 | 14 | 240 | 2343   | 0.41 | 0.159 | 0.007 | 0.0236 | 0.0004 | 0.33 | 0.0490 | 0.0021 | 150 | 7  | 150 | 2 | 145  | 103 | 103 |
|------|---------|-----|----|-----|--------|------|-------|-------|--------|--------|------|--------|--------|-----|----|-----|---|------|-----|-----|
| OKT1 | OKT1-58 | 197 | 5  | 142 | 1421   | 0.72 | 0.163 | 0.007 | 0.0240 | 0.0004 | 0.39 | 0.0493 | 0.0019 | 154 | 6  | 153 | 2 | 162  | 88  | 95  |
| OKT1 | OKT1-59 | 153 | 4  | 96  | 3013   | 0.63 | 0.169 | 0.012 | 0.0251 | 0.0004 | 0.23 | 0.0488 | 0.0034 | 158 | 11 | 160 | 3 | 140  | 162 | 114 |
| OKT1 | OKT1-60 | 448 | 11 | 258 | 4309   | 0.58 | 0.161 | 0.005 | 0.0237 | 0.0004 | 0.45 | 0.0492 | 0.0015 | 151 | 5  | 151 | 2 | 156  | 71  | 96  |
| OKT1 | OKT1-61 | 715 | 18 | 424 | 1641   | 0.59 | 0.173 | 0.008 | 0.0251 | 0.0004 | 0.33 | 0.0500 | 0.0022 | 162 | 8  | 160 | 2 | 195  | 102 | 82  |
| OKT1 | OKT1-62 | 230 | 6  | 116 | 671    | 0.50 | 0.209 | 0.012 | 0.0240 | 0.0004 | 0.27 | 0.0633 | 0.0035 | 193 | 11 | 153 | 2 | 719  | 119 | 21  |
| OKT1 | OKT1-63 | 150 | 4  | 102 | 257    | 0.68 | 0.264 | 0.021 | 0.0265 | 0.0004 | 0.21 | 0.0724 | 0.0056 | 238 | 19 | 168 | 3 | 996  | 157 | 17  |
| OKT1 | OKT1-64 | 185 | 4  | 138 | 15399  | 0.75 | 0.183 | 0.013 | 0.0233 | 0.0004 | 0.23 | 0.0570 | 0.0039 | 171 | 12 | 148 | 2 | 491  | 152 | 30  |
| OKT1 | OKT1-66 | 388 | 9  | 192 | 82652  | 0.50 | 0.164 | 0.005 | 0.0242 | 0.0004 | 0.46 | 0.0491 | 0.0014 | 154 | 5  | 154 | 2 | 151  | 68  | 102 |
| OKT1 | OKT1-68 | 358 | 8  | 233 | 73254  | 0.65 | 0.158 | 0.006 | 0.0233 | 0.0004 | 0.44 | 0.0492 | 0.0016 | 149 | 5  | 148 | 2 | 159  | 74  | 93  |
| OKT1 | OKT1-70 | 555 | 13 | 318 | 114967 | 0.57 | 0.163 | 0.006 | 0.0236 | 0.0004 | 0.42 | 0.0501 | 0.0016 | 153 | 6  | 150 | 2 | 199  | 76  | 75  |
| OKT1 | OKT1-71 | 388 | 10 | 259 | 3256   | 0.67 | 0.175 | 0.009 | 0.0257 | 0.0004 | 0.32 | 0.0493 | 0.0023 | 164 | 8  | 164 | 3 | 163  | 108 | 100 |
| OKT1 | OKT1-73 | 189 | 4  | 114 | 359    | 0.60 | 0.174 | 0.020 | 0.0233 | 0.0004 | 0.15 | 0.0542 | 0.0062 | 163 | 19 | 149 | 3 | 380  | 255 | 39  |
| OKT1 | OKT1-74 | 224 | 5  | 124 | 45744  | 0.55 | 0.178 | 0.016 | 0.0232 | 0.0004 | 0.19 | 0.0554 | 0.0048 | 166 | 15 | 148 | 2 | 429  | 193 | 35  |
| OKT1 | OKT1-76 | 851 | 20 | 378 | 465    | 0.44 | 0.167 | 0.011 | 0.0239 | 0.0004 | 0.23 | 0.0505 | 0.0033 | 156 | 10 | 153 | 2 | 217  | 150 | 70  |
| OKT1 | OKT1-77 | 576 | 14 | 377 | 2616   | 0.65 | 0.165 | 0.011 | 0.0237 | 0.0004 | 0.23 | 0.0504 | 0.0033 | 155 | 10 | 151 | 2 | 215  | 150 | 70  |
| OKT1 | OKT1-79 | 168 | 4  | 184 | 1170   | 1.10 | 0.169 | 0.010 | 0.0249 | 0.0004 | 0.26 | 0.0490 | 0.0029 | 158 | 10 | 159 | 3 | 149  | 140 | 106 |
| OKT1 | OKT1-80 | 243 | 6  | 233 | 527    | 0.96 | 0.162 | 0.018 | 0.0236 | 0.0005 | 0.19 | 0.0497 | 0.0054 | 152 | 17 | 151 | 3 | 180  | 253 | 84  |
| OKT1 | OKT1-81 | 147 | 4  | 73  | 1176   | 0.50 | 0.182 | 0.013 | 0.0259 | 0.0004 | 0.23 | 0.0511 | 0.0037 | 170 | 13 | 165 | 3 | 244  | 165 | 68  |
| OKT1 | OKT1-82 | 181 | 4  | 96  | 807    | 0.53 | 0.191 | 0.016 | 0.0234 | 0.0004 | 0.20 | 0.0591 | 0.0048 | 177 | 15 | 149 | 2 | 572  | 176 | 26  |
| OKT1 | OKT1-83 | 247 | 6  | 242 | 956    | 0.98 | 0.176 | 0.019 | 0.0239 | 0.0004 | 0.15 | 0.0533 | 0.0056 | 165 | 18 | 152 | 2 | 343  | 238 | 44  |
| OKT1 | OKT1-84 | 262 | 6  | 146 | 3960   | 0.56 | 0.171 | 0.014 | 0.0236 | 0.0004 | 0.20 | 0.0524 | 0.0041 | 160 | 13 | 151 | 2 | 304  | 178 | 50  |
| OKT1 | OKT1-85 | 188 | 5  | 97  | 39485  | 0.52 | 0.161 | 0.016 | 0.0239 | 0.0004 | 0.16 | 0.0489 | 0.0047 | 152 | 15 | 152 | 2 | 141  | 225 | 108 |
| OKT1 | OKT1-88 | 264 | 7  | 140 | 506    | 0.53 | 0.176 | 0.014 | 0.0258 | 0.0004 | 0.19 | 0.0496 | 0.0040 | 165 | 13 | 164 | 3 | 177  | 187 | 93  |
| OKT1 | OKT1-90 | 252 | 6  | 128 | 990    | 0.51 | 0.171 | 0.011 | 0.0252 | 0.0004 | 0.25 | 0.0493 | 0.0030 | 160 | 10 | 160 | 3 | 161  | 141 | 100 |
| OKT1 | OKT1-91 | 154 | 4  | 91  | 417    | 0.59 | 0.188 | 0.018 | 0.0235 | 0.0004 | 0.16 | 0.0579 | 0.0056 | 175 | 17 | 150 | 2 | 527  | 213 | 28  |
| OKT1 | OKT1-92 | 224 | 5  | 192 | 1891   | 0.86 | 0.178 | 0.012 | 0.0237 | 0.0004 | 0.24 | 0.0544 | 0.0036 | 166 | 11 | 151 | 2 | 386  | 147 | 39  |
| OKT1 | OKT1-93 | 75  | 2  | 47  | 212    | 0.62 | 0.264 | 0.021 | 0.0254 | 0.0006 | 0.31 | 0.0756 | 0.0057 | 238 | 19 | 161 | 4 | 1084 | 150 | 15  |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup>Pb/<sup>235</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb)/(<sup>238</sup>U/<sup>206</sup>Pb \* 1/137.88)

<sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>238</sup>U and the <sup>207</sup>/<sup>235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

| Bren2          |                      |                      |                         |                        |                                     |                   |                                                  |                  |                                                  | RATIOS           |                  |                                       |                  |                                     |          | AGES                                | [Ma] |                                      |           | Conc.     |
|----------------|----------------------|----------------------|-------------------------|------------------------|-------------------------------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------------------|---------------------------------------|------------------|-------------------------------------|----------|-------------------------------------|------|--------------------------------------|-----------|-----------|
| Sample         | Analysis             | U [ppm] <sup>a</sup> | Pb [ppm] <sup>a</sup> T | h [ppm] <sup>a 2</sup> | <sup>06</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>a</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho <sup>c</sup> | <sup>207</sup> Pb/ <sup>206</sup> Pb' | 2 σ <sup>d</sup> | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ       | <sup>206</sup> Pb/ <sup>238</sup> U | 2σ   | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ        | %         |
| Bren2          | Bren2-1              | 33                   | 5                       | 11                     | 887                                 | 0.33              | 1.305                                            | 0.053            | 0.1404                                           | 0.0023           | 0.41             | 0.0674                                | 0.0025           | 848                                 | 34       | 847                                 | 14   | 850                                  | 76        | 100       |
| Bren2          | Bren2-2              | 604                  | 49                      | 150                    | 1231                                | 0.25              | 0.680                                            | 0.029            | 0.0805                                           | 0.0013           | 0.39             | 0.0613                                | 0.0024           | 527                                 | 22       | 499                                 | 8    | 649                                  | 84        | 77        |
| Bren2          | Bren2-3              | 91                   | 11                      | 23                     | 73428                               | 0.25              | 1.147                                            | 0.066            | 0.1248                                           | 0.0025           | 0.36             | 0.0667                                | 0.0036           | 776                                 | 44       | 758                                 | 15   | 827                                  | 111       | 92        |
| Bren2          | Bren2-5              | 202                  | 14                      | 132                    | 88413                               | 0.65              | 0.550                                            | 0.033            | 0.0674                                           | 0.0014           | 0.33             | 0.0591                                | 0.0034           | 445                                 | 27       | 421                                 | 8    | 572                                  | 124       | 74        |
| Bren2          | Bren2-6              | 202                  | 9                       | 170                    | 55905                               | 0.84              | 0.318                                            | 0.025            | 0.0427                                           | 0.0010           | 0.29             | 0.0540                                | 0.0041           | 280                                 | 22       | 270                                 | 6    | 372                                  | 169       | 72        |
| Bren2          | Bren2-7              | 672                  | 31                      | 120                    | 1842                                | 0.18              | 0.437                                            | 0.017            | 0.0462                                           | 0.0007           | 0.41             | 0.0686                                | 0.0025           | 368                                 | 14       | 291                                 | 5    | 887                                  | 74        | 33        |
| Bren2          | Bren2-8              | 863                  | 37                      | 24                     | 6622                                | 0.03              | 0.325                                            | 0.016            | 0.0424                                           | 0.0007           | 0.35             | 0.0557                                | 0.0026           | 286                                 | 14       | 267                                 | 5    | 440                                  | 105       | 61        |
| Bren2          | Bren2-9              | 717                  | 51                      | 144                    | 330467                              | 0.20              | 0.544                                            | 0.025            | 0.0710                                           | 0.0012           | 0.37             | 0.0556                                | 0.0024           | 441                                 | 20       | 442                                 | 8    | 437                                  | 96        | 101       |
| Bren2          | Bren2-10             | 371                  | 35                      | 51                     | 11351                               | 0.14              | 0.778                                            | 0.021            | 0.0948                                           | 0.0013           | 0.52             | 0.0595                                | 0.0014           | 585                                 | 16       | 584                                 | 8    | 587                                  | 50        | 100       |
| Bren2          | Bren2-11             | 236                  | 20                      | 52                     | 449                                 | 0.22              | 0.673                                            | 0.021            | 0.0850                                           | 0.0012           | 0.47             | 0.0575                                | 0.0016           | 523                                 | 16       | 526                                 | 8    | 509                                  | 60        | 103       |
| Bren2          | Bren2-12<br>Bren2-12 | 487                  | 21                      | 299                    | 3254                                | 0.01              | 0.300                                            | 0.009            | 0.0424                                           | 0.0006           | 0.48             | 0.0513                                | 0.0013           | 200                                 | 8        | 267                                 | 4    | 254                                  | 59        | 105       |
| Bron2          | Bron2 14             | 400                  | 34<br>10                | 97                     | 121054                              | 0.20              | 0.547                                            | 0.015            | 0.0706                                           | 0.0010           | 0.52             | 0.0562                                | 0.0015           | 445                                 | 14       | 440                                 | 7    | 460                                  | 52        | 90        |
| Bren2          | Bren2-15             | 121                  | 19                      | 82                     | 2/302                               | 0.47              | 0.362                                            | 0.010            | 0.0749                                           | 0.0006           | 0.40             | 0.0503                                | 0.0015           | 400                                 | 14       | 400                                 | 1    | 205                                  | 110       | 96        |
| Bren2          | Bren2-16             | 655                  | 107                     | 369                    | 4282                                | 0.56              | 1 702                                            | 0.050            | 0.1630                                           | 0.0000           | 0.00             | 0.0757                                | 0.0019           | 1009                                | 30       | 973                                 | 14   | 1087                                 | 51        | 90        |
| Bren2          | Bren2-17             | 282                  | 21                      | 42                     | 2601                                | 0.15              | 0.569                                            | 0.028            | 0.0736                                           | 0.0024           | 0.36             | 0.0561                                | 0.0025           | 457                                 | 22       | 458                                 | 8    | 456                                  | 100       | 100       |
| Bren2          | Bren2-18             | 307                  | 7                       | 277                    | 1603                                | 0.90              | 0.161                                            | 0.008            | 0.0237                                           | 0.0004           | 0.34             | 0.0491                                | 0.0024           | 151                                 | 8        | 151                                 | 3    | 154                                  | 116       | 98        |
| Bren2          | Bren2-19             | 432                  | 78                      | 324                    | 506801                              | 0.75              | 1.937                                            | 0.054            | 0.1807                                           | 0.0026           | 0.52             | 0.0777                                | 0.0018           | 1094                                | 30       | 1071                                | 15   | 1140                                 | 47        | 94        |
| Bren2          | Bren2-21             | 266                  | 20                      | 191                    | 126816                              | 0.72              | 0.573                                            | 0.020            | 0.0733                                           | 0.0011           | 0.44             | 0.0566                                | 0.0018           | 460                                 | 16       | 456                                 | 7    | 478                                  | 69        | 96        |
| Bren2          | Bren2-22             | 222                  | 19                      | 103                    | 125846                              | 0.47              | 0.703                                            | 0.026            | 0.0874                                           | 0.0014           | 0.42             | 0.0584                                | 0.0020           | 541                                 | 20       | 540                                 | 9    | 543                                  | 74        | 99        |
| Bren2          | Bren2-23             | 286                  | 23                      | 75                     | 1848                                | 0.26              | 0.680                                            | 0.033            | 0.0809                                           | 0.0014           | 0.37             | 0.0609                                | 0.0028           | 527                                 | 26       | 502                                 | 9    | 637                                  | 97        | 79        |
| Bren2          | Bren2-24             | 206                  | 17                      | 201                    | 111767                              | 0.98              | 0.667                                            | 0.024            | 0.0836                                           | 0.0013           | 0.43             | 0.0579                                | 0.0018           | 519                                 | 18       | 517                                 | 8    | 524                                  | 70        | 99        |
| Bren2          | Bren2-25             | 388                  | 17                      | 427                    | 109397                              | 1.10              | 0.312                                            | 0.011            | 0.0433                                           | 0.0007           | 0.45             | 0.0523                                | 0.0016           | 276                                 | 9        | 274                                 | 4    | 298                                  | 70        | 92        |
| Bren2          | Bren2-26             | 313                  | 13                      | 190                    | 1567                                | 0.60              | 0.307                                            | 0.015            | 0.0400                                           | 0.0007           | 0.35             | 0.0557                                | 0.0025           | 272                                 | 13       | 253                                 | 4    | 441                                  | 100       | 57        |
| Bren2          | Bren2-27             | 525                  | 19                      | 443                    | 1866                                | 0.84              | 0.259                                            | 0.016            | 0.0357                                           | 0.0007           | 0.31             | 0.0525                                | 0.0031           | 234                                 | 15       | 226                                 | 4    | 309                                  | 134       | 73        |
| Bren2          | Bren2-28             | 411                  | 148                     | 205                    | 22680                               | 0.50              | 6.082                                            | 0.153            | 0.3601                                           | 0.0050           | 0.55             | 0.1225                                | 0.0026           | 1988                                | 50       | 1983                                | 28   | 1993                                 | 37        | 99        |
| Bren2          | Bren2-29             | 244                  | 6                       | 202                    | 37986                               | 0.83              | 0.181                                            | 0.024            | 0.0239                                           | 0.0008           | 0.26             | 0.0548                                | 0.0071           | 169                                 | 23       | 153                                 | 5    | 405                                  | 289       | 38        |
| Bren2          | Bren2-30             | 719                  | 17                      | 581                    | 1278                                | 0.81              | 0.180                                            | 0.013            | 0.0243                                           | 0.0005           | 0.30             | 0.0538                                | 0.0037           | 168                                 | 12       | 155                                 | 3    | 363                                  | 155       | 43        |
| Bren2          | Bren2-31             | 166                  | 14                      | 57                     | 976                                 | 0.35              | 0.675                                            | 0.033            | 0.0838                                           | 0.0015           | 0.36             | 0.0584                                | 0.0026           | 524                                 | 25       | 519                                 | 9    | 545                                  | 99        | 95        |
| Bren2<br>Bren2 | Bren2-32<br>Bren2-33 | 129                  | 29                      | 483                    | 3320                                | 0.00              | 0.318                                            | 0.020            | 0.0404                                           | 0.0008           | 0.32             | 0.0570                                | 0.0034           | 280                                 | 18       | 200                                 | 5    | 492                                  | 71        | 5Z<br>08  |
| Bren2          | Bren2-34             | 292                  | 7                       | 119                    | 1052                                | 0.32              | 0.163                                            | 0.027            | 0.0239                                           | 0.0014           | 0.45             | 0.0494                                | 0.0013           | 153                                 | 7        | 152                                 | 3    | 167                                  | 104       | 91        |
| Bren2          | Bren2-35             | 360                  | 21                      | 95                     | 133529                              | 0.26              | 0.423                                            | 0.020            | 0.0571                                           | 0.0010           | 0.36             | 0.0537                                | 0.0024           | 358                                 | 17       | 358                                 | 6    | 359                                  | 99        | 100       |
| Bren2          | Bren2-36             | 251                  | 20                      | 30                     | 3765                                | 0.12              | 0.643                                            | 0.019            | 0.0814                                           | 0.0012           | 0.49             | 0.0573                                | 0.0015           | 504                                 | 15       | 504                                 | 7    | 504                                  | 57        | 100       |
| Bren2          | Bren2-37             | 234                  | 10                      | 188                    | 51603                               | 0.80              | 0.302                                            | 0.010            | 0.0423                                           | 0.0006           | 0.44             | 0.0518                                | 0.0016           | 268                                 | 9        | 267                                 | 4    | 276                                  | 70        | 97        |
| Bren2          | Bren2-38             | 77                   | 12                      | 36                     | 80154                               | 0.47              | 1.563                                            | 0.067            | 0.1594                                           | 0.0028           | 0.41             | 0.0712                                | 0.0028           | 956                                 | 41       | 953                                 | 17   | 962                                  | 80        | 99        |
| Bren2          | Bren2-39             | 355                  | 30                      | 109                    | 26806                               | 0.31              | 0.666                                            | 0.019            | 0.0835                                           | 0.0012           | 0.51             | 0.0579                                | 0.0014           | 518                                 | 15       | 517                                 | 7    | 526                                  | 54        | 98        |
| Bren2          | Bren2-40             | 470                  | 41                      | 197                    | 15580                               | 0.42              | 0.708                                            | 0.019            | 0.0877                                           | 0.0012           | 0.52             | 0.0585                                | 0.0014           | 543                                 | 15       | 542                                 | 8    | 549                                  | 51        | 99        |
| Bren2          | Bren2-41             | 121                  | 10                      | 55                     | 753                                 | 0.45              | 0.668                                            | 0.032            | 0.0833                                           | 0.0015           | 0.37             | 0.0582                                | 0.0026           | 520                                 | 25       | 516                                 | 9    | 538                                  | 97        | 96        |
| Bren2          | Bren2-42             | 274                  | 7                       | 104                    | 44512                               | 0.38              | 0.171                                            | 0.015            | 0.0250                                           | 0.0006           | 0.28             | 0.0496                                | 0.0041           | 160                                 | 14       | 159                                 | 4    | 177                                  | 191       | 90        |
| Bren2          | Bren2-43             | 177                  | 19                      | 66                     | 3637                                | 0.37              | 0.880                                            | 0.031            | 0.1047                                           | 0.0016           | 0.43             | 0.0609                                | 0.0020           | 641                                 | 23       | 642                                 | 10   | 637                                  | 69        | 101       |
| Bren2          | Bren2-44             | 518                  | 12                      | 403                    | 792                                 | 0.78              | 0.155                                            | 0.007            | 0.0229                                           | 0.0004           | 0.35             | 0.0491                                | 0.0022           | 146                                 | 7        | 146                                 | 2    | 152                                  | 105       | 96        |
| Bren2          | Bren2-46             | 175                  | 5                       | 314                    | 29831                               | 1.79              | 0.178                                            | 0.019            | 0.0262                                           | 0.0007           | 0.26             | 0.0494                                | 0.0050           | 166                                 | 18       | 167                                 | 5    | 165                                  | 239       | 101       |
| Bren2          | Bren2-47             | 251                  | 18                      | 62                     | 116533                              | 0.25              | 0.548                                            | 0.023            | 0.0713                                           | 0.0012           | 0.39             | 0.0558                                | 0.0021           | 444                                 | 18       | 444                                 | 7    | 442                                  | 85        | 100       |
| Bren2          | Bren2-48             | 357                  | 9                       | 570                    | 56247                               | 1.60              | 0.165                                            | 0.012            | 0.0242                                           | 0.0005           | 0.29             | 0.0494                                | 0.0035           | 155                                 | 12       | 154                                 | 3    | 165                                  | 168       | 94        |
| Bren2          | Bren2-49             | 169                  | 5                       | 101                    | 32213                               | 0.60              | 0.205                                            | 0.033            | 0.0294                                           | 0.0012           | 0.25             | 0.0506                                | 0.0079           | 189                                 | 31       | 187                                 | 7    | 222                                  | 362       | 84        |
| Bren2          | Bren2-50<br>Bren2-54 | 182                  | (                       | 120                    | 48775                               | 0.66              | 0.292                                            | 0.020            | 0.0412                                           | 0.0009           | 0.30             | 0.0514                                | 0.0034           | 260                                 | 18       | 261                                 | 5    | 257                                  | 151       | 102       |
| Bren2          | Bren2-51<br>Bren2-52 | 114                  | 22                      | 42                     | 144095                              | 0.37              | 2.075                                            | 0.058            | 0.1939                                           | 0.0028           | 0.52             | 0.0776                                | 0.0019           | 1140                                | 32       | 1143                                | 16   | 1136                                 | 48        | 101       |
| Bron2          | Bron2 52             | 330                  | ∠o<br>17                | 100                    | 4093                                | 0.30              | 0.073                                            | 0.023            | 0.0845                                           | 0.0013           | 0.44             | 0.0514                                | 0.0010           | 5∠3<br>252                          | 10<br>10 | JZ3<br>251                          | 0    | JZ1<br>257                           | 00        | 100       |
| Bren2          | Bren2-54             | 434                  | 7                       | 102<br>210             | 4010                                | U.42<br>1 10      | 0.282                                            | 0.011            | 0.0398                                           | 0.0000           | 0.40             | 0.0514                                | 0.0019           | 202                                 | 10       | 201                                 | 4    | 201                                  | 03<br>172 | 98<br>101 |
| Bren2          | Bren2-55             | 46                   | , 1                     | 218<br>41              | 96                                  | 0.89              | 0.270                                            | 0.022            | 0.0393                                           | 0.0009           | 0.25             | 0.0311                                | 0.0098           | 245                                 | 38       | 186                                 | Q.   | 171                                  | 463       | 109       |
| Bren2          | Bren2-56             | 273                  | 24                      | 192                    | 153400                              | 0.70              | 0.695                                            | 0.021            | 0.0863                                           | 0.0013           | 0.48             | 0.0584                                | 0.0016           | 536                                 | 16       | 534                                 | 8    | 546                                  | 58        | 98        |
| Bren2          | Bren2-57             | 534                  | 14                      | 365                    | 90273                               | 0.68              | 0.178                                            | 0.009            | 0.0260                                           | 0.0004           | 0.35             | 0.0496                                | 0.0023           | 166                                 | 8        | 165                                 | 3    | 176                                  | 107       | 94        |
| Bren2          | Bren2-58             | 268                  | 14                      | 241                    | 50539                               | 0.90              | 0.370                                            | 0.012            | 0.0509                                           | 0.0007           | 0.46             | 0.0527                                | 0.0015           | 319                                 | 10       | 320                                 | 5    | 317                                  | 64        | 101       |
| Bren2          | Bren2-59             | 209                  | 10                      | 202                    | 63344                               | 0.97              | 0.337                                            | 0.012            | 0.0465                                           | 0.0007           | 0.44             | 0.0525                                | 0.0016           | 295                                 | 10       | 293                                 | 4    | 308                                  | 70        | 95        |
|                |                      |                      |                         |                        |                                     |                   |                                                  |                  |                                                  |                  |                  |                                       |                  |                                     |          |                                     |      |                                      |           |           |

| Dren 2           | Brand 60   | 202  | 17  | 102 | 107500 | 0.24 | 0.200  | 0.010 | 0.0545 | 0.0000 | 0.26 | 0.0521 | 0.0004 | 244   | 16 | 242  | 6  | 224  | 100 | 102 |
|------------------|------------|------|-----|-----|--------|------|--------|-------|--------|--------|------|--------|--------|-------|----|------|----|------|-----|-----|
| Dieliz           | Dieliz-00  | 303  | 17  | 103 | 107500 | 0.34 | 0.399  | 0.019 | 0.0545 | 0.0009 | 0.30 | 0.0531 | 0.0024 | 341   | 10 | 342  | 0  | 331  | 102 | 103 |
| Bren2            | Bren2-61   | 516  | 23  | 218 | 5970   | 0.42 | 0.317  | 0.010 | 0.0442 | 0.0006 | 0.45 | 0.0521 | 0.0015 | 280   | 9  | 279  | 4  | 288  | 65  | 97  |
| Bren2            | Bren2-62   | 299  | 24  | 169 | 6146   | 0.57 | 0.640  | 0.023 | 0.0804 | 0.0012 | 0.43 | 0.0577 | 0.0019 | 502   | 18 | 498  | 8  | 519  | 72  | 96  |
| Bren2            | Bren2-63   | 424  | 34  | 195 | 1311   | 0.46 | 0.788  | 0.027 | 0.0807 | 0.0012 | 0.45 | 0.0708 | 0.0022 | 590   | 20 | 500  | 8  | 952  | 62  | 53  |
| Bren2            | Bren2-64   | 291  | 25  | 283 | 3973   | 0.97 | 0.690  | 0.025 | 0.0855 | 0.0013 | 0.43 | 0.0586 | 0.0019 | 533   | 19 | 529  | 8  | 550  | 70  | 96  |
| Dren 0           | Drend OF   | 200  | 40  | 10  | 4070   | 0.40 | 4 005  | 0.020 | 0.0000 | 0.0000 | 0.10 | 0.0000 | 0.0010 | 000   |    | 054  | 10 | 070  | 50  | 07  |
| Brenz            | Brenz-65   | 339  | 48  | 42  | 4673   | 0.12 | 1.335  | 0.037 | 0.1416 | 0.0020 | 0.51 | 0.0683 | 0.0016 | 1 08  | 24 | 854  | 12 | 879  | 50  | 97  |
| Bren2            | Bren2-66   | 169  | 27  | 70  | 175939 | 0.41 | 1.573  | 0.046 | 0.1601 | 0.0023 | 0.50 | 0.0713 | 0.0018 | 960   | 28 | 957  | 14 | 966  | 52  | 99  |
| Bren2            | Bren2-67   | 536  | 32  | 304 | 6571   | 0.57 | 0.444  | 0.019 | 0.0595 | 0.0010 | 0.39 | 0.0541 | 0.0021 | 373   | 16 | 372  | 6  | 375  | 87  | 99  |
| Bren2            | Bren2-68   | 566  | 104 | 155 | 677571 | 0.27 | 1 930  | 0.050 | 0 1840 | 0.0026 | 0.55 | 0.0761 | 0.0016 | 1092  | 28 | 1089 | 15 | 1097 | 43  | aa  |
| DICILZ           | Dicit2 00  | 100  | 104 | 100 | 1000   | 0.27 | 1.000  | 0.000 | 0.1040 | 0.0020 | 0.00 | 0.0701 | 0.0010 | 1002  | 20 | 1000 | 10 | 1001 | 40  | 00  |
| Bren2            | Bren2-69   | 406  | 10  | 226 | 1839   | 0.56 | 0.166  | 0.011 | 0.0243 | 0.0005 | 0.30 | 0.0495 | 0.0032 | 156   | 11 | 155  | 3  | 172  | 150 | 90  |
| Bren2            | Bren2-70   | 423  | 20  | 214 | 130901 | 0.51 | 0.349  | 0.023 | 0.0476 | 0.0010 | 0.31 | 0.0531 | 0.0033 | 304   | 20 | 300  | 6  | 334  | 140 | 90  |
| Bren2            | Bren2-71   | 241  | 19  | 49  | 121879 | 0.20 | 0.608  | 0.024 | 0.0777 | 0.0012 | 0.41 | 0.0567 | 0.0020 | 482   | 19 | 482  | 8  | 481  | 78  | 100 |
| Bron2            | Bron2-72   | 364  | 31  | 72  | 200308 | 0.20 | 0.672  | 0.010 | 0.0846 | 0.0012 | 0.50 | 0.0576 | 0.0014 | 522   | 15 | 523  | 7  | 515  | 53  | 102 |
| DICILZ           | DICI12 72  | 004  | 01  | 12  | 200000 | 0.20 | 0.012  | 0.010 | 0.0040 | 0.0012 | 0.00 | 0.0070 | 0.0017 | 10.17 | 10 | 020  |    | 1055 | 00  | 102 |
| Bren2            | Bren2-73   | 373  | 66  | 105 | 426538 | 0.28 | 1.805  | 0.048 | 0.1757 | 0.0025 | 0.54 | 0.0745 | 0.0017 | 1047  | 28 | 1043 | 15 | 1055 | 45  | 99  |
| Bren2            | Bren2-74   | 160  | 16  | 57  | 4121   | 0.35 | 0.823  | 0.043 | 0.0987 | 0.0018 | 0.35 | 0.0605 | 0.0030 | 610   | 32 | 607  | 11 | 622  | 106 | 98  |
| Bren2            | Bren2-75   | 286  | 8   | 124 | 239    | 0.44 | 0.179  | 0.017 | 0.0263 | 0.0007 | 0.27 | 0.0494 | 0.0044 | 168   | 16 | 168  | 4  | 167  | 208 | 100 |
| Bren2            | Bren2-76   | 602  | 15  | 464 | 1600   | 0.77 | 0 167  | 0.008 | 0 0244 | 0 0004 | 0.36 | 0 0498 | 0.0021 | 157   | 7  | 155  | 3  | 187  | 98  | 83  |
| DICILZ           | DICI12 70  | 1002 | 10  | 404 | 1000   | 0.77 | 0.107  | 0.000 | 0.0244 | 0.0004 | 0.00 | 0.0400 | 0.0021 | 107   | 10 | 100  | -  | 107  |     | 00  |
| Bren2            | Bren2-77   | 193  | 11  | 166 | 2780   | 0.86 | 0.408  | 0.014 | 0.0549 | 0.0008 | 0.44 | 0.0539 | 0.0017 | 347   | 12 | 344  | 5  | 368  | /1  | 94  |
| Bren2            | Bren2-78   | 472  | 19  | 369 | 124201 | 0.78 | 0.287  | 0.021 | 0.0404 | 0.0009 | 0.29 | 0.0515 | 0.0037 | 256   | 19 | 255  | 6  | 265  | 163 | 97  |
| Bren2            | Bren2-79   | 697  | 31  | 482 | 3870   | 0.69 | 0.324  | 0.009 | 0.0452 | 0.0006 | 0.50 | 0.0520 | 0.0013 | 285   | 8  | 285  | 4  | 286  | 56  | 100 |
| Bron?            | Bren2-80   | 258  | 121 | 83  | 12545  | 0.32 | 11 371 | 0.315 | 0 4707 | 0.0071 | 0.54 | 0 1752 | 0.0041 | 2554  | 71 | 2487 | 37 | 2608 | 30  | 05  |
| Dienz            | Dieliz-00  | 230  | 121 | 00  | 12545  | 0.52 | 11.571 | 0.010 | 0.4707 | 0.0071 | 0.04 | 0.1732 | 0.0041 | 2554  | 71 | 2407 | 57 | 2000 | 55  | 35  |
| Bren2            | Bren2-81   | 74   | 1   | 28  | 44546  | 0.38 | 0.898  | 0.038 | 0.0928 | 0.0016 | 0.40 | 0.0702 | 0.0027 | 651   | 28 | 572  | 10 | 933  | 80  | 61  |
| Bren2            | Bren2-82   | 118  | 6   | 56  | 674    | 0.47 | 0.387  | 0.019 | 0.0527 | 0.0009 | 0.35 | 0.0532 | 0.0025 | 332   | 16 | 331  | 6  | 339  | 105 | 98  |
| Bren2            | Bren2-83   | 252  | 21  | 160 | 3104   | 0.63 | 0.668  | 0.036 | 0.0836 | 0.0016 | 0.35 | 0.0580 | 0.0029 | 520   | 28 | 518  | 10 | 528  | 111 | 98  |
| Bren2            | Bren2-84   | 74   | 6   | 35  | 2935   | 0.48 | 0.668  | 0.030 | 0.0839 | 0.0014 | 0.38 | 0.0577 | 0.0024 | 519   | 23 | 519  | 9  | 520  | 91  | 100 |
| Bren2            | Bren2-85   | 580  | 31  | 449 | 15331  | 0.77 | 0.395  | 0.015 | 0.0538 | 0.0008 | 0.42 | 0.0532 | 0.0018 | 338   | 13 | 338  | 5  | 339  | 77  | 100 |
| Bren2            | Bren2-86   | 381  | 17  | 147 | 6088   | 0.39 | 0.330  | 0.011 | 0.0460 | 0.0007 | 0.46 | 0.0521 | 0.0015 | 290   | 9  | 290  | 4  | 291  | 65  | 99  |
| Bron2            | Bron2 97   | 146  | 11  | 42  | 72022  | 0.20 | 0.504  | 0.025 | 0.0750 | 0.0015 | 0.22 | 0.0569 | 0.0021 | 474   | 29 | 471  | 0  | 495  | 100 | 07  |
| Bieliz           | Dieliz-07  | 140  |     | 42  | 12022  | 0.29 | 0.594  | 0.035 | 0.0759 | 0.0015 | 0.33 | 0.0508 | 0.0031 | 474   | 20 | 471  | 9  | 405  | 122 | 91  |
| Bren2            | Bren2-88   | 217  | 80  | 164 | 5957   | 0.76 | 6.322  | 0.163 | 0.3673 | 0.0052 | 0.55 | 0.1248 | 0.0027 | 2022  | 52 | 2017 | 28 | 2027 | 38  | 100 |
| Bren2            | Bren2-89   | 1098 | 46  | 556 | 5369   | 0.51 | 0.302  | 0.016 | 0.0424 | 0.0007 | 0.34 | 0.0518 | 0.0025 | 268   | 14 | 267  | 5  | 275  | 111 | 97  |
| Bren2            | Bren2-90   | 748  | 18  | 358 | 485    | 0.48 | 0.221  | 0.012 | 0.0241 | 0.0005 | 0.36 | 0.0664 | 0.0033 | 203   | 11 | 154  | 3  | 819  | 104 | 19  |
| Bron?            | Bren2-01   | 402  | 16  | 154 | 0214   | 0.38 | 0.200  | 0.000 | 0.0408 | 0.0006 | 0.47 | 0.0516 | 0.0014 | 259   | 8  | 258  | 4  | 266  | 64  | 07  |
| Bron2            | Bren2 02   | -F02 | 0   | 20  | 0214   | 0.00 | 1 204  | 0.000 | 0.1207 | 0.0000 | 0.45 | 0.0677 | 0.0001 | 200   | 20 | 200  | 10 | 200  | 63  | 09  |
| Dieliz           | Dieliz-92  | 59   | 0   | 29  | 22/5   | 0.46 | 1.304  | 0.045 | 0.1397 | 0.0022 | 0.45 | 0.0677 | 0.0021 | 040   | 29 | 043  | 13 | 000  | 63  | 90  |
| Bren2            | Bren2-93   | 297  | 24  | 136 | 5835   | 0.46 | 0.662  | 0.025 | 0.0823 | 0.0013 | 0.42 | 0.0584 | 0.0020 | 516   | 19 | 510  | 8  | 543  | 75  | 94  |
| Bren2            | Bren2-94   | 84   | 31  | 67  | 8075   | 0.80 | 6.444  | 0.176 | 0.3719 | 0.0054 | 0.53 | 0.1257 | 0.0029 | 2038  | 56 | 2038 | 30 | 2038 | 41  | 100 |
| Bren2            | Bren2-95   | 98   | 4   | 47  | 26988  | 0.48 | 0.299  | 0.036 | 0.0423 | 0.0013 | 0.26 | 0.0513 | 0.0060 | 266   | 32 | 267  | 8  | 253  | 267 | 106 |
| Bren2            | Bren2-96   | 365  | 15  | 325 | 99259  | 0.89 | 0.299  | 0.016 | 0.0417 | 0.0008 | 0.34 | 0.0519 | 0.0026 | 265   | 14 | 264  | 5  | 280  | 115 | 94  |
| Bren2            | Bren2-97   | 176  | 14  | 162 | 4252   | 0.92 | 0.628  | 0.027 | 0.0797 | 0.0013 | 0.39 | 0.0571 | 0.0023 | 495   | 21 | 494  | 8  | 497  | 87  | 99  |
| Bron2            | Bron2 09   | 466  | 20  | 71  | 2059   | 0.15 | 0.646  | 0.019 | 0.0914 | 0.0012 | 0.51 | 0.0576 | 0.0014 | 506   | 14 | 504  | 7  | 514  | 52  | 00  |
| Dieliz<br>Dieliz | Dieli2-90  | 400  | 100 | 105 | 3930   | 0.15 | 7,400  | 0.018 | 0.0014 | 0.0012 | 0.51 | 0.0570 | 0.0014 | 500   | 14 | 0474 | 20 | 0474 | 55  | 50  |
| Brenz            | Brenz-99   | 305  | 122 | 125 | 87849  | 0.41 | 7.498  | 0.193 | 0.4005 | 0.0056 | 0.54 | 0.1358 | 0.0029 | 2173  | 50 | 2171 | 30 | 2174 | 38  | 100 |
| Bren2            | Bren2-100  | 224  | 20  | 117 | 130334 | 0.52 | 0.725  | 0.022 | 0.0893 | 0.0013 | 0.48 | 0.0589 | 0.0016 | 554   | 17 | 551  | 8  | 564  | 58  | 98  |
| Bren2            | Bren2-101  | 230  | 6   | 51  | 406    | 0.22 | 0.182  | 0.018 | 0.0269 | 0.0007 | 0.27 | 0.0492 | 0.0046 | 170   | 17 | 171  | 4  | 157  | 221 | 109 |
| Bren2            | Bren2-102  | 125  | 3   | 142 | 337    | 1.14 | 0.177  | 0.015 | 0.0260 | 0.0006 | 0.27 | 0.0494 | 0.0040 | 165   | 14 | 165  | 4  | 166  | 189 | 100 |
| Bren2            | Bren2-103  | 741  | 20  | 499 | 3079   | 0.67 | 0.182  | 0.009 | 0.0267 | 0.0004 | 0.35 | 0.0496 | 0.0022 | 170   | 8  | 170  | 3  | 174  | 103 | 98  |
| Bren2            | Bren2-104  | 303  | 7   | 209 | 47103  | 0.69 | 0.162  | 0.012 | 0.0238 | 0.0005 | 0.29 | 0.0493 | 0.0035 | 153   | 11 | 152  | 3  | 163  | 166 | 93  |
| Bren2            | Bren2-105  | 696  | 31  | 565 | 14257  | 0.81 | 0.318  | 0.011 | 0.0441 | 0.0007 | 0.43 | 0.0523 | 0.0017 | 280   | 10 | 278  | 4  | 298  | 74  | 94  |
| Bren2            | Bren2-106  | 503  | 82  | 30  | 7328   | 0.06 | 1.678  | 0.049 | 0.1640 | 0.0024 | 0.50 | 0.0742 | 0.0019 | 1000  | 29 | 979  | 14 | 1047 | 51  | 94  |
| Bren2            | Bren2-107  | 113  | 4   | 201 | 2343   | 1 78 | 0.226  | 0.023 | 0.0320 | 0.0009 | 0.27 | 0.0512 | 0.0050 | 207   | 21 | 203  | 6  | 248  | 227 | 82  |
| Bren2            | Bren2-100  | 186  | 17  | 172 | 108432 | 0.02 | 0.722  | 0.047 | 0.0895 | 0.0010 | 0.32 | 0.0585 | 0.0036 | 552   | 36 | 553  | 12 | 549  | 136 | 101 |
| Bren2            | Bren2 110  | 220  | 24  | 110 | 166607 | 0.32 | 0.722  | 0.047 | 0.0035 | 0.0013 | 0.32 | 0.0503 | 0.0030 | 430   | 15 | 420  | 7  | 420  | 67  | 101 |
| Bieliz           | Brenz-110  | 339  | 24  | 110 | 155507 | 0.32 | 0.540  | 0.016 | 0.0704 | 0.0011 | 0.45 | 0.0557 | 0.0017 | 439   | 15 | 439  | 1  | 439  | 67  | 100 |
| Bren2            | Bren2-111  | 422  | 38  | 192 | 234030 | 0.46 | 0.742  | 0.022 | 0.0910 | 0.0013 | 0.49 | 0.0592 | 0.0015 | 564   | 17 | 561  | 8  | 573  | 57  | 98  |
| Bren2            | Bren2-112  | 329  | 19  | 71  | 2373   | 0.21 | 0.490  | 0.019 | 0.0582 | 0.0009 | 0.41 | 0.0611 | 0.0022 | 405   | 16 | 365  | 6  | 642  | 77  | 57  |
| Bren2            | Bren2-113  | 332  | 8   | 271 | 22589  | 0.82 | 0.177  | 0.011 | 0.0256 | 0.0005 | 0.31 | 0.0502 | 0.0030 | 166   | 10 | 163  | 3  | 206  | 137 | 79  |
| Bren2            | Bren2-114  | 679  | 54  | 104 | 1800   | 0.15 | 0.748  | 0.020 | 0.0794 | 0.0011 | 0.52 | 0.0683 | 0.0016 | 567   | 15 | 492  | 7  | 879  | 48  | 56  |
| Bren2            | Bren2-115  | 159  | 4   | 154 | 28628  | 0.96 | 0.189  | 0.018 | 0.0276 | 0.0007 | 0.27 | 0.0498 | 0.0045 | 176   | 17 | 175  | 4  | 186  | 212 | 94  |
| Bron?            | Bren 2 116 | 110  | 11  | 70  | 3/015  | 0.66 | 0 000  | 0.029 | 0.0076 | 0.0015 | 0.44 | 0.0600 | 0.0010 | 601   | 01 | 600  | 0  | 604  | 69  |     |
| DIEIIZ           |            | 110  | 11  | 12  | 34210  | 0.00 | 0.008  | 0.020 | 0.09/0 | 0.0015 | 0.44 | 0.0000 | 0.0019 |       | 21 | 000  | 9  | 004  | 00  | 99  |
| Bren2            | Bren2-117  | 442  | 25  | 354 | 1485   | 0.80 | 0.416  | 0.018 | 0.0563 | 0.0009 | 0.39 | 0.0536 | 0.0021 | 353   | 15 | 353  | 6  | 353  | 88  | 100 |
| Bren2            | Bren2-118  | 369  | 19  | 202 | 1520   | 0.55 | 0.399  | 0.025 | 0.0527 | 0.0011 | 0.32 | 0.0548 | 0.0033 | 341   | 21 | 331  | 7  | 405  | 133 | 82  |
| Bren2            | Bren2-119  | 442  | 18  | 256 | 2531   | 0.58 | 0.293  | 0.017 | 0.0408 | 0.0008 | 0.33 | 0.0520 | 0.0028 | 261   | 15 | 258  | 5  | 286  | 122 | 90  |
| Bren?            | Bren2-120  | 869  | 90  | 116 | 586860 | 0 13 | 0.865  | 0.028 | 0 1036 | 0.0015 | 0.46 | 0.0606 | 0.0017 | 633   | 20 | 635  | Q  | 625  | 61  | 102 |
| Dron2            | Bron2 121  | 154  | 7   | 55  | 44082  | 0.10 | 0.000  | 0.020 | 0.1000 | 0.0000 | 0.40 | 0.0500 | 0.0005 | 000   | 15 | 202  | 5  | 244  | 109 | 00  |
| Brenz            | Drenz-121  | 154  | 1   | 55  | 44982  | 0.30 | 0.329  | 0.017 | 0.0448 | 0.0008 | 0.34 | 0.0534 | 0.0025 | 289   | 15 | 282  | э  | 344  | 108 | 82  |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup>Pb/<sup>235</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb)/(<sup>238</sup>U)<sup>206</sup>Pb \* 1/137.88) <sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>238</sup>U and the <sup>207</sup>/<sup>235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

### Table D19. LA-ICPMS isotopic data for sample PLETT in the Plettenberg Bay Basin

| D |   | <b>C</b> 7 | <br><b>г</b> |
|---|---|------------|--------------|
| - | L | <b>—</b>   |              |

| PLETT  |                |                      |                          |                         |                                     |                   |                                                  |                  |                                                  | RATIOS           |                  |                                       |                  |     |                                   |    | AGES                                | [Ma] |                                      |           | Conc.    |
|--------|----------------|----------------------|--------------------------|-------------------------|-------------------------------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------------------|---------------------------------------|------------------|-----|-----------------------------------|----|-------------------------------------|------|--------------------------------------|-----------|----------|
| Sample | Analysis       | U [ppm] <sup>a</sup> | Pb [ppm] <sup>a</sup> Th | n [ppm] <sup>a 20</sup> | <sup>06</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>a</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho <sup>c</sup> | <sup>207</sup> Pb/ <sup>206</sup> Pb' | 2 σ <sup>d</sup> | 201 | <sup>7</sup> Pb/ <sup>235</sup> U | 2σ | <sup>206</sup> Pb/ <sup>238</sup> U | 2σ   | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ        | %        |
| PLETT  | TT-1           | 441                  | 10                       | 278                     | 3275                                | 0.63              | 0.163                                            | 0.009            | 0.02259                                          | 0.00046          | 0.37             | 0.052                                 | 0.003            |     | 153                               | 9  | 144                                 | 3    | 302                                  | 118       | 48       |
| PLETT  | TT-2           | 210                  | 5                        | 83                      | 15230                               | 0.40              | 0.150                                            | 0.012            | 0.02155                                          | 0.00044          | 0.26             | 0.051                                 | 0.004            |     | 142                               | 11 | 137                                 | 3    | 223                                  | 178       | 62       |
| PLETT  | TT-5           | 523                  | 12                       | 344                     | 657                                 | 0.66              | 0.156                                            | 0.013            | 0.02297                                          | 0.00046          | 0.24             | 0.049                                 | 0.004            |     | 147                               | 12 | 146                                 | 3    | 163                                  | 189       | 90       |
| PLETT  | TT-6           | 245                  | 5                        | 145                     | 796                                 | 0.59              | 0.151                                            | 0.009            | 0.02233                                          | 0.00046          | 0.33             | 0.049                                 | 0.003            |     | 143                               | 9  | 142                                 | 3    | 152                                  | 136       | 94       |
| PLETT  | TT-7           | 296                  | 6                        | 183                     | 910                                 | 0.62              | 0.145                                            | 0.007            | 0.02147                                          | 0.00044          | 0.43             | 0.049                                 | 0.002            |     | 137                               | 7  | 137                                 | 3    | 141                                  | 101       | 97       |
| PLETT  | TT-8           | 169                  | 4                        | 61                      | 3285                                | 0.36              | 0.158                                            | 0.010            | 0.02291                                          | 0.00048          | 0.33             | 0.050                                 | 0.003            |     | 149                               | 9  | 146                                 | 3    | 196                                  | 139       | 74       |
| PLETT  | TT-9           | 173                  | 4                        | 47                      | 638                                 | 0.27              | 0.150                                            | 0.023            | 0.02161                                          | 0.00046          | 0.14             | 0.050                                 | 0.008            |     | 142                               | 22 | 138                                 | 3    | 207                                  | 350       | 66       |
| PLETT  | TT-10          | 183                  | 4                        | 81                      | 146                                 | 0.44              | 0.157                                            | 0.018            | 0.02325                                          | 0.00048          | 0.18             | 0.049                                 | 0.006            |     | 148                               | 17 | 148                                 | 3    | 150                                  | 271       | 99       |
| PLETT  | TT-11          | 189                  | 4                        | 72                      | 375                                 | 0.38              | 0.150                                            | 0.010            | 0.02199                                          | 0.00046          | 0.30             | 0.049                                 | 0.003            |     | 142                               | 10 | 140                                 | 3    | 164                                  | 154       | 86       |
| PLETT  | TT-12          | 280                  | 6                        | 147                     | 326                                 | 0.53              | 0.159                                            | 0.016            | 0.02270                                          | 0.00046          | 0.21             | 0.051                                 | 0.005            |     | 149                               | 15 | 145                                 | 3    | 226                                  | 222       | 64       |
| PLETT  | TT-13          | 279                  | 6                        | 149                     | 937                                 | 0.53              | 0.150                                            | 0.009            | 0.02211                                          | 0.00046          | 0.36             | 0.049                                 | 0.003            |     | 142                               | 8  | 141                                 | 3    | 161                                  | 126       | 88       |
| PLETT  | TT-14          | 295                  | 6                        | 188                     | 5185                                | 0.64              | 0.147                                            | 0.007            | 0.02183                                          | 0.00044          | 0.43             | 0.049                                 | 0.002            |     | 139                               | 7  | 139                                 | 3    | 142                                  | 100       | 98       |
| PLETT  | TT-15          | 358                  | 8                        | 216                     | 72732                               | 0.60              | 0.145                                            | 0.006            | 0.02140                                          | 0.00044          | 0.48             | 0.049                                 | 0.002            |     | 137                               | 6  | 136                                 | 3    | 150                                  | 87        | 91       |
| PLETT  | TT-17          | 270                  | 6                        | 147                     | 2541                                | 0.54              | 0.147                                            | 0.006            | 0.02187                                          | 0.00044          | 0.50             | 0.049                                 | 0.002            |     | 139                               | 6  | 139                                 | 3    | 137                                  | 82        | 102      |
| PLETT  | TT-18          | 293                  | 6                        | 165                     | 764                                 | 0.56              | 0.160                                            | 0.010            | 0.02168                                          | 0.00044          | 0.33             | 0.054                                 | 0.003            |     | 151                               | 9  | 138                                 | 3    | 354                                  | 133       | 39       |
| PLETT  | TT-19          | 346                  | 7                        | 198                     | 188095                              | 0.57              | 0.143                                            | 0.008            | 0.02136                                          | 0.00044          | 0.38             | 0.049                                 | 0.002            |     | 136                               | 7  | 136                                 | 3    | 134                                  | 119       | 101      |
| PLETT  | TT-20          | 333                  | 7                        | 213                     | 428                                 | 0.64              | 0.149                                            | 0.010            | 0.02194                                          | 0.00044          | 0.31             | 0.049                                 | 0.003            |     | 141                               | 9  | 140                                 | 3    | 154                                  | 144       | 91       |
| PLETT  | TT-21          | 607                  | 13                       | 413                     | 336                                 | 0.68              | 0.185                                            | 0.009            | 0.02198                                          | 0.00044          | 0.40             | 0.061                                 | 0.003            |     | 173                               | 9  | 140                                 | 3    | 645                                  | 100       | 22       |
| PLETT  | TT-24          | 157                  | 3                        | 57                      | 41348                               | 0.37              | 0.148                                            | 0.011            | 0.02184                                          | 0.00046          | 0.28             | 0.049                                 | 0.004            |     | 140                               | 11 | 139                                 | 3    | 156                                  | 172       | 89       |
| PLETT  | TT-25          | 194                  | 4                        | 67                      | 39800                               | 0.35              | 0.148                                            | 0.010            | 0.02165                                          | 0.00044          | 0.30             | 0.049                                 | 0.003            |     | 140                               | 9  | 138                                 | 3    | 169                                  | 149       | 82       |
| PLETT  | TT-28          | 300                  | 6                        | 160                     | 2413                                | 0.53              | 0.169                                            | 0.013            | 0.02130                                          | 0.00044          | 0.27             | 0.058                                 | 0.004            |     | 159                               | 12 | 136                                 | 3    | 518                                  | 164       | 26       |
| PLETT  | 11-30          | 120                  | 3                        | 35                      | 4396                                | 0.29              | 0.150                                            | 0.016            | 0.02216                                          | 0.00048          | 0.20             | 0.049                                 | 0.005            |     | 141                               | 15 | 141                                 | 3    | 144                                  | 246       | 98       |
| PLETT  | TT-31          | 293                  | 7                        | 152                     | 63431                               | 0.52              | 0.154                                            | 0.008            | 0.02291                                          | 0.00046          | 0.38             | 0.049                                 | 0.002            |     | 146                               | 8  | 146                                 | 3    | 141                                  | 114       | 103      |
| PLETT  | 11-33          | 546                  | 13                       | 357                     | 2164                                | 0.65              | 0.162                                            | 0.007            | 0.02367                                          | 0.00048          | 0.48             | 0.050                                 | 0.002            |     | 152                               | 6  | 151                                 | 3    | 176                                  | 87        | 86       |
| PLETT  | 11-34          | 240                  | 5                        | 120                     | 2/1                                 | 0.50              | 0.163                                            | 0.016            | 0.02221                                          | 0.00046          | 0.21             | 0.053                                 | 0.005            |     | 153                               | 15 | 142                                 | 3    | 339                                  | 214       | 42       |
| PLETT  | TT-35          | 269                  | 6                        | 135                     | 55128                               | 0.50              | 0.158                                            | 0.015            | 0.02163                                          | 0.00044          | 0.21             | 0.053                                 | 0.005            |     | 149                               | 14 | 138                                 | 3    | 325                                  | 214       | 43       |
| PLETT  | 11-36          | 186                  | 4                        | 62                      | 37263                               | 0.33              | 0.143                                            | 0.006            | 0.02120                                          | 0.00044          | 0.46             | 0.049                                 | 0.002            |     | 135                               | 6  | 135                                 | 3    | 137                                  | 94        | 99       |
| PLETT  | 11-37          | 291                  | 6                        | 148                     | 465                                 | 0.51              | 0.179                                            | 0.016            | 0.02163                                          | 0.00044          | 0.23             | 0.060                                 | 0.005            |     | 168                               | 15 | 138                                 | 3    | 609                                  | 185       | 23       |
| PLETT  | 11-38<br>TT 20 | 372                  | 8                        | 210                     | 1355                                | 0.57              | 0.146                                            | 0.006            | 0.02171                                          | 0.00044          | 0.51             | 0.049                                 | 0.002            |     | 138                               | 6  | 138                                 | 3    | 132                                  | 81        | 105      |
| PLETT  | TT-40          | 231                  | 5                        | 227                     | 47003                               | 0.40              | 0.147                                            | 0.000            | 0.02160                                          | 0.00046          | 0.49             | 0.049                                 | 0.002            |     | 140                               | 11 | 139                                 | 3    | 277                                  | 09<br>163 | 94<br>49 |
| DIETT  | TT-40          | 162                  | 1                        | 50                      | 198                                 | 0.00              | 0.153                                            | 0.024            | 0.02190                                          | 0.00044          | 0.20             | 0.052                                 | 0.004            |     | 144                               | 22 | 140                                 | 3    | 234                                  | 354       | 49       |
| PLETT  | TT-42          | 244                  | 5                        | 131                     | 181                                 | 0.53              | 0.230                                            | 0.024            | 0.02130                                          | 0.00040          | 0.14             | 0.075                                 | 0.000            |     | 210                               | 26 | 143                                 | 3    | 1056                                 | 247       | 14       |
| PLETT  | TT-45          | 198                  | 4                        | 88                      | 144                                 | 0.44              | 0.200                                            | 0.020            | 0.02170                                          | 0.00046          | 0.16             | 0.078                                 | 0.010            |     | 210                               | 28 | 138                                 | 3    | 1159                                 | 259       | 17       |
| DIETT  | TT-46          | 177                  | 4                        | 70                      | 226                                 | 0.45              | 0.107                                            | 0.025            | 0.022110                                         | 0.00046          | 0.10             | 0.064                                 | 0.008            |     | 183                               | 23 | 142                                 | 3    | 752                                  | 261       | 10       |
| PLETT  | TT-40          | 204                  | 5                        | 80                      | 253                                 | 0.45              | 0.169                                            | 0.020            | 0.02221                                          | 0.00040          | 0.17             | 0.004                                 | 0.007            |     | 159                               | 19 | 142                                 | 3    | 400                                  | 269       | 36       |
| PLETT  | TT-48          | 225                  | 5                        | 124                     | 260                                 | 0.55              | 0.189                                            | 0.021            | 0.02216                                          | 0.00046          | 0.10             | 0.062                                 | 0.009            |     | 176                               | 26 | 140                                 | 3    | 669                                  | 319       | 21       |
| PLETT  | TT-49          | 200                  | 4                        | 97                      | 401                                 | 0.48              | 0.219                                            | 0.022            | 0.02152                                          | 0.00044          | 0.20             | 0.074                                 | 0.007            |     | 201                               | 20 | 137                                 | 3    | 1032                                 | 200       | 13       |
| PLETT  | TT-53          | 263                  | 6                        | 139                     | 230                                 | 0.53              | 0.221                                            | 0.019            | 0.02210                                          | 0.00046          | 0.25             | 0.073                                 | 0.006            |     | 203                               | 17 | 141                                 | 3    | 1003                                 | 167       | 14       |
| PLETT  | TT-54          | 230                  | 5                        | 170                     | 46905                               | 0.74              | 0.145                                            | 0.008            | 0.02163                                          | 0.00040          | 0.20             | 0.049                                 | 0.003            |     | 138                               | 8  | 138                                 | 3    | 136                                  | 125       | 101      |
| PLETT  | TT-56          | 259                  | 6                        | 143                     | 633                                 | 0.55              | 0.189                                            | 0.016            | 0.02188                                          | 0.00046          | 0.25             | 0.063                                 | 0.005            |     | 176                               | 15 | 140                                 | 3    | 700                                  | 172       | 20       |
| PLETT  | TT-57          | 291                  | 6                        | 155                     | 185                                 | 0.53              | 0.150                                            | 0.009            | 0.02187                                          | 0 00044          | 0.32             | 0.050                                 | 0.003            |     | 142                               | 9  | 139                                 | 3    | 187                                  | 136       | 75       |
| PLETT  | TT-58          | 230                  | 5                        | 131                     | 46804                               | 0.57              | 0.145                                            | 0.013            | 0.02156                                          | 0.00044          | 0.23             | 0.049                                 | 0.004            |     | 138                               | 12 | 138                                 | 3    | 140                                  | 199       | 98       |
| PLETT  | TT-59          | 248                  | 5                        | 136                     | 280                                 | 0.55              | 0.196                                            | 0.028            | 0.02134                                          | 0.00044          | 0.14             | 0.066                                 | 0.009            |     | 181                               | 26 | 136                                 | 3    | 821                                  | 297       | 17       |
| PLETT  | TT-60          | 615                  | 14                       | 422                     | 507                                 | 0.69              | 0.188                                            | 0.011            | 0.02216                                          | 0.00044          | 0.34             | 0.061                                 | 0.003            |     | 175                               | 10 | 141                                 | 3    | 655                                  | 119       | 22       |
| PLETT  | TT-61          | 230                  | 5                        | 123                     | 331                                 | 0.54              | 0.215                                            | 0.020            | 0.02211                                          | 0.00046          | 0.23             | 0.071                                 | 0.006            |     | 198                               | 18 | 141                                 | 3    | 943                                  | 184       | 15       |
| PLETT  | TT-62          | 227                  | 5                        | 116                     | 171                                 | 0.51              | 0.245                                            | 0.018            | 0.02222                                          | 0.00046          | 0.28             | 0.080                                 | 0.006            |     | 222                               | 16 | 142                                 | 3    | 1194                                 | 139       | 12       |
| PLETT  | TT-63          | 452                  | 10                       | 264                     | 336                                 | 0.58              | 0.151                                            | 0.009            | 0.02241                                          | 0.00046          | 0.35             | 0.049                                 | 0.003            |     | 143                               | 8  | 143                                 | 3    | 140                                  | 131       | 102      |
| PLETT  | TT-64          | 286                  | 6                        | 155                     | 284                                 | 0.54              | 0.196                                            | 0.014            | 0.02144                                          | 0.00044          | 0.28             | 0.066                                 | 0.005            |     | 182                               | 13 | 137                                 | 3    | 813                                  | 145       | 17       |
| PLETT  | TT-65          | 285                  | 6                        | 149                     | 722                                 | 0.52              | 0.149                                            | 0.017            | 0.02166                                          | 0.00044          | 0.18             | 0.050                                 | 0.006            |     | 141                               | 16 | 138                                 | 3    | 195                                  | 257       | 71       |
| PLETT  | TT-66          | 256                  | 6                        | 126                     | 195                                 | 0.49              | 0.299                                            | 0.021            | 0.02209                                          | 0.00046          | 0.30             | 0.098                                 | 0.007            |     | 266                               | 19 | 141                                 | 3    | 1591                                 | 125       | 9        |
| PLETT  | TT-68          | 297                  | 6                        | 233                     | 3728                                | 0.79              | 0.146                                            | 0.006            | 0.02170                                          | 0.00044          | 0.51             | 0.049                                 | 0.002            |     | 138                               | 5  | 138                                 | 3    | 139                                  | 80        | 99       |
| PLETT  | TT-72          | 161                  | 4                        | 60                      | 922                                 | 0.37              | 0.164                                            | 0.026            | 0.02290                                          | 0.00048          | 0.13             | 0.052                                 | 0.008            |     | 154                               | 24 | 146                                 | 3    | 281                                  | 355       | 52       |
| PLETT  | TT-73          | 318                  | 7                        | 145                     | 63171                               | 0.46              | 0.143                                            | 0.007            | 0.02112                                          | 0.00044          | 0.40             | 0.049                                 | 0.002            |     | 135                               | 7  | 135                                 | 3    | 145                                  | 113       | 93       |
| PLETT  | TT-75          | 363                  | 8                        | 185                     | 293                                 | 0.51              | 0.151                                            | 0.012            | 0.02231                                          | 0.00046          | 0.26             | 0.049                                 | 0.004            |     | 143                               | 11 | 142                                 | 3    | 150                                  | 179       | 95       |
| PLETT  | TT-77          | 532                  | 12                       | 309                     | 332                                 | 0.58              | 0.155                                            | 0.015            | 0.02176                                          | 0.00044          | 0.21             | 0.052                                 | 0.005            |     | 147                               | 14 | 139                                 | 3    | 277                                  | 221       | 50       |
|        |                |                      |                          |                         |                                     |                   |                                                  |                  |                                                  |                  | -                |                                       |                  |     |                                   |    |                                     | -    |                                      |           |          |

| PLETT | TT-79  | 200 | 4  | 70  | 41378  | 0.35 | 0.149 | 0.012 | 0.02205 | 0.00048 | 0.27 | 0.049 | 0.004 | 141 | 11 | 141 | 3  | 141  | 180 | 100 |
|-------|--------|-----|----|-----|--------|------|-------|-------|---------|---------|------|-------|-------|-----|----|-----|----|------|-----|-----|
| PLETT | TT-81  | 448 | 10 | 269 | 477    | 0.60 | 0.150 | 0.011 | 0.02164 | 0.00044 | 0.28 | 0.050 | 0.004 | 142 | 10 | 138 | 3  | 209  | 164 | 66  |
| PLETT | TT-84  | 292 | 6  | 199 | 7186   | 0.68 | 0.149 | 0.006 | 0.02204 | 0.00046 | 0.48 | 0.049 | 0.002 | 141 | 6  | 141 | 3  | 142  | 88  | 99  |
| PLETT | TT-85  | 412 | 9  | 257 | 704    | 0.62 | 0.186 | 0.011 | 0.02178 | 0.00044 | 0.34 | 0.062 | 0.003 | 173 | 10 | 139 | 3  | 670  | 119 | 21  |
| PLETT | TT-87  | 200 | 4  | 94  | 89     | 0.47 | 0.232 | 0.038 | 0.02207 | 0.00046 | 0.13 | 0.076 | 0.012 | 212 | 34 | 141 | 3  | 1098 | 322 | 13  |
| PLETT | TT-88  | 382 | 8  | 273 | 321    | 0.72 | 0.204 | 0.015 | 0.02171 | 0.00044 | 0.27 | 0.068 | 0.005 | 188 | 14 | 138 | 3  | 868  | 151 | 16  |
| PLETT | TT-89  | 200 | 4  | 119 | 237    | 0.60 | 0.219 | 0.025 | 0.02159 | 0.00046 | 0.18 | 0.073 | 0.008 | 201 | 23 | 138 | 3  | 1027 | 229 | 13  |
| PLETT | TT-92  | 193 | 4  | 94  | 576    | 0.49 | 0.147 | 0.010 | 0.02172 | 0.00046 | 0.33 | 0.049 | 0.003 | 139 | 9  | 139 | 3  | 154  | 144 | 90  |
| PLETT | TT-93  | 518 | 11 | 305 | 104799 | 0.59 | 0.146 | 0.005 | 0.02160 | 0.00044 | 0.56 | 0.049 | 0.001 | 138 | 5  | 138 | 3  | 142  | 71  | 97  |
| PLETT | TT-94  | 203 | 4  | 87  | 444    | 0.43 | 0.197 | 0.025 | 0.02145 | 0.00046 | 0.17 | 0.067 | 0.008 | 183 | 23 | 137 | 3  | 826  | 258 | 17  |
| PLETT | TT-96  | 297 | 6  | 174 | 149114 | 0.59 | 0.144 | 0.007 | 0.02132 | 0.00044 | 0.44 | 0.049 | 0.002 | 136 | 6  | 136 | 3  | 140  | 99  | 97  |
| PLETT | TT-97  | 264 | 6  | 164 | 2547   | 0.62 | 0.144 | 0.010 | 0.02149 | 0.00044 | 0.29 | 0.049 | 0.003 | 137 | 10 | 137 | 3  | 136  | 161 | 101 |
| PLETT | TT-98  | 193 | 4  | 111 | 226    | 0.57 | 0.165 | 0.013 | 0.02130 | 0.00044 | 0.27 | 0.056 | 0.004 | 155 | 12 | 136 | 3  | 462  | 162 | 29  |
| PLETT | TT-99  | 170 | 4  | 54  | 174    | 0.32 | 0.161 | 0.016 | 0.02243 | 0.00048 | 0.22 | 0.052 | 0.005 | 151 | 15 | 143 | 3  | 284  | 219 | 50  |
| PLETT | TT-101 | 322 | 7  | 135 | 604    | 0.42 | 0.219 | 0.024 | 0.02222 | 0.00048 | 0.20 | 0.072 | 0.008 | 201 | 22 | 142 | 3  | 976  | 221 | 15  |
| PLETT | TT-103 | 199 | 4  | 90  | 4153   | 0.45 | 0.146 | 0.009 | 0.02154 | 0.00046 | 0.34 | 0.049 | 0.003 | 139 | 9  | 137 | 3  | 159  | 138 | 86  |
| PLETT | TT-107 | 370 | 8  | 217 | 197    | 0.59 | 0.149 | 0.014 | 0.02196 | 0.00044 | 0.21 | 0.049 | 0.005 | 141 | 13 | 140 | 3  | 161  | 214 | 87  |
| PLETT | TT-108 | 213 | 5  | 94  | 856    | 0.44 | 0.152 | 0.014 | 0.02175 | 0.00048 | 0.25 | 0.051 | 0.004 | 144 | 13 | 139 | 3  | 232  | 199 | 60  |
| PLETT | TT-109 | 88  | 9  | 31  | 82195  | 0.35 | 0.835 | 0.030 | 0.09990 | 0.00204 | 0.56 | 0.061 | 0.002 | 616 | 22 | 614 | 13 | 625  | 65  | 98  |
| PLETT | TT-110 | 143 | 3  | 60  | 145    | 0.42 | 0.248 | 0.039 | 0.02242 | 0.00050 | 0.14 | 0.080 | 0.012 | 225 | 35 | 143 | 3  | 1200 | 304 | 12  |
| PLETT | TT-111 | 323 | 7  | 192 | 257    | 0.60 | 0.199 | 0.014 | 0.02132 | 0.00044 | 0.29 | 0.068 | 0.005 | 184 | 13 | 136 | 3  | 855  | 144 | 16  |
| PLETT | TT-112 | 350 | 8  | 146 | 739    | 0.42 | 0.146 | 0.008 | 0.02159 | 0.00044 | 0.40 | 0.049 | 0.002 | 138 | 7  | 138 | 3  | 149  | 111 | 92  |
| PLETT | TT-113 | 237 | 5  | 118 | 2458   | 0.50 | 0.148 | 0.010 | 0.02167 | 0.00046 | 0.30 | 0.050 | 0.003 | 140 | 10 | 138 | 3  | 177  | 155 | 78  |
| PLETT | TT-114 | 202 | 4  | 75  | 470    | 0.37 | 0.149 | 0.012 | 0.02136 | 0.00046 | 0.26 | 0.051 | 0.004 | 141 | 12 | 136 | 3  | 220  | 182 | 62  |
| PLETT | TT-115 | 162 | 3  | 60  | 224    | 0.37 | 0.249 | 0.027 | 0.02153 | 0.00046 | 0.19 | 0.084 | 0.009 | 226 | 25 | 137 | 3  | 1290 | 210 | 11  |
|       |        |     |    |     |        |      |       |       |         |         |      |       |       |     |    |     |    |      |     |     |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup>Pb/<sup>235</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb)/(<sup>238</sup>U/<sup>206</sup>Pb \* 1/137.88) <sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>238</sup>U and the <sup>207</sup>/<sup>235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

| AECOC  |          |                      |                       |                         |                                      |                   |                                                  |                  |                                                  | RATIOS           |                  |                                       |                         |                                     |          | AGES                                | [Ma] |                                      |          | Conc. |
|--------|----------|----------------------|-----------------------|-------------------------|--------------------------------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------------------|---------------------------------------|-------------------------|-------------------------------------|----------|-------------------------------------|------|--------------------------------------|----------|-------|
| Sample | Analysis | U [ppm] <sup>a</sup> | Pb [ppm] <sup>a</sup> | Th [ppm] <sup>a 2</sup> | <sup>206</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>a</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho <sup>c</sup> | <sup>207</sup> Pb/ <sup>206</sup> Pb' | <b>2</b> σ <sup>d</sup> | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ       | <sup>206</sup> Pb/ <sup>238</sup> U | 2σ   | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ       | %     |
| AECOC  | AECOC-1  | 159                  | 7                     | 89                      | 47661                                | 0.56              | 0.315                                            | 0.012            | 0.0425                                           | 0.0007           | 0.42             | 0.0538                                | 0.0018                  | 278                                 | 10       | 268                                 | 4    | 362                                  | 75       | 74    |
| AECOC  | AECOC-2  | 526                  | 22                    | 136                     | 8127                                 | 0.26              | 0.304                                            | 0.009            | 0.0427                                           | 0.0006           | 0.50             | 0.0517                                | 0.0013                  | 270                                 | 8        | 269                                 | 4    | 272                                  | 58       | 99    |
| AECOC  | AECOC-3  | 194                  | 18                    | 58                      | 129688                               | 0.30              | 0.780                                            | 0.025            | 0.0950                                           | 0.0014           | 0.48             | 0.0595                                | 0.0016                  | 585                                 | 18       | 585                                 | 9    | 585                                  | 60       | 100   |
| AECOC  | AECOC-4  | 292                  | 13                    | 107                     | 3144                                 | 0.37              | 0.309                                            | 0.013            | 0.0435                                           | 0.0007           | 0.39             | 0.0516                                | 0.0020                  | 274                                 | 12       | 275                                 | 5    | 266                                  | 90       | 103   |
| AECOC  | AECOC-5  | 166                  | 7                     | 57                      | 52779                                | 0.34              | 0.323                                            | 0.018            | 0.0451                                           | 0.0008           | 0.33             | 0.0519                                | 0.0027                  | 284                                 | 16       | 285                                 | 5    | 281                                  | 121      | 101   |
| AECOC  | AECOC-6  | 76                   | 11                    | 28                      | 1963                                 | 0.36              | 1.523                                            | 0.047            | 0.1386                                           | 0.0021           | 0.49             | 0.0797                                | 0.0022                  | 940                                 | 29       | 837                                 | 13   | 1190                                 | 53       | 70    |
| AECOC  | AECOC-8  | 195                  | 8                     | 97                      | 3124                                 | 0.50              | 0.299                                            | 0.011            | 0.0418                                           | 0.0007           | 0.43             | 0.0518                                | 0.0017                  | 265                                 | 10       | 264                                 | 4    | 276                                  | 75       | 96    |
| AECOC  | AECOC-9  | 71                   | 7                     | 33                      | 606                                  | 0.46              | 0.762                                            | 0.051            | 0.0932                                           | 0.0020           | 0.33             | 0.0592                                | 0.0037                  | 575                                 | 38       | 575                                 | 13   | 576                                  | 137      | 100   |
| AECOC  | AECOC-10 | 150                  | 11                    | 57                      | 1092                                 | 0.38              | 0.572                                            | 0.020            | 0.0710                                           | 0.0011           | 0.44             | 0.0585                                | 0.0018                  | 460                                 | 16       | 442                                 | 7    | 549                                  | 69       | 81    |
| AECOC  | AECOC-11 | 152                  | 9                     | 105                     | 64991                                | 0.69              | 0.464                                            | 0.022            | 0.0607                                           | 0.0011           | 0.37             | 0.0555                                | 0.0025                  | 387                                 | 18       | 380                                 | 7    | 433                                  | 99       | 88    |
| AECOC  | AECOC-12 | 401                  | 17                    | 248                     | 117687                               | 0.62              | 0.299                                            | 0.009            | 0.0417                                           | 0.0006           | 0.48             | 0.0519                                | 0.0014                  | 265                                 | 8        | 263                                 | 4    | 283                                  | 62       | 93    |
| AECOC  | AECOC-13 | 361                  | 63                    | 82                      | 9645                                 | 0.23              | 1.886                                            | 0.061            | 0.1747                                           | 0.0027           | 0.48             | 0.0783                                | 0.0022                  | 1076                                | 35       | 1038                                | 16   | 1155                                 | 56       | 90    |
| AECOC  | AECOC-14 | 213                  | 10                    | 49                      | 69991                                | 0.23              | 0.336                                            | 0.016            | 0.0467                                           | 0.0008           | 0.36             | 0.0522                                | 0.0024                  | 294                                 | 14       | 294                                 | 5    | 294                                  | 104      | 100   |
| AECOC  | AECOC-15 | 306                  | 18                    | 156                     | 3776                                 | 0.51              | 0.425                                            | 0.013            | 0.0578                                           | 0.0009           | 0.50             | 0.0533                                | 0.0014                  | 360                                 | 11       | 362                                 | 5    | 342                                  | 59       | 106   |
| AECOC  | AECOC-16 | 210                  | 9                     | 123                     | 61340                                | 0.59              | 0.296                                            | 0.019            | 0.0417                                           | 0.0008           | 0.31             | 0.0515                                | 0.0031                  | 263                                 | 16       | 263                                 | 5    | 262                                  | 137      | 100   |
| AECOC  | AECOC-17 | 471                  | 21                    | 27                      | 2559                                 | 0.06              | 0.319                                            | 0.011            | 0.0447                                           | 0.0007           | 0.44             | 0.0518                                | 0.0016                  | 281                                 | 10       | 282                                 | 4    | 277                                  | 71       | 102   |
| AECOC  | AECOC-18 | 289                  | 13                    | 83                      | 1513                                 | 0.29              | 0.344                                            | 0.017            | 0.0461                                           | 0.0008           | 0.36             | 0.0542                                | 0.0025                  | 300                                 | 15       | 290                                 | 5    | 377                                  | 103      | 77    |
| AECOC  | AECOC-19 | 320                  | 13                    | 276                     | 19851                                | 0.86              | 0.296                                            | 0.010            | 0.0416                                           | 0.0006           | 0.44             | 0.0516                                | 0.0016                  | 263                                 | 9        | 262                                 | 4    | 267                                  | 71       | 98    |
| AECOC  | AECOC-20 | 361                  | 15                    | 137                     | 108740                               | 0.38              | 0.305                                            | 0.017            | 0.0429                                           | 0.0008           | 0.34             | 0.0516                                | 0.0028                  | 271                                 | 15       | 271                                 | 5    | 266                                  | 123      | 102   |
| AECOC  | AECOC-21 | 321                  | 56                    | 31                      | 26183                                | 0.10              | 1.765                                            | 0.046            | 0.1737                                           | 0.0025           | 0.55             | 0.0737                                | 0.0016                  | 1033                                | 27       | 1033                                | 15   | 1033                                 | 44       | 100   |
| AECOC  | AECOC-22 | 189                  | 15                    | 42                      | 105815                               | 0.22              | 0.627                                            | 0.019            | 0.0797                                           | 0.0012           | 0.49             | 0.0570                                | 0.0015                  | 494                                 | 15       | 494                                 | 7    | 492                                  | 59       | 101   |
| AECOC  | AECOC-23 | 112                  | 5                     | 60                      | 2782                                 | 0.53              | 0.306                                            | 0.018            | 0.0428                                           | 0.0008           | 0.33             | 0.0519                                | 0.0028                  | 271                                 | 16       | 270                                 | 5    | 280                                  | 124      | 96    |
| AECOC  | AECOC-24 | 173                  | 7                     | 94                      | 1008                                 | 0.55              | 0.304                                            | 0.013            | 0.0424                                           | 0.0007           | 0.40             | 0.0519                                | 0.0020                  | 269                                 | 11       | 268                                 | 4    | 280                                  | 86       | 96    |
| AECOC  | AECOC-25 | 733                  | 29                    | 136                     | 200170                               | 0.19              | 0.276                                            | 0.010            | 0.0389                                           | 0.0006           | 0.43             | 0.0514                                | 0.0017                  | 247                                 | 9        | 246                                 | 4    | 259                                  | 75       | 95    |
| AECOC  | AECOC-26 | 265                  | 10                    | 1/5                     | 73180                                | 0.66              | 0.279                                            | 0.009            | 0.0394                                           | 0.0006           | 0.45             | 0.0514                                | 0.0015                  | 250                                 | 8        | 249                                 | 4    | 257                                  | 69       | 97    |
| AECOC  | AECOC-27 | 423                  | 18                    | 147                     | 120175                               | 0.35              | 0.300                                            | 0.009            | 0.0425                                           | 0.0006           | 0.50             | 0.0511                                | 0.0013                  | 200                                 | 8        | 268                                 | 4    | 240                                  | 104      | 109   |
| AECOC  | AECOC-28 | 180                  | 8                     | 110                     | 004                                  | 0.64              | 0.318                                            | 0.018            | 0.0445                                           | 0.0008           | 0.33             | 0.0520                                | 0.0028                  | 281                                 | 10       | 280                                 | 5    | 283                                  | 124      | 99    |
| AECOC  | AECOC-29 | 107<br>517           | 20                    | 142                     | 294                                  | 0.31              | 0.478                                            | 0.025            | 0.0462                                           | 0.0009           | 0.57             | 0.0750                                | 0.0037                  | 390                                 | 21<br>12 | 291                                 | 7    | 1009                                 | 99<br>51 | 27    |
| AECOC  | AECOC-30 | 517<br>401           | 10                    | 143                     | 214209                               | 0.20              | 0.367                                            | 0.016            | 0.0757                                           | 0.0011           | 0.55             | 0.0564                                | 0.0013                  | 470                                 | 13       | 470                                 | 5    | 407                                  | 95       | 59    |
| AECOC  | AECOC-32 | 101                  | 19                    | 02                      | 134640                               | 0.44              | 0.307                                            | 0.015            | 0.0404                                           | 0.0008           | 0.40             | 0.0574                                | 0.0022                  | 618                                 | 13       | 292                                 | 9    | 626                                  | 55       | 08    |
| AECOC  | AECOC-33 | 718                  | 30                    | 200                     | 213287                               | 0.29              | 0.000                                            | 0.020            | 0.1005                                           | 0.0015           | 0.46             | 0.0522                                | 0.0015                  | 270                                 | 9        | 268                                 | 1    | 204                                  | 66       | 90    |
| AECOC  | AECOC-34 | 275                  | 13                    | 209                     | 1308                                 | 0.29              | 0.303                                            | 0.010            | 0.0424                                           | 0.0000           | 0.40             | 0.0522                                | 0.0013                  | 210                                 | 9<br>10  | 208                                 | 4    | 294                                  | 145      | 102   |
| AECOC  | AECOC-35 | 195                  | 14                    | 75                      | 99966                                | 0.39              | 0.569                                            | 0.022            | 0.0732                                           | 0.0010           | 0.41             | 0.0563                                | 0.0021                  | 457                                 | 18       | 455                                 | 7    | 466                                  | 82       | 98    |
| AFCOC  | AECOC-36 | 179                  | 7                     | 82                      | 1095                                 | 0.46              | 0.276                                            | 0.018            | 0.0390                                           | 0.0008           | 0.31             | 0.0515                                | 0.0033                  | 248                                 | 17       | 246                                 | 5    | 261                                  | 146      | 94    |
| AFCOC  | AECOC-37 | 100                  | 7                     | 55                      | 1793                                 | 0.55              | 0.582                                            | 0.022            | 0.0742                                           | 0.0012           | 0.43             | 0.0569                                | 0.0019                  | 466                                 | 17       | 461                                 | 7    | 486                                  | 74       | 95    |
| AECOC  | AECOC-38 | 231                  | 10                    | 140                     | 72384                                | 0.61              | 0.326                                            | 0.013            | 0.0447                                           | 0.0007           | 0.41             | 0.0529                                | 0.0019                  | 287                                 | 11       | 282                                 | 5    | 324                                  | 82       | 87    |
| AECOC  | AECOC-39 | 286                  | 25                    | 40                      | 174356                               | 0.14              | 0.696                                            | 0.020            | 0.0870                                           | 0.0013           | 0.51             | 0.0580                                | 0.0015                  | 536                                 | 16       | 538                                 | 8    | 530                                  | 55       | 102   |
| AECOC  | AECOC-41 | 241                  | 10                    | 104                     | 68943                                | 0.43              | 0.292                                            | 0.010            | 0.0409                                           | 0.0006           | 0.45             | 0.0519                                | 0.0016                  | 260                                 | 9        | 258                                 | 4    | 279                                  | 70       | 92    |
| AECOC  | AECOC-42 | 356                  | 15                    | 113                     | 9629                                 | 0.32              | 0.302                                            | 0.009            | 0.0425                                           | 0.0006           | 0.49             | 0.0516                                | 0.0014                  | 268                                 | 8        | 268                                 | 4    | 266                                  | 62       | 101   |
| AECOC  | AECOC-44 | 555                  | 30                    | 197                     | 261890                               | 0.35              | 0.402                                            | 0.011            | 0.0541                                           | 0.0008           | 0.52             | 0.0539                                | 0.0013                  | 343                                 | 10       | 339                                 | 5    | 368                                  | 55       | 92    |
| AECOC  | AECOC-45 | 455                  | 23                    | 103                     | 163821                               | 0.23              | 0.378                                            | 0.011            | 0.0515                                           | 0.0008           | 0.49             | 0.0532                                | 0.0014                  | 325                                 | 10       | 324                                 | 5    | 338                                  | 59       | 96    |
| AECOC  | AECOC-46 | 334                  | 15                    | 202                     | 4482                                 | 0.61              | 0.319                                            | 0.012            | 0.0445                                           | 0.0007           | 0.42             | 0.0520                                | 0.0018                  | 281                                 | 11       | 281                                 | 5    | 287                                  | 81       | 98    |
| AECOC  | AECOC-47 | 446                  | 23                    | 412                     | 630                                  | 0.92              | 0.533                                            | 0.021            | 0.0520                                           | 0.0009           | 0.43             | 0.0744                                | 0.0027                  | 434                                 | 17       | 327                                 | 6    | 1051                                 | 73       | 31    |
| AECOC  | AECOC-48 | 385                  | 16                    | 174                     | 3589                                 | 0.45              | 0.295                                            | 0.009            | 0.0418                                           | 0.0006           | 0.48             | 0.0512                                | 0.0014                  | 263                                 | 8        | 264                                 | 4    | 251                                  | 62       | 105   |
| AECOC  | AECOC-49 | 63                   | 3                     | 55                      | 212                                  | 0.87              | 0.289                                            | 0.028            | 0.0405                                           | 0.0011           | 0.28             | 0.0516                                | 0.0048                  | 257                                 | 25       | 256                                 | 7    | 270                                  | 213      | 95    |
| AECOC  | AECOC-50 | 525                  | 21                    | 458                     | 1394                                 | 0.87              | 0.345                                            | 0.015            | 0.0399                                           | 0.0007           | 0.40             | 0.0628                                | 0.0024                  | 301                                 | 13       | 252                                 | 4    | 700                                  | 83       | 36    |
|        |          |                      |                       |                         |                                      |                   |                                                  |                  |                                                  |                  |                  |                                       |                         |                                     |          |                                     |      |                                      |          |       |

| AECOC | AECOC-51 | 472 | 26 | 207 | 179627 | 0.44 | 0.404 | 0.013 | 0.0545 | 0.0008 | 0.47 | 0.0537 | 0.0016 | 344        | 11 | 342  | 5  | 360  | 65       | 95  |
|-------|----------|-----|----|-----|--------|------|-------|-------|--------|--------|------|--------|--------|------------|----|------|----|------|----------|-----|
| AECOC | AECOC-52 | 131 | 6  | 71  | 41304  | 0.54 | 0.324 | 0.017 | 0.0453 | 0.0008 | 0.35 | 0.0518 | 0.0025 | 285        | 15 | 286  | 5  | 278  | 112      | 103 |
| AECOC | AECOC-53 | 476 | 28 | 137 | 15581  | 0.29 | 0.480 | 0.019 | 0.0594 | 0.0010 | 0.41 | 0.0586 | 0.0022 | 398        | 16 | 372  | 6  | 553  | 80       | 67  |
| AECOC | AECOC-54 | 301 | 14 | 84  | 3225   | 0.28 | 0.324 | 0.010 | 0.0452 | 0.0007 | 0.47 | 0.0520 | 0.0015 | 285        | 9  | 285  | 4  | 286  | 65       | 99  |
| AECOC | AECOC-55 | 174 | 14 | 24  | 98072  | 0.14 | 0.640 | 0.020 | 0.0810 | 0.0012 | 0.48 | 0.0573 | 0.0016 | 502        | 16 | 502  | 8  | 503  | 60       | 100 |
| AECOC | AECOC-56 | 140 | 8  | 120 | 3374   | 0.86 | 0.420 | 0.024 | 0.0561 | 0.0011 | 0.34 | 0.0544 | 0.0029 | 356        | 20 | 352  | 7  | 387  | 120      | 91  |
| AECOC | AECOC-57 | 169 | 7  | 172 | 51930  | 1.02 | 0.355 | 0.022 | 0.0442 | 0.0009 | 0.33 | 0.0584 | 0.0034 | 309        | 19 | 279  | 6  | 544  | 126      | 51  |
| AECOC | AECOC-58 | 304 | 13 | 172 | 88489  | 0.57 | 0.297 | 0.010 | 0.0418 | 0.0006 | 0.47 | 0.0515 | 0.0015 | 264        | 9  | 264  | 4  | 263  | 66       | 100 |
| AECOC | AECOC-60 | 323 | 26 | 190 | 178324 | 0.59 | 0.625 | 0.018 | 0.0794 | 0.0012 | 0.51 | 0.0571 | 0.0014 | 493        | 14 | 492  | 7  | 495  | 55       | 99  |
| AECOC | AECOC-61 | 329 | 13 | 243 | 93179  | 0.74 | 0.289 | 0.009 | 0.0407 | 0.0006 | 0.46 | 0.0514 | 0.0015 | 258        | 8  | 257  | 4  | 260  | 67       | 99  |
| AECOC | AECOC-62 | 385 | 17 | 260 | 119332 | 0.68 | 0.319 | 0.010 | 0.0445 | 0.0007 | 0.48 | 0.0520 | 0.0015 | 281        | 9  | 281  | 4  | 286  | 64       | 98  |
| AECOC | AECOC-63 | 151 | 6  | 115 | 1181   | 0.77 | 0.300 | 0.023 | 0.0417 | 0.0010 | 0.29 | 0.0522 | 0.0039 | 266        | 21 | 263  | 6  | 294  | 171      | 90  |
| AECOC | AECOC-64 | 415 | 26 | 147 | 181892 | 0.35 | 0.472 | 0.021 | 0.0629 | 0.0011 | 0.38 | 0.0544 | 0.0022 | 392        | 17 | 393  | 7  | 388  | 91       | 101 |
| AECOC | AECOC-65 | 451 | 28 | 143 | 195061 | 0.32 | 0.465 | 0.017 | 0.0621 | 0.0010 | 0.43 | 0.0544 | 0.0018 | 388        | 14 | 388  | 6  | 387  | 75       | 100 |
| AECOC | AECOC-66 | 376 | 16 | 132 | 108267 | 0.35 | 0.295 | 0.009 | 0.0414 | 0.0006 | 0.48 | 0.0517 | 0.0014 | 262        | 8  | 262  | 4  | 271  | 63       | 97  |
| AECOC | AECOC-67 | 169 | 7  | 50  | 49474  | 0.30 | 0.300 | 0.021 | 0.0421 | 0.0009 | 0.31 | 0.0517 | 0.0034 | 266        | 19 | 266  | 6  | 271  | 153      | 98  |
| AECOC | AECOC-68 | 263 | 12 | 217 | 80796  | 0.82 | 0.338 | 0.016 | 0.0441 | 0.0008 | 0.37 | 0.0556 | 0.0024 | 295        | 14 | 278  | 5  | 434  | 96       | 64  |
| AECOC | AECOC-70 | 226 | 9  | 189 | 65348  | 0.83 | 0.295 | 0.012 | 0.0415 | 0.0007 | 0.40 | 0.0516 | 0.0020 | 263        | 11 | 262  | 4  | 266  | 87       | 99  |
| AECOC | AECOC-71 | 167 | 16 | 125 | 9168   | 0.75 | 0.814 | 0.025 | 0.0980 | 0.0015 | 0.49 | 0.0603 | 0.0016 | 605        | 19 | 602  | 9  | 613  | 59       | 98  |
| AECOC | AECOC-72 | 68  | 3  | 36  | 468    | 0.53 | 0.335 | 0.034 | 0.0462 | 0.0013 | 0.27 | 0.0526 | 0.0052 | 293        | 30 | 291  | 8  | 311  | 224      | 94  |
| AECOC | AECOC-73 | 219 | 9  | 83  | 63858  | 0.38 | 0.300 | 0.011 | 0.0420 | 0.0007 | 0.45 | 0.0519 | 0.0016 | 267        | 9  | 265  | 4  | 280  | 71       | 95  |
| AECOC | AECOC-74 | 370 | 64 | 97  | 21277  | 0.26 | 1.764 | 0.047 | 0.1720 | 0.0025 | 0.54 | 0.0744 | 0.0017 | 1032       | 28 | 1023 | 15 | 1052 | 46       | 97  |
| AECOC | AECOC-75 | 515 | 21 | 150 | 146391 | 0.29 | 0.293 | 0.012 | 0.0409 | 0.0007 | 0.39 | 0.0519 | 0.0020 | 261        | 11 | 259  | 4  | 279  | 90       | 93  |
| AECOC | AECOC-76 | 595 | 30 | 226 | 28985  | 0.38 | 0.403 | 0.018 | 0.0509 | 0.0009 | 0.39 | 0.0575 | 0.0023 | 344        | 15 | 320  | 6  | 509  | 90       | 63  |
| AFCOC | AECOC-77 | 424 | 26 | 121 | 16608  | 0.29 | 0 464 | 0.015 | 0.0620 | 0.0009 | 0.47 | 0.0543 | 0.0015 | 387        | 12 | 387  | 6  | 385  | 64       | 101 |
| AECOC | AECOC-78 | 307 | 14 | 123 | 97326  | 0.40 | 0.340 | 0.022 | 0.0456 | 0.0009 | 0.32 | 0.0540 | 0.0033 | 297        | 19 | 288  | 6  | 371  | 136      | 78  |
| AECOC | AECOC-79 | 151 | 11 | 96  | 79848  | 0.64 | 0.591 | 0.023 | 0.0762 | 0.0012 | 0.42 | 0.0563 | 0.0020 | 472        | 18 | 474  | 8  | 463  | 77       | 102 |
| AECOC | AECOC-80 | 229 | 20 | 127 | 6757   | 0.55 | 0.720 | 0.025 | 0.0892 | 0.0014 | 0.45 | 0.0585 | 0.0018 | 551        | 19 | 551  | 9  | 550  | 67       | 100 |
| AFCOC | AECOC-81 | 155 | 8  | 117 | 52582  | 0.75 | 0.356 | 0.017 | 0.0488 | 0.0009 | 0.37 | 0.0529 | 0.0024 | 309        | 15 | 307  | 5  | 326  | 101      | 94  |
| AFCOC | AECOC-83 | 248 | 11 | 120 | 3089   | 0.48 | 0.307 | 0.013 | 0.0430 | 0.0007 | 0.40 | 0.0518 | 0.0020 | 272        | 11 | 271  | 4  | 277  | 87       | 98  |
| AFCOC | AECOC-84 | 198 | 29 | 60  | 4202   | 0.30 | 1 430 | 0.040 | 0 1452 | 0.0022 | 0.53 | 0.0714 | 0.0017 | 901        | 25 | 874  | 13 | 969  | 49       | 90  |
| AFCOC | AECOC-85 | 118 | 5  | 74  | 33209  | 0.62 | 0.288 | 0.012 | 0.0405 | 0.0007 | 0.40 | 0.0516 | 0.0020 | 257        | 11 | 256  | 4  | 270  | 88       | 95  |
| AFCOC | AECOC-86 | 154 | 11 | 111 | 1570   | 0.72 | 0.580 | 0.038 | 0.0716 | 0.0015 | 0.33 | 0.0587 | 0.0036 | 464        | 30 | 446  | 9  | 556  | 134      | 80  |
| AFCOC | AECOC-87 | 142 | 22 | 45  | 2211   | 0.32 | 1 633 | 0.000 | 0 1537 | 0.0010 | 0.52 | 0.0770 | 0.0019 | 983        | 28 | 922  | 14 | 1122 | 49       | 82  |
| AECOC | AECOC-88 | 80  | 3  | 76  | 11676  | 0.95 | 0.301 | 0.034 | 0.1337 | 0.0023 | 0.32 | 0.0516 | 0.0019 | 267        | 30 | 267  | 8  | 266  | 251      | 100 |
| AECOC | AECOC-89 | 160 | 8  | 08  | 35/10  | 0.61 | 0.301 | 0.034 | 0.0425 | 0.0013 | 0.27 | 0.0510 | 0.0030 | 207        | 11 | 207  | 5  | 200  | 77       | 100 |
| AECOC | AECOC 00 | 661 | 26 | 226 | 101/50 | 0.01 | 0.342 | 0.015 | 0.0306 | 0.0007 | 0.45 | 0.0520 | 0.0010 | 255        | 14 | 255  | 5  | 230  | 116      | 00  |
| AECOC | AECOC-90 | 160 | 20 | 150 | 40766  | 0.34 | 0.203 | 0.013 | 0.0390 | 0.0007 | 0.35 | 0.0516 | 0.0020 | 200        | 19 | 201  | 5  | 210  | 05       | 106 |
| AECOC | AECOC-91 | 20  | 7  | 150 | 49700  | 0.97 | 1 762 | 0.062 | 0.0440 | 0.0008 | 0.30 | 0.0310 | 0.0021 | 1022       | 13 | 203  | 17 | 1026 | 9J<br>64 | 00  |
| AECOC | AECOC-92 | 39  | 1  | 10  | 40013  | 0.59 | 0.205 | 0.002 | 0.1733 | 0.0020 | 0.40 | 0.0730 | 0.0023 | 1032       | 37 | 1030 | 4  | 207  | 79       | 99  |
| AECOC | AECOC-94 | 276 | 11 | 155 | 10000  | 0.56 | 0.295 | 0.011 | 0.0409 | 0.0007 | 0.43 | 0.0525 | 0.0016 | 202        | 10 | 200  | 4  | 297  | 10       | 07  |
| AECOC | AECOC-95 | 294 | 12 | 142 | 2223   | 0.48 | 0.200 | 0.015 | 0.0404 | 0.0008 | 0.32 | 0.0513 | 0.0031 | ∠00<br>215 | 10 | 200  | 5  | 207  | 137      | 100 |
| AECOC | AECOC-96 | 843 | 42 | 235 | 292731 | 0.28 | 0.363 | 0.015 | 0.0502 | 0.0008 | 0.40 | 0.0525 | 0.0019 | 315        | 13 | 316  | 5  | 307  | ö4       | 103 |
| AECOC | AECOC-97 | 60  | 11 | 36  | //284  | 0.59 | 1.951 | 0.063 | 0.1851 | 0.0029 | 0.49 | 0.0765 | 0.0021 | 1099       | 35 | 1095 | 17 | 1107 | 56       | 99  |
| AECOC | AECOC-98 | 104 | 19 | 37  | 3080   | 0.35 | 1.876 | 0.056 | 0.1808 | 0.0028 | 0.51 | 0.0753 | 0.0019 | 1073       | 32 | 1071 | 16 | 1075 | 51       | 100 |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup>Pb/<sup>235</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb)/(<sup>238</sup>U/<sup>206</sup>Pb \* 1/137.88)

<sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>238</sup>U and the <sup>207/235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

### Table D21. LA-ICPMS isotopic data for sample AKIRK in the Algoa Basin

| AKIRK  |          |                      |                       |                       |                                      |                   |                                                  |                  |                                                  | RATIOS           |                  |                                      |                  |                                     |    | AGES                                | [Ma]     |                                      |            | Conc.     |
|--------|----------|----------------------|-----------------------|-----------------------|--------------------------------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------------------|--------------------------------------|------------------|-------------------------------------|----|-------------------------------------|----------|--------------------------------------|------------|-----------|
| Sample | Analysis | U [ppm] <sup>a</sup> | Pb [ppm] <sup>a</sup> | Th [ppm] <sup>a</sup> | <sup>206</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>a</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho <sup>c</sup> | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2 σ <sup>d</sup> | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ | <sup>206</sup> Pb/ <sup>238</sup> U | 2 σ      | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ         | %         |
| AKIRK  | AKIRK-1  | 257                  | 46                    | 139                   | 317637                               | 0.54              | 1.860                                            | 0.051            | 0.1803                                           | 0.0027           | 0.54             | 0.0748                               | 0.0017           | 1067                                | 29 | 1069                                | 16       | 1064                                 | 46         | 100       |
| AKIRK  | AKIRK-2  | 576                  | 17                    | 200                   | 119101                               | 0.35              | 0.208                                            | 0.008            | 0.0302                                           | 0.0005           | 0.42             | 0.0500                               | 0.0016           | 192                                 | 7  | 192                                 | 3        | 196                                  | 76         | 98        |
| AKIRK  | AKIRK-3  | 745                  | 33                    | 436                   | 228837                               | 0.59              | 0.324                                            | 0.013            | 0.0449                                           | 0.0007           | 0.40             | 0.0524                               | 0.0019           | 285                                 | 11 | 283                                 | 5        | 303                                  | 83         | 93        |
| AKIRK  | AKIRK-4  | 127                  | 7                     | 100                   | 1767                                 | 0.78              | 0.417                                            | 0.018            | 0.0562                                           | 0.0010           | 0.39             | 0.0538                               | 0.0022           | 354                                 | 15 | 353                                 | 6        | 364                                  | 90         | 97        |
| AKIRK  | AKIRK-5  | 292                  | 9                     | 228                   | 2805                                 | 0.78              | 0.203                                            | 0.018            | 0.0292                                           | 0.0005           | 0.19             | 0.0504                               | 0.0044           | 188                                 | 17 | 186                                 | 3        | 214                                  | 204        | 87        |
| AKIRK  | AKIRK-6  | 233                  | 11                    | 124                   | 2319                                 | 0.53              | 0.342                                            | 0.014            | 0.0474                                           | 0.0008           | 0.41             | 0.0522                               | 0.0019           | 298                                 | 12 | 299                                 | 5        | 296                                  | 84         | 101       |
| AKIRK  | AKIRK-8  | 117                  | 5                     | 75                    | 3322                                 | 0.65              | 0.327                                            | 0.019            | 0.0459                                           | 0.0009           | 0.33             | 0.0518                               | 0.0028           | 288                                 | 17 | 289                                 | 6        | 275                                  | 126        | 105       |
| AKIRK  | AKIRK-9  | 406                  | 17                    | 153                   | 4273                                 | 0.38              | 0.301                                            | 0.012            | 0.0422                                           | 0.0007           | 0.42             | 0.0518                               | 0.0018           | 267                                 | 10 | 266                                 | 4        | 275                                  | 80         | 97        |
| AKIRK  | AKIRK-10 | 279                  | 27                    | 160                   | 19866                                | 0.57              | 0.780                                            | 0.022            | 0.0952                                           | 0.0014           | 0.52             | 0.0594                               | 0.0015           | 585                                 | 17 | 586                                 | 9        | 581                                  | 53         | 101       |
| AKIRK  | AKIRK-11 | 205                  | 20                    | 95                    | 140420                               | 0.46              | 0.830                                            | 0.024            | 0.0997                                           | 0.0015           | 0.51             | 0.0604                               | 0.0015           | 614                                 | 18 | 613                                 | 9        | 618                                  | 54         | 99        |
| AKIRK  | AKIRK-12 | 747                  | 43                    | 168                   | 21215                                | 0.23              | 0.449                                            | 0.014            | 0.0581                                           | 0.0009           | 0.50             | 0.0561                               | 0.0015           | 376                                 | 11 | 364                                 | 6        | 456                                  | 58         | 80        |
| AKIRK  | AKIRK-13 | 188                  | 19                    | 49                    | 2445                                 | 0.26              | 0.836                                            | 0.025            | 0.1002                                           | 0.0015           | 0.51             | 0.0605                               | 0.0016           | 617                                 | 18 | 616                                 | 9        | 620                                  | 56         | 99        |
| AKIRK  | AKIRK-14 | 227                  | 25                    | 62                    | 174658                               | 0.27              | 0.969                                            | 0.031            | 0.1123                                           | 0.0017           | 0.48             | 0.0626                               | 0.0018           | 688                                 | 22 | 686                                 | 11       | 693                                  | 61         | 99        |
| AKIRK  | AKIRK-15 | 373                  | 16                    | 321                   | 1630                                 | 0.86              | 0.322                                            | 0.010            | 0.0433                                           | 0.0007           | 0.48             | 0.0540                               | 0.0015           | 283                                 | 9  | 273                                 | 4        | 371                                  | 63         | 74        |
| AKIRK  | AKIRK-16 | 229                  | 43                    | 132                   | 296724                               | 0.58              | 2.029                                            | 0.055            | 0.1888                                           | 0.0028           | 0.55             | 0.0780                               | 0.0018           | 1125                                | 30 | 1115                                | 16       | 1146                                 | 45         | 97        |
| AKIRK  | AKIRK-17 | 352                  | 14                    | 128                   | 96121                                | 0.36              | 0.281                                            | 0.014            | 0.0399                                           | 0.0007           | 0.35             | 0.0512                               | 0.0024           | 252                                 | 13 | 252                                 | 4        | 251                                  | 108        | 100       |
| AKIRK  | AKIRK-18 | 155                  | 27                    | 65                    | 184157                               | 0.42              | 1.745                                            | 0.049            | 0.1733                                           | 0.0026           | 0.53             | 0.0730                               | 0.0017           | 1025                                | 29 | 1030                                | 15       | 1015                                 | 48         | 102       |
| AKIRK  | AKIRK-19 | 267                  | 14                    | 183                   | 5305                                 | 0.69              | 0.379                                            | 0.026            | 0.0524                                           | 0.0011           | 0.31             | 0.0525                               | 0.0035           | 326                                 | 23 | 329                                 | 7        | 306                                  | 150        | 107       |
| AKIRK  | AKIRK-20 | 560                  | 24                    | 199                   | 163137                               | 0.36              | 0.303                                            | 0.009            | 0.0425                                           | 0.0006           | 0.51             | 0.0518                               | 0.0013           | 269                                 | 8  | 268                                 | 4        | 277                                  | 57         | 97        |
| AKIRK  | AKIRK-21 | 393                  | 23                    | 171                   | 159777                               | 0.43              | 0.441                                            | 0.013            | 0.0593                                           | 0.0009           | 0.50             | 0.0540                               | 0.0014           | 371                                 | 11 | 371                                 | 6        | 369                                  | 58         | 101       |
| AKIRK  | AKIRK-22 | 396                  | 22                    | 116                   | 148522                               | 0.29              | 0.403                                            | 0.012            | 0.0546                                           | 0.0008           | 0.49             | 0.0535                               | 0.0014           | 344                                 | 10 | 343                                 | 5        | 349                                  | 60         | 98        |
| AKIRK  | AKIRK-23 | 329                  | 15                    | 319                   | 100478                               | 0.97              | 0.320                                            | 0.011            | 0.0445                                           | 0.0007           | 0.45             | 0.0521                               | 0.0016           | 282                                 | 10 | 281                                 | 4        | 290                                  | 69         | 97        |
| AKIRK  | AKIRK-24 | 145                  | 13                    | 56                    | 14550                                | 0.39              | 0.698                                            | 0.022            | 0.0864                                           | 0.0013           | 0.48             | 0.0586                               | 0.0016           | 537                                 | 17 | 534                                 | 8        | 552                                  | 61         | 97        |
| AKIRK  | AKIRK-25 | 223                  | 9                     | 142                   | 575                                  | 0.64              | 0.297                                            | 0.015            | 0.0415                                           | 0.0007           | 0.36             | 0.0519                               | 0.0024           | 264                                 | 13 | 262                                 | 5        | 279                                  | 107        | 94        |
| AKIRK  | AKIRK-26 | 131                  | 6                     | 97                    | 338                                  | 0.73              | 0.344                                            | 0.034            | 0.0468                                           | 0.0013           | 0.28             | 0.0533                               | 0.0051           | 300                                 | 30 | 295                                 | 8        | 342                                  | 216        | 86        |
| AKIRK  | AKIRK-27 | 156                  | 13                    | 146                   | 3362                                 | 0.94              | 0.659                                            | 0.024            | 0.0827                                           | 0.0013           | 0.44             | 0.0579                               | 0.0019           | 514                                 | 18 | 512                                 | 8        | 524                                  | 71         | 98        |
| AKIRK  | AKIRK-28 | 475                  | 18                    | 339                   | 126532                               | 0.71              | 0.275                                            | 0.010            | 0.0388                                           | 0.0006           | 0.42             | 0.0513                               | 0.0018           | 246                                 | 9  | 245                                 | 4        | 256                                  | 80         | 96        |
| AKIRK  | AKIRK-29 | 160                  | 7                     | 156                   | 931                                  | 0.98              | 0.294                                            | 0.012            | 0.0410                                           | 0.0007           | 0.40             | 0.0519                               | 0.0020           | 261                                 | 11 | 259                                 | 4        | 281                                  | 86         | 92        |
| AKIRK  | AKIRK-30 | 246                  | 38                    | 138                   | 3188                                 | 0.56              | 1.460                                            | 0.041            | 0.1530                                           | 0.0023           | 0.53             | 0.0692                               | 0.0017           | 914                                 | 26 | 917                                 | 14       | 905                                  | 49         | 101       |
| AKIRK  | AKIRK-31 | 407                  | 12                    | 407                   | 81309                                | 1.00              | 0.200                                            | 0.012            | 0.0291                                           | 0.0004           | 0.24             | 0.0499                               | 0.0030           | 185                                 | 12 | 185                                 | 3        | 189                                  | 141        | 98        |
| AKIRK  | AKIRK-32 | 237                  | 20                    | 60                    | 2047                                 | 0.25              | 0.663                                            | 0.021            | 0.0835                                           | 0.0013           | 0.48             | 0.0576                               | 0.0016           | 517                                 | 16 | 517                                 | 8        | 516                                  | 61         | 100       |
| AKIRK  | AKIRK-33 | 236                  | 10                    | 186                   | 2497                                 | 0.79              | 0.294                                            | 0.012            | 0.0413                                           | 0.0007           | 0.39             | 0.0516                               | 0.0020           | 261                                 | 11 | 261                                 | 4        | 268                                  | 88         | 97        |
| AKIRK  | AKIRK-34 | 276                  | 49                    | 63                    | 1/424                                | 0.23              | 1.850                                            | 0.052            | 0.1782                                           | 0.0027           | 0.53             | 0.0753                               | 0.0018           | 1064                                | 30 | 1057                                | 16       | 1077                                 | 47         | 98        |
| AKIRK  | AKIRK-35 | 205                  | 6                     | 367                   | 41181                                | 1.79              | 0.200                                            | 0.012            | 0.0292                                           | 0.0005           | 0.27             | 0.0495                               | 0.0029           | 185                                 | 11 | 186                                 | 3        | 1/3                                  | 135        | 107       |
| AKIRK  | AKIRK-36 | 99                   | 6                     | 40                    | 40993                                | 0.41              | 0.453                                            | 0.017            | 0.0605                                           | 0.0010           | 0.42             | 0.0542                               | 0.0019           | 379                                 | 15 | 379                                 | 6        | 381                                  | 78         | 100       |
| AKIRK  | AKIRK-37 | 446                  | 21                    | 196                   | 6670                                 | 0.44              | 0.340                                            | 0.012            | 0.0470                                           | 0.0007           | 0.44             | 0.0524                               | 0.0017           | 297                                 | 11 | 296                                 | 5        | 303                                  | 12         | 98        |
| AKIRK  |          | 291                  | 12                    | 131                   | 1023                                 | 0.45              | 0.282                                            | 0.014            | 0.0396                                           | 0.0007           | 0.36             | 0.0516                               | 0.0023           | 252                                 | 12 | 250                                 | 4        | 269                                  | 104        | 93        |
|        | AKIRK-39 | 93                   | 9                     | 120                   | 60000                                | 1.28              | 0.817                                            | 0.034            | 0.0978                                           | 0.0017           | 0.40             | 0.0606                               | 0.0023           | 606                                 | 20 | 602                                 | 10       | 623                                  | 83         | 97        |
|        |          | 175                  | 15                    | 102                   | 00239                                | 0.56              | 0.711                                            | 0.025            | 0.0000                                           | 0.0014           | 0.45             | 0.0366                               | 0.0018           | 545                                 | 19 | 544                                 | 9        | 552                                  | 50         | 90        |
|        |          | 244                  | 40                    | 102                   | 2084                                 | 0.42              | 1.975                                            | 0.059            | 0.1875                                           | 0.0029           | 0.51             | 0.0764                               | 0.0020           | 1107                                | 33 | 1108                                | 17       | 1105                                 | 51         | 100       |
|        |          | 4/0                  | 19                    | 104                   | 4//8                                 | 0.34              | 0.278                                            | 0.011            | 0.0392                                           | 0.0006           | 0.40             | 0.0515                               | 0.0019           | 249                                 | 10 | 248                                 | 4        | 203                                  | 80<br>51   | 94        |
|        | AKIRK-40 | 137                  | 42                    | 137                   | 1407                                 | 1.00              | 0.101                                            | 0.022            | 0.0723                                           | 0.0011           | 0.33             | 0.0739                               | 0.0019           | J/∠<br>282                          | 16 | 400                                 | <i>'</i> | 277                                  | 123        | +1<br>102 |
|        |          | 2/7                  | 45                    | 30                    | 307644                               | 0.12              | 1 070                                            | 0.010            | 0.0440                                           | 0.0000           | 0.55             | 0.0310                               | 0.0020           | 1071                                | 30 | 1070                                | 16       | 1072                                 | 123        | 102       |
|        |          | 2+1<br>153           | 40                    | 102                   | 172626                               | 0.12              | 1.072                                            | 0.000            | 0.16/3                                           | 0.0027           | 0.55             | 0.0732                               | 0.0010           | 085                                 | 30 | 080                                 | 10       | 996                                  | 40<br>54   | 08        |
| AKIRK  | AKIRK-47 | 347                  | 23<br>50              | 45                    | 3553                                 | 0.07              | 1 381                                            | 0.030            | 0.1043                                           | 0.0020           | 0.50             | 0.0724                               | 0.0019           | 881                                 | 27 | 866                                 | 13       | 917                                  | 56         | 94        |
| AKIRK  | AKIRK-48 | 157                  | 13                    |                       | 1418                                 | 0.41              | 0.733                                            | 0.073            | 0.0823                                           | 0.0013           | 0.49             | 0.0646                               | 0.0017           | 558                                 | 17 | 510                                 | 8        | 761                                  | 57         | 67        |
| /      | /        |                      |                       | <b>U</b> T            |                                      | 0                 | 0.700                                            | 0.020            | 0.0020                                           | 0.0010           | 0.40             | 0.0040                               | 5.55.7           | 000                                 |    | 010                                 | 5        |                                      | <b>.</b> . |           |

| AKIRK | AKIRK-49 | 317  | 53       | 47  | 19638  | 0.15 | 1  | .755  | 0.049 | 0.1673 | 0.0025 | 0.54 | 0.0761 | 0.0018 | 1029       | 28      | 997        | 15 | 1098       | 47       | 91  |
|-------|----------|------|----------|-----|--------|------|----|-------|-------|--------|--------|------|--------|--------|------------|---------|------------|----|------------|----------|-----|
| AKIRK | AKIRK-50 | 412  | 67       | 174 | 3543   | 0.42 | 1  | .672  | 0.047 | 0.1625 | 0.0024 | 0.53 | 0.0746 | 0.0018 | 998        | 28      | 971        | 14 | 1058       | 49       | 92  |
| AKIRK | AKIRK-51 | 402  | 79       | 223 | 4651   | 0.56 | 2  | 2.166 | 0.058 | 0.1965 | 0.0029 | 0.55 | 0.0800 | 0.0018 | 1170       | 31      | 1156       | 17 | 1196       | 44       | 97  |
| AKIRK | AKIRK-52 | 525  | 39       | 304 | 10836  | 0.58 | 0  | .587  | 0.018 | 0.0741 | 0.0011 | 0.49 | 0.0575 | 0.0015 | 469        | 14      | 461        | 7  | 510        | 59       | 90  |
| AKIRK | AKIRK-53 | 181  | 9        | 153 | 781    | 0.85 | 0  | .341  | 0.017 | 0.0476 | 0.0008 | 0.36 | 0.0520 | 0.0024 | 298        | 15      | 300        | 5  | 287        | 105      | 104 |
| AKIRK | AKIRK-54 | 211  | 9        | 103 | 61387  | 0.49 | 0  | .315  | 0.020 | 0.0421 | 0.0009 | 0.32 | 0.0542 | 0.0033 | 278        | 18      | 266        | 6  | 381        | 138      | 70  |
| AKIRK | AKIRK-55 | 441  | 19       | 447 | 130746 | 1.01 | 0  | .309  | 0.009 | 0.0430 | 0.0006 | 0.48 | 0.0520 | 0.0014 | 273        | 8       | 272        | 4  | 285        | 62       | 95  |
| AKIRK | AKIRK-56 | 118  | 3        | 155 | 10385  | 1.31 | 0  | .198  | 0.011 | 0.0288 | 0.0005 | 0.32 | 0.0498 | 0.0025 | 184        | 10      | 183        | 3  | 187        | 118      | 98  |
| AKIRK | AKIRK-57 | 367  | 15       | 374 | 103742 | 1.02 | 0  | .294  | 0.010 | 0.0411 | 0.0006 | 0.45 | 0.0520 | 0.0015 | 262        | 9       | 259        | 4  | 286        | 68       | 91  |
| AKIRK | AKIRK-58 | 525  | 24       | 334 | 8239   | 0.64 | 0  | .329  | 0.010 | 0.0459 | 0.0007 | 0.48 | 0.0520 | 0.0014 | 289        | 9       | 289        | 4  | 287        | 62       | 101 |
| AKIRK | AKIRK-59 | 574  | 21       | 189 | 148032 | 0.33 | 0  | .268  | 0.013 | 0.0374 | 0.0006 | 0.37 | 0.0520 | 0.0023 | 241        | 11      | 237        | 4  | 286        | 99       | 83  |
| AKIRK | AKIRK-60 | 280  | 12       | 137 | 6694   | 0.49 | 0  | .295  | 0.010 | 0.0416 | 0.0006 | 0.45 | 0.0515 | 0.0016 | 263        | 9       | 263        | 4  | 262        | 70       | 100 |
| AKIRK | AKIRK-62 | 504  | 21       | 244 | 6917   | 0.48 | 0  | .299  | 0.009 | 0.0422 | 0.0006 | 0.50 | 0.0514 | 0.0013 | 266        | 8       | 267        | 4  | 261        | 59       | 102 |
| AKIRK | AKIRK-63 | 466  | 23       | 267 | 159747 | 0.57 | 0  | .364  | 0.013 | 0.0496 | 0.0008 | 0.44 | 0.0531 | 0.0017 | 315        | 11      | 312        | 5  | 333        | 72       | 94  |
| AKIRK | AKIRK-64 | 166  | 7        | 105 | 577    | 0.63 | 0  | .300  | 0.016 | 0.0420 | 0.0008 | 0.34 | 0.0518 | 0.0026 | 267        | 14      | 265        | 5  | 278        | 114      | 95  |
| AKIRK | AKIRK-65 | 344  | 46       | 69  | 2461   | 0.20 | 1  | .365  | 0.037 | 0.1329 | 0.0019 | 0.54 | 0.0745 | 0.0017 | 874        | 23      | 804        | 12 | 1056       | 45       | 76  |
| AKIRK | AKIRK-66 | 213  | 36       | 32  | 57959  | 0.15 | 1  | .692  | 0.055 | 0.1682 | 0.0026 | 0.48 | 0.0730 | 0.0021 | 1006       | 33      | 1002       | 16 | 1013       | 58       | 99  |
| AKIRK | AKIRK-67 | 496  | 15       | 433 | 101617 | 0.87 | 0  | .205  | 0.007 | 0.0297 | 0.0004 | 0.46 | 0.0499 | 0.0014 | 189        | 6       | 189        | 3  | 192        | 66       | 98  |
| AKIRK | AKIRK-68 | 448  | 37       | 360 | 2616   | 0.80 | 0  | 0.660 | 0.023 | 0.0829 | 0.0013 | 0.45 | 0.0578 | 0.0018 | 514        | 18      | 513        | 8  | 520        | 67       | 99  |
| AKIRK | AKIRK-70 | 645  | 57       | 387 | 1378   | 0.60 | 0  | .873  | 0.023 | 0.0892 | 0.0013 | 0.54 | 0.0710 | 0.0016 | 637        | 17      | 551        | 8  | 958        | 46       | 57  |
| AKIRK | AKIRK-71 | 354  | 14       | 248 | 51001  | 0.70 | 0  | .285  | 0.009 | 0.0401 | 0.0006 | 0.47 | 0.0516 | 0.0015 | 255        | 8       | 253        | 4  | 267        | 65       | 95  |
| AKIRK | AKIRK-72 | 221  | 12       | 79  | 82400  | 0.36 | 0  | .396  | 0.020 | 0.0539 | 0.0010 | 0.35 | 0.0533 | 0.0025 | 339        | 17      | 339        | 6  | 341        | 107      | 99  |
| AKIRK | AKIRK-73 | 481  | 19       | 257 | 131749 | 0.53 | 0  | .282  | 0.012 | 0.0397 | 0.0007 | 0.40 | 0.0515 | 0.0020 | 252        | 11      | 251        | 4  | 264        | 88       | 95  |
| AKIRK | AKIRK-74 | 364  | 16       | 308 | 1117   | 0.85 | 0  | ).311 | 0.011 | 0.0434 | 0.0007 | 0.44 | 0.0520 | 0.0016 | 275        | 10      | 274        | 4  | 284        | 72       | 97  |
| AKIRK | AKIRK-75 | 304  | 54       | 95  | 374986 | 0.31 | 1  | .856  | 0.051 | 0.1787 | 0.0026 | 0.54 | 0.0753 | 0.0017 | 1066       | 29      | 1060       | 16 | 1077       | 46       | 98  |
| AKIRK | AKIRK-76 | 191  | 34       | 122 | 169167 | 0.64 | 1  | .849  | 0.051 | 0.1787 | 0.0026 | 0.53 | 0.0751 | 0.0018 | 1063       | 29      | 1060       | 16 | 1070       | 47       | 99  |
| AKIRK | AKIRK-77 | 224  | 7        | 241 | 45697  | 1.08 | 0  | 0.203 | 0.014 | 0.0295 | 0.0005 | 0.23 | 0.0498 | 0.0032 | 188        | 13      | 188        | 3  | 188        | 151      | 100 |
| AKIRK | AKIRK-78 | 126  | 4        | 172 | 1871   | 1.36 | 0  | .200  | 0.011 | 0.0291 | 0.0005 | 0.31 | 0.0499 | 0.0027 | 185        | 10      | 185        | 3  | 188        | 124      | 98  |
| AKIRK | AKIRK-79 | 159  | 16       | 153 | 113332 | 0.96 | 0  | .865  | 0.029 | 0.1028 | 0.0016 | 0.47 | 0.0610 | 0.0018 | 633        | 21      | 631        | 10 | 640        | 63       | 99  |
| AKIRK | AKIRK-80 | 330  | 63       | 111 | 10797  | 0.34 | 2  | 2.017 | 0.054 | 0.1902 | 0.0028 | 0.54 | 0.0769 | 0.0017 | 1121       | 30      | 1122       | 16 | 1119       | 45       | 100 |
| AKIRK | AKIRK-81 | 566  | 23       | 263 | 2846   | 0.46 | 0  | .296  | 0.011 | 0.0415 | 0.0007 | 0.42 | 0.0518 | 0.0018 | 263        | 10      | 262        | 4  | 275        | 78       | 95  |
| AKIRK | AKIRK-82 | 317  | 26       | 119 | 14171  | 0.37 | 0  | 0.635 | 0.018 | 0.0805 | 0.0012 | 0.51 | 0.0572 | 0.0014 | 499        | 14      | 499        | 7  | 499        | 55       | 100 |
| AKIRK | AKIRK-83 | 243  | 17       | 95  | 1307   | 0.39 | 0  | 0.548 | 0.020 | 0.0713 | 0.0011 | 0.43 | 0.0557 | 0.0018 | 444        | 16      | 444        | 7  | 441        | 73       | 101 |
| AKIRK | AKIRK-84 | 185  | 17       | 102 | 117403 | 0.56 | 0  | 0.751 | 0.026 | 0.0920 | 0.0014 | 0.45 | 0.0592 | 0.0018 | 569        | 20      | 567        | 9  | 574        | 68       | 99  |
| AKIRK | AKIRK-85 | 313  | 50       | 58  | 14893  | 0.19 | 1  | .642  | 0.046 | 0.1587 | 0.0023 | 0.53 | 0.0751 | 0.0018 | 987        | 28      | 949        | 14 | 10/1       | 48       | 89  |
| AKIRK | AKIRK-86 | 1043 | 47       | 521 | 651    | 0.50 | 0  | .468  | 0.015 | 0.0448 | 0.0007 | 0.48 | 0.0757 | 0.0021 | 389        | 12      | 283        | 4  | 1087       | 56       | 26  |
| AKIRK | AKIRK-87 | 195  | 16       | 141 | 5686   | 0.72 | 0  | 0.654 | 0.020 | 0.0815 | 0.0012 | 0.49 | 0.0582 | 0.0016 | 511        | 16      | 505        | 8  | 539        | 59       | 94  |
| AKIRK | AKIRK-88 | 1/1  | 15       | 111 | 6566   | 0.65 | 0  | 0.703 | 0.032 | 0.0870 | 0.0015 | 0.38 | 0.0586 | 0.0025 | 541        | 25      | 538        | 9  | 554        | 93       | 97  |
| AKIRK | AKIRK-89 | 209  | 9        | 63  | 61950  | 0.30 | 0  | 0.308 | 0.012 | 0.0428 | 0.0007 | 0.41 | 0.0522 | 0.0019 | 273        | 11      | 270        | 4  | 295        | 83       | 91  |
| AKIRK | AKIRK-90 | 427  | 14       | 123 | 1995   | 0.29 | 0  | 1.302 | 0.010 | 0.0320 | 0.0005 | 0.45 | 0.0683 | 0.0021 | 268        | 9       | 203        | 3  | 878        | 64       | 23  |
| AKIRK | AKIRK-91 | 115  | 55       | 55  | 9514   | 0.48 | 11 | 1.945 | 0.348 | 0.4786 | 0.0076 | 0.55 | 0.1810 | 0.0044 | 2600       | /6      | 2521       | 40 | 2662       | 40       | 95  |
| AKIRK | AKIRK-92 | 400  | 12       | 437 | 2877   | 1.09 | 0  | 0.199 | 0.009 | 0.0290 | 0.0004 | 0.34 | 0.0497 | 0.0021 | 184        | 8       | 184        | 3  | 182        | 99       | 101 |
| AKIRK | AKIRK-93 | 384  | 15       | 134 | 3462   | 0.35 | 0  | 1.295 | 0.018 | 0.0400 | 0.0008 | 0.32 | 0.0535 | 0.0030 | 262        | 16      | 253        | 5  | 349        | 129      | 72  |
| AKIRK | AKIRK-94 | 110  | 33       | 33  | 227809 | 0.31 | 4  | .406  | 0.149 | 0.3002 | 0.0050 | 0.49 | 0.1065 | 0.0031 | 1713       | 58      | 1692       | 28 | 1740       | 54       | 97  |
| AKIRK | AKIRK-95 | 88   | 1        | 32  | 5/4    | 0.37 | 0  | 0.021 | 0.031 | 0.0786 | 0.0015 | 0.37 | 0.0573 | 0.0026 | 491        | 24      | 488        | 9  | 505        | 101      | 97  |
|       | AKIRK-96 | 12   | 5        | 36  | 42599  | 0.50 | 0  | 1.00/ | 0.030 | 0.0851 | 0.0007 | 0.39 | 0.0534 | 0.0012 | 531        | 23      | 527        | 9  | 550        | 89       | 96  |
|       | AKIRK-9/ | 146  | ∠5<br>12 | 110 | 1450   | 0.21 | 0  | 0.022 | 0.010 | 0.0954 | 0.0007 | 0.50 | 0.0524 | 0.0013 | 284<br>522 | 8<br>21 | 201        | 4  | 304<br>547 | 58<br>79 | 93  |
|       |          | 140  | 13       | 40  | 1450   | 0.28 | 0  | 000   | 0.027 | 0.0004 | 0.0014 | 0.42 | 0.0544 | 0.0021 | 00Z        | 21      | JZ8<br>057 | 9  | 04/<br>045 | 10       | 97  |
| AKIKK | AKIKK-99 | 441  | 10       | 239 | 124344 | 0.54 | 0  | 1.201 | 0.009 | 0.0407 | 0.0006 | 0.48 | 0.0511 | 0.0014 | 200        | ö       | 25/        | 4  | 245        | o∠       | 105 |

| AKIRK | AKIRK-100 | 244 | 10 | 117 | 83955  | 0.48 | 0.305 | 0.011 | 0.0427 | 0.0007 | 0.44 | 0.0518 | 0.0016 | 270  | 9  | 269  | 4  | 275  | 72  | 98  |
|-------|-----------|-----|----|-----|--------|------|-------|-------|--------|--------|------|--------|--------|------|----|------|----|------|-----|-----|
| AKIRK | AKIRK-101 | 240 | 14 | 88  | 98528  | 0.37 | 0.442 | 0.014 | 0.0591 | 0.0009 | 0.48 | 0.0543 | 0.0015 | 372  | 12 | 370  | 6  | 383  | 63  | 97  |
| AKIRK | AKIRK-102 | 143 | 7  | 49  | 45839  | 0.34 | 0.332 | 0.013 | 0.0461 | 0.0007 | 0.42 | 0.0523 | 0.0018 | 291  | 11 | 291  | 5  | 296  | 79  | 98  |
| AKIRK | AKIRK-103 | 214 | 9  | 115 | 441    | 0.54 | 0.312 | 0.018 | 0.0424 | 0.0008 | 0.33 | 0.0533 | 0.0029 | 276  | 16 | 268  | 5  | 341  | 125 | 79  |
| AKIRK | AKIRK-104 | 82  | 14 | 22  | 1500   | 0.27 | 1.859 | 0.080 | 0.1759 | 0.0031 | 0.42 | 0.0767 | 0.0030 | 1067 | 46 | 1044 | 19 | 1112 | 78  | 94  |
| AKIRK | AKIRK-105 | 140 | 12 | 62  | 82592  | 0.44 | 0.683 | 0.026 | 0.0851 | 0.0014 | 0.42 | 0.0582 | 0.0020 | 529  | 20 | 526  | 9  | 537  | 76  | 98  |
| AKIRK | AKIRK-106 | 146 | 14 | 40  | 4246   | 0.27 | 0.807 | 0.029 | 0.0974 | 0.0015 | 0.45 | 0.0601 | 0.0019 | 601  | 21 | 599  | 9  | 606  | 68  | 99  |
| AKIRK | AKIRK-107 | 266 | 11 | 129 | 4501   | 0.49 | 0.317 | 0.013 | 0.0426 | 0.0007 | 0.40 | 0.0540 | 0.0020 | 280  | 12 | 269  | 4  | 369  | 85  | 73  |
| AKIRK | AKIRK-108 | 134 | 25 | 31  | 8585   | 0.23 | 1.935 | 0.055 | 0.1848 | 0.0027 | 0.52 | 0.0759 | 0.0019 | 1093 | 31 | 1093 | 16 | 1093 | 49  | 100 |
| AKIRK | AKIRK-109 | 325 | 14 | 128 | 99195  | 0.39 | 0.315 | 0.011 | 0.0440 | 0.0007 | 0.45 | 0.0518 | 0.0016 | 278  | 9  | 278  | 4  | 278  | 70  | 100 |
| AKIRK | AKIRK-110 | 128 | 6  | 249 | 392    | 1.95 | 0.484 | 0.029 | 0.0480 | 0.0010 | 0.35 | 0.0732 | 0.0041 | 401  | 24 | 302  | 6  | 1019 | 113 | 30  |
| AKIRK | AKIRK-111 | 173 | 8  | 169 | 1683   | 0.98 | 0.331 | 0.019 | 0.0462 | 0.0009 | 0.33 | 0.0520 | 0.0028 | 290  | 17 | 291  | 6  | 285  | 124 | 102 |
| AKIRK | AKIRK-112 | 61  | 2  | 75  | 328    | 1.23 | 0.200 | 0.030 | 0.0289 | 0.0006 | 0.13 | 0.0501 | 0.0074 | 185  | 28 | 184  | 4  | 198  | 344 | 93  |
| AKIRK | AKIRK-113 | 540 | 23 | 365 | 156608 | 0.68 | 0.295 | 0.009 | 0.0418 | 0.0006 | 0.49 | 0.0512 | 0.0013 | 262  | 8  | 264  | 4  | 250  | 60  | 105 |
| AKIRK | AKIRK-114 | 195 | 18 | 63  | 6060   | 0.32 | 0.771 | 0.023 | 0.0941 | 0.0014 | 0.49 | 0.0595 | 0.0016 | 581  | 18 | 580  | 9  | 584  | 58  | 99  |
|       |           |     |    |     |        |      |       |       |        |        |      |        |        |      |    |      |    |      |     |     |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup>Pb/<sup>235</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb)/(<sup>238</sup>U/<sup>206</sup>Pb \* 1/137.88) <sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>238</sup>U and the <sup>207</sup>/<sup>235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

| AKSTR  |            |                      |                         |                        |                                      |                   |                                                  |                  |                                                  | RATIOS           |                  |                                                   |                  |                                     |          | AGES                                | [Ma]    |                                      |     | Conc.    |
|--------|------------|----------------------|-------------------------|------------------------|--------------------------------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------------------|---------------------------------------------------|------------------|-------------------------------------|----------|-------------------------------------|---------|--------------------------------------|-----|----------|
| Sample | Analysis   | U [ppm] <sup>a</sup> | Pb [ppm] <sup>a</sup> T | h [ppm] <sup>a 2</sup> | <sup>:06</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>a</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho <sup>c</sup> | <sup>207</sup> Pb/ <sup>206</sup> Pb <sup>(</sup> | 2 σ <sup>d</sup> | <sup>207</sup> Pb/ <sup>235</sup> L | 2 σ      | <sup>206</sup> Pb/ <sup>238</sup> U | 2 σ     | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ  | %        |
| AKSTR  | AKSTR-1    | 159                  | 5                       | 146                    | 571                                  | 0.92              | 0.207                                            | 0.030            | 0.0298                                           | 0.0005           | 0.11             | 0.0504                                            | 0.0071           | 191                                 | 27       | 189                                 | 3       | 213                                  | 328 | 89       |
| AKSTR  | AKSTR-2    | 879                  | 57                      | 339                    | 490                                  | 0.39              | 0.727                                            | 0.023            | 0.0648                                           | 0.0010           | 0.49             | 0.0813                                            | 0.0023           | 555                                 | 18       | 405                                 | 6       | 1229                                 | 55  | 33       |
| AKSTR  | AKSTR-3    | 495                  | 91                      | 171                    | 644106                               | 0.35              | 1.923                                            | 0.050            | 0.1830                                           | 0.0027           | 0.56             | 0.0762                                            | 0.0016           | 1089                                | 28       | 1084                                | 16      | 1101                                 | 43  | 98       |
| AKSTR  | AKSTR-4    | 776                  | 122                     | 207                    | 4776                                 | 0.27              | 1.729                                            | 0.050            | 0.1568                                           | 0.0024           | 0.52             | 0.0800                                            | 0.0020           | 1019                                | 30       | 939                                 | 14      | 1197                                 | 49  | 78       |
| AKSTR  | AKSTR-5    | 227                  | 19                      | 97                     | 2433                                 | 0.43              | 0.805                                            | 0.027            | 0.0848                                           | 0.0013           | 0.46             | 0.0688                                            | 0.0021           | 600                                 | 20       | 525                                 | 8       | 894                                  | 62  | 59       |
| AKSTR  | AKSTR-6    | 484                  | 35                      | 265                    | 1600                                 | 0.55              | 0.621                                            | 0.024            | 0.0717                                           | 0.0012           | 0.42             | 0.0628                                            | 0.0022           | 490                                 | 19       | 446                                 | 7       | 702                                  | 76  | 64       |
| AKSTR  | AKSTR-7    | 557                  | 40                      | 158                    | 2712                                 | 0.28              | 0.569                                            | 0.024            | 0.0725                                           | 0.0012           | 0.40             | 0.0569                                            | 0.0022           | 457                                 | 19       | 451                                 | 8       | 487                                  | 86  | 93       |
| AKSTR  | AKSTR-8    | 145                  | 12                      | 67                     | 85303                                | 0.47              | 0.660                                            | 0.022            | 0.0830                                           | 0.0013           | 0.47             | 0.0577                                            | 0.0017           | 515                                 | 17       | 514                                 | 8       | 518                                  | 65  | 99       |
| AKSTR  | AKSTR-9    | 282                  | 52                      | 106                    | 9700                                 | 0.37              | 1.968                                            | 0.052            | 0.1861                                           | 0.0027           | 0.55             | 0.0767                                            | 0.0017           | 1104                                | 29       | 1100                                | 16      | 1113                                 | 44  | 99       |
| AKSTR  | AKSTR-10   | 573                  | 51                      | 93                     | 1455                                 | 0.16              | 0.984                                            | 0.035            | 0.0889                                           | 0.0015           | 0.46             | 0.0803                                            | 0.0026           | 696                                 | 25       | 549                                 | 9       | 1204                                 | 63  | 46       |
| AKSTR  | AKSTR-12   | 508                  | 41                      | 213                    | 6611                                 | 0.42              | 0.645                                            | 0.018            | 0.0813                                           | 0.0012           | 0.54             | 0.0575                                            | 0.0013           | 505                                 | 14       | 504                                 | 7       | 512                                  | 50  | 98       |
| AKSTR  | AKSTR-13   | 707                  | 64                      | 93                     | 17321                                | 0.13              | 0.730                                            | 0.019            | 0.0903                                           | 0.0013           | 0.55             | 0.0586                                            | 0.0013           | 557                                 | 15       | 557                                 | 8       | 554                                  | 48  | 101      |
| AKSTR  | AKSTR-14   | 463                  | 79                      | 93                     | 40389                                | 0.20              | 1.742                                            | 0.046            | 0.1707                                           | 0.0025           | 0.56             | 0.0740                                            | 0.0016           | 1024                                | 27       | 1016                                | 15      | 1042                                 | 44  | 97       |
| AKSTR  | AKSTR-15   | 80                   | 13                      | 26                     | 4175                                 | 0.32              | 1.615                                            | 0.053            | 0.1617                                           | 0.0025           | 0.48             | 0.0725                                            | 0.0021           | 976                                 | 32       | 966                                 | 15      | 999                                  | 58  | 97       |
| AKSTR  | AKSTR-16   | 150                  | 26                      | 43                     | 16751                                | 0.29              | 1.850                                            | 0.053            | 0.1771                                           | 0.0027           | 0.53             | 0.0758                                            | 0.0018           | 1064                                | 30       | 1051                                | 16      | 1090                                 | 49  | 96       |
| AKSTR  | AKSTR-17   | 98                   | 8                       | 51                     | 54280                                | 0.52              | 0.608                                            | 0.034            | 0.0777                                           | 0.0015           | 0.35             | 0.0568                                            | 0.0030           | 482                                 | 27       | 482                                 | 9       | 483                                  | 117 | 100      |
| AKSTR  | AKSTR-18   | 554                  | 45                      | 93                     | 5745                                 | 0.17              | 0.650                                            | 0.023            | 0.0818                                           | 0.0013           | 0.45             | 0.0576                                            | 0.0018           | 509                                 | 18       | 507                                 | 8       | 516                                  | 69  | 98       |
| AKSTR  | AKSTR-19   | 69                   | 11                      | 76                     | 76299                                | 1.10              | 1.617                                            | 0.082            | 0.1550                                           | 0.0031           | 0.39             | 0.0757                                            | 0.0035           | 977                                 | 49       | 929                                 | 18      | 1086                                 | 93  | 86       |
| AKSTR  | AKSTR-20   | 136                  | 15                      | 48                     | 103956                               | 0.35              | 0.908                                            | 0.042            | 0.1073                                           | 0.0019           | 0.39             | 0.0614                                            | 0.0026           | 656                                 | 30       | 657                                 | 12      | 653                                  | 91  | 101      |
| AKSTR  | AKSTR-21   | 314                  | 38                      | 123                    | 25238                                | 0.39              | 1.068                                            | 0.029            | 0.1215                                           | 0.0018           | 0.54             | 0.0637                                            | 0.0015           | 738                                 | 20       | 739                                 | 11      | 732                                  | 49  | 101      |
| AKSTR  | AKSTR-22   | 57                   | 10                      | 22                     | 2747                                 | 0.38              | 1.728                                            | 0.063            | 0.1683                                           | 0.0028           | 0.45             | 0.0745                                            | 0.0024           | 1019                                | 37       | 1003                                | 17      | 1055                                 | 66  | 95       |
| AKSTR  | AKSTR-23   | 359                  | 10                      | 453                    | 1254                                 | 1.26              | 0.197                                            | 0.007            | 0.0287                                           | 0.0004           | 0.42             | 0.0497                                            | 0.0016           | 183                                 | 7        | 183                                 | 3       | 183                                  | 77  | 100      |
| AKSTR  | AKSTR-24   | 262                  | 38                      | 83                     | 2376                                 | 0.32              | 1.556                                            | 0.047            | 0.1459                                           | 0.0022           | 0.50             | 0.0774                                            | 0.0020           | 953                                 | 29       | 878                                 | 13      | 1130                                 | 53  | 78       |
| AKSTR  | AKSTR-25   | 177                  | 30                      | 179                    | 3401                                 | 1.01              | 1.802                                            | 0.054            | 0.1690                                           | 0.0026           | 0.51             | 0.0774                                            | 0.0020           | 1046                                | 31       | 1007                                | 15      | 1130                                 | 51  | 89       |
| AKSTR  | AKSTR-26   | 200                  | 21                      | 71                     | 1349                                 | 0.36              | 0.992                                            | 0.028            | 0.1042                                           | 0.0016           | 0.52             | 0.0690                                            | 0.0017           | 700                                 | 20       | 639                                 | 10      | 898                                  | 50  | 71       |
| AKSTR  | AKSTR-27   | 61                   | 16                      | 74                     | 7728                                 | 1.20              | 4.401                                            | 0.168            | 0.2565                                           | 0.0047           | 0.48             | 0.1245                                            | 0.0042           | 1713                                | 65       | 1472                                | 27      | 2021                                 | 59  | 73       |
| AKSTR  | AKSTR-28   | 271                  | 28                      | 131                    | 197769                               | 0.48              | 0.856                                            | 0.024            | 0.1024                                           | 0.0015           | 0.53             | 0.0607                                            | 0.0015           | 628                                 | 18       | 628                                 | 9       | 628                                  | 52  | 100      |
| AKSTR  | AKSTR-29   | 61                   | 10                      | 23                     | 72377                                | 0.37              | 1.657                                            | 0.053            | 0.1666                                           | 0.0026           | 0.49             | 0.0721                                            | 0.0020           | 992                                 | 32       | 993                                 | 16      | 989                                  | 57  | 100      |
| AKSTR  | AKSTR-30   | 385                  | 42                      | 77                     | 4391                                 | 0.20              | 0.919                                            | 0.027            | 0.1086                                           | 0.0016           | 0.51             | 0.0614                                            | 0.0016           | 662                                 | 20       | 665                                 | 10      | 652                                  | 55  | 102      |
| AKSTR  | AKSTR-31   | 234                  | 23                      | 22                     | 1919                                 | 0.09              | 0.970                                            | 0.027            | 0.0996                                           | 0.0015           | 0.53             | 0.0706                                            | 0.0017           | 688                                 | 19       | 612                                 | 9       | 946                                  | 49  | 65       |
| AKSTR  | AKSTR-32   | 368                  | 40                      | 135                    | 8619                                 | 0.37              | 0.988                                            | 0.030            | 0.1083                                           | 0.0016           | 0.50             | 0.0662                                            | 0.0017           | 698                                 | 21       | 663                                 | 10      | 812                                  | 55  | 82       |
| AKSTR  | AKSTR-33   | 221                  | 6                       | 220                    | 3263                                 | 0.99              | 0.201                                            | 0.015            | 0.0292                                           | 0.0005           | 0.20             | 0.0499                                            | 0.0038           | 186                                 | 14       | 185                                 | 3       | 189                                  | 175 | 98       |
| AKSTR  | AKSTR-34   | 283                  | 30                      | 55                     | 5149                                 | 0.19              | 0.884                                            | 0.026            | 0.1049                                           | 0.0016           | 0.51             | 0.0612                                            | 0.0015           | 643                                 | 19       | 643                                 | 10      | 645                                  | 53  | 100      |
| AKSTR  | AKSTR-35   | 360                  | 37                      | //                     | 263263                               | 0.21              | 0.856                                            | 0.026            | 0.1027                                           | 0.0015           | 0.50             | 0.0605                                            | 0.0016           | 628                                 | 19       | 630                                 | 9       | 621                                  | 56  | 101      |
| AKSTR  | AKSTR-36   | 299                  | 12                      | 129                    | 8611                                 | 0.43              | 0.273                                            | 0.012            | 0.0386                                           | 0.0006           | 0.38             | 0.0512                                            | 0.0021           | 245                                 | 11       | 244                                 | 4       | 249                                  | 94  | 98       |
| AKSTR  | AKSTR-37   | 549                  | 51                      | 65                     | 13156                                | 0.12              | 0.763                                            | 0.021            | 0.0935                                           | 0.0014           | 0.53             | 0.0591                                            | 0.0014           | 576                                 | 16       | 576                                 | 9       | 572                                  | 51  | 101      |
| AKSTR  | AKSTR-38   | 249                  | 26                      | 186                    | 9387                                 | 0.75              | 0.869                                            | 0.027            | 0.1028                                           | 0.0016           | 0.49             | 0.0613                                            | 0.0017           | 635                                 | 20       | 631                                 | 10      | 650                                  | 58  | 97       |
| AKSTR  | AKSTR-39   | 111                  | 18                      | 36                     | 8238                                 | 0.33              | 1.643                                            | 0.056            | 0.1647                                           | 0.0026           | 0.47             | 0.0724                                            | 0.0022           | 987                                 | 33       | 983                                 | 16      | 997                                  | 61  | 99       |
| AKSTR  | AKSTR-40   | 108                  | 3                       | 113                    | 0408                                 | 1.05              | 0.200                                            | 0.015            | 0.0293                                           | 0.0005           | 0.23             | 0.0497                                            | 0.0037           | 185                                 | 14       | 180                                 | 3       | 179                                  | 175 | 104      |
| AKSTR  | AKSTR-41   | 243                  | 48                      | 130                    | 339445                               | 0.54              | 2.119                                            | 0.056            | 0.1956                                           | 0.0029           | 0.55             | 0.0786                                            | 0.0017           | 1155                                | 31       | 1152                                | 17      | 1162                                 | 44  | 99       |
| AKSTR  | AKSTR-42   | 101                  | 18                      | 32                     | 124847                               | 0.31              | 1.759                                            | 0.055            | 0.1735                                           | 0.0027           | 0.50             | 0.0736                                            | 0.0020           | 1031                                | 32       | 1031                                | 16      | 1029                                 | 54  | 100      |
| AKOTR  | ANDIK-43   | 292                  | 24                      | 77                     | 12102                                | 0.30              | 0.094                                            | 0.026            | 0.0829                                           | 0.0015           | 0.44             | 0.0008                                            | 0.0020           | 535                                 | 2U<br>19 | 513                                 | Ø       | 650                                  | 1Z  | 01       |
| AKOTO  | AKOTO 45   | 105                  | 25                      | //<br>95               | 1300                                 | 0.12              | 0.009                                            | 0.020            | 0.1001                                           | 0.0015           | 0.00             | 0.0794                                            | 0.0014           | 040                                 | 10       | 1075                                | 9       | 1157                                 | 109 | 99       |
| AKOTO  | ANDIK-45   | 001<br>001           | 20<br>34                | 00<br>207              | 4300                                 | 0.03              | 0.700                                            | 0.024            | 0.1014                                           | 0.0040           | 0.38             | 0.0784                                            | 0.0043           | 542                                 | 10       | 10/5                                | ∠4<br>0 | 110/                                 | 64  | 63<br>93 |
| AKSTR  | AKSTR-40   | 40∠<br>227           | 18                      | 170                    | 126005                               | 0.40              | 0.700                                            | 0.024            | 0.0709                                           | 0.0012           | 0.40             | 0.0001                                            | 0.0020           | 243                                 | 19       | 409                                 | 0<br>7  | 186                                  | 61  | 00       |
| AKSTR  | 4KSTP-40   | 188                  | 23                      | 47                     | 4783                                 | 0.75              | 1 317                                            | 0.019            | 0.1944                                           | 0.0012           | 0.40             | 0.0009                                            | 0.0025           | 403                                 | 21       | 756                                 | 12      | 1115                                 | 64  | 68       |
| ALOIK  | ANG 1 R-49 | 100                  | 23                      | 47                     | 4/03                                 | 0.20              | 1.017                                            | 0.040            | 0.1244                                           | 0.0020           | 0.45             | 0.0700                                            | 0.0020           | 000                                 | 31       | 100                                 | 12      | 1113                                 | 04  | 00       |

| AKSTR | AKSTR-50  | 490 | 31  | 263 | 17052  | 0.54 | 0. | .480 | 0.016 | 0.0634 | 0.0010 | 0.47 | 0.0549 | 0.0016 | 398  | 13 | 396  | 6  | 407  | 65  | 97  |
|-------|-----------|-----|-----|-----|--------|------|----|------|-------|--------|--------|------|--------|--------|------|----|------|----|------|-----|-----|
| AKSTR | AKSTR-51  | 533 | 39  | 234 | 276047 | 0.44 | 0. | .561 | 0.021 | 0.0727 | 0.0012 | 0.42 | 0.0560 | 0.0019 | 452  | 17 | 452  | 7  | 452  | 77  | 100 |
| AKSTR | AKSTR-52  | 399 | 34  | 119 | 3909   | 0.30 | 0. | .716 | 0.025 | 0.0851 | 0.0013 | 0.44 | 0.0610 | 0.0019 | 548  | 19 | 526  | 8  | 641  | 68  | 82  |
| AKSTR | AKSTR-53  | 88  | 9   | 21  | 3033   | 0.23 | 0. | .800 | 0.029 | 0.0970 | 0.0016 | 0.44 | 0.0598 | 0.0020 | 597  | 22 | 597  | 10 | 597  | 72  | 100 |
| AKSTR | AKSTR-54  | 170 | 16  | 88  | 116066 | 0.52 | 0. | .944 | 0.041 | 0.0959 | 0.0017 | 0.41 | 0.0714 | 0.0028 | 675  | 29 | 590  | 10 | 968  | 80  | 61  |
| AKSTR | AKSTR-55  | 198 | 17  | 30  | 16491  | 0.15 | 0. | .668 | 0.021 | 0.0837 | 0.0013 | 0.49 | 0.0579 | 0.0016 | 520  | 16 | 518  | 8  | 525  | 60  | 99  |
| AKSTR | AKSTR-56  | 24  | 2   | 8   | 218    | 0.35 | 0. | .833 | 0.062 | 0.0999 | 0.0024 | 0.32 | 0.0605 | 0.0043 | 616  | 46 | 614  | 15 | 623  | 152 | 98  |
| AKSTR | AKSTR-57  | 201 | 35  | 155 | 20271  | 0.77 | 1. | .799 | 0.062 | 0.1726 | 0.0028 | 0.47 | 0.0756 | 0.0023 | 1045 | 36 | 1026 | 17 | 1084 | 60  | 95  |
| AKSTR | AKSTR-58  | 272 | 28  | 35  | 196801 | 0.13 | 0. | .842 | 0.025 | 0.1012 | 0.0015 | 0.51 | 0.0603 | 0.0015 | 620  | 18 | 621  | 9  | 615  | 54  | 101 |
| AKSTR | AKSTR-59  | 430 | 37  | 147 | 267527 | 0.34 | 0. | .705 | 0.020 | 0.0873 | 0.0013 | 0.51 | 0.0586 | 0.0015 | 542  | 16 | 539  | 8  | 551  | 54  | 98  |
| AKSTR | AKSTR-60  | 331 | 27  | 108 | 1301   | 0.33 | 0. | .764 | 0.021 | 0.0820 | 0.0012 | 0.53 | 0.0676 | 0.0016 | 576  | 16 | 508  | 7  | 857  | 49  | 59  |
| AKSTR | AKSTR-61  | 173 | 16  | 120 | 111063 | 0.69 | 0. | .730 | 0.035 | 0.0899 | 0.0016 | 0.38 | 0.0589 | 0.0026 | 556  | 27 | 555  | 10 | 563  | 96  | 99  |
| AKSTR | AKSTR-62  | 557 | 34  | 189 | 2205   | 0.34 | 0. | .552 | 0.020 | 0.0613 | 0.0010 | 0.44 | 0.0653 | 0.0021 | 446  | 16 | 384  | 6  | 784  | 68  | 49  |
| AKSTR | AKSTR-63  | 503 | 38  | 350 | 8017   | 0.70 | 0. | .582 | 0.017 | 0.0754 | 0.0011 | 0.52 | 0.0560 | 0.0014 | 466  | 13 | 469  | 7  | 452  | 54  | 104 |
| AKSTR | AKSTR-64  | 175 | 31  | 79  | 14442  | 0.45 | 1. | .855 | 0.057 | 0.1772 | 0.0027 | 0.50 | 0.0759 | 0.0020 | 1065 | 32 | 1052 | 16 | 1093 | 53  | 96  |
| AKSTR | AKSTR-65  | 205 | 34  | 46  | 241422 | 0.22 | 1. | .651 | 0.051 | 0.1649 | 0.0025 | 0.50 | 0.0726 | 0.0020 | 990  | 31 | 984  | 15 | 1004 | 55  | 98  |
| AKSTR | AKSTR-66  | 318 | 9   | 271 | 853    | 0.85 | 0. | .206 | 0.018 | 0.0296 | 0.0005 | 0.18 | 0.0506 | 0.0042 | 191  | 16 | 188  | 3  | 223  | 194 | 84  |
| AKSTR | AKSTR-67  | 284 | 50  | 154 | 359239 | 0.54 | 1. | .831 | 0.049 | 0.1774 | 0.0026 | 0.54 | 0.0749 | 0.0017 | 1057 | 29 | 1053 | 15 | 1064 | 46  | 99  |
| AKSTR | AKSTR-68  | 199 | 30  | 76  | 211538 | 0.38 | 1. | .492 | 0.042 | 0.1490 | 0.0022 | 0.53 | 0.0727 | 0.0017 | 927  | 26 | 895  | 13 | 1004 | 48  | 89  |
| AKSTR | AKSTR-69  | 240 | 41  | 56  | 2833   | 0.23 | 1. | .715 | 0.060 | 0.1690 | 0.0027 | 0.46 | 0.0736 | 0.0023 | 1014 | 36 | 1006 | 16 | 1031 | 63  | 98  |
| AKSTR | AKSTR-70  | 175 | 33  | 80  | 235606 | 0.46 | 1. | .998 | 0.060 | 0.1890 | 0.0029 | 0.51 | 0.0767 | 0.0020 | 1115 | 33 | 1116 | 17 | 1113 | 52  | 100 |
| AKSTR | AKSTR-71  | 336 | 24  | 146 | 4182   | 0.43 | 0. | .563 | 0.027 | 0.0719 | 0.0013 | 0.38 | 0.0569 | 0.0025 | 454  | 22 | 447  | 8  | 487  | 97  | 92  |
| AKSTR | AKSTR-72  | 299 | 29  | 61  | 210055 | 0.21 | 0. | .814 | 0.023 | 0.0983 | 0.0015 | 0.52 | 0.0600 | 0.0015 | 605  | 17 | 605  | 9  | 605  | 53  | 100 |
| AKSTR | AKSTR-73  | 79  | 9   | 32  | 61356  | 0.41 | 0. | .942 | 0.040 | 0.1094 | 0.0019 | 0.41 | 0.0624 | 0.0024 | 674  | 29 | 669  | 12 | 689  | 83  | 97  |
| AKSTR | AKSTR-74  | 352 | 34  | 85  | 4053   | 0.24 | 0. | .797 | 0.024 | 0.0966 | 0.0014 | 0.50 | 0.0599 | 0.0015 | 595  | 18 | 594  | 9  | 600  | 56  | 99  |
| AKSTR | AKSTR-75  | 119 | 12  | 35  | 85897  | 0.30 | 0. | .842 | 0.046 | 0.1013 | 0.0020 | 0.36 | 0.0603 | 0.0031 | 621  | 34 | 622  | 12 | 614  | 110 | 101 |
| AKSTR | AKSTR-76  | 360 | 10  | 426 | 2722   | 1.18 | 0. | .198 | 0.008 | 0.0288 | 0.0005 | 0.41 | 0.0500 | 0.0018 | 184  | 7  | 183  | 3  | 195  | 83  | 94  |
| AKSTR | AKSTR-77  | 453 | 37  | 115 | 266955 | 0.25 | 0. | .653 | 0.018 | 0.0826 | 0.0012 | 0.52 | 0.0574 | 0.0014 | 510  | 14 | 511  | 8  | 506  | 53  | 101 |
| AKSTR | AKSTR-78  | 604 | 47  | 99  | 1040   | 0.16 | 0. | .711 | 0.023 | 0.0774 | 0.0012 | 0.48 | 0.0667 | 0.0019 | 546  | 17 | 481  | 7  | 827  | 58  | 58  |
| AKSTR | AKSTR-80  | 488 | 31  | 139 | 756    | 0.28 | 0. | .643 | 0.021 | 0.0640 | 0.0010 | 0.48 | 0.0729 | 0.0021 | 504  | 16 | 400  | 6  | 1011 | 58  | 40  |
| AKSTR | AKSTR-81  | 402 | 30  | 97  | 1570   | 0.24 | 0. | .651 | 0.022 | 0.0754 | 0.0012 | 0.46 | 0.0627 | 0.0019 | 509  | 18 | 468  | 7  | 697  | 65  | 67  |
| AKSTR | AKSTR-82  | 381 | 15  | 288 | 107785 | 0.75 | 0. | .281 | 0.009 | 0.0396 | 0.0006 | 0.47 | 0.0515 | 0.0015 | 252  | 8  | 250  | 4  | 264  | 65  | 95  |
| AKSTR | AKSTR-83  | 367 | 62  | 52  | 621115 | 0.14 | 1. | .690 | 0.045 | 0.1684 | 0.0025 | 0.54 | 0.0728 | 0.0016 | 1005 | 27 | 1003 | 15 | 1009 | 46  | 99  |
| AKSTR | AKSTR-84  | 253 | 19  | 62  | 22303  | 0.24 | 0. | .578 | 0.021 | 0.0748 | 0.0012 | 0.44 | 0.0561 | 0.0018 | 463  | 17 | 465  | 7  | 455  | 72  | 102 |
| AKSTR | AKSTR-85  | 190 | 19  | 70  | 134504 | 0.37 | 0. | .825 | 0.036 | 0.0991 | 0.0017 | 0.40 | 0.0604 | 0.0024 | 611  | 26 | 609  | 10 | 616  | 86  | 99  |
| AKSTR | AKSTR-86  | 608 | 105 | 203 | 19970  | 0.33 | 1. | .767 | 0.047 | 0.1729 | 0.0025 | 0.55 | 0.0741 | 0.0017 | 1033 | 28 | 1028 | 15 | 1044 | 45  | 98  |
| AKSTR | AKSTR-87  | 179 | 15  | 84  | 107063 | 0.47 | 0. | .670 | 0.026 | 0.0836 | 0.0014 | 0.42 | 0.0581 | 0.0020 | 521  | 20 | 518  | 8  | 534  | 77  | 97  |
| AKSTR | AKSTR-88  | 376 | 39  | 48  | 280942 | 0.13 | 0. | .886 | 0.025 | 0.1045 | 0.0015 | 0.53 | 0.0615 | 0.0015 | 644  | 18 | 640  | 9  | 658  | 51  | 97  |
| AKSTR | AKSTR-89  | 169 | 30  | 238 | 5013   | 1.40 | 1. | .909 | 0.065 | 0.1753 | 0.0028 | 0.47 | 0.0790 | 0.0024 | 1084 | 37 | 1041 | 17 | 1172 | 59  | 89  |
| AKSTR | AKSTR-90  | 68  | 6   | 25  | 41226  | 0.37 | 0. | .684 | 0.036 | 0.0846 | 0.0016 | 0.36 | 0.0586 | 0.0029 | 529  | 28 | 524  | 10 | 553  | 108 | 95  |
| AKSTR | AKSTR-91  | 168 | 13  | 57  | 695    | 0.34 | 0. | .638 | 0.046 | 0.0790 | 0.0018 | 0.32 | 0.0586 | 0.0040 | 501  | 36 | 490  | 11 | 551  | 150 | 89  |
| AKSTR | AKSTR-92  | 247 | 45  | 55  | 318739 | 0.22 | 1. | .879 | 0.051 | 0.1802 | 0.0026 | 0.54 | 0.0757 | 0.0017 | 1074 | 29 | 1068 | 16 | 1086 | 46  | 98  |
| AKSTR | AKSTR-93  | 273 | 28  | 64  | 6946   | 0.24 | 0. | .867 | 0.025 | 0.1032 | 0.0015 | 0.51 | 0.0610 | 0.0015 | 634  | 18 | 633  | 9  | 637  | 54  | 99  |
| AKSTR | AKSTR-94  | 177 | 28  | 109 | 201880 | 0.61 | 1. | .549 | 0.045 | 0.1594 | 0.0024 | 0.52 | 0.0705 | 0.0018 | 950  | 28 | 953  | 14 | 942  | 51  | 101 |
| AKSTR | AKSTR-95  | 243 | 20  | 106 | 139907 | 0.44 | 0. | .639 | 0.019 | 0.0806 | 0.0012 | 0.50 | 0.0576 | 0.0015 | 502  | 15 | 499  | 7  | 513  | 57  | 97  |
| AKSTR | AKSTR-96  | 200 | 14  | 96  | 1578   | 0.48 | 0. | .593 | 0.027 | 0.0715 | 0.0013 | 0.38 | 0.0601 | 0.0026 | 472  | 22 | 445  | 8  | 606  | 92  | 73  |
| AKSTR | AKSTR-97  | 300 | 13  | 218 | 1627   | 0.73 | 0. | .308 | 0.015 | 0.0432 | 0.0008 | 0.37 | 0.0517 | 0.0023 | 273  | 13 | 273  | 5  | 273  | 102 | 100 |
| AKSTR | AKSTR-98  | 382 | 17  | 386 | 119370 | 1.01 | 0. | .313 | 0.021 | 0.0436 | 0.0009 | 0.31 | 0.0521 | 0.0032 | 277  | 18 | 275  | 6  | 288  | 142 | 96  |
| AKSTR | AKSTR-100 | 94  | 18  | 78  | 15521  | 0.82 | 1. | .980 | 0.059 | 0.1860 | 0.0028 | 0.51 | 0.0772 | 0.0020 | 1109 | 33 | 1099 | 17 | 1127 | 52  | 98  |
|       |           |     |     |     |        |      |    |      |       |        |        |      |        |        |      |    |      |    |      |     |     |

| AKSTR | AKSTR-101 | 67  | 7   | 18  | 53592  | 0.27 | 0.966 | 0.084 | 0.1124 | 0.0031 | 0.31 | 0.0623 | 0.0052 | 686  | 60 | 687  | 19 | 685  | 177 | 100 |
|-------|-----------|-----|-----|-----|--------|------|-------|-------|--------|--------|------|--------|--------|------|----|------|----|------|-----|-----|
| AKSTR | AKSTR-103 | 488 | 81  | 125 | 3551   | 0.26 | 1.805 | 0.052 | 0.1670 | 0.0025 | 0.52 | 0.0784 | 0.0019 | 1047 | 30 | 996  | 15 | 1157 | 49  | 86  |
| AKSTR | AKSTR-104 | 182 | 34  | 47  | 10560  | 0.26 | 2.021 | 0.067 | 0.1894 | 0.0030 | 0.48 | 0.0774 | 0.0023 | 1123 | 37 | 1118 | 18 | 1132 | 58  | 99  |
| AKSTR | AKSTR-105 | 156 | 12  | 71  | 86806  | 0.45 | 0.647 | 0.039 | 0.0777 | 0.0016 | 0.34 | 0.0604 | 0.0034 | 506  | 30 | 482  | 10 | 617  | 121 | 78  |
| AKSTR | AKSTR-106 | 160 | 6   | 245 | 510    | 1.53 | 0.316 | 0.036 | 0.0396 | 0.0012 | 0.28 | 0.0579 | 0.0063 | 279  | 31 | 250  | 8  | 525  | 237 | 48  |
| AKSTR | AKSTR-107 | 107 | 9   | 28  | 2343   | 0.27 | 0.713 | 0.044 | 0.0885 | 0.0018 | 0.34 | 0.0584 | 0.0034 | 546  | 33 | 547  | 11 | 545  | 126 | 100 |
| AKSTR | AKSTR-108 | 254 | 23  | 56  | 1989   | 0.22 | 0.753 | 0.022 | 0.0921 | 0.0014 | 0.51 | 0.0593 | 0.0015 | 570  | 17 | 568  | 9  | 576  | 55  | 99  |
| AKSTR | AKSTR-109 | 324 | 58  | 57  | 417417 | 0.18 | 1.871 | 0.051 | 0.1801 | 0.0026 | 0.54 | 0.0754 | 0.0017 | 1071 | 29 | 1068 | 16 | 1078 | 46  | 99  |
| AKSTR | AKSTR-110 | 332 | 10  | 385 | 1737   | 1.16 | 0.201 | 0.013 | 0.0292 | 0.0005 | 0.25 | 0.0499 | 0.0030 | 186  | 12 | 185  | 3  | 188  | 141 | 98  |
| AKSTR | AKSTR-111 | 159 | 23  | 161 | 8678   | 1.02 | 1.498 | 0.080 | 0.1441 | 0.0029 | 0.38 | 0.0754 | 0.0037 | 930  | 49 | 868  | 18 | 1079 | 98  | 80  |
| AKSTR | AKSTR-112 | 475 | 103 | 98  | 10845  | 0.21 | 2.488 | 0.071 | 0.2176 | 0.0032 | 0.53 | 0.0829 | 0.0020 | 1269 | 36 | 1269 | 19 | 1267 | 47  | 100 |
| AKSTR | AKSTR-113 | 241 | 43  | 53  | 307781 | 0.22 | 1.846 | 0.051 | 0.1784 | 0.0026 | 0.53 | 0.0750 | 0.0018 | 1062 | 29 | 1058 | 16 | 1069 | 47  | 99  |
| AKSTR | AKSTR-114 | 543 | 51  | 440 | 817    | 0.81 | 0.958 | 0.027 | 0.0930 | 0.0014 | 0.52 | 0.0747 | 0.0018 | 682  | 19 | 573  | 9  | 1060 | 49  | 54  |
| AKSTR | AKSTR-115 | 68  | 6   | 24  | 41677  | 0.35 | 0.687 | 0.037 | 0.0851 | 0.0016 | 0.36 | 0.0585 | 0.0029 | 531  | 28 | 526  | 10 | 550  | 109 | 96  |
| AKSTR | AKSTR-116 | 208 | 16  | 97  | 6952   | 0.47 | 0.661 | 0.020 | 0.0763 | 0.0011 | 0.49 | 0.0628 | 0.0017 | 515  | 16 | 474  | 7  | 702  | 57  | 67  |
|       |           |     |     |     |        |      |       |       |        |        |      |        |        |      |    |      |    |      |     |     |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup>Pb/<sup>235</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb)/(<sup>238</sup>U/<sup>206</sup>Pb \* 1/137.88) <sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>238</sup>U and the <sup>207</sup>/<sup>235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

| KDUNS  |          |                      |                       |                         |                                      |                   |                                                  |                  |                                                  | RATIOS           |                  |                                                   |                  |                                     |    | AGES                                | [Ma] |                                      |     | Conc. |
|--------|----------|----------------------|-----------------------|-------------------------|--------------------------------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------------------|---------------------------------------------------|------------------|-------------------------------------|----|-------------------------------------|------|--------------------------------------|-----|-------|
| Sample | Analysis | U [ppm] <sup>a</sup> | Pb [ppm] <sup>a</sup> | Th [ppm] <sup>a 2</sup> | <sup>206</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>a</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho <sup>c</sup> | <sup>207</sup> Pb/ <sup>206</sup> Pb <sup>(</sup> | 2 σ <sup>d</sup> | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ | <sup>206</sup> Pb/ <sup>238</sup> U | 2 σ  | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ  | %     |
| KDUNS  | KDUNS-1  | 599                  | 32                    | 46                      | 216401                               | 0.08              | 0.401                                            | 0.011            | 0.0538                                           | 0.0008           | 0.51             | 0.0541                                            | 0.0013           | 342                                 | 9  | 338                                 | 5    | 374                                  | 53  | 90    |
| KDUNS  | KDUNS-2  | 605                  | 33                    | 47                      | 5401                                 | 0.08              | 0.398                                            | 0.011            | 0.0544                                           | 0.0008           | 0.52             | 0.0530                                            | 0.0013           | 340                                 | 9  | 342                                 | 5    | 328                                  | 54  | 104   |
| KDUNS  | KDUNS-3  | 853                  | 72                    | 328                     | 486725                               | 0.38              | 0.682                                            | 0.018            | 0.0849                                           | 0.0012           | 0.53             | 0.0582                                            | 0.0013           | 528                                 | 14 | 525                                 | 7    | 538                                  | 48  | 98    |
| KDUNS  | KDUNS-4  | 77                   | 3                     | 32                      | 20826                                | 0.41              | 0.356                                            | 0.050            | 0.0405                                           | 0.0016           | 0.28             | 0.0638                                            | 0.0086           | 309                                 | 44 | 256                                 | 10   | 734                                  | 287 | 35    |
| KDUNS  | KDUNS-5  | 529                  | 43                    | 69                      | 286733                               | 0.13              | 0.644                                            | 0.018            | 0.0806                                           | 0.0011           | 0.51             | 0.0579                                            | 0.0014           | 504                                 | 14 | 500                                 | 7    | 525                                  | 52  | 95    |
| KDUNS  | KDUNS-6  | 132                  | 7                     | 32                      | 1799                                 | 0.24              | 0.376                                            | 0.020            | 0.0517                                           | 0.0009           | 0.34             | 0.0527                                            | 0.0027           | 324                                 | 17 | 325                                 | 6    | 316                                  | 115 | 103   |
| KDUNS  | KDUNS-7  | 444                  | 19                    | 120                     | 9167                                 | 0.27              | 0.307                                            | 0.011            | 0.0428                                           | 0.0007           | 0.42             | 0.0521                                            | 0.0017           | 272                                 | 10 | 270                                 | 4    | 291                                  | 75  | 93    |
| KDUNS  | KDUNS-9  | 523                  | 24                    | 152                     | 163042                               | 0.29              | 0.334                                            | 0.013            | 0.0464                                           | 0.0007           | 0.40             | 0.0522                                            | 0.0019           | 293                                 | 12 | 293                                 | 5    | 296                                  | 83  | 99    |
| KDUNS  | KDUNS-10 | 142                  | 11                    | 35                      | 75607                                | 0.25              | 0.620                                            | 0.020            | 0.0790                                           | 0.0012           | 0.46             | 0.0569                                            | 0.0016           | 490                                 | 16 | 490                                 | 7    | 487                                  | 64  | 101   |
| KDUNS  | KDUNS-11 | 290                  | 14                    | 290                     | 5706                                 | 1.00              | 0.341                                            | 0.012            | 0.0472                                           | 0.0007           | 0.42             | 0.0523                                            | 0.0017           | 298                                 | 11 | 297                                 | 5    | 298                                  | 75  | 100   |
| KDUNS  | KDUNS-12 | 222                  | 9                     | 225                     | 1247                                 | 1.01              | 0.302                                            | 0.011            | 0.0427                                           | 0.0007           | 0.41             | 0.0513                                            | 0.0018           | 268                                 | 10 | 270                                 | 4    | 256                                  | 80  | 105   |
| KDUNS  | KDUNS-13 | 328                  | 14                    | 249                     | 93406                                | 0.76              | 0.301                                            | 0.009            | 0.0424                                           | 0.0006           | 0.46             | 0.0514                                            | 0.0014           | 267                                 | 8  | 268                                 | 4    | 261                                  | 64  | 103   |
| KDUNS  | KDUNS-14 | 591                  | 26                    | 358                     | 866                                  | 0.61              | 0.393                                            | 0.016            | 0.0439                                           | 0.0007           | 0.41             | 0.0649                                            | 0.0024           | 336                                 | 14 | 277                                 | 5    | 770                                  | 77  | 36    |
| KDUNS  | KDUNS-15 | 243                  | 18                    | 123                     | 6699                                 | 0.51              | 0.575                                            | 0.022            | 0.0739                                           | 0.0012           | 0.41             | 0.0565                                            | 0.0020           | 462                                 | 18 | 460                                 | 7    | 471                                  | 77  | 98    |
| KDUNS  | KDUNS-16 | 235                  | 11                    | 119                     | 4373                                 | 0.51              | 0.321                                            | 0.011            | 0.0447                                           | 0.0007           | 0.44             | 0.0520                                            | 0.0016           | 282                                 | 10 | 282                                 | 4    | 285                                  | 71  | 99    |
| KDUNS  | KDUNS-17 | 222                  | 9                     | 107                     | 980                                  | 0.48              | 0.285                                            | 0.015            | 0.0399                                           | 0.0007           | 0.34             | 0.0517                                            | 0.0025           | 254                                 | 13 | 252                                 | 4    | 273                                  | 110 | 92    |
| KDUNS  | KDUNS-18 | 478                  | 20                    | 506                     | 3985                                 | 1.06              | 0.300                                            | 0.011            | 0.0414                                           | 0.0006           | 0.43             | 0.0526                                            | 0.0017           | 267                                 | 10 | 262                                 | 4    | 313                                  | 74  | 84    |
| KDUNS  | KDUNS-19 | 170                  | 7                     | 61                      | 4714                                 | 0.36              | 0.285                                            | 0.016            | 0.0394                                           | 0.0007           | 0.33             | 0.0524                                            | 0.0028           | 254                                 | 14 | 249                                 | 5    | 302                                  | 122 | 82    |
| KDUNS  | KDUNS-20 | 128                  | 6                     | 116                     | 594                                  | 0.90              | 0.316                                            | 0.020            | 0.0440                                           | 0.0009           | 0.31             | 0.0520                                            | 0.0031           | 278                                 | 17 | 278                                 | 5    | 286                                  | 135 | 97    |
| KDUNS  | KDUNS-21 | 255                  | 14                    | 155                     | 18986                                | 0.61              | 0.401                                            | 0.015            | 0.0548                                           | 0.0008           | 0.41             | 0.0531                                            | 0.0018           | 342                                 | 13 | 344                                 | 5    | 332                                  | 77  | 103   |
| KDUNS  | KDUNS-22 | 384                  | 13                    | 221                     | 26914                                | 0.57              | 0.244                                            | 0.012            | 0.0346                                           | 0.0006           | 0.35             | 0.0512                                            | 0.0023           | 222                                 | 11 | 220                                 | 4    | 249                                  | 103 | 88    |
| KDUNS  | KDUNS-23 | 152                  | 13                    | 56                      | 86996                                | 0.37              | 0.689                                            | 0.028            | 0.0855                                           | 0.0014           | 0.40             | 0.0584                                            | 0.0021           | 532                                 | 21 | 529                                 | 9    | 546                                  | 80  | 97    |
| KDUNS  | KDUNS-24 | 247                  | 7                     | 334                     | 46204                                | 1.35              | 0.191                                            | 0.014            | 0.0279                                           | 0.0006           | 0.29             | 0.0497                                            | 0.0035           | 177                                 | 13 | 177                                 | 4    | 179                                  | 166 | 99    |
| KDUNS  | KDUNS-25 | 189                  | 17                    | 76                      | 1468                                 | 0.40              | 0.718                                            | 0.022            | 0.0885                                           | 0.0013           | 0.48             | 0.0589                                            | 0.0016           | 550                                 | 17 | 546                                 | 8    | 563                                  | 59  | 97    |
| KDUNS  | KDUNS-26 | 537                  | 25                    | 267                     | 165237                               | 0.50              | 0.340                                            | 0.010            | 0.0458                                           | 0.0007           | 0.50             | 0.0538                                            | 0.0013           | 297                                 | 9  | 289                                 | 4    | 361                                  | 56  | 80    |
| KDUNS  | KDUNS-27 | 119                  | 6                     | 94                      | 39911                                | 0.79              | 0.364                                            | 0.020            | 0.0499                                           | 0.0009           | 0.34             | 0.0529                                            | 0.0027           | 315                                 | 17 | 314                                 | 6    | 324                                  | 116 | 97    |
| KDUNS  | KDUNS-28 | 114                  | 14                    | 37                      | 5102                                 | 0.33              | 1.109                                            | 0.036            | 0.1217                                           | 0.0018           | 0.47             | 0.0661                                            | 0.0019           | 758                                 | 24 | 741                                 | 11   | 809                                  | 60  | 92    |
| KDUNS  | KDUNS-29 | 296                  | 11                    | 202                     | 72741                                | 0.68              | 0.259                                            | 0.021            | 0.0367                                           | 0.0009           | 0.29             | 0.0512                                            | 0.0040           | 234                                 | 19 | 232                                 | 5    | 251                                  | 181 | 92    |
| KDUNS  | KDUNS-30 | 165                  | 7                     | 121                     | 902                                  | 0.73              | 0.296                                            | 0.021            | 0.0416                                           | 0.0009           | 0.30             | 0.0516                                            | 0.0034           | 263                                 | 18 | 263                                 | 6    | 269                                  | 152 | 98    |
| KDUNS  | KDUNS-31 | 59                   | 10                    | 69                      | 69850                                | 1.17              | 1.812                                            | 0.062            | 0.1767                                           | 0.0028           | 0.46             | 0.0744                                            | 0.0023           | 1050                                | 36 | 1049                                | 16   | 1052                                 | 61  | 100   |
| KDUNS  | KDUNS-32 | 367                  | 15                    | 259                     | 994                                  | 0.71              | 0.286                                            | 0.020            | 0.0397                                           | 0.0008           | 0.30             | 0.0522                                            | 0.0036           | 255                                 | 18 | 251                                 | 5    | 295                                  | 156 | 85    |
| KDUNS  | KDUNS-33 | 131                  | 16                    | 74                      | 108005                               | 0.56              | 1.109                                            | 0.034            | 0.1228                                           | 0.0018           | 0.48             | 0.0655                                            | 0.0018           | 758                                 | 23 | 747                                 | 11   | 791                                  | 57  | 94    |
| KDUNS  | KDUNS-34 | 512                  | 92                    | 237                     | 618612                               | 0.46              | 1.882                                            | 0.048            | 0.1801                                           | 0.0025           | 0.55             | 0.0758                                            | 0.0016           | 1075                                | 27 | 1068                                | 15   | 1089                                 | 43  | 98    |
| KDUNS  | KDUNS-35 | 302                  | 13                    | 323                     | 1080                                 | 1.07              | 0.318                                            | 0.011            | 0.0443                                           | 0.0007           | 0.44             | 0.0520                                            | 0.0016           | 280                                 | 9  | 280                                 | 4    | 287                                  | 69  | 98    |
| KDUNS  | KDUNS-36 | 73                   | 7                     | 28                      | 3003                                 | 0.38              | 0.785                                            | 0.038            | 0.0953                                           | 0.0017           | 0.37             | 0.0597                                            | 0.0027           | 588                                 | 28 | 587                                 | 10   | 593                                  | 97  | 99    |
| KDUNS  | KDUNS-37 | 171                  | 35                    | 87                      | 5173                                 | 0.51              | 2.230                                            | 0.067            | 0.2021                                           | 0.0030           | 0.50             | 0.0800                                            | 0.0021           | 1191                                | 36 | 1187                                | 18   | 1198                                 | 51  | 99    |
| KDUNS  | KDUNS-38 | 160                  | 7                     | 132                     | 1873                                 | 0.83              | 0.337                                            | 0.018            | 0.0466                                           | 0.0009           | 0.34             | 0.0524                                            | 0.0027           | 295                                 | 16 | 294                                 | 5    | 302                                  | 117 | 97    |
| KDUNS  | KDUNS-39 | 97                   | 19                    | 48                      | 85695                                | 0.49              | 2.123                                            | 0.064            | 0.1944                                           | 0.0029           | 0.49             | 0.0792                                            | 0.0021           | 1156                                | 35 | 1145                                | 17   | 1177                                 | 51  | 97    |
| KDUNS  | KDUNS-40 | 221                  | 18                    | 65                      | 2505                                 | 0.30              | 0.653                                            | 0.021            | 0.0823                                           | 0.0012           | 0.47             | 0.0575                                            | 0.0016           | 510                                 | 16 | 510                                 | 8    | 512                                  | 61  | 100   |
| KDUNS  | KDUNS-41 | 501                  | 20                    | 444                     | 3250                                 | 0.89              | 0.287                                            | 0.011            | 0.0407                                           | 0.0006           | 0.41             | 0.0512                                            | 0.0018           | 256                                 | 10 | 257                                 | 4    | 250                                  | 80  | 103   |
| KDUNS  | KDUNS-42 | 1/0                  | 14                    | 272                     | 11042                                | 1.61              | 0.680                                            | 0.021            | 0.0846                                           | 0.0012           | 0.47             | 0.0583                                            | 0.0016           | 527                                 | 16 | 524                                 | 8    | 541                                  | 60  | 97    |
| KDUNS  | KDUNS-43 | 381                  | 1/                    | 199                     | 113162                               | 0.52              | 0.318                                            | 0.010            | 0.0443                                           | 0.0006           | 0.47             | 0.0521                                            | 0.0014           | 281                                 | 9  | 279                                 | 4    | 290                                  | 61  | 96    |
| KDUNS  | KDUNS-44 | 197                  | 8                     | 233                     | 53058                                | 1.18              | 0.284                                            | 0.010            | 0.0402                                           | 0.0006           | 0.43             | 0.0512                                            | 0.0017           | 254                                 | 9  | 254                                 | 4    | 250                                  | /6  | 102   |
| KDUNS  | KDUNS-45 | 327                  | 9                     | 252                     | 1/00                                 | 0.77              | 0.188                                            | 0.011            | 0.0278                                           | 0.0005           | 0.32             | 0.0493                                            | 0.0026           | 175                                 | 10 | 176                                 | 3    | 160                                  | 125 | 110   |
| KDUNS  | KDUNS-46 | 158                  | 27                    | 83                      | 1///68                               | 0.53              | 1.695                                            | 0.049            | 0.1683                                           | 0.0025           | 0.51             | 0.0731                                            | 0.0018           | 1007                                | 29 | 1003                                | 15   | 1016                                 | 50  | 99    |
| KDUNS  | KDUNS-47 | /10                  | 24                    | 531                     | 1650                                 | 0.75              | 0.242                                            | 0.011            | 0.0336                                           | 0.0006           | 0.37             | 0.0522                                            | 0.0022           | 220                                 | 10 | 213                                 | 4    | 293                                  | 95  | 73    |
| KDUNS  | KDUNS-48 | 212                  | 12                    | 59                      | //391                                | 0.28              | 0.406                                            | 0.015            | 0.0546                                           | 0.0008           | 0.43             | 0.0540                                            | 0.0017           | 346                                 | 12 | 342                                 | 5    | 370                                  | 73  | 93    |

| KDUNS | KDUNS-49 | 168 | 7   | 107 | 1716   | 0.64 | 0.304 | 0.031 | 0.0427 | 0.0012 | 0.27 | 0.0517 | 0.0051 | 270  | 28 | 270  | 8  | 270  | 228 | 100 |
|-------|----------|-----|-----|-----|--------|------|-------|-------|--------|--------|------|--------|--------|------|----|------|----|------|-----|-----|
| KDUNS | KDUNS-50 | 324 | 14  | 179 | 5170   | 0.55 | 0.322 | 0.010 | 0.0448 | 0.0007 | 0.46 | 0.0521 | 0.0015 | 283  | 9  | 282  | 4  | 291  | 66  | 97  |
| KDUNS | KDUNS-51 | 936 | 25  | 531 | 1154   | 0.57 | 0.182 | 0.015 | 0.0264 | 0.0006 | 0.28 | 0.0501 | 0.0039 | 170  | 14 | 168  | 4  | 198  | 182 | 85  |
| KDUNS | KDUNS-52 | 292 | 50  | 71  | 5590   | 0.24 | 1.743 | 0.051 | 0.1698 | 0.0025 | 0.50 | 0.0745 | 0.0019 | 1025 | 30 | 1011 | 15 | 1054 | 51  | 96  |
| KDUNS | KDUNS-53 | 124 | 5   | 43  | 1866   | 0.35 | 0.260 | 0.018 | 0.0369 | 0.0008 | 0.30 | 0.0511 | 0.0034 | 235  | 16 | 234  | 5  | 247  | 152 | 95  |
| KDUNS | KDUNS-54 | 463 | 20  | 204 | 132348 | 0.44 | 0.304 | 0.009 | 0.0426 | 0.0006 | 0.48 | 0.0516 | 0.0014 | 269  | 8  | 269  | 4  | 270  | 60  | 100 |
| KDUNS | KDUNS-55 | 105 | 12  | 37  | 11073  | 0.36 | 0.958 | 0.035 | 0.1119 | 0.0018 | 0.43 | 0.0621 | 0.0020 | 682  | 25 | 684  | 11 | 677  | 70  | 101 |
| KDUNS | KDUNS-56 | 150 | 13  | 66  | 1474   | 0.44 | 0.762 | 0.031 | 0.0844 | 0.0014 | 0.40 | 0.0655 | 0.0025 | 575  | 24 | 523  | 9  | 789  | 79  | 66  |
| KDUNS | KDUNS-57 | 450 | 81  | 118 | 543928 | 0.26 | 1.921 | 0.056 | 0.1804 | 0.0026 | 0.50 | 0.0772 | 0.0019 | 1088 | 32 | 1069 | 16 | 1127 | 50  | 95  |
| KDUNS | KDUNS-58 | 233 | 44  | 63  | 292020 | 0.27 | 1.952 | 0.052 | 0.1868 | 0.0027 | 0.53 | 0.0758 | 0.0017 | 1099 | 29 | 1104 | 16 | 1090 | 45  | 101 |
| KDUNS | KDUNS-59 | 48  | 8   | 12  | 53665  | 0.25 | 1.692 | 0.079 | 0.1675 | 0.0031 | 0.39 | 0.0733 | 0.0031 | 1005 | 47 | 998  | 18 | 1021 | 87  | 98  |
| KDUNS | KDUNS-60 | 205 | 9   | 108 | 5619   | 0.53 | 0.333 | 0.012 | 0.0462 | 0.0007 | 0.42 | 0.0524 | 0.0017 | 292  | 10 | 291  | 4  | 302  | 74  | 96  |
| KDUNS | KDUNS-61 | 281 | 23  | 146 | 11687  | 0.52 | 0.632 | 0.026 | 0.0802 | 0.0013 | 0.40 | 0.0571 | 0.0021 | 497  | 20 | 497  | 8  | 497  | 83  | 100 |
| KDUNS | KDUNS-62 | 412 | 17  | 221 | 3247   | 0.54 | 0.294 | 0.009 | 0.0415 | 0.0006 | 0.47 | 0.0515 | 0.0015 | 262  | 8  | 262  | 4  | 261  | 65  | 100 |
| KDUNS | KDUNS-63 | 199 | 18  | 85  | 117846 | 0.43 | 0.723 | 0.023 | 0.0885 | 0.0013 | 0.47 | 0.0592 | 0.0017 | 552  | 18 | 547  | 8  | 574  | 61  | 95  |
| KDUNS | KDUNS-64 | 425 | 18  | 281 | 2721   | 0.66 | 0.305 | 0.010 | 0.0428 | 0.0006 | 0.46 | 0.0518 | 0.0015 | 271  | 9  | 270  | 4  | 277  | 65  | 97  |
| KDUNS | KDUNS-65 | 188 | 17  | 119 | 3574   | 0.64 | 0.754 | 0.023 | 0.0926 | 0.0014 | 0.49 | 0.0591 | 0.0016 | 570  | 17 | 571  | 8  | 569  | 57  | 100 |
| KDUNS | KDUNS-66 | 526 | 23  | 216 | 153833 | 0.41 | 0.313 | 0.009 | 0.0437 | 0.0006 | 0.48 | 0.0519 | 0.0014 | 276  | 8  | 276  | 4  | 281  | 61  | 98  |
| KDUNS | KDUNS-67 | 94  | 8   | 36  | 4460   | 0.38 | 0.721 | 0.034 | 0.0889 | 0.0016 | 0.37 | 0.0588 | 0.0026 | 551  | 26 | 549  | 10 | 560  | 96  | 98  |
| KDUNS | KDUNS-68 | 523 | 23  | 231 | 154688 | 0.44 | 0.317 | 0.009 | 0.0442 | 0.0006 | 0.49 | 0.0521 | 0.0013 | 280  | 8  | 279  | 4  | 290  | 59  | 96  |
| KDUNS | KDUNS-69 | 141 | 26  | 126 | 173742 | 0.89 | 1.922 | 0.054 | 0.1839 | 0.0027 | 0.52 | 0.0758 | 0.0018 | 1089 | 31 | 1088 | 16 | 1089 | 48  | 100 |
| KDUNS | KDUNS-70 | 73  | 2   | 128 | 16086  | 1.75 | 0.231 | 0.019 | 0.0329 | 0.0008 | 0.28 | 0.0508 | 0.0041 | 211  | 18 | 209  | 5  | 234  | 187 | 89  |
| KDUNS | KDUNS-71 | 700 | 105 | 85  | 591817 | 0.12 | 1.489 | 0.042 | 0.1507 | 0.0022 | 0.51 | 0.0717 | 0.0018 | 926  | 26 | 905  | 13 | 977  | 50  | 93  |
| KDUNS | KDUNS-72 | 206 | 42  | 83  | 281464 | 0.40 | 2.257 | 0.061 | 0.2043 | 0.0029 | 0.53 | 0.0801 | 0.0018 | 1199 | 32 | 1199 | 17 | 1199 | 45  | 100 |
| KDUNS | KDUNS-73 | 610 | 43  | 82  | 1449   | 0.14 | 0.786 | 0.024 | 0.0710 | 0.0011 | 0.49 | 0.0804 | 0.0022 | 589  | 18 | 442  | 7  | 1206 | 53  | 37  |
| KDUNS | KDUNS-74 | 156 | 6   | 254 | 1467   | 1.62 | 0.279 | 0.018 | 0.0393 | 0.0008 | 0.31 | 0.0515 | 0.0032 | 250  | 16 | 248  | 5  | 261  | 142 | 95  |
| KDUNS | KDUNS-75 | 250 | 39  | 58  | 259184 | 0.23 | 1.595 | 0.051 | 0.1547 | 0.0023 | 0.48 | 0.0748 | 0.0021 | 968  | 31 | 927  | 14 | 1062 | 56  | 87  |
| KDUNS | KDUNS-76 | 128 | 8   | 80  | 605    | 0.62 | 0.685 | 0.034 | 0.0657 | 0.0012 | 0.38 | 0.0756 | 0.0035 | 530  | 27 | 410  | 8  | 1086 | 93  | 38  |
| KDUNS | KDUNS-77 | 186 | 8   | 164 | 528    | 0.88 | 0.442 | 0.021 | 0.0442 | 0.0008 | 0.38 | 0.0726 | 0.0032 | 372  | 18 | 279  | 5  | 1002 | 89  | 28  |
| KDUNS | KDUNS-79 | 239 | 11  | 188 | 18535  | 0.79 | 0.331 | 0.011 | 0.0461 | 0.0007 | 0.45 | 0.0520 | 0.0016 | 290  | 10 | 291  | 4  | 285  | 69  | 102 |
| KDUNS | KDUNS-80 | 125 | 6   | 230 | 37937  | 1.83 | 0.323 | 0.023 | 0.0453 | 0.0010 | 0.30 | 0.0518 | 0.0035 | 284  | 20 | 285  | 6  | 277  | 153 | 103 |
| KDUNS | KDUNS-81 | 404 | 17  | 145 | 111195 | 0.36 | 0.290 | 0.009 | 0.0411 | 0.0006 | 0.47 | 0.0511 | 0.0014 | 258  | 8  | 260  | 4  | 246  | 63  | 106 |
| KDUNS | KDUNS-82 | 130 | 23  | 59  | 26115  | 0.45 | 1.795 | 0.052 | 0.1753 | 0.0026 | 0.51 | 0.0743 | 0.0018 | 1044 | 30 | 1041 | 15 | 1049 | 50  | 99  |
| KDUNS | KDUNS-84 | 265 | 11  | 102 | 55489  | 0.39 | 0.303 | 0.012 | 0.0425 | 0.0007 | 0.40 | 0.0516 | 0.0019 | 269  | 11 | 269  | 4  | 268  | 83  | 100 |
| KDUNS | KDUNS-85 | 231 | 8   | 126 | 1685   | 0.54 | 0.248 | 0.012 | 0.0346 | 0.0006 | 0.36 | 0.0519 | 0.0023 | 225  | 11 | 219  | 4  | 281  | 103 | 78  |
| KDUNS | KDUNS-86 | 562 | 68  | 262 | 1337   | 0.47 | 1.220 | 0.039 | 0.1201 | 0.0018 | 0.48 | 0.0737 | 0.0021 | 810  | 26 | 731  | 11 | 1032 | 57  | 71  |
| KDUNS | KDUNS-87 | 243 | 9   | 137 | 4217   | 0.56 | 0.271 | 0.012 | 0.0384 | 0.0006 | 0.36 | 0.0511 | 0.0022 | 243  | 11 | 243  | 4  | 246  | 99  | 99  |
| KDUNS | KDUNS-88 | 881 | 29  | 487 | 2639   | 0.55 | 0.230 | 0.016 | 0.0327 | 0.0007 | 0.30 | 0.0511 | 0.0034 | 210  | 15 | 207  | 4  | 245  | 153 | 85  |
| KDUNS | KDUNS-89 | 394 | 60  | 76  | 398610 | 0.19 | 1.448 | 0.041 | 0.1513 | 0.0022 | 0.51 | 0.0694 | 0.0017 | 909  | 26 | 908  | 13 | 911  | 50  | 100 |
| KDUNS | KDUNS-90 | 459 | 19  | 218 | 18705  | 0.48 | 0.302 | 0.009 | 0.0425 | 0.0006 | 0.48 | 0.0516 | 0.0014 | 268  | 8  | 268  | 4  | 269  | 61  | 100 |
| KDUNS | KDUNS-91 | 325 | 25  | 26  | 14178  | 0.08 | 0.614 | 0.018 | 0.0781 | 0.0011 | 0.49 | 0.0570 | 0.0015 | 486  | 14 | 485  | 7  | 490  | 57  | 99  |
| KDUNS | KDUNS-92 | 910 | 36  | 280 | 1759   | 0.31 | 0.293 | 0.013 | 0.0398 | 0.0007 | 0.38 | 0.0533 | 0.0021 | 261  | 11 | 252  | 4  | 343  | 91  | 73  |
| KDUNS | KDUNS-93 | 189 | 11  | 142 | 1037   | 0.75 | 0.412 | 0.015 | 0.0560 | 0.0009 | 0.42 | 0.0534 | 0.0018 | 350  | 13 | 351  | 5  | 344  | 75  | 102 |
| KDUNS | KDUNS-94 | 513 | 21  | 151 | 138546 | 0.29 | 0.287 | 0.011 | 0.0404 | 0.0006 | 0.40 | 0.0515 | 0.0019 | 256  | 10 | 255  | 4  | 262  | 84  | 97  |
| KDUNS | KDUNS-95 | 316 | 16  | 107 | 107396 | 0.34 | 0.377 | 0.012 | 0.0509 | 0.0007 | 0.46 | 0.0537 | 0.0015 | 325  | 10 | 320  | 5  | 358  | 63  | 89  |
| KDUNS | KDUNS-96 | 91  | 8   | 31  | 50223  | 0.34 | 0.673 | 0.026 | 0.0828 | 0.0013 | 0.42 | 0.0589 | 0.0020 | 522  | 20 | 513  | 8  | 563  | 75  | 91  |
| KDUNS | KDUNS-97 | 611 | 25  | 390 | 168386 | 0.64 | 0.294 | 0.009 | 0.0412 | 0.0006 | 0.49 | 0.0518 | 0.0013 | 262  | 8  | 260  | 4  | 277  | 59  | 94  |
| KDUNS | KDUNS-98 | 216 | 10  | 300 | 9296   | 1.39 | 0.320 | 0.013 | 0.0441 | 0.0007 | 0.40 | 0.0527 | 0.0019 | 282  | 11 | 278  | 4  | 315  | 82  | 88  |
| KDUNS | KDUNS-99 | 127 | 5   | 120 | 36647  | 0.94 | 0.308 | 0.013 | 0.0431 | 0.0007 | 0.38 | 0.0518 | 0.0021 | 272  | 12 | 272  | 4  | 277  | 92  | 98  |
|       |          |     | -   |     |        |      |       |       |        |        |      |        |        |      |    |      | •  |      |     |     |

| KDUNS | KDUNS-100 | 227 | 15  | 96  | 730    | 0.42 | 0.513 | 0.024 | 0.0672 | 0.0012 | 0.37 | 0.0554 | 0.0024 | 421  | 20 | 419  | 7  | 427  | 97  | 98  |
|-------|-----------|-----|-----|-----|--------|------|-------|-------|--------|--------|------|--------|--------|------|----|------|----|------|-----|-----|
| KDUNS | KDUNS-101 | 506 | 38  | 87  | 7042   | 0.17 | 0.589 | 0.017 | 0.0752 | 0.0011 | 0.51 | 0.0569 | 0.0014 | 471  | 13 | 467  | 7  | 487  | 54  | 96  |
| KDUNS | KDUNS-102 | 211 | 40  | 117 | 42082  | 0.56 | 2.058 | 0.057 | 0.1911 | 0.0028 | 0.52 | 0.0781 | 0.0018 | 1135 | 31 | 1127 | 16 | 1150 | 47  | 98  |
| KDUNS | KDUNS-103 | 258 | 41  | 53  | 3430   | 0.20 | 1.654 | 0.045 | 0.1580 | 0.0023 | 0.52 | 0.0759 | 0.0018 | 991  | 27 | 946  | 14 | 1093 | 47  | 87  |
| KDUNS | KDUNS-104 | 520 | 33  | 212 | 11471  | 0.41 | 0.505 | 0.024 | 0.0640 | 0.0011 | 0.37 | 0.0572 | 0.0025 | 415  | 19 | 400  | 7  | 500  | 96  | 80  |
| KDUNS | KDUNS-105 | 228 | 38  | 90  | 2999   | 0.39 | 1.634 | 0.047 | 0.1644 | 0.0024 | 0.51 | 0.0721 | 0.0018 | 983  | 28 | 981  | 14 | 988  | 50  | 99  |
| KDUNS | KDUNS-106 | 982 | 106 | 29  | 709212 | 0.03 | 0.922 | 0.025 | 0.1081 | 0.0015 | 0.53 | 0.0618 | 0.0014 | 663  | 18 | 662  | 9  | 668  | 49  | 99  |
| KDUNS | KDUNS-107 | 154 | 9   | 77  | 2694   | 0.50 | 0.413 | 0.023 | 0.0560 | 0.0010 | 0.33 | 0.0535 | 0.0028 | 351  | 20 | 351  | 7  | 351  | 119 | 100 |
| KDUNS | KDUNS-108 | 484 | 79  | 54  | 530617 | 0.11 | 1.660 | 0.048 | 0.1643 | 0.0024 | 0.50 | 0.0733 | 0.0018 | 994  | 29 | 980  | 14 | 1023 | 51  | 96  |
| KDUNS | KDUNS-109 | 143 | 6   | 124 | 39362  | 0.86 | 0.319 | 0.025 | 0.0412 | 0.0010 | 0.30 | 0.0561 | 0.0042 | 281  | 22 | 260  | 6  | 454  | 166 | 57  |
| KDUNS | KDUNS-110 | 403 | 29  | 145 | 191389 | 0.36 | 0.543 | 0.022 | 0.0711 | 0.0011 | 0.40 | 0.0554 | 0.0020 | 441  | 18 | 443  | 7  | 430  | 82  | 103 |
| KDUNS | KDUNS-111 | 265 | 13  | 112 | 3053   | 0.42 | 0.349 | 0.013 | 0.0483 | 0.0007 | 0.42 | 0.0524 | 0.0017 | 304  | 11 | 304  | 5  | 302  | 75  | 101 |
| KDUNS | KDUNS-112 | 206 | 8   | 107 | 1292   | 0.52 | 0.280 | 0.013 | 0.0398 | 0.0007 | 0.36 | 0.0511 | 0.0022 | 251  | 11 | 251  | 4  | 246  | 98  | 102 |
| KDUNS | KDUNS-113 | 294 | 15  | 168 | 100142 | 0.57 | 0.375 | 0.020 | 0.0509 | 0.0009 | 0.34 | 0.0534 | 0.0027 | 323  | 17 | 320  | 6  | 347  | 113 | 92  |
| KDUNS | KDUNS-114 | 299 | 12  | 200 | 82988  | 0.67 | 0.297 | 0.010 | 0.0416 | 0.0006 | 0.45 | 0.0519 | 0.0015 | 264  | 9  | 263  | 4  | 280  | 68  | 94  |
| KDUNS | KDUNS-115 | 337 | 15  | 155 | 791    | 0.46 | 0.316 | 0.030 | 0.0434 | 0.0011 | 0.28 | 0.0529 | 0.0048 | 279  | 26 | 274  | 7  | 323  | 204 | 85  |
| KDUNS | KDUNS-116 | 78  | 2   | 101 | 12979  | 1.30 | 0.171 | 0.032 | 0.0250 | 0.0012 | 0.24 | 0.0495 | 0.0091 | 160  | 30 | 159  | 7  | 170  | 429 | 94  |
| KDUNS | KDUNS-117 | 101 | 21  | 43  | 1822   | 0.43 | 2.255 | 0.068 | 0.2042 | 0.0030 | 0.50 | 0.0801 | 0.0021 | 1198 | 36 | 1198 | 18 | 1199 | 51  | 100 |
|       |           |     |     |     |        |      |       |       |        |        |      |        |        |      |    |      |    |      |     |     |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup>Pb/<sup>235</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb)/(<sup>238</sup>U/<sup>206</sup>Pb \* 1/137.88)

<sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>238</sup>U and the <sup>207/235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

| Same         Mappic         Upport         Same         Period         Same         Same         Period         Same         Same         Period         Same         Same        Same        Same                                                                                                                                                                                                                                                                                                                                                                | SRFS1  |          |                      |                       |                         |                                     |                   |                                                  |                  |                                                  | RATIOS           |                  |                                       |                  |                                     |    | AGES                                | [Ma] |                                      |     | Conc. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|----------------------|-----------------------|-------------------------|-------------------------------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|------------------|------------------|---------------------------------------|------------------|-------------------------------------|----|-------------------------------------|------|--------------------------------------|-----|-------|
| bitter                                                                                                                                                                                                                                                                                        | Sample | Analysis | U [ppm] <sup>a</sup> | Pb [ppm] <sup>a</sup> | Th [ppm] <sup>a 2</sup> | <sup>06</sup> Pb/ <sup>204</sup> Pb | Th/U <sup>a</sup> | <sup>207</sup> Pb/ <sup>235</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | <sup>206</sup> Pb/ <sup>238</sup> U <sup>b</sup> | 2 σ <sup>d</sup> | rho <sup>c</sup> | <sup>207</sup> Pb/ <sup>206</sup> Pb' | 2 σ <sup>d</sup> | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ | <sup>206</sup> Pb/ <sup>238</sup> U | 2σ   | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ  | %     |
| IMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRIMPRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SRFS1  | SRFS1-1  | 141                  | 7                     | 121                     | 46975                               | 0.86              | 0.384                                            | 0.026            | 0.0481                                           | 0.0010           | 0.32             | 0.0578                                | 0.0037           | 330                                 | 22 | 303                                 | 7    | 523                                  | 142 | 58    |
| bit     bit </td <td>SRFS1</td> <td>SRFS1-2</td> <td>240</td> <td>10</td> <td>141</td> <td>9421</td> <td>0.59</td> <td>0.310</td> <td>0.010</td> <td>0.0434</td> <td>0.0006</td> <td>0.45</td> <td>0.0517</td> <td>0.0015</td> <td>274</td> <td>9</td> <td>274</td> <td>4</td> <td>272</td> <td>67</td> <td>101</td>                                                                                                                                                                                                                                                                                                      | SRFS1  | SRFS1-2  | 240                  | 10                    | 141                     | 9421                                | 0.59              | 0.310                                            | 0.010            | 0.0434                                           | 0.0006           | 0.45             | 0.0517                                | 0.0015           | 274                                 | 9  | 274                                 | 4    | 272                                  | 67  | 101   |
| bitsic     bitsic    bitsic     bitsic     bitsic     bitsic     bitsic     bitsic     bitsic     bitsic     bitsic     bitsic     bitsic     bitsic     bitsic     bitsic     bitsic     bitsic     bitsic     bitsic     bitsic     bitsic     bitsic     bitsic     bitsic     bitsic     bitsic     bitsic <td>SRFS1</td> <td>SRFS1-3</td> <td>301</td> <td>13</td> <td>82</td> <td>1166</td> <td>0.27</td> <td>0.303</td> <td>0.011</td> <td>0.0425</td> <td>0.0007</td> <td>0.43</td> <td>0.0517</td> <td>0.0017</td> <td>269</td> <td>10</td> <td>268</td> <td>4</td> <td>274</td> <td>75</td> <td>98</td>                                                                                                                                           | SRFS1  | SRFS1-3  | 301                  | 13                    | 82                      | 1166                                | 0.27              | 0.303                                            | 0.011            | 0.0425                                           | 0.0007           | 0.43             | 0.0517                                | 0.0017           | 269                                 | 10 | 268                                 | 4    | 274                                  | 75  | 98    |
| bfferst       91       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SRFS1  | SRFS1-4  | 1100                 | 43                    | 431                     | 9783                                | 0.39              | 0.277                                            | 0.009            | 0.0392                                           | 0.0006           | 0.44             | 0.0513                                | 0.0015           | 248                                 | 8  | 248                                 | 4    | 256                                  | 69  | 97    |
| brend         brend <t< td=""><td>SRFS1</td><td>SRFS1-5</td><td>255</td><td>11</td><td>116</td><td>73025</td><td>0.46</td><td>0.295</td><td>0.026</td><td>0.0414</td><td>0.0010</td><td>0.28</td><td>0.0518</td><td>0.0044</td><td>263</td><td>23</td><td>261</td><td>7</td><td>277</td><td>195</td><td>94</td></t<>                                  | SRFS1  | SRFS1-5  | 255                  | 11                    | 116                     | 73025                               | 0.46              | 0.295                                            | 0.026            | 0.0414                                           | 0.0010           | 0.28             | 0.0518                                | 0.0044           | 263                                 | 23 | 261                                 | 7    | 277                                  | 195 | 94    |
| birsi         birsi <t< td=""><td>SRFS1</td><td>SRFS1-6</td><td>291</td><td>12</td><td>227</td><td>83097</td><td>0.78</td><td>0.291</td><td>0.009</td><td>0.0411</td><td>0.0006</td><td>0.46</td><td>0.0513</td><td>0.0015</td><td>260</td><td>8</td><td>260</td><td>4</td><td>256</td><td>65</td><td>101</td></t<>                                   | SRFS1  | SRFS1-6  | 291                  | 12                    | 227                     | 83097                               | 0.78              | 0.291                                            | 0.009            | 0.0411                                           | 0.0006           | 0.46             | 0.0513                                | 0.0015           | 260                                 | 8  | 260                                 | 4    | 256                                  | 65  | 101   |
| birsi     birsi    birsi     birsi     birsi     birsi     birsi     birsi     birsi     birsi     birsi     birsi     birsi     birsi     birsi     birsi     birsi     birsi     birsi     birsi     birsi     birsi     birsi     birsi     birsi     birsi     birsi     birsi     birsi    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SRFS1  | SRFS1-7  | 214                  | 9                     | 181                     | 63836                               | 0.85              | 0.305                                            | 0.011            | 0.0429                                           | 0.0007           | 0.44             | 0.0515                                | 0.0016           | 270                                 | 9  | 271                                 | 4    | 264                                  | 72  | 103   |
| birsi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SRFS1  | SRFS1-8  | 300                  | 57                    | 220                     | 12226                               | 0.73              | 2.005                                            | 0.054            | 0.1894                                           | 0.0027           | 0.54             | 0.0768                                | 0.0017           | 1117                                | 30 | 1118                                | 16   | 1115                                 | 45  | 100   |
| effers                                                                                                                                                                                                                                                                                                                                                                     | SRFS1  | SRFS1-9  | 69                   | 6                     | 23                      | 44589                               | 0.34              | 0.791                                            | 0.048            | 0.0928                                           | 0.0019           | 0.34             | 0.0618                                | 0.0035           | 592                                 | 36 | 572                                 | 12   | 668                                  | 123 | 86    |
| sersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessersessers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SRFS1  | SRFS1-10 | 144                  | 13                    | 103                     | 1627                                | 0.72              | 0.708                                            | 0.027            | 0.0868                                           | 0.0014           | 0.42             | 0.0592                                | 0.0021           | 544                                 | 21 | 537                                 | 9    | 574                                  | 76  | 93    |
| serse       serse <t< td=""><td>SRFS1</td><td>SRFS1-11</td><td>197</td><td>19</td><td>61</td><td>134625</td><td>0.31</td><td>0.825</td><td>0.024</td><td>0.0983</td><td>0.0014</td><td>0.50</td><td>0.0608</td><td>0.0015</td><td>611</td><td>18</td><td>605</td><td>9</td><td>634</td><td>54</td><td>95</td></t<>                                                                                                                | SRFS1  | SRFS1-11 | 197                  | 19                    | 61                      | 134625                              | 0.31              | 0.825                                            | 0.024            | 0.0983                                           | 0.0014           | 0.50             | 0.0608                                | 0.0015           | 611                                 | 18 | 605                                 | 9    | 634                                  | 54  | 95    |
| BFEPS         BFEPS <th< td=""><td>SRFS1</td><td>SRFS1-12</td><td>902</td><td>49</td><td>107</td><td>338419</td><td>0.12</td><td>0.396</td><td>0.011</td><td>0.0540</td><td>0.0008</td><td>0.52</td><td>0.0532</td><td>0.0012</td><td>339</td><td>9</td><td>339</td><td>5</td><td>337</td><td>52</td><td>101</td></th<>                               | SRFS1  | SRFS1-12 | 902                  | 49                    | 107                     | 338419                              | 0.12              | 0.396                                            | 0.011            | 0.0540                                           | 0.0008           | 0.52             | 0.0532                                | 0.0012           | 339                                 | 9  | 339                                 | 5    | 337                                  | 52  | 101   |
| steps:       steps: <tt>steps:       <tt>steps:</tt></tt>                                                                                                                                                                                                                                                                                                                                                         | SRFS1  | SRFS1-13 | 875                  | 74                    | 333                     | 17979                               | 0.38              | 0.671                                            | 0.018            | 0.0849                                           | 0.0012           | 0.54             | 0.0574                                | 0.0013           | 521                                 | 14 | 525                                 | 7    | 506                                  | 48  | 104   |
| skrs/s         skrs/s<                                                                                                                                                                                                                                                                                       | SRFS1  | SRFS1-14 | 224                  | 11                    | 174                     | 955                                 | 0.78              | 0.353                                            | 0.016            | 0.0487                                           | 0.0008           | 0.38             | 0.0527                                | 0.0022           | 307                                 | 14 | 306                                 | 5    | 315                                  | 94  | 97    |
| BRPES         BRPLS         BRPLS <th< td=""><td>SRFS1</td><td>SRFS1-15</td><td>358</td><td>67</td><td>147</td><td>464121</td><td>0.41</td><td>1.967</td><td>0.052</td><td>0.1868</td><td>0.0027</td><td>0.54</td><td>0.0764</td><td>0.0017</td><td>1104</td><td>29</td><td>1104</td><td>16</td><td>1105</td><td>45</td><td>100</td></th<>                          | SRFS1  | SRFS1-15 | 358                  | 67                    | 147                     | 464121                              | 0.41              | 1.967                                            | 0.052            | 0.1868                                           | 0.0027           | 0.54             | 0.0764                                | 0.0017           | 1104                                | 29 | 1104                                | 16   | 1105                                 | 45  | 100   |
| BRF81         BR94         14         145         B668         0.61         0.014         0.027         0.027         0.027         127         12         273         15         273         15         273         15         273         15         173           BRF81         BR761         BR762         286         27         153         0668         0.22         0.625         0.011         0.44         0.002         0.020         240         15         456         57         686           BR751         BR752         287         10         272         620         0.010         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.02                                                                                                                                                                                                                                                                                                                                                                      | SRFS1  | SRFS1-17 | 309                  | 13                    | 158                     | 89435                               | 0.51              | 0.298                                            | 0.014            | 0.0416                                           | 0.0007           | 0.36             | 0.0519                                | 0.0023           | 265                                 | 12 | 263                                 | 4    | 280                                  | 100 | 94    |
| serse         serse <th< td=""><td>SRFS1</td><td>SRFS1-18</td><td>324</td><td>14</td><td>145</td><td>98839</td><td>0.45</td><td>0.313</td><td>0.014</td><td>0.0439</td><td>0.0007</td><td>0.37</td><td>0.0517</td><td>0.0021</td><td>277</td><td>12</td><td>277</td><td>5</td><td>273</td><td>95</td><td>101</td></th<>                               | SRFS1  | SRFS1-18 | 324                  | 14                    | 145                     | 98839                               | 0.45              | 0.313                                            | 0.014            | 0.0439                                           | 0.0007           | 0.37             | 0.0517                                | 0.0021           | 277                                 | 12 | 277                                 | 5    | 273                                  | 95  | 101   |
| skrs1-30       skrs1-30 <th< td=""><td>SRFS1</td><td>SRFS1-19</td><td>378</td><td>14</td><td>231</td><td>6968</td><td>0.61</td><td>0.265</td><td>0.014</td><td>0.0378</td><td>0.0007</td><td>0.34</td><td>0.0508</td><td>0.0025</td><td>239</td><td>13</td><td>239</td><td>4</td><td>232</td><td>115</td><td>103</td></th<> | SRFS1  | SRFS1-19 | 378                  | 14                    | 231                     | 6968                                | 0.61              | 0.265                                            | 0.014            | 0.0378                                           | 0.0007           | 0.34             | 0.0508                                | 0.0025           | 239                                 | 13 | 239                                 | 4    | 232                                  | 115 | 103   |
| SRF51       SRF51-22       281       11       476       2420       170       0.272       0.003       0.006       0.30       0.005       0.202       0.203       0.203       277       180       287       587         SRF51       SRF51-22       239       9       102       662.60       0.016       0.016       0.016       0.026       0.026       0.026       0.026       0.017       0.006       0.01       0.006       0.01       0.006       0.010       0.006       0.010       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.                                                                                                                                                                                                                                                                                                                                                                                                                            | SRFS1  | SRFS1-20 | 389                  | 27                    | 125                     | 3066                                | 0.32              | 0.552                                            | 0.021            | 0.0698                                           | 0.0011           | 0.42             | 0.0574                                | 0.0020           | 446                                 | 17 | 435                                 | 7    | 507                                  | 75  | 86    |
| SRF512       285       10       221       684.8       0.44       0.016       0.016       0.008       0.22       0.0023       200       27       14       244       5       300       13       84         SRF61       SRF513       477       24       173       1802.4       0.016       0.0397       0.0086       0.0202       0.0544       0.0001       246       17       214       5       317       64         SRF61       SRF513       477       10       0.240       0.008       0.000       0.044       0.0014       244       74       45       275       0.44       108         SRF61       SRF5127       325       16       19       0.33       0.001       0.33       0.0014       0.0014       0.0024       266       13       276       14       241       63       102         SRF613       SRF5128       98       13       100       927       0.37       0.28       0.001       0.41       0.001       0.001       238       9       237       4       247       4       24       64       374       64       376       161       1001       238       9       237       4 <td< td=""><td>SRFS1</td><td>SRFS1-21</td><td>281</td><td>11</td><td>476</td><td>24202</td><td>1.70</td><td>0.272</td><td>0.020</td><td>0.0384</td><td>0.0008</td><td>0.30</td><td>0.0514</td><td>0.0035</td><td>245</td><td>18</td><td>243</td><td>5</td><td>257</td><td>158</td><td>94</td></td<>                                                                                                                                                                                                            | SRFS1  | SRFS1-21 | 281                  | 11                    | 476                     | 24202                               | 1.70              | 0.272                                            | 0.020            | 0.0384                                           | 0.0008           | 0.30             | 0.0514                                | 0.0035           | 245                                 | 18 | 243                                 | 5    | 257                                  | 158 | 94    |
| BRF81         SRF81-24         47         24         17         24         17         24         17         24         17         24         17         24         17         24         17         24         17         24         17         24         17         24         17         18         24         18         24         18         24         18         24         18         24         18         24         18         24         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25        25       <                                                                                                                                                                                                                                                                                                                                                                                                                                            | SRFS1  | SRFS1-22 | 235                  | 10                    | 221                     | 68248                               | 0.94              | 0.301                                            | 0.016            | 0.0418                                           | 0.0008           | 0.34             | 0.0523                                | 0.0026           | 267                                 | 14 | 264                                 | 5    | 300                                  | 115 | 88    |
| SHR-124       417       173       198/24       0.14       0.0.43       0.0016       0.004       0.016       0.0016       0.006       0.001       0.0016       0.001       0.0016       0.0016       0.001       0.0016       0.0016       0.001       0.0016       0.001       0.0016       0.001       0.0016       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016       0.0016<                                                                                                                                                                                                                                                                                                                                                                       | SRFS1  | SRFS1-23 | 239                  | 9                     | 102                     | 66006                               | 0.43              | 0.298                                            | 0.019            | 0.0397                                           | 0.0008           | 0.32             | 0.0545                                | 0.0032           | 265                                 | 17 | 251                                 | 5    | 391                                  | 133 | 64    |
| shr51-sb       shr51-sb <th< td=""><td>SREST</td><td>SRFS1-24</td><td>417</td><td>24</td><td>173</td><td>169224</td><td>0.41</td><td>0.438</td><td>0.016</td><td>0.0584</td><td>0.0009</td><td>0.41</td><td>0.0544</td><td>0.0018</td><td>369</td><td>14</td><td>366</td><td>6</td><td>388</td><td>76</td><td>94</td></th<> | SREST  | SRFS1-24 | 417                  | 24                    | 173                     | 169224                              | 0.41              | 0.438                                            | 0.016            | 0.0584                                           | 0.0009           | 0.41             | 0.0544                                | 0.0018           | 369                                 | 14 | 366                                 | 6    | 388                                  | 76  | 94    |
| shr51-k3       shr61-k3 <th< td=""><td>SRFS1</td><td>SRFS1-25</td><td>799</td><td>31</td><td>284</td><td>11837</td><td>0.36</td><td>0.272</td><td>0.008</td><td>0.0385</td><td>0.0006</td><td>0.48</td><td>0.0513</td><td>0.0014</td><td>244</td><td>10</td><td>243</td><td>4</td><td>254</td><td>61</td><td>96</td></th<>  | SRFS1  | SRFS1-25 | 799                  | 31                    | 284                     | 11837                               | 0.36              | 0.272                                            | 0.008            | 0.0385                                           | 0.0006           | 0.48             | 0.0513                                | 0.0014           | 244                                 | 10 | 243                                 | 4    | 254                                  | 61  | 96    |
| BRFS1         SRFS1-28         14         2.5         4.2         3.6         0.11         1.213         0.033         0.031         0.0016         0.032         0.0016         0.032         0.0016         0.032         0.0016         0.032         0.0016         0.032         0.0016         0.032         0.0016         0.032         0.0016         0.032         0.0016         0.032         0.0016         0.032         0.0016         0.032         0.0016         0.032         0.0016         0.032         0.0016         0.032         0.0016         0.032         0.0016         0.031         0.0016         0.031         0.0016         0.031         0.0016         0.031         0.0016         0.031         0.0016         0.031         0.0016         0.031         0.0016         0.031         0.0016         0.031         0.0016         0.031         0.0016         0.031         0.0016         0.031         0.0016         0.031         0.0016         0.031         0.0016         0.031         0.0016         0.031         0.0016         0.031         0.0016         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011                                                                                                                                                                                                                                                                                                                       | SKFS1  | SRFS1-20 | 357                  | 10                    | 199                     | 25/0                                | 0.56              | 0.312                                            | 0.015            | 0.0438                                           | 0.0008           | 0.30             | 0.0518                                | 0.0024           | 276                                 | 13 | 270                                 | 5    | 275                                  | 104 | 100   |
| SHR51       SHR51-29       269       13       190       50.2       0.001       0.0012       0.001       0.0012       200       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       10       210       100       210       100       210       100       210       100       210       100       210       100       210       100       210       100       210       100       210       100       210       100       210       100       210       100       210 <th1< td=""><td>ORFOI</td><td>SRF31-21</td><td>325</td><td>42</td><td>50</td><td>302</td><td>0.11</td><td>0.201</td><td>0.033</td><td>0.1300</td><td>0.0019</td><td>0.55</td><td>0.0677</td><td>0.0018</td><td>267</td><td>19</td><td>700</td><td>5</td><td>009</td><td>40</td><td>92</td></th1<>                                                                                                                                                                                                                   | ORFOI  | SRF31-21 | 325                  | 42                    | 50                      | 302                                 | 0.11              | 0.201                                            | 0.033            | 0.1300                                           | 0.0019           | 0.55             | 0.0677                                | 0.0018           | 267                                 | 19 | 700                                 | 5    | 009                                  | 40  | 92    |
| ShrS1       ShrS1 <th< td=""><td>ORFO1</td><td>SRF31-20</td><td>206</td><td>12</td><td>100</td><td>02720</td><td>0.20</td><td>0.301</td><td>0.020</td><td>0.0425</td><td>0.0009</td><td>0.31</td><td>0.0510</td><td>0.0032</td><td>207</td><td>0</td><td>207</td><td>3</td><td>270</td><td>62</td><td>102</td></th<>                                                                                                              | ORFO1  | SRF31-20 | 206                  | 12                    | 100                     | 02720                               | 0.20              | 0.301                                            | 0.020            | 0.0425                                           | 0.0009           | 0.31             | 0.0510                                | 0.0032           | 207                                 | 0  | 207                                 | 3    | 270                                  | 62  | 102   |
| Shr S1                                                                                                                                                                                                                                                                                                                                                                     | SRES1  | SRES1-29 | 290                  | 13                    | 170                     | 90729                               | 0.37              | 0.320                                            | 0.010            | 0.0455                                           | 0.0007           | 0.47             | 0.0519                                | 0.0014           | 200                                 | 9  | 207                                 | 4    | 201                                  | 84  | 07    |
| BRFS1       BRFS1-32       AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SRES1  | SRES1-31 | 310                  | 12                    | 169                     | 4240                                | 0.54              | 0.275                                            | 0.011            | 0.0390                                           | 0.0006           | 0.46             | 0.0511                                | 0.0015           | 230                                 | 8  | 247                                 | 4    | 245                                  | 66  | 100   |
| SRFS1       SRFS1-34       OB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SRES1  | SRES1-32 | 409                  | 17                    | 98                      | 48658                               | 0.24              | 0.316                                            | 0.000            | 0.0414                                           | 0.0008           | 0.34             | 0.0553                                | 0.0028           | 279                                 | 15 | 262                                 | 5    | 425                                  | 112 | 62    |
| SRF51       SRF51-37       145       23       46       374       0.02       0.010       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.001       0.000       0.001       0.000       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001 </td <td>SRES1</td> <td>SRES1-34</td> <td>690</td> <td>37</td> <td>323</td> <td>255267</td> <td>0.47</td> <td>0.393</td> <td>0.013</td> <td>0.0531</td> <td>0.0008</td> <td>0.46</td> <td>0.0537</td> <td>0.0016</td> <td>337</td> <td>11</td> <td>334</td> <td>5</td> <td>357</td> <td>66</td> <td>93</td>                                                                                                 | SRES1  | SRES1-34 | 690                  | 37                    | 323                     | 255267                              | 0.47              | 0.393                                            | 0.013            | 0.0531                                           | 0.0008           | 0.46             | 0.0537                                | 0.0016           | 337                                 | 11 | 334                                 | 5    | 357                                  | 66  | 93    |
| SRFS1       SRFS1-38       G67       G6       G4       D21430       G17       G1814       G102       G1814       G104       G104 <th< td=""><td>SRFS1</td><td>SRFS1-37</td><td>145</td><td>23</td><td>46</td><td>3374</td><td>0.32</td><td>1.711</td><td>0.055</td><td>0.1587</td><td>0.0024</td><td>0.48</td><td>0.0782</td><td>0.0022</td><td>1013</td><td>33</td><td>949</td><td>15</td><td>1152</td><td>56</td><td>82</td></th<>                                                                                                                                                 | SRFS1  | SRFS1-37 | 145                  | 23                    | 46                      | 3374                                | 0.32              | 1.711                                            | 0.055            | 0.1587                                           | 0.0024           | 0.48             | 0.0782                                | 0.0022           | 1013                                | 33 | 949                                 | 15   | 1152                                 | 56  | 82    |
| SRFS1       SRFS1-39       247       20       130       135868       0.53       0.621       0.019       0.0789       0.0012       0.49       0.0511       0.0015       491       15       490       7       495       58       99         SRFS1       SRFS1-40       735       27       512       186590       0.70       0.262       0.009       0.0365       0.0012       0.41       0.0017       236       8       231       4       289       73       80         SRFS1       SRFS1-42       351       15       177       102274       0.50       0.986       0.0762       0.0012       0.41       0.0616       0.0026       264       14       264       5       268       116       98         SRFS1       SRFS1-42       351       15       177       102274       0.50       0.033       0.010       0.054       0.0014       0.026       264       14       264       5       268       116       98         SRFS1       SRFS1-42       70       43       427       553       0.54       0.013       0.054       0.0016       345       13       38       11       88       64       88       34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SRFS1  | SRFS1-38 | 367                  | 36                    | 64                      | 251430                              | 0.17              | 0.811                                            | 0.022            | 0.0982                                           | 0.0014           | 0.53             | 0.0599                                | 0.0014           | 603                                 | 16 | 604                                 | 9    | 599                                  | 50  | 101   |
| SRFS1       SRFS1-40       735       27       512       186590       0.70       0.262       0.009       0.0365       0.006       0.43       0.0521       0.0017       236       8       231       4       289       73       80         SRFS1       SRFS1-41       513       39       133       2470       0.26       0.646       0.026       0.0012       0.41       0.0026       506       20       474       8       654       78       72         SRFS1       SRFS1-42       351       15       177       10274       0.50       0.298       0.016       0.0418       0.0014       0.0264       0.0014       292       9       291       4       301       60       97         SRFS1       SRFS1-43       481       22       217       27957       0.45       0.33       0.010       0.462       0.007       0.49       0.054       0.0014       292       9       291       4       301       60       98         SRFS1       SRFS1-48       404       473       228       0.49       0.43       0.052       0.0016       0.016       0.016       0.016       0.016       0.016       0.016       0.016 <td< td=""><td>SRFS1</td><td>SRFS1-39</td><td>247</td><td>20</td><td>130</td><td>135868</td><td>0.53</td><td>0.621</td><td>0.019</td><td>0.0789</td><td>0.0012</td><td>0.49</td><td>0.0571</td><td>0.0015</td><td>491</td><td>15</td><td>490</td><td>7</td><td>495</td><td>58</td><td>99</td></td<>                                                                                                                                                                                          | SRFS1  | SRFS1-39 | 247                  | 20                    | 130                     | 135868                              | 0.53              | 0.621                                            | 0.019            | 0.0789                                           | 0.0012           | 0.49             | 0.0571                                | 0.0015           | 491                                 | 15 | 490                                 | 7    | 495                                  | 58  | 99    |
| SRFS1       SRFS1-41       513       39       133       2470       0.26       0.666       0.026       0.012       0.41       0.0014       0.0022       506       20       474       8       654       78       72         SRFS1       SRFS1-42       351       15       177       102274       0.50       0.298       0.016       0.016       0.026       0.0026       264       14       264       5       268       116       98         SRFS1       SRFS1-43       481       22       217       27957       0.45       0.33       0.010       0.042       0.007       0.49       0.0524       0.0014       292       9       291       4       301       60       97         SRFS1       SRFS1-43       481       228       27       59       4919       0.26       1.134       0.039       0.012       0.054       0.0016       345       11       338       5       384       66       86         SRFS1       SRFS1-48       840       44       73       2396       0.09       0.31       0.012       0.052       0.0021       70       27       731       11       88       64       83      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SRFS1  | SRFS1-40 | 735                  | 27                    | 512                     | 186590                              | 0.70              | 0.262                                            | 0.009            | 0.0365                                           | 0.0006           | 0.43             | 0.0521                                | 0.0017           | 236                                 | 8  | 231                                 | 4    | 289                                  | 73  | 80    |
| SRFS1       SRFS1-42       351       15       177       102274       0.50       0.298       0.016       0.0418       0.008       0.34       0.056       0.006       264       14       264       5       268       116       98         SRFS1       SRFS1-43       481       22       217       27957       0.45       0.33       0.010       0.0462       0.007       0.49       0.054       0.014       292       9       291       4       301       60       97         SRFS1       SRFS1-44       790       43       427       5583       0.54       0.045       0.016       0.0546       0.0016       345       11       338       5       394       66       86         SRFS1       SRFS1-45       228       27       59       4919       0.26       1.134       0.039       0.121       0.019       0.45       0.0655       0.0021       770       27       731       11       882       64       83         SRFS1       SRFS1-46       840       44       73       2396       0.02       0.015       0.0053       0.0054       0.0023       2003       13       268       319       103       84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SRFS1  | SRFS1-41 | 513                  | 39                    | 133                     | 2470                                | 0.26              | 0.646                                            | 0.026            | 0.0762                                           | 0.0012           | 0.41             | 0.0614                                | 0.0022           | 506                                 | 20 | 474                                 | 8    | 654                                  | 78  | 72    |
| SRFS1       481       22       217       27957       0.45       0.333       0.010       0.042       0.007       0.49       0.0524       0.0014       292       9       291       4       301       60       97         SRFS1       SRFS1-44       790       43       427       5583       0.54       0.045       0.0039       0.008       0.45       0.056       0.0016       345       11       338       5       394       66       86         SRFS1       SRFS1-45       228       27       59       4919       0.26       1.134       0.039       0.121       0.019       0.45       0.0685       0.0021       770       27       731       11       882       64       83         SRFS1       SRFS1-46       840       44       73       2396       0.09       0.310       0.012       0.052       0.0085       0.0021       770       27       731       11       882       64       83         SRFS1       SRFS1-46       840       444       73       0.390       0.016       0.026       0.0528       0.0021       273       13       268       5       319       103       84       33       5<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SRFS1  | SRFS1-42 | 351                  | 15                    | 177                     | 102274                              | 0.50              | 0.298                                            | 0.016            | 0.0418                                           | 0.0008           | 0.34             | 0.0516                                | 0.0026           | 264                                 | 14 | 264                                 | 5    | 268                                  | 116 | 98    |
| SRFS1       SRFS1-44       790       43       427       5583       0.54       0.405       0.013       0.0539       0.008       0.45       0.0566       0.0016       345       11       338       5       394       66       86         SRFS1       SRFS1-45       228       27       59       4919       0.26       1.134       0.039       0.121       0.019       0.45       0.0685       0.0021       770       27       731       11       882       64       83         SRFS1       SRFS1-46       840       44       73       2396       0.09       0.391       0.012       0.0523       0.008       0.47       0.0543       0.0015       335       10       329       5       381       62       86         SRFS1       SRFS1-47       654       28       404       193435       0.62       0.039       0.012       0.052       0.0024       273       13       268       5       319       103       84       91       557         SRFS1       SRFS1-48       313       12       228       85014       0.73       0.030       0.013       0.039       0.056       0.057       0.023       267       12 <td>SRFS1</td> <td>SRFS1-43</td> <td>481</td> <td>22</td> <td>217</td> <td>27957</td> <td>0.45</td> <td>0.333</td> <td>0.010</td> <td>0.0462</td> <td>0.0007</td> <td>0.49</td> <td>0.0524</td> <td>0.0014</td> <td>292</td> <td>9</td> <td>291</td> <td>4</td> <td>301</td> <td>60</td> <td>97</td>                                                                                                                                                                                       | SRFS1  | SRFS1-43 | 481                  | 22                    | 217                     | 27957                               | 0.45              | 0.333                                            | 0.010            | 0.0462                                           | 0.0007           | 0.49             | 0.0524                                | 0.0014           | 292                                 | 9  | 291                                 | 4    | 301                                  | 60  | 97    |
| SRFS1       SRFS1-45       228       27       59       4919       0.26       1.134       0.039       0.121       0.019       0.45       0.0685       0.0021       770       27       731       11       882       64       83         SRFS1       SRFS1-46       840       44       73       2396       0.09       0.391       0.012       0.053       0.008       0.47       0.0533       0.0015       335       10       329       5       381       62       86         SRFS1       SRFS1-47       654       28       404       193435       0.62       0.309       0.015       0.424       0.007       0.36       0.024       273       13       268       5       319       103       84         SRFS1       SRFS1-48       313       12       228       85014       0.73       0.030       0.013       0.039       0.006       0.37       0.059       0.0023       267       12       246       4       448       91       55         SRFS1       SRFS1-49       764       32       320       6634       0.013       0.042       0.007       0.39       0.052       0.0023       275       11       268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SRFS1  | SRFS1-44 | 790                  | 43                    | 427                     | 5583                                | 0.54              | 0.405                                            | 0.013            | 0.0539                                           | 0.0008           | 0.45             | 0.0546                                | 0.0016           | 345                                 | 11 | 338                                 | 5    | 394                                  | 66  | 86    |
| SRFS1       840       44       73       2396       0.09       0.391       0.012       0.0523       0.0088       0.47       0.0543       0.015       335       10       329       5       381       62       86         SRFS1       SRFS1-47       654       28       404       193435       0.62       0.309       0.015       0.424       0.007       0.36       0.0528       0.0024       273       13       268       5       319       103       84         SRFS1       SRFS1-48       313       12       228       85014       0.73       0.300       0.013       0.0390       0.0066       0.37       0.0559       0.0023       267       12       246       4       448       91       55         SRFS1       SRFS1-49       764       32       302       6634       0.40       0.413       0.425       0.007       0.39       0.532       0.0023       267       11       268       4       448       91       55         SRFS1       SRFS1-50       179       7       203       50169       0.013       0.0528       0.0516       0.0023       255       12       264       4       267       102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SRFS1  | SRFS1-45 | 228                  | 27                    | 59                      | 4919                                | 0.26              | 1.134                                            | 0.039            | 0.1201                                           | 0.0019           | 0.45             | 0.0685                                | 0.0021           | 770                                 | 27 | 731                                 | 11   | 882                                  | 64  | 83    |
| SRFS1       SRFS1-47       654       28       404       193435       0.62       0.309       0.015       0.024       0.007       0.36       0.0528       0.0024       273       13       268       5       319       103       84         SRFS1       SRFS1-48       313       12       228       85014       0.73       0.300       0.013       0.0390       0.006       0.37       0.0559       0.0023       267       12       246       4       448       91       55         SRFS1       SRFS1-49       764       32       302       6634       0.40       0.311       0.013       0.0425       0.0007       0.39       0.052       0.0023       267       12       246       4       448       91       55         SRFS1       SRFS1-50       779       764       32       302       6634       0.0131       0.013       0.0425       0.0007       0.39       0.052       0.0023       275       11       268       4       336       86       80         SRFS1       SRFS1-52       179       7       203       50169       0.014       0.0016       0.016       0.018       0.0018       2012       255       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SRFS1  | SRFS1-46 | 840                  | 44                    | 73                      | 2396                                | 0.09              | 0.391                                            | 0.012            | 0.0523                                           | 0.0008           | 0.47             | 0.0543                                | 0.0015           | 335                                 | 10 | 329                                 | 5    | 381                                  | 62  | 86    |
| SRFS1       SRFS1-48       313       12       228       85014       0.73       0.030       0.013       0.0390       0.0066       0.37       0.0559       0.0023       267       12       246       4       448       91       55         SRFS1       SRFS1-49       764       32       302       6634       0.40       0.311       0.013       0.0425       0.0007       0.39       0.0522       0.0020       275       11       268       4       336       86       80         SRFS1       SRFS1-50       179       7       203       50169       1.14       0.286       0.014       0.0402       0.0007       0.35       0.0516       0.0023       255       12       254       4       267       102       95         SRFS1       SRFS1-52       474       18       334       2526       0.70       0.269       0.010       0.376       0.0016       0.41       0.0518       0.018       242       9       238       4       275       79       87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SRFS1  | SRFS1-47 | 654                  | 28                    | 404                     | 193435                              | 0.62              | 0.309                                            | 0.015            | 0.0424                                           | 0.0007           | 0.36             | 0.0528                                | 0.0024           | 273                                 | 13 | 268                                 | 5    | 319                                  | 103 | 84    |
| SRFS1       SRFS1-49       764       32       302       6634       0.40       0.311       0.013       0.0425       0.0007       0.39       0.0532       0.0020       275       11       268       4       336       86       80         SRFS1       SRFS1-50       179       7       203       50169       1.14       0.286       0.014       0.0007       0.35       0.0516       0.0023       255       12       254       4       267       102       95         SRFS1       SRFS1-52       474       18       334       2526       0.70       0.269       0.010       0.0376       0.0018       0.018       242       9       238       4       275       79       87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SRFS1  | SRFS1-48 | 313                  | 12                    | 228                     | 85014                               | 0.73              | 0.300                                            | 0.013            | 0.0390                                           | 0.0006           | 0.37             | 0.0559                                | 0.0023           | 267                                 | 12 | 246                                 | 4    | 448                                  | 91  | 55    |
| SRFS1       SRFS1-50       179       7       203       50169       1.14       0.286       0.014       0.0402       0.0007       0.35       0.0516       0.0023       255       12       254       4       267       102       95         SRFS1       SRFS1-52       474       18       334       2526       0.70       0.269       0.010       0.0376       0.0016       0.41       0.0518       0.0018       242       9       238       4       275       79       87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SRFS1  | SRFS1-49 | 764                  | 32                    | 302                     | 6634                                | 0.40              | 0.311                                            | 0.013            | 0.0425                                           | 0.0007           | 0.39             | 0.0532                                | 0.0020           | 275                                 | 11 | 268                                 | 4    | 336                                  | 86  | 80    |
| SRFS1 SRFS1-52 474 18 334 2526 0.70 0.269 0.010 0.0376 0.0006 0.41 0.0518 0.0018 242 9 238 4 275 79 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SRFS1  | SRFS1-50 | 179                  | 7                     | 203                     | 50169                               | 1.14              | 0.286                                            | 0.014            | 0.0402                                           | 0.0007           | 0.35             | 0.0516                                | 0.0023           | 255                                 | 12 | 254                                 | 4    | 267                                  | 102 | 95    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SRFS1  | SRFS1-52 | 474                  | 18                    | 334                     | 2526                                | 0.70              | 0.269                                            | 0.010            | 0.0376                                           | 0.0006           | 0.41             | 0.0518                                | 0.0018           | 242                                 | 9  | 238                                 | 4    | 275                                  | 79  | 87    |

| SRFS1 | SRFS1-53  | 534 | 265 | 46  | 15655  | 0.09 | 12.486 | 0.321 | 0.4952 | 0.0071 | 0.56 | 0.1829 | 0.0039 | 2642 | 68 | 2593 | 37 | 2679 | 35  | 97  |
|-------|-----------|-----|-----|-----|--------|------|--------|-------|--------|--------|------|--------|--------|------|----|------|----|------|-----|-----|
| SRFS1 | SRFS1-55  | 230 | 12  | 94  | 86192  | 0.41 | 0.393  | 0.017 | 0.0538 | 0.0009 | 0.38 | 0.0529 | 0.0022 | 336  | 15 | 338  | 6  | 326  | 93  | 104 |
| SRFS1 | SRFS1-56  | 636 | 25  | 261 | 176681 | 0.41 | 0.283  | 0.009 | 0.0398 | 0.0006 | 0.46 | 0.0515 | 0.0015 | 253  | 8  | 252  | 4  | 263  | 65  | 96  |
| SRFS1 | SRFS1-57  | 445 | 20  | 158 | 2123   | 0.36 | 0.381  | 0.015 | 0.0440 | 0.0007 | 0.41 | 0.0629 | 0.0022 | 328  | 13 | 277  | 4  | 704  | 74  | 39  |
| SRFS1 | SRFS1-58  | 266 | 93  | 140 | 71749  | 0.52 | 7.316  | 0.191 | 0.3482 | 0.0050 | 0.55 | 0.1524 | 0.0033 | 2151 | 56 | 1926 | 28 | 2373 | 37  | 81  |
| SRFS1 | SRFS1-59  | 201 | 40  | 89  | 282692 | 0.44 | 2.214  | 0.066 | 0.2018 | 0.0030 | 0.50 | 0.0796 | 0.0021 | 1185 | 35 | 1185 | 18 | 1187 | 51  | 100 |
| SRFS1 | SRFS1-60  | 331 | 12  | 184 | 87074  | 0.56 | 0.269  | 0.019 | 0.0377 | 0.0008 | 0.30 | 0.0517 | 0.0036 | 242  | 17 | 238  | 5  | 273  | 158 | 87  |
| SRFS1 | SRFS1-61  | 305 | 13  | 97  | 3855   | 0.32 | 0.310  | 0.010 | 0.0435 | 0.0006 | 0.47 | 0.0517 | 0.0014 | 274  | 9  | 274  | 4  | 273  | 64  | 100 |
| SRFS1 | SRFS1-62  | 776 | 28  | 235 | 2208   | 0.30 | 0.310  | 0.010 | 0.0365 | 0.0005 | 0.48 | 0.0617 | 0.0017 | 274  | 8  | 231  | 3  | 663  | 58  | 35  |
| SRFS1 | SRFS1-63  | 925 | 119 | 240 | 1399   | 0.26 | 1.521  | 0.040 | 0.1290 | 0.0018 | 0.54 | 0.0855 | 0.0019 | 939  | 25 | 782  | 11 | 1328 | 43  | 59  |
| SRFS1 | SRFS1-64  | 333 | 63  | 140 | 2493   | 0.42 | 2.059  | 0.058 | 0.1900 | 0.0028 | 0.51 | 0.0786 | 0.0019 | 1135 | 32 | 1121 | 16 | 1162 | 48  | 97  |
| SRFS1 | SRFS1-65  | 607 | 24  | 347 | 7615   | 0.57 | 0.283  | 0.009 | 0.0399 | 0.0006 | 0.46 | 0.0515 | 0.0015 | 253  | 8  | 252  | 4  | 262  | 65  | 96  |
| SRFS1 | SRFS1-66  | 236 | 20  | 134 | 7075   | 0.57 | 0.695  | 0.025 | 0.0850 | 0.0013 | 0.43 | 0.0593 | 0.0019 | 536  | 19 | 526  | 8  | 578  | 70  | 91  |
| SRFS1 | SRFS1-67  | 217 | 18  | 87  | 1301   | 0.40 | 0.700  | 0.028 | 0.0844 | 0.0014 | 0.40 | 0.0601 | 0.0022 | 539  | 22 | 522  | 9  | 609  | 81  | 86  |
| SRFS1 | SRFS1-68  | 799 | 33  | 383 | 232946 | 0.48 | 0.297  | 0.010 | 0.0417 | 0.0006 | 0.45 | 0.0517 | 0.0015 | 264  | 9  | 263  | 4  | 273  | 67  | 97  |
| SRFS1 | SRFS1-69  | 250 | 22  | 108 | 155020 | 0.43 | 0.722  | 0.028 | 0.0886 | 0.0014 | 0.41 | 0.0592 | 0.0021 | 552  | 21 | 547  | 9  | 573  | 76  | 96  |
| SRFS1 | SRFS1-70  | 370 | 15  | 178 | 1446   | 0.48 | 0.305  | 0.012 | 0.0408 | 0.0006 | 0.39 | 0.0543 | 0.0020 | 270  | 11 | 258  | 4  | 383  | 83  | 67  |
| SRFS1 | SRFS1-71  | 476 | 17  | 470 | 1583   | 0.99 | 0.276  | 0.011 | 0.0367 | 0.0006 | 0.40 | 0.0545 | 0.0020 | 247  | 10 | 232  | 4  | 393  | 81  | 59  |
| SRFS1 | SRFS1-72  | 228 | 9   | 78  | 2040   | 0.34 | 0.291  | 0.025 | 0.0408 | 0.0010 | 0.29 | 0.0517 | 0.0043 | 259  | 22 | 258  | 6  | 273  | 189 | 94  |
| SRFS1 | SRFS1-73  | 363 | 25  | 141 | 175931 | 0.39 | 0.543  | 0.026 | 0.0693 | 0.0012 | 0.36 | 0.0568 | 0.0025 | 440  | 21 | 432  | 7  | 483  | 99  | 89  |
| SRFS1 | SRFS1-74  | 327 | 14  | 201 | 2096   | 0.61 | 0.303  | 0.012 | 0.0423 | 0.0007 | 0.40 | 0.0519 | 0.0019 | 269  | 11 | 267  | 4  | 281  | 83  | 95  |
| SRFS1 | SRFS1-75  | 129 | 13  | 25  | 87913  | 0.20 | 0.806  | 0.031 | 0.0974 | 0.0016 | 0.42 | 0.0601 | 0.0021 | 600  | 23 | 599  | 10 | 605  | 75  | 99  |
| SRFS1 | SRFS1-76  | 377 | 17  | 199 | 3816   | 0.53 | 0.331  | 0.011 | 0.0462 | 0.0007 | 0.45 | 0.0520 | 0.0016 | 290  | 10 | 291  | 4  | 285  | 70  | 102 |
| SRFS1 | SRFS1-77  | 226 | 36  | 36  | 10201  | 0.16 | 1.601  | 0.045 | 0.1608 | 0.0023 | 0.51 | 0.0722 | 0.0018 | 971  | 27 | 961  | 14 | 992  | 50  | 97  |
| SRFS1 | SRFS1-78  | 239 | 9   | 131 | 62400  | 0.55 | 0.278  | 0.012 | 0.0373 | 0.0006 | 0.38 | 0.0540 | 0.0022 | 249  | 11 | 236  | 4  | 371  | 92  | 64  |
| SRFS1 | SRFS1-79  | 404 | 15  | 181 | 108497 | 0.45 | 0.307  | 0.013 | 0.0383 | 0.0006 | 0.39 | 0.0582 | 0.0023 | 272  | 12 | 242  | 4  | 535  | 87  | 45  |
| SRFS1 | SRFS1-80  | 222 | 10  | 118 | 1799   | 0.53 | 0.306  | 0.011 | 0.0430 | 0.0006 | 0.43 | 0.0517 | 0.0016 | 271  | 10 | 271  | 4  | 272  | 73  | 100 |
| SRFS1 | SRFS1-81  | 332 | 14  | 172 | 5808   | 0.52 | 0.295  | 0.010 | 0.0415 | 0.0006 | 0.46 | 0.0516 | 0.0015 | 263  | 9  | 262  | 4  | 266  | 67  | 98  |
| SRFS1 | SRFS1-82  | 323 | 27  | 158 | 188656 | 0.49 | 0.720  | 0.021 | 0.0834 | 0.0012 | 0.49 | 0.0626 | 0.0016 | 551  | 16 | 516  | 8  | 695  | 55  | 74  |
| SRFS1 | SRFS1-83  | 285 | 11  | 186 | 79938  | 0.65 | 0.282  | 0.010 | 0.0400 | 0.0006 | 0.44 | 0.0512 | 0.0016 | 252  | 9  | 253  | 4  | 250  | 70  | 101 |
| SRFS1 | SRFS1-84  | 235 | 19  | 106 | 4572   | 0.45 | 0.637  | 0.026 | 0.0806 | 0.0013 | 0.40 | 0.0573 | 0.0021 | 501  | 20 | 500  | 8  | 504  | 81  | 99  |
| SRFS1 | SRFS1-85  | 224 | 10  | 232 | 66580  | 1.04 | 0.302  | 0.018 | 0.0424 | 0.0008 | 0.32 | 0.0516 | 0.0029 | 268  | 16 | 268  | 5  | 268  | 127 | 100 |
| SRFS1 | SRFS1-86  | 481 | 30  | 198 | 10446  | 0.41 | 0.466  | 0.022 | 0.0626 | 0.0011 | 0.36 | 0.0540 | 0.0024 | 388  | 18 | 391  | 7  | 372  | 98  | 105 |
| SRFS1 | SRFS1-87  | 369 | 19  | 232 | 54660  | 0.63 | 0.372  | 0.015 | 0.0507 | 0.0008 | 0.40 | 0.0531 | 0.0019 | 321  | 13 | 319  | 5  | 335  | 82  | 95  |
| SRFS1 | SRFS1-88  | 349 | 16  | 121 | 133617 | 0.35 | 0.328  | 0.011 | 0.0457 | 0.0007 | 0.46 | 0.0521 | 0.0015 | 288  | 9  | 288  | 4  | 290  | 66  | 99  |
| SRFS1 | SRFS1-89  | 364 | 16  | 197 | 112482 | 0.54 | 0.316  | 0.010 | 0.0441 | 0.0006 | 0.47 | 0.0520 | 0.0014 | 279  | 9  | 278  | 4  | 285  | 62  | 97  |
| SRFS1 | SRFS1-90  | 257 | 31  | 81  | 4975   | 0.32 | 1.163  | 0.032 | 0.1190 | 0.0017 | 0.52 | 0.0709 | 0.0017 | 783  | 21 | 725  | 10 | 954  | 48  | 76  |
| SRFS1 | SRFS1-91  | 808 | 31  | 458 | 218201 | 0.57 | 0.273  | 0.009 | 0.0385 | 0.0006 | 0.46 | 0.0515 | 0.0014 | 245  | 8  | 244  | 4  | 263  | 64  | 93  |
| SRFS1 | SRFS1-92  | 180 | 28  | 88  | 1823   | 0.49 | 1.527  | 0.050 | 0.1568 | 0.0024 | 0.47 | 0.0706 | 0.0020 | 941  | 31 | 939  | 14 | 947  | 59  | 99  |
| SRFS1 | SRFS1-93  | 121 | 11  | 49  | 1023   | 0.41 | 0.802  | 0.039 | 0.0925 | 0.0017 | 0.37 | 0.0629 | 0.0028 | 598  | 29 | 570  | 10 | 704  | 95  | 81  |
| SRFS1 | SRFS1-94  | 419 | 17  | 216 | 1227   | 0.52 | 0.296  | 0.012 | 0.0400 | 0.0006 | 0.40 | 0.0537 | 0.0020 | 263  | 11 | 253  | 4  | 357  | 83  | 71  |
| SRFS1 | SRFS1-95  | 330 | 15  | 137 | 18267  | 0.41 | 0.315  | 0.010 | 0.0442 | 0.0006 | 0.47 | 0.0517 | 0.0014 | 278  | 9  | 279  | 4  | 272  | 63  | 102 |
| SRFS1 | SRFS1-96  | 183 | 7   | 210 | 696    | 1.14 | 0.300  | 0.019 | 0.0406 | 0.0008 | 0.32 | 0.0535 | 0.0031 | 266  | 16 | 257  | 5  | 350  | 133 | 73  |
| SRFS1 | SRFS1-97  | 146 | 27  | 36  | 4601   | 0.25 | 1.984  | 0.062 | 0.1869 | 0.0028 | 0.48 | 0.0770 | 0.0021 | 1110 | 35 | 1105 | 17 | 1121 | 54  | 99  |
| SRFS1 | SRFS1-98  | 202 | 8   | 167 | 59528  | 0.83 | 0.311  | 0.017 | 0.0420 | 0.0008 | 0.33 | 0.0537 | 0.0028 | 275  | 15 | 265  | 5  | 356  | 120 | 74  |
| SRFS1 | SRFS1-100 | 181 | 31  | 45  | 218296 | 0.25 | 1.819  | 0.061 | 0.1721 | 0.0027 | 0.46 | 0.0767 | 0.0023 | 1052 | 36 | 1023 | 16 | 1112 | 60  | 92  |
| SRFS1 | SRFS1-101 | 384 | 17  | 402 | 1980   | 1.05 | 0.340  | 0.018 | 0.0444 | 0.0008 | 0.34 | 0.0557 | 0.0028 | 297  | 16 | 280  | 5  | 438  | 112 | 64  |
| SRES1 | SRFS1-103 | 494 | 20  | 596 | 142089 | 1.21 | 0.289  | 0.012 | 0.0409 | 0.0006 | 0.38 | 0.0512 | 0.0019 | 258  | 10 | 259  | 4  | 249  | 86  | 104 |
| SRFS1 | SRFS1-104 | 292 | 25  | 99  | 21326  | 0.34 | 0.683  | 0.020 | 0.0858 | 0.0012 | 0.50 | 0.0578 | 0.0014 | 529  | 15 | 530  | 8  | 522  | 55  | 102 |

| SRFS1 | SRFS1-105 | 62  | 8  | 40  | 58977  | 0.64 | 1.280 | 0.052 | 0.1349 | 0.0023 | 0.41 | 0.0688 | 0.0026 | 837  | 34 | 816  | 14 | 893  | 77  | 91  |
|-------|-----------|-----|----|-----|--------|------|-------|-------|--------|--------|------|--------|--------|------|----|------|----|------|-----|-----|
| SRFS1 | SRFS1-106 | 266 | 11 | 201 | 75687  | 0.76 | 0.287 | 0.010 | 0.0406 | 0.0006 | 0.44 | 0.0513 | 0.0015 | 256  | 9  | 256  | 4  | 254  | 69  | 101 |
| SRFS1 | SRFS1-107 | 164 | 6  | 117 | 43990  | 0.71 | 0.288 | 0.030 | 0.0382 | 0.0011 | 0.27 | 0.0546 | 0.0055 | 257  | 27 | 242  | 7  | 398  | 226 | 61  |
| SRFS1 | SRFS1-108 | 343 | 15 | 109 | 102086 | 0.32 | 0.303 | 0.010 | 0.0423 | 0.0006 | 0.46 | 0.0518 | 0.0015 | 268  | 9  | 267  | 4  | 278  | 65  | 96  |
| SRFS1 | SRFS1-109 | 309 | 13 | 220 | 816    | 0.71 | 0.329 | 0.022 | 0.0422 | 0.0009 | 0.32 | 0.0565 | 0.0035 | 288  | 19 | 266  | 6  | 471  | 139 | 57  |
| SRFS1 | SRFS1-110 | 611 | 62 | 68  | 1169   | 0.11 | 1.046 | 0.036 | 0.1006 | 0.0016 | 0.45 | 0.0754 | 0.0023 | 727  | 25 | 618  | 10 | 1079 | 61  | 57  |
| SRFS1 | SRFS1-111 | 388 | 17 | 208 | 121678 | 0.54 | 0.317 | 0.014 | 0.0446 | 0.0007 | 0.37 | 0.0516 | 0.0021 | 280  | 12 | 281  | 5  | 266  | 94  | 106 |
| SRFS1 | SRFS1-112 | 160 | 13 | 107 | 1433   | 0.67 | 0.619 | 0.023 | 0.0781 | 0.0012 | 0.42 | 0.0575 | 0.0020 | 489  | 18 | 485  | 8  | 511  | 75  | 95  |
| SRFS1 | SRFS1-113 | 45  | 8  | 36  | 57691  | 0.80 | 1.844 | 0.063 | 0.1804 | 0.0028 | 0.46 | 0.0741 | 0.0023 | 1061 | 36 | 1069 | 17 | 1045 | 62  | 102 |
| SRFS1 | SRFS1-114 | 198 | 16 | 71  | 2286   | 0.36 | 0.652 | 0.022 | 0.0822 | 0.0012 | 0.45 | 0.0575 | 0.0017 | 509  | 17 | 509  | 8  | 510  | 67  | 100 |
|       |           |     |    |     |        |      |       |       |        |        |      |        |        |      |    |      |    |      |     |     |

<sup>b</sup>Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); <sup>207</sup>Pb/<sup>235</sup>U calculated using (<sup>207</sup>Pb/<sup>206</sup>Pb)/(<sup>238</sup>U/<sup>206</sup>Pb \* 1/137.88) <sup>c</sup>Rho is the error correlation defined as the quotient of the propagated errors of the <sup>206</sup>Pb/<sup>238</sup>U and the <sup>207</sup>/<sup>235</sup>U ratio

<sup>d</sup>Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD)

## Appendix E. LA-ICPMS isotopic data for samples analysed during campaign 4

Table E1. LA-ICPMS isotopic data for samples in the Mossel Bay, Oudtshoorn, Knysna, Plet, Gamtoos and Algoa Basins that were analysed during campaign 4.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                             |                                                                                    |                                                                                                                                          |                                                                                                                                                                                                                                                                                      | .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Data for Tera-V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vasserburg plot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a for Wetherill pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ot a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                | Dates (Ma) a                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Concordance b                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Identifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>206</sup> Pb (CPS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>204</sup> Pb (CPS)                                                     | <sup>206</sup> Pb/ <sup>204</sup> Pb                                               | U (µg g⁻¹)                                                                                                                               | Th/U                                                                                                                                                                                                                                                                                 | <sup>238</sup> U/ <sup>206</sup> Pb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>207</sup> Pb <sup>/206</sup> Pb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>207</sup> Pb <sup>/235</sup> U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>206</sup> Pb <sup>/238</sup> U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rho                                                                                                                                                                                                                                                        | <sup>207</sup> Pb <sup>/206</sup> Pb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 s                                                                                                                                                                                                                                                                                                                                                                                                                         | 2s <sub>sys</sub>                                                                                                                                                                                                                                                                                                                                                                    | <sup>206</sup> Pb <sup>/238</sup> U                                                                                                                                                                                                            | 2 s                                                                                                                                                                                                                                              | 2s <sub>sys</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <sup>207</sup> Pb <sup>/235</sup> U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 s                                                                                                                                                                                                                                                                                                                 | 2s <sub>sys</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6/38 - 7/35                                                                                                                                                                                                                                                                          | 6/38 - 7/6                                                                                                                                                                                                                                                                                                                                                                          |
| Identifier<br>GES3 - 1<br>GES3 - 2<br>GES3 - 2<br>GES3 - 3<br>GES3 - 4<br>GES3 - 6<br>GES3 - 7<br>GES3 - 10<br>GES3 - 11<br>GES3 - 11<br>GES3 - 12<br>GES3 - 13<br>GES3 - 14<br>GES3 - 15<br>GES3 - 15<br>GES3 - 16<br>GES3 - 17<br>GES3 - 17<br>GES3 - 18<br>GES3 - 19<br>GES3 - 19<br>GES3 - 20<br>GES3 - 22<br>GES3 - 22<br>GES3 - 22<br>GES3 - 22<br>GES3 - 23<br>GES3 - 23<br>GES3 - 23<br>GES3 - 30<br>GES3 - 40<br>GES3 - | 286 Pb (CPS)<br>3.7. E+05<br>1.7. E+05<br>3.2. E+04<br>3.8. E+05<br>2.7. E+05<br>3.6. E+05<br>2.7. E+04<br>3.6. E+05<br>5.2. E+04<br>3.7. E+04<br>1.2. E+05<br>4.6. E+04<br>1.2. E+05<br>4.6. E+04<br>1.8. E+05<br>1.5. E+0                                                                                                                                                                                                      | 284 Pb (CPS)<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d | 200 pb/204 pb<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b. | U (μg g <sup>-1</sup> )<br>396<br>214<br>82<br>75<br>667<br>302<br>302<br>302<br>302<br>302<br>302<br>302<br>302                         | Th/U<br>0.31<br>0.31<br>0.54<br>0.79<br>0.25<br>0.32<br>0.23<br>0.23<br>0.43<br>0.47<br>0.45<br>0.25<br>0.43<br>0.47<br>0.47<br>0.42<br>0.38<br>1.34<br>0.47<br>0.42<br>0.38<br>1.34<br>0.42<br>0.38<br>0.44<br>0.36<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.55<br>0.55<br>0.55 | 238 U/266 Pb<br>5.95<br>6.68<br>13.77<br>12.41<br>11.29<br>7.19<br>12.58<br>5.80<br>10.78<br>7.06<br>6.27<br>11.79<br>7.37<br>13.08<br>14.10<br>9.15<br>5.47<br>6.08<br>6.11<br>5.39<br>11.74<br>6.53<br>15.50<br>10.92<br>13.26<br>14.65<br>11.69<br>6.36<br>8.52<br>9.54<br>7.55<br>7.96<br>14.65<br>11.69<br>6.36<br>8.52<br>9.54<br>7.55<br>7.96<br>12.70<br>6.64<br>11.88<br>6.02<br>10.37<br>10.37<br>10.32<br>11.88<br>6.02<br>10.37<br>10.32<br>11.88<br>6.02<br>10.37<br>10.32<br>11.88<br>6.02<br>10.37<br>10.37<br>10.32<br>11.88<br>6.02<br>10.37<br>10.37<br>10.32<br>11.88<br>6.02<br>10.37<br>10.37<br>10.32<br>11.89<br>6.36<br>8.52<br>9.54<br>7.55<br>7.96<br>12.70<br>6.64<br>11.88<br>6.02<br>10.37<br>10.37<br>10.37<br>10.32<br>10.32<br>10.37<br>10.32<br>10.37<br>10.32<br>10.32<br>11.88<br>6.02<br>10.37<br>10.37<br>10.37<br>10.32<br>10.32<br>10.37<br>10.32<br>10.32<br>10.37<br>10.32<br>10.32<br>10.37<br>10.32<br>10.37<br>10.37<br>10.32<br>10.32<br>10.32<br>10.37<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32<br>10.32 | Data for Tera-4<br>2 s<br>0.10<br>0.13<br>0.30<br>0.23<br>0.31<br>0.16<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vasserburg plot 4 2079b <sup>7086</sup> Pb 0.0759 0.0759 0.0759 0.0759 0.0598 0.0598 0.0698 0.0697 0.0680 0.0712 0.0680 0.0759 0.0759 0.0759 0.0759 0.0759 0.0590 0.0684 0.0772 0.0590 0.0684 0.0772 0.0754 0.0774 0.0774 0.0774 0.0652 0.0663 0.0664 0.0641 0.0767 0.0767 0.0764 0.0776 0.0764 0.0776 0.0764 0.0776 0.0558 0.0694 0.0641 0.0767 0.075 0.0653 0.0654 0.0641 0.0767 0.075 0.0558 0.0694 0.0653 0.0574 0.0761 0.0558 0.0574 0.0761 0.0558 0.0574 0.0761 0.0558 0.0574 0.0774 0.0774 0.0774 0.075 0.052 0.0574 0.0774 0.0774 0.075 0.0558 0.0574 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0754 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0 | 2 S<br>0.0008<br>0.012<br>0.0029<br>0.016<br>0.0007<br>0.0008<br>0.0016<br>0.0001<br>0.0008<br>0.0011<br>0.0008<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0010<br>0.0013<br>0.0010<br>0.0011<br>0.0008<br>0.0111<br>0.0009<br>0.0014<br>0.0029<br>0.0014<br>0.0029<br>0.0014<br>0.0029<br>0.0014<br>0.0029<br>0.0014<br>0.0029<br>0.0014<br>0.0029<br>0.0014<br>0.0029<br>0.0014<br>0.0029<br>0.0014<br>0.0029<br>0.0014<br>0.0029<br>0.0014<br>0.0012<br>0.0016<br>0.0016<br>0.0016<br>0.0011<br>0.0016<br>0.0016<br>0.0016<br>0.0011<br>0.0016<br>0.0016<br>0.0016<br>0.0011<br>0.0016<br>0.0016<br>0.0016<br>0.0017<br>0.0008<br>0.0016<br>0.0016<br>0.0016<br>0.0011<br>0.0016<br>0.0016<br>0.0016<br>0.0017<br>0.0008<br>0.0016<br>0.0017<br>0.0008<br>0.0017<br>0.0008<br>0.0011<br>0.0016<br>0.0017<br>0.0008<br>0.0017<br>0.0016<br>0.0017<br>0.0016<br>0.0017<br>0.0016<br>0.0017<br>0.0016<br>0.0017<br>0.0016<br>0.0017<br>0.0016<br>0.0017<br>0.0016<br>0.0017<br>0.0016<br>0.0017<br>0.0016<br>0.0017<br>0.0016<br>0.0017<br>0.0016<br>0.0017<br>0.0016<br>0.0016<br>0.0017<br>0.0016<br>0.0017<br>0.0016<br>0.0017<br>0.0016<br>0.0016<br>0.0017<br>0.0016<br>0.0016<br>0.0016<br>0.0017<br>0.0016<br>0.0016<br>0.0016<br>0.0016<br>0.0016<br>0.0016<br>0.0016<br>0.0016<br>0.0016<br>0.0016<br>0.0011<br>0.0016<br>0.0016<br>0.0016<br>0.0016<br>0.0016<br>0.0017<br>0.0016<br>0.0017<br>0.0010<br>0.0016<br>0.0017<br>0.0010<br>0.0010<br>0.0016<br>0.0017<br>0.0010<br>0.0010<br>0.0010<br>0.0016<br>0.0011<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0 | 207 Pb/235<br>1.7610<br>1.5820<br>0.6310<br>0.6520<br>0.8550<br>1.3610<br>0.7580<br>1.4660<br>0.6870<br>1.4660<br>0.6970<br>0.6120<br>0.5750<br>1.0370<br>1.6240<br>1.6240<br>1.6240<br>1.5620<br>0.7550<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5750<br>0.5740<br>0.5740<br>0.5730<br>0.5740<br>0.5730<br>0.5740<br>0.5730<br>0.5740<br>0.5750<br>0.5740<br>0.5750<br>0.5740<br>0.5750<br>0.5740<br>0.5750<br>0.5740<br>0.5750<br>0.5750<br>0.5740<br>0.5750<br>0.5740<br>0.5750<br>0.5750<br>0.5740<br>0.5750<br>0.5740<br>0.5750<br>0.5750<br>0.5740<br>0.5750<br>0.5740<br>0.5740<br>0.5750<br>0.5720<br>0.5750<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0.5720<br>0. | Date<br>2 s<br>0.0300<br>0.0310<br>0.0310<br>0.0230<br>0.0230<br>0.0230<br>0.0330<br>0.0330<br>0.0330<br>0.0180<br>0.0180<br>0.0180<br>0.0180<br>0.0180<br>0.0220<br>0.0330<br>0.0180<br>0.0220<br>0.0330<br>0.0180<br>0.0220<br>0.0340<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.01200<br>0.01200<br>0.01200<br>0.01200<br>0.0120000000000 | a for Wetherill pl<br>205%pb/228<br>U<br>0.1680<br>0.1497<br>0.0726<br>0.0806<br>0.1390<br>0.7755<br>0.1724<br>0.0806<br>0.1390<br>0.7755<br>0.1724<br>0.0927<br>0.1417<br>0.1596<br>0.0848<br>0.0848<br>0.0848<br>0.0848<br>0.0848<br>0.0848<br>0.0784<br>0.0784<br>0.1636<br>0.1828<br>0.1636<br>0.1828<br>0.1636<br>0.1828<br>0.1636<br>0.0855<br>0.0855<br>0.0855<br>0.0855<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0754<br>0.0755<br>0.0755<br>0.0755<br>0.0755<br>0.0755<br>0.0755<br>0.0755<br>0.0755<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ot a<br>2 s<br>0.0027<br>0.0029<br>0.0016<br>0.0015<br>0.0024<br>0.0028<br>0.0028<br>0.0028<br>0.0027<br>0.0028<br>0.0015<br>0.0028<br>0.0015<br>0.0027<br>0.0028<br>0.0015<br>0.0027<br>0.0029<br>0.0020<br>0.0015<br>0.0026<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0000<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020  | rho<br>0.94<br>0.85<br>0.45<br>0.90<br>0.98<br>0.94<br>0.64<br>0.65<br>0.98<br>0.98<br>0.98<br>0.98<br>0.99<br>0.81<br>0.77<br>0.94<br>0.88<br>0.99<br>0.89<br>0.99<br>0.81<br>0.78<br>0.78<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.9 | 207 <b>Pb</b> <sup>705<b>Pb</b><br/>1088<br/>1103<br/>642<br/>543<br/>915<br/>955<br/>850<br/>1144<br/>810<br/>1072<br/>1069<br/>1002<br/>408<br/>544<br/>858<br/>1069<br/>981<br/>1140<br/>708<br/>1099<br/>981<br/>1140<br/>708<br/>536<br/>572<br/>895<br/>720<br/>1096<br/>978<br/>674<br/>819<br/>409<br/>1096<br/>978<br/>674<br/>819<br/>409<br/>1096<br/>978<br/>674<br/>819<br/>409<br/>1096<br/>978<br/>674<br/>819<br/>1096<br/>978<br/>674<br/>819<br/>1096<br/>978<br/>674<br/>819<br/>1096<br/>978<br/>674<br/>819<br/>1096<br/>978<br/>674<br/>819<br/>1096<br/>978<br/>674<br/>819<br/>1096<br/>978<br/>674<br/>819<br/>1096<br/>978<br/>674<br/>819<br/>1096<br/>1006<br/>978<br/>674<br/>875<br/>505<br/>507<br/>1140<br/>545<br/>575<br/>575<br/>1140<br/>1042<br/>875<br/>575<br/>1140<br/>1042<br/>875<br/>575<br/>1140<br/>1042<br/>875<br/>575<br/>1140<br/>1042<br/>875<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>1046<br/>10</sup> | <b>2 s</b><br>19<br>30<br>60<br>21<br>20<br>21<br>20<br>25<br>26<br>16<br>40<br>17<br>20<br>55<br>26<br>16<br>40<br>17<br>44<br>43<br>9<br>55<br>20<br>21<br>20<br>26<br>55<br>26<br>55<br>20<br>21<br>20<br>26<br>55<br>26<br>55<br>20<br>21<br>20<br>26<br>55<br>26<br>27<br>20<br>26<br>55<br>26<br>27<br>20<br>26<br>55<br>20<br>20<br>27<br>20<br>26<br>55<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | <b>2s</b> <sub>598</sub><br>24<br>33<br>99<br>61<br>25<br>29<br>24<br>49<br>25<br>47<br>40<br>25<br>47<br>40<br>25<br>47<br>40<br>25<br>30<br>25<br>30<br>31<br>59<br>43<br>41<br>32<br>59<br>43<br>41<br>49<br>49<br>49<br>41<br>61<br>34<br>41<br>61<br>32<br>61<br>34<br>34<br>41<br>35<br>56<br>59<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | 200 pb 233 U<br>1001<br>899<br>459<br>572<br>854<br>954<br>475<br>572<br>854<br>954<br>475<br>825<br>820<br>869<br>1082<br>825<br>820<br>981<br>977<br>727<br>869<br>1082<br>829<br>847<br>971<br>971<br>971<br>971<br>971<br>971<br>971<br>97 | Dates (Ma) a 2 s 15 16 9 9 14 17 16 10 16 10 16 9 14 8 8 15 17 9 15 15 17 9 29 8 9 9 8 9 9 23 14 13 33 12 8 34 9 18 13 11 9 15 8 15 17 9 15 15 16 14 13 12 8 8 34 9 18 13 11 9 15 8 1 1 1 1 5 8 1 1 1 1 5 8 1 1 1 1 5 8 1 1 1 1                  | <b>2s</b> spr<br>23<br>22<br>13<br>13<br>17<br>22<br>4<br>14<br>23<br>13<br>17<br>22<br>13<br>23<br>11<br>11<br>11<br>11<br>11<br>12<br>25<br>33<br>22<br>25<br>13<br>22<br>25<br>13<br>22<br>25<br>13<br>22<br>13<br>22<br>13<br>22<br>13<br>22<br>13<br>22<br>13<br>13<br>13<br>14<br>17<br>17<br>17<br>18<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 297 pb 233<br>1031<br>961<br>492<br>513<br>626<br>872<br>570<br>1063<br>629<br>914<br>996<br>536<br>870<br>483<br>460<br>718<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>978<br>1017<br>955<br>509<br>771<br>485<br>509<br>570<br>990<br>781<br>654<br>851<br>777<br>491<br>955<br>520<br>1007<br>603<br>619<br>473<br>1014<br>486<br>701<br>485<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1014<br>1014<br>1014<br>1014<br>1014<br>1014<br>1014<br>1014<br>1014<br>1014<br>1014<br>1015<br>1017<br>1014<br>1015<br>1017<br>1014<br>1014<br>1015<br>1017<br>1014<br>1015<br>1014<br>1015<br>1014<br>1015<br>1014<br>1015<br>1014<br>1015<br>1014<br>1015<br>1014<br>1015<br>1014<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>1015<br>101 | <b>2 s</b><br>11<br>15<br>13<br>14<br>17<br>12<br>14<br>14<br>17<br>12<br>14<br>11<br>10<br>9<br>17<br>266<br>11<br>10<br>9<br>11<br>266<br>11<br>11<br>8<br>27<br>8<br>9<br>11<br>10<br>13<br>14<br>15<br>13<br>14<br>15<br>13<br>14<br>15<br>13<br>14<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15 | <b>25</b> <sub>575</sub><br>17<br>20<br>25<br>17<br>16<br>17<br>20<br>18<br>20<br>17<br>14<br>16<br>17<br>20<br>17<br>14<br>16<br>17<br>20<br>17<br>18<br>21<br>21<br>17<br>17<br>17<br>18<br>12<br>21<br>13<br>14<br>13<br>14<br>13<br>14<br>13<br>14<br>13<br>14<br>13<br>14<br>15<br>5<br>17<br>7<br>17<br>20<br>8<br>17<br>7<br>17<br>20<br>17<br>17<br>20<br>17<br>17<br>20<br>17<br>17<br>20<br>17<br>17<br>20<br>17<br>17<br>20<br>17<br>17<br>20<br>17<br>17<br>20<br>17<br>17<br>20<br>17<br>17<br>20<br>17<br>17<br>20<br>17<br>17<br>20<br>17<br>17<br>20<br>17<br>17<br>20<br>17<br>17<br>20<br>17<br>17<br>20<br>17<br>17<br>20<br>17<br>17<br>20<br>17<br>17<br>20<br>17<br>17<br>20<br>17<br>17<br>20<br>17<br>17<br>17<br>20<br>17<br>17<br>20<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | Concordance b<br>6/38 - 7/35<br>97<br>94<br>92<br>97<br>96<br>96<br>96<br>96<br>93<br>93<br>98<br>98<br>94<br>98<br>99<br>93<br>100<br>96<br>93<br>90<br>96<br>93<br>100<br>96<br>93<br>93<br>90<br>96<br>88<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99 | 6/38 - 7/6<br>92<br>82<br>70<br>90<br>90<br>90<br>71<br>1<br>80<br>88<br>88<br>88<br>88<br>83<br>80<br>83<br>82<br>85<br>81<br>78<br>83<br>90<br>100<br>90<br>100<br>90<br>74<br>83<br>85<br>81<br>78<br>83<br>82<br>85<br>81<br>78<br>83<br>85<br>81<br>78<br>90<br>90<br>90<br>74<br>82<br>85<br>83<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85 |
| GES3 - 47<br>GES3 - 48<br>GES3 - 50<br>GES3 - 52<br>GES3 - 52<br>GES3 - 53<br>GES3 - 54<br>GES3 - 57<br>GES3 - 59<br>GES3 - 61<br>GES3 - 62<br>GES3 - 61<br>GES3 - 62<br>GES3 - 64<br>GES3 - 65<br>GES3 - 66<br>GES3 - 66<br>GES3 - 67<br>GES3 - 77<br>GES3 - 77<br>GES3 - 77<br>GES3 - 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 1.1.E+05\\ 1.8.E+05\\ 1.8.E+05\\ 9.6.E+04\\ 1.4.E+05\\ 2.4.E+05\\ 1.2.E+05\\ 7.0.E+04\\ 7.9.E+04\\ 1.9.E+05\\ 5.2.E+04\\ 1.2.E+05\\ 1.3.E+05\\ 1.3.E+05\\ 1.3.E+05\\ 3.0.E+05\\ 1.3.E+05\\ 1.3.E+05\\ 1.4.E+05\\ 1.6.E+05\\ 1.6.E+05\\$                                                                                                                                                                                                                                                                                                                                                                | bd.<br>bd.<br>bd.<br>bd.<br>bd.<br>bd.<br>bd.<br>bd.<br>bd.<br>bd.          | b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d                 | 285<br>210<br>290<br>212<br>160<br>320<br>159<br>138<br>202<br>202<br>202<br>202<br>202<br>202<br>202<br>202<br>202<br>20                | 0.41<br>0.49<br>0.54<br>0.88<br>0.32<br>0.12<br>0.60<br>0.77<br>1.09<br>0.28<br>0.69<br>0.52<br>0.66<br>0.52<br>0.66<br>0.52<br>0.66<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52                                                                                 | 13.35<br>6.28<br>13.20<br>11.71<br>5.85<br>6.57<br>7.09<br>10.12<br>13.97<br>5.60<br>7.84<br>9.88<br>12.10<br>3.11<br>5.56<br>9.61<br>9.84<br>10.19<br>7.00<br>9.99<br>8.19<br>4.50<br>6.27<br>5.51<br>9.13<br>12.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.27<br>0.11<br>0.23<br>0.54<br>0.54<br>0.26<br>0.12<br>0.12<br>0.37<br>0.23<br>0.09<br>0.22<br>0.14<br>0.17<br>0.19<br>0.05<br>0.09<br>0.22<br>0.18<br>0.18<br>0.18<br>0.18<br>0.18<br>0.18<br>0.18<br>0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0578<br>0.0781<br>0.0590<br>0.0638<br>0.0752<br>0.0744<br>0.0674<br>0.0674<br>0.0674<br>0.0597<br>0.0760<br>0.0597<br>0.0760<br>0.0597<br>0.0751<br>0.0621<br>0.0621<br>0.0621<br>0.0622<br>0.0624<br>0.0622<br>0.0662<br>0.0662<br>0.0755<br>0.0917<br>0.0752<br>0.0662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0011<br>0.0011<br>0.0019<br>0.0023<br>0.0019<br>0.0023<br>0.0013<br>0.0011<br>0.0011<br>0.0001<br>0.00016<br>0.00016<br>0.00016<br>0.0009<br>0.0009<br>0.0009<br>0.0009<br>0.0009<br>0.00010<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.00019<br>0.00019<br>0.00019<br>0.00019<br>0.00019<br>0.00019<br>0.00019<br>0.00019<br>0.00019<br>0.00019<br>0.00010<br>0.00019<br>0.00019<br>0.00019<br>0.00010<br>0.00019<br>0.00010<br>0.00019<br>0.00010<br>0.00019<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.00000<br>0.000000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5930<br>1.7160<br>0.6150<br>0.7520<br>1.7650<br>1.5550<br>1.5550<br>0.8530<br>0.8530<br>0.8540<br>0.8540<br>0.8545<br>0.8545<br>0.8545<br>0.8860<br>0.8810<br>0.8150<br>1.4220<br>0.8390<br>1.2700<br>1.8580<br>0.8310<br>0.8510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0140<br>0.0370<br>0.0330<br>0.0640<br>0.0640<br>0.0820<br>0.0340<br>0.0510<br>0.0440<br>0.0320<br>0.0330<br>0.0330<br>0.0320<br>0.0440<br>0.0320<br>0.0440<br>0.0320<br>0.0440<br>0.0320<br>0.0420<br>0.0420<br>0.0420<br>0.0420<br>0.0440<br>0.0550<br>0.0360<br>0.0550<br>0.0360<br>0.0550<br>0.0360<br>0.0550<br>0.0360<br>0.0550<br>0.0360<br>0.0550<br>0.0360<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.0550<br>0.05500<br>0.05500<br>0.05500<br>0.05500<br>0.05500<br>0.05500000000                                                                                                                                                                                                                                                                                                                                                                                         | 0.0749<br>0.1593<br>0.0758<br>0.0854<br>0.0854<br>0.1710<br>0.1521<br>0.1410<br>0.0829<br>0.0829<br>0.1275<br>0.1012<br>0.0827<br>0.1012<br>0.0827<br>0.1012<br>0.0827<br>0.3213<br>0.1017<br>0.0821<br>0.1017<br>0.3213<br>0.10140<br>0.1017<br>0.0981<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.1595<br>0.0596<br>0.1595<br>0.0596<br>0.1595<br>0.0596<br>0.1595<br>0.0596<br>0.1595<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0.0596<br>0 | 0.0015<br>0.0027<br>0.0013<br>0.0039<br>0.0077<br>0.0024<br>0.0024<br>0.0024<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0015<br>0.0012<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0022<br>0.0016<br>0.0030<br>0.0015<br>0.0025<br>0.0015<br>0.0025<br>0.0015<br>0.0015<br>0.0025<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0. | 0.85<br>0.79<br>0.81<br>0.54<br>0.97<br>0.81<br>0.81<br>0.81<br>0.81<br>0.81<br>0.81<br>0.80<br>0.90<br>0.90<br>0.84<br>0.80<br>0.90<br>0.84<br>0.80<br>0.75<br>0.75<br>0.75<br>0.77<br>0.77<br>0.77<br>0.77<br>0.7                                        | 507<br>1140<br>545<br>720<br>1060<br>1044<br>885<br>583<br>1085<br>662<br>991<br>630<br>499<br>1995<br>1077<br>662<br>692<br>581<br>990<br>609<br>1059<br>1450<br>1059<br>1450<br>1073<br>801<br>1067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42<br>29<br>33<br>60<br>00<br>31<br>98<br>98<br>33<br>34<br>34<br>33<br>34<br>99<br>33<br>34<br>34<br>90<br>33<br>35<br>65<br>27<br>35<br>65<br>23<br>26<br>02<br>26<br>02<br>26<br>02<br>26<br>03<br>26<br>03<br>34<br>34<br>34<br>34<br>35<br>35<br>26<br>00<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26                                                                                | 43<br>30<br>35<br>64<br>62<br>37<br>32<br>106<br>41<br>24<br>57<br>29<br>35<br>34<br>44<br>24<br>29<br>35<br>34<br>44<br>24<br>0<br>35<br>5<br>29<br>7<br>66<br>25<br>27<br>66<br>25<br>27<br>41<br>28<br>36                                                                                                                                                                         | 466<br>954<br>471<br>1017<br>9107<br>9107<br>9107<br>908<br>008<br>008<br>008<br>008<br>008<br>008<br>008<br>008<br>008                                                                                                                        | 9<br>8<br>8<br>45<br>14<br>21<br>7<br>16<br>9<br>10<br>8<br>8<br>26<br>17<br>10<br>17<br>10<br>25<br>16<br>39<br>10<br>8<br>10<br>8<br>10<br>8<br>10<br>8<br>10<br>8<br>9<br>10<br>8<br>9<br>10<br>8<br>10<br>9<br>10<br>8<br>10<br>9<br>10<br>9 | 12<br>21<br>11<br>46<br>20<br>20<br>23<br>11<br>13<br>13<br>15<br>15<br>12<br>39<br>24<br>17<br>14<br>14<br>52<br>27<br>29<br>23<br>23<br>23<br>23<br>16<br>24<br>24<br>25<br>25<br>27<br>27<br>23<br>23<br>23<br>16<br>25<br>26<br>24<br>26<br>25<br>26<br>26<br>26<br>20<br>23<br>23<br>24<br>26<br>26<br>20<br>26<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 473<br>1014<br>486<br>567<br>1030<br>951<br>847<br>626<br>470<br>1069<br>546<br>822<br>626<br>513<br>1870<br>1069<br>546<br>822<br>626<br>513<br>1870<br>1069<br>644<br>640<br>604<br>897<br>618<br>829<br>1357<br>992<br>1357<br>992<br>1068<br>702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9<br>9<br>3<br>8<br>40<br>14<br>12<br>23<br>9<br>12<br>13<br>11<br>9<br>8<br>21<br>12<br>10<br>28<br>15<br>15<br>15<br>15<br>33<br>10<br>17                                                                                                                                                                         | 11<br>19<br>12<br>40<br>41<br>19<br>17<br>29<br>13<br>18<br>16<br>13<br>11<br>29<br>13<br>18<br>16<br>13<br>11<br>29<br>19<br>29<br>19<br>29<br>19<br>29<br>19<br>21<br>19<br>24<br>15<br>29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 98<br>94<br>97<br>93<br>99<br>96<br>100<br>95<br>99<br>94<br>99<br>90<br>96<br>100<br>99<br>90<br>90<br>90<br>90<br>90<br>95<br>96<br>101<br>95<br>80                                                                                                                                | 92<br>84<br>86<br>73<br>96<br>87<br>102<br>89<br>76<br>89<br>98<br>78<br>80<br>99<br>9103<br>92<br>99<br>90<br>104<br>87<br>80<br>99<br>90<br>104<br>87<br>80<br>89<br>90<br>90<br>104<br>87<br>80<br>89<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80                                                                                              |
| KBEZS2 - 1<br>KBEZS2 - 2<br>KBEZS2 - 3<br>KBEZS2 - 5<br>KBEZS2 - 7<br>KBEZS2 - 7<br>KBEZS2 - 10<br>KBEZS2 - 11<br>KBEZS2 - 14<br>KBEZS2 - 15<br>KBEZS2 - 15<br>KBEZS2 - 17<br>KBEZS2 - 10<br>KBEZS2 - 20<br>KBEZS2 - 20<br>KBEZS2 - 20<br>KBEZS2 - 20<br>KBEZS2 - 20<br>KBEZS2 - 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 5.2 \pm .04\\ 9.9 \pm .04\\ 7.4 \pm .04\\ 7.4 \pm .04\\ 2.8 \pm .04\\ 6.2 \pm .04\\ 7.3 \pm .04\\ 3.7 $ | b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.                | bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>b    | 240<br>230<br>345<br>311<br>308<br>310<br>346<br>301<br>179<br>156<br>588<br>314<br>622<br>178<br>296<br>286<br>303<br>318<br>299<br>359 | 0.93<br>0.18<br>0.39<br>0.58<br>1.08<br>0.64<br>0.96<br>0.83<br>0.81<br>0.81<br>0.81<br>0.83<br>0.81<br>0.93<br>0.70<br>1.19<br>0.83<br>0.71<br>0.83<br>0.77<br>1.38<br>0.56                                                                                                         | 24.20<br>12.05<br>24.43<br>14.80<br>24.36<br>22.88<br>25.49<br>24.35<br>24.41<br>24.56<br>25.73<br>22.57<br>32.61<br>16.86<br>25.40<br>22.53<br>24.82<br>23.06<br>25.67<br>24.82<br>23.06<br>25.87<br>24.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 0.41\\ 0.20\\ 0.41\\ 0.31\\ 0.42\\ 0.46\\ 0.40\\ 0.54\\ 0.54\\ 0.60\\ 0.48\\ 0.40\\ 0.48\\ 0.40\\ 0.48\\ 0.40\\ 0.48\\ 0.45\\ 0.44\\ 0.39\\ 0.46\\ 0.41\\ 0.34\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\$ | 0.0570<br>0.0580<br>0.0562<br>0.0531<br>0.0571<br>0.0549<br>0.0553<br>0.0554<br>0.05548<br>0.0554<br>0.0554<br>0.0554<br>0.0554<br>0.0552<br>0.0552<br>0.0552<br>0.05571<br>0.0552<br>0.05571<br>0.0552<br>0.05571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0015<br>0.0010<br>0.0011<br>0.0014<br>0.0020<br>0.0022<br>0.0012<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0011<br>0.0036<br>0.0010<br>0.0011<br>0.0011<br>0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3228<br>0.6640<br>0.2943<br>0.5280<br>0.3004<br>0.3010<br>0.2961<br>0.3017<br>0.3191<br>0.3072<br>0.3140<br>0.2034<br>0.2034<br>0.3117<br>0.3064<br>0.4810<br>0.3369<br>0.3369<br>0.3376<br>0.2793<br>0.2952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0094<br>0.0140<br>0.0071<br>0.0140<br>0.0082<br>0.0130<br>0.0074<br>0.0190<br>0.0180<br>0.0140<br>0.0052<br>0.0180<br>0.0070<br>0.0240<br>0.0098<br>0.0098<br>0.0098<br>0.0094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0413<br>0.0830<br>0.0676<br>0.0411<br>0.0419<br>0.0392<br>0.0411<br>0.0410<br>0.0497<br>0.0397<br>0.0276<br>0.0389<br>0.0424<br>0.0593<br>0.0424<br>0.0593<br>0.0424<br>0.0593<br>0.0434<br>0.0434<br>0.0434<br>0.0434<br>0.0435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0007<br>0.0014<br>0.0007<br>0.0014<br>0.0007<br>0.0007<br>0.0007<br>0.0009<br>0.0009<br>0.0009<br>0.0009<br>0.0005<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.58<br>0.80<br>0.78<br>0.62<br>0.45<br>0.42<br>0.64<br>0.37<br>0.36<br>0.37<br>0.36<br>0.37<br>0.36<br>0.37<br>0.36<br>0.37<br>0.36<br>0.37<br>0.36<br>0.37<br>0.36<br>0.42<br>0.63<br>0.74<br>0.55<br>0.48<br>0.68<br>0.78<br>0.68<br>0.78               | 439<br>507<br>267<br>455<br>315<br>429<br>381<br>312<br>443<br>368<br>463<br>331<br>507<br>301<br>529<br>468<br>384<br>579<br>242<br>280<br>250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58<br>42<br>45<br>54<br>76<br>47<br>47<br>44<br>87<br>80<br>86<br>44<br>93<br>43<br>95<br>61<br>64<br>84<br>41<br>64<br>45                                                                                                                                                                                                                                                                                                  | 59<br>38<br>45<br>61<br>78<br>50<br>48<br>111<br>107<br>48<br>135<br>45<br>137<br>63<br>74<br>49<br>44<br>74<br>46                                                                                                                                                                                                                                                                   | 261<br>515<br>259<br>421<br>264<br>259<br>259<br>257<br>251<br>176<br>267<br>371<br>246<br>267<br>371<br>249<br>280<br>255<br>274<br>244<br>262                                                                                                | 4 8 4 9 4 5 4 4 6 5 5 3 4 5 10 4 6 4 5 4 4                                                                                                                                                                                                       | 6<br>12<br>6<br>11<br>6<br>7<br>6<br>6<br>7<br>6<br>4<br>6<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>6<br>7<br>6<br>6<br>7<br>6<br>6<br>7<br>6<br>7<br>6<br>6<br>7<br>6<br>6<br>7<br>6<br>6<br>7<br>6<br>6<br>7<br>6<br>6<br>7<br>6<br>6<br>7<br>6<br>6<br>7<br>6<br>6<br>7<br>6<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>7<br>6<br>7<br>6<br>7<br>7<br>6<br>7<br>6<br>7<br>7<br>6<br>7<br>7<br>6<br>7<br>6<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 284<br>516<br>261<br>429<br>266<br>263<br>263<br>267<br>281<br>271<br>276<br>188<br>275<br>271<br>400<br>275<br>294<br>294<br>291<br>272<br>294<br>291<br>272<br>249<br>262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7<br>9<br>6<br>10<br>6<br>10<br>6<br>12<br>12<br>12<br>14<br>12<br>6<br>15<br>8<br>9<br>7<br>6<br>7<br>6                                                                                                                                                                                                            | 8<br>13<br>8<br>13<br>8<br>4<br>4<br>8<br>16<br>16<br>16<br>16<br>7<br>16<br>9<br>13<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 92<br>100<br>99<br>98<br>97<br>92<br>94<br>97<br>92<br>95<br>91<br>94<br>90<br>99<br>93<br>91<br>95<br>87<br>101<br>98<br>100                                                                                                                                                        | 59<br>101<br>97<br>82<br>65<br>83<br>58<br>70<br>53<br>48<br>89<br>70<br>53<br>73<br>4<br>113<br>87<br>74<br>113<br>87<br>70<br>53                                                                                                                                                                                                                                                  |

| GKT1 - 1<br>GKT1 - 3<br>GKT1 - 5<br>GKT1 - 5<br>GKT1 - 1<br>GKT1 - 12<br>GKT1 - 12<br>GKT1 - 14<br>GKT1 - 15<br>GKT1 - 18<br>GKT1 - 19<br>GKT1 - 31<br>GKT1 - 32<br>GKT1 - 38<br>GKT1 - 38<br>GKT1 - 38<br>GKT1 - 42<br>GKT1 - 42 | RBGS1 - 2<br>RBGS1 - 3<br>RBGS1 - 6<br>RBGS1 - 7<br>RBGS1 - 8<br>RBGS1 - 10<br>RBGS1 - 11<br>RBGS1 - 11<br>RBGS1 - 11<br>RBGS1 - 11<br>RBGS1 - 15<br>RBGS1 - 15<br>RBGS1 - 17<br>RBGS1 - 16<br>RBGS1 - 17<br>RBGS1 - 12<br>RBGS1 - 24<br>RBGS1 - 25<br>RBGS1 - 36<br>RBGS1 - 36<br>RBGS1 - 36<br>RBGS1 - 44<br>RBGS1 - 44<br>RBGS1 - 44<br>RBGS1 - 44<br>RBGS1 - 45<br>RBGS1 - 45<br>RBGS1 - 55<br>RBGS1 - 57<br>RBGS1 - 57<br>RBGS1 - 57<br>RBGS1 - 51<br>RBGS1 - 67<br>RBGS1 - 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KWAS2 - 73<br>KWAS2 - 74<br>KWAS2 - 75<br>KWAS2 - 75<br>KWAS2 - 76<br>KWAS2 - 78<br>KWAS2 - 78<br>KWAS2 - 81<br>KWAS2 - 81<br>KWAS2 - 84<br>KWAS2 - 84<br>KWAS2 - 88<br>KWAS2 - 88<br>KWAS2 - 88<br>KWAS2 - 88<br>KWAS2 - 89<br>KWAS2 - 91 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.7.E+05<br>1.7.E+05<br>1.1.E+05<br>2.5.E+05<br>5.8.E+04<br>1.1.E+05<br>8.7.E+04<br>1.5.E+05<br>1.4.E+05<br>5.1.E+04<br>1.3.E+05<br>5.1.E+04<br>1.3.E+05<br>1.4.E+05<br>5.5.E+04                                                  | $\begin{array}{c} 1.7.E+05\\ 5.3.E+04\\ 8.0.E+04\\ 8.0.E+04\\ 8.2.E+04\\ 8.2.E+05\\ 5.4.E+05\\ 5.4.E+04\\ 7.3.E+04\\ 1.2.E+05\\ 5.4.E+04\\ 2.4.E+04\\ 2.4.E+04\\ 2.4.E+04\\ 2.5.E+04\\ 2.5.E+04\\ 2.5.E+04\\ 5.2.E+04\\ 5.2.E+04\\ 5.2.E+04\\ 5.2.E+04\\ 3.7.E+04\\ 4.3.E+04\\ 9.1.E+04\\ 9.1.E+04\\ 9.1.E+04\\ 9.1.E+04\\ 9.3.E+04\\ 9.3.E+04\\ 3.7.E+04\\ 4.3.E+04\\ 3.6.E+04\\ 3.6.E+04\\ 3.6.E+04\\ 3.6.E+04\\ 3.6.E+04\\ 3.6.E+04\\ 3.6.E+04\\ 3.6.E+04\\ 9.0.E+04\\ 3.6.E+04\\ 9.0.E+04\\ 9.0.E+04\\ 8.5.E+04\\ 4.2.E+04\\ 9.0.E+04\\ 9.0.E+04\\ 8.5.E+04\\ 4.2.E+04\\ 4.5.E+04\\ 4.5.E+04\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.7.E+05<br>2.4.E+05<br>1.6.E+04<br>9.6.E+04<br>2.5.E+05<br>2.5.E+05<br>2.9.E+05<br>9.3.E+04<br>4.0.E+05<br>1.3.E+05<br>1.3.E+05<br>1.3.E+05<br>1.3.E+05<br>3.2.E+05<br>3.2.E+05<br>1.0.E+05                                               |
| b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.                                                                                                                                                                      | b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.                                                                                                                                                                               |
| b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d                                                                                                                                                                | b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d                                                                                                                                                                         |
| 438<br>188<br>229<br>281<br>100<br>393<br>350<br>655<br>87<br>245<br>127<br>149<br>381<br>183<br>157<br>139                                                                                                                       | <ul> <li>598</li> <li>237</li> <li>236</li> <li>352</li> <li>339</li> <li>629</li> <li>260</li> <li>333</li> <li>447</li> <li>157</li> <li>300</li> <li>331</li> <li>133</li> <li>1402</li> <li>288</li> <li>242</li> <li>288</li> <li>712</li> <li>226</li> <li>270</li> <li>499</li> <li>402</li> <li>288</li> <li>202</li> <li>203</li> <li>402</li> <li>204</li> <li>207</li> <li>206</li> <li>352</li> <li>199</li> <li>214</li> <li>59</li> <li>261</li> <li>365</li> <li>264</li> <li>375</li> <li>375</li> <li>260</li> <li>230</li> <li>151</li> <li>365</li> <li>261</li> <li>151</li> <li>365</li> <li>261</li> <li>151</li> <li>365</li> <li>254</li> <li>250</li> <li>230</li> <li>151</li> <li>365</li> <li>254</li> <li>256</li> <li>254</li> <li>391</li> <li>157</li> <li>365</li> <li>254</li> <li>365</li> <li>254</li> <li>391</li> <li>375</li> <li>375</li> <li>352</li> <li>230</li> <li>151</li> <li>365</li> <li>254</li> <li>361</li> <li>151</li> <li>365</li> <li>254</li> <li>365</li> <li>254</li> <li>361</li> <li>151</li> <li>365</li> <li>254</li> <li>365</li> <li>254</li> <li>361</li> <li>151</li> <li>365</li> <li>254</li> <li>365</li> <li>254</li> <li>365</li> <li>254</li> <li>365</li> <li>254</li> <li>365</li> <li>254</li> <li>361</li> <li>365</li> <li>365</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 485<br>283<br>171<br>128<br>278<br>161<br>266<br>546<br>178<br>420<br>279<br>238<br>105<br>494<br>182<br>366<br>242                                                                                                                        |
| 0.34<br>0.69<br>0.65<br>0.39<br>1.56<br>0.47<br>0.36<br>0.66<br>0.17<br>0.37<br>0.58<br>0.52<br>0.21<br>0.57<br>0.34<br>0.57<br>0.34<br>0.74<br>0.66                                                                              | 0.25<br>0.77<br>0.60<br>0.60<br>0.67<br>0.67<br>0.67<br>0.63<br>0.63<br>0.54<br>0.53<br>0.51<br>1.31<br>1.81<br>1.66<br>0.85<br>0.45<br>0.57<br>0.52<br>0.457<br>0.52<br>0.457<br>0.57<br>0.52<br>0.457<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.33<br>0.36<br>0.77<br>0.56<br>0.53<br>0.29<br>0.54<br>0.29<br>0.34<br>0.56<br>0.15<br>0.53<br>0.83<br>0.62<br>0.13<br>0.33<br>0.51                                                                                                       |
| $\begin{array}{c} 5.80\\ 5.66\\ 10.06\\ 5.66\\ 12.33\\ 9.85\\ 5.79\\ 12.50\\ 12.50\\ 12.50\\ 12.51\\ 5.37\\ 5.53\\ 10.07\\ 12.13\\ 5.54\\ 9.97\\ 5.76\\ 5.34\\ 12.05\\ \end{array}$                                               | 18.15         24.32         24.32         24.32         22.59         23.83         23.12         14.38         24.40         22.94         28.61         22.93         28.61         22.94         28.61         22.94         28.83         24.40         28.83         24.93         24.93         24.93         24.93         24.93         24.93         24.93         24.93         24.93         24.93         24.93         24.93         24.93         24.93         24.93         24.93         24.93         24.94         24.83         27.00         24.17         24.35         33.00         24.17         24.36         23.99         22.86         12.31         12.329         20.95         24.61         24.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.46<br>5.87<br>5.54<br>6.93<br>5.81<br>6.13<br>5.49<br>9.80<br>9.97<br>5.38<br>8.19<br>9.66<br>11.73<br>5.62<br>9.00<br>6.01<br>12.30                                                                                                     |
| 0.18<br>0.09<br>0.24<br>0.10<br>0.23<br>0.37<br>0.10<br>0.30<br>0.20<br>0.11<br>0.17<br>0.35<br>0.54<br>0.16<br>0.18<br>0.10<br>0.20<br>0.30                                                                                      | 0.33<br>0.40<br>0.51<br>0.40<br>0.21<br>0.37<br>0.38<br>0.25<br>0.42<br>0.42<br>0.40<br>0.53<br>0.51<br>0.40<br>0.45<br>0.59<br>0.52<br>0.40<br>0.42<br>0.40<br>0.44<br>0.43<br>0.44<br>0.43<br>0.44<br>0.43<br>0.44<br>0.43<br>0.44<br>0.43<br>0.44<br>0.43<br>0.44<br>0.43<br>0.44<br>0.43<br>0.44<br>0.43<br>0.44<br>0.43<br>0.44<br>0.43<br>0.44<br>0.43<br>0.44<br>0.45<br>0.44<br>0.45<br>0.44<br>0.45<br>0.44<br>0.45<br>0.44<br>0.45<br>0.44<br>0.45<br>0.44<br>0.45<br>0.44<br>0.45<br>0.44<br>0.45<br>0.44<br>0.45<br>0.44<br>0.45<br>0.44<br>0.45<br>0.44<br>0.45<br>0.44<br>0.45<br>0.44<br>0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.09<br>0.12<br>0.09<br>0.12<br>0.09<br>0.12<br>0.09<br>0.16<br>0.17<br>0.09<br>0.13<br>0.17<br>0.21                                                                                                                                       |
| 0.0743<br>0.0780<br>0.0615<br>0.0763<br>0.0588<br>0.0617<br>0.0744<br>0.0565<br>0.0778<br>0.0763<br>0.0614<br>0.0589<br>0.0752<br>0.0607<br>0.0758<br>0.0772                                                                      | 0.0548<br>0.0523<br>0.0564<br>0.0525<br>0.0566<br>0.0525<br>0.0526<br>0.0526<br>0.0525<br>0.0555<br>0.0551<br>0.0551<br>0.0551<br>0.0551<br>0.0553<br>0.0553<br>0.0553<br>0.0553<br>0.0553<br>0.0553<br>0.0553<br>0.0553<br>0.0551<br>0.0551<br>0.0553<br>0.0553<br>0.0553<br>0.0553<br>0.0553<br>0.0553<br>0.0553<br>0.0553<br>0.0553<br>0.0553<br>0.0553<br>0.0553<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.055500000000                                                                                                                                                                                                                                               | 0.0761<br>0.0750<br>0.0781<br>0.0683<br>0.0749<br>0.0773<br>0.0608<br>0.0611<br>0.0782<br>0.0648<br>0.0615<br>0.0584<br>0.0515<br>0.0584<br>0.0781<br>0.0633<br>0.0762                                                                     |
| 0.0012<br>0.0014<br>0.0010<br>0.0013<br>0.0024<br>0.0015<br>0.0024<br>0.0010<br>0.0010<br>0.0010<br>0.0012<br>0.0023<br>0.0028<br>0.0023<br>0.0022<br>0.0015<br>0.0012                                                            | 0.0011<br>0.0012<br>0.0017<br>0.0011<br>0.0034<br>0.0010<br>0.0008<br>0.0011<br>0.0037<br>0.0015<br>0.0012<br>0.0015<br>0.0012<br>0.0015<br>0.0010<br>0.0001<br>0.0001<br>0.00012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0011<br>0.0016<br>0.0016<br>0.0016<br>0.0016<br>0.0012<br>0.0012<br>0.0012<br>0.0011<br>0.0016<br>0.0010<br>0.0011<br>0.0012<br>0.0011<br>0.0010<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0012<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0 | 0.0008<br>0.0013<br>0.0011<br>0.0009<br>0.0007<br>0.0007<br>0.0009<br>0.0009<br>0.0009<br>0.0009<br>0.0009<br>0.0009<br>0.0009<br>0.0009<br>0.00010                                                                                        |
| 1.7840<br>1.8950<br>0.8460<br>1.8600<br>0.6580<br>0.8680<br>0.6300<br>0.6249<br>2.0030<br>1.8960<br>0.8430<br>0.6690<br>1.8710<br>0.8430<br>1.8250<br>1.9930<br>0.6980                                                            | 0.4160<br>0.2263<br>0.32210<br>0.3024<br>1.6100<br>0.3128<br>0.3128<br>0.3100<br>0.3129<br>0.3101<br>0.3120<br>0.3101<br>0.3120<br>0.3101<br>0.3120<br>0.3120<br>0.3101<br>0.3120<br>0.3101<br>0.3120<br>0.3160<br>0.3264<br>0.3354<br>0.3354<br>0.3354<br>0.3354<br>0.3354<br>0.3354<br>0.3354<br>0.3354<br>0.3354<br>0.3354<br>0.3354<br>0.3354<br>0.3354<br>0.3355<br>0.3790<br>0.3354<br>0.3355<br>0.3790<br>0.3354<br>0.3355<br>0.3790<br>0.3354<br>0.3355<br>0.3790<br>0.3354<br>0.3355<br>0.3790<br>0.3355<br>0.3356<br>0.3355<br>0.3356<br>0.3356<br>0.3355<br>0.3356<br>0.3355<br>0.3356<br>0.3356<br>0.3355<br>0.3356<br>0.3356<br>0.3355<br>0.3356<br>0.3356<br>0.3356<br>0.3356<br>0.3356<br>0.3356<br>0.3356<br>0.3356<br>0.3356<br>0.3356<br>0.3356<br>0.3356<br>0.3356<br>0.3356<br>0.3356<br>0.3356<br>0.3356<br>0.3356<br>0.3356<br>0.3356<br>0.3356<br>0.3356<br>0.3356<br>0.3356<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.3320<br>0.33200<br>0.33200<br>0.33200<br>0.33200<br>0.33200<br>0.33200<br>0.33200<br>0.33200<br>0.33200<br>0.3320       | 1.9220<br>1.7580<br>1.9380<br>1.3530<br>1.7740<br>1.8720<br>1.9420<br>0.8579<br>0.8440<br>1.9960<br>0.8576<br>0.0.8670<br>0.8760<br>0.8760<br>0.9720<br>1.7540<br>0.6430                                                                   |
| 0.0640<br>0.0390<br>0.0260<br>0.0170<br>0.0590<br>0.0420<br>0.0240<br>0.0130<br>0.0400<br>0.0680<br>0.0510<br>0.0520<br>0.0510<br>0.0520<br>0.0180<br>0.0370<br>0.0340                                                            | 0.0100<br>0.0080<br>0.0150<br>0.073<br>0.0671<br>0.0073<br>0.0078<br>0.0078<br>0.0080<br>0.0080<br>0.0080<br>0.0081<br>0.0081<br>0.0081<br>0.0081<br>0.0081<br>0.0081<br>0.0081<br>0.0081<br>0.0081<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0082<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0082<br>0.0073<br>0.0073<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0083<br>0.0093<br>0.0083<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.00770<br>0. | 0.0330<br>0.0430<br>0.0370<br>0.0280<br>0.0320<br>0.0350<br>0.0160<br>0.0180<br>0.0180<br>0.0180<br>0.0180<br>0.0180<br>0.0190<br>0.0320<br>0.0320<br>0.0320<br>0.0320<br>0.0320                                                           |
| 0.1724<br>0.1768<br>0.0994<br>0.1766<br>0.0811<br>0.1015<br>0.1727<br>0.0800<br>0.1863<br>0.0893<br>0.0824<br>0.1806<br>0.1806<br>0.1003<br>0.1737<br>0.1871<br>0.0830                                                            | 0.0551<br>0.0411<br>0.0415<br>0.0417<br>0.1216<br>0.0433<br>0.0463<br>0.0443<br>0.0443<br>0.0443<br>0.0443<br>0.0443<br>0.0443<br>0.0443<br>0.0443<br>0.0443<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0442<br>0.0442<br>0.0442<br>0.0442<br>0.0442<br>0.0442<br>0.0442<br>0.0442<br>0.0442<br>0.0442<br>0.0442<br>0.0442<br>0.0441<br>0.0442<br>0.0442<br>0.0442<br>0.0442<br>0.0442<br>0.0442<br>0.0441<br>0.0442<br>0.0442<br>0.0442<br>0.0441<br>0.0441<br>0.0442<br>0.0442<br>0.0441<br>0.0441<br>0.0441<br>0.0442<br>0.0442<br>0.0441<br>0.0441<br>0.0441<br>0.0442<br>0.0442<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0442<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0442<br>0.0442<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0442<br>0.0442<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.04441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0.0441<br>0 | 0.1832<br>0.1705<br>0.1805<br>0.1442<br>0.1720<br>0.1632<br>0.1820<br>0.1020<br>0.1004<br>0.1860<br>0.1221<br>0.1035<br>0.0852<br>0.1780<br>0.1111<br>0.1665<br>0.0813                                                                     |
| 0.0054<br>0.0029<br>0.0024<br>0.0030<br>0.0015<br>0.0038<br>0.0031<br>0.0019<br>0.0019<br>0.0037<br>0.0037<br>0.0035<br>0.0037<br>0.0051<br>0.0018<br>0.0030<br>0.0074<br>0.0021                                                  | 0.0010<br>0.0007<br>0.0009<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0007<br>0.0008<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0008<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0. | 0.0031<br>0.0034<br>0.0030<br>0.0024<br>0.0028<br>0.0031<br>0.0031<br>0.0017<br>0.0017<br>0.0017<br>0.0012<br>0.0018<br>0.0018<br>0.0029<br>0.0027<br>0.0027<br>0.0027                                                                     |
| 0.87<br>0.80<br>0.79<br>0.55<br>0.76<br>0.62<br>0.78<br>0.90<br>0.87<br>0.78<br>0.59<br>0.85<br>0.85<br>0.84<br>0.85<br>0.84<br>0.74                                                                                              | 0.75<br>0.61<br>0.67<br>0.67<br>0.72<br>0.62<br>0.62<br>0.63<br>0.55<br>0.61<br>0.74<br>0.29<br>0.43<br>0.55<br>0.62<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.99<br>0.82<br>0.87<br>0.90<br>0.91<br>0.94<br>0.79<br>0.93<br>0.89<br>0.79<br>0.81<br>0.85<br>0.64<br>0.98<br>0.74<br>0.95<br>0.79                                                                                                       |
| 1039<br>1129<br>636<br>1095<br>532<br>640<br>1030<br>467<br>459<br>1134<br>1081<br>631<br>529<br>1061<br>610<br>1080<br>1117<br>596                                                                                               | 388<br>264<br>425<br>286<br>1518<br>296<br>328<br>275<br>745<br>347<br>347<br>259<br>468<br>324<br>286<br>324<br>424<br>312<br>245<br>305<br>336<br>226<br>305<br>322<br>249<br>249<br>249<br>249<br>249<br>249<br>249<br>249<br>249<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1100<br>1060<br>1141<br>855<br>1054<br>1046<br>1123<br>623<br>618<br>1141<br>758<br>644<br>519<br>1149<br>701<br>1093<br>484                                                                                                               |
| 36<br>32<br>47<br>28<br>47<br>64<br>41<br>66<br>38<br>26<br>48<br>67<br>83<br>39<br>37<br>33<br>40<br>66                                                                                                                          | 45<br>51<br>45<br>66<br>42<br>46<br>67<br>37<br>110<br>59<br>43<br>83<br>75<br>78<br>80<br>43<br>49<br>50<br>29<br>43<br>59<br>91<br>58<br>64<br>42<br>42<br>42<br>53<br>59<br>91<br>58<br>64<br>55<br>67<br>55<br>67<br>55<br>67<br>58<br>80<br>41<br>77<br>58<br>80<br>41<br>77<br>43<br>56<br>64<br>43<br>55<br>66<br>43<br>43<br>55<br>66<br>43<br>43<br>55<br>66<br>43<br>43<br>55<br>66<br>43<br>43<br>55<br>66<br>43<br>43<br>55<br>66<br>43<br>43<br>55<br>66<br>43<br>43<br>56<br>44<br>49<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19<br>33<br>27<br>35<br>23<br>30<br>19<br>25<br>37<br>22<br>30<br>33<br>52<br>16<br>41<br>19<br>37                                                                                                                                         |
| 37<br>33<br>50<br>29<br>49<br>84<br>42<br>94<br>40<br>28<br>50<br>81<br>104<br>41<br>38<br>35<br>41<br>75                                                                                                                         | 46<br>54<br>49<br>67<br>43<br>59<br>49<br>102<br>68<br>51<br>153<br>49<br>107<br>106<br>45<br>53<br>31<br>04<br>55<br>51<br>12<br>124<br>68<br>51<br>133<br>64<br>55<br>61<br>12<br>124<br>66<br>77<br>66<br>77<br>66<br>77<br>66<br>77<br>138<br>66<br>76<br>77<br>107<br>56<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23<br>36<br>30<br>35<br>31<br>25<br>27<br>38<br>25<br>35<br>54<br>23<br>55<br>45<br>23<br>39                                                                                                                                               |
| 1025<br>1049<br>611<br>1048<br>503<br>623<br>1027<br>496<br>4102<br>1071<br>610<br>511<br>1070<br>616<br>1032<br>105<br>514                                                                                                       | 346<br>260<br>262<br>279<br>279<br>265<br>275<br>265<br>275<br>266<br>275<br>267<br>276<br>269<br>276<br>264<br>263<br>374<br>269<br>276<br>264<br>263<br>374<br>269<br>263<br>276<br>264<br>263<br>264<br>263<br>264<br>265<br>264<br>265<br>264<br>265<br>265<br>264<br>265<br>265<br>264<br>265<br>265<br>265<br>265<br>265<br>265<br>265<br>265<br>265<br>265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1085<br>1015<br>1070<br>868<br>1023<br>974<br>1077<br>626<br>616<br>1100<br>742<br>635<br>527<br>1056<br>679<br>993<br>504                                                                                                                 |
| 30<br>16<br>14<br>17<br>9<br>22<br>17<br>11<br>8<br>20<br>32<br>32<br>17<br>19<br>28<br>11<br>16<br>37<br>12                                                                                                                      | 6 4 5 4 18 4 4 4 7 4 4 4 5 6 4 3 5 6 5 5 5 4 6 5 60 5 5 4 4 4 4 5 6 4 4 4 5 5 4 5 9 5 6 4 6 5 5 8 5 6 4 16 4 5 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17<br>19<br>16<br>13<br>16<br>10<br>10<br>17<br>10<br>9<br>16<br>15<br>15<br>8                                                                                                                                                             |
| 35<br>24<br>18<br>25<br>25<br>25<br>14<br>12<br>26<br>23<br>24<br>33<br>24<br>33<br>15<br>24<br>45<br>15                                                                                                                          | 9 6 7 6 2 7 6 6 10 6 6 7 8 6 5 6 8 7 7 7 6 9 7 6 6 6 6 6 7 8 6 6 5 7 6 7 7 12 7 8 6 8 7 7 7 12 7 9 6 20 7 7 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24<br>26<br>24<br>20<br>23<br>24<br>25<br>15<br>15<br>24<br>17<br>15<br>13<br>24<br>19<br>22<br>22<br>12                                                                                                                                   |
| 1037<br>1079<br>622<br>1065<br>512<br>632<br>1033<br>495<br>493<br>1115<br>1076<br>619<br>519<br>1068<br>620<br>1052<br>1111<br>536                                                                                               | 352<br>263<br>268<br>970<br>283<br>273<br>275<br>275<br>275<br>275<br>275<br>275<br>275<br>275<br>275<br>275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1088<br>1029<br>1092<br>867<br>1036<br>996<br>1094<br>628<br>621<br>1114<br>747<br>638<br>529<br>1089<br>688<br>1028<br>503                                                                                                                |
| 27<br>14<br>13<br>10<br>21<br>16<br>13<br>8<br>14<br>29<br>17<br>23<br>26<br>10<br>13<br>21<br>13                                                                                                                                 | 8 6 10 6 23 6 5 6 19 8 7 5 13 10 6 7 9 16 10 7 6 6 6 6 40 7 19 5 6 6 7 15 3 5 7 10 15 9 6 7 13 7 9 7 9 12 6 8 11 7 7 13 6 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12<br>16<br>13<br>12<br>14<br>12<br>9<br>10<br>12<br>10<br>10<br>11<br>11<br>15<br>11<br>9                                                                                                                                                 |
| 29<br>19<br>17<br>19<br>35<br>24<br>18<br>11<br>20<br>31<br>20<br>31<br>24<br>33<br>28<br>14<br>20<br>36<br>18                                                                                                                    | 10<br>8<br>3<br>7<br>7<br>8<br>2<br>10<br>9<br>7<br>12<br>2<br>8<br>8<br>8<br>8<br>10<br>9<br>7<br>8<br>8<br>8<br>10<br>9<br>7<br>8<br>8<br>8<br>10<br>9<br>7<br>8<br>8<br>10<br>9<br>7<br>15<br>2<br>8<br>8<br>8<br>10<br>9<br>7<br>7<br>8<br>8<br>10<br>9<br>7<br>7<br>8<br>8<br>10<br>9<br>7<br>7<br>8<br>8<br>10<br>9<br>7<br>7<br>8<br>8<br>10<br>9<br>7<br>7<br>8<br>8<br>10<br>9<br>7<br>7<br>8<br>8<br>10<br>9<br>7<br>7<br>8<br>8<br>10<br>9<br>7<br>7<br>8<br>8<br>10<br>9<br>7<br>7<br>8<br>8<br>10<br>9<br>7<br>7<br>8<br>8<br>10<br>9<br>7<br>7<br>8<br>8<br>10<br>9<br>7<br>7<br>8<br>8<br>10<br>9<br>7<br>7<br>8<br>8<br>10<br>9<br>7<br>7<br>8<br>8<br>10<br>9<br>7<br>7<br>8<br>8<br>10<br>9<br>7<br>7<br>8<br>8<br>8<br>10<br>9<br>7<br>7<br>8<br>8<br>8<br>10<br>9<br>7<br>7<br>8<br>8<br>8<br>10<br>9<br>7<br>7<br>8<br>8<br>8<br>10<br>9<br>7<br>10<br>9<br>7<br>10<br>9<br>7<br>10<br>9<br>7<br>10<br>9<br>7<br>10<br>9<br>7<br>10<br>9<br>7<br>10<br>9<br>7<br>10<br>9<br>7<br>10<br>9<br>7<br>10<br>9<br>7<br>10<br>9<br>7<br>10<br>9<br>7<br>10<br>9<br>10<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18<br>21<br>20<br>18<br>17<br>20<br>18<br>13<br>14<br>18<br>16<br>14<br>15<br>16<br>14<br>15<br>18<br>20<br>17<br>12                                                                                                                       |
| 99<br>97<br>98<br>98<br>99<br>99<br>99<br>100<br>101<br>99<br>100<br>99<br>98<br>100<br>99<br>98<br>99<br>99<br>98<br>99<br>99                                                                                                    | 98<br>99<br>93<br>98<br>98<br>99<br>96<br>100<br>91<br>98<br>96<br>93<br>98<br>96<br>93<br>93<br>94<br>93<br>94<br>93<br>95<br>93<br>86<br>99<br>94<br>95<br>94<br>96<br>100<br>97<br>98<br>88<br>100<br>97<br>99<br>98<br>86<br>99<br>99<br>95<br>95<br>94<br>98<br>97<br>97<br>97<br>98<br>98<br>99<br>97<br>97<br>97<br>97<br>97<br>97<br>98<br>98<br>99<br>97<br>97<br>97<br>97<br>97<br>96<br>97<br>97<br>97<br>97<br>98<br>98<br>99<br>97<br>97<br>97<br>96<br>97<br>97<br>96<br>97<br>97<br>96<br>96<br>97<br>96<br>96<br>97<br>96<br>96<br>97<br>96<br>96<br>97<br>96<br>96<br>97<br>96<br>97<br>96<br>96<br>97<br>97<br>96<br>97<br>97<br>96<br>97<br>97<br>96<br>97<br>97<br>97<br>96<br>97<br>97<br>97<br>96<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>96<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100<br>99<br>98<br>100<br>99<br>98<br>98<br>98<br>99<br>99<br>99<br>99<br>100<br>100<br>100<br>97<br>99<br>97<br>100                                                                                                                       |
| 99<br>93<br>96<br>94<br>97<br>1000<br>106<br>108<br>97<br>99<br>97<br>97<br>1011<br>1011<br>99<br>86                                                                                                                              | <ul> <li>89</li> <li>98</li> <li>92</li> <li>99</li> <li>94</li> <li>91</li> <li>96</li> <li>53</li> <li>62</li> <li>64</li> <li>61</li> <li>80</li> <li>97</li> <li>98</li> <li>91</li> <li>64</li> <li>85</li> <li>98</li> <li>91</li> <li>64</li> <li>85</li> <li>98</li> <li>91</li> <li>64</li> <li>85</li> <li>98</li> <li>91</li> <li>84</li> <li>85</li> <li>86</li> <li>87</li> <li>91</li> <li>87</li> <li>86</li> <li>91</li> <li>87</li> <li>89</li> <li>81</li> <li>82</li> <li>82</li> <li>82</li> <li>84</li> <li>84</li> <li>85</li> <li>84</li> <li>85</li> <li>84</li> <li>84</li> <li>84</li> <li>85</li> <li>82</li> <li>84</li> <li>84</li> <li>85</li> <li>82</li> <li>84</li> <li>84</li> <li>85</li> <li>84</li> <li>84</li> <li>84</li> <li>85</li> &lt;</ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99<br>96<br>94<br>102<br>97<br>93<br>96<br>90<br>98<br>99<br>90<br>102<br>92<br>97<br>97<br>91<br>104                                                                                                                                      |

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                              | $\sigma$ $gg$ $gg$ $gg$ 063         14         20         99         96           112         8         10         100         106           133         8         12         94         77           131         8         12         94         77           144         10         13         98         93           252         5         7         99         98           100         14         99         96           73         7         9         98         84           336         13         16         94         78           210         12         15         87         36           262         7         9         96         78           263         7         8         95         74           388         9         12         91         59           264         8         10         100         100           393         5         7         99         98           274         5         7         100         100           393         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16         952           8         765           3         508           10         640           18         907           17         972           15         1069           13         496           13         549           18         651           12         512           2         508           13         986           15         494           18         678           0         0                                    | 24         1063           00         412           7         327           1         484           6         262           6         262           6         275           12         1033           8         3366           7         273           12         1033           8         3366           7         273           12         1033           8         3366           7         275           6         262           6         262           6         262           6         263           9         396           8         317           6         274           6         264           6         264           6         260           7         276           6         261           6         264           6         264           6         264           6         264           6         264           6         265           6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 21         22           12         18           9         11           16         22           24         25           9         11           10         13           15         14           21         22           23         21           24         29           10         13           15         14           15         21           15         21           15         21           15         21           14         14 | $\begin{array}{c} 0 \\ 2 \\ 17 \\ 5 \\ 9 \\ 11 \\ 15 \\ 9 \\ 8 \\ 4 \\ 4 \\ 9 \\ 5 \\ 17 \\ 6 \\ 5 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 6 \\ 5 \\ 4 \\ 4 \\ 4 \\ 9 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 30         872           37         758           36         508           78         620           49         879           38         1060           54         490           44         535           68         634           83         508           50         505           30         986           47         688                                                                                                         | 34         1054           42         413           43         279           40         483           50         474           46         258           42         262           52         494           65         267           34         1010           101         317           68         263           95         134           182         64           40         392           64         251           56         352           40         392           64         251           56         352           40         392           77         261           44         272           75         263           38         230           65         519           85         260           46         530           54         250           54         250           54         262           47         262           48         242           56         262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 37         26           7         36           2         33           8         66           6         47           51         37           73         36           13         40           7         64           0         77           44         48           98         56           9         44                                                                                                                              | 76       33         99       41         2       42         55       38         1       48         6       60         6       51         55       32         6       51         5       62         6       51         5       62         6       60         11       60         55       62         6       60         55       62         10       55         66       71         99       67         22       37         88       63         99       67         23       71         99       36         99       44         99       36         99       44         99       36         99       45         91       55         92       73         11       56         12       24         13       53         14       55         15       77      7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.90<br>0.76<br>0.91<br>0.68<br>0.95<br>0.86<br>0.84<br>0.67<br>0.89<br>0.59<br>0.59<br>0.59<br>0.61<br>0.70<br>0.90<br>0.62<br>0.72                                                                                                                                                                                                                                                                                                | 0.83<br>0.76<br>0.89<br>0.77<br>0.79<br>0.77<br>0.79<br>0.71<br>0.69<br>0.82<br>0.62<br>0.62<br>0.62<br>0.83<br>0.66<br>0.44<br>0.71<br>0.76<br>0.66<br>0.49<br>0.77<br>0.76<br>0.66<br>0.49<br>0.49<br>0.83<br>0.54<br>0.49<br>0.49<br>0.49<br>0.49<br>0.49<br>0.49<br>0.49<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.0036<br>0.0021<br>0.0015<br>0.0028<br>0.0043<br>0.0043<br>0.0016<br>0.0016<br>0.0016<br>0.0025<br>0.0036<br>0.0014<br>0.0028<br>0.0020                                                                                                                                                                                                                                                                                            | 0.0031<br>0.0011<br>0.0017<br>0.0013<br>0.0007<br>0.0007<br>0.0007<br>0.0009<br>0.0009<br>0.0009<br>0.0009<br>0.0001<br>0.0007<br>0.0004<br>0.0007<br>0.0001<br>0.0012<br>0.0010<br>0.0007<br>0.0012<br>0.0010<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0. |
| 0.0370 0.1450<br>0.0250 0.1247<br>0.0380 0.0820<br>0.0450 0.1461<br>0.0450 0.1461<br>0.0450 0.1788<br>0.0190 0.0790<br>0.0150 0.0866<br>0.0370 0.1034<br>0.0460 0.0816<br>0.0310 0.1624<br>0.0460 0.0816<br>0.0310 0.1624                                                                                                                                                                                                           | 0.0390         0.1776           0.0110         0.0662           0.0022         0.0443           0.0130         0.0773           0.0071         0.0403           0.0093         0.0415           0.0093         0.0423           0.0093         0.0415           0.0092         0.0227           0.0150         0.0282           0.0092         0.0423           0.0092         0.0423           0.0092         0.0422           0.0092         0.0339           0.0085         0.0339           0.0085         0.0339           0.0085         0.0339           0.0085         0.0339           0.0085         0.0339           0.0085         0.0339           0.0074         0.0412           0.0160         0.0852           0.0074         0.0413           0.0077         0.0381           0.0077         0.0381           0.0077         0.0381           0.0077         0.0381           0.0077         0.0381           0.0082         0.4411           0.0120         0.773           0.0081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.5570<br>1.1280<br>0.6500<br>0.8840<br>1.4500<br>1.6040<br>1.8730<br>0.6320<br>0.7190<br>0.6630<br>0.6510<br>0.6510<br>0.6280<br>0.9560                                                                                                                                                                                                                                                                                            | 1.8530<br>0.5020<br>0.3804<br>0.6590<br>0.3804<br>0.6590<br>0.3116<br>0.6380<br>0.3091<br>1.7690<br>0.3950<br>0.3116<br>0.1600<br>0.2948<br>0.2958<br>0.4670<br>0.3670<br>0.3080<br>0.3105<br>0.2988<br>0.4670<br>0.3670<br>0.3080<br>0.3105<br>0.2988<br>0.4670<br>0.3080<br>0.3105<br>0.2981<br>0.3558<br>0.4570<br>0.3105<br>0.2981<br>0.3558<br>0.4570<br>0.3105<br>0.2981<br>0.3558<br>0.4570<br>0.3105<br>0.2984<br>0.3030<br>0.2924<br>0.3152<br>0.3152<br>0.3152<br>0.3152<br>0.3167<br>0.2924<br>0.3227<br>0.3152<br>0.3152<br>0.3197<br>0.2924<br>0.3287<br>0.2924<br>0.3287<br>0.2924<br>0.3190<br>0.3197<br>0.2924<br>0.3197<br>0.2924<br>0.3190<br>0.3197<br>0.2924<br>0.3197<br>0.2926<br>0.3197<br>0.2956<br>0.3197<br>0.2956<br>0.3197<br>0.2956<br>0.3197<br>0.2957<br>0.3197<br>0.2956<br>0.3197<br>0.2957<br>0.2957<br>0.3197<br>0.2956<br>0.3197<br>0.2957<br>0.2977<br>0.2956<br>0.3197<br>0.2957<br>0.2977<br>0.2956<br>0.3197<br>0.2907<br>0.2956<br>0.3197<br>0.2907<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2996<br>0.3193<br>0.3196<br>0.3193<br>0.3030<br>0.2995<br>0.2997<br>0.2996<br>0.3193<br>0.3030<br>0.2995<br>0.2997<br>0.2996<br>0.3193<br>0.3030<br>0.2995<br>0.2996<br>0.3193<br>0.3030<br>0.2995<br>0.2997<br>0.2996<br>0.3193<br>0.3030<br>0.2995<br>0.2996<br>0.3193<br>0.3030<br>0.2995<br>0.2996<br>0.3193<br>0.3030<br>0.2995<br>0.2997<br>0.2996<br>0.3193<br>0.3048<br>0.3075<br>0.3215<br>0.3048<br>0.3075<br>0.3215<br>0.3048<br>0.3075<br>0.3215<br>0.3230<br>0.3048<br>0.3075<br>0.3215<br>0.3048<br>0.3075<br>0.3215<br>0.3216<br>0.3216<br>0.3216<br>0.3008<br>0.3310<br>0.3008<br>0.3197<br>0.2981<br>0.3008<br>0.3197<br>0.2981<br>0.3228<br>0.3197<br>0.2987<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2996<br>0.3197<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2997<br>0.2996<br>0.3118<br>0.3030<br>0.2995<br>0.2997<br>0.2996<br>0.2997<br>0.2996<br>0.2997<br>0.2996<br>0.2997<br>0.2996<br>0.2997<br>0.2996<br>0.2997<br>0.2996<br>0.2997<br>0.2996<br>0.2997<br>0.2996<br>0.2997<br>0.2996<br>0.2996<br>0.2997<br>0.2996<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0.2990<br>0. |
| 0.0779 0.0011<br>0.0658 0.0011<br>0.0574 0.0009<br>0.0634 0.0023<br>0.0720 0.0017<br>0.0750 0.0017<br>0.0750 0.0014<br>0.0760 0.0014<br>0.0679 0.0014<br>0.0633 0.0022<br>0.0584 0.0022<br>0.0584 0.0022<br>0.0580 0.0013<br>0.0758 0.0016                                                                                                                                                                                          | 0.0757         0.0012           0.0546         0.0010           0.0547         0.0012           0.0547         0.0013           0.0549         0.0013           0.0549         0.0013           0.0549         0.0013           0.0549         0.0113           0.0559         0.012           0.0569         0.012           0.0569         0.026           0.0569         0.0226           0.0561         0.012           0.0562         0.024           0.0650         0.037           0.0557         0.0115           0.0562         0.0104           0.0562         0.0115           0.0562         0.0115           0.0562         0.0115           0.0562         0.0115           0.0562         0.0110           0.0562         0.0111           0.0562         0.0112           0.0562         0.0112           0.0563         0.0112           0.0564         0.0212           0.0577         0.012           0.0563         0.0112           0.0564         0.0112           0.0574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.17<br>0.14<br>0.22<br>0.27<br>0.20<br>0.18<br>0.20<br>0.20<br>0.21<br>0.23<br>0.54<br>0.21<br>0.21<br>0.33<br>0.18                                                                                                                                                                                                                                                                                                                | 0.10<br>0.25<br>0.28<br>0.22<br>0.42<br>0.39<br>0.24<br>0.39<br>0.24<br>0.49<br>0.38<br>0.43<br>0.43<br>0.43<br>0.43<br>0.42<br>0.46<br>0.38<br>0.25<br>0.54<br>0.46<br>0.36<br>0.41<br>0.46<br>0.20<br>0.57<br>0.42<br>0.46<br>0.36<br>0.41<br>0.42<br>0.42<br>0.42<br>0.42<br>0.44<br>0.46<br>0.20<br>0.57<br>0.42<br>0.42<br>0.42<br>0.44<br>0.46<br>0.20<br>0.57<br>0.42<br>0.42<br>0.42<br>0.42<br>0.44<br>0.42<br>0.42<br>0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.33<br>0.76<br>0.47<br>0.79<br>0.20<br>0.05<br>0.26<br>0.26<br>0.26<br>0.26<br>0.26<br>0.26<br>0.26<br>0.26                                                                                                                                                                                                                                                                                                                        | 0.67         0.09           0.58         2           0.58         2           0.58         2           0.58         2           0.53         2           0.53         2           0.52         2           0.57         2           0.57         2           0.57         2           0.57         2           0.57         2           0.57         2           1.11         2           0.61         2           0.62         2           0.57         2           1.11         2           0.43         0.66           0.34         0.66           0.38         2           0.43         0.66           0.43         2           0.44         2           0.45         2           0.48         2           0.49         2           0.49         2           0.49         2           0.49         2           0.49         2           0.49         2           0.49         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1173<br>170<br>388<br>114<br>135<br>929<br>106<br>195<br>343<br>140<br>104<br>170<br>264<br>232<br>169                                                                                                                                                                                                                                                                                                                              | 247<br>525<br>965<br>467<br>275<br>602<br>931<br>523<br>620<br>342<br>86<br>248<br>304<br>176<br>93<br>463<br>93<br>463<br>94<br>463<br>93<br>463<br>94<br>463<br>994<br>463<br>904<br>70<br>255<br>155<br>155<br>155<br>155<br>155<br>155<br>155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d                                                                                                                                                                                                                                                                                                                                                                  | b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{cccc} 2.3 \pm .05 & b.d. \\ 1.8 \pm .05 & b.d. \\ 1.2 \pm .105 & b.d. \\ 1.2 \pm .105 & b.d. \\ 1.3 \pm .105 & b.d. \\ 1.3 \pm .105 & b.d. \\ 2.1 \pm .05 & b.d. \\ 2.1 \pm .05 & b.d. \\ 2.1 \pm .05 & b.d. \\ 3.1 \pm .05 & b.d. \\ 3.1 \pm .05 & b.d. \\ 3.1 \pm .05 & b.d. \\ 3.2 \pm .04 & b.d. \\ 3.2 \pm .04 & b.d. \\ 3.3 \pm .04 & b.d. \\ 3.5 \pm .04 & b.d. \\ 1.4 \pm .05 & b.d. \\ 1.4 \pm .05 & b.d. \\ 1.5 \pm .05 & b.d. \\ 1.5 \pm .04 & b.d. \\ 1.5 \pm .05 & b.d. \\ 3.5 \pm .04 & b.d. \\ 4.5 \pm .04 & b.d. \\ 5.5 \pm .04 & b.d. \\ 3.5 \pm .04 & b.d. \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GKT1 - 46<br>GKT1 - 49<br>GKT1 - 50<br>GKT1 - 52<br>GKT1 - 54<br>GKT1 - 55<br>GKT1 - 60<br>GKT1 - 61<br>GKT1 - 61<br>GKT1 - 65<br>GKT1 - 67<br>GKT1 - 68<br>GKT1 - 69                                                                                                                                                                                                                                                               | KBCS2 - 1<br>KBCS2 - 2<br>KBCS2 - 3<br>KBCS2 - 5<br>KBCS2 - 6<br>KBCS2 - 6<br>KBCS2 - 7<br>KBCS2 - 10<br>KBCS2 - 11<br>KBCS2 - 11<br>KBCS2 - 12<br>KBCS2 - 12<br>KBCS2 - 12<br>KBCS2 - 12<br>KBCS2 - 13<br>KBCS2 - 12<br>KBCS2 - 12<br>KBCS2 - 13<br>KBCS2 - 12<br>KBCS2 - 21<br>KBCS2 - 22<br>KBCS2 - 23<br>KBCS2 - 23<br>KBCS2 - 24<br>KBCS2 - 23<br>KBCS2 - 24<br>KBCS2 - 23<br>KBCS2 - 24<br>KBCS2 - 23<br>KBCS2 - 24<br>KBCS2 - 24<br>KBCS2 - 24<br>KBCS2 - 31<br>KBCS2 - 31<br>KBCS2 - 31<br>KBCS2 - 31<br>KBCS2 - 32<br>KBCS2 - 32<br>KBCS2 - 32<br>KBCS2 - 32<br>KBCS2 - 32<br>KBCS2 - 32<br>KBCS2 - 40<br>KBCS2 - 70<br>KBCS2 - 70<br>KBCS2 - 70<br>KBCS2 -                                                                                                                                                                                                                                                                                                                               |

| OES1 - 1<br>OES1 - 2<br>OES1 - 3<br>OES1 - 3<br>OES1 - 4<br>OES1 - 5<br>OES1 - 6<br>OES1 - 7<br>OES1 - 7<br>OES1 - 10<br>OES1 - 10<br>OES1 - 11<br>OES1 - 12<br>OES1 - 14<br>OES1 - 15<br>OES1 - 18<br>OES1 - 19<br>OES1 - 11<br>OES1 - 12<br>OES1 - 11<br>OES1 - 12<br>OES1 - 12<br>OES1 - 22<br>OES1 - 22<br>OES1 - 22<br>OES1 - 23<br>OES1 - 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MBHF - 3<br>MBHF - 5<br>MBHF - 6<br>MBHF - 7<br>MBHF - 7<br>MBHF - 10<br>MBHF - 10<br>MBHF - 11<br>MBHF - 13<br>MBHF - 20<br>MBHF - 30<br>MBHF - 30<br>MBHF - 41<br>MBHF - 42<br>MBHF - 50<br>MBHF - 55<br>MBHF - 55<br>MBHF - 55<br>MBHF - 55<br>MBHF - 55<br>MBHF - 66<br>MBHF - 77<br>MBHF - 78<br>MBHF - 78<br>MBHF - 77<br>MBHF - 77<br>MBHF - 78<br>MBHF - 78<br>MBHF - 77<br>MBHF - 78<br>MBHF - 70<br>MBHF - 77<br>MBHF - 70<br>MBHF - 70<br>M                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} 2.1. E+05\\ 7.5. E+04\\ 1.8. E+05\\ 4.1. E+04\\ 3.2. E+04\\ 2.5. E+05\\ 6.4. E+04\\ 1.3. E+04\\ 2.3. E+04\\ 1.3. E+04\\ 1.8. E+04\\ 1.8. E+04\\ 1.0. E+05\\ 1.8. E+05\\ 1.8. E+05\\ 2.8. E+05\\ 2.8. E+05\\ 2.8. E+05\\ 2.8. E+05\\ 3.8. E+03\\ 3.8.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 1.0 \\ \pm +05 \\ 2.1 \\ \pm +05 \\ 3.3 \\ \pm +04 \\ 1.8 \\ \pm +05 \\ 6.5 \\ \pm +05 \\ 9.8 \\ \pm +04 \\ 2.2 \\ \pm +04 \\ 2.2 \\ \pm +04 \\ 1.8 \\ \pm +05 \\ 1.5 \\ \pm +05 \\ 1.5 \\ \pm +05 \\ 1.5 \\ \pm +04 \\ 1.7 \\ \pm +04 \\ 1.7 \\ \pm +04 \\ 1.8 \\ \pm +05 \\ 1.5 \\ \pm +04 \\ 1.8 \\ \pm +05 \\ 1.5 \\ \pm +04 \\ 1.8 \\ \pm +05 \\ 1.5 \\ \pm +04 \\ 1.8 \\ \pm +05 \\ 1.5 \\ \pm +04 \\ 1.8 \\ \pm +05 \\ 1.5 \\ \pm +04 \\ 1.8 \\ \pm +05 \\ 1.5 \\ \pm +04 \\ 1.8 \\ \pm +05 \\ 1.5 \\ \pm +04 \\ 1.8 \\ \pm +05 \\ 1.5 \\ \pm +04 \\ 1.8 \\ \pm +05 \\ 1.5 \\ \pm +04 \\ 1.8 \\ \pm +05 \\ 1.5 \\ \pm +04 \\ 1.8 \\ \pm +05 \\ 1.5 \\ \pm +04 \\ 1.8 \\ \pm +05 \\ 1.5 \\ \pm +04 \\ 1.8 \\ \pm +05 \\ 1.5 \\ \pm +$                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d<br>b.d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 310<br>117<br>206<br>279<br>240<br>269<br>105<br>96<br>143<br>151<br>151<br>154<br>43<br>193<br>219<br>275<br>175<br>275<br>275<br>464<br>63<br>114<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>531</li> <li>243</li> <li>76</li> <li>214</li> <li>368</li> <li>362</li> <li>362</li> <li>376</li> <li>391</li> <li>302</li> <li>301</li> <li>311</li> <li>403</li> <li>403</li> <li>403</li> <li>403</li> <li>403</li> <li>404</li> <li>405</li> <li>403</li> <li>404</li> <li>405</li> <li>404</li> <li>405</li> <li>407</li> <li>76</li> <li>401</li> <li>403</li> <li>406</li> <li>407</li> <li>409</li> <li>410</li> <li>409</li> <li>411</li> <li>409</li> <li>414</li> <li>409</li> <li>414</li> <li>409</li> <li>414</li> <li>409</li> <li>414</li> <li>409</li> <li>416</li> <li>416</li> <li>416</li> <li>417</li> <li>416</li> <l< td=""></l<></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.27<br>0.58<br>2.11<br>0.93<br>1.99<br>1.05<br>0.45<br>0.45<br>0.40<br>0.60<br>0.20<br>0.40<br>0.05<br>0.27<br>0.09<br>0.38<br>0.05<br>0.27<br>0.09<br>0.38<br>0.43<br>0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.64<br>0.25<br>0.61<br>0.52<br>0.24<br>0.53<br>0.57<br>0.51<br>0.55<br>0.51<br>0.55<br>0.51<br>0.55<br>0.51<br>0.55<br>0.51<br>0.55<br>0.51<br>0.55<br>0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6.70<br>7.75<br>5.62<br>33.91<br>34.54<br>5.00<br>6.15<br>34.35<br>3.13<br>12.18<br>9.78<br>11.96<br>11.45<br>9.92<br>5.52<br>5.52<br>5.52<br>5.52<br>5.52<br>5.52<br>5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27.01<br>5.87<br>12.36<br>6.62<br>3.23<br>12.88<br>12.07<br>23.42<br>24.12<br>22.22<br>9.90<br>7.05<br>6.58<br>12.71<br>13.16<br>12.71<br>13.16<br>12.71<br>13.16<br>12.71<br>13.16<br>12.71<br>13.16<br>12.71<br>13.16<br>12.77<br>12.77<br>12.05<br>5.54<br>11.35<br>12.77<br>12.05<br>5.51<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.13<br>25.24<br>25.27<br>25.24<br>25.27<br>25.24<br>25.27<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.25<br>25.24<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25 |
| 0.24<br>0.13<br>0.59<br>1.31<br>0.09<br>0.11<br>0.72<br>0.25<br>0.21<br>0.23<br>0.21<br>0.48<br>0.18<br>0.14<br>0.35<br>0.72<br>0.31<br>0.14<br>0.35<br>0.72<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.58<br>0.14<br>0.23<br>0.11<br>0.06<br>0.22<br>0.44<br>0.45<br>0.37<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c} 0.0723\\ 0.0646\\ 0.0766\\ 0.0513\\ 0.0533\\ 0.0792\\ 0.0719\\ 0.0537\\ 0.1143\\ 0.0537\\ 0.0609\\ 0.0609\\ 0.0609\\ 0.0609\\ 0.0609\\ 0.0609\\ 0.0743\\ 0.0743\\ 0.0768\\ 0.0659\\ 0.0653\\ 0.0651\\ 0.0547\\ 0.0590\\ 0.0545\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0771<br>0.0771<br>0.0751<br>0.0560<br>0.019<br>0.0573<br>0.0564<br>0.0569<br>0.0667<br>0.0667<br>0.0671<br>0.0671<br>0.0671<br>0.0671<br>0.0671<br>0.0675<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0555<br>0.0575<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0                                                                                                                                                       |
| 0.0024<br>0.0013<br>0.0011<br>0.0014<br>0.0040<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0023<br>0.0014<br>0.0013<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0016<br>0.0026<br>0.0016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0017<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0013<br>0.0014<br>0.0023<br>0.0014<br>0.0023<br>0.0017<br>0.0017<br>0.0017<br>0.0014<br>0.0023<br>0.0014<br>0.0023<br>0.0014<br>0.0023<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0011<br>0.0014<br>0.0014<br>0.0011<br>0.0014<br>0.0011<br>0.0014<br>0.0011<br>0.0014<br>0.0011<br>0.0014<br>0.0011<br>0.0014<br>0.0011<br>0.0014<br>0.0011<br>0.0014<br>0.0011<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0011<br>0.0011<br>0.0011<br>0.0014<br>0.0011<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0012<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0012<br>0.0011<br>0.0012<br>0.0011<br>0.0012<br>0.0011<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.                                                                                                                                                       |
| 1.4910<br>1.1490<br>1.8710<br>2.2089<br>0.2145<br>0.2150<br>0.8580<br>0.86800<br>0.7020<br>0.8450<br>0.7720<br>0.8450<br>1.6790<br>1.6790<br>1.9220<br>1.1720<br>0.8550<br>0.2210<br>0.8550<br>0.2210<br>0.7030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.3744 1.8050 0.4570 1.4970 0.6127 0.6127 0.6127 0.6127 0.6127 0.315 0.4721 0.3258 0.4721 1.3150 1.4900 0.6082 0.6440 0.4440 0.6440 0.4440 0.6440 0.8450 0.8470 0.7320 0.9340 0.7310 0.9340 0.7310 0.9340 0.7310 0.6205 0.6610 1.5160 0.6450 0.4620 0.1914 0.9340 0.520 0.6610 1.5160 0.6450 0.4620 0.520 0.6610 1.5160 0.6570 0.2101 1.1620 0.6460 1.5165 0.6650 0.6460 0.1516 0.6570 0.2101 1.7750 0.5151 0.6560 0.7420 0.3380 0.7450 0.5430 1.5160 0.5430 1.5160 0.5450 0.5430 1.5160 0.5450 0.5430 1.5160 0.5450 0.5430 1.5160 0.5450 0.5450 0.5450 0.5450 0.7750 0.5151 0.5450 0.5450 0.3450 0.7750 0.5151 0.5430 1.5600 0.5450 0.5430 1.5160 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.5450 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.55 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0630<br>0.0260<br>0.0360<br>0.0190<br>0.0420<br>0.0370<br>0.0180<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0430<br>0.0550<br>0.0370<br>0.0370<br>0.0370<br>0.0370<br>0.0370<br>0.0370<br>0.0370<br>0.0370<br>0.0370<br>0.0370<br>0.0370<br>0.0370<br>0.0370<br>0.0370<br>0.0370<br>0.0370<br>0.0370<br>0.0370<br>0.0370<br>0.0370<br>0.0420<br>0.0370<br>0.0420<br>0.0280<br>0.0280<br>0.0180<br>0.0280<br>0.0190<br>0.0280<br>0.0190<br>0.0280<br>0.0190<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0370<br>0.0370<br>0.0370<br>0.0370<br>0.0370<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450<br>0.0450000000000 | 0.0088<br>0.0390<br>0.0200<br>0.0220<br>0.0120<br>0.0120<br>0.0150<br>0.0130<br>0.0100<br>0.0100<br>0.0100<br>0.0100<br>0.0100<br>0.0220<br>0.0220<br>0.0220<br>0.0220<br>0.0150<br>0.0220<br>0.0220<br>0.0150<br>0.0150<br>0.0220<br>0.0220<br>0.0150<br>0.0220<br>0.0150<br>0.0220<br>0.0150<br>0.0220<br>0.0150<br>0.0220<br>0.0150<br>0.0220<br>0.0150<br>0.0220<br>0.0150<br>0.0220<br>0.0150<br>0.0220<br>0.0150<br>0.0220<br>0.0150<br>0.0220<br>0.0150<br>0.0220<br>0.0150<br>0.0150<br>0.0220<br>0.0150<br>0.0150<br>0.0150<br>0.0220<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0220<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0220<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0150<br>0.0200<br>0.0110<br>0.0100<br>0.0200<br>0.0110<br>0.0100<br>0.0200<br>0.0110<br>0.0100<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0110<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.                                                                                                                                                       |
| 0.1493<br>0.1290<br>0.1778<br>0.0295<br>0.0290<br>0.1626<br>0.0291<br>0.1626<br>0.0821<br>0.0821<br>0.0836<br>0.0823<br>0.0836<br>0.0837<br>0.1008<br>0.1637<br>0.1083<br>0.10637<br>0.1083<br>0.1063<br>0.1063<br>0.1063<br>0.1063<br>0.1063<br>0.1063<br>0.1063<br>0.1063<br>0.1063<br>0.1063<br>0.1063<br>0.1063<br>0.1063<br>0.1063<br>0.1063<br>0.1076<br>0.0293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.13705<br>0.15705<br>0.0609<br>0.1511<br>0.3095<br>0.0776<br>0.0427<br>0.0427<br>0.0427<br>0.0427<br>0.0427<br>0.0427<br>0.0415<br>0.0760<br>0.0781<br>0.1101<br>0.1418<br>0.1418<br>0.0787<br>0.0760<br>0.0781<br>0.0760<br>0.0781<br>0.0760<br>0.0781<br>0.1732<br>0.1000<br>0.0401<br>0.1418<br>0.1418<br>0.0401<br>0.1418<br>0.0401<br>0.0781<br>0.0781<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0428<br>0.0428<br>0.0401<br>0.0428<br>0.0401<br>0.0428<br>0.0401<br>0.0428<br>0.0401<br>0.0429<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.0459<br>0.04590.0459<br>0.0459<br>0.04590.0459                                                                                                                                                                   |
| 0.0053<br>0.0021<br>0.0031<br>0.0036<br>0.0011<br>0.0036<br>0.0052<br>0.0052<br>0.0016<br>0.0016<br>0.0016<br>0.0044<br>0.0049<br>0.0049<br>0.0049<br>0.0049<br>0.0049<br>0.0052<br>0.0053<br>0.0053<br>0.0053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0008<br>0.0040<br>0.0015<br>0.0026<br>0.0054<br>0.0014<br>0.0014<br>0.0008<br>0.0008<br>0.0016<br>0.0034<br>0.0016<br>0.0034<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0014<br>0.0037<br>0.0017<br>0.0020<br>0.0017<br>0.0017<br>0.0017<br>0.0017<br>0.0017<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0014<br>0.0005<br>0.0013<br>0.0014<br>0.0005<br>0.0013<br>0.0015<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.                                                                                                                                                       |
| 0.84<br>0.72<br>0.91<br>0.56<br>0.43<br>0.94<br>0.75<br>0.84<br>0.50<br>0.65<br>0.86<br>0.61<br>0.61<br>0.73<br>0.42<br>0.64<br>0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.92<br>0.90<br>0.60<br>0.99<br>0.60<br>0.60<br>0.60<br>0.60<br>0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 981<br>732<br>1099<br>228<br>305<br>1165<br>969<br>270<br>1863<br>497<br>596<br>622<br>539<br>609<br>1035<br>1105<br>704<br>776<br>613<br>290<br>522<br>210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 996<br>1115<br>475<br>971<br>4787<br>489<br>517<br>443<br>435<br>1080<br>625<br>833<br>934<br>433<br>473<br>522<br>1050<br>572<br>582<br>674<br>307<br>1084<br>841<br>1038<br>483<br>483<br>489<br>501<br>1079<br>302<br>562<br>164<br>632<br>984<br>841<br>1038<br>565<br>1079<br>302<br>562<br>164<br>632<br>984<br>513<br>366<br>533<br>246<br>1050<br>572<br>582<br>662<br>1079<br>302<br>562<br>164<br>632<br>984<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>513<br>366<br>552<br>572<br>572<br>572<br>572<br>572<br>572<br>572<br>572<br>572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 65<br>43<br>29<br>58<br>140<br>27<br>39<br>100<br>22<br>50<br>65<br>78<br>50<br>65<br>78<br>50<br>65<br>78<br>50<br>62<br>29<br>62<br>29<br>52<br>21<br>110<br>52<br>130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55<br>28<br>31<br>19<br>33<br>24<br>78<br>60<br>34<br>36<br>34<br>36<br>34<br>36<br>34<br>36<br>34<br>36<br>34<br>36<br>34<br>36<br>34<br>36<br>34<br>36<br>34<br>36<br>34<br>36<br>37<br>45<br>37<br>90<br>81<br>36<br>37<br>45<br>37<br>90<br>81<br>36<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>46<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>45<br>37<br>46<br>37<br>45<br>37<br>46<br>37<br>45<br>37<br>46<br>37<br>45<br>37<br>46<br>37<br>45<br>37<br>46<br>37<br>45<br>37<br>46<br>37<br>46<br>37<br>46<br>37<br>46<br>37<br>47<br>45<br>37<br>46<br>37<br>45<br>57<br>46<br>37<br>45<br>57<br>46<br>57<br>45<br>57<br>46<br>57<br>47<br>45<br>57<br>46<br>57<br>47<br>46<br>57<br>57<br>46<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 68<br>44<br>30<br>64<br>170<br>29<br>41<br>22<br>24<br>82<br>79<br>53<br>68<br>37<br>30<br>33<br>33<br>357<br>119<br>53<br>3149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 57<br>30<br>53<br>31<br>35<br>32<br>35<br>36<br>36<br>36<br>36<br>37<br>39<br>39<br>57<br>57<br>28<br>2<br>37<br>36<br>37<br>36<br>37<br>36<br>37<br>36<br>37<br>37<br>46<br>53<br>36<br>37<br>36<br>57<br>52<br>82<br>36<br>37<br>36<br>57<br>57<br>28<br>27<br>36<br>37<br>37<br>46<br>53<br>36<br>37<br>37<br>46<br>53<br>36<br>57<br>57<br>28<br>27<br>36<br>57<br>57<br>28<br>28<br>73<br>46<br>53<br>63<br>36<br>57<br>57<br>28<br>28<br>73<br>46<br>53<br>63<br>56<br>77<br>59<br>82<br>73<br>46<br>55<br>77<br>28<br>28<br>73<br>46<br>55<br>77<br>28<br>28<br>73<br>46<br>55<br>77<br>28<br>28<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>73<br>46<br>55<br>77<br>46<br>55<br>77<br>46<br>55<br>77<br>74<br>89<br>77<br>74<br>89<br>77<br>74<br>89<br>77<br>74<br>89<br>77<br>74<br>89<br>77<br>74<br>89<br>77<br>74<br>89<br>77<br>77<br>74<br>89<br>77<br>77<br>74<br>89<br>77<br>77<br>74<br>89<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 896<br>782<br>1055<br>187<br>184<br>1774<br>971<br>185<br>1788<br>509<br>627<br>518<br>540<br>619<br>977<br>1074<br>782<br>651<br>624<br>187<br>536<br>186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 234<br>1015<br>501<br>907<br>1738<br>482<br>513<br>270<br>262<br>284<br>620<br>856<br>911<br>488<br>472<br>484<br>402<br>614<br>614<br>614<br>614<br>614<br>614<br>614<br>614<br>614<br>614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 32<br>12<br>17<br>3<br>7<br>19<br>16<br>4<br>26<br>8<br>13<br>9<br>9<br>25<br>26<br>16<br>14<br>22<br>11<br>4<br>9<br>22<br>11<br>4<br>9<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5<br>29<br>14<br>27<br>8<br>8<br>5<br>5<br>5<br>10<br>20<br>22<br>8<br>8<br>9<br>20<br>11<br>2<br>8<br>4<br>29<br>10<br>9<br>8<br>8<br>7<br>17<br>5<br>9<br>3<br>21<br>4<br>9<br>6<br>8<br>3<br>15<br>8<br>15<br>9<br>7<br>16<br>5<br>8<br>8<br>9<br>20<br>11<br>2<br>8<br>8<br>9<br>20<br>11<br>2<br>8<br>8<br>9<br>20<br>11<br>2<br>8<br>8<br>9<br>20<br>11<br>2<br>8<br>8<br>9<br>20<br>11<br>2<br>8<br>8<br>9<br>20<br>11<br>2<br>8<br>8<br>9<br>20<br>11<br>2<br>8<br>8<br>9<br>20<br>11<br>2<br>8<br>8<br>9<br>20<br>11<br>2<br>8<br>8<br>9<br>20<br>11<br>2<br>8<br>8<br>9<br>20<br>11<br>2<br>8<br>8<br>9<br>20<br>11<br>2<br>8<br>8<br>9<br>20<br>11<br>2<br>8<br>8<br>9<br>20<br>11<br>2<br>8<br>8<br>9<br>20<br>11<br>2<br>8<br>8<br>9<br>20<br>11<br>2<br>8<br>8<br>9<br>20<br>11<br>2<br>8<br>8<br>9<br>20<br>11<br>2<br>8<br>8<br>9<br>20<br>11<br>2<br>8<br>8<br>7<br>17<br>5<br>9<br>3<br>21<br>4<br>9<br>6<br>8<br>3<br>15<br>8<br>3<br>15<br>8<br>9<br>7<br>16<br>5<br>8<br>8<br>9<br>7<br>16<br>5<br>8<br>8<br>9<br>7<br>16<br>5<br>8<br>8<br>9<br>7<br>16<br>5<br>8<br>8<br>9<br>7<br>16<br>5<br>8<br>8<br>9<br>7<br>16<br>5<br>8<br>8<br>9<br>7<br>16<br>5<br>8<br>8<br>9<br>7<br>16<br>8<br>8<br>8<br>7<br>7<br>17<br>5<br>9<br>8<br>8<br>8<br>7<br>17<br>5<br>8<br>8<br>8<br>9<br>7<br>11<br>2<br>8<br>8<br>8<br>7<br>17<br>5<br>8<br>8<br>8<br>7<br>12<br>2<br>9<br>6<br>8<br>8<br>7<br>11<br>2<br>8<br>8<br>8<br>7<br>11<br>2<br>8<br>8<br>8<br>7<br>11<br>2<br>8<br>8<br>8<br>7<br>11<br>2<br>8<br>8<br>8<br>9<br>7<br>11<br>2<br>8<br>8<br>8<br>7<br>11<br>2<br>8<br>8<br>7<br>11<br>8<br>8<br>8<br>7<br>11<br>8<br>8<br>8<br>7<br>11<br>8<br>8<br>8<br>9<br>9<br>7<br>8<br>8<br>8<br>7<br>1<br>8<br>9<br>8<br>8<br>7<br>1<br>8<br>9<br>9<br>9<br>8<br>8<br>8<br>7<br>1<br>8<br>9<br>9<br>9<br>8<br>9<br>7<br>8<br>8<br>8<br>7<br>1<br>8<br>8<br>9<br>7<br>8<br>8<br>8<br>9<br>7<br>8<br>8<br>8<br>8<br>8<br>9<br>7<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0<br>34<br>18<br>24<br>5<br>8<br>28<br>23<br>5<br>39<br>12<br>17<br>13<br>13<br>13<br>28<br>25<br>25<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6<br>28<br>13<br>22<br>8<br>12<br>7<br>7<br>7<br>4<br>23<br>27<br>12<br>11<br>12<br>8<br>16<br>12<br>6<br>33<br>5<br>14<br>12<br>24<br>7<br>12<br>4<br>23<br>29<br>30<br>21<br>2<br>7<br>7<br>7<br>4<br>23<br>27<br>12<br>11<br>12<br>8<br>16<br>16<br>12<br>6<br>33<br>5<br>14<br>2<br>22<br>24<br>7<br>7<br>7<br>7<br>4<br>23<br>27<br>12<br>11<br>12<br>8<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>17<br>2<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 925<br>776<br>1070<br>193<br>197<br>1175<br>974<br>196<br>1825<br>513<br>627<br>549<br>549<br>542<br>622<br>997<br>1087<br>787<br>679<br>625<br>200<br>539<br>197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 322<br>1045<br>504<br>927<br>1761<br>486<br>516<br>295<br>392<br>482<br>882<br>482<br>482<br>482<br>482<br>482<br>482<br>482<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 29<br>13<br>5<br>15<br>15<br>14<br>14<br>19<br>15<br>11<br>12<br>16<br>11<br>19<br>13<br>20<br>20<br>10<br>11<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7 152<br>1212<br>12 15<br>7 9 10<br>8 7 9 18<br>3 8 10 14<br>8 19 19 9 7 23<br>13 11 8 10 20 15 11 9 6 23<br>28 12 6 9 5 12 12 18 20 17 12 9 6 5 7 18 14 10 8 12 8 12 71 11 11 7 7 5 14 9 13 23 15 10 11<br>12 15 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0<br>40<br>17<br>19<br>6<br>17<br>21<br>22<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>25<br>25<br>27<br>20<br>25<br>27<br>20<br>25<br>27<br>20<br>25<br>17<br>12<br>15<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9<br>21<br>16<br>18<br>22<br>10<br>13<br>13<br>10<br>10<br>12<br>28<br>11<br>15<br>18<br>26<br>27<br>13<br>9<br>28<br>115<br>18<br>26<br>27<br>13<br>9<br>28<br>115<br>13<br>29<br>22<br>13<br>14<br>7<br>28<br>5<br>16<br>8<br>15<br>27<br>13<br>9<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>116<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>116<br>12<br>28<br>115<br>12<br>28<br>116<br>12<br>28<br>115<br>12<br>28<br>115<br>12<br>28<br>116<br>12<br>28<br>115<br>12<br>28<br>116<br>12<br>28<br>116<br>12<br>28<br>117<br>12<br>28<br>116<br>12<br>28<br>117<br>12<br>28<br>116<br>12<br>28<br>116<br>12<br>28<br>116<br>12<br>28<br>116<br>12<br>28<br>117<br>12<br>28<br>116<br>12<br>28<br>116<br>12<br>28<br>116<br>12<br>28<br>116<br>12<br>28<br>116<br>12<br>28<br>116<br>12<br>28<br>116<br>12<br>28<br>116<br>12<br>28<br>116<br>12<br>28<br>116<br>12<br>28<br>116<br>12<br>28<br>116<br>12<br>28<br>116<br>12<br>28<br>116<br>12<br>28<br>12<br>12<br>28<br>116<br>12<br>28<br>12<br>12<br>28<br>12<br>12<br>28<br>12<br>12<br>28<br>12<br>12<br>28<br>12<br>12<br>28<br>12<br>12<br>28<br>12<br>12<br>28<br>12<br>12<br>28<br>12<br>12<br>28<br>12<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>12<br>28<br>28<br>12<br>28<br>28<br>12<br>28<br>12<br>28<br>28<br>12<br>28<br>28<br>12<br>28<br>28<br>28<br>12<br>28<br>28<br>28<br>12<br>28<br>28<br>12<br>28<br>28<br>28<br>12<br>28<br>28<br>12<br>28<br>28<br>28<br>12<br>28<br>28<br>12<br>28<br>28<br>12<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 97<br>101<br>99<br>97<br>97<br>98<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73<br>97<br>98<br>99<br>99<br>99<br>99<br>99<br>90<br>91<br>100<br>101<br>99<br>97<br>99<br>99<br>99<br>99<br>90<br>90<br>90<br>99<br>99<br>99<br>99<br>99<br>90<br>90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 91<br>107<br>96<br>82<br>60<br>101<br>100<br>68<br>96<br>105<br>83<br>105<br>105<br>83<br>100<br>102<br>94<br>97<br>99<br>98<br>4<br>102<br>64<br>105<br>89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 244<br>91<br>1066<br>933<br>977<br>99<br>99<br>90<br>266<br>269<br>269<br>99<br>90<br>90<br>933<br>933<br>977<br>97<br>90<br>90<br>99<br>90<br>90<br>91<br>1000<br>933<br>977<br>97<br>90<br>90<br>90<br>90<br>91<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| DES1 - 27<br>DES1 - 28<br>DES1 - 29<br>DES1 - 30<br>DES1 - 31<br>DES1 - 32<br>DES1 - 32<br>DES1 - 34<br>DES1 - 34<br>DES1 - 35<br>DES1 - 34<br>DES1 - 36<br>DES1 - 36<br>DES1 - 46<br>DES1 - 46<br>DES1 - 46<br>DES1 - 46<br>DES1 - 46<br>DES1 - 46<br>DES1 - 50<br>DES1 - 51<br>DES1 - 51<br>DES1 - 52<br>DES1 - 52<br>DES1 - 63<br>DES1 - 72<br>DES1 - 74<br>DES1 - 72<br>DES1 - 72<br>DES1 - 74<br>DES1 - 72<br>DES1 - 72<br>DES1 - 72<br>DES1 - 72<br>DES1 - 74<br>DES1 - 74<br>DES1 - 72<br>DES1 - 74<br>DES1 - 74     | 9.2.E+04<br>1.2.E+05<br>3.3.E+05<br>7.2.E+04<br>3.9.E+04<br>3.9.E+04<br>3.9.E+04<br>3.9.E+04<br>3.9.E+04<br>3.2.E+05<br>3.0.E+04<br>3.2.E+05<br>3.0.E+04<br>3.2.E+05<br>3.1.E+04<br>3.1.E+04<br>3.3.E+05<br>6.1.E+05<br>3.3.E+04<br>6.2.E+05<br>1.7.E+05<br>3.6.E+04<br>2.1.E+05<br>3.6.E+04<br>2.1.E+05<br>3.6.E+04<br>2.1.E+05<br>3.6.E+05<br>8.3.E+05<br>7.0.E+05<br>8.3.E+05<br>7.0.E+05<br>8.3.E+05<br>7.0.E+05<br>8.3.E+05<br>7.0.E+05<br>8.3.E+05<br>7.0.E+05<br>8.3.E+05<br>7.0.E+05<br>8.3.E+05<br>7.0.E+05<br>8.3.E+05<br>7.0.E+05<br>8.3.E+05<br>7.0.E+05<br>8.3.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0.E+05<br>7.0 | b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.<br>b.d.       | bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>b | 238<br>151<br>151<br>151<br>161<br>79<br>91<br>166<br>211<br>239<br>211<br>230<br>162<br>213<br>200<br>162<br>213<br>230<br>162<br>213<br>162<br>214<br>230<br>162<br>213<br>162<br>162<br>170<br>142<br>420<br>90<br>137<br>142<br>420<br>90<br>137<br>142<br>420<br>90<br>137<br>142<br>420<br>137<br>142<br>142<br>142<br>142<br>142<br>142<br>142<br>142 | 0.64<br>0.21<br>0.13<br>0.25<br>0.36<br>0.23<br>0.54<br>0.42<br>0.75<br>1.75<br>0.49<br>0.47<br>0.47<br>0.47<br>0.47<br>0.47<br>0.47<br>0.44<br>0.21<br>0.66<br>0.27<br>0.50<br>0.39<br>0.74<br>0.66<br>0.27<br>0.56<br>0.44<br>0.21<br>0.56<br>0.54<br>0.44<br>0.47<br>0.54<br>0.54<br>0.21<br>0.54<br>0.21<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.55<br>0.54<br>0.27<br>0.50<br>0.54<br>0.54<br>0.27<br>0.56<br>0.57<br>0.56<br>0.57<br>0.56<br>0.57<br>0.57<br>0.56<br>0.57<br>0.56<br>0.57<br>0.56<br>0.57<br>0.56<br>0.57<br>0.56<br>0.57<br>0.56<br>0.57<br>0.56<br>0.57<br>0.56<br>0.57<br>0.56<br>0.57<br>0.56<br>0.57<br>0.56<br>0.57<br>0.56<br>0.57<br>0.56<br>0.57<br>0.56<br>0.57<br>0.56<br>0.56<br>0.57<br>0.56<br>0.56<br>0.57<br>0.56<br>0.56<br>0.57<br>0.56<br>0.56<br>0.57<br>0.56<br>0.57<br>0.57<br>0.56<br>0.56<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57 | $\begin{array}{c} 12.72\\ 5.80\\ 8.41\\ 9.99\\ 5.61\\ 5.82\\ 7.13\\ 9.87\\ 5.84\\ 7.08\\ 44.13\\ 11.67\\ 31.67\\ 33.60\\ 5.59\\ 5.67\\ 9.24\\ 11.82\\ 12.00\\ 33.60\\ 5.59\\ 5.67\\ 9.24\\ 5.98\\ 5.89\\ 6.64\\ 10.24\\ 5.50\\ 42.07\\ 7.33\\ 3.306\\ 2.90\\ 5.50\\ 7.78\\ 5.38\\ 5.43\\ 11.67\\ 11.98\\ 5.43\\ 11.67\\ 11.98\\ 16.01\\ 6.81\\ \end{array}$ | 0.21<br>0.15<br>0.13<br>0.14<br>0.14<br>0.14<br>0.12<br>0.14<br>0.12<br>0.14<br>0.10<br>0.15<br>0.20<br>0.22<br>0.24<br>1.11<br>0.09<br>0.20<br>0.15<br>0.10<br>0.29<br>0.24<br>1.11<br>0.19<br>0.20<br>0.20<br>0.11<br>0.15<br>0.10<br>0.20<br>0.20<br>0.15<br>0.10<br>0.12<br>0.24<br>0.24<br>0.12<br>0.13<br>0.24<br>0.24<br>0.24<br>0.24<br>0.15<br>0.15<br>0.20<br>0.25<br>0.15<br>0.15<br>0.20<br>0.25<br>0.20<br>0.15<br>0.15<br>0.20<br>0.20<br>0.25<br>0.20<br>0.25<br>0.20<br>0.25<br>0.20<br>0.25<br>0.20<br>0.25<br>0.20<br>0.25<br>0.20<br>0.25<br>0.20<br>0.25<br>0.20<br>0.25<br>0.20<br>0.25<br>0.25 | 0.0576<br>0.0722<br>0.0640<br>0.0607<br>0.0773<br>0.0682<br>0.0634<br>0.0634<br>0.0635<br>0.0644<br>0.0535<br>0.0579<br>0.0544<br>0.0535<br>0.0579<br>0.0544<br>0.0519<br>0.0519<br>0.0519<br>0.0759<br>0.0615<br>0.0770<br>0.0615<br>0.0770<br>0.0615<br>0.0770<br>0.0615<br>0.0770<br>0.0615<br>0.0770<br>0.0615<br>0.0770<br>0.0615<br>0.0770<br>0.0615<br>0.0770<br>0.0611<br>0.0511<br>0.0687<br>0.06818<br>0.0750<br>0.0679<br>0.0679<br>0.0751<br>0.06818<br>0.0750<br>0.0679<br>0.0751<br>0.0687<br>0.06818<br>0.0750<br>0.0679<br>0.0750<br>0.0679<br>0.0750<br>0.0679<br>0.0750<br>0.0750<br>0.0750<br>0.0750<br>0.0750<br>0.0750<br>0.0750<br>0.0750<br>0.0750<br>0.0750<br>0.0750<br>0.0750<br>0.0750<br>0.0750<br>0.0750<br>0.0750<br>0.0679<br>0.0750<br>0.0679<br>0.0750<br>0.0679<br>0.0750<br>0.0679<br>0.0591<br>0.0591<br>0.0591<br>0.0591<br>0.0591<br>0.0591<br>0.0591<br>0.0591<br>0.0595<br>0.0591<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0759<br>0.0595<br>0.0775<br>0.0595<br>0.0775<br>0.0775<br>0.0775<br>0.0775<br>0.0775<br>0.0775<br>0.00770<br>0.0591<br>0.0595<br>0.0775<br>0.0595<br>0.0775<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0595<br>0.0555<br>0.0595<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.0555<br>0.05550<br>0.05550<br>0.05550<br>0.05550<br>0.05550<br>0.055500000000 | 0.0011<br>0.0014<br>0.0010<br>0.0023<br>0.0027<br>0.0016<br>0.0013<br>0.0013<br>0.0013<br>0.0030<br>0.0030<br>0.0028<br>0.0008<br>0.0028<br>0.0008<br>0.0014<br>0.0014<br>0.0013<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0011<br>0.0029<br>0.0014<br>0.0022<br>0.0056<br>0.0014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.6220<br>1.7/70<br>1.0510<br>1.8850<br>1.8850<br>1.8850<br>1.3870<br>0.8870<br>1.3370<br>0.8770<br>1.7480<br>0.2162<br>0.2119<br>0.2119<br>0.2119<br>0.2119<br>0.2119<br>1.8860<br>1.2120<br>1.8380<br>1.2120<br>1.8380<br>1.2120<br>1.8590<br>1.2150<br>0.8450<br>0.8450<br>0.22119<br>0.2119<br>1.8590<br>1.2150<br>0.8590<br>1.3600<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3660<br>0.3670<br>0.2119<br>0.22119<br>0.3670<br>0.22119<br>0.3670<br>0.22119<br>0.22119<br>0.3670<br>0.22119<br>0.3670<br>0.22119<br>0.3670<br>0.22119<br>0.22119<br>0.3670<br>0.22119<br>0.3670<br>0.22119<br>0.22119<br>0.3670<br>0.22119<br>0.3670<br>0.22119<br>0.3670<br>0.22119<br>0.3670<br>0.22119<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3670<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.3770<br>0.37700<br>0.37700<br>0.37700<br>0.37700<br>0.37700<br>0.37700<br>0.37700<br>0.37700<br>0.37700<br>0.37700<br>0.37700<br>0.37700<br>0.37700<br>0.37700<br>0.37700<br>0.37700<br>0.37700<br>0.37700<br>0.37700<br>0.37700<br>0.3770000000000 | 0 0140<br>0 0630<br>0 0210<br>0 0250<br>0 0540<br>0 0540<br>0 0540<br>0 0240<br>0 0540<br>0 0450<br>0 0140<br>0 0150<br>0 0000<br>0 000000 | 0.0786<br>0.1729<br>0.1189<br>0.1001<br>0.1702<br>0.1712<br>0.1712<br>0.1712<br>0.1712<br>0.1712<br>0.0227<br>0.0237<br>0.0243<br>0.0223<br>0.0243<br>0.0223<br>0.0243<br>0.0228<br>0.0228<br>0.0228<br>0.0228<br>0.0228<br>0.0228<br>0.0228<br>0.0228<br>0.0228<br>0.0228<br>0.0228<br>0.0228<br>0.0228<br>0.0228<br>0.0228<br>0.0228<br>0.0228<br>0.0228<br>0.0228<br>0.025<br>0.0265<br>0.1764<br>0.025<br>0.0506<br>0.0278<br>0.0566<br>0.0278<br>0.0566<br>0.0175<br>0.1675<br>0.0283<br>0.0283<br>0.0283<br>0.0283<br>0.0283<br>0.0283<br>0.0566<br>0.0278<br>0.0278<br>0.0567<br>0.0278<br>0.0278<br>0.0278<br>0.01774<br>0.0567<br>0.0278<br>0.0278<br>0.0278<br>0.0278<br>0.0278<br>0.0278<br>0.0278<br>0.0278<br>0.0278<br>0.0278<br>0.0278<br>0.0278<br>0.0278<br>0.0278<br>0.0278<br>0.01774<br>0.0567<br>0.0278<br>0.0278<br>0.01774<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0577<br>0.0575<br>0.0577<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.0575<br>0.05750<br>0.05750<br>0.05750<br>0.05750000000000 | 0.0013<br>0.0049<br>0.0036<br>0.0029<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0018<br>0.0020<br>0.0010<br>0.0020<br>0.0010<br>0.0020<br>0.0010<br>0.0020<br>0.0011<br>0.0020<br>0.0011<br>0.0020<br>0.0011<br>0.0020<br>0.0011<br>0.0028<br>0.0011<br>0.0028<br>0.0011<br>0.0028<br>0.0011<br>0.0028<br>0.0011<br>0.0028<br>0.0021<br>0.0021<br>0.0028<br>0.0021<br>0.0028<br>0.0021<br>0.0028<br>0.0021<br>0.0028<br>0.0021<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0018<br>0.0028<br>0.0018<br>0.0028<br>0.0018<br>0.0028<br>0.0018<br>0.0028<br>0.0018<br>0.0028<br>0.0018<br>0.0028<br>0.0018<br>0.0028<br>0.0018<br>0.0028<br>0.0018<br>0.0028<br>0.0018<br>0.0028<br>0.0018<br>0.0028<br>0.0018<br>0.0028<br>0.0018<br>0.0028<br>0.0018<br>0.0028<br>0.0018<br>0.0028<br>0.0018<br>0.0028<br>0.0018<br>0.0028<br>0.0018<br>0.0028<br>0.0018<br>0.0028<br>0.0028<br>0.0018<br>0.0028<br>0.0018<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0031<br>0.0028<br>0.0031<br>0.0028<br>0.0031<br>0.0028<br>0.0031<br>0.0028<br>0.0031<br>0.0028<br>0.0031<br>0.0028<br>0.0031<br>0.0028<br>0.0031<br>0.0028<br>0.0031<br>0.0028<br>0.0031<br>0.0028<br>0.0031<br>0.0028<br>0.0028<br>0.0031<br>0.0028<br>0.0031<br>0.0028<br>0.0031<br>0.0028<br>0.0031<br>0.0028<br>0.0031<br>0.0028<br>0.0031<br>0.0028<br>0.0031<br>0.0028<br>0.0031<br>0.0038<br>0.0031<br>0.0038<br>0.0031<br>0.0038<br>0.0031<br>0.0038<br>0.0031<br>0.0038<br>0.0031<br>0.0038<br>0.0031<br>0.0038<br>0.0031<br>0.0038<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.0031<br>0.00310<br>0.00310000000000                      | 0.73<br>0.73<br>0.80<br>0.90<br>0.90<br>0.41<br>0.41<br>0.66<br>0.79<br>0.80<br>0.51<br>0.46<br>0.33<br>0.42<br>0.42<br>0.42<br>0.42<br>0.42<br>0.42<br>0.42<br>0.42 | 494<br>970<br>731<br>615<br>1103<br>1114<br>874<br>677<br>1016<br>856<br>180<br>660<br>294<br>514<br>347<br>539<br>894<br>232<br>1076<br>1079<br>1219<br>1022<br>1096<br>923<br>619<br>1115<br>1184<br>216<br>878<br>970<br>1215<br>1184<br>216<br>878<br>910<br>1969<br>1015<br>1184<br>216<br>878<br>910<br>1969<br>1015<br>1184<br>216<br>875<br>1115<br>1184<br>216<br>875<br>1115<br>1184<br>216<br>875<br>1115<br>1115<br>1114<br>216<br>875<br>1115<br>1115<br>1114<br>216<br>875<br>1115<br>1114<br>217<br>1115<br>1114<br>217<br>1114<br>217<br>1114<br>217<br>1114<br>217<br>1114<br>217<br>1114<br>217<br>1114<br>217<br>1114<br>217<br>1114<br>217<br>1114<br>217<br>217<br>1115<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217 | 42<br>40<br>31<br>68<br>32<br>30<br>55<br>55<br>36<br>40<br>94<br>92<br>29<br>150<br>130<br>32<br>28<br>23<br>44<br>47<br>66<br>130<br>32<br>28<br>23<br>44<br>42<br>40<br>47<br>46<br>27<br>55<br>51<br>40<br>47<br>46<br>27<br>55<br>51<br>40<br>30<br>38<br>55<br>55<br>53<br>64<br>40<br>30<br>38<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>56<br>40<br>56<br>55<br>55<br>56<br>40<br>56<br>55<br>55<br>56<br>40<br>56<br>55<br>55<br>56<br>40<br>56<br>55<br>55<br>56<br>40<br>56<br>55<br>55<br>56<br>40<br>56<br>55<br>56<br>40<br>56<br>55<br>56<br>40<br>56<br>55<br>56<br>40<br>56<br>55<br>56<br>40<br>56<br>55<br>56<br>40<br>50<br>56<br>56<br>56<br>56<br>56<br>56<br>40<br>50<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56 | 43<br>41<br>34<br>93<br>53<br>33<br>81<br>56<br>37<br>41<br>57<br>41<br>99<br>919<br>32<br>57<br>74<br>11<br>99<br>919<br>32<br>57<br>25<br>50<br>26<br>26<br>26<br>24<br>24<br>87<br>29<br>50<br>26<br>26<br>23<br>31<br>87<br>41<br>53<br>33<br>146<br>83<br>33<br>53<br>34<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53 | 488<br>1024<br>724<br>615<br>1057<br>1022<br>845<br>622<br>1057<br>1026<br>845<br>622<br>108<br>534<br>534<br>534<br>534<br>534<br>534<br>534<br>534<br>534<br>534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8<br>255<br>111<br>224<br>155<br>130<br>107<br>165<br>134<br>108<br>120<br>6<br>166<br>161<br>233<br>155<br>100<br>1167<br>254<br>277<br>1637<br>130<br>1167<br>254<br>277<br>1637<br>130<br>1167<br>130<br>1167<br>130<br>116<br>130<br>117<br>116<br>130<br>117<br>117<br>117<br>117<br>117<br>117<br>117<br>117<br>117<br>11                                           | 12<br>31<br>16<br>24<br>23<br>20<br>15<br>5<br>14<br>22<br>7<br>16<br>5<br>14<br>9<br>15<br>14<br>7<br>23<br>24<br>15<br>24<br>7<br>29<br>5<br>40<br>419<br>25<br>5<br>40<br>419<br>25<br>5<br>40<br>419<br>23<br>5<br>40<br>15<br>5<br>40<br>15<br>40<br>23<br>23<br>24<br>23<br>24<br>23<br>24<br>25<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26 | 491<br>1012<br>728<br>618<br>1074<br>1054<br>858<br>643<br>1023<br>858<br>148<br>586<br>1023<br>858<br>148<br>581<br>108<br>195<br>1068<br>1057<br>1057<br>1058<br>1057<br>1058<br>1057<br>1058<br>1057<br>1058<br>1057<br>1058<br>1155<br>158<br>846<br>1098<br>1115<br>1158<br>846<br>1098<br>1117<br>1158<br>846<br>1098<br>1117<br>1158<br>846<br>1098<br>1117<br>1158<br>846<br>1098<br>1117<br>1158<br>846<br>1098<br>1117<br>1158<br>846<br>1098<br>1158<br>846<br>1007<br>1007<br>1007<br>1007<br>1007<br>1007<br>1007<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9<br>18<br>10<br>14<br>17<br>13<br>22<br>14<br>15<br>11<br>23<br>11<br>9<br>7<br>9<br>15<br>14<br>13<br>12<br>12<br>11<br>13<br>13<br>12<br>18<br>18<br>16<br>16<br>12<br>14<br>22<br>18<br>14<br>15<br>11<br>23<br>11<br>9<br>7<br>9<br>15<br>14<br>15<br>12<br>21<br>14<br>15<br>22<br>14<br>14<br>15<br>22<br>14<br>15<br>15<br>22<br>14<br>14<br>15<br>22<br>14<br>14<br>15<br>22<br>14<br>14<br>15<br>22<br>14<br>14<br>15<br>22<br>14<br>14<br>15<br>22<br>14<br>15<br>15<br>24<br>14<br>15<br>15<br>24<br>14<br>15<br>15<br>24<br>14<br>15<br>15<br>24<br>14<br>15<br>15<br>24<br>14<br>15<br>15<br>24<br>14<br>15<br>15<br>24<br>14<br>15<br>15<br>24<br>14<br>15<br>15<br>24<br>14<br>15<br>15<br>24<br>14<br>15<br>15<br>24<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>17<br>17<br>17<br>18<br>18<br>19<br>18<br>18<br>18<br>19<br>18<br>19<br>18<br>19<br>18<br>19<br>18<br>19<br>19<br>19<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>11<br>18<br>18 | 11<br>29<br>15<br>18<br>22<br>19<br>17<br>22<br>19<br>17<br>22<br>19<br>17<br>22<br>19<br>17<br>22<br>19<br>12<br>22<br>13<br>12<br>21<br>13<br>25<br>15<br>20<br>19<br>16<br>21<br>21<br>18<br>21<br>17<br>20<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>19<br>22<br>21<br>12<br>22<br>19<br>12<br>22<br>19<br>12<br>22<br>19<br>16<br>22<br>19<br>17<br>22<br>19<br>16<br>22<br>19<br>17<br>22<br>19<br>16<br>22<br>19<br>17<br>22<br>19<br>16<br>22<br>19<br>17<br>22<br>19<br>16<br>22<br>19<br>16<br>22<br>19<br>16<br>22<br>19<br>16<br>22<br>19<br>16<br>22<br>19<br>16<br>22<br>19<br>16<br>22<br>19<br>16<br>22<br>19<br>16<br>22<br>19<br>16<br>22<br>17<br>22<br>19<br>16<br>22<br>19<br>16<br>22<br>19<br>16<br>22<br>19<br>16<br>22<br>17<br>22<br>20<br>24<br>22<br>20<br>24<br>12<br>22<br>20<br>24<br>15<br>22<br>20<br>24<br>15<br>22<br>20<br>24<br>15<br>22<br>20<br>24<br>15<br>22<br>20<br>24<br>15<br>22<br>20<br>24<br>22<br>20<br>24<br>15<br>22<br>20<br>24<br>15<br>22<br>20<br>24<br>15<br>22<br>20<br>24<br>15<br>20<br>20<br>24<br>15<br>22<br>20<br>24<br>19<br>22<br>20<br>24<br>19<br>22<br>20<br>24<br>19<br>22<br>20<br>24<br>19<br>22<br>20<br>24<br>19<br>22<br>20<br>24<br>19<br>22<br>22<br>11<br>22<br>22<br>11<br>22<br>22<br>22<br>11<br>22<br>22<br>22 | 99<br>101<br>99<br>99<br>97<br>97<br>97<br>97<br>99<br>97<br>94<br>100<br>99<br>94<br>101<br>92<br>88<br>86<br>97<br>99<br>98<br>82<br>99<br>97<br>99<br>98<br>99<br>97<br>66<br>98<br>97<br>99<br>98<br>97<br>97<br>96<br>97<br>96<br>97<br>99<br>98<br>99<br>97<br>99<br>99<br>99<br>97<br>99<br>99<br>97<br>97<br>99<br>97<br>97 | 99<br>106<br>99<br>90<br>92<br>97<br>92<br>90<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KNYE - 2<br>KNYE - 3<br>KNYE - 4<br>KNYE - 5<br>KNYE - 6<br>KNYE - 7<br>KNYE - 10<br>KNYE - 10<br>KNYE - 10<br>KNYE - 20<br>KNYE - 20<br>KNYE - 20<br>KNYE - 20<br>KNYE - 20<br>KNYE - 30<br>KNYE - 40<br>KNYE - 50<br>KNYE - | $\begin{array}{c} 5.5 \pm 0.05\\ 7.3 \pm 0.05\\ 2.4 \pm 0.05\\ 5.5 \pm 0.4\\ 1.4 \pm 0.05\\ 2.7 \pm 0.05\\ 2.7 \pm 0.05\\ 2.3 \pm 0.05\\ 0.7 \pm 0.05\\ 2.3 \pm 0.05\\ 0.0 \pm 0.05\\ $                                                                                                                                                                | bd,<br>bd,<br>bd,<br>bd,<br>bd,<br>bd,<br>bd,<br>bd,<br>bd,<br>bd, | bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>bd<br>b | 681<br>698<br>698<br>171<br>187<br>198<br>256<br>256<br>255<br>275<br>85<br>3722<br>285<br>351<br>275<br>85<br>351<br>290<br>238<br>348<br>348<br>348<br>348<br>348<br>348<br>348<br>348<br>348<br>3                                                                                                                                                         | 0.21<br>0.48<br>0.25<br>0.57<br>0.48<br>0.97<br>0.18<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 10.38\\ 7.94\\ 5.18\\ 11.84\\ 11.84\\ 5.40\\ 5.40\\ 5.40\\ 5.73\\ 10.47\\ 11.52\\ 7.09\\ 1.93\\ 5.72\\ 6.39\\ 10.82\\ 9.38\\ 12.85\\ 5.15\\ 10.21\\ 11.677\\ 5.41\\ 10.01\\ 11.66\\ 5.03\\ 6.91\\ 3.011\\ 4.95\\ 5.85\\ 10.78\\ 9.53\\ 5.66\\ 8.04\\ 6.38\\ 4.5.78\\ \end{array}$                                                         | 0.16<br>0.22<br>0.08<br>0.24<br>0.49<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0607<br>0.0654<br>0.0786<br>0.0581<br>0.0777<br>0.0766<br>0.0621<br>0.0766<br>0.0621<br>0.0744<br>0.0612<br>0.0744<br>0.0612<br>0.0594<br>0.0800<br>0.1885<br>0.0746<br>0.0739<br>0.0615<br>0.0624<br>0.0775<br>0.0615<br>0.0610<br>0.06815<br>0.0610<br>0.0784<br>0.0790<br>0.0755<br>0.0610<br>0.0755<br>0.0610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0009<br>0.013<br>0.0010<br>0.0036<br>0.0036<br>0.0036<br>0.0016<br>0.0019<br>0.0019<br>0.0009<br>0.0019<br>0.0009<br>0.0019<br>0.0009<br>0.0019<br>0.0009<br>0.0019<br>0.0019<br>0.0019<br>0.0019<br>0.0019<br>0.0019<br>0.0019<br>0.0019<br>0.0019<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0 | 0.8035<br>1.1220<br>2.1000<br>0.6780<br>0.9430<br>0.9430<br>0.9430<br>0.9430<br>0.9430<br>0.9430<br>0.9430<br>0.9430<br>0.9430<br>0.7420<br>1.5600<br>1.33000<br>1.8030<br>0.7120<br>0.7410<br>0.7120<br>0.7410<br>0.9710<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9080<br>0.9080<br>0.9080<br>0.9080<br>0.9080<br>0.9080<br>0.9080<br>0.9080<br>0.9080<br>0.9080<br>0.9080<br>0.9080<br>0.9080<br>0.9080<br>0.9080<br>0.9080<br>0.9080<br>0.9080<br>0.9080<br>0.9080<br>0.9080<br>0.9070<br>0.9080<br>0.9080<br>0.9080<br>0.9080<br>0.9070<br>0.9080<br>0.9080<br>0.9080<br>0.9070<br>0.9080<br>0.9080<br>0.9080<br>0.9070<br>0.9070<br>0.9080<br>0.9080<br>0.9080<br>0.9070<br>0.9070<br>0.9080<br>0.9080<br>0.9070<br>0.9070<br>0.9070<br>0.9080<br>0.9080<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.9070<br>0.907                                                                                                                                                                                                                                                                          | 0 02240<br>0 0330<br>0 0460<br>0 0568<br>0 1300<br>0 0440<br>0 0440<br>0 0440<br>0 0440<br>0 0440<br>0 0450<br>0 0500<br>0 0500<br>0 0500<br>0 0500<br>0 0500<br>0 0500<br>0 0460<br>0 0450<br>0 000<br>0 000000                 | 0.0964<br>0.1229<br>0.0845<br>0.2777<br>0.0865<br>0.2777<br>0.1839<br>0.1839<br>0.1857<br>0.1839<br>0.1857<br>0.0888<br>0.1414<br>0.0888<br>0.1414<br>0.0888<br>0.1414<br>0.0888<br>0.1414<br>0.0888<br>0.1414<br>0.0868<br>0.01664<br>0.01664<br>0.01664<br>0.01664<br>0.01664<br>0.01850<br>0.01850<br>0.01851<br>0.01850<br>0.01851<br>0.01850<br>0.01851<br>0.01855<br>0.01852<br>0.01852<br>0.01852<br>0.01852<br>0.01852<br>0.01852<br>0.01852<br>0.01855<br>0.01852<br>0.01852<br>0.01855<br>0.01852<br>0.01855<br>0.01852<br>0.01855<br>0.01855<br>0.01852<br>0.01855<br>0.01855<br>0.01852<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01770<br>0.01855<br>0.01770<br>0.01855<br>0.01770<br>0.01855<br>0.01770<br>0.01855<br>0.01770<br>0.01855<br>0.01770<br>0.01855<br>0.01770<br>0.01855<br>0.01770<br>0.01855<br>0.01770<br>0.01855<br>0.01770<br>0.01855<br>0.01770<br>0.01855<br>0.01770<br>0.01855<br>0.01770<br>0.01855<br>0.01770<br>0.01855<br>0.01770<br>0.01855<br>0.01770<br>0.01855<br>0.01855<br>0.01770<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.01855<br>0.00                                                             | 0.0015<br>0.0035<br>0.0029<br>0.0017<br>0.0081<br>0.0037<br>0.0081<br>0.0038<br>0.0018<br>0.0038<br>0.0019<br>0.0038<br>0.0019<br>0.0059<br>0.0059<br>0.0059<br>0.0059<br>0.0059<br>0.0059<br>0.0059<br>0.0059<br>0.0059<br>0.0059<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0013<br>0.0011<br>0.0022<br>0.0013<br>0.0014<br>0.0022<br>0.0013<br>0.0014<br>0.0022<br>0.0013<br>0.0014<br>0.0022<br>0.0013<br>0.0015<br>0.0013<br>0.0015<br>0.0013<br>0.0013<br>0.0015<br>0.0013<br>0.0013<br>0.0015<br>0.0013<br>0.0015<br>0.0013<br>0.0015<br>0.0023<br>0.0013<br>0.0015<br>0.0023<br>0.0015<br>0.0023<br>0.0015<br>0.0023<br>0.0015<br>0.0015<br>0.0023<br>0.0015<br>0.0015<br>0.0015<br>0.0023<br>0.0015<br>0.0023<br>0.0015<br>0.0023<br>0.0015<br>0.0023<br>0.0015<br>0.0025<br>0.0015<br>0.0025<br>0.0015<br>0.0025<br>0.0015<br>0.0025<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.0 | 0.52<br>0.95<br>0.69<br>0.59<br>0.59<br>0.59<br>0.62<br>0.77<br>0.73<br>0.77<br>0.78<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76                 | 627<br>787<br>787<br>1139<br>1732<br>1732<br>1732<br>1732<br>678<br>607<br>607<br>607<br>605<br>1051<br>646<br>582<br>1196<br>2712<br>1058<br>1039<br>592<br>858<br>888<br>1135<br>864<br>595<br>1238<br>1116<br>639<br>718<br>1157<br>1006<br>1849<br>1157<br>1030<br>639<br>641<br>1030<br>641<br>1032<br>777<br>986<br>1035                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32<br>42<br>72<br>72<br>28<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>32<br>32<br>27<br>30<br>36<br>35<br>32<br>27<br>30<br>36<br>35<br>32<br>27<br>30<br>36<br>35<br>32<br>27<br>30<br>36<br>35<br>32<br>27<br>30<br>36<br>35<br>32<br>27<br>30<br>36<br>35<br>32<br>32<br>27<br>30<br>36<br>35<br>31<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33                                                                                                                                                                                                                                                                                                                                                                                        | 34<br>43<br>427<br>72<br>93<br>297<br>66<br>24<br>101<br>26<br>68<br>72<br>53<br>329<br>25<br>339<br>25<br>339<br>25<br>339<br>25<br>25<br>339<br>25<br>25<br>339<br>25<br>25<br>339<br>25<br>25<br>339<br>25<br>25<br>35<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                                                     | 593<br>764<br>1137<br>523<br>537<br>1580<br>660<br>550<br>1038<br>660<br>550<br>1038<br>537<br>851<br>2886<br>1039<br>938<br>537<br>851<br>2886<br>1039<br>938<br>535<br>1145<br>603<br>535<br>1104<br>1078<br>603<br>535<br>11094<br>643<br>871<br>1168<br>871<br>1168<br>871<br>1168<br>871<br>1168<br>871<br>1168<br>873<br>1169<br>873<br>1169<br>873<br>1169<br>873<br>1169<br>873<br>1169<br>873<br>1169<br>873<br>1169<br>873<br>1169<br>873<br>1169<br>873<br>1169<br>873<br>1169<br>873<br>1169<br>873<br>1169<br>873<br>1169<br>873<br>1169<br>873<br>1169<br>873<br>1169<br>873<br>1169<br>873<br>1169<br>873<br>1169<br>873<br>1169<br>873<br>1169<br>873<br>1169<br>873<br>1169<br>873<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>875<br>1169<br>1169<br>1169<br>1169<br>1169<br>1169<br>1169<br>116 | 9<br>201<br>10<br>241<br>41<br>21<br>8<br>10<br>211<br>355<br>51<br>328<br>8<br>10<br>111<br>16<br>17<br>13<br>114<br>30<br>35<br>19<br>10<br>115<br>114<br>30<br>31<br>114<br>30<br>31<br>114<br>30<br>31<br>114<br>30<br>31<br>114<br>30<br>31<br>114<br>30<br>31<br>114<br>30<br>116<br>117<br>217<br>114<br>117<br>117<br>117<br>117<br>117<br>117<br>117<br>117<br>1 | 13<br>24<br>24<br>14<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24                                                                                                                                                                                                                                                                                   | <ul> <li>599</li> <li>769</li> <li>769</li> <li>764</li> <li>1642</li> <li>1003</li> <li>1008</li> <li>1003</li> <li>1043</li> <li>1043</li> <li>2701</li> <li>1047</li> <li>968</li> <li>2701</li> <li>1164</li> <li>1065</li> <li>566</li> <li>566</li> <li>566</li> <li>1167</li> <li>908</li> <li>3681</li> <li>1182</li> <li>1162</li> <li>614</li> <li>1062</li> <li>644</li> <li>1064</li> <li>1061</li> <li>561</li> <li>565</li> <li>565</li> <li>555</li> <li>555</li> <li>565</li> <li>566</li> <li>566&lt;</li></ul> | 13<br>16<br>21<br>326<br>15<br>15<br>19<br>18<br>18<br>50<br>31<br>14<br>22<br>11<br>10<br>14<br>14<br>19<br>9<br>7<br>7<br>18<br>13<br>14<br>14<br>19<br>9<br>7<br>17<br>22<br>7<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16<br>19<br>22<br>33<br>30<br>21<br>8<br>22<br>30<br>21<br>8<br>22<br>20<br>8<br>52<br>53<br>19<br>24<br>4<br>15<br>12<br>19<br>24<br>14<br>15<br>12<br>19<br>16<br>17<br>14<br>22<br>11<br>15<br>14<br>21<br>23<br>31<br>21<br>15<br>21<br>14<br>20<br>23<br>23<br>21<br>21<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>86<br>100<br>99<br>100<br>88<br>99<br>98<br>88<br>88<br>99<br>99<br>100<br>83<br>100<br>98<br>99<br>99<br>100<br>99<br>99<br>99<br>100<br>99<br>99<br>99<br>100<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>9                                              | 95<br>97<br>98<br>98<br>97<br>99<br>99<br>91<br>99<br>91<br>99<br>91<br>99<br>91<br>99<br>91<br>99<br>91<br>99<br>91<br>90<br>96<br>99<br>970<br>101<br>91<br>90<br>88<br>97<br>701<br>101<br>187<br>99<br>94<br>90<br>95<br>99<br>94<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99 |

Uncertainties quoted without components related to systematic error unless othenwise stated. Total systematic uncertainties (s sys):<sup>200</sup>Pb/<sup>230</sup>U = 1.8 %; <sup>207</sup>Pb/<sup>200</sup>Pb = 0.5 % (2s). <sup>a</sup> Data not corrected for common Pb <sup>b</sup> Concordance calculated as: (<sup>200</sup>Pb-<sup>230</sup>U date)<sup>507</sup>Pb-<sup>230</sup>U date)<sup>100</sup>Pb = 0.5 % (2s).



0.0242

0.0238

0.0234

8

Pb 0.0230



6



4

1400

1000

2

1

 $^{206} Pb/^{238} U$ 

0.2

0.0

0



Fig. F1. Isotopic data for all detrital deposits in the Robertson and Heidelberg Basins plotted as concordia diagrams. a) Sample Ak5 from the Robertson Basin, a concordia age of 147.0 ± 1.1 Ma (95 % confidence) is calculated for the youngest age component, which is comprised of concordant and equivalent dates (Ludwig, 2000). b) Sample ASH1 from the Robertson Basin. c) RAE from the Robertson Basin. d) Sample HBUE1 from the Heidelberg Basin, a concordia age of 179 ± 5.0 Ma (95 % confidence) is calculated for the youngest age component, which is comprised of concordant and equivalent dates (Ludwig, 2000) Dates older than 1500 are





Fig. F2. Isotopic data from detrital zircon samples in the Mossel Bayt Basin plotted as concordia diagrams. a) Resedimented volcaniclastic sample KLIP; b) Siliciclastic sample MBHF; c) Resedimented volcaniclastic sample SITT2; d) Resedimented volcaniclastic sample SITT3. Dates older than 1500 are omitted.



Fig. F3. Isotopic data for all detrital deposits in the Oudtshoorn Basin plotted as concordia diagrams. a) Siliciclastic sample OES1. b) Resedimented volcaniclastic sample DERU. c) Residemented volcaniclastic sample DERC1. Dates older than 1500 are omitted.





Fig. F4. Isotopic data from detrital samples in the Knysna and Plettenberg Bay Basins plotted as concordia diagrams. a) Siliciclastic sample KNYE from the Knysna Basin; b) Siliciclastic sample BREN2 from the Knysna Basin; c)

Siliciclastic sample RBGS1 from the Plettenberg Bay Basin. Dates older than 1500 are omitted.



Fig. F5. Isotopic data from detrital samples in the Gamtoos Basin plotted as concordia diagrams. a) Siliciclastic sample GKT1; b) Siliciclastic sample GES3. Dates older than 1500 are omitted.



Figure continues on following page



Fig. F6. Isotopic data of detrital samples from the Algoa Basin plotted as concordia diagrams. a) Silciclastic sample AECOCS; b) Silciclastic sample AKIRK; c) Silciclastic sample AKSTR; d) Silciclastic sample KDUNS; e) Silciclastic sample KBCS2; f) Silciclastic sample KBEZS1; g) Silciclastic sample KWAS3; Silciclastic sample SRFS1. Dates older than 1500 are omitted.

# Appendix G. CA-TIMS isotopic data

Table G1. Zircon isotopic data for four samples that were analysed by CA-TIMS at the Berkeley Geochronology Center

|           | diseq.com                              |       | 207                                   |              | diseq.c                                | xorr.            |               |                |                  |                       | diseq.corr.                           |              |                | diseq.corr.                            | corr.                                  | corr.                                  | corr.                                  | diseq.corr.                           |                       | diseq.corr.                            |                       |                                       |                       | tot.diseq.com                          |                       | diseq.corr.                            |                       | ioi.uiseq.com                         |      |
|-----------|----------------------------------------|-------|---------------------------------------|--------------|----------------------------------------|------------------|---------------|----------------|------------------|-----------------------|---------------------------------------|--------------|----------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|-----------------------|----------------------------------------|-----------------------|---------------------------------------|-----------------------|----------------------------------------|-----------------------|----------------------------------------|-----------------------|---------------------------------------|------|
| Sample    | <sup>206</sup> Pb*<br><sup>238</sup> U |       | <sup>207</sup> Pb<br><sup>235</sup> U | *            | <sup>207</sup> Pl<br><sup>206</sup> Pl | <u>b*</u><br>b*  | cm.Pb<br>(pg) | <u>Th</u><br>U | 207 Pb<br>235 U  | 2 <del>σ</del><br>%er | <sup>206</sup> Pb<br><sup>238</sup> U | 2s<br>%er    | ρ              | <sup>206</sup> Pb<br><sup>204</sup> Pb | <sup>206</sup> Pb<br><sup>204</sup> Pb | <sup>207</sup> Pb<br><sup>204</sup> Pb | <sup>208</sup> Pb<br><sup>204</sup> Pb | <sup>238</sup> U<br><sup>206</sup> Pb | 2 <del>o</del><br>%er | <sup>207</sup> Pb<br><sup>206</sup> Pb | 2 <del>σ</del><br>%er | <sup>238</sup> U<br><sup>206</sup> Pb | 2 <del>σ</del><br>%er | <sup>207</sup> Pb<br><sup>206</sup> Pb | 2 <del>σ</del><br>%er | <sup>204</sup> Pb<br><sup>206</sup> Pb | 2 <del>σ</del><br>%er | <sup>238</sup> U<br><sup>206</sup> Pb | %    |
| CALI.Z03  | 153.84                                 | 0.24  | 153.8                                 | 0.76         | 153                                    | ±10.3            | 0.7           | 0.92           | 0.1635           | 0.49                  | 0.024152                              | 0.16         | .46            | 1549                                   | 1548                                   | 90.8                                   | 485.0                                  | 41.40                                 | 0.16                  | 0.04911                                | 0.44                  | 40.91                                 | 0.20                  | 0.05862                                | 0.09                  | 0.00065                                | 1.9                   | 40.91                                 | 0.20 |
| CALI.Z06  | 153.67                                 | 0.42  | 155.2                                 | 4.14         | 178                                    | ±59.9            | 0.8           | 0.90           | 0.1651           | 2.67                  | 0.024124                              | 0.28         | .41            | 230                                    | 230                                    | 26.1                                   | 98.2                                   | 41.45                                 | 0.28                  | 0.04964                                | 2.57                  | 38.13                                 | 0.22                  | 0.11372                                | 0.60                  | 0.00435                                | 0.6                   | 38.13                                 | 0.22 |
| CALLZ05   | 153.98                                 | 0.48  | 155.3                                 | 5.26         | 176                                    | ±75.9            | 0.7           | 0.79           | 0.1653           | 3.39                  | 0.024174                              | 0.31         | .46            | 189<br>260                             | 189                                    | 24.1                                   | 80.8<br>82.3                           | 41.37                                 | 0.31                  | 0.04959                                | 3.26                  | 37.34                                 | 0.18                  | 0.12748                                | 0.60                  | 0.00529                                | 0.8                   | 37.34                                 | 0.18 |
| CALI.Z02  | 153.56                                 | 0.71  | 154.1                                 | 5.86         | 162                                    | ±83.9            | 0.6           | 0.79           | 0.1639           | 3.80                  | 0.024113                              | 0.46         | .40            | 200                                    | 280                                    | 28.5                                   | 103.0                                  | 41.48                                 | 0.46                  | 0.04930                                | 3.59                  | 38.75                                 | 0.50                  | 0.10427                                | 0.53                  | 0.00357                                | 3.4                   | 38.75                                 | 0.50 |
| CALI.Z10  | <del>155.92</del>                      | 0.96  | 154.7                                 | 8.16         | 136                                    | ±117.6           | 1.2           | 0.93           | 0.1646           | 5.28                  | 0.024483                              | 0.62         | <del>.49</del> | <del>157</del>                         | <del>157</del>                         | 22.4                                   | 78.7                                   | 40.85                                 | 0.62                  | 0.04875                                | 5.00                  | 36.04                                 | 0.61                  | 0.14287                                | 0.23                  | 0.00639                                | 2.1                   | 36.04                                 | 0.61 |
| CALI.Z09  | 152.75                                 | 1.34  | 149.1                                 | 16.40        | 92                                     | ±246.8           | 0.6           | 0.76           | 0.1582           | 10.99                 | 0.023979                              | 0.88         | .67            | 118                                    | 118                                    | 20.4                                   | 61.8                                   | 41.70                                 | 0.88                  | 0.04785                                | 10.42                 | 35.20                                 | 0.68                  | 0.17289                                | 0.51                  | 0.00847                                | 3.8                   | 35.20                                 | 0.68 |
| CALI.Z04  | 153.27                                 | 2.84  | 153.2                                 | 44.34        | 151                                    | ±642.6           | 1.6           | 0.82           | 0.1628           | 28.95                 | 0.024061                              | 1.85         | .83            | 83                                     | 83                                     | 18.8                                   | 54.9                                   | 41.56                                 | 1.85                  | 0.04907                                | 27.43                 | 32.38                                 | 0.95                  | 0.22591                                | 1.71                  | 0.01200                                | 7.1                   | 32.38                                 | 0.95 |
| CALLZ11   | 152.08                                 | 3.03  | 165.4                                 | 22.77        | 360                                    | ±292.9           | 0.7           | 0.79           | 0.1769           | 13.77                 | 0.023872                              | 2.00         | .45            | 73                                     | 73                                     | 18.6                                   | 51.7                                   | 41.89                                 | 2.00                  | 0.05374                                | 12.98                 | 31.34                                 | 2.20                  | 0.25403                                | 0.84                  | 0.01367                                | 2.4                   | 31.34                                 | 2.20 |
| CALI.Z07  | 151.55                                 | 3.18  | 124.9                                 | 35.23        | -357                                   | ±699.0           | 2.1           | 0.73           | 0.1309           | 28.21                 | 0.023787                              | 2.10         | .58            | 232                                    | 232                                    | 24.2                                   | 87.4                                   | 42.04                                 | 2.10                  | 0.03990                                | 27.04                 | 38.70                                 | 2.21                  | 0.10415                                | 5.79                  | 0.00431                                | 18.2                  | 38.70                                 | 2.21 |
| CALI.Z01  | 153.74                                 | 5.45  | 154.5                                 | 6.80         | 167                                    | ±58.4            | 0.8           | 0.95           | 0.1644           | 4.40                  | 0.024136                              | 3.55         | .82            | 311                                    | 311                                    | 30.1                                   | 125.8                                  | 41.43                                 | 3.55                  | 0.04939                                | 2.50                  | 38.98                                 | 4.61                  | 0.09675                                | 0.70                  | 0.00322                                | 2.1                   | 38.98                                 | 4.61 |
| CALI.Z13  | 153.42                                 | 1.47  | 153.9                                 | 18.43        | 160                                    | ±267.3           | 0.8           | 0.69           | 0.1636           | 11.98                 | 0.024085                              | 0.96         | .60            | 80                                     | 80                                     | 18.7                                   | 51.5                                   | 41.52                                 | 0.96                  | 0.04926                                | 11.43                 | 32.02                                 | 0.49                  | 0.23229                                | 0.70                  | 0.01242                                | 2.1                   | 32.02                                 | 0.49 |
| CALI.Z13  | 151.09                                 | 0.68  | 140.4                                 | 5.65         | -36                                    | ±93.2            | 1.3           | 0.80           | 0.1483           | 4.02                  | 0.023714                              | 0.45         | .44            | 222                                    | 222                                    | 24.9                                   | 89.3                                   | 42.17                                 | 0.45                  | 0.04537                                | 3.84                  | 38.67                                 | 0.47                  | 0.11199                                | 0.70                  | 0.00450                                | 2.1                   | 38.67                                 | 0.47 |
| CALLZ13   | 306.20                                 | 19.35 | 35.4                                  | 281.22       | #NUM!                                  | #NUM!            | 63.4          | 0.70           | 0.0355           | 793.78                | 0.048646                              | 6.32         | .63            | 27                                     | 27                                     | 15.7                                   | 40.0                                   | 20.56                                 | 6.32                  | 0.00529                                | 789.79                | 6.60                                  | 0.47                  | 0.57851                                | 0.70                  | 0.03689                                | 2.1                   | 6.60                                  | 0.47 |
| CALLZ13   | 153.46                                 | 2.31  | 209.2                                 | 31.05        | 307<br>845                             | ±365.0<br>+289.8 | 0.9           | 0.63           | 0.1791           | 14.84                 | 0.024091                              | 1.51         | .02            | 55                                     | 55                                     | 17.7                                   | 45.0<br>48.1                           | 41.51                                 | 1.51                  | 0.05390                                | 13.93                 | 26.98                                 | 0.51                  | 0.32861                                | 0.70                  | 0.01760                                | 2.1                   | 27.90                                 | 0.51 |
|           |                                        |       |                                       |              |                                        |                  |               |                |                  |                       |                                       |              |                |                                        |                                        |                                        |                                        |                                       |                       |                                        |                       |                                       |                       |                                        |                       |                                        |                       |                                       |      |
| HBMB.83   | 171.87                                 | 2.85  | 172.8                                 | 18.92        | 186                                    | ±241.5           | 1.5           | 0.85           | 0.1855           | 10.95                 | 0.027020                              | 1.66         | .41            | 93                                     | 93                                     | 19.4                                   | 58.0                                   | 37.01                                 | 1.66                  | 0.04980                                | 10.37                 | 29.68                                 | 1.91                  | 0.20814                                | 1.00                  | 0.01076                                | 2.3                   | 29.68                                 | 1.91 |
| HBMB.92   | 171.84                                 | 1.01  | 175.6                                 | 8.98         | 226                                    | ±112.8           | 1.3           | 0.52           | 0.1888           | 5.11                  | 0.027015                              | 0.59         | .45            | 139                                    | 139                                    | 21.7                                   | 57.7                                   | 37.02                                 | 0.59                  | 0.05068                                | 4.88                  | 32.10                                 | 0.54                  | 0.15679                                | 0.59                  | 0.00722                                | 1.3                   | 32.10                                 | 0.54 |
|           | 171.78                                 | 0.99  | 162.2                                 | 9.58         | 25                                     | ±134.0           | 1.5           | 0.79           | 0.1733           | 5.91                  | 0.027005                              | 0.57         | .59            | 236                                    | 236                                    | 25.8                                   | 92.4                                   | 37.03                                 | 0.57                  | 0.04653                                | 5.59                  | 34.14                                 | 0.58                  | 0.10908                                | 0.31                  | 0.00423                                | 4.5                   | 34.14                                 | 0.58 |
| HBMB.02   | 171.06                                 | 0.79  | 170.0                                 | 7.74         | 184                                    | ±142.5           | 2.1           | 0.72           | 0.1845           | 4.50                  | 0.026891                              | 0.39         | .40            | 136                                    | 136                                    | 20.1                                   | 65.5                                   | 37.04                                 | 0.39                  | 0.04977                                | 4.32                  | 32.14                                 | 0.29                  | 0.15835                                | 0.37                  | 0.00738                                | 0.5                   | 32.14                                 | 0.29 |
| HBMB.47   | 170.78                                 | 1.35  | 174.0                                 | 15.32        | 218                                    | ±196.4           | 1.8           | 0.71           | 0.1869           | 8.81                  | 0.026846                              | 0.79         | .44            | 83                                     | 83                                     | 18.9                                   | 52.4                                   | 37.25                                 | 0.79                  | 0.05049                                | 8.48                  | 28.94                                 | 0.38                  | 0.22865                                | 0.78                  | 0.01211                                | 0.7                   | 28.94                                 | 0.38 |
| HBMB.108  | 170.74                                 | 0.79  | 172.4                                 | 5.55         | 195                                    | ±71.3            | 1.9           | 0.70           | 0.1850           | 3.22                  | 0.026839                              | 0.46         | .39            | 181                                    | 181                                    | 23.8                                   | 73.8                                   | 37.26                                 | 0.46                  | 0.04999                                | 3.07                  | 33.47                                 | 0.47                  | 0.13136                                | 0.16                  | 0.00553                                | 0.6                   | 33.47                                 | 0.47 |
| HBMB.53   | 170.57                                 | 1.70  | 170.8                                 | 19.43        | 173                                    | ±255.1           | 0.9           | 1.06           | 0.1832           | 11.38                 | 0.026813                              | 1.00         | .48            | 68                                     | 68                                     | 18.1                                   | 54.8                                   | 37.30                                 | 1.00                  | 0.04954                                | 10.93                 | 27.27                                 | 0.36                  | 0.26459                                | 0.60                  | 0.01460                                | 0.8                   | 27.27                                 | 0.36 |
| HBMB.64   | 170.40                                 | 1.16  | 171.1                                 | 13.20        | 181                                    | ±173.5           | 1.5           | 1.38           | 0.1835           | 7.71                  | 0.026785                              | 0.68         | .43            | 95<br>77                               | 95                                     | 19.4                                   | 71.4                                   | 37.33                                 | 0.68                  | 0.04969                                | 7.45                  | 30.08                                 | 0.37                  | 0.20503                                | 0.88                  | 0.01055                                | 0.7                   | 30.08                                 | 0.37 |
| HBMB 85   | 1/0.14                                 | 1.40  | 173.5                                 | 15.39        | 219                                    | ±196.7           | 2.2           | 0.57           | 0.1003           | 0.07<br>6.43          | 0.026744                              | 0.62         | .40            | 101                                    | 101                                    | 10.0                                   | 40.0<br>55.3                           | 37.39                                 | 0.62                  | 0.05052                                | 6.15                  | 20.43                                 | 0.22                  | 0.24195                                | 0.27                  | 0.01302                                | 0.6                   | 20.43                                 | 0.22 |
| HBMB.07   | 169.63                                 | 0.59  | 169.2                                 | 6.99         | 162                                    | ±91.7            | 1.4           | 0.73           | 0.1813           | 4.13                  | 0.026662                              | 0.35         | .64            | 237                                    | 237                                    | 26.4                                   | 88.3                                   | 37.51                                 | 0.35                  | 0.04931                                | 3.92                  | 34.59                                 | 0.25                  | 0.11149                                | 0.47                  | 0.00422                                | 3.0                   | 34.59                                 | 0.25 |
| HBMB.82   | 169.45                                 | 2.21  | 162.1                                 | 17.80        | 56                                     | ±248.0           | 1.0           | 0.67           | 0.1731           | 10.98                 | 0.026634                              | 1.30         | .49            | 146                                    | 146                                    | 21.6                                   | 65.2                                   | 37.55                                 | 1.30                  | 0.04712                                | 10.40                 | 32.81                                 | 1.47                  | 0.14832                                | 1.28                  | 0.00685                                | 4.8                   | 32.81                                 | 1.47 |
| HBMB.80   | 169.06                                 | 0.75  | 169.9                                 | 4.12         | 182                                    | ±52.7            | 1.5           | 0.72           | 0.1822           | 2.42                  | 0.026572                              | 0.44         | .45            | 510                                    | 510                                    | 40.1                                   | 149.2                                  | 37.63                                 | 0.44                  | 0.04972                                | 2.26                  | 36.28                                 | 0.54                  | 0.07857                                | 0.42                  | 0.00196                                | 4.3                   | 36.28                                 | 0.54 |
| HBMB.99   | 149.87                                 | 0.82  | 145.7                                 | 5.91         | 78                                     | ±91.8            | 1.2           | 0.65           | 0.1543           | 4.06                  | 0.023520                              | 0.55         | .41            | 177                                    | 177                                    | 23.2                                   | 70.7                                   | 42.52                                 | 0.55                  | 0.04757                                | 3.86                  | 38.09                                 | 0.58                  | 0.13106                                | 0.43                  | 0.00566                                | 1.3                   | 38.09                                 | 0.58 |
| LETT.Z112 | 151.32                                 | 40.23 | 134.8                                 | 445.22       | -163                                   | ±7896.9          | 23.8          | 1.03           | 0.1419           | 330.34                | 0.023752                              | 26.60        | .48            | 20                                     | 20                                     | 15.7                                   | 38.6                                   | 42.10                                 | 26.60                 | 0.04309                                | 318.50                | 3.66                                  | 1.26                  | 0.77906                                | 0.08                  | 0.04958                                | 0.2                   | 3.66                                  | 1.26 |
| PLETT.Z22 | 137.50                                 | 7.96  | 161.0                                 | 88.60        | 519                                    | ±1149.0          | 16.7          | 0.83           | 0.1718           | 55.03                 | 0.021558                              | 5.80         | .50            | 27                                     | 27                                     | 16.1                                   | 40.2                                   | 46.39                                 | 5.80                  | 0.05773                                | 52.39                 | 14.26                                 | 0.43                  | 0.60587                                | 0.10                  | 0.03761                                | 0.6                   | 14.26                                 | 0.43 |
| PLETT.Z38 | 138.34                                 | 5.83  | 143.9                                 | 64.53        | 234                                    | ±991.1           | 12.8          | 0.67           | 0.1522           | 44.85                 | 0.021692                              | 4.21         | .48            | 30                                     | 30                                     | 16.2                                   | 40.4                                   | 46.10                                 | 4.21                  | 0.05085                                | 42.97                 | 17.43                                 | 0.58                  | 0.54735                                | 0.16                  | 0.03377                                | 0.4                   | 17.43                                 | 0.58 |
| PLETT.Z98 | 144.40                                 | 7.84  | 153.4                                 | 87.12        | 291                                    | ±1241.0          | 10.3          | 0.83           | 0.1630           | 56.81                 | 0.022652                              | 5.43         | .49            | 27                                     | 27                                     | 16.1                                   | 40.3                                   | 44.15                                 | 5.43                  | 0.05213                                | 54.37                 | 14.12                                 | 0.28                  | 0.59428                                | 0.15                  | 0.03694                                | 0.5                   | 14.12                                 | 0.28 |
| PLETT.Z58 | 145.96                                 | 10.81 | 105.2                                 | 161.37       | -746                                   | ±4185.4          | 6.7           | 0.70           | 0.1092           | 153.33                | 0.022901                              | 7.41         | .54            | 26                                     | 26                                     | 15.9<br>16.7                           | 39.6                                   | 43.67                                 | 7.41                  | 0.03453                                | 149.44                | 12.29                                 | 1.09                  | 0.61983                                | 1.35                  | 0.03901                                | 1.8                   | 12.29                                 | 1.09 |
| 2LETT.Z15 | 142.00                                 | 1.95  | 177.1                                 | 13.81        | 261                                    | ±169.5           | 0.9           | 0.81           | 0.1324           | 7.80                  | 0.022372                              | 1.14         | -43            | 40<br>185                              | 40<br>185                              | 24.2                                   | 42.2<br>80.6                           | 37.22                                 | 1.14                  | 0.04337                                | 7.38                  | 33.51                                 | 1.35                  | 0.413087                               | -1-86                 | 0.00541                                | 4.4                   | 33.51                                 | 1.35 |
| PLETT.Z02 | 141.41                                 | 1.59  | 158.9                                 | 22.45        | 428                                    | ±298.2           | 0.9           | 0.68           | 0.1694           | 14.12                 | 0.022179                              | 1.13         | .69            | 79                                     | 79                                     | 19.0                                   | 51.1                                   | 45.09                                 | 1.13                  | 0.05539                                | 13.38                 | 34.64                                 | 0.53                  | 0.23933                                | 1.07                  | 0.01258                                | 3.1                   | 34.64                                 | 0.53 |
| PLETT.Z73 | 140.85                                 | 1.63  | 151.0                                 | 24.34        | 313                                    | ±345.4           | 1.5           | 0.59           | 0.1604           | 16.12                 | 0.022090                              | 1.16         | .82            | 90                                     | 90                                     | 19.4                                   | 51.4                                   | 45.27                                 | 1.16                  | 0.05264                                | 15.19                 | 36.04                                 | 0.45                  | 0.21508                                | 0.55                  | 0.01107                                | 4.6                   | 36.04                                 | 0.45 |
| PLETT.Z97 | 140.68                                 | 1.60  | 144.8                                 | 26.07        | 213                                    | ±402.6           | 1.8           | 0.56           | 0.1533           | 18.00                 | 0.022063                              | 1.14         | .57            | 77                                     | 77                                     | 18.6                                   | 48.5                                   | 45.32                                 | 1.14                  | 0.05038                                | 17.38                 | 34.51                                 | 0.56                  | 0.24089                                | 2.18                  | 0.01295                                | 2.9                   | 34.51                                 | 0.56 |
| PLETT.Z19 | 140.68                                 | 0.57  | 149.3                                 | 6.03<br>7.22 | 289<br>218                             | ±88.4            | 0.6<br>1.8    | 0.59           | 0.1584<br>0.1533 | 4.04<br>4.00          | 0.022062                              | 0.40<br>0.48 | -46<br>52      | 148<br>138                             | 148<br>138                             | 22.4<br>21.7                           | 62.1                                   | 4 <del>5.33</del><br>45.44            | 0.40                  | 0.05207                                | 3.87<br>4.75          | <del>39.68</del><br>30.38             | 0.23                  | 0.15140                                | 0.45                  | 0.00677                                | 0.7<br>1.4            | 39.68<br>30.38                        | 0.23 |
| LETT.Z111 | 140.34                                 | 3.16  | 147.0                                 | 37.17        | 255                                    | ±554.9           | 1.5           | 0.76           | 0.1558           | 25.29                 | 0.022000                              | 2.26         | .52            | 40                                     | 40                                     | 16.8                                   | 43.3                                   | 45.44                                 | 2.26                  | 0.05131                                | 24.14                 | 24.69                                 | 0.34                  | 0.41575                                | 0.23                  | 0.02480                                | 1.4                   | 24.69                                 | 0.34 |
| PLETT.Z61 | 140.24                                 | 1.19  | 141.6                                 | 13.16        | 165                                    | ±208.2           | 1.2           | 0.64           | 0.1497           | 9.29                  | 0.021993                              | 0.85         | .48            | 75                                     | 75                                     | 18.4                                   | 49.5                                   | 45.47                                 | 0.85                  | 0.04935                                | 8.91                  | 34.32                                 | 0.24                  | 0.24554                                | 0.21                  | 0.01332                                | 0.6                   | 34.32                                 | 0.24 |
| PLETT.Z28 | 140.09                                 | 1.34  | 143.1                                 | 14.84        | 193                                    | ±231.1           | 1.5           | 0.65           | 0.1513           | 10.37                 | 0.021969                              | 0.95         | .48            | 69                                     | 69                                     | 18.2                                   | 48.5                                   | 45.52                                 | 0.95                  | 0.04995                                | 9.94                  | 33.38                                 | 0.27                  | 0.26300                                | 0.28                  | 0.01448                                | 0.6                   | 33.38                                 | 0.27 |
| PLETT.Z54 | 139.81                                 | 1.95  | 138.2                                 | 23.48        | 110                                    | ±383.5           | 3.2           | 0.77           | 0.1458           | 16.99                 | 0.021926                              | 1.40         | .56            | 58                                     | 58                                     | 17.5                                   | 47.7                                   | 45.61                                 | 1.40                  | 0.04822                                | 16.25                 | 31.06                                 | 0.63                  | 0.30373                                | 0.55                  | 0.01732                                | 1.6                   | 31.06                                 | 0.63 |
| PLETT.Z24 | 139.67                                 | 0.63  | 138.4                                 | 7.39         | 117                                    | ±123.0           | 0.8           | 0.64           | 0.1460           | 5.34                  | 0.021903                              | 0.45         | .30            | 170                                    | 170                                    | 23.0                                   | 68.9                                   | 45.66                                 | 0.45                  | 0.04835                                | 5.22                  | 40.71                                 | 0.42                  | 0.13517                                | 1.77                  | 0.00589                                | 0.9                   | 40.71                                 | 0.42 |
| PLE11.207 | 130.40                                 | 0.74  | 137.2                                 | 0.00         | 110                                    | 1107.7           | 1.0           | 0.00           | 0.1447           | 4.70                  | 0.021714                              | 0.54         | .44            | 139                                    | 139                                    | 21.5                                   | 03.2                                   | 40.05                                 | 0.54                  | 0.04634                                | 4.57                  | 39.94                                 | 0.46                  | 0.15467                                | 0.19                  | 0.00721                                | 1.0                   | 39.94                                 | 0.46 |
| ROBE.Z89  | 170.37                                 | 14.99 | 236.9                                 | 179.55       | 959                                    | ±1476.5          | 66.4          | 0.95           | 0.2628           | 75.78                 | 0.026780                              | 8.80         | .45            | 24                                     | 24                                     | 16.0                                   | 39.6                                   | 37.34                                 | 8.80                  | 0.07105                                | 72.30                 | 8.44                                  | 0.35                  | 0.67348                                | 0.91                  | 0.04204                                | 0.6                   | 8.44                                  | 0.35 |
| ROBE.Z22  | 156.01                                 | 13.69 | 168.5                                 | 151.58       | 343                                    | ±1943.3          | 49.4          | 0.90           | 0.1805           | 89.96                 | 0.024496                              | 8.78         | .50            | 24                                     | 24                                     | 15.9                                   | 39.6                                   | 40.82                                 | 8.78                  | 0.05334                                | 85.95                 | 9.24                                  | 0.57                  | 0.66909                                | 0.07                  | 0.04201                                | 0.6                   | 9.24                                  | 0.57 |
| ROBE.Z84  | 152.04                                 | 3.27  | 173.8                                 | 12.42        | 481                                    | ±146.3           | 0.4           | 0.66           | 0.1867           | 7.15                  | 0.023866                              | 2.15         | .39            | 741                                    | 741                                    | 56.6                                   | 189.5                                  | 41.90                                 | 2.15                  | 0.05672                                | 6.62                  | 40.86                                 | 2.77                  | 0.07641                                | 5.20                  | 0.00135                                | 15.5                  | 40.86                                 | 2.77 |
| RUBE.Z50  | 150.71                                 | 0.86  | 154.6                                 | 9.34         | 214                                    | ±133.8           | 1.0           | 0.67           | 0.1644           | 6.04<br>1.00          | 0.023654                              | 0.57         | .50            | 115                                    | 115                                    | 20.5                                   | 58.4<br>138.0                          | 42.28                                 | 0.57                  | 0.05041                                | 5.78                  | 35.50                                 | 0.34                  | 0.17835                                | 0.40                  | 0.00870                                | 1.2                   | 35.50                                 | 0.34 |
| ROBE.Z44  | 150.32                                 | 0.35  | 151.9                                 | 4.16         | 176                                    | ±43.6<br>±61.5   | 1.7           | 0.87           | 0.1614           | 2.74                  | 0.023592                              | 0.27         | .41            | 223                                    | 223                                    | 25.8                                   | 94.5                                   | 42.39                                 | 0.37                  | 0.04951                                | 2.64                  | 38.88                                 | 0.44                  | 0.11571                                | 0.57                  | 0.00200                                | 0.6                   | 38.88                                 | 0.44 |
| ROBE.Z42  | 150.28                                 | 0.37  | 151.8                                 | 3.10         | 176                                    | ±45.6            | 1.4           | 0.45           | 0.1613           | 2.04                  | 0.023586                              | 0.25         | .42            | 281                                    | 281                                    | 28.7                                   | 75.1                                   | 42.40                                 | 0.25                  | 0.04959                                | 1.95                  | 39.62                                 | 0.22                  | 0.10194                                | 0.23                  | 0.00355                                | 0.7                   | 39.62                                 | 0.22 |
| ROBE.Z2   | 149.57                                 | 1.19  | 153.7                                 | 8.70         | 218                                    | ±125.0           | 0.8           | 0.71           | 0.1635           | 5.66                  | 0.023474                              | 0.80         | .39            | 114                                    | 114                                    | 20.5                                   | 59.6                                   | 42.60                                 | 0.80                  | 0.05051                                | 5.40                  | 35.74                                 | 0.81                  | 0.17912                                | 0.48                  | 0.00874                                | 0.7                   | 35.74                                 | 0.81 |
| ROBE.Z70  | 141.82                                 | 1.26  | 152.8                                 | 14.05        | 326                                    | ±199.3           | 0.9           | 0.54           | 0.1624           | 9.20                  | 0.022244                              | 0.89         | .50            | 73                                     | 73                                     | 18.5                                   | 47.3                                   | 44.96                                 | 0.89                  | 0.05294                                | 8.79                  | 33.63                                 | 0.25                  | 0.25354                                | 0.20                  | 0.01368                                | 0.7                   | 33.63                                 | 0.25 |

### Appendix H. Isotopic data aquired by TIMS



0.04 0.08 0.12 0.16 0.20 0.24 0.28

Fig. H1. All concordant isotopic data aquired by TIMS analysis of selected zircons from four pyroclastic deposits. Concordia diagrams (left) and correspongind <sup>206</sup>Pb/<sup>238</sup>U dates ranked by uncertainties (right).


# Lithostratigraphy of the Enon Formation (Uitenhage Group), South Africa

# R.A. Muir

Department of Geological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa e-mail: mrxrob009@myuct.ac.za

# E.M. Bordy

Department of Geological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa e-mail: emese.bordy@uct.ac.za

#### J.S.V. Reddering

Council for Geoscience, P.O. Box 5347, Walmer 6065, South Africa (Deceased)

**J.H.A. Viljoen** Council for Geoscience, P.O. Box 572, Bellville 7535, South Africa e-mail: jviljoen@geocience.org.za

#### © 2017 June Geological Society of South Africa

#### Abstract

The Uitenhage Group represents the earliest deposits that filled Mesozoic rift basins in the southern Cape of South Africa during the fragmentation of the supercontinent Gondwana. The sedimentology of the Enon Formation records the development of alluvial systems that drained the region since the onset of Gondwanan rifting, and therefore plays an important role in our understanding of early landscape evolution along the southern African continental margin. The mostly coarse conglomeratic unit was deposited continuously in actively subsiding, but separated, rift basins. As a result, the deposits are diachronous between basins and display highly varied thicknesses of up to well over 2000 m.

### Introduction

The Jurassic – Cretaceous Enon Formation exists in several onshore and offshore Mesozoic rift basins that formed during the breakup of Gondwana (Lock et al., 1975; Dingle et al., 1983; Fouché et al., 1992) in the Western and Eastern Cape Provinces of South Africa. This description addresses only the onshore exposures of the Enon, which is the basal unit of the Uitenhage Group. It is very well exposed in road, river and railway cuttings in the Algoa Basin, but also displays discontinuous outcrops along the Worcester-Pletmos and Oudtshoorn-Gamtoos basin lines, and in the isolated Haasvlakte, Jubilee and Soutpansvlakte Basins near Bredasdorp (Figure 1). The unit is significant because it provides a record of landscape evolution during the breakup of Gondwana that has aided development of basin models used in hydrocarbon exploration in the offshore regions of the southern African continental margin.

Atherstone (1857) first used the name 'conglomerate of Enon' to describe the coarse clastic deposits in the vicinity of Enon, a village in the Sundays River Valley (Algoa Basin), roughly 60 km north of Port Elizabeth. It remains the type locality for the Formation (Figure 1), albeit for historic reasons only, because



**Figure 1.** Mesozoic rift basins of the Eastern and Western Cape provinces of South Africa and the major units of the onshore Uitenbage Group. The offshore extension of the Uitenbage Group is only shown schematically. The Worcester-Pletmos basin line comprises the Worcester, Robertson, Swellendam, Heidelberg, Mossel Bay, Knysna and Plettenberg Bay Basins, whereas the Gamtoos-Oudtshoorn Basin line contains the Oudtshoorn, Vlakteplaas, Georginda, Baviaanskloof and Gamtoos Basins. These exceptionally long, parallel fault arrays exploit pre-existing weaknesses in the Cape Fold Belt (Fouché et al., 1992; Paton, 2006). The Jurassic Suurberg Group is shown in the Algoa Basin, but the contentious Suurberg Fault, supposedly bounding the Algoa Basin to the north, is not included (Toerien, 1991). The exact extent of the Robberg, Hartenbos and Brenton Formations, which are also constituents of the Uitenbage Group, cannot be shown at this scale. Abbreviations: E = Enon; B = Bredasdorp; BT = Bethelsdorp; C = Colcbester; G = George; H = Heidelberg; HN = Hankey; HR = Herbertsdale; K = Kirkwood; M = Mossel Bay; O = Oudtsboorn; P = Paterson; PE = Port Elizabetb; U = Uitenbage; <math>W = Worcester.

good exposures are found in all the other basins. Later workers similarly referred to the deposits as 'Enon Beds', 'Enon Conglomerate' and 'Enon Stage' (Rogers, 1905; Haughton, 1928; Engelbrecht et al., 1962; Joubert and Johnson, 1998). Truswell (1967), in a paper promoting the modern lithostratigraphic classification now in use by SACS, recommended the term 'Enon Conglomerate Formation'. Use of the lithological adjective in lithostratigraphic names was, however, cumbersome and soon fell into general disuse, with Winter (1973, 1979) being the first to use the shortened name 'Enon Formation'. Although most workers studying the Enon have done so in the Algoa Basin, where it was first described and is widely distributed, clear lithological correlatives in the other Mesozoic rift basins in the southern Cape are given the same name (SACS, 1980). We support this pragmatic trend based on the shared similarity of lithological traits, stratigraphic position, genesis and the likelihood that the deposits were once laterally connected.

#### Stratigraphic position and age

The Enon Formation is both the oldest and most proximal formation occupying the Mesozoic rift basins of South Africa (Figure 1). In the northern Algoa Basin, it overlies volcanic and volcaniclastic deposits of the Suurberg Group dated at  $162 \pm 7$  Ma (K-Ar) by McLachlan and McMillan (1976) and  $194 \pm 11.9$  Ma using the latest Ar-Ar dating methods (Kirstein, 1997; Marsh, 2016). The magnitude of the time gap that separates them from the Enon, however, remains unresolved. If the hiatus is negligible, as Hill (1972) suggests, the Enon could be Early Jurassic in age, but if the time gap is large (as suggested by Rogers et al., 1929), the deposits may be much younger. It is also thought that deposition of the Enon Formation was diachronous

between basins, occurring at different stages from the Jurassic until the Early Cretaceous (Winter, 1973; McLachlan and McMillan, 1976). Dingle et al. (1983) support the contemporaneity of deposition of the Enon and Kirkwood Formations, the latter of which has been constrained to Tithonian – Valanginian in the Algoa Basin and by inference suggests a Cretaceous age for at least parts of the Enon Formation in that area. The Kirkwood Formation hosts datable volcaniclastic layers which may provide the best means to infer the age range of the Enon, but preliminary U-Pb analysis of zircon from these layers have yielded ages ranging from Middle Jurassic to Early Cretaceous (Muir and Brody, 2016).

# Geological description Basic unifying features

The Enon Formation primarily comprises thickly bedded, poorly sorted, pebble to cobble conglomerate with sub- and wellrounded clasts, together with subordinate sandstone and mudstone. Beds are commonly structureless internally, with local clast imbrication. The Enon Formation was derived from the erosion of the Cape Fold Belt thus is often characterized by clasts that contrast strongly with the immediate Palaeozoic basement rocks. The latter are most commonly from the Cape Supergroup but in places include the Karoo Supergroup, Cape Granite Suite (Maalgaten Granite) or Suurberg Group. It is separated from underlying strata by an unconformity almost everywhere, except when underlain by the Suurberg Group, with which it may locally be conformable. The mudstone-and-sandstonedominated Kirkwood Formation generally conformably overlies, but locally interfingers with the Enon.

# Thickness

The highly variable thickness of the Enon Formation in the various basins renders it impractical to provide an average thickness. A maximum measured thickness of 480 m is in evidence at the type locality in the Algoa Basin (Dingle, et al., 1983), whereas thinner packages crop out in most other onshore basins (Rigassi and Dixon, 1972). Theron et al. (1991) reported 3000 m of conglomerates in the Oudtshoorn Basin, but this estimate most probably includes the informally named, younger Buffelskloof Formation. In the Gamtoos Basin, boreholes have intersected very thick (>2000 m) accumulations, with a further 7 km of undrilled section below (McMillan et al., 1997), much of which is postulated to be Enon Formation. In contrast, several boreholes drilled in the Algoa Basin intercepted less than 200 m of the Enon Formation and in places the unit was entirely absent

(Winter 1973). A borehole drilled in the Robertson Basin intersected 31 m of Enon Formation, but drilling ceased before basement was reached and this figure therefore represents a minimum thickness. The Enon Formation thus appears to have an extremely varied thickness and is likely to be much thicker in proximal regions of rift basins and thinner in distal regions. Outcrops suggest extensive erosion and are therefore unlikely to represent indications of true original thickness. In addition, accurate thickness determination is complicated by numerous intra-basinal normal faults (Tankard et al., 1982).

#### Lithology

# Conglomerate (75-100%)

Immature to mature, thickly- to very thickly-bedded conglomerates (Figures 2A, B and C) dominate the Enon



*Figure 2. (A)* Very thickly bedded monomictic orthoconglomerate at Andrieskraal, Gamtoos Basin. (**B**) Crudely bedded conglomerates with bedding vaguely defined by vertical clast size variation, clast alignments (orange staining is a secondary feature) at Andrieskraal, Gamtoos Basin. (**C**) Upward fining, poorly sorted conglomerate bed overlain by massive conglomerate bed with an erosive base and abundant imbrication, Mossel Bay Basin. (**D**) This large quartzite boulder from the Enon Formation in the Gamtoos Basin was derived from the Table Mountain Group and exhibits chatter-marks. (**E**) Imbricated, white quartzite clasts (no secondary staining), in the Enon Formation, Gamtoos Basin. (**F**) Heavily stained, imbricated quartzite clasts giving an overall red appearance to the conglomerates near Enon, Algoa Basin (Photo courtesy of Dr. Billy de Klerk).

Formation with isolated, interbedded, commonly white but also yellow, red or green fine- to medium-grained sandstone lenses and very rare mudstone units. Conglomerates are moderately to poorly sorted and commonly white (Figures 2A and E) but also exhibit an orange-red surface hue (Winter, 1973, Figure 2B and F). Clasts consist of quartzite, sheared quartzite, shale, and rarely of slate or granite, derived from the Cape and Karoo Supergroups, Cape Granite Suite and Suurberg Group. Clast diameter falls predominantly in the pebble size range but reach 1 m in places (Figure 2D) while matrix varies from pebbly sand to sandy mud. All the clasts are derived from the Cape Fold Belt and the quartizite clasts are typically rounded and spherical (Shone, 1976) whereas clasts of shale and slate are angular with low sphericity (Figures 3A and 3B).Rounded granitic boulders are present in the Mossel Bay and Robertson Basins (Figure 3C). Imbrication is generally well-developed and indicates a palaeocurrent direction from the south and southwest in the northern Algoa Basin (Shone, 1976). Although highly varied, a general northward imbrication orientation is discerned in the southern Oudtshoorn Basin (Du Preez, 1944) and is generally southeastward in the Gamtoos (van der Linde, 2017) and Worcester (Richardson et al., 2017) Basins.

#### Sandstone (0-20%)

Isolated interbedded, commonly white but also yellow, red or pale green, fine- to medium-grained sandstone lenses are common (Figures 4A to F). Larger lenses frequently exhibit crossbedding or horizontal lamination (Figures 4B and C), rarely preserve soft sediment deformation (Figure 4E), are occasionally pebbly and display granule to pebble size lag linings.

### Mudstone (0-5%)

Isolated lenses of white, yellow, red or pale green massive or horizontally laminated siltstones and mudstones are rare and weather preferentially.

# Palaeontology

Abraded bone fragments, silicified fossil wood and charcoalified wood fragments are present (Figure 4G), but poorly preserved (McLachlan and McMillan, 1976; Shone 1976). Unfortunately no diagnostic age or positive identification can be made from these fossils (McLachlan and McMillan, 1976).



*Figure 3. (A)* Upward fining package of bedded Enon Formation with predominantly shale clasts from the Bokkeveld Group near Herbertsdale, Mossel Bay Basin. (B) Imbricated disk-shaped shale pebbles and cobbles from the Mossel Bay Basin. (C) Large boulder conglomerate, Mossel Bay Basin. Red dashed line indicates an erosive contact.



*Figure 4. (A)* Crudely bedded conglomerates with subordinate white sandstone lenses. (**B**) Sandstone lens with trough cross-bedding. (**C**) Close-up image of the trough cross-bedding shown in B. (**D**) Rare, sub-rounded rip-up sandstone boulders in conglomerate. (**E**) Soft sediment deformation structures (water escape feature) in sandstone lenses in the Enon Formation. (**F**) Angular and rounded charcoal clasts in sandstones of the Enon Formation. All images are from the Gamtoos Basin.

# Genesis

Sedimentary characteristics (coarse clast sizes, massive beds, etc.) suggest that the Enon Formation was deposited by highenergy alluvial and debris flow processes. The steep gradient necessary for these energetic continental sediment transport processes were likely maintained by extensional faulting along rift basin margins. Fluvial deposition, likely by braided rivers on braid plains, alluvial fan depositional environments and scree deposits on an immature, rugged landscape are proposed for the Enon Formation (Shone, 1976; Holzforster, 2007; van der Linde, 2017).

# Boundaries Lower boundary

As the earliest Mesozoic basin-fill, the Enon Formation rests unconformably on, and is easily distinguished from, the basement Cape Supergroup or locally the Cape Granite Suite, Karoo Supergroup and Suurberg Group (Mossel Bay, Worcester/Nuy and northern Algoa Basins, respectively). The nature of the boundary with the underlying Suurberg Group remains uncertain. Hill (1972) considered it to be conformable, while others suspected a hiatus of several millions of years (e.g. Rogers et al., 1929). Unfortunately there are no known outcrops that can unequivocally confirm the stratigraphic relationship between the units. Dating of the Enon itself is hampered by the scarcity of radiometrically datable material and absence of wellpreserved, age diagnostic fossils.

#### Upper boundary

Extreme denudation of the onland rift basin deposits restricts observation of the character of the boundary between the generally resistant Enon and the overlying softer Kirkwood Formation, but where possible, the contact is usually gradational. Where the Kirkwood is absent, e.g. in parts of the Mossel Bay, Heidelberg and Oudtshoorn Basins (Lock et al., 1975; Lock, 1978; Viljoen and Malan, 1993), the Enon is unconformably overlain by the Buffelskloof Formation.

#### Lateral boundary

The Enon Formation, being diachronous, locally displays a laterally gradational, interfingering, contact with the Kirkwood Formation. Where this is the case, the boundary is regarded as the point where conglomerates, which are dominant in the Enon Formation, give way to sand- and mudstone dominated lithologies typical of the Kirkwood Formation. It is also possible that the Kirkwood Formation onlaps the Enon Formation in places, a configuration that is conformable but difficult to test due to limited laterally extensive outcrops.

#### Subdivision

Although Hill (1972) introduced a local and informal 'Basal Enon Sandstone' in the Algoa Basin, no official subdivision exists for the Enon Formation. Following Du Preez, (1944), Lock et al. (1975) argued for the subdivision of conglomerates in the Oudtshoorn Basin and refer to the 'Lower'- and 'Upper Enon Beds' following the observation that the conglomerates in the northern parts of the basin seemingly occupy a stratigraphically higher interval than those in the south. This overlying unit of conglomerate was subsequently named the Buffelskloof Formation (Theron et al., 1991; Viljoen and Malan, 1993).

An obvious difference in colour from red/orange in some regions to white in others occurs commonly, leading some authors to use this as a subdivision. However, this variation can be attributed to processes of secondary alteration and is therefore not regarded as significant (Du Preez, 1944).

# Regional aspects Geographic distribution

The Enon Formation has a scattered distribution, but is present in all of the Mesozoic rift basins in the Western Cape and Eastern Cape Provinces (Figure 1), mainly near their margins and locally in the interior parts of the basin fill packages. Borehole data from both onshore and offshore areas confirm a scattered distribution (Shone, 1976; Dingle et al., 1983; Malan and Theron, 1987; Malan and Viljoen, 1990; Shone, 2006; Malan and Viljoen, 2016).

#### Criteria for lateral extension

Immature conglomerate-dominated Mesozoic lithologies with a variety of clasts, most commonly but not limited to a Cape Supergroup origin, are used to extend the unit from its type locality. In conjunction with its stratigraphic position, this lateral extension places the Enon Formation in a position unconformably overlying the Cape Supergroup and older units. The Enon Formation is conformably overlain by and interfingers with the Kirkwood Formation. Where the latter is absent, it is unconformably overlain by the Buffelskloof Formation.

# Correlation

Although the Enon Formation was first formally described from the Algoa Basin, identical lithologies exist in all the Mesozoic rift basins of the Western Cape and Eastern Cape Provinces and are here included in the classification. Coarse conglomeratedominated units in each basin are considered part of the Enon Formation with the exception of the informal Buffelskloof Formation (Mossel Bay, Heidelberg and Oudtshoorn Basins) and Robberg Formations (Cape Infanta, St. Blaize and Robberg), which have similar but not identical lithological character and distinctly different stratigraphic relations (Reddering, 2003). These latter units are both mappable and easily observed in the field.

#### Stratotypes

No official stratotype exists for the Enon Formation, possibly due to the homogenous nature of the unit, but the natural cliff faces at the type locality near Enon village in the Algoa Basin (Figure 1) are regarded as a representative section with which similar lithologies in other basins can be compared. The outcrops at the type locality are best viewed from a distance and this is also the case with most Enon Formation cliff faces, which exhibit thickly to very thickly bedded, massive, conglomerate-dominated lithologies without significant vertical or lateral variations. An easily accessible site in a roadside quarry south-west of Hankey in the Gamtoos Basin was selected to represent the general characteristics of the Enon in most areas. The schematic log derived from the quarry exposures is represented here as the Unit Stratotype (Figure 5), the location of which is shown in Figure 6.



*Figure 5.* Schematic stratotype representation of part of the Enon Formation based on adjacent outcrops in a roadside quarry near Hankey in the Gamtoos Basin.



Figure 6. Location of the quarry (yellow star) selected as the stratotype for the Enon Formation.

## Acknowledgements

Field assistants from the Sedimentology-Palaeontology Research Group at the University of Cape Town are thanked for their help during several field trips to study the Enon Formation. This project was supported by grants from the National Research Foundation African Origins Platform (GUN 91601 to EMB) and the DST-NRF Centre of Excellence in Palaeosciences (GUN CoE2017-050; COE2016-347 to EMB). A doctoral bursary to RM is provided by the DST-NRF Centre of Excellence in Palaeosciences. We gratefully acknowledge their financial contributions. The careful reviews provided by Drs Hayley Cawthra and Nigel Hicks, as well as Coenie de Beer improved the final manuscript. Opinions expressed and conclusions arrived at are those of the authors and are not necessarily to be attributed to the CoE in Palaeosciences or NRF AOP.

# References

- Atherstone, W.G., 1857. Geology of Uitenhage. Eastern Province Monthly Magazine, 1, 518-532.
- Dingle, R.V., Siesser, W.G. and Newton, A.R., 1983. Mesozoic and Tertiary geology of southern Africa. Rotterdam, Balkema, 375p.
- Du Preez, J.W., 1944. Lithology, structure and mode of deposition of the Cretaceous deposits in the Oudtshoorn area. Annals, University of Stellenbosch, 22, 209-237.
- Engelbrecht, L.N.J., Coertze, F.J. and Snyman, A.A., 1962. Die geologie van die gebied tussen Port Elizabeth en Alexandria, Kaapprovinsie. Explanation of 1:125,000 scale Sheets 3325D Port Elizabeth and 3326C Alexandria, Geological Survey of South Africa, 54p.
- Fouché, J., Bate, K.J. and Van der Merwe, R., 1992. Plate tectonic setting of the Mesozoic Basins, southern offshore, South Africa: A review. In: M.J. De Wit, I.G.D. Ransome (Editors). Inversion Tectonics of the Cape Fold Belt, Karoo and Cretaceous Basins of Southern Africa. A.A. Balkema, Rotterdam, 33-48.
- Haughton, S.H., 1928. The geology of the country between Grahamstown and Port Elizabeth. Explanation of Cape Sheet 9 (Port Elizabeth), Geological Survey of South Africa, 50p.
- Hill, R.S., 1972. The geology of the northern Algoa Basin, Port Elizabeth. Unpublished M.Sc.Thesis, University of Stellenbosch, 62p.
- Holzforster, F., 2007. Alluvial fan systems in the Late Mesozoic Oudtshoorn Basin, South Africa, and their implications for basin development. Beringeria, 37, 81-93.
- Joubert, P. and Johnson, M.R., 1998. Abridged lexicon of South African stratigraphy. South African Committee for Stratigraphy (SACS), Council for Geoscience, Pretoria, 160p.

Kirstein, L.A., 1997. Magmatism in southern Uruguay and the early rifting of the South Atlantic. Unpublished Ph.D. thesis, The Open University, 376p.

- Lock, B.E., Shone, R., Coates, A.T. and Hatton, C.J., 1975. Mesozoic Newark-Type sedimentary basins within the Cape Fold Belt of South Africa. Proceedings of the 9th International Congress of Sedimentology, Nice, 2, 217-225.
- Lock, B.E., 1978. The Cape Fold Belt of South Africa; tectonic control of sedimentation. Proceedings, Geological Association, 89, 263-281.
- Malan, J.A. and Theron, J.N., 1987. Notes on an Enon basin north-east of Bredasdorp, Southern Cape Province. Annals, Geological Survey of South Africa, 21, 83-87.
- Malan, J.A. and Viljoen, J.H.A., 1990. Mesozoic and Cenozoic geology of the Cape South Coast. Guidebook Geocongress '90, Geological Society of South Africa, PO3, 81p.
- Malan, J.A. and Viljoen, J.H.A., 2016. Southern Cape Geology: Evolution of a rifted margin. Field Trip Guide, 35th International Geological Congress, Cape Town, Post 11, 64p.
- Marsh, J.G., 2016. New Evidence for the Correlation of Basalts of the Suurberg Group with the Upper Part of the Karoo Basalt Sequence of Lesotho. In:B. Linol and M. De Wit (Editors). Origin and Evolution of the Cape Mountains and Karoo Basin. Springer International Publishing, 59-65.
- McLachlan, I.R. and McMillan, I.K., 1976. Review and stratigraphic significance of southern Cape Mesozoic paleontology. Transactions of the Geological Society of South Africa, 79, 197-212.
- McMillan, I.K., Brink, G.I., Broad, D.S. and Maier, J.J., 1997. Late Mesozoic sedimentary basins off the south coast of South Africa. Sedimentary Basins World, 3, 319-376.
- Muir, R.A. and Bordy, E.M., 2016. Stratigraphic framework for the Kirkwood Formation in the southern Cape region: invertebrate biostratigraphy and zircon geochronology. In: 19th Palaeontological Society of South Africa biennial conference, Stellenbosch University, 65p.
- Paton, D.A., 2006. Influence of crustal heterogeneity on normal fault dimensions and evolution: southern South Africa extensional system. Journal of Structural Geology, 28, 868-886.
- Reddering, J.S.V., 2003. Lithostratigraphy of the Robberg Formation (Uitenhage Group), including the Sebastian Point Member. Lithostratigraphic Series, South African Committee for Stratigraphy (SACS), 40, 18p.
- Richardson, J.C., Hodgson, D.M., Paton, D., Craven, B., Rawcliffe, A. and Lang, A., 2017. Where is my sink? Reconstruction of landscape development in southwestern Africa since the Late Jurassic. Gondwana Research, 45, 43-64.
- Rigassi, D.A. and Dixon, G.E., 1972. Cretaceous of the Cape Province, Republic of South Africa. In: T.F.J. Dessauvagie and A.J. Whiteman (Editors). African Geology. Geology Department, University of Ibadan, Nigeria, 513-527.
- Rogers, A.W., 1905. Geological survey of parts of the Divisions of Uitenhage and Alexandria. Annual report of the Geological Commission of the Cape of Good Hope, 1-18.

- Rogers, A.W., Hall, A.L., Wagner, P.A. and Haughton, S.H., 1929. Union of South Africa. Handbuch der Regionalen Geologie, Heft 27. Carl Winters Universitatsbuchhandlung, Heidelberg, Germany. Cretaceous System, 9, 143-148.
- SACS, 1980 (See South African Committee for Stratigraphy).
- Shone, R.W., 1976. The sedimentology of the Mesozoic Algoa Basin. Unpublished M.Sc. thesis, University of Port Elizabeth, 48p.
- Shone, R.W., 2006. Onshore post-Karoo Mesozoic deposits. In: M.R. Johnson, C.R. Anhaeusser and R.J. Thomas (Editors). The Geology of South Africa, Geological Society of South Africa, Johannesburg, and Council for Geoscience, Pretoria, 541-571.
- South African Committee for Stratigraphy (SACS), 1980. Stratigraphy of South Africa. Part 1: Lithostratigraphy of the Republic of South Africa, South West Africa/Namibia, and the Republics of Bophuthatswana, Transkei and Venda. Handbook, Geological Survey of South Africa, 8, 690p.
- Tankard, A.J. Jackson, M.P.A., Eriksson, K.A., Hobday, D.K., Hunter, D.R., and Minter, W.E.L., 1982. Fragmentation and Mesozoic Paleogeography. In: Crustal Evolution of Southern Africa. Springer-Verlag, New York, 407-423.
- Theron, J.N., Wickens, H. de V. and Gresse, P.G., 1991. Die geologie van die gebied Ladismith. Explanation of 1:250,000 scale Sheet 3320 Ladismith, Geological Survey of South Africa, 99p.
- Toerien, D.K. (compiler), 1991. Geological Map 3324 Port Elizabeth. 1:250 000 Geological Map Series, Geological Survey of South Africa, Pretoria.
- Truswell, J.F., 1967. A critical review of stratigraphic terminology as applied in South Africa. Transactions of the Geological Society of South Africa, 70, 81-116.
- Van der Linde, C., 2017. Sediment supply processes and patterns in the Enon Formation, Gamtoos Basin, Eastern Cape, South Africa. Unpublished M.Sc. thesis, University of Cape Town, 82p.
- Viljoen, J.H.A. and Malan, J.A., 1993. Die geologie van die gebiede 3422AA Mosselbaai en 3421BB Herbertsdale. Explanation of 1:50,000 scale Sheets 3422 AA and 3421 BB, Geological Survey of South Africa, 79p.
- Winter, H. de la R., 1973. Geology of the Algoa Basin, South Africa, In: G. Blant (Editor). Sedimentary basins of the African coasts, Part 2, South and East Coast. Association of African Geological Surveys, Paris, 17-48.
- Winter, H. de la R., 1979. Application of basic principles of stratigraphy to the Jurassic-Cretaceous interval in southern Africa. In: A.M. Anderson and W.A. Van Biljon (Editors). Geocongress 77: Some Sedimentary Ore Deposits in South Africa. Special Publication, Geological Society of South Africa 6, 183-196.

Editorial handling: C.H. de Beer



# Lithostratigraphy of the Kirkwood Formation (Uitenhage Group), including the Bethelsdorp, Colchester and Swartkops Members, South Africa

# R.A. Muir

Department of Geological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa e-mail: mrxrob009@myuct.ac.za

# E.M. Bordy

Department of Geological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa e-mail: emese.bordy@uct.ac.za

# J.S.V. Reddering

Council for Geoscience, P.O. Box 5347 Walmer, Port Elizabeth, 6065, South Africa (Desceased)

## J.H.A. Viljoen

Council for Geoscience, P.O. Box 572, Bellville 7535, Cape Town, South Africa e-mail: jviljoen@geocience.org.za

# © 2017 June Geological Society of South Africa

## Abstract

The Jurassic – Cretaceous Kirkwood Formation forms part of the Uitenhage Group, the earliest deposits to fill Mesozoic rift basins that developed in what is now the southern Cape of South Africa during the breakup of Gondwana. The Kirkwood Formation is not only palaeontologically extremely important, having yielded diverse assemblages of vertebrate, invertebrate and plant fossil taxa, but also contains suitable source rocks for hydrocarbon systems offshore of the southern Cape of South Africa. The Kirkwood Formation comprises chronostratigraphic markers in the form of radiometrically dateable volcaniclastic deposits and age-diagnostic invertebrate fossils, which may provide robust dates for the depositional history of the Uitenhage Group. The Kirkwood, including the Bethelsdorp, Colchester and Swartkops Members, is 2210 m at its thickest and comprises sandstones and mudstones deposited in fluvial and lacustrine depositional settings from the Tithonian to Valanginian. These microfossil-based ages may only apply to the unit in its type area in the Algoa Basin and not to its lithostratigraphic correlatives in the other Mesozoic rift basins, which have highly variable ages ranging from Middle Jurassic to Early Cretaceous.

# Introduction

The Kirkwood Formation is part of the Uitenhage Group, which is an assemblage of Mesozoic successions that occupy several rift basins (Lock et al., 1975) formed along the southern margin of South Africa during the breakup of Gondwana. Here we address primarily the onshore sequence, but make reference to offshore boreholes where relevant. Outcrops of the onshore Kirkwood Formation are discontinuous and located in basins along the Worcester-Pletmos and Oudtshoorn-Gamtoos basin lines, in the Algoa Basin and in the Haasvlakte, Jubilee and Soutpansvlakte Basins near Bredasdorp (Figure 1). The Kirkwood is palaeontologically highly productive and its organic-matter rich, lacustrine shale units are considered potential source rocks for hydrocarbons in the southern Cape (McMillan et al., 1997; Roux and Davids, 2016).

There is considerable variation in the stratigraphy of the Kirkwood Formation with early authors referring to sandstonedominated layers that contain fossil logs as the 'Wood Beds' (Atherstone, 1857), while Rogers and Schwarz (1901) refer to the mudstone units as 'Variegated Marls'. Haughton (1928) realized the connection between sandstone- and mudstone-dominated deposits and referred to the combined package as 'Variegated Marls and Wood Beds' even though he pointed out that 'marl' is a misnomer because the mudstones lack calcium carbonate. Engelbrecht et al. (1962) referred to the formation as the 'Wood Beds and Variegated Marls Stage' and also pointed out the 'marl' misnomer. The 'Wood Beds' were called the Bezuidenhouts Formation by Rigassi and Dixon (1972) who also included the current Swartkops Member and part of the Kirkwood Formation in the other basins. Winter (1973, 1979) was the first to group the sandstone- and mudstone-dominated deposits together and call them the 'Kirkwood Formation'. These classifications initially referred to the succession in the Algoa Basin, which is where the unit is most widely exposed and within which its type locality, 3 km south of the town of Kirkwood, is located (Figure 1). Lithological correlatives in the other Mesozoic rift basins are given the same name, a pragmatic trend we support based on their shared lithological character, and similar stratigraphic relations (SACS, 1980).

A predominantly sandy unit low down in the Kirkwood Formation near Uitenhage was first mapped and named the 'Swartkop Sandstone' by Atherstone (1857). It was renamed the 'Swartkops Member' by Winter (1973, 1979) and approved by SACS (1980). Rigassi and Dixon (1972) suggested the name 'Colchester Formation' for a dark shale unit in the Kirkwood Formation, which Winter (1973, 1979) later termed the Colchester Member and was accepted by SACS (1980). McMillan (2010) limited the use of 'Colchester Formation' to include only the lacustrine shale in the Sundays River Trough of the Algoa Basin, naming the marine shales in the Uitenhage Trough at Bethelsdorp and farther offshore the Bethelsdorp 'Formation'. We propose that due to their limited and mostly subsurface distribution, these units should remain Members of the Kirkwood Formation as accepted by SACS (1980) and used by Joubert and Johnson (1998).

Shone (1976) also proposed two additional locally observed minor sandstone-rich units, the Lindores and Mfuleni Members, and although he referred to surface sections (which he illustrates), he did not provide any description or characteristics of these members (Shone, 1978; p. 7 and 21; sections RS132 and RS 5 and Plates 2 and 3).

# Stratigraphic position and age

The Kirkwood Formation is underlain by the Enon Formation and overlain by the Sundays River and (informal) Buffelskloof Formations. It is considered to be the partial lateral time equivalent of the Enon Formation in all southern coast Mesozoic basins (Dingle et al., 1983) and usually occupies the inner parts of



**Figure 1.** Mesozoic rift basins of the Eastern and Western Cape provinces of South Africa and the major units of the onshore Uitenhage Group. The offshore extension of the Uitenhage Group is only shown schematically. The Worcester-Pletmos basin line comprises the Worcester, Robertson, Swellendam, Heidelberg, Mossel Bay, Knysna and Plettenberg Bay Basins, whereas the Gamtoos-Oudtshoorn basin line contains the Oudtshoorn, Vlakteplaas, Georgida, Baviaanskloof and Gamtoos Basins. The exceptionally long, parallel fault arrays (Cango and Worcester Faults) exploit pre-existing weaknesses in the Cape Fold Belt (Fouché et al., 1992; Paton, 2006). The Jurassic Suurberg Group is shown in the Algoa Basin, but the contentious Suurberg Fault, supposedly bounding the Algoa Basin to the north, is not included (Toerien, 1991). White crossed circles indicate location of boreholes referenced in text. The Robberg, Hartenbos and Brenton Formations, which are also constituents of the Uitenhage Group, are not shown due to their small aerial extent. Abbreviations: E = Enon; B = Bredasdorp; BT = Bethelsdorp; C = Colchester; G = George; H = Heidelberg; HN = Hankey; HR = Herbertsdale; K = Kirkwood; M = Mossel Bay; O = Oudtshoorn; P = Paterson; PE = Port Elizabeth; U = Uitenhage; W = Worcester

each basin, while the latter is developed close to their margins. In some parts of the Algoa Basin, the sandy Swartkops Member is the basal unit of the Kirkwood Formation, whereas elsewhere, the shaly Colchester and Bethelsdorp Members occupy this position.

Numerous macrofossils have been recovered from the Kirkwood, but most of them are not age diagnostic, with the result that the age of the beds can only be broadly defined as Jurassic to Early Cretaceous. Microfossil assemblages from the Bethelsdorp and Colchester Members in the lower part of the Kirkwood Formation of the Algoa Basin are dated as Tithonian (McMillan et al., 1997; McMillan, 2010), whereas the uppermost parts are inferred to be Lower Cretaceous in age based on a probable temporal equivalence with the lower part of the Valanginian - Hauterivian Sundays River Formation (McLachlan and McMillan, 1976; Shone, 1978; McMillan, 2003). Although the Kirkwood Formation likely spans the Tithonian -Valanginian in the Algoa Basin, this may not necessarily represent the age of its lithostratigraphic correlatives in the Mesozoic rift basins further to the west, which contain datable volcaniclastic deposits that are currently under investigation. Preliminary U-Pb analyses of zircon from these strata point to a highly variable Middle Jurassic - Early Cretaceous depositional age for the Kirkwood Formation (Muir and Bordy, 2016).

# Geological description Basic unifying features

The Kirkwood Formation is a continental succession of interstratified sandstones and varicoloured mudstones containing diverse terrestrial and lacustrine fossils. In contrast to the conformably underlying and laterally equivalent conglomerate-dominated Enon Formation, it contains only small, isolated conglomerate units that are usually interbedded with sandstone. In turn, the Buffelskloof Formation (Theron et al., 1991), which unconformably overlies the Kirkwood Formation in the Oudtshoorn, Heidelberg and Mossel Bay basins, comprises predominantly conglomerates with only minor sandstone and mudstone. The aerially restricted Hartenbos Formation (Viljoen, 2009) is distinguished from the Kirkwood Formation in the Mossel Bay Basin by an angular relationship and different proportions of sandstone. The Kirkwood Formation differs from the overlying and partially contemporaneous marine Sundays River Formation in the Algoa Basin in that the former contains abundant red-coloured strata with palaeosols (including in situ rootlets) and terrestrial fossils, all of which are absent in the Sundays River Formation.

The Swartkops Member is a sandstone-rich unit, while the Colchester and Bethelsdorp Members both consist primarily of dark grey mudstones and minor sandstones, but respectively contain lacustrine and marine fossils.

# Thickness

The thickness of the Kirkwood Formation is highly variable, but it reaches its maximum measured thickness in the Algoa Basin,

where 2210 m was intersected by borehole AL 1/69 and wedges out towards the southern and western basin margins (Winter, 1973). Although there is limited borehole data outside of the Algoa Basin, a similar thinning towards the basin edges could be expected in the other Mesozoic rift basins. At least 1900 m was intercepted in the Gamtoos Basin (Dingle et al., 1983) and 186.5 m in the Robertson Basin. Boreholes in the offshore Bredasdorp Basin intercepted a similarly wide range of thicknesses varying from 1499 m in the north to just 79 m in the south (Dingle et al., 1983).

The Colchester Member is about 140 m thick in boreholes CO 1/69 and CO 3/71, the Bethelsdorp Member is ~400 m thick in SW1/08 and the Swartkops Member attains a 100 m thickness in the same borehole (McLachlan and McMillan, 1976) (see stratotypes section).

#### Lithology

## Mudstone (50 to 100%)

The mudstones and silty mudstones are variegated, colourmottled, moderate to dark reddish-brown (10R 4/6, 10R 3/4)\*, moderate pink (5R 7/4), light red (5R 6/6), greyish yellow green (5GY 7/2), pale olive (10Y 6/2), greyish green (10GY 5/2) or dark grey (N3) with variable calcrete-rich palaeosols (Frost, 1996) and sandstone interbeds (Winter, 1973; Shone, 1976) (Figures 2A to G). The mudstone packages exhibit either finely laminated units that are in places interbedded with altered tuffs, or they are massive with extensive calcareous palaeosols in the upper part of upward fining cycles.

#### Sandstone (10 to 50%)

Coarse- to fine-grained, moderate red (5R 4/6), pale red (10R 6/2), pale reddish brown (10R 5/4), light brown (5YR 6/4), pale brown (5YR 5/2), pale yellowish orange (10YR 8/6), greyish orange (10YR 7/4), moderate yellowish brown (10YR 5/4), moderate yellow (5Y 7/6), light grey (N7), very light grey (N8) and white (N9) sandstone interbedded with mudstones as either tabular beds, 'U-shaped' lenses or fully developed point bars (Figures 2A, B, E, F, and G). Sandstone units typically form upward fining successions with pebbly conglomerate lags at the base and mudstones at the top of each cycle. Thicker sandstone beds commonly exhibit cross-bedding or are massive, and contain variable amounts of charcoal, as well-displayed at the Bezuidenhouts River Bridge (Algoa Basin) (Muir et al., 2015) and in cuttings at the old Calitzdorp railway station (Oudtshoorn Basin). Wood fragments and logs are also common in sandstone beds, often in association with charcoal (Figure 2F).

## Conglomerate (0 to 10%)

Thin conglomerate lags and lenses are common at the base of sandstone-dominated successions and rarely attain thicknesses of more than 1 m. Clasts comprise either extrabasinal Cape Supergroup lithologies or intrabasinal mudstone rip-ups. Charcoal fragments and fossil logs also occur as clasts in some conglomerate beds.

<sup>\*</sup>All colour codes follow those outlined in the Munsell Rock Colour Chart of 2009.



*Figure 2.(A)* Interbedded variegated mudstones with calcareous palaeosols and yellow-brown sandstones, delineated with white dashed line, at the stratotype exposure on a natural cliff 3 km south of Kirkwood in the Algoa Basin. The red dashed line marks the unconformable contact with the overlying Cenozoic gravels (photo courtesy of Dr. W. de Klerk). (**B**) Sandstone overlying variegated horizontally bedded, mostly massive mudstones that typify the Kirkwood Formation in the Algoa Basin and elsewhere in the southern Cape Mesozoic basins (photo courtesy of Dr. W. de Klerk). (**C**) Volcaniclastic bentonite (1.5 m thick) beneath an erosive contact (red dashed line) overlain by subaqueously deposited conglomerate, sandstones and finely laminated mudstones in an upward-fining lacustrine succession in the Heidelberg Basin. White dotted line marks quarry floor. (**D**) Interbedded red-brown mudstones and sandstones with volcaniclastic bentonite (between white dashed lines) at a road-cutting in the Robertson Basin. Arrow points to 'popcorn' weathering of montmorillonite clay in bentonite. (**E**) Randomly oriented sub-cylindrical invertebrate burrows in greyisb-green, laterally extensive, up to 20 to 25 cm thick sandstone interbeds in the red mudstones that contain calcareous palaeosols in the Algoa Basin (image taken from Almond, 2012). (**F**) Fossilized logs embedded in a charcoal-rich sandstone bed in the Kirkwood Formation along the Bezuidenbouts River. (**G**) Outcrop of the marine Betbelsdorp Member near Jachtvlakte, 6 km south of Uitenbage in the Algoa Basin exhibits dark grey laminated mudstones and tabular yellow-brown sandstones (delineated by white dashed lines). White dotted line separates the unit from orange soil horizons above.

## Volcaniclastics (0 to 5%)

Pale greenish yellow (10Y 8/2), moderate brown (5YR 4/4), light brown (5YR 6/4), moderate yellowish brown (10YR 5/4), light grey (N7), very light grey (N8) to white (N9), light red (5R 6/6), pale pink (5RP 8/2), and moderate pink (5R 7/4) volcaniclastic deposits (Figures 2C and D) consisting of tuff, tuffite and bentonite (altered tuff) are documented from most of the Mesozoic rift basins.

#### Palaeontology

The Kirkwood Formation, being the most fossil-rich Jurassic – Cretaceous unit in southern Africa, contains a highly diverse non-marine fossil biota such as macroplants (e.g., bryophytes, ferns, bennettitaleans, cycads, conifers, fossil logs, amber, charcoal), freshwater algae (charophytes), freshwater crustaceans (conchostracans), bivalves, insects, fish scales, reptile (e.g., sauropod, ornithopod and theropod dinosaurs, frogs, turtles, sphenodontids, crocodiles) and some mammalian bones (McLachlan and McMillan, 1976; Anderson and Anderson,1985; Bamford,1986; de Klerk et al., 2000; Gomez et al., 2002; Shone, 2006; Almond et al., 2009; McMillan, 2010; Almond, 2012; Forster et al., 2009; Muir et al., 2015; McPhee et al., 2016).

## Genesis

Most of the Kirkwood Formation was deposited by meandering fluvial systems and in lacustrine environments (Shone, 1976; Muir et al., 2015). The Colchester Member in the Algoa Basin is lacustrine in origin while the Bethelsdorp Member is a marine unit (McMillan, 2010; Almond, 2012). The sandstones that comprise the Swartkops Member are considered fluvial or locally lacustrine (McLachlan and McMillan, 1976; SACS, 1980).

# Boundaries Lower boundary

The Kirkwood Formation conformably overlies and laterally grades into the Enon Formation, but their gradational,

interfingering relationship is not easily delineated in the field due to the lack of laterally and vertically extensive outcrops. In some areas the Kirkwood Formation unconformably overlies older Suurberg Group (e.g., in the northern Algoa Basin near Paterson) or older Cape Supergroup rocks.

#### Upper boundary

Erosion has in most cases removed the overlying units; hence the top boundary of the Kirkwood is usually not apparent in the field. However, in the Algoa Basin either a conformable (Shone, 1978) or unconformable (Winter, 1973; McLachlan and McMillan, 1976) boundary separates it from the overlying Sundays River Formation, with which it also partly shares a gradational interfingering relationship. The Kirkwood Formation is locally unconformably overlain by the Miocene – Pliocene marine Alexandria Formation deposits in the Algoa Basin. An angular, unconformable contact separates the Kirkwood Formation from the overlying Buffelskloof Formation in the Oudtshoorn, Heidelberg and Mossel Bay basins.

#### Lateral boundaries

A lateral gradational interfingering boundary exists with parts of the Enon Formations in all Mesozoic rift basins that contain the Kirkwood Formation. A similar relationship exists in part with the Sundays River Formation in the Algoa Basin (Figure 3).

#### Subdivision

Two members of the Kirkwood Formation have been accepted by South African Committee for Stratigraphy (SACS, 1980; Joubert and Johnson, 1998). The most notable is the Colchester Member (Winter, 1973), encountered mainly in boreholes as a potential oil-source rock near the base of the Kirkwood Formation in the Algoa Basin. The Colchester Member lies at a depth of 2171 m in borehole CO 1/67 at Colchester, its type area, and was intersected in several other nearby boreholes in the Algoa Basin (Winter, 1979). Earlier authors consider the member to extend beyond the type area in the Sundays River Trough to



*Figure 3.* Schematic representation of the main units of the Uitenbage Group and their stratigraphic position in the Mesozoic rift basins (not to scale). Not all these units or the volcaniclastic deposits (vvvv) are present in all basins.

other troughs of the Algoa Basin (Winter, 1973; McLachlan and McMillan, 1976; Winter 1979). However, McMillan (2010) highlights subtle lithological and micropalaeontological differences between the units in each trough of the Algoa Basin and prefers a separation of the unit into two, which he names the Colchester Formation (limited to the Sundays River Trough) and Bethelsdorp Formation (of the Uitenhage and Port Elizabeth Troughs). The present authors do not support the elevation of these units to formation level, because they occur mostly in the subsurface and are limited to the Algoa Basin, but do recognise the importance of the divergent micropalaeontological assemblages in each (McMillan, 2010).

The shale in boreholes near Colchester, the type locality for the traditional Colchester Member, contains no clear marine microfossils, whereas the similar dark grey shale in the Uitenhage and Port Elizabeth troughs hosts marine macro- and microfossils (McMillan, 2010; Almond, 2012). We therefore propose a new stratigraphic unit, the Bethelsdorp Member, for the marine grey mudstone-dominated and subordinate sandstone unit in the Uitenhage and Port Elizabeth troughs, and prefer to use Colchester Member to refer only to the lacustrine (as opposed to marine) grey shale encountered in several boreholes around the type area near Colchester in the Algoa Basin. Most notably, these have been identified in borehole CO 1/67. Given the subdivision of the original Colchester Member (Winter, 1979) into a reduced unit with the same name and the newly defined Bethelsdorp Member, several revisions are required. Firstly, the reference material in the CO 1/67 borehole (Figure 4) below 2171 m applies to the newly defined Colchester Member only and does not include the Bethelsdorp Member. Secondly, the new Colchester Member has a reduced thickness of 140 m from the original SACS accepted thickness of <400 m (Joubert and Johnson, 1998). Finally, the depositional environment of the Colchester Member is not mixed marine/estuarine/lacustrine as frequently described (e.g., McLachlan and McMillan, 1976) but instead is limited to probable lacustrine deposition only.

The Bethelsdorp Member is here defined as the 400 m thick grey shale unit that contains marine fossils near the base of the Kirkwood Formation in the Uitenhage (onshore) and Port Elizabeth (offshore) Troughs of the Algoa Basin. The microfossil assemblages point to a Tithonian age for this unit (McLachlan and McMillan, 1976; McMillan et al., 1997; McMillan, 2010) and a likely temporal correlation with the Colchester Member of the Sundays River Trough. In outcrops near Jachtvlakte (Figure 2G), which is the best place to view the Bethelsdorp Member, the bioturbated, grey, mudstone-rich unit exhibits tabular sandstone beds and no palaeosols, in contrast with other parts of the Kirkwood Formation nearby that have well developed red palaeosols, terrestrial fossils and lenticular sandstones (Almond, 2012).

A third member of the Kirkwood Formation accepted by SACS (1980), is the Swartkops Member, first briefly suggested by Atherstone (1857; 'Zwartkops variegated sandstone') and later mentioned by Haughton (1928) as the 'Zwartkops Sandstone'. Both descriptions are unclear, but it was later formalized in its present stratigraphic context by Winter (1973) to denote a thick



*Figure 4.* Stratotype for the Kirkwood Formation in a natural cliff south of Kirkwood, Algoa Basin. See Figure 5 for locality map and Figure 1 for its regional position.

sandstone package directly above the Enon Formation, but below the Colchester Member. Given the proposed subdivision of the original Colchester Member into two parts, its stratigraphic position is better described as below the Bethelsdorp Member. It outcrops in the Swartkops River valley west of Uitenhage and has otherwise only been encountered in boreholes such as SW 1/08, from which it was described and depicted by McLachlan and McMillan (1976). The Swartkops Member is not given much mention in literature probably because it is rarely exposed and palaeontologically mostly barren (McLachlan and McMillan, 1976).

The 'grey facies' in the Heidelberg Basin (Figure 2C) was predominantly deposited in a lacustrine environment as indicated by horizontally laminated grey mudstones with freshwater invertebrates and laterally continuous volcaniclastic deposits (Viljoen, 1992) and is not correlated with any of the above members of the Kirkwood, but instead is regarded as a lacustrine or 'grey facies' unit that also exists in some of the other basins (e.g., Haasvlakte and northern Algoa Basins) but with reduced vertical and lateral extent (Malan and Viljoen, 2016).

# Regional aspects Geographic distribution

The Kirkwood Formation was first described from the Algoa Basin; however, deposits with identical lithological characteristics and stratigraphic position also exist in most other Mesozoic rift basins further to the west like the Gamtoos, Plettenberg Bay, Oudtshoorn, Mossel Bay, Vlees Bay, Heidelberg, Swellendam, Robertson and Worcester Basins (Figure 1). The Kirkwood Formation also outcrops in basins near Bredasdorp (Soutpansvlakte, Haasvlakte and Jubilee Basins). The three official Members of the unit, the Bethelsdorp, Colchester and the Swartkops, are all restricted to the Algoa Basin (Shone, 1976; Dingle et al., 1983; Malan and Theron, 1987; Malan and Viljoen, 1990; Shone, 2006; Malan and Viljoen, 2016).

#### Criteria for lateral extension

Mesozoic variegated mudstones, sandstones and minor conglomerates with terrestrial or lacustrine fossils can be used to extend the Kirkwood Formation from the type area in the northern Algoa Basin to other basins. Three members can be identified in the Algoa Basin: two with abundant dark grey mudstones and minor sandstones with either lacustrine (Colchester Member) or marine (Bethelsdorp Member) fossils, and a sandstone-rich, fossil-poor Swartkops Member.

#### **Correlation**

The Kirkwood Formation is found in several Mesozoic rift basins within the Eastern and Western Cape provinces. Correlation between each of these outcrop areas is purely lithostratigraphic, and because of the poorly constrained depositional ages, chronostratigraphic correlation between these units remains speculative. Borehole data confirm that the Kirkwood Formation extends into all offshore basins (McMillan et al., 1997; Roux and Davids, 2016). Parts of the Kirkwood Formation are coeval with the Enon and Sundays River Formations (as explained in earlier sections). The Infanta Formation is the offshore equivalent of the Kirkwood Formation (Joubert and Johnson, 1998), while the Colchester Member is coeval with the marine Bethelsdorp Formation in the Uitenhage Trough of the Algoa Basin (McMillan, 2010).

Some confusion has arisen regarding oyster-bearing sandstones in the Dunbrody area of the Algoa Basin. McMillan and McLachlan (1976) first assigned these beds to the Colchester Member but later McMillan et al. (1997) considers this correlation erroneous and attributes it to a tongue of the Sundays River Formation, which outcrops nearby. A second contention is the correlation of the marine parts of the original Colchester Member, now the Bethelsdorp Member, with the Brenton Formation at Knysna (Dingle and Klinger, 1972), which is



*Figure 5.* Type area of the Kirkwood Formation is near the town of Kirkwood in the Eastern Cape. The unit stratotype (locality indicated by yellow star) is on the banks of the Sundays River (blue line) near The Lookout restaurant and lodge. See Figure 4 for the stratotype log.



*Figure 6.* Composite reference stratotype from boreholes CO1/67 and CO *3/71* (reproduced from Winter, 1979).



*Figure 7.* Reference stratotype from borehole SW1/08 containing both Bethelsdorp and Swartkops Members, as well as the lower contact with the Enon Formation (reproduced from McLachlan and McMillan, 1976). See Figures 1 and inset in Figure 5 for location.



Figure 8. Reference stratotype of the Kirkwood Formation in borehole W202 drilled near Robertson (Western Cape); for location, see Figure 1. The core of this borehole is stored at the National Core Library of the Council for Geoscience at Donkerboek, Pretoria. Beds are structureless unless otherwise indicated (See Figure 9 for symbology).

dismissed by McLachlan et al. (1976) in a subsequent study that instead correlates the Brenton Formation with the Sundays River Formation.

# Stratotypes

The unit stratotype for the Kirkwood Formation presented here is a natural cliff 3 km south of Kirkwood and 650 m west of the R336 bridge across the Sundays River in the Algoa Basin (33°25'39"S; 25°26'07"E) (Figures 4 and 5). The cliff face is easily visible from the R336 and farm roads north of the Sundays River, however access from that direction is impossible. Instead, the outcrop is best accessed by foot walking northwards down the very steep slope from the northern end of the shooting range adjacent 'The Lookout' lodge that is situated above the cliff face. The stratotype covers only a limited portion of the Kirkwood, and none of its adjoining units or formally recognised members in the Algoa Basin, but adequately displays most of its general features.

Winter (1979) compiled a composite section for the complete Kirkwood Formation at Colchester in the Algoa Basin (including its Colchester Member) using Soekor boreholes CO1/67 (33°40'58.96"S; 25°47'30.58"E) and CO3/71 (33°40'46.71"S; 25°47'43.38"E) drilled within 500 m of each other (inset in Figure 5). CO1/67 contains the upper boundary with the Sundays River Formation but ends within the Colchester Member while CO3/71 provides a view of the bottom portion of the Formation and its contact with the Enon Formation (Figure 6). Currently, the core/cuttings are stored at the National Core Library of the Council for Geoscience at Donkerhoek, Pretoria.

The SW1/08 borehole (33°52'45.91"S; 25°36'51.78"E) was one of the earliest drilled in the Uitenhage Group of the Algoa Basin (Figure 1 and inset, Figure 5). In the literature, it is commonly referred to as the 'Old Swartkops' or 'Swartkops' borehole (McLachlan and McMillan, 1976). We suggest that it be used as a reference stratotype, because this section contains the Bethelsdorp and the Swartkops Members, as well as the contact with the Enon Formation (Figure 7). According to Winter (1979), the Swartkops Member stratotype is the section of the old Swartkop borehole between 986m (3 234 feet) and 1 049 m (3 443 feet) where there is evidence of interfingering with the overlying Colchester Member above and the Enon Formation below. The cuttings of this borehole are stored at the Port Elizabeth Museum.

To compensate for the dominance of information on the Kirkwood Formation coming from Uitenhage Group lithostratigraphy in the Algoa Basin (Figure 1), an additional reference stratotype from borehole W202 (33°49'05"S; 19°58'00"E) in the Robertson Basin is included here (Figure 7). The borehole intersects 186.5 m of Kirkwood Formation with typical sandstone, varicoloured mudstone, minor conglomeratic interbeds and numerous volcaniclastic deposits before ending in the Enon Formation (Figures 8 and 9). A more detailed record of the reference stratotype can be viewed online (https://doi.org/10.6084/m9.figshare.5155018.v1).

## Acknowledgements

Field assistants from the Sedimentology-Palaeontology Research Group at the University of Cape Town are thanked for their help



Figure 9. Litbologies and symbols, arranged by grain size, in the reference stratotype from borehole W202 (see Figure 8).

during several field trips to study the Kirkwood Formation. This project was supported by grants from the National Research Foundation African Origins Platform (GUN 91601 to EMB) and the DST-NRF Centre of Excellence in Palaeosciences (GUN CoE2017-050; COE2016-347 to EMB). A doctoral bursary to RM is provided by the DST-NRF Centre of Excellence in Palaeosciences. We gratefully acknowledge their financial contributions. The careful reviews provided by Drs Hayley Cawthra and Nigel Hicks, as well as Coenie de Beer improved the final manuscript. Opinions expressed and conclusions arrived at are those of the authors and are not necessarily to be attributed to the CoE in Palaeosciences or NRF AOP.

#### References

- Almond, J.E., de Klerk, W.J. and Gess, R., 2009. Palaeontological heritage of the Eastern Cape. Interim SAHRA technical report, Natura Viva cc, Cape Town, 51p.
- Almond, J.E., 2012. Proposed Jachtvlakte Precinct Human Settlement Plan, Nelson Mandela Bay Municipality, Eastern Cape. Natura Viva c, Palaeontological Assessment: Combined Desktop and Scoping Study, 22p.
- Anderson, J.M. and Anderson, H.M., 1985. Palaeoflora of Southern Africa. Prodromus of South African Megafloras, Devonian to Lower Cretaceous. A.A. Balkema, Rotterdam, 422p.
- Atherstone, W.G., 1857. Geology of Uitenhage: Eastern Province Monthly Magazine, 1, 518-532.
- Bamford, M.K., 1986. Aspects of the palaeoflora of the Kirkwood and Sundays River Formations, Algoa Basin, South Africa. Unpublished M.Sc. thesis, University of Witwatersrand, Johannesburg, 160p.
- De Klerk, W.J., Forster, C.A., Sampson, S.D., Chinsamy, A. and Ross, C.F., 2000. A new coelurosaurian dinosaur from the Early Cretaceous of South Africa. Journal of Vertebrate Paleontology, 20/2, 324-332.
- Dingle, R.V. and Klinger, H.C., 1972. The stratigraphy and ostracod fauna of the Upper Jurassic sediments from Brenton, in the Knysna Outlier, Cape Province. Transactions of the Royal Society of South Africa, 40, 4, 279-298.
- Dingle, R.V., Siesser, W.G. and Newton, A.R., 1983. Mesozoic and Tertiary geology of southern Africa. A.A. Balkema, Rotterdam, 375p.
- Engelbrecht, L.N.J., Coertze, F.J. and Snyman, A.A., 1962. Die geologie van die gebied tussen Port Elizabeth en Alexandria, Kaapprovinsie. Explanation of 1:125,000 scale Sheets 3325D Port Elizabeth and 3326C Alexandria, Geological Survey South Africa, 54p.
- Fouché, J., Bate, K.J. and Van de Merwe, R., 1992. Plate tectonic setting of the Mesozoic Basins, southern offshore, South Africa: A review. In: M.J. De Wit and I.G.D. Ransome (Editors). Inversion Tectonics of the Cape Fold Belt. Karoo and Cretaceous Basins of Southern Africa. A.A. Balkema, Rotterdam, 33-48.
- Frost, S., 1996. Early Cretaceous alluvial palaeosols (Kirkwood Formation, Algoa Basin, South Africa) and their palaeoenvironmental and palaeoelimatological significance. Unpublished M.Sc. thesis, University of Rhodes, Grahamstown, 177p.
- Forster, C.A., Farke, A.A., McCartney, J.A., De Klerk, W.J. and Ross, C.F., 2009. A 'basal' tetanuran from the Lower Cretaceous Kirkwood Formation of South Africa. Journal of Vertebrate Paleontology, 29, 283-285.
- Gomez, B., Martinez-Delclos, X., Bamford, M. and Philippe, M., 2002. Taphonomy and palaeoecology of plant remains from the oldest African Early Cretaceous amber locality. Lethaia 35, 300-308.
- Haughton, S.H., 1928. The geology of the country between Grahamstown and Port Elizabeth. Explanation of Cape Sheet 9 (Port Elizabeth), Geological Survey of South Africa, 50p.
- Joubert, P. and Johnson, M.R., 1998. Abridged lexicon of South African stratigraphy. South African Committee for Stratigraphy (SACS), Council for Geoscience, Pretoria, 160p.
- Lock, B.E., Shone, R., Coates, A.T. and Hatton, C.J., 1975. Mesozoic Newark-Type sedimentary basins within the Cape Fold Belt of South Africa. Proceedings of the 9th International Congress of Sedimentology, Nice, 2, 217-225.

- Malan, J.A. and Theron, J.N., 1987. Notes on an Enon basin north-east of Bredasdorp, Southern Cape Province. Annals, Geological Survey of South Africa, 21, 83-87.
- Malan, J.A. and Viljoen, J.H.A., 1990. Mesozoic and Cenozoic geology of the Cape South Coast. Guidebook Geocongress '90, Geological Society of South Africa, PO3, 81p.
- Malan, J.A. and Viljoen, J.H.A., 2016. Southern Cape Geology: Evolution of a rifted margin. Field Trip Guide, 35th International Geological Congress, Cape Town, Post11, 64p.
- McLachlan, I.R., Brenner, P.W. and McMillan, I.K., 1976. The Stratigraphy and Micropalaeontology of the Cretaceous Brenton Formation and the PB-A/1 well, near Knysna, Cape Province. Transaction of the Geological Society of South Africa, 79, 341-370.
- McLachlan, I.R. and McMillan, I.K., 1976. Review and stratigraphic significance of southern Cape Mesozoic palaeontology. Transactions of the Geological Society of South Africa, 79, 197-212.
- McMillan, I.K., Brink, G.I., Broad, D.S. and Maier, J.J., 1997. Late Mesozoic sedimentary basins off the south coast of South Africa. Sedimentary Basins of the World, 3, 319-376.
- McMillan, I.K., 2003. The Foraminifera of the Late Valanginian to Hauterivian (Early Cretaceous) Sundays River Formation of the Algoa Basin, Eastern Cape Province, South Africa. Annals of the South Africa Museum, 106, 1-274.
- McMillan, I.K., 2010. The Foraminifera of the Portlandian (Late Jurassic) Bethelsdorp Formation of the onshore Algoa Basin, Eastern Cape Province. Les Rosalines Press, Clovelly, 176p.
- McPhee, B.W., Mannion, P.D., de Klerk, W.J. and Choiniere, J.N., 2016. High diversity in the sauropod dinosaur fauna of the Lower Cretaceous Kirkwood Formation of South Africa: implications for the Jurassic - Cretaceous transition. Cretaceous Research, 59, 228-248.
- Muir, R.A. and Bordy, E.M., 2016. Stratigraphic framework for the Kirkwood Formation in the southern Cape region: invertebrate biostratigraphy and zircon geochronology. In: 19th Palaeontological Society of South Africa biennial conference, Stellenbosch University, 65p.
- Muir, R.A., Bordy, E.M. and Prevec, R., 2015. Lower Cretaceous deposit reveals first evidence of a post-wildfire debris flow in the Kirkwood Formation, Algoa Basin, Eastern Cape, South Africa. Cretaceous Research, 56, 161-179.
- Paton, D.A., 2006. Influence of crustal heterogeneity on normal fault dimensions and evolution: southern South Africa extensional system. Journal of Structural Geology, 28, 868-886.
- Rigassi, D.A. and Dixon, G.E., 1972. Cretaceous of the Cape Province, Republic of South Africa. In: T.F.J. Dessauvagie and A.J. Whiteman (Editors). African Geology. Geology Department, University of Ibadan, Nigeria, 513-527.
- Rogers, A.W. and Schwarz, E.H.L., 1901. Report on parts of the Uitenhage and Port Elizabeth Divisions. Annual Report, Geological Commission of the Cape of Good Hope, 5, 1-18.
- Roux, J. and Davids, A., 2016. Structural Evolution of the Gamtoos Basin, based on 2D seismic data, 35th IGC Conference, Cape Town, Poster Abstract.
- SACS (South African Committee for Stratigraphy), 1980. Stratigraphy of South Africa. Part 1 (Compiler L. E. Kent). Lithostratigraphy of the Republic of South Africa, South West Africa/Namibia, and the Republics of Bophuthatswana, Transkei and Venda. Handbook, Geological Survey of South Africa, 8, 690p.
- Shone, R.W., 1976. The sedimentology of the Mesozoic Algoa Basin. Unpublished M.Sc. thesis, University of Port Elizabeth, 48p.
- Shone, R.W., 1978. A case for lateral gradation between the Kirkwood and Sundays River Formations, Algoa Basin. Transactions of the Geological Society of South Africa, 81, 319-326.
- Shone, R.W., 2006. Onshore post-Karoo Mesozoic deposits. In: M.R. Johnson, C.R. Anhaeusser and R.J. Thomas (Editors). The Geology of South Africa, Geological Society of South Africa, Johannesburg, and Council for Geoscience, Pretoria, 541-571.
- Theron, J.N., Wickens, H. de V. and Gresse, P.G., 1991. Die geologie van die gebied Ladismith. Explanation of sheet 3320 Ladismith, Geological Survey of South Africa, 99p.
- Toerien, D.K. (compiler), 1991. Geological Map 3324 Port Elizabeth. 1:250 000 Geological Map Series, Geological Survey of South Africa.
- Viljoen, J.H.A., 1992. The stratigraphy of the Heidelberg/Riversdale Mesozoic Basin. In: M.J. De Wit and I.G.D. Ransome (Editors). Inversion Tectonics of the Cape Fold Belt. Karoo and Cretaceous Basins of Southern Africa.

A.A. Balkema, Rotterdam, 77-84.

- Viljoen, J.H.A., 2009. Hartenbos Formation (Uitenhage Group) In: M.R. Johnson (Editor). Catalogue of South African Lithostratigraphic Units. South African Committee for Stratigraphy, 10, 9-10.
- Winter, H. de la R., 1973. Geology of the Algoa Basin, South Africa, In: G. Blant, (Editor). Sedimentary basins of the African coasts, Part 2, South and East Coast. Association of African Geological Surveys, Paris, 17-48.
- Winter, H. de la R., 1979. Application of basic principles of stratigraphy to the Jurassic-Cretaceous interval in southern Africa. In: A.M. Anderson and W.A. Van Biljon (Editors). Geocongress 77: Some Sedimentary Ore Deposits in South Africa. Special Publication, Geological Society of South Africa, 6, 183-196.

Editorial handling: C.H. de Beer.