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Abstract

It has been argued that much of evolution takes place in the absence
of fitness gradients. Such periods of evolution can be analysed by exam-
ining the mutational network formed by sequences of equal fitness, that
is, the neutral network. It has been demonstrated that, in large popula-
tions under a high mutation rate, the population distribution over the neu-
tral network and average mutational robustness are given by the principal
eigenvector and eigenvalue, respectively, of the network’s adjacency ma-
trix. However, little progress has been made towards understanding the
manner in which the topology of the neutral network influences the re-
sulting population distribution and robustness. In this work, we build on
recent results from spectral graph theory and utilize numerical methods to
enhance our understanding of how populations distribute themselves over
neutral networks. We demonstrate that, in the presence of certain topolog-
ical features, the population will undergo an exploration catastrophe and
become confined to a small portion of the network. We further derive ap-
proximations, in terms of mutational biases, for the population distribu-
tion and average robustness in networks with a homogeneous structure.
The applicability of these results is explored, first, by a detailed review of
the literature in both evolutionary computing and biology concerning the
structure of neutral networks. This is extended by studying the actual and
predicted population distribution over the neutral networks of HIN1 and
H3N2 influenza haemagglutinin during seasons between 2005 and 2016.
It is shown that, in some instances, these populations experience an ex-
ploration catastrophe. These results provide insight into the behaviour of
populations on neutral networks, demonstrating that neutrality does not
necessarily lead to an exploration of genotype/phenotype space or an as-
sociated increase in population diversity. Moreover, they provide a plausi-
ble explanation for conflicting results concerning the relationship between

robustness and evolvability.
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CHAPTER

INTRODUCTION

When an entity undergoes evolutionary change, much of this change may not be
due to aresponse to selective pressure, but rather due to the discovery of variants
with equivalent fitness. It has been argued that the majority of genetic change
in natural organisms is due to such neutral mutations (Kimura, 1983). In Evo-
lutionary Computing (EC) (Eiben & Smith, 2015), it has been found that many
fitness functions result in a substantial proportion of mutations being neutral
(Galvan-Lopez et al., 2011). It has even been proposed that neutrality plays an
important role in the evolution of technological innovations (Lobo et al., 2004).

A highly productive abstraction for studying neutrality is the neutral network
(van Nimwegen, 2006; Van Nimwegen et al., 1999). This is a network whose
nodes represent genotypes of a given fitness and where an edge connects two
nodes if the associated genotypes differ by a single point mutation. It has been
shown that, under certain assumptions, these networks permeate sequence space
and that every phenotype is reachable by traversing the network (Reidys et al.,
1997).

A variety of authors have demonstrated the substantial impact of neutral-
ity on evolutionary dynamics (Koelle et al., 2006; Van Nimwegen et al., 1999;
Newman & Engelhardt, 1998). Much of this analysis has focused on how, in in-
stances where no advantageous mutations exist, neutrality prevents the popu-
lation from getting stuck at a certain point in sequence space. Instead, it can

explore the neutral network until it finds an advantageous phenotype lying ad-



CHAPTER 1. INTRODUCTION

jacent to the network (Fontana & Schuster, 1998; Gavrilets, 1997). Moreover, it
has been demonstrated that larger neutral networks allow for more such “step-
ping off points” (Wagner, 2008), facilitating the discovery of adaptive and inno-
vative phenotypes. It has further been shown that large neutral networks allow
the population to spread out and gain standing variation. This facilitates the
population’s adaptive response to changes in its environment (Masel & Trotter,
2010). However, there is some ambiguity as to whether neutrality is universally
beneficial to evolution (Cuevas et al., 2009; Elena & Sanjuén, 2008; Galvan-L6pez
etal., 2011).

The seminal work in the modeling of evolutionary dynamics is that of Erik
van Nimwegen, James P. Crutchfield and Martijn Huynen (1999). By employing
a straightforward model of neutral evolution, the authors demonstrated the exis-
tence of two distinct behavioural regimes. If Mu < 1, where M is the population
size and p is the per genome mutation rate, then the population is monomorphic
(Bloom et al., 2007). Mutations either fix or go extinct, that is they either become
present in the entire population or disappear from it completely. Conversely, if
Mpu > 1, then the population is polymorphic and mutations do not fix. The pop-
ulation distributes itself over a number of nodes in the network. More specifi-
cally, the population’s distribution is given by the network’s principal eigenvec-
tor and its average robustness (average number of neutral neighbours) is given
by the network’s principal eigenvalue. Random walks are a very well described
phenomenon (Lovasz, 1993), and so this work focuses exclusively on the, more
interesting, polymorphic case.

As closed-form solutions to the eigenvalues and eigenvectors of graphs do
not exist, these are somewhat opaque quantities. However, various authors have
been able to draw some conclusions from this result. Firstly, the population
spreads out, or diffuses, over the neutral network, gaining variation (Manrubia
& Cuesta, 2010; Crutchfield & Schuster, 2003; Hu et al., 2011; Masel & Trotter,
2010). Secondly, the population will become more concentrated on the “most
connected” nodes and, in so doing, increase the average robustness of the pop-
ulation (van Nimwegen, 2006; Van Nimwegen et al., 1999; Banzhaf & Leier, 2006).
These conclusions are well founded, as the average degree of a network is a
lower bound on the principal eigenvalue (Cioaba et al., 2010) and the princi-
pal eigenvector is a measure of centrality in a network, the eigenvector centrality
(Bonacich, 1972), and, as such, assigns a non-zero centrality score to each node.

In this thesis, it is demonstrated that this description of the behaviour of



(b) Hub of degree 70.

Figure 1.1: A localisation transition. A hub (star network) is connected to an
Erdés-Renyi network by adding an edge between one of the star’s peripheral
nodes and a random node of the Erdds-Renyi network. The original Erdés-Renyi
networks contained 400 vertices and 1200 edges. Node sizes are proportional
to the corresponding component of the principal eigenvector of the adjacency
matrix which is equal to the proportion of the population found on the node.
Moreover, nodes with a higher eigenvector component are more red and nodes
with a lower eigenvector component are more blue.
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polymorphic populations can be refined. Although the average population ro-
bustness will always be higher than the network’s average degree, we can con-
struct examples where the population concentrates on a region of the network
which does not agree with our intuition of “most connected”. Moreover, net-
works can be constructed where the population concentrates on a small number
of vertices and does not spread out, or diffuse, over it. Take, for instance, the two
networks shown in figure 1.1. Both of these networks consist of an Erdés-Renyi
network (Erdds & Renyi, 1959) with 400 vertices and 1200 edges connected to a
hub (star network), where the connection to the hub is made via one of its pe-
ripheral vertices. In the first network, the hub is of degree 45 and in the second
it is of degree 70. Despite the similarity of these two networks, the equilibrium
distribution of the population over them is vastly different. In the first network,
the population behaves roughly as we would expect and distributes itself fairly
evenly over the network, being more concentrated on the more central nodes of
the Erd6s-Renyi component. It is worth noting that only a very small proportion
of the population (around 0.5%) is found on the hub or its neighbours. However,
in the second network, around 99.5% of the population is concentrated on the
hub and its neighbours. This behaviour is observed regardless of the size of the
Erd6s-Renyi component, so long as the average degree of this component is kept
constant.

It is worth briefly contemplating the implications of this behaviour. At equi-
librium, the population is not exploring the neutral network, but is localized on
a small part of it. Moreover, the amount of genetic variation within the popu-
lation is small, given that almost all members are within a Hamming distance
of one from the hub sequence. Furthermore, although the average robustness
of the population is high, the average degree of the hub region on which it is
concentrated is low (star networks have an average degree of two). This is in
contrast with the higher average degree of the Erdds-Renyi component, which
has an average degree of six. The population is, therefore, not located on the
“most connected” part of the network.

There is a further consideration which would be beneficial to include in any
description of neutral evolution. This is the effect that mutational biases have on
the evolutionary process. Various biases present in landscapes have been stud-
ied, including neighbouring genotypes containing similar mutational neighbour-
hoods (Greenbury et al., 2016), the correlation of the robustness of neighbouring

genotypes (Payne et al., 2014) and the overrepresentation of certain phenotypes
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(Schaper & Louis, 2014).

A well known result in graph theory is that the neighbours of nodes in a net-
work have an average degree higher than the average degree of the network. This
result is named the friendship paradox (Feld, 1991), referring to the fact that, on
average, people’s friends have more friends than they do !. This result is due to
the fact that a sampling of vertices at the ends of edges is biased towards higher
degree vertices. The implication of this result is that, when a sequence under-
goes mutation, it is biased towards more mutationally robust sequences. This
mutational bias should have a significant impact on evolutionary dynamics dur-
ing neutral epochs.

Furthermore, we can question whether the distribution of robustness amongst
mutants is dependent on the robustness of the parent genotype and the manner
in which this influences neutral evolution. This would represent an additional
bias on the effects of mutations on the robustness of offspring. Moreover, as
Darwinian evolution requires heritable variation, we should expect that the evo-
lution of high levels of robustness would require that the robustness of offspring
be correlated with the robustness of parents. Such a correlation has a direct ana-
logue in terms of neutral network properties: the network’s assortativity (New-
man, 2003). Assortativity refers to the correlation in the degrees at either end of
an edge. We should, therefore, expect assortative neutral networks to produce
populations with a higher average robustness than disassortative networks.

The principal eigenvectors and eigenvalues of graphs are of great importance
to a variety of problems (Restrepo et al., 2007), principally synchronization phe-
nomena and the spread of epidemics. Since the publication of van Nimwegen et.
al.’s work, there has been substantial progress in approximating these quantities
in terms of network properties (Goltsev et al., 2012). In this work, we build on
these results in order to incorporate the above observations and intuitions into
a more complete understanding of the evolution of polymorphic populations on
neutral networks.

Ancel & Fontana (2000) demonstrated that, for evolving populations of RNA
sequences with plastogentic congruence, the population could undergo an ex-
ploration catastrophe, whereby it would be confined to a small portion of the
neutral network. It has recently been demonstrated (Martin et al., 2014) that

the principal eigenvector is a poor measure of centrality in networks. This is

U1t is interesting to note that, on average, people believe that they have more friends than
their friends do (Zuckerman & Jost, 2001)
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due to the fact that certain structural heterogeneities can cause the eigenvector
to localize on certain portions of the network, assigning almost all of its weight
to these portions and very little to the rest. We make the argument here that
this localisation phenomenon has important implications for the neutral evo-
lution of asexual populations at high mutation rates. Specifically, in neutral
networks with certain topological features, the population will undergo an ex-
ploration catastrophe. Moreover, this phenomenon will occur without the pres-
ence of special properties of the genotypes or phenotypes, such as plastogenetic
congruence, and occurs independent of mutation rate. We use computational
methods to confirm that this localisation of the eigenvector occurs in biologi-
cally plausible neutral networks. We further demonstrate novel modes of eigen-
vector localisation not yet explored in the literature.

On the other hand, for networks with a homogeneous topology, which can be
well approximated by a mean-field approach (Gleeson et al., 2012), we derive an
approximation of the equilibrium distribution of the population in terms of the
mutation sampling bias provided by the friendship paradox and the network’s
assortativity. More specifically, we show that, in the absence of a correlation be-
tween parent and offspring robustness, the average robustness of the population
is equal to what would be found through a sampling of genotypes by randomly
selecting and following allowed mutations on the neutral network. It rises above
or below this in the presence of positive or negative assortativity, respectively.

The specific contributions of this thesis are as follows.

e The argument that the localization phenomenon of the principal eigen-
vector on graphs implies the possibility of an exploration catastrophe oc-

curring when large populations evolve asexually on neutral networks.

* A detailed analysis of the localization phenomenon on network models
capturing biologically relevant features, namely, hubs loosely connected
to random networks (§ 4.5) and the multiple hubs of the Bardbasi-Albert
model (§ 4.6).

* The confirmation thatlocalisation can occur on graphs imbedded in Ham-

ming space (§ 4.7 and § 4.8).

* The demonstration of two novel modes of localisation, namely: locali-
sation across loosely connected components (§ 4.7) and localisation on

Hamming balls connected to random graphs in Hamming space (§ 4.8).
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e The derivation of approximations, in terms of sampling biases, for the
equilibrium population distribution on neutral networks with an homo-

geneous structure (§ 3.2).

* An analysis of the neutral networks of H3N2 and H1N1 influenza during
the seasons between 2005 and 2016. This analysis focuses on both the
predicted and the actual population distribution over the networks, and
demonstrates that, in some instances, the population is localised (chap-
ter 7).

* Adetailed analysis of the literature in evolutionary computing and biology
reporting on the structure of neutral networks, and the implications of the

above results to evolution on those networks (chapter 5 and chapter 6).

The relationship between genetic robustness and evolvability has emerged
as an important topic of research (Masel & Trotter, 2010; Wagner, 2008). A
specific focus is the attempt to reconcile (Stern et al., 2014) conflicting ex-
perimental results (Cuevas et al., 2009; McBride et al., 2008) on whether
robustness promotes or hinders evolvability. This work provides an addi-
tional plausible explanation for why robustness might sometimes be cor-
related with evolvability, whereas, in other instances, it is anti-correlated.
Robustness that leads to a population spreading out over a neutral net-
work should increase evolvability, whereas, robustness that results in an

exploration catastrophe is likely to decrease evolvability.

Furthermore, the existence of the exploration catastrophe has important
implications for the in vitro evolution of proteins (Matsuura & Yomo, 2006)
and evolutionary computing. In both these instances, diversification of
the population during neutral epochs is highly desired, and the explo-
ration catastrophe is a phenomenon which system designers would want

to avoid.

The position of a population on its neutral network determines the pheno-
types to which it can mutate. While an exploration catastrophe limits the
amount of variation to which a population is exposed, this limitation on
available trajectories could plausibly facilitate the prediction of the popu-

lation’s future evolution (Luksza & Lassig, 2014).

The study of mutational biases has similarly emerged as a pertinent re-

search theme (Greenbury et al., 2016; Payne et al., 2014; Schaper & Louis,
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CHAPTER 1. INTRODUCTION

2014). The expressions for the population distribution and average ro-
bustness derived in § 3.2 are significant in that they directly relate biases
to important metrics of the consequences of evolution on a given land-
scape, namely, genetic robustness and population distribution. Moreover,
the derived expressions shed light on a mechanism for the evolution of

robustness, an interesting question in it own right (de Visser et al., 2003).
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CHAPTER

BACKGROUND

2.1 Representation, neutrality and robustness

When organisms undergo natural evolution, mutation does not act directly on
their form, but rather on the genetic code. Similarly, in Evolutionary Computing
(EC), a representation of the problem, upon which mutation can occur, must be
identified. The problem of choosing such a representation, the representation
problem, has been identified as a critical issue within EC (Eiben & Smith, 2015),
as well as Artificial Intelligence (Al) in general (Nilsson, 2009). Historically, alarge
research focus within Al, particularly in computer vision (Lowe, 1999), was to-
ward designing representations. However, much of the recent progress within
the field has been due to the development of algorithms capable of learning rep-
resentations (Bengio et al., 2013), as opposed to designing them by hand.
Representations, and genetic code, require a mapping between themselves
(genotype) and the organism or resulting problem solution (phenotype): the
G— P map. The developmental process which translates genetic information
into various biological organisms is not well understood (Pigliucci, 2010). Yet, it
has become clear that this mapping is neither one-to-one nor linear (Gjuvsland
et al., 2013). In many organisms and Ribonucleic Acid (RNA) folding (Draper,
1992), it has been found that genetic change resulting from mutation is not pro-
portional to phenotypic change (Pigliucci, 2010; Wagner, 2008; Parter et al., 2008).
Moreover, the G— P map is highly degenerate, that is, many genotypes might en-
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CHAPTER 2. BACKGROUND

code for an identical phenotype (Pigliucci, 2010).

There exists great variation in the mappings between representations and
candidate solutions used in EC. On the one hand, in genetic algorithms, the re-
lationship between representation and solution is often somewhat straightfor-
ward (Eiben & Smith, 2015). However, within the field of generative and devel-
opmental systems (Devert, 2009), many highly complicated mappings between
representations and evolved forms have been proposed. Such mappings have
been applied to a variety of tasks, including robot morphologies and organisms
in artificial life studies (Stanley & Miikkulainen, 2003). Although the properties
of individual mappings depend on their definition, some have been shown to be
highly degenerate.

Degeneracy introduces the possibility that, when mutated, a genotype will
still map to the same phenotype. This implies that the mutation has no effect on
fitness and so can be labeled as neutral. Kimuraet al. (1968), along with King
& Jukes (1969), brought the importance of neutral mutations to the attention
of the scientific community through what has come to be known as the neu-
tral theory of molecular evolution. This posits that the majority of evolutionary
change is the result of the fixation of neutral mutations, as opposed to mutations
which confer a selective advantage. Although the level of importance that such
genetic drift has on evolution has been controversial (Nei, 2005), it is beyond
doubt that certain mutations of certain organisms and structures are selectively
neutral (Noirel & Simonson, 2008; Wagner, 2014; Bornberg-Bauer, 1997).

If the genetic code is a string of characters, as opposed to, say, a vector of
real numbers, then one can construct networks out of genotypes coding for a
given phenotype (Van Nimwegen et al., 1999). Here the vertices represent geno-
types, and an edge connects two vertices if there exists a point mutation between
their associated genotypes, that is their genetic codes are a Hamming distance of
one apart. These networks have come to be known as neutral networks (Galvan-
Lépez et al. (2011) credit Harvey & Thompson (1997) as being the originators of
the term). Neutral networks have been studied extensively (Van Nimwegen et al.,
1999; Aguirre et al., 2009; Bornberg-Bauer, 1997; Noirel & Simonson, 2008) and
it has been shown that, under certain assumptions, these networks permeate
sequence space and that any common phenotype can be reached by traveling
along them (Reidys et al., 1997).

An important associated concept is that of mutational robustness (Taverna

& Goldstein, 2002). This refers to the proportion of mutations which leave the
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phenotype unchanged. The greater the mutational robustness of the genotypes,
the larger their neutral networks will be (Wagner, 2011). This has an impact on
the evolvability of these genotypes, as they can access a greater variety of phe-
notypes through neutral drift. Moreover, populations can evolve so as to occupy
the most connected parts of the network (Van Nimwegen et al., 1999), thus in-

creasing their average robustness.

2.2 Quasispecies

When populations evolve asexually at high mutation rates, they conform to what
are known as quasispecies dynamics (Andino & Domingo, 2015; Domingo et al.,
2012). As the topic of this thesis concerns asexual neutral evolution at high mu-
tation rates, a discussion of these dynamics is necessary. Under a high muta-
tion rate, a population is no longer concentrated on a single optimal genotype
(Lauring & Andino, 2010). Instead, it spreads out in sequence space in what is
labeled either a mutant ‘cloud’ or ‘swarm’. This has the implication that it is not
the fitness of a single sequence which determines the evolutionary trajectory of
a population in genotype space, but, rather, the fitnesses of sequences within
an area of this space. This is due to the fact that, at high mutation rates, the
frequency of a given genotype in a population, is not determined solely by its fit-
ness, but also by the frequency of its mutational neighbours. Their frequency is,
in turn, determined by both their fitness and the frequency of their mutational
neighbours.

A significant phenomenon within quasispecies dynamics is what is known as
‘survival of the flattest’ (Wilke et al., 2001). This is the phenomenon whereby a
sub-population situated on a single highly fit genotype surrounded by low fit-
ness neighbours can be out-competed by a sub-population situated on a re-
gion of genotype space consisting of multiple medium fitness genotypes, each
of which is well connected to one another. Here, the term ‘survival of the flat-
test’ refers to a visualisation of this effect on a two-dimensional genotype space,
where fitness is represented by height. The single genotype would be repre-
sented by a single spike, whereas the region of medium fitness genotypes would
be represented by a lower hill with a flat top. This phenomenon is important in
the context of this thesis for two reasons. Firstly, it emphasizes the importance

of neutrality for evolution under these dynamics (Lauring & Andino, 2010). If the
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topology of the neutral network allows the sub-population to achieve a high level
of mutational robustness, this will allow it to out-compete sub-populations with
lower robustness. The second reason is that, as will be discussed later on in this
thesis (see, in particular, § 4.5 and § 4.8), the topology of the neutral network can
have a substantial impact on the average level of robustness evolved by a pop-
ulation. The fact that the robustness of sub-populations can allow them to out-
compete sub-populations situated elsewhere in seuquence space implies that
the topology of the neutral network has implications beyond just the isolated
evolution on the network itself, but could play an important role in determining
on which network the population converges.

As stated above, one of the contributions of this thesis is the demonstration
that, under certain topological conditions, a population evolving on a neutral
network undergoes a localisation transition: the exploration catastrophe. Qua-
sispecies exhibit a well-studied delocalisation ! transition: the error catastrophe
(Tejero et al., 2011; Summers & Litwin, 2006). This occurs when the mutation
rate is raised such that the population is no longer located on its mutant cloud,
but is instead spread out over genotype space. Under this regime, adaptive evo-
lution is unable to take place. It has further been argued that, in certain fitness
landscapes, the population might undergo multiple localisation-delocalisation
transitions (Tannenbaum & Shakhnovich, 2004; Tejero et al., 2011). As the muta-
tion rate is increased, it occupies broader regions of sequence space with higher

robustness and lower fitness until, eventually, it spreads out over the entire space.

2.3 Modeling Neutral Evolution

The seminal work on modeling neutral evolution is that of Van Nimwegen et al.
(1999). The model used is the application of Manfred Eigen’s original, ubiqg-
uitous, model of quasispecies evolution (Eigen, 1971), to evolution on neutral
networks. This thesis makes use of this model. As some of the reasoning pre-
sented in this thesis is dependent on the details of this model, it is necessary to
go through it in some detail.

A population of constant size M resides on the neutral network of size N.

Each generation, M genotypes are selected with replacement from the popula-

Tt is worth noting that, assuming that the controlling parameter can be changed in both
directions, a localisation transition can be turned into a delocalisation transition by altering the
direction of change in the parameter.
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tion and undergo mutation with probability p. Those genotypes which undergo
mutation will either stay on the network, or mutate off it.

Van Nimwegen et al. (1999) found that two behavioural regimes emerge. Given
a population size M and a mutation rate yu, then if Mu <« 1 the population is
monomorphic (Bloom et al., 2007). Mutations either fix or disappear, that is they
either become present in the entire population or none of it. Thus, the entire
population is concentrated on a single node of the neutral network. Through-
out the neutral epoch the population performs a random walk over the network.
On the other hand, if Mu > 1, the population is polymorphic and spreads out
over the neutral network (Wagner, 2011). Populations of self-replicating RNA,
viruses and bacteria are polymorphic, whereas larger organisms are monomor-
phic (Wagner, 2011). Given the simple dynamics of the monomorphic case, this
work focuses exclusively on polymorphic populations.

Van Nimwegen et al. (1999) further showed that the equilibrium distribution
of a polymorphic population is given by the principal eigenvector of the adja-
cency matrix of the neutral network and that the average robustness of the pop-
ulation is given by the principal eigenvalue. An important aspect of this result,
which has implications for the work presented in this thesis, is that the popula-
tion distribution is not dependent on either the mutation rate, or the difference
in fitness values between genotypes on and off the network (although genotypes

adjacent to the network are required to have lower fitness).

2.4 Interpreting the Principal Eigenvector of Graphs

Closed-form solutions to the principal eigenvector and eigenvalue of graphs do
not exist. This makes the result of Van Nimwegen et al. (1999) somewhat dif-
ficult to interpret. However, as mentioned in the introduction, various conclu-
sions have been drawn. The population spreads out, or diffuses, over the neutral
network, gaining variation (Manrubia & Cuesta, 2010; Crutchfield & Schuster,
2003; Hu et al., 2011; Masel & Trotter, 2010). Moreover, the population tends to
concentrate on the “most connected” nodes and, in so doing, increase the av-
erage robustness of the population (van Nimwegen, 2006; Van Nimwegen et al.,
1999; Banzhaf & Leier, 2006). These conclusions can be justified by the facts that
the average degree of a network is a lower bound on the principal eigenvalue

(Cioaba et al., 2010) and the principal eigenvector is a measure of centrality in
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a network, the eigenvector centrality (Bonacich, 1972), which assigns a non-zero
centrality score to each node.

There has been a certain amount of work towards refining this picture. Reeves
et al. (2016) were able to derive an upper limit to the principal eigenvalue in
terms of the size of the network, by utilising the fact that neutral networks are
subgraphs of a hypercube graph (that is, they are embedded in Hamming space).
This work, however, said nothing about the effect of other topological features
and, moreover, has no implications for the principal eigenvector. Noirel & Si-
monson (2008) were able to show, in simulation, that degree assortativity and
the existence of hubs increased the average robustness of populations. Bornberg-
Bauer & Chan (1999) studied the population distribution on protein neutral net-
works, using Hamming balls as an abstraction for their structure. It was found
that this structure lead to a slight concentration of the population towards the

center of the ball.

2.5 Complex Networks

Network science has emerged as a powerful tool for studying complex phenom-
ena involving the interactions of a large number of components (Barabdsi, 2016).
Furthermore, it has already been fruitfully applied to the interrogation of bi-
ological structure and function (Wuchty et al., 2006; Barabasi & Oltvai, 2004).
Techniques from network science have been successfully applied to a wide va-
riety of domains, including gene regulatory networks (Pechenick et al., 2012),
protein-protein interaction networks (Jeong et al., 2001), metabolic networks
(Zhao et al., 2006), neural networks (Sporns, 2010) and ecological networks (Bas-
compte, 2010). They have also been applied to studying the mutational structure
of genotypes coding for given phenotypes (Samal et al., 2010; Wagner, 2014) as
well as neutral networks (Aguirre et al., 2011) (see chapter 6). The rest of this sec-
tion will go through some concepts and techniques from network science which

are used in this thesis.

Connected Components

A network can be separated into its connected components (Barabdsi, 2016).
These are sets of nodes, where each node in the set can be reached from another

node in the set by traversing edges. The result of Van Nimwegen et al. (1999)
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2.5. COMPLEX NETWORKS

assumes that the network is connected, that is, it has a single connected com-
ponent. As this work builds on that result, we are also required to make this
assumption. However, the term “neutral network” is often used to refer to all
genotypes of a given fitness. This network could have multiple connected com-
ponents. Before applying the results of Van Nimwegen et al. (1999) and those
in this thesis, one would have to separate the network into its connected com-
ponents. However, constantly referring to “a connected component of a neutral
network” is awkward. Therefore, for the remainder of this thesis, we abuse ter-
minology slightly, and use the term “neutral network” to refer to a connected

component of a neutral network.

Assortativity

Degree assortativity (from hereon, referred to as assortativity) refers to the Pear-
son correlation between the degrees of the nodes at either end of the edges in a
network (Newman, 2003). It is measured by the assortativity coefficient r:

o Yikik(ejx—agjqx)

2
q

(2.1)

o

Here, j and k are the remaining degree of the vertices at either end of the edge.
That is, the degree of the vertex excluding the edge which we are observing. gy
is the distribution of the remaining degree, e the joint distribution of the re-

maining degree and 0%7 is the variance of this joint degree distribution.

Friendship Paradox

This effect is named after the phenomenon where, in social networks, the aver-
age number of friends of friends is higher than the average number of friends.
Moreover, this effect is present in all networks, where the average number of
neighbors of neighbors is higher than the average number of neighbors of nodes
in the network. The cause of this paradox is that sampling the degrees of neigh-
bors is equivalent to sampling the degrees of nodes at the ends of edges, which
is biased towards higher degree nodes. The relationship between these two av-

erages can be expressed as: (Feld, 1991)

" o2 (k?)
2.2 A= gy 4 In 2 S
(22 R ATE T
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where (k) is the average degree (robustness) of genotypes on the neutral net-
work, o2 is the variance of these degrees and A is the average degree of sin-
gle mutation neighbors. An implication of this result, as demonstrated by van
Nimwegen et. al. (Van Nimwegen et al., 1999), is that random walks on neutral

networks result in an average neutrality equal to A.

Xulvi-Brunet - Sokolov Algorithm

Later sections of this thesis make heavy use of randomly generated networks. In
order to study networks with varying values of the assortativity coefficient r, the
Xulvi-Brunet - Sokolov (XBS) algorithm was used (Xulvi-Brunet & Sokolov, 2004).
This algorithm takes, as input, a given graph and rewires it to be more or less as-
sortative. It operates by randomly selecting two edges in the graph. These edges
are removed, however, if the goal is to create an assortative network, then, with
probability «, the two nodes with the highest degrees are connected by a new
edge. Similarly, the two nodes with the lowest degrees are also connected. Oth-
erwise, the four nodes are randomly connected. if the goal is to create a disassor-
tative network, then, with probability «, the highest degree node is connected to
the lowest degree node and the remaining two nodes are also connected. Other-
wise, the four nodes are randomly connected.

It is important to note that this algorithm is degree preserving. The degrees
of the nodes remain unchanged. Moreover, the repeated application of this
rewiring rule produces an ergodic Markov chain. This Markov chain reaches a
stationary state in which the networks have a certain level of assortativity. Once
this state has been reached, the rewiring provides a uniform sampling of net-
works with the given degree sequence and level of assortativity (Ray et al., 2014).

There are, however, two disadvantages to this technique. The first is that
there is no simple relationship between the parameter a and the resulting net-
work assortativity r of the stationary distribution. The value of r produced is
also dependent on aspects of the network’s degree sequence (Barabasi, 2016).
However, using a value of @ = 1 will produce maximally assortative (or disassor-
tative) networks. Therefore, by using a range of a values between 0 and 1 one
can generate networks with all realizable levels of assortativity. Secondly, there
are no precise guarantees on the mixing time of the Markov chain, that is the
number of rewirings required before the algorithm produces an unbiased sam-

pling of networks with the given degree sequence and level of assortativity (Ray
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et al., 2014). That being said, it has been argued (Ray et al., 2014) that 5E —30E
rewirings should be sufficient, where E is the number of edges in the graph. In all
the following simulations, 1 million rewirings were performed, as this was found
to be the largest number which could be used without making each run pro-
hibitively time consuming. The largest number of edges in any of the networks

produced was 70 000.
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CHAPTER

HOMOGENEOUS NETWORKS

3.1 Intuition

We would not expect populations to converge on an average level of robust-
ness substantially lower than what a random walk provides. As stated in § 2.5,
this is equal to the mutation sampling bias provided by the friendship paradox,
A= (k2 I (k). Although robust genotypes have a selective advantage in that they
produce more viable offspring, if these offspring themselves are not robust it
is difficult to see how the population could converge on this lineage. Therefore,
the selection of robustness is facilitated by the existence of robust vertices whose
offspring are also robust. This sort of higher-order mutational bias is provided
by network assortativity, that is, correlation in the degrees of the vertices at the
end of edges (Newman, 2002) (§ 2.5). In the following section, we derive an ex-
pression for the average population robustness, demonstrating that it is equal to
the mutational sampling bias and rises above or below this figure depending on

whether the network has positive or negative degree assortativity.

3.2 Derivation of Approximation

Mean-field analysis has proven to be an effective approach for approximating
dynamics occurring on networks (Gleeson et al., 2012). Moreover, it has already

proven to be effective for deriving approximations to the principal eigenvalue
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of network adjacency matrices (Restrepo et al., 2007). In this chapter, we use a
mean-field approach to derive expressions relating the principal eigenvalue and
eigenvector of the adjacency matrix of the neutral network to mutational biases
present in the landscape.

We simplify the model of Van Nimwegen et al. (1999) (§ 2.3) by assuming
that the genomic mutation rate is exactly one and that mutations off the net-
work are lethal. These assumptions do not affect the resulting approximations of
the eigenvectors and eigenvalues as those authors demonstrated that the pop-
ulation distribution over the neutral networks is independent of the mutation
rate and off-network fitness (so long as the off-network fitness is lower than the
on-network fitness).

The simplified model is then as follows. The population of constant size M
resides on a neutral network of size N. The total number of neighbours, neu-
tral and non-neutral, that a given genotype can have is given by U, this limit is
determined by the length of the genetic code and the size of the alphabet. Each
generation, M genotypes are selected with replacement from the population.
These individuals then undergo mutation. With probability k;/U the individual
remains on the network, where k; is the degree of the node representing the in-
dividual’s genotype. If the individual stays on the network, it moves to one of its
neighbouring nodes, chosen at random. If it mutates off the network then it is
ineligible for selection in the subsequent generation.

In the delocalized regime, progress on approximating the population’s distri-
bution and robustness can be made by assuming that, at equilibrium, for every
node in the network, the average population concentration on nodes at a given
distance [ is equal. That is, we utilise a mean-field approximation at a given
distance [. This average concentration is the uniform concentration, that is the
population size divided by the number of nodes. This is equivalent to assum-
ing that the correlation length for the degrees is low. It has been found that, for
most real-world networks, the correlation length is low (Mayo et al., 2015). Us-
ing this assumption we can approximate the proportion of the population which
mutates onto a given node, and hence the population distribution and average
robustness.

For the cases [ = 2 and [ = 3 we make use of the annealed network approx-
imation (Dorogovtsev et al., 2008), whereby all nodes with a given degree k are
approximated as having the same nearest neighbour degree distribution, which

is the aggregate distribution over the neighbours of all nodes with degree k. This
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has the implication that all nodes of degree k have the same average nearest
neighbours degree, that is k(i) = ky,(k;), where i is a node’s index and k; the

associated degree. We also use the approximation:
3.1) knn (k) = A+ (k=A)r

Where k,,(k) is the average nearest-neighbour degree of nodes of degree k,
A= (k?) 1 (k) ((k) being the average degree (k%) being the average of the squares
of the degrees) and r is the assortativity coefficient (the Pearson correlation be-
tween the degrees at either end of an edge, see § 2.5) (Newman, 2002). This
approximation is derived by considering that r is the root of the coefficient of
determination of the linear regression between the degrees of the nodes at ei-
ther end of an edge.

We introduce the notation )Li to denote the approximation of the principal
eigenvalue (population average robustness) based on the assumption of equal
average distribution at distance /. Similarly, we use f; (Ai) to denote the i*" com-
ponent of the principal eigenvector (the proportion of the population having the
genotype represented by the i’ node), based on the assumption of equal aver-

age distribution at distance .

Zero-hop Case

The simplest case is that we assume that the average population concentration
at a distance zero from each node is equal, that is we assume that the population
is uniformly distributed. The average robustness of the population is therefore,
trivially, the average degree. Thus, we have:

1
- (10) —
(3.2) fi(A)) N
(3.3) AV = (k)

Where (k) is the average degree and N is the size of the network.

One-hop Case

The next case assumes that, at equilibrium, the average population concentra-
tion of the neighbours of each node is equal. Therefore, each generation, an

average of k; M/ NU individuals mutate onto node i. Normalizing, we arrive at

k;
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Multiplying by the robustness (k;) and summing over all the nodes we arrive at
the average robustness of:
(k%)

3.5 Al=2"L=)
(3.5) 1=

Two-hop Case

If we assume an average uniform population concentration two hops from each
node, then, each generation, by the annealed network approximation, the nodes
neighbouring node i will receive, on average, k,, (k;) M/ NU mutants. This im-
plies that node i will receive k; knn (ki) M/ NU? individuals. Substituting in equa-

tion (3.1) and normalizing we arrive at
(3.6) fi(A) = ——

Multiplying through by the node’s robustness (k;) and summing over the nodes,

we arrive at

3.7) A

Where o2 = (k%) / (k) — (k*)? 1 (k)? is the variance of the node’s degrees when
sampled by following edges. (3.7) is equivalent to the approximation derived

by Goltsev et. al. (Goltsev et al., 2012) through the use of a power iteration.

Three-hop Case

Our final approximation is based on the assumption that, from any given node,
the average population density at nodes three hops away is equal. We consider
the node i’, a neighbour of i. Each generation, this node will receive an average
of ki kpy, (ki) M/ NU? mutants from its neighbours. We then average this over all

neighbours i’ of node i, that is we want to find

M -
(3.8) I= N—Uz<kiu1+kf,r—kir/1r>i,

Using the fact that (kf,)i, ~ aﬁ + (k,-/ﬁ,, where the equality is approximate as
o2 is the global variance and not specific to the neighbours of nodes of degree

k;, we can arrive at
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A

(3.9) I (i2+i(ki—i)r+/i(ki—/i) r2+(ki—)t)2 r3+0§r)

T NU2
The number of mutants that a node i receives is k;I/U. When we come to

normalise this, we find that the total population is
M A ) .
(3.10) pzm(ucmzﬂk(k—a) )r+ (ky o2r)

The second two terms in the parentheses are much smaller than the first and
so, for mathematical expediency, we ignore them (In the numerical analysis of
the following section, we use the symbol )NL? to refer to the approximation which
results from including all three terms in the parentheses). This results in

3.11)

A2
1 ~ ~ N ki(ki—/l) r3 kiO'zl’
(A3) = ——= | ki A+ ki (ki = A) r + ki (ki = A) r + - +—F
108 = g k6 =2k )2 BT B
As previously, we multiply by each node’s robustness (k;) and sum over all nodes
to arrive at the approximation for the eigenvalue (population average robust-
ness).
. 2ro2 r?o?  r3((kh) - 24 (k%) + A% (k?

(3.12) Wil [Ty (<KD —24 ¢k + A7 &)
A A (k2) A

3.3 Erdods-Renyi Networks

In order to ascertain the accuracy of the approximations for the equilibrium dis-
tribution of populations in homogeneous networks, derived in the previous sec-
tion (§ 3.2), Erd6s-Renyi (Erdds & Renyi, 1959) networks were generated. The
generation of networks conforming to this model is performed by instantiating
N vertices and E edges. Each end of each edge is connected to a node, chosen
randomly. As such, the Erdés-Renyi model is a model of maximally random net-
works. Figure 3.1 shows a diagram of an Erdds-Renyi network along with the
population distribution over it.

In order to study the bulk properties of this model, 1100 large networks were
generated. All generated networks contained N = 5000 vertices and either E =
35000 or E = 70000 edges, providing average degrees of (k) = 14 and (k) = 28,
respectively. The lower value was chosen as it was found that this was the lowest
value which could be used for which all generated networks were connected. As

specified in § 2.5, our analysis assumes connected networks.
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Figure 3.1: An Erdés-Renyi network with N =200 nodes and E = 600 edges. The
node size is proportional