
Univ
ers

ity
 of

 C
ap

e T
ow

n
Spectral Analysis of Neutral Evolution

Dissertation presented for the degree of Master of Science in the

Department of Computer Science, University of Cape Town,

October 2017, Supervised by Dr. Geoff Nitschke and Prof. Dr.

Agoston Eiben.

David Shorten

1



The copyright of this thesis vests in the author. No 
quotation from it or information derived from it is to be 
published without full acknowledgement of the source. 
The thesis is to be used for private study or non-
commercial research purposes only. 

Published by the University of Cape Town (UCT) in terms 
of the non-exclusive license granted to UCT by the author. 

Univ
ers

ity
 of

 C
ap

e T
ow

n



Abstract

It has been argued that much of evolution takes place in the absence

of fitness gradients. Such periods of evolution can be analysed by exam-

ining the mutational network formed by sequences of equal fitness, that

is, the neutral network. It has been demonstrated that, in large popula-

tions under a high mutation rate, the population distribution over the neu-

tral network and average mutational robustness are given by the principal

eigenvector and eigenvalue, respectively, of the network’s adjacency ma-

trix. However, little progress has been made towards understanding the

manner in which the topology of the neutral network influences the re-

sulting population distribution and robustness. In this work, we build on

recent results from spectral graph theory and utilize numerical methods to

enhance our understanding of how populations distribute themselves over

neutral networks. We demonstrate that, in the presence of certain topolog-

ical features, the population will undergo an exploration catastrophe and

become confined to a small portion of the network. We further derive ap-

proximations, in terms of mutational biases, for the population distribu-

tion and average robustness in networks with a homogeneous structure.

The applicability of these results is explored, first, by a detailed review of

the literature in both evolutionary computing and biology concerning the

structure of neutral networks. This is extended by studying the actual and

predicted population distribution over the neutral networks of H1N1 and

H3N2 influenza haemagglutinin during seasons between 2005 and 2016.

It is shown that, in some instances, these populations experience an ex-

ploration catastrophe. These results provide insight into the behaviour of

populations on neutral networks, demonstrating that neutrality does not

necessarily lead to an exploration of genotype/phenotype space or an as-

sociated increase in population diversity. Moreover, they provide a plausi-

ble explanation for conflicting results concerning the relationship between

robustness and evolvability.
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1
INTRODUCTION

When an entity undergoes evolutionary change, much of this change may not be

due to a response to selective pressure, but rather due to the discovery of variants

with equivalent fitness. It has been argued that the majority of genetic change

in natural organisms is due to such neutral mutations (Kimura, 1983). In Evo-

lutionary Computing (EC) (Eiben & Smith, 2015), it has been found that many

fitness functions result in a substantial proportion of mutations being neutral

(Galván-López et al., 2011). It has even been proposed that neutrality plays an

important role in the evolution of technological innovations (Lobo et al., 2004).

A highly productive abstraction for studying neutrality is the neutral network

(van Nimwegen, 2006; Van Nimwegen et al., 1999). This is a network whose

nodes represent genotypes of a given fitness and where an edge connects two

nodes if the associated genotypes differ by a single point mutation. It has been

shown that, under certain assumptions, these networks permeate sequence space

and that every phenotype is reachable by traversing the network (Reidys et al.,

1997).

A variety of authors have demonstrated the substantial impact of neutral-

ity on evolutionary dynamics (Koelle et al., 2006; Van Nimwegen et al., 1999;

Newman & Engelhardt, 1998). Much of this analysis has focused on how, in in-

stances where no advantageous mutations exist, neutrality prevents the popu-

lation from getting stuck at a certain point in sequence space. Instead, it can

explore the neutral network until it finds an advantageous phenotype lying ad-
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CHAPTER 1. INTRODUCTION

jacent to the network (Fontana & Schuster, 1998; Gavrilets, 1997). Moreover, it

has been demonstrated that larger neutral networks allow for more such “step-

ping off points” (Wagner, 2008), facilitating the discovery of adaptive and inno-

vative phenotypes. It has further been shown that large neutral networks allow

the population to spread out and gain standing variation. This facilitates the

population’s adaptive response to changes in its environment (Masel & Trotter,

2010). However, there is some ambiguity as to whether neutrality is universally

beneficial to evolution (Cuevas et al., 2009; Elena & Sanjuán, 2008; Galván-López

et al., 2011).

The seminal work in the modeling of evolutionary dynamics is that of Erik

van Nimwegen, James P. Crutchfield and Martijn Huynen (1999). By employing

a straightforward model of neutral evolution, the authors demonstrated the exis-

tence of two distinct behavioural regimes. If Mµ¿ 1, where M is the population

size andµ is the per genome mutation rate, then the population is monomorphic

(Bloom et al., 2007). Mutations either fix or go extinct, that is they either become

present in the entire population or disappear from it completely. Conversely, if

MµÀ 1, then the population is polymorphic and mutations do not fix. The pop-

ulation distributes itself over a number of nodes in the network. More specifi-

cally, the population’s distribution is given by the network’s principal eigenvec-

tor and its average robustness (average number of neutral neighbours) is given

by the network’s principal eigenvalue. Random walks are a very well described

phenomenon (Lovász, 1993), and so this work focuses exclusively on the, more

interesting, polymorphic case.

As closed-form solutions to the eigenvalues and eigenvectors of graphs do

not exist, these are somewhat opaque quantities. However, various authors have

been able to draw some conclusions from this result. Firstly, the population

spreads out, or diffuses, over the neutral network, gaining variation (Manrubia

& Cuesta, 2010; Crutchfield & Schuster, 2003; Hu et al., 2011; Masel & Trotter,

2010). Secondly, the population will become more concentrated on the “most

connected” nodes and, in so doing, increase the average robustness of the pop-

ulation (van Nimwegen, 2006; Van Nimwegen et al., 1999; Banzhaf & Leier, 2006).

These conclusions are well founded, as the average degree of a network is a

lower bound on the principal eigenvalue (Cioabă et al., 2010) and the princi-

pal eigenvector is a measure of centrality in a network, the eigenvector centrality

(Bonacich, 1972), and, as such, assigns a non-zero centrality score to each node.

In this thesis, it is demonstrated that this description of the behaviour of
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(a) Hub of degree 45.

(b) Hub of degree 70.

Figure 1.1: A localisation transition. A hub (star network) is connected to an
Erdős-Renyi network by adding an edge between one of the star’s peripheral
nodes and a random node of the Erdős-Renyi network. The original Erdős-Renyi
networks contained 400 vertices and 1200 edges. Node sizes are proportional
to the corresponding component of the principal eigenvector of the adjacency
matrix which is equal to the proportion of the population found on the node.
Moreover, nodes with a higher eigenvector component are more red and nodes
with a lower eigenvector component are more blue.
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CHAPTER 1. INTRODUCTION

polymorphic populations can be refined. Although the average population ro-

bustness will always be higher than the network’s average degree, we can con-

struct examples where the population concentrates on a region of the network

which does not agree with our intuition of “most connected”. Moreover, net-

works can be constructed where the population concentrates on a small number

of vertices and does not spread out, or diffuse, over it. Take, for instance, the two

networks shown in figure 1.1. Both of these networks consist of an Erdős-Renyi

network (Erdős & Renyi, 1959) with 400 vertices and 1200 edges connected to a

hub (star network), where the connection to the hub is made via one of its pe-

ripheral vertices. In the first network, the hub is of degree 45 and in the second

it is of degree 70. Despite the similarity of these two networks, the equilibrium

distribution of the population over them is vastly different. In the first network,

the population behaves roughly as we would expect and distributes itself fairly

evenly over the network, being more concentrated on the more central nodes of

the Erdős-Renyi component. It is worth noting that only a very small proportion

of the population (around 0.5%) is found on the hub or its neighbours. However,

in the second network, around 99.5% of the population is concentrated on the

hub and its neighbours. This behaviour is observed regardless of the size of the

Erdős-Renyi component, so long as the average degree of this component is kept

constant.

It is worth briefly contemplating the implications of this behaviour. At equi-

librium, the population is not exploring the neutral network, but is localized on

a small part of it. Moreover, the amount of genetic variation within the popu-

lation is small, given that almost all members are within a Hamming distance

of one from the hub sequence. Furthermore, although the average robustness

of the population is high, the average degree of the hub region on which it is

concentrated is low (star networks have an average degree of two). This is in

contrast with the higher average degree of the Erdős-Renyi component, which

has an average degree of six. The population is, therefore, not located on the

“most connected” part of the network.

There is a further consideration which would be beneficial to include in any

description of neutral evolution. This is the effect that mutational biases have on

the evolutionary process. Various biases present in landscapes have been stud-

ied, including neighbouring genotypes containing similar mutational neighbour-

hoods (Greenbury et al., 2016), the correlation of the robustness of neighbouring

genotypes (Payne et al., 2014) and the overrepresentation of certain phenotypes
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(Schaper & Louis, 2014).

A well known result in graph theory is that the neighbours of nodes in a net-

work have an average degree higher than the average degree of the network. This

result is named the friendship paradox (Feld, 1991), referring to the fact that, on

average, people’s friends have more friends than they do 1. This result is due to

the fact that a sampling of vertices at the ends of edges is biased towards higher

degree vertices. The implication of this result is that, when a sequence under-

goes mutation, it is biased towards more mutationally robust sequences. This

mutational bias should have a significant impact on evolutionary dynamics dur-

ing neutral epochs.

Furthermore, we can question whether the distribution of robustness amongst

mutants is dependent on the robustness of the parent genotype and the manner

in which this influences neutral evolution. This would represent an additional

bias on the effects of mutations on the robustness of offspring. Moreover, as

Darwinian evolution requires heritable variation, we should expect that the evo-

lution of high levels of robustness would require that the robustness of offspring

be correlated with the robustness of parents. Such a correlation has a direct ana-

logue in terms of neutral network properties: the network’s assortativity (New-

man, 2003). Assortativity refers to the correlation in the degrees at either end of

an edge. We should, therefore, expect assortative neutral networks to produce

populations with a higher average robustness than disassortative networks.

The principal eigenvectors and eigenvalues of graphs are of great importance

to a variety of problems (Restrepo et al., 2007), principally synchronization phe-

nomena and the spread of epidemics. Since the publication of van Nimwegen et.

al.’s work, there has been substantial progress in approximating these quantities

in terms of network properties (Goltsev et al., 2012). In this work, we build on

these results in order to incorporate the above observations and intuitions into

a more complete understanding of the evolution of polymorphic populations on

neutral networks.

Ancel & Fontana (2000) demonstrated that, for evolving populations of RNA

sequences with plastogentic congruence, the population could undergo an ex-

ploration catastrophe, whereby it would be confined to a small portion of the

neutral network. It has recently been demonstrated (Martin et al., 2014) that

the principal eigenvector is a poor measure of centrality in networks. This is

1It is interesting to note that, on average, people believe that they have more friends than
their friends do (Zuckerman & Jost, 2001)
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CHAPTER 1. INTRODUCTION

due to the fact that certain structural heterogeneities can cause the eigenvector

to localize on certain portions of the network, assigning almost all of its weight

to these portions and very little to the rest. We make the argument here that

this localisation phenomenon has important implications for the neutral evo-

lution of asexual populations at high mutation rates. Specifically, in neutral

networks with certain topological features, the population will undergo an ex-

ploration catastrophe. Moreover, this phenomenon will occur without the pres-

ence of special properties of the genotypes or phenotypes, such as plastogenetic

congruence, and occurs independent of mutation rate. We use computational

methods to confirm that this localisation of the eigenvector occurs in biologi-

cally plausible neutral networks. We further demonstrate novel modes of eigen-

vector localisation not yet explored in the literature.

On the other hand, for networks with a homogeneous topology, which can be

well approximated by a mean-field approach (Gleeson et al., 2012), we derive an

approximation of the equilibrium distribution of the population in terms of the

mutation sampling bias provided by the friendship paradox and the network’s

assortativity. More specifically, we show that, in the absence of a correlation be-

tween parent and offspring robustness, the average robustness of the population

is equal to what would be found through a sampling of genotypes by randomly

selecting and following allowed mutations on the neutral network. It rises above

or below this in the presence of positive or negative assortativity, respectively.

The specific contributions of this thesis are as follows.

• The argument that the localization phenomenon of the principal eigen-

vector on graphs implies the possibility of an exploration catastrophe oc-

curring when large populations evolve asexually on neutral networks.

• A detailed analysis of the localization phenomenon on network models

capturing biologically relevant features, namely, hubs loosely connected

to random networks (§ 4.5) and the multiple hubs of the Barábasi-Albert

model (§ 4.6).

• The confirmation that localisation can occur on graphs imbedded in Ham-

ming space (§ 4.7 and § 4.8).

• The demonstration of two novel modes of localisation, namely: locali-

sation across loosely connected components (§ 4.7) and localisation on

Hamming balls connected to random graphs in Hamming space (§ 4.8).

12



• The derivation of approximations, in terms of sampling biases, for the

equilibrium population distribution on neutral networks with an homo-

geneous structure (§ 3.2).

• An analysis of the neutral networks of H3N2 and H1N1 influenza during

the seasons between 2005 and 2016. This analysis focuses on both the

predicted and the actual population distribution over the networks, and

demonstrates that, in some instances, the population is localised (chap-

ter 7).

• A detailed analysis of the literature in evolutionary computing and biology

reporting on the structure of neutral networks, and the implications of the

above results to evolution on those networks (chapter 5 and chapter 6).

The relationship between genetic robustness and evolvability has emerged

as an important topic of research (Masel & Trotter, 2010; Wagner, 2008). A

specific focus is the attempt to reconcile (Stern et al., 2014) conflicting ex-

perimental results (Cuevas et al., 2009; McBride et al., 2008) on whether

robustness promotes or hinders evolvability. This work provides an addi-

tional plausible explanation for why robustness might sometimes be cor-

related with evolvability, whereas, in other instances, it is anti-correlated.

Robustness that leads to a population spreading out over a neutral net-

work should increase evolvability, whereas, robustness that results in an

exploration catastrophe is likely to decrease evolvability.

Furthermore, the existence of the exploration catastrophe has important

implications for the in vitro evolution of proteins (Matsuura & Yomo, 2006)

and evolutionary computing. In both these instances, diversification of

the population during neutral epochs is highly desired, and the explo-

ration catastrophe is a phenomenon which system designers would want

to avoid.

The position of a population on its neutral network determines the pheno-

types to which it can mutate. While an exploration catastrophe limits the

amount of variation to which a population is exposed, this limitation on

available trajectories could plausibly facilitate the prediction of the popu-

lation’s future evolution (Łuksza & Lässig, 2014).

The study of mutational biases has similarly emerged as a pertinent re-

search theme (Greenbury et al., 2016; Payne et al., 2014; Schaper & Louis,

13



CHAPTER 1. INTRODUCTION

2014). The expressions for the population distribution and average ro-

bustness derived in § 3.2 are significant in that they directly relate biases

to important metrics of the consequences of evolution on a given land-

scape, namely, genetic robustness and population distribution. Moreover,

the derived expressions shed light on a mechanism for the evolution of

robustness, an interesting question in it own right (de Visser et al., 2003).
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2
BACKGROUND

2.1 Representation, neutrality and robustness

When organisms undergo natural evolution, mutation does not act directly on

their form, but rather on the genetic code. Similarly, in Evolutionary Computing

(EC), a representation of the problem, upon which mutation can occur, must be

identified. The problem of choosing such a representation, the representation

problem, has been identified as a critical issue within EC (Eiben & Smith, 2015),

as well as Artificial Intelligence (AI) in general (Nilsson, 2009). Historically, a large

research focus within AI, particularly in computer vision (Lowe, 1999), was to-

ward designing representations. However, much of the recent progress within

the field has been due to the development of algorithms capable of learning rep-

resentations (Bengio et al., 2013), as opposed to designing them by hand.

Representations, and genetic code, require a mapping between themselves

(genotype) and the organism or resulting problem solution (phenotype): the

G→P map. The developmental process which translates genetic information

into various biological organisms is not well understood (Pigliucci, 2010). Yet, it

has become clear that this mapping is neither one-to-one nor linear (Gjuvsland

et al., 2013). In many organisms and Ribonucleic Acid (RNA) folding (Draper,

1992), it has been found that genetic change resulting from mutation is not pro-

portional to phenotypic change (Pigliucci, 2010; Wagner, 2008; Parter et al., 2008).

Moreover, the G→P map is highly degenerate, that is, many genotypes might en-
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CHAPTER 2. BACKGROUND

code for an identical phenotype (Pigliucci, 2010).

There exists great variation in the mappings between representations and

candidate solutions used in EC. On the one hand, in genetic algorithms, the re-

lationship between representation and solution is often somewhat straightfor-

ward (Eiben & Smith, 2015). However, within the field of generative and devel-

opmental systems (Devert, 2009), many highly complicated mappings between

representations and evolved forms have been proposed. Such mappings have

been applied to a variety of tasks, including robot morphologies and organisms

in artificial life studies (Stanley & Miikkulainen, 2003). Although the properties

of individual mappings depend on their definition, some have been shown to be

highly degenerate.

Degeneracy introduces the possibility that, when mutated, a genotype will

still map to the same phenotype. This implies that the mutation has no effect on

fitness and so can be labeled as neutral. Kimuraet al. (1968), along with King

& Jukes (1969), brought the importance of neutral mutations to the attention

of the scientific community through what has come to be known as the neu-

tral theory of molecular evolution. This posits that the majority of evolutionary

change is the result of the fixation of neutral mutations, as opposed to mutations

which confer a selective advantage. Although the level of importance that such

genetic drift has on evolution has been controversial (Nei, 2005), it is beyond

doubt that certain mutations of certain organisms and structures are selectively

neutral (Noirel & Simonson, 2008; Wagner, 2014; Bornberg-Bauer, 1997).

If the genetic code is a string of characters, as opposed to, say, a vector of

real numbers, then one can construct networks out of genotypes coding for a

given phenotype (Van Nimwegen et al., 1999). Here the vertices represent geno-

types, and an edge connects two vertices if there exists a point mutation between

their associated genotypes, that is their genetic codes are a Hamming distance of

one apart. These networks have come to be known as neutral networks (Galván-

López et al. (2011) credit Harvey & Thompson (1997) as being the originators of

the term). Neutral networks have been studied extensively (Van Nimwegen et al.,

1999; Aguirre et al., 2009; Bornberg-Bauer, 1997; Noirel & Simonson, 2008) and

it has been shown that, under certain assumptions, these networks permeate

sequence space and that any common phenotype can be reached by traveling

along them (Reidys et al., 1997).

An important associated concept is that of mutational robustness (Taverna

& Goldstein, 2002). This refers to the proportion of mutations which leave the
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phenotype unchanged. The greater the mutational robustness of the genotypes,

the larger their neutral networks will be (Wagner, 2011). This has an impact on

the evolvability of these genotypes, as they can access a greater variety of phe-

notypes through neutral drift. Moreover, populations can evolve so as to occupy

the most connected parts of the network (Van Nimwegen et al., 1999), thus in-

creasing their average robustness.

2.2 Quasispecies

When populations evolve asexually at high mutation rates, they conform to what

are known as quasispecies dynamics (Andino & Domingo, 2015; Domingo et al.,

2012). As the topic of this thesis concerns asexual neutral evolution at high mu-

tation rates, a discussion of these dynamics is necessary. Under a high muta-

tion rate, a population is no longer concentrated on a single optimal genotype

(Lauring & Andino, 2010). Instead, it spreads out in sequence space in what is

labeled either a mutant ‘cloud’ or ‘swarm’. This has the implication that it is not

the fitness of a single sequence which determines the evolutionary trajectory of

a population in genotype space, but, rather, the fitnesses of sequences within

an area of this space. This is due to the fact that, at high mutation rates, the

frequency of a given genotype in a population, is not determined solely by its fit-

ness, but also by the frequency of its mutational neighbours. Their frequency is,

in turn, determined by both their fitness and the frequency of their mutational

neighbours.

A significant phenomenon within quasispecies dynamics is what is known as

‘survival of the flattest’ (Wilke et al., 2001). This is the phenomenon whereby a

sub-population situated on a single highly fit genotype surrounded by low fit-

ness neighbours can be out-competed by a sub-population situated on a re-

gion of genotype space consisting of multiple medium fitness genotypes, each

of which is well connected to one another. Here, the term ‘survival of the flat-

test’ refers to a visualisation of this effect on a two-dimensional genotype space,

where fitness is represented by height. The single genotype would be repre-

sented by a single spike, whereas the region of medium fitness genotypes would

be represented by a lower hill with a flat top. This phenomenon is important in

the context of this thesis for two reasons. Firstly, it emphasizes the importance

of neutrality for evolution under these dynamics (Lauring & Andino, 2010). If the

17



CHAPTER 2. BACKGROUND

topology of the neutral network allows the sub-population to achieve a high level

of mutational robustness, this will allow it to out-compete sub-populations with

lower robustness. The second reason is that, as will be discussed later on in this

thesis (see, in particular, § 4.5 and § 4.8), the topology of the neutral network can

have a substantial impact on the average level of robustness evolved by a pop-

ulation. The fact that the robustness of sub-populations can allow them to out-

compete sub-populations situated elsewhere in seuquence space implies that

the topology of the neutral network has implications beyond just the isolated

evolution on the network itself, but could play an important role in determining

on which network the population converges.

As stated above, one of the contributions of this thesis is the demonstration

that, under certain topological conditions, a population evolving on a neutral

network undergoes a localisation transition: the exploration catastrophe. Qua-

sispecies exhibit a well-studied delocalisation 1 transition: the error catastrophe

(Tejero et al., 2011; Summers & Litwin, 2006). This occurs when the mutation

rate is raised such that the population is no longer located on its mutant cloud,

but is instead spread out over genotype space. Under this regime, adaptive evo-

lution is unable to take place. It has further been argued that, in certain fitness

landscapes, the population might undergo multiple localisation-delocalisation

transitions (Tannenbaum & Shakhnovich, 2004; Tejero et al., 2011). As the muta-

tion rate is increased, it occupies broader regions of sequence space with higher

robustness and lower fitness until, eventually, it spreads out over the entire space.

2.3 Modeling Neutral Evolution

The seminal work on modeling neutral evolution is that of Van Nimwegen et al.

(1999). The model used is the application of Manfred Eigen’s original, ubiq-

uitous, model of quasispecies evolution (Eigen, 1971), to evolution on neutral

networks. This thesis makes use of this model. As some of the reasoning pre-

sented in this thesis is dependent on the details of this model, it is necessary to

go through it in some detail.

A population of constant size M resides on the neutral network of size N .

Each generation, M genotypes are selected with replacement from the popula-

1It is worth noting that, assuming that the controlling parameter can be changed in both
directions, a localisation transition can be turned into a delocalisation transition by altering the
direction of change in the parameter.
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tion and undergo mutation with probability µ. Those genotypes which undergo

mutation will either stay on the network, or mutate off it.

Van Nimwegen et al. (1999) found that two behavioural regimes emerge. Given

a population size M and a mutation rate µ, then if Mµ ¿ 1 the population is

monomorphic (Bloom et al., 2007). Mutations either fix or disappear, that is they

either become present in the entire population or none of it. Thus, the entire

population is concentrated on a single node of the neutral network. Through-

out the neutral epoch the population performs a random walk over the network.

On the other hand, if MµÀ 1, the population is polymorphic and spreads out

over the neutral network (Wagner, 2011). Populations of self-replicating RNA,

viruses and bacteria are polymorphic , whereas larger organisms are monomor-

phic (Wagner, 2011). Given the simple dynamics of the monomorphic case, this

work focuses exclusively on polymorphic populations.

Van Nimwegen et al. (1999) further showed that the equilibrium distribution

of a polymorphic population is given by the principal eigenvector of the adja-

cency matrix of the neutral network and that the average robustness of the pop-

ulation is given by the principal eigenvalue. An important aspect of this result,

which has implications for the work presented in this thesis, is that the popula-

tion distribution is not dependent on either the mutation rate, or the difference

in fitness values between genotypes on and off the network (although genotypes

adjacent to the network are required to have lower fitness).

2.4 Interpreting the Principal Eigenvector of Graphs

Closed-form solutions to the principal eigenvector and eigenvalue of graphs do

not exist. This makes the result of Van Nimwegen et al. (1999) somewhat dif-

ficult to interpret. However, as mentioned in the introduction, various conclu-

sions have been drawn. The population spreads out, or diffuses, over the neutral

network, gaining variation (Manrubia & Cuesta, 2010; Crutchfield & Schuster,

2003; Hu et al., 2011; Masel & Trotter, 2010). Moreover, the population tends to

concentrate on the “most connected” nodes and, in so doing, increase the av-

erage robustness of the population (van Nimwegen, 2006; Van Nimwegen et al.,

1999; Banzhaf & Leier, 2006). These conclusions can be justified by the facts that

the average degree of a network is a lower bound on the principal eigenvalue

(Cioabă et al., 2010) and the principal eigenvector is a measure of centrality in

19



CHAPTER 2. BACKGROUND

a network, the eigenvector centrality (Bonacich, 1972), which assigns a non-zero

centrality score to each node.

There has been a certain amount of work towards refining this picture. Reeves

et al. (2016) were able to derive an upper limit to the principal eigenvalue in

terms of the size of the network, by utilising the fact that neutral networks are

subgraphs of a hypercube graph (that is, they are embedded in Hamming space).

This work, however, said nothing about the effect of other topological features

and, moreover, has no implications for the principal eigenvector. Noirel & Si-

monson (2008) were able to show, in simulation, that degree assortativity and

the existence of hubs increased the average robustness of populations. Bornberg-

Bauer & Chan (1999) studied the population distribution on protein neutral net-

works, using Hamming balls as an abstraction for their structure. It was found

that this structure lead to a slight concentration of the population towards the

center of the ball.

2.5 Complex Networks

Network science has emerged as a powerful tool for studying complex phenom-

ena involving the interactions of a large number of components (Barabási, 2016).

Furthermore, it has already been fruitfully applied to the interrogation of bi-

ological structure and function (Wuchty et al., 2006; Barabasi & Oltvai, 2004).

Techniques from network science have been successfully applied to a wide va-

riety of domains, including gene regulatory networks (Pechenick et al., 2012),

protein-protein interaction networks (Jeong et al., 2001), metabolic networks

(Zhao et al., 2006), neural networks (Sporns, 2010) and ecological networks (Bas-

compte, 2010). They have also been applied to studying the mutational structure

of genotypes coding for given phenotypes (Samal et al., 2010; Wagner, 2014) as

well as neutral networks (Aguirre et al., 2011) (see chapter 6). The rest of this sec-

tion will go through some concepts and techniques from network science which

are used in this thesis.

Connected Components

A network can be separated into its connected components (Barabási, 2016).

These are sets of nodes, where each node in the set can be reached from another

node in the set by traversing edges. The result of Van Nimwegen et al. (1999)
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assumes that the network is connected, that is, it has a single connected com-

ponent. As this work builds on that result, we are also required to make this

assumption. However, the term “neutral network” is often used to refer to all

genotypes of a given fitness. This network could have multiple connected com-

ponents. Before applying the results of Van Nimwegen et al. (1999) and those

in this thesis, one would have to separate the network into its connected com-

ponents. However, constantly referring to “a connected component of a neutral

network” is awkward. Therefore, for the remainder of this thesis, we abuse ter-

minology slightly, and use the term “neutral network” to refer to a connected

component of a neutral network.

Assortativity

Degree assortativity (from hereon, referred to as assortativity) refers to the Pear-

son correlation between the degrees of the nodes at either end of the edges in a

network (Newman, 2003). It is measured by the assortativity coefficient r :

(2.1) r =
∑

j k j k
(
e j k −q j qk

)
σ2

q

Here, j and k are the remaining degree of the vertices at either end of the edge.

That is, the degree of the vertex excluding the edge which we are observing. qk

is the distribution of the remaining degree, e j k the joint distribution of the re-

maining degree and σ2
q is the variance of this joint degree distribution.

Friendship Paradox

This effect is named after the phenomenon where, in social networks, the aver-

age number of friends of friends is higher than the average number of friends.

Moreover, this effect is present in all networks, where the average number of

neighbors of neighbors is higher than the average number of neighbors of nodes

in the network. The cause of this paradox is that sampling the degrees of neigh-

bors is equivalent to sampling the degrees of nodes at the ends of edges, which

is biased towards higher degree nodes. The relationship between these two av-

erages can be expressed as: (Feld, 1991)

(2.2) λ̂= 〈k〉+ σ2
n

〈k〉 =
〈k2〉
〈k〉
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where 〈k〉 is the average degree (robustness) of genotypes on the neutral net-

work, σ2
n is the variance of these degrees and λ̂ is the average degree of sin-

gle mutation neighbors. An implication of this result, as demonstrated by van

Nimwegen et. al. (Van Nimwegen et al., 1999), is that random walks on neutral

networks result in an average neutrality equal to λ̂.

Xulvi-Brunet - Sokolov Algorithm

Later sections of this thesis make heavy use of randomly generated networks. In

order to study networks with varying values of the assortativity coefficient r , the

Xulvi-Brunet - Sokolov (XBS) algorithm was used (Xulvi-Brunet & Sokolov, 2004).

This algorithm takes, as input, a given graph and rewires it to be more or less as-

sortative. It operates by randomly selecting two edges in the graph. These edges

are removed, however, if the goal is to create an assortative network, then, with

probability α, the two nodes with the highest degrees are connected by a new

edge. Similarly, the two nodes with the lowest degrees are also connected. Oth-

erwise, the four nodes are randomly connected. if the goal is to create a disassor-

tative network, then, with probabilityα, the highest degree node is connected to

the lowest degree node and the remaining two nodes are also connected. Other-

wise, the four nodes are randomly connected.

It is important to note that this algorithm is degree preserving. The degrees

of the nodes remain unchanged. Moreover, the repeated application of this

rewiring rule produces an ergodic Markov chain. This Markov chain reaches a

stationary state in which the networks have a certain level of assortativity. Once

this state has been reached, the rewiring provides a uniform sampling of net-

works with the given degree sequence and level of assortativity (Ray et al., 2014).

There are, however, two disadvantages to this technique. The first is that

there is no simple relationship between the parameter α and the resulting net-

work assortativity r of the stationary distribution. The value of r produced is

also dependent on aspects of the network’s degree sequence (Barabási, 2016).

However, using a value of α= 1 will produce maximally assortative (or disassor-

tative) networks. Therefore, by using a range of α values between 0 and 1 one

can generate networks with all realizable levels of assortativity. Secondly, there

are no precise guarantees on the mixing time of the Markov chain, that is the

number of rewirings required before the algorithm produces an unbiased sam-

pling of networks with the given degree sequence and level of assortativity (Ray

22



2.5. COMPLEX NETWORKS

et al., 2014). That being said, it has been argued (Ray et al., 2014) that 5E −30E

rewirings should be sufficient, where E is the number of edges in the graph. In all

the following simulations, 1 million rewirings were performed, as this was found

to be the largest number which could be used without making each run pro-

hibitively time consuming. The largest number of edges in any of the networks

produced was 70 000.
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HOMOGENEOUS NETWORKS

3.1 Intuition

We would not expect populations to converge on an average level of robust-

ness substantially lower than what a random walk provides. As stated in § 2.5,

this is equal to the mutation sampling bias provided by the friendship paradox,

λ̂= 〈k2〉/〈k〉. Although robust genotypes have a selective advantage in that they

produce more viable offspring, if these offspring themselves are not robust it

is difficult to see how the population could converge on this lineage. Therefore,

the selection of robustness is facilitated by the existence of robust vertices whose

offspring are also robust. This sort of higher-order mutational bias is provided

by network assortativity, that is, correlation in the degrees of the vertices at the

end of edges (Newman, 2002) (§ 2.5). In the following section, we derive an ex-

pression for the average population robustness, demonstrating that it is equal to

the mutational sampling bias and rises above or below this figure depending on

whether the network has positive or negative degree assortativity.

3.2 Derivation of Approximation

Mean-field analysis has proven to be an effective approach for approximating

dynamics occurring on networks (Gleeson et al., 2012). Moreover, it has already

proven to be effective for deriving approximations to the principal eigenvalue
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of network adjacency matrices (Restrepo et al., 2007). In this chapter, we use a

mean-field approach to derive expressions relating the principal eigenvalue and

eigenvector of the adjacency matrix of the neutral network to mutational biases

present in the landscape.

We simplify the model of Van Nimwegen et al. (1999) (§ 2.3) by assuming

that the genomic mutation rate is exactly one and that mutations off the net-

work are lethal. These assumptions do not affect the resulting approximations of

the eigenvectors and eigenvalues as those authors demonstrated that the pop-

ulation distribution over the neutral networks is independent of the mutation

rate and off-network fitness (so long as the off-network fitness is lower than the

on-network fitness).

The simplified model is then as follows. The population of constant size M

resides on a neutral network of size N . The total number of neighbours, neu-

tral and non-neutral, that a given genotype can have is given by U , this limit is

determined by the length of the genetic code and the size of the alphabet. Each

generation, M genotypes are selected with replacement from the population.

These individuals then undergo mutation. With probability ki /U the individual

remains on the network, where ki is the degree of the node representing the in-

dividual’s genotype. If the individual stays on the network, it moves to one of its

neighbouring nodes, chosen at random. If it mutates off the network then it is

ineligible for selection in the subsequent generation.

In the delocalized regime, progress on approximating the population’s distri-

bution and robustness can be made by assuming that, at equilibrium, for every

node in the network, the average population concentration on nodes at a given

distance l is equal. That is, we utilise a mean-field approximation at a given

distance l . This average concentration is the uniform concentration, that is the

population size divided by the number of nodes. This is equivalent to assum-

ing that the correlation length for the degrees is low. It has been found that, for

most real-world networks, the correlation length is low (Mayo et al., 2015). Us-

ing this assumption we can approximate the proportion of the population which

mutates onto a given node, and hence the population distribution and average

robustness.

For the cases l = 2 and l = 3 we make use of the annealed network approx-

imation (Dorogovtsev et al., 2008), whereby all nodes with a given degree k are

approximated as having the same nearest neighbour degree distribution, which

is the aggregate distribution over the neighbours of all nodes with degree k. This
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has the implication that all nodes of degree k have the same average nearest

neighbours degree, that is k̄nn(i ) = k̄nn(ki ), where i is a node’s index and ki the

associated degree. We also use the approximation:

(3.1) k̄nn (k) ≈ λ̂+ (
k − λ̂)

r

Where k̄nn(k) is the average nearest-neighbour degree of nodes of degree k,

λ̂= 〈k2〉/〈k〉 (〈k〉 being the average degree 〈k2〉 being the average of the squares

of the degrees) and r is the assortativity coefficient (the Pearson correlation be-

tween the degrees at either end of an edge, see § 2.5) (Newman, 2002). This

approximation is derived by considering that r is the root of the coefficient of

determination of the linear regression between the degrees of the nodes at ei-

ther end of an edge.

We introduce the notation λl
1 to denote the approximation of the principal

eigenvalue (population average robustness) based on the assumption of equal

average distribution at distance l . Similarly, we use fi
(
λl

1

)
to denote the i th com-

ponent of the principal eigenvector (the proportion of the population having the

genotype represented by the i th node), based on the assumption of equal aver-

age distribution at distance l .

Zero-hop Case

The simplest case is that we assume that the average population concentration

at a distance zero from each node is equal, that is we assume that the population

is uniformly distributed. The average robustness of the population is therefore,

trivially, the average degree. Thus, we have:

(3.2) fi
(
λ0

1

)= 1

N

(3.3) λ0
1 = 〈k〉

Where 〈k〉 is the average degree and N is the size of the network.

One-hop Case

The next case assumes that, at equilibrium, the average population concentra-

tion of the neighbours of each node is equal. Therefore, each generation, an

average of ki M/NU individuals mutate onto node i . Normalizing, we arrive at

(3.4) fi
(
λ1

1

)= ki

N 〈k〉
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Multiplying by the robustness (ki ) and summing over all the nodes we arrive at

the average robustness of:

(3.5) λ1
1 =

〈k2〉
〈k〉 = λ̂

Two-hop Case

If we assume an average uniform population concentration two hops from each

node, then, each generation, by the annealed network approximation, the nodes

neighbouring node i will receive, on average, k̄nn (ki ) M/NU mutants. This im-

plies that node i will receive ki k̄nn (ki ) M/NU 2 individuals. Substituting in equa-

tion (3.1) and normalizing we arrive at

(3.6) fi
(
λ2

1

)= 1

N 〈k2〉
(
ki λ̂+ki

(
ki − λ̂

)
r
)

Multiplying through by the node’s robustness (ki ) and summing over the nodes,

we arrive at

(3.7) λ2
1 = λ̂+ rσ2

e

λ̂

Where σ2
e = 〈k3〉/〈k〉 − 〈k2〉2

/〈k〉2 is the variance of the node’s degrees when

sampled by following edges. (3.7) is equivalent to the approximation derived

by Goltsev et. al. (Goltsev et al., 2012) through the use of a power iteration.

Three-hop Case

Our final approximation is based on the assumption that, from any given node,

the average population density at nodes three hops away is equal. We consider

the node i ′, a neighbour of i . Each generation, this node will receive an average

of ki ′ k̄nn (ki ′) M/NU 2 mutants from its neighbours. We then average this over all

neighbours i ′ of node i , that is we want to find

(3.8) I = M

NU 2
〈ki ′λ̂+k2

i ′r −ki ′λ̂r 〉i ′

Using the fact that 〈k2
i ′〉i ′ ≈ σ2

e +〈ki ′〉2
i ′ , where the equality is approximate as

σ2
e is the global variance and not specific to the neighbours of nodes of degree

ki ′ , we can arrive at
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(3.9) I ≈ M

NU 2

(
λ̂2 + λ̂(

ki − λ̂
)

r + λ̂(
ki − λ̂

)
r 2 + (

ki − λ̂
)2

r 3 +σ2
e r

)
The number of mutants that a node i receives is ki I /U . When we come to

normalise this, we find that the total population is

(3.10) P ≈ M

U 3

(
〈k〉 λ̂2 +〈k (

k − λ̂)2〉r 3 +〈k〉 σ̂2
e r

)
The second two terms in the parentheses are much smaller than the first and

so, for mathematical expediency, we ignore them (In the numerical analysis of

the following section, we use the symbol λ̃3
1 to refer to the approximation which

results from including all three terms in the parentheses). This results in

(3.11)

fi
(
λ3

1

)≈ 1

N 〈k2〉

(
ki λ̂+ki

(
ki − λ̂

)
r +ki

(
ki − λ̂

)
r 2 + ki

(
ki − λ̂

)2
r 3

λ̂
+ kiσ

2
e r

λ̂

)
As previously, we multiply by each node’s robustness (ki ) and sum over all nodes

to arrive at the approximation for the eigenvalue (population average robust-

ness).

(3.12) λ3
1 ≈ λ̂+ 2rσ2

e

λ̂
+ r 2σ2

e

λ̂
+ r 3

(〈k4〉−2λ̂〈k3〉+ λ̂2 〈k2〉)
〈k2〉 λ̂

3.3 Erdős-Renyi Networks

In order to ascertain the accuracy of the approximations for the equilibrium dis-

tribution of populations in homogeneous networks, derived in the previous sec-

tion (§ 3.2), Erdős-Renyi (Erdős & Renyi, 1959) networks were generated. The

generation of networks conforming to this model is performed by instantiating

N vertices and E edges. Each end of each edge is connected to a node, chosen

randomly. As such, the Erdős-Renyi model is a model of maximally random net-

works. Figure 3.1 shows a diagram of an Erdős-Renyi network along with the

population distribution over it.

In order to study the bulk properties of this model, 1100 large networks were

generated. All generated networks contained N = 5000 vertices and either E =
35000 or E = 70000 edges, providing average degrees of 〈k〉 = 14 and 〈k〉 = 28,

respectively. The lower value was chosen as it was found that this was the lowest

value which could be used for which all generated networks were connected. As

specified in § 2.5, our analysis assumes connected networks.
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Figure 3.1: An Erdős-Renyi network with N = 200 nodes and E = 600 edges. The
node size is proportional to the proportion of the population that is located on
it. Moreover, nodes with a higher population concentration are more red and
nodes with a lower concentration are more blue. The layout was determined the
Fruchterman-Reingold force directed layout (Fruchterman & Reingold, 1991)

In order to study the accuracy of the derived approximations at various levels

of network assortativity, the XBS rewiring algorithm (§ 2.5) was employed. The

algorithm was run in both the assortative and disassortative variants for the 11

values of the parameterα between 0 and 1, inclusive, at spacings of 0.1 . for each

of these 21 values (the zero value is equivalent in both modes of the algorithm),

100 Erdős-Renyi networks were generated and subsequently rewired.

The relative errors of the various average population robustness (eigenvalue)

predictions are shown in figure 3.2.
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3.3. ERDŐS-RENYI NETWORKS

(a) 〈k〉 = 7

(b) 〈k〉 = 14

Figure 3.2: The relative error of the population average robustness (principal
eigenvalue) approximations derived in § 3.2, tested on Erdős-Renyi networks
rewired using the XBS algorithm to exhibit positive or negative degree assorta-
tivity. Although the parameter α of this algorithm is always positive, the nega-
tive values in this figure signify that the algorithm was being used in its disas-
sortative mode. The value α = −1 produced an average assortativity coefficient
of r = −0.97. Similarly, α = 1 produced an average assortativity coefficient of
r = 0.97
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3.4 Discussion

fig. 3.2 demonstrates that the derived expressions for average population robust-

ness are fairly accurate. As would be expected, the approximations based on a

mean-field assumption at a greater distance from a given node turned out to be

more accurate. It is interesting to note that, for highly assortative networks, the

approximation λ̃3
1 was more accurate than λ3

1. This can be explained by the fact

that λ3
1 is smaller than λ1, and that the approximation of the denominator used

for λ̃3
1 reduced its size (for positive values of r ).

The approximations λ2
1 and λ3

1 demonstrate that our intuition (§ 3.1) was

broadly correct. That is, absent assortativity, the population average robustness

is equal to that provided for by the mutation sampling bias due to the friendship

paradox. It rises above or below this value in the presence of positive or negative

degree assortativity.
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4.1 Localisation

In the context of graph spectra, localization refers to the phenomenon whereby

the normalisation weight of an eigenvector (
∑

f 2
i (λ), where λ is the eigenvalue

and f (λ) is the eigenvector) is concentrated on a small number of nodes that

does not scale with the size of the network (Pastor-Satorras & Castellano, 2016).

Some authors have suggested using the inverse participation ratio Y (λ)

(4.1) Y (λ) =
N∑

i=1
f 4

i (λ)

as a quantitative measure of localization where, in this case, f (λ) is the nor-

malised eigenvector. If, in the limit N →∞, Y (λ) ∼ 1 then the state is localized.

On the other hand, if Y (λ) → 0 then the state is delocalized. There are a number

of results relating aspects of network topology to localization. Chung et al. (2003)

showed that the principal eigenvalue, for a random graph model characterised

by a given degree distribution, is given by.

(4.2) λ1 =
λ̂, λ̂>

√
kmax log N√

kmax ,
√

kmax > λ̂ log2 N

where λ̂ = 〈k2〉/〈k〉 (〈k〉 being the average degree and 〈k2〉 being the mean of

the squares of the degrees). λ1 = λ̂ corresponds to the delocalized state and

λ1 =
√

kmax corresponds to the localized state.
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Goltsev et al. (2012) showed that, for unassortative scale-free networks with

degree distribution P (k) ∼ k−γ, the principal eigenstate is localized for γ> 5
2 and

delocalized otherwise. The principal eigenvalue is given by
√

kmax and λ̂ for the

localized and delocalized states, respectively.

Martin et al. (2014) demonstrated that for a hub connected to an Erdős-Renyi

network, localization occurs when
√

kmax > 〈q〉 where 〈q〉 is the average degree

of the original Erdős-Renyi network, without the hub. Furthermore, they showed

that the eigenvector component on the hub, fh is given by.

(4.3) fh =
√

kmax −2〈q〉
2kmax −2〈q〉

Where the average of the components neighbouring the hub, 〈 fn〉 is given by.

(4.4) 〈 fn〉 = fh√
kmax −〈q〉

and the average of all non-hub components 〈 f j 〉 is.

(4.5) 〈 f j 〉 = 1

N −1

fh√
kmax −〈q〉

Pastor-Satorras & Castellano (2016) demonstrated a different form of local-

isation which does not result in the concentration of the eigenvector on a hub.

Instead, the eigenvector localises on the maximum K-core. The maximum K-

core is formed of the nodes with the maximum K-index in the K-core decompo-

sition (Seidman, 1983) of the network. The K-core decomposition is an iterative

process whereby, in each iteration, all nodes with degree one and their associ-

ated edge are removed from the network. This process continues until either

there are no nodes left in the network, or until a point is reached where there are

no remaining nodes of degree one. The maximum K-core will, therefore, be the

nodes remaining at the end of this process, or the last node to be removed.

The localisation of the principle eigenvector in graphs can be contrasted with

other forms of localisation in diffusive systems, most notably Anderson localisa-

tion (Anderson, 1958).

4.2 Definition of Localisation

As mentioned by Pastor-Satorras & Castellano (2016), there does not exist a non-

arbitrary definition for the localisation of the eigenvector in single network in-

stances. However, for the purposes of this thesis, it will be useful to define some
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threshold separating localised and delocalised population distributions. We de-

fine two such thresholds and use them in different instances.

Localisation is somewhat easy to define in the case that the population has

concentrated around a single hub. Here, we choose to say that if 90% or more of

the population is distributed on the hub and its immediate neighbours, then the

population is localised.

Trying to describe a population that is highly concentrated, but not on a hub,

is slightly more challenging. Given that localisation for classes of networks is

defined in terms of the inverse participation ratio, this would be natural met-

ric with which to define localisation. However, as Pastor-Satorras & Castellano

(2016) point out, in the delocalised case we expect the inverse participation ratio

to be proportional to N−1. On the other hand, in the localised case, we expect it

to be proportional to N−β, where β< 1. This dependence on the network size N ,

is unfortunate for our purposes, as we desire a single threshold which applies to

networks of all sizes.

In order to reduce the impact of the network size N on our threshold, we

define the relative inverse participation ratio. This is, simply, the ratio of the

inverse participation ratio of the network’s principal eigenvector to what the in-

verse participation ratio would be if the eigenvector was distributed uniformly

over the network’s nodes. If the eigenvector is distributed uniformly, then the

inverse participation ratio is 1/N . This implies that the relative inverse partic-

ipation ratio can be easily calculated by multiplying the inverse participation

ratio by N .

We choose to define localisation as occurring when the relative inverse par-

ticipation ratio is greater than 30. In preliminary testing it was found that this

value corresponded with the author’s intuition of localisation. For comparison,

Pastor-Satorras & Castellano (2016) reported on a number of real-world net-

works exhibiting localisation. The lowest relative inverse participation ratio of

these networks was 46.7 (The HEP network, table 1 of (Pastor-Satorras & Castel-

lano, 2016)).

4.3 Network Models

The remainder of this section studies the behaviour of the principal eigenvec-

tor on heterogeneous networks. The first model studied (§ 4.4) has already been

35



CHAPTER 4. HETEROGENEOUS NETWORKS

well described by the above results. However, analysing it is still valuable, as

previous work on similar models reported on the weight of the eigenvector con-

fined to a given region, whereas, for evolution, we are interested in the size of the

eigenvector components, normalised by the sum of the vector componenets (l1

norm), in a given region

The first three models studied in the following sections are not embedded in

Hamming space. This is due to the difficulties of studying such networks (see

chapter 8 for a more detailed discussion). However, they do exhibit some of the

features that we expect to see in real world networks. It is interesting, for in-

stance to compare the networks diagram displayed in fig. 4.6 (a Barábasi-Albert

network) with that displayed in fig. 7.1 (a neutral network of H1N1 influenza

haemagglutinin).

All of this analysis was conducted using the Python package igraph (Csardi

& Nepusz, 2006). The calculation of the eigenvalues and eigenvectors of the ad-

jacency matrices of graphs in igraph is performed using the FORTRAN 77 pack-

age ARPACK (Lehoucq et al., 1998). ARPACK implements the implicitly restarted

Arnoldi method (Lehoucq & Sorensen, 1996) to find the eigenvalues and eigen-

vectors of matrices. igraph’s default parameters for ARPACK were used.

A number of the simulations presented below report on the relative error of

the principal eigenvalue estimations. This error was calculated according to:

(4.6) relative error = λ1 −λn
1

λ1

where λn
1 is the nth approximation of the principal eigenvalue.

4.4 Erdős-Renyi Networks With Hubs

In order to observe the impact of localization on the population’s distribution

over the network, following the lead of Martin et. al. (Martin et al., 2014), ran-

dom networks in which a hub was connected to an Erdős-Renyi network were

generated. This was performed by first generating an Erdős-Renyi network, as

in § 3.3. Subsequently, a hub of degree γ was added to the network, by connect-

ing it to γ nodes in the original network, chosen randomly. Figure 4.1 shows a

diagram of two such networks along with the population distribution over them.

In order to study the bulk properties of this network model, 7500 large in-

stances were generated. The original Erdős-Renyi networks contained N = 5000
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(a) γ= 15

(b) γ= 30

Figure 4.1: Erdős-Renyi networks with N = 200 nodes and E = 600 edges, with
connected hubs of degree γ, as described in § 4.4. The node size is proportional
to the proportion of the population that is located on it. Moreover, nodes with a
higher population concentration are more red and nodes with a lower concen-
tration are more blue. The layout was determined the Fruchterman-Reingold
force directed layout (Fruchterman & Reingold, 1991), with the hub nodes man-
ually positioned outside the networks after the layout algorithm was run.
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(a) α=−1 (b) α= 0

(c) α= 1

Figure 4.2: The approximated or actual population average robustness (princi-
pal eigenvalue of the network’s adjacency matrix) where a hub of degree γ was
connected to an Erdős-Renyi network. These networks were rewired using the
XBS algorithm to exhibit positive or negative degree assortativity. These three
plots show the population average robustness for three different values of the
rewiring parameter α

nodes and E = 35000 edges, providing an average degree of 〈k〉 = 14. Rewiring

(see § 2.5) was performed for for the five values of α= [−1,−0.5,0,0.5,1]. The 15

values of γ in the range [1,481], at spacings of 20 were used. 100 networks were

generated for each of the 75 combinations of α and γ.

Figure 4.2 shows the behaviour of the population average robustness, as well

as the approximations derived in § 3.2. It also shows the approximation
√

kmax ,

as this is an approximation for the principal eigenvalue under localization de-

rived by other authors (Chung et al., 2003; Goltsev et al., 2012; Martin et al.,

2014). We find that, for small values of γ, the approximations derived in § 3.2 are

very accurate. However, as γ is increased, the accuracy of these approximations

deteriorated, and
√

kmax became a better estimator of the population’s average

robustness.
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(a) Inverse participation ratio
(b) Proportion of the population on the
hub and its neighbours

(c) Network assortativity coefficient

Figure 4.3: The predicted and actual inverse participation ratio, approximated
and actual proportion of population on the hub node and its neighbours and
the average network assortativity where a hub of degree γ was connected to an
Erdős-Renyi network. These networks were rewired using the XBS algorithm to
exhibit positive or negative degree assortativity.

Figure 4.3a shows the inverse participation ratio of the principal eigenvec-

tor for various values of α and γ. The inverse participation ratio is close to 0

for γ < 200, it increases sharply in the range 200 < γ < 300 and has a flatter gra-

dient for γ > 300. This is in accordance with the results of Martin et al. (2014),

where it is predicted that localization occurs when γ = kmax > 〈k〉 (〈k〉+1). We

further observe that assortativity decreases the severity of the localization and,

conversely, disassortativity increases it. In disassortative networks, the neigh-

bours of the hub will be of lower degree and so will connect to fewer nodes other

than the hub itself. This increases the chance that their offspring will mutate

back onto the hub. The opposite occurs in assortative networks.

Figure 4.3b shows the approximated and actual proportion of the popula-

tion on the hub and its neighbors for α = 1. This large value of α was chosen

as a large degree of assortativity (or disassortativity) is required for a difference
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to be observed between the various approximations as the higher order terms

contain powers of the assortativity coefficient r . For large values of γmost of the

population (over 50%) is concentrated on the hub and its neighbours. This is

in contrast with the approximations for degree-homogeneous networks, which

predict a lower proportion of the population to be concentrated around the hub.

It is interesting to note that, up to about γ= 100, the three-hop approximations

are able to approximate the population distribution fairly well. This is due to the

fact that, as per the arguments of Martin et al. (2014), we only expect localization

to occur when kmax > 〈k〉 (〈k〉+1).

Figure fig. 4.3c shows the resulting r value in the networks for the various

values of α tested. High values of γ result in the networks being relatively unas-

sortative. In networks with a large hub, most of the variance in the degrees at

the ends of edges will be due to the hub and cannot be made to depend on the

degree of the node at the other end of the edge.

It is worth pointing out that the localisation observed on these networks is

only partial, as it does not fully meet the definition of localisation given in § 4.2.

4.5 Erdős-Renyi Networks With Separated Hubs

The preceding section studied the localization of the population on a hub, where

the hub is well connected to the rest of the network. Although it could be argued

that, in random networks, this type of topology is more likely, it is worth studying

the implications of hubs that are poorly connected to the rest of the network.

Moreover, prototype protein sequences form neutral hubs around themselves

(§ 6.2). As the number of sequences folding to the given structure decreases

with distance from the prototype sequence, we should not expect the hubs to be

well connected with the rest of the neutral network.

This section studies maximally disconnected hubs. Erdős-Renyi networks

were generated, as in § 3.3, Following this, the networks were rewired using the

XBS algorithm (§ 2.5) to exhibit positive or negative degree assortativity. Once

the rewiring was complete, a star network of size γ+1 was added to the network,

by connecting one of the spoke nodes to a node of the Erdős-Renyi network,

chosen randomly. Figure 1.1 shows a diagram of two such networks along with

the population distribution over them.

In order to study the bulk properties of this network model, 7500 large in-
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(a) α=−1 (b) α= 0

(c) α= 1

Figure 4.4: The approximated or actual population average robustness (princi-
pal eigenvalue of the network’s adjacency matrix) where a star network of size
γ+1 was connected to an Erdős-Renyi network via one of the star’s peripheral
nodes. These networks were rewired using the XBS algorithm to exhibit positive
or negative degree assortativity. The three plots show the population average
robustness for three different values of the rewiring parameter α

stances were generated. The original Erdős-Renyi networks contained N = 5000

nodes and E = 35000 edges, providing an average degree of 〈k〉 = 14. Rewiring

was performed for for the five values of α = [−1,−0.5,0,0.5,1]. The 15 values of

γ in the range [1,481], at spacings of 20 were used. 100 networks were generated

for each of the 75 combinations of α and γ.

Figure 4.4 shows the population average robustness, the approximations of

this robustness derived in § 3.2, as well as
√

kmax . As in the preceding section,

the approximations derived in § 3.2 are accurate for small values ofγ and lose ac-

curacy as γ increases and localization occurs. In this regime,
√

kmax very closely

approximates the population’s average robustness.
√

kmax Is the exact solution

of the principal eigenvalue of a star graph (Reeves et al., 2016). It is interesting

to note that connecting the star to a sufficiently low degree Erdős-Renyi network
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(a) Inverse participation ratio
(b) Proportion of the population on the
hub and its neighbours

(c) Network assortativity coefficient

Figure 4.5: The predicted and actual inverse participation ratio, approximated
and actual proportion of population on the hub node and its neighbours and
the average network assortativity where a star network of size γ+ 1 was con-
nected to an Erdős-Renyi network via one of the star’s peripheral nodes. These
networks were rewired using the XBS algorithm to exhibit positive or negative
degree assortativity.

does not substantially alter this value. When a hub was fully connected to an

Erdős-Renyi network (as in § 4.5) it was found that the eigenvalue approxima-

tions based on equal population distribution at a greater distance from a given

node were more accurate for large values of γ (§ 4.4, and figure 4.2). The oppo-

site was found to be true for separated hubs, that is for larger values of γ, λn
1 was

more accurate for smaller values of n. This is due to the fact that the approx-

imations based on a greater number of hops involve terms proportional to r .

For large values of γ, the calculation of r is dominated by the star, where a very

high degree node is connected to many nodes of degree one. This causes the

network to be disassortative, regardless of the value of the rewiring coefficient α

(see figure 4.5c). This disassortativity reduces the approximation of the eigen-

value, whereas the actual value of the eigenvalue is increasing as
√

kmax =p
γ.
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Figure 4.5a shows the average inverse participation ratio of the principal eigen-

vector of the networks studied for all values of α and γ. The transition to the lo-

calized regime is much sharper than for fully connected hubs (figure 4.5a). Fig-

ure 4.5b shows the proportion of the population on the hub and its neighbours

in the unsassortative case. In this case, almost the entire population is located

on the star network after localization.

In the highly assortative case (α= 1) localization only occurs around γ= 500

(see figures 4.5a and 4.4c). This is substantially higher than for highly connected

hubs, where localization occurs around γ = 200 (figure 4.2c). This is due to the

fact that, for the maximally connected hubs, assortative rewiring occurred after

the hub was connected to the network, whereas for minimally connected hubs

it occurred before connection. This resulted in the hub of the maximally con-

nected networks being connected to the highest degree nodes of the original

Erdős-Renyi network. On the other hand, for the minimally connected hubs,

assortative rewiring results in a region of highly connected higher degree nodes,

separate from the hub, which competes with it for the location of the population.

4.6 Barábasi-Albert Preferential Attachment

In the two preceding sections, hubs were manually attached to existing net-

works. Moreover, the networks contained only a single hub. It is, therefore, valu-

able to interrogate the population distribution in network models which natu-

rally contain hubs, and which might contain multiple hubs connected to one an-

other. Scale-free networks (Barabási, 2016) contain multiple hub nodes. These

are networks with a power-law degree distribution, that is p(k) ∼ k−γ for some

value of the parameter γ (usually, 2 ≤ γ≤ 3). However, as mentioned in § 2.5, the

scope of this thesis is limited to connected networks. In general, most scale-free

networks are not connected (Cohen et al., 2003). Thus, random network genera-

tion algorithms which aim to uniformly sample the space of scale-free networks

do not generate connected networks.

Fortunately, the popular Barábasi-Albert preferential attachment model (Barabási

& Albert, 1999) does generate connected networks which have a power-law de-

gree distribution, although it does not uniformly sample the space of scale-free

networks. Moreover, this algorithm is able to generate networks which contain

hubs, but have degree distributions steeper or shallower than a power-law.
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(a) α= 0 (b) α= 2

(c) α= 1

Figure 4.6: Barábasi-Albert preferential attachment networks with N = 200
nodes, and three different values of the attachment parameter α. The node size
is proportional to the proportion of the population that is located on it. More-
over, nodes with a higher population concentration are more red and nodes
with a lower concentration are more blue. The layout was determined by the
Fruchterman-Reingold force directed layout (Fruchterman & Reingold, 1991).
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(a) Population average robustness (princi-
pal eigenvalue)

(b) Inverse participation ratio

(c) Proportion of the population on the hub
and its neighbours

Figure 4.7: The average population average robustness, the inverse participation
ratio, and the proportion of population on the hub node and its neighbours in
Barábasi-Albert preferential attachment networks. The shaded region shows the
standard deviation.

The algorithm starts with a single node and then progresses by iteratively

adding nodes to the network. Each time a node is added it is connected to ex-

isting nodes in the network by m edges. In this work, m = 1, as it was found

that higher values of m produce networks which bear little resemblance to the

expected topology of neutral networks. When new nodes are connected to the

network they are connected to a given node with probability p(k) = kα. In the

case α= 1, the degree distribution is a power law, with exponent γ= 3. If α< 1,

then the degree distribution falls off faster and so the occurrence of high degree

nodes is reduced. The opposite is true in the case α > 1. More specifically, if

α= 0:

(4.7) p(k) ∼ e

m
exp

(
− k

m

)
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if 0 <α< 1, then:

(4.8) p(k) ∼ k−αexp

( −2µ(α)

〈k〉 (1−α)
k1−α

)
where µ(α) depends only weakly on α (Barabási, 2016). For α > 1 a stationary

degree distribution (independent of the number of iterations) does not exist. For

further details, the reader is referred to the excellent, recently published, book by

Albert-László Barábasi himself (Barabási, 2016).

Figure 4.6 shows diagrams of networks generated according to this model for

the three values of α= [0,1,2].

In order to examine localisation in this network model, 1000 networks were

generated with N = 5000 nodes for the valuesα= [0,0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0].

fig. 4.7 plots the principal eigenvalue, inverse participation ratio and the propor-

tion of the population on the maximum degree node (hub) and its neighbours.

We find that the population is highly localised for α> 1.2.

4.7 Poorly Connected Random Subgraphs of

Hypercubes

The realisable topology of neutral networks is constrained by the fact that the

genotypes are encoded by strings of characters and that edges can only be placed

between vertices whose corresponding genotypes differ by a single character.

That is, an edge can only connect nodes whose corresponding genotype se-

quences are a Hamming distance of one apart. Here, we analyse how this con-

straint influences the neutral evolution of populations. In particular, we are in-

terested in whether the mean-field approximation holds and also the types of

localization behaviour which can be observed.

Random subgraphs of hypercubes (or n-cubes) are well studied (Reidys et al.,

1997; Reidys, 2009). In these models, neutral networks are created by including

each node in the neutral network with a probability θ (the symbol λ is usually

used for this probability, however, we use θ to avoid confusion with the princi-

pal eigenvalue, which we denote with λ1). Once the nodes have been assigned

as being on or off the network, the connected components of the neutral net-

work can be extracted. In the following, we study only the largest connected

component of the networks, as we are interested in the exploratory behaviour of

populations on networks which extend over large parts of sequence space.
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(a) Relative inverse participation ratio (Yr (Λ))

(b) Principal eigenvalue and related properties

Figure 4.8: Properties relating to the principal eigenvalue and the distribution
of the principal eigenvector over the largest connected component of random
subgraphs of an n-cube.
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(a) θ = 0.1 (b) θ = 0.15

(c) θ = 0.2 (d) θ = 0.25

Figure 4.9: Network diagrams of the largest connected component of random
subgraphs of an n-cube. The size of the nodes is proportional to the proportion
of the principal eigenvector which is located on them. Moreover, nodes with a
higher population concentration are more red and nodes with a lower concen-
tration are more blue.
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We hypothesize that, for sufficiently low θ, the connectivity of the network

will be low enough that the population will be confined to areas of it, rather

than spread evenly. In order to test this hypothesis, we generated random sub-

graphs of the hypercube formed by using strings of length L = 6 over an al-

phabet consisting of A = 4 distinct characters. The values of θ from the set

[0.1,0.15,0.2,0.25,0.3,0.4] were used. Fewer larger values were chosen as pre-

liminary experiments showed that, for large values of θ, the resulting networks

were substantially larger, making analysis computationally expensive. Further-

more, figure fig. 4.8 shows that the behaviour of the population is less interesting

for larger values of θ. For each value of θ, 100 networks were instantiated. Var-

ious properties relating to the principal eigenvalue and eigenvector were mea-

sured. These properties are plotted in fig. 4.8. fig. 4.9 shows diagrams of rep-

resentative networks, with the population distribution displayed through vertex

size and colour.

fig. 4.9 demonstrates that, at least for the selected representative networks,

the population is highly concentrated on a small number of nodes for small val-

ues of θ. However, for larger values of θ it is distributed over a substantially larger

number of nodes. This behaviour is confirmed in fig. 4.8a where we see that the

relative inverse participation ratio Yr (Λ) is high enough to justify localization for

low values of θ. However, it drops rapidly for increasing values of θ. It is interest-

ing to note that Yr (Λ) increases between θ = 0.1 and θ = 0.15. Further investi-

gation revealed that the networks produced for θ = 0.1 were very small (this can

be observed in fig. 4.9). We suspect that the small size of the networks prevents

Yr (Λ) from being very large, as the minimum number of nodes a population has

to occupy is probably close to the size of the networks.

fig. 4.8b shows that, for large values of θ, λ1 is well approximated by the

mean-field approximation λ̂ = 〈k2〉/〈k〉. Furthermore,
√

kmax is substantially

smaller than λ̂ for all values of θ. This emphasizes that this is a different form of

localisation to concentration on hubs.

We also wanted to interrogate whether this mode of localisation is dissimi-

lar from localization on a K-core (see § 4.1) (Pastor-Satorras & Castellano, 2016).

In order to do this, we generated a further 20 networks each for θ = 0.15 and

θ = 0.2 and recorded the proportion of the population residing on the maximum

K-core. For θ = 0.15 this value varied between 0.16 and 0.54, with a mean of 0.35

and a standard deviation of 0.12. For θ = 0.2 it varied between 0.01 and 0.88,

with a mean of 0.7 and a standard deviation of 0.23. The existence of networks
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in which the eigenvector is so weakly concentrated on the maximum K-core in-

dicates that, at least in some cases, the mode of localization is slightly different

to that described by Pastor-Satorras & Castellano (2016).

We were interested as to whether weak connectivity between parts of the

network would have a similar effect on the eigenvectors of graphs that are not

embedded in Hamming space. To this end, we generated pairs of Erdős-Renyi

(Erdős & Renyi, 1959) networks, each with |V | = 100 vertices and |E | = 200 edges.

These pairs of networks were connected by a single edge, connecting two ran-

domly chosen vertices. Although, in some instances, the eigenvector was spread

out evenly over the two original networks, in others, it was almost completely

concentrated on a single network. fig. 4.10 shows a diagram of an instance where

the eigenvector was heavily concentrated on a single network in the pair. Further

analysis showed that, when analysed independently (without the single con-

necting edge), the one network had a slightly higher principal eigenvalue than

the other, due to the randomness involved in the generation of the networks.

The eigenvector of the combined network was concentrated on this network.

This effect makes sense in terms of natural evolution, as the population is able

to achieve a higher level of robustness on one of the pair of networks. There-

fore, were a fraction of the population to be located on the sub-network with a

lower principal eigenvalue, it would be out-competed by the fraction of the pop-

ulation located on the other sub-network. Moreover, the single connecting edge

is insufficient to allow a large flow of mutants from the one sub-network to the

other.

4.8 Hamming Balls on Random Subgraphs of

Hypercubes

It is worthwhile querying whether the eigenvectors of random subgraphs of a hy-

percube can undergo localization onto a hub, as already discussed for networks

in general. Of the analytic results for localization covered in section § 4.1, the

weakest was that of Martin et al. (2014), where it was required that
√

kmax > 〈q〉,
where 〈q〉 is the average degree of the network excluding the hub. For random

subgraphs of the hupercube constructed from sequences of length L and an al-

phabet of size A, where a given vertex is included in the network with probability

θ, if we connect a hub of maximum possible degree then this condition implies
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Figure 4.10: Network formed by connecting two Erdős-Renyi (Erdős & Renyi,
1959) networks, each with |V | = 100 vertices and |E | = 200 edges by a single
edge. The size of the nodes is proportional to the proportion of the principal
eigenvector which is located on them. Moreover, nodes with a higher popula-
tion concentration are more red and nodes with a lower concentration are more
blue.

θ < 1/
p

L(A−1). For the networks which we studied in the previous section,

with L = 6 and A = 4, this would imply that θ < 0.24. In that section we found

that, for that value of θ, the eigenvector was already somewhat localized (see

fig. 4.8a). Moreover, given that increasing L and A will decrease the bound on θ,

similar effects are probable for the random subgraphs of larger hypercubes. As

the eigenvectors of these networks are already under the influence of a certain

mode of localisation, studying the effects of connecting hubs to them could lead

to ambiguous results due to the multiple modes of localisation.

There is, however, a natural generalisation to a hub when considering sub-

graphs of hypercubes: the Hamming ball. A Hamming ball is the network com-

posed of all nodes in the hypercube within a certain radius ρ of a specific se-

quence. A star of maximum possible degree in the hypercube is then a Ham-

ming ball of radius ρ = 1. We would expect Hamming balls to produce pop-

ulations with high average genetic robustness. Bornberg-Bauer & Chan (1999)

studied them as an abstraction for the structure of protein neutral networks (see
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(a) Relative inverse participation ratio (Yr (Λ))

(b) Principal eigenvalue and related properties

Figure 4.11: Properties relating to the principal eigenvalue and the distribution
of the principal eigenvector over the largest connected component of random
subgraphs of an n-cube to which a Hamming ball of radius ρ has been con-
nected.
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§ 6.2). They found that the population tended to concentrate on the inner nodes

of the ball, increasing the population’s average robustness. More recently, Bol-

lobás et al. (2016) showed that, for a given number of nodes, a Hamming ball

arrangement maximised the principal eigenvalue of the resulting network.

We, therefore, thought it worthwhile to investigate whether, by connecting

Hamming balls to otherwise delocalised graphs, localisation could occur.

We generated random subgraphs of the hypercube formed by strings of al-

phabet size A = 2 and length L = 13. The smaller alphabet size was chosen as,

in preliminary testing, it was found that the size of the Hamming balls increased

too rapidly for larger values of A. This made the analysis too computationally

expensive. The longer length was chosen to allow for large subgraphs, given the

small size of the alphabet. The high value of θ = 0.4 was chosen to discourage

localisation behaviour of the eigenvector without the presence of the Hamming

ball. To each graph was connected a Hamming ball of radius ρ. The values of

ρ from the set [0,1,2] were used. For each value of ρ, 100 networks were gen-

erated. Various properties relating to the principal eigenvalue and eigenvector

were measured. These properties are plotted in fig. 4.11. Diagrams of the net-

works are not shown as it was found that the resulting networks were too large

to allow for informative diagrams.

fig. 4.11a shows the relative inverse participation ratio Yr (Λ). Between ρ =
2 and ρ = 3 we see a sharp increase in this value, representing a localisation

transition. Similarly, the principal eigenvalue exhibits a sharp increase between

ρ = 2 and ρ = 3 (fig. 4.11b).

53





C
H

A
P

T
E

R

5
NEUTRAL NETWORKS IN EVOLUTIONARY COMPUTING

The preceding chapters have demonstrated the manner in which the equilib-

rium distribution of an evolving population over a neutral network is related to

structural properties of the network. The structural properties of the neutral net-

works which are encountered by evolving populations are, therefore, of great in-

terest. An important question, for instance, is whether localization behaviour is

a mere mathematical curiosity, or a phenomenon that occurs in evolution. This

chapter will focus on man-made neutral networks - those found in EC as well as

in abstract models of fitness landscapes. Relevant studies of specific instantia-

tions of landscape models tend to have occurred within EC and so it makes sense

to discuss them together. The following chapter (chapter 7) will focus on neutral

networks in nature. Both chapters will pay specific attention to the structural

properties which the previous sections used to describe the population distri-

bution.

The literature on neutrality within EC is vast and, as such, no attempt will be

made to review it in its entirety. The reader is referred to the review by Galván-

López et al. (2011). A very substantial portion, if not the majority, of this lit-

erature concerns itself with the question of whether neutrality aids or impedes

evolutionary search. Although this is a pertinent question, it is of secondary im-

portance to this thesis. This chapter will, instead, focus on work within the EC

literature which sheds light upon the structure of the neutral space. This will

then inform us of the manner in which the above-derived results apply to the
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field of EC.

5.1 Combinatorial Optimisation Problems

Combinatorial optimisation considers the optimisation of a set of discrete vari-

ables, X = {x1, · · · , xn}, under a fitness function f : X → R (Blum & Roli, 2003).

The optimisation of genetic code in nature falls under this definition and has

been studied in this context (Reidys & Stadler, 2002). Moreover, many important

optimisation problems in industry are combinatorial in nature (Yu, 2013). EC is

a competitive approach with which to tackle these problems (Blum & Roli, 2003).

Feasible Regions

Combinatorial optimisation problems encountered in computer science usu-

ally contain an associated set of constraints on the set of variables. For instance,

in the ubiquitous traveling salesman problem, the path of a fictional salesman

through a selection of cities is optimised for shortest distance (Kirkpatrick &

Toulouse, 1985). The constraint on the path is that it must pass through all the

cities exactly once.

These constraints divide the search space into feasible and infeasible regions.

Although the feasible regions of these problems do not necessarily have a neu-

tral fitness gradient, analysing their structure is still worthwhile, as it sheds light

on the structures that certain constraints can impose on a combinatorial land-

scape, which could be neutral in a different context. Moreover, it is plausible that

subregions of the feasible regions are neutral or nearly neutral and the topology

of the feasible region constrains the space of realisable neutral networks. Fi-

nally, one could impose neutrality on the feasible region by editing the fitness

function.

The structure of the feasible regions of combinatorial optimisation problems

is, therefore, of interest to us. This structure is dependent on the choice of mu-

tation operator, also known as the neighbourhood operator in the broader con-

text of heuristic search applied to combinatorial problems (Reeves, 1999). When

using straightforward mutation operators , the networks representing the fea-

sible regions of many combinatorial optimisation problems are regular. That

is, each node has the same degree. This includes the traveling salesman prob-

lem (Stadler & Schnabl, 1992), max-SAT (Basseur & Goëffon, 2015), flow-shop
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scheduling problem (Marmion et al., 2011), graph-coloring problem (Marmion

et al., 2013) and quadratic assignment problem (Merz & Freisleben, 2000). Neu-

tral evolution over such a region would result in an evenly distributed popu-

lation, with an average robustness equal to the common degree of the nodes

(§ 3.2).

The author is, however, aware of two problems and associated mutation op-

erators where the feasible region is irregular. The first of these is the job-shop

scheduling problem under the adjacent-swap mutation operator, demonstrated

by Bierwirth et al. (2004). The job-shop scheduling problem consists of a set of

jobs and a set of machines. Each job has one or more operations which have

a precedence order in which they must be completed. Each operation has a

specified machine on which it must run. The task of optimisation is to find a

precedence order for the operations on each machine such that there are no

inconsistencies in operation precedence and such that the makespan is min-

imised, where the makespan is the time taken to complete all the jobs. The

adjacent-swap mutation operator swaps the precedence between two jobs on a

given machine and, as such, is the smallest possible change to a schedule (Bier-

wirth et al., 2004). Certain combinations of pairwise precedence relationships

can lead to global precedence inconsistencies and this results in the distinction

between feasible and infeasible regions. Bierwirth et al. (2004) randomly gener-

ated 10 000 feasible solutions of the ft10 problem instance (Fisher & Thompson,

1963). For each solution, they calculated the number of feasible neighbours out

of a possible 90. It was found that there is a mild heterogeneity in the number of

feasible neighbours a given node possesses. This figure varied between 77 and

89. Moreover, it was found that the makespan of the solutions was inversely cor-

related with their number of feasible neighbours. Further analysis showed that

all 13 120 globally optimal solutions had 88 or 89 feasible neighbours.

Given the relative similarity in feasible degree of the solutions and the fact

that we have no reason to believe that the networks of feasible solutions have

poor connectivity, it is unlikely that, should a population evolve neutrally over

this network it will localize. The fitness landscape of the job-shop problem is

highly correlated (Mattfeld et al., 1999). This fact, combined with the correlation

between fitness and feasible degree, implies that the feasible degree of solutions

is probably correlated. This assortativity of the feasible network will result in the

neutral evolution of robust populations.

The second problem with an irregular feasible region is the optimal golomb
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ruler problem. This problem is of particular interest to this thesis because, as

shown by Cotta & Fernandez (2005), there is enormous variation in the feasible

degree of solutions. The optimal golomb ruler problem represents the challenge

of finding a set of n integers (marks), a1 < a2 < . . . < an , such that the difference

between all pairs of integers is different and such that an is minimised. The con-

straint on the differences between the between the pairs of integers produces

the structure of the feasible region and the value of an acts as the fitness. Cotta

& Fernandez (2005) considered a mutation operator which adds a different ran-

dom integer in the range [−ε,ε] to each mark of the ruler. They found that, in

the 12-mark problem variant with ε = 1, the number of feasible neighbours of

candidate solutions varied by three orders of magnitude. With ε = 4, the num-

ber of feasible neighbours varied by seven orders of magnitude. The areas of

high feasible degree were those with low fitness (that is, high values of an). This

is due to the fact that there are many more sequences of marks which satisfy

the difference constraint for higher values of an . Cotta & Fernandez (2005) also

demonstrated that the fitness landscape of the optimal golomb ruler problem

is correlated. As with the job-shop scheduling problem, this implies that the

networks representing the feasible region of the search space are probably as-

sortative. This, combined with the large variance in neutral degree will result in

the neutral evolution of robust organisms (see § 3.2), and would likely confine

the population to the regions of very high feasible degree. Cotta & Fernandez

(2005) discuss how, even though they represent areas of low fitness, the popula-

tion is drawn towards the regions of the search space with high feasible degree.

They further discuss the negative impact that this has on search and, in order

to mitigate this effect, devise a problem representation which generates regular

feasible networks. It is demonstrated that this representation improves search

performance.

Neutrality

The author is aware of one combinatorial optimisation problem for which neu-

trality has been explicitly studied: the graph-coloring problem. Marmion et al.

(2013) studied the distribution of neutral degree in a variety of instances of this

problem. It was found that the average degree of neutrality in most instances of

this problem was moderate and that the variance in the neutral degree within

each instance was small. This low variance in neutral degree is consistent with
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the regular feasible region of this problem, as discussed above. Marmion et al.

(2013) also studied the autocorrelation of neutral degree along neutral walks in

the landscape. That is, they studied the assortativity of the neutral networks

(§ 2.5). It was found that the neutral networks were highly assortative, with

assortativity coefficient values between 0.69 and 0.9. An evolving population

on such a neutral network would, therefore, increase its robustness over time

(§ 3.2).

5.2 Genetic Programming

The area of EC in which the structure of neutral networks has been studied in

the most detail is Genetic Programming (GP) (Poli et al., 2008; Langdon & Poli,

2013), which concerns itself with the evolution of computer programs. A key

issue within GP is bloat (Poli, 2003; Luke & Panait, 2006), whereby programs

evolve to be excessively long. Some explanations for bloat have involved neu-

trality. It has been suggested that bloat is caused by introns: code fragments that

have no effect on the execution of the program (Nordin et al., 1995). If there

is no selective pressure against such code fragments, they will accumulate over

an evolutionary run. Due to their lack of effect on the program execution, most

mutations of such fragments are neutral (Ferreira, 2002). It has also been argued

that the mutational robustness conferred by neutrality offers a selective advan-

tage to longer programs, which tend to have more neutral neighbours (Banzhaf

& Langdon, 2002; Blickle & Thiele, 1994; Banzhaf et al., 1998). Finally, it has been

argued that long programs are overrepresented. That is, for a given program,

there are more long realisations than short ones. This implies that a neutral drift

will be biased towards these longer programs (Langdon & Poli, 1998a,b; Langdon

et al., 1999). This relationship between neutrality and bloat has lead to substan-

tial emphasis being placed on neutrality in GP (Banzhaf, 1994; Ebner, 1999; Yu

& Miller, 2001; Miller & Smith, 2006; Galván-López et al., 2008). In the follow-

ing, two areas in which the structure of neutral networks has been specifically

studied, are discussed.

Linear Genetic Programming

Wolfgang Banzhaf and various colleagues have performed detailed studies of the

structure of neutral networks in Linear Genetic Programming (LGP). The distin-
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guishing feature of LGP is that the program representation (§ 2.1) is a sequence

of instructions, as opposed to the usual tree representation (Brameier & Banzhaf,

2001). This, combined with the fact that the studies to be discussed did not use

crossover (recombination), means that the results discussed in this thesis apply

exactly.

The early work of Banzhaf & Leier (2006) fully enumerated the neutral net-

works of a simple boolean program space. These were programs made up of two

input registers, two calculation registers and L = 2 statements. It was found that

all neutral networks were fully connected (there were only five different fitness

values), that the neutral degree of genotypes ranged between 6 and 33 and that

the distribution was heavily skewed towards the robust genotypes.

This landscape was further studied for L = 3 statements in Hu et al. (2014)

and L = 4 statements in Vanneschi et al. (2006) and Hu et al. (2012). It was found

that the size of the neutral networks varies dramatically, from order 10 to order

105 genotypes in the L = 3 case and from order 104 to order 108 genotypes in

the L = 4 case. These networks were also found to be expansive, that is, each

network extended over much of genotype space. The degree distribution was,

interestingly, bimodal. The authors performed a K-core analysis (Dorogovtsev

et al., 2006) and found that the nodes in the high-degree peak of the degree dis-

tribution were found in the higher k-cores and that the nodes with lower de-

gree were found in the lower cores. This lead them to conclude that these high

degree nodes formed a highly connected core surrounded by lower degree pe-

ripheral nodes. Although the authors did not calculate the assortativity of the

networks, the structure which they described implies that these networks are

probably highly assortative. It is plausible that this assortativity is sufficiently

high for evolving populations to localize on the highest K-core (Pastor-Satorras

& Castellano, 2016). At the very least, it will lead to a higher population con-

centration on the inner nodes of the network (§ 3.2). This will greatly reduce

the phenotypic diversity to which the population is exposed, as the peripheral

nodes have more phenotypically non-neutral neighbours.

The more recent L = 4 paper (Hu et al., 2012) performs an analysis of the

various mutational biases present in the problem landscape, specifically those

between genotypes and phenotypes. Of particular interest to this thesis, they

demonstrate the existence of the mutational bias towards robust genotypes by

performing random walks over neutral networks. This bias is discussed in § 2.5

in the context of the friendship paradox (Feld, 1991) and is used in the derivation
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of the population distribution over neutral networks presented in § 3.2.

Neutral Networks of Real-World Software

Contrary to the intuition of most software developers, software is not brittle

(Langdon, 2015). Experiments on various pieces of human-coded software have

revealed that between 20% and 90% of mutations leave the software capable of

passing its test suite (Langdon & Petke, 2017; Schulte et al., 2014), this proportion

being dependent on the genetic representation, mutation operators, test suite

coverage and properties of the software itself. This robustness allows the neu-

tral space to be traversed while secondary objectives are optimised, in what has

come to be known as genetic improvement (Langdon & Ochoa, 2016). This tech-

nique has been used, for instance, to improve computational efficiency (Lang-

don & Harman, 2015), repair latent bugs (Le Goues et al., 2012) and improve

energy efficiency (Schulte et al., 2014). The derived programs in these studies

are as far as hundreds of mutations from the seed program, implying the exis-

tence of extensive neutral networks in their search space. Moreover, it has been

found that, in the case of computational efficiency, the majority of neutral mu-

tations have no effect on the secondary objective (Langdon & Petke, 2017). This

implies that it is likely that neutral dynamics play a role in the evolution of these

programs. It is, therefore, important to understand the topology of the neutral

networks of real-world software and the manner in which this topology influ-

ences evolution.

To this end, Schulte (2015) and Schulte et al. (2014) explicitly studied the

neutral networks of software. By performing neutral random walks through the

search space, they were able to confirm that the neutral networks extend over a

large distance. These random walks were able to find programs 250 edits from

the seed program, which was well-tested and contained less than 200 lines of

code. Furthermore, it was found that mutational robustness increased over the

course of the random walks. This implies that the neutral network is not regular

and that there is variation in the degree of the nodes. This indicates that asex-

ual evolution would be effective at evolving robust programs on this network,

especially were it to exhibit degree assortativity (§ 2.5).

Schulte (2015) suggests that the diffusion of a population on a neutral net-

work can be beneficial in and of itself. The neutral evolution of pre-existing soft-

ware would be an easy way to create many variants of the same program, and
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this diversity has benefits for system security.

5.3 Digital Circuits

The study of the evolution of digital circuits bears much similarity to that of

gene regulatory networks, as both consist of interconnected boolean functions.

Moreover, some authors have used networks of non-linear threshold units to

model gene regulatory networks (see, for instance, Crombach & Hogeweg (2008)).

This discussion will, however, maintain the separation between natural and ar-

tificial systems. See (§ 6.4) for a discussion of gene regulatory networks in the

context of this thesis.

Various authors have studied the neutral networks of digital circuits (Milano

& Nolfi, 2016; Raman & Wagner, 2010; Fernández & Solé, 2007). These studies all

employed substantially different models. For example, as logic units, Milano &

Nolfi (2016) used AND, OR, NAND and NOR gates, Raman & Wagner (2010) used

these same gates with the addition of XOR and Fernández & Solé (2007) used

threshold units. There were further differences in the size and allowed topology

of the circuits, the numbers of inputs and outputs and the genotype representa-

tion and mutation operators used.

Despite these differences, the studies are in remarkable agreement as to the

properties of the neutral networks. All three found that the there was a diver-

sity of robustness amongst genotypes - some genotypes had substantially more

neutral neighbours than others. Although Milano & Nolfi (2016) did not study

the span of the neutral networks, Raman & Wagner (2010) along with Fernández

& Solé (2007) confirmed that they covered large parts of the genotype space.

The observed variation in neutral degree opens up the possibility of using

evolution to increase the fault tolerance of digital circuits. Indeed, it has been

demonstrated that this is an effective approach (Thompson & Layzell, 2000; Hart-

mann & Haddow, 2004). The results presented in this thesis suggest an approach

to the evolution of fault tolerant circuits that would not require fault tolerance

as a secondary objective. If a genotype representation and associated mutation

operator were devised so as to enforce the assortativity of the neutral networks,

then the population would converge on areas of higher robustness. Assuming

that the mutation operator bore some similarity to potential faults, these robust

solutions would be tolerant to such faults.
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5.4 Fitness Landscape Models

Although there is a limited number of results from the study of fitness land-

scapes models which are directly relevant to this thesis, their importance within

the theoretical study of evolution (Galván-López et al., 2011; Stadler, 2002), jus-

tifies some discussion of their relation to this work. Moreover, some of the most

compelling future work extending this thesis would be to investigate the man-

ner in which the parameters of certain fitness landscape models influence the

relevant properties of neutral networks and the implications of this for neutral

evolution. This will be discussed in further detail below.

The most studied fitness landscape model is Stuart Kauffman’s ubiquitous

(De Visser & Krug, 2014; Richter, 2014; Pitzer & Affenzeller, 2012) N K model

(Kauffman & Levin, 1987; Kauffman & Weinberger, 1989). Its multiple variations

and generalisations (Bäck et al., 1997) have been studied in detail and have had

a substantial impact on the study evolutionary dynamics and optimization al-

gorithms (Wright et al., 2000; Choi et al., 2008; Nielsen et al., 2015; Mellor, 2007;

Weinberger & Fassberg, 1996). Moreover, there exist at least three variations of

this model which incorporate neutrality (Barnett, 1998; Newman & Engelhardt,

1998; Beaudoin et al., 2006). It is for these reasons that this section will focus on

the N K landscape model and its neutral variants.

The N K model considers a landscape whereby each of the N characters of

the genetic code contribute a given amount of fitness, and this fitness is summed

to produce the genotype’s fitness value. However, the fitness contribution of

each character is dependent on the characters at K other positions in the code.

More formally,

(5.1) F (s) =
N∑

i=1
fi (si )

Where F is the genotype’s fitness, s the string representing its genetic code and

si is the substring of s containing the i th character and the other K characters

on which it depends.

The utility of the N K model lies in the manner in which the level of epistasis

and ruggedness can be tuned. Increasing K increases both of these quantities

(Kauffman & Weinberger, 1989).

The N K model does not, by itself, exhibit any neutrality. However, the author

is aware of three extensions to it which incorporate neutrality. Barnett (1998)

proposed the N K p landscape where, for a given si , with probability p, the fitness
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contribution of that locus ( fi (si )) is set to zero. Newman & Engelhardt (1998)

proposed the N K q landscape, which has also been referred to as the ‘quantised’

or ‘terraced’ N K landscape. This modification operates by requiring the range

of the functions fi to be drawn from a given discrete set of size q , usually the

integers [0, q). It has been noted that the resulting landscape of the N K q model

bears much similarity to a normal N K landscape which has been discretised

into ‘bands’ (Aita, 2008), That is, the range of fitness values is separated into dis-

crete intervals, and all fitness values which fall within a given interval are given

the same fitness. Finally, the N D landscape (Beaudoin et al., 2006) presents a

method for constructing N K landscapes where the degree distribution of the

neutral networks is a parameter of the model. This could be a useful tool for fu-

ture work, particularly in terms of analysing the effect of localisation (chapter 4)

on a population’s ability to find neutral networks of higher fitness. However, it

does not shed light on the possible underlying causes of topological features of

neutral networks, as the N K p and N K q models do.

Many of the properties of the N K p and N K q landscapes have been studied

in depth. This includes the size of the neutral networks (Newman & Engelhardt,

1998), the global distribution of neutral mutations (Reidys & Stadler, 2001; Geard

et al., 2002), fitness correlation (Smith et al., 2002; Barnett, 1998) and various as-

pects of the evolutionary dynamics (Smith et al., 2002; Barnett, 1998). Unfortu-

nately, these results are not of great use to us here, as we are interested in the

topological properties of networks of a given fitness. Barnett (2003) derived an

expression for the degree distribution of neutral networks of the N K p landscape

and plotted the mean and variance of this distribution for a specific combina-

tion of parameter values. Unfortunately, the derived expression is rather compli-

cated and difficult to interpret. Moreover, the plots were only performed for the

value p = 0.99. As would be expected, almost all the 1-mutation neighbours of

a given phenotype were neutral and there was a very low variance in the degree.

An interesting avenue for future work would be interrogating this distribution

for other parameter values.

Unfortunately, the author is not aware of any work which analyses the topo-

logical properties of the neutral networks of the N K q model. Further, it is the

author’s opinion that, due to its similarity to a banded N K model, the N K q is

a much more realistic model of the manner in which neutrality arises in evo-

lutionary systems. Therefore, a pressing area of future research is interrogating

the topology of the neutral networks of the N K q model, with particular focus
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on features such as modularity, degree assortativity and variance in degree. This

will then allow us to relate the much studied topics of epistasis and landscape

ruggedness to the behaviour of populations evolving at high mutation rates.

5.5 Cellular Automata Majority Problem

Although there has been a substantial amount of work on the problem of evolv-

ing rules for cellular automata (Mitchell et al., 1996), there is a lack of research

concerning the characteristics of the neutral networks imposed by these prob-

lems. That being said, the neutral networks of the cellular automata majority

problem have been studied in detail (Verel et al., 2006, 2007). Given that this

work focuses on the properties which we are interested in, it is worth briefly

discussing it. The authors of the mentioned studies studied two of the neutral

networks of this problem. In both, they found that the degree distribution of the

networks was highly dispersed - the highest degree nodes had a degree around

five times higher than the lowest degree nodes. The autocorrelation of degree

along random walks was also measured, and it was found that the networks ex-

hibited positive degree assortativity, with r = 0.85 and r = 0.49. Based on the

work in § 3.2 we can conclude that evolution on these neutral networks would

result in populations of robust genotypes. Moreover, the highly assortative neu-

tral networks would be a strong candidate for localization on its K-core (Pastor-

Satorras & Castellano, 2016).
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NEUTRAL NETWORKS IN NATURE

As mentioned in the introduction to the previous chapter, given that results have

been derived relating the topology of neutral networks to the equilibrium distri-

bution of a population over it, the topology of the neutral networks encountered

by evolution is of great significance to this thesis. The previous chapter analysed

the existing literature concerning the topology of neutral networks encountered

in EC. This chapter will analyze those found in nature.

It is worth bearing in mind that, except perhaps in the case of in vitro ex-

periments, neutral networks in natural systems are a fairly immutable property

of that system. This is in contrast with EC, where neutral networks are a conse-

quence of the representation, associated mutation operators and fitness func-

tion. These can all be modified by the practitioner in order to generate the de-

sired behaviour. Therefore, in the context of EC, the results derived in this thesis

can be viewed as a tool to aid in the design of representations, mutation opera-

tors and fitness functions. On the other hand, in nature, they offer a description

of the behaviour of the given system.

Naturally occurring neutral networks have been analyzed at various levels

of selection (Smith & Szathmary, 1997). This chapter will proceed along these

levels.
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6.1 RNA Folding Neutral Networks

Much of the earliest work on the topology of neutral networks was conducted on

RNA (Reidys et al., 1997; Fontana & Schuster, 1998; Schuster et al., 1994; Grüner

et al., 1996; Fontana et al., 1993). It was found that, for a given fold shape, there

are many different RNA sequences folding into that shape. A large focus of this

early work was some of the immediate consequences of this degeneracy, namely

spanning and shape space covering. The former refers to the existence of large

neutral networks which percolate through sequence space and stretch across its

diameter. The latter refers the existence of genotypes coding for all realisable

phenotypes within a certain small distance of any given genotype. These prop-

erties have important consequences for evolving populations and the amount

of variation which they can access. Specifically, spanning allows a population to

navigate the breadth of sequence space, even if it has reached a fitness plateau.

Shape space covering implies that a population navigating the network will be

able access all realisable phenotypes. These findings have also been confirmed

in more recent studies (Jörg et al., 2008; Cowperthwaite et al., 2008; Grafen, 2008).

The results of this thesis, notably the possibility of the localization of an

evolving population, have implications concerning whether the population will

actually access this available variation. These implications are further discussed

in chapter 8.

More recently, Aguirre et al. (2011) performed an exceptionally detailed anal-

ysis of the topology of the neutral networks of the folding of all RNA sequences of

length 12. It was found that the smaller neutral networks had strikingly narrow

degree distributions, whereas the larger networks had a slightly higher variance.

Despite this higher variance, the networks did not contain hubs. The modal de-

gree was only slightly lower than the maximum. The majority of the networks ex-

hibited positive degree assortativity. The larger networks had particularly strong

assortativity, with most having r > 0.5, and many having r values close to 1. The

authors chose to only plot a diagram for a single neutral network, however this

one appeared to be fairly modular.

This is an interesting combination of properties in the context of this thesis.

The narrow degree distributions preclude the population’s average robustness

from rising much above the networks’ average degree. However, the strong posi-

tive assortativity and possibility of modular structure present the possibility that

the population might be heavily concentrated in certain regions of the networks.
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Fortunately for our purposes, the authors computed the principal eigenvalue,

λ1, for the networks under study and plotted it against both the network size, N ,

and average degree 〈k〉. As expected, λ1 was well approximated by 〈k〉, being

slightly larger than it in almost all instances. The authors also plotted the com-

ponents of the principal eigenvector for the largest connected subnetwork in

the landscape. It was found that this value was not constant across the network

and that there were clusters of values. That is, certain groups of nodes had very

similar eigenvector components, and there was a larger difference in these com-

ponents between these groups. The authors were further able to show that the

sequences within these groups had common sub-strings of nucleotides. More-

over, the group with the highest eigenvector components contained the highest

degree nodes. It seems plausible, therefore, that the population is concenctrated

on a module containing the high degree nodes. Unfortunately, the axis of the

plot presenting these results is hard to interpret, and so we cannot reach con-

clusions concerning the extent of this concentration.

6.2 Protein Folding Neutral Networks

The topological properties of the neutral networks of protein folding have been

studied in greater detail than probably any other naturally occurring neutral net-

work. This is partly because protein neutral networks form an especially in-

teresting structure: the superfunnel (Bornberg-Bauer, 1997; Bornberg-Bauer &

Chan, 1999; Xia & Levitt, 2004; Noirel & Simonson, 2008; Wroe et al., 2005). The

networks are centered around a prototype sequence, which is also the maximum

degree node of the network. The degree of the nodes decreases with distance

from the prototype. This structure bears some similarity to a Hamming ball

(§ 4.8) and Bornberg-Bauer & Chan (1999) used Hamming balls as an abstraction

with which to study these structures. The sequences within the network also dif-

fer in the stability of their folds, and greater stability confers a fitness advantage

on the sequences. This stability is at a maximum at the prototype sequence and

decreases with increasing distance from it.

The population distribution over the superfunnel has been studied both with

and without the effects of stability. That is, under neutral evolution or on a fit-

ness landscape. As shown in this thesis (§ 4.8), as well as by Bornberg-Bauer

& Chan (1999), neutral evolution on a Hamming ball does not result in an enor-
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mous concentration of the population at the prototype sequence. The prototype

sequence does receive the highest population concentration, however, the frac-

tion of the total population situated on this node is rather small. Rather, most

of the population is found on the peripheral nodes. This observation has been

confirmed using very different models of evolution on protein networks (Black-

burne & Hirst, 2005; Bloom et al., 2007).

The population distribution over these networks will, therefore, remain rela-

tively homogeneous and will be determined by this Hamming-ball-like topology.

The author can, however, think of two possible mechanisms by which localiza-

tion might occur in protein neutral networks. Both of these involve deviations

from the Hamming ball abstraction. Firstly, it has been reported that the stabil-

ity landscape of proteins is rugged and not a perfect funnel shape (Bastolla et al.,

2000; Tiana et al., 2001). The degree distribution of the nodes could be similarly

rugged. Indeed, Sikosek & Chan (2014) provide examples of neutral networks

with multiple hubs. Assuming that the connection with the rest of the network

is not particularly strong, the population could localize on the highest degree

hub.

The second mechanism involves the size of the networks and the rate of the

decay of the degree distribution. The studies cited above all only analyzed the

networks generated from relatively short sequences, due to the enormous size

of the search space for longer sequences. Longer sequences should allow for

larger neutral networks. If the decay of the degree distribution in these networks

is gradual, then they will no longer be well approximated by Hamming balls.

6.3 Protein Interface Neutral Networks

Podgornaia & Laub (2015) studied the neutral network of the key residues of the

E. Coli protein kinase PhoQ involved in the PhoQ-PhoP interface. The authors

determined that there were four key residues involved in the functioning of this

interface. They studied the neutral network formed by the nucleotides coding

for these four residues, under the constraint that the interface functioned with

roughly equal efficacy to the wild type. This efficacy was confirmed in head-to-

head competitions against the wild-type.

Although they did not report on the degree distribution, or any other network

metrics, the authors did present a diagram of the network with a force-directed
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Figure 6.1: Neutral network of the nucleotides coding for four residues of vari-
ants of the E. Coli protein kinase PhoQ. These residues are the key residues in-
volved in the PhoQ-PhoP interface. Here, neutrality was determined by the fun-
cionality of the interface. The size of the nodes is proportional to their degree.
The node colors represent the probability that a random walk of 20 steps starting
from the wild type. The wild-type is dark blue. The red nodes represent naturally
occurring orthologs. Taken from Podgornaia & Laub (2015). Used with permis-
sion.

layout. This diagram is shown in figure 6.1.

This network contains a single large module which holds the highest degree

nodes. There are multiple smaller modules which are weakly connected to the

large module and to each other. Given this structure, it is plausible that, should

a population evolve on this network with Nµ À 1, it will be confined to the

larger module. The authors of this work were themselves interested in the con-

sequences of the weak connectivity of this neutral network. They studied the
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probability that a random walk of length 20 starting from the wild-type would

reach a given node and found that it was extremely unlikely that it would reach

the smaller modules.

This network demonstrates the plausibility of an exploration catastrophe oc-

curring in nature, without the need for special conditions such as plastogenetic

congruence (Ancel & Fontana, 2000). As such, calculating the population distri-

bution over this particular network is a likely avenue for future research.

6.4 Gene Regulatory Network Neutral Networks

After studying the neutral topologies resulting from encoding proteins, we can

query the structure of the neutral networks resulting from the interactions of

these proteins with the expression of other proteins. That is, we can query the

structure of the neutral networks of Gene Regulatory Networks (GRNs) (Schlitt &

Brazma, 2007). The neutral networks of GRNs, or metanetworks, have received

much attention from various researchers (Luo & Turner, 2011; Payne & Wagner,

2013; Boldhaus & Klemm, 2010; Cotterell & Sharpe, 2013), however, the focus of

these works has been whether the neutral networks form connected giant com-

ponents which can be used to traverse space, as opposed to metrics such as the

degree distribution.

Before proceeding, it is worth mentioning that, when computationally mod-

elling GRNs and their associated neutral networks, there is a large number of

parameters which have to be set which impact on the results of the model. For

instance, if one is using a boolean network model (Schlitt & Brazma, 2007), one

must decide on the permissable boolean functions, connection structure and

update rules, along with the associated mutation operators for these items. More-

over, unlike the cases of RNA and protein folding, it is not obvious what should

constitute a phenotype. Some authors define viable phenotypes as only those

which attain an equilibrium state, and define this state as the phenotype (eg:

Ciliberti et al. (2007a)). Other work (eg: Luo & Turner (2011)) defines the pheno-

type as a time series of node states. This author is not aware of any work which

examines the impact of these various parameters on the structure of the neutral

networks.

There are, however, some studies which report on topological properties of

the neutral networks of GRNs. Ciliberti et al. (2007a); Payne et al. (2014); Raman
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& Wagner (2011) report on the global distribution of robustness in the space of

GRNs. They find that the distribution of robustness is highly heterogeneous,

spanning nearly the entire range of possible values. It is worth pointing out,

however, that these global quantities do not necessarily imply that the degree

distribution of the individual networks is similarly heterogeneous.

Fortunately, Ciliberti et al. (2007b), studied the topology of specific neutral

networks of a GRN landscape. It was found that these networks had a highly

heterogeneous degree distribution. Furthermore, the provided network diagram

showed multiple loosely connected hub nodes. These features make these net-

works a candidate for localization behaviour. Indeed, the authors presented the

results of calculations of the principal eigenvalue (population average robust-

ness). It was found that the eigenvalue was substantially larger than the average

degree of the networks. Given that the degree distribution of the networks was

skewed towards lower degrees, it is likely that this high level of population ro-

bustness was achieved through localization.

6.5 Neutral Networks of Other Systems

The networks connecting the viable phenotypes of metabolic networks have

been studied (Rodrigues & Wagner, 2011; Hosseini et al., 2015). Due to the lack

of results directly applicable to the focus of this thesis, they are not discussed

further. The networks formed by viable phenotypes of larger organisms have

also been analyzed (see eg: Dall’Olio et al. (2014)). As larger organisms do not

produce polymorphic populations (Wagner, 2011), an assumption in this work

(§ 2.3), further discussion on the topology of their neutral space is unnecessary.

Finally, the variation networks of influenza Wagner (2014) have also been stud-

ied. This will be discussed in the following chapter, which focuses on this topic.
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NEUTRAL NETWORKS OF INFLUENZA HAEMAGGLUTININ

It is estimated that influenza results in 3 to 5 million cases of severe illness and

a quarter to a half a million deaths, annually (Bao et al., 2008). This high disease

burden, combined with the large amounts of freely available data on the virus

(Sayers et al., 2012), makes the evolution of influenza an attractive area of study.

Moreover, given its high mutation rate, we know that influenza exhibits quasis-

pecies dynamics (Lauring & Andino, 2010), implying that its neutral evolution is

in the polymorphic regime (§ 2.3).

Influenza is constantly evolving through a process known as antigenic drift

(Boni, 2008), whereby it evolves so as to evade recognition by the host immune

system. Much of the change in this process occurs on the haemagglutinin pro-

tein (Boni, 2008). Lapedes & Farber (2001) developed a methodology for quan-

titatively describing the pheontype space of haemagglutinin antigenicity. They

used multi-dimensional scaling to position haemagglutinin sequences in a space,

where, based on experimental data, the distance between sequences was closely

correlated to the similarity of the immune response towards those sequences.

Smith et al. (2004) used a modified version of this method to position haemag-

glutinin sequences from H3N2 strains occurring between 1968 and 2002 in a two

dimensional phenotype space. It was found that the strains formed clusters in

antigenic space, where the immune response towards sequences within a given

cluster was very similar, whereas the response towards sequences in different

clusters was substantially different. Furthermore, it was found that, during a
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given influenza season, a single cluster was dominant. Clusters would dominate

for a period of one to eight seasons before being replaced by a novel cluster. After

replacement, the strains of a given cluster might be present for up to two more

seasons before disappearing.

This has lead some authors (Koelle et al., 2006; van Nimwegen, 2006) to con-

clude that, outside of cluster transitions, influenza haemagglutinin is evolving

neutrally. This implies that the neutral dynamics over haemagglutinin sequence

space are an important topic of study.

Wagner (2014) studied the mutational networks formed by amino acid se-

quences of the HA1 domain of H3N2 influenza haemagglutinin, collected be-

tween 2002 and 2007. It was found that these networks contained antigenically

different sequences. As such, they were referred to as genotype networks, as op-

posed to neutral networks, due to the possibility of there being fitness differ-

ences between sequences.

Inferring natural fitness landscapes is a challenging problem (De Visser &

Krug, 2014). As such, determining whether a mutational network of genotypes

is neutral is similarly difficult. In this chapter, an attempt is made at deriving

mutational networks from influenza sequence data which are plausible neutral.

One approach towards tackling this problem is to use sequences of H1N1

haemagglutinin collected after 2009 1 as there has been minimal antigenic drift

in this subtype since then (Guarnaccia et al., 2013; Tewawong et al., 2015; Liu

et al., 2015). We make use of sequences of H1N1, haemagglutinin, along with

H3N2 sequences, for this reason. A second strategy employed is to limit the se-

quences used to those sampled within a given season. The amount of antigenic

variation within a single season is less than over multiple seasons. The amount

of variation within seasons of H3N2 influenza reported by Russell et al. (2008)

was of the order of the within cluster variation found by Smith et al. (2004). Fur-

thermore, by restricting sampling to a given season, we reduce the number of

antigenic clusters in circulation, which in turn reduces the chance that the neu-

tral networks of different antigenic clusters will be linked by a point mutation.

An additional benefit of restricting sampling to a single season is that it al-

lows us to approximate the distribution of the population over the network.

It is possible that, in the case of H3N2 viruses, the neutral networks of dif-

1As specified below, we analyzed sequences from 2007 to 2016. However, we excluded net-
works smaller than 50 nodes from this analysis and non of the H1N1 networks of seasons earlier
than 2009 met this criterion.
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ferent antigenic clusters will be linked by a point mutation and will, therefore,

appear as a single neutral network in this analysis. The likelihood of this occur-

ring, however, is low. Koelle et al. (2006) (supplementary text, figure S1) plot-

ted the distribution of sequence samples from Smith et al. (2004) by cluster and

year. In the majority of years, all sequences belonged to a single cluster. In no

given year were sequences from three or more clusters sampled. In the major-

ity of years in which a second cluster was sampled, this cluster was sampled at

a very low frequency. Moreover, in the genetic map of Smith et al. (2004), we

find that most clusters are well separated in sequence space, and only a few are

within a single amino acid transition of one another. Finally, the genetic cen-

troids of the clusters were well separated, and those that did overlap, only did

so on the periphery of their distributions. This would imply that, should a neu-

tral network analyzed here contain sequences from different clusters, separating

the sequences belonging to different clusters should only involve the removal of

a small number of edges and would not substantially impact on the observed

topological patterns of the networks.

Confirming that the networks derived in this section are indeed neutral is an

important area of future work.

7.1 Methods

In order to arrive at an estimation of the relative frequency of the various geno-

types within the population, the methodology of Łuksza & Lässig (2014) was fol-

lowed almost exactly. The second step was to infer the neutral networks from

these genotypes.

The data set of this work is 12 352 nucleotide sequences of human H3N2

influenza haemagglutinin and 16 352 nucleotide sequences of human H1N1 in-

fluenza haemagglutinin obtained from the NCBI database (Bao et al., 2008). These

sequences were all observed between 2007 and 2016 inclusive. We chose to only

include sequences which were complete or near complete, missing only their

start and stop codons. This data set has known biases. See Łuksza & Lässig (2014)

for a discussion of the nature and effects of said biases.

The data set was binned into seasons of six months, representing either the

northern or southern hemisphere winter. The northern hemisphere winter was

taken to last from October of a given year through to March of the subsequent
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year, inclusive. The southern hemisphere winter was taken to last from April

of a given year through to September of that same year, inclusive. For the sake

of brevity, the time period stretching from April through September of a given

year y will simply be referred to as y . Similarly, the time period stretching from

October of year y through March of year y +1 will be referred to as y − y +1 (eg:

2009-2010). Sequences without an associated date value, accurate to within a

month, were excluded from the analysis.

After binning, the sequences within each bin were aligned using the MUS-

CLE program (Edgar, 2004), with the default parameter settings. Where there

were gaps, nucleotides at that position, of sequences in that bin, were excluded

from further analysis.

The multiplicity mi of each unique sequence within a season was then cal-

culated, where mi is simply the number of times that sequence occurs within

the data set. The relative frequency of the sequence is then

(7.1) xi = mi

M

where M is the sum of all sequence frequencies within the season.

The neutral networks for a given season were then constructed by assign-

ing each unique sequence a node and connecting nodes with an edge if their

associated sequences differed by a single nucleotide. The network was then di-

vided into its connected components, and each connected component is sub-

sequently referred to as a separate neutral network (see § 2.5 for an explanation

of this confusing practice). Neutral networks with fewer than 50 nodes were ex-

cluded from this analysis as it was deemed that they would not provide suffi-

ciently interesting population distributions.

All subsequent analysis of the graphs was performed using the Python pack-

age igraph (Csardi & Nepusz, 2006). Specifically, igraph was used to find the

principal eigenvalue and associated eigenvector of the adjacency matrix of the

networks. That is, it found the predicted population average robustness and

population distribution (§ 2.3). The calculation of the eigenvalues and eigen-

vectors of the adjacency matrices of graphs in igraph is performed using the

FORTRAN 77 package ARPACK (Lehoucq et al., 1998). ARPACK implements the im-

plicitly restarted Arnoldi method (Lehoucq & Sorensen, 1996) to find the eigen-

values and eigenvectors of matrices. igraph’s default parameters for ARPACK

were used.
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7.2 Results

Diagrams of the neutral networks were constructed using the Fruchterman-Reingold

force directed layout (Fruchterman & Reingold, 1991) and are displayed in fig-

ures 7.1 to 7.8. Both the population distribution predicted by the principal eigen-

vector and the actual population distribution estimated by sequence frequen-

cies are visualised on these networks. For each network, two diagrams are dis-

played, both using the same layout. In one diagram the size of a given node

is proportional to the predicted population concentration on that node. In the

other, the node size is proportional to the estimated population concentration.

Furthermore, the predicted population distribution is visualised with a colour

gradient, where nodes with a higher predicted population distribution are more

red and nodes with a lower predicted population distribution are more blue.

Note that for both diagrams of a given network the node colouring is determined

by the predicted population distribution. This was done to make the differences

between the predicted and estimated population distribution easier to spot. For

instance, in diagrams where the node size is proportional to the estimated ac-

tual population distribution, large blue nodes and small red nodes are signifiers

of differences between the distributions. Various properties of these networks

and the population distributions over them are shown in tables 7.1 and 7.2.

The sizes of the neutral networks varies dramatically. The majority are near

the lower bound for inclusion of N = 50 nodes. However, the largest neutral

network, the only one from the H1N1 2009 seasons, contained N = 1071 nodes.

Looking at the figures, the topology of the neutral networks bears great sim-

ilarity to the genotype network of Wagner (2014). They have a highly heteroge-

neous degree distribution which is skewed towards low degree nodes. That is,

most of the nodes have low degree, whereas there are a few nodes with very high

degree. Moreover, the networks consist of multiple loosely connected stars. The

stars are formed by hub nodes which contain many ‘satellite’ nodes which only

connect to the hub. These stars are then connected to one another by far fewer

edges than are present within a given star. This gives the networks a modular

structure.

This modular structure and degree heterogeneity makes these networks per-

fect candidates for localization behaviour. Indeed, we find that the principal

eigenvector is not evenly distributed over the nodes of the networks. The pro-

portion of the population found on the highest degree node and its neighbours
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(Ph in tables 7.1 and 7.2) varies between 0.56 and 0.94. In 12 of the 18 networks

this figure is over 0.8. Moreover, the relative inverse participation ratio (Yr(Λ)

in tables 7.1 and 7.2, see § 4.2), is substantially larger than one in all networks,

ranging between 7 and 260. However, in most cases, Yr(Λ) is lower than the

threshold for localisation of 30 set in § 4.2. These networks are, therefore, in

an intermediate state between localisation and full delocalisation. This hetero-

geneity is clear in figures 7.1 to 7.8, where we see a very large population concen-

tration on some of the high degree nodes of the networks. In many cases, we also

find a substantial proportion of the population on the immediate neighbours of

said high degree nodes (see, for instance, figures 7.3b, 7.4a, 7.4b, 7.6a, 7.6b, 7.7b,

7.7c and 7.8a)

In most of the studied networks, the population does not seem to have lo-

calized onto a single star (hub), but is concentrated on two or more such hubs.

This then begs the question of whether the mode of localization seen here is lo-

calization onto the maximum K-core (§ 4.1)(Pastor-Satorras & Castellano, 2016).

In order to investigate this question, we calculated PKM , the proportion of the

population residing on the maximum K-core for each network. These values are

displayed in tables 7.1 and 7.2. We find that, in every case, less than 40% of the

population is located on the maximum K-core. We, therefore, conclude that lo-

calization on the maximum K-core is not a dominant effect in these networks.

We hypothesize that the maximum K-core might contain the centers of the

stars in these networks. This opens up the possibility that the population could

be localizing onto the centers of these stars along with their satellite nodes. In

order to investigate this possibility, we calculated PK nM , the proportion of the

population of the population located on nodes in the maximum K-core and on

the neighbours of nodes in the maximum K-core. In some instances (such as the

largest neutral network of the 2011-2012 H1N1 season and both networks of the

2011-2012 H3N2 season) this group of nodes contained the majority of nodes

within the network. However, in other instances (such as 2009 H1N1) this group

contained a minority of nodes, yet over 90% of the population.

By examining the side-by-side figures showing the predicted vs. estimated

distribution of the population over the networks, it would appear that the prin-

cipal eigenvector approximates the population distribution fairly accurately. In

order to arrive at a quantitative measure of the similarity of the two distribu-

tions, we calculated the cosine similarity (Singhal, 2001) between the principal

eigenvector and the vector of the estimated population distribution. The cosine
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Season Figure Ph Yr(Λ) N PKM NKM PK nM NK nM SC

2009 7.1 0.9 259.96 1071 0.08 12 0.92 352 0.71
2010-2011 7.3a 0.91 15.18 62 0.26 9 0.95 45 0.85
2011-2012 7.3b 0.92 14.39 59 0.23 6 0.97 49 0.83
2012-2013 7.3c 0.61 11.32 65 0.33 9 0.79 27 0.85
2013-2014 7.4a 0.66 12.92 73 1 73 1 73 0.88
2013-2014 7.4b 0.85 17.47 73 0.2 4 0.88 33 0.83
2013-2014 7.4c 0.56 7.78 51 0.25 4 0.9 33 0.84
2015-2016 7.2 0.84 116.31 484 0.28 58 0.94 282 0.52

Table 7.1: Various properties of the neutral networks of H1N1 influenza haemag-
glutinin. Here, Ph is the predicted proportion of the population found on the
highest degree node and its neighbours. That is, the sum of the components
of the principal eigenvector corresponding to the highest degree node and its
neighbours. Yr(Λ) is the relative inverse participation ratio (see § 4.2). N is the
number of nodes in the network. PKM is the proportion of the population resid-
ing on the maximum K-core of the network (§ 4.1) (Pastor-Satorras & Castellano,
2016). NKM is the number of nodes in the maximum K-core of the network.
PK nM is the proportion of the population residing on the maximum K-core and
neighbours of the maximum K-core. NK nM is the sum of the number of nodes
in the maximum K-core and the number of neighbours of nodes in the max-
imum K-core. SC is the cosine similarity between the population distribution
predicted by the principal eigenvector and the observed population distribution
over the neutral network.

similarity views the vectors as vectors in some space and calculates the cosine

of the angle between the two vectors. As such, it ranges between 1, for identi-

cal vectors, down to -1. The measured similarity values are shown in tables 7.1

and 7.2 under the column SC . They confirm that the predicted and estimated

distributions are indeed similar. The lowest value of SC was 0.5. In 12 of the 18

networks it was greater than or equal to 0.8.

In figures 7.1 through 7.8, the predicted population distribution assigns less

of the population to the centers of the stars and more to the satellite nodes than

the estimated population distribution. This could possibly be explained by the

fact that the data set is known to contain a bias against low frequency variants

(Poon et al., 2016).
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(a) Predicted population distribution.

(b) Actual population distribution.

Figure 7.1: Largest neutral network of H1N1 influenza during the 2009 season.
The size of a each node is proportional to the fraction of the population found on
it. Moreover, nodes with a higher predicted population concentration are more
red and nodes with a lower predicted concentration are more blue.
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(a) Predicted population distribution.

(b) Actual population distribution.

Figure 7.2: Largest neutral network of H1N1 influenza during the 2015-2016 sea-
son. The size of a each node is proportional to the fraction of the population
found on it. Moreover, nodes with a higher predicted population concentration
are more red and nodes with a lower predicted concentration are more blue.
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(a) Largest network of the 2010 - 2011 season.

(b) Largest network of the 2011 - 2012 season.

(c) Largest network of the 2012 - 2013 season.

Figure 7.3: Neutral networks of H1N1 influenza during various seasons. Dia-
grams in the left-hand column show the population distribution as predicted
by the principal eigenvector, whereas those on the right show the actual popu-
lation distribution. The size of each node is proportional to the fraction of the
population found on it. Moreover, nodes with a higher predicted population
concentration are more red and nodes with a lower predicted concentration are
more blue.
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(a) Largest network of the 2013 - 2014 season.

(b) Second largest network of the 2013 - 2014 season.

(c) Third largest network of the 2013 - 2014 season.

Figure 7.4: Neutral networks of H1N1 influenza during various seasons. Dia-
grams in the left-hand column show the population distribution as predicted
by the principal eigenvector, whereas those on the right show the actual popu-
lation distribution. The size of each node is proportional to the fraction of the
population found on it. Moreover, nodes with a higher predicted population
concentration are more red and nodes with a lower predicted concentration are
more blue.
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(a) Predicted population distribution.

(b) Actual population distribution.

Figure 7.5: Largest mutational network of H3N2 influenza during the 2014-2015
season. The size of a each node is proportional to the fraction of the population
found on it. Moreover, nodes with a higher predicted population concentration
are more red and nodes with a lower predicted concentration are more blue.
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(a) Largest network of the 2007-2008 season.

(b) Largest network of the 2009 season.

(c) Largest network of the 2010 - 2011 season.

Figure 7.6: Neutral networks of H3N2 influenza during various seasons. Dia-
grams in the left-hand column show the population distribution as predicted
by the principal eigenvector, whereas those on the right show the actual popu-
lation distribution. The size of each node is proportional to the fraction of the
population found on it. Moreover, nodes with a higher predicted population
concentration are more red and nodes with a lower predicted concentration are
more blue.
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(a) Second largest network of the 2010-2011 season.

(b) Largest network of the 2012-2013 season.

(c) Second largest network of the 2012 - 2013 season.

Figure 7.7: Neutral networks of H3N2 influenza during various seasons. Dia-
grams in the left-hand column show the population distribution as predicted
by the principal eigenvector, whereas those on the right show the actual popu-
lation distribution. The size of each node is proportional to the fraction of the
population found on it. Moreover, nodes with a higher predicted population
concentration are more red and nodes with a lower predicted concentration are
more blue.
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(a) Third largest network of the 2012-2013 season.

(b) Second largest network of the 2014-2015 season.

(c) Third largest network of the 2014 - 2015 season.

Figure 7.8: Neutral networks of H3N2 influenza during various seasons. Dia-
grams in the left-hand column show the population distribution as predicted
by the principal eigenvector, whereas those on the right show the actual popu-
lation distribution. The size of each node is proportional to the fraction of the
population found on it. Moreover, nodes with a higher predicted population
concentration are more red and nodes with a lower predicted concentration are
more blue.
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Season Figure Ph Yr(Λ) N PKM NKM PK nM NK nM SC

2007-2008 7.6a 0.91 14.61 61 0.25 7 0.92 39 0.77
2009 7.6b 0.84 15.32 66 0.28 8 0.92 38 0.56
2010-2011 7.6c 0.58 11.29 78 0.34 12 0.93 57 0.84
2010-2011 7.7a 0.87 13 54 0.22 4 0.94 42 0.62
2012-2013 7.7b 0.75 15.9 76 0.22 4 0.95 50 0.85
2012-2013 7.7c 0.94 14.97 60 0.18 4 0.95 43 0.80
2012-2013 7.8a 0.88 13.58 56 0.21 4 0.9 30 0.82
2014-2015 7.5 0.66 53.12 300 0.11 4 0.68 72 0.82
2014-2015 7.8b 0.8 32.22 138 0.05 18 0.16 62 0.68
2014-2015 7.8c 0.83 18.31 84 0.19 4 0.85 42 0.86

Table 7.2: Various properties of the neutral networks of H3N2 influenza haemag-
glutinin. Here, Ph is the predicted proportion of the population found on the
highest degree node and its neighbours. That is, the sum of the components
of the principal eigenvector corresponding to the highest degree node and its
neighbours. Yr(Λ) is the relative inverse participation ratio (see § 4.2). N is the
number of nodes in the network. PKM is the proportion of the population resid-
ing on the maximum K-core of the network (§ 4.1) (Pastor-Satorras & Castellano,
2016). NKM is the number of nodes in the maximum K-core of the network.
PK nM is the proportion of the population residing on the maximum K-core and
neighbours of the maximum K-core. NK nM is the sum of the number of nodes
in the maximum K-core and the number of neighbours of nodes in the max-
imum K-core. SC is the cosine similarity between the population distribution
predicted by the principal eigenvector and the observed population distribution
over the neutral network.
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DISCUSSION AND FUTURE WORK

In this work, we set out to incorporate and build upon recent results concerning

the behaviour of the principal eigenvectors, and associated eigenvalues, of the

adjacency matrices of networks in the context of the study of the dynamics of

polymorphic populations evolving asexually on neutral networks.

This analysis was divided into two parts, one studying the population dis-

tribution on networks with a homogeneous structure and the other focusing

on networks with a heterogeneous structure. This separation was made due to

the fact that networks with a homogeneous structure are amenable to study by

mean-field analysis, whereas heterogeneous networks are not. Moreover, this

choice was justified by the behavioural differences found to exist between these

cases. Populations evolving on neutral networks with homogeneous structure

were found to spread out over the network. With increasing degree variance

and assortativity, the population tends to concentrate on the higher degree ver-

tices of the network (chapter 3). However, this concentration is mild, and can

be approximated as being proportional to the degree of the vertex and its square

(eq. (3.6)). This is contrasted with the heterogeneous networks studied in chap-

ter 4 and chapter 7. Under certain conditions, almost the entire population can

become concentrated on a very small region of the network.

Much of the discussion surrounding neutral evolution has functioned on the

assumption that there is only a single mode of polymorphic neutral evolution.

In this mode of evolution, the population spreads out over the network, gaining
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variation and exploring sequence space (Lauring & Andino, 2010). The popu-

lation will, further, “evolve toward regions denser in neutral genotypes”(Aguirre

et al., 2009). This is a good summary of what we found to be the case on net-

works with a homogeneous topology. However, the behaviour on networks with

a heterogeneous structure can be substantially different. In the presence of cer-

tain structural heterogeneities, the principal eigenvector of the adjacency ma-

trix of the network localises. This localisation of the principal eigenvector leads

to an exploration catastrophe, as described by Ancel & Fontana (2000), whereby

the population becomes concentrated on a small region of the network. It is

interesting to note that the localisation transition described here is dependent

on the topology of the network and is independent of the mutation rate. The

independence from mutation rate is due to the fact that the equilibrium distri-

bution of the population over a neutral network is independent of mutation rate

(Van Nimwegen et al., 1999). On the other hand, the localisation transition de-

scribed by Ancel & Fontana (2000), along with other localisation-delocalisation

transitions studied in quasispecies theory (Tejero et al., 2011; Summers & Litwin,

2006), are dependent on the mutation rate and are studied in the context of a

fixed fitness landscape. Nevertheless, such an error catastrophe has important

ramifications for the study of populations evolving at high mutation rates.

Ancel & Fontana (2000) refer to the exploration catastrophe as a “halting of

the evolutionary process”. This refers to the fact that the population is not ex-

ploring genotype space, and, as such, the chances of it finding a phenotype with

improved fitness are greatly reduced. The inability of the population to find such

a phenotype will result in it being trapped in its current position in the fitness

landscape. Ancel & Fontana (2000) further describe the phenomenon of neu-

tral confinement, whereby the population evolves a very high level of robustness

and is, therefore, exposed to even lower levels of phenotypic variation. They

find that this phenomenon occurs in their model of the evolution of RNA with

plastogenetic congruence. Neutral confinement may, or may not, occur along

with the exploration catastrophes described in this thesis. A population which

is localised within a network, due to evolution, will have a higher average ro-

bustness than a population spread uniformly over it. This is due to the fact that

sub-populations located on the regions of localisation had to out-compete sub-

populations located on other areas of the networks. Therefore, localisation does

entail an increase in mutational robustness and a decrease in diversity avail-

able to the phenotype. However, the proportion of mutations which are non-
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neutral which are available to the population is dependent on the total number

of mutations available to the genotypes. This is determined by the length of

the genetic code, a parameter exogenous to most of the network models stud-

ied in this thesis. There are, however, exceptions to this. The neutral networks

of influenza analysed in chapter 7 are defined on sequences of a fixed length.

These sequences contained over 1500 nucleotides, which implies that they each

had over 4500 mutational neighbours. The largest network studied (2009 H1N1)

contained 1071 vertices (table 7.1). This means that, in all instances, the ma-

jority of mutational neighbours of the populations evolving on these networks

would be non-neutral. Therefore, neutral confinement would not occur on these

networks. The neutral networks defined within Hamming space studied in § 4.7

and § 4.8 do have an associated sequence length. If they are viewed as being

defined on the entire string of the genetic code, then we can question whether

neutral confinement occurs. The poorly connected subgraphs of the hypercube

explored in § 4.7 were all of low average degree, and so we do not expect to ob-

serve neutral confinement. On the other hand, we would expect the populations

evolving on the Hamming balls connected to random graphs (§ 4.7) to concen-

trate towards the center of the Hamming balls. Indeed, this was demonstrated

to be the case by Bornberg-Bauer & Chan (1999), who used Hamming balls as an

abstraction for the structure of protein folding neutral networks (see also, § 6.2).

As the central nodes in Hamming balls only have neutral neighbours, localisa-

tion onto them is a candidate for neutral confinement. Howeover, as demon-

strated by Bornberg-Bauer & Chan (1999), a substantial proportion of the pop-

ulation can be located on the peripheral vertices of the Hamming ball. These

vertices contain only a single neutral neighbour. The possibility of neutral con-

finement on Hamming balls is, therefore, a topic for further research.

The delocalized case has more in common with the traditional intuition. A

principal difference, however, is the level to which concentration on regions of

better connected genotypes occurs. Firstly, such a region needs to exist. This

requirement will be met in networks with degree assortativity, however, disas-

sortative mixing will result in genotypes with high robustness mutating to those

with low robustness, thwarting evolution’s attempts at settling on robust nodes.

Specifically, by examining equations (3.4), (3.6) and (3.11) we see that, in unas-

sortative networks, the proportion of the population on a given node scales with

its degree. This implies that, on relatively homogeneous networks, there will

be little difference in the population concentration on various nodes. Further-
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more, as shown in equation (3.11), disassortative mixing decreases the number

of individuals occupying a node in proportion to both the square and cube of

its degree. Although we do expect to see a certain degree of concentration of

the population in more robust regions of the neutral network in the case that

the network exhibits assortative mixing, the severity of this concentration will

be relatively mild. Given that, for networks of reasonably high average degree, λ̂

is substantially larger than r , the latter terms in equation (3.11) will only play a

significant role when ki is much larger than λ̂.

We further propose that it is fruitful to think of the delocalized regime of neu-

tral evolution more in terms of a biased sampling process of the genotypes on

the network, resulting from mutational biases, as opposed to a population mov-

ing between regions of the network. From equations (3.5), (3.7) and (3.12) we

can see that, in the absence of assortativity, the population’s average robustness

is approximated by λ̂. This is exactly the average robustness which we would ex-

pect from performing a random sampling of all possible mutations on the net-

work, as implied by the friendship paradox (Feld, 1991). Assortative and disas-

sorative mixing by degree will increase or decrease the population’s average ro-

bustness above or below this level. Assortativity represents a further mutational

bias towards higher or lower degree nodes, dependent on the degree of the node

from which the mutation originates.

These two modes of neutral evolution have important consequences for ar-

guments relating mutational robustness and evolvability. These arguments are

predicated on the fact that robust genotypes form larger neutral networks (Wag-

ner, 2011). This then allows for the population to accumulate more cryptic vari-

ation as it spreads over the network (Masel & Trotter, 2010), allowing it to bet-

ter adapt to changes in its environment. Moreover, it creates more “stepping

off points” for the population, allowing it to access more phenotypic variation

(Wagner, 2008). This line of argumentation hinges on mutational robustness in-

creasing the area of genotype space over which a population is dispersed. Masel

& Trotter (2010) state this explicitly, saying that “genetic robustness only pro-

motes evolvability when it is associated with increased spread of a population

across genotype space ”. Experiments examining the relationship between ro-

bustness and evolvability have yielded contradictory results. McBride et al. (2008)

found that robust populations ofφ6 virus were able to evolve a greater resistance

to heat shock than brittle populations. On the contrary, Cuevas et al. (2009)

found that brittle populations of Vesicular stomatitis virus were better able to
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adapt upon introduction to a new cell type.

Stern et al. (2014) proposed a mechanism for resolving these conflicting re-

sults. They developed a model for virus evolution whereby the fitness effects

of alleles could completely change during an environment shift. They found

that the effect of robustness on evolvability was dependent on the fitness of the

neutral genotypes upon environment shift. A change in the environment which

resulted in the population’s neutral variation being deleterious resulted in low

adaptability, whereas the converse was true if the neutral variation was advan-

tageous.

The results described in this thesis present a plausible, alternate, explanation

for these conflicting experimental results. That is, robustness that occurs as a

result of an exploration catastrophe should hinder evolvability. On the other

hand, robustness that is due to a population evolving on a homogeneous neutral

network, with high average degree, which involves only a slight concentration of

the population at higher-degree vertices, should promote evolvability.

By demonstrating that eigenvectors can localise in poorly connected sub-

graphs of Hamming space and onto Hamming balls in random subgraphs of

Hamming space, this thesis makes a small contribution to the study of eigen-

vector localisation on networks. The majority of work on the localisation of the

principal eigenvector has focused on localisation on hub vertices (Martin et al.,

2014; Chung et al., 2003; Goltsev et al., 2012). That is, vertices whose degree is

substantially higher than the average degree of the network (see § 4.1). Pastor-

Satorras & Castellano (2016) demonstrated that an alternative mode of locali-

sation does exist, by showing that the eigenvector can localise on a network’s

maximum K-core. They further suggested that it was possible that there might

be other modes of localisation. We have demonstrated two such modes here.

Discussion of these modes of localisation suggests the first shortcomming

of this thesis. Although the topology of a Hamming ball connected to a ran-

dom graph (§ 4.7) is well defined, the phenomenon of localisation due to weak

connectivity discussed in § 4.8 is ill-defined. There are many metrics for con-

nectivity (Costa et al., 2007). However, after a limited search, we were unable

to find one which would be able to capture the limited connectivity of both the

subgraphs of Hamming space and the example given of Erdős-Renyi networks

connected by a single edge. For instance, the connected Erdős-Renyi networks

are highly modular (Newman, 2006), however, the subgraphs of Hamming space

are less so. Finding a metric for connectivity which describes this mode of local-
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isation and further exploring instances in which it may occur is an avenue of

future research. It is also possible that these two instances represent different

modes of localisation.

A further flaw in this work is that it deals with the heterogeneous and ho-

mogeneous network cases, and the associated diffusion and exploration catas-

trophe cases, as being well-separated, distinct instances. In one instance this

was observed to be the case (fig. 4.5). However, in all other instances, the transi-

tion was somewhat gradual. Moreover, most of the neutral networks of influenza

haemagglutinin studied here had a relative inverse participation ratio below the

threshold for localisation used in this work. However, for all of these networks,

this value was well above one, indicating that the population was not evenly dis-

tributed over the network. In this transition phase, the population distribution

is probably not well characterised by the expressions derived in § 3.2, although

this is a matter for further investigation. Characterising the population in these

transition phases would likely be challenging. Furthermore, as Pastor-Satorras

& Castellano (2016) point out, there does not exist a non-arbitrary definition for

localisation of the eigenvector in single network instances. Finding such a defi-

nition is a further direction of future work.

Probably the largest shortcomming of this thesis is that much of the analy-

sis of localisation in network models was performed on models which are not

embedded in Hamming space. This work is still valuable, as previous work on

similar models reported on the weight of the eigenvector confined to a given

region, whereas, for evolution, we are interested in the size of the eigenvector

components, normalised by the sum of the vector componenets (l1 norm), in a

given region (see chapter 4). Moreover, we specifically investigated some net-

work models which were motivated by observed variation networks in nature.

Studying networks embedded in Hamming space is challenging. For a start, net-

work libraries for programming languages do not have functionality for gener-

ating random instances of these networks. Moreover, the author is unaware of

an algorithm which would generate random instances of networks embedded in

Hamming space with a tunable level of degree assortativity. Although we were

able to confirm that the approximations derived in chapter 4 are fairly accurate

for networks embedded in Hamming space, in the case that they had a high aver-

age degree and were unassortative, verifying that they apply to networks which

exhibit degree assortativity and disassortativity is a topic for future study. This

will require the development of an algorithm capable of producing such net-
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works. Moreover, the greatest challenge found when studying these networks

was that, even for reasonably sized alphabets and strings, the size of the gener-

ated networks blew up very rapidly. This was especially true for the generation

of Hamming balls. Not only did it render the generation of interpretable net-

work diagrams impossible, but this size blow-up caused the computer on which

the analysis was running to run out of RAM and resulted in the calculation of

the principal eigenvectors becoming infeasible. Finding methods for analising

networks embedded in Hamming space, across a broad range of parameters, is

a pertinent topic for further study.

The work done here on the neutral networks of influenza haemagglutinin

(chapter 7) suffered from two drawbacks. The first being that, although it is likely

that the networks analysed contained genotypes of equal fitness, this is not guar-

anteed. Secondly, the sequencing techniques on which the data set was based

under sample low frequency variants. Acevedo et al. (2014) recently published a

study where they used new sequencing techniques, which do not have such an

under sampling bias, to study the poliovirus mutational landscape. Moreover,

they explicitly calculated the fitness values of mutations. Much of the data col-

lected in this work is available online. Using this data set to investigate the neu-

tral networks of this virus represents an exciting possible direction of research.

Given that it is suspected that much of evolution occurs on neutral networks

(Nei, 2005) along with the importance of mutational robustness to the survival

of organisms and its relationship with evolvability, understanding the impact of

the topology of neutral networks on the dynamics of neutral evolution and the

resulting robustness of organisms is of great importance. This work has provided

insight into these issues in the case of polymorphic populations: large popula-

tions evolving at high mutation rate. The directed, neutral, evolution of bio-

molecules (Currin et al., 2015; Jäckel & Hilvert, 2010) along with viruses over-

coming immunity through neutral evolution (van Nimwegen, 2006) fall within

this category. These results have potential applicability to these problems. For

instance, the neutral evolution of large libraries of molecules (Kaltenbach & Tokuriki,

2014) will be greatly aided by delocalization, whereas a virus’s attempt to escape

immunity might be thwarted if its population localizes on a hub.
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CONCLUSION

This thesis investigated the manner in which neutral network topology influ-

ences the resulting population distribution and robustness during neutral evo-

lution at high mutation rates in large populations without recombination. In

such cases, the population distribution is given by the principal eigenvector of

the adjacency matrix of the neutral network and, similarly, the average muta-

tional robustness of the individuals in the population is given by the principal

eigenvalue (Van Nimwegen et al., 1999). Hence, we utilized, and built upon, re-

cent results concerning the behaviour of these values from studies concerning

the spread of epidemics on networks(Goltsev et al., 2012) as well as more general

work (Martin et al., 2014).

It was found that, on homogeneous neutral networks, the population’s be-

haviour could be described in terms of mutational biases. For unassortative

neutral networks, it was found that the average mutational robustness was equal

to the sampling bias provided by the friendship paradox (Feld, 1991). Assorta-

tive and disassortative mixing by degree raised the robustness above or below

this value, respectively. Furthermore, in the process of demonstrating this, we

derived a new approximation for the principal eigenvalue of a network in terms

of its assortativity and the moments of its degree distribution.

Conversely, for neutral networks with certain structural heterogeneities, it

was found that the population could undergo an exploration catastrophe, whereby

it becomes localised on a small number of nodes in the network. These results
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are particularly relevant to various arguments concerning the relationship be-

tween robustness and evolvability (Masel & Trotter, 2010; Wagner, 2008), which

make the assumption that populations evolving at high mutation rate disperse

over their neutral networks.

These results are relevant to the directed evolution of bio-molecules (Currin

et al., 2015; Jäckel & Hilvert, 2010), where they can be used to evolve more robust

molecules as well as facilitate the evolution of greater variety. Moreover, they

can also further our understanding of the factors that allow viruses to escape

immunity along neutral networks (van Nimwegen, 2006).

Computations were performed using facilities provided by the University of

Cape Town’s ICTS High Performance Computing team: http://hpc.uct.ac.za
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