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Abstract

Capturing the geometry of a large heritage site via laser scanning can produce thou-
sands of high resolution range scans. These must be cleaned to remove unwanted
artefacts. We identified three areas that can be improved upon in order to accelerate
the cleaning process. Firstly the speed at which the a user can navigate to an area of
interest has a direct impact on task duration. Secondly, design constraints in gener-
alised point cloud editing software result in inefficient abstraction of layers that may
extend a task duration due to memory pressure. Finally, existing semi-automated
segmentation tools have difficulty targeting the diverse set of segmentation targets
in heritage scans. We present a point cloud cleaning framework that attempts to
improve each of these areas. First, we present a novel layering technique aimed at
segmentation, rather than generic point cloud editing. This technique represents
‘layers’ of related points in a way that greatly reduces memory consumption and
provides efficient set operations between layers. These set operations (union, differ-
ence, intersection) allow the creation of new layers which aid in the segmentation
task. Next, we introduce roll-corrected 3D camera navigation that allows a user to
look around freely while reducing disorientation. A user study shows that this cam-
era mode significantly reduces a user’s navigation time (29.8% to 57.8%) between
locations in a large point cloud thus reducing the overhead between point selection
operations. Finally, we show how Random Forests can be trained interactively, per
scan, to assist users in a point cloud cleaning task. We use a set of features selected
for their discriminative power on a set of challenging heritage scans. Interactivity is
achieved by down-sampling training data on the fly. A simple map data structure
allows us to propagate labels in the down-sampled data back to the input point set.
We show that training and classification on down-sampled point clouds can be per-
formed in under 10 seconds with little effect on accuracy. A user study shows that a
user’s total segmentation time decreases between 8.9% and 20.4% when our Random
Forest classifier is used. Although this initial study did not indicate a significant
difference in overall task performance when compared to manual segmentation, per-
formance improvement is likely with multi-resolution features or the use of colour
range images, which are now commonplace.



Chapter 1

Introduction

Laser range scanning enables detailed geometric record keeping of cultural heritage sites. Digital
3D records can help guide restorative maintenance and/or reconstruction efforts of damaged or
destroyed heritage. They also allow physically accurate representations of noteworthy places to
be exhibited on-line.

To create a 3D model of a heritage site, raw laser range scans need to be processed along with
photographs in a 3D reconstruction pipeline. The reconstruction process follows a series of steps
that require skilled operators with specialised software. Point cloud cleaning is one of the most
labour intensive and time consuming parts of the process. For more complex environments, it
can take an experienced operator from 30 to 120 minutes to clean a single scan. The speed at
which the cleaning process proceeds is highly dependent on well designed software. Cleaning
is a subjective task that involves manually removing unwanted points from laser scan data
to ensure that the final reconstructed model is free of unwanted artifacts. Examples of such
artifacts include tourists present during data capture or cars parked nearby. Unfortunately, for
heritage scans, it is hard to quantify in advance what kinds of unwanted points will be present,
which makes the automation of such a task a daunting prospect.

In this work we identify three problem areas in existing point cleaning software. Firstly,
a cleaning work flow often require that intermediate results be saved in layers. Creating a
large number of layers in existing systems can exert memory pressure, leading to sluggish
performance and lack of interactivity. Secondly, viewpoint disorientation or restrictions whilst
moving between areas of interest in a fully 3D workspace can slow down the cleaning process.
Lastly, semi-automated segmentation algorithms are usually designed to isolate a small number
of specific targets object types. Due to the unpredictable nature of unwanted object points in
heritage scans, these algorithms are often inappropriate or they do not achieve a useful level of
accuracy.

1.1 Aims

The aim of this research is to accelerate the point cloud cleaning process. In line with this aim,
we have three objectives:

1



• Reduce the impact of inefficient layering on system resources.

• Reduce the navigation overhead of the 3D workspace.

• Speed up segmentation by introducing a segmentation tool that can learn object classes
and segment them on the fly.

These aims are addressed through a carefully designed software framework, as explained
below.

1.2 The CloudClean Framework

We implement our proposed solutions in the context of a new open source point cloud cleaning
framework we call CloudClean. The main goal of the system is to facilitate the implementation
and design of new semi-automated cleaning tools. In the design of our system, we address our
first two objectives. The CloudClean framework addresses the objectives listed above as follow:

Figure 1.1: The process of using our semi-automated segmentation tool, involves creating an
initial labelling, running the algorithm, and finally touching up the result

Firstly, a novel layering technique is introduced that support a large number of layers while
consuming a near constant amount of memory. It also supports extremely efficient set opera-
tions. Secondly, a new roll-corrected first person camera is introduced that maximises rotational
freedom while avoiding disorientating states. We show, via a user experiment, how this camera
mode significantly reduces navigation overhead. Lastly, we create a semi-automated segmenta-
tion tool that harnesses a Random Forest classifier to interactively learn new object classes from
examples, and assists the user in segmenting the remainder of a scene (see Figure 1.1). Prelim-
inary findings from a user experiment show, without significance, that this method reduces the
overall cleaning time.

1.3 Contributions

This principal contributions of this thesis are:

1. a new open source, cross-platform, point cloud cleaning framework designed for creating
and evaluating new semi-automated segmentation methods. This framework is the first

2



open source point cloud software that supports and cleaning iterative work flow with undo
capabilities.

2. a novel point selection layering technique that can support a large number of layers with
a near constant amount of memory.

3. a roll-corrected first person camera that maximises rotational freedom while at the same
time avoiding confusing camera orientation states.

4. a semi-automated segmentation technique that can learn new object classes and segment
them on the fly.

1.4 Layout

The remainder of this thesis is laid out as follows. Chapter 2 provides an overview of the
heritage 3D reconstruction pipeline and highlights inefficiencies in the cleaning process. Then,
in Chapter 3 we introduce, CloudClean, a point cloud segmentation framework. In designing
the system we address our first two objectives. An efficient layering scheme that consume near
constant memory is introduced, and we show how a roll-corrected first person camera speeds up
navigation by avoiding disorientating states. In Chapter 5 we develop an interactive Random
Forest classification tool can be used to speed up segmentation and conclude with suggestions
for future work in Chapter 6.
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Chapter 2

Background

Figure 2.1: Taller Buddha of Bamiyan before and after destruction1

In 2001 the Buddhas of Bamiyan in Afghanistan (see Figure 2.1) were destroyed [62] by the
Taliban government as the Buddhist symbols were seen as idols. In just a few weeks, centuries
of history were destroyed. Heritage sites in many parts of the world face similar threats or are
at risk of deterioration. Laser range scanners allow us to document the spatial characteristics
of cultural heritage sites in more detail than ever before. Such digital 3D records can help guide
restorative maintenance and/or reconstruction efforts. It also allows us to preserve a physically
accurate record of these places and expose more people to heritage sites on the web.

1Source: UNESCO/A Lezine
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2.1 3D scanning

3D scanners are optical devices that capture the shape, position and appearance of real world
objects by recording the surface coordinates of objects. Many types 3D scanners are used in
heritage preservation, each with specific strengths and weaknesses. 3D scanning technologies
can be broadly classified into two categories, namely triangulation and time of flight scanners.

2.1.1 Triangulation scanners

Figure 2.2: Laser triangulation scanner

Figure 2.3: Structured light scanner

Triangulation scanners, as the name suggests, uses trigonometric triangulation to record
the position of surface points. Triangulation scanners use either laser or structured light [9].
The laser version (Figure 2.2) emit laser pulses that are reflected by an object and recorded
by a sensor at a known position relative to the pulse origin. The sensor directly measures the
angle of the reflected laser beam, which is used to compute the position of a point on an object
surface. Structured light scanners (Figure 2.3) emit a series of linear patterns. The reflected
light patterns are captured by a camera sensor. Perspective distortions in the reflected light
patterns are used to compute surface coordinates.
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Figure 2.4: Triangulation

The position of a surface coordinate relative to the scanner can be computed using the
triangle in Figure 2.4. Given the distance between the light source and sensor (c), the outgoing
angle of emitted light (A), and incoming angle of reflected light (B), the distance to the object
is given by b = c sin(B)

sin(π−A−B) .

2.1.2 Time of flight scanners (TOF)

Figure 2.5: Time of flight scanner

Time of flight (TOF) scanners emit laser pulses similar to triangulation laser scanners.
Unlike triangulation scanners, it uses the time it takes for a pulse to reflect off an object and
return to measure position (see Figure 2.5). Given the round trip time of the pulse (t), the
distance (d) is given by d = ct/2, where c is the speed of light. The accuracy of the distance
calculation depends on how accurately time can be measured [18].

Phase shift t
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m
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Transmitted signal
Received signal

Figure 2.6: Phase shift in returned signal
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Type Range Precision Speed Portability
Structured light <1m 10 micrometer Seconds High
Laser triangulation <1m 10 micrometer Seconds Medium
TOF 2-1000m Medium Minutes Low
Phase 2-100m Low Seconds to Minutes Low

Table 2.1: Comparison of scanning technology

Laser phase-shift scanners also measure the round trip time of a laser pulse [19]. What
differentiates phase-shift scanners from traditional laser scanners is that the power of the laser
light is modulated in a sinusoidal wave. The phase shift in the returning pulse is used to
compute the round trip time (see Figure 2.6). Due to the cyclical nature of the signal, the
distance computed from the phase shift can be ambiguous. This ambiguity can be resolved by
taking measurements across multiple frequencies [5].

2.1.3 Comparison

Triangulation scanners can achieve 10 micrometer precision over distances less than one meter.
Over longer distances, however, the triangle in figure 2.4 becomes elongated. This results in
less accurate distance calculations when compared to TOF scanners [34]. Structured light trian-
gulation scanners are typically hand-held and less prone to motion distortions when compared
their laser based counterparts. Structured light scanners also tend to be faster and easier to
operate compared to other scanners [9]. This makes them preferable when capturing smaller
objects at short range.

TOF scanner accuracy is determined by how accurately the round trip time of the laser
pulse can be measured. Compared to triangulation scanners, measurement error makes time of
flight scanners less accurate over distances less than 2 meters. Over larger distances (up to 1
km), time of flight scanners have an advantage over triangulation scanners [18]. Time of flight
scanners are, however, slower than triangulation scanners. The speed of TOF scanners depends
on the resolution it is set to capture at. Tens of thousands of points may take seconds while
resolutions with millions of points may take minutes.

Phase-shift laser scanners occupy the niche in between triangulation and traditional TOF
scanners. Phase-shift scanners are effective in the 2-100m range and are much faster compared
to TOF traditional scanners. A phase-shift laser scanner’s range is, however, limited by the
cyclic nature of their sinusoidal pulse [5]. Objects from beyond the scanner’s designed range can
be erroneously interpreted as being within the design range, which results in hard to remove
artefacts. This happens when the scanner fails to disambiguate pulses returned from close by
and far away objects. Phase-shift scanners compensate for this disadvantage by being much
faster and more accurate than traditional TOF scanners. [18]

2.2 3D reconstruction pipeline

1Source: http://www.rapidform.com/3d-scanners/
2Adapted from Rüther and Held [51]
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Figure 2.7: Reconstruction pipeline 2

The 3D modelling of a heritage site starts with the acquisition of range scans. Collected scans
are subject to a series of processing steps (see Figure 2.7). Unwanted objects and noise are
typically removed during cleaning. Missing data, often caused by occlusions, can be synthesised
during hole filling. Subsequently, scans are combined by transforming them into a common
coordinate frame during registration. After registration, a surface model can be constructed
from the combined point set. Finally the reconstructed mesh is textured which results in a final
model [51].

2.2.1 Data acquisition

Some degree of planning is required before scanning a heritage site. Firstly, an appropriate
resolution needs to be agreed on. The image resolution determines the time required to capture
a scan, and later processing time is determined by the number of point samples. Furthermore,
planning equipment placement ahead of time can help ensure that an optimal amount of coverage
is achieved as some degree of scan overlap is required in order avoid registration problems later
in the pipeline. [51]

This work focuses primarily on terrestrial TOF and Phase-shift laser scanners. TOF and
Phase-shift scanners rotate around a tripod while recording angle and range measurements as
the laser pivots up and down. The result is a 3D image in the shape of a dome that has a hole
on the ground where the tripod stood. This image is exported as 3D coordinates organised into
a 2D grid referred to as a range image (see Figure 2.8). In addition to XYZ samples, range
images may also include the intensity return of the laser pulse, colour values, and other scanner
specific meta-data [19].

We limit our work to range images that includes intensity values but not colour. This
because colour scans were not readily available to us at the time.

3Rendering based on data provided by the Zamani Project
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Figure 2.8: 2D scan grid of intensity values 3

2.2.2 Registration

Figure 2.9: ICP correspondences 4.

Range images record object points with diminishing surface resolution as a function of a
object’s distance from the scanner. Scans from multiple perspectives can be combined to fill
holes caused by occlusions and achieve a more uniform sample density. The process by which
scans are transformed common coordinate system is called registration.

Scans can be registered with or without the use of physical reference objects called targets.
Targets are be placed in and around a heritage site during data acquisition in order to find
correspondence points in two or more scans. [4]. Without targets, correspondences need to be
determined via distinct surface features. Algorithms such as Iterated Closest Point (ICP) can
automatically align scans using such surface features [3].

The use of targets is likely to result in highly accurate registration without the need for
much human intervention. However, in order to achieve this, targets need to be captured at a
high resolution which may extend the duration of an expedition. Some have found targets to
be impractical as they often need to be placed in hard to reach places, or are required in large
numbers when dealing with intricate indoor environments [51].

4Source: http://pointclouds.org/documentation/
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Time end effort to complete an scanning expedition is reduced when targets are omitted dur-
ing data acquisition. An ICP based registration procedure, may however, require more human
effort in order to achieve a good initial alignment, which is a prerequisite of ICP. Once an initial
alignment is achieved ICP can compute correspondences between surfaces. Correspondences are
used to compute incremental transformations that minimises the distance between two surfaces.
Transformations are applied after each correspondence computation until convergence is reached
[47]. ICP can sometimes fail. When registering surfaces with relatively few features, unique
correspondences are less likely to be found. Variations of the original ICP algorithm that use
different types of correspondent matching and optimisation procedures, can help reduce such
instances. The procedure, however, remains labour intensive as success is never guaranteed.

2.2.3 Cleaning

Figure 2.10: Trees cleaned from a scan

Cleaning could be considered an optional step. However, unless a scanning expedition
proceeds flawlessly, unwanted artefacts will compromise the quality of final model. Unwanted
artefacts include: trees, people, power lines, cars, animals, etc. as well as scanner induced
artefacts (see Section 2.1.2). An object is usually removed because it is not part of the subject
matter. Many meshing algorithms, however, are unable to produce coherent surface meshes from
points associated with trees and shrubs. For this reason vegetation is usually also targeted.

Figure 2.11: Mixed pixels. Green are valid points and red are not. [64]

Scanner induced artefacts is the result of imperfect equipment rather than physical surfaces.
A common type of noise is the mixed pixel phenomenon. This occurs when a laser pulse partially
strikes a nearby and distant object. The result is an interpolated data point between the near
and far surface [64] (see Figure 2.11). This typically manifests as column of points behind
doorways and other edges.

Cleaning is mostly a manual task that requires expert judgement. It can be performed on
range images before registration or on point clouds after registration [51].
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Registration helps mitigate problems associated with non-uniform sample density and in-
complete data. Registration, however, also results in the creation of large monolithic files.
Working on large registered point sets on under resourced machines can be problematic. It is
therefore often preferable to perform cleaning on unregistered range images. A disadvantage
of this approach is that one will encounter and clean the same region in more than one range
image, as scans need to overlap to be registered. This disadvantage is, however, offset by access
to a 2D grid view that an make it easier to identify regions that can be hard recognise in a 3D
point cloud view.

2.2.4 Surface reconstruction

Surface reconstruction is the process that converts a discrete point model into a triangulated
surface model. This can be achieved either via interpolation or approximation. The goal of
interpolation is to connect neighbouring points by computing a triangulation whereas approxi-
mation methods aim to approximate a surface that fits the samples [53].

Interpolation methods are very sensitive to noise. Poor triangulations can be produced when
scans are not properly registered or the point samples exhibits high variance. Preprocessing
can mitigate these problems but is time consuming and often leads to a loss of detail [51].

Surface approximation is less susceptible to noise when compared to interpolation methods.
Poisson surface reconstruction [30] is a popular method because it is both noise resistant and
retains great detail. The technique uses an interpolated normal field to solve a Poisson equation.
Results are dependent on the quality of the normal estimation. It is preferable to compute
normals prior to registration, in order to save time, when using this approach. Poisson surface
reconstruction produces “water-tight” surfaces and thus automatically fill small holes. While
this is useful for producing visually pleasing 3D models, it result in a historically inaccurate
model as new surface data may have been synthesised in the process.

Moving Least Squares (MLS) is another popular surface approximation method that does not
over smooth or interpolate missing data [1]. Like Poisson, it also requires normal estimates. MLS
computes a local surface approximation at a sample point by considering its neighbourhood.
Every point in a neighbourhood is weighed according to its importance. A surface is then
computed by minimising the weighed distance to the surface for each point in the neighbourhood.
Poisson and MLS have both been adapted for out-of-core execution and GPU acceleration [35].

2.2.5 Hole filling

It is unlikely that a scanning expedition will achieve complete coverage of a site. Furthermore,
samples are lost during cleaning and surface reconstruction. Hole filling is an optional step in
the reconstruction pipeline that seeks to synthesise missing data [57]. For historical data, hole
filling is not desirable as data is synthesised. Models that have been filled are more aesthetically
pleasing when exhibited. It is therefore important that any synthesised data is labelled as such
in the historical record.
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Small holes can be filled automatically by surface reconstruction algorithms (discussed in
2.2.4). Larger patches are harder to fill convincingly with automated methods and may require
manual effort to produce good results [51].

2.2.6 Texturing

The final step of the reconstruction pipeline is texturing. Coloured models are not only visually
pleasing, but also an important part of the historical record. Some laser scanners are equipped
with sensors that record a colour value with each vertex. Although these colour values can be a
convenient way to texture a modal, using this data can produces inferior results when compared
to the use of photos [51]. One problem when texturing a model is dealing with changing light
conditions throughout the day. Because scanning is time consuming, vertex colours sampled
by a scanner may vary between overlapping scans. Taking photos is less time consuming so it
is easier to collect samples around the same time of day. When using embedded colour, one is
also limited to the resolution of the geometry. Photos on the other hand, lets us use textures
with a higher resolution than the geometry.

Texturing from photos is, however, a more involved process. The texture needs to be
manually projected onto the geometry. To achieve this, internal and external camera parameters
need to be known or estimated. This includes the position and orientation of the camera as
well as the focal length of the lens. If these parameters are not known, they can be estimated
via software by selecting or computing correspondences between pictures [51].

2.3 Cleaning

Capturing and reconstructing a heritage site is a very time consuming and labour intensive
process. After data acquisition the majority of man hours are spent on cleaning. In large
heritage scanning initiatives, a single range image can require between 30 and 120 minutes of
work by an experienced individual. Very high resolution scans can take up to a day to clean.
Consequently, existing techniques leave much to be desired in terms of cleaning efficiency [51].

The goal of point cloud cleaning is to separate wanted from unwanted points. In order to
create this separation, one needs to recognise what physical world objects, if any, point samples
represent. Despite recent advances in computer vision and machine learning, it is very difficult
to fully automate point cloud segmentation since what qualifies as “unwanted points” is largely
determined by context and can be highly subjective. This dependence on human judgement is
a big reason why point cloud cleaning remains a human driven task.

The point cloud cleaning task requires a user to group laser point samples through the use
of a 3D workspace. This requires the user to first bring an area into view, before the points
can be selected via various selection tools. This process is repeated many times for a particular
scan, so it is important to have the ability to reverse mistakes.
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2.3.1 Navigation

To segment a region of interest, the user must first use the interface to navigate to the relevant
location in the point set. The navigation time can be considered as an overhead of the core
cleaning task. Employing efficient navigation techniques can thus play a large role in reducing
the overall cleaning time.

The main difficulty associated with 3D navigation is controlling 3 degrees of rotational
and translation freedom using 2 dimensional mouse and keyboard inputs. Most 3D software
implement variations of the ArcBall [58] or Virtual Sphere [11] to solve this problem. These
approaches allow the user to orbit around an object by dragging a point on the surface of a
virtual ball. This is typically paired with the ability to translate the camera via “Pan” (along
x-y axis) and “Zoom” (along the line of sight). Rotation around a central point is best suited
for object manipulation or exploratory movement. During cleaning of large scenes, targeted
movement through the 3D workspace is more common.

Navigating along a horizontal plane is natural for surface dwelling individuals [26]. Many
games, facilitate such movement over planes, by employing a first person perspective (FPP)
camera for 3D navigation. In this navigation mode the user typically translates the camera
position along a horizontal plane using arrow keys while using the mouse to change the camera
orientation. This can also be extended to support vertical movement (flying) as is done in games
such as Second Life 5.

Most point cloud and range image editing systems only provide a 3D view of scan data.
Humans are, however, more adept at interpreting 2D data despite living in a 3D environment
[33]. This is likely the reason why reason Z+F [71] includes a 2D panoramic view of range image
intensity values in their system. This provides the user with another perceptive that can help
identify objects. It is especially useful when inspecting sparsely sampled objects that, when
viewed in 3D, can appear to be nondescript points floating in space.

2.3.2 Selection

Once an area of interest has been brought into view, the core segmentation task can be per-
formed. The manner in which a user approaches the task is affected by the chosen software’s
feature set. Point cloud software typically provide a user with some notion of a selection and/or
layer. Selections allow one to temporarily label points before applying an operation, such as
deletion. Layers are generally used to keep track of points that are not currently being manip-
ulated and can be hidden from view until needed at a later time. Hidden layers allow a user
to follow a more iterative cleaning work flow: instead of discarding points immediately, large
areas can saved for later refinement. Using layers to keep track of unwanted points, rather than
deleting them, can be preferable as preserving original scan data is often required by heritage
practitioners.

Point cloud software is not usually designed specifically for cleaning. For generalised point
cloud editing tasks, actions such as inserting new points into a cloud or modifying the position of
points may be need to be supported. These actions are however not used in pure segmentation.
General purpose point cloud editing therefore need to meet a more restrictive set of design

5http://secondlife.com/
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constraints. These constraints can result in a compromised cleaning work flow in order to
satisfy requirements of other work flows.

Software such as Meshlab [13] and CloudClean conceptualise the workspace as a set of
mutually exclusive layers. New layers are created by duplicating or removing points from the
original layer. This allows points in layers to be transformed independently. The disadvantage
is that recovering memory after removing points, requires that the original data structure be
resized which can incur a performance penalty. Alternatively each subsequent layer will consume
additional memory if removed points are simply marked as such. When working with large
datasets or on under resourced machines, memory pressure can compromise system performance
and in turn increase task duration in this scenario.

Propriety software such as Bentley Pointools [44] appear to represent layers by mapping
each point to a boolean value that indicates its membership status with respect to the layer.
This approach incurs a cost of O(n) per layer, where n is the size of the point cloud or range
image referenced in the layer. Bentley, however, restricts the number of layers to 7 - possibly
because of high memory overhead associated with each additional layer.

2.3.3 Segmentation tools

An efficient point cloud segmentation tool should allow one to accurately isolate a set of target
points in as short a time as possible. The primary goal of a selection tool is thus to minimise
time and maximise accuracy.

The accuracy of a classification is often operationally defined using an F-score. An F-score
combines both precision an recall in a single metric (see Equation 2.1). Given a set of target
points that we want to segment, precision is the number of correctly selected points divided
by the total number of selected points (see Equation 2.2). Recall is the number of correctly
selected points divided by total number of targeted points (see Equation 2.2). Precision and
recall is visualised in Figure 2.12. The F-score combines precision and recall as a weighted sum.

F1 = 2 · precision · recall
precision + recall (2.1)

precision = |{target points} ∩ {selected points}|
|{selected points}| (2.2)

recall = |{target points} ∩ {selected points}|
|{target points}| (2.3)

Segmentation tools can be divided into automated, semi-automated and manual tools. Au-
tomated tools segment a scan without any user input, while semi-automated tools require a
form of user input before or after performing automatic segmentation. Manual tools directly
translate inputs into a segmentation action.

6Adapted from: https://en.wikipedia.org/wiki/Precision_and_recall
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Figure 2.12: Precision and recall 6

Due do the high accuracy requirements of heritage cleaning, the level of accuracy obtained
through automated tools will rarely be sufficient. A user will thus usually have to manually
relabel incorrectly segmented points. Because most cases will still require user input, such
tools effectively only provide semi-automated segmentation. Semi-automated tools that re-
quire upfront user input, typically also require manual touch up work after the automation
has completed. Manual segmentation can be very costly in terms of time in effort. Ideally,
semi-automated tools would be used to perform the bulk of the work, and manual tools would
only be used for the final touch up.

The amount of touch up required is related to the degree of accuracy that can be achieved
by an algorithm. Touching up a high accuracy segmentation can however still be very time
consuming if the the incorrectly labelled parts are widely distributed and require many manual
actions. It is not hard to imagine a scenario where the invocation of an algorithm results in
a state where it would have been better to have manually segmented the scan from scratch.
The value of a semi-automated segmentation algorithm should therefore not be measured in
accuracy but the degree to which it reduced the overall task time.

2.3.4 Manual selection tools

The most manual selection mode is point picking, which allows a user select a single point by
clicking on it in the view port. This can be implemented either via ray casting or by directly
reading the point index from the frame buffer. Ray casting is typically more suitable for lager
objects as floating point errors become problematic when targeting small areas. This selection
mode can be found in most software, including Meshlab [13].
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Brush tools are similar to point picking tools but have an adjustable area of influence.
Instead of selecting a single point, all the points within a radius of the clicked area is selected.
One way is to compute the selected points is by reading point indices contained within the area
of influence from the frame buffer. A potential problem with this approach is that occluded
or culled points, that are not rendered, will not be selectable. Neighbouring points in screen
space could also be at different depths, so a user may unintentionally select background points.
Instances of this tool can be found in propriety packages including Bentley Pointools [44].

Polygon selection requires the user draw a 2D polygon on the view port around an area of
interest. The points contained within the on screen polygon are selected when then polygon
is completed. As with other tools, using the frame buffer to resolve points can be problematic
due occlusions. This can be overcome by projecting all points to the view port plane and
performing a point in polygon test on each vertex. For large point clouds interactivity may
be compromised if the computation is performed on the CPU. A polygon selection tool is
most effective when target points that can be separated from their surroundings by changing
the camera perspective. If such a perspective cannot be obtained, additional work is usually
required to remove background points from the selection. Systems such as Cyclone [32] mitigate
this problem by allowing the user to restrict a tool’s area of influence with a limit box.

Figure 2.13: Plane selection tool in Pointools [44]

2.3.5 Semi-automated tools

Semi-automated tools range from simple filters to more complex machine learning algorithms.
To speed up the cleaning task, the processing time associated with the segmentation algorithm
needs to scale sensibly with what it accomplishes. Specifically, the longer the task runs, the
more useful work it will need to perform to remain useful.
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Flood fill tools uses a region growing algorithm usually expands the selection recursively to
neighbouring points if the membership criteria is met. Complex membership computations can
affect runtime of a flood fill tool. Pointools [44] lets one control the membership criteria by
setting a threshold on the colour or intensity. Other variations include plane selection [32] (see
Figure 2.13) and power line removal [65]. The main difficulty with flood fill tools is that it can
be hard to determine an appropriate threshold value for a target region. This can result in an
excessive amount of trial and error. Meshlab somewhat mitigates this problem by allowing a
user to interactively control the extent of the fill via the mouse wheel.

Outlier removal is a filter, provided by Meshlab, that discards points that have less than
a specified number of neighbours. Processing 5 million points using a 0.5m diameter takes 12
seconds on our test hardware. Removing isolated points manually would take much longer than
12 seconds. When used with range images the non-uniform density the scan becomes a problem.
Because the sample density of a range image decreases away from the origin, samples further
away are more likely to be classified as noise using this filter. Consequently, increased manual
correction may be required to achieve the desired selection accuracy.

Figure 2.14: Clustering issue in 3D Reshaper [60]

Clustering tools are also affected by non-uniform density problems. 3D Reshaper’s [60]
clustering tool lets one automatically group spatially related points. When used on range scans
it can be seen that more clusters are detected further away from the origin (see Figure 2.14).

Other semi-automated tools include those aimed at extracting ground planes [61, 65], finding
rooftops [65], walls [65], buildings [61] and vegetation [61]. One problem with most specialised
semi-automated segmentation tools is that the targets that it has been designed to segment,
usually manifest differently in heritage sites. Old eroded structures are harder to segment using
tools designed to for modern buildings. Because of the strong emphasis on accuracy in heritage
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Figure 2.15: Vegetation filter in VR Mesh Studio [65]

preservation, segmentation results that may be sufficient in a non-heritage context are unlikely
to be good enough for preservation purposes. The touch up time for the segmentation results
may thus exceed useful levels. One such case is illustrated by the vegetation removal tool in
VR Mesh Studio’s [65]. This tool erroneously label points as plant growth when they are not -
as shown by the mislabelling on the eroded ruin walls in Figure 2.15.

Not only can segmentation targets manifest in different ways, but there are a virtually
endless number potential targets. Because it’s not feasible to use hundreds of specialised tools,
in the heritage context it is often more practical to revert to manual methods.

2.3.6 Undo

Besides navigation and selection, other system aspects can also affect task duration. When your
work is the cumulative result of potentially hundreds of actions, the ability to undo an action
is an important feature [41]. Without it, a mistake can derail hours of work. A user will also
need to exercise greater caution, which can further decrease task performance [36].

Unlike most propriety software, the two most popular open source systems for point cloud
editing, Meshlab and Cloud Compare, do not implement undo functionality.
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2.4 Summary

Digital heritage preservation using laser scanning, is an important but also very time consum-
ing process that requires a lot of planning and processing. One of the most time consuming
phases is the removal of unwanted noise and artefacts from laser range images. Despite ad-
vances in computer vision and machine learning this task remains mostly human driven. Well
designed software plays a key role in determining the speed at which the cleaning task can be
accomplished.

We’ve identified three areas that can be improved upon in order to accelerate the cleaning
process. Firstly the speed at which the user can navigate to an area of interest has a direct
impact on task duration. Secondly generalised point cloud editing software has more design
constraints that can lead to system architectures that are not ideal for a cleaning work flow.
One such instance is the sub optimal abstraction of layers that may extend a task duration due to
memory pressure. Finally, existing semi-automated segmentation tools have difficulty targeting
the diverse set of segmentation targets in heritage scans. Most semi-automated segmentation
tools are designed for specific targets that, when targeted in heritage scans, may not achieve
a sufficient degree of accuracy. While possible to design better algorithms, the potentially
unlimited number of targets that users may want to remove, makes it impractical create a
specialised algorithm for each.

In the next chapter we present a new open source framework for range image segmentation
that addresses the first two areas. The core system architecture features a novel system archi-
tecture and layering technique designed to reduce memory pressure and reduce computation.
We also implement a first person roll-corrected camera mode and show how this reduces the
navigation overhead of the cleaning task. In the final chapter we show how Random Forests
can be trained interactively, per scan, to assist users in a point cleaning task.
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Chapter 3

Software framework

In this chapter we cover the design and implementation CloudClean, an open source point cloud
segmentation framework.

The aim of this system is to facilitate the design and evaluation of point cloud segmentation
tools. During the design of this system we address navigation overhead through the use of a
roll-corrected camera mode and introduce an efficient layering architecture that supports a large
number of layers at near constant level of memory consumption.

3.1 System overview

A new segmentation technique is best evaluated by measuring its impact on an existing work
flow. This allows one to attribute changes in performance or accuracy, to the introduction of
the new tool. Existing open source solutions do not lend themselves to an iterative cleaning
work flow due to the lack of undo support and versatile layering. We therefore implement a
new extensible open source system that addresses these shortcomings. We also implement a set
of the most commonly used tools from existing systems, namely brush, polygon lasso and flood
fill tools, in order to recreate a typical manual cleaning flow.

Tools are implemented in the context of a 3D workspace (see Figure 3.1). The main view
port contains a 3D view of one more range images. A tab at the top of the window lets a user
switch to a 2D panoramic view. On the left side of the view port, under the undo and redo
buttons, tools can be activated and deactivated via toggle buttons. Activating a tool exposes
tool specific options in the right hand panel. Selection tools, such as the brush, can make use
of 8 selection colours. Selections can be converted into layers that are listed in the layers panel
above the tool options. Points associated with hidden layers can not be selected.

We use an extended version of PCL’s (Point Cloud Library) [50] PointCloud data type to
represent point cloud state. Using PCL in our system allows one to reuse a large number of
existing algorithms.
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Figure 3.1: CloudClean interface

3.2 Architecture

CloudClean is designed using a plug-in architecture. The core of the system manages and
renders point clouds, layers, and selections. Other functionality, including input/output and
state manipulation, is implemented using run-time plug-ins (see Figure 3.2).

The system starts by setting up data structures for managing point clouds, associated layers,
and a undo stack for manipulating state. These objects are then passed to the main window
that initialises OpenGL and sets up the 2D and 3D view ports. The main window also creates
listeners so that the GUI can be updated in response to changes in the point cloud and layer
data. Once this is completed the plug-in manager is started by passing it a reference to these
core system components.

The plug-in manager is built on top of QT’s plug-in framework. QT provides an abstraction
over operating system specific linker and loader APIs that allows one to build cross platform
extensions that can be loaded and unloaded at run-time. The ability to reload plug-ins at
runtime enables one to update a tool’s code while maintaining state in the core system. This
facilitates a quicker compile-run-test cycle as only the plug-in code needs to be reloaded.

All plug-ins implement the same interface (see Listing 3.1) regardless of functionality. The
requirements of this interface are: functions that report the plug-in’s name, initialise the plug-
in, and a clean up its state. The QT plug-in framework lets us attach meta data to plug-ins
that can be read before the plug-in is loaded. CloudClean uses a meta data file included via
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Figure 3.2: The system is implemented as a plug-in architecture. The user interface and state
management is handled by the core system. Segmentation and other tools that manipulate the
system state are loaded into the system as plug-ins.

this mechanism to specify the version of the plug-in, and what other plug-ins it is dependent
on. When started, the plug-in manager reads the meta data of each plug-in located within a
predetermined directory. In doing so, a dependency graph is created. The system ensures that
each plug-in’s dependencies are loaded before loading it. The loading order is important as the
system will crash if symbols defined in other plug-ins cannot be resolved.

A two step plug-in initialisation procedure is used. During the first phase a reference to the
core system is passed to each plug-in. This allows a plug-in to install itself by performing tasks
such as creating new menu items, hooking into the render loop, and listening for system events.
After the first initialisation phase, some plug-ins will have fully initialised themselves. In the
second phase, plug-ins that are dependant on other plug-ins are given a reference to the plug-in
manager. This allows a plug-in to look up and call other plug-ins that it may depend on.

After each plug-in is loaded and initialised, the plug-in manager starts monitoring the plug-
in directory. The system will load any new plug-ins that are detected, unload plug-ins that
are deleted, and reload modified plug-ins. Before unloading a plug-in the clean-up function is
invoked. This gives the plug-in the opportunity to remove references to itself from the system
before its destructor is called.

Aside from the core and plug-in system there are some static libraries in the main binary
with commonly used functionality. The most notable are the point picker, polygon picker and
PTX IO code. The functionality in these libraries does not change often and is thus included
as part of the main binary.

This system architecture was based on Meshlab’s design, but improved on it in two key
ways. Firstly Meshlab defines 4 types of plug-in interfaces: edit, filter, render, and IO. These
interfaces limit what functionality plug-ins can provide. Because our approach does not pre-
scribe what a plug-in can do, developers are free to extend or modify the system in any way
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that proves useful. Secondly, replacing statically compiled plug-ins with run-time reloadable
plug-ins, reduces research and development time.

1 # include <QObject >
2 # include <QtPlugin >
3 # include " pluginsystem / export .h"
4

5 class Core;
6 class PluginManager ;
7

8 class IPlugin : public QObject {
9 Q_OBJECT

10 public :
11 virtual QString getName () = 0;
12 virtual void initialize (Core * core) = 0;
13 virtual void initialize2 ( PluginManager * pm) {}
14 virtual void cleanup () = 0;
15 };
16

17 Q_DECLARE_INTERFACE (IPlugin , " CloudClean . iplugin ")

Listing 3.1: Plug-in interface

3.3 Core

The core system supports loading range images, rendering them in 2D or 3D, and saving range
images back to file. All state manipulation is entirely implemented as plug-ins. The only
file format currently supported is Leica’s text based PTX files [31]. Additional formats can
be supported via plug-ins. In the following sections we describe the PTX file format, how it
is represented in the system, and the functionality that allows plug-ins to manipulate range
images.

3.4 PTX IO

PTX is an ASCII encoded format for representing colour and monochrome range images (see
Listing 3.2). While PTX files support an RGB channel, access to colour range image data
was limited. The system was therefore developed with support for only XYZ coordinates and
intensity values. PTX files encode coordinates and intensity values as a large grid of floats in
column major order. The grid dimensions are defined in a header at the start of the file. After
this, the header contains the XYZ position of the scan origin, a 3 ∗ 3 rotation matrix, and a
4 ∗ 4 transformation matrix that combines a translation to the origin and the rotation matrix.
These fields can be used to keep track of registration transforms.

1 WIDTH
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2 HEIGHT
3 ORIGIN_X ORIGIN_Y ORIGIN_Z
4 ROT_11 ROT_12 ROT_13
5 ROT_21 ROT_22 ROT_23
6 ROT_31 ROT_32 ROT_33
7 ROT_11 ROT_12 ROT_13 ORIGIN_X
8 ROT_21 ROT_22 ROT_23 ORIGIN_Y
9 ROT_31 ROT_32 ROT_33 ORIGIN_Z

10 0 0 0 1
11 X Y Z I
12 X Y Z I
13 X Y Z I
14 X Y Z I
15 ...

Listing 3.2: PTX format

The a PTX file contains all scan data, including non returned points. Non returned points
occur when the laser pulse is not reflected by an object. These points are recorded as (0, 0, 0, I).
It is not uncommon for half the contents of a PTX file to be non returned points.

Directly reading this data into the system is not memory efficient. It would also require
extra processing and complexity on the part of algorithms that operate on point clouds, as the
non returned points will have to be filtered ever time. Simply discarding non returned points
when loading a file, will effectively destroy the grid structure. We need a point’s position in
the original scan grid in order to: render a 2D panoramic view, perform inexpensive normal
computations, and the ability to save data back in PTX format.

When loading a PTX file in CloudClean, we therefore save the original XY coordinate of
each point in the grid before discarding non returned points. The original values are saved in a
subclass of the PointCloud<Point::XYZI> data structure provided by PCL [50].

3.5 Selections and Layers

Selections are stored inside a PointCloud object as a vector of 8 bit integers. This lets us easily
represent 8 overlapping selection states for each point in the cloud.

Layers need more careful consideration in order to avoid inefficiencies. Unlike selections,
we would like to be able to represent more than 8 overlapping layers. When using a vector of
booleans to encode layer membership, memory consumption grows linearly with each subsequent
layer. Memory could be more efficiently used by representing layer membership as a linked list
of point cloud indices. This would, however, compromise random access which is a problem
when performing frequent lookups or removing points from layers.

Our novel implementation of layers consumes a near constant amount of memory while
maintaining random access. It also allows one to perform set operations (union, difference,
intersection) with very little computation. We achieve this by associating an n-bit integer label
with each point in a cloud. n bits lets us create 2n unique labels. Labelling points in this way
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does not support overlapping layers. To achieve this we use separate data structure to keep
track of layers that reference labels: layers are represented as sets of labels.

Layer Label set
red 1

Figure 3.3: After the first layer is created the associated points are labelled with ‘1’. The label
is associated with the red layer.

To illustrate this technique, we present a simple example which shows the labels associated
with a set of points. Initially each point in the cloud is assigned a “0” label that is not associated
with any layer (see Figure 3.3). To create a layer, we assign a new label to each member of
the new layer, and then associate the label with the layer. In our example we assign a label of
“1” to the points in the new red circle, and then associate the label “1” with the red layer (see
Figure 3.3).

To add an additional non overlapping layer the same process is followed. First a new label
is generated (“2” in this example), then points in the layer are assigned this label. The new
label is then added to the label set of the new green layer (see Figure 3.4.

Creating overlapping layers is a little more involved. In Figure 3.5 a new blue layer is
created that overlaps with the red layer. We cannot follow the same procedure as before,
because relabelling already labelled points would disassociate them form their existing layer.
Assigning a new integer label to the points in the blue segment would remove the overlapping
points from the red layer. This problem is solved by creating two new labels instead of one.
First we assign “3” to the points that do not overlap with the red layer. This label is then
added to the blue layer’s label set. The overlapping points are given the label “4”. This label
is then added to both the label set of the red and blue label. The blue and red layer now both
reference the “4” label.

Set operations can be achieved by simply adding and removing labels from layers. To create
a new layer containing the intersection between the red and blue layers we only need to find
the intersection between the two label sets (i.e. 4), and create a new layer (see Table 3.1).
Union and difference operations can be achieved similarly. Set operations with naive maps
would require that each point in the point cloud be visited, and would incur a computational
and memory cost of 0(n) where n is the point cloud size.
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Layer Label set
red 1
green 2

Figure 3.4: Creating of a second layer that does not overlap with others result in the creation
of a new label which is assigned to the layer.

Layer Label set
red 1, 4
green 2
blue 3, 4
red ∩ blue 4

Table 3.1: Creating a new layer from the intersection of two layers is achieved by appending
the common labels to a new label set.

A potential disadvantage of this technique is that number of layers is limited by the number
of layer intersections. In the worst case each newly created layer overlaps with every other layer.
In this case the number of bits allocated for the label will limit us to the same number of layers.
A 16 bit implementation will therefore be limited to 16 layers. If no overlaps occur, a maximum
of 65536 layers could be created.

3.6 Rendering

A point cloud and its associated selections and layers are stored in main memory. This data is
copied to the GPU for rendering and kept in sync via dirty checking. For each execution of the
render loop, the camera, point clouds, layers, and selections are synchronised with GPU data
structures if they have changed.

For 3D rendering, each point cloud coordinate and its intensity value is copied to a GPU
buffer. The selection state and label of each point is also copied into separate GPU buffers (see
Table 3.2). The rendering pipeline uses a standard camera matrix to perform a perspective

26



Layer Label set
red 1, 4
green 2
blue 3, 4

Figure 3.5: Creating a layer that overlaps with others results in overlapping points be assigned
a new label which is assigned to both layers.

transformation in the vertex shader. The colour of each point is also computed in the vertex
shader and used directly in the fragment shader.

During 2D rendering the XYZ coordinate are ignored and the PTX file’s XY grid coordinates
are uploaded and used instead. The OpenGL context for 2D and 3D rendering share the same
buffers, so the same selection and label data are used. An orthogonal projection matrix is used
to transform vertices onto an image plane, and vertex colours are computed in the same way
as in the 3D rendering. After the vertex shader is run, a geometry shader is used to transform
each point into quad on the image plane. Rendering quads instead of points ensures that there
are no gaps between points. The fragment shader again simply uses the colour values passed
through from earlier shaders.

In both 2D and 3D rendering pipelines the colour of each point is determined by point cloud
intensity value, the selection state and the layer membership. When no selections or layers are
active, the intensity value of a point is simply passed through to the fragment shader. The
colour of a selected point is computed by multiplying the intensity value with the selection
colour. If one or more layers are active, the average colour of all active layers is mixed with the
selection colour and multiplied with the intensity value of the point. If any layer is hidden, the
colour of a point set to transparent.

In order to determine the average colour of all the active layers that a point belongs to, we
only need to know its label. As explained in Section 3.5, all points with the same label, have
the same layer membership. A lookup table of each label’s colour can thus be generated and
used in our shader.

Consider Table 3.3. To generate the lookup table in Table 3.4, we determine what set of
active layers each label maps to. The average colour can then be computed by averaging the
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Index X,Y,Z,I (float[4]) Label buffer (uint16) Selection mask (uint8)
0 0.8, 1.2, 0.2, 0.9 0 10000000
1 0.7, 0.5, 0.8, 0.3 2 10000000
2 4.3, 0.5, 1.7, 0.9 2 10000000
3 0.6, 1.8, 0.1, 0.6 1 01000000
4 0.9, 0.5, 0.8, 0.5 2 01000000
5 0.1, 0.4, 3.2, 0.9 3 01000000
6 2.2, 0.5, 0.3, 0.2 5 00000000
7 1.0, 0.9, 0.1, 0.5 4 00000000
...

...
...

...

Table 3.2: Three buffers are created on the GPU to render point clouds with layers. This
comprises a buffer to hold the 3D coordinates and intensity value of each point, a buffer that
maps labels to points, and a buffer to represent selections.

Layer name Colour Active Visible Labels
grass rgba(0, 0.8, 0, 1) true true 0, 2, 4
walls rgba(0, 0, 1, 1) true true 0, 3
tree rgba(0, 1, 0, 1) false true 2, 3
...

...
...

...
...

Table 3.3: Layer data

colours of layers associated with each label. Not shown in Table 3.4 is that we set the alpha
channel of the label colour to 0 when a layer is hidden.

The lookup table is copied into a buffer texture that is used by the shader to find the blended
label colour associated with each point. An example rendering of two intersection layers is shown
in Figure 3.6. Changing layer colours or toggling a layer invisible only requires that the lookup
table be recomputed and loaded to a GPU.

Using our layering scheme allows one to easily render layer intersections. Layers also allow
us to visualise a reference segmentation and compare it to a selection. This is invaluable during
user evaluation as it takes the guess work our of where a target objects starts and ends. We use
this extensively in Section 5.5.

One caveat of our rendering implementation is that all points and associated render data
are copied to the GPU. When rendering many or extremely large data sets, GPU memory may
be exhausted. Larger data sets could however easily be supported by adding a pre-processing
step to create a multi-resolution data structure.

3.7 Undo

To make mistakes less costly, selection and layer operations need to be reversible. The two
primary design patterns used to implement undo are the command pattern and the memento
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Label Colour
0 walls.colour
1 grass.colour

3 walls.colour+tree.colour
2

4 grass.colour
...

...

Table 3.4: Label colour lookup table

Figure 3.6: Alpha blending layers

pattern [20]. When using the memento pattern the state of the system must be saved before
applying an operation. An operation can then be reverse by restoring the saved system state.
When using the command pattern, only the data required for applying the new state and
restoring the old state need to be saved. This data is stored on a command object that has
undo and redo methods called by the system to apply and revert operations. These methods
are called by a command stack when command object is pushed or popped from from it.

Using a memento pattern can quickly exhaust memory resources when dealing with large
amounts of system state. Consider a brush selection tool. As the mouse cursor dragged across
the screen, one would have to create a selection command for each intermediate position of the
mouse in order to reflect the action in real-time. If each command object requires the selection
state of all points in a range image be saved, the command history would have to be very shallow
in order to avoid exhausting system memory.

The command pattern lets us keep track of changes far more efficiently. In the case of the
aforementioned brush tool, we would only need to save newly selected points in a command
object. Unlike the memento pattern, a series of selections could easily be kept in on the command
stack without exerting memory pressure.
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QT provides all the scaffolding required to implement the command pattern. The QUn-
doStack provides built in functionality to add undo and redo buttons that manage the com-
mand stack. The QUndoCommand class can be extended to create custom commands that
are compatible with the QUndoStack. Pushing a command to the QUndoStack calls the redo
method which results in the action being applied. Popping from a QUndoStack results in the
undo method of the last command being invoked. QUndoCommands can also be merged. In
our example of a brush tool one could create 100’s of command objects in a single stroke. Un-
doing 100’s of commands for a single stroke would be slow. Merging lets us combine multiple
commands into one.

CloudClean provides 5 built in commands for manipulating selections and layers. The select
command lets one select and deselect points. Two layer creation commands are available: one
creates a new layer from point cloud indices and the second one creates a new layer from existing
labels. Finally, layer update and layer delete command are available. Only manipulating layers
and selections via commands, ensures that all actions are reversible.

3.8 Plug-ins

To support a basic point cloud cleaning work flow, four plug-ins were implemented. Firstly,
a brush and lasso segmentation tool was implemented. These two manual tools are all a user
needs to clean range images. In fact, some organisations only use Cyclone’s [32] lasso tool and
limit box to perform cleaning. Then we implemented a plane selection flood fill tool. Lastly, in
order to save the system’s layer and selection state, a project file plug-in was added.

3.8.1 Brush

Figure 3.7: Brush tool
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The brush tool allows the user to make selections by painting (see fig. 3.7). The tool can be set
to deselect by holding the control key or explicitly selecting deselect mode on the side panel.
The tool allows the user use any of the system’s 8 selection colours, and paint with an adjustable
radius.

The tool uses a point picking subroutine built into CloudClean. When activated, the point
picking routine uses a special shader to render each point’s primitive id instead of its colour
value to an off screen frame buffer. The position of the mouse over the view port can then be
used to find the primitive id in the frame buffer. Once this has been determined a kd-tree is
used to perform a nearest neighbour search within the set radius of the selected point. This
ensures that the selection is depth sensitive. The returned points are then marked for selection
by constructing a new selection command and pushing it to the undo stack.

The painting action results in multiple overlapping points sets are selected. QT allows us to
define a merge function in order to combine consecutive commands of the same type. We use
this to merge all selection commands from the same stroke. This saves memory and prevents
the user from having to undo each fragment of the stroke individually.

3.8.2 Lasso

(a) Lasso polygon (in green) (b) Lasso selection

Figure 3.8: Lasso tool

The lasso tool lets a user construct a polygon on the view port, and select all points that fall
within it (see Figure 3.8). The plug-in keeps track of each click position and the current position
of the mouse to draw a polygon on screen. The polygon is drawn via its own shader that gets
executed when CloudClean emits the plug-in draw event from the render loop. The user signals
that the polygon is complete by double clicking. The points inside the polygon are selected by
performing a 2D point in polygon test. This test uses the same off screen frame buffer technique
as in Section 3.8.1. Points are again selected by pushing a selection command to the undo stack.
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3.8.3 Plane flood fill

Figure 3.9: Plane flood fill tool

The plane flood fill tool allows a user to select planar regions (see Figure 3.9). As with the
lasso and brush tool, the plane tool looks up the point under the clicked mouse position via
the CloudClean point picker. The region growing process starts by looking up the K nearest
neighbours of the initial point. Because planar regions should have points with normals in the
same direction, the angular distance between the normal of the initial point and its neighbour
can be used to determine whether to include it in the selection. We allow the user to set custom
threshold value expressed in the angular distance between two normals. This can be be used to
tolerate imperfect planes where some normals might deviate from the original direction. This
process is repeated for every newly added point. The selected region is created via an undo-able
command.

3.8.4 Project

An important part of running segmentation user experiments, is to have the ability to compare
a participant’s result with a ground truth reference segmentation. The project plug-in lets us
serialise selections and layers representing the ground truth and initial selection states to file.
It is also useful for saving intermediate work.

1 CloudCleanproject
2 VERSION
3 HAD_SELECTIONS
4 NUMBER_OF_CLOUDS
5 CLOUD_FILE_PATH_1
6 CLOUD_FILE_PATH_2
7 CLOUD_FILE_1_LABEL_COUNT

32



8 1 2 3 4 5 5 6 6 9 9 // LABELS
9 1 2 4 8 8 8 9 9 9 9 // SELECTION MASK

10 CLOUD_FILE_2_LABEL_COUNT
11 667 2 26237 4724 27 // LABELS
12 1 2 4 8 8 8 9 9 9 9 // SELECTION MASK
13 LAYER_COUNT
14 LAYER_1_NAME
15 LAYER_1_VISIBILITY
16 LAYER_1_COLOUR
17 LAYER_1_LABEL_COUNT
18 3 42 242 324 342 423 // LABEL SET
19 LAYER_2_NAME
20 LAYER_2_VISIBILITY
21 LAYER_2_COLOUR
22 LAYER_2_LABEL_COUNT
23 4 8 9 // LABEL SET
24 EOF

Listing 3.3: CloudClean Project format

The project plug-in serialises system state to an ASCII based .ccp (CloudClean Project) file
format (see Listing 3.3). The file starts with the magic string “CloudCleanproject” followed by
a version number and a boolean that indicates whether selections are present in the file. The
number of cloud files referenced within the file is then stated, followed by the file paths. The
next line starts by stating the number of labels to follow which is then followed by as many
integer labels. If present, the same number of selection mask values follow. The same format is
then repeated for each cloud file referenced. The final part of the file lists all the project layers.
The number of layers is first stated where after the first layers, name, visibility state, colour and
number of labels is stated. This is followed by the list of labels in the layer. The same format
is repeated for the remaining layers where after the file ends.

3.9 Navigation

In Chapter 2 it was argued that a first person perspective (FPP) camera provide a navigation
style that is analogous to how people navigate physical environments. As such it is arguably the
most appropriate navigation mode for virtual environments. FPP navigation, however, requires
one to make a trade of between rotational freedom and potential disorientation. If the camera
can be rotated freely, it is easy for a person to end up in non-upright position, which can be
disorientating. The reason for this is that unlike the real world, a virtual environment doesn’t
provide one with the vestibular information to determine an “up” direction. Recovering to
an upright position can be difficult as users have trouble achieving a 3D orientation using 2D
inputs.

Most 3D games, sensibly, trade rotational freedom for reduced disorientation. This trade-off
is implemented by limiting the camera’s pitch range to 180◦ and applying rotation around the
world x and y axis rather than around to the camera’s current orientation. This prevents the
camera from going upside down and from rolling. Because games usually expect the player to
remain upright, this trade-off is fine. In point cloud editing, however, it is not uncommon for
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Figure 3.10: One way to produce a roll state relative to the world with with a FPP camera is
by pitching down (1) and then yawing right (2a). Our roll corrected FPP camera avoids this
problem (2b)

a person to manipulate points under his or her current position. Limiting the pitch prevents a
person from quickly bringing an area into view when the most direct camera movement would
result in an upside down orientation. Limiting the yaw around the world y axis also prevents
the camera from looking left and right when pointing down.

Our variation of the FPP camera mitigates the problem of accidental disorientating reference
frames without restricting camera rotations. This technique allows a person to freely rotate the
camera around the yaw and pitch axis of the local reference frame. A user can therefore look
around naturally without being restricted by invisible barriers. In allowing this level of freedom,
the camera can become rolled relative to the world axis. If the camera is upright, pitching the
camera 90◦ down and then yawing 90◦ to the right, would orient the camera on its side relative
to the ground (see Figure 3.10). This undesirable state can be disorientating.

Being rolled, relative to the ground, is not always undesirable though. Some degree of roll
is required in order to give a user the freedom to look down without limitations. A roll state
only becomes undesirable when a user starts to look straight ahead along the horizon. When
looking straight ahead along the horizon, a user is accustomed to being upright.

The camera’s pitch, relative to the ground, can be used to formulate a heuristic to determine
when a roll state is undesirable: as the pitch angle approaches 0, roll becomes disorientating.
Roll states are less disorientating when the pitch is far from 0, as the user’s intention is likely
to look up or down. This heuristic can be used to determine when to unroll the camera.
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In our system we apply a small correctional roll rotation to the camera with every interaction
if the heuristic indicates that a roll state is undesirable. With successive interactions the effect of
the correction slowly nudges the camera back upright. To control the speed of the roll-correction
a damping coefficient d is used. We disable roll-correction when the pitch is not in the -45◦ to
45◦ range. (See Equation 3.1 and Figure 3.11)

Figure 3.11: Visualisation of roll-correction factor: camera angles within darker regions have
more roll-correction applied

correctionFactor(θ) =
{
d(1− | cos(θ)|) : |θ| ≤ 45◦

0 : |θ| > 45◦ (3.1)

3.9.1 User testing

To test whether roll-correction speeds up navigation, a user experiment was designed in which
participants were given a navigation task. The task requires a user to navigate between two
positions in a point cloud, from a disoriented state, with and without roll-correction enabled.
Our hypothesis is that if roll-correction helps orientate the user, a user should be able to
complete the task more quickly with roll-correction turned on.

Design

The independent variable in this experiment is whether roll-correction was on during the navi-
gation task. The dependent variable is the time the user take to complete the task.

In this experiment we use a repeated measures design. In a repeated measures design, each
participant take part in both the experimental and control conditions. The primary advantage
of this design is that a participant can serve as his or her own control. This reduces the effect
of individual differences in task speed. Secondly, fewer participants are needed as all partake
in both conditions. A repeated measures design, is however, also exposed to order effects. The
order in which a participant performs a task may affect his or her performance. A participant
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Figure 3.12: Overview of the navigation environment

may get better over time (learning effect), or he/she may get tired and exhibit diminished
performance.

We control for order effects in two ways. Firstly, counterbalancing is used to alternate the
order in which the user is exposed to each condition. Secondly, a priming task is provided to
familiarise the user with the system and the task. This serves to reduce learning effects.

Participants

After ethics approval was obtained, 19 participants with varying levels of computer experience
were recruited on University notice boards. In total 13 men and 6 women were recruited and
participated in a one hour experimental session. Prior to the experiment, three other partic-
ipants were recruited for a pilot study. No personally identifiable information were collected.
Participants were provided with an informed consent form that outlined the procedure and
purpose of the experiment. Participants were informed that they could withdraw at any time
without penalty.

Materials

A range image of a fort (see Figure 3.12) was used for navigation tasks. Two target areas, as
seen in Figure 3.13b and Figure 3.14b, were marked by colouring the points. Users started the
navigation task from the disorientated positions pictured in Figure 3.13a, and Figure 3.14a. A
plug-in was created to reproduce these starting position for each test. It was also used to input
the target position, start a timer when the user started moving, and stop the timer once the
user was at the target position.
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(a) Initial state (b) Target state

Figure 3.13: Palm navigation task

(a) Initial state (b) Target state

Figure 3.14: Stair navigation task

Procedure

Before starting the experiment, controls were explained to participants and they were given a
priming task. For this task, users were asked to navigate to each target position with and without
roll-correction. Afterwards, users were allowed to move around the point-cloud environment
until comfortable with the controls and familiar with the environment.

Users were asked to perform each navigation task 3 times under each condition (18 total
trials). A user would thus be asked to navigate to the palm trees with roll-correction on 3
times, before performing the same navigation task 3 times with roll-correction turned off. The
navigation tasks to the stairs followed the same procedure. Every second participant were
subjected to the roll-corrected condition after first completing the non roll-corrected condition.

The average duration of for each task and condition was recorded using the plug-in.

Results

Users performed both tasks significantly faster with roll-correction toggled on. In the first
task (navigate to palm trees) the mean time without roll-correction was 60.77 seconds with a
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(a) Without roll-correction (b) With roll-correction

Figure 3.15: Distribution of palm navigation task results

(a) Without roll-correction (b) With roll-correction

Figure 3.16: Distribution of stairs navigation task results

standard deviation of 39.74 seconds. With roll-correction the mean time was 25.65 seconds with
a standard deviation of 18.11 seconds. This amounts to a 35.13 second (57.8%) improvement
that is significant (p < 0.05) with p-value of 0.0002. In the second task (navigate to stairs)
the mean time for the control condition was 34.24 seconds with a standard deviation of 26.60
seconds. Roll-correction reduced the mean time to 24.02 seconds with a standard deviation of
17.73 seconds. That is a 10.22 second (29.8%) reduction that is significant (p < 0.05) with a
p-value of 0.0069. Figure 3.15 and Figure 3.16 shows (and a Shapiro-Wilk test [55] confirms)
that the results of neither experiment are normally distributed. A non parametric Wilcoxon
signed-rank test [70] was therefore used to compare paired samples.

The distribution of the palm navigation task (Figure 3.15) appear to be somewhat multi-
modal. As our sample is from a general student population, two cohorts likely correspond users
that have experienced with virtual 3D environment and those that do not. On the tail end of the
distribution some outliers are found. The same pattern can be seen in the second experiment
(Figure 3.16). The reduced number of outliers could be explained by practise effects, as users
may have gained experience from the first experiment.

In Figure 3.17a it can be seen that the inter quartile range of the roll-corrected condition is
much smaller than for the non roll-corrected condition. This can be explained by users being
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(a) Palms navigation task (b) Stairs navigation task

Figure 3.17: Box and whiskers plot of results

more likely to get stuck in disorientated states. Due to the assistance provided by the roll-
correction, this is less likely to happen in the roll-corrected condition, resulting in less variance.
Highly inexperienced users are however challenged by the whole experience, thus roll-correction
has a less pronounced effect on their navigation times. This effect manifests as two outliers in
the roll-corrected condition. In the second experiment (Figure 3.17b), inter quartile range of
the non roll-corrected state is reduced. This can again be attributed to experience. The outliers
however still appear to skew the results in both conditions.

Removing outliers does not diminish effect size or significance. Our results show that roll
correction is effective in reducing the navigation time of experienced and inexperienced users
alike.

Full results are available in Appendix A.

3.10 Conclusion

In this chapter we described the design and implementation of CloudClean, our point cloud
segmentation framework. The main aim was to support the development and testing of new
semi-automated segmentation tools. In line with this goal, it provides a 3D workspace that
supports loading multiple range images, creating of layers and selections, project files, and a set
of basic segmentation tools provided through a plug-in framework. This environment supports
a basic cleaning work flow that can be enhanced though the plug-in system. This allows the
impact of new segmentation algorithms (added as plug-ins) to be benchmarked against an
existing set of tools via user evaluations.

During the design we also addressed three point cloud cleaning time sinks. Firstly our new
layer representation supports a large number of layers while consuming a near constant amount
of system memory. This addresses potential slowdowns due to memory pressure on resource
constrained systems. It also provides the added benefit of extremely efficient set operations.
The alpha blending of layers and selections allow segmentation targets to be clearly delimited
during user experiments, which removes the need participants to have good judgement.

39



Secondly, all selections and layer operations were implemented via a undo stack. While this
is not significant in the general point cloud software ecosystem, it is the first open source point
cloud segmentation enabled framework to that allows one to undo costly mistakes.

Lastly a roll-corrected camera mode was developed to give users unrestricted rotational
freedom while avoiding disoriented states. We showed that, compared to a non roll-corrected
version of our camera, it speeds user navigation significantly between 29.8% and 57.8%.

In the next chapter we review the literature on semi-automated segmentation. This is
followed by Chapter 5 where we use CloudClean to implement and evaluate our interactive
Random Forest classification tool.
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Chapter 4

Semi-automated segmentation

Cleaning of terrestrial range images for heritage preservation has not been the topic of much
research. As discussed in Section 2.3.3, semi-automated segmentation tools in existing systems
are mostly aimed at specific target classes. Due to the unpredictability of unwanted points,
what a tool was designed to segment rarely matches the class of the target points. It is thus
difficult to reliably achieve useful levels of accuracy with specialised semi-automated tools. Users
therefore often revert back to manual tools.

In Chapter 5, our goal is to create a segmentation tool that can learn from examples, and
be used interactively. In this chapter we review relevant literature on general purpose semi-
automated segmentation.

4.1 2D segmentation

Figure 4.1: Intelligent scissors

Figure 4.2: Magic wand
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Efficient semi-automated segmentation of images has been of great importance in 2D image
editing. As such, tools for this task have improved greatly over time. Early efforts to create
semi-automated image segmentation tools include Intelligent scissors, Magic wand, and more
recently, Grab cut.

Intelligent scissors [37] help a user trace object boundaries by snapping a contour to areas
of high contrast. While very useful, the tool often fails when the contrast between the object
and background is low. Given the amount of user interaction required, this can often lead to
situations where the use of this tool is more effort than it is worth.

Magic wand[43] requires less work. This intelligent flood fill uses simple colour statistics in
order grow a region within a set threshold. The most common failure case occurs when the
background texture of the image is not distinct from the foreground. When this happens it may
require many attempts before a user finds an optimal threshold value.

Figure 4.3: Interactive graph cut segmentation

Grab Cut [46] distinguishes itself from earlier tools in that very little user interaction is
needed to produce exceptional binary segmentations. The interface requires the user to coarsely
label parts of the image. The algorithm then classifies each pixel as being part of a foreground
object or part of the background, based on the use provided input (see Figure 4.3).

Grab Cut exploits the observation that pixel values in images tend to vary smoothly. Neigh-
bouring pixels are therefore likely to be part of the same object (“guilty by association”). The
probability of two pixels having the same label can be modelled by a Markov Random Field
(MRF). Rather than independently segmenting each pixel, contextual information can be used
to improve segmentation accuracy. Grab Cut uses this probabilistic framework to encourage
neighbouring pixels to have the same label. The core idea is to start by determining the likeli-
hood of each pixel’s label independently. This likelihood is obtained from a Gaussian Mixture
Model (GMM) generated from user inputs. When the likelihood of a pixel and its neighbour
having the same label is considered, the most probable labelling of the image can be determined.
Grab cut achieves this by formulating the segmentation problem as an energy minimisation that
corresponds to the maximum marginal likelihood labelling of the pixels.

The maximum marginal likelihood labelling is determined via a graph cut. A graph is
constructed that connects each pixel to its 4 neighbours (see Figure 4.4). The weights of
connecting edges are determined by how similar a pixel’s brightness value is to its neighbour.
Edges between pixels with similar intensity values are assigned high weights and edges between
dissimilar intensity values are assigned low weights. Each pixel node is also connected to a
virtual foreground and background node. The edge weights between each pixel node and the
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Figure 4.4: Graph cut optimisation [7]

foreground or background node, is determined by the likelihood that the pixel’s colour will
occur in the foreground or background colour distribution (as per GMM). If the pixel is likely
to be in the foreground or background the edge weight to the background or foreground node
will be high. The goal of the segmentation algorithm is to split the graph into two sub graphs
by removing edges in such a way that the background and foreground nodes are in separate
graphs, and the accumulated weight of the removed edges is minimised. This ensures that
a good trade-off is achieved between prediction of the GMM and goal of having a smooth
segmentation. The binary version of this problem can be solved exactly and efficiently via a
max-flow/min-cut graph partitioning algorithm such as the Ford-Fulkerson [16] method, which
has O(V E2) time complexity, given V vertices and E edges. As such the graph cut algorithm
can be use interactively for typical image sizes.

4.2 Point cloud segmentation

Golovinskiy et al. [21] adapts graph cut segmentation as part of a completely automated system
for segmenting point-clouds captured in city streets. The first step in this approach is to locate
clusters of points, using various heuristics, that represent potential object locations in the point
cloud. The segmentation step constructs a graph by connecting the 3 nearest neighbours of each
point in the cluster. Spatial contiguity is encouraged by setting the edge weights to the inverse
distance between points. Distant neighbours are thus more likely to be separated. Each point is
also connected via an edge to a virtual foreground and background node. Edge weights are set
as a function of a point’s horizontal distance to the cluster origin. Foreground weights increase
as points locations approach the origin while background weights decrease. The foreground
and background edge weight calculations require that an approximate object radius is known.
Several graph-cut iterations may be required to estimate an appropriate radius.
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Because the distance between points determine pairwise edge weights, we found that it is
extremely challenging to optimally parametrise this graph cut on non-uniform range images.
We were unable to achieve even moderate success. The min-cut optimisation invariably led to
partitions where the foreground node was attached to only a small number of nodes close to
the object centre.

As evident from our experience implementing Golovinskiy et al. [21], modelling the rela-
tionship between points is difficult, especially for irregularly sampled range images. Other work
that specifically focuses on segmenting non-uniform range images include Anguelov et al. [2].
Anguelov et al. [2] models relationships between neighbouring points in range images by using
a combination of the distance between points and the dot product of their normals. Adjacent
point normals on most surfaces are likely to point in the same direction. Using normals in
addition to distance to model the degree of relatedness between points reduces the likelihood
of biased segmentations. Anguelov et al. [2] determined the prior probability distribution of
points labels in the range image via a Support Vector Machine (SVM) [6]. Anguelov et al. [2]
demonstrates segmentation results of up to 93% accuracy using this graph cut implementation.

Munoz et al.’s [39] work completely abandons modelling point relationships via heuristics.
Firstly, range images are reduced to related clusters. Functional gradient boosting is then used
to learn the relationships between points instead of formulating it by hand. When targeting
wires, tree-trunks, vegetation, ground planes, and facades in their urban Oakland dataset, up
to 97.2% accuracy could be achieved.

Segmenting objects by modelling relationships between points has its limitations. The un-
derlying assumption that neighbouring points are likely to have the same class does not hold
in all cases. In heritage data one may want to target non-coherent points such as scanner noise
or fog. Using a graphical framework in this case, not only adds overhead but is likely for lead
to poor results. Weinmann et al. [68] demonstrates that graphical models are not essential to
achieve high accuracy range image classification. In using SVM with point features that capture
local structure, Weinmann et al. [68] was able to outperform Munoz et al. [39] on their own
Oakland dataset.

4.3 Machine learning

Other popular supervised learning methods that have been used to classify range images include
Naive Bayes [27], Nearest Neighbours (NN) [45, 29], K Nearest Neighbours (k-NN) [45], and
Random Forest [8]. Weinmann et al. [68] found that SVM outperformed NN, k-NN, and Naive
Bayes in a range image classification task. SVM is known to perform exceptional well on a wide
variety of classification tasks [15], but may require prior knowledge about input features and
can be difficult to tune [24]. Without proper scaling, features with wider numeric ranges can
dominate those with narrower ranges [24]. An appropriate kernel also needs to be selected and
kernel hyper-parameters need to be tuned for good performance [24].

Deep neural nets is another machine learning technique worth considering. One advantage
of neural nets are that careful feature selection is not required as the method can automatically
generate hierarchies of features during training, not unlike the human visual system. Advances in
neural networks [54] have allowed researchers to solve increasingly difficult problems by utilising
increasingly larger amounts of data. Unfortunately, due of the large amount computation and
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labelled training data required to achieve good results, deep neural nets is not appropriate for
interactive training and classification tasks.

Random Forest [8] is an classifier with compelling performance and accuracy characteristics.
Santner et al. [52] reports that it takes 1 second to train on 2000 samples on recent hardware.
Training and evaluation scales linearly across multiple cores which is useful when performance
becomes a problem. It is also the only method to outperform SVM in Fernández-Delgado et al.’s
[15] evaluation of 179 classifiers on 121 data sets, and has been demonstrated to work well on
range images [56]. Other benefits of Random Forest are that the method is tolerant of noise,
does not require input normalisation, and has fewer tunable parameters compared to SVM and
many other classifiers. Random Forest is also inherently multi-class. This adds to its efficiency
as multiple binary classifiers do not have to be trained and evaluated [52].

Given these characteristics, Random Forest appears to be the best candidate for a general
purpose interactive range image classification tool.

4.4 Random Forest

Figure 4.5: Random Forest 1

Random Forest [8] is an ensemble classifier that uses a multiple randomised decision trees (see
Figure 4.5). A decision tree is a binary tree used for classifying data. When classifying a data
point represented by a feature vector, each non-leaf node runs a test to determines whether to
branch left or right. A test usually compares one feature to a threshold value such as (>0.5).
As a tree is traversed different features are considered until the probability of each class is given
by a leaf node.

1Source: http://www.ee.iitkgp.ac.in/ispschool/mvlss2016/
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Given a set of feature vector and class pairs, a decision tree can be trained by finding a
feature and threshold that best splits the data set by class at each node in the tree (determined
by information gain or gini index). A perfect set is achieved when the tree can perfectly
discriminate between the different classes. When a perfect set is achieved we stop growing the
tree. When a perfect set is not reached, the tree is grown until the maximum depth is reached.
[8]

In a Random Forest, each tree is grown with a random training set that is sampled with
replacement (samples can be selected more than once). At each node in the tree a set of features
are also sampled randomly with replacement. When using Random Forest we need to decide
on the number of trees we want to grow and the maximum depth of each tree. Deep decision
trees tend to over-fit data. In a Random Forest over-fitting is managed by having many trees
vote on the outcome of a classification. More trees typically improve classification accuracy,
with diminishing returns.

We use Christian et al.’s [12] on-line Random Forest implementation. It has the ability to
learn incrementally on streaming data, consumes less memory, and is more tolerant of noise
than Breiman’s [8] original off-line implementation. This comes at a small trade-off in accuracy
for small sample sets. With larger samples Christian et al.’s [12] implementation converges to
the accuracy of off-line Random Forest.

In Christian et al.’s [12] implementation, a Poisson process is used to determine whether a
sample is used in a particular tree. For each node in a tree, random tests are generated. Instead
of determining the test by randomly selecting a candidate features and finding an optimal
threshold, as proposed by Breiman [8], features and thresholds are determined randomly. After
a fixed number samples have been seen by a given node, the best test is selected and a split in
the tree created. The number of samples before a split is an extra hyper-parameter that needs
to be considered.

The Random Forest in Christian et al.’s [12] implementation can also be updated over time
by discarding trees that have high out of bag error and replacing them with new trees. This
is useful for updating the forest in real time as the user labels more data. Unfortunately there
was no scope to explore this feature in this work.

4.5 Features

Because Random Forest is less prone to over-fit training data, less caution is needed when
selecting an optimal number of features. However, the overall amount of computation is still
affected by how many features are used. Interactivity can be compromised by excessive feature
computation. We thus aim to use the minimal set of preferably low cost features that can
discriminate well between object classes likely to be found in heritage scans.

Features can be grouped into geometric and non geometric types. Colour [72] and LIDAR
intensity [59] returns are popular non geometric features that require no additional computation.
Our data sets contain no colour information but LIDAR intensity returns have been shown to
differentiate well between different surface types [59]. Geometric features encode the relationship
between points. The surface normal is one such feature that can be estimated by fitting a plane
to 3 or more points. Geometric features have varying computational cost depending on the
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size of the neighbourhood that needs to be considered. Features used in previous work include
height [63, 67, 10] (above the ground plane), surface curvature [25, 45], density [68], verticality
[14], and spin images [28, 21, 2].

The most widely used features are derived from a principal component analysis on the co-
variance matrix for a local neighbourhood of points [42, 17, 10, 22, 68]. The resulting eigenvalues
and eigenvectors describe the distribution of points along 3 principal axis. Because planar data
is distributed along the two primary axis and linear data is distributed along one axis, one
can use eigenvalues to classify lines, planes and other geometry. West et al. [69] formulated 6
derivative measures to describe point cloud data. These features are Linearity (Equation 4.1),
Planarity (Equation 4.2), Sphericity (Equation 4.3), Anisotropy (Equation 4.4), Eigenentropy
(Equation 4.5) and Omnivariance (Equation 4.6). Rusu [48] proposes an eigenvalue derived
estimate of the change in curvature around a query point (Equation 4.7). PCL [50] implements
another curvature estimate where the normals in a neighbourhood are projected onto plane rep-
resented by the normal at the query point. A principal components analysis on the projected
normals results in a curvature estimate along the two primary axis of the plane.

Linearity = λ1 − λ2
λ1

(4.1)

Planarity = λ2 − λ3
λ1

(4.2)

Sphericity = λ3
λ1

(4.3)

Anisotropy = λ1 − λ3
λ1

(4.4)

Eigenentrophy =
3∑
i=1

λi lg λi (4.5)

Ominvariance = 3

√√√√ 3∏
i=1

λi (4.6)

Change in curvature = λ3
λ1 + λ2 + λ3

(4.7)

Rusu [48] recognises that features such as curvature and normals are tolerant of noise,
but don’t encode sufficient information for computing correspondences without excessive false
positives. Point Feature Histograms (PFH) is an attempt to design a more descriptive feature
suitable for such applications. It encodes the relationships between points and their normals
across multiple scales and represents this in a multidimensional feature vector. The original
algorithm runs in O(nk2) where k is the neighbourhood size and n is the point cloud size.
Fast Point Feature Histograms (FPFH) [49] reduces this to O(nk). The algorithm is shown to
discriminates well between different geometric shapes in low noise indoor environments. The
test datasets used in this work are, however, filtered for outliers and re-sampled to avoid the
effects of noisy non-uniformly sampled data. Filtering is impractical for our use case as the
filtered points still need to be assigned a class.

Spin images [28] produce 2 dimensional histograms that are also aimed at the identification
of objects or correspondences. It is important that the neighbourhood over which spin images
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are computed be appropriate for size of object to be targeted. The high dimensionality of spin
images necessitates the use of dimensionality reduction techniques. Anguelov et al. [2] uses
PCA to reduce two 5 ∗ 10 spin image features to 45 principal components. This is a O(n3)
computation in the number of features, and makes spin images (n = 50) rather expensive to
reduce.

4.6 Feature selection

Selecting the optimal set of features and appropriate neighbourhoods sizes can be challenging.
Guyon and Elisseeff [23] identifies 3 approaches to feature selection namely filtering, wrapping,
and embedding.

Filter methods involves the evaluation features in isolation without the use of a classifier.
Using this approach requires one to define a function to score the performance of a feature for
a given training set. This approach allows one to easily rank features and select the best ones
independent of what classifier is used. A problem with filtering is that features can be weak
when used in isolation but strong when combined with others.

Wrapper methods acknowledges complimentary features and thus evaluate subsets of fea-
tures by measuring classifier performance. Finding the optimal subset of features for a given
classifier can lead to a combinatorial explosion. To avoid this exponential increase in com-
plexity, two greedy search strategies can be followed, namely: forward selection and backward
elimination. In forward selection, features are added one by one while classification accuracy is
monitored. If the addition of a feature improves the classifier accuracy, it is kept. Backward
elimination follows the same process, but features are removed if their absence increases per-
formance. These strategies can also help avoid over fitting by reducing the number of features.
The disadvantage is that once a feature is removed or added, it‘s presence or absence in the
feature set is not reconsidered. This may result in a locally optimal solution.

Embedded methods perform feature selection as part of the training process of some types
of classifiers such as decision trees. An embedded method requires that all potential features
be computed, even when they go unused. The overhead of unused feature computation is
problematic in interactive applications.

4.7 Summary

In this chapter we considered the problem of interactive segmentation from user provided ex-
amples. The painting interface used grab cut is a very simple way to input examples. The
exceptional results produced by graphical modelling local relationships, lead us to explore sim-
ilar applications in the 3D domain

Graphically representing a segmentation problem in range images presents two problems.
Firstly, the non-uniform distribution of points in range images makes it difficult to model
relationships between neighbouring points. Using the distance between points as a similarity
measure leads to biased segmentations. Factoring in the difference of point normals in the
edge weight computation reduces this bias. The best results are however obtained by learning

48



the pairwise weights. The second problem is that fog and random scanner noise violates the
coherence assumption of the graphical model. Targeting non-coherent artefacts is therefore
likely to results in poor quality segmentations. Weinmann et al. [68] shows that using SVM and
selecting features that encode local structure can outperform segmentation algorithms based on
graphical models, without depend a coherence assumption.

While SVM is an excellent classifier, Random Forest has key advantages over it and other
supervised learning algorithms. It is fast, scales linearly over multiple cores, exhibits best in
class accuracy [15], and is easy to understand. Given these characteristics, Random Forest
appears to be the most appropriate candidate for an interactive example based segmentation
tool.

We also reviewed a number of popular features from the literature. While Random Forest
tends not to over-fit training data when many features are used, more features does come at a
computational cost, which can compromise an iterative work flow.

In the next chapter we systematically determine an optimal set of features and parameters
to use in a Random Forest based segmentation tool based. This is followed by a user evaluation
of the tool using the final parametrisation.
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Chapter 5

Interactive Random Forest
classification

In this chapter we design a semi-automated segmentation tool that harnesses Random Forest
to interactively learn new object classes from partial user labellings, provided via CloudClean
selections. We aim keep training and classification time low enough such that the overall user
segmentation time with the use of this tool is less than a manual work flow.

Our first goal is to find an optimal set of features for use in a Random Forest classifier. We
start by preparing a challenging set of reference segmentations from heritage sites. Forward
selection is then used to systematically perform feature selection using this test data. We then
tune Random Forest hyper-parameters and consider the accuracy-performance trade-off when
down sampling range images. Our second goal is to show that the tool reduces the overall
segmentation time. We evaluate this in a user experiment at the end of the chapter.

5.1 Feature selection

During feature selection, we are interested in segmentation accuracy, as well as algorithm run
time. As accuracy increases we can tolerate longer processing times because more work is being
performed. At some point, however, a user’s attention will be lost and he or she may not
notice task has completed. Nielsen [40] states that after 1 second of waiting a user’s flow of
thought is interrupted, and after 10 seconds his or her attention will be lost, and he/or she
will want to perform other tasks while waiting. As such, we want to keep the computation
time under 10 seconds. We are however aware that performance varies between systems, and
that our laptop test system (Intel Core i7-6500U 2.50GHz CPU with 12GB of memory) has
fairly modest compute power compared to higher end desktop hardware. As such we prioritise
accuracy over performance during the feature selection process, and attempt to optimise after
the fact.
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(a) Training labels. (b) Reference labels.

Figure 5.1: People and Facade.

(a) Training labels. (b) Reference labels.

Figure 5.2: Tools and ground

(a) Training labels. (b) Reference labels.

Figure 5.3: Brick wall and tree
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(a) Training labels. (b) Reference labels.

Figure 5.4: Fog

5.1.1 Test data

fog people tools tree
Total points 5699065 9759091 5462705 7416177
Visible 5699065 179338 206553 581656
Target 15344 6237 25078 26854
Background 875434 38583 47432 107571
Initial F-score 0.116112 0.761875 0.776021 0.605797

Table 5.1: Scan statistics

Feature selection presents us with a dilemma. Our aim is to produce a classifier that can inter-
actively learn previously unseen object classes. However, in order to perform feature evaluation,
we need to know what kind of objects a user might need to segment. For the purpose of this
evaluation we use scans of four types of unwanted points frequently found in heritage scans,
namely: people (Figure 5.1), equipment (Figure 5.2), vegetation (Figure 5.3), and fog (Chap-
ter 4). In the screen shots of our test data, we show the initial coarse user labelling on the left,
and the ground truth reference segmentation on the right.

The first 3 scans also represent 3 degrees segmentation difficulty. The people in the archway
(Figure 5.1), does not require much work to segment using a brush tool. The equipment in the
grass requires more effort to isolate, and the vegetation (Figure 5.3) is most difficult to segment.

In the first three scans, we cropped the area of interest, as it is common for users of software
packages like Cyclone [32] to isolate a subregion before using a segmentation tool. In Cyclone
[32], this can be achieved with a limit box that restricts the area that is affected by the tool. In
CloudClean we achieve the same effect by: selecting a region with the lasso tool, inverting the
selection to create a new layer, and then hiding the newly created layer. Hiding points in this
way also reduces the number of points that need to be classified, which reduces the algorithm
run time.

Unwanted points are, however, not always isolated. We therefore also include an uncropped
scan that contains widely dispersed points created by fog (Figure 5.4). This scan not only a
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contains larger number of points compared to other scans, but represents a class of non-coherent
artefacts that can not be adequately modelled using the graphical frameworks described in
Chapter 4.

Table 5.1 shows the total number of points in each scan, the visible points used, the total
number of points in the foreground and background labelling, as well as the F-score of these
initial labellings relative to the reference segmentation. We use the accuracy measurements as
a baseline for interpreting classifier performance in subsequent sections.

In the test data it can be seen that the coarse labelling of background points, sometimes
have an order of magnitude more samples than the foreground. A problem with user provided
labellings is that the number of samples of each class can be skewed. A classifier trained on a
skewed sample, may produce a biased classification. We ensure that an equal number of samples
from each class is used during training. We do this by sampling only as many points as is in
the smallest class for each class.

5.1.2 Features

In our feature evaluation we consider: X, Y, Z and LIDAR intensity values, point normals, prin-
cipal curvatures [50], eigenvalues, linearity (Equation 4.1), planarity (Equation 4.2), sphericity
(Equation 4.3), anisotropy (Equation 4.4), eigenentrophy (Equation 4.5) omnivariance (Equa-
tion 4.6), and curvature (Equation 4.7).

The relative height of a point above the ground has been used to discriminate between objects
at different heights in previous work [63, 67, 10]. Tree crowns for instance, can be expected to
be above a certain elevation. Because the ground is not always a flat plane, the ground plane
usually needs to first be estimated. Given enough decision trees, X and Y coordinates may
provide enough context for the Z coordinate to learn such relationships without ground plane
estimation. Because we do not expect our classifier to extrapolate beyond a single scan, XYZ
coordinates have the potential to be more discriminative compared to other applications.

Tatoglu and Pochiraju [59] showed that LIDAR intensity values can help to discriminate
between different surface types. Normals are included as planes facing the same direction have
the same normal. Normals are efficiently computed by considering neighbours in the scan grid.

Principal curvatures [50] are computed using the point normals in a neighbourhood. The size
of this neighbourhood is important as it affects the amount of computation required as well as
how descriptive the feature is. Noisy scans may therefore need a larger number of points in order
to accurately estimate curvature. However, as the neighbourhood size increases, so does the
computational cost and the risk of including unrelated nearby points which may affect accuracy.
Eigenvalues and derivative features require similar consideration, as the neighbourhood size
similarly affects computation and discriminative power.

5.1.3 Down sampling

Many candidate features require neighbourhood lookups. Performing a nearest neighbour search
for every point in a range image can be costly. For example, using FLANN (Fast Library for
Approximate Nearest Neighbours) [38] to find neighbours in a 5cm radius on a range image
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containing 5.6 million points, takes about 5 minutes. Over larger neighbourhoods this problem
is exacerbated.

Clustering the data set in an approach similar to Golovinskiy et al. [21] is one way reducing
the amount of data that needs to be processed. Unbiased clustering is, however, a potentially
challenging problem when dealing with non-uniform density of range images. The non-uniform
density of range images, is in fact, a major contributor to the cost a neighbourhood search.
Because objects close to the scanner are sampled extremely densely, small regions may contain
more points than is necessary for classification purposes. The performance of neighbourhood
queries can therefore be improved by selectively down sampling such dense regions.

PCL [50] contains a grid based down sampling routine for this purpose. The routine inserts
each point onto a voxel grid where after it returns the centroid of each voxel. Because PCL
preallocates memory for the grid, the minimum voxel size for large regions is limited by system
memory. To accommodate small voxels without running out of memory we use an octree instead
of a grid (see Algorithm Algorithm 1).

Algorithm 1 Octree based down-sampling
1: function octreeDownSample(points, voxelSize)
2: outputPoints ← []
3: bigIdxToSmallIdx ← []
4: octree ← newOctree(points, voxelSize)
5: for leaf in octree.leafs do
6: centroid ← newPoint(0, 0, 0)
7: for idx in leafs.indices do
8: centroid← centroid+ points[idx]
9: bigIdxToSmallIdx[idx]← outputPoints.length

10: end for
11: outputPoints.insert(centroid/leafs.indices.length)
12: end for
13: return outputPoints, bigIdxToSmallIdx
14: end function

Figure 5.5: Number of points for voxel resolution
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The first step in this method is to construct a new octree with a predetermined voxel
resolution. After indexing the point cloud we iterate over the octree leaf nodes to compute the
centroid of the points in each node. During the centroid computation, we keep track of what
points, from the original cloud, were included in the centroid via a map. This map enables us to
transfer labels from the down-sampled cloud back to the original cloud. Figure 5.5 shows how
the voxel size of the octree affects degree of down-sampling in a range images with 5.6 million
points.

To determine what a reasonable degree of down sampling might look like, it is worth consid-
ering what size neighbourhood should sufficiently characterise a surface. Intuition about what
size neighbourhood is optimal can be gained by looking at Figure 5.4, Figure 5.3, Figure 5.2,
and Figure 5.4. The smallest target object in these data sets is the spade in Figure 5.2. The
spade has a shaft diameter of roughly 4cm. A neighbourhood size of 4cm should characterise
the points on the handle surface without including nearby points associated with the ground.
To ensure that the spade shaft is not reduced to a single point, a voxel resolution of less than
4cm would be needed for down-sampling. This may, however, be prohibitively expensive when
attempting to maintain interactivity.

Figure 5.6: Total search time
for search radius and voxel

resolution

Figure 5.7: Effect of voxel
resolution on downsample

time

Figure 5.6 shows how the neighbourhood lookup time is reduced by down-sampling. Using
a modest 0.02m voxel resolution results in reduced lookups times, but are still extremely costly
for large neighbourhoods. Figure 5.5 shows how a 5.6 million point cloud is reduced by half with
a 0.02m voxel resolution. Interestingly Figure 5.7 indicates that more aggressive down-sampling
is computationally less expensive. This down-sampling technique should thus be very effective
for reducing much higher resolution scans to manageable densities.

In Section 5.4, we further explore the relationship between classification accuracy and down
sampling. Until then, we use a relatively expensive 0.02m voxel size to manage computational
cost.

5.1.4 Evaluation

We employ a forward selection wrapper method [23] for feature selection. Wrapper methods
use a classifier to evaluate feature performance, as opposed to an independent measure. The
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disadvantage is that the selected features are not guaranteed to work well with other classifiers.
When changing classifiers the feature selection process will have to be repeated. As Random
Forest is the only classifier considered in this work, a wrapper method is appropriate. Our
feature evaluation starts with the default Random Forest hyper parameters used by Christian
et al. [12]. That is: 100 trees with a maximum depth of 10, a minimum of 100 samples seen
before splitting the tree, and 20 randomly generated tests per split.

Forward selection starts by scoring and ranking individual features. We do this by classifying
our test data using a Random Forest with a single feature and recording the F-score relative
to the reference labelling of a scan. The highest ranked feature is then combined with the next
best feature. If the combination of features improves the F-score, the feature is included for all
subsequent tests. If not, the feature is discarded. Subsequent tests include features ranked in
descending order of score.

5.1.5 Feature radius selection

Features parametrised over multiple neighbourhood sizes could be considered distinct features
in their own right. Given the computational cost associated with performing neighbourhood
lookups, including multiple parametrisations of a feature (over different radii) would result a
great deal of computation that will translate into a long waiting periods for a user. In order to
avoid this cost, we first find the optimal radius for principal curvatures and eigenvalue derived
features.

To determine the optimal neighbourhood sizes for Eigenvalue and Curvature based features,
we measure the F-score achieved by classifying our test data with each feature, over a 0.1m
(Figure 5.9), 0.2m (Figure 5.10), 0.3m (Figure 5.11) and 0.4m (Figure 5.12) radius.

Figure 5.8: Mean feature F-score per search radius

56



Figure 5.9: F-score per feature (radius 0.1m)

In Figure 5.9 it can be seen that, when a 0.1m radius is used, raw eigenvalues perform best,
followed by principal curvatures. It is interesting to note that for the ‘fog’ scan, the eigenvalue
derived curvature estimate performs better than principal curvatures. This could be explained
by the normal estimation process. A point associated with fog is likely to have unreturned
neighbouring points in the scan grid. When a point has no neighbours in the scan grid, the
normal estimation fails and assigns a default value. The eigenvalue derived curvature estimate
does not rely on normals and would thus not be affected by this. Omnivariance also appears to
be a strong feature for classifying fog. Planarity, sphericity and anisotrophy do not work with
a 0.1m radius due to numerical problems associated with a small number of neighbours.
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Figure 5.10: F-score per feature (radius 0.2m)

Increasing the search radius to 0.2m resolves the numerical problems experienced with pla-
narity, sphericity and anisotrophy (see Figure 5.10). The average F-score across scans and
features also improve from 0.28 to 0.38 (Figure 5.8). Principal curvatures out performs eigen-
values at a 0.2m search radius. The larger radius appears to compensate for missing normals.
Principal curvature discriminates well between a target regardless of the scan being classified,
while the F-score for eigenvalues and derived features vary between scans. The scan containing
random tools scan achieves relatively high accuracy across all features. This could be attributed
to the fact that the ground is relatively featureless at this scale and the tools are all close to
the ground.
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Figure 5.11: F-score per feature (radius 0.3m)

The average F-score across all features drops from 0.38 to 0.36 (see Figure 5.8) when in-
creasing the search radius to 0.3m. This average appears to be lowered primarily by weaker
features (see Figure 5.11). The average F-score for the two best features, principal components
and eigenvalues, both increases by roughly 2 percent. In both cases twice the computational
resources are required (see Figure 5.13). Given marginal accuracy gains in only the two best
features and our focus on accelerating the cleaning process, this is not a good trade-off.
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Figure 5.12: F-score per feature (radius 0.4m)

Using a 0.4m search radius improves the average F-score by just under 2% over a 0.2m search
radius (see Figure 5.8). The computational cost increases 4 times for principal curvatures and
doubles for eigenvalues (see Figure 5.13). As with a 0.3 radius the additional resources required
outweigh the benefits.

Figure 5.13: Feature computation time for search radius (5.6 million points)
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5.1.6 Feature selection

Figure 5.14: All features

After including non-parametrised features (XYZ, Intensity and Normals), our final set of ordered
(mean F-score) candidate features are shown in Figure 5.14. During forward selection, each
feature in Figure 5.14 is included sequentially in order of mean F-score. After including a
feature, the classifier is trained and evaluated on our 4 test scans. A feature remains in feature
set as long as it improves the average F-score. The result of this procedure is shown in Table 5.2.

Table 5.2 shows that the average F-score across all 4 scans is maximised when using XYZ
coordinates, Principal curvatures, Eigenvalues and Intensity in our feature set. Interestingly,
only a modest 1.5% increase in accuracy is gained when including Eigenvalues with XYZ coordi-
nates and Principal curvatures. By removing eigenvalues from our final feature set, the average
accuracy is 84% which represents an accuracy decrease of only 0.5%. Given the 100 seconds
the eigenvalues computation requires on the largest scan (Figure 5.13), this is an acceptable
trade-off.

5.2 Random Forest hyper-parameters

After feature selection, four Random Forest hyper-parameters need to be tuned: the number
of decision trees used, the depth of each tree, the number of random tests generated, and the
number of samples tested before selecting a test to split on. We tune only the first 3 parameters
and split a tree after 100 samples, as suggested by Christian et al. [12]. We start by varying
the number of trees used and keeping the depth and number of random tests the same as our
initial values (10 deep, 20 tests).
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5.2.1 Number of trees

Figure 5.15: F-score for N trees of depth 10

Random Forest is designed to reduce the high variance of individual decision trees by averaging
the output of each tree. Adding more trees thus has the effect of reducing over-fitting. In
Figure 5.15 we see that the average F-score over the scans increases up to 83% with 64 trees,
after which gains plateau. It can be seen that the F-score for the ‘people’ scan drops when
moving from 2 to 4 trees and then again when moving from 8 to 16 trees. Results appear to
stabilise after 32 trees.

Figure 5.16: Time to train N trees of depth 10
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Figure 5.16 shows that the training cost scales with the number of trees. The amount of
labelled data also affects the training duration. Ideally the user should spend little time labelling
data so a large amount of labelled training data is not expected. In instances where large areas
are labelled, training on fewer samples could be beneficial. On our test data and hardware,
training can be completed in under a second with 64 trees.

Figure 5.17: Time to classify scans with N trees of depth 10

As expected, the classification time scales with the number of trees. With 64 trees the
largest scan (fog) takes around 11 seconds to classify while the largest cropped scan (tools)
takes 7 seconds to classify. The smallest cropped scan takes 2 seconds to classify. These figures
are cut in half when reducing the number of trees to 32. With 8 trees all scans can be classified
in under a second. Given the roughly order of magnitude classification speed up associated with
reducing the number of trees from 64 to 8 and the meagre 3% reduction in accuracy, 8 trees
seems like a reasonable choice. The reduction in accuracy associated with moving to 16 trees,
however, suggest that using 8 trees may be insufficient. The error rate of a Random Forest is
increased when two trees are correlated Breiman [8]. When using only 8 trees we run a larger
risk of trees being correlated by chance. We therefore use 64 trees moving forward and revisit
this decision in Section 5.4.
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5.2.2 Maximum tree depth

Figure 5.18: F-score for 64 trees of depth N

Figure 5.19: Time to train 64 trees of depth N
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Figure 5.20: Time to classify scans with 64 trees of depth N

Increasing the maximum decision tree depth increases the likelihood of individual trees over-
fitting the training data. In aggregate this improves accuracy in Random Forest. Breiman [8]
recommends that trees are grown to the largest extent possible. In Figure 5.18 it can be seen
that accuracy stops increasing after a maximum depth of 8. Training time appears to remain
constant after a maximum depth of 16 (see Figure 5.19). In our Random Forest, a tree stops
growing after a pure set is achieved. This could explain why after a depth of 16 training cost
plateaus. After a maximum depth of 8, the cost of classifying a trees also remains constant at
around 10 seconds. The cost of evaluating an individual tree increases logarithmically as the
depth increases. If the trees did grow beyond a depth of 16, we would thus not expect the cost
to increase dramatically. We use a tree depth of 8 going forward.
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5.2.3 Number of random tests

Figure 5.21: F-score using N random tests

Figure 5.22: Time to train using N random tests

Generating random tests increases the likelihood of finding the optimal test for a given split
in a tree. In Figure 5.21 it can be seen that the accuracy increases as more random tests are
considered. After generating more than 16 random tests it can be seen that the results for
the ‘people’ scan starts to decrease in accuracy. The reason for this is that the scan has fewer
samples to train with than the other scans (6237 of each class after balancing the samples,
see Table 5.1). As more random tests are generated we increase the likelihood that the best
random test for a node in a in tree will be similar to the best test in parts of other trees, as
they are more likely to sample the same data. This increases the correlation between trees and
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reduces accuracy. Classification time remains under 1 second for 16 random tests per tree split
where after cost increases substantially (see Figure 5.22). We thus use 16 random tests moving
forward.

5.3 Results

In the previous sections we performed feature selection and classifier tuning with the primary
focus being on accuracy instead of performance. We determined that XYZ, Intensity and
Principal curvatures (radius 0.2m) were the optimal set of features for our test data. This was
determined after range images were down sampled with a 0.02m voxel size. In this section we
analyse the results.

fog people tools tree
Initial accuracy 0.12 0.76 0.78 0.61
Final accuracy 0.91 0.67 0.85 0.84
Down sample duration 3.41s 2.78s 1.86s 1.35s
Curvature compute duration 90.77s 48.64s 34.12s 14.74s
Training duration 0.74s 0.20s 0.50s 0.94s
Classification duration 9.66s 3.40s 6.22s 1.49s
Total duration 104.58s 55.02s 42.70s 18.53s

Table 5.3: Accuracy and classification cost

Table 5.3 shows a summary of the accuracy and segmentation time for each test scan. It is
clear than the bulk of processing time arises from feature computation (up to 90 seconds). The
next biggest component is the classification time (up to 10 seconds). We know that the classi-
fication step can be optimised, without sacrificing accuracy, by reducing the number of trees.
This will however not be sufficient as the feature computation dominates the cost equation.

Looking at accuracy it can be seen that changes in accuracy over the baseline varies between
scans. The greatest increase in accuracy is on the ‘fog’ scan (0.12 to 0.91). When compared
to manually removing such points from a scan, a 105 second wait may be preferable. However,
because non interactive filtering tools exists in packages like Meshlab [66], that is not a fair
comparison. Meshlab’s filter to remove isolated points with respect to diameter, would arguably
be a better tool to compare against. When using this filter a user specifies the radius at which
a point without neighbours is considered isolated, and is subsequently removed. Running this
filter on 5 million points using a 0.5m diameter takes 12 seconds on our test hardware. The
problem is, however, that a user needs to specify the correct radius to achieve the desired result.
Much trial and error may thus be required to achieve the desired result. Given that undo is a
missing feature in Meshlab, this may require that the scan be reloaded if the applied filtering
was too aggressive. The ray of points at the centre of Figure 5.4 can also not be identified using
an isolated point filter due to its density. Using Random Forest to specify filter parameters by
example could allow users to avoid much trail and error, as well as achieve better results.

The worse case scenario manifests itself in the ‘people’ scan where a 9% decrease in accuracy
is observed. Looking at Figure 5.1 one notices that the people under the archway are easy to
isolate manually. A quick stroke of the brush tool is sufficient to select most of the points
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(a) Fog (b) People

(c) Tools (d) Tree

Figure 5.23: Segmentation results using final test parameters
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(a) Training labels. (b) Result labels.

Figure 5.24: Refined segmentation of people and facades

(a) Training labels. (b) Result labels.

Figure 5.25: Refined segmentation of trees

associated with them. There is thus very little to gain by using automation. This does not,
however, explain the bad results. The first thing to notice in Figure 5.23b is that the wall inside
the arch is misclassified as being the in same class the people. It would appear that the Random
Forest relies primarily on point coordinates to localise the target. Labelling parts of the wall as
shown in Figure 5.24a makes the Random Forest de-emphasize the XYZ feature. The resulting
segmentation has an F-score of 0.87 which is 11% above baseline. In Figure 5.24b it can be
seen that parts of the scan are still incorrectly segmented. The top of the doorway is now
mislabelled, likely because it has similar curvature characteristics to the people and curvature
is a more discriminative feature following additional labelling.
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A similar effect can be seen in Figure 5.23c where the wall behind the tree is mislabelled.
When parts of the wall behind tree are labelled as shown in Figure 5.25a, the resulting clas-
sification (Figure 5.25b) is better and has an improved F-score of 91% (+6%). These results
suggest that using XYZ coordinates to enforce a degree of coherence is somewhat limiting.

The segmented tools in Figure 5.23c have a lower than expected F-score of 0.84%. The fact
that wheelbarrow is high off the ground is likely big factor in why it was accurately segmented.
The tools close to the ground were not completely segmented, possibly for the same reason.
Down sampling may have also played a role in the misclassification of the spade’s shaft.

5.4 Performance and accuracy

In the last section we saw that the computation of curvature dominates the processing time.
Without parallelisation and/or more computational resources the tool can not run interactively
without a trade-off in accuracy. In this section we look at what can be achieved on modest
hardware by down sampling and reducing the number of trees used for classification.

Voxel size fog F-score people F-score tools F-score tree F-score mean F-score
0.02 0.91 0.67 0.85 0.84 0.82
0.03 0.90 0.75 0.83 0.83 0.83
0.04 0.74 0.73 0.82 0.83 0.78
0.05 0.88 0.69 0.83 0.83 0.81
0.06 0.84 0.71 0.84 0.83 0.80

Table 5.4: F-score per scan for down sample voxel size

Voxel size fog people tools tree
0.02 101.17s 52.24s 40.84s 17.18s
0.03 38.84s 14.60s 15.92s 4.88s
0.04 18.20s 5.93s 8.62s 2.13s
0.05 12.15s 2.94s 5.62s 1.21s
0.06 9.19s 1.80s 4.10s 0.75s

Table 5.5: Processing time (in seconds) per scan for down sample voxel size

In Table 5.4 we list the F-score achieved in all of our tests at increasingly more aggressive
levels of down sampling. In Table 5.4 we show the total processing time associated with each
level. The first row of both tables shows the level of down sampling used for previous tests
(0.02m). As the level of down sampling increases, accuracy levels diminish. Initially, however,
increasing the down sample voxel size from 0.02m to 0.03m increases the aggregate accuracy and
requires approximately 1/3 of the processing time. Apart from the ‘tree’ scan, the processing
time is still more than 10 seconds. Increasing the voxel size to 0.04m brings the processing time
for all but the ‘fog’ test case to under 10 seconds. The accuracy level for this test also falls by
16%. The F-score for ‘people’ and ‘tools’ tests decrease by 2% and 1% respectively while the
‘tree’ test result remains unchanged. Further down sampling with a 0.05m voxel size increases
the overall accuracy and further reduces processing time. The ‘fog’ test result recovers to 88%
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and can almost be computed in the same 12s as the Meshlab filtering tool. Increasing the voxel
size to 0.6 brings all processing to under 10 seconds with an average of 80% accuracy.

Down-sampling can decrease processing time by an order of magnitude while only reducing
accuracy by 2%. Interactions with feature computations can, however, lead to unexpected re-
sults. Feature selection after more aggressive down sampling may result in a different feature set
that may be more appropriate for the degree of down sampling used. Our classification work-
load also scales with down sampling. Given that the classification step represents approximately
only 10% of our previous workloads, it is not worth reducing the number of trees.

In the next section we report on user tests conducted using a 0.05m down sampling voxel
size on cropped scans with a limited set of features, as suggested by our earlier results. As the
results above show, using the down sample size should dramatically accelerate the computation
required and still produce acceptable results.

5.5 User testing

A limitation of our Random Forest evaluation is that it doesn’t directly translate into reductions
in overall task time. What we aim to achieve is that the initial user labelling, training and
running the classifier, then finally touching up the result, takes less time than segmenting the
scan manually.

To test this a user experiment was designed. We selected 2 test scans not previously used
in the Random Forest evaluation. Users were tasked to segment a scan from scratch or with
classifier assistance in a timed experiment. Our hypothesis is that the total time for the classier
assisted condition will be less than the non-assisted condition, if our classifier allows one to
segment scans more quickly.

5.5.1 Design

The independent variable in this experiment is whether a user had use of the classifier during
the segmentation task. The dependent variable is the time the user take to complete the task.

In this experiment we use a repeated measures design. In a repeated measures design, each
participant take part in both the experimental and control conditions. The primary advantage
of this design is that a participant can serve as his or her own control. This reduces the effect
of individual differences in task speed. Secondly, fewer participants are needed as all partake in
both conditions. A repeated measures, is however, also exposed to order effects. The order in
which a participant performs a task may affects his or her performance. A participant may get
better over time (learning effect), or he/she may get tired and exhibit diminished performance.

We control for order effects in two ways. Firstly, counterbalancing is used to alternate the
order in which the user is exposed to each condition. Secondly, a priming task is provided to
familiarise the user with the system and the task. This serves to reduce learning effects.

A source of error variance in our experiment is the initial labelling of the scan. As partic-
ipants are likely to label different regions before invoking the classifier, the amount of touch
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(a) Initial labelling (b) Segmentation result (c) Reference labels

Figure 5.26: Tree test data

up time will vary. This effect is compounded by inexperience. Knowing what regions to label
comes with practise. As seen in Section 5.3, adding an extra stroke in the right place can
greatly impact the result accuracy. To eliminate this source of variance, without recruiting a
large number of participants, the initial classifier assisted task labelling was performed by a
single, well primed, participant, and used for all subsequent experiments. The initial labelling
was timed, and took roughly 10 seconds. This time was added to the classifier assisted task
duration.

5.5.2 Participants

Point cloud cleaning usually requires expert judgement in order to determine what is unwanted
and what not. However, as explained in Section 5.5.4, we use layers to provide users with a
template of what needs to be selected, thus removing the need for expert users.

Nineteen participants with varying levels of computer experience were recruited on Uni-
versity notice boards, after ethics approval was obtained. In total 13 men and 6 women were
recruited. Participants were offered R40 for participating in a one hour session. Prior to the
experiment, three other participants were recruited for a pilot study. No personally identifiable
information was collected. Participants were provided with an informed consent form that out-
lined the procedure and purpose of the experiment. It also informed participants that he or she
could withdraw at any time without penalty.

5.5.3 Materials

Two test scans were used as shown in Figure 5.26 and Figure 5.27. The first scan was selected
because it contains vegetation against structures which is one of the most common type of
unwanted points. Covering this use case proves that the tool is useful for a large portion of
work. The doors and shutters in the second scan are unlikely targets, but were selected as
because it not something the feature selection was optimised for. Performing well on this case
gives us more confidence in the ability of the classifier to adapt to other object classes with the
given feature set.

The initial labelling in Figure 5.26a represents a 63.96% initial F-score. Our classifier raised
the F-score to 91.58% in Figure 5.26b. The initial labelling for the second scan is 64.31% as
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(a) Initial labelling (b) Segmentation result (c) Reference labels

Figure 5.27: Courtyard test data

shown in Figure 5.27a and our classifier increased this to 78.69% in Figure 5.27b. A down-
sampling resolution of 0.05m was used.

CloudClean, was used to classify both scans in both experimental conditions. An additional
plug-in was created to time the segmentation task. A reference layer was provided to the plug-in
in order to compute the F-score of the current selection. The F-score is computed at 1 second
intervals after the timer has started. Once the desired F-score is reached the timer would stop
automatically.

5.5.4 Procedure

Before starting the experiment, participants were given a priming task. During the priming
procedure users were given instructions on how to use the lasso, brush and plane selection
tools. Users were then given 3 targets to that they could test each tool on. Once the user was
comfortable the test would begin.

In the timed segmentation task, users were asked to recreate a reference segmentation by
selecting the points. The reference segmentation was presented to them in a coloured layer on
screen. They layer makes allows us to effectively paint a target on the point cloud. Layers
and selections in CloudClean use alpha blending. When a point is both selected and in the
reference layer, the colours of the layer and selection blend. This gives the participant feedback
on his/her action. The F-score of the selection at the bottom of the screen also give the user
feedback on his or her progress.

The segmentation had to be recreated with 97% accuracy the tree, and 95% accuracy for the
courtyard. In the pilot study it was determined that segmenting the last 2% of the courtyard
scan resulted in the experiment running over the allocated time. It was thus reduced to 95%.
In the control condition, experiment users started with no selection state. In the experimental
condition users were presented with the existing result, achieved through machine learning from
the first user’s initial labelling.
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Manual condition Classifier assisted condition
Total time Label time (estimated) Processing time Touch-up time Total time Difference

Tree segment 206.5s ±100.1s 10s 8.75s 141.7s ±73.5s 164.6 s±42.0s -42s (-20.4%)
Wall segment 268.3s ±140.3s 10s 9.01s 206.2s ±148.3s 244.7s ±23.86s -23s (-8.9%)

Table 5.6: Results of classifier assisted segmentation user study.

5.5.5 Results

Given a coarse user labelling, the classifier assisted segmentation reduced the time to label the
remaining scene points quite dramatically (see Table 5.6). However, no significant reduction
in overall task duration was found for either task. In the first task (tree segment) users com-
pleted the manual segmentation in an average time of 207±100 seconds. The classifier assisted
segmentation was performed in 142±73 seconds with a p-value of 0.03, which is significant for
p < 0.5. When the estimated labelling (10s) and processing (8.75s) is added, the overall time
increases to 164±78 seconds representing a 42 second (20.4%) speed up. The p-value for this
speed-up is however 0.23 indicating no significance at p < 0.5. In the second task (wall segment)
users completed the manual segmentation in an average time of 268±140 seconds. The classifier
assisted segmentation was performed in 206±148 seconds, which was not significant. When
labelling (10s) and processing overhead (9.01s) is added, the total time is 244.46±158 seconds,
representing a 23 second (8.9%) speed-up, also with no significance at p < 0.5.

(a) Task without Random Forest (b) Task with Random Forest

Figure 5.28: Distribution of tree segmentation task results

The results of the first task (see Figure 5.28) appear to be normally distributed. However,
after testing for normality using a Shapiro-Wilk test [55], the distribution of the classifier assisted
condition was found not to be normally distributed (p < 0.01). The same is true for both
conditions of the second task (see Figure 5.29). A non parametric Wilcoxon signed-rank test
[70] was therefore used to compare paired samples.

In the first task Figure 5.30 shows a much smaller spread in the classifier assisted condition.
The initial assistance that the algorithm provides likely reduces the effort required up-front.
The remainder of the work that requires more precision then varies depending on one’s personal
ability and experience. The outliers are likely due to a lack of computer experience of some
participants. The second task was more difficult and required the accuracy requirement to be
reduced during a pilot study. It can also be seen that it look longer than the first. During
the experiment many participants found it extremely difficult to achieve the last 1% or 2% of
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(a) Task without Random Forest (b) Task with Random Forest

Figure 5.29: Distribution of wall segmentation task results

(a) Tree segmentation task (b) Wall segmentation task

Figure 5.30: Box and whiskers plot of results

required accuracy. This was likely due to the shutters and doors having a low intensity value
that made it hard to see the overlap between the target layer and the participants selection.
In Figure 5.30 it can be seen that the spread was bigger in the classifier assisted task. This
can be attributed to a participant not noticing some incorrectly selected regions that were
automatically labelled.

It can also be seen that the problem of enforcing coherence using XYZ coordinate values as
discussed in Section 5.3, also manifest in Figure 5.27c. Exerting more effort in ensuring that the
coarse user labelling is spatially distributed may reduce the time required for touch-up. This
could be aided by adapting the system to preview segmentation result as the coarse labelling
proceeds. This functionality can be supported by Christian et al.’s [12] on-line Random Forest
implementation. Engineering a set of features that do not rely of XYZ values is also worth
investigating.

It is worth emphasising that — given the coarse labelling — the time required for user
interaction was much lower than for the regular manual cleaning process. A bigger sample size,
with a less diverse set of users or more priming, may have resulted in significance. The results,
however, still show that the learning process produces an initial scan segmentation that requires
a fair amount of “touch-up” time.
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Engineering better features may lead more accurate results which could reduce the required
touch up time. Computing curvature or eigenvalues at multiple resolutions is one avenue worth
exploring. This is however likely to come at an increase in computational cost which will
necessitate the use of a GPU and/or multi core techniques. Utilising the extra information in
colour channels is also unexplored in this work. In scans that contain colour information it is
likely to have a big impact.

Full results are available in Appendix B.

5.6 Summary

In this chapter our aim was to create a segmentation tool that would adapt to the unpredictable
objects or noise one is likely to target in heritage scans. Such a tool needed to be suitable for
interactive use as cleaning is an iterative process.

Selecting features and tuning classifier hyper-parameters presented a dilemma. In order to
evaluate the features and classifier hyper-parameters used for segmenting unpredictable targets,
we need to test data that represent the types of targets we expect. Four test scans were selected
containing difficult targets often found in heritage scenes. The hope was that the selected
features and Random Forest hyper-parameters that perform well on such difficult test data,
would be able to learn other difficult targets.

Prior to feature selection it became apparent that a nearest neighbour search dominated the
cost of computing many features. The observation was made that range images have very dense
clusters of points close to the scan origin. The sample density in these regions were far denser
that necessary. A memory efficient octree based down sampling technique was shown to thin
out dense areas while leaving sparser areas unaffected. Using this method with a 0.02m down
sampling resolution allowed us to manage neighbourhood lookup cost. It was however still too
computationally expensive to compute features over multiple radii, thus an optimal radii was
determined to be 0.2m.

A forward selection wrapper method was used to determine an optimal feature set. A
wrapper method was used as no other classifiers were under consideration. The optimal feature
set was determined to be XYZ, Intensity, and Curvature; eigenvalues were discarded since their
large computational cost did not result in a meaningful increase in accuracy.

The optimal Random Forest hyper-parameters were determined to be 64 trees, with a max-
imum depth of 16, and 100 random tests to be evaluated before each split. The Random Forest
does not appear to be very sensitive to the number of trees. After 8 trees the marginal benefit
is negligent. The classification cost does however increase linearly with the number of trees.
When using 64 trees this only represents 10% of the total run time of the tool. The feature
computation clearly dominates the cost equation and by comparison the actual classification is
very cheap.

In an effort to reduce the feature computation cost further, down-sampling was applied.
A decrease in F-score was expected as more down-sampling was applied. However, the mean
F-score fluctuated in a general downward trend. It is likely that the curvature computation,
was affected by down-sampling, and that the optimal radius may need to be redetermined after
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down-sampling. At a 0.06m resolution, all test cases could be run under 10 seconds with a mean
F-score of 80%.

For user testing, a more conservative 0.05m resolution was used. We attempted to show
that the use of our classifier reduced the overall segmentation time. While results showed a
reduction in segmentation time of between 8.9% and 20.4%, this was not significant. The lack
of significance can be attributed to an insufficient sample size and participant’s lack of prior
experience with the system that made segmentation times highly variable. It is expected that
by using multi-core techniques to manage feature computation cost, better results could be
achieved, by reducing down sampling and through the use of multi resolution features. The
use of colour channels, when available, is also expected to improve accuracy and in turn reduce
touch up time.
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Chapter 6

Conclusion

The aim of this thesis was to accelerate the point cloud cleaning process. In line with this aim,
we set three objectives:

• Reduce the impact of inefficient layering on system resources.

• Reduce the navigation overhead of the 3D workspace.

• Speed up segmentation by introducing a segmentation tool that can learn object classes
and segment them on the fly.

We addressed the first two objectives as part of the implementation of our software frame-
work and the last is realised as an extension to our framework.

To reduce the impact of inefficient layering on system resources, we introduced a novel
layering technique. This technique supports a large number of layers while consuming a near
constant amount of memory. It also supports extremely efficient set operations that can aid the
cleaning work flow.

Navigation overhead is reduced via a roll-corrected first person camera mode. The cam-
era mode assists users in recovering from potentially disorientating states while maximising
rotational freedom. When a potentially disorientating state is detected, the camera is slowly
nudged back out of this state over successive user movements. A user experiment showed this
camera mode significantly speeds up navigation between 29.8% and 57.8%, when compared to
non roll-corrected camera.

Lastly, we created a semi-automated segmentation tool that harnesses a Random Forest
classifier to interactively learn new object classes from examples, and assists the user in seg-
menting the remainder of a scene. Preliminary findings from a user experiment show, without
significance, that this method reduces the overall cleaning time between 8.9% and 20.4%.
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6.1 Limitations

CloudClean system in itself has two noteworthy limitations. Firstly, it lacks support for ren-
dering very large point clouds that exceed system memory. Secondly, the system currently does
not support loading or rendering RGB colour channels in point clouds.

The main limitation of our layering system is that it does not support large numbers of
overlapping layers. The number of layers is limited by the number of overlaps between layers.
In the worse case, all layers will overlap. In this scenario only n layers are supported, where n
is the number of bits allocated per point for layering purposes. If no overlaps occur 2n layers
can be supported. In real world work flows we do not expect a large number of overlap between
layers.

Finally our classification tool is proof of concept and therefore has much room for improve-
ment. Firstly a limited amount of training data was used to select features and tune the
classifier. We therefore cannot predict with certainly how it will perform on a wide variety of
scans. Establishing a set of performant features and random forest parameters that will produce
robust results on a diverse range of data will require a substantial amount of training data and
effort.

The limited of training data we used, did highlight a number of shortcomings in our work.
These limitations and ways to address them is discussed in the next section.

6.2 Future work

Our classification tool leaves much of room for future work. A problem with the implementation
is that the the classifier has a tendency to localise objects using XYZ coordinates in the absence
of other strong features. The RGB channel of colour range images is likely to be a very strong
feature and may mitigate this issue and result in higher segmentation accuracy. During feature
evaluation it was seen that a feature’s performance may vary depending on both the radius used
and the target class. Including features such as curvature computed over multiple resolutions
may therefore further improve accuracy. For this to work, however, the feature computation
time would need to be reduced. Finding ways to cluster non-uniform point clouds into related
patches could reduce computation overhead while sacrificing less accuracy compared to sub-
sampling.

To ensure a robust set of features and classifier parameters, a larger set of more variable
training data should be used in future work.

Another potential way to improve user efficiency would be to provide near real-time clas-
sification results after each stroke. Christian et al.’s [12] Random Forest implementation was
specifically designed to learn from streaming data. It would thus not require relatively few
adjustments for CloudClean to support this.

CloudClean’s lack of support for data sets that exceed system memory could be addressed
by adding a pre-processing step. Creating a multi-resolution data structure when loading files
could enabled it to render regions with different levels of detail and thus not keep all data in
memory. This would enable it to work with much larger workloads
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Finally, the system currently only supports displaying grey scale point clouds. Adding
support for colour range images would require minor changes to the renderer, but will make the
software to exploit colour information.

6.3 Contributions

This principal contributions of this thesis are:

1. a new open source, cross-platform, point cloud cleaning framework designed for creating
and evaluating new semi-automated segmentation methods. This framework is the first
open source point cloud software that supports and cleaning iterative work flow with undo
capabilities.

2. a novel point selection layering technique that can support a large number of layers with
a near constant amount of memory.

3. a roll-corrected first person camera that maximises rotational freedom while at the same
time avoiding confusing camera orientation states.

4. a semi-automated segmentation technique that can learn to new object classes and segment
them on the fly.

Source code for CloudClean is available at https://github.com/circlingthesun/CloudClean.

Acknowledgements: spatial data provided by the Zamani heritage documentation project,
University of Cape Town.
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Appendix A

Navigation experiment results

Participant Palms (with roll-correction) Palms Stairs (with roll-correction) Stairs
1 25 64.33 25.67 31.67
2 N/A N/A N/A N/A
3 65.33 119.33 59 69.33
4 5.67 27 8 16.67
5 35.67 66 14 14.67
6 9 30 10.67 14.33
7 70 139.33 47.67 114.33
8 33 81.67 67 43.33
9 29.33 50.67 29.33 30

10 16 53.33 20.67 35.33
11 7.67 9.67 6.33 9.67
12 33 126 33 71
13 28 56 17.33 26
14 18 31.67 13.67 29.67
15 19 38 28.33 25.67
16 29.33 116 17 38
17 12.67 31.33 13 14.33
18 6 21.67 5.67 17
19 19 32 16 15.33

Table A.1: Navigation experiment results
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Appendix B

Segmentation experiment results

Participant Tree (manual) Tree (with RF) Wall (manual) Wall (with RF)
1 314 159.7 243 447.64
2 88 142.3 151 149.99
3 N/A N/A N/A N/A
4 132 208.56 220 294.39
5 365 162.79 198 198.54
6 234 71.2 157 60.11
7 459 316.35 253 711.57
8 250 397.41 663 271.84
9 299 176.78 441 329.27

10 87 129.78 176 445.63
11 110 110.94 194 142.02
12 184 87.91 525 132.73
13 197 130.04 326 134.24
14 150 152.08 305 166.92
15 138 129.75 240 186.27
16 165 122.51 177 226.97
17 186 142.08 194 154.76
18 138 176.56 193 221.59
19 221 143.48 174 125.92

Table B.1: Segmentation experiment results
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