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Abstract  

Crop diseases are a major impediment to food security in the developing world. The 

development of cheap and accurate crop disease diagnosis software would thus be of great 

benefit to the farming community.  Many previous studies, utilizing computer vision and 

machine-learning algorithms, have successfully developed applications that can diagnose crop 

diseases. However, these studies have primarily focussed either on developing large scale 

remote sensing applications more suited for large scale farming or on developing 

desktop/laptop applications and a few others on developing high end smartphone applications. 

Unfortunately, the attendant hardware requirements and expenses make them inaccessible to 

many subsistence farmers, especially those in sub-Saharan Africa where both smartphones and 

personal computers ownership is minimal. 

The primary objective of our research was to establish the feasibility of utilizing computer 

vision and machine learning techniques to develop a crop disease diagnosis application that is 

not only accessible through personal computers and smartphones but is also accessible through 

any Internet enabled feature phone.  

Leveraging methods established in previous papers, a prototype crop disease diagnosis 

application capable of diagnosing two maize foliar diseases, Common Rust and Grey Leaf 

Spot, was successfully developed. This application is accessible through personal computers 

and high end smartphones as well as through any internet enabled feature phones. The solution 

is a responsive web based application constructed using open source libraries whose diagnosing 

engine utilizes an SVM classifier that can be trained using either SIFT or SURF features. 

The solution was evaluated to establish classification accuracy, page load times when accessed 

from different networks and its cross-browser support. The system achieved 73.3% overall 

accuracy rate when tested using images identical to images end users would upload. Page load 

times were considerably long on GPRS and 2G network tests. However, they were comparable 

to average page load times users would experience when accessing google search engine pages 

from similar networks. Cross-browser support tests indicated that the system is fully 

compatible with all popular mobile and desktop browsers. Based on the evaluation results, we 

concluded that it is feasible to develop a crop disease diagnosis application that in addition to 

being accessible through personal computers and smartphones can also be accessed through 

any internet enabled feature phones. 
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1 Introduction 

It is estimated that the world’s population will grow by an average of 1.8% in 2016, resulting in 

about 83 million more people to feed [1]. This population growth will add an extra weight to an 

age-old problem; ensuring that the world is food secure. Looking at our current food security 

status and considering the future, this problem becomes particularly significant for those of us 

living in sub-Saharan Africa. Sub-Saharan Africa’s population as per 2015’s estimates stood at 

over 800 million people [2]. Per World Food Program’s 2015 report [3], a massive 220 million 

people were undernourished. To be food secure in 2050 when our population is estimated to 

reach 1.5 billion people, it is estimated sub-Saharan Africa will require 360% as much food 

production as in 2006 [2]. 

Since time immemorial, political leaders, business leaders, farmers, academics and the 

population at large, each in their respective ways have been trying to solve the issue of food 

security. Globally, considerable progress has been achieved over the years. Reports indicate 

that about 795 million people were undernourished in 2015, down 167 million over the last 

decade, and 216 million less than in 1990-1992 [3]. However, as indicated by sub-Saharan 

numbers, the challenge persists. 

Due to the multifaceted nature of the food security problem, a wide range of solutions by 

different sectors have been proposed and implemented. One novel approach by computer 

scientists that is in active research is the use of computer vision and machine-learning 

techniques to develop applications that diagnose crop diseases from images of host plants; thus, 

allowing earlier treatment of diseases, consequently improving agricultural yields. 

Leveraging on this approach, we have developed a more accessible prototype application for 

detection of two of the most common maize foliar diseases, Common Rust and Grey Leaf Spot. 

The developed application is accessible through multiple devices; ranging from feature phones 

which are prevalent in Sub-Saharan African to smartphones and personal computers, more 

common in the Western Countries. Indeed, the only requirements for accessing the developed 

application are internet connectivity and a browser that can render HTML and CSS. When 

implemented at a larger scale, the developed prototype can empower farmers, especially those 

based in rural Sub-Saharan regions whom most previous solutions have overlooked, to 

conveniently diagnose their crops and act accordingly. 

 Motivation 

A considerable amount of research on utilizing image-processing and computer-vision 

algorithms to detect and classify crop diseases has been carried out before. Unfortunately, the 

studies carried out over the years have primarily focused on developing traditional 

desktop/laptop applications and a few others on high end smartphone applications. Thus, 

making them inaccessible to many subsistence farmers, especially those in sub-Saharan Africa 

where ownership of personal computers and smartphones is still not as prevalent as in 

developed economies [5]. As per Ericsson 2015 mobility report [6], there were 690 million 
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mobile subscriptions in sub-Saharan Africa by end of 2015 and only a mere 170 million of 

these subscriptions were smartphones. 

Despite these low numbers of smartphones and personal computers, it is not all gloom and 

doom when it comes to making such novel applications accessible to these populations. 

Shipment of feature phones, which already amounted for 20% to 30% of mobile subscriptions 

across Sub-Saharan region by 2014 [7] grew by an average of 31% between 2014 and 2016 

while smartphone shipments fell by 5.2% within the same period [8].  

A crop disease diagnosis application that can also be accessed through feature phones would be 

accessible to a significantly higher population. Consequently, it would be more effective in 

ensuring world food security than most previous solutions that have primarily targeted personal 

computers and smartphones. 

 Problem statement 

Several previous studies, utilizing different combinations of computer vision and machine-

learning algorithms, have successfully developed applications that can satisfactorily detect and 

classify crop diseases. However, these studies have primarily developed applications that are 

exclusively accessible through either personal computers or high end smartphones making 

them inaccessible to many subsistence farmers, especially those in sub-Saharan Africa where 

both smartphones and personal computers ownership is minimal. 

With successes of the previous studies in mind, we wish to establish a possibility of developing 

a crop disease diagnosis application utilizing computer vision and machine learning techniques, 

that in addition to being accessible through personal computers and smartphones, can also be 

accessed through internet enabled feature phones thus making it accessible to a larger 

population. 

 Research Questions 

To address the problem statement stated above, the following questions were posed: 

1) Can all algorithms necessary for diagnosing images successfully execute and return the 

results before connection time-out for clients? 

Algorithms often used for detection and classifying of crop diseases are resource 

intensive and can execute for lengthy periods. To prevent a device from endlessly 

waiting for a server response, browsers such as Internet explorer have a default time 

limit after which they time out and show an error. For our solution to be usable, all the 

necessary processing should be completed within this time out period and results sent 

back to users. 

2) Can the system still be accessible and usable to users connecting from slow networks 

such as GPRS? 

Although coverage of modern networks such as 3G and 4G has increased significantly 

over the last few years, there are still areas, especially in rural Sub Saharan Africa, 
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where prevalent networks are still the older and much slower GPRS and Edge networks. 

The primary objective of our study is to develop a highly accessible solution and our 

target users are mainly rural subsistence farmers. It therefore is crucial that our 

application can still function properly even when connecting from such slow networks. 

3) What is the highest classification score we can get? 

Given a limitation that our system must execute all necessary algorithms for diagnosing 

crop diseases and return results within limited time periods, will this necessity of speed 

conflict with accuracy of results? 

 Scope and limitations 

As outlined, the primary focus of this study is determining the feasibility of developing a 

highly accessible crop disease diagnosis system based on approaches taken by previous 

successful studies. Our definition of highly accessibility is that in addition to be accessible 

through devices that previous studies have targeted, desktops, laptops and smartphones, our 

system also must be accessible through feature phones which are more prevalent in Sub-

Saharan region.  

Two commonly occurring maize foliar diseases, Common Rust and Grey Leaf Spot were 

selected as a case study.  The reason maize was selected is that it is the most widely grown and 

consumed staple crop in Africa. The two diseases were chosen because they have very identical 

symptoms, especially during early stages of infection, and we believe a system that can 

successfully differentiate between the two will most likely also be able to differentiate diseases 

that have non-identical symptoms.    

 Thesis organisation 

The rest of this thesis is organised as follows. Chapter 2 presents the background concepts 

relevant to understanding the rest of this study.  Chapter 3 puts the study into perspective by 

underlining the background to the study and the context under which it occurs. Chapter 4 

discusses design considerations and provides an architectural overview of the developed 

prototype. Chapter 5 follows up on chapter 4 by providing more implementation details of 

different components of the system. Chapter 6 gives details of the experimental setup we used 

to evaluate how well the system meets its objectives. Finally, chapter 7 concludes the study by 

providing answers to the posed research questions and suggests possible extensions to this 

research.
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2 Background 

This chapter introduces some core concepts underlying the study. It starts with a brief 

discussion of maize and an overview of the diseases selected for this study. In the subsequent 

sections, an overview of the main concepts of computer vision and machine learning used in 

crop disease detection and classification is given.  

 Maize 

Maize (Zea mays) is a plant that is grown widely throughout the globe in a range of agro-

ecological environments. It belongs to a large family of monocotyledonous flowering plants 

referred to as “poaceae” or grasses [9]. It is used as food, animals’ feed and as a source of 

industrial raw materials such as corn-starch, maltodextrins, corn oil and corn syrup. 

Believed to have been introduced into Africa by the Portuguese in the 16th Century [10], maize 

today is the most widely grown and consumed staple crop in Africa [11]. It currently covers 

over 25 million hectares in sub-Saharan Africa and is mainly grown on smallholder farms [12]. 

It accounts for about 20% of the calorie intake of 50% of the sub-Saharan population.  

Below, two of the most commonly occurring disease pathogens affecting maize in sub-Saharan 

African are discussed.  

2.1.1 Grey leaf spot 

Grey leaf spot, figure 2-1, is a fungal disease caused by a pathogen called Cercospora Zeina 

and is recognized as one of the most significant yield limiting maize diseases. In Africa, it was 

first observed causing economic losses in maize fields in South Africa during the 1990/91 

growing season and has since been reported as being widespread in Ethiopia, Kenya, Malawi, 

Mozambique and Zimbabwe and to a lesser extent in the Congo, Nigeria, Tanzania and Zambia 

[12].  

Its symptoms are initially observed on the lower leaves of the host maize plant. The immature 

lesions are like lesions caused by other foliar maize pathogens and appear as small irregular 

shaped tan spots with yellow or chlorotic borders of about 1 to 3 mm, while mature lesions are 

more distinct with rectangular shape (5 to 70 mm long and 2 to 4 mm wide) and run parallel 

with leaf veins [13]. 

Losses associated with grey leaf spot occur when photosynthetic tissue is rendered non-

functional due to lesions or the blighting of entire leaves [14]. Most sub-Saharan countries 

suffer considerable yield losses due to grey leaf spot yearly. Losses of 29% to 69% have been 

reported in Malawi [15] and in Tanzania. It can cause yield losses of up to 40% [16]. In South 

Africa, losses usually vary between 30% to 40% [17] annually. 
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Figure 2-1. A maize leaf infected by Grey Leaf Spot 

2.1.2 Common rust 

Common rust, shown in figure 2-2, is the most frequently occurring maize rust [18]. It is 

caused by a fungus called Puccinia sorghi and occurs in most maize growing regions. 

Its symptoms begin as light yellow spots about the size of a pinhole. As it advances, these 

chlorotic spots develop into reddish brown pustules, which rupture to reveal the presence of 

small, cinnamon-brown powdery spores. With time, the pustules become darker brown to black 

[19]. 

Yield losses associated with common rust are not as devastating as those of Grey Leaf Spot. 

Estimates of reduction in grain weight vary from about 3%-8% for each 10% of leaf area 

infected. However, yield losses as high as 25% have been measured and in some extremely 

susceptible hybrids’, yields may be reduced by as much as 75% [18]. 

 

Figure 2-2. Maize leaf infected by common rust. 

 Computer vision 

Computer vision is a science discipline whose focus is the automated extraction of information 

from digital images [20]. It aims at using cameras for analysing or understanding scenes in the 
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real world [21]. Its recorded history can be traced back to a summer in 1966 at Massachusetts 

Institute of Technology when Marvin Minsky asked his undergraduate student Gerald Jay 

Sussman to spend the summer vacation linking a camera to a computer and getting the 

computer to describe what it saw [22]. Since then, computer vision has developed 

exponentially and now incorporates a diverse range of concepts from other disciplines of 

science such as computer graphics, image processing and machine learning [23].    

In the next subsections, an overview of computer vision concepts often applied in the diagnosis 

of crop diseases is provided. First things first, what is a digital image and what is digital image 

processing? 

2.2.1 Digital images 

In everyday language, an image refers to a visual representation of something. Mathematically, 

an image can be defined as a two-dimensional function, f (x, y), where x and y are spatial 

coordinates, and the amplitude of 𝑓 at any pair of coordinates (x, y) is called the intensity or 

grey level of the image at that point [24]. A digital image is an image f (x, y) that is discretized 

both in spatial coordinates and in brightness: i.e. x, y and the amplitude values of f are all finite, 

discrete quantities. It is composed of a finite number of elements, each of which has a 

particular location and value, commonly referred to as pixels.  

2.2.2 Digital image processing 

Digital image processing is a well-developed field of digital signal processing that deals with 

systems that perform operations on digital images. It includes topics such as image 

enhancement, image compression, and correcting blurred or out of focus images. One of its 

earliest successful applications was in the newspaper industry when pictures were first sent by 

submarine cable between London and New York back in 1921 [24]. 

Digital image processing techniques and concepts commonly used in crop disease diagnosis 

and those relevant to understand the rest of this dissertation are introduced below. A more 

detailed introduction to the field of digital image processing field can be found in [23]. 

Image features 

Pratt describes an image feature as a distinguishing primitive characteristic or attribute of an 

image [25]. Features can also be thought as significant properties of an object than can be used 

as part of input to processes that lead to distinguish the object from other objects or to 

recognize it [26]. Features can be based on intensity, colour, texture or a combination of these 

attributes.  

There are two types of features that can be extracted from an image content; namely, global and 

local features. Global features describe the image as a whole and can be interpreted as 

particular properties of the image involving all pixels, while local features are those that aim to 

detect key-points within the image and describe regions around these key-points. 
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Good features are those that are distinctive and whose extraction is repeatable and precise. In 

addition, good features are reasonably invariant to illumination changes, and ideally, also to 

scaling, rotation and minor changes in viewing direction. 

Due to the significant role they play in most computer-vision applications, the topic of image 

features has received considerable attention in the computer-vision research community, and as 

a result various successful algorithms have been developed. Two of the most frequently used 

image feature algorithms in diagnosis of crop disease are Scale Invariant Feature Transform 

(SIFT) and Speeded Up Robust Features (SURF). Both are introduced below: 

Scale-invariant feature transform (SIFT) 

Scale-invariant feature transform, known as simply SIFT, is a popular image feature detector 

and descriptor first introduced by Lowe in 1999 [27]. SIFT algorithm’s approach to feature 

detection is to only select key features that are invariant to translation, scale, rotation, and 

partially invariant to illumination changes as well. The detected features can be stored in a 128 

members’ vector referred to as a SIFT descriptor which can then be used for further analysis. 

The detail of the operation is best left to the source material [27] as it is beyond the scope of 

this dissertation.  

SIFT has several advantages when compared to other feature detectors and descriptors. Not 

only are SIFT features reasonably invariant to rotation, scaling and to an extent illumination, 

SIFT features are also robust to occlusion and clutter. However, compared to other approaches 

that give comparable results such as SURF which is discussed next, SIFT is computationally 

expensive.  

Speeded Up Robust Features (SURF) 

Speeded Up Robust Features algorithm, commonly referred to as just SURF, is another popular 

feature detector and descriptor. It was first presented at the European Conference on Computer 

Vision in 2006 by Bay et al [28]. It is based on the same principles and follows similar steps to 

SIFT, however, it uses a different scheme and its resulting descriptor can consist of either 64 

elements or 128 elements for more feature distinctiveness. Full details of SURF can be found 

on the source material [28], and a detailed comparison of SURF and SIFT can be found in [29]. 

Like SIFT features, SURF features are also invariant to scale, rotation and to an extent 

illumination. In addition, SURF inventors claim that it is considerably faster than SIFT while 

achieving comparable results [28]. However, Panchal et al in their comparison study found not 

only does SURF produces less features than SIFT but that is more sensitive to changes in 

illumination [30]. 

Image segmentation 

Image segmentation refers to the task of partitioning an image into regions of similar attribute 

or attributes. It divides an image into regions that correspond to different objects or different 

parts of an object. It simplifies and often increases the efficiency of the subsequent steps of 

analysis. Typical attributes for segmentation include colour intensities, image edges, and image 

texture [25].  
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The most commonly used segmentation techniques in crop disease diagnosis applications are 

Otsu’s thresholding method and k-means clustering. Both are briefly introduced below. 

Otsu’s thresholding method 

Published in 1979 by Nobuyuki Otsu [31], Otsu’s method assumes that the image contains two 

classes of pixels, foreground pixels and background pixels. It then calculates the optimum 

threshold separating the two classes so that their intra-class variance is minimal or 

alternatively, so that their inter-class variance is maximal. 

It has been successfully applied on different segmentation problems and is one of the most 

popular methods for segmenting grey level images. However, it has some drawbacks. It 

assumes the histogram of an image is bimodal, does not work well with variable illumination, 

breaks down when the two classes have extremely different sizes and makes no use of spatial 

coherence, nor any other notion of object structure. 

K-means clustering 

K-means clustering groups objects based on attributes into k number of clusters where k is a 

positive integer. Although the term “k-means” was first used by James MacQueen in 1967 in 

his paper titled “Some methods for classification and analysis of multivariate observations” 

[32], the idea can be traced back to Hugo Steinhaus in 1957 [33]. It is one of the most 

commonly used algorithms to solve clustering problems. 

It aims to partition 𝓃 data points into 𝑘 clusters in which each data point belongs to the cluster 

with the nearest mean, serving as a prototype of the cluster. It achieves this by iteratively 

assigning each data point to one of 𝑘 clusters based on the features that are provided. To 

understand k-means, one can assume there are 𝓃 data points 𝑥𝑖,𝑖 = 1 … 𝓃 that must be 

partitioned into k-clusters and the goal is to assign a cluster to each data point. K-means aims to 

find the positions 𝜇𝑖, 𝑖 = 1 … 𝑘 of the clusters, S = {S1, S2, … Sk}, that minimize the square of 

the distance from data points to the cluster: i.e. it aims to find: 

                                         
arg 𝑚𝑖𝑛

𝑠
∑ ∑ ‖𝑥 − 𝜇𝑖‖2

𝑥∈𝑠𝑖

𝑘
𝑖=1                                           (1) 

where 𝜇𝑖,  is the mean of points in 𝑠𝑖. More details on k-means clustering can be found in [32]. 

K-means approach to segmentation has several benefits that include its fast-computational 

speed and the fact that most open-source computer vision libraries are distributed with its 

implementation. However, it suffers from a major drawback; the number of desired clusters, k, 

needs to be set beforehand. 

2.2.3 Machine learning 

To solve a problem on a computer, an algorithm, a sequence of repeatable instructions that 

should be carried out to transform input to output is needed. In conventional computing, this 

logic is often explicitly coded by a programmer after carefully learning the problem and 

determining logical steps to solve it. However, not all computer vision problems can be 

explicitly coded. Machine learning is a subfield of computer science that explores the study and 
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construction of algorithms that can learn from and make predictions based on data. Using 

algorithms that iteratively learn from data, machine learning allows computers to find hidden 

insights without being explicitly programmed where and what to look for. In crop diseases 

detection and classification applications, machine learning algorithms are often used to perform 

classification.  

Machine learning algorithms can be categorized into two general groups: supervised learning 

and unsupervised learning. Supervised learning algorithms are trained using a set or sets of 

inputs along with corresponding correct outputs, and the algorithms’ task is then to generate a 

general rule that maps inputs to outputs. The generated rule can then be used in similar 

applications to classify additional unlabelled data. Examples of supervised learning algorithms 

include Support Vector Machines and K-Nearest Neighbours algorithms. Supervised learning is 

commonly used in applications where historical data predicts likely future events and where 

there are well known outputs to given inputs. In unsupervised learning, the algorithm is only 

given input data without any corresponding data and its task is then to explore the data and find 

some structure within. K-means algorithm introduced in section 2.2.2 is an example of 

unsupervised learning algorithm. Other examples include Self-Organising Maps and 

Independent Component Analysis algorithms. Unsupervised learning can be used to discover 

image features and to determine their classes as well.  

Crop disease diagnosis applications often make use of supervised learning algorithms; two of 

the most commonly used algorithms are introduced below.   

Artificial Neural Networks (ANN) 

An artificial network (ANN), is a model of computation inspired by the neural structure of the 

mammalian cerebral cortex. Natural neurons receive signals through synapses located on the 

dendrites or neuron membranes. When the received signal surpasses a certain threshold, the 

neuron is activated and emits a signal. The emitted signal might be passed on to another 

synapse and might activate other neurons. This complexity is highly abstracted in modelling of 

Artificial Neural Networks. ANNs are typically organized in layers. Layers are made up of 

several interconnected nodes that contain activation functions. Patterns are presented to the 

network through the input layer, which communicates to one or more hidden layers where the 

actual processing is done through a system of weighted connections. The hidden layers then 

link to an output layer where the answer is output. Most ANNs contain some sort of learning 

rule that modifies the weights of the connections according to the input patterns presented to it.  

A simplified example of a typical ANN is shown in figure 3.  
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Figure 2-3. A simplified model of an artificial neural network indicating input layer, hidden layers and output layer 

Since what is generally considered the first artificial neural model was introduced by 

McCulloch et al in 1943 [34], numerous different models that are accepted as ANNs have been 

developed. Though they may vary in functions, learning rules, topology and other attributes, 

they all share one main advantage: they allow modelling of physical phenomena in complex 

systems without requiring explicit mathematical representations or without requiring 

exhaustive experiments. ANNs are best suited for capturing associations or discovering 

irregularities within a set of patterns; deriving solutions for problems where the volume, 

number of variables or diversity of data varies greatly; and for deriving solutions of problems 

where relationships between variables are vaguely understood or too difficult to describe 

adequately with conventional algorithms. 

They however have some drawbacks. ANNs are in a sense black boxes. Apart from defining 

the general structure of a network, the user has no other role except to feed it with training data 

and watch it train and await the output model. They are also comparatively slower to train than 

more modern machine learning algorithms such as Support Vector Machines (SVMs). In 

addition, ANNs sometimes overfit if training goes on too long, i.e. they consider noise as part 

of the pattern.  

Support Vector Machines (SVM) 

Support Vector Machines (SVMs), are another popular machine learning algorithm commonly 

used for classification and regression analysis. The original SVM algorithm can be traced back 

to 1963 by Vapnik and Chervonenkis. In 1992, Boser et al proposed a non-linear variant, and 

the current standard incarnation was published by Cortes and Vapnik in 1995 [35] [36]. 

SVMs are based on the concept of decision planes that define decision boundaries. A decision 

plane can be defined as a plane that separates between a set of objects having different class 

memberships. Support Vector Machines are primarily classifier methods that perform 

classification tasks by constructing hyperplanes in a multidimensional space that separates 

cases of different class labels. The success of SVMs can be attributed to their ease of use, good 

generalization performance and the fact that the same algorithm can solve a variety of problems 

with little tuning.  Several studies have been carried to compare SVMs and ANNs on various 

classification problems and each study has come to its own conclusions that are not necessarily 

in agreement with others. However, most acknowledge that in most classification problems, 
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SVMs and ANNs produce comparatively similar results and that SVMs’ results better reflect 

the nature of input data [37] [38]. 

Evaluating a machine learning classifier 

When using a machine learning algorithm to classify data, one often needs to establish how 

reliable it is. One clean and unambiguous way to present such an evaluation that consequently 

is also used in this study is the use of a confusion matrix.  

In simple terms a confusion matrix is a table that is used to describe the performance of a 

classifier on a set of test data for which the true values are known. Table 2-1 is an example of a 

confusion matrix for a binary classifier that classifies inputs as either yes or no. 

 

Table 2-1. An example of a confusion matrix of a binary classifier with yes and no classes 

N=120 Predicted: No Predicted: Yes 

Actual No 39 21 

Actual Yes 13 47 

  

In the above example, a sample of 120 inputs was put into a classifier to determine if they were 

yes or no. Out of the 60 known “no” inputs, the classifier correctly classified 39 and out of the 

60 known “yes” inputs, it correctly classified 47. In statistical terms, 39 is referred to as True 

Negative (TN), 21 as False Positive (FP), 13 as False Negative (FN) and 47 as True Positive 

(TP) as presented in table 2-2.  

Table 2-2 An example of a confusion matrix for a binary classifier indicating terms often used in calculations of classifier’s performance 
measures. 

120 Predicted: No Predicted: Yes  

Actual No TN = 39 FP = 21 60 

Actual No FN = 13 TP = 47 60 

 52 68  

 

From the confusion matrix, measures often used in evaluating classifiers can be calculated. The 

measures, their formulae and calculations as per above example are as follows: 

 Accuracy 

This measure refers to the overall correctness of the model and is calculated as the sum 

of correct classifications divided by the total number of classifications.  

                                              
𝑇𝑃+𝑇𝑁

𝑇𝑜𝑡𝑎𝑙
=

47+39

120
= 0.7167                                                 (2) 
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 Precision 

This is a measure which is evaluates the accuracy provided that a specific class has been 

predicted. 

                                             
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

47

47+21
= 0.6912                                                  (3)                   

 Recall  

This a measure of the ability of a classifier to select instances of a certain class from a 

data set. It is commonly also called sensitivity, and corresponds to the true positive rate. 

                                               
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

47

47+13
= 0.783                                                  (4) 

 Specificity  

This measure corresponds to recall measure explained above. It is commonly used in 

two class problems where one is more interested in a particular class and it corresponds 

to the true-negative rate. 

                                                
𝑇𝑁

𝑇𝑁+𝐹𝑃
=

39

39+21
= 0.65                                                   (5) 

2.2.4 Bag of features 

Bag of Features, BoF, is a popular technique for representing images as unordered collections 

of local features for use as input into classifying algorithms. It is inspired by another popular 

concept called Bag of Words that is used in textual information retrieval.  

In Bag of Words model, one represents a document as a normalized histogram of word counts. 

Commonly, one counts all words from a dictionary that appear in the document, and presents 

them in a sparse vector where each element is a term in the dictionary and the value of that 

element is the number of times the term appears in the document divided by the total number of 

dictionary words in the document. This dictionary may exclude non-informative words such as 

articles and may represent a set of synonyms with a single term. The Bag of Features image 

representation is analogous. A visual vocabulary is constructed to represent the dictionary by 

clustering features extracted from a set of training images. The image features represent local 

areas of the image, just as words are local features of a document. To generate a discrete 

vocabulary from a large number of local features sampled from the training data, clustering is 

often used.  

Bag of Features is often used to present images in problems where position and orientation of 

features within an image are not of primary significance and fixed vector lengths are required 

irrespective of number of detections. It is very successful when used in combination with 

machine learning algorithms to classify images according to objects they contain.  

 Conclusion 

This chapter has introduced major concepts relevant to understanding this thesis. We 

introduced maize and two of its diseases selected as a case study for this research. We 

introduced the significant role maize plays in Sub-Saharan Africa and outlined the average 
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losses incurred annually due to Common Rust and Grey Leaf Spot diseases. In addition, we 

provided theoretic knowledge of computer vision and machine learning concepts applied in this 

research. Where applicable, we introduced the advantages and disadvantages of the introduced 

concepts.  

In the next chapter, we aim to highlight the current status quo of utilizing computer vision and 

machine learning concepts in fighting crop diseases.  
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3 Literature review 

This chapter puts the study into perspective by discussing the background to the study and the 

context in which the research occurs. 

 Innovative technology applications in Agriculture 

Agriculture has become much more than a means to feed the ever-growing global population.  

Plants have become an important alternative source of energy for our energy-hungry economies 

and are of vital importance in our fight against global warming; hence, there is a need to 

manage worldwide production of agricultural commodities more efficiently. Consequently, 

there has been an increase in the use of innovative technologies in agriculture to meet this need; 

a trend often referred to as “Precision Agriculture”. 

As Crookston puts it, Precision Agriculture is one of the most significant revolutions to ever 

come about in agriculture [39]. It involves better management of farm inputs such as fertilizers, 

herbicides, seeds, fuel, to mention but a few. It offers to improve crop productivity through 

improved resources’ management [40] [41] while taking into consideration environmental 

impact [42] [43] [44] [45]. Its origins can be traced back to the mid 1980’s as a means to 

improve the application of fertilizers by varying rates and blends as needed within fields. It 

surprisingly began with two contrasting philosophies [46]. The first was exemplified by the 

“Farming by soil” school [47]. This school’s philosophy advocated the use of soil sampling and 

customized management of farm inputs by soil mapping unit. The second was exemplified by 

the “Soil Sampling Management Zone” school, later known as “site-specific crop 

management” [48] [49] [50]. This school proposed that management zones are relatively 

homogeneous sub-units of farm fields that can each be managed with a different, but uniform 

customized management practice. 

Since then, the field has grown exponentially and attracted professionals from various, 

traditionally non-farming related fields. As a result, additional practices have evolved. 

Amongst, chief contributors to the field are computer vision practitioners. Over the past 

decades, they have proposed several solutions for some of the most pressing issues in 

agriculture. Their contributions include systems for automatic guidance of agricultural vehicles 

and machinery; systems for sorting and grading agricultural yields [51] [52] ; systems that 

allow for targeted application of herbicides [53] [54] [55]; and last but not least, computer 

vision based crop disease diagnosis systems. In this thesis, it is the latter that we are interested 

in.   

 Crop disease diagnosis using images 

The potential yield of agricultural and horticultural crops worldwide is significantly hampered 

by innumerable kinds of pathogens. Roughly, crop diseases are directly responsible for losses 

ranging between 18% and 20% of global agricultural productivity [56] [57].  Accurate, 

accessible and timely diagnosis of crop diseases is essential to offset these losses. 
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Crop pathogens often produce some distinct visual cues in various parts of the plant; roots, 

kernels, fruits, stems and leaves. Historically, farmers have relied on human raters, trained and 

untrained, to observe any visual cues present on host plants and diagnose what pathogens may 

have infected their crops. This diagnosis method is still very popular even in this modern day 

age, especially in developing regions such Sub-Saharan Africa. However, there are some 

inherent disadvantages associated with visual assessment. By virtue, human visual assessment 

is a subjective task and prone to psychological and cognitive phenomena that may lead to bias, 

optical illusions and, ultimately, to error. Bock et al [58] elaborate more on these and other 

related disadvantages.  

Computer vision researchers have for the past decades been investigating ways to mitigate this 

dependency on human raters. Numerous studies have been carried out resulting in various 

automated crop disease diagnosis systems. In this thesis, we are particularly interested in those 

systems that apply digital image processing and computer vision techniques in their 

architectures. 

Computer vision based crop disease diagnosis systems typically involve five main procedures: 

image acquisition whereby images of host plants are taken or obtained by other means; image 

pre-processing which involves a series of image operations that enhance the quality of images 

in order to remove defects such as geometric distortion, noise, and non-uniform lighting; 

segmentation for subdividing images into their constituent regions of interest; feature extraction 

whereby distinguishing features that can be used for discriminating patterns in different 

categories are selected; and finally detection and classification where patterns of interest are 

detected and classified accordingly.  

For the above mentioned main procedures, there are innumerable possible techniques that can 

be used to complete each. As an example; with algorithm options ranging from basic ones like 

Harris Corner Detector to scale invariant ones like SIFT to invariant and speed optimized ones 

like SURF, researchers are truly spoilt for choice when it comes to selecting what feature 

extraction algorithm or combination to use in their studies. The same applies to all other main 

procedures. Our aim is not to introduce alternative algorithms for any procedure nor provide 

supporting literature on why others are better than others; but rather, we aim to build onto 

previous studies to architect a more accessible solution. We therefore will not discuss much 

technical details of the underlying algorithms in our discussions. There is plenty of published 

literature on what algorithms are best suited for what tasks. An interested reader can refer to 

[59] [58] [60] [61] for more information. We have introduced some which are most relevant to 

this study in the preceding background chapter. This review rather aims to critique the 

underlying approaches and suggest what needs to change in order to architect more accessible 

solutions. 

Previous studies that have employed computer vision techniques to architect crop disease 

diagnosis systems can be classified into two main categories, remote-sensing applications and 

near-range applications. More recently, a few studies have also explored the use of smartphone 

applications. We discuss all the three categories in detail and mention their benefits and 

shortcomings over the subsequent sections.  
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 Remote-sensing applications 

De Jong et al [62] define remote sensing as obtaining information about an object without 

having direct physical contact with it. In the context of this thesis, remote sensing applications 

are those that passively monitor crops, constantly acquiring images of the target crops/fields 

and actively analysing the acquired images to diagnose diseases based on symptoms that 

develop overtime without any human having to be physically present at the target fields. Thus, 

this category includes even those applications that may require some sort of physical apparatus 

to be set up at the target field prior to diagnosis as long as they don’t require any human 

physical presence in the field after initial setup. 

The idea of using remote-sensing technologies to diagnose crop diseases precedes digital 

photography. Its roots can be traced back to the late 1920’s with aerial photography at the 

Texas Agricultural Experiment Station in College Station, Texas, when army pilots stopping at 

the station reported that cotton rot spots were readily visible from air even at high altitudes. 

Following up on the report, Neblette [63] hung a film camera over the side of the aircraft and 

photographed the fields at varying altitudes between 76m and 152m. The stack contrast 

between healthy cotton plants, bare soil where Phymatotrichum had killed the plants and 

infected regions made the spots stand out in the photographs and the vertical angle at which the 

images were taken allowed for comparative measures of healthy and diseased acreage.  

Over the decades, as a direct result of technological advancements in photography, computer 

vision, machine learning and other technologies; newer, more accurate and faster approaches 

have been adopted. Thermography, hyperspectral imaging and chlorophyll fluorescence 

imaging are some of the most popular approaches to image acquisition for remote-sensing 

applications now used in place of the 1920’s aerial photography, and the analysis and 

interpretation of images are now performed mainly using digital image processing and 

computer vision techniques. In the next subsections, we briefly introduce each of the above 

techniques; and state advantages and disadvantages associated with remote sensing remote 

sensing techniques.  

3.3.1 Thermography 

Plant temperature is negatively correlated to transpiration rate [64]. Depending on the nature of 

infection, pathogens have different effects on the temperature of the infected plant tissues. 

Pathogens that induce stomatal closure in plants lead to decreased transpiration rates and 

increased leaf temperature. The opposite is also true. The infrared radiation emitted by plants 

can be detected by thermographic cameras and the captured images analysed further using 

computer vision techniques to detect and classify pathogens. 

3.3.2 Hyperspectral imaging 

Hyperspectral imaging belongs to a class of techniques referred to as spectral imaging or 

spectral analysis. Its roots can be traced as far back as the early 1980’s in National Aeronautics 

and Space Administration (NASA)’s Jet Propulsion Laboratory with the development of 

Airborne Imaging Spectrometer (AIS) [65]. A simple analogy to understand the concept better 
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is: the human eye sees visible light in three bands, red, green and blue, whereas hyperspectral 

imaging divides the spectrum into many more bands.  

3.3.3 Chlorophyll fluorescence imaging. 

Chlorophyll fluorescence is light re-emitted by plant chlorophyll molecules during return from 

excited to non-excited states. It has long been known that chlorophyll fluorescence emissions 

from plants provide indications of plants’ photosynthesis performance [66] [67]. More recently, 

it has been proven that plants experiencing both biotic and abiotic stresses exhibit changes in 

their chlorophyll fluorescence emission patterns [68] [69], which can be captured through 

fluorescence imaging. 

3.3.4 Studies utilizing remote-sensing techniques 

Several studies have utilized the above explained image acquisition techniques in combination 

with computer vision techniques to successfully develop crop disease diagnosis systems. 

Examples of successful studies that utilize thermography to detect crop diseases include a study 

by Stoll et al [70] to detect Plasmopara viticola pathogen in a grapevine and a study by Oerke 

et al [71] to detect effects of downy mildew on cucumber leaves. Studies that have successfully 

utilized fluorescence imaging for crop disease diagnosis include that by Lins et al [72] to detect 

citrus canker in citrus plants using laser induced fluorescence spectroscopy. Similarly, multiple 

studies have successfully made use of hyperspectral imaging to detect and classify crop 

diseases. Examples include a study by Zhang et al [73] in which Significance Analysis of 

Microarrays (SAM) technique in combination with minimum noise fraction (MNF) 

transformation on hyperspectral images was used to detect late blight disease on tomatoes, and 

a study by Rumpf et al [74] in which Support Vector Machines were used to classify 

Cercospora leaf spot, sugar beet rust and powdery mildew on sugar beet plants based on 

hyperspectral images.  

3.3.5 Advantages of remote-sensing techniques 

There are several advantages of utilizing the remote sensing approach for crop disease 

diagnosis hence the interest from a large community of researchers. Remote sensing 

applications are generally non-invasive, non-contact and therefore non-destructive. They also 

require minimal human interference once initialized. In addition, they have an added advantage 

of economies of scale. Thus, when well designed and implemented, one such application can be 

used at an industrial scale to monitor several fields of interest at once. Moreover, there are 

several other advantages related to specific approaches of remote sensing.  Thermography and 

fluorescence imaging have successfully been utilized to detect presence of diseases before any 

visual symptoms formed, paving way for them to be used as part of preventive measures to 

avoid major outbreaks of pathogens. Lindethal et al [75] and Oerke et al [76] in different 

studies successfully demonstrated pre-symptomatic thermographic detection of cucumber 

downy mildew. Stoll et al [77] also found characteristic thermal responses of grapevine leaves 

infected with Plasmopara viticola before any visible symptoms appeared. Similarly, Cséfalvay 

et al [78] successfully detected presence of Plasmopara viticola pathogen before any visual 

symptoms formed based on chlorophyll fluorescence images of the target grapevine.  
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Due to their multidimensional nature, hyperspectral images enable better characterization and 

identification of targets. Spectroscopic data analysis techniques can be used to extract chemical 

composition from each or an aggregate of pixels. Because of these combined features, 

hyperspectral imaging can greatly enhance our capability to identify materials and detect subtle 

features in an object. Thus, making detection and classification based on hyperspectral imaging 

fairly accurate. 

3.3.6 Disadvantages of remote-sensing techniques. 

It is common knowledge that each rose has a thorn: Each of the above introduced remote 

sensing techniques faces its own formidable challenges. Use of thermal imaging to detect 

pathogens has proved to be hard beyond laboratory settings. It is sensitive to environmental 

variations such as cloud cover and solar orientation. It is also difficult to identify plots of 

interest from thermal images during further processing: i.e. to separate crop canopy from soil in 

the background, and to adjust for different temperatures that may result from varying plant 

heights and environmental conditions [79]. Likewise, despite a number of successful laboratory 

studies that have used fluorescence imaging, this approach too still has major technical 

challenges outside laboratory settings, the main one being that its very sensitive to other 

abnormalities in photosynthesis. Papers by Scholes and Rolfe [80] and Chaerle et al [81] 

provide more detailed discussions on the technical challenges facing the use of chlorophyll 

fluorescence imaging for disease detection. 

Even hyperspectral imaging which offers the most potential compared to other approaches 

discussed above, still has hurdles to overcome. One of the major challenges facing the use of 

hyperspectral imaging to detect pathogens is the selection of disease-specific spectral bands to 

use for further analysis. For example, Lu [82], Xing and Baerdemaeker [83], Nicolaï et al [84], 

and ElMasry et al [85] all used hyperspectral imaging for detecting bruises in apples and all 

reported different findings. Lu [82] reported that 1000 nm to 1340 nm were best for bruise 

detection, while Xing and Baerdemaeker [83], Nicolaï et al [84], and ElMasry et al [85] 

reported bands within range 558-960 nm were more suited. 

Based on the research interest on the subject, there is no doubt that most of the above-

mentioned challenges facing the use of remote sensing technologies to detect crop diseases will 

be resolved in time. However, regardless of whether these methods will overcome all the major 

technical hurdles and finally get implemented commercially, one major problem is likely to 

remain; accessibility to the poorest communities of the world which arguably need such 

solutions the most. The technology used in remote sensing applications is not easily accessible 

as the required devices are expensive and require special training to use. It is this challenge of 

accessibility that we aim to address in this study. 

 Near-range applications 

In the context of this study, near range applications refer to those applications whose data 

acquisition techniques require physical presence of a human at the target field. In principle, this 

includes studies that quantify pathogens using molecular or immunological techniques and 

those that use hand held digital cameras for data acquisition. However, in this study we are 
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interested only in the latter.  Our definition of hand held digital cameras does not include 

mobile phone cameras as those are discussed separately.  

Digital camera technology has become relatively inexpensive and ubiquitous over the years, 

and the technical parameters of these simple, handheld devices such as the light sensitivity of 

the photo sensor, spatial resolution, or optical and digital focus have also improved 

significantly [86]. These advantages have consequently led to some researchers investigating 

ways in which to use consumer-level digital cameras as cheaper and more accessible alternative 

data sources for crop disease diagnosis systems.   

3.4.1 Studies that utilize near-range techniques 

Even though the idea of using consumer level cameras for plant disease identification has only 

gained attention from researchers in the last two decades, considerable progress has already 

been made. Several studies that range from those that focus on detecting a single disease of 

interest amidst other diseases to those that detect and discriminate different diseases have 

successfully utilized data acquired using consumer level cameras to detect crop diseases. 

Abdullah et al [87] successfully detected corynespora from rubber tree leave images taken 

using a Fujifilm FinePix 6900 digital camera. Similarly, Huang [88] successfully detected and 

discriminated three diseases affecting Phalaenopsis seedlings namely, bacterial soft rot, 

bacterial brown spot and phytophthora black rot, using data acquired using a commercially 

available Sony XC-711 camera. A comprehensive discussion on more of these studies can be 

found in a review by Barbedo [89].  

3.4.2 Advantages of near-range applications 

Perhaps the greatest advantage of the approach of utilizing hand held digital cameras as data 

sources for crop disease diagnosis systems is their accessibility. As briefly indicated in the 

introduction of this section, digital cameras are relatively inexpensive; thus, making systems 

that use them as data sources accessible to a larger proportion of the population when compared 

to remote sensing applications.  

In addition, compared to remote sensing technologies, digital cameras are easier to operate, 

reducing the effort required for training consumers to utilize their applications. Moreover, 

maintenance of digital cameras is relatively lower when compared to remote sensing 

technologies.   

3.4.3 Disadvantages of near-range applications 

The solutions discussed above require the images acquired using digital cameras to be uploaded 

on desktop or laptop computers for further processing and diagnosis. Very few households in 

Sub-Saharan Africa own such devices. In addition, to get to know what diseases have affected 

their crops, farmers would still have to travel to nearest centres where they can access 

computers; thus, resulting in potentially delayed responses to disease outbreaks.  

Moreover, reports reveal that globally, ownership of stand-alone digital cameras is on the 

decline mainly due to the increasing popularity of smartphones. According to a report by 
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Mintel [90], sales of digital cameras in the United Kingdom fell by 29% between 2006 and 

2011. The same report predicted by 2016, the market values would have decreased from the 

value of £843 million in 2006 to £523 million. A similar downward trend is also visible in the 

United States of America whereby according to Statista.com [91], only 124.42 million people 

owned digital cameras in the Spring of 2015 compared to 151.95 million in Autumn 2010. We 

could not find any specific reports on Sub-Saharan Africa, but it is safe to assume it has also 

followed the global trend as it too has witnessed a rapid increase in the ownership of mobile 

phones capable of taking photos.   

 Smartphone based applications 

The successful uptake of the mobile phones throughout the world has significantly impacted 

economic development initiatives. In 2014, 1.57 billion people owned smartphones worldwide 

and predictions estimate the number will almost double by 2020, reaching 2.87 billion [92]. 

These coupled with the decreasing popularity of stand-alone digital cameras and other factors 

have inspired a growing number of researchers to investigate ways to build up on the success of 

systems that utilize digital cameras’ images to architect solutions that utilize mobile phones 

images and are accessible through mobile phones. 

The most popular amongst mobile phone based crop disease diagnosis application is 

undoubtedly, Plantix, an android based commercial application by a German based Progressive 

Environmental and Agricultural Technologies (PEAT) [93]. It allows anyone with an android 

device to upload images of infected crops and instantly get diagnosis results. In addition to 

providing diagnosis, it also provides steps to mitigate diseases and information on preventing 

diseases in the next growing season. It currently covers an impressive 60 crops worldwide and 

has prescriptions for over 200 crop diseases [94]. A comprehensive discussion of other studies 

that have explored the use of mobile phones for crop disease diagnosis can be found in a review 

by Pongnumkul et al [95]. 

3.5.1 Advantages of smartphone based applications 

The biggest advantage of smartphone based solutions is their accessibility, anyone with a 

smartphone or access to one can have their crops diagnosed. In addition, smartphone 

applications provide diagnosis results almost instantaneously, all farmers must do is take 

images, upload them using the respective applications and within a matter of minutes have 

results back. This spares farmers’ unnecessary trips to have their crop diagnosed and allows 

ample time to react to disease outbreaks.   

3.5.2 Disadvantages of current smartphone based applications 

Undoubtedly, mobile phone based solutions are the most accessible and cost effective amongst 

the solutions discussed thus far. However, they are still a few hurdles facing current solutions. 

Current solutions have mainly focused on developing applications exclusively for smartphones. 

Only about 34% of South Africans and 27% of Nigerians’, two of the largest economies in Sub 

Saharan Africa, citizens owned smartphones in 2015 [96]. To make matters worse, those that 

do own smartphones are mostly young urban professionals, a demographic that is less likely to 
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participate in agricultural activities: thus, making the solutions inaccessible to those that 

undoubtedly need them the most, the rural subsistence farmers.  

 Conclusion 

As evidenced in this chapter, there are already plenty of successful computers vision based crop 

disease diagnosis solutions; ranging from remote-sensing technology based systems which are 

well suited for commercial farmers, to smartphone solutions which are well suited for small 

scale farmers. However, as we have indicated, there is still a problem of accessibility, 

especially for rural subsistence farmers who can neither afford remote-sensing technologies nor 

have purchasing power to acquire smartphones and whom unfortunately, farming is most likely 

their only source of income. 

In the next chapter, we provide an overview of the approach we took in this dissertation to 

address the issue of accessibility.  
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4 Design and architectural overview  

As discussed in the preceding literature review chapter, a considerable number of successful 

studies have been carried out to develop systems for diagnosing crop diseases using computer 

vision techniques, some of which have enjoyed commercial success. However, as identified, 

there is still need to develop solutions that are more accessible, especially for small scale 

farmers in Sub Saharan Africa for most of which farming is their only livelihood.  

This chapter provides an overview of the methodology we adopted in designing a crop disease 

diagnosis system that attempts to resolve this accessibility problem. It discusses factors we took 

into consideration and our approach to solving them, use cases and activity flows we 

envisioned when designing the system, and finally provides an architectural overview of the 

system.  

4.1. Design considerations 

When designing the system, we took into consideration many factors that would make the 

solution more accessible. Chief amongst is that the solution should be accessible through many 

devices with varying computational power. In addition to being accessible through various 

devices, it must not require any specialized hardware to access, thus even feature phones with 

minimal capabilities must be able to access the core functionality of the system.  

Another important factor we considered was that the solution must be conveniently accessible. 

That is, users must not have to travel distances to access it. Ideally, a user must be able to take 

picture while at the farm, upload it to the system and almost instantaneously get diagnosis 

results.  

In addition to the above considerations, we also considered other factors which we however 

decided not put too much emphasis on them due to scope limitations. These include that the 

system should be scalable enough to cater for diagnosing more crop diseases with minimal 

redesign in the future. Finally, given our target demographic, the system also must have 

minimal learning curve.  

4.2. Approach 

Bearing in mind the main objective of this study, developing a highly accessible crop disease 

diagnosis application, and having taken into consideration the factors discussed in the design 

considerations section, we decided on the following approach: 

4.2.1. Approach to detecting and classifying diseases from images 

As emphasised in the preceding chapters, our aim is not to come up with new techniques to 

detecting and classifying crop diseases from images, but rather, to adopt already proven 

techniques and architect a solution that is more accessible.  

From our literature review, we identified one approach that seems to be the de’ facto choice of 

recent studies and adopted it for our solution. This approach involves the of use of a 
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combination of Bag of Features and machine learning algorithms and is often referred to as just 

Bag of Features classification model. We introduced fundamentals of both Bag of Features and 

Machine Learning Algorithms in the background chapter. When implementing this model, 

local features are extracted from all training images and a dictionary referred to as a bag of 

features is created as explained in section 2.3. Afterwards, local features of images in 

individual classes are matched against the dictionary and matches stored in individual class 

matrices. The resulting class matrices are then used as input into a machine learning algorithm 

that then creates a model that is used a classifier. 

There are many factors behind the popularity of this model. Chief amongst them which 

consequently makes it our preferred approach is that it easier to understand and implement 

while still giving highly accurate results. Its use of machine learning algorithms for 

classification ensures that the results are more reliable and repeatable as machine learning 

algorithms take into consideration patterns and insights humans are likely to miss due to them 

either being too complex to explicitly code or not obvious to the human eye. Moreover, the 

model is highly scalable and adoptable. It has successfully been implemented to solve the time 

series classification problem [97];  to classify Alzheimer’s disease in magnetic resonance 

images [98]; and to solve Histopathology image classification problem [99]; to mention but a 

few. 

From our literature review, we identified that SIFT and SURF features are preferred algorithms 

for feature extraction while SVMs and variations of ANNs are preferred classifiers amongst 

studies applying the Bag of Features classification model. Both SIFT and SURF algorithms are 

ideal from such applications because they are both robust to image transformations such as 

scale, rotation, noise and affine transformations. In addition, all major open source image 

processing libraries ship with them, saving researchers time. Though the underlying theories of 

ANNs and SVMs vary significantly, they are well suited for deriving solutions of problems 

where relationships between variables are vaguely understood or too difficult to describe 

adequately with conventional algorithms hence their popularity in image classification 

problems. 

For our solution, we decided that the system should allow training using either SIFT or SURF 

and SVMs. While there is no clear consensus on which is better between SVMs and ANNs 

from papers we surveyed [100] [101] [102] [103] [104], there seems to be a general agreement 

that SVMs are considerably more efficient on computational time, less sensitive to 

parameter settings and provide accurate results even with less training data. It is because 

of these reasons that we selected SVMs over ANNs. 

4.2.2. Approach to accessibility 

To ensure that our solution is accessible to many end users utilizing different device with 

varying computational power, we decided to adopt client-server architecture [105]. 

Client server architecture refers to a distributed application structure that allows clients or 

service requesters which often have less computing power to access services provided by one 

or more powerful service providers referred to as servers. In our case, the system is designed 
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such that the resource intensive diagnosis functionality is hosted on one server and end users 

can access the functionality using any internet capable device.  

In addition to enabling end users access the solution regardless of computational power of their 

devices, this model also has the advantage that it ensures all users get consistent results from 

the latest deployed server code. i.e. For the same image, a user accessing the system through a 

high-end smartphone or laptop and a user accessing it using a low-end feature phone all get the 

same results. 

4.2.3. Approach to ensuring usability 

In Software Engineering, usability refers to a degree to which an application can be used by 

specified consumers to achieve quantified objectives with effectiveness, efficiency, and 

satisfaction in a quantified context of use. It is a large part of an active research field referred to 

as Human Computer Interaction (HCI) [106]. Usability is not our primary focus in this study 

hence, we do not evaluate it. However, given our application’s target demographic and the fact 

that the system is designed to be accessed using different devices with varying screen sizes 

whose users have different interaction habits, we had to take into consideration some usability 

guidelines. 

To ensure a seamless. high quality user experience for all our end users regardless of devices 

they use to interact with the system, we designed the system’s web client following Responsive 

Web Design(RWD) guidelines. Believed to have been coined by Ethan Marcotte [107], RWD 

is an approach to user interface design that allows web pages to be viewed in response to the 

web browser screen one is viewing with. A site designed following RWD guidelines adapts its 

layout to the viewing environment by using fluid, proportion-based grids, flexible images and 

Cascading Style Sheets 3 (CSS3) media queries. 

To ensure minimal learning curve, when designing all our user interfaces, we adopted the 

popular, tried and tested user interface design guidelines referred to as flat design guidelines 

[108]. Flat design guidelines are recommended by most operating system vendors, including 

Microsoft [109], Google [110] and Apple [111]. Following these guidelines ensures familiarity 

which in turn promotes learnability.  

4.3. Architectural overview 

Figure 4-1 illustrates the core modules of the system and how they communicate with each 

other. From a very high level perspective, our system is made up of responsive web client, the 

application server and the system administrator portal. The responsive web client is the user 

facing end of the system through which users interact with the whole system. Through it, they 

upload images they want diagnosed and view the diagnosis results. The application server 

module is the core of the system where all major resource intensive functionality resides. Its 

responsible for all the image processing and classification processes. The system admin portal 

is mainly for configuring and testing the diagnosis engine. Through it, the system administrator 

can add and test new models for diagnosing more crops diseases.  More details are on 

individual models are provided in the subsequent implementation chapter. 
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Figure 4-1 A high level architectural overview of the system showing main modules. Pointed arrows indicate communication between 
different modules 

4.3.1. Use cases 

Figure 4-2 illustrates the use cases the system caters for. 

 

Figure 4-2 System use cases from both the system administrator and system user perspectives. 
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4.3.2. Activity flow charts 

Figure 4-3 outlines activity flow we envisioned a system administrator would follow when 

setting up a new model for diagnosing crop diseases and figure 4-4 outlines an activity flow we 

envisioned an end user would follow when using our system.  

 

Figure 4-3 Flow diagram of system administrator using the administrator panel to set up a classifier 

 

 

Figure 4-4 Flow diagram of a system using when diagnosing images using the responsive web client. 
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 Conclusion 

This chapter has outline the thought process that guided us in architecting our solution. We 

have discussed factors we took into consideration and our approach to solving them. In 

addition, we have provided a modular overview of the system, introduced use cases it caters for 

and activity flows we envisioned when designing the system. 

In the next chapter, we continue our discussion of the system by providing more detail on how 

individual components were constructed. 
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5  Implementation 

In this chapter, we provide more details on each individual component of the system. We 

discuss technologies utilized, how they were implemented and in addition, discuss the roles of 

each individual component.  

It is worth mentioning that we do not go as far as providing class diagrams because all our 

components are constructed using open source third party libraries whose architectural 

compositions are readily available online.  

 Responsive web client 

This is the user facing end of the system through which users interact with the whole system. It 

is constructed using Twitter Bootstrap [112],  a popular free open-source front-end web 

framework that contains HTML, CSS and JavaScript based design templates for typography, 

forms, buttons, navigations and other interface components.  

It has two main functions, allowing the users to submit diagnosis requests and displaying the 

diagnosis results. In its entirety, it consists of two web pages namely, the home page shown by 

figure 5-1 and the results page shown by figure 5-2.  

 

Figure 5-1 An image of the application’s home is rendered by a windows 10 desktop chrome browser. 

 

 

Figure 5-2 The application’s results page as rendered by desktop version of Chrome browser. The image on the right is an example of a 
diagnosed disease and the image in the “Your Image Column” is the image the user uploaded. The other columns show the diagnosed di 
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The home page allows users to upload images pre-existing images or depending on a device the 

user is using, capture an image and upload it straight away. It is basically a html form 

consisting of a file input and a submit button. The file input is set to accept only image files and 

it has a multiple attribute set to true, allowing the user to upload multiple images for diagnosis 

in one go. It also has capture attribute set to true so that users accessing the site using browsers 

that support the html5 file API to be able to take images and upload them straight away. It also 

has a preview section so that the user is aware what images they are uploading. Figure 5-3 

shows the home page with some images selected for upload. The submit button is for 

submitting the form. Upon submitting, the images are uploaded to the server where the 

diagnosis takes place and the user is redirected to the results page.  

 

Figure 5-3 Application’s home page showing preview of images the user is about to submit for diagnosing. 

The results page is for displaying the diagnosis results. It consists of a html table for displaying 

the results. The table has five columns, Submitted Image, Sample Image, Disease Detected, 

Classifier Used, and Features Used columns. Submitted image column is for displaying the 

image the user uploaded for diagnosis. The Sample Image column is for displaying an image of 

the diagnosed diseases for user’s reference. The Submitted image is for displaying a thumbnail 

of the image the user submitted for diagnosis. The Disease Detected column is for displaying 

the diagnosed disease. Finally, the classifier used and features used columns display the used 

machine learning algorithm and the used features extraction algorithm respectively. They are 

for the more technical users.  Figure 5-4 shows the results page with diagnosis results of images 

uploaded as per figure 5-3. 

 

Figure 5-4 Results page showing diagnosis results of images shown in figure 5-3. Only the top two results are shown as other results were 
beyond screen print’s reach. 

Both pages are designed following Responsive Web Development guidelines. They scale based 

on the browser size the user is using to interact with the system. Figure 5-1 showed the home 
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page as rendered by the desktop chrome browser, figure 5-5 shows the same page on opera 

mobile browser on a Nokia C200 feature phone emulator and figure 5-6 shows the same page 

on a Google Nexus S5 smartphone emulator browser 

 

Figure 5-5 Home page rendered on a Nokia C200 feature phone emulator’s opera mobile browser 

 

Figure 5-6 Home page rendered on a Google Nexus 5 smartphone emulator’s mobile chrome browser. 
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 System Administrator Portal 

This part of the system is used by the administrator to train new classification models. It is 

constructed using Windows Presentation Foundation (WPF), a graphical subset of the .Net 

framework used for rendering user interfaces in windows based applications. Its presentation 

layer is constructed using XAML while its business logic layer is constructed using C# classes. 

It consists of one main window and one dialog window. The main window is shown in figure 

5-7. It consists of three sections. The first section is labelled System Settings and within it the 

admin can specify the path of the folder containing all training data, number of clusters to be 

used when creating the bag of features, the feature extraction algorithm to use and the classifier 

to use. The user has an option to select either SIFT or SURF for feature extraction.  

 

Figure 5-7 Admin Panel Interface showing required fields when SURF is selected as a feature algorithm. 

Depending on the feature algorithm selected, the second section contains either the SURF 

configuration form or SIFT configuration form. Both sections are pre-populated with 

recommended defaults. Figure 5-7 shows SURF parameters while figure 5-8 shows SIFT 

parameters. The third section is for configuring classes. Figure 5-9 shows the screen used for 

configuring data classes. 

 

Figure 5-8 Admin Panel Interface showing required fields when SURF is selected as a feature algorithm. 
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Figure 5-9 A pop up used for configuring data classes for the model. The system admin has to specify the full path to training data folder, full 
path to cross validation data and the class name. 

When configuring a class, the system administrator must specify the full path to the folder 

containing images to use for training, a full path to the folder containing validation data for that 

class and the name of the class. The user can set up unlimited classes. However, in all our 

experiments, we only set up three classes, Common Rust, Grey Leaf Spot and Healthy.  

After filling all the necessary configuration settings, the system administrator clicks on “Extract 

Features and Test” button. Upon clicking the button, the administrator portal prepares the 

training requests according to the specified settings and submits the request to the application 

server where all training and validation occurs. The administrator is kept updated on the 

progress by the progress bar which is asynchronously updated by the server side code. 

 Application server 

The application server is the core of the system where all major resource intensive functionality 

resides. It is responsible for handling all the diagnosis requests from the web client and creating 

the diagnosis models as per administrator portal’s instructions.  

It consists of three layers, namely, the business logic layer, diagnosis engine and the file 

storage layer. The business logic is composed mainly of the web controller and associated data 

objects. It accepts requests from the web client, formats them, forwards them to the diagnosis 

engine for further processing and diagnosing, and returns the results back to the client. The 

diagnosis engine is responsible for diagnosing images using existing models and for creating 

new models. The file storage layer is for saving classifiers, bag of features dictionary, uploaded 

images and diagnosis results. 

The business logic layer is a C# asp.net MVC controller while the file storage layer consists of 

XML files which store different system configurations and diagnosis results, YML files that 

store bag of features dictionaries and trained SVM models, and images files uploaded by users. 

At the core of the diagnosis engine is OpenCV, a C++ open source computer vision and 

machine learning software library built to provide a common infrastructure for computer vision 

applications and to accelerate the use of machine perception in commercial products [113]. To 

enable simple integration of OpenCV with the rest of our system which is constructed mainly 
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using C#.net, we utilized EmguCV, a cross platform .Net wrapper to OpenCV library that 

allows OpenCV functions to be called from .NET compatible languages such as C# [114].  

The application server is configured to process three kinds of requests, the diagnosis request 

and results request from the web client, and the training request from the system administrator 

portal. A training request is basically a data transfer object(DTO) whose properties are the 

configurations set in the administrator portal. These properties include: number of clusters to 

use, path of parent folder containing subfolders of different classes’ data, feature extraction 

algorithm, feature algorithm settings, classifier name and individual class settings. This request 

is processed directly by the diagnosis engine. Upon receiving the request, the diagnosis engine 

extracts image features from all images in the parent folder and subfolders, processes them to 

create a bag of features as per specified settings and serializes the resulting dictionary into a 

YML file as specified in Appendix A. Afterwards, it loops through individual classes, 

extracting image features from all images in the training folder, matching them against the 

stored bag of features and storing them in individual class matrices. Afterwards, the individual 

class matrices are fed to an SVM for training. When training is complete, the resulting model is 

serialized to a XML file like Appendix B. The next step is then to validate the resulting model.  

The diagnosis engine achieves this by looping through images contained in individual classes’ 

test data folders and using the trained model to predict individual images’ classes. The overall 

results are serialized to a XML file with the schema specified in Appendix C. 

The diagnosis request from the web client is simply a form consisting of a jagged array of 

images. This request is received by the MVC controller. Upon receiving the request, the 

controller loops through previously saved training results and selects one with the highest 

average classification score. Using the settings from the found file, it modifies the diagnosis 

request to include the settings from the file and forwards the request to the diagnosis engine. 

The diagnosis engine loops through the images, extracting individual image features as per 

request settings and predicting their classes using the model specified in the request. The 

prediction results are serialized to an XML file with the schema specified in Appendix D and 

returned to the controller which returns a redirect header to the web client.  

The results request is a simple get request specifying the name of the results xml. It is also 

processed by the MVC controller. Upon receiving the results request, the controller locates the 

results XML file, translates it to a HTML file and returns the results to the web client where a 

user can view their diagnosis results. 

 Conclusion 

In this chapter, we have discussed in more detail individual component of the system. We have 

discussed the technologies used to build the individual components, responsibilities of the 

component and how they all tie together.  

In the next chapter, we outline steps we followed to evaluate how well our system meets our 

study’s primary objectives and tests we carried out to answer research questions we posed at 

the beginning of our research.  
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6 Evaluation and results 

The objective of this research was to determine the feasibility of developing a crop disease 

diagnosis application utilizing computer vision and machine learning techniques, that in 

addition to being accessible through personal computers and smartphones, can also be accessed 

through feature phones. 

This chapter outlines the steps we undertook to evaluate this primary objective and experiments 

we carried out in attempt to answer the research questions we posed. 

 Data collection 

The bulk of the data we used throughout our experiments was acquired from 

www.plantvillage.org [115], an open access database of over 50,000 images of healthy and 

diseased crops. All in all, we collected 160 images of maize leaves infected by Common Rust, 

160 images of maize leaves infected by Grey Leaf Spot and 160 images of healthy maize 

leaves. We ensured that images in each group are representative of different stages of the 

respective infection and that each group’s images have varying orientations. In addition, we 

ensured that images in each set have varying levels of background noise.   

6.1.1 Data preparation 

The next step before any features extraction or model training, was to divide our data into sets. 

We split each collection into three subsets, the training subset used for training the models, 

validation subset used for estimating the prediction error of trained models during model 

selection and the testing subset used for assessment of the final models. When dividing the data 

into the respective sets, we ensured that the images in the training and validation sets of 

Common Rust and Grey Leaf Spot were representative of different stages of the infections. i.e. 

There were enough early stage infection images, mid stage infection images and advanced 

stage infection images in each set. At the end of this exercise our data was as presented in table 

6-1 below.  

 

Table 6-1 Data collected from www.plantvillage.org before any pre-processing. 

Collection Training Set Validation Set Testing Set 

Healthy 50 50 60 

Common Rust 50 50 60 

Grey leaf spot 50 50 60 

The next step we took was to crop out backgrounds from the training sets’ images to avoid the 

risk of a classifier considering the background features as part of the significant descriptors. 

The images were cropped manually using Windows Paint software. Afterwards, we used GIMP 

software to split individual images in the training sets into smaller images so that we could 

http://www.plantvillage.org/
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have more data to test different scenarios with different sets of images. Eventually, our data 

was a presented in table 6-2 

Table 6-2 Data after cropping training set images to create more training images. 

Collection Training Set Validation Set Testing Set 

Healthy 100 50 60 

Common Rust 100 50 60 

Grey leaf spot 100 50 60 

It is worth mentioning that we ensured that the images in our testing sets resembled typical 

images that a regular user would upload to the system for diagnosing. We did not remove any 

background objects from them nor pre-process them in any way. Figure 6-1 presents examples 

of typical images in our testing data sets.  

 

Figure 6-1 Typical images in our testing data sets. No background noise is removed so that images resemble images our system users are 
likely to upload for diagnosis. 
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 Hardware and software used 

All experiments were carried out on a HP laptop with Intel core i5-3230m, 2.60GHz CPU and 

4GB RAM running a 64-bit Windows 10 Professional edition. All programming and 

benchmarking was done on Microsoft Visual Studio 2015 Professional Edition with Internet 

Information Services (IIS) version 10.0 Express edition installed. Google Chrome browser 

developer tools, Opera browser developer tools and visual studio emulators were used to 

emulate different mobile phone conditions. Opera mobile browser emulator, Chrome browser 

for Android, Internet Explorer 9, Edge browser and Safari browser were used for testing 

browser compatibility.  

 Evaluation of the crop disease diagnosis engine 

The first component of the system we evaluated was the diagnosis engine as it is the core of the 

system. Our admin panel allows for the system administrator to configure the number of 

clusters to use when creating the bag of features and what feature extraction algorithm to use. 

In addition, the administrator is also responsible for deciding the amount of data to use for 

training the SVM model. Moreover, both SIFT and SURF have configurable parameters the 

administrator also must decide on. Our first task was then to establish which feature extraction 

algorithm and parameters would produce the best results, as well as the influence the amount of 

training data has on the overall accuracy of the SMV models. 

For every feature extraction algorithm and SVM combination, we carried out three suites of 

experiments. The first was geared towards establishing the number of clusters that produces the 

best results. To establish this, we used the default feature extraction algorithm’s parameters, 

kept the training data quantities constant and only varied the number of clusters. Having 

established the best number of clusters, our second suite of experiments were designed to find 

which parameters produced the best results. We kept the number of clusters and the training 

data constant and varied individual algorithm parameters over several iterations. The third suite 

of tests was then designed to establish the influence the quantity of training data had on the 

classifier. We used the best parameters established from the first two sets of tests and varied the 

amounts of training data. 

Having established the ideal parameters and training data quantity to use for each combination 

of feature extraction algorithm and SVM, our final task was then to evaluate each ideal model 

using the testing data sets.  

Section 6.3.1. presents various test results of varying different parameters when training an 

SVM classifier using SURF features while section 6.3.2. presents various results of varying 

different parameters when training an SVM classifier using SIFT features. Finally, section 

6.3.3. presents evaluation of the ideal SURF-SVM classifier and SIFT-SVM classifier as 

established in sections 6.3.1. and 6.3.2. Each test was run four times and the results presented 

in this dissertation are averages. 
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6.3.1 SURF-SVM tests’ results 

The first test we performed for SURF-SVM model was to determine the impact varying the 

number of clusters used when creating the bag of features would have on the overall classifier. 

Roughly speaking, this variable controls the trade-off between being distinctive and robust. If 

too low, it can result in visual words not representative of all features and if too large it can 

result overfitting. The task of this test is then to determine what the best number to use given 

our classification problem and data. We varied the number of clusters starting at 50 clusters and 

ending at 400 clusters, while maintaining the training data at 100 images per class and the 

Hessian Threshold to OpenCV’s default value of 200. The best value to use is determined by 

highest average accuracy. The results are presented in figure 6-2. 

 

Figure 6-2 Effects of varying number of clusters while keeping Hessian Threshold fixed at 200 and training data at 100 images per class 
when training SURF-SVM classifier. 

From the results presented in figure 6-2, we can see that the average accuracy of the classifier 

is low at 50 clusters, peaks at 100 clusters and afterwards gradually decreases. This pattern is in 

line with patterns Yang et established in [116].  

The next tests we performed were aimed at evaluating the impact of varying the Hessian 

Threshold on the classifier’s prediction accuracy. The Hessian Threshold affects the number of 

features extracted from images and their repeatability, the tendency of re-detection of the same 

feature in another image of the same scene but different camera angle. Setting a low Hessian 

Threshold results in detection of a lot of feature points which however have less repeatability 

and setting it high results in fewer features with high repeatability. An ideal Hessian Threshold 

is one that produces enough repeatable features for a classifier to establish distinctive features 

of individual classes. To establish an ideal Hessian Threshold for our training data, we used the 

ideal number of clusters, 100, established in the last suite of tests, 100 training images per class 
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and varied the Hessian Threshold from 0 to 350. The results of the tests are presented in figure 

6-3 on the next page. 

 

Figure 6-3 Effects of varying the hessian threshold clusters while keeping number of clusters fixed at 100 and training data at 100 images per 
class when training a SURF-SVM classifier. 

From the results presented in figure 6-3, it is evident that the best Hessian Threshold to use for 

our training data is 100. 

The last tests we performed on SURF-SVM model were aimed at establishing how the quantity 

of training images affect the accuracy of the classifier. To establish this, we used the ideal 

parameters as established in the last two suites of tests and varied the number of images per 

training set starting at 20 images per class to 100 images per class. The results of the tests are 

presented in figure 6-3. 
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Figure 6-4 Effects of varying training data quantity while keeping number of clusters fixed at 100 and Hessian Threshold at 100 when training 
a SURF-SVM classifier. 

A lot of studies have previously investigated the impact of data on machine learning algorithms’ 

accuracy. Though there are varying views on exactly what constitutes good learning data and 

how much of it is enough to effectively train a classifier, there is a consensus that the more data 

one trains with, the more accurate the resulting model becomes [117] [118] [119]. As indicated 

in figure 6-4, our model produced a different pattern, using 80 images per class produced a more 

accurate model than the one produced using 100 images per class. This could be because our 

training data sets sizes are too small and the pattern probably would have changed to align with 

the expectations had we kept increasing the training data quantity. However, this is a 

phenomenon worth investigating in more detail on its own dedicated thesis. We therefore decided 

not to investigate it any further in this study, but rather accept the results as they are. 

From the above experiments’ results, we inferred that given our data, to produce best candidate 

classifier using SURF and SVM we must set a number of clusters to 100, Hessian Threshold to 

100 and only use 40 images per class. As highlighted in our discussion of the results presented 

in figure 6-4, it is worth doing a different study to validate these results, especially those produced 

by varying quantity of training data 

6.3.2 SIFT-SVM tests’ results 

As in the case of SURF-SVM model, the first test we performed was to determine the impact of 

varying the number of clusters. In this test, we also varied the number of clusters starting at 50 

and ending at 400 while keeping the training data constant at 100 images per class and using the 

default OpenCV’s values for octave layers, contrast threshold, edge threshold and sigma. The 

results are present in figure 6-5.  

1
0

0

9
0

.1 9
5

.5

9
6

.4

9
7

.3

6
7

.3

7
6

.6

8
6

.9

9
4

.4

8
9

.7

7
1

.8 7
7

.3 8
1

.8

8
0

.9

7
7

.3

7
9

.7

8
1

.3 8
8

.1 9
0

.6

8
8

.1

0

20

40

60

80

100

A
C

C
U

R
A

C
Y 

(%
)

NUMBER OF IMAGES PER CLASS

Grey Leaf Spot Common Rust Healthy Average



Chapter 4: Conclusion 

 

  51 

 

 

Figure 6-5 Effects of varying number of clusters when training a SIFT-SVM classifier 

 

Like SURF-SVM model’s results, 100 clusters produced the highest average accuracy.  

However, unlike in the previous SURF-SVM test, the average accuracy did not continuously 

decrease after the peak. As indicated in figure 6-5, 200 clusters produced a higher average 

accuracy than 150 clusters. Similarly, 350 clusters produced higher average accuracy than 300 

clusters. Although the results’ pattern varies from the SURF-SVM results’ pattern, we are not 

the first to observe this pattern. Liu et al also observed a similar pattern in [120]. Establishing the 

underlying reasons behind the differences is beyond the scope of this study, we therefore 

accepted the results as they are. 

The next test we performed on the SIFT-SVM model was to establish the impact of varying the 

number of octave layers on the accuracy of the produced model. Octaves in SIFT emulate various 

representations of a given image from camera distances different from the original. In principle, 

increasing the number of octave layers gives the ability to detect features in more different sizes 

ranging from the smallest to the largest. However, it also increased computation time and makes 

the algorithm susceptible to noise. More details on Octave layers can be found in the original 

paper by Lowe [121]. In our tests, we varied the octave layers from the 3 which is the 

recommended value in Lowe’s paper [121] to 11. Our results are represented in figure 6-6.  
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Figure 6-6 Effect of varying number of octave layer when training a SIFT-SVM classifier 

 

From figure 6-6, it can be established that the best number of octave layers to use for our training 

data is 5. 

The next tests we performed were to establish the appropriate contrast threshold value to use for 

our training data. In SIFT, contrast threshold is used to filter out weak features in semi-uniform 

(low-contrast) regions. The larger the threshold, the more refined but fewer features are produced 

by the algorithm. In our tests, we varied the value from 0 to 0.04 and our results are presented in 

figure 6-7. 

 

Figure 6-7 Effects of varying contrast threshold when training a SIFT-SVM classifier 
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As visible in figure 6-7, the accuracy of the model increases from 85.4 at 0 contrast threshold to 

the maximum of 92.4 at the threshold of 0.04. It therefore concludes that for our training data, 

the best value to set the threshold at is 0.04.  

The next tests we performed were aimed at establishing the appropriate edge threshold to use. In 

SIFT, the edge threshold is used to filter out edge-like features. However, unlike in the case of 

contract threshold, the larger the threshold the less features are filtered out resulting in the 

algorithm producing more features. In our tests, we varied the edge threshold values from 0 to 

14 and our results are present in figure 6-8. 

 

 

Figure 6-8 Effects of varying edge threshold when training a SIFT-SVM classifier. 

 

From figure 6-8, it is evident that the most appropriate value to set the edge threshold when 

training a model with our data is 12.  

Our next tests were aimed at finding the appropriate Sigma value to use when extracting features 

to train our classifier with. The detailed explanation of sigma is better left to this paper by Rey-

Otero [122]. In simplified terms, low sigma value increases the visibility of edges and other detail 

present in a digital image which is beneficial if training images were captured using a weak 

camera with soft lenses. To find the appropriate value to use for our training data, we varied the 

value between 1.2 and 1.8 and our results are presented in figure 6-9. 
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Figure 6-9 Effects of varying Sigma when training a SIFT-SVM classifier 

From figure 6-9, it is evident that the most appropriate Sigma value for training a model with 

our data is 1.6.  

As we did when investigating the best parameters for a SURF-SVM model, the last suite of 

tests we performed were aimed at establishing how the quantity of training images affects the 

accuracy of the classifier. To establish this, we used the ideal parameters as established in the 

previous SIFT-SVM tests and varied the number of images per training set starting at 20 

images per class to 100 images per class. Our results of the tests are presented in figure 6-10. 

 

Figure 6-10 Effects of varying quantity of training data when training a SIFT-SVM classifier 
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From figure 6-10, it is visible that varying the quantity of training when training a SIFT-SVM 

model results in a different pattern from that formed by the same test on a SURF-SVM model. 

In this case, the average accuracy increases as the training data is increased. This is more in line 

with surveyed past papers [117] [118] [119]. It is however worth investigating how the same 

data produced such different patterns. Unfortunately, this is beyond the scope of this 

dissertation. 

6.3.3 Evaluation of established ideal classifiers 

Having established the ideal parameters and training data quantity to use for each combination 

of a feature extraction algorithm and SVM in sections 6.3.1 and 6.3.2, our final task was then to 

train models using the established ideal values and evaluate the resulting models using our test 

data. 

Our evaluation results are presented using confusion matrices. A detailed explanation of an 

identity matrix is provided in section 1.3. of this thesis. The confusion matrix of SURF-SVM 

model is presented in tables 6-3 and one for SIFT-SVM model is presented in table 6-4 

 

Table 6-3 Confusion Matrix of the best SURF-SVM classifier 

 Common 

Rust 

Grey Leaf 

Spot 

Healthy Total 

Classification 

Precision 

Common Rust 37 23 0 60 61.667% 

Grey Leaf Spot 14 45 1 60 75% 

Healthy 3 21 36 60 60% 

Overall Truth 54 89 37 180 

Recall 68.519% 50.562% 97.297% 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 61.667 + 75 + 60

3
= 65.556% 

NOTE –  Number of clusters =100, Hessian Threshold =100, training data per class = 80 
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Table 6-4 Confusion matrix of the SIFT-SVM classifier 

 Common 

Rust 

Grey Leaf 

Spot 

Healthy Total 

Classification 

Precision 

Common Rust 41 19 0 60 68.333% 

Grey Leaf Spot 13 47 0 60 78.333% 

Healthy 0 16 44 60 73.333% 

Overall Truth 54 82 44 180 

Recall 75.926% 57.317% 100% 

Overall Accuracy 68.333 + 78.333 + 73.333

3
= 73.333% 

Note –  Number of clusters =100, octave layers = 5, contrast threshold = 0.04, edge threshold = 10, sigma = 1.6,  

training data per class =100. 

From tables 6-3 and 6-4 it is evident that SIFT-SVM model is significantly more accurate than 

SURF-SVM model. This is in line with all tests carried in sections 6.3.1. and 6.3.2 where SIFT-

SVM always had higher accuracy on all similar tests. It is also worth noting that in both cases, 

the accuracy is significantly lower than the accuracies established in 6.3.1 and 6.3.2 when using 

cross validation data. This was expected. As discussed in section 6.1.1, the images in our 

testing data sets resemble typical images that a regular system user would upload for diagnosing. 

Thus, their backgrounds have not been cropped out.  

Comparing Figure 6-11 and Figure 6-13 which are typical of test images the system misclassified 

with images from corresponding validation sets, Figure 6-12 and Figure 6-14 respectfully, two 

characteristics we believe influenced their misclassification stand-out. Firstly, unlike Figure 6-12 

and Figure 6-14 which have homogenous backgrounds, both Figure 6-11 and Figure 6-13 have 

complex backgrounds. We believe local features extracted from the background objects made it 

harder for the classifiers to correctly classify the images. In future works, this impact can 

probably be minimized by adding a segmentation step to remove irrelevant backgrounds. 

Secondly, both Figure 6-11 and Figure 6-13 show early stages of Grey Leaf Spot and Common 

Rust respectively. As mentioned in section 1.4, the two diseases have identical symptoms in early 

stages of infection. This impact can probably be minimized by adding more images of early stage 

infections in the training data. However, this is worth investigating in more detail in a dedicated 

thesis.  
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Figure 6-11. Example of misclassified Grey Leaf Spot image. 

 
 

Figure 6-12.  Example of Common Rust validation set images. 

 
 

Figure 6-13.  Example of misclassified Common Rust image. 

 
 

Figure 6-14. Example of Grey Leaf Spot validation set images. 

 

What was surprising is the low recall rate of Grey Leaf Spot evident in both table 6-3 and table 

6-4, given that in our validation tests, Grey Leaf Spot was predicted with the highest accuracy. 

This pattern is also worth investigating in more detail in its own research to establish what 

causes the trade-off. 

 Overall system evaluation 

From the evaluation done in section 6.3, we established that the best diagnosis engine to use 

was one that used SIFT feature extraction algorithm with number of clusters set to 100, octave 

layers to 5, contrast threshold to 0.04, edge threshold to 10, sigma set to 1.6 and 100 training 

images per class.  We trained and deployed an SVM using these parameters. 

Our next task was then to evaluate the overall system as the end user would use it. Our first test 

was to establish our system’s performance in terms of page loading times against google.com, 

the world’s most visited site [123]. The test was set up to evaluate the average time it takes for 

our system’s home page to load and the average time it takes to upload an image and get back 

diagnosis results on different network speeds and compared the results against the times it takes 

for Google’s homepage to load and the time it takes to return image search results on similar 
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network speeds. We used a 466kb, 800px by 533px image as a testing image and used Google 

Chrome developer tools to throttle the network and achieve different network speeds. For each 

network speed, the test was carried out five time and the average test results are presented in 

table 6-5 below. 

 

Table 6-5 Average load times of system pages compared to Google Search Engine load times 

Network Home Page 

Load Time 

Diagnosis and 

Results Load 

Time 

Google.com 

home page 

load time 

Google.com 

results page 

load time 

GPRS (50 

kb/s, 20 kb/s) 

11.78 seconds 2.1 minutes 23.03 seconds 2.7 minutes 

Regular 2G 

(250 kb/s,50 

kb/s) 

3.02 seconds 18.22 seconds 2.32 seconds 12.71 seconds 

Good 2G (750 

kb/s, 250 

kb/s) 

1.63 seconds 9.93 seconds 1.44 seconds 8.38 seconds 

Good 3G (1.5 

Mb/s, 750 

kb/s) 

1.07 seconds 4.03 seconds 1.01 seconds 6.72 seconds 

Regular 4G 

(4.0 Mb/s, 3.0 

Mb/s) 

543 

milliseconds 

2.95 seconds 1 second 6.4 seconds 

DSL (2.0 

Mb/s, 3.0 

Mb/s) 

398 

milliseconds 

1.15 seconds 1 seconds 5.6 seconds 

Wi-Fi (30 

Mb/s, 15 

Mb/s) 

366 

milliseconds 

689 

milliseconds 

853 

milliseconds 

5.1 seconds 

 

From table 6-5, it is evident that a user accessing our system from different networks would 

experience similar waiting periods they are used to when accessing the world’s most popular 

site. It is worth mentioning that during this tests, our system was hosted on a computer within 
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our local network while Google pages were served from a remote server, so results are likely to 

vary in life situations. However, the purpose of this experiment was not to benchmark our 

system’s performance against Google load times, but rather to establish if our system’s load 

times were within acceptable ranges.  

Our second batch of tests was aimed to establish how well our system renders and functions in 

different web browsers. To limit the number of tests to perform whilst being thorough, we 

resolved to only test the system on the most popular browsers, Opera, Chrome, Internet 

Explorer (IE 10), Firefox, Edge, Opera Mobile and Safari. To test compatibility with feature 

phones, we resolved to test the system on opera mini 4 [124], a free Java Me platform browser 

that is compatible with most feature phones. We tested that users can view the home page, 

upload images and view results on each browser. The results are presented in table 6-6 on the 

next page. 

Table 6-6 Compatibility test of system's web pages on popular browsers 

Browser Home Page loads User can upload an 

image 

User can view 

diagnosis results 

Opera Mini 4 Yes Yes Yes 

Opera Yes Yes Yes 

Opera Mobile Yes Yes Yes 

Chrome Yes Yes Yes 

IE 10 Yes Yes Yes 

Firefox Yes Yes Yes 

Edge Yes Yes Yes 

Safari Yes Yes Yes 

 

From the results presented in table 6-6, it is evident that our system is accessible and functions 

properly on all popular browsers.  

Given that our system users will use different devices to capture the images resulting in images 

of different resolutions, we then set out to establish how well our system would function given 

low resolution images as input.  To establish this, we took 20 images from our test data that 

were previously correctly diagnosed and resized them to an average of 128 × 160 pixels, an 

average size of an image taken using Nokia C200 feature phone we had access to, and 

diagnosed the resulting images using the system. In all cases, the diagnosis results remained the 

same. 



Chapter 4: Conclusion 

 

  60 

 

6.5. Conclusion 

In this chapter, we outlined the experiments we performed to evaluate the system. We have 

discussed different experiments we performed to determine the best classifiers to deploy and 

how we evaluated them to determine their accuracy when using data that resembles typical data 

end users would upload for diagnosis. In addition, we have discussed experiments we 

performed on the overall system to determine how it would behave in life situations. We tested 

its usability when accessed from different networks, and its browser compatibility. 

In the next chapter, we relate the evaluation results to the primary objective of this study and 

answer the research questions we posed at the beginning of the study. 
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7 Conclusion 

A considerable amount of research on utilizing image-processing and computer-vision 

algorithms to detect and classify crop diseases has been carried out over the past decades. 

Unfortunately, the bulk of these previous studies have mainly focused on either developing 

large scale remote sensing applications more suited for large scale farming or on developing 

traditional desktop/laptop applications and a few others on developing high end smartphone 

applications. Thus, making them inaccessible to many subsistence farmers, especially those in 

sub-Saharan Africa where ownership of personal computers and smartphones is minimal. 

The primary objective of this study was to establish the feasibility of utilizing similar 

techniques to develop a crop disease diagnosis application that in addition to being accessible 

through personal computers and high end smartphones can also be accessed through any 

internet enabled feature phone. 

 During our study, we reviewed several past studies that have successfully developed crop 

diagnosis applications utilizing computer vision and machine learning techniques and observed 

both their successes and shortfalls. Leveraging on their successes, we successfully developed a 

prototype crop disease diagnosis application capable of diagnosing two of the most popular 

maize foliar diseases, Common Rust and Grey Leaf Spot, that is not only accessible through 

personal computers and high end smartphones but is also accessible through any internet enable 

feature phone. 

The developed solution is a web based application constructed using open source libraries. Its 

web client is constructed using Twitter Bootstrap front-end web framework and was designed 

following responsive web guidelines. It adapts its layout depending on the size of the device 

being used to ensure smooth interaction. The diagnosis engine of the application was 

constructed using OpenCV and EmguCV libraries. It is based on the bag of features 

classification model and can be trained using either SIFT and SVM or SURF and SVM. 

Several tests were conducted, mainly on the diagnosis engine and on the overall integrated 

solution to evaluate how well it can diagnose diseases, if is usable when accessed on different 

networks and its cross-browser support. The detailed experiments and their results are 

presented in the preceding evaluation chapter. Based on these results, we conclude that it is 

possible to utilize computer vision and machine learning algorithms to develop a highly 

scalable crop diagnosis application that is not only accessible through personal computers and 

high end smartphones but also accessible through feature phones. In this regards, our study was 

successful. 

 Answers to research questions 

At the beginning of this dissertation we posed several questions we considered relevant in 

evaluating the success of our study. The answers to the posed research questions are examined 

as follows: 
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  Can all algorithms necessary for diagnosing images successfully execute and return the 

results before connection time-out for clients? 

Our tests were carried on a typical laptop with specifications indicated in section 6.2 

which are fairly low specifications compared to standard web servers. Throughout all 

our tests, we never got a server connection timeout error. It is therefore safe to conclude 

that yes, all algorithms can execute before connection times out.  

 Can the system still be accessible and usable to users connecting from slow networks 

such as GPRS? 

Admittedly, the page load times are significantly longer, up-to 2.1 minutes to load 

results, when connecting from GPRS and 2G networks. However, as indicated in table 

6-5, these are in line with load times users would experience when using Google search 

engine from the same network. Given google search engine is the most visited site 

globally, it is safe to conclude that our system remains accessible and usable even at 

slow speed networks. 

 What is the highest classification score we can get? 

During training when using the validation data which had less background noise, the 

highest average accuracy was 92.4 as indicated in figure 6-10. However, when 

evaluating the model using test data which resembles typical images end users would 

upload for diagnosis, the overall accuracy of our model dropped to 73.3% as indicated 

in table 6-4. We therefore conclude that the highest accuracy the system can produce in 

practical situations is 73.3%.  

 

 Future work 

The primary objective of this dissertation has been achieved and all research question 

satisfactory answered.  However, there is always room for improvement.   

In future works, we would like to work on ways to improve the accuracy of the diagnosis 

engine. One way to achieve this would be by adding a pre-processor module whose 

responsibility would be to enhance users’ input files by removing background objects and any 

other noise that might be present in the files. 

In addition, there are some observations we made during this study that are worthy of further 

investigation. In figure 6-4 we observed that increasing the quantity of training data when 

training a SURF-SVM model did not necessarily increase the produced model’s accuracy yet 

the same test using the same data on SIFT-SVM model produced different but more expected 

results as indicated in figure 6-10. In addition, we observed that varying a number of clusters 

produced varying patterns. In future works, it is worth investigating the underlying reasons 

behind these differences. 
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9 Appendices 

Appendix A: Bag of features file 

https://www.dropbox.com/s/mjcntpxv5u30a1s/ClusteredSiftFeatures.yml?dl=0 

Appendix B: SVM classifier model 

https://www.dropbox.com/s/w7exhm62v77olh0/1022017015797.xml?dl=0 

Appendix C: Training results 

https://www.dropbox.com/s/n6tzwjjly70nkg0/TestResults.xsd?dl=0 

Appendix D: Diagnosis results 

https://www.dropbox.com/s/mly5edxjadd7phe/DiagnosisResults.xsd?dl=0 
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