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Abstract 

The spacial variation and population parameters affecting gemmae output of a boreal and 

arctic liverwort species, Lophozia ventricosa, were studied in Trnndelag, a boreal region 

of central Norway and in the arctic tundra on Svalbard. The population parameters 

investigated included colony size, colony shoot density, number of gemmae per shoot, 

proportion of gemmiferous shoots and gemmiferous shoot density. The gemmae output in 

a colony was calculated as the product of the number of gemmae per shoot, colony size 

and gemmifeorus shoot density. A Nested Analysis of Variance was used to partition 

population parameters spacially and a Pearsons Product-Moment Correlation was used to 

evaluate which of these population parameters affect gemmae output in a colony. The 

number of gemmae per shoot differed significantly between areas, populations and 

colonies, and was significantly varied between populations and colonies on Svalbard. No 

significant variation in the number of gemmae per shoot was found in Trnndelag. 

Population influences on shoot density, gemmiferous shoot density and gemmae output 

were significant in Trnndelag. This was expected, as more shoots in a colony is thought 

to influence gemmiferous shoot density and gemmae output. In Trnndelag, the only 

significant relation that can explain gemmae output is colony size whereas on Svalbard, 

gemmae output in a colony is affected by colony size, shoot density and number of 

gemmae per shoot. The results indicate that most of the variation in gemmae output 

occurs at the population level and that gemmae output differs between the arctic and 

boreal regions. 
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Introduction 

The long-term survival of a species 1s determined largely by its life-history ( or 

reproductive) strategy, population structure and dynamics, and its ability to disperse its 

diaspores to new available habitats (Soderstrom 1994; Soderstrom & Herben 1997). 

Variation in life-history strategies among bryophytes (as well as other plants) is due to 

various complex variables ( ecological and environmental) interacting with one another 

(Hedderson & Longton 1996), and the strategy favoured depends on the duration and 

predictability of the environment (During 1979) as well as spatial structure of habitats 

(Soderstrom & Herben 1997) . 

. 
Liverworts have two forms of reproduction: asexual and sexual. Sexual reproduction 

involves the fusion of male and female gametes to produce a sporophyte which produces 

spores. Asexual reproduction, on the other hand, is reproduction without the fusion of 

male and female gametes, producing asexual propagules on the gametophore (Soderstrom 

1994). 'Growth' of populations of bryophytes is often very much dependent on asexual 

reproduction (Schofield 1985). The term growth can be seen as 'an increase in size of a 

single physiological individual' (Mishler 1988) and in that sense is no form of 

reproduction and Mishler (1988) defines reproduction in bryophytes as the production of 

a new, physiologically independent plant. 

In general, the cost of sexual reproduction is much higher than the cost of asexual 

reproduction but provides greater genetic diversity. Green & Noakes (1985) suggest that 

occasional sexual reproduction is enough to maintain genetic diversity in normally 

asexually reproducing species, so genetic variability may not be the determining factor. 

Pohjamo & Laaka-Lindberg (2003) suggest that a trade-off exists between asexual and 

sexual reproduction at the colony level in the liverwort Anastrophyllum hellerianum as 

the proportion of gemmiferous shoots was higher in bisexual colonies without 

sporophytes than in bisexual colonies with sporophytes. 
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Asexual reproduction in bryophytes can provide the means for population persistence in a 

habitat in species where sexual reproduction is rare (Longton 1997) Asexual reproduction 

is very common in liverworts (Laaka-Lindberg 2000). In the British flora, for example, 

46% of liverwort species produce asexual propagules (Laaka-Lindberg et al. 2000), while 

only 18% of mosses produce special asexual propagules (Longton & Schuster 1983). The 

production of asexual propagules occurs in various forms and positions on the plant 

(Longton & Schuster 1983). In liverworts they include the production of special 

propagules like gemmae, caduceus leaves and shoots, and tubers (Laaka-Lindberg 2000). 

Gemmae develop from specialised mother cells on the edges of the upper leaves of shoots 

in leafy liverworts (Buch 1911 in Laaka-Lindberg 2000). These mother cells produce 

gemmae once adequately mature and only for a specific period of time (Buch 1911 in 

Laaka-Lindberg 2000). Asexual reproduction also includes gametophore fragmentation 

and branching of the mature gametophore that becomes independent (Soderstrom 1994). 

Fragmentation is rarer in liverworts than in mosses and this mode of asexual reproduction 

produce diaspores that are effective only in short-distance dispersal (Longton & Schuster 

1983). Branching of mature plants is a common form of cloning in liverworts, with the 

subsequent death of older branches. This process may be stimulated by the removal or 

death of apical shoots (Longton & Schuster 1983). 

The output of gemmae by a colony will affect its local survival where more gemmae 

produced by a colony will result in more shoots being established and a larger colony 

being formed. The output of gemmae by a colony will, however, not be affected only by 

the number of gemmae per shoot and colony size. Various population parameters will 

have an effect on the gemmae output by a colony. A simple model relating various 

characters within a colony, all leading to the gemmae output per colony is hypothesized 

as follows (Figure 1 ). 

A high number of gemmae per shoot will increase the number of new shoots establishing 

and this will increase colony size which increases the gemmae output of the colony. A 

high number of gemmae per shoot will result in more shoots establishing within the 

colony (a higher density) which would increase colony gemmae output. Shoot density 
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Number of 

Colon) gcmma output 

Figure 1: Hypothetical pathway of parameters affecting gemmae output of colonies in 

liverworts 

and the proportion of gemmiferous shoots are inter-related where a higher density could 

increase the proportion of gemmiferous shoots, or a higher proportion of gemmiferous 

shoots could lead to a higher shoot density. Both pathways increase gemmae output in a 

colony. A higher number of gemmae per shoot may also increase the proportion of 

gemmiferous to shoots resulting in a higher gemmae output in a colony. 

Reproduction is involved in the survival and dynamics of populations (Kimmerer 1991; 

Soderstrom 1994), which in turn is important in the long-term survival of a species 

(Soderstrom 1994). Sexually and asexually produced diaspores tend have different roles 

in the life-history strategy (Soderstrom 1994). Asexual propagules tend to be larger and 

are associated with short-distance dispersal whereas the usually smaller sexually 

produced spores are associated with long-distance dispersal. In mainly asexually 

reproducing species, the local population dynamics is likely to be affected by the 
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seasonality and extent of asexual reproduction (Laaka-Lindberg 1999). However, studies 

quantifying the production of asexual propagules are uncommon (Soderstrom 1994). The 

spatial distribution of individuals, habitats and populations will also affect population 

dynamics (Soderstrom 1995). Describing this distribution is essential in understanding 

the dynamics of the populations. Quantifying spatial variation of gemmae output in two 

geographically separated areas, Trnndelag in Central Norway and Svalbard archipelago, 

and evaluating the hypothesized model will offer an understanding into the local survival 

ability of a species. 

Many bryophyte species are also widespread in boreal, or m boreal and temperate 

regions, commonly expanding to alpine regions (Longton 1988). As the liverwort 

Lophozia ventricosa is found in both arctic and boreal regions, it will be a good species to 

use for this study. 

Aims of this study 

This study aims to evaluate the main factors determining gemmae output in the liverwort 

Lophozia ventricosa and determine the spacial scale of variation in gemmae output. The 

main questions are: (1) How many gemmae are produced by individual shoots? (2) Does 

gemmae production vary in space and if so at what level? (3) Is the number of gemmae 

produced density dependent? (4) Does gemmae production influence colony size? 
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Methods 

Studied species 

Lophozia ventricosa (Dicks.) Dumort. is a leafy hepatic species belonging to the family 

Lophoziaceae. It is common in boreal and arctic areas occurring in bright green to 

yellow-green patches with shoots 0.8-4 mm wide and 1-5 cm long (Figure 2) (Damsholt 

2002). L. ventricosa is a very variable species. All five varieties (Table 1), recognized by 

Damsholt (2002), produce yellow-green to green gemmae in abundance. The gemmae are 

two-celled, 18-20 x 20-25 µm and vary from pyriform to rhombic, quadrate to stellate 

with protuberant angles (Damsholt 2002). 

Study sites 

The first study site is located in the province of S~r-Trnndelag in Central Norway (Figure 

3). The area belongs to the boreal zone dominanted by Picea abies (Figure 4a). 

Population samples of Lophozia ventricosa were collected from three different localities 

in this area (Table 2). The second study site is on Spitzbergen, one of the Svalbard 

(a) 

(b) 

Figure 2: (a) A shoot of Lophozia ventricosa (b) Gemmae of L. ventricosa 
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Table 1: Descriptions of the five varieties of Lophozia ventricosa (Damsholt 2002). 

Lophozia 

variety 

ventricosa 

silvicola 

grandiretis 

confusa 

uliginosa 

ventricosa Distribution 

Boreal-arctic 

Boreal 

Arctic-alpine 

arctic 

boreal 

Habitat 

Growing in shaded, moist places on rock­
ledges, on the ground in forest ( esp. along 
footpaths) and decaying logs. 

Grows on acidic sites, such as humid rock 
faces, over exposed peat, on decaying logs 
in forests. 

Grows in rills or fissures of acidic rock, and 
along rushing streams 

Grows in exposed places such as sandy 
ridges or rock fissures 

Grows over organic substrate, often among 
Sphagnum in mires 

Figure 3: Map showing the study sites, Trnndelag (T) and Svalbard (S) 
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Figure 5: (a) Tundra on Svalbard; (b) The author in a quadrat in the tundra 

setting. 



Table 2: Co-ordinates of collecting localities in Trnndelag (T) and on Svalbard (S). 

Area Locality name Longitude Latitude 

Tl Elgsetheia 63° 25' 13" N 10° 12' 04" E 

T2 Urvatnet 63° 07' 21" N 9° 48' 26" E 

T3 Vintervatnet 63° 24' 50" N 10° 15' 16" E 

SI Plataberget 78° 13' 38" N 15° 23' 25" E 

S2 Plataberget 78° 13' 06" N 15° 35' 20" E 

S3 Endalen 78° 11'48"N 15° 44' 19" E 

S4 Bj0mdalen 78° 13' 10" N 15° 19' 17'' E 

S5 Adventdalen 78° 10' 15" N 16° 01' 10" E 

S6 Todalen 78° 09' 23" N 15° 59' 31" E 

Islands (Figure 3). This area is middle arctic tundra (Figure Sa). Population samples of 

Lophozia ventricosa were collected from six different localities in this area (Table 2). 

Field sampling 

Material was collected at the end of August and early September (late summer in Norway 

2004). Colonies were located and a five-by-five metre quadrat was placed around the 

located colony(ies) (Figure 4b). Within each quadrat, the size of each colony present was 

measured for all colonies with a standard metal ruler, 10 shoots with gemmae were 

collected from each colony and a two-by-two centimetre (minimum size) sample of each 

colony was collected to estimate the proportion of gemmiferous shoots (Figure Sb). Each 

sampled gemmiferous shoot was placed in a numbered snap-lid microtube and samples 

from each colony were placed individually in a labeled plastic bag. 

The parameters measured are outlined in Table 3. 

8 



Table 3: Description of population parameters used in the analyses. 

Parameter 

Number of gemmae/shoot 

Colony shoot density (no./cm2
) 

Proportion of gemmiferous 
shoots 

Density of gemmiferous 
Shoots (no./cm2

) 

Colony size ( cm2
) 

Colony gemmae output 

Gemmae production 

Description 

Calculated as the number of gemmae/shoot x the colony size 
x density of gemmiferous shoots 

The number of gemmae per shoot was counted by placing each shoot individually in a 

drop of water on a microscope slide and the gemmae were scraped loose under a 

dissecting microscope with a fine needle. The water droplets containing the gemmae 

were rinsed back into the original tube with distilled water. The tube was weighed to 

calculate the volume of the water-gemmae solution. This was done using the equation: 

Vs= (0.4755g/weight of water and gemmae in tube) x 1000 

where 0.4755g is the weight of the tube with no contents 

Vs = Volume of solution in tube 

The solution was shaken to homogenise the gemmae in the tube. A drop of solution was 

placed on a haemocytometer and the number of gemmae per shoot was calculated using 

the equation: 
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where Nsh = number of gemmae per shoot 

Nx = number of gemmae counted 

V c = volume of the haemocytometer chamber 

The mean of four haemocytometer counts per sample was used as an estimate of the 

number of gemmae per shoot. 

Shoot density 

The collected sample from each colony was cut into a one-by-one cm square and placed 

under a dissecting microscope. The number of shoots with gemmae and the number of 

shoots without gemmae were counted to give a ratio of shoots with asexual propagules to 

those shoots without. This additionally provided a measure of colony shoot density. 

Statistical analyses 

All analyses were performed usmg JMP version 5.0.1.2. Examination of frequency 

distribution revealed strong skewness in all variables except for proportion of 

gemmiferous shoots. This was corrected by log-transforming the variables and after 

transformation, no variables departed significantly from normal. 

To analyse the spatial variation of the individual variables a Nested Analysis of Variance 

(ANOV A) was performed using area, population and quadrat as nested classification 

variables, except for the number of gemmae per shoot which included colonies nested 

within quadrats. 

Relationships among the measured variables were evaluated using the Pearson Product­

Moment Correlation. 

As Svalbard and Tnmdelag are two ecologically distinct areas (Figure 4a and 5b ), they 

were considered separately as well as together in all analyses. 
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Results 

A total of 31 colonies (13 from S0r-Tr0ndelag and 18 from Svalbard) of Lophozia 

ventricosa were used in this study. In Trnndelag, the number of gemmae per shoot 

ranged from 105 to 8244 with a mean of 2002 ± 137 whereas on Svalbard the number 

of gemmae ranged from 169 to 10907 with a mean of2920 ± 222. Colony size in L. 

ventricosa ranged from 5.5 cm2 to 444 cm2 with a mean size of 98.5 ± 35.7 cm2 in 

Trnndelag and from 8.8 cm2 to 468 cm2 with a mean size of 52.9 ± 25.4 cm2 on 

Svalbard. Shoot density ranged from 14 to 150 shoots per cm2 with a mean of 7 5 ± 10 

shoots per cm2 in Trnndelag and from 14 to 436 shoots per cm2 with a mean 105 ± 26 

shoots per cm2 on Svalbard. 

Spatial variation of population size and gemmae production 

A comparison of the spatial variation between parameters is shown in Table 4. The 

overall nested ANOVA reveals significant differences in (a) the number of gemmae 

per shoot between areas, populations and colonies although variation amongst shoots 

within colonies accounts for 77.3% of the variation; (b) colony size between 

populations accounting for 44.3% of the variation. 

In Trnndelag, statistically significant variation exists between populations in shoot 

density (63 .5% of variation), gemmiferous shoot density (57.6%) and total gemma 

output (24%). Although there is statistical significance among populations in the total 

gemma output, a much higher percentage of the variation occurs between colonies 

(66%). 

On Svalbard, statistically significant variation exists in the number of gemmae per 

shoot at the population level and at the colony level although variation between shoots 

accounts for 75% of the variation. Statistically significant variation in colony size 

exists between populations, accounting for 62% of the variation. 

Interactions between parameters 

Table 5 shows the results of the pairwise comparisons of parameters using all 

localities as well as Svalbard and Trnndelag separately. The correlations indicate a 

significant relationship between the number of gemmae per shoot and the proportion 
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of gemmiferous shoots, the density of gemmiferous shoots and colony gemmae 

output. The three relationships above are also significant on Svalbard but not in 

Trnndelag. Significant relationships exist also between the gemmae output of a 

colony and shoot density, proportion and density of gemmiferous shoots, and colony 

size when both areas are considered together. All of the relationships with gemmae 

output are significant on Svalbard, but in Trnndelag only colony size and gemmae 

output are significantly related. In Trnndelag, the only other significant relationship is 

between gemmiferous shoot density and shoot density. On Svalbard, gemmiferous 

shoot density is additionally significantly related to shoot density and proportion of 

gemmifeorus shoots. The relationship between colony size and shoot density is 

marginally significant (r = 0.45; p = 0.06) (Figure 6). 
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Table 5: Pairwise correlations between parameters indicated by correlation coefficients in (a) the total 

area, (b) Trnndelag and on (c) Svalbard with significant differences between parameters indicated by 

asterisks where* p<0.05 , ** p<0.01 , *** p<0.00 I. 

(a) 

Number of Shoot Proportion of Density of Colony 
gemmae/ shoot density gemmiferous shoots gemmiferous shoots size 

Number of gemmae/ 
shoot 

Shoot density 0.24 

Proportion of 0.53•* 0.25 
gemmiferous shoots 

Density of 0.39· 0.95 ... 0.54 .. 
gemmiferous shoots 

Colony size 0.21 0.27 0.14 0.29 

Colony gemmae o.55•* 0.69 ... 0.47 .. 0.76 ... 0.81 ... 
output 

(b) 

Number of Shoot Proportion of Density of Colony 
gemmae/ shoot density gemmiferous shoots gem mi ferous shoots size 

Number of gemmae/ 
shoot 

Shoot density 0.20 

Proportion of 0.02 -0.00 
gemmiferous shoots 

Density of 0.21 0.97 ... 0.25 
gemmiferous shoots 

Colony size 0.17 0.08 -0.09 0.06 

Colony gemmae 0.39 0.47 0.03 0.47 0.89 ... 
output 

(c) 

Number of Shoot Proportion of Density of Colony 
gemmae/ shoot density gemmiferous shoots gemmiferous shoots size 

Number of gemmae/ 
shoot 

Shoot density 0.32 

Proportion of 0.70 ... 0.32 
gemmiferous shoots 

Density of 0.50* 0.95* .. 0.60** 
gemmiferous shoots 

Colony size 0.06 0.45 0.24 0.46 0.77*** 

Colony gemmae 0.52* 0.82*** 0.61 .. 0.90*** 0.77*** 
out ut 
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Figure 6: Relationship between shoot density and colony size in Trondelag ( open 

circles) and Svalbard (closed circles). No significant relationship exists between shoot 

density and colony size in Trondelag, however a relationship approaching 

significance (R = 0.45; p = 0.06) exists in Svalbard a$ a result of two colonies with 

high shoot density (arrowed). Exclusion of the two outliers reveals no significant 

relationship between colony size and shoot density on Svalbard (R2 = 0.004; p = 

0.81 ). 



Discussion 

Little of the observed variation in the measured variables could be attributed to 

differences between Svalbard and Trnndelag. Only number of gemmae per shoot differed 

significantly between the areas, but this varied also between populations and between 

colonies, with variation among shoots explaining the vast majority (77%) (Table 4). In 

Trnndelag, no significant differences exists at any spatial level and the number of 

gemmae per shoot explains almost 90% of the variation. On Svalbard, however, 

significant variation exists between populations and between colonies but 75% of the 

variation in the number of gemmae per shoot is explained by variation between shoots. 

Variation in the number of gemmae produced per shoot may be due to differences in 

conditions affecting the growth rate of shoots (Laaka-Lindberg 1999). If so, both 

macroclimate (Trnndelag and Svalbard) and microclimate differences play a role and 

may explain the differences noted. It is, however, noticeable that no differences were 

found among populations in the boreal region. 

Of the other measured characters very few significant differences were discovered. Shoot 

density did, however, vary significantly between populations in Trnndelag and this 

spatial level accounted for 64% of the variation. From our hypothesis we expected shoot 

density to influence gemmiferous shoot density and colony gemmae output (Figure 7), 

which may explain the significant difference of gemmiferous shoot density and colony 

gemmae output between populations in the same area. 

Colony size varied between populations on Svalbard and in the whole data set. This can 

be explained by a significant difference in the number of gemmae per shoot which was 

hypothesized to influence colony size, where more gemmae on a shoot would result in a 

larger colony. 

Our initial model hypothesized various pathways that influence gemmae output of 

colonies. No formal path analysis was done. Instead pairwise correlation data was used 

for significance test of the relations. In Trnndelag only two relations were significant: 

shoot density was positively related to gemmiferous shoot density which is expected if 
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the proportion of gemmiferous shoots is not density-dependent , as we found and agrees 

with studies on the liverwort Anastrophyllum hellerianum (Pohjamo & Laaka-Lindberg 

2004). The only significant relation in the boreal region that can explain the gemmae 

ouput is colony size (Figure 7a). 

The interactions between characters is very different on Svalbard (Figure 7b ). The direct 

relationship between a high number of gemmae produced per shoot within a colony and a 

higher gemmae output within a colony is significant. The original suggestion that the 

number of gemmae per shoot influences colony size as well as shoot density is not 

supported as no significant relationship exists between these variables but all three 

variables directly influence gemmae output in a colony. Additionally, shoot density 

influences gemmiferous shoot density which in turn influences gemmae output. As the 

number of gemmae per shoot is related to the proportion of gemmiferous shoots, this 

explains the significant positive dependence that gemmae output of the colony has on the 

proportion of gemmiferus shoots. When the model is considered as a whole and all 

characters evaluated, gemmae output in a colony on Svalbard is affected by the colony 

size, shoot density and the number of gemmae produced per shoot. 

Kimmerer (1991) showed that shoot density in mosses was highly correlated with the 

mode of reproduction used. She found that colonies of Tetraphis pellucida with densities 

above 100 shoots/cm2 reproduce sexually by spores whereas colonies with a density of 

less than 75 shoots/cm2 reproduce asexually through the production of gemmae. She 

hypothesised that at low shoot densities, there is available substrate and asexual 

reproduction allows rapid colonisation. However, in the liverwort Lophozia silvicola, 

Laaka-Lindberg (1999) and Pohjamo & Laaka-Lindberg (2004) showed that no 

correlation exists between shoot density and the number of gemmae per shoot. Our 

results from both Trnndelag and Svalbard agree with previous studies, suggesting that 

asexual reproduction is not density-dependent. 

No correlation exists for either area between shoot density and colony size. On Svalbard, 

however, the relationship approached significance. This correlation may exist as a result 
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of two colonies,within the same quad.rat, which are large with high shoot densities 

(Figure 6). If the two outliers are excluded, no significant relationship between shoot 

density and colony size exist (r2 
= 0.004; p = 0.81). 

Understanding the nature ofbryophyte populations, especially those in dynamic habitats, 

allows an understanding into long-term survival. Gemmae output leads to long-term 

survival through the growth of a colony, either in size or the density. It appears that 

gemmae output in colonies from different habitats rely on different population parameters 

to ensure survival and the number of gemmae produced per shoot may be the cause of 

these differences. 
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