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Abstract  

 
Phytoplankton in the Sub-Antarctic Southern Ocean have a distinct seasonal cycle, which is highly 

variable in both space and time. The seasonal and spatial distribution of chlorophyll can be attributed to 

the complex nature of the physical and biogeochemical factors controlling phytoplankton production. 

Studies show that high-resolution sampling is required to understand variability in phytoplankton 

distribution and primary production. In this study, high-resolution glider data sampled in the Atlantic 

Sub-Antarctic Zone are used to characterise the scales of phytoplankton variability. Continuous glider 

data provide a novel way to assess phytoplankton variability at small time and space scales (meso- to 

submesoscale), especially in an area that has a lack of continuous measurements, which are necessary 

for addressing climate related questions. Temporal variability of phytoplankton was investigated using 

Empirical Mode Decomposition of surface chlorophyll-a concentrations collected from a Seaglider over a 

period of 5.5 months (25 September 2012 to 15 February 2013). This study found that during spring, 

chlorophyll-a concentrations were dominated by small scale daily fluctuations as well as by the rising 

seasonal ramp due to seasonal stratification. The removal of these signals revealed that the chlorophyll-

a variability was dominated by submesoscales. In spring, phytoplankton blooms occurred as a result of 

features that shoaled the mixed layer depth when the wind stress weakened, elevating light conditions 

for short periods and allowing increased growth. In summer phytoplankton blooms were found to occur 

at submesoscales periods as well. This variability was found to be driven by synoptic storms varying the 

strength of the wind stress and consequently the mixed layer depth (that alters the nutrient and light 

environment). Additionally, through reconstructing the time series through subsampling at the 

dominant signals, this study found that in order to accurately resolve and characterise the multi-

seasonal variability of phytoplankton, chlorophyll needs to be sampled at high frequencies (<10 days). 

Spatial variability was investigated using daily MODIS ocean colour and sea surface temperature images 

coincident with the glider track. Spatial variability was characterised by the variance calculated at 

different length scales. Spatial analysis found that phytoplankton were patchier in both spring and 

summer when compared to sea surface temperature, at all length scales and that a greater variance was 

contained at small scales. There was also a greater variance in summer chlorophyll-a compared to spring 

due to higher maximum biomass. Further spatial analysis compared satellite spatial variance with glider 

measurements at the same length scale (70 km). This study found that a third of the variability found by 

the glider was caused by spatial patchiness, while the remainder could be contributed by local growth. 
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These dominant meso- and submesoscale changes in chlorophyll-a at both temporal and spatial scales, 

highlights the need to resolve for both meso- to submesoscales in order to accurately reflect 

phytoplankton seasonal variability and ultimately to understand the impact of phytoplankton variability 

on carbon flux. 
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1.1 Southern Ocean 

 
The Southern Ocean covers 22% of the total ocean surface and plays a major role in the global climate 

system. It is the only ocean in the world with no zonal boundary (Olbers et al., 2004). The Southern 

Ocean interconnects three other major ocean basins allowing it to transmit climate signals from one 

region to another (Gille, 2002). The largest current in the world, the Antarctic Circumpolar Current (ACC) 

is found in the core of the Southern Ocean (~45-55˚S). As the ACC flows eastward, driven by an intense 

band of westerly winds, it absorbs and mixes heat and salt from the Atlantic, Indian and Pacific Oceans 

and redistributes these properties northwards into the Atlantic Ocean (Cunningham et al., 2003). This 

redistribution of heat and salt is vital in the global meridional overturning circulation, making the 

Southern Ocean a major contributor to the coupling of the global ocean-atmosphere climate system.  

 
The Southern Ocean is characterised by distinguishable temperature gradients in water mass properties, 

from warm subtropical waters in the north to cold polar waters in the south. Temperature gradients, 

together with north-south density gradients, characterise the Southern Ocean into zones with frontal 

bands (Orsi et al., 1995; Belkin and Gordon, 1996). The Sub-Antarctic Zone (SAZ) represents more than 

half of the areal extent of the Southern Ocean (Orsi et al., 1995) and plays an important role in the 

ocean-atmosphere climatic system. The SAZ is defined by the Subtropical Front (STF), the northern 

boundary of the Southern Ocean which separates warmer, saltier subtropical waters to the north from 

cooler, fresher subantarctic waters in the SAZ. The Subantarctic Front (SAF), the northern most 

boundary of the ACC neighbours the STF to the south and marks the start of the cold Antarctic waters 

(Orsi et al., 1995). The Southern Ocean also has the Antarctic Polar Front (APF), which combined with 

the SAF, is considered to be the core of the ACC, while the southern ACC front (sACCf) and the Southern 

Boundary (Sbdy) of the ACC are encompassed in the Antarctic Zone (AAZ), south of the SAF (Figure 1.1). 

These fronts are characterised by intense mesoscale (10-100 km) modes of variability, where filaments 

are created by meanders of fronts, eddies and intense lateral gradients in temperature (Sokolov and 

Rintoul, 2007; Arhan et al., 2011). As a result, they are the dominant physical control on biochemical 

distributions in the Southern Ocean (Deacon, 1933) and are thus a critical part of the global ocean 

circulation and biogeochemical cycles of nutrients and carbon (Arrigo et al., 2008). 
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Figure 1.1 The mean position of the circumpolar frontal bands (dotted black lines) in the Southern 
Ocean determined from satellite altimetry (Swart and Speich, 2010) over the period (25 September 2012 
to 15 February 2013) of the Southern Ocean Seasonal Cycle Experiment (SOSCEx). Form north to south, 
the Subtropical Front (STF), Subantarctic Front (SAF), Antarctic Polar Front (APF), southern Antarctic 
Circumpolar Current front (sACCf) and the Southern Boundary (SBdy). Ocean bathymetry is acquired 
from the ETOPO1 dataset (meters below sea level). Figure from du Plessis 2014. 
 

1.2 Biogeochemistry of the Southern Ocean 

 
Global atmospheric carbon dioxide (CO2) levels have risen dramatically over the last century from 

increased usage of fossil fuels as the primary source of power in industrial processes and modernisation. 

The ocean is the primary sink for anthropogenic CO2, having absorbed an estimated ~48±9% of the 

global anthropogenic CO2 emitted over the last industrial period (1880-1994) (Mikaloff Fletcher et al., 

2006). Of the world’s oceans, the Southern Ocean has contributed to the greatest amount of 

anthropogenic CO2 uptake, with ~23% of the global total anthropogenic CO2 ocean uptake occurring 

between 44˚S - 58˚S (Mikaloff Fletcher et al., 2006; Takahashi et al., 2012).  As such, the Southern Ocean 

in particular is slowing the rate of atmospheric CO2 increase and the effects of human-driven climate 

change. Monitoring and understanding spatial and temporal changes in air-sea CO2 flux in the Southern 

Ocean is thus critical for an improved understanding of the global carbon cycle and the prediction of 

future atmospheric CO2 conditions.  
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The Southern Ocean accounts for the removal of  approximately 3 Pg C annually from the atmosphere 

south of 30˚S (Schlitzer, 2002). This oceanic CO2 uptake occurs through two mechanisms, the solubility 

and biological carbon pumps (Figure 1.2). The solubility pump is the physical-chemical processes that 

transports carbon from the atmosphere into the ocean as dissolved inorganic carbon.  The solubility 

pump is dependent on the temperature and thermal stratification of the ocean (Ito and Follows, 2003), 

where colder waters are enriched in more dissolved inorganic carbon due to their higher solubility. The 

biological pump is the mechanism by which organic carbon is sequestered into the deep ocean by 

phytoplankton, when CO2 is fixed into particulate organic carbon during photosynthesis. When the 

phytoplankton sink, or are otherwise transported to the deep ocean, a CO2 pressure gradient is created 

in surface waters between the ocean and atmosphere that allows more CO2 to absorb into the ocean 

(Arrigo et al., 2008). Understanding the conditions for phytoplankton growth and development in the 

Southern Ocean is therefore crucial for accurate predictions of the biological carbon pump and 

improved long term trajectories of the global carbon cycle. In spite of this, a complete understanding of 

the phytoplankton temporal and spatial distribution and associated physical, ecological and 

physiological drivers in the Southern Ocean is lacking (Thomalla et al., 2011).    
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Figure 1.2 Carbon uptake and release into and out of the ocean through the biological (left) and 
solubility (right) pumps. Figure taken from Chisholm 2000. 
 

1.3 Phytoplankton in the Southern Ocean and scales of variability 

 
Although the Southern Ocean has the greatest inventory of unused macro-nutrients in the world ocean 

(Levitus et al., 1993),  it has relatively low phytoplankton concentrations. These low concentrations of 

phytoplankton (relative to the macro nutrient supply), predominantly in the pelagic waters, are due to a 

number of factors that include bottom up controls of light, iron and silicate limitations as well as top 

down controls of grazing by zooplankton (Arrigo et al., 1998; Boyd, 2002a). Intense phytoplankton 

blooms can develop in areas, for example where iron limitation is relieved (Boyd et al., 2000; Blain et al., 

2007; Pollard et al., 2009), however these tend to be highly variable, both spatially and temporally 

(Arrigo et al., 2008).  
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1.3.1 Seasonal cycle 

 
Chlorophyll (chl-a) is the primary photosynthetic pigment of phytoplankton and can be used as a 

biomass proxy. In the Southern Ocean the seasonal cycle of phytoplankton biomass is typically 

characterised by having low chl-a concentrations in winter and high, yet spatially variable concentrations 

in summer (Boyd et al. 2011). The strong seasonal cycle has been attributed to the seasonal cycle of 

solar radiation and its impact on the vertical stability of the water column through heat flux (Sverdrup, 

1953; Boyd et al., 1999; Boyd, 2002; Arrigo et al., 2008). Cooler temperatures in winter drive convective 

overturning that results in deep mixed layers, low light conditions and decreased rates of production 

with subsequent low biomass in winter. Increased heating in summer drives stratification, shallower 

mixed layers and improved light conditions for increased production and biomass accumulation. 

However, observations of surface chl-a from satellite data show that phytoplankton blooms do not 

follow one dominant seasonal cycle (Moore and Abbott, 2002; Thomalla et al., 2011; Carranza & Gille, 

2014; Salle et al., 2015). From an analysis of 9 years of satellite surface chl-a data, Thomalla et al. (2011) 

found large regions in the Southern Ocean where chl-a can be characterised as having high intra-annual 

and intra-seasonal variability (i.e., low seasonal cycle reproducibility), while other regions were 

characterised as having high seasonal cycle reproducibility (i.e. a predictable seasonal cycle where every 

year looked like the climatological mean) (Figure 1.3).  Thomalla et al. (2011) went on further to explore 

the sub-seasonal characteristics of the seasonal cycle and proposed that the variety of spatial and 

seasonal distributions were a result of the complex sub-seasonal interplay between light and nutrients 

(iron), which together control phytoplankton growth in the Southern Ocean. They concluded that an 

understanding of the seasonal, sub-seasonal and meso- to submesoscale regional characteristics of 

bloom dynamics and their associated physical drivers was necessary to understand the sensitivity of the 

response of ocean productivity to climate change.  
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Figure 1.3 A composite of the seasonal cycle reproducibility of summer chl-a in the Southern Ocean 
from Thomalla et al. (2011). Regions in blue represent regions of low (<0.25 mg m-3) chl-a concentrations 
with either high seasonal cycle reproducibility (R2 > 0.4) (Region A, light blue) or low seasonal cycle 
reproducibility (R2 < 0.4) (Region B, dark blue). Regions in green represent regions of high chl-a 
concentrations (> 0.25 mg m-3) with either high seasonal cycle reproducibility (Region C, dark green) or 
low seasonal cycle reproducibility (Region D, light green). Mean (1998-2007) frontal positions are shown 
for the STF (red), the SAF (black), the PF (yellow) and the SACCF (pink). 

 

1.3.2 Scales of variability  

 
Given the critical role of small scale (seasonal to sub-seasonal and meso- to submesoscales) processes in 

driving the characteristics of phytoplankton distribution (particularly in the Southern Ocean), it is 

important that we understand how these processes work. Below is a summary from a number of in situ 

and model studies from various ocean regions that investigates how and to what extent meso- and 

submesoscale processes drives phytoplankton variability.  

 
1.3.2.1 Meso- and submesoscales of variability 

 
Numerous studies that investigated mesoscale (10 – 100km) variability of surface chl-a have found that 

fronts and mesoscale eddies are a major driver of phytoplankton patchiness, through the injections of 
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nutrients into the euphotic zone (layer of surface water that receives a sufficient amount of light for 

photosynthesis to occur) (McGillicuddy et al., 1998; Mahadevan and Archer, 2000; Levy et al., 2001). 

Using an ecosystem model embedded in a physical model, Spall and Richard (2000) investigate the 

impact of mesoscale frontal instabilities on the generation of phytoplankton patchiness in an open 

ocean frontal region. The model showed that instabilities in a mesoscale front introduced patchiness 

into phytoplankton communities at a variety of length scales. In addition, increases in primary 

production were observed locally by an order of 100% and when averaged over the frontal region by an 

order of 10%. Mahadevan and Archer (2000) investigated a range of model resolutions at mesoscales 

(40 km to 10 km) in a coupled physical-biogeochemical model. Their results showed that primary 

production increased (up to a factor of three) when model resolution was increased from 40 to 10 km to 

include mesoscale features. As such, these mesoscale instabilities and eddies (of an order of 10–100 km) 

have a significant impact on phytoplankton variability and on the ocean’s primary productivity 

(McGillicuddy, 2016). 

 
Numerical studies in recent years (Spall and Richards, 2000; Levy et al., 2001) have identified that 

mesoscale dynamics are responsible for an increase in numerical estimates of primary production by up 

to 30%. However, in most of these studies, the numerical resolution resolved mesoscale dynamics well, 

but poorly resolved sub-mesoscales. Other studies (Mahadevan and Archer, 2000; Levy et al., 2001) 

have since suggested that submesoscale physics could also significantly impact primary production. A 

numerical study in an oligotrophic regime by Levy et al. (2001) found that submesoscale physics was 

responsible for more than a third of large scale primary production. Similarly, through high-resolution 

satellite imagery, researchers have recognised that not resolving for submesoscale features (1-10km) 

can result in errors of up to 50% in primary production estimates (Levy et al., 2001; Glover et al., 2008). 

This shows that high spatial and temporal resolution is required to understand submesoscale 

phytoplankton variability in order to accurately estimate primary production, from observations or 

numerically. 

 
Submesoscale physical processes have been found to be particularly relevant to understanding the 

variability in phytoplankton distribution due to the similarity between the timescales of submesoscale 

physical variability and phytoplankton growth. The variability occurs at spatial scales of an order of 0.1–

10 km and on timescales of a few inertial periods (∼days) (Levy et al., 2014; Mahadevan, 2016). 

Submesoscale physics contributes to phytoplankton variability in various ways, depending on local 

environmental conditions (nutrient distribution, light environment and dynamics) and the growth of 
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phytoplankton species themselves (Mahadevan, 2016). Spatiotemporal distributions of phytoplankton 

are a result of both vertical and horizontal submesoscale processes (Martin et al., 2002; Martin, 2003; 

Pasquero et al., 2005) injecting nutrients into the euphotic zone or moving phytoplankton towards or 

away from the light (Mahadevan, 2016). These dynamical processes occur in subtropical and subpolar 

gyres, the Artic and Southern Oceans, continental shelves and coastal seas and are the result of fronts, 

mixed layer instabilities, surface forcing by the wind on eddies, nonlinear interactions from Ekman 

pumping and symmetric instabilities (Mahadevan, 2016). 

 
In nutrient-depleted regions such as the subtropical gyres, Ekman pumping acts in a downward direction 

and diapyncal mixing is weak, however phytoplankton blooms still form. This is because of submesoscale 

dynamics that enhance the vertical transport of nutrients from the subsurface into the euphotic zone 

(Levy et al., 2001; Klein and Lapeyre, 2009; Mahadevan, 2016). This advection of nutrients tends to 

occur along the isopyncal surfaces when the isopyncals are sloping upward (Mahadevan, 2016). The 

enrichment of nutrients into the euphotic zone increases phytoplankton productivity and leads to small 

scale phytoplankton variability, similar to what is attained through mesoscale dynamics but in smaller 

areas and more episodically (Levy et al., 2001; Mahadevan, 2016).  

 
Many of the most productive regions in the world’s ocean are regions that are light limited (e.g. the 

Southern Ocean) and have an abundance of nutrients in the upper ocean. These regions experience 

large seasonal variations in mixed layer depth, with a deep mixed layer in winter and a shallower mixed 

layer in summer. During spring, when the wind stress weakens, the strength of mixing in the mixed layer 

weakens as well. A weakening of the mixing enables submesoscale eddies to stratify the mixed layer 

through a slumping of the isopycnals at local fronts (Mahadevan et al., 2012). The submesoscale 

restratification is very heterogeneous in space and thus creates highly variable mixed layer depths that 

exposes the phytoplankton to varying degrees of light. Phytoplankton in the upper stratified regions 

experience rapid growth and patchy phytoplankton blooms (Mahadevan et al., 2012). Thus, in light 

limited regions phytoplankton variability can be attributed to submesoscale eddies that modulate mixed 

layer stratification and availability of light, resulting in high submesoscale variability in phytoplankton 

blooms.  
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1.3.3 Phytoplankton variability in the Sub-Antarctic Zone 

 
In a study of the Southern Ocean seasonal cycle, Thomalla et al. (2011) defined the SAZ as an area that 

has high chl-a concentrations but has high inter-annual and intra-seasonal variability (low seasonal cycle 

reproducibility) (see Figure 1.3). They proposed that this variability was likely to be controlled by sub-

seasonal forcing of nutrients (iron) and light supply by intra-seasonal physical forcing of the mixed layer 

(Pasquero et al., 2005). These results led to a study by Swart et al. (2015) in the SAZ that investigated 

the different forcing mechanism driving variability in upper ocean physics and their effect on sub-

seasonal variability of phytoplankton. Their results proposed that differences in inter-seasonal 

phytoplankton variability (between spring and summer) was driven by different seasonal physical 

forcing mechanism.  

 
1.3.3.1 Spring 

 
The SAZ is a region where phytoplankton growth is limited by light and not nutrients, particularly in 

spring. In light limited regions, the spring bloom is typically initiated by surface heating as solar radiation 

increases. In their study, Thomalla et al. (2011) found that the spring bloom initiation dates in the SAZ 

had surprisingly high inter-annual variability. They proposed that the variability in spring bloom initiation 

dates was due to the SAZ’s proximity as a region of transition between two different seasonal regimes; 

the spring bloom of the Sub-Antarctic to the south and the autumn bloom of the Subtropical Zone to the 

north.  

 
However, the study by Swart et al. (2015) suggested that high feature driven mesoscale variability in the 

SAZ could drive early (and patchy) bloom initiations and high intra-seasonal phytoplankton variability in 

spring. In their study, Swart et al. (2015) found that the mixed layer depth (MLD) shoals episodically. 

This shoaling is driven by the slumping of the lateral density gradient, similar to those observed by 

Mahadevan et al. (2012) in the North Atlantic. Further analysis found that these periods of enhanced 

stratification occurred during periods of low wind stress. During these periods of enhanced 

stratification, the mean light exposure to phytoplankton is increased, and allows for bloom development 

to occur. As a result, feature-driven restratification acts as hotspots for biological activity when 

phytoplankton growth is limited by light in spring. A study by Mahadevan et al. (2012) in the subpolar 

North Atlantic, found that when spring blooms formed by eddy-driven slumping of the density gradient, 

they formed 20 to 30 days earlier than expected if caused by solar heating alone. As such, Swart et al. 
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(2015) proposed that the high inter-annual variability in the bloom initiation dates observed in the SAZ 

was partly due to mesoscale variability and the associated eddy re-stratification that adjusts the annual 

timing of the spring bloom.  

 
1.3.3.2 Summer 

 

Numerous studies have observed the existence of an elevated and prolonged bloom in summer in the 

SAZ (Thomalla et al., 2011; Joubert et al., 2014; Carranza and Gille, 2015; Swart et al., 2015). This 

sustained bloom is somewhat surprising as towards the end of summer, phytoplankton growth is 

expected to be suppressed by strong iron limitation (Boyd and Ellwood, 2010). A study by Carranza and 

Gille (2015) found that these sustained summer blooms regularly occur and are widespread across large 

areas of the Southern Ocean. Furthermore, these sustained summer blooms do not appear to be driven 

by changes in seasonal forcing. From a glider experiment in the austral summer of 2012-2013, Thomalla 

et al. (2016) found that the integrated primary production rates were high and fluctuated rapidly (4-6 

days) from mid-December to mid-February. These intra-seasonal enhancements in chl-a concentrations 

where shown to be connected to variations of the MLD in summer (Carranza and Gille, 2015; Swart et 

al., 2015). 

 
During summer in the SAZ, surface waters are stratified from solar radiation that warms the surface 

layer. As a result, the mixed layer shoals and phytoplankton are maintained in a high light environment 

which promotes growth. Swart et al. (2015) found that although the enhanced stratification prevents 

the deepening of the MLD (to depths > ~80 m), the MLD remains highly variable around a shallow mean 

depth (~40 m). Their study proposed that variability of the MLD was caused by a combination of the 

strengthening of the wind stress from synoptic (4 to 9 day) storm events that deepened the MLD, 

followed by the rapid shoaling of the MLD through the buoyancy of meso- and submesoscale features 

when the wind stress weakened. A study by Carranza and Gille (2015) supports this theory as their 

results showed that in summer, strong winds cause the MLD to deepen and in so doing help sustain the 

chl-a bloom through proposed nutrient entrainment. A study by Joubert et al. (2014) investigated this 

further and found that in the SAZ in particular, a deepening of the MLD from synoptic storms allows for 

the entrainment of iron, while the rapid shoaling of the mixed layer allows for phytoplankton growth in 

a temporary iron replete, high light environment. Nicholson (2016) went on to investigate storm-eddy 

interactions in the SAZ using a complex physical-biogeochemical model (NEMO-PISCES) and found that 

storm-eddy dynamics are the primary drivers of the observed variability in phytoplankton in the SAZ in 
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summer. In addition, these model results showed that storm-eddy interactions allowed for continual 

resupply of the surface layer with iron to sustain the summer bloom. Therefore, a sustained summer 

bloom in the SAZ has been proposed to be a result of the combined role of solar heat flux, mesoscale 

features and synoptic scale storms that alter the mixed layer and in so doing regulate both light and iron 

supply to the upper ocean at appropriate time scales for phytoplankton growth.  

 

 1.4 Sampling platforms  

 
The above studies all highlight the importance of meso and submesoscales of variability (both spatially 

and temporally) in driving seasonal and sub-seasonal characteristics of phytoplankton variability. 

However, our knowledge is limited by the difficulties associated with routinely analysing these 

important scales both in the ocean or with high-resolution models. In the past, the majority of in situ 

ocean research was performed by ships that are unable to observe fine scale changes in phytoplankton 

biomass and productivity. More recent platforms such as gliders, Argo floats, satellite products and high-

resolution models have enabled us to access information at the relevant time and space scales that are 

necessary for understanding climate sensitivity questions.  

 
Satellites are an effective way in which to monitor the spatial and seasonal variation of global sea 

surface chl-a (Reilly et al., 1998; Marrari et al., 2006). Satellites provide routine, highly cost-effective 

synoptic measurements over decadal time scales. In many cases, remotely sensed data are the only 

regular observations available for frequently under-sampled marine systems such as the polar oceans. 

Despite the ability of satellites to effectively measure spatial and seasonal variations, problems with 

remotely sensed data sets do exist. For example, satellites have a course temporal resolution and cloud 

cover limits ocean colour measurements to a few cloudless days (Moore and Abbott 2000; Marrari et al. 

2006; Kaufman et al. 2014). In addition, seasonal measurements in the high latitudes are affected by 

shortened day lengths and by the large solar angle that occurs during winter months, causing large gaps 

in satellite chl-a measurements (Moore and Abbott, 2000). Even though satellites have provided high-

resolution information on phytoplankton distribution at submesoscales (e.g., Glover et al., 2008), the 

information is often removed by the averaging of the data into weekly or monthly composites due to 

the large gaps in the data (Lévy, Iovino, et al., 2012). Another limitation is that satellite ocean colour 

products are limited to surface observations only. Furthermore, studies have shown that the Southern 

Ocean’s bio-optical relationship between water-leaving radiance and chl-a concentration differs from 

that at lower latitudes (Mitchell and Kahru 2009; Kahru and Mitchell 2010). These studies have shown 
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that when Southern Ocean chl-a concentrations are low (≤ 0.1 mg.m-3) and high (≥10 mg.m-3), the 

standard algorithm (used for lower latitudes, OC4 for SeaWiFS and OC3m for MODIS) estimates the 

correct chl-a concentrations but when chl-a concentrations are mid-range (as is the norm) (0.2-2.0 

mg.m-3) the standard algorithms underestimate chl-a concentrations by 2-3 times compared to in situ 

measurements (Dierssen and Smith 2000; Moore and Abbott 2000; Garcia et al., 2005; Mitchell and 

Kahru 2009; Kahru and Mitchell 2010). For these reasons, specific bio-optical algorithms need to be 

developed to retrieve accurate chl-a concentrations for the Southern Ocean that will allow us to better 

understand phytoplankton variability and long term trends.   

 
Models have allowed us to test our understanding of the physical dynamics and biological coupling of 

the open ocean. However, accurately parameterising models, especially biological models, is difficult. Of 

the variety of models run, very few use a high enough resolution to resolve for biogeochemical and 

physical submesoscale variabilities and when they do, it is both time consuming and computationally 

expensive. Furthermore, for a model to be informative, it must be forced by observations collected at 

the appropriate temporal and spatial scales (Niewiadomska et al., 2008). Platforms that adequately 

sample a region at sufficiently high temporal and spatial resolution are thus needed to assist models in 

accurately representing phytoplankton variability at meso- and submesoscales.  

 
Traditional ship-based in situ measurements allow for spatial variability, but the measurements are 

limited in time by the duration of the cruise and also depend highly on the weather and other external 

factors. The ship transects that do occur are short, not repeated enough and are often confined to the 

austral summer months (Eriksen et al., 2001). Ship-towed devices, such as SeaSoar are however able to 

sample the ocean at a suitable time resolution that can capture the evolution of submesoscale features 

due to their speeds of 4 m s-1 and their ability to repeat a cycle every 3 km in 12 minutes (Rudnick et al., 

2004; Lévy, Iovino, et al., 2012). Nonetheless, the cost and demands on research vessels means that 

these studies remain scarce and short lived, which limits their suitability (Pinot et al., 1995; 

Niewiadomska et al., 2008; Lévy et al., 2012).  

 
Due to their Eulerian sampling, moorings are able to build up a time series of the effects of meso- and 

submesoscale variability at a fixed location for long periods of time. However, the problem then arises of 

how temporal signals in biogeochemistry can be disentangled from simple advection of spatial variability 

through the site (Lévy, Iovino, et al., 2012). A solution to the lack of spatial variability measurements, 

would be having a collection of moorings that are spaced at distances that are able to sufficiently 
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resolve the required spatial variability. However, an approach like this is uneconomical. Even so, a 

collection of moorings in the Southern Ocean would remain sparse in comparison to the ocean’s size 

(Eriksen et al., 2001). Lagrangian platforms such as floats and drifters provide excellent coverage of 

temporal and spatial in situ measurements. However, they lack the necessary resolution to identify 

continual meso- and submesoscale features in the upper ocean (Queste et al., 2012) as the floats profile 

every 10 days and measurements are limited to their parking depth (1000m) (Gould et al., 2004; 

Roemmich et al., 2004). In addition, float trajectories are determined by currents at depth with the 

result that they may be advected outside the region of study (Rudnick et al 2004). Purely Lagrangian 

platforms such as floats also tend to get concentrated into fronts and filaments affecting a bias in their 

measurements (Senam, 2015). 

 
More recently underwater glider platforms (e.g., SPRAY spray.ucsd.edu/pub/rel/index.php, Slocum 

www.webbresearch.com/slocumglider.aspx and Seaglider www.irobot.com/gi/maritime/1KA_Seaglider)  

have been used to collect horizontal and vertical data over a long-time period and at high-resolution 

(Dickey and Perry, 2008)). Gliders are small, reusable, and relatively inexpensive instruments that can be 

deployed off small boats. Their high endurance allows them to gather high-resolution observations that 

span over seasons in hostile oceans, while collecting data across a variety of length scales 

(Niewiadomska et al., 2008), which traditional sampling platforms (e.g. Ships) have never been able to 

fully resolve. In addition to the physics, gliders are becoming useful for determining high temporal and 

spatial resolutions of biogeochemical parameters such as chl-a and carbon (Eriksen et al., 2001). Given 

the gliders ability to measure continuously, for long periods of time and at high-resolution, these 

platforms are now able to bridge the gap between the different scales observed thereby creating an 

effective view of a system’s functioning (Queste et al., 2012).  

 
Gliders sample the water column in a sawtooth manner, with pre-set sampling frequencies for the 

attached CTD and bio-optical sensors. Gliders are propelled through the oceans via a buoyancy control 

mechanism that is affected by variations in the gliders displaced volume (Eriksen et al., 2001). Each 

glider is controlled remotely through dead reckoning and GPS location. After each dive cycle, a glider 

receives instructions via an iridium satellite system that determines its destination. This calculation is 

based upon the impact of local currents on the glider’s previous dive cycle (Frajka-Williams et al. 2009). 

Due their mobility, gliders can survey transects of up to several thousands of kilometres in length 

(Queste et al., 2012) and can be directed to monitor a feature that a satellite has identified or a region, 

which would not normally be possible with a float as it may be advected outside the feature or region by 
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currents (Rudnick et al., 2004). Gliders can also act as virtual moorings, provided the currents are not 

stronger than the gliders speed. As a virtual mooring, gliders can provide high-resolution depth profiles, 

unlike standard moorings with fixed sensors (Rudnick et al., 2004).  

 

Although, gliders have repeatedly proven their advantageous capabilities, there is still uncertainty 

around this relatively new platform and its associated sampling. Gliders have been found to be 

restricted by sensor validation, biofouling and battery life (Perry et al., 2008). Slow speeds also mean 

that strong currents associated with many submesoscale features have the potential to displace gliders, 

which can result in a failure to capture submesoscale variability (Lévy et al., 2012). Glider missions over 

the continental shelf are also less efficient than open ocean missions as the depth average currents are 

smaller, which therefore lessen the physical strain on gliders, while the buoyancy engines are also more 

efficient at depth (Rudnick et al., 2004). However, a main issue that has been repeatedly raised about 

gliders is around the interpretation of the data that is collected from a platform that is quasi-Lagrangian 

in nature. The fact that a glider samples in both time and space makes it difficult to disentangle the role 

of variability driven by the glider crossing a submesoscale feature in space versus  intrinsic changes 

observed within the water column that are an inherent result of an evolution in time (e.g. 

phytoplankton growth).  Rudnick et al. (2004) proposed that a glider section can confuse temporal 

variability with spatial structures and therefore that gliders should not be considered as suitable 

platforms to capture a snapshot of ocean conditions. However, Swart et al. (2015) addressed this issue 

by looking at the temporal coherence of MLD observations between two gliders. The spatial separation 

of the two gliders in the SAZ at one time was 213 km apart but their sub-seasonal MLD magnitudes and 

variability was the same. This supports the fact that both gliders were measuring temporal variability 

that was being forced by synoptic scale wind forcing. Our aim in this study was to try to determine how 

much of the surface chl-a variability measured with a glider is the result of temporal variability verses 

spatial patchiness and to see whether the glider is able to accurately measure the important small scales 

of variability.  
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Chapter 2:  

Quantifying the significance of temporal 

scales of phytoplankton variability in the 

Sub-Antarctic Zone using a high-resolution 

glider dataset 
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2.1 Introduction 

 
The Southern Ocean is responsible for 40% of global carbon dioxide (CO2) uptake (Gruber et al., 2009) 

and the sub-basin of the Sub-Antarctic Zone (SAZ) is recognized as one of the regions of higher carbon 

export and an effective atmospheric CO2 sink (Metzl et al., 1999; McNeil et al., 2001; Trull et al., 2001; 

Wang et al., 2001). This is primarily due to an efficient solubility pump in combination with the biological 

pump, which maintains a strong CO2 sink year round (McNeil et al., 2007). The Southern Ocean seasonal 

cycle is known for having one of the strongest modes of variability (Monteiro et al., 2011). This is 

important because the seasonal cycle is the mode through which the physical mechanisms of climate 

forcing are coupled to ecosystem responses in primary production, diversity and carbon export (Rodgers 

et al., 2008). Recent studies have found that physical processes at fine spatial scales (meso- to 

submesoscale) and seasonal to sub-seasonal temporal scales, play an important role in characterising 

regional variability in the Southern Ocean’s seasonal cycle (Thomalla et al., 2011). As such, it is 

important that we investigate these fine scales so that we are able to understand the sensitivity of 

Southern Ocean primary production to climate change (Boyd, 2002; Thomalla et al., 2011; Lévy et al., 

2012). These fine scale processes are however poorly understood due to the lack of appropriate 

observations and consequently our understanding of phytoplankton seasonal distribution, rates of 

production and carbon export is limited, especially in the Southern Ocean. 

  
Satellites are one of the most effective ways in which to monitor the spatial and seasonal variation in 

global sea surface chlorophyll (chl-a) (Reilly et al., 1998; Marrari et al., 2006). However, problems with 

ocean colour data sets do exist, mainly due to cloud cover limiting measurements to a few cloudless 

days. This leads to a tendency for satellite ocean colour data sets to be averaged both in space and time 

thus reducing their ability to resolve fine scale features (Moore and Abbott, 2000; Marrari et al., 2006; 

Kaufman et al., 2014). Another method of both spatial and seasonal sampling is through the use of 

Seagliders, which serve as long-range autonomous platforms providing measurements of the upper 

ocean at high temporal and spatial resolution (Eriksen et al., 2001; Perry et al., 2008; Frajka-Williams et 

al., 2009; Swart et al., 2015). However, glider measurements are neither Eulerian nor Lagrangian, which 

makes interpretation of the space and time scales of variability difficult. Hence, glider sampling requires 

a more thorough evaluation so that we may better understand their limitations and more effectively 

interpret the data they provide. 
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The Southern Ocean Seasonal Cycle Experiment (SOSCEx) was initiated to improve Southern Ocean 

observations, from primarily ship-based observations to system-scale dynamic studies spanning a much 

greater range in time and space (Swart et al., 2012). The aim of SOSCEx was to provide a way to better 

understand the connection between climate drivers, ecosystem productivity and climate feedbacks in 

the Southern Ocean (Swart et al., 2012). This was approached with the use of five Seagliders, which 

were distributed between fronts in the Antarctic Circumpolar Current, ship based measurements from 

the S.A. Agulhas II, and satellite measurements.  Together, the SOSCEx process study managed to obtain 

a suite of measurements from the SAZ for austral spring to summer of 2012-2013. 

 
Results from SOSCEx showed that the SAZ was characterised by high sub-seasonal variability in surface 

chl-a (Swart et al., 2015). As a result of the contrasting characteristics of the upper ocean physics at the 

beginning versus the end of the glider transect, Swart et al. (2015) separated the data into two distinct 

periods, the spring bloom initiation phase and the summer sustained bloom phase. During spring, 

surface chl-a concentrations in the SAZ were intermittent and patchy. This was found to be the result of 

mixed layer eddies which are meso- and submesoscale features that enhance stratification (thereby 

increasing the light supply) allowing for the rapid formation of patchy phytoplankton blooms (Swart et 

al., 2015). In contrast, in summer, solar heat flux, mesoscale features and sub-seasonal storms cause 

variability of the mixed layer depth (MLD) around a threshold of ~40 m (thereby entraining limiting 

nutrients), that results in the formation of large homogenous phytoplankton blooms that are sustained 

throughout summer (Swart et al., 2015). 

 
This study uses the same SOSCEx glider data set that is described above by Swart et al. (2015) to further 

investigate the spatial and time scales of phytoplankton variability in the SAZ. For this study mesoscales 

are defined as scales that occur between 10 to 25 days and submesoscales are defined as variability 

between 2 and 10 days.   

 
Key Questions 

 
A number of recent studies, relying mostly on remotely sensed data or model output, have found that 

phytoplankton distribution is affected by meso- and submesoscale features (Boyd, 2002; Thomalla et al., 

2011; Lévy et al., 2012). However, the extent to which these feature’s length and time variability affect 

phytoplankton is not fully understood. In this study, an Empirical Mode Decomposition analysis of the 

surface chl-a glider data set in the SAZ is used to address the following key questions:  
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1. How much of the observed variation in the glider data set can be attributed to seasonal, 

mesoscale and sub-mesoscale signals? 

2. Does the magnitude of phytoplankton variability change seasonally? 

3. How do the scales of variability of the physical drivers of wind and MLD compare to those of the 

surface chl-a time series? 

4. If sampled at the dominant scales of variability can you capture the characteristics (mean and 

standard deviation) of the seasonal cycle? 
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2.2  Data and methods 

 

2.2.1 SOSCEx glider deployment 

 
The Seagliders used in this study were long range autonomous vehicles, that were originally developed 

by the University of Washington to provide high temporal and spatial resolution measurements of the 

upper ocean. Each Seaglider is 1.2 m in length and weighs 52 kg. Seagliders sample the water column in 

a v-shaped sawtooth pattern from the ocean surface to a programed depth of 1000 m and back to the 

surface. The gliders move at an average horizontal velocity of 0.33 m s-1 and a vertical velocity of          

0.1 m s-1, while sampling the water column with pre-set sampling frequencies for the attached CTD and 

bio-optical sensors. Gliders are propelled by their own buoyancy control effect caused by a variation in 

displacement of hydraulic oil between internal and external bladders, which results in the glider rising or 

sinking. The horizontal distance travelled to the target position is determined by the angles of the glider 

wings. After surfacing from each dive the glider transmits the data and receives a new target location 

from the base station via an iridium satellite (Eriksen et al., 2001). 

 
As part of SOSCEx, an autonomous Seaglider was deployed in the SAZ during the austral spring to late 

summer of 2012-2013 from the S.A. Agulhas II. On the 25 September 2012 Seaglider 573 (SG573) was 

deployed in the South East Atlantic Ocean, south of Gough Island at 43.0˚S, 11.0˚W. After continuously 

sampling the SAZ for 143 days (5.5 months) and covering a distance of 1 693 km, the glider was 

retrieved on the 15 February 2013 (Figure 2.1).  
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Figure 2.1 Mean satellite chl-a concentrations (mg m-3) during the period of SOSCEx (25 September 2012 
– 15 February 2013), with the trajectory covered by Seaglider 573 (SG573) in the magenta line. The 
bathymetry for the region is overlaid using black contour lines (Figure adapted Swart et al. 2015). 
 
The glider has a suite of sensors that measure CTD (conductivity, temperature and depth), dissolved 

oxygen, fluorescence (a proxy for phytoplankton concentration), Photosynthetically Active Radiation 

(PAR) and two wavelengths of optical backscattering Bb(470) and Bb(700) (proxies for particle 

concentration). The bio-optical sampling rates varied from 0.15 Hz in the upper 100 m to between 0.05-

0.1 Hz for the rest of the water column so as to optimize battery performance on longer missions such 

as these. Each dive cycle took approximately 5 hours and covered an average horizontal distance of 2.8 

km, providing a total of 1 212 profiles. This allowed for a temporal resolution of ~2.5 hours and a spatial 

resolution of ~1.4 km, which enabled both meso- (10-200 km) and submesoscale (1-10 km) features to 

be sampled. The data was received in real-time via satellite transmission, upon the glider surfacing after 

each dive. 

 
At the deployment and retrieval of each glider, ship-based CTDs were deployed and samples of chl-a, 

dissolved oxygen and salinity were collected to calibrate the sensors. From the beginning of January 

2013 (the final 5 weeks of the experimental period) the CTD cell was subjected to bio-fouling by Goose-

neck barnacles, which affected the quality of the data obtained (Figure 2.2). The barnacle growth is 

believed to have constricted the flow rate between the temperature and salinity sensors, however there 

was little impact on the temperature data. In addition, the fluorescence and backscattering data sets 

were cleaned by removing spikes and bad profiles resulting from sporadic instrument malfunction. 
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Figure 2.2 Glider covered in Goose-neck barnacles upon recovery from the Southern Ocean, highlighting 
the bio-fouling issues associated with long deployments. 
 
2.2.1.1 Fluorescence quenching correction and fluorescence to chl-a conversion  

 
Fluorescence and optical backscattering both relate to biological activity and can be used to provide a 

proxy for phytoplankton biomass in the ocean (Frajka-Williams et al., 2009). Chl-a inside phytoplankton 

cells has a maximum absorption at 440 nm and a maximum fluorescence at 685 nm (Perry et al., 2008). 

The unique wavelength of fluorescence and spectral distance between excitation and emission 

wavelengths makes fluorescence a reliable proxy for phytoplankton biomass. Optical backscattering on 

the other hand is proportional to the concentration of particles in the water and as such provides a 

proxy for phytoplankton biomass (when phytoplankton are the primary determinants of the particle 

field and the contribution by mineral particulates is negligible).  

 
Fluorescence values were dark corrected by subtracting the dark count (calculated as the median 

fluorescence value below 300 nm). Non-photochemical quenching (NPQ) was present in the 

fluorescence values, which showed strong light-dependent depressions each day. NPQ is a diurnal cycle 

of a decrease in fluorescence yield during the day in the surface layer (Buschmann, 1999; Sackmann et 

al., 2008; Frajka-Williams et al., 2009). NPQ is a manner by which phytoplankton protect themselves 

against damage from high light intensity. NPQ was corrected by isolating the day time profiles as the 

time period between the local sunrise and 2.5 hours after local sunset (quenching was still present in the 

first profile after sunset). The day profiles were corrected using a quenching correction derived from the 
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optical backscattering (Bb). The correction was based on the methods described in Sackmann et al., 

(2008) where night time ratios of fluorescence to optical backscattering (Fl:Bb) are relatively constant 

throughout the mixed layer due to the absence of quenching. During the day however, large decreases 

in Fl:Bb are observed in the upper surface layer due to quenching. Since both fluorescence and 

backscattering are proxies for the same phytoplankton biomass, backscattering can be used to correct 

the quenched fluorescence. This is carried out by calculating the maximum ratio between fluorescence 

and backscattering Fl:Bb(700) per profile and multiplying this ratio with Bb(700) from the depth of 

maximum Fl:Bb(700) to the surface to get corrected fluorescence. In 16.8% of the data sets where 

Bb(700) was found to be corrupt due to intermittent electronic fluctuation, Fl:Bb(470) was used instead. 

On the rare occasions when both Bb(700) and Bb(470) where absent, a well-mixed layer was assumed 

and the fluorescence was corrected by extrapolating the maximum fluorescence value from the depth of 

maximum fluorescence to the surface (Xing et al., 2012).  

 
These methods, assume that there is a constant carbon to chlorophyll ratio throughout the surface 

waters and that phytoplankton do not exhibit a photo adaptive strategy by changing the amount of chl-a 

present in a cell as they are mixed deeper in the water column. Regions characterised by a deep 

fluorescence maximum (e.g. North Sea)(Fernand et al., 2013) do not conform to this assumption, making 

this method inappropriate in those areas. In the Southern Ocean however, the well mixed surface 

waters and the absence of deep fluorescence maxima (as seen from the non-quenched night time 

profiles), makes this assumption acceptable and the quenching corrections reliable.  

 
On glider deployment and retrieval, in situ chl-a bottle samples were collected from six depths from 

each coincident CTD. Samples of 250 ml were filtered onto 25mm GF/F Whatman filters and extracted in 

8 ml of 90% acetone for 24 hours at -20˚C. A Turner Trilogy Laboratory Fluorometer, calibrated with a 

pure chl-a standard, was used to measure the chl-a concentrations (ug l-1). Glider fluorescence was 

converted to chl-a using the instrument specific chl-a conversion factor supplied by the manufacturer. 

This was due to the limited number of collocated samples per glider (12), which meant that the 

regression between in situ chl-a and glider fluorescence would not be statistically robust (Swart et al., 

2015). The conversion allowed for the 83 collocated glider chl-a and in situ chl-a samples from all five 

SOSCEx gliders to be plotted simultaneously to form a statistically significant regression (slope = 4.12, 

intercept = -0.21, r2 = 0.66). To correct for the manufacturer conversion to chl-a, the slope of the 

regression was applied to all glider chlorophyll measurements to obtain chl-a measurements that were 
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more suited to the regional characteristics of the Southern Ocean (For more details see Swart et al.,   

2015).  

 
2.2.1.2 Backscattering to phytoplankton carbon conversion  

 
Stramski et al. (1999) noted a relationship between phytoplankton carbon (Cphyto) and backscattering 

(Bb) as a result of the dominant organic particular concentration that controls the changes in both 

particular organic carbon (POC) and particulate backscattering (bbp). 

 
A seven point running median filter was used to separate the spikes from the glider backscattering 

(λ=470 and 700) data (Briggs et al., 2011). The glider Bb was then converted into particular 

backscattering using the models of Zhang and Hu (2009) and Zhang et al. (2009). 

 
bbp = 2πχp[S(Bb − D) − βsw]    (2.1) 

 
Where χp is equal to 1.1 and is the factor used to convert βp (at a central angle of 117˚) to βbp (Boss & 

Pegau, 2001); S is the instrument specific scaling factor; Bb are the digital count (λ=470 and 700) and D 

the dark count; βsw is the volume of scattering of pure water.  The remaining spikes in the bbp were 

removed with a threshold in shallow (bbp>0.048) and deep (bbp>0.0025) waters. Profiles with a high 

mean backscattering (bbp>0.001) in deep waters (>150m) were discarded (see Thomalla et al., 2016 for 

further details). 

 
The POC was calculated from bbp using a linear regression between POC and bbp (Thomalla et al., 2016) 

and a mean ratio between total POC and phytoplankton specific carbon (Cphyto) of 30% (Behrenfeld et al., 

2005). In total 221 POC samples from CTDs from a number of cruises in the Southern Ocean were 

plotted against collocated bbp470 and linearly correlated to provide a regionally specific regression to 

convert bbp470 into POC (Thomalla et al., 2016). 

 
POC = 32057×bbp + 2.6    (2.2) 

 
POC however still needs to be converted into a fraction specific to phytoplankton (Cphyto). Behrenfeld et 

al. (2005) summarized ranges of field based Cphyto:POC ratios from different oceanic regions to an 

average phytoplankton contribution to total particulate organic carbon of ~30%. As such, POC was 

converted into Cphyto according to the following equation that converts 𝑏𝑏𝑝 into POC using a linear 
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regression and then uses a constant 30% fraction to represent Cphyto (see Thomalla et al., 2016 for more 

details). 

 

Cphyto = 0.3(32057×bbp + 2.6)    (2.3) 

 

2.2.2 Satellite products  

 
2.2.2.1 Wind stress 

 
The wind data used in this study was obtained from a SeaWinds blended vector sea surface wind (at 10 

m above seas level reference height) product. This product combines observations from multiple 

satellites (microwave, radiometer and scatterometer sensors) to produce a global 6-hourly, 0.25˚ 

resolution, gridded product (Zhang et al., 2006). The wind data was collocated with the gliders in space 

and time using a 2-dimensional bilinear interpolation and converted from wind speed into a wind stress 

product using the Large and Pond (1981) method (du Plessis, 2014; Swart et al., 2015).    

 
2.2.2.2 Mixed layer depth 

 
The MLD was calculated using (de Boyer Montegut et al., 2004) temperature criteria where a change in 

temperature of 0.2˚C from the reference depth of 10 m denotes the MLD. The reason this method was 

used was due to thermal lag errors and biofouling of the glider which introduces errors in glider salinity 

measurements. A recent study with this data set successfully applied this criterion of ∆𝑇 = 0.2˚𝐶 (Swart 

et al., 2015) to correct for these errors. 

 

2.2.3 Temporal analysis 

 
2.2.3.1 Empirical Mode Decomposition 

 
Empirical Mode Decomposition (EMD) is a function that decomposes a signal from data into primary 

signals called Intrinsic Mode Functions (IMFs) (Rato et al., 2008). IMFs represent modes of oscillation 

entrenched in the data. EMD performs a spectral analysis using Hilbert transforms, which is followed by 

an instantaneous frequency computation (Huang et al., 1998). EMD is a single band filter, where the 

EMD calculations are based on Rato et al. (2008). The MATLAB function rParabEmd__L. EMDs was used 

to find temporal signals that were embedded within the surface chl-a data set. Wind stress, MLD and 
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POC were similarly decomposed to allow a comparison of their modes of temporal variability with that 

of surface chl-a from the IMFs.   

 
Huang et al. (1998) proposed EMD as a signal decomposition algorithm based on the successive removal 

of an elemental signal, the IMFS. Given any signal x(t), the IMFs are found by an iterative procedure 

called sifting algorithm, which is composed of the following steps: 

 
1) Find all the local maxima, Mi, i = 1,2, …, and minima, mk, k = 1,2, …, in x(t). 

2) Compute the corresponding interpolating signals M(t): = fM(Mi, t), and m(t): = fk(mi, t) These 

signals are the upper and lower envelopes of the signal. 

3) Let e(t): = (M(t)  +  m(t))/2. 

4) Subtract e(t) form the signal: x(t): = x(t)  −  e(t). 

5) Return to step (1) – stop when x(t) remains nearly unchanged. 

6) Once we obtain an IMF, φ(t), remove it from the signal x(t) ≔ x(t) − φ(t) and return to (a) if 

x(t) has more than one extremum (neither a constant nor a trend).  

 
The temporal mode of variability for each IMF was calculated by averaging the time between the peaks 

and troughs of each IMF. The EMD analysis was performed over the entire data set and for each 

individual season (spring and summer) of glider deployment.  

 
2.2.3.2 Statistical analysis of temporal modes of variability  

 
A low pass filter that used a running mean was used to confirm the precision with which the IMFs were 

identified by the EMD. The signals identified by the EMD were consistent yet superior to the low pass 

filter as the EMD was able to identify specific signals of both high and low frequencies.  Correlation 

statistics were used to determine how well each IMF signal explained the temporal variability of each 

variable (surface chl-a, MLD, wind stress and POC) and its significance to the sub-seasonal variability of 

the variable. The percentage of variance explained, analysed separately for each IMF, was computed by 

analysing the linear relationship between the IMF and the original data set. The combined estimates of 

variance explained by the meso- and submesoscales was recomputed by analysing the linear 

relationship between the combined IMFs and the original data set. All combined estimates stated in the 

results and discussion show the recomputed percentages.  
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In order to test the robustness of the dominant scales of temporal variability, subsamples at these scales 

(set frequencies) were taken from the data set at random starting times. The subsampling occurred at 

half the time period of each dominant frequency to capture the periodicity of the frequency. For each 

time series, only the full number of subsampling extractions were taken. For further robustness, this was 

repeated by randomly subsampling the time series with the same number of extractions used in the 

equivalent set frequency subsampling. This was repeated for the same number of times as the 

equivalent set frequencies subsampled the time series. The mean, standard deviation and root mean 

square error (RMSE) of the standard deviation of the subsampled time series (set frequency and purely 

random) was compared to that of the original high resolution time series of surface chl-a and the 

random extractions. The mean, standard deviation and RMSE were compared to the original data set to 

establish whether sampling of surface chl-a needs to occur at the dominant frequency in order to 

capture the multi-seasonal characteristic observed in phytoplankton. This was repeated for both spring 

and summer. 
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2.3 Results  

 

2.3.1 Seasonal distribution of surface chl-a 

 

Over the 5.5 month period of glider deployment, surface chl-a concentration ranged from 0.16 to 1.34 

mg m-3. The surface chl-a concentration remained relatively low in spring (mean = 0.38 mg m-3), ranging 

between 0.16 and 0.80 mg m-3. In early October there was a slight increase in surface chl-a 

concentration that lasted less than a week, before dropping. From the beginning of November surface 

chl-a concentrations increased rapidly as the water column underwent a transition from spring to 

summer, becoming more favourable for phytoplankton growth. Summer surface chl-a concentrations 

remained relatively high (mean = 0.78 mg m-3), with large oscillations between 0.35 mg m-3 and 1.34 mg 

m-3 (Figure 2.3).   

 
Figure 2.3 Surface chl-a concentrations (mg m-3) obtained from SG573 deployed in the Southern Ocean 
between 25 September 2012 to 15 February 2013. 
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2.3.1.1 Sub-seasonal variability of surface chl-a 

 
An Empirical Mode Decomposition (EMD) was carried out on the entire surface chl-a time series in order 

to decompose the dataset into sub-seasonal temporal signals. The EMD was able to identify nine distinct 

Intrinsic Mode Functions (IMF) within this time series. The temporal modes of variability identified 

ranged from diurnal to multi-seasonal scales (Figure 2.4). The dominant mode of variability was the 

multi-seasonal signal, which explained 58% of the surface chl-a variability.  In order to investigate 

whether there was a seasonal difference in the dominant scales of variability the data set was then 

separated into spring and summer for further EMD analysis. The transition date (28th of November 2012) 

was determined according to Swart et al. (2015) as the date of transition between different physical and 

biochemical properties that characterised spring and summer.  

 
Figure 2.4 Empirical Mode Decomposition of the multi-seasonal surface chl-a time series. Eight different 
modes of variability (IMFs) in black and the residual IMF (dotted black line) were identified by the EMD 
from the surface chl-a time series (grey line). 
 

An EMD conducted over the spring period identified 7 IMFs embedded within the time series, while 8 

IMFs were identified within the summer time series (Table 2.1). The dominant signal in spring was the 
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residual (multi-seasonal) signal which explained 79% of surface chl-a variance. The next dominant 

temporal signal was a 20 hr daily signal, that explained 9% of surface chl-a temporal variability. Although 

the EMD detected meso- and submesoscale temporal signals (IMF 3-IMF 5), none of these signals were 

significant. In contrast to spring, the residual signal was not a dominant signal in summer, but rather the 

daily (~18hrs), and 17.5 day signals where dominant. These signals each explained 22% of surface chl-a 

variability in summer. Over the summer period, submesoscales of temporal variability (~7 and ~5 days) 

were significant and together explained 19% of surface chl-a variability.  

 

 

 

 

 

 

 

 

 

 

 

 
Table 2.1 Temporal modes of variability (days) and the respective square of the correlation (r2) defining 
the variance for each of the IMFs calculated for the full multi-seasonal time series of surface chl-a as 
well as for the separation of the time series into spring and summer. The dominant signal is in bold 
italics, the submesoscales are highlighted in green, while all modes of variability that are not significant 
above the 99%, are highlighted in grey.   
 

Each IMF signal identified from the EMD was validated with the use of a low pass filter, which uses a 

running mean, at the temporal periods identified by the EMD. Although the signals identified by the 

EMD were consistent with those of the low pass filter (Figure 2.5), the EMD was superior as it was able 

to identify specific signals of high and low frequencies.  

 

IMF Multi-seasonal Spring Summer 

1 0.8 (7%) 0.8 (9%) 0.8 (22%) 

2 1.4 (3%) 1.7 5%) 1.3 (10%) 

3 2.6 (2%) 3.0 (3%) 2.6 (9%) 

4 5.0 (4%) 5.3 (1%) 4.5 (11%) 

5 9.8 (4%) 8.5 (1%) 7.8 (2%) 

6 17.5 (9%) 16.1 (5%) 17.5 (22%) 

7 38.5 (0%) Residual (79%) 30.6 (14%) 

8 110 (34%)  Residual (5%) 

9 Residual (58%)   
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Figure 2.5 The IMF (black line) and low pass filter (blue line) of the dominant 17.5 day signal identified 
by the EMD for the summer time series of surface chl-a. 
 

Multi-seasonal and daily signals were masking the effects of sub-seasonal scales of temporal variability, 

which are the primary interest of this study. As such, the full multi-seasonal data set as well as the 

separated spring and summer time series underwent a low pass filter (daily running mean) to remove 

the dominant daily signal from the time series that was dampening the signal of meso- and 

submesoscales of variability. Similarly, the dominant multi-seasonal signal was removed from the spring 

and summer series by removing the EMD residual from each season’s time series. An EMD analysis 

carried out on the modified times series, was able to detect 9 IMFs from the full multi-seasonal time 

series with 8 and 7 IMFs embed within the spring and summer time series, respectively (Table 2.2). 

Looking at the full time series, the mesoscale signal of 15.4 days dominated with 29%, while the 

submesoscales (~2, ~5 and ~8 days) together accounting for 30% of the variability. In spring, the EMD 

analysis showed that the IMF data was dominated by the ~10 day signal (51% of surface chl-a 

variability), with the remaining submesoscale signals (~2 and ~5 day) accounting for 4% and 33% of 

surface chl-a variability, respectively. As such, the combined submesoscales dominated the variability in 

spring (97%). The removal of the daily and multi-seasonal signal shifted the dominant signals observed 
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in summer to a single monthly (~27 days) signal (54% of chl-a variability), while submesoscales (~2, ~4 

and ~9 days) of variability increased to explain a joint estimate of ~27% of the observed variability (see 

Section 2.2.3.2). 

     

 

 

 

 

 

 

 

 

 

 
Table 2.2 Temporal modes of variability (days) and the respective square of the correlation (r2) defining 
the variance for each of the IMFs calculated for the full multi-seasonal time series of surface chl-a as 
well as for the separation of the time series into spring and summer with the daily and multi-seasonal 
signal removed. The dominant signal is in bold italics, the submesoscales are highlighted in green, while 
all modes of variability that are not significant above the 99%, are highlighted in grey. 
 
2.3.1.2 Subsampling  

 

Subsampling of the glider surface chl-a time series at the dominant scales of variability was performed 

to test whether the dominant frequencies found with the EMD analysis could accurately capture the 

same mean and variance observed in the high-resolution 6 hourly time series. The spring surface chl-a 

time series was subsampled at the two dominant submesoscale periods, ~5 and ~10 days (33 and 51% 

respectively, Table 2.2). Two subsampling approaches were used: 1) the time series was sampled with a 

set of extractions with a constant period (~5 and ~10 days) and a random starting point and 2) instead of 

subsampling at systematic intervals (which is seldom possible with platforms such as satellites due to 

cloud cover), the subsampling was also performed with a random selection of data points (that totalled 

the same number of data points as in approach 1) but with no periodicity.  

 

The mean and standard deviation for the subsampled ~5 day data set (0.38 mg m-3 and 0.12 mg m-3, 

respectively) using set frequency sampling was very similar to the mean and standard deviation of the 

high-resolution spring time series (Figure 2.6). The mean (0.39 mg m-3) and standard deviation (0.13 mg 

m-3) of the 10 day subsampled time series was slightly higher than the high-resolution spring time series. 

The standard deviations increased for both subsampled data sets due to a shift in starting points into 

spring (further up the multi-seasonal ramp) and hence give higher mean surface chl-a readings. Worth 

IMF Multi-seasonal Spring Summer 

1 0.8 (1%) 0.8 (2%) 0.8 (1%) 
2 2.2 (9%) 2.1 (4%) 2.2 (10%) 
3 4.8 (15%) 4.8 (33%) 4.2 (19%) 
4 8.7 (10%) 9.9 (51%) 8.9 (6%) 

5 15.4 (29%) 14.8 (2%) 27.1 (54%) 

6 28.9 (2%) 22.0 (0%) 62.5 (0%) 
7 38.0 (8%) 40.0 (0%) Residual (4%) 
8 64 (3%) Residual (0%)  
9 Residual (4%)   
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noting is that the standard deviation of the 10 day subsampled time series deviated further from the 

mean of the high-resolution time series than the standard deviation of the 5 day subsampled time 

series. Purely random extractions (with no periodicity) on the other hand produced means (0.39 mg m-3 

for both ~5 and ~10 day extractions) that were slightly higher than the spring mean (0.38 mg m-3; Figure 

2.6 a,b). In addition, the standard deviation of the purely random extraction for both subsamples was 

highly variable, especially for the ~10 day random extraction. To summarise; with respect to both the 

mean and standard deviation, the higher the subsampling frequency (shorter period) the less the error 

in predicting the mean of the original spring time series.  

 
Figure 2.6 The mean and standard deviation of the ~5 day (A and C) and ~10 day (B and D) subsampling 
(blue bar) and the corresponding random extraction (red bar) for spring surface chl-a, respectively. The 
full spring time series mean and standard deviation is black. 
 

The three dominant signals observed in summer were similarly used to subsample the summer time 

series, the two submesoscale signals (~4 and ~9 days) and the dominant monthly signal (~27 days). The 

means of the ~4 and ~9 day subsamples at set frequencies (0.78 mg m-3, for both) were the same as the 

high-resolution summer time series (0.78 mg m-3) (Figure 2.7 a,b). The mean for the 4 day random 

extraction (0.76 mg m-3) was lower than the high-resolution summer time series, while the 9 day 

random extraction mean (0.79 mg m-3) was slightly higher. The ~4 day subsampling frequency standard 
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deviation (0.14 mg m-3) was also the same as the high-resolution summer time series (0.14 mg m-3), 

however both the ~4 and ~9 day subsampling standard deviations increased and then decreased as the 

starting points shifted into summer (Figure 2.7 d,e). The mean (0.73 and 0.76 mg m-3, respectively) of 

the ~27 day subsamples (at both set frequency and random) was less than that of the high-resolution 

time series, however the standard deviations were different. The standard deviation for the set 

frequency subsample was lower (0.06 mg m-3) than the high-resolution summer time series (0.14 mg m-

3) while the standard deviation from the random subsampling was much more variable (0.08 to 0.18 mg 

m-3). In summary and similar to in spring, the higher subsampling frequency (~4 and ~9 days) had less 

error in predicting the summer time series, while the lower subsampling frequencies (~27 days) 

underestimated the original summer surface chl-a time series in respect of both mean concentration 

and variability.  

   
Figure 2.7 The mean and standard deviation of the ~4 day (A and D), ~9 day (B and E) and ~27 day (C and 
F) subsampling (blue bar) and the corresponding random extraction (red bar) for summer surface chl-a, 
respectively. The full summer time series mean and standard deviation is black. 
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2.3.2 Sub-seasonal MLD and wind stress variability 

 

2.3.2.1 Seasonal  

 

To investigate if there was a multi-seasonal (spring and summer together) relationship between two of 

the primary drivers of surface chl-a variability in the SAZ, wind stress and MLD were correlated against 

surface chl-a. multi-seasonal correlations of wind stress and MLD to the surface chl-a time series were 

both negative, with a very low correlation between surface chl-a and wind stress (r = - 0.06), and a 

relatively strong correlation (r = - 0.5) between surface chl-a and MLD. To compare the dominant scales 

of variability, EMD analysis was carried out on both the MLD and wind stress time series. The EMD 

analysis obtained 7 IMFs embedded in the MLD time series and 8 IMFs in the wind stress time series 

(Table 2.3). The ~22 day and residual signals described the majority of the MLD variability (27% and 24%, 

respectively). Combined the submesoscale signals (IMF 2 to IMF 4) describe the equivalent amount of 

temporal variability (28%) of the MLD. Although the residual signal for wind stress was not significant, 

the dominant mode of variability returned a low frequency of ~47 days (24% of wind stress variability). 

Nevertheless, the meso- and submesoscale signals (IMF 2 to IMF 4) of wind stress together explained 

the majority (58%) of the variability of multi-seasonal wind stress.  

 

 

 

 

 

 

 

 

 
Table 2.3 Temporal modes of variability (days) and the respective square of the correlation (r2) defining 
the variance for each of the IMFs calculated for the multi-seasonal (spring and summer) MLD and wind 
stress time series with the daily and multi-seasonal signal removed. The dominant signal is in bold italics, 
the submesoscales are highlighted in green, while all modes of variability that are not significant above 
the 99%, are highlighted in grey.   
 

2.3.2.2 Spring  

 

A comparison between the surface chl-a and wind stress time series in spring resulted in a weak positive 

correlation (r = 0.2), whereas between the MLD and surface chl-a time series there was a weak negative 

correlation (r = - 0.3). The spring wind stress and MLD were decomposed into 6 IMFs and 7 IMFs, 

IMF MLD Wind Stress 

1 0.8 (0%) 1.0 (2%) 
2 2.2 (6%) 3.2 (8%) 
3 5.0 (9%) 7.3 (21%) 
4 9.4 (14%) 10.6 (14%) 
5 22.3 (27%) 19.9 (15%) 
6 38.9 (8%) 47.3 (24%) 
7 Residual (24%) 98.8 (2%) 
8  Residual (1%) 



36 
 

respectively (Table 2.4). Submesoscale signals appeared to be common modes of temporal variability 

between MLD, wind stress and surface chl-a in spring. However, the dominant ~3 week signal for both 

MLD (19.5 days at 34%) and wind stress (22.3days at 21%) was not significant in surface chl-a (Table 2.2). 

The remaining modes of variability for MLD was the submesoscale temporal signals (~2 to ~7 days) that 

combined to account for (44%) of the spring variability. While for wind stress, the submesoscale signals 

(~2 to ~8 days) accounted for the majority of the wind stress variability in spring (47%). 

 

 

 

 

 

 

 

 
 

Table 2.4 Temporal modes of variability (days) and the respective square of the correlation (r2) defining 
the variance for each of the IMFs calculated for the spring MLD and wind stress time series with the 
daily and multi-seasonal signal removed. The dominant signal is in bold italics, the submesoscales are 
highlighted in green, while all modes of variability that are not significant above the 99%, are highlighted 
in grey.   
 
2.3.2.3 Summer 

 

The correlation for both MLD and wind stress to surface chl-a in summer was weak (r < 0.2). The EMD 

analysis was able to identify 6 IMFs and 7 IMFs embedded in the MLD and wind stress time series, 

respectively (Table 2.5). In both MLD and wind stress time series the dominant mode of variability is the 

~weekly signal (6.1 and 5.6 days) which describes 41% and 45% of the variability respectively. The meso- 

and submesoscale signals were similar between the three time series. The dominant submesoscale 

signals explained 54% and 92% of the temporal variability experienced by the MLD and wind stress time 

series over summer. The MLD time series had a third mesoscale signal (~14 day) that accounted for 32% 

of the variability in summer.        

 

 

 

 

 

 

 

 

IMF MLD Wind Stress 

1 0.9 (1%) 1.0 (2%) 
2 2.1 (10%) 2.5 (7%) 
3 4.2 (17%) 4.4 (12%) 
4 7.0 (26%) 8.2 (15%) 
5 19.5 (34%) 22.3 (21%) 
6 30.5 (7%) Residual (3%) 
7 Residual (6%)  
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Table 2.5 Temporal modes of variability (days) and the respective square of the correlation (r2) defining 
the variance for each of the IMFs calculated for the summer MLD and wind stress time series with the 
daily and multi-seasonal signal removed. The dominant signal is in bold italics, the submesoscales are 
highlighted in green, while all modes of variability that are not significant above the 99%, are highlighted 
in grey.   
  

IMF MLD Wind Stress 

1 0.8 (2%) 1.0 (1%) 
2 2.3 (21%) 3.0 (32%) 
3 6.1 (41%) 5.6 (45%) 
4 13.9 (32%) 10.2 (28%) 
5 45.5 (8%) 19.5 (9%) 
6 Residual (0%) 38.8 (0%) 
7  Residual (0%) 
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2.4 Discussion 

 
The SAZ is a region that is known for having high levels of primary production, where phytoplankton 

blooms fix large amounts of carbon into the ocean making the SAZ an important zone for the global 

carbon cycle. The phytoplankton blooms that occur over a multi-seasonal cycle in the SAZ, vary 

temporally and spatially as a result of different forcing mechanisms occurring in spring and summer 

(Swart et al., 2015). Our limited understanding of this variability impacts our ability to predict the 

sensitivity of the carbon cycle to climate change. Investigating the temporal and spatial variability of 

phytoplankton blooms therefore has significant implications, not only for the understanding of primary 

production variability, but also in terms of being able to predict the impact of the changing climate on 

carbon uptake and export. Although recent studies emphasise the importance of meso- and 

submesoscale features on phytoplankton blooms (Boyd, 2002; Fauchereau et al., 2011; Thomalla et al., 

2011; Lévy et al., 2012), little research occurs in this region due to traditional mechanisms (e.g. ships) 

that are unable to observe fine scale changes in phytoplankton biomass and productivity. More recent 

platforms such as gliders have enabled us to sample at the relevant time and space scales that are 

necessary for understanding climate sensitivity questions. However, a better understanding of gliders 

limitations is required, specifically about how best to interpret the nature of the quasi-Lagrangian time 

series that is capturing both temporal and spatial scales of variability that are intrinsic to growth and 

spatial distribution. This study uses a comprehensive data set obtained from the SOCCEx Seaglider 

deployment in the Atlantic SAZ to investigate the scales of variability that characterise the 

phytoplankton seasonal and sub-seasonal cycle and to determine the extent to which a glider is able to 

capture them.  

 

2.4.1 Seasonal and sub-seasonal variability 

 
The SAZ is a typically high biomass region that has a strong seasonal cycle with low surface chl-a in 

winter, ramping through spring to high surface chl-a in summer. According to a study by Thomalla et al. 

(2011) that characterised the seasonal cycle according to both biomass and seasonal cycle 

reproducibility, the SAZ can be separated into two different seasonal regimes (see Figure 1.3). The first 

regime has high seasonal cycle reproducibility (low inter-annual seasonal variability) as a result of 

surface chl-a being driven by the predictable seasonal forcing of light, heat flux and seasonal MLD. The 

second regime has low seasonal cycle reproducibility (high inter-annual and intra-seasonal variability) 

that is likely driven by sub-seasonal physical forcing of the iron and light supply (Thomalla et al., 2011). 
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The results from this study confirm that in the SAZ the multi-seasonal scale is the dominant signal in 

surface chl-a variability over the 5.5 month period of glider deployment, explaining 58% of the temporal 

variability of surface chl-a (Table 2.6). This is to be expected, as the SAZ, like much of the Southern 

Ocean, is a region where strong seasonal changes in solar radiation influence the MLD, nutrient and 

vertical light supply and the subsequent seasonal distribution of phytoplankton production and biomass 

(Sverdrup, 1953; Boyd et al., 1999; Boyd, 2002; Arrigo et al., 2008).  

 
In addition to the multi-seasonal signal, a dominant daily signal in surface chl-a was observed (20 hours 

at 7% for the full multi-seasonal time series, 9% for spring and 22% for summer in Table 2.1). The daily 

signal could be the result of physiological adjustments of the phytoplankton to their day/night light 

environment (i.e. adjustments in their cellular chl-a:Cphyto ratios) or to a residual impact of an imperfect 

quenching correction applied to daytime chl-a (see Section 2.2.1.1). These possibilities were investigated 

by applying the EMD to Cphyto, as an alternate indicator of phytoplankton biomass that is independent of 

chl-a (i.e. it is independent of physiological adjustments in diurnal chl-a concentrations that are not 

linked to biomass or to quenching). When applied to Cphyto the EMD analysis presented a similar daily 

signal (19 hours and 21 hours for spring and summer both at 6%) suggesting that there is also a daily 

adjustment in phytoplankton carbon. As such, it is believed that the daily signal is a real response of the 

phytoplankton community, which elicits further detailed investigations that are outside of the scope of 

this thesis. 

   

 

 

 

 

 

 

Table 2.6 Temporal modes of variability (days) and the respective square of the correlation (r2) defining 
the variance for each of the IMFs calculated for the original multi-seasonal (spring and summer) surface 
chl-a time series and the multi-seasonal time series with the daily signal removed and a multi-seasonal 
time series with both the daily and multi-seasonal signals removed. The dominant signal is in bold italics, 
the submesoscales are highlighted in green, while all modes of variability that are not significant above 
the 99%, are highlighted in grey.  
 

IMF Original Removed Daily Removed  Multi-seasonal 

1 0.8 (7%) 0.8 (0%) 0.8 (1%) 
2 1.4 (3%) 2.2 (1%) 2.2 (9%) 
3 2.6 (2%) 4.5 (4%) 4.8 (15%) 
4 5 (4%) 8.2 (3%) 8.7 (10%) 
5 9.8 (4%) 12.7 (4%) 15.4 (29%) 
6 17.5 (9%) 24.7 (7%) 28.9 (2%) 
7 38.5 (0%) 36.4 (0%) 38.0 (8%) 
8 110 (34%) Residual (78%) 64 (3%) 
9 Residual (58%)  Residual (4%) 
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Nonetheless, as the multi-seasonal and daily signals masks our ability to adequately observe the sub-

seasonal temporal signals which recent studies have found to be important (Boyd, 2002; Fauchereau et 

al., 2011; Thomalla et al., 2011; Lévy et al., 2012; Swart et al., 2015). These dominant signals were 

removed. In addition, the time series was spilt into spring (25 September to 28 November) and summer 

(29 November to 15 February) based on known differences in the inter-seasonal physical forcing 

mechanisms that drive surface chl-a variability in the SAZ (Swart et al., 2015). 

 
2.4.1.1 Spring temporal variability 

 
The occurrence of phytoplankton blooms in spring is thought to be heterogeneous as they coincide with 

enhanced horizontal gradients associated with eddies (Mahadevan et al., 2012; Swart et al., 2015), 

which act as small scale drivers of phytoplankton variability in both space and time. From September to 

early November, surface chl-a concentrations are generally low (~ 0.25 mg m-3), except at episodic 

instances of MLD shoaling from eddies or filaments that drive increased concentrations of surface chl-a 

(~ 0.4 mg m-3) (Swart et al., 2015) (see Figure 2.3).  Although the correlation between MLD and surface 

chl-a was negative i.e. shallow MLD’s tended to coincide with higher surface chl-a concentrations (and 

vice versa), the correlation was weak (r = - 0.3).  

 

 

 

 

 

 
 
Table 2.7 Temporal modes of variability (days) and the respective square of the correlation (r2) defining 
the variance for each of the IMFs calculated for the spring time series with the daily and multi-seasonal 
signal removed for surface chl-a, MLD and wind stress The dominant signal is in bold italics, the 
submesoscales are highlighted in green, while all modes of variability that are not significant above the 
99%, are highlighted in grey.   
 

To further investigate the relationship between possible drivers of the surface chl-a signal an EMD was 

carried out on both the MLD and coinciding wind stress time series (Figure 2.8). In the SAZ , the MLD has 

been shown to correlate well with wind stress as weak stratification in the mixed layer allows for a rapid 

breakdown of the mixed layer, in particular in Spring (du Plessis, 2014). The results from this study 

support these findings, as both the MLD and wind stress, had very similar modes of temporal variability 

IMF Surface chl-a MLD Wind Stress 

1 0.8 (2%) 0.9 (1%) 1.0 (2%) 
2 2.1 (4%) 2.1 (10%) 2.5 (7%) 
3 4.8 (33%) 4.2 (17%) 4.4 (12%) 
4 9.9 (51%) 7.0 (26%) 8.2 (15%) 
5 14.8 (2%) 19.5 (34%) 22.3 (21%) 
6 22.0 (0%) 30.5 (7%) Residual (3%) 
7 40.0 (0%) Residual (6%)  
8 Residual (0%)   
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in spring (~2, ~4 to ~7 days for MLD and ~2, ~4 to ~8 days for wind stress, Table 2.7). These signals do 

appear to effect surface chl-a as similar modes of variability (~2, ~5 and ~10 days) are also dominant in 

the surface chl-a time series which together accounted for 88% of the surface chl-a variability. These 

results support the findings of Mahadevan et al. (2012) and Swart et al. (2015) whereby the mixed layer 

restratifies through a slumping of the lateral density gradient when the wind strength decreases. Blooms 

formed through eddy-driven slumping are expected to be patchier and have a greater spatial 

heterogeneity at submesoscales (1 to 10 km) than blooms formed from surface heating (Mahadevan et 

al., 2012). Therefore, if we do not sample these small scales in the SAZ we are unlikely to capture these 

events and would fail to accurately characterise the patchy spring blooms. 

 
Worth noting is that both the MLD and wind stress had a dominant ~20 day signal which was not 

present in the surface chl-a time series. It is not clear what the driver of this temporal variability is and 

although worth investigating further is outside of the scope of this study.  

 

Figure 2.8 Spring time series for a) surface chl-a (green line) and ~2 day, ~5 day and ~10 day IMFs (light 
grey, dark grey and black lines, respectively), b) wind stress (blue line) with the ~2 day, ~4 day and ~8 
day IMFs in the grey (light and dark) and black lines respectively and c) MLD (red line) with the ~2 day, 
~4 day and ~7 day IMFs (light grey, dark grey and black lines, respectively). 
 



42 
 

2.4.1.2 Summer temporal variability 

 
In summer, the combined role of solar heat flux, mesoscale features and sub-seasonal storms on the 

extent of the mixed layer was proposed by Swart et al. (2015) to regulate both light and iron to the 

upper ocean at appropriate time scales for phytoplankton growth, thereby sustaining the bloom for an 

extended period through to late summer. From the beginning of December until the end of the SG573 

deployment (in mid-February), surface chl-a remained above 0.5 mg m-3, with concentrations fluctuating 

(0.35 – 1.34 mg m-3) at small time scales (18 hours) around a mean of 0.78 mg m-3. Empirical 

decomposition of the summer time series showed a dominant monthly signal (~27 days) that accounted 

for 54% of the observed variability. The next three dominant scales of variability showed similar results 

to spring with three submesoscale signals (~2, ~4 and ~9 days) together describing approximately 27% of 

summer surface chl-a temporal variability (Table 2.8).  

 

 

 

 

 

 

 

 
 

Table 2.8 Temporal modes of variability (days) and the respective square of the correlation (r2) defining 
the variance for each of the IMFs calculated for the summer time series with the daily and multi-
seasonal signal removed for surface chl-a, MLD and wind stress.  The dominant signal is in bold italics, 
the submesoscales are highlighted in green, while all modes of variability that are not significant above 
the 99%, are highlighted in grey.  
 

In summer the depth of maximum stratification shoaled from 150 m at the beginning of December to 50 

m in mid-February due to an enhanced gradient in the thermocline brought on by seasonal warming of 

the surface waters (Swart et al., 2015). As a result, the MLD was considerably shallower in summer 

fluctuating +/- 16 m around a 40 m mean (Swart et al., 2015). Decomposition of the summer MLD time 

series showed that this variability was the result of meso- (~14 days) and submesoscale (~2 and ~6 day) 

signals that accounted for 39% and 54% of the variability respectively. The meso- and submesoscale 

signals were similar to the dominant modes of variability for summer wind stress (~3, ~6 and ~10 days) 

(Figure 2.9). These small scales of variability, specifically the 6 and 10 day signals, are the result of 

synoptic storm events that pass through the SAZ every 4 to 9 days, varying the strength of the wind 

stress (Braun, 2008; Swart et al., 2015). As the wind introduces periods of enhanced turbulence, which 

IMF Surface chl-a MLD Wind Stress 

1 0.8 (1%) 0.8 (2%) 1.0 (1%) 
2 2.2 (10%) 2.3 (21%) 3.0 (32%) 
3 4.2 (19%) 6.1 (41%) 5.6 (45%) 
4 8.9 (6%) 13.9 (39%) 10.2 (28%) 
5 27.1 (54%) 45.5 (8%) 19.5 (9%) 
6 62.5 (0%) Residual (0%) 38.8 (0%) 
7 Residual (4%)  Residual (0%) 
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drives a deepening of the MLD, these storms can be considered the principle driving factor of the 

observed meso- and submesoscale variability of the MLD in summer.  

 
Figure 2.9 Summer time series for a) surface chl-a (green line) and ~2 day, ~4 day and ~9 day IMFs (light 
grey, dark grey and black lines, respectively), b) wind stress (blue line) with the ~3 day, ~6 day and ~10 
day IMFs (light grey, dark grey and black lines, respectively) and c) MLD (red line) with the ~2 day and ~6 
day IMFs in the grey and black lines respectively. 
 

Although the correlation between wind stress, MLD and the surface chl-a time series was weak (r<0.2), 

EMD analysis showed that wind stress, MLD and surface chl-a variability in summer are linked. The 

submesoscales of variability for surface chl-a (~2, ~4 and ~9 days) were at a similar frequency as both 

wind stress  (~3, ~6 and ~10 days) and MLD (~2 and ~6 days). These match ups in small scale temporal 

variability between wind stress, MLD and surface chl-a emphasise that phytoplankton variability is likely 

the consequence of MLD adjustments, resulting from wind stress variability occurring during synoptic 

scale storms in the SAZ. The low correlation between MLD and surface chl-a likely results from the 

variable surface chl-a to MLD adjustments in summer that causes both dilution (seen as a decrease in 

surface chl-a when the MLD deepens) (Crumpton and Wetzel, 1982; Banse, 1994) and growth (seen as 

an increase in surface chl-a in response to nutrient entrainment from a deepening MLD) (Fauchereau et 

al., 2011). Neither the MLD nor the wind stress has a temporal signal similar to the ~27 day period in the 
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summer surface chl-a time series. Again, the driver of this period of variability is unknown (although 

tides are a possibility) and outside the range of scales that is being studied in this thesis.  

 

2.4.2 Sampling frequencies 

 
Recent developments in autonomous ocean glider technology have allowed increased observations with 

higher resolution in both space and time (Eriksen and Perry, 2009; Mahadevan et al., 2012). From 

previous research, we know that if we want to sample fine scale features we need to sample at the 

scales of variability of the feature. However, what is unknown is the extent to which the different scales 

of variability count towards the overall signal that characterises the seasonal cycle (e.g. what is the 

minimum sampling frequency required that will allow us to adequately resolve the seasonal cycle?).  

 
The temporal analysis EMD study found that in spring, the submesoscale (~2, ~5 and ~10 days) signals 

are the dominant frequencies at which surface chl-a varies. From Mahadevan et al. (2012), we know 

that the blooms in spring caused by eddy-driven slumping are patchy and initiate the spring bloom 

earlier than it would be if driven by surface heating alone. This implies that if we don’t resolve the 

system at sub-mesoscales we will not be able to accurately characterise the seasonal cycle. In particular 

we are likely to incorrectly represent bloom phenology and are likely to overestimate bloom initiation 

dates with important implications for addressing long term trends. The temporal analysis in summer 

found that the variability of the sustained bloom occurred at frequencies of 2 to 9 days. Synoptic storms 

are proposed by Swart et al. (2015) to extend the duration of the summer bloom in the SAZ by 

increasing the seasonal supply of iron through MLD excursions. Therefore, if these modes of variability 

are not adequately sampled, it is likely that the seasonal cycle of surface chl-a will not be adequately 

resolved, in particular the duration of the bloom is likely to be underestimated.  

 
Although it was not possible to investigate inaccuracies in timing or duration, by subsampling the 

surface chl-a spring and summer time series at the dominant frequencies, the study was able to 

determine to what extent we could capture the multi-seasonal mean and standard deviation of the 

original high-resolution time series. 

 
Subsampling at the dominant set frequencies for both spring and summer captured the multi-seasonal 

means. However, the randomly extracted samples also captured the mean (Table 2.9). In spite of this, 

capturing the mean does not characterise the multi-seasonal cycle of surface chl-a variability. 

Comparison of the standard deviation found that the set frequency samples on average had a standard 
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deviation that was similar to the original high resolution time series, while the randomly extracted 

standard deviations were highly variable (see Figure 2.6). Therefore, sampling at the dominant scales of 

variability and at a set frequency in both spring and summer captures the multi-seasonal variability 

around the mean better than that of random extractions (Table 2.9). RMSE analysis of the standard 

deviation further emphasises this as there is a greater chance of incorrectly predicting surface chl-a 

variability if surface chl-a is randomly sampled (Figure 2.10). The exception to this is the 27 day set 

frequency in summer that does worse at correctly predicting surface chl-a variability than the equivalent 

random extractions. 

Season Sampling day Mean 
Standard 
deviation 

Spring 

Time series 0.38 0.12 

5 day subsampling 0.38 0.12 

5 day random 0.39 0.12 

10 day subsampling 0.39 0.13 

10 day random 0.39 0.12 

Summer 

Time series 0.78 0.14 

4 day subsampling 0.78 0.14 

4 day random 0.76 0.13 

9 day subsampling 0.78 0.15 

9 day random 0.79 0.14 

27 day subsampling 0.73 0.06 

27 day random 0.76 0.13 
 

Table 2.9 The average mean and standard deviations for the time series, subsamples and random 
extractions for both spring and summer. 
 

From RMSE analyses (difference between values predicted by an estimator and values actually 

observed), the study was also able to determine the minimum frequency needed to accurately 

characterise the mean and standard deviation of the spring and summer surface chl-a time series. 

Subsampling at periods of 10 days or less will ensure that meso- and submesoscale variability of 

phytoplankton in the SAZ during spring will be captured (Figure 2.10 a). Similarly, in summer, 

subsampling at higher frequencies (less than 10 days) is required to capture the meso- and 

submesoscale forcing that drives the short term variability observed in surface chl-a (Figure 2.10 b). 

Sampling at larger temporal frequencies would capture the overall multi-seasonal trend of an increase in 

surface chl-a from spring to summer but not the sub-seasonal meso- and submesoscale variability 

observed in surface chl-a. Therefore, to adequately resolve and characterise the seasonal scales of 
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variability of phytoplankton in the SAZ, surface chl-a needs to be subsampled at set frequencies (less 

than 10 days) in both spring and in summer to resolve for the required scales of variability.   

Figure 2.10 The root mean square error of standard deviation for subsampling at the dominant 
frequencies (blue) and at random (red) for (A) spring and (B) summer surface chl-a. The range of 
possible errors of randomly sampling at each frequency is shown with the black line. 
 
Models, therefore need to parameterise for these small scales of variability, in order to adequately 

represent the drivers of the seasonal characteristics of phytoplankton in the SAZ, over and above the 

multi-seasonal ramp. Hence, observation platforms (e.g. Argo floats, gliders) need to collect data at 

smaller scales (less than 10 days) to adequately resolve for these drivers of the phytoplankton seasonal 

cycle in the SAZ.  

  



47 
 

2.5 Conclusion 

 
In the SAZ, the multi-seasonal signal is the dominant source of surface chl-a variability over the 5.5 

month period of the glider deployment, explaining 58% of the temporal variability of surface chl-a. 

Additionally a dominant daily signal in surface chl-a was observed (20 hours at 7% and 9% for multi-

seasonal and spring, respectively and 18 hours at 22% for summer). The removal of both the daily and 

multi-seasonal signal allowed for the observation of the sub-seasonal signals. The meso- and 

submesoscale signals explained the majority of the surface chl-a variability for the full multi-seasonal 

time series (53%) as well as when separated into spring (97%) and summer (27%). 

 
An investigation of the spring versus summer analysis showed that the magnitude of phytoplankton 

variability was similar in spring and summer, with surface chl-a variability occurring at submesoscales. In 

spring, the submesoscale (~2, ~5 and ~10 day) signals were the only significant temporal signals (above 

99% confidence level) and combined they explain 97% of the temporal variability of surface chl-a. In 

summer the dominant mode of variability was a monthly (~27 day) signal, however submesoscale 

signals (~2, ~4 and ~9 day), described approximately 27% of the remaining surface chl-a temporal 

variability. Although these surface chl-a signals have similar scales of inter-seasonal variability, the 

drivers of the variability differ. 

 
In spring both the MLD and wind stress have a dominant ~20 day signal that is not present in surface chl-

a, however their submesoscale modes of temporal variability (~2, ~4 to ~7 days for MLD and ~2, ~4 to ~8 

days for wind stress) are similar to those of the surface chl-a (~2, ~5 and ~10 days) and dominate the 

remaining variability of the MLD and wind stress. The relationship between surface chl-a, MLD and wind 

stress can be explained by Mahadevan et al. (2012) and Swart et al. (2015), where the patchy surface 

chl-a blooms are formed through the slumping of the lateral density gradient when the wind stress 

weakens and eddies restratify the mixed layer at submesoscales (~2 to ~7 days), before the occurrence 

of surface heating stratification. During summer, the MLD was dominated by meso- (~14 days) and 

submesoscales (~2 and ~6 day) of temporal variability, while wind stress similarly varied at 

submesoscales (~3, ~6 and ~10 days). The submesoscales of variability for surface chl-a (~2, ~4 and ~9 

days) were at a similar frequency as both wind stress and MLD. These match ups in small scale temporal 

variability between wind stress, MLD and surface chl-a are the consequence of MLD adjustments, 

resulting from wind variability occurring during synoptic scale storms in the SAZ.  
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Subsampling at the dominant set frequencies and at random extractions for both spring and summer 

captured the multi-seasonal means. However, capturing the mean does not characterise the seasonal 

cycle of surface chl-a variability. Comparison of the standard deviation found that the set frequency 

samples on average had a similar standard deviation to the multi-seasonal time series, while the 

randomly extracted standard deviations were highly variable. Therefore, sampling at a set frequency in 

both spring and summer captures the multi-seasonal variability around the mean better than that of 

random extractions. Through RMSE analyses, the study was able to determine that to adequately 

resolve and characterise the sub-seasonal scales of variability of phytoplankton in the SAZ, surface chl-a 

needs to be subsampled at set frequencies (less than 10 days) in both spring and in summer.  
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Chapter 3: 

Quantifying the spatial scales of 

phytoplankton variability in the Sub-

Antarctic Southern Ocean using high-

resolution satellite and glider datasets 
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3.1 Introduction 

 
Over the years, spatial heterogeneity of phytoplankton has regularly been observed in satellite ocean 

colour images. Similar to temporal variability, phytoplankton spatial variability is thought to be driven by 

a combination of physical and biological processes.  

 
Phytoplankton are passive particles. As such, ocean physics has a strong effect on their spatial 

distribution. Eddies, fronts and filaments induce stirring and mixing of the upper ocean which alters the 

properties of the surface layer of the ocean. The advection of upper ocean properties is dominated by 

horizontal velocities, which affects the distribution of phytoplankton (Mahadevan, 2016). In addition, 

vertical motion in the upper surface layer also affects phytoplankton distribution through modulating 

the gradients of light and nutrients. Submesoscale processes induce vertical transport of both nutrients 

and phytoplankton up and down the water column (Mahadevan, 2016). This impacts the growth of 

phytoplankton by controlling their access to light and nutrients. Phytoplankton spatial variability is also 

affected by non-linear biological processes such as zooplankton grazing (Martin, 2003). Other processes 

such as phytoplankton growth and mortality depend on changes to the availability of local nutrients and 

light, which is affected by local physics and external factors. All these biological and physical processes 

contribute to the complex spatial variability observed in phytoplankton distributions.   

 
Phytoplankton in the Southern Ocean are highly variable in space. The Sub-Antarctic Zone (SAZ) in 

particular, has been characterised as having intermittent and patchy phytoplankton blooms in spring, 

while in summer, blooms that are still intermittent but large, homogenous and sustained throughout 

summer (Swart et al., 2015). Understanding the different inter-seasonal scales of spatial variability of 

chlorophyll (chl-a) is important for determining the extent that primary production impacts the global 

carbon cycle. Satellites are currently the most effective way in which to monitor the spatial variability of 

surface chl-a (Reilly et al., 1998; Marrari et al., 2006). Through the use of daily high-resolution (2 km) 

ocean colour satellite data, seasonal and sub-seasonal phytoplankton variability in the SAZ can be 

investigated.   

 
Key Questions 
 
This study uses surface chl-a data collected from both a high-resolution (6 hourly profiles) glider transect 

in the SAZ together with high-resolution satellite ocean colour data (daily, 2 km resolution) to 

investigate the spatial variability of phytoplankton in spring and summer in the SAZ. Satellites provide a 
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novel way to assess phytoplankton spatial variability over large areas and will help in answering the 

following questions.   

 
1. How does the observed spatial variation in surface chl-a change with length scales in the SAZ? 

 
Spatial heterogeneity of phytoplankton is one of the oldest oceanographic observations, where 

phytoplankton spatial distributions can range from meters to basin scale. Phytoplankton heterogeneity 

is formed by the variable response of phytoplankton to physical properties (e.g. meso- and 

submesoscale eddies, fronts and filaments) and the availability of light and nutrients in the euphotic 

zone. However, very little research has been done on phytoplankton spatial variability in the Southern 

Ocean. By comparing the spatial variance of surface chl-a and sea surface temperature (SST) satellite 

images as a function of the size of a region at different length scales, we can begin to understand the 

spatial variability of phytoplankton in the SAZ. 

 
2. Does the magnitude of phytoplankton spatial variability change seasonally? 

 
Phytoplankton in the SAZ is known for having high inter-annual and intra-seasonal variability. A study by 

Swart et al. (2015) found that sub- and mesoscale features cause chl-a blooms to be intermittent and 

patchy in spring whereas in summer the chl-a bloom is more homogenous in space. This question aims 

to identify the multi-seasonal variability of phytoplankton distribution through characterising the spatial 

variance of chl-a as a function of the size of a region at various scales for both spring and summer 

satellite ocean colour images. 

 
3. To what extent is the variability that gliders measure due to spatial patchiness? 

 
The development of gliders has become useful in collecting data at high spatial and temporal resolution 

for long periods of time allowing a detailed assessment of chl-a variability. Nevertheless, issues about 

the quasi-Lagrangian nature of gliders and the possible confusion of temporal and spatial variability have 

been raised. Analysis of chl-a spatial variability of satellite data from consecutive days with the 

variability of surface chl-a data from gliders can be performed to determine the extent to which spatial 

patchiness is causing surface chl-a variability in glider observations. 
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3.2 Data and methods 

 

3.2.1 Satellite products 

 
3.2.1.1 Ocean colour 

 
Ocean colour data was obtained from MODIS-Aqua (Moderate-resolution Imaging Spectroradiometer) 

for analysis of chl-a distribution. MODIS is an instrument on board the NASA Aqua satellite. Aqua orbits 

around the earth at 705 km on a circular, sun-synchronous, near-polar ascending node (13:30). MODIS-

Aqua views the entire globe every 1 to 2 days in 36 spectral bands. Ocean colour is observed between 

bands 8-16 with wavelengths between 405-536 nm (Franz et al., 2005). The MODIS-Aqua chl-a algorithm 

returns near-surface chl-a concentrations. These concentrations are calculated using an empirical 

relationship derived from in situ measurements of chl-a (chloro_a) for MODIS-Aqua ocean colour) and 

blue to green band ratios of in situ remote sensing reflectance (Rrs). The Rrs occurs at 2-4 wavelengths 

between 440-570 nm. The algorithm used is a 4th order polynomial relationship between a ratio of Rrs 

and chloro_a. 

 

                                                  𝑙𝑜𝑔10(𝑐ℎ𝑙𝑜𝑟𝑜_𝑎) = 𝑎0 + ∑ 𝑎𝑖𝑙𝑜𝑔10(
𝑅𝑟𝑠(𝜆𝑏𝑙𝑢𝑒)

𝑅𝑟𝑠(𝜆𝑔𝑟𝑒𝑒𝑛)
)𝑖|4

𝑖=1 ,                     (3.1) 

 
Level-2, daily, 1 km resolution data was obtained from the NASA Ocean Color website 

(http://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=am). The daily swaths covered the area (40°S to 

45°S and 12°W to 0°) of the SG573 track during the deployment of the glider. Ocean colour data were 

retrieved for one year between June 2012 and May 2013. The level-2 data were further processed in 

SeaDAS (SeaWiFS Data Analysis System), an image analysis package for processing, displaying and 

analysing satellite ocean colour data (http://seadas.gsfc.nasa.gov/). In SeaDAS, the data were binned 

into level-3 data and generated into level-3 mapped (platecarree) data at 2 km resolution. The 2 km 

resolution data were generated from the 1 km data in order to remove any outliers that occurred in the 

1 km data.  

 
The days with the most number of ocean colour data points (over 30 000) within the period of glider 

deployment were found (11 days in total). Of these days, only 7 days had ocean colour data that 

coincided with the glider track for that day. The 7 days were the 5th, 7th and 15th of October 2012, 27th 

November 2012, 9th December 2012, 23rd and 27th of January 2013 and 2nd February 2013.  
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3.2.1.2 Sea surface temperature 

 
Satellite sea surface temperature was obtained from MODIS Aqua 

(http://oceancolor.gsfc.nasa.gov/cms/). The SST data used was daily, level-3 mapped data at a 4km 

resolution. MODIS wave bands 31 and 32 were used at 11 and 12 μm. Daily SST satellite data was taken 

for the same days as the 2 km ocean colour satellite data. For the 15 October 2012 and 23 January 2013, 

there was no SST data for the area. Instead, SST data from 26, 29 and 30 January 2013 were used for the 

23 January. No SST satellite data that covered the research area a week before or after was found on 15 

October 2012.  

 

3.2.2 Spatial analysis 

 
Spatial heterogeneity was characterised using a similar approach to that used by Mahadevan and 

Campbell (2002), where the spatial variance V is determined in terms of various length scales, L.  

Standard deviation S was used instead of variance for this analysis. The standard deviation was 

calculated over an area of dimension L (5° by 5°; Figure 3.1), and then over subdomains of dimension 

Li=L/2i (i = 0, 1, 2, 3, …, N) (L/2, L/4, L/8…), into which the region was partitioned. S(Li) is then the average 

standard deviation contained within all subdomains of area Li
2 that covers the domain. The standard 

deviation for each day was normalised by the total standard deviation of the largest domain.  

 
This analysis of spatial variance in terms of length scales assumes the existence of a scaling relationship 

between variance and the spatial scales. The underlying theoretical concept is that standard deviation 

varies more or less linearly with length scales in a logarithmic space. This suggests that there is a power 

law relationship in the form of: 

 
                                                                                        𝑆~𝐿𝑝      (3.2) 

 
Where p>0 and is the slope parameter. This power law relationship characterises the standard deviation 

as a function of the size of a region. The slope p is a measure of the spatial heterogeneity of the 

distribution of the property. The variations in p reflect differences in the total standard deviation 

retained at small scales. Therefore, the log(S) vs log(L) plots whose standard deviation S(L) have smaller 

slopes (p), have a greater variance contained in small scales and have a patchier distribution than one 

that has a larger slope (Mahadevan and Campbell, 2002).  
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The spatial variance was calculated for both the satellite ocean colour and SST images (Table 3.1) and 

the data were normalised to allow comparison between the variables. The normalised data sets were 

divided into spring and summer, to assess the inter-seasonal (whether the relation for each variable 

changes with the season) and inter-variable (how chl-a and SST vary from each other in one season) 

spatial variability. It is not possible to do any statistical testing on the difference between spring and 

summer spatial variability as there are not enough days with sufficient data. 
 

Date Chl-a Longitude SST Longitude Glider co-ordinates  

5 October 2012 7° to 12° W 7° to 12° W -42.8° S and -9.6° W 

6 October 2012 7° to 12° W 7° to 12° W -42.9° S and -9.5° W 

15 October 2012 7° to 12° W  -42.9° S and -8.9° W 

27 November 2012 7° to 12° W 7° to 12° W -41.8° S and -6.4° W 

9 December 2012 2° to 7° W 7° to 12° W -41.6° S and -5.8° W 

23 January 2013 0° to 5° W  -42.8° S and -3.5° W 

26 January 2013  7° to 12° W -42.8° S and -3.2° W 

29 January 2013  1° to 6° W -42.8° S and -3.0° W 

30 January 2013  1° to 6° W -42.7° S and -3.0° W 

2 February 2013 1° to 6° W 7° to 12° W -42.5° S and -3.0° W 

 
Table 3.1 Longitudinal values for the chl-a and SST 5° by 5° images. All the latitudes where from 40° to 
45° S. Glider co-ordinates at midday for that specific day. 
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Figure 3.1 MODIS Aqua satellite ocean colour image for the 6 October 2012 at 2 km resolution in the 5° 
by 5° grid (L) used for spatial analysis. The glider track is in black. 
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3.3 Results 

 

3.3.1 Chl-a spatial variability 

 
Seven days of satellite ocean colour data were found to coincide with the positions of the glider. Of 

these days, three occurred in spring (5, 6 and 15 of October 2012), one occurred over the transition 

phases between spring and summer (27 November 2012) that Swart et al. (2015) proposed. The 

remaining three days (9 December 2012, 23 January and 2 February 2013) occurred in summer. 

 
The spatial analysis performed on all of the days showed that the relationship between standard 

deviation and length scales was logarithmic, as expected, and that the standard deviation decreases at 

smaller scales. There also appears to be a greater range in standard deviation from large to small length 

scales in summer (mean standard deviation range = 0.21) than in spring (mean standard deviation range 

= 0.04). The transition phase (27 November 2012) chl-a standard deviation followed a similar trend as 

the summer chl-a standard deviation data. From henceforth the 27 November chl-a data will be 

associated with the summer chl-a images (Figure 3.2).  

 
 

Figure 3.2 Spatial standard deviation of chl-a at eight length scales (4 to 533 km). 
 
The parameters of the power law were estimated with a log-log regression. For both spring and 

summer, the parameter of the slopes is relatively low (Table 3.2) with a difference of 0.14. However, the 

slope parameters in summer (mean p = 0.42) were slightly steeper than in spring (mean p = 0.33).  
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Date p 

5 October 2012 0.32 

6 October 2012 0.33 

15 October 2012 0.34 

27 November 2012 0.46 

9 December 2012 0.41 

23 January 2013 0.43 

2 February 2013 0.39 
 

Table 3.2 Slope parameter (p) for the logarithmic function of chl-a between standard deviation and 
length scales (Equation 3.2). 
 

3.3.2 SST spatial variability 

 
Satellite SST data sets were obtained for all the same days as chl-a, except for the 15 October 2012 and 

23 January 2013. Three substitute days were found for 23 January 2013 – 26, 29 and 30 January 2013. 

Spatial analysis of the SST found that the standard deviation from large to small length scales ranged 

between 2.18 to 0.11 (Figure 3.3).  

 
 

Figure 3.3 Spatial standard deviation of SST at seven length scales (8 to 533 km). 
 
Further analysis through the power law relationship found that there was very little difference between 

the inter-seasonal slope parameters (Table 3.3). The summer slope parameters (mean p = 0.67) were 

slightly steeper than in spring (mean p = 0.56). The exception to this was the 26 January 2013, were the 

slope parameter was relatively low (p = 0.42) in comparison to the rest of the SST data. Contrasting to 
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chl-a spatial analysis, the 27 of November followed a similar slope trend as the SST spring standard 

deviation data. 

Date P 

5 October 2012 0.55 

6 October 2012 0.48 

27 November 2012 0.49 

9 December 2012 0.71 

26 January 2013 0.42 

29 January 2013 0.71 

30 January 2013 0.61 

2 February 2013 0.68 
 

Table 3.3 Slope parameter (p) for the logarithmic function of SST between standard deviation and length 
scales (Equation 3.2). 
 

3.3.3 Intra-variable analysis 

 
In order to compare chl-a spatial variability to that of SST, the spatial standard deviation for each day 

was normalised by the total standard deviation of the largest domain (L) and the power law parameter 

recomputed (Table 3.4). Overall, the chl-a slope parameter (mean p = 0.40) was smaller than SST (mean 

p = 0.59), while the standard deviation for chl-a was higher than SST at all length scales. This, implies 

that chl-a maintains a larger spatial variability than SST at small scales, indicating that chl-a is patchier 

than SST (Table 3.4). 

 

Date Chl-a P SST P 

5 October 2012 0.32 0.59 

6 October 2012 0.35 0.52 

15 October 2012 0.36  

27 November 2012 0.49 0.50 

9 December 2012 0.46 0.74 

23 January 2013 0.44  

26 January 2013  0.45 

29 January 2013  0.68 

30 January 2013  0.58 

2 February 2013 0.38 0.65 
 

Table 3.4 Slope parameter (p) for the normalised logarithmic function of chl-a and SST standard 
deviation (Equation 3.2). 
 
During spring there are two distinctly different slopes between chl-a and SST. Chl-a standard deviation 

was higher than SST spring standard deviation for all length scales. The average slope for chl-a (mean p = 

0.34) was lower than SST (mean p = 0.54), indicating that in spring chl-a is patchier than SST. In summer, 
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chl-a and SST spatial analysis found that the slopes were more similar. This is mostly because SST has 

larger variation in the parameter from day to day. Although the slopes are similar, chl-a is flatter (mean 

p = 0.44) in comparison to SST (mean p = 0.60), with the exception of 27 November 2012 (p = 0.50) and 

26 January 2013 (p = 0.45), where the slopes are similar to that of summer chl-a. The spatial variability 

for the 9 December 2012 (p= 0.74) does not follow the same trend as either summer SST or chl-a data. 
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3.4 Discussion 

 
The heterogeneity of phytoplankton spatial distribution arises from a combination of biological and 

physical process at meso- and submesoscales (Van Gennip et al., 2016). Mahadevan and Campbell 

(2002) proposed a way to characterise the spatial variance of properties as a function of spatial scales. In 

the SAZ, phytoplankton is known for being patchy in spring whereas in summer phytoplankton blooms 

are thought to be more homogenous in space (Swart et al., 2015). Although studies have found this to 

occur, the extent to which this spatial variability of phytoplankton occurs is relatively unknown.  

 

3.4.1 Chl-a and SST spatial analysis 

 
Spatial analysis of the chl-a images using Mahadevan and Campbell's (2002) power law indicates that 

similar spatial variability of chl-a occurs in spring and summer (Figure 3.4). Both the power law 

exponents, p, for spring and summer are relatively small (p = 0.33 and 0.42) and suggest that 

phytoplankton is patchy across all length scales, as a smaller exponent infers greater patchiness. These 

results are similar to those of Mahadevan and Campbell (2002) who ran a spatial analysis study in the 

North Atlantic.  
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Figure 3.4 The log(S) vs log(L) curves from the 7 chl-a images found in the SAZ for the period of glider 
deployment. The length scales analysed ranged from 2 to 533 km. The slopes indicated are estimated for 
lines fitted to the points between L = 4 km and 533 km (see Table 3.4). 
 
Although there is very little difference in inter-seasonal patchiness of chl-a, there is an inter-seasonal 

difference in standard deviation between spring and summer chl-a concentrations. During summer both 

the mean and maximum chl-a concentration is higher than during spring. The spatial analysis found that 

the variation around the mean in summer is also higher (as much as two orders of magnitude) compared 

to spring. These higher chl-a variations could be a result of different underlying inter-seasonal physics 

and/or greater phytoplankton growth in summer.   

 
SST was used as a proxy for understanding the variability in upper ocean physics, in order to find out if 

physical patchiness was connected to the observed chl-a patchiness. Inter-seasonal comparisons of SST 

found that there was very little difference between spring and summer variability in upper ocean 

physics (difference in p = 0.1) (Figure 3.5). This suggests that patchiness in upper ocean physics in spring 

and summer is similar at all length scales (p = 0.56 and 0.67). Unlike chl-a, there is relatively no inter-

seasonal difference between spring and summer SST standard deviation around the multi-seasonal 

means.  
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Figure 3.5 The log(S) vs log(L) curves of 8 SST images in the SAZ for the period of glider deployment. The 
length scales analysed ranged from 4 to 533 km. The slopes indicated are estimated for lines fitted to 
the points between L = 8 km and 533 km (see Table 3.4). 
 

3.4.2 Inter-variable comparison 

 
Spatial analysis found that chl-a in summer is less patchy than in spring, but that there is a higher 

variance in chl-a in summer. From various studies we know that in the Southern Ocean there is a greater 

response in phytoplankton to growth during summer than in spring due to increased light availability 

(Boyd, 2002; Arrigo et al., 2008). However, phytoplankton in summer become nutrient (iron) limited. 

Through the use of SST as a proxy for physics, we know that the patchiness of physics is similar in spring 

and summer. Although, the patchiness of physics is similar inter-seasonally, the important effects on the 

environment (from a biological point of view) are different. In spring small scale physics improves the 

light regime through enhanced stratification whereas in summer the physics enhances mixing which 

elevates nutrient concentrations in the euphotic zone. This elevation in nutrients along with sufficient 

light in summer allows for greater growth to occur in summer than in spring which is typically light 

limited. Maximum chl-a concentrations in spring are thus low and as such the amplitude of the standard 

deviation is limited, whereas in summer, maximum chl-a concentrations are high allowing a greater 
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degree of variability to occur. Therefore, it can be argued that this growth term in summer is creating 

the offset between higher chl-a variance in summer than in spring.  

 
In the ocean, the response time of SST to heat flux is usually much longer than the time scales of 

biological uptake (Mahadevan & Campbell, 2002). This typically explains why biological variables such as 

sea surface chl-a, are spatially patchier than SST at mesoscales, as observed in the North Atlantic by 

Mahadevan and Campbell (2002). The results derived from the comparison between the normalised 

slopes of the log-log S(L) curves of SST and chl-a (Figure 3.6) show that the power law exponents of the 

SST (mean p = 0.59) were on average greater than those for chl-a (mean p = 0.40). This verifies that chl-a 

is patchier than SST over the range of length scales analysed. These results also confirm what 

Mahadevan and Campbell (2002) observed in the North Atlantic, where chl-a had greater variance at 

small length scales than SST. 

 
Seasonally, there is larger patchiness in phytoplankton in spring compared to summer. This is because 

on average there is a greater difference between spring chl-a and SST power law exponents (mean 

difference of p = 0.2) (Figure 3.6 a) than in summer (mean difference of p = 0.16) (Figure 3.6 b). This 

difference in seasonal patchiness, confirms what Swart et al. (2015) suggested in their study with gliders, 

that phytoplankton blooms in spring are patchy, whereas in summer the phytoplankton blooms 

appeared to be more homogenous due to their forcing by synoptic storms. Although there is a small 

reduction in chl-a patchiness during summer time compared to spring (Figure 3.4), the spatial variability 

of some of the SST days (27 November 2012 and 26 January 2013) is more similar to chl-a spatial 

variability than SST (Figure 3.6 b). The similarity between the spatial variability during these days may be 

due to the passage of storms which might contribute to chl-a patchiness. However, this hypothesis 

cannot be tested due to the lack of data in the area during storms. 
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Figure 3.6 The normalised log(S) vs log(L) curves for A) spring and B) summer chl-a and SST images in the 
SAZ for the period of the glider deployment. Chl-a curves are the solid green lines and SST curves are the 
dashed blue lines. 
 
Mahadevan and Campbell (2002) spatial analysis in the North Atlantic, also characterised spatial 

heterogeneity of chl-a as patchier than SST at small scales, which is similar to the results of this study. A 

comparison of Mahadevan and Campbell (2002)’s chl-a spatial analysis in the North Atlantic to this study 

in the SAZ found that the slope parameters in the North Atlantic were smaller (Table 3.5) than in the SAZ 

(Table 3.6). This suggests that chl-a in the North Atlantic is more spatially patchier than in the SAZ. 

However, understanding the possible drivers of this difference in patchiness is not possible as the 

specific period nor location of their study is not known and therefore cannot directly compare the two 

spatial analysis.  

 
 
 
 
 
 

Table 3.5 Mahadevan and Campbell (2002) slope parameter (p) for the normalised logarithmic function 
for variance in chl-a and SST in the North Atlantic.  
 

Date Chl-a P SST P 

M-336 0.1 0.6 

S/A-278 0.1 0.52 

S/A-286 0.1 0.58 

S/A-288 0.1 0.52 
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Table 3.6 Slope parameter (p) for the normalised logarithmic function for variance in chl-a and SST in the 
SAZ. 
 

3.4.3 Spatiotemporal analysis of satellite and glider data 

 
Since the development of gliders, their quasi-Lagrangian nature of sampling ocean properties in space 

and time has been questioned. In recent years, it has been suggested that chl-a variability and 

patchiness is a result of gliders moving into different water masses and inducing patchiness as opposed 

to temporal adjustments in phytoplankton biomass (e.g. growth or loss). The spatial analysis performed 

on the satellite data in the previous section (see Section 3.4.1 and 3.4.2) was able to remove any 

element of geography that would affect spatial variability of the phytoplankton. The results, therefore 

are purely about variance at different spatial scales. By finding consecutive days of satellite images 

within a 10 day period a temporal component was added to the study and compare the satellite spatial 

variance to glider data, to determine the extent to which spatial patchiness is causing surface chl-a 

variability in glider observations. 

 
3.4.3.1 Statistical analysis of spatiotemporal variability 

 
The standard deviation was calculated for satellite and glider surface chl-a for a period less than 10 days 

as sampling surface chl-a at a period more than 10 days reduces the ability to capture phytoplankton 

multi-seasonal and sub-seasonal variability (see Section 2.4.2). Spatial distance less than 100 km was 

used to avoid capturing variability from different water masses. Only the spatial-temporal variability in 

spring was analysed, as of the seven days that had sufficient satellite chl-a data, only three days in spring 

were within a 10 day period of each other. A 6 day temporal period was chosen for the glider as it fell 

half way between the dominant ~2, ~5 and ~10 day temporal periods found in spring (see Section 

Date Chl-a P  SST P  

5 October 2012 0.64 1.18 

6 October 2012 0.71 1.04 

15 October 2012 0.72  

27 November 2012 0.98 1.01 

9 December 2012 0.91 1.49 

23 January 2013 0.89  

26 January 2013  0.91 

29 January 2013  1.36 

30 January 2013  1.15 

2 February 2013 0.77 1.31 
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2.4.1.2). For the glider surface chl-a spring time series, the standard deviation was calculated for 

randomly subsampled 6 day periods. This standard deviation was compared to the standard deviation 

from the spatial analysis of satellite data at 66.6 km (L/8) as this was the closest length scale that 

matched the glider’s average distance (76.2 km) travelled in 6 days in spring. 

 
3.4.3.2 Spatiotemporal comparison of the satellite and glider data 

 
The mean standard deviation from the spatial analysis at 66 km for the satellite chl-a data was 0.019, 

which was one third of the mean standard deviation calculated for the 6 day glider periods (mean 

standard deviation = 0.060, Table 3.7). Similarly, the difference in the daily satellite standard deviation 

(range = 0.0066) was smaller than the 6 day glider periods (range= 0.086). 

 
 
 
 
 
 
 

Table 3.7 Slope parameter (p) for the normalised logarithmic function for variance in surface chl-a and 
SST in the SAZ. 
 
From the satellite spatial analysis, there was very little change in the day-to-day variability of chl-a at 66 

km (mean range of standard deviation = 0.007). As there is very little change in spatial variability in time, 

it can be assumed through the power law relationship that the spatial variability of chl-a is dependent 

on the variability of physics at different scales. Therefore, according to the power law, the variance 

captured by the glider at this length scale should be similar to what the satellite captures. However, this 

is not the case as the glider is capturing more variability (mean standard deviation = 0.060) than the 

satellite (mean standard deviation = 0.019) (Figure 3.7). In their paper, Mahadevan and Campbell (2002) 

described a spatial growth term as the underlying theoretical reasons for this variability however in this 

study, the spatial growth term is not fully representative of what appears to be occurring in reality. A 

reason for this unexplained variability could be due to the SAZ having more small scale biological 

variability than the North Atlantic, which the glider is able to measure. Also, ocean colour satellite 

algorithms are known for underestimating chl-a concentrations, especially between (0.2-2 mg m-3) in the 

Southern Ocean by 2-3 times (Dierssen and Smith 2000; Moore and Abbott 2000; Garcia et al. 2005; 

Mitchell and Kahru 2009; Kahru and Mitchell 2010). Therefore, the satellite could be failing to capture 

the greater variability measured by the glider. 

Date Standard deviation 

5 October 2012 0.022 

6 October 2012 0.017 

15 October 2012 0.016 

Glider 6 day period 0.060 
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Additionally, it cannot be said that there is a linear relationship between spatial and temporal variability 

that is causing phytoplankton variability but we can assume that the glider is measuring the growth term 

in time rather than in space. The reason for this conclusion is that if the growth term was from spatial 

variability, we would be able to observe it in the satellite images. Therefore, it can be concluded that 

one-third of the variability in phytoplankton measured by the glider is caused by spatial variability, while 

the remainder occurs from local adjustments in time (e.g. phytoplankton growth).  

 
 

Figure 3.7 Spatial-temporal analysis of the standard deviation of satellite chl-a images (black) at 66 km 
and glider surface chl-a data (grey) in a 6 day period for spring.  
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3.5 Conclusion 

 
Overall, the standard deviation for chl-a was higher at all length scales than SST. The comparison 

between the normalised slopes of the log-log S(L) curves showed that the power law exponents 

(measure of patchiness) of the SST (mean p = 0.59) were on average greater than those for chl-a (mean 

p = 0.40). This, implies that chl-a maintains a larger spatial variability than SST at small scales, indicating 

that chl-a is patchier than SST. 

 
Initially, spatial analysis of the chl-a satellite images, indicated similar spatial variability of chl-a in spring 

(mean p = 0.33) and summer (mean p = 0.42), where phytoplankton is patchy across all length scales. 

Although there was very little difference in inter-seasonal patchiness of chl-a, there was an inter-

seasonal difference in the standard deviation between spring and summer chl-a. This was thought to be 

primarily the result of increased growth rates in summer that allowed for higher maximum chl-a 

concentrations which in conjunction with submesoscale variability drove higher standard deviations. 

Additionally, on average there is a greater difference between spring chl-a and SST power law exponents 

(mean difference of p=0.2) than in summer which can be interpreted as larger patchiness in 

phytoplankton in spring compared to summer. This difference in seasonal patchiness, confirms what 

Swart et al. (2015) suggested in their study with gliders, that phytoplankton blooms in spring are patchy, 

whereas in summer the phytoplankton blooms appeared more homogenous in space.  

 
Analysis of chl-a spatial variability from satellite data for consecutive days with surface chl-a from gliders 

helped us to determine that the glider was capturing almost triple the amount of surface chl-a variability 

than the satellite in spring. Additionally, it can be assumed that the glider is mainly measuring 

phytoplankton adjustments in time rather than in space as there was very little differences in spatial 

variance observed in the satellite images with time. Therefore, it is proposed that in the SAZ a third of 

the variability in phytoplankton measured by the glider is caused by spatial variability, while the 

remainder occurs from local adjustments in time.  
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Chapter 4:  

Summary of results 
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4.1 An improved understanding of the spatial and temporal scales of variability in the 

Sub-Antarctic Zone 

 
The Sub-Antarctic Zone (SAZ) is a region of the Southern Ocean were phytoplankton have high-annual 

and intra-seasonal variability (Thomalla et al., 2011). Increasing evidence has shown that seasonal to 

sub-seasonal temporal scales and meso- to submesoscales in the Southern Ocean play a prominent part 

in understanding the sensitivity of ocean primary productivity to climate change (Boyd, 2002; 

Fauchereau et al., 2011; Lévy et al., 2012; Swart et al., 2015). The varying spatial and temporal 

distribution of phytoplankton in the SAZ is due to the complex sub-seasonal nature of the interaction of 

light and nutrients through meso- and submesoscale features (Thomalla et al., 2011; Swart et al., 2015). 

Furthermore, the spatial and temporal distribution of phytoplankton differs inter-seasonally due to 

different dominant physical forcing mechanisms occurring during spring versus summer (Swart et al., 

2015). Models (Levy et al., 2001; Glover et al., 2008) and observations (Arrigo et al., 2008; Thomalla et 

al., 2011; Swart et al., 2015) have shown the importance of understanding and resolving sub-seasonal 

and meso- to submesoscale variability of phytoplankton. This calls for a need to better understand the 

spatial and temporal variability of phytoplankton in order improve our understanding of the global 

carbon cycle.  

 
A major problem in being able to understand or parametrise the meso- and submesoscale variability of 

phytoplankton and their drivers is the difficulty in adequately sampling at these scales. Spatial and 

seasonal variation of surface chlorophyll-a (chl-a) is currently most effectively monitored by satellites 

(Reilly et al., 1998; Marrari et al., 2006). Even though satellites provide high-resolution information on 

phytoplankton distribution, the high-resolution information is often removed by averaging of the data 

both in time and space due to large gaps in the data from clouds (Lévy et al., 2012). Gliders are able to 

determine high temporal and spatial resolution of chl-a  and its corresponding variability (Eriksen et al., 

2001). However, an issue that has been raised is about the quasi-Lagrangian nature of the gliders and 

the possibility that gliders sample the differences between meso- and submesoscale features rather 

than intrinsic changes within the water column. 

 
This study used a 5.5 month data set obtained from an autonomous Seaglider that sampled at a high-

resolution (average 1.4 km in space, 2.5 hours in time) during spring and summer in the SAZ. High-

resolution (2 km) ocean colour satellite data from MODIS were also used to investigate the spatial 

variability of phytoplankton in the SAZ.  
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4.1.1 Temporal analysis 

 
For the period of the glider deployment, the seasonal cycle was the overarching source of chl-a 

variability due to the SAZ being a light limited region. With the removal of the multi-seasonal signal, 

submesoscale variability dominated the surface chl-a time series. In both spring and summer, surface 

chl-a variability was dominated by similar submesoscale (~2, ~4 and ~9 day) signals that were driven by 

submesoscale variability in mixed layer depth (MLD) and wind stress. However, the drivers of variability 

differed inter-seasonally.  In spring the submesoscale variability is likely caused by the weakening of the 

wind stress, which results in the restratification of the mixed layer through the slumping of the lateral 

density gradients from submesoscale eddies (Mahadevan et al., 2012; Swart et al., 2015) which in turn 

allows for instances of improved light environment that drives sporadic and patchy blooms. Whereas in 

summer, synoptic storm events that pass through the SAZ, vary the strength of the wind stress and 

introduce deepening and shoaling of the MLD at the meso- and submesoscale, which in turn causes both 

dilution and growth responses to improved nutrient supply from entrainment. 

 
The temporal analysis showed that submesoscales drive the majority of the observed variability in 

surface chl-a. However, it is not always possible to sample at these scales, particularly in the Southern 

Ocean, and this work allowed us to determine a minimum sampling period. By subsampling at various 

frequencies the study was able to determine the minimum sampling period required to adequately 

capture sub-seasonal phytoplankton variability. Through reconstruction of the surface chl-a time series 

(mean and standard deviation), subsampling analysis found that sampling at periods of 10 days or less in 

both spring and summer is required to adequately resolve and characterise the seasonal scales of 

variability of phytoplankton in the SAZ.   

 

4.1.2 Spatial analysis 

 
Spatial analysis of the chl-a in the SAZ found phytoplankton to be patchier across all length scales 

compared to sea surface temperature (SST). This can be attributed to the longer response time of SST to 

heat flux than the time scales of biological uptake. Spatial analysis found that chl-a in summer is slightly 

less patchy than in spring, but that there is a higher variance in summer. Through the use of SST as a 

proxy for upper ocean physics, we know that spatial variability of physics is similar in spring and 

summer. The study proposes that in the SAZ, the persistence of physical processes in summer elevate 

nutrient concentrations, which together with sufficient summer light allows for greater growth to occur 
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in summer than in spring and is creating the observed offset in the chl-a variance between spring and 

summer.  

 
Spatiotemporal analysis of satellite and glider data was used to address the quasi-Lagrangian nature of 

glider sampling. Analysis in spring found that the glider was capturing approximately triple the amount 

of surface chl-a variability than can be captured by the satellite using three subsequent images. 

Therefore, it is proposed that the variability observed in glider measurements in the SAZ is largely due to 

phytoplankton adjustments in time rather than by the glider sampling spatial submesoscale features 

with different surface chl-a concentrations.  

 

4.2 Limitations and future work 

 
Monitoring fine scale features of ocean processes has become important for understanding the role that 

the ocean plays in climate change. This study uses high-resolution glider and satellite data to sample 

sub-seasonal and meso- to submesoscale variability in surface chl-a. Despite this, there were some 

limitations in this study. I mention some of the limitations of this study and suggest improvements for 

future high-resolution studies on phytoplankton.  

 
The SAZ is a region that has high phytoplankton inter-annual and intra-seasonal variability. In order to 

fully understand phytoplankton variability, spatial and temporal analysis needs to occur over a number 

of years. However, this study was limited to one seasonal study and only over the spring and summer A 

comparison of the EMD analysis from the second Seaglider deployed during the SOSCEx I experiment, 

would aid in determining the dominant modes of phytoplankton temporal variability during the spring 

and summer of 2012/2013. In SOSCEx II, a paired Seaglider and Wave Glider sampled in ‘mooring mode’ 

continuously for 4 months. Analysis of these ‘mooring’ gliders would assist in understanding 

phytoplankton temporal variability.  

 
High-resolution (2 km) satellite data was used in order to observe daily spatial variability at small scales. 

This allowed for the identification of small scale variability but restricted the amount of days that had 

sufficient spatial coverage. Additionally, a direct day to day match of chl-a and SST satellite images was 

not possible. Therefore, the conclusions of this study are based on only the few days available 

throughout the period of this study. By analysing satellite data over a few years, a better understanding 

of phytoplankton spatial variability can be developed. Furthermore, a comparison of spatial variability in 



73 
 

regions throughout the SAZ and the Southern Ocean will improve our understanding of how the 

distribution of phytoplankton affects the carbon cycle.  
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