
Computer Science Honours 

Final Paper 

2015 

Title: Determining the optimal protocols for transfer of large data files 

Author: Andrew van Rooyen 

Project Abbreviation: BigBInf 

Supervisor: Michelle Kuttel 

DEPARTMENT OF COMPUTER SCIENCE 



Determining the optimal protocols for
transfer of large data files

Andrew van Rooyen
University of Cape Town

Andrew.vanRooyen@alumni.uct.ac.za

ABSTRACT
The transfer of large data files remains a necessity for scien-
tific research, including Bioinformatics, despite alternate so-
lutions like cloud computing. When transferring large files,
there are many transfer protocols to choose from. In this pa-
per, a lightweight testbed is developed and used to test the
SCP, FTP, HPN-SCP and GridFTP protocols for transfer
of large files between the Universities of Cape Town and the
Western Cape. A comparison of GridFTP’s ‘UDT’ mode
(built on UDP) and its default mode is also done using the
same testbed.

We investigate the effect of a congested network on trans-
fers. Speed and data efficiency are compared on a stable net-
work to determine if any one protocol is significantly better
than the rest.

We find that for network speeds of around 200Mbit/s,
the protocols achieve very similar speeds. The TCP based
protocols achieved very similar efficiency, while GridFTP in
UDT mode had much higher overhead.

1. INTRODUCTION
The size of data sets is increasing rapidly - this is the

era of ‘Big Data’ [13]. One example is in Bioinformatics,
where next generation sequencing has resulted in a mas-
sive increase in the size of raw data, which can be tens
of gigabytes in size [7]. Genome sequencing technologies
like SOLiD provide much higher data output at a cheaper
cost [22], which creates challenges in data storage, transfer
and access. In fact, the cost of storing a byte has been higher
than sequencing a base pair since before 2010 [3].

Generally, sequence data is stored in a data warehouse.
Storing this information for long periods of time requires the
data to be structured efficiently in order to save space and
to allow it to be transferred efficiently. There are a plethora
of sequence file formats whose efficiency depends on the kind
of data stored. Two of the most popular are FASTQ, which
stores aggregated reads along with the quality of each DNA
base pair [6], and BAM, the binary, compressed version of

This paper and associated code is available at https://github.com/
wraithy/bigbinf
The OpenSSH-Portable installation used for HPN-SSH was compiled from
https://github.com/rapier1/openssh-portable
The large hg38.fa.align.gz dataset used is available at http://
hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/
For more information, please see pubs.cs.uct.ac.za

the Sequence Alignment Map (SAM) format [20].
As researchers require access to data warehouses to trans-

fer the sequences they need for local analysis, these loca-
tions are often connected by massive data pipes like Na-
tional Research and Education Networks (NREN’s) [21] [23].
For example, South African universities are connected by
the South African National Research Network which runs
at 10Gbps. Unfortunately, standard transfer protocols like
FTP [24] and SSH [24] were not designed for use on high-
throughput networks, and alternate protocols must be used
to avoid bottlenecks. However, it is not always clear which
is the most suitable protocol for transfer of a particular file
type between two end points.

Some proprietary transfer protocols are widely used in
practice - for example, the fasp protocol by the US based
company AsperaSoft. Based on UDP, this protocol elimi-
nates the latency issues seen with TCP, and provides trans-
fer bandwidth of up to 10 gigabits per second [8].

There have been some attempts to avoid data transfer al-
together, which means processing data remotely. There has
been an explorative push towards cloud solutions from com-
panies such as Amazon and Google [3]. Unfortunately, even
though cloud data centres have plenty of cheap storage, the
transfer bottleneck remains as researchers must still upload
their raw data to the cloud data centres every time they run
a new experiment. Some researchers have even resorted to
mailing hard drives [3]. There are also security, privacy and
ethical concerns with outsourcing processing power to other
companies, as sequenced DNA data is often highly sensitive
information [14].

Although it would be ideal for researchers if this reliance
on data transfer was removed, the current solutions do not
provide good enough answers at every scale. Therefore,
transferring big data is still necessary. In situations where
data must be transferred, it stands to reason that the trans-
fer should happen in the most efficient way.

In this work, we construct a testbed which can be deployed
on a network to test various transfer protocols. The testbed
is outlined, and then used to test SCP, FTP, GridFTP [2]
and HPN-SCP [18].

In order to test the protocols in a relevant environment,
tests are run between the University of Cape Town (UCT)
and the University of the Western Cape (UWC) which are
connected via SANReN.

2. BACKGROUND
The chosen protocols are the most popular protocols for

file transfer in the field, perhaps with the exception of As-

https://github.com/wraithy/bigbinf
https://github.com/wraithy/bigbinf
https://github.com/rapier1/openssh-portable
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/
pubs.cs.uct.ac.za


peraSoft’s fasp, which is non-free.
SCP (secure copy) and FTP (file transfer protocol) come

with most Unix-based systems and the binaries (scp and
sftp) are widely available as part of the OpenSSH [16] project.
FTP is a generic protocol outline that may have many differ-
ent implementations, but these have historically been inse-
cure [4]. OpenSSH implements a sftp-server program which
is built on top of its own ssh-transport protocol [24]. This al-
lows for secure communications using current cryptographic
techniques. This protocol makes use of a control channel
(to send administrative messages between client and server)
and a data channel (to actually transport the data). This
approach of using multiple connections enables some addi-
tional features, for example, pausing and resuming transfers.

SCP is built directly on top of the SSH (secure shell) stack.
In fact, when the scp binary is invoked, the ssh program
is run with specific arguments. Because this abstraction
removes the need to remember a list of command flags, SCP
is arguably the most convenient transfer program to use.
This simplicity also has drawbacks however, as SCP lacks
the ability to pause and resume transfers.

One improvement that OpenSSH has made is in com-
pression. By default, transfers via SCP and FTP will be
compressed using methods from the zlib library [10], but
the compression algorithm can be varied, as it is negotiated
during the initial key exchange [15].

High Performance SSH (HPN-SSH) is a set of patches to
OpenSSH which removes bottlenecks. It has not been im-
plemented into OpenSSH for various reasons (there tends
to be a certain amount of politics around large open source
projects), but is still widely used in large data centers at
big companies like Google, as well as NASA and the mili-
tary [19].

GridFTP is an example of ‘grid computing’, which is de-
fined by Foster and Kesselman as the emerging computa-
tional and networking infrastructure that is designed to pro-
vide pervasive, uniform and reliable access to data, compu-
tational, and human resources distributed over wide area
environments [9]. GridFTP uses FTP as a base to provide
a security infrastructure, resource management services, job
management and information services [1]. It also provides
features like data ‘striping’, which allows a transfer to be
split across multiple hosts, potentially combining their band-
widths.

GridFTP also provides two modes of general operation.
The default mode operates on top of the TCP stack, but
there is a newer ‘UDT’ mode which is based on UDP. This
mode aims to overcome congestion control bottlenecks found
in TCP.

3. DESIGN AND IMPLEMENTATION
The simplest way to compare transfer protocols is to ac-

tually copy files. In this way, low-level technical details are
ignored while practical data is captured. If more information
is needed to explain any results, these details can be exam-
ined afterwards. With these requirements in mind, a testbed
is created to measure speed, data efficiency and packet size
of specific transfer protocols. Transfers are run and infor-
mation about them is captured and saved. These logs are
then analysed and displayed visually. The testbed does not
output the ‘best transfer protocol’, but rather presents the
information relevant to the specific environment so that the
user can make an informed decision.

3.1 Testbed Design
The testbed relies heavily on the transfer protocol binaries

themselves, and these in turn will vary. While we test a
connection between two universities, another team might
want to examine a message passing system within a localised
computing cluster. Therefore, the testbed is designed to be
simple, modular and extensible. A simple Python system
is sufficient, because almost all of the work transferring and
logging the data is done by external programs. The testbed
simply acts as a mediator between them.

The protocols to be tested are specified in a config file,
and have no limits imposed. As long as the correct binaries
are installed on the machine, a user could test any transfer
program as long as they know the command line arguments.

The testbed itself is designed to have minimal dependen-
cies, while the optional Jupyter notebook [17] (an interactive
python-based web page that can be used for analysis) makes
heavy use of Python data science packages.

The data dump format is a simple json template, and can
be parsed by the separate analysis code.

Figure 1: Host 1 copying a file and capturing packets.

The logging mechanism makes use of the ‘tcpdump’ pro-
gram [12], which comes with most Unix-like systems. As de-
picted in Figure 1, it watches a network interface (e.g. eth0)
and logs information about packets which pass through. The
program is run while each transfer is in progress, and the
output is filtered to include only packets sent between Host
1 and Host 2. This output is used as the raw data for anal-
ysis.

Figure 2: The sequence of actions performed by the testbed.
This is repeated once for each protocol.

The Python program for running the file transfers accepts:
the name of the network interface, the remote hostname



(Host 2), the path of the file on Host 2, and a local path to
copy the file to. It then resolves the IPs of each host, and
for each protocol, runs a transfer in isolation. As shown in
Figure 2, it spawns a tcpdump subprocess which runs for
precisely as long as the copy runs. The tcpdump program is
started with filters, so that only traffic between the two hosts
is captured. It then saves the output in a file. This allows for
a controlled environment, because tcpdump only captures
while the copy is running, no other packets are included in
the logs. Also, the copies are run programmatically and
consecutively. Successive copies are not started until both
the tcpdump and protocol processes have been closed, and
the log file has been written. This means that they are all
run in an identical (within reason) environment, but at the
same time do not interfere with each other.

This test process is run multiple times for statistical rea-
sons, generating multiple log files.

Using the Jupyter notebook, this information can be ag-
gregated and used to calculate metrics and display graphs.
These include plots which are computed by looking at the
time of each packet, and the size of its payload.

3.2 Evaluation
The testbed is simultaneously tested between various lo-

cations. During early stages, tests are run between lab com-
puters at UCT. These are naturally on the same LAN. This
means that there is no interference or issues with stability,
but the network is capped at 100Mbit/s. Because all the
protocols could easily reach this speed, the results from dif-
ferent tests don’t reveal much.

The testbed is then deployed between a home network in
Cape Town, and a Virtual Private Server in Amsterdam.
The speed is again capped, but this enabled testing under
unstable conditions, and the testbed had to be made more
robust.

The testbed is finally deployed between two hosts to test
that the binaries for each transfer protocol are set up cor-
rectly (both on the client and server). Once ready, a full set
of tests was run between them.

Figure 3: The hosts in their environment.

The hosts are virtual machines running at the South African
National Bioinformatics Institute (UWC) and the Science
DMZ (UCT). Both locations are close to the SANReN link,
and outside institutional firewalls as depicted in Figure 3.
This means that throttling is avoided, and ensures a speed

of up to 1Gbps.
Four different protocols were chosen to be tested. Two

of the most widely used are FTP and SCP, and each of
these has a more recent successor (GridFTP and HPN-SCP
respectively).

Transfers using each of the four protocols are run while
the network traffic is logged.

The testing environment is kept as stable as possible dur-
ing tests, and multiple tests are run at different times of the
day.

For each transfer, a copy is initiated from Host 1. A file
from Host 2 is transferred to Host 1 using the particular
protocol (see Figure 1).

The tests are run with 6 files: one small 5MiB file and
five files between 0.5GiB and 2.4GiB in 0.5GiB increments.
These were all generated by reading chunks of a 2.4 GB
gzipped sequence alignment file. Even though the proto-
cols are agnostic to file format (they treat everything as
binary), the sequence alignment file is a typical dataset that
researchers transfer.

3.3 Protocols
The configuration of each transfer protocol is extremely

important, as the performance can rely heavily on specific
settings. There are also specific concerns for each proto-
col. For example, HPN-SSH isn’t a standalone system, but
rather a set of patches to OpenSSH. Therefore, the scp bi-
nary from a patched, portable version of OpenSSH is tested
for HPN. This is installed alongside the original so that both
binaries are available.

The ‘lite’ version of GridFTP is used. In this version, au-
thentication is done via ssh as opposed a previously-configured
certificate authority. This makes no difference to the file
transfer itself, but it prevents unnecessary configuration of
the testbed which can be quite complex in the case of ‘full’
GridFTP [11].

Although Bresnahan et al. found that GridFTP’s UDT
mode outperformed the TCP mode [5], both modes are still
tested to see if their conclusions hold for this specific NREN
as well. Note that despite its name, the tcpdump program
will capture UDP packets.

We do not use the data striping features in GridFTP, be-
cause the number of available nodes can vary greatly be-
tween configurations, thus making comparisons with single-
stream transfers unrealistic.

3.4 Data collection
Results were collected by running the testbed at 13h00

and 3h00 each day, for a period of two weeks. For some of
the tests, all the data collected (including information about
each packet) was stored to disk. Because this is very space
intensive (a single test run could generate multiple gigabytes
of dump files), most of the tests only stored aggregated data.

Algorithm 1 Script to run one round of tests.

SIZES = 5M 512M 1G 1 5G 2G 2 4G
for ROUND in {0..4} do

for S in SIZES do
Run transfer for S using testbed

end for
end for

The metrics were chosen for practicality. For example,



behind-the-scenes information like window sizes was not col-
lected, because the biggest concern for users is speed and
size.

The tests were scheduled using the ‘cron’ daemon. Each
job would call a script as in Algorithm 1. This provides
plenty of data for various file sizes to be interpreted by the
Jupyter notebook.

4. RESULTS
Even though the network can theoretically support up to

1Gbit/s, the speeds achieved throughout these tests were
around 200Mbit/s. Although this is not as high as hoped,
it is still a massive speedup over conventional South African
networks, and these speeds are still typical to the use case in
the field. Unfortunately, it is difficult to determine the exact
location of this bottleneck because access was only available
at the end points of the link, while the link itself is owned
and managed by other third parties.

4.1 Network stability
Although each transfer in one test runs in the same envi-

ronment, the time that tests are run can influence the results
if the network is busier at certain times of the day.

Figure 4: Aggregated comparison of speed of data transfer
during peak and off hours, with five transfer protocols.

Protocol p-value

ftp 0.4
scp 0.5
hpn-scp 0.7
gridftp 0.4
gridftp-udt 0.9

Table 1: p-values for a T-Test between the two sets, with
null hypothesis that the speeds are the same.

Figure 4 shows a summary of the speed at various times in
the day. ‘Peak hours’ were considered to be between 11h00
and 15h00, and all tests were either in this time frame (peak)
or not (off hours). Interestingly, TCP based protocols tend
to be slightly faster than GridFTP-UDT during peak hours,

while the opposite is true during off hours. However, even
though some might appear faster, a t-test between each set
of subgroups reveals that the differences are not statistically
significant. The p-values from this test are listed in Table 1,
and are clearly quite large (meaning that we cannot reject
the null hypothesis).

While the stability of the network at each time affects the
speed of the transfers, it is sometimes useful to look other,
more subtle effects as well. Figure 5 represents one complete
transfer for each transfer protocol, for one file size (five ro-
tations of Figure 2). This test is shown as a time series,
where each point on the plot represents a packet. Both in-
coming and outgoing packets are plotted, and the height of
each packet represents the size of its payload. In this case,
there was a confirmed instability at the specific date and
time that Figure 5b was captured. Note that transfers in
Figure 5a take about 45 seconds, while in Figure 5b they
take over 1.5 minutes.

Comparison of Figure 5a and Figure 5b confirms that
transfers on a busy network do take longer. Secondly, the
comparison shows how each transfer protocol handles the
congestion. The fingerprints for the TCP based protocols
are very similar, but close inspection shows that the unsta-
ble transfers are more clustered. The stable transfers are
sparsely populated, but somewhat consistent, while the un-
stable transfers have distinct ‘bands’ with densely packed
columns separated by thinner gaps with no packets. A likely
explanation for this is that a router on one of the hops (most
likely the first hop) was congested and had to buffer pack-
ets until space was made. This is a typical side effect of
congestion on packet switching networks.

The UDP-based UDT mode of GridFTP changes in a
more obvious way. Note that the axis limit doubles from
the stable to unstable plot. This mode tries to match it’s
packet sizes to the network MTU (Maximum Transmission
Unit) for efficiency. The MTU for the ethernet interface
on the test machine was 1500, and Figure 5a is an exam-
ple of the transfer operating in ideal conditions, consistently
achieving this size. However, it is clear from Figure 5b that
the first half of the transfer was congested, and a bigger
payload is forced into each packet. This is only one of the
factors that influence transfer speed, but it clearly does have
a negative impact.

Because the differences in Figure 4 are not statistically
significant, all tests are used for the speed and efficiency
analysis.

4.2 Speed and Data Efficiency
Figure 6 is a simple plot of the average time taken to

transfer the largest file. This by no means allows one to see
the full picture, but it is useful if you want to find out which
protocol will move your data in the shortest time. The SCP
and HPN-SCP are the fastest, and both GridFTP modes
finish roughly 5 seconds later. FTP is the slowest, taking
8.7 more seconds, which is 7.9% more time than SCP.

At this stage is is useful to note that, while GridFTP has
improved upon FTP, the HPN patches to SCP have not sped
up the transfer on this specific network configuration. Also,
the improvement of GridFTP only holds true for this specific
file size. A complete comparison for all file sizes appears in
Figure 8a.

Figure 7 is a comparison between all five protocols mea-
suring the total speed, and total bytes. This is aggregated



(a) Stable network (b) Unstable network

Figure 5: A graphical fingerprint of each transfer run under two network conditions. Each point on the graph represents a
packet.

Figure 6: Total average time to transfer a 2.4GiB file.
Smaller values are better.

across all tests for each protocol. Note that the speed calcu-
lations only include downstream data, while the ‘transferred
data’ measures include data that is sent from the client back
to the server via control channels etc. The dashed red line
in each plot represents the size of the transferred file, and
can be used for quick reference to see if a particular transfer
protocol sends more or less data than the filesize on average.
If the point lies to the right of the red line, the transfer has
an overhead on average. If the point is on the left, the pro-
tocol has managed to send compressed data in an efficient
way.

The corresponding numerical data (including upstream
packets) can be seen in Table 2.

This same data can be represented as a function of file-
size. In this case, Figure 8a compares the speed of each

protocol for all tested file sizes. Surprisingly, the only pro-
tocols that are good consistently are SCP and HPN-SCP.
GridFTP is consistently average, while FTP GridFTP-UDT
change drastically with file size.

Note that the differences in speed are quite small at this
scale (the graph is scaled to 106).

Figure 8b shows the data transferred as a ratio of the file’s
size. A ratio of 100% means that the total number of bytes
transferred (both up and downstream) is exactly the file
size. Ratios larger and smaller than this are more - and less
data efficient, respectively. Here, one can see that GridFTP,
HPN-SCP and SCP all achieve some level of optimization,
as they are between 99.5% and 100%. FTP is close to, but
just above this line between 100% and 100.5%. GridFTP-
UDT is an outlier in this case, and clearly sends much more
data than the TCP-based protocols.

One might expect that UDP transfers would use less data
than TCP because UDP packets are not acknowledged by
the host (requiring downstream data as well as upstream for
each packet). This is not the case, because TCP acknowl-
edgement packets are very small and tend not to make much
of a difference. In fact, when the downstream data is re-
moved completely, the resulting plots are almost identical
to these that include the data. The overhead can instead be
explained by UDP’s lack of redundancy, and it is rare (but
not impossible) for data to be sent more than once.

In a practical sense, all 5 protocols, save GridFTP-UDT
have roughly the same efficiency, where both compression
and overhead are less than 0.5%. GridFTP-UDT uses slightly
more data (less than 5% overhead) which is not significant
in most circumstances.

5. CONCLUSIONS
While transferring large datasets is not ideal, alterna-

tives are not mature enough to remove the need completely.
Cloud solutions are viable in some circumstances, but their
shortcomings result in many situations where manually copy-



(a) 5 Megabytes (b) 0.5 Gigabytes (c) 1 Gigabyte

(d) 1.5 Gigabytes (e) 2 Gigabytes (f) 2.4 Gigabytes

Figure 7: Aggregated data per protocol. The dashed-red line represents the file size. Points to the left and right of the line
are compressed/have overhead.

(a) Speed (b) Data Efficiency

Figure 8: Metrics calculated per file size



File Size (bytes) Protocol Bytes Down Bytes Up Bytes Total Ratio (%) Time (s) Speed (bytes/s)

5242880 ftp 8413007.7 110014.3 8523022.0 162.6 1.4 9092596.7
gridftp 7412012.0 5270788.4 12682800.4 241.9 1.3 5560789.2
gridftp-udt 5543205.4 6239.1 5549444.5 105.8 2.7 2121498.5
hpn-scp 5095229.0 22532226.6 27627455.6 527.0 1.0 5339580.5
scp 4808391.8 104417.7 4912809.5 93.7 1.0 4907455.3

536870912 ftp 534084205.9 1298533.8 535382739.7 99.7 24.4 22069687.9
gridftp 535240945.3 4425.0 535245370.3 99.7 25.3 21358608.5
gridftp-udt 553768959.7 173186.2 553942145.9 103.2 30.2 18732210.9
hpn-scp 535401726.9 164294.4 535566021.3 99.8 24.7 21895264.8
scp 535381827.3 185875.7 535567702.9 99.8 24.4 22088599.5

1073741824 ftp 1072881895.1 2558993.1 1075440888.1 100.2 47.1 22940550.1
gridftp 1071918333.8 4422.0 1071922755.8 99.8 47.6 22580395.8
gridftp-udt 1112012162.9 340049.3 1112352212.1 103.6 50.4 22086429.9
hpn-scp 1070826111.6 341411.1 1071167522.6 99.8 46.3 23154917.1
scp 1070596084.3 382239.0 1070978323.3 99.7 46.1 23375141.7

1610612736 ftp 1609012156.9 3810770.9 1612822927.7 100.1 68.3 23594127.5
gridftp 1608155406.3 4423.1 1608159829.5 99.8 70.5 22868925.7
gridftp-udt 1668742869.2 507308.4 1669250177.6 103.6 74.0 22557996.6
hpn-scp 1608701999.0 513687.6 1609215686.6 99.9 68.7 23465480.1
scp 1608169009.5 581313.7 1608750323.2 99.9 68.4 23536710.8

2147479552 ftp 2144495341.4 5166344.3 2149661685.7 100.1 100.0 21704026.4
gridftp 2145845215.4 4422.5 2145849637.9 99.9 95.0 22610027.5
gridftp-udt 2228159986.6 676775.8 2228836762.4 103.8 98.7 22581830.1
hpn-scp 2145264352.9 687628.8 2145951981.7 99.9 91.5 23476005.1
scp 2148226021.1 753291.0 2148979312.1 100.1 96.2 22467830.4

2540610608 ftp 2541336324.7 6128837.9 2547465162.6 100.3 118.9 21593507.4
gridftp 2538172141.5 4412.9 2538176554.4 99.9 114.3 22233098.8
gridftp-udt 2636682223.1 799058.2 2637481281.3 103.8 115.3 22868390.6
hpn-scp 2533961524.4 806759.9 2534768284.3 99.8 111.9 22745305.3
scp 2535048746.9 908753.4 2535957500.3 99.8 110.2 23077735.8

Table 2: Numerical data aggregated data per protocol

ing large files is unavoidable.
In these cases, it is only logical to make sure that the

transfer is done in the fastest and most efficient way possi-
ble. An easily-deployable testbed has been created to test a
specific connection and provide data which can be used to
determine the most optimized solution.

This testbed was deployed on a LAN network, a con-
ventional home internet connection, and a high-speed re-
search and education network. The results from the SAN-
ReN connection between the Universities of Cape Town and
the Western Cape were compiled and analysed. The tra-
ditional FTP and SCP were tested, as well as their newer
counterparts, GridFTP and HPN-SCP.

Tests were run during lunch hours, and early hours of the
morning. The data dumps from these tests were analysed
using the testbed’s supplementary Jupyter notebook. It was
found that there was no significant difference between the
speeds during peak and off hours. However, there were in-
teresting artefacts in the few cases where the network was
congested.

It was found that the TCP-based protocols achieved very
similar speeds and data efficiency. GridFTP’s ‘UDT’ mode
is built on UDP, and had a much higher overhead than the
TCP protocols. However, it was faster than its default mode
for larger file sizes on this network.

Finally, we found no significant improvements for the newer
protocols. SCP and FTP both remained fast and efficient on
the connection, where GridFTP and HPN-SCP were either
mediocre, or changed with file size.

Of course, out of these four protocols, GridFTP remains
the best choice for a fully configured data centre, as it can
make use of striping and more complex authentication. How-
ever, if a researcher needs to copy a file occasionally, SCP is
still a solid choice, with the option of gaining some efficiency
by applying the HPN patches with little effort.

In the future, it will be worthwhile to run the same tests
on a network achieving over 1Gbit/s to see if the same results
are yielded. This can be easily done by deploying the testbed
described in this paper.

6. ACKNOWLEDGEMENTS
This project would not have been possible without access

to virtual machines at both UCT and UWC. Mr. Peter van
Heusden (South African Bioinformatics Institute) was read-
ily available during the project period, and kindly set up a
VM in the SANBI DMZ. He also granted access to the Cisco
switch which allowed rules for each protocol to be configured.
Mr. Heine de Jager provided access to the UCT Science
DMZ, and was very accommodating under strict security
protocols. He was also extremely available, and helped fix



multiple issues with the GridFTP setup and firewall rules.

7. REFERENCES
[1] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak,

C. Kesselman, S. Meder, V. Nefedova, D. Quesnel,
S. Tuecke, and I. Foster. Secure, efficient data
transport and replica management for
high-performance data-intensive computing. In Mass
Storage Systems and Technologies, 2001. MSS’01.
Eighteenth IEEE Symposium, pages 13–13. IEEE,
2001.

[2] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link,
C. Dumitrescu, I. Raicu, and I. Foster. The Globus
striped GridFTP framework and server. In Proceedings
of the 2005 ACM/IEEE conference on
Supercomputing, page 54. IEEE Computer Society,
2005.

[3] M. Baker. Next-generation sequencing: adjusting to
data overload. Nature Methods, 7(7):495–499, 2010.

[4] D. Bonachea and S. McPeak. SafeTP: Transparently
securing FTP network services. Computer Science
Division, University of California, 2001.

[5] J. Bresnahan, M. Link, R. Kettimuthu, and I. Foster.
UDT as an alternative transport protocol for
GridFTP. In International Workshop on Protocols for
Future, Large-Scale and Diverse Network Transports
(PFLDNeT), pages 21–22. Citeseer, 2009.

[6] P. J. Cock, C. J. Fields, N. Goto, M. L. Heuer, and
P. M. Rice. The sanger FASTQ file format for
sequences with quality scores, and the Solexa/Illumina
FASTQ variants. Nucleic Acids Research,
38(6):1767–1771, 2010.

[7] S. Deorowicz and S. Grabowski. Compression of DNA
sequence reads in FASTQ format. Bioinformatics,
27(6):860–862, 2011.

[8] X. Fan and M. Munson. Petabytes in motion: Ultra
high speed transport of media files a theoretical study
and its engineering practice of Aspera faspTM over
10gbps wans with leading storage systems. In SMPTE
Conferences, volume 2010, pages 2–13. Society of
Motion Picture and Television Engineers, 2010.

[9] I. Foster and C. Kesselman, editors. The Grid:
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1999.

[10] J.-l. Gailly and M. Adler. Zlib compression library.
2004.

[11] Globus. GridFTP lite. http://toolkit.globus.org/
toolkit/data/gridftp/quickstart.html, 2015. Accessed:
2015-09-06.

[12] V. Jacobson, C. Leres, and S. McCanne. Tcpdump.
http://www.tcpdump.org/, 2015. Accessed:
2015-10-18.

[13] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs,
C. Roxburgh, and A. H. Byers. Big data: The next
frontier for innovation, competition, and productivity.
2011.

[14] V. Marx. Biology: The big challenges of big data.
Nature, 498(7453):255–260, 2013.

[15] D. Miller. Security measures in OpenSSH, 2007.

[16] OpenBSD. OpenSSH. http://www.openssh.com/,
2015. Accessed: 2015-09-11.

[17] M. Ragan-Kelley, F. Perez, B. Granger, T. Kluyver,
P. Ivanov, J. Frederic, and M. Bussonier. The
Jupyter/IPython architecture: a unified view of
computational research, from interactive exploration
to communication and publication. AGU Fall Meeting
Abstracts, page D7, Dec. 2014.

[18] C. Rapier and B. Bennett. High speed bulk data
transfer using the ssh protocol. In Proceedings of the
15th ACM Mardi Gras conference, page 11. ACM,
2008.

[19]
C. Rapier (http://stackoverflow.com/users/3191124/chris
rapier). Why when i transfer a file through sftp, it
takes longer than ftp? Stack Overflow.
http://stackoverflow.com/questions/8849240/
why-when-i-transfer-a-file-through-sftp-it-takes-longer-than-ftp
(Accessed: 2015-10-28).

[20] SAMTools. Sequence alignment/map format
specification.
https://samtools.github.io/hts-specs/SAMv1.pdf,
2015. Accessed: 2015-04-27.

[21] SANReN. The South African National Research
Network. http://www.sanren.ac.za/, 2015. Accessed:
2015-09-01.

[22] J. Shendure and H. Ji. Next-generation DNA
sequencing. Nature biotechnology, 26(10):1135–1145,
2008.

[23] B. Van Rooyen. Unlocking the potential of research
networking: ICT and HCD. CSIR Science Scope,
5(2):30–31, 2011.

[24] G. Venkatachalam. The OpenSSH protocol under the
hood. Linux J, 156:6, 2007.

http://toolkit.globus.org/toolkit/data/gridftp/quickstart.html
http://toolkit.globus.org/toolkit/data/gridftp/quickstart.html
http://www.tcpdump.org/
http://www.openssh.com/
http://stackoverflow.com/questions/8849240/why-when-i-transfer-a-file-through-sftp-it-takes-longer-than-ftp
http://stackoverflow.com/questions/8849240/why-when-i-transfer-a-file-through-sftp-it-takes-longer-than-ftp
https://samtools.github.io/hts-specs/SAMv1.pdf
http://www.sanren.ac.za/

	Introduction
	Background
	Design and Implementation
	Testbed Design
	Evaluation
	Protocols
	Data collection

	Results
	Network stability
	Speed and Data Efficiency

	Conclusions
	Acknowledgements
	References

