Potential SLAs for West Greenland fin whales testing against the agreed evaluation trials

A. Brandão and D.S. Butterworth
MARAM (Marine Resources Assessment and Management Group)
Department of Mathematics and Applied Mathematics
University of Cape Town, Rondebosch 7701, South Africa

Abstract

This paper investigates six possible SLAs which are run for the evaluation trials developed at the AWMP Intersessional Workshop (IWC, 2015). Candidates are presented ranging from providing complete satisfaction of the conservation performance criterion for all evaluation trials, to alternatives that sacrifice performance on this count to increasing extents for improved need satisfaction. Need is better satisfied over the first 20 years than over 100 years for these SLAs in these trials.

INTRODUCTION

This paper provides results from the application of the software developed by Andre Punt for the West Greenland fin whale trials, as agreed at the AWMP Intersessional Workshop (IWC, 2015), to six potential SLAs.

The SLAs considered here are tuned to all 63 evaluation trials to achieve the conservation performance and need satisfaction criteria.

SLAs CONSIDERED

Six SLAs are considered in this paper. Two of these formed part of the 'reference SLAs' as given in IWC (2012) and are included here for a comprehensive coverage of the SLAs considered, while the four others are variants of another one of these 'reference SLAs'.
SLA1: Interim SLA which sets the Strike Limit as the lesser of need and $0.02 \hat{N} e^{-1.645 C V}$ where \hat{N} is the most recent estimate of abundance and $C V$ is the coefficient of variation of \hat{N}.

SLA2: Weighted-average interim SLA which uses all the abundance estimates and replaces \hat{N} and $C V$ in SLA1 by:

$$
\begin{align*}
& \hat{N}=\exp \left[\sum_{i} \frac{0.9^{t_{i}} \ln N_{i}}{C V_{i}^{2}} / \sum_{i} \frac{0.9^{t_{i}}}{C V_{i}^{2}}\right] \tag{1}\\
& C V=\sqrt{\sum_{i} \frac{0.9^{2 t_{i}}}{C V_{i}^{2}}} / \sum_{i} \frac{0.9^{t_{i}}}{C V_{i}^{2}} \tag{2}
\end{align*}
$$

where N_{i} is the i th estimate of abundance, $C V_{i}$ is the coefficient of variation of N_{i}, and t_{i} is the time (in years) between when the ith estimate of abundance was obtained and the first year of the block for which a Strike Limit is needed.

SLA3: Variant of SLA2 described above. This variant adjusts the 0.02 multiplier applied to \hat{N} as in SLA2 by a function of the observed trend of the abundance indices, so that the Strike Limit is set as the lesser of need and $\varphi f\left(\beta^{*}\right) \hat{N} e^{-1.645 C V}$, where
$f\left(\beta^{*}\right)=\alpha+(1-\alpha) \frac{1}{1+e^{\left(\beta^{*}-\bar{\beta}\right) / \delta}}$,
where
$\beta^{*}=\hat{\beta}-\lambda s_{\hat{\beta}}$, where $\hat{\beta}$ is the negative of the slope of the log-linear regression applied to the abundance indices, $s_{\hat{\beta}}$ is the standard error of the slope coefficient and λ is a control parameter, and
$\alpha, \bar{\beta}, \varphi$ and δ are further control parameters.
For this variant the following values are chosen for the control parameters:
$\alpha=0.1, \bar{\beta}=0.003, \delta=0.005 / 3, \varphi=0.03$ and $\lambda=3$. The function $f\left(\beta^{*}\right)$ is calculated only if there are more than three abundance indices, otherwise it is set to 1 .

SLA4: Variant of SLA3 described above. In this variant the control parameters are set to:
$\alpha=0.2, \bar{\beta}=0.005, \delta=0.005 / 3, \varphi=0.02$ and $\lambda=2$.
SLA5: Variant of SLA3 described above. In this variant the control parameters are set to:
$\alpha=0.7, \bar{\beta}=0.005, \delta=0.008, \varphi=0.014$ and $\lambda=3$.
SLA6: Variant of SLA3 described above. In this variant the control parameters are set to: $\alpha=0.7, \bar{\beta}=0.005, \delta=0.008, \varphi=0.007$ and $\lambda=3$.

RESULTS AND DISCUSSION

Table 1 gives a summary of the results in terms of conservation performance (defined by the D10 statistic: relative increase of $1+$ population size: P_{T} / P_{0}, where P is the size of the total $1+$ population) and need satisfaction criteria (defined by the N9 statistic: Average need satisfaction given by $\frac{1}{T} \sum_{t=0}^{T-1} \frac{C_{t}}{Q_{t}}$, where C is catch and Q is the need) in the same manner as reported in IWC (2014) for the evaluation trials for the SLAs considered. A further statistic is reported in Table 1 that was not given previously: the proportion of times that each SLA achieves need satisfaction (N9 over 20 and 100 years) above 0.75 at the lower 5\%-ile for these fin whale evaluation trials. Note that Appendix A gives details of all the trials and need envelopes considered. Note that in IWC (2015), the values for survey frequency between Table 5 and Table 6 do not match. The results presented in this paper have assumed the values given in Table 5.

SLA6 was selected so that the requisite conservation performance would be achieved for all the evaluation trials. This is achieved at the expense of meeting need satisfaction, with a worse performance in need satisfaction over a 100 year period. SLA5 achieves better need satisfaction with a slight decrease
in conservation performance. However, the required conservation performance is achieved for MSYR $_{1+}=2.5 \%$ and 4% evaluation trials.

Figure 1 shows the proportion of times that each SLA meets the conservation performance criteria vs the mean need satisfaction (over 20 and 100 years) for various SLAs for the $\mathrm{MSYR}_{1+}=2.5 \%$ evaluation trials, while Figure 2 shows these results for the $\mathrm{MSYR}_{1+}=4 \%$ evaluation trials. For all variants, need satisfaction tends to be better for the first 20 years compared to a longer period.

ACKNOWLEDGMENT

We thank the IWC for financial support for this work, and Andre Punt for developing the code for the trials.

REFERENCES

International Whaling Commission. 2014. Report of the Scientific Committee, Bled, Slovenia.

International Whaling Commission. 2015. Report of the AWMP Intersessional Workshop on Developing SLAs for the Greenlandic Hunts, 3-5 February, Copenhagen, Denmark.

Table 1. Proportion of times that each SLA meets the conservation performance and need satisfaction (over 20 and 100 years) criteria for various subsets of the 63 evaluation trials for West Greenland bowhead whales, and the mean of the lower 5\%-ile need satisfaction (over 20 and 100 years).
(a) Results by MSY rate

	SLA 1	SLA 2	SLA 3	SLA 4	SLA 5	SLA 6
MSYR1+ = 1\% (12 trials)						
Conservation performance	0.17	0.08	1.00	0.83	0.75	1.00
Mean Need satisfaction 20 yrs	0.85	0.94	0.71	0.72	0.80	0.64
Mean Need satisfaction 100 yrs	0.74	0.79	0.28	0.37	0.57	0.36
Proportion Need satisfaction 20 yrs	1.00	1.00	0.00	0.00	1.00	0.00
Porportion Need satisfaction 100 yrs	0.42	0.50	0.00	0.00	0.08	0.00
MSYR1+=2.5\% (24 trials)						
Conservation performance	1.00	1.00	1.00	1.00	1.00	1.00
Mean Need satisfaction 20 yrs	0.99	1.00	0.69	0.71	0.85	0.66
Mean Need satisfaction 100 yrs	0.95	0.97	0.47	0.69	0.82	0.54
Proportion Need satisfaction 20 yrs	1.00	1.00	0.00	0.42	0.92	0.00
Porportion Need satisfaction 100 yrs	1.00	1.00	0.00	0.38	0.75	0.08
MSYR1+=4\% (24 trials)						
Conservation performance	0.88	0.79	1.00	0.92	1.00	1.00
Mean Need satisfaction 20 yrs	1.00	1.00	0.72	0.77	0.95	0.71
Mean Need satisfaction 100 yrs	0.96	0.99	0.51	0.75	0.87	0.56
Proportion Need satisfaction 20 yrs	1.00	1.00	0.63	0.88	1.00	0.25
Porportion Need satisfaction 100 yrs	1.00	1.00	0.00	0.58	0.79	0.08
MSYR1+ = 7\% (3 trials)						
Conservation performance	0.00	0.00	0.33	0.00	0.00	1.00
Mean Need satisfaction 20 yrs	1.00	1.00	0.73	0.76	0.88	0.68
Mean Need satisfaction 100 yrs	0.93	0.96	0.32	0.52	0.75	0.45
Proportion Need satisfaction 20 yrs	1.00	1.00	0.00	0.67	1.00	0.00
Porportion Need satisfaction 100 yrs	1.00	1.00	0.00	0.00	0.33	0.00

(b) Results by need envelope

	SLA 1	SLA 2	SLA 3	SLA 4	SLA 5	SLA 6
Need Scenario A (21 trials)						
Conservation performance	0.81	0.81	1.00	0.95	0.90	1.00
Mean Need satisfaction 20 yrs	0.97	1.00	0.71	0.74	0.91	0.70
Mean Need satisfaction 100 yrs	0.98	0.99	0.54	0.72	0.92	0.67
Proportion Need satisfaction 20 yrs	1.00	1.00	0.30	0.67	1.00	0.29
Porportion Need satisfaction 100 yrs	1.00	1.00	0.00	0.57	0.86	0.19
Need Scenario B (21 trials)	0.76	0.67	0.95	0.90	0.90	1.00
Conservation performance	0.97	0.99	0.71	0.74	0.88	0.68
Mean Need satisfaction 20 yrs	0.92	0.95	0.43	0.65	0.79	0.47
Mean Need satisfaction 100 yrs	1.00	1.00	0.29	0.48	0.95	0.00
Proportion Need satisfaction 20 yrs	0.86	0.90	0.00	0.33	0.76	0.00
Porportion Need satisfaction 100 yrs						
Need Scenario C (21 trials)	0.67	0.62	0.95	0.81	0.90	1.00
Conservation performance	0.95	0.98	0.70	0.73	0.86	0.65
Mean Need satisfaction 20 yrs	0.84	0.89	0.36	0.58	0.66	0.38
Mean Need satisfaction 100 yrs	1.00	1.00	0.10	0.43	0.95	0.00
Proportion Need satisfaction 20 yrs	0.81	0.81	0.00	0.19	0.24	0.00

Figure 1. Proportion of times that each SLA meets the conservation performance criteria vs mean need satisfaction over 20 (shown in blue) and over 100 years (shown in red) for various SLAs for the $\mathrm{MSYR}_{1+}=2.5 \%$ evaluation trials for West Greenland fin whales.

Figure 2. Proportion of times that each SLA meets the conservation performance criteria vs mean need satisfaction over 20 (shown in blue) and over 100 years (shown in red) for various SLAs for the $\mathrm{MSYR}_{1+}=4 \%$ evaluation trials for West Greenland fin whales.

APPENDIX A

List of evaluation trials (see IWC, 2015, Tables 5 and 6)

Trial	Description	Conditioning
GF01AA	MSYR ${ }_{1+}=4 \%$; need scenario A; survey frequency $=12$; historic survey bias $=1$	Yes [1A]
GF01AB	$\mathrm{MSYR}_{1+}=4 \%$; need scenario B; survey frequency $=12$; historic survey bias = 1	1A
GF01AC	$\mathrm{MSYR}_{1+}=4 \%$; need scenario C; survey frequency $=12$; historic survey bias $=1$	1A
GF01BA	$\mathrm{MSYR}_{1+}=2.5 \%$; need scenario A ; survey frequency $=12$; historic survey bias = 1	Yes [1B]
GF01BB	$\mathrm{MSYR}_{1+}=2.5 \%$; need scenario B ; survey frequency $=12$; historic survey bias = 1	1B
GF01BC	$\mathrm{MSYR}_{1+}=2.5 \%$; need scenario C; survey frequency = 12; historic survey bias = 1	1B
GF01CA	MSYR $1_{1+}=1 \%$; need scenario A ; survey frequency $=12$; historic survey bias $=1$	Yes [1C]
GF01CB	$\mathrm{MSYR}_{1+}=1 \%$; need scenario B; survey frequency $=12$; historic survey bias $=1$	1 C
GF01CC	$\mathrm{MSYR}_{1+}=1 \%$; need scenario C; survey frequency $=12$; historic survey bias $=1$	1 C
GF01DA	$\mathrm{MSYR}_{1+}=7 \%$; need scenario A; survey frequency = 12; historic survey bias = 1	Yes [1D]
GF01DB	$\mathrm{MSYR}_{1+}=7 \%$; need scenario B; survey frequency $=12$; historic survey bias $=1$	1D
GF01DC	$\mathrm{MSYR}_{1+}=7 \%$; need scenario C; survey frequency $=12$; historic survey bias $=1$	1D
GF02AA	$\mathrm{MSYR}_{1+}=4 \%$; need scenario A ; survey frequency $=6$; historic survey bias $=1$	1A
GF02AB	$\mathrm{MSYR}_{1+}=4 \%$; need scenario B ; survey frequency $=6$; historic survey bias $=1$	1A
GF02AC	$\mathrm{MSYR}_{1+}=4 \%$; need scenario C ; survey frequency $=6$; historic survey bias $=1$	1A
GF02BA	$\mathrm{MSYR}_{1+}=2.5 \%$; need scenario A; survey frequency $=6$; historic survey bias $=1$	1B
GF02BB	$\mathrm{MSYR}_{1+}=2.5 \%$; need scenario B; survey frequency $=6$; historic survey bias $=1$	1B
GF02BC	$\mathrm{MSYR}_{1+}=2.5 \%$; need scenario C; survey frequency $=6$; historic survey bias $=1$	1B
GF03AA	$\mathrm{MSYR}_{1+}=4 \%$; need scenario A; survey frequency = 18; historic survey bias = 1	1A
GF03AB	$\mathrm{MSYR}_{1+}=4 \%$; need scenario B; survey frequency $=18$; historic survey bias $=1$	1A
GF03AC	$\mathrm{MSYR}_{1+}=4 \%$; need scenario C; survey frequency $=18$; historic survey bias $=1$	1A
GF03BA	$\mathrm{MSYR}_{1+}=2.5 \%$; need scenario A ; survey frequency $=18$; historic survey bias = 1	1B
GF03BB	$\mathrm{MSYR}_{1+}=2.5 \%$; need scenario B; survey frequency = 18; historic survey bias = 1	1B
GF03BC	$\mathrm{MSYR}_{1+}=2.5 \%$; need scenario C; survey frequency = 18; historic survey bias = 1	1B
GF03CA	MSYR $1_{+}=1 \%$; need scenario A; survey frequency $=18$; historic survey bias $=1$	1 C
GF03CB	$\mathrm{MSYR}_{1+}=1 \%$; need scenario B; survey frequency $=18$; historic survey bias $=1$	1 C
GF03CC	$\mathrm{MSYR}_{1+}=1 \%$; need scenario C; survey frequency $=18$; historic survey bias $=1$	1C
GF04AA	$\mathrm{MSYR}_{1+}=4 \%$; need scenario A ; survey frequency $=12$; historic survey bias $=0.8$	Yes [4A]
GF04AB	$\mathrm{MSYR}_{1+}=4 \%$; need scenario B; survey frequency $=12$; historic survey bias $=0.8$	4A
GF04AC	$\mathrm{MSYR}_{1+}=4 \%$; need scenario C; survey frequency $=12$; historic survey bias $=0.8$	4A
GF04BA	$\mathrm{MSYR}_{1+}=2.5 \%$; need scenario A; survey frequency $=12$; historic survey bias $=0.8$	Yes [4B]
GF04BB	$\mathrm{MSYR}_{1+}=2.5 \%$; need scenario B; survey frequency $=12$; historic survey bias $=0.8$	4B
GF04BC	$\mathrm{MSYR}_{1+}=2.5 \%$; need scenario C; survey frequency $=12$; historic survey bias $=0.8$	4B
GF05AA	$\mathrm{MSYR}_{1+}=4 \%$; need scenario A ; survey frequency $=12$; historic survey bias $=1.2$	Yes [5A]
GF05AB	$\mathrm{MSYR}_{1+}=4 \%$; need scenario B; survey frequency $=12$; historic survey bias $=1.2$	5A
GF05AC	$\mathrm{MSYR}_{1+}=4 \%$; need scenario C; survey frequency $=12$; historic survey bias $=1.2$	5A
GF05BA	$\mathrm{MSYR}_{1+}=2.5 \%$; need scenario A ; survey frequency $=12$; historic survey bias $=1.2$	Yes [5B]
GF05BB	$\mathrm{MSYR}_{1+}=2.5 \%$; need scenario B; survey frequency $=12$; historic survey bias $=1.2$	5B
GF05BC	$\mathrm{MSYR}_{1+}=2.5 \%$; need scenario C; survey frequency $=12$; historic survey bias $=1.2$	5B
GF06AA	$\mathrm{MSYR}_{1+}=4 \%$; need scenario A ; survey frequency $=12$; historic survey bias $=1 ; 3$ episodic events	1A
GF06AB	$\mathrm{MSYR}_{1+}=4 \%$; need scenario B; survey frequency = 12; historic survey bias = 1; 3 episodic events	1A
GF06AC	$\mathrm{MSYR}_{1+}=4 \%$; need scenario C; survey frequency $=12$; historic survey bias $=1 ; 3$ episodic events	1A

GF06BA	$\mathrm{MSYR}_{1+}=2.5 \%$; need scenario A ; survey frequency $=12$; historic survey bias $=1 ; 3$ episodic events	1B
GF06BB	$\mathrm{MSYR}_{1+}=2.5 \%$; need scenario $B ;$ survey frequency $=12$; historic survey bias $=1 ; 3$ episodic events	1B
GF06BC	$\mathrm{MSYR}_{1+}=2.5 \%$; need scenario C; survey frequency $=12$; historic survey bias $=1 ; 3$ episodic events	1B
GF06AA	$\mathrm{MSYR}_{1+}=2.5 \%$; need scenario A ; survey frequency $=12$; historic survey bias $=1$; stochastic events every 5 years	1A
GF06CA	$\mathrm{MSYR}_{1+}=1 \%$; need scenario A ; survey frequency $=12$; historic survey bias $=1 ; 3$ episodic events	1 C
GF06CB	$\mathrm{MSYR}_{1+}=1 \%$; need scenario B ; survey frequency $=12$; historic survey bias $=1 ; 3$ episodic events	1 C
GF06CC	MSYR $_{1+}=1 \%$; need scenario C; survey frequency $=12$; historic survey bias $=1 ; 3$ episodic events	1 C
GF07AA	MSYR $_{1+}=4 \%$; need scenario A; survey frequency $=12$; historic survey bias $=1$; stochastic events every 5 years	1A
GF07AB	$\mathrm{MSYR}_{1+}=4 \%$; need scenario B ; survey frequency $=12$; historic survey bias $=1$; stochastic events every 5 years	1A
GF07AC	MSYR $_{1+}=4 \%$; need scenario C; survey frequency $=12$; historic survey bias $=1$; stochastic events every 5 years	1A
GF07BA	$\mathrm{MSYR}_{1+}=2.5 \%$; need scenario A ; survey frequency $=12$; historic survey bias $=1$; stochastic events every 5 years	1B
GF07BB	$\mathrm{MSYR}_{1_{+}}=2.5 \%$; need scenario B ; survey frequency $=12$; historic survey bias $=1$; stochastic events every 5 years	1B
GF07BC	MSYR $_{1+}=2.5 \%$; need scenario C; survey frequency $=12$; historic survey bias $=1$; stochastic events every 5 years	1B
GF08AA	$\mathrm{MSYR}_{1^{+}}=4 \%$; need scenario A ; survey frequency $=12$; historic survey bias $=1$; asymmetric environmental stochasticity (depletion $=0.3$)	Yes [1A,8A]
GF08AB	$\mathrm{MSYR}_{1+}=4 \%$; need scenario B ; survey frequency $=12$; historic survey bias $=1$; asymmetric environmental stochasticity (depletion $=0.3$)	8A
GF08AC	$\mathrm{MSYR}_{1+}=4 \%$; need scenario C; survey frequency $=12$; historic survey bias $=1$; asymmetric environmental stochasticity (depletion $=0.3$)	8A
GF08BA	$\mathrm{MSYR}_{1+}=2.5 \%$; need scenario A ; survey frequency $=12$; historic survey bias $=1$; asymmetric environmental stochasticity (depletion $=0.3$)	Yes [1B,8B]
GF08BB	$\mathrm{MSYR}_{1+}=2.5 \%$; need scenario B; survey frequency $=12$; historic survey bias $=1$; asymmetric environmental stochasticity (depletion $=0.3$)	8B
GF08BC	$\mathrm{MSYR}_{1+}=2.5 \%$; need scenario C ; survey frequency $=12$; historic survey bias $=1$; asymmetric environmental stochasticity (depletion $=0.3$)	8B
GF08CA	$\mathrm{MSYR}_{1+}=1 \%$; need scenario A ; survey frequency $=12$; historic survey bias $=1$; asymmetric environmental stochasticity (depletion $=0.3$)	Yes [1C,8C]
GF08CB	$\mathrm{MSYR}_{1+}=1 \%$; need scenario B ; survey frequency $=12$; historic survey bias $=1$; asymmetric environmental stochasticity (depletion $=0.3$)	8C
GF08CC	$\mathrm{MSYR}_{1+}=1 \%$; need scenario C ; survey frequency $=12$; historic survey bias $=1$; asymmetric environmental stochasticity (depletion $=0.3$)	8C

Description of the different need scenarios (see IWC, 2015, Table 5) for fin whales off West Greenland.

Need scenario	
A	$19->19$ over 100 years
B	$19->38$ over 100 years
C	$19->57$ over 100 years

